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Summary 
 

Nuclear receptor, a class of ligand-activated transcription factor, regulates many 

important physiological processes. Therefore nuclear receptors, such as liver x receptor 

(LXR) and retinoic acid receptor (RAR), are attractive therapeutic targets. Although the 

zebrafish is a prominent vertebrate model that has recently gained surging interest for 

disease modeling and drug screening, currently little is known with regards to LXR- and 

RAR-induced responses in zebrafish liver. In our efforts to investigate the potential of 

zebrafish as a model for LXR- and RAR-related studies, we performed experiments using 

adult male zebrafish exposed to all-trans retinoic acid (RAR agonist) or T0901317 (LXR 

agonist) for 96 hours before sampling the liver for histological, transcriptomic and real-

time PCR analyses. We observed LXR and RAR activation modulate several biological 

processes involved in immune system and metabolic processes. Our transcriptomic 

analysis corroborated with our histological analysis and real-time PCR analysis. We were 

able to capture known effects of LXR and RAR activation as reported in mammalian 

models, suggesting conserved mode-of-actions between mammals and fish. Our findings 

indicate that zebrafish is a valid model for investigating LXR and RAR drug targets, 

LXR- and RAR-mediated disruptions and metabolic disorders. 
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1.1 Zebrafish as an attractive model for vertebrate development 

studies  

 

The zebrafish (Danio rerio) is a small freshwater tropical fish that is endemic to northern 

India. Since early 1970s, George Streisinger and his colleagues have characterized the 

use of zebrafish as a model organism for embryogenesis (Sreisinger et al., 1981; Detrich 

et al., 1999), and it has recently become a popular model organism for studying 

vertebrate development and gene function. They complement higher experimental 

vertebrate models, such as rats and mice, due to its numerous innate advantages. First, 

female zebrafish produce large clutches (100-200) of embryos per week. Secondly, the 

zebrafish has fast embryonic development, whereby cleavage divisions, gastrulation, 

morphogenesis, and organogenesis occur within 24 hours, and zebrafish embryos develop 

into larvae in less than three days. Thirdly, the embryos are large, transparent and 

develop externally to the mother. Thus taken all above, these attributes greatly facilitates 

experimental observation and manipulation using zebrafish. 

 

1.2 Zebrafish as an emerging model for toxicology and chemical 

biology using omics 

 

The zebrafish is an attractive lower vertebrate model for energy metabolism (Schlegel 

and Stainier, 2007) and immune studies (Sullivan and Kim, 2008), since it shares many 

similar important physiological attributes with mammals (Schlegel and Stainier, 2007). 

The zebrafish has long been used as an experimental model to study chemical toxicity 
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ranging from mutagens, carcinogens, teratogens to direct toxicants since 1950s (Laale, 

1977). From 1980s to mid-90s the zebrafish became a premier vertebrate developmental 

and genetic model, and within the next decade it has positioned itself as a biomedical 

model for various human disorders that could aid in discovering novel therapeutics. 

Several recent studies, including ours, have shown conserved chemical-induced 

organ/tissue responses between zebrafish and humans (Parng et al., 2002; Peterson et al., 

2004; Hill et al., 2005; Lam et al., 2006; Lieschke and Currie, 2007; Lam et al., 2008; 

Tilton et al., 2008; Webb et al., 2009). Furthermore, there are recent surging interests in 

using zebrafish for disease modeling, drug-induced perturbations and drug screening 

(Stern and Zon, 2003; Zon and Peterson, 2005). Moreover, the zebrafish is small, 

available in large numbers and maintained at lower husbandry cost than rodents. Thus 

zebrafish can complement as a more cost-effective model to rodent in drug 

characterization studies. 

 

The zebrafish is amenable to various molecular techniques, and a large and increasing 

number of mutant and transgenic lines available for modeling human diseases have added 

further value to the system. Recently, the availability of vast genomic resources in 

zebrafish and the ability to map zebrafish genes to mammalian homologs make it feasible 

to apply omics approaches to chemical biology for identifying molecular biomarkers and 

providing mechanistic insights into biological responses during chemical perturbation 

and subsequently potential health-risk inferences to humans (Parng et al., 2002; Peterson 

et al., 2004; Hill et al., 2005; Lieschke and Currie, 2007).  
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Omics approaches involve high-throughput technologies that allow characterization of 

chemical-induced perturbations from the measurement of global changes in the 

abundance of mRNA transcripts (transcriptome), proteins (proteome), and other 

biomolecular components (metabolome) in complex biological systems. They have 

revolutionized research in drug development and toxicology (Butcher et al., 2004; Harrill 

and Rusyn, 2008; Blomme et al., 2009). By capturing the global profile of the biological 

responses, investigation into the mode of action and toxicity of a chemical can be 

facilitated. Furthermore, an omics database of chemicals can establish to help predict 

pharmacological efficacy and toxicological effects of a new chemical and to improve the 

selection of drug candidate (Ganter et al., 2005).  

 

1.2.1 Mechanistic omics 

 

With appropriate experimental design, omics data can provide mechanistic information 

about the mode of action and toxicity of a chemical via knowledge-based data mining to 

identify pathways and biological processes associated with the chemical perturbation. By 

coupling traditional phenotypic endpoints with omics data, the mechanism of chemical 

action and toxicity can be defined in a conceptual framework of cause-and-effect with 

supports from known molecular interactions and phenotypic anchoring (Paules, 2003). In 

one early study in rats, mechanistic action of estrogen induction of uterine growth and 

maturation has been defined by linking differentially expressed gene sets and associated 

biological processes to physiological and morphological changes in uterine during its 

growth (Moggs et al., 2004). This study has anchored the phenotypic changes in uterine 
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and revealed that uterine growth and maturation are preceded and accompanied by a 

complex molecular program, beginning with the induction of genes involved in 

transcriptional regulation and signal transduction and followed sequentially by genes in 

protein biosynthesis, cell proliferation, and epithelial cell differentiation. Thus, this study 

has provided a mechanistic view of the estrogen-induced transcriptional program that 

modulates the uterotropic responses. 

 

Using a similar approach, several transcriptomic profiling studies have yielded novel 

mechanistic insights into the mode of action and toxicity of several chemicals in 

zebrafish. In one study, the mechanism of teratogenic action of valproic acid (VPA) has 

been determined by comparing the effects of known histone deacetylase (HDAC) 

inhibitors and noninhibitory VPA analogs in zebrafish embryos (Gurvich et al., 2005). 

These tetratogens induce similar tetratogenic effects that are characterized by pericardial 

effusion, crooked tails, abnormal gut coiling, reduced pigmentation, and defective eyes. 

Transcriptomic analysis has revealed that the effects of VPA and trichostatin A, a 

structurally unrelated HDAC inhibitor, are highly concordant. Together with phenotypic 

assays, the study has further demonstrated that inhibition of HDACs is likely the 

mechanism leading to the teratogenic effects of VPA. 

 

In another study, cyclopamine, an inhibitor of Hedgehog (Hh) signaling, has been used to 

identify Hh-regulated genes (Xu et al., 2006). By comparing transcriptome profiles of 

wild-type zebrafish embryos, cyclopamine-treated embryos, and Hh-enhanced embryos 

by injection of RNA coding for dominant negative version of protein kinase A, a large set 
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of Hh signaling responsive genes enriched with Gli-binding motif has been identified and 

further validated by reverse transcription (RT)-polymerase chain reaction and phenotype-

based in situ hybridization (Xu et al., 2006). The Hh signaling responsive genes 

discovered in this study are useful for elucidating the mechanism of Hh signaling not 

only in normal development but also in aberrant signaling to model human diseases. 

 

In a study investigating genes that mediate addiction to amphetamine, the adult brain 

transcriptomes of wild-type zebrafish and mutant no addition (nad
dne3256

), which is 

unresponsive to amphetamine, in the presence and absence of amphetamine have been 

compared, and a new network of coordinated gene regulation associated with 

amphetamine-triggered addictive behavior has been revealed (Webb et al., 2009). 

Interestingly, the differentially expressed gene set is significantly enriched with 

transcription factor genes that are also involved in vertebrate brain development. Further 

phenotypic analysis with in situ hybridization has shown that these genes are also active 

in adult brains. Thus, these amphetamine-modulated genes are involved in neuro-

development and subsequently mediate behavioral addiction to amphetamine. These 

transcriptomic studies have demonstrated the use of chemical or genetic modifiers to 

generate loss- or gain-of-function phenotypes in zebrafish to yield valuable mechanistic 

insights. 

 

Transcriptomic data have also been used to investigate mechanism of toxicity of 

chemicals. For example, the mechanistic action of copper-induced olfactory injury in 

zebrafish has been analyzed with transcriptome profiling (Tilton et al., 2008). 
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Differentially expressed genes are enriched with components of a highly conserved 

olfactory signal transduction (OST) pathway involving genes for calcium transport and 

channel, olfactory receptors, divalent ions, ion channels, and G-proteins. Interestingly, 

these genes in the OST pathways are repressed, suggesting that they become insensitive 

to odorants due to copper-induced injury. Thus, this study has demonstrated that the 

zebrafish olfactory system is a feasible model to perform diagnostic study of how 

different chemicals affect the conserved OST pathway. In another study, mechanism of 

toxicity of a polybrominateddiphenyl ether, 6-hydroxy-BDE47, commonly used as a 

flame retardant, has been investigated via transcriptomic profiling of zebrafish embryonic 

fibroblasts under exposed and unexposed conditions (van Boxtel et al., 2008). Gene-

ontology-based analysis has revealed that genes involved in proton transport and 

carbohydrate metabolism are enriched; therefore suggesting that oxidative 

phosphorylation is disrupted. The uncoupling of oxidative phosphorylation has been 

confirmed by in vitro biochemical assay of zebrafish mitochondria. Hence, this study 

raises questions on the impact of polybrominateddiphenyl ethers in the environment, 

including health-risk posed to humans and other organisms. In our ongoing study for 

mechanistic insight and health-risk effect of early life exposure to BPA, a chemical used 

in the manufacture of polycarbonate plastic that has caused wide concern due to its high 

exposure in humans and potential health effects, transcriptome profiles of BPA-treated 

and control zebrafish embryos have been examined. We can identify deregulated 

signaling pathways such as ephrin receptor, clathrin-mediated endocytosis, synaptic long-

term potentiation, and axonal guidance that are associated with neurological 

development, function, and pathology. The effect has been further validated using a 
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transgenic zebrafish line, Tg(nkx2.2a:mEGFP), that fluoresces green in the central 

nervous system (Ng et al., 2005). The findings in zebrafish are in agreement with the 

main health concerns of early-life exposure to BPA in humans with regard to its impact 

on the nervous system (Chapin et al., 2008). These studies have further demonstrated 

how mechanistic insights obtained from transcriptome analyses can be validated through 

other independent assays amenable in the zebrafish system. 

 

1.2.2 Comparative omics application with repository databank 

 

Gene signatures defined from transcriptomic profiling can be used for generation of novel 

associations and insights among different biological states perturbed by chemical 

compounds, biomolecules, and diseases within the same species and across different 

species. Comparison of omics signatures provides an in silico approach for determining 

chemical action and toxicity, as well as for identifying chemicals that may cause or treat a 

disease. Omics database repositories offer ample opportunities for various comparative 

and meta-analyses to gain novel insights. For example, by comparing their gene 

signatures with other signatures of chemicals with known mechanistic action in 

Connectivity Map database (www.broadinstitute.org/cmap/) (Lamb et al., 2006), it has 

been discovered that both celastrol and gedunin, which are structurally similar natural 

products for medicinal and anticancer use, have yet unknown inhibitory role for HSP90 

activity (Hieronymous et al., 2006). This study illustrates the power of comparative 

chemical genomics for discovery of new roles of chemicals as well as their novel 

mechanistic insights. 
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Recently, we have also found via the same comparative approach that mercury-induced 

hepatotoxicity in zebrafish has similar responses as the mercury-treated human liver cell 

line, HepG2 (GEO Accession GSE6907) (Ung et al., 2010). Several significantly 

enriched canonical pathways are deregulated in both systems. DNA damage signaling 

and proteasome pathway are up-regulated, whereas pathways of nuclear receptor 

signaling, mitochondrial fatty acid beta-oxidation, and electron transport chain are down-

regulated. Moreover, we have also captured additional deregulated metabolic processes 

such as fatty acid synthesis and gluconeogenesis in zebrafish livers but not in the human 

HepG2 cells, indicating the importance of in vivo modeling to provide the whole-

organism context and physiology for capturing certain pathway at organ and system 

levels. 

 

1.2.3 Transcriptomic approaches in chemical perturbation studies in zebrafish 

 

Several of these chemical perturbation studies using omics approaches have made 

relevant associations and inferences to human health-risks. In addition, omics profiling of 

normal physiological state and various developmental stages of zebrafish have been 

performed and these can serve as reference data for comparative analysis in future 

chemical studies. 
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1.2.4 Transcriptomics 

 

Transcriptomics involves the measurement of global changes in the abundance of 

different mRNA species in a biological sample. It generates inferences to transcription of 

genes and potentially translation of gene products and thereby provides a molecular 

perspective of a biological state. The current transcriptome profiling tools used in 

zebrafish are microarray and RNA-Seq. Microarray is a closed platform with predefined 

gene probes spotted onto a solid support, which is then hybridized with fluorescent-

labeled cDNA prepared from RNA samples. The abundance of an mRNA species is 

estimated based on the relative fluorescent intensity on each probe. RNA-seq, or deep 

sequencing of RNA samples using the next generation of sequencing technology, is 

recently becoming a popular transcriptome profiling tool as it is an open platform 

because it does not require predefined probes. In principle, RNA-seq profiles all 

transcripts, including novel ones that have not been previously characterized. In general, 

RNA-seq yields data with higher resolution, wider dynamic range, and lower background 

noise, and it requires lesser amount of RNA sample than microarrays (Wang et al., 2009; 

Wilhelm and Landry, 2009). Although there is currently no published literature in RNA-

seq on chemical perturbation in zebrafish, it has been used to profile transcriptome 

response to mycobacterium infection in adult zebrafish (Hegedus et al., 2009). The 

results of differentially expressed genes obtained with RNA-seq are concordant with the 

previous data based on microarrays (Meijer et al., 2005). 
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As for microarray platforms, two large-scale proof-of-principle studies involving multiple 

(>10) chemicals have been reported for zebrafish toxicology and chemical biology (Yang 

et al., 2007; Lam et al., 2008). Microarray has been shown to be a sensitive tool for 

capturing chemical-induced tissue-specific responses in zebrafish embryos (Yang et al., 

2007). This has been validated with in situ hybridization assays by showing that the 

responsive genes are highly restricted to specific organs or cells. Moreover, chemical-

specific GE profiles with predictive power can be obtained using zebrafish embryos. 

