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Summary 
 

Cell membrane is a very interesting and widely studied research area due to its physiological 

importance. Membrane heterogeneity also gained interest over the last few decades due to 

their relevance with different diseases. The heterogeneity arises due to some membrane 

proteins surrounded by some selective classes of lipids. The lipids of interest to this work 

belong to the sphingolipid family. Faulty intracellular trafficking or storage of sphingolipids 

and cholesterol can lead to an array of lipid storage diseases. Therefore studies of sub-cellular 

movements of sphingolipids and domains consist of sphingolipids have high level of 

importance. The major limitation associated with the field of sphingolipid trafficking is lack of 

commercially available reliable markers that can be used to trace lipid microdomains or 

sphingolipids in living cells. The easily synthesizable molecular fluorophore conjugated, 25 

amino acid sequence of Amyloid beta peptide has been characterized in this study, to test the 

hypothesis that this peptide, the Sphingolipid Binding Domain (SBD), could mediate tagging of 

the sphingolipid rich domains found in the plasma membrane that constitute rafts. For the 

characterization of SBD’s diffusion behaviour on live cell surface, Fluorescence Correlation 

Spectroscopy, a widely used biophysical technique has been used in this study. Furthermore 

to visualize dynamic heterogeneous cell membrane organization traced by SBD, two new 

biophysical tool Imaging Total Internal Reflection-Fluorescence Correlation Spectroscopy 

(ITIR-FCS) and Imaging Total Internal Reflection-Fluorescence Cross Correlation 

Spectroscopy (ITIR-FCCS) has been introduced in this study. The thesis has been organized 

in the following manner: 

 

Chapter one includes the motivation of the study and brief description about lipid rafts and 

organization of membrane lipids. The till now best known structural and biochemical 

properties of the peptide probe, SBD, have also been described in this chapter. 

 

Chapter two is based on the descriptions of the experimental techniques used in this study, 

namely they are FCS, ITIR-FCS and ITIR-FCCS. The principle of the techniques, 

instrumental set ups and sequential measurement steps are illustrated there. 

 

Chapter three compares the diffusion behaviour of SBD with other known raft- and non-raft 

associated markers on live SHSY5Y cell membranes using confocal FCS to check SBD’s raft 

like slow movement on the cell surface. The histogram analysis of all the diffusion time 

values of SBD shows a bimodal distribution, consistent with some other reported studies. 

Further diffusion times of all the raft- and nonraft- associated probes have been compared on 

methyl beta cyclodextrin (MβCD) treated cells, to validate SBD’s association with the plasma 

membrane on a cholesterol dependent manner. The outcome of this chapter suggests that, 

SBD can be used as a fluorescent tracer for the cholesterol-dependent, glycosphingolipid-

containing slowly diffusing (raftlike) microdomains in living cells. 



vii 
 

 

Chapter four focus on the cellular uptake path way of SBD, and propose the possible 

mechanism for SBD’s bimodal diffusion distribution. Unlike other so far characterized 

microdomain-associated cargoes, SBD thought to be endocytosed approximately equally by 

two different pathways, one is cdc42-mediated, and the other is lipid-raft-associated adaptor 

protein, flotillin mediated. The experimental results show that, blocking of either flotillin or 

cdc42 dependent pathways results only in partial suppression of the uptake of SBD into cells, 

whereas knocking out both pathways simultaneously nearly eliminates uptake. This work 

suggests that these two pathways probably not separate, but that they are synergistic, or 

operate together. This part of the study summarizes that cdc42- and flotillin-associated uptake 

sites both correspond to domains of intermediate mobility, but they can cooperate to form 

low-mobility, and efficiently internalize domains. 

 

Chapter five focus on the membrane heterogeneity and to visualize the dynamic 

organizations of cell membrane. In order to do so, this part of the study introduces a new 

suitable biophysical tool, ITIR-FCCS, that can incorporate spatial as well as temporal 

measurements of diffusing bodies. The organization of the liquid ordered phase, tracked by 

SBD, and the liquid disordered phase, represented by DiI, has been described in this part of 

the study. Further the cells were perturbed by the removal of cholesterol and by the disruption 

of the cytoskeleton to observe the relative difference in the dynamic organizations of these 

two phases. The results of this part narrates that the cytoskeleton is the main barrier to the 

diffusion of SBD and the coupling of SBD to the cytoskeleton is mediated by cholesterol.  

 

Chapter six describes the importance of sphingolipids and glycosphingolipids for membrane 

microdomain organization. The dynamic properties of several raft- and non-raft associated 

probes including SBD have been looked under sphingolipid and glycosphingolipid disrupted 

conditions to describe the importance of these lipids in the dynamic cell membrane 

organization. Additionally, this chapter strengthens the application of ITIR-FCS and ITIR-

FCCS as very promising biophysical tools to resolve membrane dynamics and membrane 

heterogeneity.  

 

Chapter seven concludes the findings of the entire work of the thesis and envisions the 

possible future steps for further characterization of SBD to make it a more reliable 

sphingolipid tracer. The outlook of the story also discuss about the possible way to 

broadening the application of ITIR-FCS and ITIR-FCCS.  
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Chapter 1:  
Introduction 
 

 

1.1 Motivation of the work 
 
The main goal of this study is to observe the characteristic diffusion behavior of lipid raft- or 

sphingolipid-interacting probes on live cell membrane, and how that behavior depends on raft 

components and cytoskeleton. 

Plasma membrane lipids consist of phospholipids, also sphingolipids, glycolipids and sterols. 

The lipids of interest to this work belong to the sphingolipid family, namely, 

glycosphingolipids [GSLs], sphingomyelin, and ceramide all of which contain a ceramide 

backbone. Sphingolipids, associate preferentially on the plasma membrane into cholesterol-

rich nano-domains, referred to as lipid rafts [1], which are mainly found on the extracellular 

leaflet of the lipid bilayer and are involved in signaling the endocytic vesicular trafficking [1, 2]. 

These domains and the lipid species found within them have also been implicated in 

neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Niemann-Pick disease [3-8] and 

are trafficked through the degradative (endolysosomal) and secretory (Golgi) pathways of the 

cell [9, 10]. Complex sphingolipid derivatives, like glycosphingolipids (GSLs) and 

sphingomyelin, get broken down to their component parts, including lipids and sugars, via the 

degradative pathway in lysosomes [11].  

Simpler sphingolipids, e.g. ceramide, get modified by the addition of a head group 

(ethanolamine, choline, or polysaccharide) in the Golgi, and thereafter are transported back to 

the plasma membrane [12-14]. Faulty intracellular trafficking and storage of sphingolipids and 

cholesterol due to either deficit in enzymes that break down sphingolipids, or defects in lipid 

transport failure can lead to an array of lipid storage diseases [15-18]. These diseases cause 
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accumulation of sphingolipids and cholesterol in the endolysosomal compartment, and lead to 

neurodegeneration and mental retardation. Trafficking of cholesterol is believed to occur 

through a related pathway to that of sphingolipid transport, though cholesterol and sphingolipid 

storage and trafficking appear to be interdependent [19].  

The levels of cholesterol and sphingolipids in Alzheimer’s afflicted neurons may affect the 

processing of the amyloid precursor protein (App) which gets cleaved possibly within the raft 

domains, to the amyloidogenic form (Aβ), [20, 21]. This is released from cells and aggregates 

to form “senile plaques”, which are the pathogenic hallmark of the disease. Since the lipid raft-

borne sphingolipids and cholesterol are thought to be involved in the pathogenesis of different 

disease including Alzheimer’s, it is interesting to characterize their sub-cellular behavior 

(mainly on the membrane for this study), which will help to identify the processes that lead to 

aberrant lipid accumulations that are associated with those diseases.  

The major limitation associated with this field is, that currently there are no well known reliable 

markers that can be used to trace lipid microdomain or sphingolipid trafficking in living 

neurons or other cells. Several groups including Pagano’s group have characterized these lipid 

analogs and have used fluorescently labeled sphingolipid analogs (BODIPY-ceramide, 

BODIPY-GSLs, and BODIPY-sphingomyelin) in artificial membranes and cultured 

neuroblastoma, fibroblast and other cell types. They assayed the trafficking behavior of these 

lipids in normal vs. diseased cells or under perturbed conditions that simulate the disease state 

[22-24]. Although these fluorescent lipid analogs are useful, serious questions have been raised 

regarding their biophysical behavior in the membrane. According to Pagano and colleagues, 

these sphingolipid analogs are properly metabolized, but other studies show that they do not 

behave like endogenous sphingolipids in the membrane, as aberrant orientation of the lipid 

chains has been observed, as well as abnormal trafficking behavior [25, 26]. Several studies 

with artificial membranes suggest strongly that these lipids do not show the same type of 



3 
 

behavior as would be expected if they occupied the lipid microdomains. Pagano’s group have 

shown that BODIPY labeled sphingolipids do get metabolized in their experiments on several 

cell lines including HeLa, rat fibroblasts, implying that these lipids at least partially traffic 

through the expected intracellular pathways [27]. In this context it has to be kept in mind that 

there may be differences in the behavior of artificial membranes vs. real cells, and that 

statements can be made only by comparing different types of lipids in relation to each other as 

well as their behavior in perturbed systems, even though they don’t strictly reflect the in vivo 

situation.  

The group of Kobayashi has developed a toxin known as lysenin from the earthworm as a lipid 

raft and intracellular trafficking tracing molecule [28]. Lysenin binds strongly and specifically 

to sphingomyelin, which is found in lipid rafts. The problem associated with this molecule is 

that, it is very large (~300 amino acids, and ~240 amino acids in its minimal non-toxic 

truncated form), and has been expressed by Kobayashi only as a GFP fusion protein, whose 

synthesis is not easy to manipulate.  

Although various people use lysenin-GFP [29], perfringolysin-O-GFP [30], non-invasive 

small-molecule tracers that can be used to visualize the binding and trafficking of 

sphingolipid containing microdomains are currently not commercially available. Therefore, it 

would be advantageous to design modified smaller versions of lysenin or other toxin peptides, 

which would be easily synthesizable and conjugable with small fluorophore molecules. It is 

possible that peptides can be derived from various naturally occurring toxins and GSL-binding 

proteins that can be used as lipid-specific tracers or diagnostic tools. Along these lines, the 

establishment of a potential marker as a tool to distinguish the different pathways of various 

types of sphingolipids and their behavior in perturbed conditions (e.g. cholesterol modification, 

mutation) has been chosen as the ultimate goal of this project. 
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The motivation of the study was to carry out a biophysical characterization of the sphingolipid-

containing plasma membrane domains. The link of sphingolipids and sphingolipid-rich 

membrane domains to degenerative diseases, particularly the sphingolipid storage diseases, has 

been well-established [31]. These sphingolipid storage diseases have much in common with 

neurodegenerative diseases such as Alzheimer’s, and they seem to affect similar intracellular 

trafficking processes (e.g. lysosomal function, amyloid peptide generation, and sphingolipid 

accumulation) [32-34]. The molecular fluorophore conjugated, 1st 25 amino acid sequence of 

Aβ, derived from the Amyloid precursor protein (App), and termed sphingolipid-binding 

domain (SBD), has been analyzed in this study, to test the hypothesis that this peptide will 

mediate tagging of the sphingolipid rich domains found in the plasma membrane that constitute 

rafts. By structural analysis, the sphingolipid-binding domains found in several proteins, have 

similar conformation to the V3-like domain of gp120 of HIV-1 and Prion Protein (Fig. 1.4), 

suggesting a common mechanism that is used by HIV- 1, prion and Alzheimer proteins to 

interact with lipid rafts [3]. An important consideration in this context is that the raft-borne 

sphingolipids of interest are located to the outer leaflet of the plasma membrane, presenting a 

topological problem for GFP-based probes that are produced intra-cellular. Therefore, a 

sphingolipid-targeted exogenous probe for live imaging studies would be a useful tool in 

studying diseases whose pathogenesis is glycosphingolipid-dependent. Moreover, a 

sphingolipid-binding-fluorophore probe (like SBD) more faithfully mimics the actual situation 

encountered by a neuron when attacked by an extracellular virus or the Alzheimer amyloid 

peptide. That is why it may be a more effective tracking tool among the others.  

After successful completion of this project, the established fluorescent-sphingolipid-binding 

peptide would be a powerful tool to examine the distribution and trafficking routes of 

sphingolipids in cell. Further development of this method could lead to diagnostic tools and/or 

drug screening methods involving imaging of the peptide in affected cells/neurons. 
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1.2 Microdomains 

1.2.1 Introduction to lipid microdomains/rafts 

According to the definition by Kai Simons, “Lipid rafts are fluctuating nanoscale assemblies 

of sphingolipids, cholesterol and proteins that can be stabilized to coalesce, forming 

platforms that function in membrane signaling and trafficking” [35]. The raftophilic 

membrane proteins localize to these compartments probably because of protein-protein 

interaction and/or their affinity for the raft associated lipids [36-38]. These raft associated 

proteins are normally linked to the actin cytoskeleton and play important roles in holding 

these clusters together [36]. According to Kusumi et al., the plasma membrane naturally 

contains dynamic structures, e.g. molecular complexes and domains that exist in various sizes 

and are forming and dispersing continually at different time scales within the cell membrane 

[39]. These microdomains can be considered as small (probably on the order of 5-10 nm 

diameter) rafts floating on the more-liquid glycerolipid-rich bulk of the plasma membrane. 

Compared to this glycerolipid-rich surrounding lipid bilayer, the rafts are more ordered, 

where cholesterol might function as a dynamic glue [40]. These specialized microdomains 

compartmentalize cellular processes by serving as organizing platforms for the assembly of 

signaling molecules and form a less fluid, more ordered phase. Moreover they play important 

roles in membrane protein trafficking, receptor trafficking, regulating neurotransmission as 

well as activation of the immunological synapse, and numerous other signaling events [41, 

42]. In addition, lipid rafts serve as portals for the entry of various pathogens, including 

viruses, bacteria and toxins, including Aβ and prion protein [3]. Some interesting evidence 

indicates that lipid rafts are involved in the formation of amyloid plaques in Alzheimer’s 

diseases through the interaction of Aβ with certain raft lipids, in particular the highly 

sialylated gangliosides [35]. Therefore, the study of lipid rafts and their role in cell biology 

and medicine gained interest over the last couple of decades. 
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1.2.2 Development of membrane heterogeneity as an emerging field 

The existence of membrane microdomains was postulated in the 1970s based on experiments 

using biophysical approaches by Stier & Sackmann [44] and Klausner & Karnovsky [45]; 

however, until 1982, it was widely accepted that the phospholipids and membrane proteins 

were randomly distributed on a homogeneous phase of cell membranes, proposed in Singer-

Nicolson’s fluid mosaic model [46]. According to that model, membrane lipids are a two-

dimensional solvent phase for membrane proteins (Fig. 1.1).  

The above postulated microdomains were attributed to the physical properties and 

organization of lipid mixtures by Stier & Sackmann and Israelachvili et al. [44, 47]. The 

description of biological membranes as a ‘mosaic of lipid domain’ rather than a 

homogeneous fluid mosaic, and the proposal of "clusters of lipids" first emerged in 1974, due 

to the effects of temperature on membrane behavior [49]. In 1978, X-Ray diffraction studies 

led further to the development of the "cluster" concept defining the microdomains as "lipids 

in a more ordered state". Karnovsky and co-workers formalized the concept of lipid domains 

in membranes in 1982, which again indicated that there were multiple phases of the lipid 

environment on the membrane [45]. The existence of these cholesterol and sphingolipid rich 

microdomains, formed due to the segregation of these lipids into a separate phase, was shown 

to exist on the artificial membranes in 1979 [49] and cell membrane in 1982 [50]. Later, Kai 

Simons and Gerrit van Meer refocused interest on these glycolipids, sphingolipids and 

cholesterol enriched membrane microdomains, and subsequently, called these postulated 

microdomains “lipid rafts” [51]. From then onwards lipid rafts gained attention for studies of 

cell membranes, trafficking, receptor-mediated signal transduction, and lipid- associated 

diseases [3-8, 15-18]. 
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[Picture from: S.J. Singer et al. 1972, Science, 175, 720–731.] 

Figure 1.1: The Fluid Mosaic Model. 
 

The original concept of rafts was used for explaining the transport of mainly sphingolipids 

and cholesterol from the trans-Golgi network to the plasma membrane, and was more 

formally developed in 1997 by Simons and Ikonen [1]. But still controversies persisted 

regarding the size and lifetime of these rafts and their biological / physiological relevance to 

in vivo systems. In recent years, lipid raft related studies are trying to address many of these 

key issues that caused those controversies [42, 52, 53]. At the 2006 Keystone Symposium of 

Lipid Rafts and Cell Function, lipid rafts were defined as "small (10-200nm), heterogeneous, 

highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular 

processes. It was also stated there that the “small rafts can sometimes be stabilized to form 

larger platforms through protein-protein interactions”. Baumgart [54], Veatch & Keller [55], 

and others have studied the miscibility behaviour of lipid phases in giant plasma membrane 

vesicles (GPMVs) that are isolated directly from living cells. According to their 

demonstration, GPMVs contain two liquid phases at low temperatures and one liquid phase at 

high temperatures. Their study suggests that the compositions of mammalian plasma 
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membranes reside near a miscibility critical point and the heterogeneity in present in the 

GPMVs at physiological temperatures may be related to functional lipid raft domains in live 

cells [54]. Still there are several other questions yet to be answered in the field of lipid raft, 

for example, the dynamic partitioning of membrane lipids and lipid rafts [17], quantitative 

comparison of the different lipid compositions of rafts, miscibility of raft associated lipid 

components, proper life time/existence time of raft clusters [39], proper description of 

physiological functions of these lipid rafts. The effects of different lipid-perturbing and 

cytoskeleton disrupting drugs on the mobility of rafts and raft associated lipids have been 

described in this study. 

 

1.2.3 Formation of lipid rafts in live cells 

It has been documented several times that the lipid rafts are composed of membrane proteins 

surrounded by sphingolipids and cholesterols, but it is also important to note their formation 

at physiological conditions, which has been described schematically in Fig. 1.2. 

Cholesterol and sphingolipids are synthesized in the endoplasmic reticulum (ER) [56]. Most 

of this synthesized cholesterol is transported directly from ER to the plasma membrane (PM) 

through a non-vesicular process. Non-vesicular transport from ER to PM proceeds via 

cytosolic FK506 binding protein 4 (FKBP4) and Caveolin-1 containing complex [57, 58]. 

Relatively small amounts of cholesterol and de novo synthesized sphingolipids (mainly 

sphingomyelin) are transported from the ER to Golgi. Excess cholesterol in the ER is 

normally esterified by acyl-Coenzyme A: cholesterol acyl transferase 1 (ACAT1) and the 

esters are then stored in the form of cytoplasmic lipid droplets [59], where the cholesteryl 

ester transfer protein (CETP) transports these cholesteryl esters into those storage droplets 

[60]. ACAT1 in ER is compartmentalized close to the endocytic recycling compartment 

(ERC) and very close to trans-Golgi network (TGN), but far from cis, medial Golgi [61, 62]. 
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[Picture by Steffen Steinert] 

Figure 1.2: The schematic diagram for formation of lipid rafts in physiological conditions. Production 
and transportation pathway of cholesterol and sphingolipids from ER to the plasma membrane via Golgi and 
recycling of the components via Endocytic vesicles are shown here. 

 
 

Since both TGN and ERC are engaged in extensive membrane traffic, these compartments 

might also play a role in esterification of cholesterol in membranes [63]. Gradually the 

concentration of cholesterol and sphingolipids increases in trans-Golgi network leading to the 

formation of rafts [64]. These caveolae or transport vesicles that contain 

cholesterol/sphingolipid-rich membrane patches are then assembled in the Golgi first and 

transported towards the plasma membrane to form rigid, less mobile clusters [64]. Lectin, 

mannose-binding protein (VIP 36) is one of the proteins which coordinate the polar traffic of 

caveolae to the plasma membrane [65-67]. These proteins receive these cargos (sphingolipids 

and cholesterol) from carriers, endosomes, lipid droplets or even directly from ER. The pool 



10 
 

of sphingolipids is enriched with sphingomyelin that is newly synthesized by sphingomyelin 

synthase 1 (SMS1) in ER as mentioned earlier. Sphingolipids move to the apical plasma 

membrane [64, 66, 68], but unlike cholesterol, sphingomyelin is transported to the apical 

membrane preferentially in the vesicles [69]. These accumulated ordered structures form the 

so called rafts and the lipid components are recycled via the endocytic pathway. 

 

1.2.4 Properties of lipid microdomains/rafts 

1.2.4.1 Structural properties 

The most important factor behind the cluster packing of membrane lipids is their amphipathic 

character, which contain a polar, hydrophilic head group region and a non-polar, hydrophobic 

part. In aqueous condition, these amphipathic lipid molecules normally orient themselves in 

such a way, so that the polar head groups associate with water molecules, whereas the 

hydrophobic chains interact with each other to exclude a maximal number of water molecules 

from the hydrophobic phase. The basic compositional difference between rafts and the 

surrounding plasma membranes is the difference in lipid composition and cholesterol content. 

Cholesterol preferentially interacts with the sphingolipids through hydrogen bonding with the 

amide groups containing backbone. Glycerophospholipids don’t have this amide groups to 

interact with cholesterol. 

According to another model, the function called “umbrella-ing” has also some role to play, as 

the spaces left between the bulky GSL headgroups, are thought to be filled by cholesterol 

molecules. The saturated chains of sphingolipids allow them to pack tightly together through 

van der Waals interactions, forming a more ordered phase (Liquid ordered phase Lo) at 

physiological temperature from which GPLs are excluded [3]. In addition, sphingolipids may 

associate among themselves through hydrogen bonds between the hydroxyl (OH) group of 

the sphingosine base and the amide group on the backbone. Simultaneously this self 
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association of sphingolipids results in a decrease in the phosphatidylcholine levels in the raft 

regions compared to that of the surrounding plasma membrane. Thus, the ratio of the lipids 

with saturated hydrophobic chains to the lipids with unsaturated hydrophobic chains is higher 

in the rafts, compared to that of the surrounding bilayer, usually referred to as the liquid 

disordered (Ld) phase [42]. 

 
 

[Picture from J. Fantini, et al. 2002, Exp. Rev. Mol. Med., 4 (27), 1-22.] 
 

Figure 1.3: (a) Glycerophospholipids (GPLs), which form the Ld phase of the plasma membrane, are 
normally cylindrical in shape; however, cholesterol and sphingolipids [especially glycosphingolipids (GSLs)] 
have a pyramidal or cone-like shape. In glycosylated sphingolipids the polar head group occupies a larger area 
than the hydrophobic region, whereas the scenario is reverse for cholesterol and ceramide. (b) The remarkable 
fit between the global shape of cholesterol and sphingolipids; cholesterol functioning as a molecular spacer. 
The enrichment of cholesterol in Lo phase domains is consistent with this model. 
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Although not all of the sphingolipids within the rafts are fully saturated, still they are much 

more tightly packed compared to the liquid disordered phase; where the GPLs are in a loosely 

packed disordered state. Due to the rigidity of the sterol, cholesterol preferentially partitions 

into the raft phase [42]. Cholesterol has the ability to pack in between the lipid tails in rafts, 

serving as a molecular spacer and filling any voids between associated sphingolipids, making 

the cluster more rigid [3]. A simplified model of lipid organization in raft microdomains 

based on the theoretical shape of membrane lipids is shown in Fig. 1.3. 

 

1.2.4.2 Biochemical properties  

Because of the high degree of hydrogen bonding between lipid molecules, lipid rafts are 

relatively insoluble in certain detergents such as Triton X-100 [70, 71], and are sometimes 

referred to as Detergent Resistant Membrane fractions (DRMs). On sucrose density gradients, 

the rafts can be readily purified as DRMs by ultracentrifugation in the form of molecular 

complexes from the buoyant fractions. The migration of DRMs with these low-density layers 

is consistent with the relatively high lipid content of these fractions. The morphological 

analysis of these DRMs by transmission electron microscopy revealed the presence of small 

membrane vesicles, though without any confirmation whether these are isolated endosomes, 

or microsomes resulting from the harsh purification procedure [70]. Biochemical analysis 

demonstrated a specific enrichment of GSLs, sphingomyelin and cholesterol in these DRMs. 

However, with the exception of phosphatidylinositol, these fractions are relatively poor in 

GPLs. In agreement with the concept that acyl chain saturation favors raft association, the 

GPLs present in the DRMs consist of mainly saturated and monounsaturated lipids, rather 

than polyunsaturated acyl chains [72] found in the disordered fluid phase of the membrane. 

However, the validity of the detergent resistance methodology, which requires isolation of 

membranes at 4°C, has recently been questioned due to the ambiguities in lipids and proteins 
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recovered. Moreover, it has been observed that the method itself can cause formation of 

phase separated clusters [73]. This emphasized the necessity to improve the solubilisation 

procedures that will certainly help to clarify the structure and dynamics of lipid rafts in the 

plasma membrane. Drevot et al. came up with a solution in the form of Brij 98 which can be 

used to prepare detergent-insoluble, raft-like microdomains at 37°C [74]. But irrespective of 

the detergent or the experimental condition, this method depends on the partition of lipids and 

proteins into detergent micelles, and produces a picture that does not directly report on the 

organization of native membranes. Hence, it is clear that biochemical studies alone are not 

sufficient to visualize rafts, and a reliable alternative method is needed.  

 

1.2.4.3 Biophysical properties  

In order to understand the membrane organization retaining the raft morphologies, 

biophysical approaches with intact artificial or real cell membranes gained interest over the 

biochemical methods [75, 76]. For example, the co-localization of several raft proteins with 

the ganglioside GM1 has been demonstrated in various cell types by confocal microscopy. 

