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Abstract

Labeling Dynamic XML Documents:

An Order-Centric Approach

Xu Liang

The rise of xml as a de facto standard for data exchange and representation has

generated a lot of interest on querying XML documents that conform to an ordered

tree-structured data model. Labeling schemes facilitate XML query processing by

assigning each node in the XML tree a unique label[8, 22, 35, 44, 51]. Structural

relationships of the tree nodes, such as Parent/Child (PC), Ancestor/Descendant

(AD), Sibling and Document order, can be efficiently established by comparing

their labels.

In this thesis, we explore static and dynamic XML labeling schemes from a novel

order-centric perspective: We systematically study the various labeling schemes

proposed in the literature with a special focus on their orders of labels. We de-

velop an order-based framework to classify and characterize XML labeling schemes,

based on which we show that the order of labels fundamentally impacts the update

processing of a labeling scheme[48].

We introduce a novel order concept, vector order[46], which is the foundation

of the dynamic labeling schemes we propose. Compared with previous solutions

that are based on natural order, lexicographical order or VLEI order[9, 22, 32–

35, 38, 44, 51], vector order is a simple, yet most effective solution to process updates
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in XML DBMS. We illustrate the application of vector order to both range-based

and prefix-based labeling schemes, including Pre/post[22], Containment[51] and

Dewey labeling schemes[44] to efficiently process updates without re-labeling.

Since updates are usually unpredictable, we argue that a single labeling scheme

should be used for both static and dynamic XML documents. Previous dynamic

XML labeling schemes, however, suffer from the complexity introduced by their

insertion techniques even if there is little/no update. To further improve the appli-

cation of vector order to prefix-based labeling schemes, we extend the concept of

vector order and introduce Dynamic DEwey (DDE) labeling scheme[49]. DDE, in

the static setting, is the same as Dewey labeling scheme which is designed for static

XML documents. In addition, based on an extension of vector order, DDE allows

dynamic updates without re-labeling when updates take place. We introduce a

variant of DDE, namely CDDE, which is derived from DDE labeling scheme from

a one-to-one mapping. Compared with DDE, CDDE labeling scheme shows slower

growth in label size for frequent insertions. Both DDE and CDDE have exhibited

high resilience to skewed insertions in which case the qualities of existing labeling

schemes degrade severely. Qualitative and experimental evaluations confirm the

benefits of our approach compared to previous solutions.

Lastly, we focus on improving the efficiency of applying vector order to range-

based labeling schemes[47]. We present in this thesis a generally applicable Search

Tree-based (ST) encoding technique which can be applied to vector order as well

as existing encoding schemes[32–34]. We illustrate the applications of ST encoding

technique and show that it can generate dynamic labels of optimal size. In addition,

when combining with encoding table compression, we are able to process very large

XML documents with limited memory available. Experimental results demonstrate

the advantages of our encoding technique over the previous encoding algorithms.
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Chapter 1

Introduction

We begin by introducing the background of eXtensible Markup Language (XML)[12]

in Section 1.1. The main research problem is presented in Section 1.2 followed by

the summary of our contributions in Section 1.3 and thesis organization in Section

1.4.

1.1 Background

In this section, we present the background of our research problem.

1.1.1 Overview of XML and Related Technologies

Standard Generalized Markup Language (SGML) is a standard which defines gen-

eralized markup languages for documents and has been widely used in certain high-

end areas of information management and publishing, such as authoring technical

documentation[1] and electronic data-gathering, analysis and retrieval[2]. By lim-

iting SGML to a specific vocabulary of tags, Hypertext Markup Language (HTML)

allows ease of use and has become the predominant markup language for web pages.

Similar to HTML, the eXtensible Markup Language (XML) is a simplified subset of

8
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SGML. However, unlike HTML which focuses on displaying and formatting data,

XML is designed to capture the actual meaning and structure of the underline

data. Fueled by the hope to make information self-describing and following the

recommendation of the World Wide Web Consortium (W3C), XML has quickly

spread over the Web and elsewhere as a standard to exchange and represent data.

An XML document must begin with a prolog specifying the XML version being

used and possibly some additional information. The basic logical component of

XML data is an element which is identified by tags. An element can either consist

of a pair of start and end tags or an empty element tag (if it does not have any

sub-elements or values). Additional information about an element can be specified

as attributes which can be included in the start tag or empty element tag.

Example 1.1: Figure 1.1 presents a simple sample XML document. The prolog

of the document (line 1) declares that the it conforms to XML version 1.0 and

characters are encoded with UTF-8 encoding scheme. The root element of the

document is BOOK whose start and end tags (<BOOK> and < /BOOK>) can

be found at line 2 and 13 respectively. Inside the start tag of BOOK, ISBN is

an attribute with value 1-23456-789-0. Line 3 and 7 are the start and end tags

of an element SECTION which encloses an element TITLE (line 4), a sequence of

characters ”W3C standard” (line 5) and an element Figure with empty element tag

and an attribute CAPTION (line 6). Line 8 to 12 is another SECTION element

with similar structure. �

1.1.2 XML Data Model and Queries

XML documents are commonly modeled as trees[5]. For example, the XML doc-

ument in Figure 1.1 can be viewed as the tree in Figure 1.2. Some values are

not represented because they are directly associated with an element or an at-
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1<?xml version=1.0 encoding=UTF-8 ?>

2 <BOOK ISBN=1-23456-789-0>

3 <SECTION>

4 <TITLE> SGML </TITLE>

5 "W3C standard"

6 <FIGURE CAPTION="Standard Generalized Markup Language/>

7 </SECTION>

8 <SECTION>

9 <TITLE> XML </TITLE>

10 "W3C recommendation"

11 <FIGURE CAPTION=eXtensible Markup Language/>

12 </SECTION>

13 </BOOK>

Figure 1.1: A sample XML document

tribute. Processing XML documents of more complex models such as graph-based

[23, 25, 36] is beyond the scope of this thesis.

A salient feature of XML data is its order. The elements in an XML document

are implicitly ordered by the order in which their start tags are encountered when

the document that contains them is parsed, which we refer to as document order.

As the tree-structure is concerned, document order is equivalent to the pre-order

defined on nodes. This is illustrated in Figure 1.2 where each node is associated

with an integer indicating its order.

Several query languages, such as Lorel[7], Quilt[15], XML-QL[21], XML-GL[13],

XPath[18] and XQuery[14], have been proposed to query XML and semi-structured

data. Following is an example of XPath query.

Q1: /BOOK/SECTION//CAPTION

The XPath query can be interpreted as a sequence of steps separated by ’/’ or

’//’ which indicate direct containment (Parent/Child) and general containment

(Ancestor/Descendant) relationships respectively. The evaluation of the query can

be processed step by step, with each step applying to the result set of elements
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SECTION

ISBN

TITLE

BOOK

“W3C 
standard”

CAPTION

FIGURE

SECTION

TITLE
“W3C 

recom...

CAPTION

FIGURE

1

2
3

4 5 6

7

8

9 10 11

12

Figure 1.2: A sample XML tree

returned by the previous step. “/BOOK” evaluates to the root element with tag

“BOOK”, to which we apply “/SECTION” and evaluate to the set of elements

with tag “SECTION” directly contained in BOOK element. By further applying

“//CAPTION”, the result would be the set of element nodes with tag “CAPTION”

anywhere under SECTION elements in the previous result.

Document order has to be taken into consideration when evaluating XPath

queries. For example, the elements in the result of a XPath query should be

sorted by document order. In addition, there are XPath queries with predicates

(statements inside square brackets) that explicitly make use of document order,

which we illustrate with the following examples.

Q2: /BOOK/SECTION[position=2]

Q2 retrieves the second element with tag “SECTION” directly under BOOK

element.

Q3: /BOOK//TITLE[3 to 6]
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Label TAG NODE TYPE VALUE
1 BOOK Element null
2 ISBN Attribute 1-23456-780-0
3 SECTION Element null
4 TITLE Element “SGML”
5 – Value “W3C standard”
6 FIGURE Element null
7 CAPTION Attribute “Standard Generalized Markup Language”
8 SECTION Element null
9 TITLE Element “XML”
10 – Value “W3C recommendation”
11 FIGURE Element null
12 CAPTION Attribute “eXtensible Markup Language”

Table 1.1: Shredding XML data into node relational table

Q3 retrieves the third, forth, fifth and sixth elements with tag “TITLE” any-

where under the BOOK element in document order.

In summary, both tree structure and document order in XML data contain rich

information that queries can exploit.

1.2 Research Problem

This thesis focuses on the problem of designing dynamic XML labeling schemes,

which initially arises from a so-called “shredding” process that transforms XML

data for relational storage. However, in addition to relational storage, it is worth

noting that labeling schemes are useful for storage and indexing in general.

1.2.1 XML Shredding

Many solutions to store and query XML data are built on top of relational databases

[10, 26, 37, 44, 51]. By transforming XML data through a “shredding” process[26,

39, 44], the result is a node relational table[38] that fits into relational database

storage. An example of node relational table is shown in Table 1.1 which is the



13

result of shredding the XML document in Figure 1.1.

Each element (or a value) in Figure 1.1 is mapped into one row in Table 1.1.

The tag, node type and value of the element are stored in the second, third and

forth columns respectively. The first column “Label” serves as a logical identifier

of that element. We refer to the assignment of labels in a node relational table as a

labeling scheme. A labeling scheme is “lossless” if we can reconstruct the XML tree

from the node relational table based on the labels. The example node relational

table in which document orders are used as labels is NOT lossless because we lose

structural information, such as Ancestor/Descendant, Parent/Child relationships,

Sibling and Document order, necessary for the reconstruction of the XML tree. As

a result, the resulting node relational table cannot provide full support for XML

queries.

1.2.2 XML Labeling Schemes

As we have seen in the previous section, a lossless labeling scheme is the key to map

unordered node relational table to ordered tree-structured XML data. Existing la-

beling schemes can be mainly classified into two families: range-based[8, 22, 35, 51]

and prefix-based[6, 20, 30, 38, 44]. In this thesis, we consider the problem of design-

ing labeling schemes in a dynamic environment where elements can be arbitrarily

inserted/deleted from the XML documents. Under this setting, the following cri-

teria are important for evaluating a labeling scheme:

1. Order and structural information. Documents obeying XML standard are

intrinsically ordered and typically modeled as trees. Labeling schemes en-

code both document order and structural information so that queries can

exploit them. While document order is essential to be encoded, the amount

of structural information contained in the labels may vary. For example, sib-
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ling relationship can be derived from prefix-based labeling schemes, but in

general not from range-based labeling schemes.

2. Query efficiency. Deriving structural information, including Ancestor/Descendant,

Parent/Child relationships, Sibling and Document order, from labels should

be as efficient as possible.

3. Update efficiency. It is desirable to have a persistent labeling scheme, i.e. up-

date operations performed on XML documents (such as insertions, deletions

and modifications) should not require existing labels to be re-labeled. This is

crucial for low update costs and for the users to be able to query the changes

of the XML data over time[20].

4. Size. Size is an important factor that contributes to query and update effi-

ciency.

However, designing labeling schemes that fulfill all these criteria turns out to

be a challenging problem. Most early works[6, 8, 9, 20, 22, 30, 35, 44, 51] on labeling

schemes can not satisfy the third criteria and requires re-labeling when updating the

XML documents. More dynamic solutions[32–34, 38, 42, 45] have been proposed,

however at the cost of lower query performance and less compact size even for

XML documents that are seldom updated.

Given the extensive research on this topic, our first objective is to compare

and characterize the various labeling schemes proposed in the literature under a

unified framework. Establishing such a framework provides insight into the update

behavior of existing labeling schemes as well as demonstrating the novelty of our

proposed approach.

Moreover, we argue that a single labeling scheme should be designed to fit both

static and dynamic labeling scheme. If different labeling schemes were to be used
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for static and dynamic XML documents, different storage and query mechanisms

need to be enforced, making updating and querying complicated. To make matters

worse, deciding whether a document is static or dynamic in general is a difficult, if

not impossible task as the updating frequency of a document can vary according

to time: a document can, for example, be frequently updated for a period of time

and remain unchanged after that.

1.3 Summary of Contributions

The contribution of this thesis is summarized as follows.

• Designing dynamic XML labeling schemes have received extensive research

attention. In this thesis, we analyze the various labeling schemes proposed

in the literature with a special focus on their orders of labels. We develop an

order-based framework to classify and characterize XML labeling schemes.

Based on which, we show that the order of labels fundamentally impacts the

update processing of a labeling scheme.

• Different from previous labeling schemes are based on natural order[9, 22,

35, 44, 45, 51], lexicographical order[32–34, 38] or Variable Length Endless In-

sertable (VLEI) order[31], we introduce a novel order concept, vector order,

which is the foundation of the labeling schemes propose. We illustrate the

application of vector order to both range-based and prefix-based labeling

schemes.

• To improve the application of vector order to prefix-based labeling schemes,

we extend the concept of vector order and introduce Dynamic DEwey (DDE)

labeling scheme which is tailored for static XML documents, while being

dynamic enough to avoid re-labeling. A variant of DDE, Compact DDE
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(CDDE), is also proposed to enhance the performance of DDE for frequent

insertions.

• Vector order-based labeling schemes not only exhibit high resilience against

frequent updates, but also outperforms previous labeling schemes in terms

of query efficiency and size. Both qualitative and experimental comparisons

demonstrate the advantages of our labeling schemes over the previous ap-

proaches.

• We propose a generally applicable Search Tree-based (ST) encoding tech-

nique. We show that ST encoding can be applied to existing encoding schemes

to efficiently generate dynamic XML labels. We illustrate the applications of

ST encoding technique to different dynamic formats and prove the optimal-

ity of our results. Experimental results demonstrate the high efficiency and

scalability of our ST encoding techniques.

1.4 Thesis organization

This thesis is organized as follows.

In chapter 2, we systematically introduce related works with a special focus

on their order of labels. An order-centric framework is established to facilitate

convenient comparison of these works. Limitations of related works are presented

which is the motivation of our work.

We introduce vector order in chapter 3 which represents a new approach to

process updates in XML data. We illustrate how vector order can be applied to

both range-based and prefix-based labeling schemes.

To improve the application of vector order to prefix-based labeling scheme, we

extend the concept of vector order and introduce Dynamic DEwey labeling scheme
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in chapter 4. A variant of DDE, namely CDDE which is designed for frequent

insertion. Qualitative and experimental evaluations are presented to show the

advantages of our proposed labeling schemes.

In chapter 5, we focus on order preserving transformation of the encoding ap-

proach. We introduce Search Tree-based (ST) encoding technique which outper-

forms existing encoding algorithms in terms of scalability and efficiency.

The thesis is concluded in chapter 6.

Some of the materials in this thesis are published in [46–49]. More specifically,

Chapter 3 is published in [46], Chapter 4 is published in [49], Chapter 5 is published

in [47] and the order-centric approach of the work is published in [48].



Chapter 2

Related work from an

order-centric perspective

In this chapter, we present an order-centric study of existing works on labeling

dynamic XML documents, where the orders of labels is our main focus. Our study

is divided into two parts: (a) how tree structures are encoded (Section 2.1) and (b)

how orders are encoded (Section 2.2). In Section 2.1, we introduce three families

of labeling schemes, range-based, prefix-based and prime with focus on how they

encode tree structure. In Section 2.2, the focus of our analysis is the orders of

labels in static XML labeling scheme differ from those in dynamic XML labeling

schemes, and why order affects their update processing.

2.1 Labeling tree-structured data

We begin by introducing how existing labeling schemes encode tree structures into

compact labels.

18
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(a) Containment labeling scheme (b) Pre/post labeling scheme

1,16,1

2,3,2

5,6,3

8,9,4 10,11,4

7,12,3 13,14,3

4,15,2

1,8,1

2,1,2

4,2,3

6,3,4 7,4,4

5,5,3 8,6,3

3,7,2

Figure 2.1: Range-based labeling schemes

2.1.1 Range-based labeling schemes

In Figure 2.1, we present examples of containment[51] and pre/post[22] labeling

schemes which both belong to range-based labeling schemes.

In containment labeling scheme, each element node is assigned a label of the

form start, end, level where start and end define a range that contains all its

descendant’s ranges. Each label in pre/post labeling scheme is of the form pre,

post, level where pre and post are the ordinal numbers of the element node in

preorder and postorder traversal sequences respectively. For both labeling schemes,

level represents the level of the element node in the XML tree. Assume the level

of the root is 1.

Given two containment labels A(s1, e1, l1) and B(s2, e2, l2), the following

structural information can be derived:

P1 Ancestor/Descendant(AD). A is an ancestor of B if and only if s1 < s2 <

e2 < e1, which can be simplified as s1 < s2 < e1. The simplification is based

on the observation that it is impossible to have s1 < s2 < e1 < e2 which

implies the elements are not properly nested.

