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SUMMARY  

 

Osteosarcoma is the most common primary malignancy of the bone with an extremely 

high propensity for aggressive growth and metastasis. While the precise molecular 

mechanism underlying the disease is poorly understood, emerging evidence has 

implicated the canonical Wnt/β-catenin signaling pathway. The overall goal of this study 

is to develop novel Wnt-targeted therapies for the treatment of osteosarcoma. We 

hypothesized that osteosarcoma progression may be delayed by disrupting the Wnt/β-

catenin pathway either by using small molecule inhibitors or by manipulating the levels 

of the endogenous antagonists, the family of secreted frizzled-related proteins (SFRPs).  

 

To test our hypothesis, we explored three specific aims: 

(1)    Assess the role and mechanism of action of small molecule Wnt/β-catenin 

inhibitors in regulating osteosarcoma cell proliferation, motility and invasion.  

(2)    Synthesize and evaluate a set of lead compounds with improved potency and 

selectivity as Wnt/β-catenin antagonists; identify the critical structural motifs for 

Wnt inhibitory activity and examine the underlying mechanism of Wnt inhibition 

of selected curcumin analogues 

(3)    Examine the functional roles and mechanism of SFRPs as tumor suppressors in 

regulating osteosarcoma cell proliferation, motility and invasion.    

 

In Aim (1), we successfully showed that curcumin, PKF118-310 and artemisinin 

decreased the transcriptional activity of the β-catenin/TCF complex and significantly 



 
 

 
 

xii 

inhibited U2OS cell invasion and migration. The observed anti-invasion effects were 

associated with a decrease in the expression and activities of Matrix Metalloproteinase-9, 

a Wnt target gene. We further demonstrated that the anti-proliferative effect of PKF118-

310 is attributed to PKF118-310-induced apoptosis and G2/M phase arrest, with a 

corresponding decrease in proliferation-associated Wnt target oncogenes such as cyclin-

D1, c-Myc, and survivin. In Aim (2), using curcumin as a lead, we next synthesized and 

identified several analogues that were not only up to 60 times more potent than curcumin 

as Wnt antagonists, but were also highly selective with limited cytotoxicity. Further 

structure-activity-relationship analysis of these analogues suggested that conformation 

restriction around the dienone moiety, as well as the introduction of suitable alkoxyl and 

hydroxyl group substitutions on the aromatic rings of curcumin structure, dramatically 

enhanced Wnt-inhibitory activity. Using the Human Wnt Signaling Pathway RT2 

ProfilerTM PCR array, we observed down-regulation of several Wnt target oncogenes 

such as FOSL1, PITX2 and WISP1 in U2OS cells following treatment with the most 

potent analogue (3-3), in correspondence to its anti-invasive effects. In Aim (3), we 

found that restoration of SFRPs expressions in U2OS cells suppressed the transcriptional 

activity of the β-catenin/TCF complex and significantly inhibited anchorage-dependent 

growth, colony formation efficiency and osteosarcoma cell invasion. On the other hand, 

differential effects on cell migration in U2OS stable transfectants were observed. These 

anti-proliferative effects may be attributed to GO/G1 and/or G2/M phase arrests and 

perturbations of major Wnt target proliferation-associated oncogenes including cyclin-

D1, c-Myc and survivin in the U2OS transfectants. Lastly, using the Human Wnt 

Signaling Pathway RT2 ProfilerTM PCR array, we identified additional Wnt target genes 



 
 

 
 

xiii 

such as WISP1, Brachyury, SLC9A3R1 and JUN that might play a significant role in 

regulating osteosarcoma tumorigenesis and metastasis with over-expressions of SFRP2 or 

SFRP5. This analysis of gene perturbations provided valuable insights on the interactions 

of SFRPs with the Wnt pathway and may aid us in designing more effective SFRPs-based 

therapeutics. In conclusion, our findings not only provided deeper insights into the 

contributory role of aberrant canonical Wnt/β-catenin signaling in osteosarcoma disease 

progression, but also a greater understanding of the potential of small molecules and 

SFRPs as Wnt antagonists in osteosarcoma. These knowledge may be useful for the 

subsequent discovery and development of novel targeted therapy for osteosarcoma.
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CHAPTER 1. Introduction 

 

1.1  Osteosarcoma 

Osteosarcoma is the most frequent malignancy of the bone which predominantly affects 

rapidly growing bones such as the metaphyses of long tubular bones, especially the distal 

femur or proximal tibia in adolescents and children, and there is no sex- or race-based 

predilection [1].  High grade central osteosarcoma is by far the most frequent sub-type, 

comprising up to 80 % of all osteosarcomas. The other osteosarcoma variants, which 

differ in site, histology or biological behavior, include small cell osteosarcoma, 

osteosarcoma occurring as secondary malignancy, extra skeletal osteosarcoma, surface 

osteosarcoma and craniofacial osteosarcoma. Risk factors for osteosarcoma include states 

associated with increased osteoblast proliferation such as chronic osteomyelitis, Paget’s 

disease of bone, ionizing radiation and various rare inherited syndromes such as 

retinoblastoma and multiple exostoses [2].   

 

Osteosarcoma is a mesenchymal neoplasm characterized by locally aggressive growth 

and early metastatic potential as a result of morphologically abnormal osteoblastic cells 

producing defective immature bone (osteoid). An alarming high proportion of 20-25 % of 

patients presents with clinically detectable distant metastases at the time of diagnosis.   

The rest has a 50-60 % risk of developing metastases and often microscopic subclinical 

metastases are detected at first presentation. Effective treatment options are very limited 

for osteosarcomas that have metastasized [3, 4]. The presence of metastatic disease is the 

worst prognostic factor in both univariate and multivariate analyses; fewer than 20 % of 
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these patients have a disease-free survival at five years [5, 6]. Furthermore, loss of 

differentiation occurs in more than 80 % of osteosarcoma, correlates with higher grade 

and confers a 10 % to 15 % decrease in survival.   

 

The current standard treatment for osteosarcoma uses a multi-modal treatment approach 

consisting of preoperative neo-adjuvant systemic polychemotherapy, local surgical 

resection to safely remove the tumor yet preserve as much extremity as possible, 

followed by post-operative adjuvant chemotherapy. Chemotherapeutic agents aimed at 

eradicating clinically detectable metastases in osteosarcoma include doxorubicin, 

cisplatin, high-dose methotraxate and ifosfamide, which are generally given in 

combination over six to 12 months. With this standard multi-modal regimen, the five-

year relapse-free survival rates of patients with non-metastatic osteosarcoma remains low 

at approximately 60-70 % while the survival rate for patients with distance metastasis is 

less than 20 % [1]. Further, exploitation of the most commonly used chemotherapeutic 

agents against osteosarcoma has been hampered by severe and life-threatening side 

effects including antracyclin-induced cardiomyopathy, glomerular dysfunction and 

secondary cancers such as treatment-related leukemia particularly after high-dose 

cisplatin, hemorrhagic cystitis caused by ifosamide as well as renal dysfunction with 

methotrexate. At present, there is no standard chemotherapy treatment regimen for 

osteosarcoma which relapses following multi-modal first-line treatment [7, 8]. Despite 

significant clinical improvements through the use of combination intensive chemotherapy 

and surgical resection over the past few decades, prognosis for osteosarcoma patients 

with pulmonary metastasis is still unsatisfactory. Respiratory failures due to lung 
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metastases are very common events and the major cause of death in these patients [5, 9]. 

Moreover, effective therapeutic options available for patients who either relapse 

following administration of currently approved chemotherapeutic agents or suffer 

intolerable acute and long term toxicities from chemotherapy treatments are seriously 

lacking. Therefore, more effective treatment strategies are urgently needed to prevent or 

reduce osteosarcoma disease progression and improve patient survival rates. 

 
 
1.2  Molecular mechanisms involved in osteosarcoma tumor progression  and 

metastasis 

Identifying molecular signaling mechanisms involved in osteosarcoma tumorigenesis and 

metastasis may be the key to designing novel, safe and effective treatment therapies 

against this malignant phenotype. While the precise molecular mechanisms that regulate 

osteosarcoma disease progression and metastasis are poorly understood,  numerous 

reports on the involvement of multiple interacting and cross talked molecular signaling 

pathways associated with Cyclooxygenase-2 (COX-2), Nuclear Factor Kappa-light-

chain-enhancer of activated B cells (NF-κB) and several receptor tyrosine kinase 

signaling have expanded our understanding of the pathogenesis of osteosarcoma. For 

instance, both in vivo and in vitro studies showed that treatments with COX-2 inhibitors 

abrogated enhanced cell invasiveness and motility in osteosarcoma over-expressing 

COX-2 [10, 11]. NF-κB signaling is implicated in osteosarcoma metastasis as 

demonstrated by Harimaya et al. who found that forced expression of NF-κB decoy 

attenuated Tumor Necrosis Factor-α (TNF-α)-induced motility and invasiveness of 

osteosarcoma cell lines [12]. Flex et al. later reported that ET-1 and its receptors were 
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over-expressed in osteosarcoma cells, and the inhibition of ET receptors effectively 

suppressed both basal and ET-1-induced osteosarcoma cell invasion through a NF-κB-

dependent mechanism [13]. Moreover, using microarray analysis studies, osteosarcoma 

cultured cell lines and tissues samples were found to over-express multiple cell-signaling 

related genes, ligands, receptors and downstream signaling molecules of the receptor 

tyrosine kinase family, and their over-expressions were closely associated with high 

potential for metastasis and bad prognosis. Examples include the Vascular Endothelial 

Growth Factor (VEGF) [14], Insulin-like Growth Factor (IGF) [15], Endothelial Growth 

Factor (EGF) [16], Signal Transducer and Activator of Transcription 3 (STAT3) [17, 18], 

Mitogen-Activated Protein Kinase (MAPK) [19], Mammalian Target of Rapamycin 

(mTOR) [20], Orphan receptor tyrosine kinase (ROR2) [21, 22] and Minibrain-Related 

Kinase (MIRK) [23].  

 

Many other genes in a myriad of tumorigenic pathways are continuously being identified 

in microarray profiling studies in the examination of causal biomolecular processes and 

novel pathways associated with osteosarcoma pathogenesis. Examples include genes that 

regulate growth and cell cycle progression (cyclins and cyclin dependent kinases), 

apoptosis (Fas, MAPKKK5), invasion and motility (AXL, chemokine receptor CXCR4, 

collagen VII, ezrin, galectin-3, Her-2/neu, MKK6, thrombospondin, fibronectin), 

angiogenesis (VEGF), DNA replication and transcription (E2F4, E2F5, Runx2) as well as 

chemotherapy resistance (P-gycoprotein, cytochrome P450) [24-28].  
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Recently, accumulating evidence has implicated the canonical Wnt/β-catenin signaling 

pathway in osteosarcoma tumorigenesis and metastasis. Although its role has been well 

studied in many other types of malignancies, there are limited reports on the contributory 

role of aberrant Wnt/β-catenin signaling in osteosarcoma disease progression, and even 

fewer reports, if any, on the application of Wnt therapeutics in osteosarcoma treatment, 

thus there lies the potential and scope for novel research.  

 

1.3 Overview of Wnt/β-catenin signaling pathway and its implication in oncology 

The term ‘Wnt’ was coined from a combination of the Drosophila segment polarity gene 

Wingless, which is involved in segment polarity during development [29] and the murine 

proto-oncogene Int-1, that is required for the development of the forebrain, midbrain, 

cerebellum and neural crest [30, 31]. The Wnt-dependent signaling pathway is highly 

conserved among Drosophila, Dictyostelium, C. elegans, Xenopus and mammals [32, 33]. 

Wnt signaling plays pivotal roles in the regulation of body axis formation, cell 

proliferation and organogenesis in many organisms, and are important for homeostatic 

self-renewal in various tissues. Given the critical and pleiotropic roles of Wnt, it is not 

surprising that perturbations in Wnt signaling have been implicated in a range of human 

diseases and cancers [34-36]. Wnt proteins are secreted glycoproteins that act on target 

cells by binding to Frizzled receptors (FZD) and low-density lipoprotein receptor-related 

protein 5/6 (LRP5/6) co-receptors. To date, a total of 19 Wnt genes and 10 different FZD 

family members have been identified in mammals [37, 38].   
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The complexity of molecular players on the cell surface is further illustrated inside the 

cell by the existence of at least four Wnt-dependent downstream pathways whose 

activation is dependent on the specificity of the Wnt ligands and FZD receptors, as well 

as other cellular components. These four signaling pathways include: (1) the canonical 

Wnt/β-catenin pathway that regulates the expression of Wnt target genes through TCF/β-

catenin; (2) the planar cell polarity (PCP) pathway that establishes asymmetric cell 

polarities and coordinates cell shape changes and cellular movements; (3) Wnt/Ca2+ 

pathway which controls cell adhesion and motility [39]; and (4) the most recently 

discovered Protein kinase A pathway that plays a role in myogenesis [40]. More than 50 

signaling component proteins have since been identified to transduce these Wnt signals to 

mediate diverse cellular responses. Among these four known Wnt pathways, the 

canonical Wnt/β-catenin signaling pathway is the best understood and has been identified 

as the main culprit in the cellular events that leads to cancer, whereas the role of the non-

canonical Wnt pathway is poorly understood and difficult to address. At least six of the 

19 Wnt ligands, including Wnt 1, Wnt 2, Wnt 3, Wnt 3a, Wnt 8 and Wnt 8b, have been 

reported to activate the canonical Wnt/β-catenin pathway while Wnt 4, Wnt 5a and Wnt 

11 can activate the non-canonical Wnt signaling. As presented in Table 1-1, various 

Wnt/β-catenin pathway components contributing to a wide spectrum of cancer types have 

been identified. This list continues to be added onto, giving it many layers of complexity 

to the role of Wnt/β-catenin pathway in human cancer.  

  



 
 

 
 

7 

Table 1-1. Canonical Wnt/β-catenin signaling pathway components involved in cancer. 
 
 
Pathway 
components 
 

Observed alterations  Oncologic disease Reference  

 
Cell surface 
Wnt ligands 
 

Increased expression 
 

colon cancer,  breast cancer,  melanoma,  head and 
neck cancer, non-small-cell lung cancer,  gastric 
cancer, mesothelioma, osteosarcoma  

[41-48] 

FZD Increased expression 
 

colon cancer, breast cancer, head and neck cancer, 
gastric cancer 

[43, 44, 47, 49, 
50] 

LRP5  Gain-of-function mutation, 
Increased expression 

osteosarcoma, hyper-parathyroid tumors [47, 51-53].  
 