Lateral segregation of specific molecules in the construction of signaling units and sorting 

platforms is the structural basis of rafts [1]. Quantitative spectroscopic microscopy techniques 

such as fluorescence resonance energy transfer, fluorescence correlation spectroscopy, 

fluorescence anisotropy measurements, provided the evidence for the existence of rafts in 

vivo, and allowed the researchers to carry on studies to evaluate the size and other biophysical 

characterization of these membrane heterogeneities referred as rafts [52, 53, 77-81]. 

Rietveld & Simons first said that the physical properties of the liquid ordered (Lo) and liquid 

disordered (Ld) phase are not the same and showed the immiscibility of these two phases in 

model membranes [82]. Although the cause of this immiscibility is uncertain, it is thought 

that the immiscibility minimizes the free energy between the two phases [83]. Further studies 
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have confirmed that there is a difference in thickness of the lipid rafts and the surrounding 

membrane [84, 85] which results in hydrophobic mismatch at the boundary between the two 

phases. But the more interesting and obvious question was the size and spatial distributions of 

these domains on live cell surfaces. 

Previously, there were lots of debates on the size of rafts, not suggesting a particular 

dimension but a distribution ranging from 10 to 200 nm [86-88] depending on the type of cell 

lines investigated and circumstances, like whether they’ve been induced to coalesce by 

cytokines or ligand binding [36]. A recent study by Goswami et al. suggests that these 

heterogeneities of the cell surface are organized on at least two length scales; one at the nano 

scale (~10 nm) and the other in optically resolvable scale (~450 nm) [52]. The large scale 

domains have properties similar to that of so called rafts. These clusters or rafts are 

cholesterol dependent and the organization on the cell surface is regulated by the actin 

cytoskeleton [52, 89]. Pinaud et al. have shown by single particle tracking (SPT) that GPI 

anchored proteins can pass GM1-clustered rafts unhindered. These clusters are laterally 

immobile but can form and dissolve at physiological temperature [53]. Smaller clusters 

sometimes stabilize by forming larger platforms through protein-protein or protein-lipid 

interaction [90]. Lectins, the multivalent glycoprotein-binding proteins are able to cluster 

rafts at the plasma membrane [91]. Apart from classic ligands and cytoskeletal scaffolds, this 

lectin-mediated clustering is an important phenomenon that could tell us more about raft 

dynamics [92]. 

Together the diffusion parameters of different markers associated with the rafts and non-raft 

phase of the plasma membrane can indicate about the existence of membrane heterogeneity 

[89]. The raft associated markers have been documented in this work, and by others, to show 

bimodal distributions for their diffusion on live cell surface [53, 89]. Kusumi et al. proposed 

a model on cell surface dynamics where individual protein and lipid molecules at the plasma 
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membrane undergo short-term confined diffusion within a confined compartment and hop 

diffusion between the compartments, with an average hop frequency of once every 1–20 ms 

[39]. According to their model the restricted/hop diffusion is confined within membrane 

compartments boundaries consist of actin anchored proteins. These actin anchored-proteins 

can temporarily confine phospholipids, and the phospholipids themselves can also undergo 

hop diffusion [94]. In a recent review, Kusumi describes the plasma membrane as a 

heterogeneous entity, which contains diverse structures and compartments with a variety of 

lifetimes, where certain membrane molecules stay together for limited durations [95]. Within 

each membrane compartment several small rafts may exist, where the raft-associable 

molecules may enter and/or exit continuously. According to the model, these rafts form and 

disperse rapidly and capriciously, and can also coalesce and disintegrate [95]. Consistent with 

the model, this dynamic partitioning of diffusive behavior of raft associated markers is due to 

the random entry and exit of the raft associated proteins from these heterogeneous clusters 

[53]. Cholesterol depletion or cytoskeleton disruption resulted in faster movements of the raft 

associated markers indicating the reorganization of the membrane with faster diffusion 

coefficients, which has been supported by the results of this work as well [77, 85, 96-98]. 

 

1.2.5 Functions of lipid rafts 

It is well accepted that rafts phases are involved in signal transduction [99] and intracellular 

trafficking of lipids and proteins [100], and they serve as the preferential sites for host–

pathogen/toxin interactions as well [101]. Rafts also appear to be involved in the generation 

of pathological forms of proteins associated with Alzheimer’s and prion diseases [102, 103]. 
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1.2.5.1 Role of lipid rafts in signal transduction pathways 

Due to their ability to diffuse laterally on the plasma membrane, rafts can act as floating 

shuttles that transport and bring together activated receptors and transducer molecules [104]. 

In addition, certain raft-associated scaffolding proteins are associated with these lipids in a 

specific manner. Caveolin is one such protein, which binds to cholesterol. Presence of this 

protein within a lipid scaffold results in a structure on the plasma membrane called a caveola 

[105]. Caveolae were originally identified ultrastructurally as local invaginations (50–100 nm 

diameters) of the plasma membrane in endothelial and epithelial cells [105]. 

Following are some examples that show the proteins enriched in raft fractions, can play 

crucial roles in signal transduction: 

(i) External proteins can bind to the outer leaflet of the plasma membrane by a GPI anchor 

(e.g. the GPI-linked form of prion protein PrP-c). GPI associated proteins are anchored on the 

external leaflet of the plasma membrane by two saturated chains (1- alkyl-2-acyl-glycerol) 

that make their association with the raft lipids [106, 107]. 

(ii) Transmembrane proteins (e.g. the IgE receptor FcεRI) [104]. IgE receptors (FcεRI) are 

normally localized outside membrane rafts. Upon binding to the multivalent antigen (Ag)–

IgE complex to FcεRI and the coalescence of the rafts allows a physical interaction between 

FcεRI and Lyn, which triggers the signal transduction pathway. 

(iii) Acylated protein tyrosine kinases of the Src family (e.g. Lyn) bound to the inner leaflet 

of the membrane [108, 109]. Acylated proteins are anchored in the internal leaflet with two or 

more saturated acyl chains (generally myristate and palmitate) that interact preferentially with 

raft lipids. Although sphingolipids are usually not found in the cytoplasmic leaflet of the 

plasma membrane, specific GPLs such as phosphatidylserine and phosphatidylethanolamine 

with saturated chains might form Lo domains through interaction with long sphingolipid acyl 

chains of the outer monolayer (Fig. 1.1). 
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In CD4 T cells, the main components of the T-cell receptor signal initiation machinery 

constitutively partition into a subset of membrane rafts [74]. Thus, some signal transduction 

units can be preassembled in lipid rafts of quiescent cells, allowing rapid and efficient signal 

initiation upon activation.  

Cholesterol depletion experiments led to a clear decrease in these signaling steps, indicating 

the involvement of rafts in the initiation of this signaling cascade [104].  

In a separate study, Boyd et al. identified and purified plasma membrane and lipid raft 

associated proteins from B cells obtained from mantle cell lymphoma (MCL) patients in 

leukemic phase, based on shotgun proteomics and found that 5-lipoxygenase (5-LO), a lipid 

raft associated protein, which is a key enzyme in leukotriene biosynthesis, was up-regulated 

7-fold in MCL compared with normal B cells [110]. Significantly, inhibitors of 5-LO activity 

and 5-LO-activating protein (FLAP) induced apoptosis in MCL cell lines and primary 

chronic lymphocytic leukemia cells, indicating an important role of the lipid rafts for the 

leukotriene biosynthetic pathway in MCL and other B cell malignancies. These proteins may 

play an important role in the pathology of the disease and are potential therapeutic targets in 

MCL [110]. 

Bryant et al. have produced the first evidence for the association of FGFR with the 

cholesterol-glycosphingolipid-enriched ‘‘lipid raft’’ microdomains [111]. Fibroblast growth 

factors (FGFs) and their receptors (FGFRs) initiate diverse cellular responses that contribute 

to the regulation of oligodendrocyte (OL) function. FGFR2 phosphorylates the key 

downstream target, FRS2 in OLs. Investigation of the phosphorylation of signal transduction 

proteins and the role of lipid rafts, to understand the mechanisms by which FGFRs elicit these 

cellular responses, showed that the most abundant tyrosine-phosphorylated protein in OLs is 

the lipid raft microdomain associated FGFR2 and that it phosphorylates even in the absence 

of FGF2, suggesting a potential ligand independent function for this receptor. Raft disruption 
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resulted in loss of phosphorylated FRS2 from lipid rafts, emphasizing the importance of 

microenvironments within the cell membrane [112]. 

Many more examples of the importance of rafts can be found in literature and many excellent 

reviews have been written. However, the above mentioned examples were selected to 

demonstrate that rafts are molecular sorting machines capable of coordinating the 

spatiotemporal organization of signal transduction pathways within selected areas of the 

plasma membrane [3]. 

 

1.2.5.2 Role of lipid rafts as platforms for entry of pathogens 

A broad range of pathogens, including viruses, bacteria, parasites and their toxins, use lipid 

rafts to enter host cells, utilizing both cell-surface GPI-anchored proteins, transmembrane 

receptors, and raft lipids (GSL, sphingomyelin and cholesterol) as primary or accessory 

receptors. For example, cholera toxin binds to ganglioside GM1, Shiga toxin binds to the 

neutral glycolipid Gb3, mycobacteria bind to cholesterol, E. coli strains expressing FimH 

bind to the GPI-anchored protein CD48. 

The interaction of cholera toxin (the most widely used raft marker) with target cells can be 

taken as an example to start a brief illustration of the various roles of membrane rafts in the 

pathogenesis of bacterial toxins.  Cholera toxin consists of five identical B polypeptides that 

bind to ganglioside GM1 and a single A1 peptide containing subunit and enters the cell and 

activates adenylyl cyclase [113]. The pentameric B subunit specifically binds to five GM1 

molecules with high affinity.  The main role of the raft in this case is to concentrate the toxin 

receptor, to ensure maximal binding capacity of the toxin to the cell surface [101].  

The interaction of tetanus and botulinum toxins with neural cells illustrates another aspect of 

raft–toxin interactions. These neurotoxins bind to several di- and trisialogangliosides (e.g. 

GD1a, GD1b and GT1b) on the surface of the presynaptic membrane [113]. This finding was 
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further strongly supported by the identification of a 58 kDa protein from rat brain 

synaptosomes that binds to botulinum and tetanus neurotoxins only in the presence of GT1b 

or GD1a [113]. This model is quite interesting because it illustrates the various properties of 

lipid rafts that are particularly useful to pathogens and their toxins: 

(i) The raft environment provides multiple low affinity receptors that stabilize the invader on 

the cell surface;  

(ii) The raft can deliver the invader to adequate high-affinity receptors; and  

(iii) Specific lipids in the raft environment might act as chaperones, inducing conformational 

changes in the invader structure in the vicinity of the high affinity receptors.  

This model helps to mechanistically explain the fusion reaction that occurs during infection 

by human immunodeficiency virus 1 (HIV-1) and that is dependent on glycolipids [115]. 

The pore forming toxin aerolysin from Aeromonas hydrophila also target lipid rafts through 

multiple interactions with GPI-anchored proteins [116]. In fact, for most of the pore-forming 

toxins (e.g. Vibrio cholera cytolysin), rafts help by concentrating receptors and thereby 

provide either increasing binding affinity or promote toxin oligomerization. [101]. For some 

cases like Shiga toxin, the glycolipid receptor (Gb3) of the raft is important not only for 

providing cell-surface binding sites, but also for retrograde transporting of the toxin into the 

endoplasmic reticulum [117, 118]. After attachment with the receptor sites or to some major 

raft components such as cholesterol or sphingomyelin, the pathogens and their toxins 

sometimes exploit the normal cellular functions of lipid rafts (e.g. intracellular trafficking) to 

enter into host cells [101]. Some bacterial toxins may prevent the functions of any protein 

within the raft-domains by altering their localization; for example, the exotoxins produced by 

Clostridium difficile, causes defects in the epithelial barrier function, which under normal 

conditions prevents the passage of dissolved molecules from one cell to another [119]. 
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Leishmania donovani is an obligate intracellular parasite that infects macrophages of the 

vertebrate host, resulting in visceral leishmaniasis in humans, which is usually fatal if 

untreated. Cholesterol is a major constituent involved in this host–parasite interaction leading 

to attachment on the cell surface and subsequent internalization of the parasite. Cholesterol 

depletion from macrophage plasma membranes using MβCD results in a significant reduction 

in the extent of leishmanial infection [120]. 

The human rhinovirus also uses the ceramide-enriched and large glycosphingolipid-enriched 

membrane domains as platforms to enter into the host cells. Destruction of 

glycosphingolipid-enriched membrane domains blocked infection of human cells with 

rhinovirus [121]. Measles virus (MV), which interacts with the surface of T cells and thereby 

efficiently interferes with stimulated dynamic re-organization of their actin cytoskeleton, 

causes ceramide accumulation in human T cells in a neutral and acid sphingomyelinase 

dependent manner. Moreover membrane ceramide accumulation causes down-modulation of 

chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight a yet 

unrecognized concept of pathogens able to cause membrane ceramide accumulation to target 

essential processes in T cell activation and function by preventing stimulated actin 

cytoskeletal dynamics [122]. 

 

1.3 The Sphingolipid Binding Domain (SBD) peptide 

The name sphingolipid binding domain was given by Fantini and coworkers to a common V3 

loop like structure/peptide sequence present in different proteins including Human Prion 

protein, Alzheimer’s β amyloid peptide and glycoprotein gp120 of Human Immunodeficiency 

Virus HIV-1. This peptide sequence was proposed by Fantini and colleagues to bind to the 

membrane microdomains on the cell surface through attachment with some selected 

sphingolipids such as galactosylceramide and sphingomyelin. Fantini proposed that aromatic 
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and basic residue(s) in the SBD interact with galactose-terminals of glycolipids and 

sphingomyelin, and they tested the SBD sequence of Prion protein, HIV peptides and Aβ1-40 

fragment using Langmuir lipid film binding method at the lipid-air interface [43].  

 
[Fig from J. Fantini, et al. 2002, Exp. Rev. Mol. Med., 4 (27), 1-22.] 

 
Figure 1.4: A common sphingolipid-binding domain in HIV-1, Alzheimer and prion proteins. The lateral 
chains of the residues of pathologically important proteins known to be involved in binding to 
glycosphingolipids and sphingomyelin in plasma membranes are shown. 
 

The active conformation of Aβ contains two phenylalanine residues at 19th and 20th position, 

which interact in an anti-parallel way with the central region of Aβ. It was hypothesized by 

Fantini that the sugar rings of the GSLs could also serve as the binding site to this region of 

the peptide and modulate the conformational changes of Aβ [3]. The non-toxic shorter 

version of the Aβ (1-25) might also follow a similar mechanism, but any kind of 
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experimental study or characterization of this shorter sequence was not performed by any 

group before. 

In addition to Fantini’s proposal, biochemical studies done on the shorter sequence of 

Alzheimer’s version of SBD (1-25 amino acid of Aβ), have shown evidence that it has 

potential applications as a sphingolipid trafficking tracer for cellular and animal models 

[123]. The diffusion based biophysical characterization of this exogenous, non-toxic probe 

has been carried out in this study on live cell membrane. 

The sphingolipid binding domain (SBD) peptide consists of the first 25 amino acids of the 

amyloid Aβ peptide. After modification, at the N-terminus by two copies of an inert spacer 

([AEEAc]2) and conjugation to Oregon Green (OG) via a thiol linkage to an N-terminal 

Cysteine, or Tetraaminomethylrhodamine (TAMRA) via an amide linkage directly to the 

spacer, in order to trace it through fluorescence techniques, the final sequences becomes: 

OG-Cys-[AEEAc]2- DAEFRHDSGYEVHHQELVFFAEDVG and  

TAMRA-[AEEAc]2- DAEFRHDSGYEVHHQELVFFAEDVG respectively. 

Since the most common form of wild type amyloid beta contains K at 16th position instead of 

E, the E at 16 has been highlighted here. The original sequence of SBD in Aβ reported by 

Fantini et al. contained E16. The E16 mutation does not affect the structure of 1-28 peptides 

[124]. The replacement of an acidic residue (Glu) by a basic one (Lys) in the sphingolipid 

binding site is likely to affect the binding of the peptide to positively charged lipids. In case 

of the prion protein, the main effects of the E200K (i.e. the reverse) mutation are (i) major 

changes in the distribution of charges on the protein surface and (ii) the loss of a salt-bridge 

interaction between the side chains of Glu200 and Lys204 [43]. Moreover the E200K mutation 

specifically increases the recognition of sphingomyelin; though it doesn’t affect the 

conformation of Aβ [43]. Since lysine (K) has a free amine, it is also difficult to conjugate the 

fluorophore molecule in solution phase, with the peptide sequence containing lysine. 
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Addition of the inert spacer in the above mentioned peptide facilitates the conjugation of 

fluorophores to the amino-terminus by minimizing possible steric interference of the 

fluorophores with the amino acid sequence. The molecular structure of the spacer is given in 

Fig. 1.5. 

 

Figure 1.5: The Representation of the Cysteine conjugated spacer [AEEAc]2. 

 

1.3.1 Effectiveness of SBD as a lipid raft marker  

The uptake and intracellular trafficking of sphingolipids, which self-associate into plasma 

membrane microdomains, is associated with many pathological conditions, including viral 

and toxin infection, lipid storage disease, and neurodegenerative disease. However, the means 

available to label the trafficking pathways of sphingolipids in live cells are extremely limited 

[123]. Until today, Cholera toxin B (CTxB) is the most commonly used sphingolipid-binding 

probe, which binds specifically and very tightly to a single target glycolipid, GM1 [125]. It is 

also important to note in this context that CTxB induces clustering of sphingolipids [126–

128] and is internalized by both non-clathrin and clathrin-dependent uptake mechanisms 

[129–131]. CTxB and another commonly used microdomain tracer, the glycosyl-

phosphatidylinositol (GPI)-anchor fused to any fluorescent protein, both traffic primarily to 

the Golgi [132] (although this has been contested [133]), and may occupy primarily non-raft 

domains [134, 135]. The markers that are normally used to trace non-clathrin mediate uptake 

pathways are green fluorescent protein (GFP) fusions of the endocytic adaptors Flotillin and 

caveolin [136–138]. Fluorescent protein fusions have the disadvantage that they have to be 

expressed from transgenes, and therefore may fluoresce in the biosynthetic pathway. 
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Moreover, these endocytic adaptor proteins are not found universally in all cell types, and 

thus they mainly correspond to a specific subtype of membrane microdomains [139]. Also, 

flotillin and caveolin are structural parts of the adaptor complex that mediates endocytic 

uptake by raft domains that use those complexes. This means that they might themselves 

influence the mobility or size of raft domains. 

 

1.3.2 Properties of SBD as a lipid raft marker 

The most important advantage about SBD is that, though this has been derived from Aβ, it is 

non-toxic [123] and can efficiently bind to liposomes with raft like compositions as well as 

different live systems including insect (Drosophila) and mammalian cells and neurons and 

Drosophila embryos [89, 123, 140], hence it has the potential to become a powerful tool to 

trace the sphingolipid trafficking pathways over a wide range of cellular and full organism 

models.  

According to previous reports based on SPR studies, Aβ binds more strongly to gangliosides 

with increased sialylation [141], but the affinity of SBD towards these sialylated gangliosides 

is pH dependent. At neutral pH, SBD binds better to the triply sialylated GT1b in comparison 

to the less sialylated forms, GD3 (disialylated) and GM1 (monosialylated). On the other 

hand, at lower pH (~ pH 5), binding of SBD to all glycosphingolipids strikingly improves, 

and interestingly, interactions with less sialylated gangliosides GM1 and GD1a become even 

stronger [123]. 

The above discussion provides evidence that SBD binds to the membrane through a 

cholesterol, sphingomyelin and glycolipid dependent manner. In this work the biophysical 

properties, mainly diffusion and anisotropic translocations of the probe have been studied on 

live cell membranes. Overall, the present study will help to complete the establishment of this 

motif as a powerful sphingolipid trafficking tracer for live biological model systems. In order 
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to study the biophysical properties of SBD, Fluorescence Correlation Spectroscopy, a widely 

used single molecule sensitive biophysical technique and one of its recently developed 

modalities, Imaging Total Internal Reflection Fluorescence Correlation (and Cross 

Correlation) Spectroscopy (ITIR-FCS and ITIR-FCCS) have been used in this work. Details 

about the techniques are discussed in the following chapter. 
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Chapter 2:  

Methodology 

 

 

2.1 Introduction 

In order to determine the biophysical characteristics of fluorescently-tagged SBD on the plasma 

membrane of live cells, the techniques used in this study are conventional confocal 

fluorescence correlation spectroscopy (FCS), a technique which measures the diffusion time of 

the fluorophore through a stationary detection volume and a home built new method, imaging 

total internal reflection fluorescence correlation spectroscopy (ITIR FCS), which gives the 

advantage of multiplexing measurements [142, 143]. The fluidity of the membrane 

environment is reflected in the diffusion rate at which the fluorescently labeled markers travel 

through the confocal volume or the specified pixel area in cases of FCS and ITIRFCS 

respectively. Since the main interest of this study was to trace the relative changes in diffusion 

of different markers under varying perturbed conditions, only diffusion times have been 

reported for the confocal FCS measurements. These diffusion times can be easily converted to 

diffusion coefficients as explained later in the chapter. On the other hand, directly diffusion 

coefficient (D) values have been extracted using the newly developed technique, ITIRFCS. 

Furthermore, the heterogeneity and the anisotropic translocations on the cell surface have been 

investigated using imaging total internal reflection fluorescence cross-correlation spectroscopy 

(ITIR-FCCS), the extended format of ITIRFCS [89], which has been described in details in 

later part of the chapter.  
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2.2 Fluorescence Correlation Spectroscopy (FCS) 
 

2.2.1 Principle and theory of fluorescence correlation spectroscopy 
 
FCS was first introduced by Douglas Madge, Elliot Elson and Watt Webb in 1972 and applied 

to measure the diffusion and chemical dynamics of DNA-drug interaction [144]. At present 

FCS is an efficient biophysical technique with single molecule detection sensitivity for in vitro 

as well as in vivo applications. With improved ultra-sensitive detectors and stable lasers, FCS 

delivers high signal to noise ratio and detection efficiency. A number of FCS applications have 

already been reported for the study of binding and diffusion behavior of subcellular 

membrane compartments in live cells [145-156]. 

Unlike normal fluorescence spectroscopy, FCS is not based on the fluorescence intensity of the 

sample. Statistical analyses are carried out in FCS based on the fluctuations in fluorescence 

signals to investigate the dynamic molecular processes in a specified open probe observation 

volume. Cellular processes including translational diffusion, directed diffusion (flow), active 

transport, restricted movements of the fluorescently tagged probes cause fluctuations in 

fluorescence intensity. To extract the information of the underlying molecular processes, the 

fluctuations in the fluorescence signals are normally quantified by temporally autocorrelating 

the recorded photon count rates. Assuming constant excitation power, the fluctuations in the 

fluorescence signal can be defined as the deviations from the temporal average of the signal 

[145], and can be expressed as: 

( ) ( ) ( )F t F t F t                                                                                           (2.1) 
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)(                                                                                  (2.2) 

where, ( )F t  is the detected fluorescence intensity as a function of time t ( )F t  denotes the 

mean fluorescence intensity and δF (t) is the fluorescence fluctuation around the mean value.  
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Then the autocorrelation function (ACF) can be defined as: 
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where, τ is the correlation time or lag time. 

 

2.2.1.1 The autocorrelation function and autocorrelation curve  

Correlation is a mathematical tool used frequently in signal processing for analyzing functions 

or series of values, such as time domain signals. Autocorrelation is simply the correlation of a 

signal with itself over successive time intervals, which is useful for finding repeating patterns in 

a signal, such as determining the presence of a periodic signal which has been buried under 

noise.  

The principle of autocorrelation function is illustrated in Fig. 2.1, which indicates that a 

higher extent of overlap between signals results in a higher amplitude of the autocorrelation 

curve. Situation A in Fig. 2.1, shows the highest extent of overlap between two signals and the 

corresponding value of the ACF at that short time delay is reflected in the higher amplitude of 

the autocorrelation curve shown in Fig. 2.1 D. Similarly the moderate and weak overlap 

between two signals shown in situation B and C respectively, are represented in the middle and 

later part of the autocorrelation curve of Fig. 2.1 D. The corresponding ACF values are 

reflected by the respective amplitudes of the autocorrelation curve at moderate and longer time 

delay. So in FCS, the autocorrelation determines the extent to which a signal persists in time, 

and thus it determines the length of the molecular / dynamic process which causes the 

fluctuations in the fluorescence signal. Experimentally obtained autocorrelation curves for FCS 
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are actually representations of the average of many molecules over a certain period of time 

(measurement time). 

 

Figure 2.1: Explanation of autocorrelation function in the light of overlapping signals. Different 
situations emphasize the extent of overlaps between the signals of a same particle separated by different amount 
of time; and their corresponding impact on the overall ACF. 
 

2.2.1.2 General information obtained from autocorrelation curve in FCS 

In case of fluorescence correlation spectroscopy, the autocorrelation function represents the 

correlation between a signal from a particular fluorescent particle at a particular time instance 

and the signal from that same particle after a specified time difference τ. As an immediate 

outcome of the technique, the shape of the autocorrelation function (ACF) provides some 

information about the diffusive property of the particles of interest. The x-axis time value 

corresponding to the half maxima of the autocorrelation curve gives an estimation of the 

mean diffusion time τD, which indicates the average residence time of the particle of interest 

in the confocal volume. The gradual broadening of the autocorrelation curve indicates an 

increase in τD, and decrease in diffusion coefficient (Fig. 2.2); i.e. it gives direct information 

about the residence time of the particle of interest in the confocal volume. 
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Figure 2.2: Changes in autocorrelation curve due to the change in residence time of the fluorescent 
particles in the confocal volume. 
 

Similarly the autocorrelation curve gives information about the number of particles present in 

the confocal volume and thus about the concentration of the fluorophore in the solution. The 

fluctuation in the overall fluorescence intensity due to the entry or exit of a single fluorescent 

particle in the confocal volume is relatively greater when fewer numbers of particles are 

present there.  For gradually higher fluorophore concentrations, (i.e. confocal volume being 

more populated) the average signal intensity gradually goes up.  