P2 Parent/Child(PC). A is the parent of B if and only if A is an ancestor of B



20

1

1.1

1.2.1

1.2.2.1 1.2.2.2

1.2.2 1.2.3

1.2

Figure 2.2: Dewey labeling scheme

and l1 = l2 − 1.

Both AD and PC relationships can be derived from pre/post labels as well.

Here we highlight the following difference:

• Given two pre/post labels A(pre1, post1, l1) and B(pre2, post2, l2), A is an

ancestor of B if and only if pre1 < pre2 and post2 < post1. This condition is

different from that of containment labeling scheme and can not be similarly

simplified.

Example 2.1: In Figure 2.1 (a), (4,15,2) is an ancestor of (8,9,4) because 4 < 8 <

15. (7,12,3) is the parent of (8,9,4) because 7 < 8 < 12 and 3=4-1. In Figure 2.1

(b), 3, 7, 2 is an ancestor of 6, 3, 4 because 3 < 6 and 3 < 7. �

In order/size labeling scheme[35], each label consists of a triplet order, size,

level. order/size labeling scheme can be seen as a variation of containment labeling

scheme where a range is defined by order and (order + size).

2.1.2 Prefix-based labeling schemes

Figure 2.2 shows an example of Dewey labeling scheme[?], which is the represen-

tative of prefix-based labeling schemes. The order that Dewey labeling scheme

makes heavy use of is the order among siblings, which we refer to as local order.
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By concatenating the label of its parent (parent label) with its own local order, a

Dewey label uniquely identifies a path from the root to an element.

Given two Dewey labels A : a1.a2 . . . am and B : b1.b2 . . . bn, the following rules

can be used to derive structural information from them:

P1 Ancestor/Descendant(AD). A is an ancestor of B if and only if m < n and

a1 = b1, a2 = b2, . . . , am = bm.

P2 Parent/Child(PC). A is the parent of B if and only if and only if A is an

ancestor of B and m = n− 1

P3 Sibling. A is the sibling of B if and only if m = n and a1 = b1, a2 =

b2, . . . , am−1 = bm−1, i.e. A’s parent label matches B’s parent label.

P4 Lowest Common Ancestor (LCA). The LCA of A and B is C : c1.c2 . . . cl such

that C is an ancestor of both A and B and either (1) l = min(m,n) or (2)

al+1 �= bl+1.

Example 2.2: In Figure 2.2, 1.2 is an ancestor of 1.2.2.1 because 1.2 is a prefix

of 1.2.2.1. 1.2.2 is the parent of 1.2.2.1 because 1.2.2 matches the parent label of

1.2.2.1. 1.2.2.1 and 1.2.2.2 are siblings because they have the same parent label

and the same number of components. The LCA of 1.2.2.1 and 1.2.3 is 1.2. �

2.1.3 Prime labeling scheme

Prime labeling scheme[45] represents a unique approach encoding the tree structure

of XML data.

In prime labeling scheme, each node is associated with a unique prime num-

ber (self label). The label of a node is a number which is the product of its

self label and the label of its parent node (parent label). Since all self labels



22

are distinct prime numbers, the factorization of a label can be used to identify

a unique path in an XML tree. Given two nodes n and m, n is an ancestor

of m if and only if label(m) mod label(n)=0. n is the parent of m if and only if

label(n) = label(m)/self label(m). n and m if and only if label(n)/self label(n) =

label(m)/self label(m). The label of the LCA of n and m is greatest common de-

visor of label(n) and label(m).

Although AD, PC, Sibling and LCA can be encoded elegantly in this way, us-

ing prime numbers as labels does not provide information about document orders,

which has to be encoded separately. We describe how Prime labeling scheme en-

codes document order in Section 2.2.1.

2.2 Order encoding and update processing

Compared to unordered relational data, a key difference we face when processing

ordered XML data is how to encode the order information[44]. Important order

information defined in XML documents include document order and local order.

Definition 2.1 (Document order). Document order is the order in which the start

tags of the element nodes are encountered when the document that contains them is

parsed. Note that document order is equivalent to preorder defined on the element

nodes if we think of XML documents as linearizations of tree structure.

Local order is the document order among siblings which is trivially consistent

with document order.

Given the one-to-one correspondence between labels and element nodes, we can

derive document order from a set of labels if they and their associated element

nodes have the same ordering. When XML documents are subject to updates, i.e.

element nodes are be inserted or deleted at arbitrary positions in the documents,
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labels have to be inserted or deleted accordingly while preserving the correct order

information. This turns out to be a challenging problem especially if no existing

labels should be modified. We further elaborate the problem by summarizing the

orders used by different labeling schemes.

2.2.1 Range-based labeling schemes and natural order

Since document order is equivalent to preorder on the element nodes, pre/post

labeling scheme naturally encodes document order by incorporating the preorder

traversal ordinal numbers into the labels. Given two pre/post labels A(pre1, post1,

l1) andB(pre2, post2, l2), A precedes B in document order if and only if pre1 < pre2.

Similarly, the start values in containment labels are strictly increasing if they are

ordered according to document order. Thus, document order can be derived from

containment labels from their start values.

The ordering of pre/post and containment labels follows from the natural order

(<) on integers, i.e. pre or start. As we know, insertion between two integers

requires the use of some new integers which falls between them in natural order.

This is not possible if the existing two integers are consecutive, in which case re-

labeling is necessary. The re-labeling may have global effect, that is, the whole

document has to be re-labeled in the worst case. Leaving gaps[35] in labels only

delays re-labeling until some gap is filled. Quartering-Regions Scheme (QRS) [9]

proposes to use floating point numbers instead of integer. This solution does not

solve the problem completely because (a)In standard floating point format, the

mantissa is represented by a fixed number of bits, implying that floating point

numbers are of limited accuracy; (b)The mantissa can be consumed by as many as

2 bits per insertion, which can lead to overflow after 18 insertions and (c) Floating

point numbers are inherently less efficient to process than integers.



24

Prime labeling scheme uses a list of SC (Simultaneous Congruence) values to de-

rive the mapping from self labels to document orders, which are basically ordered

by natural order. Whenever a node is inserted or deleted, the global orders are re-

ordered. As a result, on average half of the SC values have to be re-calculated based

on Euler’s quotient function, which has been shown to be very time consuming[34].

2.2.2 Prefix-based labeling schemes and lexicographical or-

der

Document order can be derived from Dewey labels based on lexicographical order

(denoted as ≺l) which is defined as follows:

Definition 2.2 (Lexicographical order). Given two Dewey labels A : a1.a2 . . . am

and B : b1.b2 . . . bn, A ≺l B if and only if one of the following two conditions holds:

C1. m < n and a1 = b1, a2 = b2, . . . , am = bm.

C2. ∃k ∈ [0, min(m,n)], such that a1 = b1, a2 = b2, . . . , ak−1 = bk−1 and ak < bk.

Consider the Dewey labels of two consecutive sibling element nodes, they have

the parent label and consecutive local orders. From C2 in lexicographical order, the

comparison of two labels eventually lead to comparison of local orders in natural

order if two labels have the same parent label. As a result, re-labeling is unavoid-

able for insertion between two consecutive siblings, regardless of whether integer or

floating point number is used. However, the scope of re-labeling for Dewey labeling

scheme is restricted to the subtree in which the new element node is inserted. In

this sense, lexicographical order already appears to be more robust than natural

order against updates.
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2.2.3 Transforming natural order to lexicographical order

After showing that natural order is rigid and inevitably leads to re-labeling, it

becomes clear that a different order is necessary to solve the problem of updates.

Several encoding schemes[32–34] have been proposed to transform integers into

bit sequences, which, if we see from the order perspective, is from natural order to

lexicographical order.

CDBS encoding scheme[33] transforms integers into binary strings that end with

1, which is referred to as CDBS codes.

Definition 2.3 (Binary string). Given a set of binary numbers A = {0, 1} where

each number is stored with 1 bits, a binary string is a sequence of elements in A.

CDBS codes are ordered by lexicographical order and allow arbitrary insertions

(details in Section 5.2). Binary strings can be physically encoded into two formats:

(1) V-CDBS where a fixed length field is attached before every V-CDBS code

and (2) F-CDBS where all CDBS codes are of the same length. In both cases,

the representations allow limited length of CDBS codes to be encoded. Overflow

problem can happen if insertions produce CDBS codes that are too long to be

represented.

Variable Length Endless Insertable (VLEI) encoding scheme [31] also trans-

forms integers to binary strings. However, unlike CDBS codes, VLEI codes are

not restricted to binary strings that end with 1 and are ordered by a variation of

lexicographical order, which we refer to as VLEI order (denoted as ≺∗
l ).

Definition 2.4 (VLEI order). Given two VLEI codes A : a1.a2 . . . am and B :

b1.b2 . . . bn, A ≺V LEI B if and only if one of the following three conditions holds:

C1. m < n, a1 = b1, a2 = b2, . . . , am = bm and bm+1 = 1.

C2. m > n, a1 = b1, a2 = b2, . . . , an = bn and an+1 = 0.



26

C2. ∃k ∈ [0, min(m,n)], such that a1 = b1, a2 = b2, . . . , ak−1 = bk−1 and ak < bk.

Based on the definition, we have 10 ≺V LEI 1 ≺V LEI 11 and 100 ≺V LEI 10 ≺V LEI

101 ≺V LEI 1 ≺V LEI 110 ≺V LEI 11 ≺V LEI 111.

VLEI codes have similar dynamic property of CDBS codes. Experimental re-

sults demonstrate that the application of VLEI codes has achieved reduction in

update time with respect to the use of floating point numbers[9].

QED encoding scheme has been proposed to solve the overflow problem of

CDBS.

Definition 2.5 (Quaternary string). Given a set of numbers A = {1, 2, 3} where

each number is stored with 2 bits, a quaternary string is a sequence of elements in

A.

Note that number 0 does not appear in quaternary string because it is used as

the separator of the quaternary strings for physical encoding. A QED code is a

quaternary string that ends with 2 or 3. As the following example illustrates, QED

codes are robust enough to allow insertions without re-labeling.

Example 2.3: Let 22, 23 be two QED codes satisfying 22 ≺l 23, we can insert

222 which is another QED code between them and we have 22 ≺l 222 ≺l 23. To

continue to insert between 22 and 222, for example, we can use 2212, satisfying 22

≺l 2212 ≺l 222. �

We refer to CDBS, VLEI and QED as encoding schemes because they can

be used to transform range-based and prefix-based labeling schemes into dynamic

formats. The resulting labeling schemes can process updates without re-labeling.

However, a common drawback of these labeling schemes is that the lengths of binary

and quaternary strings increase linearly if the insertion is ordered.

We refer to CDBS-Containment, VLEI-Containment and QED-Containment
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1

1.1

1.3.1

1.3.3.1 1.3.3.3

1.3.3 1.3.5

1.3

A
1.3.3.2.1

B
1.3.3.2.3

C
1.3.3.2.2.1

Figure 2.3: ORDPATH labeling scheme

labeling schemes as the applications of CDBS, VLEI and QED to containment

labeling schemes. The resulting labeling schemes are ordered by lexicographical

or VLEI order. Similarly, CDBS-Dewey, VLEI-Dewey and QED-Dewey labeling

schemes are results of applying CDBS, VLEI and QED coding schemes to Dewey

labeling schemes. The following section describes how they are ordered.

2.2.4 Transforming lexicographical order to generalized lex-

icographical order

We first introduce ORDPATH labeling scheme[38] which has been implemented in

latest versions of Microsoft� SQL ServerTM.

Figure 2.3 shows an example of ORDPATH labeling scheme which resembles

Dewey labeling scheme, except that only odd numbers are used in initial labeling.

Although ORDPATH looks like Dewey labeling scheme, its processing is quite

different, which is the result of the “careting in” technique used by ORDPATH

labeling scheme to process insertions. We illustrate how the “careting in” technique

works with the following example.

Example 2.4: In Figure 2.3, the dotted circles represent the inserted nodes which
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are inserted in the alphabetical order of their associated letters. Node A is first

inserted between two consecutive siblings with labels 1.3.3.1 and 1.3.3.3. We use 2

which is between 1 and 3 as the ‘caret’ and assign label 1.3.3.2.1 to node A which

is the concatenation of the parent label, the ‘caret’ and 1. Insertion of B can be

treated like a rightmost insertion and its label is derived by increasing the last

component of A by 2. Insertion of C is processed in a similar way as that of A. We

attach another ‘caret’, 2, after 1.3.3, followed by an additional component, 1. �

Based on the ‘careting in’ technique, each level in an ORDPATH label is possi-

bly represented by a variable number of even numbers followed by an odd number.

This property complicates the processing of ORDPATH labels and therefore nega-

tively affects the query performance. For example, computing the LCA of Dewey

labels is equivalent to finding the longest common prefix of them. For ORDPATH

labels, however, extra care has be to taken to make sure the LCA is a valid ORD-

PATH label. As an example, the longest common prefix of two ORDPATH labels

1.6.2.1 and 1.6.2.3.5 is 1.6.2 whereas their LCA should be 1. The complexity in-

troduced by the ‘careting in’ technique fundamentally affects the query processing

with ORDPATH labels even if no update actually takes place.

CDBS-Dewey, VLEI-Dewey, QED-Dewey and ORDPATH labeling schemes are

similarly ordered, which can be captured by the generalized lexicographical order

defined as follows.

Generalized lexicographical order

We propose the notions of generalized Dewey label and generalized lexicographical

order to characterize the labels of prefix-based labeling schemes and their orders.

First we generalize the notion of Dewey label.

Definition 2.6 (Generalized Dewey label). A generalized Dewey label is a sequence
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of logical components separated by dots, which we denote as [a1].[a2] . . . [am]. Here

[ai] encloses a logical component which may consist of more than one component.

The content of each component can be an integer, a string, a sequence of integers,

etc. Nevertheless, the components should be encoded in such a way that allows them

to be separable from each other.

For example, QED-Dewey labels fit into the definition of generalized Dewey

label as we can regard a QED code as a logical component and a sequence of

QED codes are separated by delimiter 0. CDBS-Dewey and VLEI-Dewey labels

are sequences of binary strings. In ORDPATH labeling scheme, a label can be

thought of as a generalized Dewey label where each logical component is a variable

of even numbers followed by an odd number. The components are separable from

each other because the odd number marks the end of a component.

Generalized Dewey labels are compared based on generalized lexicographical

order.

Definition 2.7 (Generalized lexicographical order). Given two generalized Dewey

labels A : [a1].[a2] . . . [am] and B : [b1].[b2] . . . [bn], A precedes B in generalized lexi-

cographical order if and only if one of the two conditions holds:

C1. m < n and a1 ≡ b1, a2 ≡ b2, . . . , am ≡ bm.

C2. ∃k ∈ [0, min(m,n)], such that a1 ≡ b1, a2 ≡ b2, . . . , ak−1 ≡ bk−1 and ak ≺ bk.

≡ and ≺ denote generalized equivalence and generalized less than relation re-

spectively. For generalized lexicographical order to correctly reflect document or-

der, it has to be (a) total on the set of labels, i.e. any two generalized Dewey labels

from the set of labels are comparable with respect to generalized lexicographical

order and (b) transitive because document order itself is transitive.
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Labeling scheme Order Component-wise
equality

Component-wise
order

Containment natural NA NA
Pre/post natural NA NA
QRS-Containment natural NA NA
QRS-Pre/post natural NA NA
Prime natural NA NA
CDBS-Containment lex NA NA
CDBS-Pre/post lex NA NA
VLEI-Containment VLEI NA NA
VLEI-Pre/post VLEI NA NA
QED-Containment lex NA NA
QED-Pre/post lex NA NA
Dewey lex natural natural
QRS-Dewey lex natural natural
VLEI-Dewey generalized lex natural VLEI
QED-Dewey generalized lex natural lex
ORDPATH generalized lex natural lex

Table 2.1: Summary of related work (lex is short for lexicographical)

2.3 Summary of chapter

In this chapter, we analyze the various labeling schemes proposed in the litera-

ture from an order-centric perspective. In Table 2.1, we summarize these labeling

schemes and their orders of labels. Natural order-based labeling schemes are weak

against updates and can easily lead to re-labeling. In contrast, dynamic label-

ing schemes are based on lexicographical order or VLEI order. In the following

chapters, we propose our labeling schemes based on vector order which are funda-

mentally different from the existing solutions.
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Vector order and its applications

In this chapter, we introduce vector order which is the foundation of our labeling

schemes. In addition, we present the application of vector order to both range-based

and prefix-based labeling schemes.