Similarly, our group has performed such studies using adult zebrafish and found that 

whole-adult zebrafish chemogenomics is also useful for predictive and discovery 

chemical biology (Lam et al., 2008). We have generated robust prediction models and 

yielded information on biomarkers of effects and deregulated signaling pathways. These 

are important not only for developing a molecular tool for predicting chemical exposure 

but also for understanding perturbed biological functions and physiological systems and 

thus for inferring health-risks to human. 

 

In one study, disruptive effects of antidepressant mianserin on estrogenic signaling in 

zebrafish brain and gonadal have been analyzed (van der Ven et al., 2006). The 

transcriptome profiling data suggest that the estrogenic effect is caused by perturbation in 

hypothalamo-pituitary-gonadal axis by mianserin-induced deregulation of serotonergic 

and adrenergic systems in the brain. In another report on system-wide responses of the 

hypothalamo-pituitary-gonadal axis in zebrafish to endocrine-active chemicals, 

transcriptome profiles of brain and ovarian tissues of zebrafish treated with aromatase 

inhibitor fadrozole have been analyzed (Villeneuve et al., 2009). Fadrozole induces 
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neurodegenerative stress in the brain tissue, and radial glial cells are proliferated to cope 

with the stress. In the ovary of fadrozole-treated zebrafish, disruption of oocyte 

maturation and ovulation is caused by impaired vitellogenesis. These two studies (van der 

Ven et al., 2006; Villeneuve et al., 2009) illustrate that transcriptomic profiling could 

capture the mechanistic actions of anti-depressants in brain and reproductive tissues in 

zebrafish and the effects may be inferred to humans. 

 

In a study that investigated molecular mechanism of toxicity and carcinogenicity of 

arsenic, we have performed microarray analysis on liver of zebrafish exposed to arsenic 

for 8–96h to identify deregulated biological networks (Lam et al., 2006). Many of the 

differentially expressed genes identified are involved in heat-shock response, DNA 

damage/repair, antioxidant activity, hypoxia induction, iron homeostasis, arsenic 

metabolism, and ubiquitin-dependent protein degradation. These suggest strongly that 

DNA and protein damage as a result of arsenic metabolism and oxidative stress caused 

major cellular injury. These findings are comparable with those reported in mammalian 

systems, hence highlighting the potential of zebrafish for health-risk inferences. Another 

study has shown that two of the biomarker genes for prenatal arsenic exposure in 

humans, foxo5 (zebrafish ortholog of human FOXO3A) and pik3r1, have also been 

captured in transcriptomic profiles of arsenic-treated zebrafish embryos (Mattingly et al., 

2009). Therefore, most zebrafish transcriptomic studies involving chemical perturbation 

mainly focused on investigating molecular mechanism and effects, or to identify 

biomarker/target genes as well as for comparative analyses. 
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1.3 Nuclear Receptors 

 

Nuclear receptors are a class of transcription factor proteins which are present in the 

interior cells and detect the presence of steroid, hormones and other molecules. These 

receptors work in concert with other proteins to modulate various biological processes 

such as development, homeostasis and metabolism of the organism via regulating 

transcription of specific genes. The nuclear receptor-mediated regulation of gene 

expression occurs when a ligand is present. The ligand binding to a nuclear receptor 

results in conformational change and subsequently activates the receptor. Therefore, the 

activated receptor has ability to directly bind to targeted segments of genomic DNA and 

thus modulates targeted gene transcription.  

 

Since nuclear receptors regulate many biological processes and are directly activated with 

ligands, they are attractive novel targets for drug therapy (Tobin and Freedman, 2006) 

and there are also interests in their associations with endocrine disruptive environmental 

pollutants by deregulating nuclear receptor signaling (Grum and Blumberg, 2006). There 

are also interests in using zebrafish in developmental screens to identify ligands of 

selected nuclear receptor for drug screens and endocrine disruptors (Tiefenbach et al., 

2010). In this study, we characterized nuclear receptor-activated biological responses by 

two receptors: liver X receptor (LXR) and retinoic acid receptor (RAR). Information 

generated in this study can facilitate future studies in drug screening and also help 

characterize LXR and RAR disruptors.  
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1.3.1 Liver X receptor 

 

LXRs are oxysterol-activated transcription factor and their ligands include natural 

oxysterols 22-R-hydroxycholesterol (22R-HC), 24,25(S)-epoxycholesterol, and 27-

hydroxycholesterol, and synthetic compounds T0901317 and GW3965 (Collins et al., 

2002; Russell, 1999). Activated LXRs form heterodimers with retinoid X receptor and 

regulate gene transcription via binding to LXR response elements in the promoter regions 

of target genes (Repa et al., 2000). In mammals, there are two LXR isoforms, LXRα 

(NR1H3) and LXRβ (NR1H2). While mammalian LXRβ are ubiquitously expressed, 

mammalian LXRα are highly expressed in the liver and at lower levels in macrophages, 

adipose tissue, kidney, lung, adrenal glands and intestine (Maglich et al., 2003). Zebrafish 

and fugu contain only one single LXR gene which has higher similarity in gene sequence 

with mammalian LXRα (Archer et al., 2008; Maglich et al., 2003). However zebrafish 

and fugu LXR, like mammalian LXRβ, are ubiquitously expressed in all examined 

tissues (Archer et al., 2008; Maglich et al., 2003). Zebrafish LXR has been shown to be 

activated by 22R-HC, GW3965 and T0901317 based on induction of several known LXR 

transcriptional target genes (Archer et al., 2008).  

 

LXR regulates glucose and lipid metabolisms, and also modulates immune and 

inflammatory responses (Baranowski, 2008; Joseph et al., 2003; Zelcer and Totonoz, 

2006), hence it is a potential therapeutic target for atherosclerosis, diabetes and 

rheumatoid arthritis (Cao et al. 2003; Chintalacharuvu et al., 2007; Joseph et al., 2002; Li 

et al., 2010a; Repa and Mangelsdorf, 2002). For example, T0901317 has been shown to 
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reduce glucose levels and improve insulin sensitivity in rodent models for diabetes (Cao 

et al., 2003), highlighting the potency and feasibility of LXR as a drug target. However, 

LXR activation is also associated with adverse effects such as hepatic steatosis and 

hypertriglyceridemia in mice (Baranowski, 2008). Furthermore administration of 

T0901317 induced more severe hepatic lipogenesis in diabetic mouse models than the 

non-diabetics (Chisholm et al., 2003). The lipogenic effects of T0901317 leads to an 

increase of triglyceride and non-high density lipoprotein cholesterol in hamsters and 

monkeys in preclinical studies and thus outweighs the desired beneficial effects (Li et al., 

2010b). Therefore these adverse effects have impaired the advancement of T0901317 into 

clinical trials (Li et al., 2010b).  

 

We have previously shown that chemical agonists that activate two other nuclear 

receptors (aryl hydrocarbon receptor and estrogen receptor) induced highly-conserved 

responses in zebrafish that can be inferred to humans (Lam et al., 2008). As to LXR, 

although its tissue distribution and developmental expression patterns had been 

characterized in zebrafish (Archer et al., 2008), little is known with regard to LXR-

induced transcriptomic responses in zebrafish liver.  

 

1.3.2 Retinoic acid receptor 

 

RAR is a nuclear receptor that is activated by retinoic acids (9-cis retinoic acid and all-

trans retinoic acid) (Kane et al., 2008; Tang and Russell, 1990). There are three RAR 

orthologs in mammals: RAR-α, RAR-β and RAR-γ. In zebrafish, there are RAR-α a, α b, 
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γ a and γ b (Hale et al., 2006; Waxman and Yelon, 2007). Retinoic acids, oxidized forms 

of vitamin A, bind to RAR and result in activation of RAR. Subsequently, they modulate 

development, immune function, lipid metabolism, differentiation and proliferation 

(Lefebvre et al., 2005; Stephensen, 2005). Retinoid acids are also widely used in 

dermatological and cancer treatments (Lefebvre et al., 2005). All-trans retinoic acid 

(ATRA) is the most abundant retinoic acid isomer in vivo and the most well-

characterized RAR agonist (Kane et al., 2008; Tang and Russel, 1990), hence it is 

selected for our treatment.  

 

Most of the retinoic acids in humans are obtained thru ingestion of vitamin A which is 

derived from animal food products (such as liver), multivitamin supplements and fortified 

foods (Allen and Haskell, 2002). Observational studies suggest that more than 75% of the 

population in developed nations may consume vitamin A regularly more than the 

recommended dietary allowance (Allen and Haskell, 2002). Most experimental studies 

have characterized the benefits of vitamin A supplements and adverse effects of vitamin 

A deficiency, but there are little studies on toxic effects of excessive vitamin A 

(hypervitaminosis A), especially at subtoxic levels (Penniston and Tanumihardjo, 2006). 

 

1.4 Main objectives and significance of the study  

 

Nuclear receptors regulate many important biological processes, thus this group is an 

attractive therapeutic drug target. The zebrafish is one of the most well-studied fish 

species and it is economical for evaluating potential health-risk of chemicals. There are 
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increasing interests to use zebrafish for disease modeling and drug screening. Thus 

characterization of the effects of nuclear receptors disruption on biological function can 

be studied in zebrafish. 

 

Our lab has been studying system-wide and comprehensive biological effects of chemical 

perturbations using microarrays (Lam et al., 2008; Lam et al., 2006a; Ung et al., 2010). 

We have characterized effects of chemicals that activate nuclear receptors such as 

estrogen and aryl hydrocarbon receptors (Lam et al., 2008). In this study, we 

characterized biological effects induced by LXR and RAR in zebrafish liver with its 

respective agonist ligands, T0901317 and all-trans retinoic acid (ATRA). T0901317 and 

ATRA are potential therapeutic drugs (Lefebvre et al., 2005; Li et al., 2010b); however, 

they have adverse effect on metabolism by elevating triglyceride level (Cisneros et al., 

2005; Li et al., 2010b). The liver is a major metabolic organ, hence drug-induced 

metabolic perturbations and hepatotoxicological effects can be studied in liver. We 

determined drug modulated molecular process at systems-wide level by both 

transcriptomic and histological analyses. The combination of molecular analysis with 

histological analysis, or phenotypic anchoring, allows construction of an in vivo 

mechanistic model of drug modulations in liver. Information in this study can also help 

future studies in drug screening directed at these nuclear receptors using zebrafish 

system.  
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Chapter 2  

Materials and Methods 
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2.1 The zebrafish 

 

Adult zebrafish (around 6 months old) were obtained from a local fish supplier. The fish 

were acclimatized for at least a week in aquaria before they were transferred into small 

tanks for T0901317 and all-trans retinoic acid (ATRA) exposure. For two types of 

experiments (i.e. histology and microarray), zebrafish were exposed to T0901317 and 

ATRA at different concentrations for 96 hours at density of 1 fish/200 mL at 27°C. For 

PCR gene validation, zebrafish were obtained from another subsequent treatment batch at 

a later date. Chemical solutions and water were changed daily. All experiments were 

performed in accordance to the guidelines of Institutional Animal Care and Use 

Committee (IACUC) and approved by IACUC. 

 

2.2 T0901317 and all-trans retinoic acid treatment 

 

T0901317 (chemical purity>98%, Sigma-Aldrich) and ATRA (chemical purity≥98%, 

Sigma-Aldrich) were chosen as liver x receptor (LXR) and retinoic acid receptor (RAR) 

agonists respectively. Both T0901317 and ATRA were dissolved in dimethyl sulfoxide 

(DMSO) as a vehicle solvent separately. Final DMSO concentration in all treatments and 

control was 0.05% (v/v).  Treatment concentrations were chosen based on hepatic 

histopathological results produced from 96 hour treatment. Concentrations used for both 

treatments were 2000 nM, 200 nM and 20 nM. Microarray analyses of treatments were 

carried out in four to five replicate groups, each which had four pooled zebrafish livers.  
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2.3 Microarray experiments and transcriptome analysis with 

knowledge-based analysis 

2.3.1 RNA extraction and DNA microarray experiments 

 

Total RNAs from five replicates (each replicate consist of pooled livers from four fishes) 

after 96 hour treatment were isolated with Trizol reagent (Invitrogen, USA) protocol. 

Reference RNA was obtained by pooling total RNA from whole male and female wild-

type zebrafish in 9:1 ratio.  

 

We used two-color microarray experimental design to avoid labeling bias by Cy5 and 

Cy3 dyes; the reference RNA provides reference background (Cy3) signals that covers as 

many microarray gene probes as possible from male and female. The 9 male: 1 female 

ratio was found to be a suitable mixture of reference that avoids signal saturation from 

extreme highly-abundant transcripts that are specific in females such as vitellogenins. 

Therefore, this allows relatively good sensitive detection in the expression of female-

specific genes in experimental samples from males by chemical treatments. If excessive 

female samples are used, the reference RNA could highly saturate probes for female-

specific genes and thus the detection of the corresponding transcript signal in 

experimental samples will be masked. Conversely if none or inadequate female sample is 

used, the signal of reference on the corresponding probes will be absent or poor and thus 

over amplify signals of transcript from the experimental samples. We have found 9 male: 

1 female reference ratio provided good reference signal that allows capture of changes in 

transcript abundance for our experimental data.  