As a result, the fluctuation caused due to one particle tends to have less and less effect on the 

overall intensity. Therefore, an increase in the number of particles (N), i.e. an increase in 

concentration of the fluorescent particles, is indicated by a decrease in the amplitude of the 

autocorrelation curve (Fig. 2.3). By this way, ACF gives direct information about the 

concentration and diffusion time of particles of interest. 
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Figure 2.3: Changes in autocorrelation curve duo to the change in concentration of the fluorescent 
particles. 
 

2.2.1.3 Mathematical expressions for different fitting models  

The generalized autocorrelation function G(τ) for a sample containing n different fluorescent 

particles with only translational diffusion, can be expressed as: 
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Where the coefficient i is the ratio of the fluorescence yield of particle i (given in photon 

counts per particle and second); Fi are the mole fraction for the species i with N the average 

number of particles in the confocal volume and G is the convergence value for the ACF at 

long lag times. Normally after long time intervals, the signals lose their self similarity and 

behave like independent variables. Therefore the second term of equation 2.3 tends to zero, 

resulting the overall G  close to 1 with increasing time lags. 

Though the value of G usually converges to 1, but it is often advantageous to keep it as a fit 

parameter. 
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Depending on the molecular processes that cause the fluorescence fluctuations, G(τ) will have 

specific characteristic forms reflecting the time course of the process [157-160]. For example, 

in the case of a free three-dimensional (3D) translational diffusion of a single species, G(τ) is 

given by [157, 161]: 
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where the diffusion time 
DD 4

2                 (2.6) 

and the structure factor 
z

K                 (2.7) 

Here τD is the lateral diffusion time of the fluorescent particle staying in the confocal volume, 

D is the diffusion coefficient, and ω and z are the radial and axial distances of the confocal 

volume at which the intensity has dropped by 1/e2 of the maximum intensity. 

Fluorescent dye molecules often have a non-negligible triplet state population with a 

characteristic triplet state relaxation time at a sub-microsecond time-range.  Since the 

intersystem crossing between singlet and triplet states also causes characteristic fluctuations 

in the fluorescence signal [162], it leads to additional contributions to the ACF at short times. 

Incorporating a triplet state term in equation 2.5, the overall expression for ( )G 
 

becomes: 
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       (2.8) 

where τtrip is the triplet state relaxation time of fluorophores; Ftrip is the fraction of fluorescent 

particles that stay in the triplet state and K  is defined as the structure factor.  Equation 2.8 is 

the fitting model for a single particle moving freely in 3 dimensional space that is normally 

used to calibrate the system before each experiment using a standard chemical dye. 
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Following are the expressions of G(τ) for different fitting models used in this study: 

Two dimensional one particle one triplet fitting model (2D-1P-1T): 
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Two dimensional two particle one triplet fitting model (2D-2P-1T): 
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Three dimensional one particle one triplet fitting model (3D-1P-1T): 
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Three dimensional two particle one triplet fitting model (3D-2P-1T): 
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Where G  is the convergence value for long times. 

 

2.2.2 Advantages of fluorescence correlation spectroscopy 
 
Fluorescence correlation spectroscopy (FCS) is a highly sensitive fluorescence microscopy 

technique that can be used to probe a wide range of biophysical processes including diffusion, 

ligand-receptor binding, molecular aggregation etc on artificial as well as on live cell 

membranes. This technique is able to measure at a very small volume (in the order of 

femtoliter) and at very low concentrations (~ 50 picomolar to few hundred nanomolar). 

Several biophysical parameters can be obtained by analyzing the experimentally FCS data, 
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among which diffusion coefficient is the most important and concentration is also a useful 

one to know. The comparative molecular brightness of different fluorophores can also be 

determined from the intensity per particle parameter.  

 
2.2.2.1  Determination of diffusion coefficient from diffusion time 
 
The diffusion coefficient of a freely moving particle in a solution is given by the Stokes-

Einstein relationship  

R

kT
D

6
                                                                                                           (2.9) 

From the equation it is clear that the diffusion coefficient D is dependent on the viscosity of 

solution η and the hydrodynamic radius of the particles R. k is Boltzmann’s constant and T is 

the absolute temperature in the expression. 

If it is assumed that the molecules are spherical in shape, then the mass of a single molecule 

is given by 

 3

3

4
RVM                                                                                            (2.10) 

Where  is the mass density of the molecule and V is the volume. Therefore the equations 2.6 

and 2.7 state that the diffusion coefficient and the diffusion time of a particle is inversely 

proportional and proportional respectively to the cubic root of the mass.  

3
1

 MD                                                                                                             (2.11) 

3
1

MD                                                                                                              (2.12) 

The parameter obtained directly by correlating the data from a typical FCS experiment, which 

measures the fluctuations in the fluorescence intensity from an open probe volume in a 

sample, is the diffusion time of the particle of interest. In order to get the diffusion coefficient 

of the particle of interest, first the setup need to be calibrated on the basis of some standard 
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dye molecules, having well established diffusion coefficient value. Then the diffusion 

coefficient of the particle of interest can be calculated using equation 2.11, where Rhodamine 

6G has been used as standard to calibrate the system (Rho 6G, D=4.26х10-6cm2s-1, Petrasek 

et al. Biophys. J. 2008). 

Rho
x

Rho
x DD




                                                                                            (2.13)                                     

DRho is the diffusion coefficient and Rho is the diffusion time of Rhodamine 6G. Dx and x are 

the diffusion coefficient and diffusion time of the particle of interest. 

 

2.2.2.2 Determination of concentration from autocorrelation function 

The mathematical expression for the autocorrelation function was given in equation 2.5 

Now at  = 0, that equation can be simplified as  
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Where G  has been simplified as 1. 

Equation 2.14 shows the reciprocal relationship between the number of particle and the 

amplitude of autocorrelation function, which means N with the increasing particle 

concentration, the amplitude of the ACF concomitantly decreased. Hence with the same 

fluorescence intensity fluctuation, the increase in particle number results in the increase in 

fluorescence intensity, leading to a decreased value of G (0). Simultaneously, the 

concentration of the species which is related to the particle number through the equation:  

C = N / Veff                 (2.15) 

is also reciprocal to G (0). Thus from the amplitude of autocorrelation function, the 

concentration of the particle of interest can also be determined.  
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But Veff cannot be determined by calibrating the system using a standard dye solution with a 

known concentration because, at very low, nanomolar, concentrations the number of particles 

in the focal volume N may be affected by several factors, such as precipitation of the dye 

molecules on the cover slips or photobleaching of the fluorophores. Therefore the 

determination of Veff might not be accurate and the absolute concentration of the particle of 

interest would not be determined precisely. On the other hand, the diffusion coefficient of 

fluorescent particles should not depend upon the concentration. Hence, the diffusion 

coefficient of the particle of interest has to be determined first using equation 2.13. As K (= 

z/ω) is an experimentally obtained parameter in FCS, so after the determination of D and 

using equation 2.6 and 2.7, Veff can be calibrated. Therefore the relative local concentration of 

the particle of interest can be determined using equation 2.15. 

 

2.2.3 Instrumental set up for fluorescence correlation spectroscopy 

The instrumental setup for the confocal FCS system used in this study, is an Olympus FV300 

confocal microscope, with which hardware correlator (Flex-02-01D, correlator.com, 

Bridgewater, NJ, US) and Avalanche photo detectors (SPCM-AQR-14, Pacer Components, 

Berkshire, UK) are coupled in house. The instrument is equipped with 3 laser excitation 

sources; 488 nm Argon laser, 543 nm He-Ni laser and 633 nm He-Ni laser ( all from Melles 

Griot, Singapore), which are directed to a water immersion objective (60×, NA1.2, Olympus, 

Singapore) through a long pass excitation dichroic mirror (488/543/633) and scanning mirror 

to excite the fluorescent samples.  
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[Picture modified based on a drawing by Liu Ping] 
 
Figure 2.4: Schematic representation of the FCS instrumental setup. Figure in right illustrates the basic 
principle and instrumentation of FCS. NF is neutral density filter; AC, apochromat; DC, dichroic mirror and 
APD stands for avalanche photodiode. (A) Enlarged representation of the confocal volume shows the free 
Brownian motion of the fluorescent particles through the focal volume, which results fluctuations in the 
fluorescence intensity signal showed in (B). Correlating these fluctuations with time gives the ACF curve shown 
in (C). By fitting the ACF curve parameters like number of particles (N), τtrip and diffusion time (τD) are 
obtained, which provide valuable information about concentrations and motility of the fluorescent particles.  
 
 
The emitted fluorescence signals from the samples are detected by the APD detectors after passing 

through the suitable emission filter, chosen from a range of available ones (Omega, USA), for the 

corresponding dye. For cell measurements, normally 50 - 100 mW laser power before the microscope 

objective is used. The samples are first imaged through XY plane scan of the Olympus Fluoview 

software followed by choosing a ROI by adjusting the proper Z plane and then performing the 
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FCS under fluorescence point scanning mode. The correlations are obtained from Flex12 software 

provided by the correlator company. The Avalanche photo detector creates intensity plots of the 

fluorescence signals from the sample, and the hardware correlator calculates the autocorrelation 

function thereafter. Finally the parameters like diffusion time, number of particles etc are obtained by 

fitting the ACFs with suitable home written fitting models using Igor pro software (Wavemetrics, 

Lake Oswego, OR, USA).  

 

2.3 Imaging Total Internal Reflection Fluorescence 
Correlation Spectroscopy (ITIR-FCS) 

 
Total internal reflection (TIR) is an optical phenomenon that occurs when a light ray from an 

optically denser medium strikes a boundary of an optically rarer medium at an angle larger 

than the critical angle (corresponding to those media) with respect to the normal of the 

surface. Critical angle (θc) is the smallest angle of incidence at which a light ray passing from 

one medium to another less refractive medium can be totally reflected from the boundary 

between the two; θc=sin-1(ηr/ηi), where ηi and ηr are refractive index of incident medium and 

refractive medium respectively. Once the incident angle is larger than the critical angle, no 

light can pass through the boundary and the whole light ray is reflected back to the optically 

denser medium generating only an evanescent wave at the interface. An evanescent wave is a 

nearfield standing wave with an intensity that exhibits an exponential decay with distance 

from the boundary where the wave was formed. TIR can only occur where light travels from 

a medium with a higher refractive index to one with a lower refractive index, for example, in 

case of TIR microscopy, it normally occurs when light passes from glass (ηg=1.52) to 

aqueous phase (ηw=1.33). 

Total internal reflection fluorescence microscopy (TIRFM) is a powerful modality of 

fluorescence microscopy, which permits direct visualization of intracellular events including 
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endocytosis, which occur close to the membrane contacting the glass surface. It allows the 

study of cytoskeletal associations, molecular diffusions or membrane dynamics along with 

dynamic single molecule imaging [163-165]. The combination of TIRFM with FCS would 

greatly extend the possibilities of biophysical characterization of biological samples.  

Fluorescence correlation spectroscopy (FCS) was originally conceived as a temporal 

correlation technique [147].  Later it was modified to perform correlation in the spatial 

domain under the name of Image Correlation Spectroscopy (ICS) [166, 167]. Though ICS is a 

useful technique, it has been used mainly to study the spatial distribution of receptors on the 

membrane, but it cannot determine the dynamics of a system since only spatial correlations 

are performed.  

In order to solve this problem, several modifications have been introduced. Line-Scanning 

Fluorescence correlation spectroscopy is one of them, which can obtain ACFs directly from 

confocal images and can characterize the microscope [168]. The most promising extension of 

ISC to include temporal correlations was Image Cross-correlation Spectroscopy (ICCS) [169], 

and thus allowed the measurement of dynamic behaviors of molecules on the cell surface 

[170-172]. In its later development as a technique, ICCS underwent some further 

modifications like, inclusion of vectorial information with the introduction of spatio-temporal 

ICS (STICS) [173]. STICS has been used to measure protein diffusion and protein flow in 

living cells, but the problem associated with this technique is its sensitivity towards the 

photophysics of the labeled molecules, such as bleaching [173]. Then k-space ICS (kICS) 

was introduced to overcome this problem, as it was not sensitive to bleaching and blinking 

artifacts [174]. Still the main obstacle for all these ICS methods is their time resolution, 

which is limited by the imaging rate of the microscope. As an alternative, Raster ICS (RICS) 

was developed to take advantage of the pixel/time structure within a raster scanning image, as 

obtained from confocal microscopy, to compute temporal correlations [175]. However, the 
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temporal resolution in RICS, although better than EMCCD based FCS at present, is not 

isotropic and is limited along a scanning line by the laser beam dwell time per pixel; i.e. it is 

limited between lines by the time it takes for the microscope to scan a whole line. In addition, 

the technique to be used for correlating the images depends on the diffusion coefficient or 

velocity being measured since each technique has its own characteristic time resolution. 

Apart from these image-based methods like STICS, flow processes have been characterized 

using some other format of temporal FCS methods as well, for example, Two Beam Cross-

correlation Spectroscopy [176] and Spatial Two Photon Cross-correlation Spectroscopy [177]. 

Flow velocity and flow directions have also been determined in vivo and have been 

demonstrated in zebra fish blood vessels [178-180]. Recently spatial cross-correlation 

spectroscopy has been carried out using a Spatial Light Modulator (SLM) as well [181]. 

Most of the modern day conventional Fluorescence correlation spectroscopy (FCS) systems, 

generally use point detectors e.g. avalanche photodiodes (APD) or photomultiplier tubes 

(PMT) as detectors, and hence despite their good time resolution they are limited in 

multiplexing and could measure only up to 4 spots simultaneously.  In order to perform 

multiplexed FCS experiments some group have also used 2 x 2 CMOS detector array [182] or 

an array of APDs [183] to detect up to four different spots. But in many cases, FCS 

experiments need to be performed on a large area to get an idea of membrane dynamics 

which can be obtained from EMCCD camera based FCS. The method was extended by Sisan 

et al. by using a spinning disk microscope to provide the first FCS images in which each 

pixel in the image was correlated [184]. However, that method requires the non-trivial 

synchronization of the spinning disk with the acquisition for FCS data if molecular processes 

are to be observed with high temporal resolution. Earlier the group of Wiseman has already 

shown that spatio-temporal image correlation can be achieved either in a confocal mode [173] 

or on in a TIR mode using an EMCCD [174]. However, the time resolution used in the TIR 
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mode was only 50 ms, not sufficient enough to obtain a temporal correlation function on each 

pixel. 

In order to solve the above limitations and to perform FCS measurements simultaneously on 

a large number of spots, a new total internal reflection illumination based FCS method called 

imaging total internal reflection fluorescence correlation spectroscopy (ITIR FCS) has been 

introduced here [142, 143]. In this setup, an electron multiplying charge-coupled device 

(EMCCD) camera with 4 ms time resolution has been used as detector. The technique is 

efficient to measure the free diffusions, flow as well as directed movements on whole cell 

membranes. By the simultaneous determination of these parameters at the same time point, 

instead of a sequential acquisition, this technique reduces the overall measurement time. For 

the study of diffusion or 2 dimensional dynamics on cell membranes [185] or along planar 

lipid bilayers [186], total internal reflection (TIR) illumination mode, with a penetration 

depth of up to a few hundred nanometers above the glass-aqueous interface provided by the 

evanescent wave field [187] is quite advantageous [163]. Detection of fluorescence signals in 

this mode has a good inherent axial resolution, and is suitable for surface/ membrane studies 

as the exponential decay and therefore limited penetration depth of the evanescent excitation 

field leads to strong reduction of the background signal from the bulk and consequently 

suppresses the cross-talk between the pixels. In this study, the image based approach of FCS 

enables multiplexing of measurements in TIR configuration with immediate applications in 

the field of live cell membrane dynamics. 

 

2.3.1 Principles of ITIR-FCS 

In case of the TIR illumination, the incident angle of the excitation laser source is controlled 

by a tilting mirror, placed in front of the illumination port of the microscope. Orientation of 

the mirror actually determines the angle at which the collimated beam enters into the 
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microscope and subsequently the angle at which the light beam exits from the microscope 

objective. If the beam enters at 0° to the optical axis of the microscope, it gives a parallel 

beam along the optical axis. By varying the angle of the laser beam with the optical axis, the 

angle of incidence at the glass-water interface can be adjusted greater than the critical angle 

(θc, 61° for the glass-water interface), to get the total internal reflection. The illumination 

region has a Gaussian profile in the plane of incidence and is larger than the detection area, 

but the intensity distribution remains uniform over the whole region of interest (ROI), where 

the image based FCS measurements are performed. 

In the case of bilayers and cell membranes, diffusion occurs in the xy plane only, and the z-

component of diffusion has no role to play in this case, hence ACF curves obtained from 

bilayer and cell membrane measurements are fitted to 2D diffusion model given by  
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where G(τ) is the autocorrelation function, N is the number of particle per pixel, D is the 

Diffusion coefficient of the sample, a is the side length of the unit probe area in the object 

plane (i.e. if d is the side length of a single pixel in the object plane and n is the binning size, 

then a = n   d; hence for 1   1 binning a = d) and σ is basically a correction factor, which 

can be defined as the standard deviation of the approximated Gaussian Function (with center 

x0 ) for the PSF of a microscope [188]. 
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Since the PSF of the microscope is finite in size, and on the order of the pixel size of the 

EMCCD, it has to be taken account of in the fitting of the ACFs. Hence the standard 

deviation of the Gaussian PSF is denoted by  has considered as a fitting parameter. It should 
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be noted that both, the diffusion coefficient as well as the size of the PSF can be extracted 

directly from the fits and no separate calibration is needed. 

 

2.3.2 Instrumental set up for imaging total internal reflection fluorescence 
correlation and cross-correlation spectroscopy 

 
The Instrumental setup of the image based FCS system has been built around an inverted 

epifluorescence microscope (Axiovert 200M, Carl Zeiss, Singapore). Laser light (532 nm) 

from a dual color (491 and 532 nm) laser source (Dual Calypso, Cobolt, PhotoniTech Pte. 

Ltd., Singapore) has been beam-expanded three times with combination of apochromat lenses 

and focused at the conjugate image plane on the illumination port of the microscope. A 

dichroic mirror (560DRLP, Omega, Brattleboro, VT) reflected the incident laser light into a 

high numerical aperture (NA) objective (60×, NA 1.45, TIRF microscope, Olympus, 

Singapore). As the evanescent wave field is the excitation source for this technique, normally 

a high laser power (~6 mW) before the microscope is needed in this method. For light source 

of wavelength in the ranges of 500 to 650 nm, a maximum incident angle of 72.5º could be 

achieved with this system with an immersion oil having refractive index 1.52 [142]. (The 

refractive indices of glass and water are ηg = 1.52 and ηw = 1.33, respectively.) The 

fluorescence signals emitted from the fluorophores within the area under the selected ROI are 

collected by the same objective, then passed through the dichroic mirror and the emission 

filter (595AF60, Omega, Brattleboro, VT) before being collected by the EMCCD camera 

(Cascade II: 512, Photometrics, Tucson, AZ) mounted on the side port of the microscope. 

The camera and the microscope are being controlled by the Metamorph software (Universal 

Imaging Corp., Downingtown, PA). The back-illuminated EMCCD sensor has more than 90% 

quantum efficiency in the wavelength range from 500 to 650 nm and is a frame-transfer 
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device. The image section of the frame-transfer device has a physical dimension of 8.2 x 8.2 

mm2, which is divided into 512 x 512 pixels yielding 16 x 16 µm2 / pixel [182].  

 

[Picture modified based on a drawing by Liu Ping] 
 

Figure 2.5: Schematic diagram of the instrumentation for imaging total internal reflection-fluorescence 
correlation and cross-correlation spectroscopy (ITIR- FCS and FCCS). The detailed description is given in the 
main text. 

 

Since different manufacturers use different tube length, the magnification factor for the 

instrument is 54.7 due to the usage of a 60× Olympus objective on a Zeiss microscope. For 

the camera, the overall time resolution is 33.9 ms for a 512 x 512; however, the best time 

resolution found is 4 ms for a ROI of 20 x 20 or smaller square array or a rectangular array 

having ≤ 20 rows and any number (1-512) of columns. 20,000 frames of the ROI at 4 ms time 
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resolution are normally acquired in stack format. Since the camera electronics need some 

time in each acquisition to stabilize before it can give a stable signal, the first 10,000 frames 

of the stacks were not considered in the analysis. The last 10,000 frames of the 

experimentally captured stacks are correlated using home written programs compiled in 

Microsoft VC++ .net 2003 to convert them into intensity stacks. These intensity stacks are 

then correlated using a logarithmic software to get the ACFs, which are then fitted with 

suitable home written fitting models, using Igor pro (version 6, Wavemetrics, Lake Oswego, 

OR). [All the software, denoted “home written”, were compiled by Jagadish Sankaran, a 

graduate student, from Wohland lab.] A schematic representation of the system has been 

illustrated in Fig. 2.5.  

 

2.3.2.1 Measurement technique for ITIRFCS and ITIRFCCS 

The experimental measurement sequence starts with choosing a healthy cell under 

transmitted light (Fig. 2.6 A) followed by adjustment of the proper Z plane for TIRF image 

(Fig. 2.6 B). A rectangle shaped ROI of any dimension is then created that encompasses the 

area under the evanescence illumination field at the center. [Though ROI of any dimension 

can be measured using the technique, (50 x 70 pixels in Fig 2.6, with a 7 ms time resolution), 

most of the measurements have been performed on 20 x 20 pixel sized ROIs in order to 

achieve the best time resolution offered by the camera detector (4 ms).]  

The stack of 20,000 frames of the ROI is then acquired with EM gain ~ 95% of the maximum 

and read using a 10-MHz digitizer. To find out the background counts, a similar stack of 

20000 frames is recorded under identical experimental conditions without any excitation 

source. The minimum intensity detected from all the pixels within the ROI of this 

background stack is taken as the offset and the value is then subtracted from all the stacks 

acquired for the fluorescent samples. Autocorrelation functions G (τ), number of particles (N) 
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and diffusion time (τD) or diffusion coefficients (D) of the samples are then obtained from 

these stacks using software algorithm and suitable fitting model [89]. 

 

 

 
Figure 2.6: Experimental steps for ITIRFCS and ITIRFCCS measurements. Picture A shows the 
transmitted light image of the chosen cell and B is its corresponding TIRF image. The quantitative images at 
pixel resolution of the same cell are shown in C and D, which represents the number of particles and diffusion 
times respectively, obtained after the software based analysis. The numbers on the x- and y-axes represent the 
pixel position. 
 

2.3.3 Comparison between ITIR-FCS and Confocal FCS 

The widely used spectroscopic technique, Fluorescence Correlation Spectroscopy (FCS), is 

indeed a powerful tool to measure molecular dynamics, diffusion coefficients, molecular 
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interactions, membrane dynamics etc.  But in spite of the required good time resolution it 

lacks the multiplexing and imaging capabilities, which also sometime are important criteria to 

study the membrane dynamics or cell membrane organization. Imaging Total Internal 

Reflection-Fluorescence Correlation Spectroscopy (ITIR-FCS) can be a promising solution is 

this context, which can probe diffusion phenomena on membranes with good temporal as 

well as spatial resolution. The overall advantage of confocal FCS is its very good time 

resolution, which is able to measure solution as well as at any part of cell or tissue, whereas, 

the main limitation of this method is its single point detection. Moreover, different points 

measured on same sample are not in same time frame. On the other hand, the major 

advantages of ITIR-FCS are the freedom from calibration as the detection area, i.e. the pixel 

size of the camera is always the same, reduced photobleaching/photodamage of biological 

samples and simultaneous multiplexed detection of a large spatial frame at the same time. 

This technique is limited by the time resolution of the camera and the penetration depth of the 

evanescence field.  

Both of these techniques, confocal FCS and ITIR-FCS have their own advantages and 

disadvantages, and depending upon the users’ need both of them can serve as very good 

biophysical tools. In order to determine the biophysical characteristics of fluorescently-tagged 

the sphingolipid associated peptide probe, SBD, on the plasma membrane of live human 

SHSY5Y neuroblastoma cells both of the above described techniques have been used in this 

study. 

 

2.3.4 Imaging Total Internal Reflection-Fluorescence Cross Correlation 
Spectroscopy (ITIR- FCCS) 

 

Several spectroscopic techniques have high temporal resolution but are limited to a single or 

at most a few spot measurements; alternatively, there are a variety of image based spatial 
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correlation techniques, having poor or anisotropic temporal resolution [169, 174, 182, 184]. 

Moreover, it has been suggested earlier that differences in the forward and backward 

correlations could be used to characterize non-equilibrium systems or anisotropic 

translocations [176, 189, 190]. Therefore, ITIR-FCS has further been extended to perform 

spatiotemporal cross correlation with the hope that the new method will bridge the above 

mentioned regimes by providing good isotropic spatial and temporal resolution 

simultaneously.  The new method has been referred to as Imaging Total Internal Reflection-

Fluorescence Cross Correlation Spectroscopy (ITIR-FCCS).  

 

2.3.4.1 Principles of ΔCCF 

Symmetric forward and backward spatial correlations (CCFs) on average are expected only 

for samples in which diffusion is isotropic (Fig. 2.8). For heterogeneous systems with non-

isotopic diffusions forward and backward CCFs are not equivalent (Fig. 2.8).  

Hence the difference in forward and backward CCFs for each pair of pixels, the CCF, for 

homogeneous body should be close to zero, whereas that for heterogeneous systems should 

have some resultant value. Thus ITIR-FCCS can measure membrane dynamics with good 

spatial and temporal resolution giving access to anisotropic diffusion and potentially be a 

very powerful biophysical tool for membrane studies. Therefore heterogeneities in the 

diffusion coefficient on the cell membrane could be detected by analyzing distributions of 

CCF values for neighboring pixels. 
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Figure 2.7: Graphical representation explaining CCF and ΔCCF for homogenous and heterogeneous 
systems. 
 

