
Scope-aware Data Cache Analysis

for WCET Estimation

Huynh Bach Khoa

Bachelor of Computing

School of Computing

National University of Singapore

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48637551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Acknowledgement

First and foremost, I thank Lord God in heaven for His providence, His words, and the blessings

I enjoyed. I thank Him for the opportunity to pursuit graduate study, for all the people that I

meet, and for their kindness and their supports.

Next, I wish to express my sincere gratitude to my supervisor, A/P. Abhik Roychoudhury. I

am very grateful for his encouragement, his patience and his advices throughout my research.

I have special thanks to my senior Ju Lei for his discussions, his various helps and the

time we worked together. Besides, I thank my fellow labmates: Wang Chundong, Sudipta

Chattopadhyay, Dawei Qi, Vivy Suhendra, Liang Yun, Huynh Phung Huynh, to name a few. I

thank my friends in church and my roommates. I am grateful for their friendship through out

my study, and I really enjoyed my time with these brilliant people.

Finally, I wish to thank my parents for their unconditional love.

Summary

Caches are widely used in modern computer systems to bridge the increasing gap between pro-

cessor speed and memory access time. However, presence of caches, especially data caches,

complicates the static worst case execution time (WCET) analysis. Access pattern analysis

(e.g., cache miss equations) are applicable to only a specific class of programs, where all

array accesses must have predictable access patterns. Abstract interpretation-based methods

(must/persistence analysis) determines cache conflicts based on coarse-grained memory access

information from address analysis, which usually leads to significant over-estimation.

In this thesis, we first present a refined persistence analysis method which fixes the poten-

tial underestimation problem in the original persistence analysis. Based on our new persistence

analysis, we propose a framework to combine access pattern analysis and abstract interpreta-

tion for accurate data cache analysis. We capture the dynamic behavior of a memory access

by computing its temporal scope (the loop iterations where a given memory block is accessed

for a given data reference) during address analysis. Temporal scopes as well as loop hierarchy

structure (the static scopes) are integrated and utilized to achieve a more precise abstract cache

state modeling. We also prove the correctness of the proposed new persistence analysis. Ex-

perimental results shows that our proposed analysis obtains up to 74% reduction in the WCET

estimates compared to existing data cache analysis.

3

Contents

Acknowledgements 2

Summary 3

1 Introduction 7

1.1 Background and Motivations . 7

1.2 Thesis Contributions . 8

2 Related work 10

3 Correcting persistence analysis 13

3.1 Assumptions and Notations . 13

3.2 Persistence Analysis . 14

3.2.1 Overview . 14

3.2.2 Safety issue . 19

3.2.3 Correcting the persistence analysis . 20

3.3 Safety Proofs of Corrected Persistence Analysis 25

3.3.1 Structure of the proof . 27

3.3.2 Safety of update function . 28

3.3.3 Safety of join function . 29

3.3.4 Safety of set update function . 31

3.3.5 Termination of the analysis . 32

4

4 Scope-aware Persistence Analysis 33

4.1 Motivations . 33

4.2 Temporal Scope and Address Analysis . 35

4.3 Scope-aware Persistence Analysis . 37

4.3.1 Overall framework . 39

4.3.2 Scope-aware update and join functions 40

4.3.3 ACS computation of the motivating example 45

4.4 Safety proofs of scope-aware persistence analysis 45

4.4.1 Structure of the proof . 47

4.4.2 Safety proof of scope-aware update function 48

4.4.3 Safety proof of scope-aware join function 51

4.5 Cache Miss Computation . 53

4.6 Experimental Results . 55

5 Discussion and Conclusion 59

5

List of Figures

3.1 Running example and analysis result of persistence analysis [11] 17

3.2 Analysis result of with proposed update and join function 21

3.3 Cache update for set of possible access addresses 24

4.1 Motivating example . 33

4.2 Address expressions and temporal scopes . 36

4.3 Multi-level analysis and results for the motivating example in Figure 4.1 39

4.4 Scope-aware ACS computation for L2 of the motivating example in Figure 4.1 43

4.5 Temporal scopes and loop iterations . 54

4.6 WCET estimation results from different analyses 56

6

Chapter 1

Introduction

1.1 Background and Motivations

Worst-case Execution Time (WCET) is a key metric for real-time embedded software. Static

WCET analysis provides a safe bound on the maximum execution time of a program on a

target platform over all possible program inputs. For cost-sensitive domains like automotive

electronics, the WCET estimation must be tight for cost-effective design and resource dimen-

sioning. However, modern processors contain performance enhancing features such as caches

and pipeline whose run-time timing behavior is hard to predict statically. This makes micro-

architectural modeling (building timing models for micro-architectural features such as caches)

a key component of WCET analysis.

Timing models of instruction caches for WCET analysis have been well-studied [23]. On

the other hand, static timing analysis of data cache behavior remains a major challenge for

WCET analysis methods and tools. Accurate data cache modeling is of paramount importance

for tight WCET analysis of data-intensive routines. However, the run-time computed access

address (which data locations are accessed by different instances of an instruction) and dynamic

cache behavior make it difficult to develop a tight yet flexible and scalable static analysis.

Conservatively assuming that every memory access results in a cache miss yields a safe but

pessimistic WCET estimate.

7

Different static data cache analysis techniques have been developed so far. Access pattern-

based techniques (e.g., cache miss equation framework in [13]) achieve tight estimation, but

are applicable to programs that contain only regular accesses with predictable patterns. On

the other hand, abstract interpretation-based data cache analysis techniques ([11, 20]) work on

general programs but suffer from large over-estimation. In this thesis, we seek to combine the

strengths of these two approaches. We observe that the over-estimation in existing abstract

interpretation-based data cache analysis stems from the globally defined abstract domain. In

particular, a coarse-grained address analysis is adopted to compute a set of memory blocks

possibly referenced by a memory access, while temporal property of the access is ignored

(e.g., a memory block can be accessed in only certain iterations of a loop execution). The

approximation in the address analysis causes substantial over-estimation in WCET estimates.

Furthermore, traditionally the abstract interpretation computes fixed point of the abstract cache

state conservatively for the entire program execution (disregarding cache behavior in specific

program scopes), leading to large over-estimation.

In this work, we propose a general and accurate static data cache analysis method by com-

bining access pattern analysis and abstract interpretation. For abstract cache state computation,

we extend the cache behavior categorization of “persistence” as in the persistence analysis of

[11] to capture the access pattern information. In our new persistence analysis framework, we

also fix an error in the original persistence analysis which may result in underestimation of the

cache misses.

1.2 Thesis Contributions

Our contributions include the followings:

Firstly, given a data reference D and its access pattern, we derive not only the set of possible

accessed memory blocks, but also their temporal scopes. The temporal scope of a memory

block m captures the loop iterations in the program where m may get accessed. Our proposed

data cache analysis decides whether a memory block is persistent within its temporal scope. In

8

particular, two memory blocks accessed in mutually exclusive temporal scopes do not conflict

with each other within their scopes, even though they are mapped to the same cache set.

Secondly, we also consider the static scopes in our analysis. Similar to the multi-level

cache analysis for instruction cache proposed in [2], we maintain a copy of abstract data cache

states for each loop nesting level of the program execution. As a result, certain memory blocks

can be classified as persistent within a local scope of program execution (though it can not be

guaranteed to be persistent globally).

Thirdly we utilize scope-aware persistence while computing the number of data cache

misses. In original persistence analysis, a data reference is classified as globally persistent

throughout the program execution. However, our persistence analysis framework can guaran-

tee that a data reference is persistent within certain temporal and static scopes.

Last but not the least, we have integrated our proposed framework into the open-source

Chronos WCET analyzer ([9]). The experimental results show that our proposed scope-aware

persistence analysis produces up to 74% tighter WCET estimation comparing to the original

analysis.

9

Chapter 2

Related work

Early work in data cache analysis classifies data accesses into static data accesses for scalar

references and dynamic data accesses for array and pointer references. [8] performs data cache

analysis for static data accesses as with instruction memory accesses, and conservatively as-

sumes each dynamic data access will cause two cache misses. One cache miss is because the

dynamic access itself may access a data memory not in the cache. Another cache miss is be-

cause the dynamic access may evict a useful cache line that leads to a cache hit in the result

cache analysis for static data accesses. This approach leads to significant over-estimation when

there are more dynamic data accesses than static data accesses.

To guarantee cache hit without knowing the access pattern, [14] proposes using pigeonhole

principle. In a loop, if a data reference D may access n1 possible distinct memory blocks

and they will not be evicted out due to cache conflict, then D has at most n1 cold misses. If

D is executed n2 times in that loop, it will have at least n2 − n1 cache hits. This approach

effectively detects cache reuse if the cache can hold all possibly accessed memory blocks in a

loop. However, it could not guarantee cache reuse when cache conflicts occur, or detect cache

reuse across different loop-nests.

[17] extends their instruction cache conflict graph (CCG) to data CCG to capture possible

cache reuses of data accesses as constraints in their integer linear programming (ILP) frame-

work. However, they require a separate constraint for each possible cache reuse between two

10

possible accessed addresses. This causes scalability problem for large arrays, given the com-

plexity of solving ILP problem. No experimental result is reported.

Many successful techniques for instruction cache analysis using abstract interpretation have

been extended for data cache such as must analysis [20] and persistence analysis [11]. They

compute an abstract cache state (ACS) that conservatively represents all possible concrete cache

states at a program point under all circumstances. From the ACS, they derive the pessimistic

cache behavior for each data reference. However, the ACS is insensitive to local behavior (e.g.

behavior within subset of loop iterations). To overcome this problem, [20] proposes virtual loop

unrolling, which makes the analysis computationally expensive. Moreover, in the presence of

input-dependent branches, even with unrolling, no memory block could be guaranteed to be

loaded to the cache for later reuse in must analysis.

While the behavior of data accesses is very complex, in many real program the access pat-

tern of array accesses follows a regular, loop-affine pattern. The cache miss equation (CME)

framework [13] and Presburger Arithmetic formulation [4] apply mathematical model to an-

alyze the cache behavior of those accesses. The CME framework computes the reuse vector

for each regular reference and generates a set of Diophantine equations to characterize whether

the cache reuse can be realized, or interfered by cache conflicts. The solutions of this equation

set are the possible conflict points, from which they can derive the number of cache misses.

[18] extends the CME framework to analyze scalar accesses and more general loop-nest, and

reduces over-estimation at the cost of higher computational complexity. The Presburger Arith-

metic framework is exact and can handle certain non-linear access patterns; however, it has

super-exponential computational cost in the worst case. Aside being computationally expen-

sive, these approaches could not handle programs with input-dependent branches and unpre-

dictable data accesses. Very recently, [12] presents an analytical model for analyzing worst case

performance of data cache without knowing the base addresses of data structure (e.g. array, ob-

ject). They analyze the reuse vector of each data reference, and estimate the worst case conflict

rate (the ratio of evicted lines over total accessed lines). Their approach is fast; however, as with

other reuse-based analysis, they are also restricted to regular loop-affine access pattern without

11

input-dependent branches and irregular accesses. Because these approaches rely on mathemat-

ical model, it is hard to combine them with the WCET analysis of other micro-architecture such

as with instruction cache to perform unified cache analysis [5], or cache analysis for multi-core

[6].

Array access analysis of CME framework is typically performed at high level. [25] pro-

poses a framework to detect loop-affine array accesses at binary code level. From the array

access pattern, they could guarantee the cache reuse of data blocks that must be loaded in the

cache in previous loop iterations. However, this approach requires analyzing each loop itera-

tion individually. As it is computationally expensive, for a loop which there is no conflicting

line, they determines the worst case cache miss as the maximum data blocks could be accessed

according to the access pattern. However, they do not consider unpredictable data accesses, or

discuss how possible cache conflict will influence the worst-case cache performance.

[22] identifies single data sequence (SDS) data references in program fragments where

both control flow and access addresses are input independent. Their cache performance can

be determined by simple simulation. They bound the impact of non-SDS data references on

simulation result using a cache miss counter. The cache miss counter is increased by one

for each data access that causes cache conflict with SDS data references. To bound cache

performance of non-SDS data references, they perform persistence analysis to determine if data

memory can be evicted from the cache once it is loaded. If all possibly accessed memory blocks

of a data reference D are persistent, D will have only one cold miss for each possibly accessed

memory block, while its other accesses must result in cache hits. The SDS classification is

quite restrictive, while the persistence analysis does not consider access pattern and could not

capture cache reuse when there are possible cache misses, similar to [11].

12

Chapter 3

Correcting persistence analysis

3.1 Assumptions and Notations

In our cache analysis, we consider a memory hierarchy containing separated L1 instruction and

data caches. We use the following notations to represent the instruction/data cache configura-

tion and accessibility.

• Capacity C: size of the cache in number of bytes

• Block (line) size B: number of contiguous bytes to be loaded from memory to cache on

each memory access.