3.1 Vector code ordering

Definition 3.1 (Vector code). A vector code is an ordered pair of the form (x, y)

with x > 0.

A vector code (x, y) can be graphically interpreted as an arrow from the origin

to the point (x, y) in a two dimensional plane. The arrow only falls into the first or

the forth quadrant because we require x > 0. Three vector codes (2,3), (3,2) and

(1,-2) are shown in Figure 3.1. We use the term vector to refer to the graphical

representation of a vector code. Given the one-to-one correspondence between

vector and vector codes, we will use the two terms interchangeably in the rest of

the thesis.

Before formally defining vector order, we elaborate on the intuitive meaning

behind it.
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(1, -2)

(2, 3)
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3

(3, 2)

2

Figure 3.1: Graphical representation of vector codes

Intuitively, vector codes are ordered by tan(Θ) where Θ is the angle a vector

makes with X axis. If we “rotate” a vector from the negative Y axis to the positive

Y axis, Θ goes from −90◦ (excluding −90◦ itself) to 90◦ (excluding 90◦ itself) and

tan(Θ) increases monotonously from −∞ to ∞. In Figure 3.1, we have tan(Θ3)

< tan(Θ2) < tan(Θ1) and the three vector codes are ordered accordingly. Note

that the condition x > 0 restricts vector codes to be in the first and forth quadrant

where vector order is a total order.

Given two vector codes A : (x1, y1) and B : (x2, y2), vector preorder is defined

as:

Definition 3.2 (Vector preorder). A precedes B in vector preorder (denoted as

A�vB) if and only if y1
x1

≤ y2
x2
.

Vector equivalence is defined based on preorder.

Definition 3.3 (Vector equivalence). A is equivalent to B (denoted as A ≡v B) if

and only if A ≤ B and B ≤ A, or equivalently y1
x1

= y2
x2
.
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Equivalence relation is both symmetric and transitive.

Lemma 3.1 (Symmetry of vector equivalence). If A ≡v B, then B ≡v A.

Lemma 3.2 (Transitivity of vector equivalence). Suppose A ≡v B and B ≡v C,

then A ≡v C.

Graphically speaking, if two vector codes are equivalent, then they have the

same direction. As the following lemma implies, equivalence relation can be reduced

to natural equality if two vector codes have the same X component.

Lemma 3.3. Suppose A ≡v B and x1 = x2, then y1 = y2.

We refer to this special form of vector equivalence as equality.

Definition 3.4 (Vector equality). A is equal to B (denoted as A=B) if and only

if x1 = x2 and y1 = y2.

Given vector preorder and equivalence, vector order can be defined as follows:

Definition 3.5 (Vector order). A≺vB if and only if A�vB and A�≡vB ( �≡v is the

negation of ≡v), equivalently,
y1
x1

< y2
x2

or y1 × x2 < x1 × y2.

Two vector codes are comparable under vector order if and only if they are not

equivalent to each other. We say a set of vector codes is inequivalent if it does not

contain two vector codes that are equivalent to each other.

The following lemma addresses a special case where vector order can be reduced

to natural less than relation.

Lemma 3.4. Suppose A ≺v B and x1 = x2, then y1 < y2.

Under the constraint that x > 0, this lemma follows immediately from Definition

3.5.

Same as equivalence relation, vector order is transitive.
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Lemma 3.5 (Transitivity of vector order). If A ≺v B and B ≺v C, then A ≺v C.

The following lemma establishes the connection between vector equivalence and

vector order.

Lemma 3.6. If A ≡v B and B ≺v C, then A ≺v C; If A ≺v B and B ≡v C, then

A ≺v C.

3.2 Vector code functions

We start by introducing two primitive functions to determine a new vector code

that precedes or follows a given vector code A : (x, y) in vector order.

• BEF (A) return (x,y-1).

//returns a vector code before A

• AFT (B) return (x,y+1).

//returns a vector code after A

It is readily verifiable from Lemma 3.4 that BEF (A) ≺v A ≺v AFT (A).

To determine a new vector code that falls between two given vector codes in

vector order, we introduce the following addition function.

Definition 3.6 (Vector code addition). Addition of two vector codes A : (x1, y1)

and B : (x2, y2) is defined as:

A+B = (x1 + x2, y1 + y2) (3.1)

Multiplication function computes a vector code that is equivalent to the given

vector code.
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Figure 3.2: Vector code addition and multiplication

Definition 3.7 (Vector code and scalar multiplication). Multiplication of an inte-

ger r and a vector code A : (x, y) is defined as:

r ·A = (r × x, r × y) (3.2)

Addition and multiplication of vector codes are illustrated in Figure 3.2. In-

tuitively, a vector code and its multiples are equivalent to each other and can be

represented as vectors of the same direction. That is, they make the same angle

with X axis and are equivalent with respect to vector order. Given two vector

codes that are not equivalent, e.g. A and B, the addition of them should produce

a vector code that falls between them in vector order. Because the angle that the

resulting vector makes with the X axis is between those that A and B make. We

formalize our observations with the following results.

Let A : (x1, y1) and B : (x2, y2) be two vector codes,

Lemma 3.7. Suppose A�vB, then A�v (A+B)�vB.

Proof. From A�vB, we have y1×x2 ≤ y2×x1. Therefore, y1× (x1+x2) = y1×x1

+ y1×x2 ≤ y1×x1 + y2×x1 = x1× (y1+ y2). It follows that A�v (A+B). Proof

of the other half the lemma is similar, so we ignore it here.
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Theorem 3.1. Suppose A≡vB, then A≡v (A+B)≡vB.

Proof. A≡vB implies both A �v B and B �v A. It then follows from Lemma 3.7

that A �v (A+B) �v B and B �v (A+B) �v A. Thus, A ≡v (A+B) ≡v B.

Theorem 3.2. Suppose A≺vB, then A≺v (A+B)≺vB.

Proof. It follows from A ≺v B that A �v B and A �≡v B. Therefore, A �v (A+B)

�v B (1). Assume A ≡v (A+B), we have y1× (x1+x2) = x1× (y1+y2) which can

be simplified as y1 × x2 = x1 × y2, and thus, A ≡v B. It is a contradiction to our

assumption, therefore A �≡v (A + B) (2). In the same way, we can prove (A + B)

�≡v B (3). Combining (1), (2) and (3), the theorem follows.

The following corollary generalizes Theorem 3.2.

Corollary 3.1. Given two vector codes A and B such that A≺vB, it follows that

A ≺v . . . ≺v (3 ·A+B) ≺v (2 ·A+B) ≺v (A+B) ≺v (A+ 2 ·B) ≺v (A+ 3 ·B)

≺v . . . ≺v B.

From Theorem 3.2, we can always find a vector code that falls between two

vector codes in vector order. Together with transitivity of vector order in Lemma

3.5, the ordering among the set of vector codes after the insertion remains consis-

tent. Given this result, we are ready to present how vector order can be applied to

range-based and prefix-labeling schemes.

3.3 Applications of vector order

Both structural and order information of range-based labeling schemes depend on

how the ranges in the labels are ordered. As a result, transforming the ranges into

vector codes in an order-preserving manner can provide the flexibility to process

insertions without re-labeling, while preserving all the useful information.
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Order-preserving transformation
Integer Vector Code

Linear Recursive
0 (1,0)
1 (1,1) (5,1)
2 (1,2) (4,1)
3 (1,3) (3,1)
4 (1,4) (5,2)
5 (1,5) (2,1)
6 (1,6) (7,5)
7 (1,7) (5,3)
8 (1,8) (3,2)
9 (1,9) (4,3)
10 (1,10) (1,1)
11 (1,11) (4,5)
12 (1,12) (3,4)
13 (1,13) (2,3)
14 (1,14) (3,5)
15 (1,15) (1,2)
16 (1,16) (2,5)
17 (1,17) (1,3)
18 (1,18) (1,4)
19 (0,1)

Table 3.1: Linear and recursive transformation for the range [1,18]

3.3.1 Order-preserving transformation

The ranges in a set of containment labels come from a sequence of integers from 1

to 2n for an XML tree with n elements. For pre/post labeling scheme, there are

two identical sequences of integers from 1 to n. Let Z denote the set of integers and

V denote the set of vector codes, a transformation f : Z → V is order-preserving if

the following condition holds: f(i) ≺ f(j) if and only if i < j for i, j ∈ Z. In this

thesis, we introduce two transformations to vector codes that are order-preserving.
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Recursive transformation

Column 3 of Table 3.1 shows the result of recursive transformation for integers from

1 to 18. The transformation proceeds in the following steps:

Step 1. Extend the range by adding a 0 before 1 and a 19 after 18. Assign (1,0)

to 0 and (0,1) to 19 (Note that we manipulate (0,1) in the same way as a

vector although it is not. (1,0) and (0,1) are used as auxiliary codes and will

be discarded after the transformation).

Step 2. Calculate the middle position of the range (0,19): round(0+(19-0)/2)=10.

Assign the sum of (1,0) and (0,1) to the middle position.

Step 3. Use the middle position to partition (0,19) into two sub-ranges (0,10) and

(10, 19), repeat step 2 for each of the sub-ranges.

The process continues until all positions are assigned vector codes.

The reason for recursive transformation being order-preserving follows from

Theorem 3.2. We can think of the transformation process as recursively inserting

between existing vector codes.

Linear transformation

Linear transformation f : Z → V is defined as follows,

f(i) = (1, i) for i ∈ Z (3.3)

An example of linear transformation for a sequence from 1 to 18 is shown in the

second column of Table 3.1. It is an order-preserving transformation because, given

any i, j ∈ Z such that i < j, it follows from Lemma 3.4 that (1, i) ≺v (1, j). We

use linear transformation to illustrate the application of vector order in this thesis.



39

While recursive transformation tries to minimize the maximum number used,

it has to transform the whole range at a time and thus not as efficient as linear

transformation to apply. Moreover, since all the vector codes transformed from

linear transformation are of the form (1, i), we can compress them by assuming

that a vector code with a single component has 1 as its X component. Based on our

experimental results, linear transformation gives smaller label size when compressed

ORDPATH format is used. Therefore we will apply linear transformation in the

labeling schemes we introduce in the thesis. Our discussion also applies to recursive

transformation.

3.3.2 V-Containment labeling scheme

We apply linear transformation to containment labels and refer to the resulting

labels as V-Containment labels. We have described in Theorem 3.2 how to insert a

new vector code between two consecutive ones in vector order. Insertion processing

with V-Containment labeling schemes is slightly different, as two vector codes have

to be inserted at one time which form the range of the new element node. We

introduce the concept of granularity sum to guide such insertions.

Definition 3.8 (Granularity sum). The granularity sum of a vector code A : (x, y)

(denoted by GS(A)) is defined as x+ y.

We use granularity sum as an estimate of the size of vector codes. When

inserting between two vector codes, we try to make use of the vector code of smaller

granularity sum more, so that the resulting labels have a smaller overall size. The

details are presented in Algorithm 1 whose correctness follows from Theorem 3.2.

Note that the granularity sum we defined here is for illustration purpose only. In

practice, more sophisticated measurement of the size can be used according to the

physical encoding format.
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Algorithm 1: InsertTwoVectorCodes(A, B)

Data: A and B which are two vector codes satisfying A ≺v B
Result: C and D such that A ≺v C ≺v D ≺v B
if GS(A) > GS(B) then1

return (A+B) and (A+2·B);2

else3

return (2·A+B) and (A+B);4

end5

To study how insertion of a new node A can be processed with V-Containment

labeling scheme, it is sufficient to consider the following three principles: (a) The

range of A should be inside the range of A’s parent; (b) The start of A should be be

less than the end of its closest preceding sibling (if it exists) and (c) The end of A

should be be less than the start of its closest following sibling (if it exists). Based

on containment property, (a) obviously holds. If (b) or (c) is violated, it means

there is some range that A and its sibling(s) have in common. If some new node

is inserted as a descendant of A or one of A’s siblings and assigned a range that is

inside the common range, it would be a violation of the tree structure. Moreover,

(b) and (c) guarantee that A has the correct document order. In all cases, the level

of A equals to the level of A’s parent plus 1.

Example 3.1: In Figure 3.3, the solid circles represent the elements nodes that are

initially in the XML tree. Their labels are transformed from containment labeling

scheme through linear transformation. Consider inserting element node A before

the first child of the root. The start and end of A should fall between the start

of A’s parent and start of A’s following sibling, that is, (1,1) and (1,2). Since

GS(1, 1) = 2 < 3 = GS(1, 2), it follows from Algorithm 1 the start and end of A

should be (3, 4) (= (2× 1+ 1, 2× 1+2)) and (2, 3) (= (1+1, 1+2)). B is inserted

after the last child of a node, its start and end should be bounded by the end of its

preceding sibling and the end of its parent: (1,14) and (1,15). Applying Algorithm



41

(1,1),(1,16),1

A

B

E

C D

(3,4),(2,3),2 (1,2),(1,3),2
(1,4),(1,15),2

(1,5),(1,6),3
(1,7),(1,12),3

(1,13),(1,14),3 (3,43),(2,29),3

(1,8),(1,9),4 (1,10),(1,11),4

(3,28),(2,19),4 (3,29),(4,39),4

(10,97),(7,68),5

Figure 3.3: Process Updates with V-Containment labeling scheme

1, the start and end of B should be (3, 43) (= (2× 1 + 1, 2× 14 + 15)) and (2, 29)

(= (1 + 1, 14 + 15)). C is inserted between two consecutive element nodes. Its

start and end should be between the end of its preceding sibling and the start of

its following siblings. From Algorithm 1, the start and end of C should be (3, 28)

(= (2× 1 + 1, 2× 9 + 10)) and (2, 19) (= (1 + 1, 9 + 10)). Similarly, the start and

end of C should be (3, 29) (= (2× 1+1, 2× 9+10)) and (4, 39) (= (1+1, 9+10)).

The range of D is confined by its parent’s range. The start and end of C should

be (10, 97) (= (2× 3 + 4, 2× 29 + 39)) and (7, 68) (= (3 + 4, 29 + 39)). �

3.3.3 V-Pre/post labeling scheme

In V-Pre/post labeling scheme, insertion of a new node A can be processed based

on two principles: (a)the pre of A should be between the pres of two nodes that

immediately precede and follow A during preorder traversal (if they exist) and

(b)the post of A should be between the posts of two nodes that immediately precede
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(1,1),(1,8),1

A

B

E

C D

(2,3),(1,0),2 (1,2),(1,1),2 (1,3),(1,7),2

(1,4),(1,2),3
(1,5),(1,5),3

(1,8),(1,6),3 (1,9),(2,13),3

(1,6),(1,3),4 (1,7),(1,4),4

(2,13),(2,7),4 (3,20),(3,11),4

(4,27),(5,18),5

Figure 3.4: Process Updates with V-Pre/post labeling scheme

and follow A during postorder traversal (if they exist).

Example 3.2: First we consider the insertion of A which is a leftmost insertion

under the root. To maintain correct document order, the pre of A should be

between the pre of A’s parent and A’s following sibling. That gives us (2,3) which

is the sum of (1,1) and (1,2). In addition, to keep AD and PC relationships, the

post of A should be less than the post of A’s following sibling, that is (1,1). We

therefore assign BEF (1, 1) = (1, 0) to the post of A. Since there is no element nodes

that follow B during preorder traversal, we assign AFT (1, 8) = (1, 9) to the B.pre.

In addition, B.post = (2, 13) = (1, 6) + (1, 7). Insertions between two consecutive

siblings (C and D) are processed in a similar manner. Insertion of a leaf node

is more complicated with V-Pre/post labeling scheme than with V-Containment

labeling scheme. Recall that in V-Containment labeling scheme, the label of the

parent alone is sufficient to determine the label of the new leaf node. However, if

we consider the insertion of D in Figure 3.4, its pre should fall between the pre of
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its parent and the pre of its parent’s following sibling. In addition, the post of D

is confined by the post of its parent and the post of its parent’s preceding sibling.

Thus, the label of D is determined by three labels. �

3.3.4 V-Prefix labeling scheme

We introduce V-Prefix labeling scheme which is the most straight forward applica-

tion of vector order to Dewey labeling scheme. It is derived from Dewey labeling

scheme by transforming every Dewey label into a sequence of vector codes through

linear transformation.

The initial labeling of V-Prefix labeling scheme is shown in Figure 3.5, with

solid circles representing the element nodes initially in the XML tree. All vector

codes are enclosed by brackets for easy reference.

Given a V-Prefix label of the form (x1, y1).(x2, y2) . . . (xm, ym), we denote it as:

v1.v2 . . . vm where v1 = (x1, y1), v2 = (x2, y2) . . . vm = (xm, ym). Thus, V-Prefix

label can be seen as a generalized Dewey label where every component is a vector

code.