2.3.4.2 Methodology of ΔCCF 

The Spatial and temporal correlations in this method have been calculated using those stacks 

of 10000 image frames, which were captured for the ACF measurements on a suitable ROI 

with 4 ms acquisition time for each frame. The intensity values were obtained using a custom 

written program [again by Jagadish Sankaran], where background noise was subtracted. The 

spatiotemporal correlation was calculated using a suitable algorithm. In this study the CCFs 

between two areas, A and B, has been referred as the forward CCF or CCFAB if the correlation 

has been calculated as <FA (t) FB (t+)> and as the backward CCF or CCFBA if the 

correlation has been calculated as <FB (t) FA (t+)>, where B is displaced with respect to A 

along the positive x- or y-direction. For diffusion in an isotropic phase, the forward and 

backward CCFs should be symmetric [89]. 

Symmetric forward and backward CCFs are expected only for samples in which the 

translocation is isotropic. Therefore any anisotropy in the diffusion coefficients on a cell 

membrane could be detected by analyzing the differences between the forward and backward 

CCFs of neighboring pixels of the measured ROI. Forward and backward CCFs have been 

calculated on 1×1 binned areas between adjacent pixels in the horizontal direction. The 

backward CCFs (CCFBA) have been subtracted from the forward CCFs (CCFAB) for all the 
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400 pixels of the ROI and the results have been integrated to give a scalar value, which were 

then plotted as an image and referred to as CCF images. From these analyses, values around 

zero for isotropic diffusions, whereas values with a wide distribution in case of heterogeneous 

samples presumably like the cell membrane would be expected.  

The distribution of the ΔCCF values were plotted in the form of a histogram for each time 

point in the time series. The histograms were fitted with a Gaussian profile. The main 

parameter used in this study to observe the heterogeneity of a sample is kurtosis (k) of the 

ΔCCF histogram distributions. Kurtosis is a measure of the "peakedness" of any probability 

distribution, and in this study lower kurtosis value (flatter distribution profile) represents 

higher heterogeneity and lower heterogeneity reflected in higher kurtosis value (more peaked 

distribution profile). The parameter, kurtosis, has been calculated by the following formula: 
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where n is the number of points (i.e. for 20×20 region, n = 400), μh and σh are the mean and 

the standard deviation of the histogram values respectively. In this technique the spatial 

resolution is diffraction limited as in other FCS techniques and the temporal resolution is 

limited by the frame rate of the imaging device. 
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Chapter 3: 

Study of diffusion properties of SBD as a 
novel lipid raft marker 
 

 
3.1 Introduction 

Cholesterol- and sphingolipid-rich membrane microdomains known as lipid rafts are involved 

in a variety of cellular processes [1, 193], and raft borne lipids and proteins have been 

implicated in several pathological conditions including neurodegeneration and inflammation 

[40]. Previously cholera toxin (CTxB) has been used to study the intracellular trafficking of 

raft borne lipids [133, 137, 194-196]. Studies on the uptake mechanisms, intracellular 

itineraries, and biophysical properties of raft associated proteins at the plasma membrane 

have revealed heterogeneity in their trafficking and dynamic behavior [28, 197-199]. How 

different ligands associate with raft domains and how they behave/move after attachment 

within the raft domains is a long asked question but has not been fully addressed. To begin to 

answer such questions, it is necessary to develop a diversity of markers to characterize the 

determinants of binding and trafficking behaviors. 

Here the biophysical characterization has been done for a fluorescently tagged sphingolipid 

binding raft probe, Sphingolipid Binding Domain (SBD). This motif, identified by Fantini 

and colleagues in several glycolipid-associated proteins, was postulated to form a V3 loop 

structure that interacts with the sugar rings in glycosphingolipid headgroups [200]. It also has 

been known that SBD is targeted to endo-lysosomal compartments in a cholesterol-dependent 

manner, and it interacts with raft-like lipid mixtures [123]. 
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FCS analysis on live SHSY5Y cell membranes has been performed to describe the 

characteristics of SBD association with the plasma membrane. The fluidity of the membrane 

environment is reflected by the mobility of the fluorescent labels travel through the stationary 

confocal volume, and therefore in the diffusion time. Lipid-protein overlay experiments (fat 

blots) conducted by Hebbar et al. [81] suggest that SBD interacts with particular gangliosides 

and sphingomyelin, which are generally thought to reside in raft domains. Biochemical 

studies in that article also demonstrate that SBD interacts with detergent insoluble membrane 

fractions isolated from neuronal cells and the uptake of SBD occurs largely via cholesterol 

rich membrane microdomains [81]. In this FCS study diffusion behavior of SBD with 2 

different fluorescent tags (Oregon Green and TMR) has been compared with the reference of 

CTxB as a raft associated marker (positive control) and DiI and Bodipy-Sphingomyelin as 

non-raft associated markers (negative controls), which specially demonstrates that SBD 

displays mobility characteristics consistent with raft association. Further, using 

pharmacological removal of cholesterol (using MβCD as a cholesterol depleting agent), it 

was confirmed that SBD association and uptake at the plasma membrane is cholesterol 

dependent. To check the sensitivity of these microdomains towards cholesterol, the study was 

then further extended to a series of measurements with gradual cholesterol removal by 

varying the MβCD concentration; and the results showed significant gradual change. In 

summary, SBD can serve as a useful tool for the study of cholesterol-dependent sphingolipid 

based membrane microdomains. 

 

3.2 Materials and Methods 

In order to compare between the dynamic behavior of the raft and the nonraft phases of live 

cell membranes, the following fluorescent probes were used in this study; DiIC18 (Molecular 

Probes, catalog number D-282) and Bodipy FL Sphingomyelin (Molecular Probes, catalog 
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number D-7711) as non-raft markers (negative control), and cholera toxin subunit-B 

(Molecular Probes, catalog number V-34405) conjugated with Alexa Fluor-594 as an 

established raft marker (positive control) for this study. The single point mutated [K 16 E] 1-

25 amino acid residue of amyloid beta peptide with an N-terminal Cysteine and an inert 

spacer (amino-ethoxy-ethoxy-acetyl) [sequence C-(amino-ethoxy-ethoxy-acetyl)2-

(DAEFRHDSGYEVHHQELVFFAEDVG)] was synthesized and conjugated with fluorescent 

dyes (TAMRA and Oregon Green) by BACHEM, Bubendorf, Switzerland. 

 

3.2.1 Cell culture and plating for measurements 

SH-SY5Y neuroblastoma (ATCC, USA) cells were grown at 37ºC in Dulbecco’s Modified 

Eagle’s Medium (DMEM / F12 (1:1); Gibco, USA) supplemented with 10% fetal bovine 

serum (FBS; Gibco, USA) and 1% antibiotic. For labeling, cells were plated on 8-well 

chambers with 0.17 mm coverslip bottoms (Nunc, Denmark); >24 hours prior to the drug 

treatments / measurements. 

 

3.2.2 Incubation procedure of different markers 

3.2.2.1  DiI  

Stock solution of DiI was prepared by dissolving the powder form of the reagent in DMSO 

and kept at 4º C for long term storage. Concentration of this stock solution was determined 

using UV spectrophotometer. DiI working solution (~ 10 nM) was prepared by diluting the 

stock in complete growth medium. For staining, first cells in 8 well chamber were washed 3 

times with HBSS (Gibco), supplemented with 10 mM HEPES (HBSS/HEPES) buffer 

followed by half an hour incubation with  prepared DiI working solution at 37o Celsius. The 

cells were then washed 3 times again with the same buffer and suspended in indicator free 

DMEM for measuring. 
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3.2.2.2  Bodipy FL Sphingomyelin  

The concentration of the stock solution is 1 mg/ml in DMSO and stored at -20º C. The 

working solution was prepared by diluting the stock solution 100 fold in complete growth 

medium and cells in 8 well glass bottom chamber were incubated with this working solution 

for 30 mins at 37º C and followed the same washing technique and buffer and then put into 

indicator free DMEM for measuring. 

 

3.2.2.3  Cholera toxin 

1000 fold dilution of 1 mg/ml stock solution of the Alexa Fluor-594 conjugated cholera toxin 

subunit-B with chilled complete growth medium results the CTxB working solution. Cells in 

8 well chambers were then washed 3 times with HBSS/HEPES buffer similarly as done 

before for the other markers and incubated for 30 min with the prepared CTxB working 

solution at 37o C. The cells were then washed 3 times again with the same buffer and 

suspended in indicator free DMEM for measuring. 

 

3.2.2.4  SBD-TMR and SBD-OG  

To avoid aggregate formation, SBD was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFIP; Merck), divided into aliquots, dried and stored at -20º C. For larger volumes of 

peptide, evaporation was done under a supply of inert nitrogen and lyophilized peptide was 

stored similarly at -20º C. The peptide was re-dissolved in DMSO immediately before use 

and diluted to a final working concentration of ~10 nM in HBSS/HEPES. The cells were then 

incubated for 30 min with this prepared SBD working solution at 37o C, washed 3 times again 

with the same buffer and suspended in indicator-free DMEM for measurements. 
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3.2.3 Drug treatment 

3.2.3.1 MCD treatment 

A 100 mM stock solution of the reagent was prepared by dissolving the powder MCD 

(Sigma, USA) in de-ionized water and kept in room temperature for long term storage. For 

the drug treatment, the cells were first washed 3 times with HBSS/HEPES; followed by 30 

minutes incubation at 37o C with the working solution of MβCD, which was prepared by 

diluting the stock in serum free growth medium. The cells were then washed again 3 times 

with the same buffer followed by the as usual staining procedure for different dyes to 

measure their relative change in diffusion behavior. 

 

 3.2.4 Instrumentation 

3.2.4.1 Confocal FCS 

The confocal FCS instrumental setup used in this study has been described in section 2.2.3.  

To excite Bodipy FL sphingomyelin and SBD-OG, the 488 nm Argon laser was used and the 

emitted fluorescence signal was detected by the APDs through a 510 AF23 emission filter 

(Omega, USA). The 543 nm He-Ni laser attached to the system was used as the excitation 

source for DiI, CTxB-Alexa-594, and SBD-TMR and the emitted fluorescence signals were 

detected through 595 AF60 emission filter (Omega, USA). For all the measurements 100 μW 

laser power before the microscope objective was used.  

 

3.2.4.2 ITIR FCS 

The image based FCS measurements carried out in this study was using the Zeiss inverted 

epifluorescence microscope setup as described in section 2.3.2. The 532 nm laser was used to 

excite the only fluorescent probe TMR, attached with SBD used in this study. The laser 

power used for the excitation as measured before the objective was maintained at 6 mW for 
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all the measurements. The fluorescence signal from the sample was then collected by the 

cascade II EMCCD camera after passing through the 560 DRLP dichroic mirror and the 595 

AF60 emission filter.  

 

3.3 Results 

3.3.1 Comparison between different raft and non-raft markers 

The main goal of this study is to look at the diffusion of SBD, to characterize whether it 

displays raft-like behavior, i.e. diffusion behavior distinct from membrane-associated probes 

that do not interact specifically with sphingolipids. To compare the mobility of SBD on the 

plasma membrane with that of other raft- and nonraft-associated markers, FCS measurements 

on the plasma membrane of SH-SY5Y neuroblastoma cells were carried out. FCS records 

fluorescence autocorrelation functions G(), from a diffraction-limited confocal volume 

centered on the upper plasma membrane of the cell. Depending on the number of different 

fluorescent particle species passing through the confocal volume and their location with 

respect to the plasma membrane, different models need to be used to fit G(), incorporating 

one or more particles with different mobilities in two or three dimensions (i.e., one particle 

vs. two particles and two dimensions vs. three dimensions). The diffusion time, D, is derived 

from the autocorrelation curve G() and gives the time taken by the fluorescent probe to cross 

the stationary confocal volume. A multiple particle fit will result in a number of diffusion 

times, which are inversely proportional to the diffusion coefficients. The D is characteristic 

of the viscosity in which the membrane probe resides. Faster movement of any probe through 

the stationary detection volume indicates that the corresponding fluid phase is less viscous 

while a longer diffusion time reflects a more viscous sample phase (cholesterol rich domains 
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in case of cell surface). Thus the diffusion time, D, can be used to predict the membrane 

domain localization of the probe [147]. 

In this study measurements were taken for 5 different markers; the nonraft markers DiI-C18 

and Bodipy-FL-SM [186, 201]; the well established raft marker CTxB-Alexa-594 and the 

two forms of SBD; SBD-TMR and SBD-OG (Fig. 3.1).  

 

Figure 3.1: Correlation curves of SBD (SBD-TMR; D) versus raft (CTxB; C) and nonraft markers (DiI-
C18; A; and BODIPY-FL-SM; B) on SH-SY5Y cells are presented here. Normalized correlation curves G(τ) are 
shown over 100 ms time intervals obtained from different fluorescent labels on SH-SY5Y neuroblastoma cells. 
Experimentally obtained autocorrelation functions are given in red; black lines represent fits to the data. 
Functions gave the best fits to two-dimensional, two-particle models. SBD and CTxB contain a strong bleaching 
component, indicating the lower mobility of the structures in which they reside, whereas dialkyl-
indocarbocyanine (DiI)-C18 and BODIPY-FL-SM were not influenced by bleaching. 
 

The G() functions obtained from these measurements were fitted with different fitting 

models (mathematical expressions given in chapter 2) taking into account for the different 

sets of molecules moving in different dimensions with well separated diffusion speeds from 
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each other. As DiI does not give fluorescence signal in an unbound state resulting in a lack of 

a distinct 2nd set of particles, the G() curves obtained from DiI experiments were fitted with 

a two-dimensional one-particle one-triplet (2D-1P-1T) model. For the rest of the markers a 

two-dimensional two-particle one-triplet (2D-2P-1T) model was used to fit the experimental 

curves. The 2 two-dimensional diffusing species were interpreted as a faster moving, nonraft-

associated population of SBD/CTxB label in the plasma membrane in addition to a less 

mobile, raft-associated component. In agreement with the findings of Schwille and colleagues 

[147], measurements of the raft marker CtxB-Alexa-594 were influenced by bleaching effects, 

presumably as a result of the low mobility of the protein in raft domains (Fig. 3.1). 

 

Figure 3.2: The G(τ) graph of auto-fluorescence of SHSY5Y (A) shows that there is actually no correlation 
there and not possible to fit with any FCS fitting model.; Autocorrelation curve of SBD-TMR in solution (B) 
shown over 100 ms time interval (same as that of fig 3.1) producing a much shorter diffusion time clearly states 
the difference in diffusion with the membrane bound population. Experimentally obtained autocorrelation 
functions are in red; fits are given as black lines. 
 

In order to measure the contributions from free label in the medium (outside the cell) or 

internalized cytosolic marker (inside the cell) to G(), additional measurements were made 

outside and inside the cell with SBD-TMR. The diffusion times obtained for extracellular and 

intracellular SBD are 115 ± 5.8 µs and 499 ± 5.7 µs, respectively [202]. Values outside the 

cell were fitted to a three-dimensional, one-particle one triplet (3D-1P-1T) model, and values 

inside the cell were fitted to a three-dimensional, two-particle one triplet (3D-2P-1T) model. 
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Normally the diffusion times for the membrane-associated markers are expected to be not 

smaller than the millisecond range (D for DiI, a typical nonraft membrane probe, is 10 ± 0.4 

ms). Moreover, D for free marker in solution is observed to be in the ~100 µs range. 

Therefore, readings dominated by those short time components were removed from the 

calculation of the average τD (Fig. 3.2). 

It was found from the FCS measurements that SBD-TMR and SBD-OG measurements, 

similar to CTxB, were strongly influenced by bleaching. To separate these effects, which 

artificially bias the τD towards faster moving particles, and to get a broad overview about 

what fraction of the probes are really bound to the raft fraction and moving slowly on the 

membrane the τD frequencies was expressed as histograms. From this approach a large 

fraction (~40%) of D of SBD-TMR and SBD-OG were found to be in the very slow moving 

(τD >30 ms) category (average τD of SBD-TMR and SBD-OG being ~50 ms), with a slightly 

greater contribution of slow-moving particles than CTxB (average τD ~25 ms) (Fig. 3.3). In 

contrast to the longer diffusion times (slower diffusion) of the raft markers, the τD values of 

DiI-C18 and Bodipy-FL-SM, were distributed to a large extent between 1 and 20 ms (Fig. 3.3 

A), with the main contribution being in the 1–10 ms range; average τD values being 10 ± 0.4 

ms for DiI-C18 and 10 ± 2 ms for Bodipy-FL-SM (Fig. 3.3 E). The histograms also reveal a 

bimodal distribution for the raft associated markers which is the same for SBD-TMR and 

SBD-OG, with a slow population diffusing at >30 ms and a slightly larger fast population 

diffusing mainly between 1 and 10 ms time range. The slower population indicates the raft 

associated fraction of the probe and not induced aggregation, as no changes in the counts per 

particle had been observed in this case, which one would find upon aggregation. The bimodal 

distribution is less pronounced but still well recognized in case of CTxB (Fig 3.3 D). [Note 

that, since there are almost no values in the >30 ms range for the non-raft associated markers 
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(Fig. 3.3A); all readings that have τD values >30 ms for the raft associated probes are pooled 

into one group in the histograms in Fig. 3.3 B.]  

 

Figure 3.3: The distribution of diffusion times for SBD along with raft- and nonraft markers. Histogram A 
shows the nonraft-localizing markers DiI and Bodipy-FL-SM, which shows most of the readings in the faster 
mobility ranges. In contrast, in B, CTxB-Alexa594, SBD-TMR, and SBD-OG give substantial fractions of 
readings in the low-mobility τD >30 ms range, typical for raft markers. The>30 ms cluster actually consist of 
values ranging from 30 ms to over 100 ms. C: Distribution of nonraft markers after cholesterol depletion is not 
altered significantly (compare with A). D: Distribution of raft markers after cholesterol depletion is shifted 
strongly toward faster diffusion times (1–10 ms range). E, F: Average diffusion times for all markers before and 
after cholesterol depletion. Error bars reflect SEM, for all the experiments, n is >50 measurements. 
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3.3.2 Comparison between raft and nonraft markers after cholesterol 
depletion. 

In order to look at the effects of raft disruption on the mobility of SBD, the diffusion times of 

SBD as well as all the control markers were measured on cells treated with 10 mM MβCD for 

30 mins.  

 
 
Figure 3.4: Correlation curves of nonraft markers (DiI-C18; A; and Bodipy-FL-SM; B) versus raft 
markers (CTxB; C) and (SBD-TMR; D) in SH-SY5Y cells under cholesterol depleted condition (10 mM MβCD 
for 30 mins at 37º C). The curves G(τ) are shown over the same 100 ms time intervals. Functions gave the best 
fits to two-dimensional, two-particle models. Experimentally obtained autocorrelation functions are in red; fits 
are given in black. The bleaching components of SBD and CTxB, indication of the slower mobility has been 
gone completely and the curves merge with the time axis, similar to that of the non raft markers after the 
cholesterol removal from the membrane. 
 

It was found that the diffusion times of DiI and Bodipy-FL-SM under cholesterol depleted 

condition remained almost unchanged at 10.7 ± 0.6 and 11.5 ± 2.9 ms, respectively (Fig. 3.3 

E, F), whereas τD values of SBD, indicating their raft association, were greatly reduced to 5.3 

± 0.9 and 4.1 ± 0.2 ms for SBD-TMR and SBD-OG, respectively (Fig. 3.3 F). The average 
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diffusion time of CTxB was also reduced to 11.6 ± 0.8 ms, consistent with its raft localization 

being dependent on cholesterol (Fig. 3.3 F). These changes are also reflected in the 

distributions of diffusion times represented as histograms (Fig. 3.3 C, D) , where all the slow 

moving components (>30 ms) were shifted towards the fast moving population diffusing 

mainly between 1 and 10 ms time range, and this is similar for all three raft associated 

markers; whereas the distributions of the nonraft markers (DiI and Bodipy-FL-SM) remained 

similar as before the drug treatment (mainly in 1-10 ms range) showing their non-dependency 

on cholesterol. The trend of shortening the diffusion time upon the MβCD treatment, 

obtained quantitatively from the histogram distributions can also be seen qualitatively in the 

ACFs of these markers (Fig. 3.4). 

 

3.3.3 Effects of different laser powers on SBD and CTxB data due to 
varying extent of photobleaching 

As it was found that the ACF curves of SBD-TMR and SBD-OG measurements, similar to 

CTxB, were strongly influenced by bleaching, which artificially biases the τD towards faster 

moving particles, measurements were carried out at different laser powers to check its 

influence on the diffusion times of the raft as well as non-raft markers. The non-raft marker 

DiI shows similar values (τD ~ 10 ms) at all laser powers indicating a limited influence of 

bleaching on the τD measurements (Fig. 3.5). For SBD and CTxB the diffusion time showed 

some increase at lower laser powers (25W) indicating that photobleaching also plays a role 

in the measurements. However, the range of the average diffusion time for both raft markers 

and their significant difference from the non-raft marker (DiI) remained similar under all 

laser powers.  
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Figure 3.5: Average diffusion times for SBD-TMR, CTxB and DiI different laser powers. Consisting with 
its bleaching free measurements DiI exerts similar diffusion times under all the 3 conditions, which reflects its 
non dependency on laser power. In case of SBD and CTxB, 50 mW and 100 mW laser powers result very close 
values where as 25 mW shows a little larger diffusion times when bleaching was significantly reduced, still the 
trend of raft markers and their difference with non-raft markers are similar under all the laser powers. Error 
bars reflect SEM. For all the experiments, n is >30 measurements. 
 
 

3.3.4 Effects of titrated cholesterol depletion by MCD on the mobility of 
SBD 

 
As an extension to prove SBD’s raft association and the cholesterol dependency of its 

movement on the plasma membrane, cells were titrated with different concentrations of 

MβCD, a cholesterol depleting agent, and the results were compared for both, confocal FCS 

as well as ITIRFCS. Both of the formats showed the same expected trend. The diffusion time 

decreases with increase in concentration of MβCD, indicating increasing mobility and loss of 

raft association. 

 

3.3.4.1 Confocal FCS results 

For this study only SBD-TMR was used as a raft marker and the same histogram based 

distributions were done to analyze the data. It was found that, with increase in concentration of 
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MCD (Fig 3.6 A to F), the slow moving component (D > 30 ms) gradually reduced and 

vanished completely in cases of 5 and 10 mM (Fig 3.6 E and F respectively).  

 

Figure 3.6: The distribution of diffusion times for SBD-TMR under different extent of cholesterol 
depletion. Concentrations of the MCD solution used are written on the top of every distribution panel. The 
distributions show with increase in concentration of MCD (A to F), the slow moving component (D > 30 ms) 
gradually reduced and vanished completely in cases of 5 and 10 mM (E and F respectively). 
 

Simultaneously, almost all the values concentrate in the 1-10 ms range, indicating 

comparatively faster and homogeneous distribution of the cell membrane. The average 

diffusion times also showed the same trend, i.e. the average D values continued decreasing 
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with increasing MβCD concentration (Fig 3.7 A). At 0 mM MβCD the average D value was 

~70 ms which dropped to ~5 ms after treating with 5 mM MβCD and didn’t show any further 

change in average diffusion time after treating with 10 mM MβCD (D ~5 ms). This study 

indicates 5 mM of MβCD is sufficient for the complete disruption of SBD’s raft association. 

 

 

Figure 3.7: Average diffusion times for SBD-TMR, measured on the upper membrane (A; with the 
confocal FCS instrument) and at the bottom membrane (B; with the ITIR-FCS instrument) of SHSY5Y 
neuroblastoma cells after different extent of cholesterol depletion with varying concentrations of MβCD. As the 
instrumentations were entirely different for these two methods, the diffusion times (which is not an instrument 
independent parameter) obtained from these two methods are in two different time scales. Though the confocal 
measurements show a greater change in average diffusion times still the trend of decrease in diffusion time with 
increase in MβCD concentration is similar for both the methods, reflecting the cholesterol dependency and raft 
association of the diffusion of SBD. Error bars reflect SEM, for all the experiments, n >50 measurements. 
 
 

3.3.4.2 ITIR-FCS results 

Using ITIR-FCS, the new method to multiplex FCS measurements, mobilities of SBD-TMR 

were studied at the lower plasma membrane of SHSY5Y cells to get a global overview of 

change in diffusion times of the whole cell membrane after treating with different 

concentrations of MβCD. Diffusion time being an instrument dependent parameter and as the 

measurements are taken at the lower plasma membrane of the cell in case of ITIR-FCS, as a 

result, the values obtained using this method are of a different time scale compared to that of 

the confocal FCS method. However, this method also shows the same trend, as seen in the 

[A] [B] 
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case of confocal FCS, with increase in concentration of MβCD, the diffusion time decreases 

indicating increasing mobility and loss of raft association.  

 
 
Figure 3.8: Pictorial representation of diffusion times of SBD-TMR after treatment with varying 
concentrations of MβCD. The diffusion times are extracted by fitting ITIR-FCS data of a 20 x 20 pixels ROI on 
the lower cell membrane of SHSY5Y neuroblastoma cells. The x- and y-axis in the graphs are the pixel positions 
within the image. The color code is given in the scale bar and diffusion times increase from blue to white to red. 
The experiments show that the diffusion in the membrane increases with increasing concentrations of MCD (B 
to F).  
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The diffusion times of SBD-TMR at each point of the whole ROI (20 x 20 pixels) measured 

at the bottom plasma membrane of SHSY5Y cells treated with varying concentrations of 

MβCD are represented pictorially with different color codes to show the global dynamic view 

of the whole cell membrane. As the excitation source of this method is total internal 

reflection based, the laser doesn’t go through the whole cell; the evanescent wave field 

penetrates maximum only up to ~200 nm. As a result the fluorescence signals obtained from 

the sample were purely from the lower membrane of the cell; hence the autocorrelation 

functions were fitted according to equation 2.17, as described in chapter 2, to get the 

diffusion times at each pixel of the measured ROI. The pictorial representations state the 

diffusion times of each and every pixel corresponding to the range of the representative color 

code shown in the scale bar (Fig. 3.8 A); which indicates the number of slow moving points 

gradually reduced and the fast moving points increases with increase in concentration of 

MCD (Fig. 3.8 B to F), resulting in an overall speeding up of the diffusion in the whole 

membrane. 