SFRPs 
 

Reduced expression osteosarcoma,  non-small-cell lung cancer, 
mesothelioma, chronic lymphatic leukemia, gastric, 
breast, esophageal adenocarcinoma 

[49, 54-62] 

DKK3  Reduced expression  osteosarcoma 
 

[63] 

WIF-1 
 

Reduced expression colon cancer, breast cancer,  prostate cancer, lung 
cancer, bladder cancer, mesothelioma, 
osteosarcoma  

[64-69] 

 
Within the cytoplasm 
DVL Increased expression  mesothelioma, non-small-cell lung cancer, cervical 

cancer 
[70-72] 

β-catenin Gain-of-function mutations 
Increased expression 

colon cancer,  osteosarcoma, Lung cancer, liver, 
endometrial ovarian cancer, pilomatricoma skin 
cancer, prostate cancer, melanoma, osteosarcoma, 

[73-78]. 
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wilms tumor 
APC  Loss-of-function mutations/ 

Reduced expression 
colon cancer [79-81] 

Axin 1 Loss-of-function mutations 
 

liver cancer medulloblastomas , esophageal 
squamous cell carcinoma 

[82-84] 

Axin 2 Loss-of-function mutations colon cancer, hepatocellular cancer [85-87] 
Tyrosine kinases,  
Met  

Over-expressions colorectal cancer [88] 

Tyrosine phosphatase 
genes 

Mutations colorectal cancer [89] 
 

BCL9-2 Increased expression 
Rearrangement of the BCL9-2 
loci 

colon cancer, acute myeloid leukemia, acute 
lymphoid leukemia, advanced colon carcinoma 

[90-92]   

 
In the nucleus 
TCF-4 Frame shift Mutation  colorectal cancer [93] 

Transcriptional co-
repressors: Groucho, 
HDAC, HBP1 

Decreased function/ expression breast cancer, colon cancer [94, 95] 
 

Transcriptional co-
activator proteins: 
CBP/p300  

Increased function/ expression colorectal cancer [96] 

Wnt target oncogenes  
 

Increased function/ expression breast cancer, colorectal  cancer. 
intestinal cancer,  liver cancer,  

[60, 97-103] 

 

Abbreviations: APC: Adenomatous polypopsis coli; BCL9-2: B-cell lymphoma 9-2; CBP: Camp response element binding protein DKK: 

Dickkopf; DVL: Dishevelled; FZD: Frizzled receptor; HBP1: High-mobility-group-box transcription factor 1; HDAC: Histone deacetylase; 

SFRP: Secreted frizzled-related protein; LRP: Low density lipoprotein receptor-related protein; WIFs: Wnt inhibitory factor-1



 
 

 
 

9 

On the cell surface: Initiation of Wnt/β-catenin signaling cascade 

Canonical Wnt/β-catenin signaling pathway is initiated when both the FZD and LRP5/6 

co-receptors complex with Wnt ligands [37, 38] (Figure 1-1). However, the binding 

affinities of native FZD-Wnt complexes remained undetermined due to the lack of 

purified Wnt ligands. During development, Wnt/β-catenin signaling plays an important 

role in cell fate specification, tissue patterning and control of asymmetrical cell division 

where the expression of the Wnt genes is developmentally regulated in a coordinated 

temporal and spatial manner. Activation of Wnt/β-catenin signaling is also tightly 

regulated by four families of Wnt antagonists that can be classified into two sub-groups 

according to their mode of action: the Secreted Frizzled-Related Protein (SFRP) family, 

Wnt Inhibitory Factor-1 (WIF-1) and Cerberus act as Wnt antagonists by directly 

squelching Wnt ligands, thus preventing FZD-Wnt binding, while the Dickkopf (DKK) 

family inhibits Wnt signaling by binding to LRP and Kremen receptors, and sterically 

hindering Wnt interaction with LRPs [54, 104]. The formation of the LRP-DKK-Kremen 

ternary complexes disengages the LRP receptor from the Wnt-FZD complex, precluding 

signal transduction by Wnt [104, 105]. The loss of this coordinated control in Wnt/β-

catenin signaling, however, subsequently drives the formation of numerous diseases 

including human cancers (Table 1-1). 

 

Indeed, epigenetic silencing of genes encoding endogenous Wnt antagonists such as 

SFRPs [49, 54, 55, 57-62] and WIF-1 [64-69], or increased expression of pathway 

components including Wnt ligands [41-48], FZD [43, 44, 47, 49, 50], Dishevelled (DVL) 

family members [70-72] and LRP5 co-receptors [47, 53] account for the aberrant 
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activation of Wnt signaling observed in many human malignancies (Table 1-1). 

Dysregulation of modulators of the Wnt pathway such as proteases activator receptor-1 

and Frat proteins which function as activators as well as Idax and Naked which inhibits 

Wnt signaling may also be implicated with cancer progression [106-108].  

 
 
Within the cytoplasm: Stabilization of β-catenin 

Stabilization of the β-catenin protein within the cytoplasm is the key to the activation of 

canonical Wnt/ β-catenin signaling (Figure 1-1). Upon binding of the Wnt ligand to the 

LRP/FZD complex, DVL is phosphorylated and through its association with Axin and 

Adenomatous Polyposis Coli (APC) tumor suppressor, prevents Glycogen Synthase 

Kinase-3β (GSK-3β) and Casein Kinase-1α (CK-1α) from phosphorylating β-catenin 

[109, 110]. Unphosphorylated β-catenin is stabilized by escaping recognition by the β-

Transducin Repeat-Containing Protein (β-TrCP), a component of an E3 ubiquitin ligase 

complex, and subsequently translocates to the nucleus where it interacts with the T-Cell-

specific Transcriptional Factor/Lymphoid Enhancer Binding Factor (TCF/LEF) to 

activate the expression of Wnt target genes [77, 111, 112]. Mutations of oncogenes and 

tumor suppressor genes including APC, Axin and β-catenin in Wnt signaling not only 

initiate events in cancer formation, but also facilitate their progression into malignant, 

invasive and metastatic cancers (Table 1-1). Approximately 90% of colon cancers 

showed aberrant Wnt signaling, usually as a result of mutation in APC (80 %) [79-81], 

and less frequently due to mutations in β-catenin [76, 77] or Axin [85, 86]. Mutations of 

the conserved serine/threonine phosphorylation sites of β-catenin block its targeted 

degradation by the ubiquitin proteasome pathway while the oncogenic mutations of APC 
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Figure 1-1. The Wnt/β-catenin signaling cascade. Left: In the absence of Wnt ligands 
and/or when secreted endogenous antagonists such as Cerberus, Wnt Inhibitory Factor-1 
(WIF-1), Secreted Frizzled-Related Proteins (sFRPs) or Dickkopf (DKKs) are present, β-
catenin levels are tightly regulated by a degradation complex comprising of Axin, 
Adenomatous Polyposis Coli (APC) and Glycogen Synthase Kinase-3β (GSK-3β). 
Transcription of TCF/LEF target genes is effectively repressed by Groucho, histone 
deacetylases (HDAC) and HMG-box transcription factor 1 (HBP1) transcriptional co-
repressors. Right: The binding of Wnt ligands to Frizzled receptor (FZD) and low-density 
lipoprotein receptor-related protein 5/6 (LRP5/6) co-receptor hyperphosphorylates 
Dishevelled (DVL), leading to inhibition of the β-catenin degradation complex. The 
resultant effect is β-catenin translocation to the nucleus where it activates the 
transcription of target genes by directly displacing the transcriptional repressors and 
recruiting an array of co-activator proteins including Pygopus (Pygo), SWI/SNF 
chromatin-remodeling complex member (Brg1), histone acetylase CREB-binding protein 
(CBP) and B-Cell Lymphoma 9-2 (BCL9-2).   
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or Axin 1 compromises their functions as the APC-Axin-GSK3β β-catenin destruction 

complex. Axin 2 is an axin homologue that shows 45 % homology to Axin 1, with similar 

biochemical properties. Whereas Axin 1 is a constitutively expressed component of the β-

catenin degradation complex, Axin 2 is up-regulated in response to increased β-catenin 

concentrations and functions to limit the duration and intensity of Wnt signaling. In 

contrast to colorectal cancers, frequent mutation of β-catenin that results in Wnt signaling 

dysfunction have been detected in many non-colorectal cancers such as liver cancer 

(hepatocellular and hepatoblastoma), endometrial ovarian cancer, pilomatricoma skin 

cancer, prostate cancer, melanoma and Wilms tumor [73-78]. Mutations of Axin 1 and 

Axin 2 were observed in some liver cancers, esophageal squamous cell carcinoma and 

medulloblastomas [82-84, 87] while non-colon cancers are very rarely due to loss of APC 

function.   

 

Cellular re-distribution of β-catenin within the cytoplasm  

In addition to its role in gene regulation, β-catenin is involved in regulating cell-cell 

adhesion by acting as a structural adaptor protein linking E-cadherin to the actin 

cytoskeleton in the plasma membrane [97, 113-117] (Figure 1-1). Both functions of β-

catenin are deregulated in several cancers, thus leading to the loss of β-catenin/E-

cadherin-mediated cell adhesion and a corresponding increase in β-catenin-dependent 

transcription. The switch between these two functions, which directly controls the 

shuttling of β-catenin between the plasma membrane and nucleus, is tightly regulated by 

several factors including the presence of E-cadherin-mediated cell adhesion, interaction 

of β-catenin with other proteins such as APC, as well as conformation and tyrosine 
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phosphorylation of β-catenin [118, 119]. Phosphorylation of tyrosine residue 654 of β-

catenin by either c-scr or the epidermal growth factor receptor leads to the loss of E-

cadherin binding while the tyrosine kinases Fer, Fyn or Met are capable of inducing 

phosphorylation of tyrosine residue 142 of β-catenin to disrupt interaction with α-catenin 

but promotes binding of β-catenin to the nuclear co-factor B-Cell Lymphoma 9-2 (BCL9-

2) [118-123]. The β-catenin-BCL9-2 complex subsequently localizes to the nucleus and 

regulates the transcription of crucial target oncogenes upon interaction with the TCF/LEF 

DNA binding proteins [120]. Accordingly, over-expressions of tyrosine kinases and 

mutations in tyrosine phosphatase genes that might catalyze these phosphorylation 

processes have been reported in colorectal cancers [88, 89] (Table 1-1). BCL9-2 

expression was found to be elevated in a series of human colon cancer samples [124]. 

Moreover, BCL9-2 gene is located in a region where frequent amplifications, deletions, 

loss of heterozygosity or gene rearrangement have been reported in several cancers 

including acute myeloid leukemia, acute lymphoid leukemia and advanced colon 

carcinoma, indicating that rearrangement of the BCL9-2 loci is involved in tumor 

formation and progression [90-92]. APC also plays an important role in switching the 

function of β-catenin between cell adhesion and Wnt signaling. APC binds directly with 

β-catenin, α-catenin and actin filament in the cell-cell adhesion complex linked with E-

cadherin [125, 126]. As such, APC loss-of-function potentially couples loss of cell 

adhesion to activated Wnt signaling, in a similar manner as Y142 phosphorylation of β-

catenin which shifts β-catenin from adherens junctions to the nucleus.  In addition, this 

preferential movement of β-catenin can be influenced by distinctive conformational 

changes in the β-catenin. As demonstrated by Gottardi and Gumbiner, Wnt signaling 
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promotes the formation of a monomeric form of β-catenin that preferentially interacts 

with TCF/LEF proteins in the nucleus while another distinctive form that exists as a β-

catenin-α-catenin dimer preferentially binds to E-cadherin at the plasma membrane [127].  

 

In the nucleus: Wnt/β-catenin-mediated gene transcriptional activity 

The human TCF/LEF proteins, consisting of TCF-1, LEF-1, TCF-3 and TCF-4, belong to 

a family of transcriptional factors that bind DNA in a sequence-specific manner through 

their High Mobility Group (HMG) domains, but lack the capability to activate gene 

transcription independently [128]. In the absence of Wnt ligands, levels of nuclear β-

catenin remain low, which in turn allow the DNA binding TCF/LEF protein to interact 

with transcriptional co-repressors such as Groucho, Histone Deacetylases (HDAC) and 

HMG-Box Transcription Factor 1 (HBP1), thus blocking target gene transcription [95, 

129, 130] (Figure 1-1). Although activating mutations in TCF/LEF genes are rare in 

human cancers, Duvel et al. has recently reported a frequent frame shift mutation in TCF-

4 in human colorectal cell lines [93]. 

 

Besides regulation through the transcriptional co-repressors, nuclear APC plays a critical 

role in the control of nuclear β-catenin levels and activity by binding to β-catenin and 

inducing its nuclear export [131, 132]. Nuclear translocation of β-catenin converts the 

TCF/LEF protein into a potent transcriptional activator by directly displacing the 

transcriptional repressors and recruiting an array of co-activator proteins including 

histone acetylase cAMP Response Element Binding Protein (CBP/p300), SWI/SNF 

chromatin-remodeling complex member BRG-1, Legless/BCL9-2, Paired-Like 
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Homeodomain 2 (PITX2), Pygopus (Pygo), mediator and Hyrax/parafibromin (a member 

of the polymerase-associated factor complex) to activate transcription of at least 300-400 

Wnt target genes with diverse functions [133-141]. Notorious examples of Wnt target 

genes include oncogenes that are involved in cancer cell proliferation (cyclin-D1, c-Myc, 

survivin) [97, 98, 142], adhesion (E-cadherin, neuronal cell adhesion molecule) [143], 

tumor metastasis (Matrix Metalloproteinases (MMPs) [99-101], keratin 1 [102], 

Urokinase Plasminogen Activated Receptor (uPAR) [103], CD44 [144], VEGF [145] 

WNT1-Induced Secreted Protein 1 (WISP-1) [146]) and cell differentiation (siamois, 

brachyury T gene) [147, 148]. Other Wnt responsive genes comprise of components of 

the Wnt pathway itself such as LRPs, Axin2, β-TrCP and TCF/LEF, suggesting an auto-

regulation of Wnt signaling. The list of downstream target oncogenes will undoubtedly 

be expanded and it would be very useful to elucidate the relevance of these genes in 

human cancer. 

 

Wnt/β-catenin signaling pathway in the disease progression of osteosarcoma 

Although its role has been well studied in many other types of malignancies, the 

knowledge of the Wnt/β-catenin signaling in osteosarcoma is limited. Specifically, over-

expression of numerous Wnt components including Wnt ligands and Frizzled receptors, 

as well as the epigenetic silencing of genes encoding endogenous Wnt pathway inhibitors 

such as SFRP3 and WIF-1, highlighted the implications of aberrant Wnt/β-catenin 

signaling in the development and progression of this malignant phenotype [47, 56, 65]. 