V-Prefix labels are ordered by V-Prefix order.

Definition 3.9 (V-Prefix order). Given two V-Prefix labels A : v1.v2 . . . vm and

B : w1.w2 . . . wn, A precedes B in V-Prefix order (denoted as A ≺vp B) if and only

if one of the following two conditions holds:

C1. m < n and v1 = w1, v2 = w2, . . ., vm = wm.

C2. ∃k ∈ [0, min(m,n)], such that v1 = w1, v2 = w2, . . ., vk−1 = wk−1 and

vk ≺v wk.

V-Prefix order fits into the definition of generalized lexicographical order where
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(1,1)

A

(1,1).(1,0)

B

E

C D

(1,1).(1,1)

(1,1).(1,2)

(1,1).(1,2).(1,1)

(1,1).(1,2).(1,2)

(1,1).(1,2).(1,3) (1,1).(1,2).(1,4)

(1,1).(1,2).(1,2).(1,1) (1,1).(1,2).(1,2).(1,2)

(1,1).(1,2).(1,2).(2,3)
(1,1).(1,2).(1,2).(3,5)

(1,1).(1,2).(1,2).(3,5).(1,1)

Figure 3.5: Process Updates with V-Prefix labeling scheme

equality and less than relations are those defined on vector codes (From Definition

3.4, two vector codes are equal if they have the same X and Y components).

Lemma 3.8 (Transitivity of V-Prefix order). Given three V-Prefix labels A, B and

C such that A ≺vp B and B ≺vp C, it follows that A ≺vp C.

This lemma can be proved based on the transitivity of vector order (Lemma

3.5).

Given two V-Prefix labels A : v1.v2 . . . vm and B : w1.w2 . . . wn, we summarize

the properties of V-Prefix labels as follows:

P1 (AD Relationship). A is an ancestor of B if and only if m < n and v1 = w1,

v2 = w2, . . ., vm = wm.

P2 (PC Relationship). A is the parent of B if and only if A is an ancestor of B

and m = n− 1.

P3 (Document Order). A precedes B in document order if and only if A ≺vp B.
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P4 (Sibling Relationship). A is a sibling of B if and only if m = n and v1 = w1,

v2 = w2, . . ., vm−1 = wm−1.

These properties remain true after arbitrary insertions and deletions.

Correctness of initial labeling

First of all, structural information is kept correct after linear transformation be-

cause every V-Prefix label is still the concatenation of its parent label and a vector

code that represents its local order. To show the initial labeling is correct with

respect to document order, it suffices to prove that the transformation from Dewey

labels to V-Prefix codes is order-preserving.

Lemma 3.9. Suppose we have two Dewey labels A : a1.a2 . . . am and B : b1.b2 . . . bn

such that A ≺l B. Let A′ : v1.v2 . . . vm and B′ : w1.w2 . . . wn be the V-Prefix labels

derived from A and B by applying linear transformation, it follows that A′ ≺vp B
′.

Proof. A ≺l B implies one of following two conditions:

C1. m < n and a1 = b1, a2 = b2, . . . , am = bm. a1 = b1 implies (1, a1) = (1, b1), or

v1 = w1. In this way, we have v1 = w1, v2 = w2, . . ., vm = wm and therefore

A′ ≺vp B
′.

C2. ∃k ∈ [0, min(m,n)], such that a1 = b1, a2 = b2, . . . , ak−1 = bk−1 and ak < bk.

ak < bk implies (1, ak) ≺v (1, bk). Again, we have v1 = w1, v2 = w2, . . .,

vk−1 = wk−1, am ≺v bm and therefore A′ ≺vp B
′

V-Prefix label addition

The addition of V-Prefix labels is defined on two sibling V-Prefix labels.
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Definition 3.10 (V-Prefix label addition). Given two V-Prefix labels with sibling

relationships A : v1.v2 . . . vm−1.vm and A′ : v1.v2 . . . vm−1.v
′
m, A+A′ is defined as:

A+ A′ = v1.v2 . . . vm−1.(vm + v′m) (3.4)

The following result directly follows from the property of vector code addition.

Lemma 3.10. Let A and A′ be two V-Prefix labels with sibling relationships, we

have A ≺vp (A+ A′) ≺vp A
′.

How to process updates with V-Prefix labels are summarized as follows.

• Leftmost insertion. When a new node is inserted before node v1.v2 . . . vm−1.vm

where A is the first child of a node, we assign label v1.v2 . . . vm−1.BEF (vm)

to the new node.

• Rightmost insertion. When a new node is inserted before node v1.v2 . . . vm−1.vm

where A is the last child of a node, we assign label v1.v2 . . . vm−1.AFT (vm) to

the new node.

• Insertion below a leaf node. When a new node is inserted below a leaf

node v1.v2 . . . vm−1.vm, we assign label v1.v2 . . . vm−1.vm.(1, 1) to the new node.

• Insertion between two consecutive siblings. When a new node is

inserted between two consecutive siblings with labels v1.v2 . . . vm−1.vm and

v1.v2 . . . vm−1.v
′
m, we assign label v1.v2 . . . vm−1.(vm + v′m) to this node.

In all the cases, the parent label of the new V-Prefix label remains the same as

its parent’s label. These algorithms are illustrated with the following example. We

illustrate how to process updates with V-Prefix labels with the following example.
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Example 3.3: First we consider the leftmost insertion of element node A in Figure

3.5. A should have the same parent label as its parent’s label and a local order

less than (1,1). Thus, we get the new label of A by concatenating its parent’s

label (1.1) to BEF (1, 1) = (1, 0). Since B is inserted at the rightmost position

after (1.1).(1.2).(1.3), we derive its local order to be AFT (1, 3) = (1, 4). C is

inserted between two consecutive siblings. Its parent label is the same as its par-

ent’s label whereas its local order should fall between the local orders of its two

siblings. That is, (2,3)=(1,1)+(1,2). The local order of D is similarly computed:

(3,5)=(2,3)+(1,2). We process the insertion of a leaf node (E) by concatenating

its parent label with an additional component, say, (1, 1). �

Correctness

We have pointed out that the parent label of a new label is the same as its par-

ent’s label in all insertion cases. Thus, we consider it obvious that the structural

information, including PC, AD and sibling, is correctly maintained. To see why

document order is also kept correct, we consider insertion between two consecutive

siblings. The correctness of the rest of the cases are easy to see. From Lemma 3.10,

the new label falls between its preceding and following siblings in V-Prefix order.

Taking transitivity of V-Prefix order (Lemma 3.8) into consideration, the new label

follows its preceding sibling and all element nodes that precede its preceding sib-

ling. Similarly, it precedes its following siblings and all element nodes that follow

its following sibling. What remains to be show is that the new label follows all the

descendants of its preceding sibling in V-Prefix order.

Lemma 3.11. Given three V-Prefix labels A and B and C = A + B, such that A

is a sibling of B and A ≺vp B, if A′ is a descendant of A, then A′ ≺vp C.

Proof. Since A and B are siblings, we denote them as A : v1.v2 . . . vm−1.vm and
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B : v1.v2 . . . vm−1.v
′
m. Thus, C is v1.v2 . . . vm−1.(vm + v′m). A ≺vp B implies

vm ≺v v
′
m. From Theorem 3.2, vm ≺v (vm + v′m). Since A′ is a descendant of A, A

is a prefix of A′. Therefore, A′ ≺vp C.

3.4 Summary of chapter

Labeling dynamic XML documents is a challenging problem that has been exten-

sively studied over the years. In this chapter, we propose a novel order concept,

vector order which can be widely applied to different labeling schemes to process

updates without re-labeling. From the order perspective, our approach is funda-

mentally different from the previous approaches. The correctness of our approach

follows from the properties of vector order that it is both total and transitive on vec-

tor codes. Moreover, vector order can be easily applied to containment, pre/post

and Dewey labeling schemes to process updates without re-labeling. Lastly, we

prove the correctness of our algorithms. In Chapter 4, we extend the concept of

vector order to improve V-Prefix labeling scheme, followed by the experimental

evaluations of all the labeling schemes we proposed at the end of the chapter.



Chapter 4

Extension of vector order and its

applications

In this chapter, we present two prefix-based dynamic labeling schemes that are

based on the extension of vector order and vector equivalence.

4.1 DDE labeling scheme

First we introduce Dynamic DEwey (DDE) labeling scheme.

4.1.1 Motivation

While V-Prefix labeling appears to be the straight forward application of vector

order to Dewey labeling scheme, its drawbacks are also obvious. Transforming

from integer to vector codes doubles the number of components of the labels and

increases the overall label size. The added cost may be justified if (a) The users

are interested in querying changes, so a persistent labeling scheme is needed and

(b) The documents will be extensively updated and the update performance is

49
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crucial. However, it is undesirable and wasteful to introduce these costs if the

documents will remain static or get seldom updated. We have emphasized that

a single labeling scheme should be designed to fit both static and dynamic XML

documents due to the unpredictability of updates. Although V-Prefix labeling

scheme can allow arbitrary insertions in the dynamic setting, its label size is far

from optimal for static XML documents.

In this chapter, we improve V-Prefix to DDE labeling scheme which is dynamic

enough to completely avoid re-labeling, while introducing minimum additional com-

plexity to static documents.

4.1.2 Initial Labeling

Every DDE label is a sequence of integers separated by dots. The initial labeling

of DDE labeling scheme is the same as Dewey (Figure 2.2). However, the semantic

meanings of DDE and Dewey are very different. A Dewey label can be seen as a

concatenation of local orders from the root to an element node whereas we interpret

a DDE label as a sequence of vector codes that share a common X component. We

will show that the directions of these vectors together with the ordering of them

can uniquely determine a path from the root to an element node.

A more intuitive representation of DDE labels is defined in terms of vector

codes.

Definition 4.1 (Vector representation of DDE label). Given a DDE label of the

form x.y1.y2 . . . ym, its vector representation is v1.v2 . . . vm where v1 = (x, y1), v2 =

(x, y2) . . . vm = (x, ym).

We can see that the first component of a DDE label is shared by the sequence

of vector codes as the X component. Note that the root element 1 does not fit into

this interpretation and has to be specially dealt with. We consider a DDE label
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as a generalized Dewey label where each component is a vector code (all of which

share a common X component).

4.1.3 DDE label ordering

DDE labels are ordered by DDE order which can be defined as follows:

Definition 4.2 (DDE order). Given two DDE labels A : v1.v2 . . . vm and B :

w1.w2 . . . wn, A precedes B in DDE order (denoted as A ≺dde B) if and only if one

of the following two conditions holds:

C1. m < n and v1 ≡v w1, v2 ≡v w2, . . ., vm ≡v wm.

C2. ∃k ≤ min(m,n), such that v1 ≡v w1, v2 ≡v w2, . . ., vk−1 ≡v wk−1 and

vk ≺v wk.

The label of the root is minimum with respect to DDE order, i.e. it precedes

all other labels. DDE order can be seen as generalized lexicographical order where

component wise comparison is based on vector equivalence and vector order.

DDE order is transitive.

Lemma 4.1 (Transitivity of DDE order). Given three DDE labels A, B and C

such that A ≺dde B and B ≺dde C, it follows that A ≺dde C.

Proof. From Definition 4.2, ≺dde can imply one of two conditions. Therefore there

are four cases to consider, which can be proved based on Lemma 3.5, Lemma 3.2

and Lemma 3.6.

The equivalence relation on DDE labels can be defined as:

Definition 4.3 (DDE equivalence). Two DDE labels A : v1.v2 . . . vm and B :

w1.w2 . . . wn are equivalent (denoted as A ≡dde B) if and only if m = n and v1 ≡v

w1, v2 ≡v w2, . . ., vm ≡v wm.
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Two DDE labels are comparable with respect to DDE order if and only if they

are not equivalent. We say that a set of DDE labels is inequivalent if there does

not exist two DDE labels in the set with equivalence relation. Let A and B be

two distinct DDE labels from an inequivalent set of DDE labels, we have either

A ≺dde B or B ≺dde A (not both).

Lemma 4.2 (Transitivity of DDE equivalence). Given three DDE labels A, B and

C, if A ≡dde B and B ≡dde C, then A ≡dde C.

This lemma easily follows from the transitivity of vector equivalence.

4.1.4 DDE label properties

A DDE label implicitly stores the level information as the number of components in

that label. This property will remain true after arbitrary insertions and deletions.

Given two DDE labels A : v1.v2 . . . vm and B : w1.w2 . . . wn, we summarize the

properties of DDE labels as follows:

P1 (AD Relationship). A is an ancestor of B if and only if m < n and v1 ≡v w1,

v2 ≡v w2, . . ., vm ≡v wm. (The case where A is the root always returns true.)

P2 (PC Relationship). A is the parent of B if and only if A is an ancestor of B

and m = n− 1.

P3 (Document Order). A precedes B in document order if and only if A ≺dde B.

P4 (Sibling Relationship). A is a sibling of B if and only if m = n and v1 ≡v w1,

v2 ≡v w2, . . ., vm−1 ≡v wm−1.

P5 (LCA). The LCA of A and B is C, such that C is an ancestor of both A and

B, and either (1) |C| = min(m,n), or (2) v|C|+1 �≡v w|C|+1.
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From Lemma 3.3 and Lemma 3.4, ≡v and ≺dde can be reduced to = and <

respectively if two vector codes have the same X component. Such reductions

can be applied to all the initial DDE labels because they all have 1 as their first

component and, as we know, the first component serves as the X component for

the sequence of vector codes in every DDE label. For example, AD relationship

can be simplified for initial DDE labels as follows.

P1 (AD Relationship (for initial DDE labels)). A is an ancestor of B if and only

if m < n and v1 = w1, v2 = w2, . . ., vm = wm.

It follows from the reduction that the initial DDE labels can be treated as

Dewey labels which we consider to be tailored for static XML documents.

4.1.5 Correctness of initial labeling

Lemma 4.3. Based on DDE labeling scheme, the set of initial DDE labels is in-

equivalent.

Proof. We establish the proof by contradiction. Suppose the set of initial DDE

labels is not inequivalent, there exist two DDE labels A : v1.v2 . . . vm and B : w1.w2

. . . wm, such that v1 ≡v w1, v2 ≡v w2, . . ., vm ≡v wm. However, since all the initial

DDE labels start with 1, it follows that v1 = w1, v2 = w2, . . ., vm = wm, which

means A and B are the same. We have a contradiction here because all DDE labels

are different in initial labeling.

Since the set of initial DDE labels is inequivalent, it follows that any two of

them are comparable with respect to DDE order. In addition, DDE order can be

reduced to Dewey order for the initial DDE labels because all of them start with

1. The fact that our initial label assignment is the same as Dewey implies that
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document order is correct with respect to Dewey order and therefore DDE order.

The same reasoning applies to all the other properties of DDE labels.

4.1.6 DDE label addition

To process dynamic insertions between DDE labels while preserving their relative

order, we introduce addition operation on DDE labels. The addition operation is

defined on DDE labels with the same number of components.

Definition 4.4 (DDE label addition). Given two DDE labels with the same number

of components A : v1.v2 . . . vm and B : w1.w2 . . . wn, A+B is defined as:

A+B = (v1 + w1).(v2 + w2) . . . (vm + wm) (4.1)

Note that the first integer in a DDE label, which is the common X component,

only needs to be added once.

The following theorem formalizes important properties of the addition opera-

tion.

Theorem 4.1. Given two DDE labels A : v1.v2 . . . vm and B : w1.w2 . . . wn such

that A is a sibling of B and A ≺dde B, then A ≺dde (A+B) ≺dde B.

Proof. Since A and B are siblings, we have v1 ≡v w1, v2 ≡v w2, . . ., vm−1 ≡v wm−1.

From Theorem 3.1, v1 ≡v (v1+w1) ≡v w1, v2 ≡v (v2+w2) ≡v w2, vm−1 ≡v (vm−1+

wm−1) ≡v wm−1. In addition, A ≺dde B implies that vm ≺v wm. It then follows from

Theorem 3.2 that vm ≺v (vm+wm) ≺v wm. As a result, A ≺dde (A+B) ≺dde B.

Theorem 4.2. Given two DDE labels A : v1.v2 . . . vm and B : w1.w2 . . . wm such

that A ≡dde B, then A ≡dde (A+B) ≡dde B.
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Figure 4.1: Processing insertions with DDE labels

Proof. From A ≡dde B, we have v1 ≡v w1, v2 ≡v w2, . . ., vm ≡v wm. Applying

Lemma 3.2, we have v1 ≡v (v1 + w1) ≡v w1, v2 ≡v (v2 + w2) ≡v w2, . . ., vm ≡v

(vm + wm) ≡v wm, and therefore A ≡dde (A+B) ≡dde B.