 

3.4 Discussion 

These results show that SBD bound to the membrane of the mammalian neuroblastoma cells 

through a cholesterol dependent mechanism. The biophysical characterization of SBD’s 

association with the plasma membrane has been done by examining its diffusion dynamics 

with FCS in human neuroblastoma cells. In this study, the Ds of the nonraft markers (DiI and 

Bodipy-FL-SM) were distributed within a comparatively narrow range, unlike the raft 

markers, which were distributed in a very wide range of D values. However, the clustering of 

the histogram of SBD D values around >30 ms and ~1–10 ms is consistent with the estimates 

of Pinaud et al. [53] and Sharma et al. [134] that ~75% of a raft-associated 

glycosylphosphatidylinositol linked protein is actually present in the nonraft fraction. A 
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similar type of biphasic distribution of diffusion times for SBD and CTxB may reflect the 

existence of two distinct populations at the plasma membrane, one of which is associated 

with the liquid-ordered phase and the other might correspond to the SBD molecules perhaps 

more loosely associated with [202] the liquid-disordered phase. This mixed distribution is 

observed by other authors as well for a number of presumed raft-associated proteins [36]. It is 

interesting that, although the clustered histogram distribution ofD values of CTxB was very 

close to those of SBD, the D value for this established raft marker on average was shorter 

than those of SBD (Fig. 3.3 E). This may indicate that CTxB and SBD are both at least 

partially raft-associated but that the dynamic nature of their resident domains is different. 

Raft associated markers are expected to be bleached, because laterally they are less mobile 

than the surrounding nonraft membrane and thus are unable to leave the focus [203, 204]. 

Accordingly, some bleaching components have been seen in the measurements of SBD and 

CTxB, though the bleaching rate were less compared to the report by Bacia et al. for in vitro 

CTxB [147]. Therefore, the extremely slow mobile fraction observed in this study for SBD 

and CTxB compared with DiI, suggests their association to raft-like structures or cross-linked 

raft assemblies. 

Drugs that remove cholesterol from the plasma membrane are known to inhibit the trafficking 

of lipid raft markers and have been used extensively as tools to differentiate between raft- and 

nonraft-mediated processes [203, 205]. Using FCS on neuroblastoma, under cholesterol 

depletion, the influence of bleaching on the autocorrelation function is in fact removed, and a 

large change inD values for SBD was found. The shift is toward nonraft-like fast diffusion 

times. This is similar to the effect on the raft marker CTxB, whereas the nonraft markers did 

not show any significant change [147]. Moreover this change is gradual, and not abrupt, with 

respect to the concentration of the drug used as seen from the concentration variance 

experiments.  
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3.5 Summary 

The FCS data shows that SBD’s diffusion behavior at the plasma membrane is consistent 

with a substantial fraction being localized in raft domains of low mobility relative to that of 

the surrounding membrane. Looking at the confocal FCS and the ITIR-FCS results after the 

MCD treatment, and considering the biochemical studies on SBD [81], it can be said that, 

even in the absence of cholesterol, SBD is able to associate to some extent with the 

membrane and diffuse at the speed of nonraft markers. Overall this part of the study supports 

the notion that SBD can be used as a fluorescent tracer for the cholesterol-dependent, 

glycosphingolipid-containing slowly diffusing (raft like) microdomains in living cells. 
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Chapter 4:  

SBD uptake pathway 
 

 

4.1 Introduction 
 

Endocytosis is the process by which cells absorb essential extracellular components (such as 

proteins and nutrients) by uptake through the cellular membrane. The process is required for 

a number of functions that are essential for proper cellular functions. Endocytosis is 

responsible for regulating many cellular processes including nutrient uptake, cell adhesion 

and migration, receptor signaling [206], pathogen entry [207], receptor down regulation, 

antigen presentation, neurotransmission, cell polarity, mitosis, growth and differentiation, and 

drug delivery [208, 209]. The endocytic pathways can be subdivided into four categories: 

namely, clathrin-mediated endocytosis, caveolae, macropinocytosis, and phagocytosis [210]. 

The major route for endocytosis in most cells, and the best-understood, is the clathrin-

mediated pathway. This large protein forms a coated pit on the inner surface of the plasma 

membrane of the cell. It was also observed that, cells that lack clathrin or caveolae, 

internalize different essential molecules via alternative pathways. Some recent studies have 

shown that a highly prevalent clathrin-independent endocytic pathway known as the 

CLIC/GEEC is regulated by Rho GTPase activation protein [211]. This CLIC/GEEC 

pathway relies upon cellular signaling and activation through small G proteins, but the 

mechanistic insight into the biogenesis of its tubular and tubulovesicular carriers are still not 

clear [212]. These findings of the clathrin-independent endocytic pathways had increased 

interest about the identification of the endocytic machinery and membrane-trafficking 

itineraries of these pathways. Among these non-clathrin pathways, some are based on 
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constitutive internalization mechanisms, whereas others are initiated by specific signals, e.g. 

cytokine signaling [212, 213]. It has been documented in some studies that some cargoes 

might be endocytosed through alternate or sequential pathways, depending on the structural 

properties of the cargo and the type of cell under investigation [214-216]. Several bacterial 

toxins, as well as the amyloid precursor protein (App), make their association with the plasma 

membrane and subsequent endocytosis via a raft-mediated mechanism, assisted by 

components common to clathrin- and/or dynamin-mediated uptake [123, 217].  

One well studied class of raft-borne endocytic cargos are the GPI-APs [218], which are 

thought to internalize via cdc42, into a specialized ‘GEEC’ compartment [133]. Raft-

associated adaptor proteins flotillin-1 and flotillin-2 constitute a separate internalization 

pathway from either caveolin or GPI-AP uptake [137, 219]. It is also widely accepted that the 

phenomena of clathrin-independent internalization are associated with plasma membrane 

nanoclusters or microdomains or lipid rafts, defined functionally by their requirement for 

sphingolipids and cholesterol [220]. Cholesterol serves an important role in clathrin-

independent endocytosis, such as caveola formation [221], and other raft-mediated uptake 

mechanisms. Caveolae are reported non-clathrin coated plasma membrane buds, which exist 

on the surface of most of the cell types. A certain level of cholesterol is required for the 

organization of raft-borne molecules into nanoclusters at the cell surface, estimated to be 

~20-40% of the overall lipid at any given time [52, 134, 222]. The cholesterol content in 

membranes has been shown to influence the integrity and functions of lipid rafts in signal 

transduction [223, 224]. It is also known that overload of cholesterol and sphingolipids 

influences the membrane trafficking of raft adaptor proteins [225] and lipid raft constituents, 

as occurs in the lipid storage diseases [15, 226].  

It is obvious from the above discussion that cholesterol and sphingolipids are important for 

the uptake and trafficking of raft-associated molecules, but the rules that govern the endocytic 
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trafficking routes of these cargoes are not yet clear. Although distinct intracellular pathways 

are known for certain raft mediated uptake [133, 134], it is still not clear how or whether the 

specific uptake mechanism also affects the subsequent intracellular targeting. Neither has 

there been any observation yet that would link the endocytic machinery (apart from 

cholesterol and sphingolipids) with a particular diffusion behavior on the cell surface [52, 

227]. 

In this chapter, the relationship between uptake mechanism, surface behavior and endocytic 

targeting of the recently characterized sphingolipid and raft-interacting probe, sphingolipid 

binding domain (SBD), has been investigated on mammalian neuroblastoma cells. SBD, 

consisting of the V3- loop domain of the amyloid beta peptide (Aβ) [43], was shown to 

interact with a subset of glycosphingolipids, sphingomyelin and cholesterol in artificial 

membranes as well as with cholesterol- and sphingolipid-dependent microdomains in neurons 

[123, 221]. In this study, it is shown that SBD uptake is dependent on two different 

mechanisms – one is flotillin dependent uptake and the other is cdc42 dependent uptake. 

Generally these two pathways are independent and parallel to each other [133, 137, 213].  

Blocking of either flotillin or cdc42 dependent pathways results only in partial suppression of 

the uptake of SBD into cells, whereas knocking out both pathways simultaneously nearly 

eliminates uptake. This suggests that there might be a synergic relationship between these 

two mechanisms. By contrast, drastic changes in the raft-like diffusion behavior of SBD are 

seen when either or both of these uptake pathways are perturbed.  

 

4.2 Materials and Methods 
 
Drugs used to knock down flotillin dependent and cdc42 dependent uptake pathways in this 

study are siRNA with the sequence 5΄-UAACCUCCUCACUGAAGGdTdT-3΄ was used 

against flotillin-2 (both from 1st BASE, Singapore) and Clostridium difficile toxin B 



73 
 

(Calbiochem), respectively. The transfection vector Lipofectamine-2000 and Opti-MEM I 

both were from Invitrogen. 

 

4.2.1 Cell Culture 

SH-SY5Y neuroblastoma cells were cultivated at 37° C in DMEM similarly as described in 

the previous chapter and plated in the 8 well chambers for measurements. In this study of 

SBD uptake mechanism; two markers have been used SBD-TMR and DiI; cells were treated 

with these markers similarly as described in chapter 3. 

 

4.2.2 siRNA-Flotillin knockdown 

Cells were grown in 8-well chambers with 0.17 mm coverslip bottoms one day before 

transfection. For the transfection, per well, 1 μl of Lipofectamine-2000 (Invitrogen) was 

diluted to 25 μl Opti-MEM I (Invitrogen) and the resultant solution was incubated for 5 min 

at room temperature. This mixture was then added to a second solution of 0.5 μl Si-RNA-

Flotilin2 (20 μM) in 25 μl of Opti-MEM I and allowed to complex for 20 min at room 

temperature. After this incubation, 150 μl of full growth medium without antibiotics was 

added to the 50 μl Lipofectamine-2000 / siRNA-Flotillin2 mixture, and the resulting 200 μl 

was added to the cells after washed with buffer. In order to get better transfection efficiency, 

the same procedure as mentioned above was repeated one more time on the following day. 

The next day i.e. 48 h later the start point of the transfection, the cells were ready to proceed 

for further experiments. 

 

4.2.3 Clostridium treatment 

Cells in 8 well chambers were washed with buffer and incubated with 40 ng/ml Clostridium 

B toxins for 60 minutes at 37° C. The working solution was prepared by diluting the 10 μg/ml 
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aqueous stock solution in serum free growth medium. After the incubation cells were washed 

with buffer again and used for further staining with the markers. 

 

4.2.4 Combined drug treatment 

First the cells were transfected with siRNA-Flotillin2 according to the method described in 

4.2.2, followed by incubation with Clostridium B according to 4.2.3 and finally with the 

markers (~ 50 nM SBD or DiI) and measure straight away. 

 

4.3 Results 

The uptake mechanism of the fluorescently tagged SBD peptide in neuroblastoma SH-SY5Y 

cells has been studied as it acts as a sphingolipid-interacting tracer with potential applications 

in the study of neurodegenerative disease [116, 219]. 

 

4.3.1 Kinetics of SBD internalization in SH-SY5Y neuroblastoma 

The study of the previous chapter suggests that, fluorescently tagged SBD can act as a 

sphingolipid-interacting tracer, which is the driving force to study the characteristics of 

uptake mechanism of the marker SBD in neuroblastoma SH-SY5Y cells. The kinetics of 

cellular internalization of SBD in SH-SY5Y cells (Fig. 4.1), without any drug treatment has 

been determined by normalizing the unit fluorescence intensity of internalized label at a 

given time point against the average unit fluorescence after complete internalization at 60 

minutes. For this imaging based internalization study, a much higher concentration (10 μM) 

of the Tetramethylrhodamine (TMR)- or Oregon green (OG)- labeled SBD compared to that 

normally used in case of FCS studies (30 – 50 nM), was added to cells and the cellular 

fluorescence quantitatively assessed at different time points.  
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Figure 4.1: Uptake rate of SBD into human neuroblastoma SH-SY5Y cells. SBD-TMR (red diamonds) and 
SBD-OG (green squares) into SH-SY5Y neuroblastoma over time, indicated by percent internalization, 
measured as average fluorescence intensity per pixel in cells being measured divided by maximum average 
fluorescence intensity per pixel reached after 60 minutes of chase in control cells. [Experiments and figure were 
done by Dawei Zhang]. 
 
SBD was internalized rapidly, with >80% of maximum fluorescence obtained after 15 

minutes of incubation. The internalization kinetics was nearly identical between TMR- and 

OG-tagged SBD (Fig. 4.1). The calculations have been carried out based on the fluorescence 

images taken by confocal microscopy. The average fluorescence intensity per pixel in cells 

had been measured and divided by maximum average fluorescence intensity per pixel 

reached after 60 minutes of chase in control cells. 

 

4.3.2 Differentiation of intra- & extra- cellular SBD from the membrane 
bound fraction 

 

In order to determine the uptake mechanism of SBD, FCS data has been used with a different 

approach in this study. Apart from diffusion time, the unbound versus membrane- bound 

fraction of the marker SBD has also been used here to interpret the uptake mechanism. As 

cell membranes (typically on the order of 5 nanometers) [227] are normally much thinner 

than the z-axis of the confocal volume (~ 1.2 μm) [228], the fluorescent particles diffusing 
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through the confocal volume during the cell membrane measurements could easily be 

separable into two different components (referred as fraction 1 and fraction 2 in this study), 

giving rise to a close fit to the two dimensional two particle one triplet (2D-2P-1T) model. 

The two distinct diffusion times obtained from these fits are the slow component τD1 (in the 

millisecond range) and the fast component τD2 (in the microsecond range) respectively, and 

correspond to the membrane-bound 2D-diffusion (τD1), and the unbound 3D-diffusion (τD2). 

Hence for the confocal FCS measurements, the placement of the confocal laser spot played 

an important role here as the proportion of τD1 and τD2 would be affected if the confocal 

volume is not properly centered on the plasma membrane (Fig. 4.2).  

 

 

Figure 4.2: Proper focusing condition for the membrane measurements. B shows the positioning of the 
cell membrane whereas A and C are the extracellular solution phase and intracellular cytosolic part 
respectively. 
 
G (τ) values obtained from measurements carried out completely outside or completely inside 

cells were best fitted to a 3 dimensional one particle one triplet (3D-1P-1T) model. By 

comparison with the τD values obtained from these control measurements for the unbound 



77 
 

label in solution (with an average τD in the microsecond range), it can be inferred that τD2 is 

mostly attributable to this unbound population [228]. It should be noted that FCS 

measurements inside the cell also give a predominantly τD2 (microsecond) component, 

possibly due to internalized SBD that might diffuse through endosomes. 

 
 

Figure 4.3: Autocorrelation curves obtained at different positions when the confocal volume was placed 
completely outside the cell (extracellular), focused on the membrane and completely inside the cell 
(intracellular). The ACFs show completely different patterns at these 3 different positions with different 
diffusion rates. A shows typical extracellular diffusions of free dye (τD in the order of ∼100 µs); B shows typical 
shape of membrane bound diffusion (τD in the order of ∼50 ms) and C shows typical intracellular diffusions of 
cytoplasmic (τD in the order of ∼500 μs). Both A and C are fitted with 3 dimensional one particle one triplet 
(3D-1P-1T) model where as B has been fitted with 2 dimensional two particle one triplet (2D-2P-1T) model. 
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The ACFs obtained from the membrane measurements showed entirely different patterns as 

well as different diffusion rates (Fig. 4.3) from the control measurements, which were 

measured by placing the focal spot at different positions (completely outside and inside the 

cell) in z direction.  

The extracellular free dye (Fig. 4.3 A) moves with a much faster rate (τD in the order of ∼100 

µs) compare to the intracellular fraction (τD in the order of ∼500 μs) of SBD (Fig. 4.3 C). 

Whereas the shape of the ACF as well as the diffusion time range of the membrane bound 

fraction (τD in the order of ∼50 ms) are totally different from the rest of the two (Fig. 4.3 B). 

The average number of particles (N) counted in these experimental conditions for these 3 

different focal spot positioning were also significantly different from each other, the typical 

values being: intracellular: 16.8 ± 3.9, on the plasma membrane: 59.6 ± 3.5, extracellular 0.9 

± 0.0. 

The proportion of τD1 and τD2 (which are very important parameters for this study) would be 

affected if the confocal volume is not centered properly on the plasma membrane, so special 

care was taken to ensure that the confocal volume was always properly positioned at the 

plasma membrane. First the cells were imaged followed by intensity scan through z-axis. 

FCS measurements were carried out at the z-place producing highest fluorescent intensity. 

Each experimentally obtained ACF and the τD values also compared with the control 

measurements to ensure that the corresponding measurement has really been carried out on 

the membrane. 

 

4.3.3 Differentiation between intracellular and extracellular SBD 

As mentioned in the previous section that cell membranes are typically on the order or 5 

nanometers) [227] whereas the z-axis of the confocal volume is ~ 1.2 μm [228], so it is quite 

obvious that, if the upper membrane of the cell is focused properly, the overall fluorescent 



79 
 

signal will consist of 3 different sets of particles: the topmost part will be populated by the 

unbound extracellular dye particles diffusing freely in the solution phase, the middle part will 

show signal due to the membrane bound fraction and the bottom most part will be consisted 

of cytosolic SBD. Since the experimentally obtained data from membrane measurements 

have been fitted according to the best suited two particle model, and both the extracellular as 

well as the cytosolic SBD diffuse in the micro second time range, it is difficult to know the 

contribution of each population towards the faster moving τD2. Hence, in order to explain the 

characteristic behavior of τD2 (which is a combination of these two), it is necessary to 

understand the difference between these two populations from experiments carried out 

separately at those positions. 

The average intracellular τD had a value of 499.3 ± 35.7 µs, whereas extracellular τD was only 

115 ± 5.8 µs. For a better understanding of their ranges, the distributions of τDs of both of 

these populations were plotted in the same frame (Fig. 4.4) which shows the clear separation 

between the extracellular and intracellular SBD.  

 

 
 

Figure 4.4: Extracellular vs. cytosolic τD values for SBD. The histogram distribution of τD values obtained 
when the confocal volume was placed completely outside the cell (extracellular), vs. completely inside the cell 
(intracellular) show different diffusion rates, with intracellular SBD being slower. Average intracellular τD was 
499.3 ± 35.7 µs, whereas extracellular τD was only 115 ± 5.8 µs.  
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There was a clear difference in the average number of particles (N) as well. The intracellular 

and extracellular number of particles before any drug treatment was: 16.8 ± 3.9 and 0.9 ± 0.0 

respectively; whereas after the combined drug treatments they change to: 7.6 ± 0.7 and 0.9 ± 

0.0 respectively. Upon completion of the incubations with the markers, the excess dyes were 

washed off and the measurements carried out in fluorescently inactive medium. Hence, the 

number of particles in the extracellular part (background being 0.4 ± 0.0) does not change 

significantly, whereas the intracellular population (background signal due to autofluorescence 

of cell being 1.9 ± 1.6) dropped by a factor of ~2 due to reduced uptake.  

 

4.3.4 Inhibition Rho GTPase or flotillin affects interaction of SBD with the 
cell surface 

 
FCS was used to study the effects of blocking different mechanisms of SBD uptake using 

specific drugs, on its diffusion behavior at the plasma membrane surface of SH-SY5Y 

neuroblastoma cells. The diffusion time generally reflects the membrane fluidity, which is 

normally larger for the less mobile raft domains compared to that of the non-raft phase [52, 

229-232]; as was shown in the previous chapter, SBD displays a slow diffusion component at 

the plasma membrane, similarly to CTxB, but unlike non-raft markers DiI and Bodipy-FL-

SM, which remain uniformly distributed on the plasma membrane [81]. Thus diffusion times 

(τD) from a confocal spot centered at the plasma membrane can be used to deduce the 

membrane microdomain association for any fluorescently tagged probe.  

As described in the section 4.3.2; data from membrane measurements were best fitted to the 

two dimensional two particle one triplet (2D-2P-1T) model. By comparing the proportion of 

particles that fall into the τD1 or τD2 categories (Fraction τD1 or Fraction τD2) it is possible to 

determine whether the binding of SBD to the plasma membrane is affected under different 

treatments; as care was taken (described in section 4.3.2) to ensure that the confocal volume 
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was always properly focused at the plasma membrane. Fraction τD1 and Fraction τD2 were 

plotted for the untreated control cells versus the cells treated with either flotillin-2 siRNA or 

clostridium toxin, or both (Fig. 4.5 A).  

 

 
 
Figure 4.5: Flotillin-2 and a Rho family GTPase act synergistically on SBD uptake, and both affect the 
proportion of SBD exhibiting slow diffusion (τD1). (A) Average proportions of FCS measurements fitting to τD1 
or τD2 after interference with flotillin, Rho family GTPases, or both, show that the fraction of the faster diffusing 
component, τD2 (light green), increased. (B) Histogram showing the distribution of FCS readings where the 
given proportion of τD1 to τD2 (given as percentage τD1 on the x-axis) occurred. In control cells (green bars), 
most readings gave >40% τD1, whereas treatment with both flotillin-2 siRNA and clostridium (red bars) shifted 
the proportion of τD1 in most measurements to <10%. Either treatment alone (gray bars) gave intermediate 
proportions of τD1. 
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The fraction of τD1 (the presumptive membrane-bound, millisecond range) fell from 44% in 

controls to 33% with flotillin-2 siRNA, 29% with clostridium treatment, and 19% in case of 

both treatments. Thus, the magnitude of the effect of knocking out either of the uptake 

mechanisms alone was similar, and removing both of them gave an almost perfectly additive 

effect on the binding of SBD. This implies that the effects of flotillin and cdc42 on the 

binding of SBD are additive, if it is assumed that a decreased proportion of Frn1 reflects the 

loss of binding. 

By plotting the percentage fraction of τD1 in the different readings as a histogram instead of 

an average (Fig. 4.5 B), it can be seen that the distribution of readings shifts from 

predominantly τD1 (>50% putative membrane-bound particles) to smaller fractions of τD1 (20- 

30%) under either siRNA or clostridium toxin treatment, and even smaller fractions (<10%) 

under both treatments simultaneously; which also states that the decreased proportion of 

Fraction1 reflects the loss of binding under drug treated conditions. 

From the previous chapter it is known that the raft markers SBD as well as CTxB possess 

larger average diffusion time values compare to that of the non-raft markers, and a bimodal 

distribution of τD values, which shrinks to a narrow distribution lacking the slower (τD >30 ms 

components) upon disrupting rafts. This suggested that the long diffusion time might 

correspond to the proportion of molecules that is associated (transiently) with the rafts or 

nanoclusters on the plasma membrane. 

An interesting question is now whether the bimodal diffusion distribution was related to the 

different uptake mechanisms that affect SBD internalization into cells. Indeed, when treated 

with either clostridium toxin or siRNA flotillin-2, or both, the slow component of τD1 

disappeared, being reflected in the much faster average τD (Fig. 4.6 A) as well as in the shift 

of the histogram distribution to between 1-10 millisecond (Fig. 4.6 B) under each of the three 

treatments.  
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Figure 4.6: Both flotillin and Rho family GTPase are required for the slow raft-like diffusion component 
of SBD. (A)Average τD1 values (in milliseconds; y-axis) after interference with flotillin-2 or Rho family GTPases 
by clostridium toxin, or both. τD1 values were as follows: control, 50.6±15.6 milliseconds; SiRNA flotillin, 5.6 ± 
0.88 milliseconds; clostridium, 2.7 ± 0.21 milliseconds; siRNA-flotillin + clostridium, 2.0 ± 0.27 milliseconds. 
(B) Histogram distribution of τD1 values after the above treatments, showing disappearance of the slow (>30 
milliseconds) component after either treatment alone (gray shades), or both together (red). (C) Average τD2 
values (in microseconds; y-axis) after above treatments. τD2 is lower overall. τD2 values were as follows: control, 
187.5 ± 21.2 microseconds; SiRNA-flotillin, 132.4 ± 8.7 microseconds; clostridium, 123.3 ± 4.9 microseconds; 
SiRNA-flotillin + clostridium, 93.7 ± 4.5 microseconds. Histogram distribution of τD2 values after above 
treatments. After both treatments together, a higher percentage of readings gave τD2 values of <100 
microseconds (red). Error bars in A and C represent means ± s.e.m. 
 

In contrast to the τD1 values, τD2 values were not as strongly affected, although the average τD2 

sped up by about 50% (Fig. 4.6 C), and the histogram of τD2 did show a shift of τD2 towards 

faster values under the combined flotillin-2-RNAi + clostridium treatment (but not either 

treatment alone) (Fig. 4.6 D). This shift in τD2 could be explained as in section 4.3.3. The 

fraction τD2 derives from freely diffusing SBD both outside the cell as well as inside the cell, 

and extracellular SBD has an average τD of 115 ± 5.8 microseconds (exclusively <200 
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microseconds; n=24 readings) whereas cytosolic τD averages 499.3 ± 35.7 microseconds 

(exclusively >200 microseconds; n=45 readings) (Fig. 4.3). 

Now less efficient binding due to effect of the drug treatments also results in less SBD 

entering the cell, [the average number of particles (N) counted in the no drug treated 

conditions were: intracellular 16.8 ± 3.9, extracellular 0.9 ± 0.0 whereas after the combined 

drug treatment they were: intracellular: 7.6 ± 0.7 and extracellular 0.9 ± 0.0]  as a result τD2 

values in case of the drug treated cells consist of comparatively more contribution from the 

faster extracellular free dyes which reflects in the faster average τD2 values. 