Elevated levels of cytoplasmic and nuclear β-catenin have also been reported in 

osteosarcoma tissue samples [73, 74]. In addition, the expression of the Wnt co-receptor, 
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LRP5, in osteosarcoma specimens correlated significantly with metastatic events [47] 

while Wnt10b ligand induced osteosarcoma chemotaxis and its expression correlated 

with reduced survival [48]. Dominant-negative LRP5 (DN-LRP5) has also been shown to 

inhibit both in vitro and in vivo osteosarcoma growth and metastasis by down-regulating 

MMPs, Twist, Slug, Snail and N-cadherin [51, 52]. Furthermore, DKK-3, an endogenous 

inhibitor of the pathway, inhibited the motility and invasiveness of osteosarcoma cells by 

affecting intracellular β-catenin [63]. Kansara et al. has also found that WIF-1 is silenced 

in human osteosarcoma and when deleted in mice, accelerates radiation-induced 

osteosarcoma formation [65]. Most recently, Rubin et al. reported that restoration of 

WIF-1 markedly reduced the number of lung metastasis in vivo in an orthopedic mouse 

model of osteosarcoma [149]. Given these observations, disruption of the Wnt/β-catenin 

signaling pathway is an attractive approach for developing effective therapies for 

osteosarcoma. It is thus our goal to perturb critical nodal points in the Wnt/β-catenin 

pathway with the aim of developing novel Wnt-targeted therapies to prevent or reduce 

osteosarcoma disease progression.  

 
 

1.4 Strategies in inhibiting the Wnt/β-catenin signaling pathway 

Overwhelming evidence implicates aberrant activation of Wnt signaling in oncogenesis 

and cancer progression. Given the complexity of the canonical Wnt/β-catenin signaling 

pathway and its tight regulation at multiple cellular levels, the pathway offers ample 

targeting nodal points for rationale drug development to treat cancer. Wnt therapeutic 

interventions can be targeted at many junctures to: (1) disrupt receptor-ligand interactions 

at the cell membrane; (2) stabilize APC-Axin-GSK-3β β-catenin destructive complex; (3) 
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enhance proteosomal degradation of cytoplasmic β-catenin; (4) interrupt β-catenin/TCF 

complexation and/or (5) inactivate Wnt target oncogenes transcription within the nucleus. 

Despite intense efforts and interest by pharmaceutical and biotechnology sectors in 

developing effective Wnt signaling pathway antagonists, drug development specifically 

targeting the aberrant Wnt/β-catenin pathway is still in its infancy, with no drugs 

currently in late-stage clinical trials.  Nevertheless, numerous in vitro and in vivo reports 

on the effective use of Wnt therapeutics on cancer caused by aberrant Wnt activation are 

extremely encouraging and should motivate the accelerated discovery of yet more potent 

and novel Wnt therapeutics. 

 
 
1.4.1 Existing drugs as Wnt therapeutics 
 
A number of drugs that are either already on the market or are currently being evaluated 

for use in other diseases such as Non-Steriodal Anti-Inflammatory Drugs (NSAIDs) and 

vitamin derivatives have been reported to target Wnt signaling. NSAIDs, which are used 

worldwide for the treatment of pain, inflammation and fever, have recently been shown 

to dampen the Wnt signaling pathway in colorectal cancers and curb tumor growth in 

vivo [150]. Increasing evidence showed that the activities of the COX and Wnt signaling 

pathways might be inextricably linked in colon cancers and could be subject to concerted 

regulation in vivo by NSAIDS [151, 152]. A direct support for this was provided in study 

describing the substantial reduction of nuclear β-catenin levels in polyps of Familial 

Adenomatous Polyposis (FAP) patients treated for six months with the NSAID sulindac 

sulphide [150]. Furthermore, elevated COX activity in colon cancer was demonstrated to 

drive increase in prostaglandin levels, which might subsequently stimulate Wnt signaling 
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by interfering with the capacity of cells to degrade β-catenin [151, 152]. Thus the 

reduction of prostaglandin levels by inhibition of COX activity in the tumors could 

account for the observed ability of NSAIDS to dampen the Wnt signaling pathway and 

curb tumor growth. Most recently, celecoxib (a COX-2 inhibitor) was also shown to 

inhibit β-catenin-dependent survival of MG-63 osteosarcoma cell line [153].  

 

Unfortunately, the clinical use of NSAIDs is limited by severe intestinal bleeding and/or 

kidney failure caused by COX-1 inhibitors and potential cardiovascular side effects of 

COX-2 inhibitors. Vitamin derivatives such as retinoids are reported to inhibit colon 

cancer growth in vitro and in animal models by reducing TCF-β-catenin complex 

formation [154, 155]. However, a more recent study recorded increased intestinal tumor 

growth in mice treated with retinoic acid and raised some doubts regarding their 

therapeutic potential [156]. 

 

1.4.2  Novel approaches in Wnt therapeutics  

Although existing drugs in the market such as NSAIDs and vitamin derivatives seemed 

promising in in vitro and limited in vivo assays, their clinical potential is limited by their 

inability to reduce adenoma formation in approximately 50 % of treated patients and 

unwanted side effects. Therefore there is an urgent need to continuously develop more 

effective and selective Wnt inhibitors, and several of the promising approaches that are 

currently being explored in persuit of these inhibitors targeting Wnt-activated cancers are 

outlined below (Table 1-2). 
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Antibody-based therapeutics 

Antibodies against over-expressed membrane Wnt components such as Wnt ligands and 

FZD proteins are particularly useful for a range of human cancers without mutations in 

APC, Axin or β-catenin, but instead have increased expression of more upstream pathway 

components. For instance, WNT1 and WNT2 monoclonal antibodies effectively 

suppressed Wnt signaling in several cancers over-expressing these Wnt ligands including 

breast [157], head and neck [44], non-small cell lung carcinoma [157], gastric [41], colon, 

melanoma [158], mesothelioma [157] and sarcoma [157] (Table 1-2). FZD1 and FZD2 

receptors, highly expressed in breast [43] and colon cancers [159] compared to normal 

tissues, represent alternative targets for antibody-based therapies. Most recently, the 

development of antibody-based therapeutics were made even more attractive by the 

discovery that treatment with WNT1 antibody strongly induced apoptosis in colon 

cancers cell lines that over-expressed this ligand even in the presence of additional 

downstream mutations [61, 160]. Membrane proteins encoded by Wnt target genes are 

also excellent potential therapeutic targets for antibody-based therapies. 

 

Viral-based therapeutics 

The biggest advantage of viral-based therapies is their high therapeutic efficacy and 

selectivity. This is typically achieved by oncolytic virus which target the cancer cells by 

either restricting infection and replication of cell-destroying virus to the cancer cells or by 

selective expression of virally encoded genes that produce toxins or prodrug-converting 

enzymes in these cells [161] (Table 1-2). The oncolytic viral approach has been used 

successfully to develop adenovirus that selectively expressed the apoptotic-inducing 
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FADD (Fas-associated via death domain) gene or cytotoxic genes encoding diphtherin 

toxin A in colon cancer cell lines with hyperactive TCF/β-catenin signaling [162, 163]. 

Similarly, other examples that selectively target tumor cells which exhibit aberrantly high 

TCF/β-catenin activity include the development of replicating adenovirus that expressed 

tumor-selective viral E1B, E1A, E2 and E4 genes from promoters controlled by the TCF- 

4 transcriptional factor [164, 165]. Furthermore, several recombinant adenoviruses in 

combination with prodrug treatment have been shown to effectively and selectively kill 

cancer cells with active TCF/β-catenin activity, but spare the control normal cells. One 

example is the effective use of an adenovirus expressing the thymidine kinase gene under 

the control of a TCF-responsive promoter which selectively killed colon cancer cells with 

hyperactive TCF/β-catenin signaling following treatment with the prodrug ganciclovir 

[166]. Recent examples include selectively replicating adenovirus expressing genes 

encoding cytosine deaminase, which converts prodrug 5-fluorocytosine into highly
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Table 1-2. Summary of current approaches to targeting Wnt/β-catenin signaling pathway for cancer therapy.  

 
Targets  
 

Approaches Tumor targeted  References 

 
Extracellular and membrane 
Wnt ligands Antisense  

Monoclonal antibodies 
Breast, Colon, Head and neck, NSCLS, gastric, 
Melanoma, Mesothelioma, soft tissue sarcoma  

[41, 44, 157, 158]  

FZD Antisense  
Monoclonal antibodies 

Breast, Colon  [43, 159] 

SFRPs sFRPs over-expression 
Therapeutic proteins  

Breast, Cervical, Colorectal, Gastric, Mesothelioma, 
Liver,  Lung, osteosarcoma Tetratocarcinoma, 

[55, 61, 167] 

WIF sFRPs over-expression 
Therapeutic proteins  

Breast, Bladder, Lung, Mesothelioma, Prostate,  
osteosarcoma 

[64-69].  
 

DKKs wt-DKK over-expression  
Therapeutic proteins 

Colon, Mesothelioma, 
NSCLC, osteosarcoma 

[63, 168, 169]. 

 
Within the Cytoplasm 
APC wt-APC over-expressions  Colon  [170] 
Axin 
 

wt-Axin over-expressions Colon, hepatocellular carcinoma [83] 

β-catenin Antisense oligos 
RNA interference 
Protein knockdown 

Breast, Colon, NSCLS, Esophageal, 
squamous cell carcinoma 

[171-175].   

COX-2 COX-2 Inhibitors Breast, Colon, NSCLS [150, 176, 177] 
 
In the Nucleus 
TCF/LEF Retinoids 

Apoptotic/Suicide HSV-
Colon, NSCLS [154, 155, 162-

166, 178-181] 
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TK/ganclovior  
Small molecule inhibitor 
Oncolytic virus 

CBP Inhibition of CBP Colon [179] 
c-MyC Antisense oligos 

 
Breast, Colon 
Liver, Prostate, Melanoma, 

[182, 183] 

CyclinD1 Cdk inhibitor Breast, Colon, Glioblastoma, Leukemia, Lymphoma, 
Melanoma, NSCLS,  Prostate, renal cell carcinoma, 
squamous cell carcinoma, soft tissue sarcoma, Uterine,   

[184, 185] 

 

Abbreviations: APC: Adenomatous polyposis coli; CBP: Camp response element binding protein; COX-2: Cyclooxygenase-2; DKK: Dickkopf; 

FZD: Frizzled receptor; SFRP: Secreted frizzled-related protein; WIF: Wnt inhibitory factor; NSCLC: non-small cell lung cancer; TCF/LEF: T-

cell factor transcriptional factor/Lymphoid enhancer binding factor 
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toxic drug 5-fluorouracil [180], and Escherichia coli nitroreductase which activates the 

prodrug CB1954 [181].  

 

Recombinant adenoviruses are also used to constitutively express Wnt components that 

are suppressed due to genetic mutations. For example, adenoviruses (Ad-CBR) that 

constitutively expressed APC induced apoptosis and growth arrest by blocking TCF-β-

catenin transcriptional activity in colorectal cancer cell lines with mutant APC [170]. 

Similarly, adenovirus-mediated gene transfer of wild-type Axin-1 promoted apoptosis in 

colorectal and hepatocellular cancer cells that have aberrant Wnt activation due to Axin-1 

mutation [83].  

 

Nucleic-acid-based therapeutics (vaccines, antisense and small interfering RNA) 

Antisense oligonucleotides are single stranded DNA, RNA or chimeric RNA/DNA that 

are designed to specifically hybridize to a target mRNA and subsequently prevent protein 

synthesis. As many human cancers with aberrant Wnt signaling ultimately results in 

increased β-catenin levels, direct targeting of this key protein using anti-sense and RNA 

interference (RNAi) strategies have attracted a lot of attention. Several studies using 

antisense oligonucleotides have demonstrated decreased β-catenin levels and inhibition of 

cell proliferation, adhesion, invasiveness and anchorage-dependent growth in various 

cancer cells and in vivo xenograft models [171-173] (Table 1-2). Other studies have 

developed and evaluated the therapeutic potential of RNAi targeting β-catenin: Van et al. 

created an inducible vector system expressing β-catenin small interfering RNA (siRNA) 

that is effective in promoting cell differentiation and G1 cell cycle arrest in colon cancer 
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cell lines [174]. In another study, siRNA against β-catenin suppressed in vitro and in vivo 

tumor growth of colon cancer [175]. 

 

Microarray analyses of TCF-dependent gene expressions in human cancer cells suggest 

that there are currently at least 300-400 oncogenes that regulate cancer cell proliferation, 

differentiation, migration, apoptosis and other processes that leads to cancer initiation and 

progression [186]. Given that some of these targets such as c-Myc and cyclin D1 are 

directly implicated in driving cancer formation, current therapeutic approaches use RNAi 

or small membrane-permeable antisense molecules to reduce c-Myc and cyclin D1 RNA 

levels [183]. AVI-4126 is an example of a c-Myc specific antisense molecule that 

effectively suppressed growth in various cancer xenograft murine models including 

breast, prostate, melanoma and liver [182].  

 

Small molecule inhibitors 

Drugs developed to disrupt TCF-β-catenin signaling activity undoubtedly have great 

potential as effective cancer therapeutics, given that a common feature of almost all 

cancers with aberrant activation of Wnt/β-catenin pathway is the constant presence of 

TCF-β-catenin complexes in the nuclei. Although no small-molecule inhibitors of the 

TCF-β-catenin has yet been identified by High Throughput Screening (HTS) of large 

synthetic compound libraries, three natural occurring compounds (PKF115-584, PKF222-

815 and CPG049090) from a HTS of natural compounds consistently scored as effective 

antagonists of  TCF-β-catenin complexation by binding to either TCF or β-catenin [178] 

(Table 1-2). Other opportunities for blocking TCF-β-catenin function in cancer cells 
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include development of small molecule inhibitors that prevent interaction of β-catenin 

with crucial transcriptional co-activator proteins such as CBP and BCL-9/pygopus. For 

instance, ICG-001 was found to inhibit growth of colon cancer cell lines and xenografts 

mouse models by selectively binding CBP, thus preventing interaction with β-catenin 

[179]. Small molecule inhibitor of the interaction between BCL-9 and β-catenin has also 

been developed. Low-molecular weight compounds that target other transcriptional co-

activators such as BRG-1, Pygopus, Hyrax and components of the Mediator complex are 

also under scrutiny for potential therapeutic applications [187].  

 

In addition, the increasing availability of detailed crystal structures of various 

components of the Wnt pathways down the whole signaling cascade, ranging from β-

catenin, Axin, APC, DVL and their complexes should allow future design and testing of 

small molecule compounds that interfere with their activity [125, 188-191]. To this end, 

Shan et al. has recently developed a small molecule, NSC668036, which binds to DVL 

and blocks its interaction with FZD; NSC668036 is of great therapeutic value to prevent 

or minimize signaling relay and amplifications [192].  

 

Natural products are traditionally excellent sources of lead compounds in the drug 

discovery and development process, and are gaining prominence as effective antagonists 

of the Wnt/β-catenin signaling pathway. Indeed, a wide variety of natural compounds 

ranging from phytochemicals, microorganisms, fungi, slime molds to bacteria have been 

identified as potent Wnt inhibitors and makes promising candidate drugs for development.     
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In fact, we have recently written a review entitled ‘Natural compounds as antagonists of 

canonical Wnt/β-Catenin Signaling’ published in Current Chemical Biology (2010). In 

this review, we provided a comprehensive summary on the current use of natural 

compounds as Wnt therapeutics and the development of more efficacious analogues 

using these compounds as lead structures. Increasing evidence of natural products as rich 

and diverse sources for lead compounds would inspire more concerted efforts to harness 

this largely untapped ‘reservoir’ for ‘drug-like’ molecules and accelerated their 

development as effective Wnt therapeutics. To this end, , we have examined the role and 

mechanism of actions of small molecule drugs derived from natural sources as Wnt/β-

catenin inhibitors in regulating osteosarcoma cell proliferation, motility and invasion in 

this thesis.   