We use the following example to illustrate the properties of DDE labels that

have been introduced so far.

Example 4.1: Consider the XML tree in Figure 4.1, the dotted circles represent

the new nodes inserted into the XML tree. We ignore for now how their labels are

generated. Node 1.2 is an ancestor of node E as (1, 2) ≡v (2, 4) and |1.2| < |E|
(|E| denotes the number of components in E). Node 1.2.2 is the parent of G as

(1, 2) ≡v (5, 10) and |1.2.2| = |G| − 1. A ≺dde E as (1, 0) ≺v (2, 4), so H precedes

E in document order. E is a sibling of F because |E| = |F | and (2, 4) ≡v (3, 6).

In addition, E ≺dde F as (2, 4) ≡v (3, 6) and (2, 3) ≺v (3, 5). Note that G=E+F

as 5.10.8 = 2.4.3 + 3.6.5, since E is a sibling of F and E ≺dde F, we have E ≺dde
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G ≺dde F based on Theorem 4.1. To verify, E ≺dde G as (2, 4) ≡v (5, 10) and

(2, 3) ≺v (5, 8), G ≺dde F as (5, 10) ≡v (3, 6) and (5, 8) ≺v (3, 5). �

4.1.7 Processing updates

Similar to that of Dewey labels, it is clear that the deletion of DDE labels does

not affect the order of the other labels. The challenging part is how to handle

insertions without re-labeling. Note that, like ORDPATH, we extend the domain

of component values of DDE labels to positive number, negative number and 0.

However, since ORDPATH only uses odd numbers at initial labeling, its labels are

not as compact as DDE and Dewey.

First we introduce how DDE labeling scheme processes insertions with an ex-

ample.

Example 4.2: In Figure 4.1, node A is inserted before the first child of the root,

we get its label 1.0 by decreasing the local order of 1.1 by 1. Node B is then inserted

before A and its label is therefore 1.-1. Node C is inserted after the node with label

1.2.3, we get its label 1.2.4 by adding 1 to the local order of 1.2.3. Similarly, the

label of node D is 1.2.5. Node E is inserted between two nodes with labels 1.2.2.1

and 1.2.2.2 and its label is 2.4.4.3 which equals to 1.2.2.1+1.2.2.2. Likewise, the

labels of node F and G are 3.6.6.5 (2.4.4.3+1.2.2.2) and 5.10.10.8 (2.4.4.3+3.6.6.5)

respectively. Node H is inserted as the child of leaf node 3.6.6.5, its label is the

concatenation of its parent’s label and 1. �

Among the insertions shown Figure 4.1, we consider the correctness of the

following special cases obvious because the resulting labels are almost the same as

the initial labeling, so proofs are ignored here.

• Leftmost insertion. When a new node is inserted before node A : v1.v2 . . .
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vm where A is the first child of a node, we assign label v1.v2 . . . BEF (vm) to

this node.

• Rightmost insertion. When a new node is inserted after node A : v1.v2 . . .

vm where A is the last child of a node, we assign label A : v1.v2 . . . AFT (vm)

to this node.

• Insertion below a leaf node. When a new node is inserted below a leaf

node A : v1.v2 . . . vm, we assign label A : v1.v2 . . . vm.1 to this node.

In general, insertions can be made between any two consecutive siblings.

• Insertion between two consecutive siblings. When a new node is in-

serted between two consecutive siblings with labels A and B, we assign label

A+B to this node.

We prove the correctness of this case in Section 4.1.8. In conclusion, DDE labeling

scheme supports insertions at arbitrary positions in an XML tree.

4.1.8 Correctness

We show the correctness of our insertion algorithm in terms of structural informa-

tion and document order.

By definition, two DDE labels A and B have sibling relationship if and only if

their parent labels are equivalent. Given Theorem 4.2, the parent label of A+B is

equivalent to both A and B, which from transitivity of DDE equivalence (Lemma

4.2), implies that A + B is a sibling of A, B and all siblings of A and B. Sibling

relationship is therefore correctly maintained.

A DDE label C is an ancestor of another DDE label A if and only if C is

equivalent to a proper prefix of A. We have shown that, the parent label of A+B
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is equivalent to the parent labels of A and B if A and B are siblings. As a result,

transitivity of DDE equivalence (Lemma 4.2) indicates that, any ancestor of A and

B is equivalent to a proper prefix of A+B and is therefore an ancestor of A+B.

The insertion is also correct with respect to PC relationship because the number

of components of a DDE label is kept the same as the level of the corresponding

element node.

The correctness of DDE insertion with respect to document order follows from

Theorem 4.1, Lemma 4.1 and the following lemma.

Lemma 4.4. Given three DDE labels A and B and C = A + B, such that A is a

sibling of B and A ≺dde B, if A′ is a descendant of A, then A′ ≺dde C.

Proof. We denote A and B as A : v1.v2 . . . vm and B : w1.w2 . . . wm respectively.

From A is a sibling of B and A ≺dde B, we have v1 ≡v w1, v2 ≡v w2, . . ., vm−1 ≡v

wm−1, vm ≺v wm. It follows from Theorem 4.2 and Theorem 4.1 that v1 ≡v (v1+w1),

v2 ≡v (v2 + w2), . . ., vm−1 ≡v (vm−1 + wm−1), vm ≺v (vm + wm). Since A′ is

a descendant of A, we can denote A′ as v′1.v
′
2 . . . v′m . . . v′n−1v

′
n where v′1 ≡v v1,

v′2 ≡v v2, . . ., v
′
m−1 ≡v vm−1, v

′
m ≡v vm. From Lemma 3.2 and Lemma 3.6, v′1 ≡v w1,

v′2 ≡v w2, . . ., v
′
m−1 ≡v wm−1, v

′
m ≺v wm. Thus, A

′ ≺dde C.

4.2 Compact DDE (CDDE)

In this section, we introduce a variant of DDE labeling scheme which we call Com-

pact DDE (CDDE). CDDE is designed to enhance the performance of DDE for

insertions.
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4.2.1 Initial labeling

The label format of CDDE is the same as DDE which is a sequence of components

separated by ‘.’. Moreover, the initial labeling of CDDE is the same as DDE,

and is therefore the same as Dewey (Figure 2.2). Unlike DDE labels whose first

components are restricted to be positive decimal numbers, the first component of

a CDDE label can be either positive or negative. We refer to the CDDE labels

with positive first components as positive CDDE labels and those with negative

first components as negative CDDE labels.

Let A : a1.a2 . . . am be a positive CDDE label, we refer to a1 as multiplier,

a1.a2 . . . am−1 as parent label and am as local order. If A : a1.a2 . . . am is a negative

CDDE label, then its multiplier, parent label and local order are a1, a2.a2 . . . am−1

and am respectively.

4.2.2 CDDE label to DDE label mapping

The properties of CDDE label, which include how various relationships can be

established, are different from those of DDE. To simplify discussion, we take a

shortcut by defining a mapping from CDDE label to DDE label.

Given a CDDE label A : a1.a2.a3 . . . am−1.am, we define a mapping f cd : CDDE label →
DDE label as:

f cd(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a1.(a1 × a2).(a1 × a3) . . . (a1 × am−1).am

when a1 > 0

(|a1| × a2).(|a1| × a3) . . . (|a1| × am−1).am

when a1 < 0

Intuitively, the mapping is to apply the ‘multiplier’ to the parent label of the CDDE

label. The multiplier is part of the parent label for positive CDDE labels, but is
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followed by the parent label for negative CDDE labels. For example, CDDE label

2.2.3 maps to DDE label 2.(2× 2).3=2.4.3 whereas CDDE label -3.1.3.2.1 maps to

DDE label (3× 1).(3× 3).(3× 2).1=3.9.6.1.

Based on f cd mapping, we define preorder (denoted as �cdde) on CDDE labels

as:

Definition 4.5 (Preorder). Given two CDDE labels A and B, A �cdde B if and

only if f cd(A) �dde f
cd(B).

Definition 4.6 (Equivalence relation). Two CDDE labels A and B have equiva-

lence relation if and only if f cd(A) =e f
cd(B).

Similarly, CDDE order (denoted as ≺cdde) is defined as:

Definition 4.7 (CDDE order). Given two CDDE labels A and B, A ≺cdde B if

and only if f cd(A) ≺dde f
cd(B).

We summarize the properties of CDDE labels as:

• A CDDE label A is the parent/ ancestor/ sibling of another CDDE label B

if and only if f cd(A) is the parent/ ancestor/ sibling of f cd(B).

• A CDDE label A precedes another CDDE label B in document order if and

only if A ≺cdde B.

Correctness of initial labeling

Given any CDDE label A : 1.a2.a3 . . . am−1.am in the initial labeling, we have

f cd(A) = f cd(1.a2.a3 . . . am−1.am) = 1.a2.a3 . . . am−1.am = A, implying that the

initial CDDE labels simply map those initial DDE labels. Therefore the correctness

of CDDE initial labeling follows directly from that of DDE initial labeling which

we have proved in Section 4.1.5.
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4.2.3 CDDE label addition

Similar to DDE label addition, CDDE label addition applies to two CDDE labels

with sibling relationship.

Lemma 4.5. Let A : a1.a2.a3 . . . am−1.am and B : b1.b2.b3 . . . bn−1.bn be two CDDE

labels with sibling relationship, then a) a1 and b1 are both positive or both negative;

b) m = n; and c) a2 = b2, a3 = b3 . . . am−1 = bm−1.

Lemma 4.5 obviously holds for the initial CDDE labels as they are all positive

labels and among them, any two siblings have the same parent label. We will show

that this lemma remains to be valid after updates in Section 4.2.4.

An important difference between CDDE and DDE is how insertions are handled.

We define addition operation of CDDE labels as:

Definition 4.8 (CDDE label addition). Let A : a1.a2 .a3 . . . am−1.am and A′ :

a′1.a2.a3 . . . am−1.a
′
m be two CDDE labels with sibling relationship, addition of them

is defined as:

A +c A
′ = (a1 + a′1).a2.a3 . . . am−1.(am + a′m)

Different from DDE label addition, CDDE label addition only adds up the

multipliers and local orders of two CDDE labels. As a result, the label size of

CDDE increases at a slower rate than DDE after additions. However, the addition

operations of DDE and CDDE labels are actually equivalent, as the following lemma

implies.

Lemma 4.6. Given two CDDE labels A : a1.a2.a3 . . . am−1 .am and A′ : a′1.a2.a3 . . .

am−1.a
′
m.

f cd(A +c A
′) = f cd(A) + f cd(A′)

Proof. We consider two cases:
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Both A and A′ are positive CDDE labels. f cd(A +c A
′) = f cd((a1 +

a′1).a2.a3 . . . (am + a′m)) = (a1 + a′1).((a1 +a′1)× a2).((a1 + a′1)× a3) . . . ((a1 + a′1)×
am−1).(am + a′m) = a1.(a1 × a2).(a1 × a3) . . . (a1 × am−1).am + a′1.(a

′
1 × a2).(a

′
1 ×

a3) . . . (a
′
1 × am−1).a

′
m = f cd(A) + f cd(A′)

Both A and A′ are negative CDDE labels. f cd(A +c A
′) = f cd((a1 +

a′1).a2.a3 . . . (am + a′m)) = (|(a1 + a′1)| × a2).(|(a1 + a′1)| × a3) . . . (|(a1 + a′1)| ×
am−1).(am + a′m) = (|a1| × a2).(|a1| × a3) . . . (|a1| × am−1).am + (|a′1| × a2).(|a′1| ×
a3) . . . (|a′1| × am−1).a

′
m = f cd(A) + f cd(A′)

In both cases, f cd(A +c A
′) = f cd(A) + f cd(A′).

Lemma 4.7. Suppose A and B are two CDDE labels such that A ≺cdde B, then

A ≺cdde (A+c B) ≺cdde B.

Proof. Based on Definition 4.7, A ≺cdde B is equivalent to f cd(A) ≺dde f cd(B),

which in turn implies that f cd(A) ≺dde f cd(A) + f cd(B) ≺dde f cd(B) (Theorem

4.1). By Lemma 4.6, we can replace f cd(A)+ f cd(B) with f cd(A+cB), which gives

f cd(A) ≺dde f
cd(A+c B) ≺dde f

cd(B). Thus, A ≺cdde (A+c B) ≺cdde B.

4.2.4 Processing updates

We illustrate how CDDE handles updates with an example.

Example 4.3: As illustrated in Figure 4.2, leftmost insertions (node A and B)

and rightmost insertions (node C and D) are processed in the same way as DDE

labels. However, when inserting between node 1.2.1 and 1.2.2, the new label for

node E is 2.2.3 (1.2.1 +c 1.2.2). Likewise, the labels for node F and G are 3.2.5

(2.2.3 +c 1.2.2) and 5.2.8 (2.2.3 +c 3.2.5). �

Leftmost and rightmost insertions obviously do not violate the properties of

sibling relationship stated in Lemma 4.5 as only local orders are changed. Moreover,
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Figure 4.2: Processing insertions with CDDE labels

we can see that Lemma 4.5 still holds after insertion between two positive CDDE

labels (e.g. node E, F and G) because addition of CDDE labels only adds up the

multipliers and local orders while their parent labels remain to be the same.

Processing insertion below a leaf node

We have shown how to process insertion below a leaf node with DDE label. The new

label can be generated by concatenating the parent’s label with 1. However, this

method does not work for CDDE labels because it will produce new labels with

incorrect parent labels. To accommodate such insertions, we introduce another

operation which is used to get the label for the new node:

Definition 4.9 (CDDE label extension). The extension operation of a CDDE label
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A : a1.a2.a3 . . . am−1.am is defined as:

EXT (A) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1.a1.(a1 × a2).(a1 × a3) . . . (a1 × am−1).am.1

when a1 > 1

a1.a2.a3 . . . am−1.am.1

when a1 = 1

−1.(|a1| × a2).(|a1| × a3) . . . (|a1| × am−1).am.1

when a1 < 0

The next lemma shows the equivalence of DDE and CDDE label extension.

Lemma 4.8. Given a CDDE label A : a1.a2.a3 . . . am−1.am, f
cd(EXT (A)) = f cd(A).1.

Proof. There are three cases to be considered:

a1 >1. f cd(EXT (A)) = f cd(−1.a1. (a1 × a2).(a1 × a3) . . . (a1 × am−1).am.1) =

a1.(a1 × a2).(a1 × a3) . . . (a1 × am−1).am .1 = f cd(A).1.

a1 =1. f cd(EXT (A)) = f cd(1.a2.a3 . . . am−1.am.1) = 1.a2 .a3 . . . am−1.am.1 =

f cd(A).1.

a1 <0. f cd(EXT (A)) = f cd(−1.(|a1| × a2).(|a1| × a3) . . . (|a1| × am−1).am.1) =

(|a1| × a2).(|a1| × a3) . . . (|a1| × am−1) .am.1 = f cd(A).1.

When inserting a node below a leaf node with label A, we assign EXT (A) to

the new label.

Example 4.4: Consider the insertion of H in Figure 4.2, given that the parent

of H has label 1.2.1, the label of H is EXT (1.2.1) = 1.2.1.1. Similaly, the label

of I is EXT (F ) = EXT (3.2.5) = −1.3.6.5.1. Inserting node J is just processed

as a rightmost insertion and the new label is −1.3.6.5.2. To insert K between

I and J , the new label is derived by adding the labels of I and J : −2.3.6.5.3

(−1.3.6.5.1 +c −1.3.6.5.2). �
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Lemma 4.5 still holds after insertion between two negative CDDE labels (e.g.

node K) because only their multipliers and local orders are added up. The parent

label of the new label remains the same as the parent labels of its left and right

siblings.

Correctness

Theorem 4.3. To insert between two consecutive sibling nodes with CDDE labels:

A and B where A ≺cdde B, assigning A+cB to the new node is correct with respect

to AD, PC, document order, sibling relationships and LCA computation.

Proof. Based on f cd mapping, the properties of DDE labels can be adapted for

CDDE labels. Moreover, it follows from Lemma 4.6 that the addition operations of

DDE and CDDE labels are equivalent. Intuitively, assigning CDDE label A+cB to

the new node is equivalent to the way that DDE labeling scheme handles insertion

where the new DDE label is f cd(A) + f cd(B). Thus, its correctness becomes the

immediate consequence of the correctness of DDE.

4.3 Relationship computation

In this section, we address the issue of how the various relationships of DDE and

CDDE labels can be computed efficiently.