 

4.3.5 Comparison of the effects of drug treatments on SBD with effects on 
non-raft marker DiI  

 
In order to determine whether the decrease in τD values was a result of a general increase in 

membrane fluidity induced by the siRNA and clostridium treatments, the τD values of the DiI, 

which should be uniformly distributed on the plasma membrane SH-SY5Y neuroblastoma 

cells were measured before and after these drug treatments. The average diffusion time values 

as well as the histogram distributions of τD remained unaffected after each individual and 

combined drug treatments (Fig. 4.7). As DiI does neither give any significant fluorescence in 

solution phase nor internalizes inside the cell, the ACFs obtained from all the DiI 

measurements are best fitted to two dimensional one particle one triplet (2D-1P-1T) model 

only.  

The results above suggest that the combined effects of flotillin and Rho family GTPase on 

binding of SBD are stronger than either one alone and are additive; however, removing either 

flotillin or Rho GTPases completely abolishes the slow diffusion component of SBD, both of 

these mechanisms must be absolutely required for this raft-like diffusion behavior. 
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Figure 4.7: Diffusion of the non-raft localized lipophilic dye, DiI C18, was unaffected by SiRNA flotillin-2 
and clostridium treatment. (A) Average τD values of DiI are shown after different treatments: control 11.9 ± 2.6 
ms; siRNA flotillin-2 11.2 ± 2.9 ms; clostridium 11.3 ± 3.7 ms; siRNA flotillin-2 + clostridium 12.1 ± 4.6 ms. (B) 
Histogram distribution of τD values of DiI are shown after different treatments, given as percentage of readings 
falling into the different time range bins, in milliseconds. 

 

4.4 Discussion 
 
The uptake mechanisms of SBD, a fluorescently tagged sphingolipid interacting peptide 

probe, were examined based on the diffusion behavior and percentage of association with the 

plasma membrane in a human neuroblastoma cell line, SHSY5Y. Unlike other so far 

characterized microdomain-associated cargoes, SBD endocytosis is affected approximately 

equally by two different pathways, one cdc42-mediated, and the other lipid-raft-associated 

adaptor protein, flotillin mediated [213, 231]. This work shows that these two pathways 

probably not separate, but that they are additive i.e. operate together. The main role of cdc42 

is regulating the GEEC pathway, specific for the uptake of GPI linked proteins [133], which 

in some cases can also be endocytosed by flotillin-mediated mechanisms [137, 217]. 

The study about SBD uptake mechanism based on colocalozation of fluorescent probes by 

Zhang et al. [202] shows that SBD uptake is strongly affected by dynamin interference. The 

studies of Mayor and colleagues [133, 229] with GPI-APs, suggests that the cdc42 pathway is 

non-overlapping with dynamin mechanisms. On the other hand it has been documented 

several times that an uptake mechanism has been jointly mediated by dynamin and flotillin. 
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For example, Aβ (the parent molecule of SBD) and amyloid precursor protein (App) both 

requires dynamin as well as flotillin for their uptake into the cells [230, 231].  It is also 

reported that uptake mechanism of polyethylenimine (PEI) and Lipofectamine are also both 

dynamin- as well as flotillin-mediated [137]; but this was unaffected by cholesterol depletion, 

indicating these might not be lipid raft associated mechanisms. According to literature and 

moreover according to this study as knockout of both cdc42 and flotillin together virtually 

eliminates the SBD uptake, it can be postulated that dynamin takes part in flotillin mediated 

uptake mechanism and does not constitute a third independent mechanism. 

FACS quantification done by Zhang et al. [202] indicates that removing either the flotillin 

pathway or the cdc42 pathway by treatment with SiRNA-flotillin and clostridium toxin, 

respectively, exerted moderate effects on SBD uptake, whereas knockout of both mechanisms 

together nearly eliminates the uptake. This reduced uptake was associated with reduced cell-

surface-bound (i.e. washable) SBD after either treatment, and with stronger loss of cell-

surface binding after both treatments.  

Accordingly, the FCS experiments also showed that blocking of any one pathway exerted 

moderate effects on SBD association with the plasma membrane, whereas knockout of both 

mechanisms together nearly eliminates the association. In case of either pathway blocking, 

the fraction of SBD diffused at the fastest rate, (indicating less binding), was almost similar, 

and blocking both pathway showed almost an additive effect. The opinion of a single, highly 

efficient uptake process dependent on both flotillin and cdc42 simultaneously is also 

supported by the observation that knockout of either mechanism alone completely abolishes 

the slowest diffusion component (Fig 4.8). The uptake of CTxB (another established lipid raft 

associated probe) also shows similar kind of mechanism, where flotillin-siRNA alone had no 

significant effect, DynK44A DN alone showed much less severe effect but the simultaneous 
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treatment of DynK44A DN and flotillin-siRNA knocked out ~80% uptake [137]. Similarly 

this study predicts that there might be a direct interaction between flotillin and cdc42.  

 

[Picture modified based on a drawing by Rachel S. Kraut] 
Figure 4.8: Model showing proposed origin of the slow-, medium- and fast-diffusing SBD components. In 
the model, τD2 represents the fast (microsecond range), unbound population of SBD that is presumably outside 
the cell (56%), but still registered by FCS measurement. Both flotillin and cdc42 associated mechanisms alone 
can mediate suboptimal uptake and medium-speed diffusion (1–10 milliseconds). Flotillin and cdc42 together 
synergistically mediate slow (>50 milliseconds) diffusion and efficient uptake. When either or both flotillin- or 
cdc42-mediated uptake mechanisms are knocked out, the fast unbound population of SBD increases to 67%, 
71% or 81%, respectively, and the very slow (50 milliseconds) diffusion component is removed. A small 
proportion of SBD associated with neither mechanism remains at the surface and diffuses at a medium speed 
(1–10 milliseconds).  
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In the previous chapter it was shown that, the diffusion of SBD at the plasma membrane 

distributed into two categories: some with medium mobilities (τD values ~1-10 milliseconds) 

and some with slow mobilities (τD values ~50 milliseconds), whereas the non-raft-associated 

lipid analogs DiI and Bodipy-FL-SM diffused only in the medium mobility (τD ~1-10 

milliseconds) range. Interestingly, CTxB also showed a very similar bimodal distribution.  

The longer diffusion times could be abolished by cholesterol and sphingolipid depletion 

indicating that the slowly diffusing fraction might correspond to the proportion of molecules 

that are associated (transiently) with rafts or nanoclusters [134]. This kind of SBD like 

bimodal diffusion behavior has been reported earlier by Lommerse and colleagues [232], and 

in one recent study by Pinaud et al. [53]. Some other groups also have derived the diffusion 

constants from anisotropy recovery after photobleaching and fluorescence recovery after 

photobleaching (ARAP and FRAP) experiments [52] and by high-speed single-particle 

tracking techniques [225] on raft and non-raft molecules; however, these either showed 

complete immobility associated with nanoclusters, or uniformly distributed hop-diffusion 

behaviors, irrespective of raft or non-raft localization. 

The question arises whether these apparently raft associated long diffusion times are 

corresponding to uptake by cdc42- and/or flotillin-mediated mechanisms. Surprisingly, 

neither of these mechanisms was absolutely required to achieve uptake, but the slow diffusing 

component was completely abolished when either mechanism was knocked out. This 

suggests that the slow diffusion might in fact correspond to a highly efficient, synergistic 

uptake mode of cdc42 + flotillin. A model proposing this link between diffusion behavior and 

uptake mode is shown in Fig. 4.8. Some alternative approaches like colocalization by super-

resolution fluorescence imaging, or fluorescence cross-correlation spectroscopy also could be 

used to test the validity this model, in parallel with the studies of uptake kinetics. 
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4.5 Summary 
 
This study suggests that cdc42- and flotillin-associated uptake sites both correspond to 

domains of intermediate mobility, but they can cooperate to form low-mobility, efficiently 

internalized domains. It also can be said that the surface behavior of a cargo is determined by 

a combination of endocytic accessory proteins of the membrane compartments. This study 

can be concluded with the proposal that the uptake of SBD might behave similarly to its 

parent molecule Aβ, even though the physiological consequences of Aβ administration is not 

clear. Finally, accumulation of SBD in the raft components is traced by the endocytic 

accessory proteins such as cdc42 and flotillin. 
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Chapter 5: 

Investigation of dynamic cell membrane 
organization 

 
 

5.1 Introduction 
 
Until the 1990s, the fluid mosaic model was the widely accepted description of a biological 

membrane [46]. Published in 1972, it put an end to the other previously existing and 

competing models assuming triple layers, with a lipid core layer and two protein layers, one 

on each side. The fluid mosaic model, based on thermodynamic and functional considerations, 

postulated instead that proteins as the active components of signal transduction and transport 

can span the entire thickness of a lipid bilayer. Protein-lipid interaction was thought to be 

stabilized through hydrophobic (fat soluble) contact points on the surface of the proteins 

[45].   

Over the last decades, it has become clear that the plasma membrane of cells, far from being 

uniform, is highly dynamic yet organized, consisting of a multitude of interacting micron and 

nano sized subdomains within the lipid membrane. These domains play important roles in 

signal transduction and trafficking and sometimes serve as platforms for the production of 

neurotoxic proteins such as amyloid beta in Alzheimer’s disease and prion protein in 

transmissible encephalopathies. The wide membrane domains are mainly, nanometer sized 

cholesterol and sphingolipid enriched lipid rafts to large, micron sized ceramide rich 

platforms [42, 90, 233]. These highly heterogeneous structures and the presence of “lipid 

rafts”, which are regions of lower mobility, embedded in a fluid phase of higher mobility [42], 

the cell membrane exhibits a range of different diffusion coefficients mainly in the 
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millisecond time scale [234].  Hence, in order to understand these dynamic organizations of 

cell membrane, suitable techniques that can incorporate spatial as well as temporal 

measurements of diffusion are needed, which allow to get a picture of how the membrane 

works as a system on a larger scale. 

Imaging Total Internal Reflection-Fluorescence Correlation Spectroscopy (ITIR-FCS, as 

described in chapter 2) has been shown here as a possible means to study 2D surfaces with a 

time resolution of 4 ms allowing the resolution of lipid and protein dynamics at each pixel of 

an EMCCD camera [142, 143]. Moreover, it also has been shown that ITIR-FCCS reflects 

the anisotropic movement on cell membranes, and thus the dynamic membrane organization 

of living cells.  The technique has been applied here to study diffusion and transport 

processes to resolve the dynamic heterogeneity in membranes that cannot be addressed easily 

by other spectroscopic methods. A generalized expression for cross-correlations between any 

two areas of any size and shape on a CCD chip [89] has been used to extract the diffusion 

coefficient and velocity parameters. By using the CCF values for neighboring pixels, the 

anisotropic transport in cell membranes has been investigated and these differences have been 

related to the membrane organization of living human SHSY5Y neuroblastoma cells. In 

particular, the organization of the liquid ordered phase, tracked by SBD, and the liquid 

disordered phase, represented by DiI, has been described here in this part of the study. 

Further the cells were perturbed by the removal of cholesterol by methyl-β-cyclodextrin 

(MCD), and by the disruption of the cytoskeleton by latrunculin A to observe the relative 

difference in the dynamic organizations of these two phases. 

 

5.2 Materials and Methods 

In this part of the study, the so far well characterized sphingolipid rich domain associated 

probe, TMR-conjugated SBD has been used as a marker for the raft regions and the 
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previously mentioned lipophilic lipid analog DiIC18 has been used as a marker for the non-

raft regions of the cell membrane. For the depletion of cholesterol from the cell surface, 

MβCD has been used in a similar way as mentioned in chapter 3. Latrunculin-A (Sigma-

Aldrich, catalog number: L5163), which is known to de-polymerize the actin has been used in 

this study to perturb the actin cytoskeleton of the SH-SY5Y human neuroblastoma cells. 

 

5.2.1 Cell culture and staining with markers 

SH-SY5Y neuroblastoma cells were cultured and plated on 8-well chambers >24 hours prior 

to the drug treatments/measurements; and the staining with DiI and SBD also has been done 

as has been described in the previous chapters. 

 

5.2.2 MCD treatment 

5.2.2.1 End point measurements 

To see only the complete effect of MβCD of cholesterol depletion, cells were treated with 5 

mM of MβCD as described in chapter 3, followed by staining with SBD or DiI, also as 

described in the previous chapters and measured at room temperature.  

 

5.2.2.2 Time chase measurements 

The incubation sequence of time chase studies is just reverse to that of the end point 

measurements with respect to the drug and the marker. In this case, the cells in 8 well 

chambers were first incubated with the markers (SBD-TMR / DiI) for 30 minutes at 37º C, 

washed with the buffer and suspended in indicator and serum free DMEM for measurement. 

5 mM MβCD was then added to the cells on stage and were chased for 30 minutes, taking 

readings at 10 minutes intervals. 
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5.2.3 Latrunculin-A treatment 

Cells in 8 well chambers were washed with buffer and incubated with the markers (SBD-

TMR / DiI) first, for 30 minutes at 37º C, then they washed with the buffer and suspended in 

indicator free DMEM for measurement. The 200 μM stock solution of Latrunculin-A in 

DMSO was diluted in serum free growth medium in order to prepare the 5 μM working 

solution. This working solution was then added to the cells on microscope stage and was 

incubated for 30 min, taking readings at 10 min intervals. 

 

5.2.4 Instrumentation 

The instrument used in this part of the study is the total internal reflection based FCS setup, 

described in chapter 2. Both of the fluorescent probes, DiI and TMR conjugated SBD were 

excited using the 532 nm laser coupled with the system. The power of the excitation laser 

source was maintained at 6 mW as measured before the microscope objective for all the 

measurements, and the fluorescence signal from the sample was collected by the EMCCD 

after passing through a 560 DRLP dichroic mirror and 595 AF60 emission filter. 

 

5.3 Results 
 
5.3.1 System compatibility 
  
The distribution of the different lipid classes that make up the cell membranes, including 

sphingolipids, cholesterol and glycerophospholipids, are highly heterogeneous. For better 

identification of this heterogeneity through ITIR-FCS results, different possible shapes of the 

ACF curves obtained from single pixels for various samples including autofluorescence of 

the SHSY5Y cells, SBD before and after MβCD treatment were analyzed first. These results 

were compared with the background signal as well, which arises due to the electronics of the 
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detector (Fig. 5.1). From the figures it is clear that the background signal (Fig. 5.1 A) is noisy 

and distinct from any fluorescent signal. The autofluorescence of the SHSY5Y cell exhibits a 

very flat profile with almost vanishing amplitude, entirely different from the ACFs of any 

fluorescent dye containing probe like TMR-conjugated SBD. The ACFs using SBD-TMR as 

the lipid raft associated marker, shows a shortening of the diffusion time upon the MβCD 

treatment (Fig. 5.1 B), consistent with the results obtained through conventional point FCS 

method. 

 

 
 

Figure 5.1: Representative correlation functions from single pixels for Different conditions. In A, the 
black line represents ACFs obtained from background measurements and the green line represents the 
autofluorescence of human Neuroblastoma (SHSY5Y) cells, whereas B shows ACFs obtained from SBD-TMR 
labeled cells. Dashed lines in B represent the experimentally obtained raw curve and the solid lines are the 
respective fits. Blue one correspond to only SBD-TMR labeled cells, without any drug treatment, and the red 
one corresponds to MβCD treatment on the SBD-TMR labeled cells. The D for non treated cells is 0.38 µm2/s 
while that for MβCD treated cells is 1.97 µm2/s. 

 

5.3.2 Autofluorescence of SHSY5Y Neuroblastoma cells. 
 

Unlike conventional FCS, the signals from the entire ROI (20 x 20 pixels) are analyzed in 

case of ITIR-FCS without being biased to any particular point. Therefore, it is important to 

make sure that the analyzed value is due to the movement of the desired fluorescent probe, 

and not influenced by the autofluorescence of the cell. As the total autofluorescence intensity 

consists of a large number of dim molecules, a high value for the number of particles is 
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expected in case of autofluorescence of any cell, and this was obtained through ITIR-FCS 

experiments as well (Fig. 5.2 A). In case of autofluorescence measurements, the absence of 

any bright marker leads to very poor fluorescence signal to noise ratio [142]. Therefore this 

absence of mobility of any bright particle resulted in lack of proper ACFs and the pictorial 

representation of that condition (Fig. 5.2 B) reflects an almost immobile state. The flat curves 

from most of the pixels produces individual diffusion times larger than a second, resulting in 

an average diffusion coefficient on the order of 0.01 μm2/s. This value is most likely 

bleaching dominated and is more than 50 times and 200 times slower compare to the 

movement of SBD and DiI on the cell surface, respectively. Therefore, during the analysis of 

diffusion coefficients of SBD or DiI, any pixels producing values in that range were excluded 

from the analysis of average value.  

 

 
 
Figure 5.2: Number of particle (A) and diffusion time (B) images over the entire ROI (20 x 20 pixels) 
without binning for the autofluorescence of SHSY5Y cells. The numbers on the x- and y-axes represent the pixel 
position.  
 

5.3.3 Independency of diffusion parameter with concentration. 

The time chase measurements involve repeated measurements on the same ROI of a 

particular cell, which results in loss of some local fluorophores due to photobleaching. In 
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order to check whether this loss of intensity has any effects on the diffusion parameters of the 

probes, comparisons between number of particles and diffusion times of the same 

experimentally obtained stacks were carried out for SBD-TMR labeled cells under both 

MβCD treated and non-treated conditions (Fig. 5.3 and Fig. 5.4).  In case of no drug treated 

control cells irrespective of the gradual decrease in the number of fluorescent particles 

(simultaneous decrease in overall fluorescence intensity) due to repeated measurements taken 

on the same spot (Fig. 5.3 A, B), the overall diffusion times through the entire ROI remained 

unchanged (Fig. 5.3 D, E). On making a move to a new cell in the same sample dish, 

diffusion time didn’t show any significant change (Fig. 5.3 F) despite an expected increase in 

intensity (Fig. 5.3 C).  

Similar time chase analysis was carried out for cells measured in the presence of 5 mM 

MβCD, to monitor the gradual loss of cholesterol from cell surface and simultaneous loss of 

raft association of SBD. The existence of MβCD in the medium during experiment, results in 

a gradual decrease in average diffusion time (Fig. 5.4 E-G) with progress in time, indicating 

the gradual loss of raft-association of SBD. Simultaneously, a decrease in number of particles 

(Fig. 5.4 A-C) due to photobleaching upon repeated measurements taken on the same ROI of 

a single cell was also observed. However this decrease in intensity has no significant 

influence on the diffusion time. Moving on to a new cell in the same sample dish did not 

show any sign of recovery of the diffusion time (Fig. 5.4 H) although an increase in number 

of particles (i.e. overall fluorescence intensity) was observed (Fig. 5.4 D). This observation 

clearly indicates that the decrease in the diffusion time is purely due to the effect of the drug 

(MβCD), and intensity or any other external parameter has no significant role to play in this 

context. 
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Figure 5.3: Quantitative pictorial representations of number of particles and diffusion times over the 
measured ROI on the no drug treated control cell membranes during the time chase experiments. A, B and C 
represents number of particles whereas D, E and F represents diffusion times according to the respective color 
scales. A, B, D and E are images of the same position of a single cell at various time point whereas C and F 
represents another cell at extended measurement time. The numbers on the x- and y-axes represent the pixel 
position. Average values for each picture are indicated in green. 
 

All these results together suggest that the newly established technique, ITIR-FCS is sensitive 

enough to measure the complex heterogeneous cell membrane organization and is able to 

point out any small alteration in that organization due to external perturbations. With the 

essential supporting information, the technique was ready to study the heterogeneous 

dynamic cell membrane organization, in the light of mobility of “lipid rafts”, cholesterol and 
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proteins that can be stabilized to coalesce, forming platforms that function in membrane 

signaling and trafficking [35]. 

 
 
Figure 5.4: ACF images of 20x20 pixel ROIs of cells labeled with SBD-TMR. A,B,C and D represents 
number of particles whereas E,F,G and H represents diffusion times according to the respective color scales. 
A–C and E--G images are of same position of a single cell after various times of incubation with MβCD. D and 
H represents the picture of the ROI of another cell at extended incubation with MβCD. The numbers on the x- 
and y-axes represent the pixel position. Average values for each picture are indicated in green. 
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5.3.4 Autocorrelation based small scale organizational analysis 

In order to investigate the cell membrane organization, SBD and DiI have been used in this 

study as the markers for the lipid raft and non-raft phase of the same SHSY5Y neuroblastoma 

cells, respectively. This investigation has been performed in the light of diffusion under 

normal versus perturbed conditions (disruption of the rafts) of the cell surface, which mainly 

have been done through two different ways, depleting cholesterol and disrupting actin 

cytoskeleton. MβCD is a common drug that is used to disrupt the lipid rafts as it extracts 

cholesterol from membranes. Reduced cholesterol content in cell membranes leads to a 

delocalization of raft associated proteins, and the loss of raft-like diffusion behavior [81, 223, 

235]. There is some evidence which states that the raft related components are linked to the 

cytoskeleton [147, 238, 239]. Latrunculin A is an agent, which has been shown to change the 

diffusive behavior of rafts and raft associated proteins like CTxB by disrupting the actin 

cytoskeleton [52, 147].  

The diffusion coefficient has been used in this study as a measure of the fluidity of the 

membrane. For the analysis of diffusion coefficient only, a 3×3 binning of pixels (software 

based binning) have been used throughout, since the size of a 3×3 binned area (852×852 nm2) 

corresponds to the typical pinhole size used in confocal FCS. These autocorrelation of 3×3 

binned regions have been fitted with Eq. 2.17 and the obtained values of D were expressed as 

a histogram for each time point.  

The average diffusion coefficient of membrane bound SBD-TMR (0.7 ± 1.1 m2/s) gradually 

increases over a time interval of 30 minutes by about a factor of 2-3 (1.7 ± 1.1 μm2/s) upon 

addition of MβCD (Table 5.1). Accordingly, the diffusion coefficient histograms show a 

progressive shift towards higher diffusion coefficients (Fig. 5.5 B). 
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Figure 5.5: Effects of MβCD and latrunculin-A treatments on the diffusion coefficients (D) of SBD- and 
DiI-labeled cells. (A–E) Histogram based distributions of diffusion coefficients (D) at various times of 
incubation with MβCD (A, B), latrunculin-A (C, D) and both drug (E) for SBD-TMR- and DiI-labeled cells. 
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This change is consistent with the expectation that there is an increase in lateral mobility of 

raft related lipids and proteins on the cell membrane after cholesterol removal. An even 

stronger effect was seen after latrunculin-A treatment. The diffusion coefficient of membrane 

bound SBD-TMR changes by about a factor of 4 (2.9 ± 2.2 μm2/s) in this case (Table 5.1). A 

similar effect was observed when the cells were incubated with both MβCD and latrunculin-

A simultaneously and the diffusion coefficient increases to 2.8 ± 2.0 m2/s (Table 5.1). In 

contrast, the diffusion coefficient of DiI, which mimics the diffusion of the liquid disordered 

phase of the cell membrane, increased by only a small fraction (less than 20%) under both 

circumstances. As shown by the histograms (Fig. 5.5 A and Fig. 5.5 C) it is mainly the 

abolishment of the very slow diffusive fraction of DiI with D < 0.8 m2/s which results in a 

change of the average diffusion coefficient from 2.5 ± 2.0 m2/s to 3.0 ± 2.0 m2/s and 2.8 ± 

1.8 m2/s for MβCD and latrunculin-A treatments respectively. In all of these cases, the large 

standard deviation of the diffusion coefficients indicates strong variations in the diffusion 

coefficients on the cell membrane, in agreement with the partitioning of SBD into different 

lipid regions [81]. This interpretation is consistent with the dynamic partitioning of raft 

proposed earlier [53, 240, 241]. These experiments show that both cholesterol content as well 

as the integrity of the cytoskeleton is important for the raft-like behavior of SBD but have a 

much lower influence on DiI, a marker for the liquid disordered, non-raft related membrane 

fraction. 

 
 

 Untreated MβCD Lat-A Lat-A + 
MβCD 

DiI 2.54 ± 2.04 2.98 ± 1.98 2.84 ± 1.84 - 
SBD 0.7   ± 1.05 1.68 ± 1.06 2.89 ± 2.24 2.81 ± 1.97 

 
Table 5.1:  Average diffusion coefficients of raft (SBD) and non-raft (DiI) markers on SHSY5Y 
neuroblastoma cells after treatment with MβCD and latrunculin A (Lat) for 30 minutes. All data are given as D 
(Mean ± SD) µm2/s. 
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5.3.5 Cross-correlation based large scale organizational analysis 

The possible changes associated with the larger scale organization of the cell membrane have 

been investigated by the means of ΔCCF frequency histograms (Fig. 5.6 and Fig. 5.7) before 

and after cholesterol removal and cytoskeleton disruption. No fits are involved in the cross-

correlation based approach, the CCF values were calculated directly from experimental data 

and therefore no fitting model is involved in this method [89]. In order to differentiate 

between the histograms representing different perturbed condition, the fourth central moment 

of the histogram values, also called as kurtosis, has been calculated for each of them. The 

kurtosis is mainly a measure of the difference of a particular distribution from a standard 

Gaussian distribution. A larger kurtosis value indicates a distribution with a higher peak 

around the mean but more values at the extremes compared to a Gaussian distribution. A 

lower kurtosis value characterizes a distribution with a flatter peak around the mean having 

fewer values at the extremes. 

Without MβCD addition, the ΔCCF images of SBD-TMR labeled cells are characterized by 

low kurtosis values close to 0 (Fig. 5.7 B). A sudden increase in kurtosis values to about 10 

was observed for the ΔCCF distributions of the cells after 10 minutes of incubation with 

MβCD. The kurtosis then gradually decreases with time until after 30 min of incubation still 

with drug present, when it reaches a similar range to that of non-treated cells (Fig. 5.7 B). 