  21 

Reference RNA was co-hybridized with RNA samples either from control or treated fish 

on a poly-L-lysine-coated glass array spotted with 22 K zebrafish oligo probes. For 

fluorescence labeling of cDNAs, 10 µg of total RNA from the reference and sample 

RNAs were reverse transcribed and labeled differently, with fluorescent dyes Cy-3 and 

Cy-5, respectively. The microarray slides were hybridized at 42°C for 16 hours in 

hybridization chambers, then they were washed in a series of washing solutions (2x SSC 

with 0.1% SDS; 1x SSC with 0.1% SDS; 0.2x SSC and 0.05x SSC; 30 seconds each), 

dried with low-speed centrifugation and scanned for fluorescence detection with the 

GenePix 4000B scanner (Axon Instruments). Detailed protocols for microarray 

experiment and data acquisition can be further referred to our recent publications (Lam et 

al., 2009a, b).   

 

2.3.2 Microarray data normalization and transcriptome analysis 

 

Lowess method in the R package (http://www.braju.com/R/) was used to normalize the 

raw microarray data. Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) 

was performed to characterize the molecular pathways or processes that are perturbed by 

T0901317 and ATRA. Another batch of fishes was retreated with T0901317 and ATRA, 

and quantitative real-time PCR was used to validate gene expressions that were 

significantly altered in relevant pathways or processes. 
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2.3.3 Transcriptome profile analysis with Gene Set Enrichment Analysis (GSEA) 

 

Gene Set Enrichment Analyses (GSEA) was used to determine T0901317 and ATRA-

modulated biological pathways as described in detail in (Subramanian et al., 2005). The 

zebrafish genes were mapped to human homologs as previously described in (Lam et al., 

2006b). The human homologs of zebrafish genes from the transcriptome profiles were 

ranked according to the p-values with Student t-test. The “GSEAPreranked” option of 

GSEA was used. The ranking metric used was log10 (1/P) where P is the p-value of a 

gene from microarray data. Down-regulated genes have positive values of log10 (1/P) 

whereas up-regulated genes have negative values of log10 (1/P). The genes were later 

ranked in descending order based on values of log10 (1/P). The ranked list of genes for 

each concentration are compared to 1892 curated gene sets or signatures that are 

deposited in the Molecular Signatures Database (MSigDB) from the GSEA website. 

Statistical significance of the gene set for each concentration treatment was calculated 

using an empirical phenotype-based permutation test procedure. The number of 

permutation used was 1000. Pathways with false discovery rate (FDR) <0.25 were 

considered statistically significant, 0.25≤ FDR <0.35 as marginally significant and 

FDR≥0.35 were not significant. Positive and negative values of normalized enrichment 

scores (NES) indicated up- and down-regulation of pathways, respectively. Further 

detailed protocols and principles used for GSEA scoring are described in methods section 

from our recent study (Ung et al., 2010).     
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2.3.4 Ingenuity Pathway Analysis 

 

Network used to view connectivity of human homologs is generated with Ingenuity 

Pathways Knowledge Base software (www.ingenuity.com) from 58 leading edge genes in  

GSEA gene sets that are presented and were deregulated in LMH (Low, Mid and High) 

treatment group significantly (T-test P<0.05). Network scores are calculated based on the 

hypergeometric distribution and is calculated with the right-tailed Fischer’s Exact Test. 

 

2.4 Gene Validation with real time quantitative PCR 

 

Quantification of gene expression level was performed on synthesized First Strand cDNA 

via quantitative Real-Time PCR reaction using LightCycler® 480 SYBR Green I Master 

kit according to manufacturer’s protocol (Roche). Nine biological replicates in each 

concentration group were performed for all real-time PCR experiments. Quantification of 

transcript levels were measured by using relative quantification between PCR signal of 

the target transcript in treatment groups and untreated control group after normalization 

with the transcript level of 60S ribosomal protein L13a (rpl13a) for T0901317 treatment 

group and beta-actin (ACTB) for ATRA treatment group. The primers (Table 1 and 2) 

used in the study are listed below. 
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Table 1.  Primers used for validating T0901317 treatment 

Gene Symbol Gene ID 

Product length 

(bp) 

Annealing 

Temperature 

(°C) Sense  primer Antisense Primer 

Lxr BC092160 150 60 GAGATTCTCAGTCAAACGGACTTG TGATGTCGTTGGATTCCATGA 

fasn-like BI880357 151 62 GGAGATGGATTGGGATCAGA TGGGTTCAGACAGTGAGCTG 

Fasn AW077199 149 64 TGTAGACGCCAGTTTTGCTG ATTTGACGCAGCCTTCTTTG 

vcam1 AW344246 197 66 TCCTGCAGGGCGTATGGTGC TCCTGGGAGGTGCTTTCACGGT 

mmp9 AW174507 103 68 TGGACCAGCCATTCAAACCCGC GCCCTCAGTGGTGCAGGTGG 

itga9 BC054897 178 66 TGCCGGATCCGCAACAACCC AGCGATGAGCGCAGGCCAAA 

f10 BM154293 210 62 ATCGAGGAGGAACCAATCCT ACAACCACCCTGATGGAGAG 

pros1 BI887609 124 62 CTGCTGTCCGCTACACTCTG CGCTCCAGGTTTCCTTTCT 

Plg BC059801 220 60 TCTGTAGTCCATGCCAATGC CCTGCCAACTCAAAAACTGA 

c8a AW018673 166 68 TGCCTGCGGTCCAAAAGGACG TCCCAGTGTGGCTTTGTCGGC 

c9 AW019201 222 62 CGACCGATGAGTCAGATGAA CCAACATTCCAGGGTAGTCG 

Acads BC079521 152 60 ATTAGCCAATCCAGGCAC TGCGGAAAGACACTACAGAG 

g6pca BC076446 150 60 GCTCATTTCCCACACCAAGT ATAAAAGCCCACAGCGAATG 

igf1 AF268051 132 62 CGATCTCTACGAGCACAACG TAGTTTCTGCCCCCTGTGTT 

hnf1ba AF430840 218 62 CGCTGTTTCCTCACATACCA CGAGCAGAGGGCAGAAATAG 

Ins AF036326 200 64 AGTGTAAGCACTAACCCAGGCACA TGCAAAGTCAGCCACCTCAGTTTC 

rpl13a BM153976 191 60 CATCTCCTCGGTCGTCTTTC CTGGGGGCTCTGAAGTGATA 

 

Table 2.  Primers used for validating all-trans retinoic acid treatment 

Gene Symbol Gene ID 

Product length 

(bp) 

Annealing 

Temperature 

(°C) Sense  primer Antisense Primer 

cyp26a1 U68234 200 60 GAAAAGGCTTGAGCATGGAG CCTCCGAAGGGGATGTAGTT 

arpc1a AI384833 159 58 CGCTTTCGTAACATGGACAA TATGGTCATTGCTCCGTCAA 

prkag1 BI885847 156 62 CCTGGACATCACCGTGACTA ACAACCTCCTGCTCATCCAC 

slc25a27 BC053139 138 60 GTCTTGTGTCTCCGCCTCTC CACTGCTGCGAGTGTAGTGG 

cox10 AW342801 237 62 CGTGCTGCTACACTCCTCTG GATGGGTGACGGACATCATT 

atp5h CK400662 161 62 TGACTGTTCCTGAGCCTGTG CTGATCGAAGGGGATCATGT 

mlh1 AI558727 210 62 CTGGTCGTAAAACGCTCACA GACTGTAGTGAACCGCATCG 

Gclc AW128066 163 60 CAAAACCTCCTTCCCATTCA CGTAAGAAAACACGGCATCC 

nfe2l2 CR848724 115 60 GGCGTTTACCCAGAATCCTT ATCCAACGTCTCCTGCATTT 

psma3 BG306038 241 62 GCTTGAAGCCTCTTCTCTGG CGGAAGGGTATTTCAGGTTG 

arg2 AW018735 165 62 TTAACGGCGGACTGACCTAC CGGATGCAACTATGTCAACG 

ndrg1 BM185420 209 60 TCATGGCTGAACAAGGTGTC TCGAAACCTCTGATTGTGGA 

casp7 BC095327 150 60 TGCCAATCCAAGACACAAGA AGTTGCTTGCCGAACTCACT 

casp8 AF273220 235 60 TCAAACGAACAGGCACTG ACTTCTCGGATTTCAACTGG 

aco2 BI888674 210 60 TCTTCTCTGACAGGGTGAGC TGGCAACCTACTGCTTAACTG 

Dlst BI896563 246 60 CTGTGACAGACTCCGCAAAC TGTGTCATTCCCGCTGTCT 

Jun BE605692 154 60 TTTTGCGACTTCAGGGTCTT CACCGCTCTCTCCTATCGAC 

Fos BE605310 155 60 CAGCCCATGATCTCCTCTGT CGGATTTTTCATCCTCAAGC 

ppap2b homolog BE201484 102 60 TATGGTGTCACCGCTTTGAG TCAGTGCTCCAGCAGAAAGA 

ppap2c homolog AW115654 184 60 GCCTTTGCTGTGTATGTTGG GCTCTTCGTTTACCGCATTC 

tgfb1a AW566567 181 62 AACGGAGACCTGCTGTATGC ACCAGGGTTGTGGTGTTTGT 

LOC563884 LOC563884 159 62 CATTGACTTCCGCAAAGACC GCAGAGGCACCAGGATTATG 

Cryabb BC076518 186 60 TTGCACCAGAGGAGCTATCA TCACTGTCAGCACACCATCA 

spp1 homolog CR925756 179 62 CGCTGTCTGTGCTTTCATTC CCTCGTCGCCACAGTCTT 

serpine1 BX470232 220 62 TCTCTGGCTGGCTGAAGTCT CTAAAACTGCTCGCCTCCAA 

acta2 CU855699 221 62 GCTCGATGGGGTACTTGAGA GTGTGACGACGAAGAAAGCA  

bactin2 AF025305  213 60 CATCACACCTTCTACAATGAGC ATCACCAGAGTCCATCACG 

 

 

 



  25 

2.5 Histological processing and analysis 

2.5.1 Histological processing, sectioning, and hematoxylin and eosin staining 

 

For the histological processing, adult zebrafish were treated with different concentrations 

(20 nM, 200 nM and 2000 nM) of T0901317 (>98%, Sigma-Aldrich) or ATRA (≥98%, 

Sigma-Aldrich) for 96 hours at a density of 1 fish/200 mL at 27 ± 2°C. The vehicle 

concentration of DMSO for the treatments is 0.05% (v/v) and control fish were kept in 

water with 0.05% (v/v) DMSO concentration. 6 fish were used in each group. Treatment 

and control solutions were changed daily. After treatment, the fishes were sacrificed. The 

digestive organs were exposed by slitting ventrally from heard to anus, and then 4 fish 

were fixed in Bouin’s solution and remaining 2 fish are fixed in Formalin solution 10%, 

Neutral Buffered (Sigma-Aldrich), for 1 week at room temperature. The tissue samples 

were then washed several times with 70% ethanol, dehydrated in a series of increasing 

ethanol concentration (70%-100%), cleared in Histo-Clear and embedded in paraffin. The 

paraffin-embedded samples were sectioned sagittally at 5 µm thickness. The Bouin-fixed 

sections were stained with hematoxylin and eosin (H&E) for qualitative and quantitative 

assessment of liver parenchyma.  

 

2.5.2 ApopTag staining 

 

Apoptag®Plus Fluorescein In Situ Apoptosis Detection Kit was performed according to 

manufacturer’s protocol (Chemicon) to detect DNA fragmentations which are associated 

with cellular apoptosis in the liver parenchyma. The blunt ends or single base overhangs 
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of 3’-OH ends in the fragmented DNA were labeled with the digoxigenin-nucleotide and 

then were bounded to anti-digoxigenin antibody (Anti-DIG) that is conjugated to alkaline 

phosphatase. The localizations of DNA fragmentations in apoptotic bodies were detected 

enzymatically with 5-Bromo-4-chloro-3-indolyl phosphate (BCIP)/Nitroblue tetrazolium 

(NBT) substrate.  

 

Apoptag® staining was performed on formalin-fixed paraffin-embedded samples that 

were sectioned sagittally at 5 µm thickness. 

 

2.5.3 Periodic acid-Schiff (PAS) staining 

PAS is used to detect glycogen in tissue sections. Staining was performed on formalin-

fixed paraffin-embedded sections using Alcian Blue PAS stain kit without diastase 

according to manufacturer’s protocol (BioGenex). 

 

2.5.4 Oil Red O staining 

 Oil Red O is used to stain for lipids. Fresh frozen liver samples were sectioned with 

Cryostat Sectioning and stained with Oil Red O (Sigma-Aldrich). Sections were also 

counterstained with hematoxylin for contrast. 

 

2.5.5 Histological examination  

 

Histopathological assessment was performed with a compound microscope, Axioskop 2 

(Zeiss®), for T0901317-induced phenotypic changes in liver parenchyma at tissue level. 
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This assessment serves to corroborate transcriptomic profile generated from microarrays. 

Hematoxylin and Eosin-stained liver sections from treated and control fish were 

compared for qualitative (i.e. visible changes in liver parenchyma) and quantitative (i.e. 

hepatocytes nuclei density) changes. Density of the hepatocyte nuclei (no. of hepatocyte 

nuclei/7,250 µm
2
) was measured in treated and untreated fish liver with the image 

analyzer program (Axiovision, Zeiss®). Each portion (anterior, middle and posterior 

regions) of the liver sections (1,000x magnification) of each liver from four experimental 

groups (control, T0901317 20 nM, 200 nM and 2,000 nM) were used to determine the 

density of hepatocytes nuclei, and three fields were counted for each liver portion from 

each replicate. Four (n=4 liver samples) biological replicates were assessed in each 

group. The statistical significance (P<0.01, P<0.05) of changes in density was determined 

using a heterocedastic t-test.    