4.3.1 DDE labels

We have shown that DDE order, along with other properties of DDE labels, are

generalized forms of dewey order and other properties of Dewey labels. Given two

DDE labels A : a1.a2 . . . am and B : b1.b2 . . . bm, they can be compared based on

dewey order without any generalization if a1 = b1 > 0. Considering the fact that
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Figure 4.3: DDE labeling after uniform insertion

all the initial DDE labels start with 1, the chance that we have a1 = b1 > 0 is

actually very high if the number of insertions is not too large or if the insertions

are relatively uniform. As shown in Figure 4.3, if the insertions are performed

uniformly between every two consecutive siblings, the new labels all have 2 as their

first components. Moreover, since DDE labels can keep level information as their

numbers of components after random updates, they are able to support fixed-cost

computation of DDE order and other relationships even in the case of highly skewed

insertions. In summary, the computation of various relationships is very efficient

with DDE labels.

4.3.2 CDDE labels

The properties of CDDE, on the other hand, are defined by mapping CDDE labels

to DDE labels. Therefore, it is natural to compute the various relationships between

two CDDE labels by converting them to DDE labels. However, we will show that

the conversion cost can actually be avoided from the following analysis.

Lemma 4.9. Assume A,B,A′, B′ are four DDE labels such that A =e A′ and

B =e B′, then A is an ancestor of B if and only if A′ is an ancestor of B′. The
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same result holds for PC, document order and sibling relationships. Let C be the

LCA of A and B, C ′ be the LCA of A′ and B′, we have C =e C
′.

Intuitively, it follows from Lemma 4.9 that any two DDE labels with equiva-

lence relation are indeed equivalent in DDE labeling scheme. For example, we can

replace a DDE label 2.4.6 with 1.2.3 (2.4.6 =e 1.2.3), while not compromising the

correctness of DDE labeling scheme.

Given a CDDE label A : a1.a2.a3 . . . am−1.am, we define a simple mapping f scd :

CDDE label → DDE label :

f scd(A) =

⎧⎪⎨
⎪⎩

1.a2.a3 . . . am−1.
am
a1

when a1 > 0

a2.a3 . . . am−1.
am
|a1| when a1 < 0

For ease of exposition and simplicity, we allow a relaxed form of DDE labels where

each component can be represented as a fraction of two decimal numbers. Note

that the relaxed form is used for the purpose of comparison only.

Lemma 4.10. Let A be a CDDE label, we have f cd(A) =e f
scd(A).

Proof. We consider the following two cases:

A is a positive CDDE label. f cd(A) = a1.(a1×a2). (a1×a3) . . . (a1×am−1).am

and f scd(A) = 1.a2.a3 . . . am−1.
am
a1
. Since a1

1
= a1×a2

a2
= a1×a3

a3
= . . . = a1×am−1

am−1
=

am
am
a1

= a1, f
cd(A) =e f

scd(A).

A is a negative CDDE label. f cd(A) = (|a1| × a2).(|a1| × a3) . . . (|a1| ×
am−1).am and f scd(A) = a2.a3 . . . am−1.

am
|a1| . Since

|a1|×a2
a2

= |a1|×a3
a3

= . . . = |a1|×am−1

am−1

= am
am
|a1|

= |a1|, f cd(A) =e f
scd(A).

Lemma 4.9 and Lemma 4.10 together provide a very useful alternative for com-

puting the relationships of CDDE labels. Give two CDDE labels A and B, their
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relationships can be computed based on f scd(A) and f scd(B) instead of f cd(A) and

f cd(B).

How sibling relationships of CDDE labels can be computed directly is given in

Lemma 4.5. Other optimizations are possible if we distinguish between positive

and negative CDDE labels as the following lemmas illustrate:

Lemma 4.11. Suppose A : a1.a2.a3 . . . am−1.am and B : b1.b2.b3 . . . bn−1.bn are two

positive CDDE labels, A is an ancestor of B if m < n, a2 = b2, . . . am−1 = bm−1

and am = bm × a1.

Proof. Since A and B are positive CDDE labels, we have f scd(A) = 1.a2.a3 . . .

am−1.
am
a1

and f scd(B) = 1.b2.b3 . . . bn−1 . bn
b1
. A is an ancestor of B if f scd(A) is an

ancestor of f scd(B), that is, m < n and 1
1
= a2

b2
= a3

b3
= . . . = am−1

bm−1
=

am
a1

bm
. Therefore,

we have a2 = b2, . . . am−1 = bm−1 and am = bm × a1.

Lemma 4.12. Suppose A : a1.a2.a3 . . . am−1.am and B : b1.b2.b3 . . . bn−1.bn are two

negative CDDE labels, A is an ancestor of B if m < n, a2
b2

= a3
b3

= . . . = am−1

bm−1
=

am×b1
bm×a1

.

Proof. Since A andB are negative CDDE labels, we have f scd(A) = a2.a3 . . . am−1.
am
a1

and f scd(B) = b2.b3 . . . bn−1 . bn
b1
. A is an ancestor of B implies that f scd(A) is an

ancestor of f scd(B) and therefore, a2
b2

= a3
b3

= . . . = am−1

bm−1
=

am
a1
bm
b1

. Or equivalently,

a2
b2

= a3
b3

= . . . = am−1

bm−1
= am×b1

bm×a1
.

Similarly, we can compute other relationships based on f scd mappings.

4.4 Qualitative comparison

In this section, we qualitatively compare our vector order-based labeling schemes

with previous labeling schemes.
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Although natural order is easy to compare, it is too rigid to allow dynamic

insertions without re-labeling. Lexicographical order appears to be more robust

because, intuitively, both the value of each component and the number of compo-

nents contribute to the ordering of labels. Insertion between two components that

are consecutive in value can be accommodated by extending the number of compo-

nents. However, extending the number of components appears to be an expensive

operation that can lead to significant increase in the overall size. For example,

QED-based labeling schemes perform poorly for ordered insertions with increase in

length at 2 bits per insertion.

In addition, QED based labeling schemes come with additional encoding costs.

That is, the time and computational costs spent on transforming containment,

pre/post or Dewey labels to the corresponding QED codes. The process is especially

complicated for Dewey labels, considering that the encoding has to be applied to

every sibling group from root to leaf. Each component in ORDPATH labeling

scheme, as we have seen, consists of a variable number of even numbers followed

by an odd number. This fact complicates the processing of ORDPATH labels in

several ways. First of all, all ORDPATH labels in the initial labeling have to

skip even numbers, which makes them less compact than Dewey. Moreover, the

number of components in an ORDPATH label do not necessarily reflect the level

of the associated element nodes. We have to count the number of odd numbers

in an ORDPATH label to derive the level information. This also leads to more

complicated relationship computation such as PC and Sibling, even if the XML

document does not get updated at all. Vector order, on the other hand, does not

introduce additional processing complexity if there is no update because it can be

reduced to natural less than relationship, nor does vector equivalence which can be

reduced to natural equality.
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Dataset Size (MB) Total No. of nodes Max/average fan-out Max/average depth
XMark 113 1666315 25500/3242 12/6
Nasa 23.8 476646 2435/225 10/7
Treebank 85.4 2437666 56384/1623 36/8
DBLP 127 3332130 328858/65930 6/3

Table 4.1: Test data sets

4.5 Experiments and results

4.5.1 Experimental setup

We focus on the comparison of our vector order-based labeling schemes against

QED-based labeling schemes and ORDPATH which are all persistent labeling

schemes. It has been shown that persistent labeling schemes have much lower

updating time than labeling schemes that require re-labeling[34]. When perform-

ing updates, we take the common approach of inserting a single node at a time.

Insertion of a subtree can be achieved through a sequence of single insertions. How-

ever, the orders on which those insertions are performed do have an impact on the

qualities of the resulting labeling schemes, as shown in the subsequent section.

The evaluation of these labeling scheme was performed with XMark Bench-

mark[4], Nasa, Treebank and DBLP [3] data sets and their characteristics are shown

in Table 4.1. All the experiments were conducted on a 2.33GHz dual-core PC with

4 GB of RAM.

4.5.2 Initial labeling

The evaluation of initial labeling is shown in Figure 4.4, with measures of label gen-

eration time and label size. It can be seen that the label generation time of vector

order-based and ORDPATH labeling schemes are approximately the same, which is

dominated by scanning the the document once. QED-based labeling schemes have
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Figure 4.4: Initial Labeling

much higher label generation time, because, in addition to scanning the document,

they have to perform encoding into QED codes.

The labels of vector order-based and ORDPATH labeling schemes are stored

in compressed ORDPATH format[38]. QED-based labeling schemes use their own

physical storage format, with 0 as the separator between every two QED codes.

The label size of range-based labeling schemes is generally larger than that of

prefix-based labeling schemes. For range-based labeling schemes, the label size of

QED-based labeling schemes is slightly less than that of vector order-based ones.

For prefix-based labeling schemes, DDE has the most compact initial label size for

all the four data sets.

4.5.3 Querying static document

We test the query performance on all the four data sets. We present the results

from Treebank data set as the other three data sets shown similar trends. Without

any updates, the labels used for processing queries remain the same as the initial

labels. We evaluate the query performance on initial labels by computing the most

commonly used five relationships: document order, AD, PC, sibling and LCA. We

choose the first 10000 labels from the initial labels of Treebank data set in document

order and, for each pair of the labels, we compute all the five relationships. Note
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Figure 4.5: Querying initial labels

that as pointed out in [43], the LCA of a set of nodes is effectively the LCA of

the first and the last node of the set in document order. Therefore we consider

computing the LCA of two labels as a common function instead of many labels.

The querying time for prefix-based labeling schemes are shown in Figure4.5 (a)

on all the five relationships. CDDE is not shown here because its performance

is the same as DDE for static documents. While QED-Dewey is more efficient

than ORDPATH for computing PC and sibling relationships, it is significantly

slower for comparing document order and less efficient for AD relationship and

LCA computation. For all the five relationships, our DDE outperforms ORDPATH

and QED-Dewey.

Range-based labeling schemes are evaluated based on three relationships in-

cluding document order, AD and PC. Sibling and LCA are excluded because they

are not supported by range-based labeling schemes. Results in Figure 4.5 (b) show

that V-Containment and V-Prefix support the three relations more efficiently than

QED-based labeling schemes.

4.5.4 Update processing

For update processing, successive insertions are performed through a sequence of

single insertions. For insertion of a new node, we retrieve its two closest nodes in
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Figure 4.6: Uniform insertions

terms of document order (e.g. its left and right siblings if they are leaf nodes).

A new label is then generated based on the insertion algorithm specific to that

labeling scheme. Then we create a dummy node with the new label and insert it

to the database we have.

Uniform insertions

We test with insertions made uniformly between every two consecutive siblings.

How these labeling schemes respond to uniform insertions is shown in Figure 4.6.

The insertion time of ORDPATH is approximately the same as our DDE and CDDE

whereas QED shows a slower updating time, as illustrated in Figure 4.6 (a). In

Figure 4.6 (b), the comparison of label size after uniform insertions remains similar

to that for the initial labels (Figure 4.4 (b)), with CDDE giving the most compact

labels. The comparison of range-based labeling schemes and query performance

after uniform insertions are ignored here, since the quality of these labeling schemes

is not much affected by uniform insertions.

Skewed insertions

We classify skewed insertions into two different cases that are common in practice:

• Ordered skewed insertion refers to repeatedly inserting before or after a
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Figure 4.7: Comparison of prefix-based labeling schemes after skewed insertions
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Figure 4.8: Relationship computation time after skewed insertions

particular node.

• Random skewed insertion refers to repeatedly inserting between two nodes

in random order.

Compared with uniform insertions, skewed insertions can have a more signifi-

cant impact on the resulting qualities of labels. Figure 4.7 (a) (b) and (c) shows

the updating cost and label size after ordered skewed insertions. The insertion time

of ORDPATH, DDE and CDDE are negligible and their label sizes only increase

slightly. In contrast, QED-Dewey has relatively higher updating time and its label

size has shown a much higher increase. This result conforms to our previous dis-
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Figure 4.9: Comparison of range-based labeling schemes after skewed insertions

cussions that the lengths of QED codes can increase at 1 or 2 bits per insertion in

case of ordered skewed insertion, resulting in the fast increase of the overall label

size. The results for random skewed insertions are shown in Figure 4.7 (d), (e) and

(f). The updating time and label size of ORDPATH increase at a much faster rate

than the other labeling schemes. This is because random skewed insertions greatly

increase the amount of ‘caret’s that are needed to be used in ORDPATH labels. For

both types of insertions, our DDE and CDDE have shown the best performance in

terms of updating time and label size. In addition, the label size of CDDE increases

at a slower rate than DDE, which is what we have expected. Figure4.9 shows the

response of range-based labeling schemes to ordered skewed insertions. The result

for random skewed insertions is similar. It can be seen that V-Containment and

V-Prefix labeling schemes are little affected by ordered insertion sequence while

QED encoded range-based labeling schemes have shown much higher growth rate

in label size.

4.5.5 Querying dynamic document

To compare the query performance on dynamic XML documents, we adopt the

same settings as the static case except the 10000 labels chosen include 2000 labels

that are newly inserted. Figure 4.8 (a) gives the comparison of relationship compu-

tation time after ordered skewed insertions. Given the fast increase of QED-Dewey
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label size, it conforms to our expectation that its query response time also increases

significantly, especially for document order. The comparison after random skewed

insertions is shown in Figure 4.8 (b) where the query response time of ORDPATH

increases significantly, particularly for sibling relationship. Nevertheless, our DDE

and CDDE have demonstrated robust performance regardless of the order and num-

ber of insertions. Their query response times are least affected after both types of

skewed insertions. We have similar observation for range-based labeling schemes

in Figure 4.9 (c).

4.6 Summary of chapter

Since updates are usually unpredictable, we emphasize that a single labeling scheme

should be used for both static and dynamic XML documents. Previous dynamic

XML labeling schemes, however, all suffer from the complexity introduced by their

insertion techniques even if there is little/no update. In this chapter, we have

presented a novel labeling scheme called DDE which is designed with both static

and dynamic settings in mind. DDE, in the static setting, is the same as Dewey

labeling scheme which designed for static XML documents. In addition, based

on an extension of vector order, DDE allows dynamic updates without re-labeling

when updates take place. We introduce a variant of DDE, namely CDDE, which

is derived from DDE labeling scheme from a one-to-one mapping. Compared with

DDE, CDDE labeling scheme shows slower growth in label size for frequent inser-

tions. Both DDE and CDDE have exhibited high resilience to skewed insertions in

which case the qualities of existing labeling schemes degrade severely. Extensive

experimental evaluation has demonstrated the benefits of our proposed labeling

schemes over previous approaches.



Chapter 5

Search Tree-based (ST) encoding

techniques for range-based

labeling schemes

Labeling schemes can be mainly classified as range-based and prefix-based labeling

schemes. The previous Chapter focused on improving the application of vector

order to prefix-based labeling schemes. In this Chapter, we tackle the problem of

improving range-based labeling schemes.

We begin by introducing the insertion-based encoding approach adopted by

previous works[32][33][34] in Section 5.1 and dynamic formats in Section 5.2. In

Section 5.3, we introduce our Search Tree-based (ST) encoding technique which is

designed for efficient and scalable order-preserving transformation.

5.1 Insertion-based encoding algorithms

The following example illustrates the applications of QED encoding scheme to

containment labeling scheme.

77
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(a) Containment Labels

1,18,1

2,3,2
4,11,2

5,6,3 7,8,3 9,10,3

12,13,2 14,15,2 16,17,2

(b) Encoding Table

112,
332,

1

12,
122,

2

13,
23,
2

132,
2,
3

212,
22,
3

222,
223,

3

232,
3,
2

312,
32,
2

322,
33,
2

(c) Encoded labels

Decimal
Number

QED
Code

1 112

2 12

3 122

4 13

5 132

6 2

7 212

8 22

9 222

10 223

11 23

12 232

13 3

14 312

15 32

16 322

17 33

18 332

Figure 5.1: Applying QED encoding scheme to containment labeling scheme

Example 5.1: In Figure 5.1 (a), every node in the XML tree is labeled with

a containment label that consists of three values: start, end and level. When

applying QED encoding scheme, the start and end values are encoded with QED

codes based on the encoding table in (b). As a result, the containment labels are

transformed into QED-Containment labels shown in (c), which not only preserve

the property of containment labels, but also allows dynamic insertions with respect

to lexicographical order. �

Formally speaking, we consider an encoding scheme as a mapping f from the

original labels to the target labels. Let X and Y denote the set of order-sensitive

codes in the original labels and target labels respectively, f maps each element x in

X to an element y = f(x) in Y . For the mapping to be both correct and effective,

f should satisfy the following properties:

1. Order Preserving: The target labels must preserve the order of the original

labels, i.e. f(xi) < f(xj) if and only if xi < xj for any xi, xj ∈ X. An order

preserving transformation ensures that both document order and structural

information are kept correctly.
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2. Optimal Size: To reduce the storage cost and optimize query performance,

the target labels should be of optimal size, i.e. the total size of f(xi) should

be be minimized for a given range. To satisfy this property, f has to take

the range to be encoded into consideration. The mappings are different for

different ranges of different documents.