Therefore, during the incubation with MβCD (30 min) the fluidity of the membrane, as 

characterized by the diffusion coefficient, increases due to cholesterol removal. At the same 

time the membrane organization, in contrast to the fluidity,  reaches a new state, which is 

similar to that of its initial condition (before the addition of the drug), as shown by the ΔCCF 

distribution (Fig. 5.6 B). No further changes in ΔCCF distribution took place for cells 

incubated longer than 30 minutes with MβCD (Fig. 5.10).  
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Figure 5.6: CCF histograms at different incubation times for cells labeled with SBD after different drug 
treatments (C for Latrunculin-A, D for MβCD, and E for both drugs) and no drug treatment (A) as control 
experiment. B represents CCF histograms after 30 minutes of incubation for cells labeled with SBD and 
treatment without and with MβCD, latrunculin A or both. Gaussian fits to the distribution are indicated by 
dotted lines. 
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These results are consistent with earlier findings that MβCD treatment leads to an overall loss 

of cholesterol dependent membrane lipid domains, and to a re-organization of the remaining 

non-extracted lipids [242]. It should also be noted that some other reports [243] found an 

indirect increase of glycerophospholipids as a result of the disorganization in the membrane 

upon cholesterol removal [243]; and it has been hypothesized that some compensatory 

changes in membrane lipid composition could take place after depletion of cholesterol [244] 

which could be an explanation for these findings.  

 
 
Figure 5.7: Development of the kurtosis of the CCF distributions showed in figure 5.8 and 5.9. A 
represents kurtosis values for cells labeled with DiI with different drug treatments and no drug treatment, while 
B represents the same for SBD. High kurtosis value for DiI indicates towards a very narrow distribution of 
ΔCCF values i.e. great extent of homogeneity of the liquid disordered phase. Small kurtosis value of SBD 
indicates the wider distribution of ΔCCF values representing the high degree of heterogeneity of ordered 
domains. 
 
 
Treatment of SBD-TMR labeled cells with latrunculin-A also initially leads to an increased 

value of kurtosis but at somewhat lower (around 4, with a less pronounced central peak; Fig. 

5.6 C) than that of MβCD treatment (Fig. 5.6 D). Similar with MβCD treatment, within the 

30 minutes the incubation time, kurtosis reaches to the values somewhat near to zero (Fig. 5.7 

B) and the distribution of ΔCCF values achieves a slightly broader distribution than the 

untreated cells (Fig. 5.6 C). Treatment of the SBD-TMR labeled cells with both drugs MβCD 
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and latrunculin-A, lead to a similar behavior of the ΔCCF histograms (Fig. 5.6E) as treatment 

with only latrunculin A. 

 
 
Figure 5.8: CCF histograms at different incubation times for cells labeled with DiI after different drug 
treatments (C for Latrunculin-A and D for MβCD) and no drug treatment (A) as control experiment. B 
represents CCF histograms after 30 minutes of incubation for cells labeled with DiI and treatment without and 
with MβCD or latrunculin A. Gaussian fits to the distribution are indicated by dotted lines. 
 
 
Treatments of MCD and latrunculin-A on the cells labeled with DiI, should reflect the 

organizational change of the liquid disordered phase of the cell membrane due to the 

depletion of cholesterol and disruption of the cytoskeleton. But only very small changes in 

the kurtosis values have been observed in either cases of MCD or latrunculin-A treatments 

(Fig. 5.7 A). 
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The CCF histograms exhibited narrow distributions, and didn’t show any significant 

changes throughout the 30 minutes of incubation with the drugs (Fig. 5.8 C for Latrunculin-A 

and D for MβCD), similar to its untreated condition (Fig. 5.8 A). This implies that cholesterol 

or cytoskeleton does not have any direct influence on the organizational distribution of the 

liquid disordered phase of cell membrane. 

The changes take place in membrane equilibrium during the incubation with the drug could 

be a possible explanation for the changes in CCF distributions upon drug treatment. The 

normally wide CCF distribution may arise due to the restriction of SBD diffusion due to 

cytoskeletal confinements [245]. Alternatively, internalization of SBD, may also lead to 

wider, non isotropic values of CCF on the cell membrane. It has been shown that, MβCD 

treatment disturbs the internalization of SBD into SHSY5Y cells [81]. Hence, inhibition of 

internalization, as seen in MCD-treated cells, may result in a disruption of this flux which 

results in the narrower distributions of CCF histograms. This phenomenon has been 

illustrated in Fig. 5.9, which shows the CCF images of cells labeled with SBD-TMR and 

treated with MβCD, latrunculin-A, and both the drugs, after various time points of 

incubation.  The scale bar indicates that the whitish dim appearance corresponds to a more 

homogeneous narrower distribution of CCF, having most of the values close to zero, while 

the dark more granular appearance represents more heterogeneous organization. Images in 

the 1st row (A–C), representing untreated cells are very heterogeneous. Upon addition of 

drugs, the images become less granular and the heterogeneity is restored to various degrees 

after completion of the action of the drug, as shown in Fig. 5.9 F, I, and L. The heterogeneity 

in these completed stages is comparable to that of those in initial stages before the treatments. 
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Figure 5.9: CCF images of cells labeled with SBD-TMR. A–C Images of no drug treated control cells. 
Panels D–F, G–I, and J–L show the CCF images for cells treated with latrunculin-A, MβCD and both the 
drugs, respectively, after various times of incubation. Images in A–C are very heterogeneous. Upon addition of 
drugs, the images become less granular and the heterogeneity is restored to various degrees after increased 
incubation of the drug, as shown in F, I, and L. The heterogeneity in these images is comparable to that seen in 
images A–C. The numbers on the x- and y-axes represent the pixel position. 
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However, in both normal and all drug treated conditions, the mean position of the CCF 

distribution is around zero (Fig. 5.6), because there is no macroscopic flux present in the 

system [248]. Therefore, the disturbance in internalization would result in an altered 

membrane organization and transport patterns during the action of the drug, until a new 

membrane equilibrium is reached. 

 

5.3.6 Confirmation of saturation of drug effect 

In order to check whether the impact of MβCD on the cells has been completed within the 30 

min incubation time, two extra set of measurements have been conducted on cells which have 

been treated with MβCD for times longer than 30 minutes, and on untreated cells, i.e. a 

negative control. For both cases no changes in the distribution of ΔCCF values were observed, 

confirming that the MβCD action was completed within 30 minutes incubation time and the 

cells which have been treated with MβCD for more than 30 minutes re-establish a similar 

membrane organization as untreated cells on scales above the optical resolution limit (Fig. 

5.10). 

 

 
 

Figure 5.10: ΔCCF distributions of SBD-TMR on SHSY5Y cell membranes, for untreated (A) and MβCD 
treated (B) cells after incubation time longer than 30 minutes. In each case the distributions have been 
measured on one single cell. 
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5.4 Discussion 

Overall, the findings of this study indicate that DiI, the marker for the liquid disordered lipid 

phase on cell membranes, has limited dependency on cholesterol and the cytoskeleton, which 

is reflected in the limited change in the diffusion coefficient or CCF distribution during 

treatment with MCD or latrunculin A, respectively. However SBD, the marker associated 

with the ordered lipid domains or rafts of the cell surface, is influenced by both cholesterol 

and the cytoskeleton [147]. Disruption of the cytoskeleton results in lifting the diffusion 

coefficients of SBD to the similar range of DiI [240], while removal of cholesterol also 

increases the diffusion coefficient of SBD, but to a lesser extent. Therefore, it seems that the 

cytoskeleton is the main barrier to the far-diffusion of SBD and the coupling of SBD to the 

cytoskeleton is mediated by cholesterol. Moreover, the outcome of this study are consistent 

with the proposal that the cell membrane is organized on at least two different length scales 

[52], one below the resolution limit in nanodomains [134, 248] by the cholesterol content and 

another at larger scales, organized by the cytoskeleton. This study also supports the outcomes 

of chapter 3, that SBD partitions partly into cholesterol dependent microdomains [81], which 

are connected to the cytoskeleton [147]. Furthermore, this study to conduct the comparison 

between different lipid markers and the effects of removal of different lipids from the cell 

surface to further elucidate the dynamic organization of cell membranes and the nature of the 

linkage between SBD, cholesterol and the cytoskeleton, which is addressed in the next 

chapter. 

 

5.5 Summary 
 

In this chapter, ITIR-FCCS has been introduced as an extension of ITIR-FCS for the 

investigation of transport and diffusion processes in cell membranes. The diffusion 
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coefficients extracted from the experiments are in good agreement with the findings of 

progressive research groups. The anisotropic translocation studied to demonstrate the 

membrane organization can in principle be studied by determining the difference of the 

forward and backward correlations as so-called CCF images. The approach has been 

successfully used to demonstrate the cell membrane organization and heterogeneity by using 

different markers for the liquid disordered phase and for lipid microdomains and their 

observation under the different conditions of cholesterol removal or cytoskeleton de-

polymerization. Finally, ITIR-FCCS gives adequate spatial and temporal resolution to be able 

to measure membrane dynamics, and thus presents a powerful biophysical tool to provide 

novel insights into membrane organization. 
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Chapter 6:  

Importance of sphingolipids and 
glycosphingolipids for microdomain 
organization  
 

 

6.1 Introduction 

Lipids are the basic structural units of the cell membrane, a partially permeable barrier that 

controls the directed flux of molecules in and out of the cytoplasm [248]. At recent time, the 

understanding about the complicated membrane structure, consists of membrane lipids 

including sterols and ceramide, and the relevant proteins, is being refined constantly [249]. 

According to the present understanding, different lipid species concentrate different parts and 

compartments of the membrane to form various membrane phases and domains [250-252]. 

The amount of different lipid classes present in the cell membrane depends upon the type of 

cell, but for the majority of cases phospholipids are the most abundant lipid species. 

Phospholipids and cholesterol content help to maintain the membrane fluidity at 

physiological conditions [253]. One more major constitutional lipid class of the cell 

membrane is the sphingolipid family. Some lipids of this family help to protect the cell 

surface from harmful external environmental factors, by forming a mechanically stable and 

chemically resistant outer leaflet of the plasma membrane [254, 255]. Glycolipids are minor 

components of cell membranes containing a carbohydrate moiety [256, 257]. Lipids of this 

class are members of the large and heterogeneous family of sphingolipids and form complex 

patterns on eukaryotic cell membranes [258]. Sialic acid containing glycolipids concentrate 

mainly on the plasma membrane of neuronal cells. These components are found mostly in 
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clustered conditions in membrane domains [259], though there are some in vitro evidence as 

well that says they are fairly evenly distributed, e.g. by EM.  

For maintaining the usual cellular processes including normal cell growth and respond to 

surrounding environmental changes, the cell membrane must possess a dynamic structure 

[259]. Alteration in the total content of any single lipid class leads to a change in the fluidity 

and dynamic organization of the cell membrane [260-263]. In order to have a complete 

biophysical characterization of the newly established lipid raft associated peptide probe SBD, 

and for better understanding of the dynamic organization of the lipid rich membrane domains, 

compositions of the raft associated lipids have been altered and the change in mobility of the 

cell membrane has been checked using ITIR-FCS and ITIR-FCCS as the instrumental 

techniques in this part of the study. As described in the previous chapter also, the time chase 

experiments with ITIR-FCCS provides a new way to understand any dynamic changes 

associated with a larger length scale on the cell surface due to the effect of any external 

perturbation, which cannot be obtained from only diffusion coefficients or imaging 

experiments. Diffusion behaviours and active transportations of SBD-TMR along with 2 

other fluorescently tagged raft associated probes CTxB and J116S and DiI as a non-raft 

associated liquid disordered phase marker have been characterized here to mimic the overall 

dynamic membrane organizations under normal versus different lipid depleted conditions 

[J116S is a raftophilic membrane domain targeting steroid probe (determined by JADO’s 

liposome partitioning assays) from JADO Technologies, Germany, whose structure is not 

published by the company.]  

The fluorophore containing probes, whose dynamic properties have been studied here under 

normal and perturbed conditions, are associated mainly with raft lipids including 

sphingolipids, glycosphingolipids and sphingomyelin. Overall, the dynamic properties of 



113 
 

these probes have been looked under different classes of lipids disrupted conditions to 

describe the importance of these lipids in the dynamic cell membrane organization. 

 

6.2 Materials and Methods 

In order to check the role of membrane lipids such as sphingolipids, glycosphingolipids, 

sphingomyelin, for the dynamic cell membrane organization, the drugs that have been used to 

perturb the lipid composition of the cell membrane are: Fumonisin B1 [FB1, (A.G. Scientific 

Inc., catalog number F-1022)], N-Butyldeoxynojirimycin [NB-DNJ, (Sigma-Aldrich, catalog 

number B8299)] and sphingomyelinase (Smase) from Bacillus cereus (Sigma-Aldrich, 

catalog number S7651). FB1 is known for the disruption of sphingolipid metabolism by 

inhibiting the enzyme ceramide synthase. NB-DNJ  is a potential inhibitor of different 

enzymes including α-glucosidase I and II. It also inhibits the biosynthesis of 

glycosphingolipids by inhibiting the ceramide-specific glucosyltransferase. Smase breaks 

down the sphingomyelin into phosphocholine and ceramide. For the recovery of the cells 

from these perturbed conditions, GM1 (Avanti Polar Lipids, Inc. 860065P) and 

sphingomyelin (Sigma-Aldrich, catalog number S7004) were added to the medium after the 

NB-DNJ and Smase treatments respectively. The organizational and dynamic changes took 

place on the cell membrane due to these drug treatments and the respective recoveries have 

been traced with different lipid associated fluorescent probes, namely, DiIC18 for the liquid 

disordered phase, where as the recently established sphingolipid associated probe SBD 

(conjugated with TMR), cholera toxin subunit-B (conjugated with Alexa Fluor-594) and 

J116S (JADO Technologies GmbH, Dresden, Germany) for the liquid ordered raft phase.  
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6.2.1 Cell culture and staining with the markers 

SH-SY5Y neuroblastoma cells were grown similarly as described in the earlier chapters at 

37º C in Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal bovine serum 

and 1% antibiotic. For labeling, cells were plated on 8-well chambers with 0.17 mm coverslip 

bottoms (Nunc, Denmark); >24 hours prior to the drug treatments / measurements. 

Incubations with SBD, CTxB and DiI have performed in the similar way that already been 

described in the earlier chapters. The other marker used in this chapter, J116S is a cell 

membrane microdomain targeting probe from JADO Technologies GmbH. A 10 mM stock 

solution of J116S in DMSO is normally kept in -20º C for long term storage. Working 

solution was prepared by diluting it up to ~100nM in serum free DMEM and the cells in 8 

well chamber were incubated with this working solution at 37º C for 30 minutes. Cells were 

then washed with HBSS/HEPES buffer as usual and put in indicator free DMEM for 

measurements. 

 

6.2.2 Alteration of sphingolipids content of the cell surface 

6.2.2.1 Fumonisin B1 treatment 

Using the ITIR-FCS, time chase measurements with respect to the drug were carried out. 

Cells in 8 well chambers were first washed 3 times with HBSS/HEPES buffer and incubated 

with the markers (SBD-TMR / DiI / J116S) for 30 minutes at37º C followed by 3 times 

washing, again with the buffer and suspended in indicator and serum free DMEM for 

measurement. After taking the 1st measurement at 0 min, FB1 (prepared in imaging medium) 

was added to the medium in such a manner so that the resultant concentration of the medium 

became 10 µM with respect to FB1. The cells were then measured for 120 minutes, taking 

readings at every 30 minutes. 

 



115 
 

6.2.2.2 Recovery from Fumonisin B1 treatment 

In a separate 8 well chamber, cells were treated with FB1 for two hours, followed by 3 times 

wash with HBSS/HEPES buffer and then put back into usual full growth medium. Cells were 

kept in 37º C incubator >24 hours to recover from the effect of FB1. They were then treated 

with the markers (SBD-TMR / DiI / J116S) according to the previously described manner and 

measured after suspended in indicator free DMEM. 

 

6.2.3 Alteration of glycosphingolipids content of the cell surface 

6.2.3.1 NB-DNJ treatment 

N-Butyldeoxynojirimycin inhibits the biosynthesis of cellular glycosphingolipids, and this 

drug needs much longer incubation time than the other two. Hence, only end point 

measurements and no time chase experiments were performed in case of NB-DNJ treatment. 

Cells in 8 well chamber were incubated with 10 µm NB-DNJ (which was prepared in full 

growth medium from the 5mM aqueous NB-DNJ stock solution) for >48 hours at 37º C, 

followed by incubation with the markers (SBD-TMR / CTxB / DiI / J116S) for 30 minutes 

at37º C sandwiched between three times washing before and after with the same buffer 

HBSS/HEPES and finally suspended in indicator free DMEM for measurement. 

 

6.2.3.2 Adding back GM1 to the NB-DNJ treated cells 

In separate 8 well chambers, cells were treated with NB-DNJ for >48 hours, washed 3 times 

with HBSS/HEPES and then put back into usual full growth medium. Cells were kept in 37º 

C incubator to recover from the effect of NB-DNJ. Chambers were taken out from the 

incubator ~24 hours and ~48 hours later and treated with the markers (SBD-TMR / CTxB / 

DiI / J116S) as mentioned before and measured after suspended in indicator free DMEM. 
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As NB-DNJ substantially knocks out glycosphingolipids and hence ganglioside GM1 from 

the cell surface [31], a set of experiments were performed after add back GM1 externally to 

the cells. 10 mM GM1 stock solution was prepared by dissolving the white powder in a 

mixture of chloroform, methanol and water with a ratio of 65:25:4 as suggested by the 

manufacturer company. In order to prepare a 50 µM GM1 working solution, the stock 

solution was dried and the resultant solid mass was dissolved in 2µl of EtOH followed by 

made up the volume up to 1 ml with complete growth media. NB-DNJ treated cells were then 

incubated 12 hours with this GM1 working solution at 37º C and treated further with the 

markers (SBD-TMR / CTxB / DiI / J116S) as mentioned earlier and measured after 

suspended in indicator free DMEM. 

 

6.2.4 Alteration of sphingomyelin content of the cell surface 

6.2.4.1 Sphingomyelinase treatment 

Similar to the FB1, sphingomyelinase treatments are also time chase studies with respect to 

the drug (enzyme) and the incubation sequence of drug and marker is reverse to that of the 

NB-DNJ treatment. Cells in 8 well chambers were first incubated with the markers (SBD-

TMR / DiI / J116S) for 30 minutes at 37º C, washed with the buffer and suspended in 

indicator free DMEM for measurement. After taking the 1st measurement at 0 min Smase 

(prepared in imaging medium) was added to the imaging chambers in such a manner so that 

the resultant concentration of the medium became 50 mUnit/ml with respect to Smase. The 

cells were chased for 60 minutes, taking readings at 20 minute intervals. 

 

6.2.4.2 Adding back Sphingomyelin to the Smase treated cells 

In separate 8 well chambers, cells were treated with Smase for one hour, washed 3 times with 

HBSS/HEPES and then incubated with sphingomyelin at 37º C for >4 hours to get back to 
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the normal level of cellular sphingomyelin. To prepare SM working solution, first the SM 

stock (in 1:1 CHCl3+MeOH) was dried followed by dissolving that dried mass in 2µl EtOH 

and then made up the volume up to 1 ml with full growth medium. Sphingomyelin 

concentration of this resultant solution was 5µg/ml. After the 4 hour incubation with SM, 

cells were washed 3 times again with buffer and treated with the markers (SBD-TMR / DiI / 

J116S) as mentioned earlier and measured after suspended in indicator free DMEM. 

 

6.3 Results 

The main focus of this part of the work is to investigate the role of sphingolipids, (ceramide, 

glycosphingolipids, sphingomyelin), in the dynamic cell membrane organization. Here, the 

mobility of SBD along with other raft- and nonraft-associated markers have been compared 

under normal conditions versus conditions in which those lipids were depleted on the plasma 

membrane of SH-SY5Y neuroblastoma cells. Since the distributions of these lipids are highly 

heterogeneous, the membrane exhibits a range of diffusion coefficients due to the presence of 

rigid regions enriched with these lipids. Depletion or reduction of these lipids on cell 

membranes leads to disruption of those rigid clusters or so called “rafts”, and loose the raft-

like diffusion behavior. The diffusion coefficients of these markers have been used as the 

measure of the fluidity of the membrane where as the possible changes in the larger scale 

organization of the membrane  have been investigated by the means of ΔCCF images and 

their distribution histograms.  

In this context it should be mentioned that all the ΔCCF distributions shown in this study 

exclude the values (outliers) that didn’t fall in the specified distribution range. About 12 % of 

the measurements didn’t have any outliers, the rest about 88% of the measurements had 

outliers, but not in significant (< 2%) proportion with respect to the number of readings. Each 

measurement/data set consist of 420 ΔCCFs, and the number of outliers in each set of data 
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ranges from 0 to 8 with 2 exceptions where number of outliers were 12 and 21 respectively 

(still less than 5%).  [The chosen distribution range is from -0.5 to +0.5 and the absolute 

values for the outliers are typically between 0.5 and 1; with few rare exceptions where the 

value is >1.]  

 

6.3.1 Identification of the raft like diffusion behavior of J116S 

In order to get an overview whether the diffusion behavior of the new probe, J116S (average 

D being ~30 ms), is really associated with the raft fraction, the D distribution histogram of 

this marker has been compared with other established raft markers, CTxB and SBD. From 

this approach a large fraction (~40%) of D of J116S were found to be in the very slow 

moving (D >30 ms) category, similar to CTxB, SBD-TMR and SBD-OG and even a greater 

similarity with CTxB towards the contribution for the faster-moving particles (1-10 and 10-

20 ms ranges) (Fig. 6.1). This similarity with CTxB reflects in the average diffusion times as 

well, the D values being 28 ± 0.4 ms and 28 ± 2 ms for J116S and CTxB respectively. 

 

Figure 6.1: The comparison of distribution of diffusion times for J116S with other raft associated markers 
SBD and CTxB. Histograms show percentages of readings that gave τD in the indicated millisecond time ranges. 
The overall distribution of J116S is quite similar to CTxB-Alexa594 and the substantial fraction of readings in 
the low-mobility τD >30 ms range, typical for raft markers, is similar with SBD-TMR and SBD-OG as well. For 
all of these experiments, n is >50 measurements. 
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6.3.2 Effect of disruption of sphingolipid metabolism and recovery 

It was found from the diffusion coefficient analysis that, for unperturbed cells, all the raft 

associated probes, SBD-TMR, CTxB and J116S exhibits diffusion coefficients in the similar 

range which is much smaller than that of the non-raft associated marker DiI. Fumonisin B1 is 

a drug that disrupts the sphingolipid metabolism by inhibiting the enzyme ceramide synthase 

[264, 266, 267], and thereby disrupts the de novo biosynthesis of sphingolipid. Hence 

incubation with this drug results in the disruption of rafts from cell membranes and the raft 

associated proteins loss their raft-like diffusion behavior.  

 

Figure 6.2: Gradual effects of Fumonisin B1 treatment at different time points of the incubation. Average 
diffusion coefficients for different markers over the entire incubation period with the drug have been plotted 
here. Standard deviations denoted by those large error bars reflect the heterogeneity of the related cell 
membrane. 
 

The average diffusion coefficient of membrane bound SBD-TMR (0.8 ± 1.3 m2/s), CTxB 

(0.8 ± 0.7 m2/s) and J116S (1.1 ± 0.7 m2/s) gradually increases over a time interval of 120 

minutes by about a factor of 3-4 (2.9 ± 1.4 μm2/s), (2.9 ± 1.9 μm2/s) and (3.2 ± 2.1 μm2/s), 

respectively, whereas no such change was observed in case of DiI under similar 

circumstances (Fig. 6.2). These changes are consistent with the expectation that there is an 
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increase in lateral mobility of raft related lipids and proteins on the cell membrane after 

reduction of sphingolipids. No further changes in the diffusion coefficients of the raft 

associated markers took place for cells incubated up to 180 minutes with FB1 [(3.0 ± 1.6 

μm2/s), (2.9 ± 1.5 μm2/s) and (3.1 ± 1.7 μm2/s) for the markers, respectively]. 

Upon removing the drug to let the cells recover from its effect, the raft associated markers 

returned closer to their native state, which was reflected in the regained comparative slower 

diffusion coefficient values (1.5 ± 1.1 μm2/s), (1.3 ± 0.9 μm2/s) and (1.3 ± 1.5 μm2/s) for 

SBD-TMR CTxB and J116S respectively. The large standard deviations for all the values 

with or without the drug treatments indicate strong variations of diffusion coefficients on the 

cell membrane, due to the partitioning of the markers into different lipid regions [81] and in 

agreement with the previously proposed dynamic partitioning of raft models [53, 240, 241]. 

All these diffusion coefficient values indicate the importance of sphingolipids towards the 

raft-like dynamic behaviors of the corresponding markers, simultaneously the lack of any 

significant influence on the dynamics of non-raft or liquid disordered fraction of the cell 

membrane. The recovery studies reflects that the existence of microdomains depends upon 

chemical equilibrium of the cell membrane, removal of any external perturbation 

reestablishes the chemical balance of different lipids leading to the reformation of the raft like 

less mobile membrane clusters. 

The possible changes associated with the larger scale organization on the cell membrane due 

to the disruption and recovery of the sphingolipid metabolism  have been investigated by the 

ΔCCF frequency histogram based approach, described elaborately in the previous chapter. 

The heterogeneities of cell membrane should be reflected on analyzing the CCF values. 

Before the FB1 addition, the ΔCCF histograms of SBD and J116S labeled cells are 

characterized by comparatively flat and widely distributed profiles (Fig. 6.2 B). A 

comparatively sharp and narrowly distributed profile was obtained for CTxB where as DiI 
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show much narrow distribution of the histograms, indicating pretty even mobility of the lipid 

species for the corresponding membrane phase. Aggregate formations of CTxB on the cell 

surface [268] might be the reason for narrower distribution of the probe compared to the 

other raft associated markers SBD and J116S.   