 

Images of H&E, apoptag, Oil Red O and PAS sections (200x and 1,000x magnification) 

were taken with Axioskop 2 for each liver from untreated and treated fish. Images which 

are most representative of liver parenchyma phenotype from each group are presented in 

the paper. 
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Chapter 3   

Transcriptomic response to liver X receptor (LXR) 

agonist T0901317 in zebrafish liver  
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In our efforts to understand nuclear receptor-induced response and toxicity in the liver as 

well as to facilitate the use of zebrafish as a chemical biology model, we have employed 

transcriptomic approach to investigate T0901317-induced responses in the zebrafish liver 

to determine its potential as a model for LXR-related studies., Here we present 

histological and transcriptomic data capturing known effects of LXR agonists as reported 

in rodent models. This included up-regulation of LXR-targeted genes suggesting LXR 

activation, increased apoptotic activity in the liver and induced hepatic steatosis. 

Furthermore, our transcriptomic analysis provided additional insights into LXR activation 

which result in transcriptional suppression of the coagulation and complement pathways, 

insulin signaling pathways and possibly the induction of insulin deficiency that could 

contribute to known therapeutic and pathologic effects of LXR activation. Using a new 

batch of fish for quantitative real-time PCR, we confirmed that the genes associated with 

these biological processes were indeed down-regulated by T0901317-induced LXR 

activation in the liver suggesting that activated LXR may function as a transcription 

repressor of these processes.   

 

3.1 Histological analysis of T0901317-induced effects and toxicity in 

zebrafish liver  

 

Histological analysis was performed on the liver from male adult zebrafish exposed to a 

range of T0901317 concentrations to establish the appropriate concentration used for 

subsequent microarray experiment. All treatments and control groups had 0.05% (v/v) 

DMSO as vehicle. We observed that 20 nM, 200 nM and 2,000 nM of T0901317 caused 
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dose-dependent histological changes in the liver. We found that the T0901317-treated 

liver parenchyma appeared to be less homogenous and the hepatocytes were larger and 

less regular in shape as the T0901317 concentration increased when compared to the 

more compact, smaller and polygonal-shaped hepatocytes in the control group (Figure 1, 

a-d). Moreover, the number of hepatocyte nuclei as observed in the hematoxylin and 

eosin (H&E) stained sections, reduced significantly as T0901317 concentration increased 

(Figure 1e). Apoptag staining in the liver of T0901317-treated fish suggests increased 

apoptotic activity (Figure 1, g and h), which together with hepatocyte swelling as 

suggested by the larger cell-size appearance (Figure 1, a-d) had likely contributed to the 

apparent decreased in nuclei count. Oil-red O staining detected increased intracellular 

lipid accumulation in some hepatocytes by T0901317 treatment (Figure 1, i and 1j) 

suggesting hepatic steatosis as observed in rodents (Baranowski, 2008). Taken together, 

the histological analyses suggest a dose-dependent hepatotoxicity could be induced in 

adult male zebrafish exposed to 20 nM, 200 nM and 2,000 nM of T0901317; hence these 

concentrations were used for the subsequent microarray experiments. LXR activation was 

also confirmed by the up-regulation of a known LXR-targeted lipogenic fatty acid 

synthase-like (fasn-like) (Fig 1f), as determined by quantitative real-time RT-PCR  using 

liver RNA from adult male fish exposed  to 200 nM and 2,000 nM of T0901317. The up-

regulation of fatty acid synthase by T0901317 is known to increase hepatic lipids as 

reported in rodents (Steffensen and Gustafsson, 2004) as also observed in our study (Fig 

1, i and j). These findings confirmed that the zebrafish LXR was indeed activated by 

T0901317. 
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Figure 1. Hepatotoxicity induced by T0901317. (a-d) Hematoxylin and eosin (H&E) 

stained liver sections from adult male zebrafish exposed to (a) vehicle only (control, 

0.05% DMSO), (b) 20 nM (c), 200 nM and (d) 2000 nM of T0901317. The livers from 

fish exposed to 200 nM and 2000 nM of T0901317 appeared less homogeneous and the 

hepatocytes are bigger and more irregular in shape compared to controls. (e) H&E stained 

liver sections from fish exposed to T0901317 compared to controls showed dose-

dependent decrease in number of hepatocyte nuclei count per area section (dimensional 

area: 7250µm
2
) (* p value<0.01, ** p value<0.05). (f) Fatty acid synthase-like (fasn-like), 

a liver x receptor targeted gene, displayed dose-dependent up-regulated gene expression 

(* p value<0.01, ** p value<0.05). (g) & (h) Liver cells from fish exposed to 2000nM of 

T0901317 showed increased staining for apoptosis-induced DNA breakage compared to 

control using Apoptag
tm

 staining kit. (i) & (j) Liver parenchyma from fish exposed to 

2000nM of T0901317 showed increase lipid vesicles compared to control group using oil 

red O staining.    
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3.2 Microarray experiment and knowledge-based analysis of 

T0901317 Treatment 

3.2.1 Trancriptome analysis of T0901317-induced liver responses with Gene Set 

Enrichment Analysis 

 

For the microarray experiment, adult male zebrafish were exposed to T0901317 at 20 

nM, 200 nM and 2,000 nM with 0.05% (v/v) DMSO as vehicle for 96 hours, whereas the 

control group was exposed to vehicle only.  Five biological replicates were performed for 

each treatment group and each replicate consists of livers pooled from 4 individual male 

fish. Hence, for the three treatment groups and one control group, a total of 20 microarray 

hybridizations were performed on 20 pooled liver samples derived from 80 zebrafish.  

 

The transcriptome data of each treatment group i.e. Low (L: 20 nM), Mid (M: 200 nM), 

High (H: 2000 nM) and in one combined analysis group [Low, Mid and High (LMH)] 

were compared to the control group using t-test to generate a p-value for each gene in the 

respective group. A ranking metric [log10 (1/p-value); assigned as ‘positive’ or ‘negative’ 

for up- or down-regulation, respectively] for each gene was generated to rank all the 

genes in the transcriptome data into a ranked list according to their statistical significance 

within the respective group for Gene Set Enrichment Analysis (GSEA) (Subramanian et 

al., 2005). GSEA utilizes  Kolmogorov-Smirnov statistic to determine if a group of 

predefined Molecular Signature (total of 1892 curated gene sets) are significantly over-

represented at the top or bottom of an entire ranked list of genes in each respective group 

of the T0901317-treated transcriptome profiles (See Materials and Methods). A 
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normalized enrichment score (NES) and a False Discovery Rate (FDR) value (corrected 

for multiple hypothesis testing) were generated for each of the molecular signature gene 

sets to represent the extent of the over-representation and its statistical significance, 

respectively.  Negative and positive NES values indicate if the over-represented genes 

were mostly down- or up-regulated, respectively. Molecular signature with FDR<0.25 

was considered as statistically significant in GSEA analyses (Subramanian et al., 2005). 

For the present study, we also considered those having 0.25≤ FDR <0.35 as marginally 

significant and those with FDR≥0.35 not significant. Based on the categories of FDR 

values and NES, profiles of the molecular signatures were analyzed and those that were 

marginally significant ( FDR <0.35) in at least two of the concentrations (20 nM, 200 

nM, 2000 nM and LMH) were represented in Figure 2. The GSEA analysis revealed that 

genes involved with molecular signatures associated with cellular morphology and 

adhesion, cellular stress-induced responses, coagulation cascade and complement system, 

beta-oxidation and diabetes were perturbed by LXR.  
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Figure 2 Gene Set Enrichment Analysis (GSEA) of liver transcriptome of T0901317-

treated zebrafish. GSEA analysis is carried out on the transcriptome profile of the 

treatment groups 20 nM, 200 nM, 2000 nM, and combined Low, Mid and High (LMH) 

compared to control group. Significant deregulated molecular signature gene sets are 

grouped according to related processes: “Cellular Morphology & Adhesion”, “Stress-

induced Responses”, “Coagulation & Complement System” and “Others”. Up- and 

down-regulated gene sets are indicated in different shades of red and green, respectively. 

The shades of red and green are based on significance value of false discovery rate (FDR) 

(see figure legend). 
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3.2.1.1 Cellular Morphology and Adhesion   

 

Based on our transcriptomic analysis, T0901317-induced LXR activation appeared to 

down-regulate dose-dependently molecular signatures associated with cellular 

morphology and adhesion which include Cell Adhesion Molecules (HSA04514), Cell 

Adhesion Molecule Activity, ECM Receptor Interaction (HSA04512) and Matrix 

Metalloproteinases (MMPs). Modulations of these molecular signatures were likely 

associated with the histological changes in cell and tissue morphology observed in the 

liver. Interestingly, LXR has been proposed as a potential therapeutic target for 

atherosclerotic therapy (Repa and Mangelsdorf, 2002) and T0901317-induced LXR 

activation has been shown to suppress the expression of cellular adhesion molecules in 

atherogenic vascular tissues (Verschuren et al., 2009). Moreover, it has been reported that 

inhibition of broad-spectrum of matrix metalloproteinases (MMPs) leads to reduction in 

atherogenic progression (Baker et al., 2002; Prescott et al., 1999). Interestingly, we have 

captured down-regulation of molecular signature involving MMPs in the zebrafish liver 

suggesting that suppression of MMPs expression by LXR could be a contributing factor 

to the anti-atherogenic action as reported in the rodent study (Verschuren et al. 2009). It 

is encouraging to note that the down-regulation of signatures associated with cellular 

morphology and adhesion that are known to be associated with the therapeutic anti-

atherogenic action of LXR activation, can be captured by our transcriptomic analysis of 

T0901317-induced acute response in the zebrafish liver. This further highlights its 

potential for drug screening. 
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3.2.1.2 Coagulation and complement systems 

 

We also observed in our analysis that LXR activation by T0901317 down-regulated some 

molecular signatures associated with coagulation and complement system including 

HSA04610 Complement & Coagulation Cascades, Intrinsic Pathway, Extrinsic Pathway, 

Fibrinolysis Pathway, Classic Pathway and Complement Activation Classical Pathway.  

One of the negatively enriched signature, HSA04610 Complement & Coagulation 

Cascades, showed that with increasing T0901317 concentrations, normalized enrichment 

score and p-value decrease, thereby suggesting that T0901317 induces dose-dependent 

down-regulation (Figure 3, a-c). By examination of expression levels of 31 genes 

involved in the pathway, we have found that all of them are down-regulated with 

increasing concentrations of T0901317 (Figure 3d), indicating that LXR may affect 

expression of these genes and thus may be involved in the complement and coagulation 

cascades pathway. We verified the association of LXR activation with complement and 

coagulation cascades in literature.  

 

LXR activation has been shown to suppress the gene expression and/or protein level of 

tissue factor (TF), a major initiator of blood coagulation (Camerer et al., 1996), in human 

islets (Scholz et al., 2009) and mouse macrophages (Terasaka et al., 2005). Macrophages 

are major source of TF that contributes to thrombogenesis in atherosclerosis (Terasaka et 

al., 2005). Hence anti-thrombotic action via suppression of TF expression is one of the 

anti-atherosclerotic actions of LXR activation (Joseph et al., 2002). Interestingly, our data 

indicate LXR also suppressed expression of various genes (pros1, f10, tfpi, serpinc1 and 
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plg) involved in the coagulation pathway that could further contribute to its anti-

thrombotic action. 

 

Additionally, activation of LXR by T0901317 was observed to down-regulate genes 

associated with the complement pathway which is part of innate immune system that 

could activate inflammatory response. Chronic inflammation also contributes to 

atherogenesis (Glass and Witztum, 2001; Lusis, 2000) and there are evidence that 

complement activation plays a major role in chronic inflammation that is associated to 

initiation and progression of atherosclerotic lesions (Niculescu and Rus, 1999) and also in 

rheumatoid arthritis (Okroj et al., 2007). Thus LXR-induced down-regulation of 

complement pathway, as shown in our data, can in turn suppress inflammatory responses 

and therefore promote anti-atherogenic effect (Zelcer and Tontonoz, 2006), and also 

ameliorate rheumatoid arthritis (Chintalacharuvu et al., 2007). Therefore LXR-induced 

down-regulation of complement pathway in our data suggests that LXR could further 

modulate the inflammation and innate immune system in zebrafish.  
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Figure 3. Gene set enrichment analysis (GSEA) of the dose-dependent 

transcriptional suppression by T0901317 treatment on complement and coagulation 

cascade pathway. Three different concentrations of T0901317, 20 nM (a), 200 nM (b), 

and 2000 nM (c), were used for treatment. Normal enrichment score (NES), p-values, and 

false discovery rate (FDR) for “Complement and Coagulation Cascade” gene set decrease 

as the treatment concentration increases, suggesting that T0901317 induced a dose-

dependent down-regulation of this pathway. (d) Expression levels of 31 zebrafish genes 

mapped to the gene set of this pathway. All of these genes were down-regulated with 

increasing concentration of T0901317. 
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3.2.1.3 Cellular toxicity and stress-induced Reponses 

 

Several molecular signatures associated with stress responses and/or cytotoxicity were 

induced by LXR activation. This may be related to protein and DNA damage and 

subsequently cell death as evident by the up-regulation molecular signature such as 

proteasome (HSA03050), apoptosis, death receptors pathway and Fas receptor pathway. 

Increased apoptotic activity is in liver was confirmed with Apoptag staining (Figure 1, g 

and h). LXR activation by T0901317 has been reported to induce apoptosis in pancreatic 

beta cells (Choe et al., 2007) and more recently has been shown to exert anti-proliferative 

effect via cytotoxicity and apoptosis in ovarian (Rough et al., 2010) and prostate 

(Pommier et al., 2006) cancer cells. Our data suggests that LXR-induced apoptosis in 

liver may be mediated by Death Receptor Pathway and FAS Receptor Pathway.  