• Associativity A: A-way set associative cache means that information stored at some

addresses in memory could be loaded into any of A locations in the cache (depends on

the cache replacement policy).

• Cache set F = 〈f1, . . . , f(C/B)/A〉: A cache set fi is a sequence of cache blocks (lines)

CL = 〈l1, . . . , lA〉 which contains all the A ways that can be addressed with the same

index. set(m) returns the cache set memory block m maps to.

Reineke et al. [19] has investigated the predictability of popular cache replacement policies

such as LRU, PLRU, MRU, and FIFO. Their analysis indicates that LRU policy is the most

13

suitable for timing critical system, and other policies (PLRU, MRU, and FIFO) are considerably

worse in their predictability benchmark. As a result, we choose the LRU policy for our analysis.

We assume LRU (Least Recently Used) replacement policy is used to determine relative

age of a memory block in the A-way associative cache set. Given a concrete cache state c at a

program point p, the concrete set state si describes the state of cache set c[fi] at p. If si(lx) = m,

memory block m has a relative age x (1 ≤ x ≤ A) in cache set c[fi], and is in cache line lx.

The cache line l1 contains the youngest (most recently used) memory block, while lA contains

the oldest (least recently used) memory block. We assume write-through with no-write-allocate

policy for a memory store instruction in our discussion of data cache analysis. However, our

data cache analysis framework is applicable to different write policies with minor amendments

in the analysis.

3.2 Persistence Analysis

3.2.1 Overview

Persistence analysis determines if a memory block m is persistent: once loaded, it will not be

evicted out of the cache in any possible execution. Therefore, the first access to a persistent

memory block m may encounter a miss. However, all subsequent accesses are guaranteed to

result in cache hits.

To determine if a memory block m is persistent at a program point p, the persistence anal-

ysis [10, 11] computes an abstract cache state (ACS) to determine the maximum relative age x

for each memory block m which may be in the cache when the program control reaches p in all

possible executions. If x is not higher than cache associativity A, once loaded, m is guarantee

to remain in the cache at program point p. As a result, m is classified as persistent and causes

at most one cold miss.

An ACS ĉ = 〈ŝ1, ..., ŝn/A〉 at a program point p models an A-way set associative cache

with n cache lines, n/A cache sets. Each abstract set state ŝk = 〈l1, ..., lA, l>〉 consists of A

cache lines l1, ..., lA and an additional evicted cache line l> to record evicted memory blocks.

14

For each memory block m, ŝ = ĉ[set(m)] returns the abstract set state ŝ in ACS ĉ where m is

mapped to. If m ∈ ŝ(lx), m has maximal relative age x in all possible concrete cache states

when program control reaches p. If m is in evicted line ŝ(l>), the maximum relative age of m

is greater than cache associativity A, so it may be evicted from the cache in some executions.

Persistence analysis can be performed on the control flow graph (CFG). A CFG consists of

a set of node V = {n1, ..., nk} connected by directed edges. Each control flow node nk is a

basic block where the program execution is strictly sequential without any jump or jump target.

At basic block nk with incoming ACS ĉin, if the program accesses memory block m, the cache

update function ÛĈ computes the output ACS ĉout after accessing m. If a basic block nk has

two or more incoming ACSs, the cache join function ĴĈ combines upper bound of all incoming

ACSs into the representative input ACS ĉin of node n. The persistence analysis repeatedly

traverses through the CFG and performs these computations until the input ACSs of all nodes

reach fixed-point.

Given an accessed to memory block m and a concrete cache state c, the updating of A-way

set associative cache is modeled using the concrete cache update function UC [10] as follows:

UC(c,m) = c[set(m) 7→ US(c[set(m)],m)]

The concrete cache update function UC models the change in cache set s = set(m) where

15

referenced memory block m is mapped to using concrete set update function US

US(s,m) =



l1 7→ {m},

li 7→ s(li−1)|i = 2...h

li 7→ s(li)|i = h+ 1...A

if∃h ∈ {1..A},m ∈ s(lh)

l1 7→ {m},

li 7→ s(li−1)|i = 2...A

otherwise

From the concrete update function, Ferdinand and Wilhelm [11] proposes an abstract cache

update function ÛĈ to compute the ACS after an access to memory block m as follows:

ÛĈ(ĉ, m) = ĉ[set(m) 7→ ÛŜ(ĉ[set(m)],m)]

ÛŜ(ŝ, m) =



l1 7→ {m},

li 7→ ŝ(li−1)|i = 2...h− 1

lh 7→ ŝ(lh) ∪ ŝ(lh−1) \ {m}

li 7→ ŝ(li)|i = h+ 1...A,>

if∃h ∈ {1..A},m ∈ ŝ(lh)

l1 7→ {m},

li 7→ ŝ(li−1)|i = 2...A

l> 7→ ŝ(l>) ∪ ŝ(lA) \ {m}

otherwise

The abstract set update function ÛŜ computes the change in abstract state set state ŝ =

ĉ[set(m)] after accessing m. It brings (or renews) the newly accessed memory block m to

youngest cache line l1. If m /∈ ŝ, ÛŜ ages all memory blocks m′ currently in ŝ. If m ∈ ŝ(lh),

for each m′ ∈ ŝ(lk), if m′ is younger than m in the ACS (k < h), m will age m′ to ŝ(lk+1) .

16

a

b

c

a

B0

B1 B2

B4B3

B5

b
a

a
c

b
a,c

b
a, c

a
c, b

a,b,c

out
Bs 3
) out

Bs 4
)

in
Bs 5
)

out
Bs 3
) out

Bs 4
)

in
Bs 5
)

1l
2l
Τl

1l
2l
Τl

1l
2l
Τl

1l
2l
Τl

1l
2l
Τl

1l
2l
Τl

(a) CFG (b) 1st iteration (c) Final ACS

Figure 3.1: Running example and analysis result of persistence analysis [11]

Otherwise (k ≥ h), m′ remains in ŝ(lk).

If a CFG node n has two immediate predecessors n1 and n2, a join function JĈ combines

the output ACSs of n1 and n2 to form the input ACS of n. The new relative age of a memory

block m is equal to the maximum age of its existences in all output ACSs of the predecessor

nodes of n. Let ĉ1, ĉ2 be the output ACS of predecessors n1, n2, join function JĈ computes the

input ACS ĉ of node n as follows:

JĈ(ĉ1, ĉ2) = ĉ[si 7→ JŜ(ĉ1[si], ĉ2[si])]

JŜ(ŝ1, ŝ2) = ŝ where:

ŝ(lx) = {m|m ∈ ŝ1(la) ∧m ∈ ŝ2(lb), x = max(a, b)}

∪ {m|m ∈ ŝ1(lx) ∧m /∈ ŝ2}

∪ {m|m /∈ ŝ1 ∧m ∈ ŝ2(lx)}

Figure 3.1 describes a program fragment’s CFG having six basic blocks B0 . . . B5 in a

loop. The program accesses memory block a in B1 and B4, b in B3, and c in B2. Assume

a, b, c are all mapped to cache set s with associativity A = 2. In the first iteration, if the

program takes execution path B0 → B1 → B3, it accesses memory block a in B1 and then

b in B3. Abstract set state ŝoutB3 in Figure 3.1(b) models the output cache state after B3 has

been executed. Memory block b ∈ ŝoutB3 has just been accessed, so it is brought to the youngest

cache line ŝoutB3 (l1). Memory block a, accessed in B1, is mapped to the same cache set with

17

b. Therefore, the access to b in B3 will age memory block a to cache line ŝoutB3 (l2). Similarly,

abstract set state ŝoutB4 in Figure 3.1(b) models output cache state of B4 when the program

executes path B0 → B2 → B4, with memory block a in the youngest cache line ŝoutB4 (l1) and

memory block c in line ŝoutB4 (l2).

In Figure 3.1(b), as B5 has two predecessors B3 and B4, the join function JŜ joins ŝoutB3

and ŝoutB4 to compute the input abstract cache set ŝinB5 of B5. ŝinB5 captures the maximum relative

age of each memory block a, b, c when the program reaches B5 in the first iteration. Memory

block a has relative age x = 2 in B3 (a ∈ ŝoutB3 (l2)) and relative age x = 1 in B4 (a ∈ ŝoutB4 (l1)).

Therefore, it has maximum relative age x = 2 at B5 (a ∈ ŝinB5(l2)). Similarly, memory block b

does not appear in B4, and is the youngest memory block at B3. Therefore, it has maximum

relative age x = 1 in at B5 (b ∈ ŝinB5(l1)). In the same way, c has maximum relative age x = 2

in B5 (b ∈ ŝinB5(l2)).

Figure 3.1(c) describes the ACSs after the second iteration through the loop, also the final

ACS at fixed-point. From output cache state ŝoutB5 of B5 in Figure 3.1(b), in the loop-back

B5 → B0 → B1 → B3, the program accesses memory block a in B1 and b in B3. As b

has just been accessed, it is renewed to the youngest cache line ŝoutB3 (l1). Memory block a is

aged to ŝoutB3 (l2) by b. Since the maximum relative age of memory block c is older or equal to

that of a and b, the access to a in B1 and b in B3 will not further increase maximum relative

age of c, according to the update function ÛŜ described above. Therefore, memory block c

keeps maximum relative age x = 2 (ŝoutB3 (l2)). Similarly, output abstract set state ŝoutB4 captures

the maximum relative age for each memory block at after the execution of B4. Because all

memory blocks a, b, and c are the in the ACSs, all accesses to a, b, c will not further increase

the maximal relative age of the other memory blocks to evicted line l>. As a result, the analysis

reaches fixed-point, where the ACSs capture the maximum relative age of each memory block

through out program execution.

From the analysis result, in input set state ŝinB5 of B5, memory block a has maximum relative

age x = 2, so it is persistent. Once loaded, it will always remain in cache at B5 all executions,

thus it causes at most one cold miss. Similarly, memory block b and c are also persistent, each

18

cause at most one cold miss through out the program’s execution.

3.2.2 Safety issue

It has been pointed out that the persistence analysis proposed in [10] is unsafe. Figure 3.1

also illustrates an unsafe scenario of the original persistence analysis as proposed by [11]. As

described above, Figure 3.1(c) gives the ACS at fixed-point. The input ACS of B5 at fixed

point (ŝinB5 in Figure 3.1(c)) shows that memory block c is persistent in the loop. However, in

the path B0 → B2 → B4 → B5, then B0 → B1 → B3, we see that c is evicted by accesses

to a and b. Therefore, c is not persistent at B5, and the persistence analysis in [11] is unsafe.

The incorrectness is due to an error of the update function ÛŜ . It wrongly assumes that if

memory block b ∈ ŝinB5 (Figure 3.1(c)), b is in concrete set sinB5 in all possible execution paths.

Consequently, the update function does not age memory blocks with relative age equal or older

than b in ŝinB5 such as a or c. However, when b ∈ ŝinB5, b just may be in concrete set state sinB5. As

a result, there exists concrete set states sinB5 that do not contain b (e.g. only a and c are in sinB5

of path B0 → B2 → B4 → B5). In that case, b will age both a and c in sinB5, and the original

persistence analysis [10] will underestimate the relative age of a and c.

Let concĈ(ĉ
in) be the set of all possible concrete cache states represented by ACS ĉin at

program point p, the unsafe scenario when accessing a memory block ma ∈ ĉ can be formulated

mathematically as follows:

ŝin = ĉin[set(ma)] ∧ma ∈ ŝin(lh)

→ ∃cin ∈ concĈ(ĉ
in), sin = cin[set(ma)] ∧ma /∈ sin

∧ ∃m,m ∈ ŝin(lh) ∧m ∈ sin(lh)

∧ h > 1 ∧ h ≤ A

Let sout = US(sin,ma) and ŝout = ÛŜ(ŝin,ma) be the output concrete set state sout and

abstract set state ŝout after the cache update. The relative age of memory block m in the output

19

concrete set sout and abstract set ŝout are as follows

m ∈ sin(lh) ∧ma /∈ sin,

sout = US(sin,ma)→ m ∈ sout(lh+1)

m ∈ ŝin(lh) ∧ma ∈ ŝin(lh)

ŝout = ÛŜ(ŝ
in,ma)→ m ∈ ŝout(lh)

Because ma is not in sin, ma ages m in line lh to lh+1. On the other hand, ma is in ŝin(lh), so

update function ÛŜ does not age m from lh to lh+1. Therefore, m ∈ ŝout(lh) but m ∈ sout(lh+1),

the abstract set state ŝout underestimate the maximum relative age of m in concrete set state sout.

3.2.3 Correcting the persistence analysis

As demonstrated above, we cannot use the maximum relative age of memory block ma in ACS

ĉ to determine if an access to ma would further age other memory blocks in ĉ. Given abstract

set state ŝ with ma ∈ ŝ(lh) and m ∈ ŝ(lk), an access to ma could still increase maximum

relative age k of memory block m even when m has older maximum relative age (k ≥ h). As a

result, we propose to track the set of memory blocks that may be more recently used (younger)

than memory block m in the ACS. An access to memory block ma will increase the maximum

relative age of m only if ma is not in the current younger set of m. Otherwise, ma is already

counted as a possible younger memory block than m. Therefore according to LRU policy, it

will not further increase the maximum relative age of memory block m. We define the Younger

Set (YS) as follows.