The following example illustrates how this mapping in Figure 5.1 (b) is derived

based on QED encoding scheme.

Example 5.2: To create the encoding table in Figure 5.1 (b), QED encoding

scheme first extends the encoding range to (0, 19) and assigns two empty QED codes

to positions 0 and 19 (they are discarded after the encoding process). Next, the

(1/3)th (6=round(0+(19-0)/3)) and (2/3)th (13=round(0+(19-0)×2/3)) positions

are encoded by applying an insertion algorithm with the QED codes of positions

0 and 19 as input. The QED insertion algorithm takes two QED codes as input

and computes two QED codes that are lexicographically between them which are

as short as possible (such insertions are always possible because QED codes are

dynamic). The output QED codes are assigned to the (1/3)th and (2/3)th positions

which are then used to partition range (0, 19) into three sub-ranges. This process

is recursively applied for each of the three sub-ranges until all the positions are

assigned QED codes. CDBS and recursive Vector encoding schemes adopt similar

algorithms. �

We classify these algorithms as insertion-based approach since they make use

of the property that the target labels allow dynamic insertions. However, a draw-

back of the insertion-based approach is that by assuming the entire encoding table

fits into memory, it may fail to process large XML documents due to memory con-

straint. Since the size of the encoding table can be prohibitively large for large XML

documents and main memory remains the limiting resource, it is desirable to have
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a memory efficient encoding algorithm. Moreover, the insertion-based approach

requires costly table creation for every range, which is computationally inefficient

for encoding multiple ranges of multiple documents.

In this chapter, we show that only a single encoding table is needed for the

encoding of multiple ranges. As a result, encoding a range can be translated into

indexing mapping of the encoding table which is not only very efficient, but also

has an adjustable memory usage. The main contributions of this chapter include:

• We propose a novel Search Tree-based (ST) encoding technique which has a

wide application domain. We illustrate how ST encoding technique can be

applied to binary string, quaternary string and vector codes, and prove the

optimality of our results.

• We introduce encoding table compression which can be seamlessly integrated

into our ST encoding techniques to adapt to the amount of memory available.

• We propose Tree Partitioning (TP) technique to further enhance the perfor-

mance of ST encoding for multiple documents.

• Experimental results demonstrate the high efficiency and scalability of our

ST encoding techniques.

5.2 Dynamic Formats

We have introduced binary strings and quaternary strings in chapter 2. In this

section, we illustrate in details how insertions can be processed with them.
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5.2.1 Binary strings

[33][34] introduced the following theorem which formalizes the dynamic property

of binary strings that end with 1.

Theorem 5.1. Given two binary strings Cl and Cr which both end with 1 such

that Cl precedes Cr in lexicographical order (denoted as Cl ≺ Cr), we can always

find Cm which also ends with 1 and Cl ≺ Cm ≺ Cr.

Theorem 5.1 can be proved based on Algorithm 2.

Algorithm 2: InsertBinaryString(Cl, Cr)

Data: Cl and Cr which are both binary strings that end with 1 and Cl ≺ Cr

Result: Cm which ends with 1 and Cl ≺ Cm ≺ Cr

if length(Cl) ≥ length(Cr) then1

Cm = Cl⊕ 1 /* ⊕ means concatenation */;2

end3

else Cm = Cr with the last number 1 change to 01;4

return Cm;5

Example 5.3: Let 0101, 011 and 0111 be three binary strings, we have 0101 ≺
011 ≺ 0111. Insertion between 0101 and 011 will produce 01011, since length(0101)

> length(011) (0101⊕1, Algorithm 2 line 2). And insertion between 011 and 0111

leads to 01101, since length(011) < length(0111) (0111 with the last 1 change to

01, Algorithm 2 line 3). �

5.2.2 Quaternary strings

[32] introduced the following theorem which formalizes the dynamic properties of

quaternary strings.

Theorem 5.2. Given two quaternary strings Cl and Cr which end with 2 or 3

and Cl ≺ Cr, we can always find Cm which is also a quaternary string such that

Cl ≺ Cm ≺ Cr.
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From the results in [32], Cm can be derived from Algorithm 3 whose proof of

the correctness can be found in [34].

Algorithm 3: InsertQuaternaryString(Cl, Cr)

Data: Cl and Cr which are two quaternary strings that end with 2 or 3 and
Cl ≺ Cr

Result: Cm which ends with 2 or 3 and Cl ≺ Cm ≺ Cr

if length(Cl) > length(Cr) then1

if Cl ends with 2 then2

Cm = Cl with the last number 2 change to 3;3

else4

Cm = Cl⊕ 2 /* ⊕ means concatenation */;5

end6

end7

if length(Cl) = length(Cr) then Cm = Cl⊕ 2;8

else Cm = Cr with the last number change to 12;9

return Cm10

Example 5.4: Let 222, 223 and 23 be three quaternary strings, we have 222 ≺
223 ≺ 23 based on lexicographical order. Insertion between 222 and 223 leads to

2222 since length(222) = length(223) (222⊕2, Algorithm 3, line 6). And insertion

between 223 and 23 produces 2232 since length(223) > length(23) and 223 ends

with 3 (223⊕2, Algorithm 3, line 5). �

5.3 ST Encoding Technique

In this section, we present the details of our ST encoding technique which can be

applied to binary string, quaternary string and vector codes and are called STB,

STQ and STV encoding schemes respectively.
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5.3.1 Seach Tree-based Binary (STB) encoding

Data structure

Our STB encoding is based by the data structure we call STB tree.

Definition 5.1 (STB tree). An STB tree is a complete binary tree where each node

is associated with an STB code which is a binary string that ends with 1.

The STB code of the root is 1.

Let n be a node in the STB tree, we denote the STB code associated with it

as Cn. Given a node n in the STB tree, the STB code of its left child lc and right

child rc can be derived as follows:

• Clc=Cn with the last 1 replaced with 01

• Crc=Cn⊕ 1 (⊕ means concatenation)

Two STB trees with 6 and 12 nodes are shown in Figure 5.2 (b) and (c).

Lemma 5.1. The left subtree of a node n contains only STB codes lexicographi-

cally less than Cn; The right subtree of n contains only STB codes lexicographically

greater than Cn.

Proof. [Sketch] Given any STB code n which is a binary string that ends with 1,

we denote Cn as “S1” where “S” is a binary string or an empty string. It follows

that Clc=“S01” and similarly, Clc.lc=“S001” and Clc.rc=“S011”. Now it is easy to

see that all the STB codes in the left subtree have “S0” as their prefix. Since “S0”

precedes “S1” in lexicographical order, all the STB codes in the left subtree are

lexicographically less than Cn. The rest of the lemma follows similarly.

Theorem 5.3. An STB tree is a complete binary search tree based on lexicograph-

ical order.
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(c) An STB tree of size 12 
(The decimal numbers above and below each node 
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4 5 6

1

(b) An STB tree of size 6 

(d) STB table of (b)

L-Index: level order traversal sequence number
I-Index:  inorder traversal sequence number

STB Code

1

01

11

001

011

101

111

0001

0011

0101

0111

1001

1011

1101

1111

00001

00011

00101

L-Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

I-Index STB Code

1 0001

2 001

3 0011

4 01

5 0101

6 011

7 0111

8 1

9 1001

10 101

11 11

12 111

I-Index STB Code

1 001

2 01

3 011

4 1

5 101

6 11

Figure 5.2: STB encoding of two ranges 6 and 12

Proof. Theorem 5.3 follows directly from Lemma 5.1.

Given an STB tree, an L table stores its STB codes based on Level order

traversal sequence. We denote the index of an L table as L-Index and use L to

denote the set of decimal numbers in L-Index. An important observation about L

table is that it can be shared by STB trees of different sizes: the first m rows of

the L table represent an STB tree of size m in level order.

An STB table orders the STB codes in an STB tree based on Inorder traversal

sequence. Note that an STB table represents the result of STB encoding and need

not be physically stored. We denote the index of an STB table as I-Index and use

I to denote the set of decimal numbers in I-Index.

Example 5.5: Consider the two STB tree of size 6 and 12 in Figure 5.2 (b) and

(c). If we order their codes according to level order traversal sequence, they match

the first 6 and 12 rows of the L table in (a). Their corresponding STB tables are
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shown in (d) and (e). �

Algorithms

Given a range m, the goal of STB encoding is to realize the mappings represented

by an STB table of size m. Intuitively, this can be achieved by traversing the STB

tree of size m in inorder.

Formally speaking, STB encoding defines a mapping f : I → B where B

denotes the set of STB codes. More specifically, f is established through two levels

of mappings: f(i) = h(g(i)) where g : I → L and h : L → B. Deriving h is straight

forward from the L table. Depending on the range to be encoded, the size of L

table can be extended dynamically.

How g can be established is shown in Algorithm 4 which is based on inorder

traversal of a binary tree. First a stack path is initialized to store the L-Indices

of a root-to-leaf path(line 1). Then we proceed to call Function PushLeftPath

which pushes the L-Index of the leftmost path (starting from the root) into path

(line 2). For each i ∈ I, we map i to the top element in path (Recall that during

an inorder traversal, the leftmost element is always visited first). Then the L-Index

of the leftmost path that starts from the right child of the top element is pushed

into path (line 3 to 6).

Next we show that STB encoding is order preserving and of optimal size.

Theorem 5.4. To encode a range m with STB encoding, let Cj and Ck be the

encoded STB codes for j and k where 1 ≤ j < k ≤ m, it follows that Cj ≺ Ck.

Proof. Since an STB tree is a binary search tree (Theorem 5.3), an inorder traversal

of the STB tree visits the STB codes in increasing lexicographical order. In other

words, STB encoding is order preserving.
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Algorithm 4: ItoLMapping(m)

Data: m which is the range to be encoded.
Result: The mapping from I-Index to L-Index stored in an array

ItoL[1 . . .m].
Initialize Stack path;1

PushLeftPath(path, 1, m);2

for i=1 to m do3

l=path.Pop();4

ItoL[i] = l;5

PushLeftPath(path, 2× l + 1, m) /* 2× l + 1 −→ right child */6

end7

Function PushLeftPath(path, l, m)

while l ≤ m do
path.Push(l);
l = 2× l /* 2× l −→ left child */

end

Lemma 5.2. Level i of an STB tree has 2i−1 STB codes (except possibly the last

level) of length i. (Assume the root is of level 1).

Lemma 5.2 easily follows from the properties of STB trees.

Since an STB code is a binary string that ends with 1, there are 2i−1 possible

STB codes of length i. From Lemma 5.2, we can see that an STB tree has all the

possible STB codes of length i at level i (except possibly the lowest level). The fact

that an STB tree is a complete binary tree implies that STB codes with length i

are always used up before STB codes with length i + 1 are used. Therefore STB

encoding produces labels with optimal size.

5.3.2 Seach Tree-based Quaternary (STQ) encoding

We illustrate our STQ encoding scheme using the data structure we call STQ tree.

An STQ tree is a complete ternary tree. Each node of the STQ tree is associated

with two STQ codes: left code (L) and right code (R) where R = L with the last
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(c) An STQ tree of size 12
(The decimal numbers above and below each node 

indicate its L-Index and I-Index respectively)
(e) STQ table  of  (c)(a) L table

2 3

12 13 22 23 32 33

112 113 122 123
1 2

3

4 5

6

7

8 9

10

11 12

1 2

3 4 5 6 7 8

9 10 11 12

2 3

12 13 22 23
1 2

3

4 5

6

1 2

3 4 5 6

(b) An STQ tree of size 6

(d) STQ table of (b)

L-Index: level order traversal sequence number
I-Index:  inorder traversal sequence number

L-Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

STQ Code

2

3

12

13

22

23

32

33

112

113

122

123

132

132

212

213

222

223

I-Index STQ Code

1 112

2 113

3 12

4 122

5 123

6 13

7 2

8 22

9 23

10 3

11 32

12 33

I-Index STQ Code

1 12

2 13

3 2

4 22

5 23

6 3

Figure 5.3: STQ Encoding of two ranges 6 and 12

number 2 change to 3. L and R of the root are 2 and 3 respectively.

Given a node n in the STQ tree, the left code of its left child (lc), middle child

(mc) and right child (rc) can be derived as follows:

• Llc= Ln with the last number 2 change to 12;

• Lmc= Ln⊕ 2

• Lrc= Rn⊕ 2 (⊕ means concatenation).

In all cases, we have R = L with the last number 2 change to 3.

Two STQ trees with 6 and 12 codes are shown in Figure 5.3 (b) and (c).

Lemma 5.3. The left subtree of a node n contains only STQ codes lexicographically

less than Ln; The middle subtree of n contains only STQ codes lexicographically
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between Ln and Rn; The right subtree of n contains only STQ codes lexicographically

greater than Rn.

The proof is similar to that of Lemma 5.1, so we omit it here. Given Lemma

5.3, an STQ tree can be seen as a search tree if we define the inorder traversal

sequence to be in order of: (1) Traverse the left subtree; (2) Visit L of the root;

(3) Traverse the middle subtree; (4) Visit R of the root and (5) Traverse the right

subtree. In this way, we can define I-Index, L-Index, STQ table and L table

similar to those of STB tree.

Algorithm 6: ItoLMapping(m)

Data: m which is range to be encoded.
Result: The mapping from I-Index to L-Index stored in an array

ItoL[1 . . .m].
Initialize Stack path;1

PushLeftPath(path, 1, m);2

for i=1 to m do3

l=path.Pop();4

ItoL[1 . . .m] = l;5

if l mod 2 =1 then /* l −→ lcode */6

PushLeftPath(path, 3× l + 2, m) /* 3× l + 2 −→ middle child7

*/
else /* l −→ rcode */8

PushLeftPath(path, 3× l+ 1, m) /* 3× l+ 1 −→ right child */9

end10

end11

Function PushLeftPath(path, l, m)

while l ≤ m do
path.Push(l + 1);
path.Push(l);
l = 3× l /* 3× l −→ left child */

end

STQ encoding defines the mapping from I-Index to STQ codes which is achieved

through two levels of mappings: from I-Index to L-Index and from L-Index to STQ
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(4,1) (5,2) (5,3) (4,3) (3,4) (3,5)

(3,1) (3,2)

(2,5) (1,4)

(2,3) (1,3)

(2,1) (1,2)

(1,1)

(5,1) (7,2) (8,3)

Figure 5.4: STV tree

codes. As shown in Figure 5.3, the mappings from L-Index to STQ codes are stored

a single L table (a) which can be shared by multiple ranges. The mappings from

I-Index to L-Index can be derived from Algorithm 6 which performs an inorder

traversal of the STQ tree.

The correctness of our STQ encoding algorithms follows from the fact that its

inorder traversal visits the STQ codes in increasing lexicographical order. The

resulting label size is also optimal because our algorithm favors STQ codes with

smaller lengths.

5.3.3 Search Tree-based Vector (STV) encoding

Our STV encoding scheme is based on the data structure we call STV tree. It

is a complete binary tree where each node is associated with a vector code: C.

The vector codes of the root, its left child and right child are (1,1), (2,1) and (1,2)

respectively.

Given a node n and its parent p in the STV tree, the vector codes of its left

child (lc) and right child (rc) can be derived as follows: If n is the left child of p,

Clc=2×Cn - Cp; Crc=Cn + Cp; Else, Clc=Cn + Cp; Crc=2×Cn - Cp. An example

of STV tree is shown in Figure 5.4.

Theorem 5.5. An STV tree is a binary search tree based on vector order.
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The proof is based on mathematical induction, we omit it here. Given the

STV tree, we can define L table similar to that of STB encoding which stores the

mapping from L index to Vector codes. Moreover, since STV tree is a binary search,

Algorithm 4 can be directly applied to derive the mapping from I to L index. We

ignore the details of STV encoding, given that it is similar to STB encoding.

5.3.4 Comparison with insertion-based approach

Compared with the insertion-based approach, our design of ST encoding as a two

level mapping has the following advantages: (1) Since h : L → STB/STQcode

remains the same for different ranges, the cost of encoding a new range is only

to compute g : I → L. By sharing h for different ranges, we avoid costly table

creation for every range; (2) Compression technique can be conveniently applied to

L table to provide high flexibility of memory usage (Section 5.4). The compression

technique is easily incorporable because compressing L table only affects h while h

and g are independent of each other; (3) By exploiting the common mappings of

different ranges, we can further speed up the encoding of multiple ranges (Section

5.5).