 

3.2.1.4 Diabetes and Beta-oxidation of Fatty Acids 

 

The down-regulated molecular signatures by LXR activation also included Maturity onset 

Diabetes of the Young (MODY) and Beta-oxidation Pathway. LXR is known to exert 

effects on major carbohydrate and lipid metabolic pathways (Baranowski, 2008). MODY 

is an autosomal dominant monogenic form of type II diabetes characterized by insulin 

resistance and relative insulin deficiency. Genes listed in the molecular signature are 

implicated in MODY afflicted carriers due to gene mutations.  Down-regulation of genes 

associated with MODY suggests that LXR-induced perturbation that promotes insulin 

resistance and/or insulin deficiency. Down-regulation of beta-oxidation pathway, where 
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fatty acids are catabolized to generate energy, may be associated with increased hepatic 

lipogenesis as evident by intracellular lipid accumulation in liver of fish treated with 

T0901317 (Figure 1, i and j). There is evidence for impaired beta-oxidation promotes 

hepatic steatosis (Wei et al., 2008). It has been reported that chronic (3-6 days) in vitro 

activation of LXR by T0901317 induced apoptosis of pancreatic beta cells through 

hyperactivation of lipogenesis and this could lead to insulin deficiency and promote 

diabetes (Choe et al. 2007). More recently, LXR activation in human islets resulted in 

lower basal insulin secretion is concordant with the decreased insulin expression in our 

data (Scholz et al., 2009). Additionally Basciano et al. (2009) has reported that LXR 

activation by T0901317 via oral gavage for 4-7 days could stimulate hepatic lipoproteins 

production but also induced insulin resistance
 
through reductions in insulin signaling in 

male Syrian golden hamster, which is contrary
 
to previous findings that on antidiabetic 

role for LXR
 
agonists (Cao et al., 2003; Grefhorst et al., 2005; Steffensen and Gustafsson, 

2004).  The contrasting result could be due to the differences in the animal models used; 

most reported anti-diabetic actions via LXR activation by T0901317 were observed in 

diabetic animal models (Cao et al., 2003; Grefhorst et al., 2005; Steffensen and 

Gustafsson, 2004), while Basciano et al. (2009) and we used non-diabetic animals. Given 

the difference in metabolic state between diabetic and non-diabetic livers, the contrasting 

findings were not surprising but interesting to warrant further investigation. Basciano et 

al. (2009) has proposed the possibility of LXR activation as a causative factor in the 

induction of insulin resistance
 
through decrease insulin signaling, and that chronic

 
LXR 

agonist treatment (2-4 weeks) may lead to more profound signaling changes
 
and 

induction of an insulin-resistant state in the liver. Similarly, we have observed down-
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regulation of insulin signaling (ins, irs2, irs) (see discussion on Figure 4 below and Table 

3). It was also reported that pancreatic islets of several diabetic rodent models have 

significant elevated LXR expression, and it has been suggested that chronic LXR 

activation could contribute to β-cell dysfunction and eventually diabetes (Choe et al., 

2007). Therefore in line with the use of zebrafish for disease modeling, it would be 

interesting albeit requiring further study, to investigate the possibility of chemically-

induced a diabetic model in zebrafish via LXR activation by T090131.   
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Figure 4. Gene network analysis of liver X receptor activation for biological 

inferences. Top network for LXR activation was generated with Ingenuity Pathway 

Analysis (IPA) software. Up- and down-regulated molecules are in red and green 

symbols, respectively. Non-coloured genes are either not present on microarray probes or 

not significant in the combined Low, Mid and High (LMH) concentrations compared to 

controls, but are included by IPA to maximize the connectivity of deregulated genes. NF-

kB (complex) is coloured green and marked with (*), since our validation showed down-

regulation of REL homolog (Table 3), one of the subunits of NF-kB complex. These 

genes are grouped (as highlighted in red-dotted circle) into several canonical processes: 

“Protein Ubiquitination Pathway”, “Complement System”, “Coagulation System”, “Type 

II Diabetes Mellitus Pathway” and “IGF-1 (insulin-like growth factor 1) pathway”. 
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3.2.2 Insights from Biological Network Analysis  

 

We examined the top connected network generated by IPA using 57 human homologs 

that are leading edge genes as identified by GSEA in selected canonical pathways (Figure 

2) and are statistically significant (t-test, p<0.05) in LMH treatment group compared to 

controls. A top network (Figure 2) consisting of 36 human homologs (25 homologs from 

our microarray data) clustered into four major canonical pathways (coagulation system, 

protein ubiquitination pathway, complement system and insulin receptor signaling) was 

generated. Interestingly, insulin-like growth factor 1 (IGF1) signaling cluster was 

observed in the network suggesting modulation by LXR activation. We validated the 

down-regulation of IGF-1 gene expression with quantitative real-time PCR (Table 3). It 

was also previously reported that LXR activation with T0901317 suppressed IGF1 

expression in female rat hepatocytes (Kotokorpi et al., 2004). Therefore LXR activation 

may suppress IGF1-mediated growth signaling.  

 

In the network, SERPING1 from the complement system and PLG from the coagulation 

system are shown to be linked together, which provides insight into the mechanism of 

LXR activation in modulating these two processes (Figure 4). There are evidence that 

complement and coagulation system interact and crosstalk between each other since 

several studies have shown that initiation of complement or coagulation pathways can 

potentiate or trigger each other’s activation mutually (Amara et al., 2008; Markiewski et 

al., 2007). Hence LXR activation is also likely to suppress complement and coagulation 

systems via diminishing mutual initiation between the two systems. 
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Molecules from coagulation (SERPINC1, PLG, F10 and TFPI) and complement (CFB, 

Trypsin and C1R) system are also linked to NF-kB complex, a protein complex that 

regulates immune and inflammatory response. LXR activation is known to perturb NF-

kB signaling by inhibiting expression of NF-kB target genes (Castrillo et al., 2003; 

Cheng et al., 2010; Wu et al., 2009). Castrillo et al. (2003) suggested that repression of 

NF-kB target genes occurs via downstream of NF-kB binding to DNA, whereas Cheng et 

al. (2010) showed that it occurred via preventing translocation of p65 from cytoplasm to 

nucleus. NF-kB directly regulates TF transcriptionally to promote thrombotic action 

(Mackman, 1997) and there is evidence that NF-kB activation could lead to complement 

activation (Korbelik, 2009). There are also evidence that deregulation in NFkB activation 

leads to atherosclerosis (Van der Heiden et al., 2010) and rheumatoid arthritis (Simmonds 

and Foxwell, 2008). Hence, NFk-B was proposed as a therapeutic target to treat these 

ailments (Simmonds and Foxwell, 2008, Van der Heiden et al., 2010). We validated the 

down-regulation of REL homolog, one of the five identified subunits of NFkB, gene 

expression (Table 3). Our result suggests that LXR activation could suppress REL 

homolog, and therefore perturbs NF-kB signaling. Subsequently, this induces attenuation 

of coagulation and complement system. 

 

Although there had been reports that LXR activation exerts anti-thrombogenic, anti-

atherogenic and anti-inflammatory effects, our study provided additional mechanistic 

insights. Taken together, our study revealed that LXR may be functioning as a 

transcriptional repressor of the coagulation and complement systems that could partly 

contribute to anti-atherogenic and anti-inflammatory effects of LXR activation reported 
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in rodent studies (Chintalacharuvu et al., 2007; Joseph et al., 2002; Li et al., 2010; 

Peerschke and Ghebrehiwet, 2010; Repa and Mangelsdorf, 2002). We observed that 

genes involved in this network of pathways to be significantly down-regulated. While 

transcriptional repression of the coagulation and complement systems by LXR activation 

has not been reported previously, transcriptional repression by LXR on genes implicated 

in inflammation and lipid metabolism has been described (Blaschke et al., 2006; Ghisletti 

et al., 2009; Jakobsson et al., 2007;  Scholz et al., 2009; Wang et al., 2008). Majority of 

LXR-induced repression of genes involved with inflammatory signaling pathways in 

macrophages was shown to require transrepression by nuclear receptor corepressor 

(NCor) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) 

corepressors (Ghisletti et al., 2009). Complement activation promotes inflammation and 

coagulation (Peerschke and Ghebrehiwet, 2010), hence it is plausible that LXR activation 

may transrepress complement activation and coagulation that is mediated by NCor and 

SMRT. 

 

While genes in the protein ubiquitination cluster were up-regulated, genes in 

insulin receptor signaling cluster were suppressed. Ubiquitin-proteasome system is 

implicated with diabetes, as shown from one study that proteasomal activity was elevated 

in muscles of acute insulin-deficient diabetic rats (Lecker et al., 1999). Insulin regulates 

cellular protein turnover by inhibiting protein degradation in adult animal (Rooyackers 

and Nair, 1997). This inhibitive effect promotes conservation of protein stores during 

availability of other energy substrates (e.g. carbohydrates), and inversely when insulin 

level is low (e.g. during starvation) there is promotion in breakdown of amino acids for 
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gluconeogenesis (Fawcett et al., 2001) Hence low insulin signaling could have elevated 

proteasome activity in the liver (Figure 3) (Fawcett and Duckworth, 2009). Taken 

together, it is plausible that LXR activation induced suppressed insulin level, as 

suggested by decreased insulin (ins) expression (Table 3), and this would subsequently 

enhance proteasomal degradation, as suggested by up-regulation in protein ubiquitination 

cluster (Fig. 3). Thus, LXR activation may promote proteasome activity by decreasing 

insulin level in the liver. 
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Table 3. Quantitative real-time PCR validation for selected genes in T0901317 

treatment.  

  Log2(fold-change) Expression 

  200 nM 2000 nM 200 nM & 2000 nM 

Gene Symbol Genbank ID Array qRT-PCR Array qRT-PCR Array qRT-PCR 

 

Known LXR Target Genes 
lxr BC092160 NA **1.55 NA **1.40 NA **1.45 

fasn AW077199 NA **1.93 NA **2.67 NA **2.48 

 

Cellular Morphology Adhesion 
vcam1 AW344246 **-2.55 -0.31 -1.78 **-0.79 *-2.19 **-0.55 

mmp9 AW174507 -0.04 **-1.07 -0.05 **-3.14 *-0.05 **-1.95 

itga9 homolog BC054897 -1.12 **-0.93 -0.93 **-0.89 * -1.03 **-0.90 

 

Coagulation Cascade 
f10 BM154293 -4.52 **-2.70 * -4.81 **-0.63 **-1.44 **-1.13 

pros1 homolog BI887609 -1.25 **-1.14 **-1.89 **-1.66 ** -4.67 **-1.43 

 

Fibrinolysis 
plg BC059801 -11.48 **-1.01 -10.92 **-1.11 ** -11.20 **-1.07 

 

Complement System 
c8a AW018673 -9.34 **-0.66 -9.09 **-0.85 ** -9.21 **-0.76 

c9 AW019201 -11.19 **-1.68 -11.02 **-2.14 **-11.11 **-1.91 

 

Beta-Oxidation 
acads BC079521 -1.24 **-0.93 *-1.30 **-1.39 **-1.27 **-1.21 

 

Gluconeogenesis 
g6pca BC076446 ** -8.58 *-0.43 *-8.54 **-1.09 **-8.56 **-0.79 

 

Insulin Growth Factor 1 Signaling 
igf1 AF268051 -4.17 0.08 *-4.25 **-3.32 **-4.21 **-1.15 

 

Maturity Onset Diabetes of the Young 
hnf1ba AF430840 0.03 *-0.66 *-0.63 -0.46 -0.33 *-0.55 

ins  AF036326 **-1.88 -2.09 -1.70 *-3.74 **-1.80 *-2.89 

 

Nuclear Factor Kappa-light-chain-enhancer Of Activated B Cells 
rel homolog BC076403 0.01 -0.17 -0.10 **-1.16 -0.05 **-0.78 

 

The genes were selected based on biological function of interest identified by GSEA. The 

relative log2 fold-change above controls as determined by quantitative real-time 

polymerase chain reaction (qRT-PCR) and microarray (Array) are presented (* p-value 

<0.1; ** p-value < 0.05).  

 



  49 

3.3 Validation of gene expression via quantitative real-time PCR 

 

We also confirmed the deregulated biological processes identified in our transcriptomic 

analysis by validating expression levels of relevant genes with real-time PCR in another 

batch of newly-treated zebrafish under the same experimental conditions. As shown in 

Table 3, the expression of 14 genes were validated: vcam1 (vascular cell adhesion 

molecule 1), mmp9 (matrix metallopeptidase 9), itga9, (integrin, alpha 9 homolog), f10 

(coagulation factor X), pros1 [protein S (alpha) homolog], plg (plasminogen), c8a 

(complement component 8, alpha polypeptide), c9 (complement component 9), acads ( 

acyl-Coenzyme A dehydrogenase, short chain), g6pca (glucose-6-phosphatase a, 

catalytic), igf1 (insulin-like growth factor 1), hnf1ba (HNF1 homeobox Ba), ins (insulin) 

and rel (reticuloendotheliosis viral oncogene homolog). All of these genes showed 

significant difference in expression in the presence of T0901317 were significant (p< 

0.10) at combined highest and lowest (T0901317 2000 nM & 200 nM) concentrations 

(Table 3). These 14 genes confirmed down-regulation of the following biological 

processes in the liver of fish exposed to T0901317: cell adhesion and tissue structure 

(vcam1, ITGA9 homolog), matrix metalloproteinases (mmp9), coagulation cascade (f10, 

PROS1 homolog), fibrinolysis (plg), complement pathway (c8a, c9), beta-oxidation 

pathway (acads), gluconeogenesis (g6pca), IGF-1 (igf1) signaling pathway, MODY (ins, 

hnf1ba) and NF-kB signaling (REL homolog). Hence, this second experiment using a 

new batch of T0901317-treated fish was corroborated with our transcriptomic experiment 

and GSEA analysis as well as histological analysis in earlier experiments. The up-

regulation of LXR targeted genes, fasn, fasn-like and lxr itself confirming the LXR 
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activation which can act as a transcriptional repressor of these biological processes. This 

in turn may contribute to the effects of LXR activation as reported in rodent models, be it 

therapeutic effects (e.g. anti-thrombogenic, anti-atherogenic and anti-inflammatory 

actions) or pathologic effects (e.g. steatosis and insulin deficiency). For example, MMP9 

is implicated in promoting atherogenesis in arteries via vascular vessel remodeling 

(Mason et al., 1999) and down-regulation of mmp9 validated in our study (Table 3) may 

contribute to the anti-atherogenic action of LXR agonist. Furthermore, NF-kB signaling, 

which regulates immune system and inflammation, is suggested to be perturbed from the 

down-regulation of REL homolog (Table 3), one of the subunits of NF-kB complex. Thus 

this may contribute to the anti-inflammatory action. Likewise, LXR activation is known 

to inhibit hepatic gluconeogenesis (Baranowski, 2008). The expression of g6pca, which 

encodes one of the rate-limiting enzymes of gluconeogenesis, was down-regulated in our 

experiment (Table 3). Loss of G6PC function is involved with excessive accumulation 

hypertriglyceridemia and hepatic steatosis (Hutton and O’Brien, 2009), hence the 

suppression of g6pca expression could promote increase lipid levels as observed in our 

zebrafish liver (Figure 1, i and j). 