Definition 1 (Younger Set): For an abstract set state ŝ at program point p, the younger set

YS(ŝ, m) captures a superset of all memory blocks that may be more recently used (younger)

than m at p in all possible program executions that reach p. �

20

b={}

a={b}

a={}

c={a}

b={}

a={b}

c={a}

out
Bs 3

) out
Bs 4

)

in
Bs 5

)

1l

2l

Τl

(a) 1st iteration

b={}

a={b}

c={a,b}

a={}

c={a}

b={a,c}

a={b}

c={a,b}

b={a,c}

(c) Final ACS

1l

2l

Τl

1l

2l

Τl

1l

2l

Τl

1l

2l

Τl

1l

2l

Τl

out
Bs 3

) out
Bs 4

)

in
Bs 5

)

b={}

a={b}

c={a}

a={}

b={a}

c={a}

(b) update in B1

1l

2l

Τl

1l

2l

Τl

{a}

in
Bs 1

)

out
Bs 1

)

Figure 3.2: Analysis result of with proposed update and join function

In LRU replacement policy, the relative age of memory block m is determined by the number of

memory blocks more recently used (younger) than m in the same cache set. Consequently, the

maximum relative age x of m in ŝ should be larger than the number of memory blocks possibly

younger than m, i.e. the size of younger set YS(ŝ, m) (x = |YS(ŝ, m)| + 1). If maximum

relative age x is not greater than cache associativity A, memory block m is guaranteed to

remain in the cache once it has been accessed.

To optimize analysis performance, we stop tracking younger set YS(ŝ, m) of m once it has

more memory blocks than cache associativity A (hence m is not persistent). For cache using

LRU replacement, A is usually small (e.g. A ≤ 4). Therefore, the younger set YS(ŝ, m) is

generally small and easy to track.

Figure 3.2(a) illustrates the younger set of each memory blocks a, b, c in ACS of B3, B4,

B5 in the first loop iteration. In B3, b is just accessed so b is brought to the youngest line

ŝoutB3 (l1) with no younger memory block. a is older than b, so a is in ŝoutB3 (l2) with younger set

YS(ŝoutB3 , a) = {b}. Similarly in B4, a is just accessed so a is in the newest cache line ŝoutB4 ,

and the younger set YS(ŝoutB4 , a) is empty. c is older than a, so YS(ŝoutB4 , c) = {a}. In B5, b has

no younger memory block in both incoming block B3 and B4, so it has no younger memory

block in B5. a has younger memory block b in incoming block B3 and none in B4, so the

younger set YS(ŝinB5, a) = {b}. Similarly, c has only one younger memory block a in B4, so

the younger set YS(ŝinB5, c) = {a}.

Notice that from the younger set, we know that in first iteration, memory block b is not

a possible younger memory block of c in any concrete cache state at B5 even though the

21

maximum relative age of b is smaller than the maximum relative age of c in ŝinB5. Therefore, we

know that a subsequent access to b will increase the maximum relative age of c. Consequently,

our proposed younger set notion helps avoid the incorrectness of original persistence analysis

in [11] (Figure 3.2(c)).

We propose a new update and join function to track and use younger set notion in ACS

computation as follows.

New update function: Given a program point p with ACS ĉin, if the program accesses

memory block ma at p, our cache update function ÛĈ updates the state of cache set set(ma)

using the set update function ÛŜ

ÛĈ(ĉ
in,ma) = ĉout[set(ma) 7→ ÛŜ(ĉ

in[set(ma)],ma)]

Given the accessed memory block ma and the input abstract set state ŝin where ma is

mapped to, the update function ÛŜ computes the output abstract set state ŝout and calculate the

younger set YS(ŝout,m) for each memory block m in ŝout as follows:

ÛŜ(ŝ
in,ma) = ŝout with ŝout(lx) = {m|m ∈ ŝin ∪ {ma}, x = min(|YS(ŝout,m)|+ 1,>)}

Where ∀m ∈ ŝin ∪ {ma},

YS(ŝout,m) =

 YS(ŝ
in,m) ∪ {ma} if m 6= ma

∅ if m = ma

When ma is accessed, for each memory block m in ŝin, ma becomes a more recently used

memory block than m if m 6= ma. Therefore, update function ÛŜ adds ma to the younger set

YS(ŝout,m) and changes maximum relative age of m accordingly. If m = ma, m is accessed

and becomes the youngest memory block in set ŝout. As a result, update function ÛŜ brings m

to ŝout(l1) and set its younger set YS(ŝout,m) to empty.

Figure 3.2(b) shows our update function at B1 after the first iteration described in Figure

3.2(a). ŝinB1 contains memory block b in cache line l1, a and c in cache line l2. As seen in

22

Figure 3.2(a), after the first iteration, b is the youngest memory block. Therefore, YS(ŝinB1, b)

is empty. a is aged by b in B3 so YS(ŝinB1, a) = {b}. And similarly, c is aged by a in B4 so

YS(ŝinB1, c) = {a}. At B1, the program accesses memory block a. Consequently, a is renewed

to youngest line ŝinB1(l1) and younger set YS(ŝoutB1 , a) is set to empty. a becomes a new younger

block of b so YS(ŝoutB1 , b) = {a}. With one possible younger memory block, b has maximal

relative age x = 2. Because c already has a in its younger set YS(ŝinB1, c), it keeps the same

maximal relative age and younger set.

New join function: Given a program point p with two incoming edges from p1 and p2

having ACS ĉ1 and ĉ2, the join function JĈ computes the joined ACS ĉ as combined upper

bound of incoming ACSs

JĈ(ĉ1, ĉ2) = ĉ[si 7→ JŜ(ĉ1[si], ĉ2[si])]

Given two incoming abstract set state ŝ1 and ŝ2, we propose a new join function to compute

combined abstract set state ŝ and track the younger set for each memory block m ∈ ŝ as

follows:

JŜ(ŝ1, ŝ2) = ŝ with:

ŝ(lx) = {m|m ∈ ŝ1 ∪ ŝ2, x = min(|YS(ŝ, m)|+ 1,>)}

where ∀m ∈ ŝ1 ∪ ŝ2

YS(ŝ, m) =


YS(ŝ1,m) ∪ YS(ŝ2,m) if m ∈ ŝ1 ∧m ∈ ŝ2

YS(ŝ1,m) if m ∈ ŝ1 ∧m /∈ ŝ2

YS(ŝ2,m) if m /∈ ŝ1 ∧m ∈ ŝ2

The joined abstract set state ŝ is a set union of ŝ1 and ŝ2. Moreover, the younger set YS(ŝ, m)

of each memory block m in ŝ is also the set union of younger set of m in ŝ1 and ŝ2 if there is.

The relative age of m in ŝ is then set according the size of its younger set. Because the younger

set YS(ŝ, m) always contain all younger memory blocks of m in ŝ1 and ŝ2, it safely estimates

23

{b}

{a}

{b,c,d}

B1

B2

(a) CFG

B3

in
Bs 3
)

c={}
d={}

b={c,d}
a={b,c,d}

out
Bs 3
){b,c,d}

(b) Set update
function

b={}

a={b}

1l
2l

Τl

Figure 3.3: Cache update for set of possible access addresses

the possible memory blocks younger than m in ŝ in all possible executions.

Figure 3.2(c) illustrates our join function. In B3, memory block b has no younger memory

block but in B4, b has two younger memory blocks a and c, soYS(ŝinB5, b) = {a, c} in combined

abstract set state ŝinB5 of B5. Similarly, YS(ŝinB5, c) = {a, b} and YS(ŝinB5, a) = {b}. Our

proposed persistence analysis accurately points out that a is persistent at B5. However, b and c

have up to two possible younger memory blocks so they may be evicted.

New update function for set: Unlike instruction references, a data reference D can access

a set of possible different data addresses Addr(D). Therefore, cache update function ÛĈ need

to handle sets of possibly referenced memory blocks, as in [11]. We propose a new update

function for set to update the change in ACS ĉ and track the younger set after an access of data

reference D as follows:

ÛĈ(ĉ, Addr(D)) = ĉ[fi 7→ ÛŜ(ĉ[fi], Xfi)]

for allfi ∈ {f = set(m)|m ∈ Addr(D)}

where Xfi = {my|my ∈ Addr(D), set(my) = fi},

Given a set of possible access addresses Addr(D) of data reference D, the abstract cache

update function ÛĈ divides it into Xfi , the set of possible access addresses in Addr(D) corre-

sponds to cache set fi. Our new abstract set update function ÛŜ compute the output abstract set

state ŝout from the input abstract set state ŝin and the set Xfi of Addr(D) mapped to this cache

24

set as follows

ÛŜ(ŝ
in, Xfi) = ŝout with ŝout(lx) = {m|m ∈ ŝin ∪Xfi , x = min(|YS(ŝout,m)|+ 1,>)}

Where ∀m ∈ ŝin ∪Xfi

YS(ŝout,m) =

 YS(ŝ
in,m) ∪Xfi \ {m} if m ∈ ŝin

∅ otherwise

Because no memory block ma ∈ Addr(D) is guaranteed to be accessed, we cannot renew

ma ∈ ŝin even though ma ∈ Addr(D). However, any ma ∈ Xfi could possibly become a new

younger memory block of all memory block m currently in ŝin. Therefore, the update function

ÛŜ adds Xfi to the younger set YS(ŝ, m) of m. If a memory block ma ∈ Xfi and ma /∈ ŝ, ma

may be a newly accessed memory block in ŝout. Therefore, update function ÛŜ adds ma to the

abstract set state ŝout as a youngest memory block with empty younger set.

Figure 3.3(a) illustrates such scenario. A data reference D in B3 may access a set of

possible memory block {b, c, d}mapped to ŝinB3. Figure 3.3(b) shows the input abstract set state

ŝinB3 and the resulting abstract set state ŝoutB3 after the memory access. As all of {b, c, d} could

be accessed, the set update function adds all of them to the younger set of memory block a and

b in ŝinB2. Therefore, a is aged to evicted line l> because it has {b, c, d} as possible younger

blocks. b is also evicted to l> because it has two possible younger blocks c, d. c and d are added

to ŝoutB2 (l1) as most recently used memory blocks with no younger memory block.

3.3 Safety Proofs of Corrected Persistence Analysis

In this section, we will prove the safety and termination of our proposed persistence analysis.

In our persistence analysis and the proofs, we consider a program point before and after

each program instruction. Note that for data cache analysis, it is possible that there is no data

memory references between two program points if the instruction does not access data memory.

For each memory block m, the relative age of m in the cache is determined by the number

25

of more recently used (younger) memory blocks in the same cache set. At program point p,

given a execution path pa that reaches p with concrete cache state c. Memory block m in cache

set s = c[set(m)] will have relative age y (m ∈ s(ly)) if there are y−1 younger memory blocks

in s (from s(l1) to s(ly−1)). We define the concrete younger set of memory block m as follows:

Definition 2 (Concrete younger set) Concrete younger set ys(s,m) of memory block m is the

set of memory blocks more recently used (younger) than m in concrete set state s of cache set

where m is mapped to. �

m ∈ s(ly)→ ys(s,m) = s(l1) ∪ ... ∪ s(ly−1) ∧ y = |ys(s,m)|+ 1

In our proposed persistence analysis, at program point p with ACS ĉ at fixed point, we

determine the maximum relative age x of memory block m by the younger set YS(ŝ, m), the

set of all memory blocks possibly younger (more recently used) than m in the abstract set state

ŝ = ĉ[set(m)], i.e. x = |YS(ŝ, m)| + 1. To prove the safety of our persistence analysis, we

prove that from our proposed update and join function, the younger set YS(ŝ, m) is the superset

of concrete younger set ys(s,m) in concrete set state s = c[set(m)] at p in any execution path

that reaches p, captured by the younger set property.

Definition 3 (YS property): Given an arbitrary path pa from start of execution to program

point p which results in concrete cache state c. Let ĉ be the computed fixed point ACS at p.

For each memory block m ∈ c, let ŝ = ĉ[set(m)] and s = c[set(m)] be the abstract and

concrete state of cache set where m is mapped to, the younger set YS(ŝ, m) is the superset of

the concrete younger set ys(s,m). �

∀m ∈ c, s = c[set(m)], ŝ = ĉ[set(m)], ys(s,m) ⊆ YS(ŝ, m)

If the younger set YS(ŝ, m) is the superset of concrete younger set ys(s,m), the maximum

relative age x of m in ŝ computed by our analysis (x = |YS(ŝ, m)| + 1) is always greater or

equal than the concrete relative age y of m in s (y = |ys(s,m)| + 1). Hence if maximum

26

relative age x is less than or equal cache associativity A, m is not evicted out of the cache for

any concrete cache set s at p. Therefore, our persistence analysis is safe.