 

Therapeutic proteins 

Therapeutic proteins of endogenous Wnt antagonists such as SFRPs, WIF-1 and DKK 

have great therapeutic potential for the treatment of human oncology as a result of 

epigenetic inactivation of these secreted negative regulators. Significant transcriptional 

down-regulation of SFRPs gene family via hypermethylation has been observed in many 

human malignancies including breast, lung, cervical, liver, gastric, colorectal and 

osteosarcoma, just to name a few [55] (Table 1-2). Restoration of SFRP functions in 

these tumor types have shown to effectively attenuate Wnt signaling even in the presence 

of downstream mutation [61], highlighting the great potential of using SFRPs as a 

therapeutic strategy against cancers with elevated Wnt signaling.  
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Indeed, sFRPS therapeutic proteins, which functions as Wnt antagonist are currently been 

developed and evaluated in preclinical tumor models [167]. It is also one of our research 

objectives to examine the functional roles and mechanisms of SFRPs as tumor 

suppressors in regulating osteosarcoma cell proliferation, motility and invasion. Several 

recent studies have explored the anti-cancer potential of WIF-1 proteins, another group of 

antagonist which blocks Wnt signaling in a similar manner as SFRPs by directly 

squelching Wnt ligands, thus preventing FZD-Wnt binding. WIF-1 is down-regulated in 

prostate, mesothelioma, breast, lung, and bladder cancer, as well as osteosarcoma, and 

restoration of WIF-1 expression would in a similar manner prevent or reduce 

tumorigenesis and metastasis in these cancers [64-69]. DKK-3 is the third class of natural 

Wnt antagonist which has been reported to be down-regulated in many immortalized and 

tumor derived cell lines. However, forced expression of DKK-3 significantly inhibited 

cell growth and invasion in non-small cell lung cancer and osteosarcoma cells 

respectively [63, 168, 169]. Accordingly, exogenous proteins of these Wnt antagonists 

that are down-regulated in numerous cancers hold great promise as therapeutic agents for 

the treatment of the respective cancers.  
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CHAPTER 2. Hypothesis and Aims  

 

Evidence that implicates aberrant activation of the canonical Wnt/β-catenin signaling 

pathway in osteosarcoma has only recently emerged. There are very limited, if any, 

reports on the use of Wnt therapeutics in the treatment of osteosarcoma and there lies the 

potential and scope for novel research. The overall goal of this study is thus to perturb 

critical nodal points in the Wnt/β-catenin signaling pathway both pharmacologically and 

genetically with the aim of developing novel Wnt-targeted therapies to prevent or reduce 

osteosarcoma progression and metastasis, thereby improving the clinical outcomes of this 

disease.  

 

We hypothesized that osteosarcoma progression may be delayed by disrupting the Wnt/β-

catenin signaling pathway either by using small molecule inhibitors or by manipulating 

the levels of the endogenous antagonists, SFRPs. Our hypothesis was based on several 

observations: Firstly, numerous Wnt signaling components including Wnt ligands and 

Frizzled receptors were found to be over-expressed in osteosarcoma [47, 56, 65], while 

many genes encoding endogenous Wnt antagonists such as SFRP3 and WIF-1 were 

epigenetically silenced [47, 56, 65]. Secondly, accumulation of cytoplasmic and nuclear 

β-catenin was commonly observed in osteosarcoma and nuclear translocation of β-

catenin protein correlated with osteosarcoma metastasis [73, 74]. Others have also 

reported that high expression of the Wnt co-receptor, LRP5, in osteosarcoma specimens 

associated with decreased patient survival [47] while increased expression of Wnt10b 

ligand correlated with reduced survival and induced osteosarcoma chemotaxis [48]. On 
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the other hand, blocking Wnt signaling using DN-LRP5 and DKK3 resulted in inhibitions 

of both osteosarcoma growth and metastasis through down-regulating Wnt-responsive 

oncogenes including MMPs, Twist, Slug, Snail and N-cadherin [51, 52], Lastly, Kansara 

et al reported that WIF-1 was silenced in human osteosarcoma and when deleted in mice, 

accelerated radiation-induced osteosarcoma formation [65]. These studies were later 

supported by  Rubin et al. who showed  that restoration of WIF-1 markedly reduced the 

number of lung metastasis in an orthopedic mouse model of osteosarcoma [149]. Given 

these observations, disruption of the Wnt/β-catenin signaling pathway is an attractive 

approach for developing effective therapies for osteosarcoma. 

 

To test our hypothesis, we explored three specific aims: 

(1) Assess the role and mechanism of actions of small molecules Wnt/β-catenin 

inhibitors in regulating osteosarcoma cell proliferation, motility and invasion.  

(2) Synthesize and evaluate a set of lead compounds with improved potency and 

selectivity as Wnt/β-catenin antagonists; identify critical structural motifs for Wnt 

inhibitory activity; and examine the underlying mechanism of Wnt inhibition of 

selected curcumin analogue. 

(3) Examine the functional roles and mechanisms of SFRPs as tumor suppressors in 

regulating osteosarcoma cell proliferation, motility and invasion.   

 

Work done to address these specific aims was included in the following chapters: In 

Chapter 3, we provided important in vitro proof-of-concept for the potential use of small 

molecule Wnt/β-catenin inhibitors to delay osteosarcoma progression and metastasis 
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(Aim 1).  In Chapter 4, we evaluated and identified curcumin analogues with enhanced 

Wnt inhibitory potency and reported critical structural motifs for Wnt inhibitory activity 

using structure-activity–relationship analysis (Aim 2).  In Chapter 5, we reported the role 

of SFRPs as tumor suppressors in delaying osteosarcoma disease progression (Aim 3). 

Lastly, the thesis is concluded with a summary and perspectives on the subject matter 

(Chapter 6).  

 

Achieving the above aims not only provided deeper insights into the contributory role of 

aberrant canonical Wnt/β-catenin signaling in osteosarcoma disease progression and 

metastasis, but a greater understanding of the role and functions of small molecule Wnt 

antagonists and SFRPs in osteosarcoma. These knowledge maybe useful for the 

subsequent discovery and development of novel molecular Wnt-targeted therapy for the 

treatment of osteosarcoma.  
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CHAPTER 3. Antitumor activity of natural small molecule compounds as 

Wnt/β-catenin antagonists against human osteosarcoma cells  

 

3.1 Introduction 

Aberrant activation of the canonical Wnt/β-catenin signaling pathway has been 

implicated in tumorigenesis and cancer progression in many human malignancies [47, 48, 

51, 52, 63, 193]. Small molecule inhibitors of Wnt/β-catenin signaling pathway clearly 

hold great promise as an effective therapeutic strategy for the delay of disease 

progression in these malignancies. While intense efforts from screening diverse natural 

compound libraries made in this quest for effective Wnt antagonists has led to the 

discovery of numerous effective candidates, drug development in this area is still in its 

infancy, with no drugs currently in late-stage clinical trials. Particularly, evidence of 

deregulated Wnt/β-catenin signaling in osteosarcoma has only recently emerged; there 

are thus limited, if any, reports on the use of such small molecule inhibitors derived from 

natural sources in delaying osteosarcoma disease progression and there lies the potential 

and a great scope for novel research.  

 

Our first aim of this thesis is to assess the role and mechanism of actions of small 

molecule Wnt/β-catenin inhibitors in regulating osteosarcoma cell proliferation, motility 

and invasion. The goal of this part of the dissertation is to provide important in vitro 

proof-of-concept for the potential use of small molecule Wnt/β-catenin inhibitors to delay 

osteosarcoma progression and metastasis. Lead compounds identified with potent Wnt 
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inhibitory activities may then be modified by medicinal chemistry to increase the potency 

and selectivity.  

 

Our data demonstrated that curcumin significantly inhibited Wnt/β-catenin signaling and 

reversed Wnt/β-catenin-induced cell invasiveness and MMP-9 expression in U2OS cells. 

Furthermore, another natural compound, PKF118-310, inhibited osteosarcoma cell 

invasion, migration and proliferation, as well as induced apoptosis and G2/M phase cell 

cycle arrest, through down-regulating Wnt target genes including MMP-9, cyclin D1, c-

Myc and survivin. Our results strongly suggest that curcumin and PKF118-310 may be 

promising candidate drugs for development, given the limited chemotherapeutic options 

available for the treatment and prevention of osteosarcoma. Building on these promising 

results, we then developed analogues with increased potency and selectivity using 

curcumin as our lead compound in our second aim detailed in the next chapter.    

 

3.2 Experimental Methods 

3.2.1  Cell culture, transfections and plasmids 

The human osteosarcoma cell lines U2OS, SaOS-2 and HOS were purchased from 

American Tissue Culture Collection (Rockville, MD) while CRL11226, CRL1423, OS1, 

OS2 and OS3 have been described previously [194] and were kindly provided by Dr 

Saminathan S. Nathan (Department of Orthopaedic Surgery, Yong Loo Lin School of 

Medicine, National University of Singapore). All cell culture reagents were purchased 

form Sigma Chemical Co. (St Louis, MO) unless otherwise stated. U2OS, SaOS-2 and 

CRL1423 cells were cultured in McCoy’s 5A medium, while HOS, CRL11226, OS1-3 
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cells were maintained in DMEM, RPMI and RPMI: DMEM 9:1 medium respectively. All 

media were supplemented with 10-15 % fetal bovine serum (FBS) (Invitrogen, Carlsbad, 

CA), 10U/ml penicillin G and 100μg/ml streptomycin. The cells were cultured in a 

humidified atmosphere at 37 ºC containing 5 % CO2. TOPglow and FOPglow reporters 

used in the luciferase reporter gene assays were purchased from Upstate Biotechnology 

(Lake Placid, NY). The pSV-β-galactosidase control vector and pcDNA3.1 empty 

plasmids were purchased from Promega (Madison, WI) and Invitrogen (Carlsbad, CA) 

respectively. The plasmids for wild-type (pcDNA β-catenin) and mutant S33Y β-catenin 

(pcDNA S33Y) were kindly provided by Dr Georges Rawadi (Galapagos SASU, 

Romainville, France) and have been described previously [76]. PKF118-310 (Asinex, 

Winston-Salem, NC), curcumin (Sigma Chemical Co., St Louis, MO), quercetin (Sigma 

Chemical Co., St Louis, MO), artemisinin (Sigma Chemical Co., St Louis, MO), 

artesunate (Sigma Chemical Co., St Louis, MO), LiCl (Sigma Chemical Co., St Louis, 

MO), BIO (Merck, Darmstadt, Germany) and SB216763 (Sigma Chemical Co., St Louis, 

MO) were dissolved in Dimethyl Sulfoxide (DMSO) before use. The final concentration 

of DMSO did not exceed 0.1 % in all instances. 

 

3.2.2  Cell proliferation assay 

The effects of test compounds on the proliferation of U2OS, SaOS-2 and HOS cells were 

examined using 3-(4, 5 dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) 

assays. U2OS, SaOS-2 and HOS cells were seeded into 96-well plates at a density of 9 x 

103 cells/well, 10 x 103 cells/well and 5.5 x 103 cells/well respectively and cultured for 24 

h. Cells were then treated with the respective compounds at various concentrations or 
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DMSO (vehicle control) for 72 h. For time-response assays, U2OS cells were treated in 

the same manner for 24 h and 48 h. After treatment, cell growth was analyzed by adding 

100 μl of 1 mg/ml MTT (Sigma Chemical Co., St Louis, MO). Following an incubation 

period of 4 h, DMSO was added to lyse the cells and dissolve the purple formazan 

crystals. The absorbance of the formazan product was determined at λmax of 595 nm 

using a Tecan Spectra Fluor spectrophotometer (MTX Lab Systems Inc., Vienna, VA). 

The IC50 values were obtained from the sigmoidal curve by plotting the percentage 

survival of cells against the concentration of curcumin or PKF118-310 using GraphPad 

Prism version 4.0 for Windows, GraphPad Software (San Diego, CA). 

 

3.2.3  Luciferase reporter gene assay 

U2OS cells (1.0 x 105/well) grown to 90–95% confluency in 24-well plates were 

transiently co-transfected with either 0.3µg TOPglow, a luciferase reporter construct 

containing four TCF consensus binding sites upstream of the firefly luciferase cDNA, or 

0.3 µg FOPglow, a negative control plasmid with mutated TCF binding sites, and 0.1 µg 

pSV-β-galactosidase plasmids using Lipofectamine 2000 (Invitrogen, Carlsbad, CA), 

according to the manufacturer’s instructions. For the extrinsic activation of the canonical 

Wnt/β-catenin signaling pathway, U2OS cells were co-transfected with one other gene, 

the wild-type (pcDNA β-catenin) or mutant S33Y β-catenin gene (pcDNA S33Y). The 

amount of DNA in each transfection was kept constant by the addition of an appropriate 

amount of the empty expression vector (pcDNA3.1). Five to twenty hours post-

transfection, cells were treated with compounds at various concentrations for 24 h before 

cell lysis and harvesting. Similarly, to activate Wnt/β-catenin signaling using small 
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molecule GSK-3β inhibitors, U2OS cells were incubated with 5 μM BIO or 50 μM 

SB216763 with various concentrations of curcumin or PKF118-310 for 24 h before cells 

were lysed using the Reporter Lysis Buffer (Promega, Madison, WI). Luciferase assays 

were performed with the Luciferase assay systems kit (Promega, Madison, WI) according 

to the manufacturer’s instructions. Cell lysates (20 µl) were incubated with 50 µl of β-

galactosidase assay buffer (Promega, Madison, WI) at 37 ºC for 40 mins and absorbance 

at λmax of 420 nm was measured in a Tecan Spectra Fluor spectrophotometer (MTX Lab 

Systems Inc., Vienna, VA) to determine β-galactosidase activity. For luciferase activity, 

20 µl cell lysate was mixed with luciferin (100 µl) and the light output was determined in 

a luminometer (Tecan, MTX Lab Systems Inc., Vienna, VA). Results were expressed as 

mean ± Standard Error Mean (SEM) of normalized ratios of luciferase and β-

galactosidase activities for each triplicate sets. Reporter activities in compound-treated 

cells were expressed as the percentage of DMSO-treated samples.  