 

Figure 6.3: Effects of disruption of the sphingolipid metabolism [by Fumonisin B1 treatment] on different 
markers at different phases of the experiments. Picture A shows the average diffusion coefficients for different 
markers before the treatment, after the treatment and after the recovery from the drug treatment. Error bars 
reflect standard deviations.  B, C and D represent CCF distributions for all the markers before the treatments, 
after the treatments and after the recoveries from the drug treatments respectively. Gaussian fits to the 
distributions are indicated by solid lines with respective colors. 
 

Narrowing in the distributions of all raft associated markers were observed for the ΔCCF 

histograms after 30 min of incubation with FB1 indicating a decrease in anisotropic 

movements. The distributions maintain their narrow profile over the entire incubation period 
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of 120 min (Fig. 6.4) and didn’t come back to any state similar to the non-treated cells, which 

was obtained in case of cytoskeleton disruption (Fig. 5.7). 

 

Figure 6.4: Gradual effects of Fumonisin B1 treatment over the entire incubation period on the 
distributions of the CCF histograms of different markers. A, B, C and D represent CCF distributions for DiI, 
CTxB, J116S and SBD respectively at different time points with the drug. Gaussian fits to the distributions are 
indicated by solid lines with respective colors. 
 

Therefore, by reducing the sphingolipid content of the membrane, FB1 makes a permanent 

impact on the fluidity (characterized by the diffusion coefficient), whereas the membrane 

organization shown by the ΔCCF distribution does not show significant changes in case of 

CTxB and J116S (Fig. 6.3 B and C). No further changes in ΔCCF distribution took place for 

cells incubated longer than 120 minutes with FB1. These results are consistent with earlier 

findings that FB1 treatment leads to an overall loss of sphingolipid associated membrane 
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domains [265]. On the other hand DiI maintained its narrow distribution profile throughout 

the entire experiment 

In order to check whether the lipid extraction leads to any permanent damage of the cell, 

recovery of the cells from the drug effects were also monitored. Measurements were 

performed after 24 hours since the drug was withdrawn from the medium. All the markers 

tend to come back closer to the condition before the drug treatment (Fig 6.3 D). Over the 

recovery period cells would have been able to synthesize sufficient amount of new 

sphingolipids to go back to the original distribution. Overall these findings show that the 

external perturbations to alter the lipid contents of the cell membrane can lead to a different 

equilibrium state for the membrane with altered dynamic condition, but that does not change 

the overall original properties of the membrane. Removal of the external perturbation effect 

can bring back the cells to their native state.  

 

6.3.3 Effect of inhibition of glycosphingolipid biosynthesis and recovery 
 

N-Butyldeoxynojirimycin (NB-DNJ) is a drug that inhibits the catalytic function of ceramide-

specific enzyme glucosyltransferase at the first step of the biosynthesis of glycosphingolipid 

[259]. Hence treatment with this drug also results in the disruption of rafts from cell 

membrane and the raft associated proteins loss their raft-like diffusion behavior. The drug 

treatment results in a 3 to 4 fold increase of the average diffusion coefficient of membrane 

bound SBD-TMR and J116 (0.8 ± 1.3 m2/s to 2.9 ± 2.1 μm2/s) and (1.1 ± 0.7 m2/s to 3.2 ± 

1.9 μm2/s) respectively, whereas DiI shows a very small decrease in the diffusion coefficient 

value (3.3 ± 2.1 m2/s to 2.7 ± 1.7 μm2/s) under similar circumstances (Table 6.1). These 

changes are also consistent with the expectation that there should be an increase in lateral 

mobility of raft related lipids and proteins on the cell membrane after reduction of 

glycosphingolipids. As gangliosides are sialylated glycosphingolipids, NB-DNJ treatment 
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probably reduces the amount of GM1 on the cell surface. This was reflected in an insufficient 

binding of CTxB to the cell membrane after this drug treatment, preventing the measurement 

from producing good ACFs. Dim fluorescence signals were obtained from the CTxB 

measurements, which resulted in very flat ACFs. Individual ACFs are similar to those 

recorded for the autofluorescence on SHSY5Y cells (Fig 5.2 A). 

 

 

Figure 6.5: Effects of inhibition of glycosphingolipid biosynthesis [by N-Butyldeoxynojirimycin treatment] 
at different phases of the experiments. Graph A shows the average diffusion coefficients for different markers 
before the treatment, after the treatment and after different stages of recovery. Error bars reflect standard 
deviations. Graph B represents the ACFs obtained for CTxB after the NB-DNJ treatment. Individual ACFs looks 
more similar to the autofluorescence ACFs obtained for SHSY5Y cells. Graph C shows the typical ACFs 
obtained for good ITIRFCS measurements with CTxB. 
 
Cells were then recovered over a period of 48 hours to let them synthesize new 

glycosphingolipids. Even after drug removal for24 hours the recovery was not complete, and 
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as at this point the diffusion coefficients of SBD-TMR and J116 were (1.4 ± 1.1 m2/s) and 

(1.3 ± 1.2 μm2/s) respectively. After 48 hours of recovery all the markers seemed to revert to 

their original state, displaying D values of 1.0 ± 0.7 m2/s for SBD, 1.0 ± 0.6 m2/s for J116S 

and 1.1 ± 0.7 m2/s for CTxB. replenishing cells with GM1 lead to a complete recovery of 

the cells from the effects of NB-DNJ, giving rise to D values of 0.9 ± 0.6 m2/s for SBD, 1.1 

± 0.7 m2/s for J116S and 0.9 ± 0.6 m2/s for CTxB. The consistent diffusion coefficient 

values after the recoveries suggest that the inhibition of biosynthesis of glycosphingolipids 

doesn’t damage the cell membrane composition permanently. Upon acquiring new 

glycosphingolipids either by synthesis by the cells themselves or by replenishment from an 

outside source, the cell membrane regains its original dynamic heterogeneity. 

Loss and regaining of the heterogeneity in terms or larger organizations on the cell surface is 

also reflected in the corresponding ΔCCF distributions. After treatment, consistent with the 

ACFs, CTxB didn’t produce any kind of well defined distribution. All the ΔCCF values were 

scattered over the entire distribution range of Fig. 6.6 A. SBD and J116S tend to squeeze 

towards a narrower distribution, with a higher central peak value. But surprisingly after drug 

treatment, DiI produced a comparatively flat Gaussian profile (Fig. 6.6 A). This might be due 

to increase in the ceramide level on the cell surface upon drug treatment.  

After 24 hours of recovery, all the markers still show profiles that represent perturbed 

conditions. After 48 hour recovery, all the raft associated markers tend to return much closer 

but not completely to their original, native state. SBD and J116S produce much wider 

distributions compared to their values before drug treatment while the distribution of CTxB is 

a bit narrower. DiI didn’t show any tendency to revert back to its original state even after 48 

hours of recovery. That indicates the increased amount of ceramide in the cell membrane 

might still be dispersed over the whole cell membrane even after 48 hours of recovery, and 

not neutralized due to normal cellular processes. Upon replenishment of GM1, all the 
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markers except SBD came back very closely to their ΔCCF distributions of the native state. 

DiI reverts to its usual narrower and J116S to its normal wider distributions, leaving CTxB in 

between. But SBD went even closer to a DiI-like distribution rather than flattening out.  

 

Figure 6.6: Effects of inhibition of glycosphingolipid biosynthesis [by N-Butyldeoxynojirimycin treatment] 
on different markers at different phases of the experiments. Picture A represents the CCF distributions for all 
the markers after the NB-DNJ treatments. B, C and D represent the same at different stages of recoveries, 24 
hour, 48 hour and GM1 add back respectively. Gaussian fits to the distributions are indicated by solid lines with 
respective colors. 
 

This is consistent with the biochemical studies that GM1 is not the preferred target of SBD, at 

physiological pH [123]. And thus SBD might concentrate in less number of larger pools 

instead if it’s usual distribution of large number of smaller clusters. Altogether these findings 

demonstrate the importance of glycosphingolipids for heterogeneous cell membrane.  
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6.3.4 Effect of sphingomyelin disintegration and recovery 

Sphingomyelinase from Bacillus cereus was used to disintegrate the cell membrane 

sphingomyelin into phosphocholine and ceramide [269]. It has already been mentioned that, 

for unperturbed cells, all the raft associated probes, SBD-TMR, CTxB and J116S display 

similar diffusion coefficients that are much smaller than the non-raft associated marker DiI.  

 

Figure 6.7: Gradual effects of disintegration of sphingomyelin into ceramide and phosphocholine [by 
Sphingomyelinase treatment] on different markers at different time points of the incubation period. Picture A 
represents the average diffusion coefficients for different markers at different time points of the incubation with 
the enzyme. Standard deviations denoted by those large error bars reflect the heterogeneity of the related 
membrane phase. B, C and D show the CCF distributions for DiI, J116S and SBD respectively over the entire 
incubation period with the drug. Gaussian fits to the distributions are indicated by solid lines with respective 
colors. 
 

Therefore incubation with this drug results in the disruption of rafts from cell membranes and 

the raft associated proteins lose their raft-like diffusion behavior. The average diffusion 
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coefficients of membrane bound SBD-TMR (0.8 ± 1.3 m2/s) and J116S (1.1 ± 0.7 m2/s) 

gradually increase over a time interval of 60 minutes by a factor of about 3-4 (2.7 ± 2.2 μm2/s) 

and (2.9 ± 1.9 μm2/s) respectively, whereas no such change was observed in case of DiI 

under the same circumstances (Table 6.1). These changes are consistent with the expectation 

that there is an increase in lateral mobility of raft related lipids and proteins on the cell 

membrane after reduction of sphingomyelin [271]. 

 

Figure 6.8: Effects of disintegration of sphingomyelin [by Sphingomyelinase treatment] on different 
markers at different phases of the experiments. Picture A shows the average diffusion coefficients for different 
markers before the treatment, after the treatment and after the add back of sphingomyelin. Error bars reflect 
standard deviations.  B, C and D represent CCF distributions for all the markers before the treatments, after 
the treatments and after the sphingomyelin add back respectively. Gaussian fits to the distributions are 
indicated by solid lines with respective colors. 
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Similar to earlier occasions, changes in the membrane heterogeneity due to drug effects were 

analyzed based by ΔCCF distributions. It was already mentioned that the distributions of 

ΔCCF histograms for SBD and J116S on untreated cells are comparatively flat and wide (Fig. 

6.7 B) whereas DiI displays a comparatively sharp and narrowly distributed profile. Upon 

adding the enzyme Smase, no significant change was observed in the distributions of ΔCCF 

histograms for J116S. The histograms maintain their wider distribution profile over the entire 

incubation period of 60 min (Fig. 6.7 C). SBD showed some narrowing and a small increase 

in the central peak height after 20 min of incubation with the enzyme and then gradually 

decreased with time until it reached a similar range of that of non-treated cells after 60 min of 

incubation (Fig. 6.7 D).  

Surprisingly, DiI showed a gradual decrease in the central peak height of the distribution over 

the entire 60 minutes of incubation, indicating an increase in anisotropic or restricted 

movements in the liquid disordered phase of the cell membrane. This might be due the 

increased level of ceramide on the cell surface that had been produced due to the 

disintegration of sphingomyelin and lifts up the heterogeneity of the membrane fluid phase.  

After adding back sphingomyelin (SM) from an external source, the cells regained their slow 

mobility to some extent indicating the reformation of rigid membrane domains (Fig. 6.3 D). 

But the elevated amount of ceramide on the membrane surface might restrict the formation of 

these domains to a certain limit, and that is why a complete recovery (similar to the 

recoveries from the other two drug treatments) was not obtained [272].  

The ΔCCF distribution of SBD and J116S didn’t show any significant changes at the end of 

the incubation with the enzyme Smase, and the measurements after SM replenishment also 

didn’t that scenario (Fig. 6.8 D).  But the elevated amount of ceramide in the fluid phase of 

the membrane was not neutralized by the external addition of SM. As a result the ΔCCF 
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histogram of DiI couldn’t reach back to its original state of a narrow distribution which is an 

indication of an isotropic and homogeneous fluid phase.  

Therefore, the increase in ceramide content of the membrane, due to the Smase function 

alters the membrane fluidity (reflected by the diffusion coefficient), and leaves a permanent 

impact on the membrane organization shown by the ΔCCF distribution (Fig. 6.7 A and Fig. 

6.7 C). This is in agreement with other findings which show that Smase treatment leads to an 

overall loss of sphingomyelin and an increase in ceramide associated membrane domains 

[273]. These findings show that the effect exerted by Smase alters the lipid contents of the 

cell membrane and can lead to a deep impact on the dynamic organization of the cell 

membrane.  

 

Marker 

  Diffusion Coefficient (D) in µm2/sec 

Before 

treatment

FB1 treatment NB-DNJ treatment Smase treatment 

After 

treatment 

After 

recovery

After 

treatment

After 

recovery

After 

treatment 

After 

recovery

DiI 3.3 ± 2.1 3.2 ± 1.8 3.1 ± 1.4 2.7 ± 1.7 2.8 ± 1.8 2.9 ± 2.1 2.8 ± 1.7

CTxB 0.8 ± 0.7 2.9 ± 1.9 1.3 ± 0.9 -- 0.9 ± 0.6 -- -- 

J116S 1.1 ± 0.7 3.2 ± 2.1 1.3 ± 1.5 3.2 ± 1.9 1.1 ± 0.7 2.9 ± 1.9 1.8 ± 1.4

SBD 0.8 ± 1.3 2.9 ± 1.4 1.5 ± 1.1 2.9 ± 2.1 0.9 ± 0.6 2.7 ± 2.2 1.9 ± 1.4

 
Table 6.1: Average diffusion coefficients of raft (SBD, CTxB and J116S) and non-raft (DiI) markers 
without any drug treatment, after treatment with FB1, NB-DNJ and Smase and after the recoveries respectively. 
 

6.4 Discussion 
 
Since the effects on ΔCCF are different from the effects on diffusion after various treatments, 

the findings of this study strongly indicate that the type of information about overall dynamic 

organization of the live cell surface obtained from ITIR-FCCS is unique and cannot be 

obtained by conventional measurements of diffusion coefficients alone. Considering the 

results obtained from DiI experiments for example, no significant changes took place in the 
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diffusion coefficient values upon the described drug treatments; hence it was impossible to 

infer from this parameter itself any changes in the liquid disordered phases due the effects of 

drug treatment. ΔCCF distributions quite clearly indicate that the liquid disordered phase of 

the cell membrane became more heterogeneous upon NB-DNJ and Smase treatments. 
This heterogeneity in the liquid disordered phase might arise due to the increase in ceramide 

level upon NB-DNJ and Smase treatments [270, 271]. FB1 treatment doesn't lead to 

production of any ceramide and consequently this treatment doesn’t show any significant 

change in the ΔCCF distributions of DiI. The formation of ceramide gel domain due to the 

Smase treatment is well supported by the findings of Silva & Prieto, Alonso & Goni and 

others [273-275].  Once produced, the ceramide possibly doesn’t leave the cell membrane 

even after SM replenishment, which was reflected in the incomplete recovery of the ΔCCF 

distribution profile for DiI. A similar phenomenon happens in case of NB-DNJ treatment and 

recovery. The production of ceramide on the membrane surface, leading to the formation of 

ceramide domains, was documented before [276-278]. 

However SBD and the other markers associated with the ordered lipid domains or rafts of the 

cell surface have been influenced by the alteration of all lipid levels. For all of these cases 

diffusion coefficients increased by factors of 3-4 to become similar to that of DiI (non-raft 

phase) and went back closer to their unperturbed state upon recovering the respective lipid 

levels. These findings indicate the essentiality of each of those lipids towards a raft like 

diffusion behavior. All three raft associated markers show changes in their ΔCCF 

distributions upon drug treatments. Sphingolipid reduction resulted in decrease in 

heterogeneity or raft association for all the liquid ordered phase markers. Glycosphingolipid 

reduction leads to decrease in heterogeneity for SBD and J116S and almost blocked the 

uptake of CTxB. Gangliosides are composed of glycosphingolipids and sialic acids; hence 

NB-DNJ treatment significantly reduces the binding site for CTxB, the ganglioside GM1 on 
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the cell surface [279, 280]. However, the sphingomyelin reduction didn’t lead to a significant 

change in the ΔCCF distributions of the raft associated markers SBD and J116S. The 

increased cholesterol level upon Smase treatment [281-283] might retain the heterogeneity 

and rigidity of the raft phase and didn’t allow homogenizing too much with the surrounding 

liquid disordered phase. 

Overall, it seems that the cell itself cannot reestablish the chemical equilibrium quickly 

enough in the presence of the drugs which cause the alteration of the sphingolipid and 

glycosphingolipid levels on the cell surface. Once the external perturbation sources are 

removed and cells are allowed to settle down for a long time period, then only cells can revert 

to their native states. Therefore, it can also be inferred that alterations of these lipid levels do 

not lead to any permanent irreversible damage of the cell surface. 

 

6.5 Summary 

The ΔCCF histogram distribution is a good tool to measure the anisotropic translocation and 

demonstrate the heterogeneity in membrane organization. Successful application of the 

method has been shown by observing various liquid ordered- and disordered- phase 

associated markers under different lipid altered conditions. The findings of this part have 

indicated the possibility of formation of gel phase due to increased ceramide levels on the cell 

membrane [273, 274]. This will add interest towards the study of the dynamic properties of 

gel domains on live cell surface in future. Finally, the importance of sphingolipids, 

glycosphingolipids and sphingomyelin towards the dynamic rigidity and heterogeneity of the 

liquid ordered phase of the cell membrane have been addressed. 
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Chapter 7: 
 

Conclusion and Outlook 
 

 

7.1 Conclusion 

In the fields of membrane heterogeneity and lipid trafficking, one of the most interesting and 

challenging projects is the tracing of the sub-cellular movement and localization of different 

lipid species, such as the various sphingolipids and glycolipids. The major limitation 

associated with this field was the lack of well known reliable markers that can be used to 

trace the lipid microdomains or sphingolipids in living neurons or other cells. Hence, the 

characterization of a potential marker as a tool to distinguish the different pathways of 

various types of sphingolipids and their behavior in perturbed conditions (e.g. cholesterol 

depletion, sphingolipid modification) became an important task. Molecular fluorophore 

conjugated, first 25 amino acid sequence of Amyloid beta, containing the V3 loop structure 

and termed as sphingolipid-binding domain (SBD), has been characterized for the 

sphingolipid rich domains found in the plasma membrane that constitute rafts.  

The biochemical studies done on synthetic membranes for SBD binding produce evidence 

that SBD interacts with raft lipids including sphingomyelin, cholesterol, and 

glycosphingolipids, but not much specific interaction to any particular ganglioside [123]. 

Lipid-protein interaction assays with DRM fractions and fat blots also have been done to 

determine SBD’s affinity for raft-type lipids. Additionally, results from pharmacological 

inhibitor studies provide evidence for the glycosphingolipid dependence of SBD uptake at the 

membrane [81]. Thus from those studies it was clear that, SBD can potentially be used to 

trace the intracellular pathways of sphingolipid- containing domains. Moreover, the fact that 
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SBD behaves similarly in drosophila and mammalian neurons validates its potential use as a 

tool in the field of lipid trafficking [123]. All those information obtained for SBD from the 

biochemical studies are the basis for the biophysical studies performed in this study. 

Along with the biochemical and bio-imaging based approach by other group members, the 

FCS based biophysical studies done in this project help to characterize SBD as an efficient 

lipid raft marker that can trace the trafficking and dynamic behavior of sphingolipids. Further, 

the dependency of SBD’s raft association and lateral movement on the cholesterol content of 

the cell surface has also been shown in this study. Upon depletion of cholesterol, the 

diffusion rate of SBD increases to a rate that is characteristic for non-raft associated probes 

like DiI or BODIPY-SM.  

The fact that SBD doesn’t get taken up via a clathrin-dependent pathway and the findings, 

that the highly prevalent clathrin-independent CLIC/GEEC endocytic pathway is regulated by 

Rho GTPase activation has increased the interest about the identification of the endocytic 

machinery and membrane-trafficking itineraries of these pathways. In this study, it has been 

shown that SBD uptake is dependent on two different mechanisms – one is flotillin dependent 

uptake and the other is cdc42 dependent uptake. Generally these two pathways are 

independent and parallel to each other.  Blocking of either flotillin or cdc42 dependent 

pathways results only in partial suppression of the uptake of SBD into cells, whereas 

knocking out both pathways simultaneously nearly eliminates the SBD uptake. This suggests 

that there might be an additive relationship between these two mechanisms. By contrast, 

drastic changes in the raft-like diffusion behavior of SBD has been seen when either or both 

of these uptake pathways were perturbed. In summary, accumulation of SBD in the raft 

components is monitored by the endocytic accessory proteins such as cdc42 and flotillin.  

After establishing SBD as a lipid ordered phase associated marker, it was used for further 

understanding of the dynamic cell membrane organization between liquid ordered and 
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disordered phase and the importance of some membrane components towards this 

organization. This goal has also been successfully achieved by using different markers for the 

liquid ordered and disordered phase under different perturbed conditions including 

cholesterol removal, cytoskeleton de-polymerization, alteration of sphingolipid and 

glycosphingolipid content of cell surface. It has been found that the mobility of SBD is 

influenced greatly by cholesterol and the cytoskeleton. Disruption of the cytoskeleton results 

in lifting the diffusion coefficients of SBD to the similar range of DiI, the liquid disordered 

phase marker, while removal of cholesterol also increases the diffusion coefficient of SBD, 

but to a lesser extent. In case of reduced sphingolipid, glycosphingolipid and sphingomyelin 

on the cell surface, the lateral movement of SBD (and the other raft associated markers as 

well) increased to become similar to that of the non-raft phase and went back closer to its 

unperturbed state upon reverting to their respective lipid levels. Therefore, the alterations of 

these lipid levels do not lead to any permanent irreversible damage of the cell surface. Once 

the external perturbation sources are removed and cells are allowed to settle down for 

sufficient time period, cells can go back to their native states and regain raft association. This 

has been reflected by the diffusion of SBD and other raft associated markers. Moreover, the 

outcome of this study are consistent with the proposal that the cell membrane is organized on 

different length scales, namely below the resolution limit in nanodomains and above the 

resolution limit of raft-phases. 

To address this different length scale based heterogeneity of the membrane, recently 

developed imaging FCS methods, ITIR-FCS and ITIR-FCCS, were successfully applied in 

this study. The diffusion coefficients extracted from ITIR-FCS experiments are in good 

agreement with the findings of other research groups [52, 53], with the advantage of 

multiplexing readings in single measurement time. The exponential decay and therefore 

limited penetration depth of the evanescent excitation field provides the TIR illumination 
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mode a good inherent axial resolution.  This method leads to strong reduction of the 

background signal from the bulk and consequently suppresses the cross-talk between the 

neighboring pixels. Therefore techniques based on this illumination mode are very much 

suitable for surface studies. The instrumental setup of ITIRFCS is equipped with an EMCCD 

camera as the detector to make the technique efficient for measuring the free diffusions, flow 

as well as directed movements on whole cell membranes. In this study, the image based FCS 

has been introduced with its immediate applications in the field of live cell membrane 

dynamics. 

The newly established ITIR-FCCS method based on CCF approach has been successfully 

applied to study the diffusion and transport processes to resolve the dynamic heterogeneity in 

cell membranes. The membrane heterogeneity has not been addressed so easily still 

convincingly, by any other spectroscopic methods yet. This makes ITIR-FCCS more unique 

and important technique. Overall, ITIR-FCCS with its adequate spatial and temporal 

resolution has come up as a powerful biophysical tool to provide novel insights into 

membrane organization. 

Finally, this research has introduced a novel peptide probe and a new technique to resolve the 

membrane heterogeneities which will help to identify the processes that lead to different 

neurodegenerative and other diseases associated with these. 

 

7.2 Outlook 

SBD has come up as a novel fluorescent tracer for the cholesterol-dependent, 

glycosphingolipid-containing microdomains in living cells. Its diffusion parameters along 

with biochemical and bio-imaging studies already establish it as a good lipid raft associated 

probe. The probable mechanism of its uptake by live cells has been described in this study. 

However, a number of quarries are yet to address related to this probe.  
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SBD gets taken up by a Flotillin and Rho GTPase dependent pathway in a cholesterol and 

sphingolipid dependent manner. However, it is still unclear what is the exact binding site or 

receptor for SBD on cell surface. In case of CTxB, the probe used as a positive control in this 

work, ganglioside GM1 is the sole binding target. Hence, it’s easier to select the cell types for 

which this probe can be used as membrane tracer; cells not having GM1 can easily be 

eliminated. Similarly, with the knowledge of proper binding sites, it will also be easier to 

choose suitable cell types having the appropriate glycolipids for SBD binding.  

Some studies including Kusumi et al., Pinaud et al., suggest that the restricted movements of 

the raft associated markers are due to their confined movements inside a raft cluster and once 

that cluster dissociates the marker hop to anther cluster and keep on doing so. This behavior 

of raft associated marker sometimes describes their bimodal diffusion behavior as well. 

Single particle tracking with SBD can help to better understand this hopping behavior of the 

raft associated proteins / receptors and it can also focus some light on the existence time of 

any individual raft cluster.  

For further studies about SBD and its behavior, fluorescence anisotropic measurements can 

be done to get an overview about the shape and orientation of the molecule at bound state and 

any possible aggregation. 

Although it has been indicated in literature including our study that raft clusters are of at least 

two organizational length scales, there is still no direct evidence saying whether a single 

cluster consist of only one type of receptor or can contain different binding receptors. Dual 

color spatial cross-correlation of SBD with other raft markers like CTxB or J116S can 

address this question, to understand the receptor composition of rafts / nanoclusters on live 

cell surface.  

Finally, broadening of the applications of the image based FCS and FCCS techniques can be 

carried out. With total internal reflection illumination mode the technique is limited to the 
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lower membrane of a single cell layer type sample only due the exponential decay of the 

evanescent wave field. But with single plane illumination mode the imaged based correlation 

and cross-correlation methods can be used deep inside the tissue as well, and then these 

imaging based FCS and FCCS will have much broader applicability and acceptability. 
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