3.3.1 Structure of the proof

We prove by induction that the YS property holds in all possible execution paths in the program.

• Because the concrete cache state c is empty at the start of the execution, YS property is

trivially true initially.

• Assume YS property holds at pin, before program point p. If at p, the program accesses

memory block ma (or a set of possible memory blocks Addr(D) = {m1...mk} of data

reference D), we prove that YS property holds at pout, after program point p by proving

the correctness of our update function ÛŜ (Section 3.3.2 and Section 3.3.4).

• Assume YS property holds at pout, after program point p, we prove that YS property

holds at pinn , before the next program point pn by proving the correctness of our join

function ĴŜ (Section 3.3.3)

As YS property is true at the start of the execution, before and after each program point,

and from one program point to another, YS property holds for all possible executions of the

program. Therefore, given fixed-point ACS ĉ at program point p, in any execution path that

reaches p with concrete cache state c, let ŝ = ĉ[set(m)] and s = c[set(m)], the younger set

YS(ŝ, m) is the superset of the concrete younger set ys(s,m) of m in s. Consequently, the

maximal relative age x of m in ŝ (x = |YS(ŝ, m)| + 1) is always greater or equal than the

relative age y of m in s (y = |ys(s,m)| + 1). As a result, if the maximal relative age x is less

than or equal to cache associativity A, m is persistent when the program control reaches p in

all executions.

27

3.3.2 Safety of update function

We prove our update function preserves the YS property. If the program accesses ma at program

point p, assume YS property holds at pin, we prove YS property holds at pout.

Given a path pa having concrete cache state cin at pin, before program point p. Let ĉin be

the fixed-point ACS at pin. Assume YS property holds at pin, we have

∀m ∈ cin, sin = cin[set(m)], ŝin = ĉin[set(m)], ys(sin,m) ⊆ YS(ŝin,m) [B.1]

If the program accesses memory block ma at program point p, let cout be the concrete cache

state of path pa at pout, after program point p. Let ĉout be the fixed-point ACS at pout. We prove

YS property holds at pout

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[set(m)], ys(sout,m) ⊆ YS(ŝout,m) [B.2]

Case 1: set(m) 6= set(ma)

Because set(m) 6= set(ma), the cache state of m is unaffected by the access to memory

block ma. As a result, there is no change in the concrete set state, sout = sin, so ys(sout,m) =

ys(sin,m). Similarly, there is no change in the abstract set state, ŝout = ŝin, so YS(ŝout,m) =

YS(ŝin,m). Therefore, YS property continues to hold from pin to pout.

Case 2: set(m) = set(ma)

As m and ma are mapped to the same cache set, if m 6= ma, ma becomes a new younger

memory block of m. Otherwise (ma = m), m is accessed so it is brought (or renewed) to

youngest line l1.

ys(sout,m) =

 ys(sin,m) ∪ {ma} if m 6= ma

∅ if m = ma

[B.3]

28

From our proposed update function ÛŜ , the new younger set of each memory block in ŝin

is computed as follows.

∀m ∈ ŝin,YS(ŝout,m) =

 YS(ŝ
in,m) ∪ {ma} if m 6= ma

∅ if m = ma

[ÛŜ]

As a result, we have

[B.1] → ys(sin,m) ⊆ YS(ŝin,m)

[B.3] → ys(sout,m) =

 ys(sin,m) ∪ {ma} if m 6= ma

∅ if m = ma

[ÛŜ] YS(ŝ
out,m) =

 YS(ŝ
in,m) ∪ {ma} if m 6= ma

∅ if m = ma

[B.1],[B.3], [ÛŜ]→

if m = ma

ys(sout,m) = ∅ ⊆ YS(ŝout,m)

if m 6= ma

ys(sout,m) = ys(sin,m) ∪ {ma}

YS(ŝout,m) = YS(ŝin,m) ∪ {ma}

ys(sin,m) ⊆ YS(ŝin,m)

→ ys(sout,m) ⊆ YS(ŝout,m)

Therefore, YS property holds at pout, after the execution of step p.

3.3.3 Safety of join function

Assume YS property holds at pout, after program point p, we prove that YS property holds at

pinn , before the immediate program point pn by proving the correctness of our join function ĴŜ .

29

Given a path pa having concrete cache state cout at pout. Let ĉout be the fixed-point ACS at

pout. Assume YS property holds at pout, we have

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[set(m)], ys(sout,m) ⊆ YS(ŝout,m) [C.1]

Let cinn be the concrete cache state of path pa at pinn , before the next program point pn. Let

ĉinn be the fixed-point ACS at pinn . We prove YS property holds at ĉinn

∀m ∈ cinn , sinn = cinn [set(m)], ŝinn = ĉinn [set(m)], ys(sinn ,m) ⊆ YS(ŝinn ,m) [C.2]

From our proposed join function ŝ = ĴŜ(ŝ1, ŝ2), younger set YS(ŝ, m) of m at pinn is the

union of all younger sets of incoming edges of pinn . As pout is one of the incoming edge, we

have

YS(ŝout,m) ⊆ YS(ŝinn ,m) [ĴŜ]

Because program point pinn is immediately after pout, no new memory block is accessed, so

the concrete set state remains the same, sinn = sout. As a result, the concrete younger set for

each memory block m also remains the same

ys(sinn ,m) = ys(sout,m) [C.3]

In summary

[C.1] → ys(sout,m) ⊆ YS(ŝout,m)

[ĴŜ] → YS(ŝ
out,m) ⊆ YS(ŝinn ,m)

[C.3] → ys(sinn ,m) = ys(sout,m)

→ ys(sinn ,m) ⊆ YS(ŝinn ,m)

30

So the younger set YS(ŝinn ,m) always contains all possible memory blocks younger than m in

set(m) of cin at pinn . Therefore the YS property holds at next program point pinn .

3.3.4 Safety of set update function

A data reference D can access a set of possible different data addresses Addr(D) = {m1...mk}.

Therefore, cache update function ÛĈ need to handle sets of possibly referenced memory blocks,

as in [11]. We prove our set update function preserves the YS property. If the program may

access any ma ∈ Addr(D) = {m1...mk} at p, assume YS property holds at pin, before program

point p, we prove YS property holds at pout, after the data memory access at program point p.

Given a path pa having concrete cache state cin at pin. Let ĉin be the fixed-point ACS at pin.

Assume YS property holds at pin, we have

∀m ∈ cin, sin = cin[set(m)], ŝin = ĉin[set(m)], ys(sin,m) ⊆ YS(ŝin,m) [D.1]

Let cout be the concrete cache state of path pa at pout, after the memory access at p. Let ĉout

be the fixed-point ACS at pout. We prove YS property holds at pout

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[set(m)], ys(sout,m) ⊆ YS(ŝout,m) [D.2]

For each memory block m in the cache set sin, let Xfi be the set of memory blocks in

Addr(D) mapped to sin. The data reference D can access any memory block ma ∈ Xfi .

If m 6= ma, ma becomes a new younger memory block of memory block m. Otherwise

(m = ma), m is renewed to the youngest cache line and has no younger memory block.

ys(sout,m) =

 ys(sin,m) ∪ {ma}, for any ma ∈ Xfi if m ∈ sin ∧m 6= ma

∅ Otherwise
[D.3]

Our proposed set update function calculates new possible younger set of m in ŝin when

31

accessed by set Xfi as follow

YS(ŝo,m) =

 YS(ŝi,m) ∪Xfi \ {m} if m ∈ ŝi

∅ otherwise
[ÛŜ]

In summary

[D.1], [D.3], [ÛŜ]→

if m 6= ma

ys(sout,m) = ys(sin,m) ∪ {ma}, for any ma ∈ Xfa ,m 6= ma

YS(ŝout,m) = YS(ŝin,m) ∪Xfi \ {m}

ys(sin,m) ⊆ YS(ŝin,m)

→ ys(sout,m) ⊆ YS(ŝout,m)

if m = ma

ys(sout,m) = ∅ → ys(sout,m) ⊆ YS(ŝout,m)

So YS(ŝout,m) contains all possible memory blocks younger than m in cout[set(m)] at pout

after the access of data reference D. As a result, the YS property holds at program point pout,

after the data access in p.

3.3.5 Termination of the analysis

The number of memory blocks in a program and the number of cache lines are finite. Therefore,

the abstract domain ĉ : L 7→ 2S is finite. Moreover, the cache update function ÛŜ , and join

function ĴŜ are monotonic. Therefore, our analysis will always terminate.

32

Chapter 4

Scope-aware Persistence Analysis

4.1 Motivations

Current persistence analysis (proposed by [11], corrected in the above chapter) determines if

once loaded, a memory block m will not be evicted out of the cache under all circumstances.

However, a data memory block m remains in the cache under all circumstances only when the

data cache is large enough to hold all possible data addresses. Otherwise, memory block m

could be evicted hence it cannot be classified as persistence. Consequently, all data accesses to

unclassified m are conservatively treated as all miss.

However, we notice that for each loop L, a data reference D may access memory block m

only in a limited interval [lw, up] of L’s iterations (from iteration lw to iteration up of loop L).

In this interval, if memory block m is guaranteed to remain in the cache once loaded, the first

time D accesses m may causes one cache miss, but all subsequent accesses to m must result in

i<4
int A[16]; int B[4][16];
int D[4]; short int C[4][16];
for (i=0; i<4; i++) { //L1
 a = A[x];
 for (j=0; j<16; j++) {//L2
 if (a%2==0) b = B[i][j];
 else b = C[i][j];
 sum += D[0] + b;
 }
}

A[x]{m0,m1}; j=0;

j<16

a%2==0

B[i][j]{m2...m9} C[i][j]{m12...m15}

D[0] {m10}; j++

i++

(a) Code fragment
(c) Memory block accessed according to

loop iterations of L1 and L2(b) CFG & memory block references

L2

L1

B1 B2

B5
B4

…
B3

B6 B7

B8
(d) Cache mapping

m0, m4, m8, m12

m1, m5, m9, m13

m2, m6, m10, m14

m3, m7, m15

f0

f1
f2

f3

i
j

0 1 2 3

A[x] 0..15 m0,m1
B[i][j] 0..7 m2 m4 m6 m8
B[i][j] 8..15 m3 m5 m7 m9
C[i][j] 0..15 m12 m13 m14 m15
D[0] 0..15 m10

i
j

0 1 2 3

A[x] 0..15 m0,m1

B[i][j] 0..7 m2 m4 m6 m8

B[i][j] 8..15 m3 m5 m7 m9

C[i][j] 0..15 m12 m13 m14 m15

D[0] 0..15 m10

m0, m4, m8, m12

m1, m5, m9, m13

m2, m6, m10, m14

m3, m7, m15

f0

f1

f2

f3

Figure 4.1: Motivating example

33

cache hit. Moreover, outside this interval, memory block m is not accessed by data reference

D, so it causes no cache miss to D. As a result, if memory block m is persistent (not evicted

out of the cache once loaded) in the interval [lw, up] of loop L’s iterations, it causes at most

one cache miss to D each time loop L is executed. Therefore, by capturing the persistence of

memory block m in a smaller scope (i.e. interval [lw, up] of loop L), we could guarantee a

tighter worst-case performance of data cache.

Figure 4.1(a) presents our motivating example with four array references in two nested loop

L1 and L2. The unpredictable array reference A[x] could access any memory block in address

set Addr(A) = {m0,m1} (assume A[x] always accesses within address range of array A).

Similarly, the array reference B[i][j] and C[i][j] could access any memory block in address set

Addr(B) = {m2...m9} and Addr(C) = {m12...m15} respectively. And D[0] accesses only

memory block m10. Figure 4.1(b) shows the CFG and possible memory addresses of each data

references. Assume a 2-way associative cache with four cache sets {f0...f3}, Figure 4.1(d)

gives the possible cache conflicts within the loop nest. Because no memory block is persistent

throughout the program execution, all data accesses are conservatively treated as all-miss in

worst case according to the existing persistence analysis framework.

However, Figure 4.1(c) describes the access pattern for each data reference in the running

example. As A[x] is an unpredictable data access, it could access either m0 or m1 in any itera-

tion of loop L1. On the other hand, B[i][j] and C[i][j] are loop-affine array access with stati-

cally predictable access pattern. When i = 2 and j = 0..7, B[i][j] only accesses m6. Therefore,

if m6 is not evicted in the scope {L1 7→ [2, 2], L2 7→ [0, 7]} (interval [0, 7] of L2’s iterations,

for each L2’s execution in interval [2, 2] of L1’s iterations), B[i][j] has at most one cache miss

for 8 accesses. Similarly, if m15 is persistent in the scope {L1 7→ [3, 3], L2 7→ [0, 15]} , C[i][j]

has at most one cache miss for 16 accesses. As a result, by capturing the persistence of memory

block in those scopes, we could obtain a much tighter data cache performance estimation.