 

3.2.4  Cell migration and invasion assays 

U2OS cell migration and invasion were determined using the wound healing and 

Matrigel invasion assays as previously described [195]. Briefly, for wound healing assays, 

equal number of U2OS cells (5.0 x 105/well) were seeded and grown overnight to 90–

95 % confluence in 6-well plates before wounds of similar size were introduced into the 

monolayer by a sterile pipette tip. The monolayers were rinsed with Phosphate Buffer 

Saline (PBS) to remove detached cells and then cultured in medium containing various 

concentrations of compounds. The speed of wound closure was documented 12 h and 24 

h post-wounding using the Nikon Eclipse TE2000U microscope (Melville, NY). Cell 
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invasion assays, on the other hand, were performed using 8 µm pore size polyethylene 

terephthalate membrane inserts (BD Bioscience, San Jose, CA) precoated with 30 µg 

Matrigel (an extracellular matrix gel from Engelbreth Holm-Swarm mouse sarcoma) (BD 

Bioscience, San Jose, CA). Briefly, cells that were untransfected or transfected with the 

respective control vector or β-catenin plasmids were treated with compounds at various 

concentrations for 24 h.  Next, viable cells (1.5 x 105/ 200 µl, confirmed by trypan blue 

exclusion) were seeded in serum-free medium onto the upper wells of the precoated 

membrane inserts, while McCoy’s 5A medium supplemented with 15 % FBS was added 

in the lower compartment as a chemoattractant. Control wells contained serum-free 

medium in the lower chamber instead. Cells were allowed to invade through the 

precoated inserts for a period of 48 h, after which non-invasive cells were removed from 

the upper membrane using a cotton swab. Cells that have invaded to the lower surface of 

the membrane were then fixed with 70 % ethanol and stained with 0.2 % w/v crystal 

violet before they were counted using the Nikon Eclipse TE2000U microscope (Melville, 

NY). Invaded cells from ten random microscopic fields (200 x magnifications) were 

enumerated and all experiments were performed in triplicates at least.   

 

3.2.5  Western blot analysis 

Western blotting was used to examine the protein expression levels of β-catenin, active β-

catenin, MMP-9, cyclin D1, c-Myc and survivin before and after 24 h treatment of 

curcumin or PKF118-310. The primary antibodies for β-catenin, MMP-9, cyclin D1, c-

Myc and survivin were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA), 

while those for active β-catenin, α-Tubulin and lamin A/C were obtained from Upstate 
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Biotechnology (Lake Placid, NY), Sigma Chemical Co. (St Louis, MO) and BD 

Bioscience (San Jose, CA) respectively. Anti-mouse (BioRad, Hercules, CA) and anti-

rabbit (Santa Cruz, CA) IgG horseradish peroxidase were used as the secondary 

antibodies. Cells were harvested and lysed in lysis buffer containing 1 % Triton with 

protease inhibitor (Roche, Mannheim, Germany). The protein concentration of the 

soluble extracts was determined by Bradford protein assay (Sigma Chemical Co., St 

Louis, MO). For the collection of proteins from the cytosolic and nuclear fractions, the 

NE-PER cytoplasmic and nuclear protein extraction kit (Pierce, Rockford, IL) was used 

according to the manufacturers’ protocol. Proteins (10-50 µg) were separated by 

electrophoresis on 8-10 % SDS-polyacrylamide gels and blotted onto nitrocellulose 

membranes (BioRad, Hercules, CA). Membranes were then blocked overnight at room 

temperature in Tris-buffered saline containing 0.1 % (v/v) Tween 20 and 5 % (w/v) fat-

free dry milk and then incubated with the respective primary antibodies, followed by the 

secondary antibody according to the manufacturer’s directions. After incubation with the 

antibodies, membranes were washed and incubated with the West Femto or West Pico 

luminal/enhancer solution (Pierce, Rockford, IL) and stable peroxide solution (Pierce, 

Rockford, IL) before being exposed to an X-ray film (ThermoFisher Scientific, Waltham, 

MA). Bands were quantified using Quantity One software (BioRad, Hercules, CA), 

normalized to either α-tubulin or lamin A/C loading controls, before bands in treatment 

group are expressed relative to DMSO control (set as 100%). 

 

3.2.6  Gelatin zymography 
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The effects of curcumin and PKF118-310 on the gelatinolytic activity of MMP-9 were 

examined by gelatin zymography as detailed previously [195, 196]. U2OS cells that were 

untransfected or transfected with the respective control vector or β-catenin plasmids were 

treated with the indicated concentrations of curcumin or DMSO for 72 h in serum-free 

medium. U2OS cells were treated with PKF118-310 in a similar manner for 24 h. After 

treatment, serum-free conditioned media were harvested and centrifuged at 170 g to 

remove cellular debris. The supernatant was then concentrated using Amicon Ultra-4 

centrifuge filter devices (Millipore, Billerica, MA) and stored at -80 °C until use. Protein 

content in the supernatant was quantified using the Bradford protein assay (Sigma 

Chemical Co., St Louis, MO). An equal amount of protein (25 µg) from each treatment 

was diluted with the loading buffer (4x) and applied to a 7.5 % sodium dodecyl sulfate 

(SDS)-polyacrylamide gel co-polymerized with 0.2% gelatin A (Sigma Chemical Co., St 

Louis, MO). After electrophoresis, the gels were stained with 0.1 % Coomassie brilliant 

blue (BioRad, Hercules, CA) and destained with 45 % methanol, 10 % (v/v) acetic acid 

until clear bands suggestive of gelatin digestion were present. Bands were quantified 

using Quantity One software (BioRad, Hercules, CA). 

 

3.2.7  Apoptosis assay 

The effect of PKF118-310 on U2OS cell apoptosis was assessed using an annexin-V-

fluorescein/ Propidium Iodide (PI) apoptosis assay kit (Invitrogen, Carlsbad, CA) 

accordingly to the manufacturers’ protocol. Briefly, U2OS cells (0.2 x 106 cells/well) 

were seeded into 6-well plates and allowed to adhere overnight. On the following day, 

cells were treated with PKF118-310 at various concentrations or DMSO for 24 h, after 
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which the cells were washed with 1x PBS and trypsinized. U2OS cells were then 

incubated for 15 mins at room temperature in 1x annexin-binding buffer (100 μl) 

containing annexin-V and PI. After incubation, 400μl 1x annexin-binding buffer was 

added and the stained cells were analyzed using a CyAn ADP flow cytometer (Beckman 

Coulter, Inc. Fullerton, CA). 

 

3.2.8  Cell cycle analysis 

The effect of PKF118-310 on the cell cycle distribution was assessed by flow cytometry 

after staining the cells with PI as described earlier [195]. U2OS cells (1.5 x 105 cells/well) 

were seeded and cultured for 24 h. Cells were then treated with PKF118-310 at various 

concentrations or DMSO (vehicle control). Following treatment for 24 and 48 h, both 

floating and adherent cells were collected and washed with 1x PBS. After which, the cells 

were resuspended in cold 1x PBS to obtain a single-cell suspension and added drop wise 

into ice cold ethanol while vortexing. Cells were then incubated overnight at -20˚ C. The 

following day, cells were washed with cold 1x PBS, resuspended in fluorescence-

activated cell sorting solution (PI/Triton X-100, with RNase A, 1 ml) and incubated in the 

dark for 30 mins at room temperature. Samples were then analyzed using a CyAn ADP 

flow cytometer (Beckman Coulter, Inc. Fullerton, CA). 

 

3.2.9  Statistical analysis  

Statistical significance for treatment groups were analyzed using the two-tailed Student’s 

t-test (SPSS, Chicago, IL). The difference between values for each treatment 
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concentration and the respective controls was considered to be statistically significant 

when P < 0.05. 

 

3.3 Results 

3.3.1 Evaluation of canonical Wnt/β-catenin signaling activity in osteosarcoma 

cells 

To investigate Wnt/β-catenin signaling status in osteosarcoma, we first evaluated the 

endogenous expression of β-catenin protein in a panel of osteosarcoma cell lines from 

various origins, given that the stabilization and nuclear accumulation of β-catenin protein 

is a hallmark of canonical Wnt/β-catenin signaling. Several of the cells lines including 

SaOS-2, U2OS, HOS, CRL11226 and CRL1423 were derived from Caucasian patients 

while OS1, OS2 and OS3 originated from the pre-chemotherapeutic tumor in either the 

femur or proximal humerus of three different Chinese patients [194]. Western blot 

analysis using an anti-β-catenin antibody revealed high expression of endogenous β-

catenin in all of the osteosarcoma cell lines tested, except CRL1423 cell line (Figure 3-1). 

Since β-catenin activation is the hallmark of Wnt signaling, we also investigated the 

protein expression of the active form of β-catenin, which is dephosphorylated on Ser37 

and Thr41. Active β-catenin expression was detected in five of the eight osteosarcoma 

cell lines, although the levels of protein expression varied considerably among these cell 

lines (Figure 3-1). Our findings are consistent with previous studies, which demonstrated 

significant accumulation of β-catenin protein in osteosarcoma patients’ specimens [73, 

74]. Together with previous studies, our results confirmed the frequent activation of 
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Wnt/β-catenin signaling in most of the osteosarcoma cell lines tested, although the 

apparent degree of activation varied. 

 

               
                U2OS    HOS    SaOS-2   CRL      CRL      OS1      OS2      OS3 
                                                        11226      1423 

 

Figure 3-1. Evaluation of canonical Wnt signaling in osteosarcoma cell lines. 
Western blot analysis of β-catenin in eight OS cell lines using anti-β-catenin and anti-
active- β-catenin antibodies. α-Tubulin was used as a loading control. The blots shown 
were representatives of three independent experiments.  
 

3.3.2  Wnt/β-catenin inhibitors selected for our study  

Numerous studies on small molecule inhibitors of the Wnt/β-catenin pathway and their 

inhibitory mechanisms have been reported [197]. To date, no small molecule antagonists 

have been identified from large synthetic compound libraries, although several natural 

compounds ranging from plant-derived polyphenols, anti-malaria artemisinins, marine 

organisms to microorganisms as well as a number of exciting drugs such as NSAIDS and 

vitamin derivatives have scored as potent Wnt antagonists in both in vitro and in vivo 

studies (316). We have conducted a detailed literature review and selected five natural-

occurring small molecule compounds to perform initial screening for Wnt inhibitory 

activity, based on their commercial availability. These inhibitors are curcumin, quercetin, 

PKF118-310, arteminsinin and artesunate. The chemical structures of these compounds 

are shown in Figure 3-2. It is important to note that all these compounds except 

Active β-catenin  

  β-catenin  

  α-Tubulin 
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artemisinin have been shown to disrupt the Wnt/β-catenin pathway in various cancer cell 

lines [198-201], but none has been tested in the context of osteosarcoma.   

 

Curcumin, a dietary pigment found in the spice turmeric, has been shown to be anti-

proliferative, anti-invasive and anti-angiogenic in multiple myeloma, prostate, colorectal, 

pancreatic, lung and breast cancer cell lines [202, 203] while quercetin, a major member 

of the flavonol subclass of dietary flavonoids, has been found to display both anti-oxidant 

and anti-tumor activities in colon carcinoma [204-206]. PKF118-310, on the other hand, 

is a natural compound of microbial origin and has been selected through the screening of 

libraries of natural compounds for small molecule inhibitors of the TCF/β-catenin protein 

complex [178]. Initial studies with these three compounds showed that they disrupted the 

Wnt/ß-catenin pathway by decreasing nuclear β-catenin levels, resulting in a reduced 

association of β-catenin with TCF-4, which in turn gave rise to reduced binding of the 

complexes to DNA response elements in target genes [178, 200, 201]. Curcumin was also 

reported to disrupt Wnt/ß-catenin signaling at various intersections of the pathway such 

as inducing caspase-3-mediated cleavage and degradation of ß-catenin, inhibiting the 

phosphorylation of GSK-3β and suppressing the transcriptional co-activator, p300 [96, 

193, 207, 208]. Artemisinin and its derivative, artesunate (a prodrug of artemisinin) are 

anti-malarial drugs with in vitro and in vivo anticancer activities [209, 210]. Li et al. has 

recently shown that artesunate disrupted the Wnt/β-catenin pathway via membranous 

translocation of β-catenin and down-regulation of Wnt targeted genes such as c-myc and 

survivin in human colorectal carcinoma [211]. Based on this observation, we have also 
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included artemisinin (the active metabolite of artesunate) in our preliminary screening for 

Wnt antagonists. 

               
                              Curcumin                                                          Quercetin 
 

                    
             PKF118-310                      Artemisinin                           Artesunate 
 

Figure 3-2 Chemical structures of Wnt/β-catenin modulators used in our study 

 

3.3.3  Cytotoxicity of Wnt/β-catenin modulators on osteosarcoma cells 

It is necessary to profile the cytotoxic effect of our compounds in osteosarcoma cells to 

eliminate compounds that either promote survival or are too toxic. Since high levels of 

endogenous Wnt antagonist, DKK-1, have been reported to allow tumor cells to re-enter 

the cell cycle by inhibiting the canonical Wnt/β-catenin pathway and promote 

osteosarcoma cell survival [212], our selected compounds may act similarly. On the other 

hand, disruption of the pathway could instead have a cytostatic effect on osteosarcoma 

cell growth, given that Wnt/β-catenin affects the transcriptional regulation of genes 

associated with proliferation of tumor cells. Lastly, it may also be possible that these 
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compounds are toxic to osteosarcoma cells by some other non-selective and non-specific 

mechanism. The expression levels of Wnt signaling components including Wnt ligands, 

FZD and LRP5 in various human osteosarcoma cell lines have previously been reported 

[47] and using this information, we have chosen three heterogeneous representative 

osteosarcoma cell lines namely U2OS, HOS and SaOS-2 for our experiments.  

 

Accordingly, MTT cell proliferation assays were first performed on these three 

representative human osteosarcoma cell lines to profile the cytotoxicity effects of the 

compounds. All compounds inhibited growth of the osteosarcoma cells in vitro in a 

concentration-dependent manner (Figure 3-3), with the IC50 values at 72 h presented in 

Table 3-1. Comparison of the IC50 values showed that these osteosarcoma cell lines have 

relatively similar sensitivity to curcumin and artemisinin while PKF118-310 and 

quercetin had the most potent anti-proliferation effects against U2OS cells. Among the 

three cell lines, U2OS has been previously reported to be highly invasive [213] and was 

found to express the highest levels of β-catenin protein (Figure 3-1). It was thus used in 

subsequent studies to investigate various anti-cancer effects of the Wnt/β-catenin 

modulators. To determine an optimum (i.e. effective yet non-toxic) dose range for anti-

invasion and anti-migration studies, time-response cytotoxic assays were next performed. 