 

3.4 Conclusion 

 

In conclusion, we demonstrated the potential of using zebrafish liver coupled with 

transcriptomic analysis to capture pharmacological and toxicological/pathological actions 

of LXR activation by an agonist T0901317. We were able to capture known effects of 

LXR activation as reported in mammalian models, suggesting conserved mode-of-actions 
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resulting from LXR activation between mammals and fish. We observed LXR activation 

led to transcription repression of several biological processes. To this, we were able to 

identify previously unknown transcription repression of genes associated with cell 

adhesion, coagulation and complement systems that could contribute to the anti-

thrombogenic, anti-atherogenic and anti-inflammatory actions of LXR activation. In 

addition, we were able to identify and validate deregulated genes associated with insulin 

signaling, lipid and glucose metabolisms that could lead to hepatosteatosis and potentially 

insulin deficiency. Our findings place zebrafish as a suitable model for screening 

prospective LXR drug targets, LXR disruptors and investigating LXR-related metabolic 

disorders. 
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Chapter 4  

Transcriptomic response to retinoic acid receptor 

(RAR) agonist all-trans retinoic acid in zebrafish 

liver 
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Here we investigated ATRA-induced responses in adult male zebrafish liver. We 

performed acute ATRA treatment to zebrafish at concentration that displayed hepatotoxic 

phenotype according to histological examination. Additionally two lower concentrations 

were performed to determine dose-dependent responses. This is followed by 

transcriptomic profiling of the livers with microarrays. Subsequently we compared 

transcriptomic profiles of untreated and treated livers through human homology mapping 

and knowledge-based data mining, to elucidate ATRA-induced responses. Histological 

and transcriptomic analysis were mutually corroborated through phenotypic anchoring. 

We performed comparative transcriptomic meta-analysis of ATRA-induced biological 

responses between zebrafish liver and mouse embryonic bodies, and found conserved 

responses between both models in fatty acid oxidation and proteasomal degradation, but 

also differential response in processes associated with immune system. We observed that 

ATRA induced up-regulation in immune response in zebrafish liver but down-regulation 

in embryonic bodies may be due to absence of immune cells in embryonic bodies. Thus 

this highlights zebrafish as a feasible in vivo model to study drug-induced responses. 

Furthermore, we validated deregulated biological processes in zebrafish with gene 

markers in a subsequent separate batch of treatment using quantitative real-time PCR.  

 

4.1 Histological analysis of all-trans retinoic acid-treated liver 

 

Appropriate ATRA-induced hepatotoxicity concentrations were determined according to 

the histological results of the adult male zebrafish liver treated for 96 hours, before 

performing the microarray experiment. The commonly used low ATRA concentration to 
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modulate zebrafish embryonic development is 20 nM (Nadauld et al., 2005; Hans and 

Westerfield, 2007), which is higher than the earlier reported physiological concentrations 

in  serum of both pregnant humans (7nM; van Vliet et al., 2001) and red seabream fish 

(13.3 nM; Ogata & Oku, 2001). Thus 20 nM was selected as the lowest ATRA 

concentration, followed by two higher concentrations (200 nM and 2,000 nM). 

Histological analysis revealed dose-dependent changes in liver parenchyma: decreasing 

compactness and increasing size and irregular shape of hepatocytes (Figure 5, a-d). We 

also found increased apoptotic activity in the ATRA-treated liver parenchyma compared 

to the control using apoptag staining which stains for fragmented DNA (Figure 5, g and 

h),  suggesting that increased apoptotic activity could have led to dose-dependent 

decrease in the density of hepatocytes nuclei in liver parenchyma (Figure 5e). Hepatic 

glycogen was shown to be elevated in treated liver compared to controls with Periodic 

acid-Schiff stain (Figure 5, i and j), which is concordant with a study that had reported 

increased glycogen accumulation in 5-day ATRA-treated human hepatocellular 

carcinoma cells (Piao et al., 2003). Furthermore, the amount of hepatic lipid vesicles 

increased in a dose-dependent manner (Figure 5, k-n), and this is concordant with a study 

that showed 2-day treatment with hypervitaminosis A led to fatty liver in young rats 

(Singh and Singh, 1978). 
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Fig 5. Hepatoxicity induced by all-trans retinoic acid (ATRA). (a-d) Hematoxylin and 

eosin (H&E) stained liver sections from adult male zebrafish exposed to (a) vehicle only 

(control, 0.05% DMSO), (b) 20 nM (c), 200 nM and (d) 2000 nM of ATRA. The livers 

from fish exposed to 200 nM and 2000 nM of ATRA showed decreasing compactness 

and increasing size and irregular in shape compared to controls. (e) H&E stained liver 

sections from fish exposed to ATRA compared to controls showed dose-dependent 

decrease in number of hepatocyte nuclei count per area section (dimensional area: 

7250µm
2
) (* p value<0.05, ** p value<0.01). (f) Cytochrome P450 26A1 (cyp26a1), a 

retinoic acid receptor targeted gene, displayed dose-dependent up-regulated gene 

expression (* p value<0.05, ** p value<0.01). (g) & (h) Liver cells from fish exposed to 

2000nM of ATRA showed increased staining for apoptosis-induced DNA breakage 

compared to control using Apoptag
tm

 staining kit. (i) & (j) Hepatic glycogen showed 

increase compared to control group using periodic acid-schiff staining. (k-n) Liver 

parenchyma from fish exposed to 2000nM of T0901317 showed increased lipid vesicles 

compared to control group using oil red O staining.    
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4.2 Microarray experiment and knowledge-based analysis of all-

trans-retinoic treatment 

4.2.1 Microarray experiment and data normalization 

 

In our microarray experiment, the adult male zebrafish were treated with ATRA at 

different concentrations [2000 nM, 200 nM and 20 nM with 0.05% (v/v) DMSO as 

vehicle] for 96 hours, and the control group was only exposed to the vehicle. The RA 200 

nM group had four biological replicates, whereas all other treatment groups had five 

biological replicates. Each replicate is composed of pooled livers from four male 

zebrafish. Therefore, for the three treatment groups and one control group, 19 

microarrays hybridization were performed using 19 pooled liver samples from 76 

zebrafish.  

 

Microarray data were analyzed by comparing each of the three concentration groups 

[Low (L:20 nM), Mid (M:200 nM), High (H:2000 nM)] and combined analysis of the 

three groups [20 nM, 200 nM and 2000 nM (LMH)] with the control group using t-test 

that will generate a p-value for each gene in each groups. Each gene was assigned a 

ranking metric [log10 (1/p-value; positive or negative values were designated based on 

up- and down-regulation, respectively] and ranked in a list according to the statistical 

significance in each respective group for Gene Set Enrichment Analysis (GSEA). GSEA 

uses Kolmogorov-Smirnov statistic to reveal if any set of predefined molecular signature 

(1,892 curated gene sets) has significant over-representation at the top or bottom of an 

entire ranked list of genes from ATRA-treated transcriptome profiles (see Materials and 
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Methods). A normalized enrichment score (NES) and a false discovery rate (FDR) value 

(corrected for multiple comparisons) are calculated for each molecular signature gene set 

to respectively designate the level of over-representation and its statistical significance. 

Negative and positive NES values indicate whether the genes are mostly over-represented 

as down- or up-regulated respectively. Subramanian et al. (2005) recommend signatures 

with FDR <0.25 as statistically significant, additionally we deem those having 0.25≤ 

FDR<0.35 as marginally significant and those having FDR≥0.35 as insignificant. In order 

to capture dose-dependent effect, we focused on selected gene sets that has FDR<0.35 in 

at least two of the concentrations (2000 nM, 200 nM and 20 nM) and FDR<0.25 in the 

combined LMH group of FDR<0.25. These selected gene sets were then presented in 

Figure 6 based on category of FDR values and whether NES value is positive (shades of 

red) or negative (shades of green).    

 

Our transcriptome analysis revealed that genes associated with several biological 

processes were affected by ATRA: cytoskeletal assembly and reorganization, oxidative 

phosphorylation, oxidative stress-induced responses, cell death, protein and fatty acid 

metabolism, and immune responses. 
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Fig 6. Gene Set Enrichment Analysis (GSEA) of liver transcriptome upon exposure 

to all-trans retinoic acid. GSEA analysis is performed on transcriptome profiles of 20 

nM, 200 nM, 2000 nM and all combined three concentrations (20 nM, 200 nM and 2000 

nM) of ATRA treatment groups (LMH) compared to control group. Significant 

dysregulated molecular signature gene sets are clustered according to related processes: 

“Cytoskeleton”, “Oxidative Phosphorylation”, “Oxidative Stress-Induced Responses”, 

“Cell Death”, “Protein & Fatty Acid Metabolism” and “Immune Responses”. Up- and 

down-regulated gene sets are indicated as different shades of red and green respectively. 

The shades of red and green are based on the significance of false-discovery rate (FDR) 

(see figure legend). 
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4.2.2 Cytoskeletal assembly and reorganization  

 

ATRA treatment modulated pathways involved in actin filament remodeling: Y 

branching of actin filaments. The actin remodeling pathways, mediated through actin 

related protein (Arp) 2/3 complex, may contribute to the irregular shape in the 

hepatocytes (Figure 5, a-d). Hypervitaminosis A is associated with HSC activation in 

patients (Nollevaux et al., 2006). Activated HSCs are suggested to be involved in 

modulating actin polymerization via myosins, which consequently change cell shape 

(Reynaert et al., 2008). HSC is suggested to be present in all vertebrates (Nollevaux et al., 

2006) and it has been reported to be present in lamprey, eel, hagfish and teleost fish (cod 

and arrowtooth halibut) (Blomhoff and Wake, 1991; Senda and Nomura, 2003: 

Yoshukawa et al., 2006). Although presence of HSC has yet to be reported in zebrafish, 

we found that ATRA-treated zebrafish livers had elevated expression in HSC activation 

markers (cryabb, spp1 homolog, acta2) (Table 4) (Takahara et al., 2006), which suggest 

the presence of HSCs and HSCs were activated by ATRA and subsequently modulate 

hepatocyte morphology (Figure 5, a-d). 

 

Transforming growth factor β (TGF- β) is the major cytokine that promote fibrogenesis in 

liver fibrosis (Border and Noble, 1994). It has been reported that ATRA initiate TGF- β 

production in HSCs and aggravate fibrosis (Koda et al., 1996; Okuno et al., 1996; Okuno 

et al., 2002). Furthermore, retinoids are suggested to potentiate pro-fibrogenic action of 

TGF-β (Blomhoff, 1997). Thus these studies support the role of ATRA in modulating 

TGF-β pathway in our experiment (Figure 6). TGF- β has three isoforms, TGF- β1, 2 and 
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3, and their biological functions are very similar (Border and Noble, 1994). TGF- β1 gene 

up-regulates in response to hepatic injury the isoform most implicated in fibrosis in 

organs such as liver, lung and kidney (Border and Noble, 1994). Therefore we verified 

the elevated expression of transforming growth factor beta 1-like (LOC563884) (Table 

4). Thus this suggests the presence of HSCs in zebrafish and also production of TGF- β1 

in HSCs by ATRA. 
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Table 4. Quantitative real-time PCR validation for selected genes in all-trans retinoic 

acid treatment.  

 

The genes were selected based on biological function of interest identified by GSEA. The 

relative log2 fold-change above controls as determined by quantitative real-time 

polymerase chain reaction (qRT-PCR) and microarray (Array) are presented (* p-value 

<0.1; ** p-value < 0.05).  