34

4.2 Temporal Scope and Address Analysis

Central to our scope-aware data cache analysis is the notion of temporal scope that characterizes

the behavior of a data reference over different loop iterations. Furthermore, we parameterize the

definition and operations of temporal scopes with the static scope information on loop nesting.

We will discuss how our proposed persistence analysis can utilize such information for more

accurate abstract domain construction in Section 4.3.

Definition 4 (Temporal scope) A temporal scope mD of memory block m which may be ac-

cessed by a data reference D is defined as

mD = {Li 7→ [lw, up]|∀Li ∈ reside(D)}

where reside(D) is the set of loops where D resides in. To simplify the presentation, we use

m to denote mD when there is no ambiguity about the data reference. For each of such loops

Li, temporal scope m (or mD) maintains a mapping between Li and m[Li], a closed interval

[lw, up] of Li’s iterations where D may access m. �

For a data reference D, address analysis calculates set of memory blocks possibly accessed

by D. We follow the register expansion framework in [25] to identify address expression for

each data reference at binary-code level. For each register used to specify address of load/store

instruction, we perform register expansion to trace the source registers and the computation

performed. We recursively expand a source register until it traces back to a defined constant

c, an unpredictable value ⊥, or a loop induction variable V . Readers are referred to [25] for

details of address expression detection.

Given the address expression of a data reference D, set of possibly accessed memory blocks

and their corresponding temporal scopes are automatically derived as follows.

• In case the address expression is a constant, it corresponds to a scalar access to a fixed

memory block m. Data reference D will access m in all loop iterations. Therefore, the

temporal scope mD covers all iterations of each loop L where D resides in. In Figure

35

(b) Temporal s

{ L1 [0

{ L1 [2,2], L

{ L1 [2,2], L

{ L1‐>[3,3], L2

{ L1 [0,3], L

0m

6m

10m

(a) Address expressions

Address Expression

A[x] ⊥×4 + BaseA (m0)

B[i][j] 16 × i × 4 + j × 4 + BaseB (m2)

C[i][j] 16 × i × 2 + j × 2 + BaseC (m12)

D[0] BaseD (m10)

15m
7m

copes

0,3] }

L2 [0,7] }

2 [8,15] }

2 [0,15] }

2 [0,15] }

Figure 4.2: Address expressions and temporal scopes

4.2(a), address expression of D[0] is evaluated to BaseD, which corresponds to m10.

Because D[0] will access m10 in all iterations of loop L1 and L2 where it resides in, the

temporal scope m10 = {L1 7→ [0, 3], L2 7→ [0, 15]}.

• If the address expression contains unpredictable value ⊥, the corresponding array access

may reference any of the memory blocks contained in the array. For example in Figure

4.2, A[x] is an unpredictable access which may reference m0 or m1 in any iteration of

L1. Therefore, the temporal scope m0 = {L1 7→ [0, 3]}. Similarly, temporal scope

m1 = {L1 7→ [0, 3]}.

• If the address expression contains linear expression of loop-induction variables, it cor-

responds to loop-affine access with predictable access pattern, such as B[i][j] in Figure

4.2(a). By enumerating possible values of the loop induction variables i and j, temporal

scope of each memory block that is possibly accessed by B[i][j] can be automatically

calculated. For example, when i = 2 and 0 ≤ j ≤ 7, value of the address expression

for B[i][j] is evaluated to [128 +BaseB, 128 + 28 +BaseB], where BaseB is the base

address of B[i][j]. Given our assumption that BaseB corresponds to memory block m2

and memory block size is 32-Byte, the address range [128+BaseB, 128+28+BaseB]

corresponds to m6, so the temporal scope m6 = {L1 7→ [2, 2], L2 7→ [0, 7]}.

Given two memory blocks mi and mj accessed in temporal scope mi and mj respectively.

An access to mi in scope mi[L] will increase the relative age of mj in scope mj[L] only if mi

and mj are mapped to the same cache set and their temporal scopes overlap during execution

of L. We define the overlapping between two temporal scope mi and mj in loop L as follows

36

Definition 5 (Scope overlap) The overlapping between two temporal scope mi and mj in loop

L is recursively defined as

overlap(mi,mj, L) ⇐⇒ (mi[L] ∩mj[L]) 6= ∅ ∧ overlap(mi,mj, outer(L)) (4.1)

where outer(L) is the immediate outer loop of L. Thus, two temporal scopes overlap at loop

level L only if the access intervals for loop L and all outer loops containing L are not mutually

exclusive.

In Figure 4.2(b), since m6[L2] and m7[L2] refer to interval [0, 7] and [8, 15] of L2’s itera-

tions, they do not overlap. In an other example, m15[L2] and m6[L2] overlap in interval [0, 7] of

L2’s iterations. However, in the parent loop L1, m15[L1] refers to interval [3, 3] while m6[L1]

refers to a separated interval [2, 2] of loop L1’s iterations. Therefore, the scope m15[L2] and

m6[L2] do not overlap because they belong to L2’s executions in separated intervals of L1.

To capture the persistence of a data memory in a scope for more accurate WCET analysis,

we integrate access pattern analysis into the abstract interpretation framework. In our analysis,

we extend the definition of memory block persistence in [11], and utilize the computed temporal

scope information for a scope-aware analysis. The proposed framework is built on our correct

version of persistence analysis as described in Chapter 3. The soundness proofs are presented

in Section 4.4.

4.3 Scope-aware Persistence Analysis

The basic idea of our scope-aware persistence analysis is to categorize the persistence of mem-

ory blocks in the calculated temporal scopes (Section 4.2), instead of the globally defined per-

sistence in [11]. For a data reference D, the temporal scope mD identifies a mapping between

loop L where D resides in and L’s iteration interval mD[L] where D may access m. The

scope-aware analysis approach allows us to integrate access pattern into the abstract interpreta-

tion framework, and determine the local behavior of data cache. In particular, our scope-aware

persistence analysis computes memory block persistence within its temporal scope for each

37

static scope (loop hierarchy) it may get accessed.

Definition 6 (Scope persistence) Let mD defines the loop interval [mD[L].lw,mD[L].up] where

data reference D may access memory block m in an execution of loop L (between L’s entry

and exit). The temporal scope mD is persistent at loop level L if and only if within interval

mD[L], m is guaranteed to remain in the cache after the first time it is loaded into cache by D.

�

Given the above definition of scope persistence, for memory block m to cause only one

cache miss to data reference D in one complete execution of loop L, it does not need to stay

in the cache for all iterations of L. In loop L, the temporal scope mD (or m for short) defines

an interval m[L] (from iteration m[L].lw to iteration m[L].up of loop L) where D may access

m. If once loaded, memory block m is not evicted out of the cache in any execution within the

interval m[L], all data accesses to m from D cause at most one cache miss for each complete

execution of L.

To capture the scope persistence in the abstract domain of the persistence analysis frame-

work, we define our scope-aware abstract set state and abstract cache state as follows.

Definition 7 (Scope-aware abstract cache state) In analysis at loop level L, abstract cache

state ĉ[L]: F → Ŝ maps cache sets to abstract set states. �

Definition 8 (Scope-aware abstract set state) An abstract set state ŝ: {l1 . . . lA} ∪ {l>} →

2M maps cache lines (including the specially introduced evicted line l>) to set of all temporal

scopes M . Ŝ denotes the set of all abstract set states. �

In our scope-aware ACS ĉ[L] of loop L, if temporal scope m is in ŝ(lx), once loaded to the cache

in scope m[L], memory block m reaches maximum relative age x in any possible execution

from iteration m[L].lw to iteration m[L].up of loop L.

We have re-designed the update function ÛĈ and join function ĴĈ to utilize the scope infor-

mation when modeling cache conflicts in the ACS. By capturing such fine-grained persistence

properties, our analysis can accurately model the local behavior of data cache for WCET esti-

mation.

38

(d) Scope-aware persistence analysis for L2

l1 l2 lT

m0,m4, m8,m12

m1, m5,m9,m13

m10 m2,m6, m14

m3,m7,m15

f0

f1

f2

f3

out
Bc 4

)

(b) Original persistence analysis

l1 l2 lT

f0

f1

f2

f3

[L2]8
out
Bc
)

(c) Scope-aware persistence analysis for L1

l1 l2 lT

f0

f1

f2

f3

10m

entry L

(a) Inner loop analysis

...

=⊥][L
in
Lentry

c
)

2m 6m 14m
9m 1m 5m 13m

0m12m8m4m

3m 7m 15m
10m 2m 6m 14m
9m 5m 13m

12m8m4m

3m 7m 15m

[L1]4
out
Bc
)

Figure 4.3: Multi-level analysis and results for the motivating example in Figure 4.1

4.3.1 Overall framework

We adopt the multi-level persistence framework for instruction cache analysis from [2], and

extend it for our data cache analysis. As shown in Figure 4.3(a), for each loop L, we per-

form a separate persistence analysis on the CFG fragment within L, with empty initial ACS

ĉinLentry
[L] = ⊥ as input ACS of the L’s entry node Lentry. Consequently, the analysis will

consider only paths and data accesses within loop L. As a result, we can determine the local

persistence of a memory block in different loop levels. In Figure 4.3 we show the estima-

tion results of our analysis for the motivating example presented in Figure 4.1, and a detailed

discussion will be given in Section 4.3.3.

Algorithm 1 MPA(L) — Multi-level Persistence Analysis Algorithm. L denotes a loop (or the
main procedure) under analysis.
1: ĉinLentry

[L] = ⊥;

2: Queue.insert(Lentry);
3: while !Queue.empty() do
4: n = Queue.remove();
5: ĉinn [L] = ĴĈ({ĉ

out
n′ [L]|∀n′ ∈ Pred(n) ∧ n′ ∈ L});

6: if reached fixed point(ĉinn [L]) then continue;
7: ĉoutn [L] = ĉinn [L];
8: for each data reference D in n do
9: ĉoutn [L] = ÛĈ(ĉ

out
n [L], D, L);

10: end for
11: Queue.insert({n′|∀n′ ∈ Succ(n) ∧ n′ ∈ L});
12: end while

Algorithm 1 describes the multi-level persistence analysis algorithm to analyze loop L.

ĉinn [L] and ĉoutn [L] denote the input and output ACSs of a node n for analysis at loop level L.

Pred(n) and Succ(n) refer to the sets of predecessors and successors of n within the CFG of

loop L currently being analyzed. We perform a standard fixed-point computation of the ACSs.

The analysis initializes the input ACS of loop entry node Lentry to empty (line 1) because

initially no memory block has been accessed in this loop. The processing queue Queue starts

39

with the loop entry node (line 2). For each node n, we compute the input ACS ĉinn [L] by joining

all the output ACSs of its predecessors within L (line 5). The scope-aware join function ĴĈ

computes the joined ACS as the union of all input ACSs. If the input ACS ĉinn [L] has reached

fixed point, the analysis continue to process the next node in Queue (line 6). Otherwise, we

compute ĉoutn [L] from its input ACS and each memory reference D in node n (line 7-10). In

case where no-write-allocate is used (in write-through or write-back policy), a store instruction

does not modify the cache state. We consider only load instructions in the cache analysis.

Otherwise for write-allocate policy, all load and store instructions will be considered in the

ACS calculation. Finally, all successors of n within L are inserted into Queue to capture the

possible changes in ĉoutn [L] (line 11).

4.3.2 Scope-aware update and join functions

Scope-aware update function

Given a data reference D which accesses a set of possible addresses Addr(D) = {m1...mk}

in loop L, the scope-aware update function ÛĈ calculate the change in ACS ĉ[L] after a data

reference of D (line 9 in Algorithm 1). For each memory block ma ∈ Addr(D), the temporal

scope mD
a (or ma for short) identify the loop intervals where D may access ma. An access to ma

in scope ma[L] (from iteration ma[L].lw to iteration ma[L].up) does not affect the maximum

relative age (and the scope persistence) of a memory block m in scope m[L] if ma and m do not

overlap in loop L (refer to Equation 4.1 in Section 4.2). Therefore, our proposed scope-aware

update function ÛĈ only considers memory block ma as conflict with memory block m in scope

m[L] when the temporal scope ma and m overlap in loop L.

ÛĈ(ĉ, D, L) = ĉ[fi 7→ ÛŜ(ĉ[fi], D, L)]

for all fi ∈ {set(ma)|∀ma ∈ Addr(D)}

Given data reference D and its set of possible addresses Addr(D), our scope-aware cache

update function ÛĈ computes the change in cache set fi possibly affected by the data access

40

using our scope-aware set update function ÛŜ . For each input abstract set state ŝin, the set

update function computes the output abstract set state ŝout and tracks the Younger Set of each

temporal scope m ∈ ŝin as follows.