5.4 Encoding Table Compression

The L table of STB is shown in Figure 5.5 (a). Considering its STB codes with

indices from 2 onwards, we can see that every STB code at index 2i + 1 can be

deduced from the STB code at index 2i by changing the second last number to 1.

Therefore we can compress this L table to half by only retaining the rows with even
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(b) Compressed L
table with C=1

(c) Compressed L 
table with C=2

(a) The original 
L table of  STB

(e) Compressed L 
table with C=0

(d) The original 
L table of STQ

(f) Compressed L
table with C=1

L STB Code

1 1

2 01

3 11

4 001

5 011

6 101

7 111

8 0001

9 0011

10 0101

11 0111

12 1001

13 1011

14 1101

15 1111

16 00001

17 00011

18 00101

L STB Code

1 001

2 0001

3 1001

4 00001

L STB Code

1 01

2 001

3 101

4 0001

5 0101

6 1001

7 1101

8 00001

9 00101

L STQ Code

1 2

2 3

3 12

4 13

5 22

6 23

7 32

8 33

9 112

10 113

11 122

12 123

13 132

14 133

15 212

16 213

17 222

18 223

L STQ Code

1 12

2 112

3 212

L STQ Code

1 2

2 12

3 22

4 32

5 112

6 122

7 132

8 212

9 222

Figure 5.5: Compress L tables of STB and STQ by factors of 2C and 2 × 3C

respectively

indices ((b)). Thus, the mapping from L-Index to STB codes for becomes:

h(l) →

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

LTable[l/2] , when l mod 2 = 0

LTable[l/2�]with the sec-

ond last number change to 1 , when l mod 2 = 1

(5.1)

The table in (b) can be further compressed by a factor of 2 if we consider

the STB codes with indices from 2 onwards. We exclude the STB codes with odd

indices since they can be derived from the STB codes with even indices by changing

the third last number to 1 ((c)). In this way, we can compress the L table of STB

by factors of 2, 4, 8 . . . 2C and we denote C as the compression factor.

By analyzing the L table of STQ in Figure 5.5 (d), the straight forward com-
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pression is to exclude the STQ codes with even indices since they can be derived

from the STQ codes with odd indices by changing the last 2 to 3 ((b)). Therefore

the mapping from L-Index to STQ codes becomes:

h(l) →

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

LTable[�l/2�] , when l mod 2 = 1

LTable[l/2] with the

last number change to 3 , when l mod 2 = 0

(5.2)

Consider the table in Figure 5.5 (e), it can be further compressed by a factor of

3 if we consider the STQ codes from index 2 onwards. The STQ codes at indices

3i and 3i + 1 can be derived from the STQ code at index 3i − 1 by changing the

second last number to 2 and 3. Therefore we exclude the STQ codes at indices 3i

and 3i+ 1 and the resulting table is shown in (f). In summary the L table of STQ

can be compressed by factors of 2, 6, 18 . . .2× 3C .

5.5 Tree Partitioning (TP)

STB encoding technique, as we have shown, is a mapping f(i) = h(g(i)) where

g : I → L and h : L → B. Since h remains the same for different ranges, the cost

of encoding a range is dominated by g. The motivation for TP optimization is that,

given multiple ranges to be encoded, the computational cost of g can be reduced if

we can exploit the common mappings for ranges that are close to some extent.

We introduce Tree Partitioning (TP) to exploit these common mappings, thus

further enhancing the performance of ST encoding techniques. We use STB tree

to illustrate the idea of TP. Our optimization technique can be easily adapted for

STQ and STV trees.



93

(a) An STB tree T of size 9
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(b) An STB tree T’ of size 11

M’

Figure 5.6: Tree partitioning

Suppose there are two STB trees T of size s1 and T ′ of size s2 (without loss of

generality, we assume s1 < s2), we analyze the common mapping of the two trees

when they have the same height, say k, i.e. 2k ≤ s1 < s2 < 2k+1.

Our TP algorithm divides T ′ into three partitions:

L’ partition All the nodes on the left of the path from the root to the node with

L-Index=s1 + 1.

R’ partition All the nodes on the right of the path from the root to the node

with L-Index=s2

M’ partition The rest of the nodes in the STB tree

T is also divided into three partitions: L, R and M. L’ and L partitions have the

same L-Index and so do R’ and R partitions. And the rest of the nodes fall into

M’. g in L and L’ partitions are the same as the two partitions overlap and are

visited first during inorder traversal. If we increase all the I-Index in R by s2 − s1,

g in R and R’ also coincide.

Example 5.6: Two STB trees T and T’ in Figure 5.6 (a) and (b) are partitioned

based on our TP algorithm. In the resulting partitions, g in L and L’ are the same.

g in region R can be derived from that in R’ if we increase the L-Index in R by

11− 9 = 2. �
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Since both M and M’ bounded by two root-to-leaf paths, Algorithm 4 can be

easily modified to compute the mappings in them. Here we give formulas of how

an intermediate state can be computed directly for the STB tree. That is, given

any number i ∈ I, we can compute its mapping g(i).

Assume the range is m, a=2 and b=1. For simplicity, we define the following

constants.

s = m− a�loga m� + 1 (5.3)

h =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

logam� , when i � a/b s

logam� − 1 , when i > a/b s

(5.4)

j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i , when i � a/b s

i− s , when i > a/b s

(5.5)

p = MaxPower(a, j) (5.6)

Where MaxPower is a function that takes two integers a and j as input. Assume

j = x × ap where x is not divisible by a and p is a natural number, MaxPower

returns p as the output.

The following equation determines l = g(i).

l = ah−p +
⌊
bj/ap+1

⌋
(5.7)

Example 5.7: Suppose m=18 and let l = 10. From Equation 5.3, we have s = 3.
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Data set Max/average fan-out Max/average depth No. of nodes
XMark 25500/3242 12/6 179689
Treebank 56384/1623 36/8 1666315
SwissProt 50000/301 5/3 2437666
DBLP 328858/65930 6/3 3332130

Table 5.1: Test data sets

Since 10 > 3 × 2, we have h = 3, j = 7 and p = 0. Then from Equation 5.7, we

have l = 11. As the result, 10 in the I-Index maps to 11 in the L-Index. �

Computing g(i) for STQ trees is similar except that a=3 and b=2.

By partitioning the range to be encoded, we can re-use some of the previously-

computed mappings and avoid re-computing g for the whole range.

5.6 Experiments and Results

In this section, we experimentally evaluate and compare the various encoding tech-

niques developed in this chapter against the insertion-based encoding schemes in-

cluding CDBS and QED.

We used data sets from XMark benchmark, Treebank, SwissProt and DBLP

datasets for our experiments. The characteristic of these data sets are shown in

Table 5.1. We used JAVA for our implementation and our experiments are per-

formed on Pentium IV 3 GHz with 1G of RAM running on windows XP.

5.6.1 Encoding Time

First we evaluate the encoding time of these encoding schemes using containment

labels of the XMark data set. We randomly generated 80 XMark documents whose

sizes range from 1 MB to 90 MB. The documents are encoded in random order.

We run the experiment three times and take the average time. In Figure 5.7, we
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Figure 5.7: Encoding containment labels of multiple documents

observe clear time difference between ST encodings and insertion-based encodings:

our STB and STV encoding is approximately 3 times faster than CDBS encoding

and recursive Vector encoding. Moreover, our STQ encoding is approximately

7 times faster than QED encoding. The reason is clear from the comparison of

algorithms: insertion-based encodings need to create an encoding table for every

range, which is significantly slower than our ST encodings that perform index

mapping of a single table. The advantages of ST encoding are more significant

when we apply TP optimization which exploits common mappings of encoding

multiple ranges. Overall ST encodings with TP are by a factor of 5-11 times faster

than insertion-based encodings for containment labels. The results confirm that

our ST encoding techniques are highly efficient for encoding multiple ranges and

substantially surpass the insertion-based encodings.

5.6.2 Memory Usage and Encoding Table Compression

We compare the memory usage of different algorithms which is dominated by the

size of the encoding tables and the results are shown in Figure 5.8. Without any
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Figure 5.8: Encoding table compression

compression, the table size of STB and CDBS are the same, and so are their table

creation times. However, unlike CDBS whose table size is fixed, our STB encoding

can adjust its table size by varying the compression factor C. A larger C yields

a smaller table size and less table creation time. Similar observation can be made

in Figure 5.8 (c) and (d) for quaternary strings. The table creation time of STQ

is less than that of QED due to the complexity of the QED insertion algorithms.

By adjusting the compression factor, our ST encoding can process large XML data

sets with limited memory available.

5.6.3 Label size and query performance

We have proved that both STB and STQ encodings produce labels of optimal sizes.

The label sizes of STV and recursive Vector encoding differ by only a small amount,
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which is overall negligible. Moreover, since the labels produced by ST encoding and

its insertion-based counterpart are of the same format, their query performance is

also the same. In summary, the labels produced by our ST encoding techniques

are of optimal quality.

5.7 Summary of chapter

In this chapter, we take the initiative to address the problem of efficient label

encoding to make range-based labeling schemes dynamic. When encoding multiple

ranges for multiple documents, previous insertion-based algorithms need to create

an encoding table for every range, resulting in high computational and memory

costs. We propose ST encoding techniques which can be widely applied to existing

dynamic formats and generate dynamic labels with optimal size. ST encoding

techniques use only a single encoding table to encode multiple ranges and are

therefore highly efficient. Moreover, complemented by encoding table compression,

our ST encoding techniques are able to process very large XML documents with

limited memory available.



Chapter 6

Conclusion

We summarize this thesis in this chapter and outline on the future work.

6.1 Summary of order-centric approach

In this thesis, we have developed an order-centric perspective on existing XML

labeling schemes.

We summarize the orders of the different labeling schemes in Table 6.1.

Among range-based labeling schemes, Containment, Pre/post labeling schemes

are designed for static XML documents. Their labels are ordered by natural or-

der and require frequent re-labeling for insertions. QRS-Containment and QRS-

Pre/post use floating point numbers instead of integers, which are still ordered by

natural order and only delay re-labeling to some extent. Among range-based la-

beling schemes, those based on lexicographical order, VLEI order and vector order

allow dynamic updates without re-labeling, thus greatly reducing the update costs.

Note that VLEI order is similar to lexicographical order where both number of

components and their values contribute to the ordering.

Prefix-based labeling schemes can be transformed into dynamic labeling schemes

99
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Labeling scheme Order Component-wise
equality

Component-wise
order

Relabel

Containment natural NA NA Y
Pre/post natural NA NA Y
QRS-Containment natural NA NA Y
QRS-Pre/post natural NA NA Y
Prime natural NA NA Y
CDBS-Containment lex NA NA N
CDBS-Pre/post lex NA NA N
VLEI-Containment VLEI NA NA N
VLEI-Pre/post VLEI NA NA N
QED-Containment lex NA NA N
QED-Pre/post lex NA NA N
V-Containment vector NA NA N
V-Pre/post vector NA NA N
Dewey lex natural natural Y
QRS-Dewey lex natural natural Y
VLEI-Dewey generalized lex natural VLEI N
QED-Dewey generalized lex natural lex N
ORDPATH generalized lex natural lex N
V-Prefix generalized lex natural vector N
DDE generalized lex v-equivalence vector N
CDDE generalized lex v-equivalence vector N

Table 6.1: Summary of orders of different labeling schemes
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if their component-wise order is lexicographical order, VLEI order or vector order.

We have shown how generalized lexicographical order can be used to characterize

existing prefix-based dynamic labeling schemes.

In Prime labeling scheme, tree structure and document order are encoded sepa-

rately. To insert a new node with prime labeling scheme, an unused prime number

can be used, without affecting other labels. Meanwhile, document orders are still or-

dered by natural order, requiring re-ordering whenever a node is inserted or deleted.

In this sense, Prime labeling scheme is only dynamic for unordered tree-structured

data.

In addition to different orders, it is worth noting the inherent differences be-

tween prefix-based and range-based labeling schemes. Compared with range-based

labeling schemes, an obvious advantage of prefix-based labeling schemes is its ability

to determine Sibling and LCA relationships. However, the performance of prefix-

based labeling schemes is sensitive to the structure of the XML documents as the

size of a prefix label increases linearly with its level. Range-based labeling scheme,

on the other hand, perform consistently regardless of the depth of the XML tree.

Although natural order is easy to compare, it is too rigid to allow dynamic

insertions without re-labeling. Lexicographical order and VLEI order appear to

be more robust because, intuitively, both the value of each component and the

number of components contribute to the ordering of labels. Insertion between two

components that are consecutive in value can be accommodated by extending the

number of components. However, frequent extensions of components can lead to

significant increase in the overall size. For example, QED-based labeling schemes

perform poorly for ordered insertions with increase in length at 2 bits per insertion.

In addition, QED based labeling schemes come with additional encoding costs.

That is, the time and computational costs spent on transforming containment,
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pre/post or Dewey labels to the corresponding QED codes. The process is especially

complicated for Dewey labels, considering that the encoding has to be applied to

every sibling group from root to leaf. Each component in ORDPATH labeling

scheme, as we have seen, consists of a variable number of even numbers followed

by an odd number. This fact complicates the processing of ORDPATH labels in

several ways. First of all, all ORDPATH labels in the initial labeling have to

skip even numbers, which makes them less compact than Dewey. Moreover, the

number of components in an ORDPATH label do not necessarily reflect the level

of the associated element nodes. We have to count the number of odd numbers

in an ORDPATH label to derive the level information. This also leads to more

complicated relationship computation such as PC and Sibling, even if the XML

document does not get updated at all.

Based on extensive analysis of previous labeling schemes, our observation is that

they all come with considerable costs even for documents that are not updated at

all. To solve this problem we introduce vector order, which, as illustrated in Table

6.1, is different from orders adopted by all previous approach including natural

order, lexicographical order or VLEI order. We show that vector order is widely

applicable to both range-based and prefix-based labeling schemes and the resulting

labeling schemes have compact size and high query performance, while being able

to avoid re-labeling when updating.

To further improve the application of vector order to prefix-based labeling

schemes, we extend the concept of vector order and propose Dynamic DEwey

(DDE) labeling scheme. DDE, in the static setting, is the same as Dewey labeling

scheme which has the most compact label size among all the labeling schemes we

compare. Moreover, DDE labels can be queried in the same way as Dewey labels

for static documents, which is highly efficient. Based on an extension of vector
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order, DDE allows dynamic updates without re-labeling when updates take place.

In addition, we introduce a variant of DDE, namely CDDE, which is derived from

DDE labeling scheme from a one-to-one mapping. Compared with DDE, CDDE

labeling scheme shows slower growth in label size for frequent insertions. Both

DDE and CDDE have exhibited high resilience to skewed insertions in which case

the qualities of existing labeling schemes degrade severely. Extensive experimental

evaluation has demonstrated the benefits of our proposed labeling schemes over

previous approaches.

From the order perspective, transforming static labeling schemes into dynamic

ones is to transform natural order to some other order in an order-preserving man-

ner. It guarantees both tree structure and document order are kept correct. When

encoding multiple ranges for multiple documents, previous insertion-based algo-

rithms need to create an encoding table for every range, resulting in high computa-

tional and memory costs. We propose ST encoding techniques which can be widely

applied to existing dynamic formats and generate dynamic labels with optimal

size. ST encoding techniques use only a single encoding table to encode multiple

ranges and are therefore highly efficient. Moreover, complemented by encoding

table compression, our ST encoding techniques are able to process very large XML

documents with limited memory available.

6.2 Future work

The order framework proposed in this thesis paves the way for future research on

this topic. Our separation of encoding tree structure and document order provides

an opportunity to adapt our vector order-based encoding techniques for other prob-

lems involving order-sensitive updates. In addition, new orders can be proposed to
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encode document order with new characteristics.

Another promising future research direction is to study how to label and update

XML documents of more complex models. In addition to tree structure, extensive

research have focused on labeling Directed Acyclic Graph (DAG) to answer reach-

ability queries and distance queries[16, 17, 19, 24, 27–29, 40, 41, 50]. Because DAGs

are generally much more complex than trees and generating labels is more expen-

sive, there has also been research work on how to iteratively recompute labels in

response to updates[11]. Labeling DAG is closely related to labeling tree structure

because tree structure can be considered a special subset of DAG, where reach-

ability queries would be translated to Ancestor/Descendant queries and distance

queries are equivalent to Ancestor/Descendant queries plus computing the level

difference.

Although existing works claim labeling DAG can be applied to XML documents

of general graph model, none of them has taken document order into considera-

tion. Therefore, how to encode orders and process order-sensitive updates for XML

documents modeled as DAG remain challenging future research topics.
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