Figure 3-4 shows that treatment of U2OS cells with curcumin beyond 20 µM at 24 h, 48 

h and 72 h resulted in statistically significant toxicities and hence the maximum 

concentration employed in these studies was limited at 20 µM. The maximum 

concentration used for artemisinin and PKF118-310 was limited at 400 μM and 0.15 µM 
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respectively for similar reasons (Figure 3-4), although higher toxic concentrations were 

used to further investigate the anti-proliferation and apoptotic effects of PKF118-310.  
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Figure 3-3. Effect of Wnt/β-catenin modulators on osteosarcoma cell viability. MTT 
assays were used to profile the cytotoxicity effects of Wnt/β-catenin modulators in three 
osteosarcoma cell lines (U2OS (◊), SaOS-2 (▼) and HOS (■)) for 72 h at the 
concentrations indicated. Data is presented as mean IC50 ± SEM (Standard Error Mean) 
relative to DMSO (vehicle control) from three independent experiments repeated in 
triplicate.  
 
 

IC50 ± SEM 

 Artemisinin 
(μM) 

QUERCETIN 
(μM) 

PKF118-310 
(μM) 

CURCUMIN 
(μM) 

HOS 351.85 ± 41.03 55.31 ± 1.06 0.32 ± 0.02 22.72 ± 0.38 
SaOS-2 206.90 ± 26.50 105.17 ± 6.42 0.64 ± 0.03 18.51 ± 1.67 
U2OS 353.80 ± 31.71 33.84 ± 3.76 0.19 ± 0.01 19.94 ± 1.48 

 
Table 3-1. MTT proliferation assays were performed on HOS, SaOS-2 and U2OS 
cells 72 hours after the addition of test compounds. Results were obtained with six 
repeats in each of the three independent experiments. IC50 values shown are mean ± SEM 
of three independent experiments. 
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Figure 3-4. Dose- and time-dependent inhibition of U2OS cell viability by curcumin, 
PKF118-310, artemisinin and artesunate. MTT assays were used to establish an 
optimum concentration range of these compounds for subsequent experiments. U2OS 
cells were treated with curcumin, PKF118-310, artemisinin or artesunate for 24, 48 and 
72 h at the concentrations indicated. The results shown were means ± SEM from three 
independent experiments repeated in triplicate. Cell viability in compound-treated cells 
was expressed as the percentage of DMSO-treated samples.  *, P<0.05, **, P<0.01 
 
 
3.3.4 Effects of selected Wnt/β-catenin inhibitors on β-catenin/TCF transcriptional 

activity in HCT116 colon cancer and U2OS cell lines 

The effects of selected Wnt/β-catenin inhibitors on intrinsic downstream β-catenin/TCF 

transcriptional activities were first evaluated using a reporter gene containing four copies 

of the TCF-binding site (TOPglow). This was done to examine the magnitude of their 

Wnt inhibitory activities in the context of osteosarcoma cells. Cells were transiently 

transfected with TOPglow or the inactive mutant FOPglow luciferase reporter plasmids 
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and pSV-β-galatosidase control vector for normalization of transfection efficiency. The 

transfectants were then treated with increasing concentrations of the compounds for 24 h 

before cell lysates were collected for luciferase assays. Human colon carcinoma HCT116 

cells were used as positive control cells as they express high levels of β-catenin due to a 

mutation that eliminates the phosphorylation site (serine 45) in β-catenin required for its 

ubiquitination and subsequent degradation [214] while U2OS cells were used as our 

model cell line.   

 

As shown in Figures 3-5 and 3-6, both curcumin and artemisinin significantly suppressed 

β-catenin/TCF transcriptional activity in a dose-dependent manner in both HCT116 and 

U2OS cells. Statistical significance was observed beyond 10 µM and 20 µM for 

curcumin in U2OS and HCT116 cell lines respectively. Compared with the control, 

curcumin at 20 μM and artemisinin at 400 μM inhibited β-catenin/TCF signaling in the 

two cell lines by 56–59 % and 46-48 %, respectively. PKF118-310, on the other hand, 

inhibited the transcriptional activity of β-catenin/TCF in U2OS cells in a concentration-

dependent manner but had no effect in HCT116 cells. As shown in Figure 3-6 , β-

catenin/TCF signaling was inhibited by PKF118-310 by approximately 59 % and 48 % at 

doses of 0.10 μM and 0.15 μM in U2OS cells respectively. Much to our surprise and 

contrary to published reports, quercetin increased β-catenin/TCF transcriptional activity 

in U2OS cells and had no dose-response relationship in HCT116 cells [200]. Artesunate 

did not show any significant effect in both HCT116 and U2OS cells. LiCl, a well known 

Wnt/β-catenin agonist, was used as a positive control here. As expected, LiCl increased 

β-catenin/TCF transcriptional activity drastically in HCT116 cells (Figure 3-5). 
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Transcriptional activities of the FOPglow plasmid were not affected by treatment of all 

compounds. The inhibitory effects of curcumin, PKF118-310 and artemisinin on β-

catenin/TCF signaling in osteosarcoma is the first of such report although similar effect 

has been observed in colon and prostate cancer cell lines recently [178, 193, 201, 215]. 

Two of these compounds, namely curcumin and PKF118-310, showed the best profile in 

terms of suppression the β-catenin/TCF transcriptional activity in U2OS cells and were 

thus selected to further investigate their specific mechanisms of Wnt inhibitions.   
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Figure 3-5. Effects of Wnt/β-catenin modulators on the transcriptional activity of β-
catenin/TCF in HCT116 cell line. HCT116 cells were co-transfected with reporter 
genes harboring TCF-4 binding sites (TOPglow) or a mutant TCF-4 binding site 
(FOPglow) and β-galactosidase gene. 20 hours post-transfection, increasing amount of 
test compounds were added to the cells. Luciferase activity was determined 24 h post-
treatment, normalized against values for the corresponding β-galactosidase activity. 
Results were expressed as the means ± SEM of normalized ratios of luciferase and β-
galactosidase measurements of three independent experiments. Reporter activity in 
compound-treated cells is expressed as the percentage of DMSO-treated samples.             
* P<0.05, ** P<0.01.  
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Figure 3-6. Effects of Wnt/β-catenin modulators on the transcriptional activity of β-
catenin/TCF in U2OS cell line. U2OS cells were co-transfected with reporter genes 
harboring Tcf-4 binding sites (TOPglow) or a mutant TCF-4 binding site (FOPglow) and 
β-galactosidase gene. 20 hours post-transfection, increasing amount of test compounds 
were added to the cells. Luciferase activity was determined 24 h post-treatment, 
normalized against values for the corresponding β-galactosidase activity. Results were 
expressed as the means ± SEM of normalized ratios of luciferase and β-galactosidase 
measurements of three independent experiments. Reporter activity in compound-treated 
cells is expressed as the percentage of DMSO-treated samples.  * P<0.05, ** P<0.01.  
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Next, to demonstrate that extrinsic activation of the canonical Wnt/β-catenin pathway can 

be inhibited by curcumin and PKF118-310, similar reporter assays were repeated in 

U2OS cells, but with the inclusion of two specific GSK-3β inhibitors (BIO and 

SB216763), as well as plasmids for both wild-type pcDNA β-catenin and mutant S33Y β-

catenin, in separate treatments. BIO (a synthetic derivative of 6-bromoindirubin) is a 

natural product isolated from the Mediterranean mollusc Hexaplex trunculus [199], while 

SB216763 is a maleimide derivative identified from a high throughput screen against 

human GSK-3α and GSK-3β [198]. Both compounds have been shown to be potent and 

selective GSK-3β inhibitors [198, 199]. As expected, β-catenin/TCF transcriptional 

activities were increased approximately 730- and 220-fold with 5 µM BIO and 50 µM 

SB216763 treatment in our experiments respectively, most possibly due to a decrease in 

β-catenin degradation mediated by GSK-3β. Such extrinsic Wnt/β-catenin activation, 

however, could be effectively blocked by concomitant treatments with either curcumin 

(Figure 3-7a) or PKF118-310 (Figure 3-7b), in a dose-dependent manner. 

 

Similarly, β-catenin/TCF transcriptional activities were increased dramatically by 30- and 

580-fold with the forced expression of both wild-type and mutant S33Y β-catenin, 

respectively. The product of the mutant S33Y β-catenin gene is resistant to degradation 

by the Axin–APC–GSK3β complex [76] and hence gave rise to a much greater increase 

in reporter activity compared to that of the wild-type β-catenin gene. Again, treatment 

with either curcumin (Figure 3-7c) or PKF118-310 (Figure 3-7d) effectively suppressed 

β-catenin activation dose-dependently. At 20 µM, curcumin significantly reduced β-

catenin/TCF transcriptional activation by the wild-type and mutant S33Y β-catenin gene 



 
 

 52 

by 32.1 % and 56.3 % respectively. Such suppression was statistically significant at all 

doses used for PKF118-310.  

 

Taken together, we have identified curcumin and PKF118-310 as the two most potent 

antagonists of Wnt signaling in the context of osteosarcoma. Our findings suggest that 

both curcumin and PKF118-310 act specifically at the level or downstream of β-catenin 

along the axis of the Wnt/β-catenin signaling pathway, independent of GSK3β, rather 

than upstream of or at the level of the β-catenin degradation machinery. Transcriptional 

activities of the negative control FOPglow plasmids were unaffected in all instances, 

indicating the specificity of Wnt inhibition.                                                         
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Figure 3-7. Effects of Wnt/β-catenin modulators on the extrinsic transcriptional 
activity of β-catenin/TCF in U2OS cell line. (a-b) U2OS cells were co-transfected with 
TOPglow or a mutant Tcf-4 binding site (FOPglow) and pSV-β-galactosidase control 
vector. Five hours post-transfection, various amounts of curcumin and PKF118-310 
together with GSK-3β inhibitors BIO (5 μM) or SB216763 (50 μM) were added to the 
cells. (c-d) U2OS cells were co-transfected with TOPglow or a mutant Tcf-4 binding site 
(FOPglow), pSV-β-galactosidase control vector and pcDNA β-catenin (wild type β-
catenin gene) or pcDNA S33Y (S33Y mutant β-catenin gene). The amount of DNA in 
each transfection was kept constant by the addition of an appropriate amount of empty 
expression vector, pcDNA3.1. Five hours post transfection increasing amounts of 
curcumin or PKF118-310 were added to the cells. Luciferase activities were determined 
24 h after treatment with curcumin and PKF118-310, normalized against values for the 
corresponding β-galactosidase activities. Data were represented as means ± SEM. of 
normalized ratios of luciferase and β-galactosidase measurements of three independent 
experiments. Reporter activities in compound-treated cells were expressed as the 
percentage of DMSO-treated samples. *, P<0.05, **, P<0.01, compared with the GSK-3β 
inhibitor-only, pcDNA β-catenin or pcDNA S33Y-only group. 
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3.3.5  Effects of curcumin and PKF118-310 on the cellular accumulation of β-

catenin  

As the activation of β-catenin/TCF transcriptional activity results from the accumulation 

of nuclear β-catenin [77], we subsequently examined whether curcumin or PKF118-310 

treatments was associated with changes in the cellular contents and localization of β-

catenin protein, after having shown that these compounds significantly suppressed both 

the intrinsic and extrinsic transcriptional activities of β-catenin/TCF in U2OS cells.  

Following 24 h treatment with either curcumin or PKF118-310, both nuclear and 

cytosolic cell lysates were collected and used for western blot analysis to determine the 

amount of β-catenin in each cellular fraction. As shown in Figure 3-8a-b, we found that 

the amount of β-catenin in the cytoplasmic fraction was not altered by curcumin 

treatment, whereas that in the nuclear fraction which represent the active 

unphosphorylated form was markedly decreased by curcumin at 20 μM. Similarly, β-

catenin protein in the nuclear fraction was decreased in a dose-dependent manner by 

PKF118-310 while that in the cytoplasmic fraction remained unchanged (Figure 3-8c-d).        
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Figure 3-8. Effects of curcumin and PKF118-310 treatment on the cellular and 
nuclear accumulation of β-catenin. U2OS cells were pre-treated with curcumin (a) or 
PKF118-310 (c) at the stated concentrations for 24 h, followed by collection of protein 
from the cytoplasmic and nuclear fraction. α-tubulin and lamin A/C were used for 
cytoplasmic and nuclear protein loading controls respectively. β-catenin protein 
expression in curcumin- (b) or PKF118-310-treated (d) cells were expressed as the 
percentage of DMSO-treated samples. * ,P<0.05, ** P<0.01.   
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3.3.6 Effects of curcumin and PKF118-310 on osteosarcoma cell migration and 

invasion 

Recent reports showed that the inhibition of the Wnt/β-catenin pathway by the dominant-

negative form of the co-receptor, DN-LRP5, and the endogenous inhibitor, DKK-3, could 

result in a reduction of motility and invasiveness of osteosarcoma cells [51, 63]. To 

investigate if curcumin, PKF118-310 and artemisinin could exert similar effects after 

having established that these compounds could effectively block Wnt/β-catenin signaling 

in preceding studies, we performed wound healing and Matrigel invasion assays using 

U2OS cells. U2OS has been reported to be highly metastatic [213], but as shown in 

Figure 3-9, curcumin, PKF118-310 and artemisinin were able to markedly inhibit U2OS 

cell migration in a dose- and time-dependent manner in wound healing assays performed 

over a period of 24 h. Of these compounds, curcumin had the greatest anti-migratory 

effects on U2OS cells. These results were also supported by Matrigel invasion assays 

whereby curcumin and artemisinin significantly reduced the ability of U2OS cells, again 

in a dose-dependent manner, to invade through the Matrigel-coated inserts over a period 

of 48 h (Figure 3-10a, c). Similar to the cell migratory studies, curcumin had the most 

anti-invasive effects on U2OS cells. Specifically, curcumin treatment significantly 

reduced the invasive capacity of U2OS cells by 29.0 ± 5.1 %, 77.3 ± 3.3 % and 85.8 

±1.2 % at 5 μM, 10 μM and 20 μM respectively (Figure 3-10a). Artemisinin, on the other 

hand, significantly suppressed U2OS cell invasion by 41.4 ± 13.7 %, 38.9 ± 15.5 % and 

51.7 ± 5.8 % at 100 μM, 200 μM and 400 μM respectively (Figure 3-10c). 
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Figure 3-9. Suppression of U2OS cell migration by Wnt/β-catenin inhibitors is 
concentration- and time-dependent. Representative images from three independent 
experiments showing a dose- and time-dependent inhibition of U2OS migration by 
curcumin (a) artemisinin (b) and PKF118-310 (c) using the wound healing assays. 
Uniform scratches were created in confluent cultures which were treated with compounds 
over a period of 24 h. Images of differential wound closure rates were captured using a 
microscope at 10x objective.  
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Figure 3-10. Dose-dependent inhibition of U2OS cell invasion by curcumin, 
artemisinin and PKF118-310. U2OS cells pre-treated with curcumin (a), artemisinin 
(c), PKF118-310 (d) or DMSO (vehicle control) for 24 h were seeded into Matrigel-
coated inserts. In (b), to examine β-catenin-enhanced U2OS cell invasion by curcumin, 
U2OS cells were first transfected with pcDNA β-catenin plasmids or pcDNA3.1 control 
vector, followed by treatment with various concentrations of curcumin or DMSO (vehicle 
control) for 24 h before seeding into Matrigel-coated inserts. Cells that invaded to the 
lower surface of the insert over a period of 48 h were captured with a light microscope at 
200x magnification after staining with crystal violet dye. Ten random fields were counted 
for the number of invaded U2OS cells. Data were presented as means ± SEM of three 
independent experiments. Cell invasion in compound-treated cells and β-catenin 
transfected cells was expressed as the percentage of DMSO-treated samples (*, P<0.05, 
**, P<0.01) and that transfected with the control vector, pcDNA3.1 (* P<0.05, ** 
P<0.01, compared with the β-catenin-only group; #, P<0.01, compared with the pcDNA 
3.1-only group) respectively.  
  