ÛŜ(ŝ
in, D, L) = ŝout with :

ŝout(lx) = {m|m ∈ ŝin ∪ {ma|ma ∈ Xfi}, x = min(|YS(ŝout,m)|+ 1,>)}

where ∀m ∈ ŝin ∪ {ma|ma ∈ Xfi}

YS(ŝout,m) =


∅ if m /∈ ŝin

∅ if OpS(m,D,L) = {m}

YS(ŝin,m) ∪ (OpS(m,D,L) ∩Xfi \ {m}) Otherwise.

where

• Xfi denotes set of memory blocks possibly accessed by data reference D which are

mapped to cache set fi of abstract set state ŝin

Xfi = {ma|ma ∈ Addr(D), set(ma) = fi}

• Overlap set OpS(m,D,L) denotes the set of memory blocks which data reference D

may access in scope m[L]. For each memory block ma ∈ Addr(D), D may access ma

in scope m[L] if temporal scope m and ma overlap in loop L.

OpS(m,D,L) = {ma|ma ∈ Addr(D) ∧ overlap(m,ma, L)}

The update function ÛŜ determines the maximum relative age x of temporal scope m in output

abstract set state ŝout by computing the younger set YS(ŝout,m). In our scope-aware ACS, the

younger set YS(ŝout,m) identifies the set of all possible memory blocks that could be younger

than m in all executions in scope m[L] after the first access to m in this scope. To determine

41

the younger set YS(ŝout,m), we have the following scenarios:

• If temporal scope m is not in ŝin, memory block m has not been accessed the first time

in scope m[L] in any execution. If the data reference D accesses m, m will be brought

to youngest cache line l1 with no younger memory block. Otherwise, memory block

m remains not accessed. Since our scope-aware persistence analysis only captures the

maximum relative age of m after the first access to m in scope m[L], our scope-aware

update function ÛŜ adds m to ŝout as youngest memory block with empty younger set.

• If temporal scope m ∈ ŝin, memory block m may have been accessed in scope m[L]. In

scope m[L], the data reference D only accesses memory block ma if it is in OpS(m,D,L).

If exists other memory block ma ∈ OpS(m,D,L) and ma 6= m, D may access ma and

not renew m. However, if m is the only memory block in OpS(m,D,L), all data ac-

cesses of D in scope m[L] will definitely access and renew m. Consequently, if overlap

set OpS(m,D,L) contains only memory block m, we can guarantee that data reference

D will indeed access m in scope m[L] and renew m to youngest cache line l1.

• Otherwise, in scope m[L], the data reference D may access any memory block ma (ma 6=

m) in overlap set OpS(m,D,L). Consequently, any ma ∈ OpS(m,D,L) that is mapped

to cache set fi (ma ∈ Xfi) can be accessed and become a new younger memory block of

m in scope m[L]. Therefore, our scope-aware update ÛŜ function adds all those memory

blocks to the younger set YS(ŝout,m) of m, and set its maximal relative age accordingly.

Figure 4.4(a) illustrates our scope-aware persistence analysis within loop L2 of the running

example in Figure 4.1. Initially, input ACS ĉinB5[L2] of loop header B5 is empty (ĉinB5[L2] = ⊥)

for no memory block is yet accessed in L2. Because the program does not access memory in

B5, ĉoutB5 [L2] = ĉinB5[L2] = ⊥. In step (1), if the program takes execution path B5 → B6,

it may accesses any memory block in Addr(B[i][j]) = {m2 . . .m9} in B6. Since ĉinB6[L2] =

ĉoutB5 [L2] = ⊥, no memory block in {m2 . . .m9} has yet been accessed in loop L2. Therefore,

if accessed, their maximum relative age in L2 will be x = 1, so they are added to the youngest

42

l1 l2 lT
f0
f1
f2
f3

4m

=⊥[L2]5
out
Bc
)

[L2]7
out
Bc
)

l1 l2 lT
f0
f1
f2
f3

B[i][j]
{m2...m9}

C[i][j]
{m12...m15}

[L2]8
in
Bc
)

l1 l2 lT
f0
f1
f2
f3

[L2]8[L2]5
out
B

out
B cc)) =

[L2]8
out
Bc
)

l1 l2 lT
f0
f1
f2
f3

[L2]6
out
Bc
)

D[i]
{m10}

l1 l2 lT
f0
f1
f2
f3

[L2]7
out
Bc
)

l1 l2 lT
f0
f1
f2
f3

B[i][j]
{m2...m9}

C[i][j]
{m12...m15}

[L2]6
out
Bc
)

[L2]8
in
Bc
)

l1 l2 lT

f0
f1
f2
f3

[L2]8
out
Bc
)

l1 l2 lT

D[i]
{m10}

8m
5m 9m
2m 6m
3m 7m

12m
13m
14m
15m

4m 8m 12m
5m 9m 13m
2m 6m 14m
3m 7m 15m

4m 8m 12m
5m 9m 13m

2m 6m 14m10m
3m 7m 15m

4m 8m 12m
13m5m 9m

2m 6m 10m 14m
3m 7m 15m

4m 8m 12m
13m9m 5m

14m 2m 10m 6m
3m 7m 15m

4m 8m 12m

3m 7m 15m

13m5m9m
2m 6m 10m 14m

4m 8m 12m

3m 7m 15m

13m5m9m
2m 6m10m 14m

f0
f1
f2
f3

(a) Scope‐aware Update and Join in L2

},{
}{

{}
},{

{}
{}
{}

},{
}{

{}
{}

}{

10614

513

12

14,6210

9

8

7

14106

135

4

3

102

mmm
mm

m
mmmm

m
m
m

mmm
mm

m
m

mm

=
=
=

=
=
=
=
=
=
=
=
=

(b) Younger set in L2
of each in [L2]8

out
Bc
)

m

(1)

(2)

(3)
(4)

(5)

(6)

(7)

(8)
(9)

Figure 4.4: Scope-aware ACS computation for L2 of the motivating example in Figure 4.1

line l1 of ACS ĉoutB6 [L2]. Similarly, in step (2), if the program takes execution path B5→ B7, it

may access any memory block in Addr(C[i][j]) = {m12 . . .m15}. As a result, {m12 . . .m15}

are added to youngest line l1 of ACS ĉoutB7 [L2].

In step (4), the program executes data reference D[i] in block B8 and accesses m10. For

D[i] only accesses m10, temporal scope m10 is added to youngest line l1 of ACS ĉoutB8 [L2].

Moreover, m10 is mapped to the same cache set with m2 and temporal scope m10 overlaps

with m2, m10 will become younger memory block of m2 and age m2 in the scope m2. As a

result, temporal scope m2 is aged to l2 in ĉoutB8 [L2]. Similarly, m10 also age m6 and m14 in their

temporal scopes. Therefore, m6 and m14 are aged to l2 in ĉoutB8 [L2].

In step (6), the analysis loops back to loop header B5 and takes path B8→ B5→ B6. In

B6, data reference B[i][j] accesses any memory block in Addr(B[i][j]) = {m2 . . .m9}. With-

out scope awareness, persistence analysis as in Section 3.2 will assume that memory blocks

mapped to the same cache set will conflict with each others. In example, because memory

block m2 and m8 are mapped to cache set f0 as m12, they will age m12 to evicted line, as in

Figure 4.3(b). However, with temporal scope information, our scope-aware update function

can guarantee that in temporal scope m12, data reference B[i][j] will not access m4 or m8 be-

43

cause B[i][j] only accesses m4 in temporal scope m4, and m8 in temporal scope m8, while

those temporal scopes do not overlap with m12. Therefore, memory block m12 will remain the

youngest memory block in scope m12, as in step (6) of Figure 4.4(a), and not evicted like in

Figure 4.3(b).

Scope-aware join function

At any program point p in loop level L, the join function ĴĈ (line 5 in Algorithm 1) computes

an ACS from all the output ACSs of p’s control flow predecessors. It can be done by pair-wise

joining of two output ACSs ĉ1[L] and ĉ2[L] into a representative ACS ĉ[L] at p using the the

scope-aware join function JĈ . For each temporal scope m, the scope-aware join function JĈ

unionizes the younger set of m in both output ACSs from the control flow predecessors to form

the younger set YS(ŝ, m) of m in abstract set state ŝ = ĉ[set(m)] at p. Therefore, YS(ŝ, m)

always contains all possible younger memory blocks of m in scope m at p. Formally, our

scope-aware join function is defined as follows.

JĈ(ĉ1, ĉ2) = ĉ[si 7→ JŜ(ĉ1[si], ĉ2[si])]

JŜ(ŝ1, ŝ2) = ŝ with:

ŝ(lx) = {m|m ∈ ŝ1∪ ∈ ŝ2, x = min(|YS(ŝ, m)|+ 1,>)}

where ∀m ∈ ŝ1 ∪ ŝ2

YS(ŝ, m) =


YS(ŝ1,m) ∪ YS(ŝ2,m) if m ∈ ŝ1 ∧m ∈ ŝ2

YS(ŝ1,m) if m ∈ ŝ1 ∧m /∈ ŝ2

YS(ŝ2,m) if m /∈ ŝ1 ∧m ∈ ŝ2

In Figure 4.4(a), step (8), as B8 has two predecessors B6 and B7, for each temporal scope,

our scope-aware join function JĈ unionizes its younger sets in ACS ĉoutB6 [L2] and ĉoutB7 [L2] to

compute its younger set at ĉinB8[L2]. In B6, m5 is renewed to the youngest cache line l1 because

B[i][j] is guaranteed to access m5 in temporal scope m5. However, in B7, C[i][j] may access

44

m13 in temporal scope m13, which overlaps with m5. Therefore, m13 becomes a possible

younger memory block of m5 in m5 and ages m5 to l2. As a result, m5 is in l2 of ĉinB8[L2],

having m13 in its younger set as shown in Figure 4.4(b).

4.3.3 ACS computation of the motivating example

Figure 4.3(b), (c) and (d) shows the fixed-point ACSs computed by the original persistence

analysis (at basic block B4, exit of L1), our multi-level analysis for L1 (at B4) and L2 (at

basic block B8, exit of L2), respectively. Given 2-way associative cache with 4 cache sets,

no memory block accessed by B[i][j] and C[i][j] can be categorized as persistent in the orig-

inal persistence analysis. On the other hand, our multi-level scope-aware persistence analysis

produces much tighter estimation results on the worst-case cache behavior. For example, m4

accessed by B[i][j] is guaranteed to be scope persistent at both loop levels, resulting in at most

1 cold miss globally. m5 is scope persistent only in L2. Thus, accesses to m5 in each complete

execution of L2 (between entry to exit) incurs at most 1 cold miss.

4.4 Safety proofs of scope-aware persistence analysis

In this section, we will prove the safety of our proposed scope-aware persistence analysis frame-

work.

In a concrete cache state c, for LRU replacement policy, the relative age of memory block

m is determined by the number of memory blocks more recently used (younger) than m in the

same cache set. Let s = c[set(m)] be the concrete set state of the cache set where memory

block m is mapped to, and concrete younger set ys(s,m) be the set of memory blocks more

recently used (younger) than m in set s (as in Definition 2), we have

m ∈ s(ly)→ ys(s,m) = s(l1) ∪ ... ∪ s(ly−1) ∧ y = |ys(s,m)|+ 1

A memory block m is persistent in the scope m[L] (from iteration m[L].lw to iteration

45

m[L].up of loop L) if once m has been loaded to the cache the first time in this scope, it

will not be evicted out of the cache in any possible execution before the program exists the

scope (i.e. finishes iteration m[L].up of loop L). In our ACS semantic, given ACS ĉ[L] of

analysis in loop L and ŝ = ĉ[L][set(m)], if temporal scope m ∈ ŝ(lx), once loaded to the

cache in scope m[L], memory block m has maximum relative age x in all possible executions

in the scope. Our scope-aware persistence analysis computes the maximum relative age x by

tracking the younger set YS(ŝ, m), the set all memory blocks which are possibly younger than

m in the scope m[L] after m is loaded to the cache. As the relative age of memory block m

is determined by the number of memory blocks more recently used (younger) than m in the

same cache set, the maximum relative age of m in scope m[L] should greater than the size of

younger set YS(ŝ, m), i.e. x = |YS(ŝ, m)| + 1. If memory block m has less than A possibly

younger memory blocks in scope m[L], once loaded, it will not be evicted out of the cache and

is persistent in scope m[L].

To prove the safety of our scope-aware persistence analysis, we prove that for any execution

path pa that reaches program point p in the scope m[L] with concrete cache state c, if path pa

has accessed memory block m in this scope, the younger set YS(ŝ, m) contain all memory

blocks in concrete younger set ys(s,m), the set of memory blocks younger than m in cache

set s = c[set(m)]. Consequently, the maximum relative age x determined by our analysis

(x = |YS(ŝ, m)| + 1) will always greater or equal than the relative age y of memory block m

in concrete cache set s (y = |ys(s,m)| + 1). Therefore, our scope-aware persistence analysis

is safe.