   Log2(fold-change) Expression 

   20 nM 200 nM 

  

2000 nM 

 

Gene Symbol Genbank ID Array Array qRT-

PCR 

Array qRT-

PCR 

Cytoskeleton 
arpc1a AI384833 0.09 *0.14 -0.07 **0.09 **0.57 

transforming growth 

factor beta 1-like  LOC563884 NA NA *0.96 NA *0.45 

 

Oxidative stress and its induced responses 
slc25a27 BC053139 -0.24 0.32 *1.05 **0.79 *0.48 

cox10 AW342801 0.08 0.16 *0.74 **0.32 **1.30 

atp5h CK400662 0.24 0.34 **0.76 **0.90 **1.91 

mlh1 AI558727 0.29 0.19 **1.41 **0.22 **1.54 

gclc AW128066 0.13 0.21 **1.13 *0.30 **0.82 

nrf2 CR848724 NA NA *1.14 NA **2.23 

psma3 BG306038 0.01 0.1 0.53 **0.29 **1.90 

arg2 AW018735 **2.69 0.47 **1.67 **1.94 **0.60 

 

Cell death 
ndrg1 BM185420 0.43 **1.35 **3.11 **1.37 **2.56 

casp7 BC095327 0.14 **0.29 **1.36 **0.25 *0.67 

casp8 AF273220 0.19 0.3 **0.82 **0.18 **0.87 

 

Protein metabolism 
aco2 BI888674 0.14 *0.25 **1.29 **0.31 **1.74 

dlst BI896563 0.26 **1.89 **0.46 **0.30 **1.22 

 

Immune responses 
jun BE605692 -0.01 **0.11 **1.32 *0.21 **0.77 

fos BE605310 **0.39 0.24 1.93 **1.04 *1.07 

 

Hepatic stellate cell activation markers 
cryabb BC076518 0.03 -0.01 **2.93 0.19 *0.63 

spp1 homolog CR925756 NA NA **2.45 NA **1.95 

acta2 CU855699 NA NA *1.59 NA *3.23 
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4.2.3 Oxidative phosphorylation & oxidative stress-induced responses 

 

We observed that ATRA treatment increased oxidative phosphorylation and also 

oxidative stress-induced responses (oxidative stress induced gene expression via nrf2, 

proteasome, and arginine and proline metabolism) (Figure 6). Several reports had shown 

that vitamin A and retinoids increased oxidative stress through generation of reactive 

oxygen species (ROS) which induce cellular damage and death (Davis et al., 1990; 

Castro-Obregon and Covarrubias, 1996; De Oliveira et al., 2009a; Pasquali et al., 2009). 

One study showed that ATRA treatment increased mitochondrial electron transfer chain 

activity in frontal cortex of rat brain (De Oliveira et al., 2009a) and another study  

demonstrated that ATRA treatment elevated ATP synthesis in mouse liver mitochondria 

significantly at 2 µM ATRA and higher, which corresponds with the highest 

concentration used in our experiment and up-regulation in oxidative phosphorylation 

pathway. We validated increased expression of genes associated with oxidative 

phosphorylation: solute carrier family 25, member 27 (slc25a27), heme A: 

farnesyltransferase (yeast) (cox10) and ATP synthase, H+ transporting, mitochondrial F0 

complex, subunit d (atp5h). The findings suggest that ATRA elevated oxidative stress in 

zebrafish liver by increased oxidative phosphorylation. Furthermore, glycogen 

phosphorylase, the rate limiting enzyme for glycogen degradation, was shown to be 

carbonylated by oxidative stress in muscles (Fedorova et al., 2010), thus ATRA-induced 

oxidative stress could inactivate glycogen phosphorylase in zebrafish liver which could 

lead to  increase in hepatic glycogen (Figure 5, i and j).  
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Nuclear factor erythroid 2-like factor 2 (NRF2), a crucial oxidative-stress inducible 

transcription factor, has been shown to increase activity and confer mitochondrial 

protection by inducing expression of cytoprotective and anti-oxidative genes  in response 

to retinoic acid toxicity (Tan et al., 2008). Hence this concurs with the induction of NRF2 

pathway (Figure 6) in ATRA treated liver as revealed in our GSEA analysis. This is 

supported by increased expression in nuclear factor erythroid 2-like factor 2 (nrf2) and 

glutamate-cysteine ligase catalytic subunit (gclc), which is a known NRF2’s anti-oxidant 

target gene (Table 4). Moreover, proteasomal degradation was upregulated (Figure 6), 

and this could be a response to elevated protein damage by oxidative stress. 

Carbonylation is the most common form of protein modification in response to oxidative 

stress and this modification is irreversible (Cattaruzza and Hecker, 2008). Protein 

carbonylation levels was shown to be increased by vitamin A treatment in rat 

hypothalamus and lungs (De Oliveira et al., 2009b; Pasquali et al., 2009). The up-

regulation of arginine and proline metabolism (Figure 6) as revealed in the GSEA 

analysis could be a result of oxidative carbonylation which is known to preferentially 

target these amino acids (Cattaruzza and Hecker, 2008). This could be a feedback 

response to increased oxidative stress-induced removal of carbonylated arginine and 

proline from damaged proteins. Removal of carbonylated protein is crucial since 

carbonylated aggregates can become cytotoxic (Nystrom, 2005), thus elevated 

proteasomal degradation could have inhibited carbonylation-induced cytotoxicity.  
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4.2.4 Cell death 

 

Our histological analysis showed increased apoptotic activity in the liver parenchyma 

(Figure 5, g and h), and this is corroborated by up-regulation in pathways associated with 

apoptosis and mitochondrial-induced  apoptosis (Apoptosis KEGG and Role of 

Mitochondria in Apoptotic Signaling) from our GSEA analysis (Figure 6). This was 

further validated by the increased gene expression of N-myc downstream regulated gene 

1 (ndrg1), caspase 7 (casp7) and caspase 8 (casp8) which are associated with cell death 

(Table 4). Up-regulation in Role of Mitochondria in Apoptotic Signaling (Figure 6) 

suggests that intrinsic apoptosis occurred in the ATRA-treated zebrafish liver ,this is 

concordant to that which were reported in retinol-treated rat liver mitochondria (Klamt et 

al., 2005). Klamt et al. (2005) attributed intrinsic apoptosis to retinol-induced 

mitochondrial oxidative stress. Intrinsic apoptosis may also be triggered by DNA 

damage, and this is supported by up-regulation of mutL homolog 1, colon cancer, 

nonpolyposis type 2 (E. coli) (mlh1). 

 

4.2.5 Protein and fat metabolism 

 

ATRA treatment down-regulated pathways associated with fatty acid oxidation: 

mitochondrial fatty acid beta-oxidation, beta-oxidation pathway and fatty acid 

degradation (Figure 6). There are evidence that showed impaired mitochondrial beta 

oxidation can contribute to hepatic steatosis (Wei et al., 2008), and therefore down-

regulation of fatty acid oxidation could have promoted hepatic steatosis in zebrafish 
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(Figure 5, k-n). Our result is in agreement with one study that showed ATRA increased 

hepatic lipid in rats (Çolakoğlu & Kükner, 2003). Other studies have shown retinoids 

(all-trans-retinoic acid, 13-cis-retinoic acid and natural vitamin A) induced 

hypertriglyceridemia in rats (Cisneros et al., 2005; Standeven et al., 1996).  

 

Hypertriglyceridemia is shown to be a predictive factor for fatty liver in humans and is 

closely associated with development of fatty liver (Tsuneto et al., 2010), thus the 

treatments in earlier studies may have promoted fatty liver, further supporting that 

retinoids can induce fatty livers and fatty acid metabolism. One study reported that 

retinoic-induced hypertriglyceridemia is mediated by RAR, since hypertriglyceridemia 

induced by RAR-selective agonist can be attenuated by co-treatment with RAR-selective 

antagonist (Standeven et al., 1996). To our knowledge, ATRA-induced suppression of 

fatty acid oxidation has not been reported. One study showed that elevated angiotensin II 

in rats induced hepatic mitochondrial oxidative damage which subsequently suppressed 

mitochondrial fatty acid beta-oxidation and therefore contributed to hepatic steatosis 

(Osanai and Petkovich, 2005). Another study showed mitochondria to be a susceptible 

target of ATRA-induced oxidative damage, since knockdown of NRF2, an anti-oxidant 

transcriptional regulator, exhibited more severe mitochondrial damage (Tan et al., 2008). 

Therefore hepatic steatosis in zebrafish observed in the histological analysis could be a 

result of mitochondrial oxidative damage induced by ATRA (Figure 5, k-n). 

Tricarboxylic acid (TCA) cycle pathway was up-regulated as indicated by GSEA analysis 

(Figure 6), and was further confirmed elevated expression of associated enzymes 

determined by quantitative PCR: aconitase 2, mitochondrial (aco2) and 
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dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate 

dehydrogenase complex, mitochondrial (dlst) (Table 4). TCA enzymes were reported to 

be susceptible targets to carbonylation by reactive oxidative species (Dukan and 

Nystrom, 1998; Fedorova et al., 2010), and the susceptibility to carbonylation is 

attributed to either their close proximity to ROS-generating site or its possible 

physiological role in negative feedback mechanism to control the rate of electron 

transport chain and ROS production, whereby excessive oxidative stress will deactivate 

TCA cycle enzymes and subsequently limit the two former respiratory processes (Dukan 

and Nystrom, 1998). 

 

Thus up-regulation in TCA cycle pathway could be due to oxidative stress-induced 

carbonylation of TCA cycle enzymes, which consequently elevated transcription of TCA 

cycle genes to replace damaged enzymes. 

 

4.2.6 Immune responses 

 

ATRA treatment elevated several immune-associated pathways: B cell antigen receptor 

(BCR) complex pathway, C-C chemokine receptor type 3 signaling pathway and 

interleukin-2 (IL-2) pathway (Figure 6). The role of ATRA and vitamin A in immune 

function is well documented whereby vitamin A deficiency impairs immune function 

(Stephensen, 2001) and ATRA was shown to modulate immune system in rats, thereby 

magnifying their immune response to lipopolysaccharide in immune system (Seguin-

Devaux et al., 2005).  
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ATRA was shown to enhance hepatic IL2 expression, thus this agrees with increased IL2 

signaling pathway in our treatment (Seguin-Devaux et al., 2005). We verified activation 

of IL2 pathway via validating elevated gene expression of V-jun sarcoma virus 17 

oncogene homolog (avian) (jun) and V-fos FBJ murine osteosarcoma viral oncogene 

homolog (fos) (Table 4), which are associated with IL2 pathway. High dose ATRA 

treatment was shown to induce infiltration of inflammatory cells in rat liver (Çolakoğlu & 

Kükner, 2003), thus this suggest that immune processes and also inflammation may be 

elevated in zebrafish liver. ATRA treatment has been shown to increase immune cells 

with in rat blood (Seguin-Devaux et al., 2005), and also specifically B cells in vivo, thus 

our ATRA-treated liver may have increased number of B cells which could up-regulate B 

cell antigen receptor (BCR) pathway (Chen et al., 2008). Thus similar ATRA-induced 

elevated immune processes in zebrafish and mammalian system suggest conservation of 

response. 

 

4.3 Conserved response between all-trans retinoic acid-treated mouse 

embryoid bodies and zebrafish   

 

To compare ATRA-induced molecular responses between mammals and zebrafish, we 

performed a transcriptome meta-analysis of our ATRA-treated zebrafish livers and mouse 

embryoid bodies (GEO Accession GSE12333, http://www.ncbi.nlm.nih.gov/geo/) that are 

treated with ATRA using microspheres. The comparative analyses showed that several 

processes were similarly regulated: fatty acid metabolism, beta-oxidation and 

mitochondrial fatty acid beta-oxidation pathways were suppressed in zebrafish liver and 
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mouse embryoid bodies, whereas proteasome pathway was induced (Figure 7). Hence 

this gives further support that fatty acid oxidation was attenuated in zebrafish liver and 

could consequently promote hepatic steatosis (Figure 5, k-n). Furthermore, this 

corroborates up-regulation of proteasome pathway in zebrafish liver which may be due to 

increased levels of oxidatively damaged proteins. Thus similar suppression in fatty acid 

oxidation and proteasome degradation suggest conserved ATRA-induced responses in 

these processes between fish and mammals. 

 

However, there is differential deregulation in TGF-β signaling pathway: it is suppressed 

in mouse embryoid bodies but elevated in zebrafish liver. ATRA exposure was shown to 

disrupt TGF- β protein expression in mouse embryonic development, whereby TGF- β1 

was reduced in various embryonic tissues and TGF- β2 reduced in all tissues (Mahmood 

et al., 1992). On contrary, ATRA exposure in mature liver induces TGF- β production 

(Koda et al., 1996; Okuno et al., 1997; Okuno et al., 2002), thus differential TGF-β 

response is most likely due to different biological tissues used. This shows conservation 

in ATRA-induced tissue response between zebrafish and mammals, since zebrafish liver 

and mammalian liver have induced TGF- β response upon ATRA exposure, unlike 

embryonic tissues which suppress its expression. 
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Fig 7. Comparative transcriptome analyses between zebrafish livers and mouse 

embryoid bodies upon exposure to all-trans retinoic acid (ATRA) using Gene Set 

Enrichment Analysis (GSEA). GSEA analysis is performed on transcriptome profiles of 

20 nM, 200 nM, 2000 nM, all combined three concentrations (20 nM, 200 nM and 2000 

nM) of ATRA zebrafish liver-treated groups (LMH) and ATRA-treated mouse embryoid 

bodies compared to their own respective control groups. Up- and down-regulated gene 

sets are indicated as different shades of red and green respectively. The shades of red and 

green are based on the significance of false-discovery rate (FDR) (see figure legend). 