Since both curcumin and artemisinin may be non-specific inhibitors of Wnt/β-catenin 

signaling and may have exerted anti-invasive effects through other signaling pathways, 

we further used PKF118-310, which is a more selective compound, in similar studies to 

ascertain the involvement of Wnt/β-catenin signaling in osteosarcoma cell migration and 

invasion. As shown in Figure 3-9c, PKF118-310 was able to significantly inhibit U2OS 

cell migration in a dose- and time-dependent manner. In parallel to its anti-migration 

effects, PKF118-310 treatment significantly reduced the invasive capacity of U2OS cells 

by 42.4 ± 16.6 % and 38.1 ± 12.0 % at 0.10 μM and 0.15 μM respectively (Figure 3-10d). 

The anti-metastatic effects of curcumin, artemisinin and PKF118-310 were observed at 

concentration ranges that are shown to inhibit downstream β-catenin/TCF transcriptional 

activities (Figure 3-6) as well as nuclear translocations of the β-catenin protein (Figure 

3-8) and were not a result of cell toxicity as U2OS cells did not exhibit significant growth 

inhibition at these concentrations as shown previously in Figure 3-4 .  
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To confirm the contribution of Wnt/β-catenin activation in affecting osteosarcoma cell 

invasion, we next transfected U2OS cells with the wild-type β-catenin plasmid followed 

by curcumin treatment and performed similar Matrigel invasion assays. The pre-treated 

U2OS cells were allowed to invade through the Matrigel-coated inserts for a period of 48 

h. As shown in Figure 3-10b, Wnt/β-catenin activation via the forced expression of wild-

type β-catenin dramatically enhanced the invasion capacity of U2OS cells, but this effect 

could be effectively reversed by curcumin treatment in a dose-dependent manner. 

Specifically, curcumin treatment significantly inhibited β-catenin-induced U2OS 

invasiveness by 50.7 ± 4.9 % at 10 μM and 74.5 ± 9.2 % at 20 μM respectively.  

 

Altogether, our results strongly suggest that the Wnt/β-catenin pathway is involved, 

possibly in part, in the regulation of the invasive behavior of U2OS cells and that 

osteosarcoma cell invasion may be delayed by disrupting the Wnt/β-catenin pathway 

using small molecule inhibitors such as curcumin, artemisinin and PKF118-310.  

 

3.3.7  Effects of curcumin and PKF118-310 on MMP-9 activity and protein 

expression in U2OS cells 

MMPs play important roles in the degradation of extracellular matrix to facilitate cancer 

cell invasion and metastasis [216]. In particular, MMP-9 is a well known Wnt target gene 

that is constitutively over-expressed in U2OS cells and its increased expression is closely 

associated with enhanced osteosarcoma tumor invasion and metastasis [217-219]. Using 

Western blotting, we selected the two most potent antagonists, namely curcumin and 

PKF118-310 and examined whether reduced invasion with treatment of these compounds 
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correlated with MMP-9 protein levels in U2OS cells. As shown in Figure 3-11a, we 

observed a dose-dependent reduction in MMP-9 protein expression with curcumin 

treatment. Specifically, MMP-9 protein expression was significantly down-regulated by 

27.5 ± 2.4 % at 10 µM and 48.8 ± 6.1 % at 20 µM. Parallel to the western blot results, 

gelatin zymography assays demonstrated that curcumin significantly reduced MMP-9 

activity dose-dependently over a period of 72 h. As shown in Figure 3-11b, MMP-9 

activity was significantly reduced by 32.1 ± 5.1 % at 10 µM and 59.2 ± 8.8 % at 20 µM, 

respectively. 

 

In addition, the effects of Wnt/β-catenin activation via the exogenous expression of wild-

type β-catenin on MMP-9 protein levels and activities were further investigated. As 

shown in Figure 3-11c, β-catenin protein levels were elevated, indicating successful 

transfection of the wild-type β-catenin plasmid in U2OS cells. Over-expression of β-

catenin significantly up-regulated MMP-9 protein levels but this increase could be 

suppressed with curcumin treatment in a dose-dependent manner.  Beyond 10 µM, MMP-

9 protein levels returned to basal levels with curcumin treatment. In parallel, gelatin 

zymography assays showed that MMP-9 activity was also increased with β-catenin over-

expression (Figure 3-11d). As a result of curcumin treatment, MMP-9 activity eventually 

decreased and returned to basal levels at a concentration of 20 µM. Similarly, we 

observed dose-dependent reductions in both MMP-9 protein expression and activity with 

PKF118-310 treatment (Figure 3-11e and Figure 3-11f). With PKF118-310 treatment, 

MMP-9 expression was significantly reduced by 29.6 ± 9.9 % at 10 µM and 63.9 ± 
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19.3 % at 20 µM while MMP-9 activity was significantly suppressed by 37.8 ± 2.5 % at 

10 µM and 54.3 ± 1.4 % at 20 µM respectively.  

 

Taken together, our findings suggest that curcumin and PKF118-310 elicited a reduction 

in the secretion of MMP-9 under conditions of either endogenous and/or exogenous 

Wnt/β-catenin activation, possibly giving rise to reduced invasiveness and migration of 

U2OS cells as seen in Figures 3-9 and 3-10.  
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Figure 3-11. Curcumin and PKF118-310 inhibit MMP-9 activities and protein 
expressions in osteosarcoma. (a, e) Inhibition of MMP-9 protein expressions by 
curcumin or PKF118-310. U2OS cells were treated with indicated concentrations of 
curcumin, PKF118-310 or DMSO (vehicle control) for 24 h before proteins were 
collected for western blot. (b, f) Curcumin and PKF118-310 inhibited MMP-9 activities. 
U2OS cells were treated with indicated concentrations of curcumin, PKF118-310 or 
DMSO for 72 h in serum free medium. The conditioned media were then harvested and 
concentrated. MMP-9 activity was assessed by gelatin zymography and identified by 
clear zones of digested gelatin. (c) Effect of curcumin on MMP-9 protein expression in β-
catenin-transfected U2OS cells. U2OS cells transfected with pcDNA β-catenin plasmid 
were treated with indicated concentrations of curcumin or DMSO for 24 h. Proteins were 
collected for western blot. (d) Effect of curcumin on MMP-9 activity in β-catenin-
transfected U2OS cells. U2OS cells transfected with pcDNA β-catenin plasmid were 
treated with indicated concentrations of curcumin or DMSO for 72 h in serum free 
medium. The conditioned media were then harvested and concentrated. The MMP-9 
activity was assessed by Gelatin zymography. All blots and zymograms shown in Figure 
3-11 were representative of three independent experiments. α-Tubulin was used as a 
loading control in all the western blot analysis. MMP-9 protein expressions or activities 
in compound-treated cells were expressed as the percentage of DMSO-treated samples. * 
,P<0.05, ** P<0.01. MMP-9 protein expressions or activities in compound-treated cells 
that over-expressed β-catenin were expressed as the percentage of control vector, 
pcDNA3.1. * ,P<0.05, ** P<0.01, compared with the β-catenin-only group. #, P<0.05, 
compared with the pcDNA 3.1-only group. 
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3.3.8 Effects of PKF118-310 on osteosarcoma cell proliferation, apoptosis and cell 

cycle progression in U2OS cells 

It has recently been reported that disruption of the Wnt/β-catenin signaling suppressed 

both in vitro and in vivo cell proliferation in osteosarcoma cells [51, 220]. Given that β-

catenin/TCF-dependent signaling and its gene products are known to regulate cell 

proliferation, cell cycle distribution and apoptosis, we investigated the effect of PKF118-

310 on these processes, after having demonstrated that PKF18-310 had the most potent 

anti-proliferative effect among other Wnt/β-catenin modulators against U2OS cells. 

Figure 3-3 shows that treatment with PKF118-310 inhibited U2OS cell proliferation 

dose- and time-dependently, with an IC50 of 0.19 ± 0.01 µM (Table 3-1) and PKF118-310 

beyond 0.20µM at 24 h, 48 h and 72 h resulted in statistically significant toxicities 

(Figure 3-4). Resistance against apoptosis is critical for survival and contributes to drug 

resistance in many cancers, including osteosarcoma [221]. Given the potent anti-

proliferation effects of PKF118-310, we were interested in determining whether PKF118-

310 also induces apoptosis in U2OS cells at higher toxic concentrations. PKF118-31-

induced apoptosis was evaluated by accessing the cell population using flow cytometry 

analysis after incubating PKF118-310-treated cells with annexin-V and PI. As shown in 

Figure 3-12a, treatment with PKF118-310 resulted in a dose-dependent increase in the 

number of early (stained with annexin-V only) and late (stained with both annexin-V and 

PI) apoptotic cells. Specifically, PKF118-310 treatment significantly induced the rate of 

early apoptosis by 328% and 290% at 0.20 μM and 0.30 μM respectively. The late 

apoptotic rate was significantly increased about 2-fold with 0.30 μM PKF118-310.  
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In addition, cell cycle distribution of U2OS cells was examined following 24 h and 48 h 

treatment of increasing concentration of PKF11-310 using flow cytometry. As shown in 

Figure 3-12b, treatment with PKF118-310 resulted in an increase in the number of cells 

in the G2/M phase and a corresponding decrease in number of cells in the G0/G1 phase, 

indicating a PKF118-310-induced G2/M phase arrest. This trend is seen after treatment 

with PKF118-310 for 24h and 48h, although G2/M phase arrest is only statistically 

significant at 0.30 μM PKF118-310 treatment over 48 h. In parallel with the apoptotic 

assays, we also observed an increase in the number of cells in the sub-G1 phase of the 

cell cycle with PKF118-310 treatment (data not shown), confirming that PKF118-310 

promoted apoptosis in U2OS cells.  

 

(a) 

0.00 0.05 0.10 0.20 0.30
0

50
100
150
200
250
300
350
400
450 Early apoptosis

Late apoptosis

**

*

*

PKF118-310 (µM)

A
po

pt
ot

ic
 r

at
e

 (%
 o

f c
on

tr
ol

)

 

 

 

 

 

 



 
 

 71 

(b) 

24h

0.00 0.10 0.15 0.30
0

10

20

30

40

50

60

70

G0/G1
S
G2/M

PKF118-310 (µM)

C
el

l c
yc

le
 p

ha
se

s (
%

)

  

48h

0.00 0.10 0.15 0.30
0

10

20

30

40

50

60

70

G0/G1
S
G2/M

**

PKF118-310 (µM)

C
el

l c
yc

le
 p

ha
se

s (
%

 

Figure 3-12. PKF118-310 induces apoptosis and disrupts cell cycle distribution in 
U2OS cells. (a) PKF118-310 induced apoptosis in U2OS cells. U2OS cells pre-treated 
with PKF118-310 or DMSO for 24 h were stained with annexin-V and PI and analyzed 
by flow cytometry. Data were presented as means ± SEM of three independent 
experiments. PKF118-310-treated cell which undergone early (stained with annexin-V 
only) and late (stained with both annexin-V and PI) apoptosis were expressed as the 
percentage of DMSO-treated samples. *, P<0.05. **, P<0.01. (b) PKF118-310 induced 
G2/M phase cell cycle arrest in U2OS cells. U2OS cells were treated with increasing 
concentration of PKF118-310 for 24 and 48 h before they were stained with PI. Cell 
cycle distribution of the cells was measured by flow cytometry and the results were 
plotted as the percentage of cells in each cell cycle phase. Data were presented as means 
± SEM of three independent experiments. *, P<0.05 indicated the difference in the 
various cell cycle phases compared to the control cells.  
 

3.3.9  Effects of PKF118-310 on the protein expressions of  proliferation-associated 

Wnt-responsive genes 

Given that PKF118-310 inhibited anti-proliferative effect as well as induced apoptosis 

and G2/M phase arrest in U2OS cells, we asked whether these anti-cancer effects with 

PKF118-310 treatment correlated with protein expressions of proliferation-associated β-

catenin/TCF target genes such as cyclin D1, c-Myc and survivin. Both cyclin-D1 and c-

Myc are critical for tumor growth and survival [97, 98] while survivin is both an inhibitor 

of apoptosis as well as an important regulator of the G2/M phase of the cell cycle [222-

225]. U2OS cells expressed high levels of cyclin D1, c-Myc and survivin demonstrating 
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an active Wnt/β-catenin signaling, however, treatment with PKF118-310 significantly 

suppressed the expression of these Wnt target proteins dose-dependently (Figure 3-13).  

 

Taken together, our findings strongly suggest that PKF118-310 suppressed the expression 

of several proliferation-associated Wnt-target genes such as cyclin-D1, c-Myc and 

survivin, possibly giving rise to reduced proliferation, enhanced apoptosis and G2/M 

phase arrest of U2OS cells.  
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Figure 3-13. Concentration-dependent decrease of cyclin D1, c-Myc and survivin 
protein expressions with PKF118-310 treatment. U2OS cells were treated with 
indicated concentrations of PKF118-310 or DMSO for 24 h and total cellular proteins 
were collected for western blot. α-Tubulin was used as a loading control. The blots 
shown were representative of three independent experiments 
 

3.4 Discussion  

Despite mounting evidence implicating the importance of Wnt/β-catenin in the 

development and progression of osteosarcoma, the therapeutic potential of small 

molecule inhibitors targeting this pathway in osteosarcoma remained largely unreported.  

Therefore, in this chapter, we aimed to perturb the Wnt/β-catenin signaling pathway 
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using small molecule antagonists to prevent or reduce osteosarcoma tumorigenesis and 

metastasis, with the hope of improving the clinical outcome of the disease.  

 

In this study, we first sought to assess Wnt/β-catenin signaling in a panel of eight 

metastatic osteosarcoma cell lines from various origins and detected abundant levels of β-

catenin protein in most of these osteosarcoma cells (Figure 3-1) This suggests that 

frequent activation of canonical Wnt/β-catenin signaling is observed in osteosarcoma, 

although the apparent degree of activation varied among the cell lines. Our findings are 

consistent with previous studies, which demonstrated significant accumulation of β-

catenin protein in osteosarcoma patients’ samples [73, 74]. Together with previous 

reports on the expressions of Wnt signaling components including Wnt ligands, FZD, 

LRP5 and β-catenin protein observed in various human osteosarcoma cell lines and 

patient samples [47, 51, 63, 73, 74], our results supported the notion that canonical 

Wnt/β-catenin signaling is active in osteosarcoma. 