Note that our scope-aware persistence analysis computes the maximum relative age x of

memory block m only after the first time memory block m has been loaded to the cache in

scope m[L]. We do not consider the relative age of memory block m before its first access in

this scope, as we conservatively assume the first access to m in the scope m[L] always results

in a cache miss.

46

4.4.1 Structure of the proof

We prove by induction that for each temporal scope m in ACS ĉ[L], the ScopeYS property

holds in all possible execution paths in scope m[L].

Definition 9 (ScopeYS property): Given an arbitrary path pa from the start of execution to

program point p in scope m[L] of loop L which results in concrete cache state c, and ĉ[L] be

the computed fixed point ACS of loop L at p. For each memory block m ∈ s = c[set(m)]

and its corresponding temporal scope m ∈ ŝ = ĉ[L][set(m)], if path pa has accessed memory

block m in scope m[L], the younger set YS(ŝ, m) will contain all memory blocks in concrete

younger set ys(s,m).�

∀m ∈ c, s = c[set(m)], ŝ = ĉ[L][set(m)],

¬Accessed(m,m[L], s) ∨ ys(s,m) ⊆ YS(ŝ, m)

where Accessed(m,m[L], s) indicates if memory block m has been accessed in scope m[L]

for concrete set state s.

We prove by induction that for each memory block m and its corresponding temporal scope

m, the ScopeYS property holds in all possible execution paths in scope m[L] (from iteration

m[L].lw to iteration m[L].up of loop L)

• If memory block m has not been accessed in scope m[L] (¬Accessed(m,m[L])), our

ScopeYS property is trivially true. We do not consider the relative age of memory block

m before its first access in scope m[L], as we conservatively assume the first access to m

in the scope results is a miss.

• At the first access to m in scope m[L], memory block m is brought to concrete set state s

at youngest line s(l1). Consequently, ys(s,m) = ∅, so ys(s,m) ⊆ YS(ŝ, m). Therefore

the ScopeYS property is true immediately after the first access to m in scope m[L].

• Assume ScopeYS property holds at pin, before the program point p. If at p, a data

reference D accesses a set of possible memory blocks {m1...mk} in their respective

47

temporal scopes {m1...mk}, we prove the ScopeYS property holds at pout, after program

point p by proving the correctness of our scope-aware update function (Section 4.4.2).

• Assume ScopeYS property holds at pout, we prove ScopeYS property holds at pinn , before

the next program point pn, by proving the correctness of our scope-aware join function

(Section 4.4.3).

For each memory block m in scope m[L], we prove that ScopeYS property holds before

and immediately after the first access to m in scope m[L]. In subsequent executions within the

scope, ScopeYS property holds after each data access, and from one program point to another.

Therefore, ScopeYS property holds for any arbitrary path pa in the scope m[L]. Consequently,

at any program point p in scope m[L] with concrete cache state c, the younger set YS(ŝ, m)

contains all memory blocks in concrete younger set ys(s,m) of m in the set s = c[set(m)].

As a result, the maximum relative age x of memory block m in scope m[L] determined by our

ACS ĉ[L] (x = |YS(ŝ, m)|+ 1) is always greater than or equal to the relative age y of m in set

s (y = |ys(s,m) + 1). Therefore, our analysis safely estimates the maximum relative age and

the persistence of m in scope m[L].

4.4.2 Safety proof of scope-aware update function

At program point p in loop L, a data reference D accesses a set of possible memory blocks

Addr(D) = {m1...mk} in their respective temporal scopes {m1...mk}. The scope-aware up-

date function computes the change in ACS ĉ[L], and tracks the younger set YS(ŝ, m) of each

temporal scope m after the data access. We prove our scope-aware update function preserves

the ScopeYS property. Assume ScopeYS property holds at pin, before program point p, we

prove ScopeYS property holds at pout, after program point p.

Given the concrete cache state cin of path pa at pin, and ĉin[L] is the computed ACS of loop

L at pin. Assume ScopeYS property holds at pin, we have

48

∀m ∈ cin, sin = cin[set(m)], ŝin = ĉin[set(m)],

¬Accessed(m,m[L], sin) ∨ ys(sin,m) ⊆ YS(ŝin,m) [B.1]

Given concrete cache state cout of path pa at pout, and ĉout[L] is the computed ACS of loop

L at pout. We prove ScopeYS property holds at pout:

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[L][set(m)],

¬Accessed(m,m[L], sout) ∨ ys(sout,m) ⊆ YS(ŝout,m) [B.2]

At program point p in loop L, given a data reference D and input abstract set state ŝin,

our scope-aware update function ÛŜ computes the output abstract set state ŝout and the updated

younger set YS(ŝout,m) as follow:

ÛŜ(ŝ
in, D, L) = ŝout with :

ŝout(lx) = {m|m ∈ ŝin ∪ {ma|ma ∈ Xfi}, x = min(|YS(ŝout,m)|+ 1,>)}

where ∀m ∈ ŝin ∪ {ma|ma ∈ Xfi}

YS(ŝout,m) =


∅ if m /∈ ŝin

∅ if OpS(m,D,L) = {m}

YS(ŝin,m) ∪ (OpS(m,D,L) ∩Xfi \ {m}) Otherwise.

where

• Xfi denotes set of memory blocks possibly accessed by data reference D which are

mapped to cache set fi of abstract set state ŝin

Xfi = {ma|ma ∈ Addr(D), set(ma) = fi}

• Overlap set OpS(m,D,L) denotes the set of memory blocks which data reference D

49

may access in scope m[L]. For each memory block ma ∈ Addr(D), D may access ma

in scope m[L] if temporal scope m and ma overlap in loop L.

OpS(m,D,L) = {ma|ma ∈ Addr(D) ∧ overlap(m,ma, L)}

We prove the correctness of our scope-aware update function ÛŜ by dividing access scenar-

ios into two cases:

Case 1: Memory block m has not been accessed in scope m[L]

• Case 1.1: Data reference D does not access m at program point p

As D does not access m at p, m remains not accessed at pout. We have

¬Accessed(m,m[L], sin) ∧D does not access m

→ ¬Accessed(m,m[L], sout) ([B.2] proven)

• Case 1.2: Data reference D accesses m at program point p

Since data reference D accesses m, m becomes the most recently used memory block in

cache line l1. Consequently, m has no younger memory block.

ys(sout,m) = ∅

→ ys(sout,m) ⊆ YS(ŝout,m) ([B.2] proven)

Case 2: Memory block m has been accessed in scope m[L]

Since memory block m has been accessed in scope m[L] and ScopeYS holds at pin

[B.1] ∧ Accessed(m,m[L], sin)→ ys(sin,m) ⊆ YS(ŝin,m) [1]

In scope m[L], D may access memory block ma only if temporal scope ma overlaps with

m in loop L (ma ∈ OpS(m,D,L). Moreover, ma will become a younger memory block of m

50

in sout if ma 6= m and they are mapped to the same cache set (ma ∈ Xfi). As a result, we have

[2] ys(sout,m) =


∅ if ma = m

ys(sin,m) ∪ {ma} if ma 6= m ∧ma ∈ Xfi

ys(sin,m) Otherwise

where ma ∈ Ops(m,D,L)

[3] YS(ŝout,m) = YS(ŝin,m) ∪ (OpS(m,D,L) ∩Xfi \ {m})

[1][2][3]→ ys(sout,m) ⊆ YS(ŝout,m) ([B.2] proven)

As a result, in all cases, either memory block m has not been accessed, or YS(ŝout,m)

contains all possible temporal scopes of memory blocks accessed within scope m[L] which

may be younger than m. Therefore, the ScopeYS property holds at pout.

4.4.3 Safety proof of scope-aware join function

Assume ScopeYS property holds at pout, after program point p, we prove that ScopeYS property

holds at pinn , before the next program point pn by proving the correctness of our scope-aware

join function ĴŜ .

Given concrete cache state cout of path pa at pout, and ĉout[L] is the computed ACS of loop

L at pout. Assume ScopeYS property holds at pout, we have

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[L][set(m)],

¬Accessed(m,m[L], sout) ∨ ys(sout,m) ⊆ YS(ŝout,m) [C.1]

Let cinn be the concrete cache state of path pa at pinn , and ĉinn [L] is the computed ACS of loop

51

L at pinn . We prove ScopeYS property holds at pinn :

∀m ∈ cinn [L], sinn = cinn [set(m)], ŝinn = ĉinn [L][set(m)],

¬Accessed(m,m[L], sinn) ∨ ys(sinn ,m) ⊆ YS(ŝinn ,m) [C.2]

From our proposed scope-aware join function ŝ = ĴŜ(ŝ1, ŝ2), younger set YS(ŝ, m) of m

at pinn is the union of all younger sets of incoming edges of pinn . As pout is one of the incoming

edge of pinn , we have

YS(ŝout,m) ⊆ YS(ŝinn ,m) [ĴŜ]

Because pinn is immediately after pout, no new memory block is accessed. Therefore the

concrete set state sinn is exactly the same as concrete set state sout, and the concrete younger set

remains the same:

ys(sinn ,m) = ys(sout,m) [C.3]

If m has not been accessed in scope m[L] at pout, m remains not accessed at pinn . The

ScopeYS property will hold at pinn .

Otherwise, if m has been accessed in scope m[L] at pout, we have

[C.1] ys(sout,m) ⊆ YS(ŝout,m)

[ĴŜ] YS(ŝ
out,m) ⊆ YS(ŝinn ,m)

[C.3] ys(sinn ,m) = ys(sout,m)

→ ys(sinn ,m) ⊆ YS(ŝinn ,m) ([C.2] proven)

The younger set YS(ŝinn ,m) contains all possible memory blocks younger than m in set(m) of

sinn at pinn . Therefore the ScopeYS property holds at pinn .

According to the proof structure outlined in Section 4.4.1, the ScopeYS property holds

52

before and immediately after memory block m is first accessed in scope m[L]. Then ScopeYS

property holds before and after memory access at each program point p, and from p to the next

program point pn. As a result, the maximum relative age x of memory block m in scope m[L]

determined by our scope-aware persistence analysis (i.e. x = |YS(ŝ, m)|+1) is always greater

or equal to the relative age of m in concrete set state s = c[set(m)] in arbitrary path pa after

the first access of m in scope m[L]. Therefore, our scope-aware persistence analysis is safe.

4.5 Cache Miss Computation

In abstract interpretation-based approaches, the cache analysis results are used to classify the

cache behavior of each data reference D in the program. Typical worst case categories are (1)

All Hit (AH): all data accesses of D result in cache hit; (2) All Miss (AM): all data accesses of

D result in cache miss; (3) Persistent (PS): all possible accessed memory blocks of D are per-

sistent (D has at most one cold miss for each persistent memory block); and (4) Non Classified

(NC): the cache behavior of D could not be classified (all accesses of D are considered to be

misses).

In the presence of data cache, different executions of the same data reference may access

various memory blocks and result in different cache behavior. In our motivating example shown

in Figure 4.1, data reference B[i][j] may access m4, m5, and m6 in the temporal scopes m4,

m5, and m6 respectively. As illustrated in Figure 4.3(c) and Figure 4.3(d), memory blocks may

have distinct cache behaviors in different loop nesting levels. Scope persistence of the above-

mentioned memory blocks are shown in Figure 4.5. In Figure 4.3, because temporal scope m4

is not aged to evicted line l> in both L1 and L2, m4 is persistent in both scope m4[L1] and

m4[L2]. Therefore, we annotate the iterations of L1 and L2 bounded by m4 with PS. On the

other hand, m5 is not persistent in outer loop L1 (annotated as ¬PS) but is persistent in inner

loop L2, so m5 is persistent in scope m5[L2] but not m5[L1]. m6 is not persistent in any of the

loop levels. Pessimistically categorizing all data accesses from B[i][j] as Non Classified (as in

the original persistence analysis) introduces significant over-estimation on the total number of

53

L1

Loop iteration
PS ¬PS ¬PS

4m 5m 6m

L2

i=0 1 2 3

j=0 8 0 8 0 8 0

PS PS ¬PS

B
mTS 4

B
mTS 5

B
mTS 6

Figure 4.5: Temporal scopes and loop iterations

data misses, which can be avoided in our scope-aware data cache analysis.

Our multi-level analysis computes a fixed-point abstract cache states ĉinn [L] (ĉoutn [L]) for

entry (exit) of each CFG node n in each loop level L. If m is persistent in scope m[L] (or

mD[L]) of loop level L, accesses to m by data reference D incurs only one cold miss for each

complete execution of L (between entry and exit). Let Lps be the outer-most loop level where

m is persistent. Hence, accesses to m incur 1 cold miss for each execution of Lps (including all

its inner loops). The following function blockMiss(D,m) computes the maximum number of

cache misses D may incur due to accesses of m during the entire program execution.

blockMiss(D,m) =


∏
(m[Li].up−m[Li].lw + 1)∀Li ∈ reside(D) if Lps == ∅

1 if outer(Lps) == ∅∏
(m[Li].up−m[Li].lw + 1)∀Li ∈ outer(Lps) otherwise.

where outer(Lps) is the set of all outer loops of Lps. In other words, blockMiss(D,m) com-

putes the number of times Lps executed (in its outer loops) given the temporal scope where m

may get accessed by D. In case m is not persistent in any loop level (Lps == ∅), each access

to m within its temporal scope results into 1 miss. On the other hand, if Lps is outer-most loop

of the program (globally persistent), all accesses to m incur only 1 cold miss.