Biological processes associated with fatty acid β-oxidation (down-regulated) and 

proteasomal degradation (up-regulated) are similarly dysregulated in ATRA-treated 

zebrafish livers and mouse embryoid bodies, whereas “TGF-β Signaling Pathway” and 

“HSA04620 Toll like Receptor Signaling Pathway” are differentially dysregulated in 

ATRA-treated zebrafish livers (up-regulated) compared to the mouse embryoid bodies 

(down-regulated).  
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4.4 Validation of Marker Genes Associated with Canonical Pathways 

 

We confirmed deregulated canonical pathways that were identified from transcriptomic 

analysis by validating expression levels of relevant genes using real-time PCR in a 

separate subsequent batch of treated fish under same treatment conditions. Total RNA 

extracted from the zebrafish livers was reverse-transcribed to cDNA before gene 

validation using quantitative real-time PCR. We validated 20 genes: actin related protein 

2/3 complex, subunit 1A (arpc1a, hypothetical protein LOC336379), transforming 

growth factor beta 1-like (LOC563884), protein kinase, solute carrier family 25, member 

27 (slc25a27), heme A: farnesyltransferase (yeast) (cox10), ATP synthase, H+ 

transporting, mitochondrial F0 complex, subunit d (atp5h), mutL homolog 1, colon 

cancer, nonpolyposis type 2 (E. coli) (mlh1), glutamate-cysteine ligase, catalytic subunit 

(gclc), nuclear factor (erythroid-derived 2)-like 2 (nrf2), proteasome (prosome, 

macropain) subunit, alpha type, 3 (psma3), arginase, type II (arg2), myc downstream 

regulated gene 1 (ndrg1), caspase 7 (casp7), caspase 8 (casp8), aconitase 2, 

mitochondrial (aco2), dihydrolipoamide S-succinyltransferase (E2 component of 2-oxo-

glutarate complex) (dlst), v-jun sarcoma virus 17 oncogene homolog (jun), V-fos FBJ 

murine osteosarcoma viral oncogene homolog (fos), crystallin, alpha B, b (cryabb), 

secreted phosphoprotein 1 homolog (spp1 homolog), actin, alpha 2, smooth muscle, aorta 

(acta2) and cytochrome P450, family 26, subfamily a, polypeptide 1 (cyp26a1) (Table 4 

and Figure 5f). These genes were significant (p<0.10) in at least 2000 nM in arrays and 

real-time PCR (Table 4 and Figure 5f). These genes confirmed perturbations in several 

biological processes in the ATRA-treated zebrafish liver: cytoskeleton (arpc1a, 
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LOC336379), oxidative phosphorylation (slc25a27, cox10, atp5h), DNA damage repair 

(mlh1), anti-oxidative responses (nrf2, gclc), proteasomal degradation (psma3), arginine 

and proline metabolism (arg2), p53 signaling pathway (ndrg1), caspase pathway (casp7, 

casp8), kreb cycle (aco2, dlst), immune response (jun, fos), HSC activation markers 

(cryabb, spp1 homolog, acta2), and retinoic acid receptor target gene (cyp26a1) (Figure 

5f and Table 4). Therefore validation of genes associated with selected biological 

processes in the repeated batch of ATRA-treated fish, supported our transcriptomic and 

histological analyses. We showed dose-dependent elevated expression in ATRA target 

gene cytochrome P450, family 26, subfamily a, polypeptide 1 (cyp26a1), a RA-

metabolizing enzyme, thus this confirms ATRA-induced responses  in zebrafish liver and 

cyp26a1-mediated clearance of RA to attenuate RA signaling (Abu-Abed et al., 2001). 

Cyp26a1 could also be induced to abrogate RA-mediated apoptosis through RA clearance 

(Osanai and Petkovich, 2005). 

 

ATRA-mediated hepatotoxicity was shown to modulate biological processes associated 

with cytoskeletal assembly and reorganization, oxidative phosphorylation, oxidative 

stress-induced responses, cellular death and immune response. Modulation in cytoskeletal 

regulatory pathways (Y branching of actin filaments and TGF-β signaling pathway) were 

validated by verifying the up-regulation in modulation of actin filaments with the 

elevated expression of actin related protein 2/3 complex, subunit 1A (arpc1a, 

hypothetical protein LOC336379) and TGF-β (LOC563884). We also verified elevated 

oxidative stress through oxidative phosphorylation by validating elevated expression of 

genes associated with oxidative phosphorylation: solute carrier family 25, member 27 
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(slc25a27), heme A: farnesyltransferase (yeast) (cox10), ATP synthase, H+ transporting 

and mitochondrial F0 complex, subunit d (atp5h) (Table 3).  

 

Elevated oxidative stress, generated by oxidative phosphorylation, could lead to 

antioxidant responses, DNA damage, protein damage and cellular apoptosis. We 

confirmed antioxidant responses through verifying induction of NRF2, an oxidant stress-

induced transcriptional regulator, by validating the induction of nuclear factor erythroid 

2-like factor 2 (nrf2) gene expressions and NRF2’s anti-oxidant gene target, glutamate-

cysteine ligase catalytic subunit (gclc). The inductions of these two genes are concordant 

with previous study in ATRA-treated rat liver (Tan et al., 2008). Furthermore, we 

verified DNA damage by validating expression of mutL homolog 1, colon cancer, 

nonpolyposis type 2 (E. coli) (mlh1) (Table 4), which is involved in DNA repair.  

 

Oxidative stress could increase levels of damaged proteins, thus we verified elevated 

proteasome degradation with proteasome (prosome, macropain) subunit, alpha type, 3 

(psma3). We also verified upregulation in kreb enzymes, aconitase 2, mitochondrial 

(aco2) and dihydrolipoamide S-succinyltransferase (E2 component of 2-oxo-glutarate 

complex) (dlst), and this could be a response to replace oxidatively damaged enzymes 

due to elevated oxidative stress. Apoptag staining revealed increased apoptotic activity  

in the liver parenchyma (Figure 5, g and h), thus we also verified up-regulation in 

pathways involved in cellular deaths with myc downstream regulated gene 1 (ndrg1), 

caspase 7 (casp7) and caspase 8 (casp8). Genes associated with immune function was 

shown to be up-regulated: v-jun sarcoma virus 17 oncogene homolog (jun) and V-fos 
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FBJ murine osteosarcoma viral oncogene homolog (fos). Thus this suggests that ATRA 

induced immune function. 

 

Hypervitaminosis A has been linked closely to HSC activation (Nollevaux et al., 2006). 

Although presence of HSC has not been reported in zebrafish, we validated the elevated 

expression of three HSC activation markers (Takahara et al., 2006): crystallin, alpha B, b 

(cryabb), secreted phosphoprotein 1 homolog (spp1 homolog), and actin, alpha 2, smooth 

muscle, aorta (acta2). HSC activation is associated with promoting actin remodeling, 

liver fibrosis and inflammation (Knittel et al., 1999; Reynaert et al., 2008; Brenner, 

2009). Trichostatin A (TSA), a histone deactylase inhibitor, was shown to have 

attenuated fibrogenic action of HSCs (Rombouts et al., 2002). The abrogation of HSC 

fibrogenic action by TSA was attributed to TSA-induced inhibition in the formation of 

actin filament via decreasing protein levels of nucleating proteins [actin related protein 2 

(Arp2) and Arp3] and therefore attenuate the expression of Arp2/3 complex (Rombouts et 

al., 2002). Our study suggests that Arp2/3 complex expression is up-regulated since 

arpc1a, a subunit of Arp2/3 complex, was up-regulated (Table 4). Hence this suggests 

that HSCs are present in zebrafish and its ATRA-induced activation could lead to 

cytoskeleton remodeling in the liver (Figure 5, a-d) by increased activity of Arp2/3 

complex. Furthermore HSC activation could also promote inflammation by attracting 

inflammatory cells to the injured hepatocytes (Knittel et al., 1999) and subsequently 

elevated immune-associated pathways (Figure 6). This is concordant to one study that 

showed increased infiltration in ATRA-treated rat liver (Çolakoğlu & Kükner, 2003).   
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4.5 Conclusion 

 

This study characterized in vivo mechanistic action of ATRA-induced hepatotoxicity on 

several important biological processes: cytoskeleton remodeling, oxidative 

phosphorylation, oxidative stress-induced responses, cell death, protein and fatty acid 

metabolism, and immune responses. ATRA is a well-characterized agonist ligand for 

retinoic acid receptor. This is the first report that described in vivo mechanistic action for 

retinoic acid receptor-mediated hepatoxicity using ATRA, to our knowledge. ATRA-

induced molecular responses at systems level are characterized with transcriptome 

analysis. This analysis was coupled with phenotypic anchoring and selected gene 

validation to reveal several deregulated biological processes, such as modulating 

cytoskeleton, oxidative damage, cell death, fatty acid metabolism and immune response, 

which can cause liver injury. Comparative transcriptome analyses between ATRA-treated 

zebrafish liver and mouse embryoid bodies revealed some similar conserved molecular 

responses. Furthermore, we showed that biomarkers for HSC activation were elevated in 

zebrafish. If HSCs are present in zebrafish, ATRA-induced HSC activation could have 

promoted cytoskeleton remodeling and inflammation, and consequently contribute to 

liver damage. Our findings showed that zebrafish system can serve to model ATRA-

induced hepatotoxicity in mammals and also for other nuclear receptor-mediated drug 

action. 
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Chapter 5  

Major conclusions and future directions 
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5.1 Major conclusions 

In this study, we characterized biological responses induced by ligand-activated nuclear 

receptors, liver X receptors (LXR) and retinoic acid receptors (RAR). LXR and RAR 

were activated with well-characterized agonists, T0901317 and all-trans retinoic acid 

(ATRA) respectively. We revealed the responses with transcriptomic analysis, 

histological examination and validation of gene expression. The major conclusions of this 

study include the following: 

 

1) We showed that effects induced by activation of RARs and LXR in the zebrafish 

model are similar to those reported in mammalian models, therefore revealing conserved 

mode-of-actions between mammals and zebrafish. Furthermore, our study shows that the 

zebrafish can be used to model hepatotoxicity in mammals and also model nuclear 

receptor-mediated drug action.   

 

2) In both treatments, we revealed some similar hepatic responses. Histological analysis 

showed that the hepatocytes membrane became irregular, apoptotic activity and hepatic 

lipids were elevated. Furthermore, transcriptomic analysis showed that processes 

associated with cellular structure, fatty acid oxidation and immune function were 

perturbed.  

 

3a) From transcriptomic analyses, we revealed perturbation of processes associated with 

cellular morphology and adhesion, coagulation and complement systems, cellular 

morphology and adhesion, diabetes and beta-oxidation of acids. 
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3b) Additionally, we identified novel LXR regulated processes. LXR activation was 

found to transcriptionally repress genes associated with cellular morphology and 

adhesion, and coagulation and complement systems that could contribute to anti-

thrombogenic, anti-atherogenic and anti-inflammatory.  

 

3d) Furthermore, we revealed and validated deregulated genes that are associated with 

insulin signaling, lipid and gluconeogenesis that could contribute to hepatic steatosis and 

potentially insulin deficiency. 

 

4a) Transcriptomic analyses revealed that RAR activation perturbed processes associated 

with cytoskeleton, oxidative phosphorylation and oxidative stress-induced responses, cell 

death, protein and fat metabolism, and immune responses.  

 

4b) Comparative transcriptomic meta-analyses between ATRA-treated mouse embryoid 

bodies and zebrafish liver showed similar repression in fatty acid oxidation and up-

regulation in proteasomal degradation.  

 

4c) RAR activation induced upregulation in gene markers for hepatic stellate cell (HSC) 

activation. Furthermore, RAR activation modulates genes associated with cytoskeleton 

remodeling and inflammatory responses. These responses are associated with HSC 

activation reported in mammals, thus this suggest that HSCs are present in zebrafish 

liver, and HSC activation can be studied in zebrafish model. 
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5.2 Future directions 

 

Biological responses through activation of two nuclear receptors with agonists in 

zebrafish liver were characterized. Hepatotoxicity was induced in both treatments and 

metabolic processes were perturbed. The following is an outline of follow-up 

experiments that can be performed on the basis of present work for both LXR and RAR.   

 

1) Our studies of molecular biological responses were observed at transcriptomic level. 

Hence it may be interesting to perform proteomics and metabolomics to validate 

perturbations found at transcriptomic level and also reveal novel perturbations at protein 

and metabolic level. 

 

2) We can identify suitable gene markers for LXR and RAR activation in zebrafish 

larvae, using gene markers that were validated in our study with quantitative real-time 

PCR. These gene markers can be used in future for high-throughput gene-expression-

based screens with zebrafish larvae for LXR and RAR disruptors.   

 

In addition, the following can be considered for LXR and RAR separately. 
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A.  Liver X receptor 

 

1) There are other LXR agonists available, hence comparative transcriptome analysis 

with GW3965 can be performed to find any differing gene induction. Differing responses 

allow us to identify responses that are not LXR-mediated.  

2) Developmental screens in zebrafish embryos for LXR perturbation has yet to be 

characterized, hence LXR-induced developmental perturbations can be characterized. 

This can facilitate future phenotype-based screens for LXR perturbations.  

 

3) Identify LXR agonists’ off-target toxicity effects in zebrafish embryos. We can reveal 

off-target effects by comparing differing developmental defects between elevated 

expression of LXR mRNA (via transgenic induction or injection of LXR mRNA) to 

treatment with LXR agonists.  

 

4) LXR has been proposed as a target for diabetic treatment; however whether LXR 

induction promotes insulin deficiency is unclear. Hence we can perform LXR activation 

in zebrafish through chronic exposure to LXR agonist or develop transgenic lines that 

induce LXR levels in liver and/or pancreas. Acute LXR agonist treatment can be 

performed in transgenic fluorescent reporter lines for liver and pancreas in zebrafish 

larvae to visualize toxicological perturbations in these organs.   
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B.  Retinoic acid receptor 

 

1) Validate the presence of HSC in zebrafish. HSC promotes liver fibrosis during its 

active state; however its role in quiescent state is unclear. Development of transgenic 

zebrafish to study the role of HSCs can reveal its function during quiescent state and also 

validate ATRA induces HSC activation. For example, transgenic zebrafish that allows 

specific obliteration of HSC to allow how deficiency of HSCs can affect liver function. 

Additionally, transgenic fluorescent reporter lines for HSCs in zebrafish can be created to 

allow in vivo confocal imaging in larvae; this facilitates observation of changes in HSC 

after ATRA or other chemical treatment.  

 

2) Study effects of chronic exposure to ATRA in adult zebrafish liver, since current study 

involves acute exposure. Chronic exposure will more closely resemble hypervitaminosis 

A condition in humans and have more relevance in investigating its health effects.  

 

3) Characterize RAR-mediated perturbation in further detail. Perform transcriptomic 

studies with RAR antagonist and make comparative analyses with ATRA treatment. 
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