As illustrated in Figure 4.5, L1 is the outer most loop where m4 is persistent. Since L1

is the outermost loop, m4 causes at most one cold miss globally. m5 is only persistent in L2.

Therefore, accesses to m5 from B[i][j] causes one cold miss for each iteration of L1 in the

interval [1, 1] defined by m5[L1]. m6 is not persistent in any level, so all occurrences of B[i][j]

in the scope result in cache misses. The temporal scope m6 covers interval [2, 2] of L1 and

[0, 7] of L2, so m6 causes at most 1× 1× 8 = 8 misses to B[i][j].

54

Finally, the maximal possible cache misses incurred by D is the summation of blockMiss(D,m)

over all memory blocks D may access (AddrSet(D))

miss(D) =
∑

blockMiss(D,m),∀m ∈ AddrSet(D)

In our motivating example, B[i][j] accesses 8 memory blocks ({m2, . . . ,m9}). According

to our scope-aware analysis results shown in Figure 4.3, m6 is non-persistent in both L1 and L2,

m5 is persistent only in L2, and other 6 memory blocks are persistent in both loops. According

to our cache miss estimation, maximal number of cache misses from B[i][j] is 8+1+1×6 = 15

misses, compared to the original pessimistic analysis which considers all accesses to B[i][j]

lead to totally 64 cache misses.

4.6 Experimental Results

In this section, we evaluate the performance of our proposed scope-based persistence analy-

sis using the data-intensive routines taken from the WCET Benchmarks ([1]). We assume the

benchmarks are executed on a processor architecture with 5-stage pipeline, in-order execution,

perfect branch prediction, separate L1 instruction cache and data cache. Both instruction and

data caches have cache size 2 KB , block size 32 B, cache associativity 2, and perfect LRU

replacement policy. Cache hit latency is 1 cycle, and cache miss latency is 6 cycles. We use

SimpleScalar tool ([3]) to obtain simulation results. We extend SimpleScalar to support write-

through with no-write-allocate policy and no write buffer in the simulation, to be consistent

with the assumptions made in our analysis. The cache analysis results on maximum number

of data cache misses for each data reference are integrated as linear constraints into Chronos

([9]), an ILP-based WCET analysis tool for static WCET estimation. We use existing instruc-

tion cache modeling in Chronos [16]. As we assume separate instruction cache and data cache,

we can model their behavior separately. In the current experiment, we assume a processor

architecture without timing anomalies [7]. However, it is possible to integrate our cache anal-

ysis result in the presence of timing anomaly. To deal with timing anomaly problem, we can

55

Table 4.1: Benchmark descriptions and WCET estimation result

Benchmark Benchmark description Array
Size

Simulation
(cycle)

Our Analysis
(cycle)

Analysis
Time

Edn Finite Impulse Response (FIR) filter. 2048 2,542,444 2,631,312 0.25s
Fdct Fast Discrete Cosine Transform. 2048 917,636 970,646 0.82s
Cnt Counts non-negative numbers in a matrix. 32× 32 21,611 22,826 0.02s

Matmult Matrix multiplication. 24× 24 374,887 467,116 0.02s
Bsort100 Bubblesort program. 1024 15,945,200 16,556,926 0.02s
InsertSort Insertion sort on a reversed array. 1024 14,900,732 16,298,086 0.58s
Jfdctint Discrete-cosine transformation of pixel blocks. 256× 64 1,485,075 1,499,938 2.05s

Lms LMS adaptive signal enhancement. 1024 1,425,585 1,527,952 0.02s
Adpcm Adaptive pulse code modulation algorithm. 2048 193,525 278,495 0.03s

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Edn Fdct Cnt Matmult Bsort100 Insertsort Jfdctint Lms Adpcm

Est/Obs Ratio
Simulation Result Persistence Analysis[9] Must Analysis [13] (20% unrolling) Must Analysis [13] (50% unrolling) Our Analysis

Figure 4.6: WCET estimation results from different analyses

consider the cache behavior of data references in pipeline analysis, similar to [16]. If a data

reference D is persistent, then the latency corresponds to D in the pipeline analysis is N (miss)

cycles for the first execution, and one (hit) cycle for the subsequent executions. Table 4.1 shows

the set of benchmarks used in our evaluation. We have enlarged array sizes (and correspond-

ing loop bounds) to introduce more data cache conflicts and amplify the effect of data cache

performance on overall program execution time. Array Size shows the array size used in our

simulation and analysis for each of the benchmarks. Simulation shows the observed WCET

from SimpleScalar simulation in CPU clock cycles. However, the simulation results may be

smaller the actual WCET values for benchmarks with input-dependent branches/accesses (e.g,

Cnt, Bsort100, InsertSort and Adpcm). Finally, we report the WCET results obtained with our

scope-aware persistence data cache analysis, as well as the time spent for the analysis (on a

Intel(R) Xeon(TM) 2.20 Ghz processor with 2.5 GB of RAM).

We have implemented the must analysis with loop unrolling as proposed in [20], and the re-

vised persistence analysis (Section 3) to compare with our proposed scope-aware analysis. Fig-

ure 4.6 shows the percentage of overestimation from various data cache analysis approaches,

56

compared to the normalized observed WCET results from SimpleScalar simulation (shown in

Table 4.1). Given the array size in our experiment, since the entire array does not fit into the

data cache for any of the benchmarks, no memory block can be categorized as persistent in

the original persistence analysis of [11]. As a result, the estimated WCET results with original

persistence analysis are up to 83% higher than the observed WCET (for InsertSort). We also

compare the estimated WCET results using must analysis with 20% and 50% virtual unrolling

of the loop nest ([20]), where the analysis is repeatedly performed for each unrolled loop it-

eration. As shown in Figure 4.6, even when 50% the loop nest is unrolled, [20] still reports

up to 65% higher WCET estimate compared to the observed simulation time (for Adpcm). In

particular, must analysis requires loop unrolling to bring memory blocks to the data cache and

to capture subsequent cache reuse. As a result, for the remaining portion of the loop nest where

unrolling is not applied, they can not capture any cache reuse.

On the other hand, our scope-aware analysis always obtains tighter WCET estimates com-

pared to existing approaches. In most of the benchmarks, our WCET estimates are less than

10% higher than the simulation results (except for Matmult and Adpcm). We observe that many

data references in these benchmarks have sequential array access patterns. They traverse array

elements in sequential order, according to the row-major arrangement of array in the memory.

Our scope-aware approach fully captures the temporal locality of such data accesses to bound

the worst-case data cache performance. Our scope-aware persistence analysis achieves 12%

to 74% tighter WCET estimates compared to original persistence analysis, and 5% to 35%

compared to must analysis with 50% unrolling.

Matmult contains a column array access in addition to sequential array accesses. In our

analysis, a temporal scope captures the lower and upper bound of loop iterations where a mem-

ory block may get accessed. For column array access, array elements contained in a single

memory block are usually accessed in non-contiguous loop iterations, which leads to over-

estimation in the computed temporal scopes. However, as shown in Figure 4.6, our estimated

WCET is only 25% higher than the observed WCET, and is 10% to 40% tighter than other

approaches.

57

Adpcm is a complex benchmark with input-dependent branches and accesses, so our simula-

tion result may underestimate the real WCET. Due to the presence of input-dependent branches

and accesses, must analysis cannot guarantee a memory block to be loaded into the cache for

subsequent reuse even with unrolling. In our scope-aware persistence analysis, by guaranteeing

the scope persistence of memory blocks, we can achieve 20% tighter WCET estimate compared

to must analysis (with 50% loop unrolling).

58

Chapter 5

Discussion and Conclusion

In this thesis, we have revised and corrected the persistence analysis as proposed in [10, 11],

and presented a novel data cache modeling approach for static WCET analysis. Our analysis

effectively exploits regular data access patterns, while retaining the strength and wide applica-

bility of the abstract interpretation approach. We define temporal scopes to capture the local

behavior of memory references (when a particular memory block is accessed). These tem-

poral scopes are automatically calculated during address analysis. Our proposed scope-aware

multi-level data cache analysis extends the cache persistence analysis framework to compute

fine-grained scope-based persistence information to tightly capture the worst case performance

of data cache. Our data cache modeling has been integrated into the open-source Chronos

WCET analyzer ([9]).

In terms of future works, our scope-aware data cache analysis inherits the flexibility and

wide applicability of the abstract interpretation framework. Abstract interpretation techniques

have been used for cache analysis in various cache types and environments, e.g. unified

data/instruction cache analysis [5], multi-level caches [21], instruction cache in multi-cores

platform [6]. An immediate next step is to develope a tight and scalable analysis of data cache

in multi-core platform, based on the analysis technique proposal for instruction cache in [6].

Besides caches, abstract interpretation approach is also used to analyze other mechanism

to bridge the gap between processor speed and memory access time, such as prefetching. Re-

59

cently, there has been an effort to estimate WCET in the presence of instruction prefetch [26].

Data prefetching [15, 24] has been used to hide the latency of data memory access. Our scope-

aware abstract state can play a role in developing analysis framework of data prefetching for

WCET estimation.

60

Bibliography

[1] WCET Benchmarks, http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[2] C. Ballabriga and H. Casse. Improving the First-Miss Computation in Set-Associative

Instruction Caches. In ECRTS, 2008.

[3] D. Burger and T.M. Austin. The SimpleScalar tool set, version 2.0. ACM SIGARCH,

25(3), 1997.

[4] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the cache

behavior of nested loops. In PLDI, 2001.

[5] S. Chattopadhyay and A. Roychoudhury. Unified cache modeling for wcet analysis and

layout optimizations. In RTSS, 2009.

[6] S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling shared cache and bus in

multi-cores for timing analysis. In SCOPES, 2010.

[7] J. Reineke et al. A definition and classification of timing anomalies. In In WCET Work-

shop, 2006.

[8] S. Lim et al. An accurate worst case timing analysis for risc processors. IEEE Transac-

tions on Software Engineering, 21(7):593–604, 1995.

[9] X. Li et al. Chronos: A timing analyzer for embedded software. Science of Computer Pro-

gramming, 69(1-3):56–67, 2007, http://www.comp.nus.edu.sg/˜rpembed/

chronos.

61

[10] C. Ferdinand. Cache behavior prediction for real-time systems. PhD thesis, Saarland

University, 1999.

[11] C. Ferdinand and R. Wilhelm. On predicting data cache behavior for real-time systems.

In LCTES, 1998.

[12] B.B. Fraguela, D. Andrade, and R. Doallo. Address-independent estimation of the worst-

case memory performance. IEEE Transactions on Industrial Informatics, 2010.

[13] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler framework for

analyzing and tuning memory behavior. ACM Transactions on Programming Languages

and Systems, 21(4):703–746, 1999.

[14] S.K. Kim, S.L. Min, and R. Ha. Efficient worst case timing analysis of data caching. In

RTAS, 1996.

[15] Alexander C. Klaiber and Henry M. Levy. An architecture for software-controlled data

prefetching. SIGARCH Comput. Archit. News, 19:43–53, April 1991.

[16] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for software

timing analysis. In RTSS, 2004.

[17] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: beyond direct

mapped instruction caches. In RTSS, 1996.

[18] H. Ramaprasad and F. Mueller. Bounding worst-case data cache behavior by analytically

deriving cache reference patterns. In RTAS, 2005.

[19] J. et al. Reineke. Timing predictability of cache replacement policies. Real-Time Systems,

2007.

[20] R. Sen and Y.N. Srikant. WCET estimation for executables in the presence of data caches.

In EMSOFT, 2007.

62

[21] Tyler Sondag and Hridesh Rajan. A more precise abstract domain for multi-level caches

for tighter wcet analysis. In RTSS, 2010.

[22] J. Staschulat and R. Ernst. Worst case timing analysis of input dependent data cache

behavior. In ECRTS, 2006.

[23] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by sepa-

rated cache and path analyses. Real-Time Systems, 18(2):157–179, 2000.

[24] S.P. Vander Wiel and D.J. Lilja. When caches aren’t enough: data prefetching techniques.

Computer, 30(7):23 –30, July 1997.

[25] R. T. White et al. Timing analysis for data and wrap-around fill caches. Real-Time System,

17(2-3):209–233, 1999.

[26] Jun Yan and Wei Zhang. Analyzing the worst-case execution time for instruction caches

with prefetching. ACM Trans. Embed. Comput. Syst., 8:7:1–7:19, January 2009.

63