 

The choice of the main osteosarcoma cell lines for subsequent experiments is challenging 

given the heterogeneous nature of the cancer type. While there are numerous 

commercially available human osteosarcoma cell lines, limited information is available 

on their disease status and pathophysiological relationship with Wnt signaling. Our 

selection of the osteosarcoma cell lines was guided primarily by previous publication 

supporting a role for canonical Wnt signaling in the pathobiology and progression of 

osteosarcoma [51, 52, 63]. The highly invasive U2OS cells [213] was found to express 

the highest levels of β-catenin protein (Figure 3-1) while SFRPs proteins were shown to 
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be absent or markedly silenced, compared to the normal osteoblast cells (Figure 5-1). 

U2OS was thus chosen as the main cell line in subsequent studies to investigate various 

anti-cancer effects of the Wnt/β-catenin modulators. It is noteworthy that the expression 

of the Wnt co-receptor, LRP5, in osteosarcoma specimens has been previously reported 

to correlate significantly with metastatic events [47]. Given that U2OS cells highly 

express LRP5, this cell lines closely represent the clinical state of osteosarcoma 

characterized by rapid growth and aggressive metastasis. In contrast to previous reports 

supporting a significant role for canonical Wnt signaling in the pathobiology and 

progression of HOS and SaOS-2 osteosarcoma cell, very low expression of active β-

catenin was detected in these cells (Figure 3-1) [51, 52, 63]. Nevertheless, MTT assay 

was performed using HOS and SaOS-2 cell lines to compare the cytotoxicity profile of 

the test compounds in various osteosarcoma cell lines (Figure 3-3).     

 

Effective inhibitions of Wnt/β-catenin pathway by the various compounds used in our 

studies were evidenced by the suppression of intrinsic β-catenin/TCF transcriptional 

activities using luciferase reporter assays (Figures 3-5 and 3-6). Curcumin and 

artemisinin were identified as good inhibitors of the Wnt/β-catenin pathway in both 

U2OS and HCT116 colon cancer cells. PKF118-310, on the other hand, inhibited the 

transcriptional activity of β-catenin/TCF in U2OS cells but had no effect in HCT116 cells 

at the highest non-toxic concentration used (0.15 µM). Although PKF118-310 was 

reported to inhibit β-catenin/TCF transcriptional activity in HCT116 cells at an EC50 of 

0.3 ± 0.02 µM [178], Wnt inhibitory activity of PKF at concentrations beyond 0.15µM 

was not tested since significantly cell death at these concentrations may confound Wnt 
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inhibitory effects interpretation. Artesunate did not show any significant effect in both 

HCT116 and U2OS cells. These results did not agree with previous reports possibly 

because of the lower concentrations used in our study [211]. Contrary to expected, we 

found that quercetin increased β-catenin/TCF transcriptional activity in U2OS cells and 

had no dose-response relationship in HCT116 cells. A similar induction of transcriptional 

activity was reported in HEK293 human embryonal kidney cells [226]. This conflicting 

observation whereby known inhibitors enhanced the β-catenin/TCF transcriptional 

activity also occurred in the case of indomethacin and rofecoxib in SW480 cells [227]. 

Intrinsic resistance of cells against such inhibitors may have resulted in this anomaly. 

Other reasons to the discordant results may include the variation in levels of intrinsic Wnt 

signaling in different tissues, biphasic responses to increasing concentrations of 

compounds and difference in potency of the compounds in different cell lines. Given that 

compounds derived from natural sources are known to be multi-targeted, we also cannot 

rule out multiple inhibitory effects of these compounds on different targets. Further 

studies are needed to characterize their specificity on Wnt inhibition.  

 

Given that curcumin and PKF118-310 showed the best profiles in terms of suppression 

the β-catenin/TCF transcriptional activity in U2OS cells, we further investigated their 

mechanisms of Wnt inhibitions and anti-metastatic effects. In agreement with previous 

findings [178, 201, 228], the inhibitory effects of both compounds were not related to the 

β-catenin degradation machinery, but rather to downstream components. This was 

supported by the following observations: Firstly, both curcumin (Figure 3-7a) and 

PKF118-310 (Figure 3-7b) were found to suppress β-catenin/TCF signaling in the 
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presence of specific GSK-3β inhibitors, BIO and SB216763; secondly, the inhibitory 

effect of curcumin (Figure 3-7c) and PKF118-310 (Figure 3-7d) were unaffected when 

the Wnt/β-catenin pathway was activated with over-expression of constitutively active 

mutant S33Y β-catenin gene, whose product is resistant to degradation by the Axin–

APC–GSK3β complex; and lastly both compounds were capable of disrupting  nuclear β-

catenin translocation without changing the total cellular levels (Figure 3-8). Similar to the 

phenomenon previously reported by Park et al., we observed a more pronounced 

inhibitory effect on the extrinsic transcriptional activity by curcumin with either forced 

expression of mutant S33Y β-catenin gene or treatment with GSK-3β inhibitors 

compared to the over-expression of wild-type β-catenin, although the transcriptional 

activity of the latter was increased much less than other treatments [201]. These 

observations may be explained by the fact that both treatments with the mutant S33Y β-

catenin and GSK-3β inhibitors negatively affected β-catenin degradation [76, 198, 199], 

which in turn may have resulted in the stabilization of β-catenin protein and consequently 

a much greater increase in its nuclear translocation compared to treatment with the wild-

type β-catenin gene. Curcumin could have acted effectively in disrupting the nuclear 

translocation of β-catenin protein in these treatments giving rise to a more pronounced 

decrease in transcriptional activity, but further experiments are required to confirm this. 

On the other hand, these differences were not observed for PKF118-310 since it is 

capable of antagonizing Wnt/β-catenin signaling at various juncture of Wnt signaling 

such as preventing the translocation of nuclear β-catenin, as well as inhibiting the 

complexation of β-catenin/TCF [178]. Synergistic antagonism at various critical points of 

the cascade by PKF118-310 could have also contributed to its superior and potent Wnt 
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inhibitory effects. As several Wnt components including cell-surface receptor (LRP5), 

Wnt ligands (Wnt 10b) as well as natural antagonist (DKK-3) have recently been shown 

to regulate cellular invasion in osteosarcoma [47, 48, 51, 52, 63, 73, 193], we next asked 

if curcumin, artemisinin and PKF118-310 could act as anti-invasive agents in U2OS cells 

after having established their inhibitory effects on Wnt/β-catenin signaling (Figures 3-5, 

3-6 and 3-7). Indeed, we showed that U2OS cell migration and invasiveness were 

significantly reduced using non-toxic concentrations of curcumin and artemisinin 

(Figures 3-9 and 3-10). The demonstration that PKF118-310, a selective antagonist of 

Wnt/β-catenin signaling, inhibited osteosarcoma cell migration and invasiveness further 

supported the involvement of the pathway in osteosarcoma cell metastasis (Figure 3-9c 

and 3-10d). As an alternative confirmatory approach to correlate osteosarcoma 

invasiveness with the Wnt/β-catenin pathway, we transfected U2OS cells with wild-type 

β-catenin plasmid and demonstrated that the activation of the Wnt/β-catenin pathway 

with the over-expression of the wild-type β-catenin gene resulted in enhanced invasion 

capacity of osteosarcoma cells, promoting their ability for transmigration through the 

extracellular matrix. Again, curcumin effectively reversed this phenomenon (Figure 

3-10b).  

 

Although we do not fully understand the specific mechanisms of their anti-invasive 

effects, curcumin and PKF118-310 may suppress osteosarcoma cell invasion through 

Wnt-targeted genes such as MMPs [100, 101, 229]. Given the myriad of MMPs that may 

be affected, we focused on MMP-9 since several groups have shown that MMP-9 is the 

major extracellular matrix degradation enzymes that is highly expressed in osteosarcoma 
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and that its increased expression is associated with osteosarcoma tumor aggressiveness, 

metastasis and poor prognosis [217-219]. Indeed, the suppression of U2OS cell invasion 

by curcumin and PKF118-310 was found to correlate with the inhibition of MMP-9 

activity and protein levels (Figure 3-11e-f). This observation may be explained by the 

fact that the MMP-9 gene contains consensus TCF/LEF-binding elements in the promoter 

region and has been shown to be highly regulated by Wnt/β-catenin signaling [230]. 

Hence, PKF118-310, a selective Wnt/β-catenin antagonist, was able to inhibit MMP-9 

protein expression and activity (Figure 3-11e-f). In addition, curcumin was shown to 

suppress MMP-9 protein levels and activities under both conditions of intrinsic (Figure 

3-11a-b) and extrinsic (Figure 3-11c-d) Wnt/β-catenin activation. It is noteworthy that the 

inhibitory effect by curcumin was more pronounced under Wnt-stimulated conditions, 

further supporting the notion that MMP-9 is regulated by Wnt/β-catenin signaling. Taken 

together, our findings suggest that curcumin and PKF118-310 down-regulated MMP-9 

under conditions of either endogenous and/or exogenous Wnt/β-catenin activation, 

possibly giving rise to reduced invasiveness and migration of U2OS cells.  

 

Besides MMP-9, other Wnt-targeted oncogenes may possibly be involved in regulating 

the invasive behavior of osteosarcoma. For instance, attenuating Wnt/β-catenin signaling 

using DN-LRP5 inhibited both in vitro and in vivo metastasis in several osteosarcoma 

cells by suppressing MMP-2, MMP-14, Twist, Slug and Snail [51, 52]. Several other 

metastatic-associated Wnt responsive genes including MMP-2, MMP-7, membrane-type 

matrix metalloproteinase 1 (MT1-MMP) and uPAR were previously reported to regulate 

the invasiveness of several other human tumors [100, 103, 231, 232]. Therefore, further 



 
 

 79 

studies are required to investigate the effects of curcumin and PKF118-310 on the levels 

of MMPs and metastatic-associated Wnt target genes, as well as fully elucidate their roles 

in regulating osteosarcoma cell metastasis.  

 

Given that curcumin is a multi-targeted compound, we cannot exclude the possibility that 

curcumin reduced osteosarcoma cell invasiveness through a combination of Wnt-

dependent and Wnt-independent effects. A recent report showed that curcumin was able 

to transcriptionally activate the tumor suppressor HLJ1 through the JNK/JunD pathway, 

resulting in the up-regulation of E-cadherin which in turn leads to the inhibition of cancer 

cell invasion and metastasis in human lung adenocarcinoma [233]. Further experiments 

are needed to examine the effect of curcumin on the relative expression of epithelial and 

mesenchymal markers in osteosarcoma. Nevertheless, our studies provide first evidence 

that curcumin and PKF118-310 effectively reduced the metastatic capacity of 

osteosarcoma by mediating, at least in part, the Wnt/β-catenin signaling pathway through 

inhibiting MMP-9 protein and activity.  

 

Apart from its potent anti-invasive effects at lower non-toxic concentrations, PKF118-

310 was also found to demonstrate anti-proliferative effect in U2OS cells, attributed to 

PKF118-310 induced apoptosis and G2/M phase arrest, at higher toxic concentrations 

(Figure 3-12). Previous reports on prostate and colon cancer cell lines supported the 

potent anti-proliferative effect of PKF118-310 [178, 215]. Given that several survival-

associated Wnt target genes such as cyclin D1, c-Myc and survivin have been reported to 

be over-expressed in osteosarcoma cell lines and their increased expression correlated 
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significantly with reduced survival time and prognosis [234-241], we further examined 

the expression of these genes with PKF118-310 treatment. Cyclin D1 and c-Myc regulate 

cell proliferation and cell cycle progression [97, 98] while survivin is both an inhibitor of 

apoptosis and a regulator of mitosis in the G2/M checkpoints of the cell cycle [222-225]. 

Indeed, we found that the suppression of cell proliferation through induction of apoptosis 

and G2/M phase cell cycle arrest in U2OS cells by PKF118-310 correlated with the 

down-regulation of cyclin D1, c-Myc and survivin protein expressions (Figure 3-13).  

 

Downregulation of genes that regulate apoptosis such as c-Myc and survivin represent an 

advantage in controlling metastatic behavior in osteosarcoma [240, 242].  For instance, c-

myc was previously reported to induce a more aggressive phenotype and metastatic 

features in osteosarcoma while a synchronous over-expressions of c-Myc and c-fos were 

strongly correlated to the development of metastases [240]. In another study, survivin 

expression was found to be significantly down-regulated in a U2OS cell model with 

markedly reduced invasiveness and metastatic potential as a result of the forced 

expression of L/B/K ALP (Liver-bone-kidney alkaline phosphatase) or CD99 [242]. 

Altogether, our results suggested that the suppression of c-Myc, cyclin D1, survivin and 

MMP-9 by PKF118-310 treatment may collectively delayed tumorigenesis and 

metastasis in osteosarcoma.  
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CHAPTER 4. Functionalization of curcumin analogues as Wnt antagonists in 

osteosarcoma  

 

4.1 Introduction 

In the previous chapter, we have reported the therapeutic potential of curcumin as an anti-

invasion agent in osteosarcoma and found that its anti-invasive activity was associated 

with the suppression of intrinsic and extrinsic Wnt/β-catenin signaling, as well as the 

down-regulation of metastatic-related Wnt target gene, MMP-9 [195]. Our findings were 

supported by others which showed that curcumin exert its anti-cancer properties through 

disrupting Wnt signaling in other malignancies such as colon, gastric and stomach cancer 

[193, 201, 207, 208, 228]. However, the clinical application of curcumin as an effective 

Wnt antagonist is limited by its low bioavailability due to poor absorption and rapid 

metabolism [243-245]. As such, the effective but high concentrations used in previous 

studies may not be feasible for human clinical intervention studies. Therefore, a 

requirement obviously exists for access to compounds that combine improved Wnt 

inhibitory potency (lower EC50) and selectivity with a suitable drug-like character that 

would circumvent the limitations encountered with curcumin. Furthermore, identification 

of critical targets for Wnt inhibition as well as elucidation of structure-activity-

relationships (SAR) that critically influence Wnt inhibitory activity would provide useful 

direction for designing novel derivatives with desirable drug-like profiles. The objectives 

of this chapter  are thus to (1) synthesize, evaluate and identify curcumin analogues with 

enhanced potency and good selectivity as Wnt antagonists to prevent or delay 

osteosarcoma disease progression; (2) study the SAR of Wnt inhibitory activity so as to 
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identify crucial structural motifs leading to improved potency and selectivity as Wnt 

inhibitors and (3) examine the underlying mechanism of Wnt inhibition of selected 

curcumin analogue by evaluating the perturbations in gene expression of various Wnt 

signaling components using the Human Wnt Signaling Pathway RT2 ProfilerTM PCR 

array.  

 

To study the effect of structural modification on Wnt inhibition, we modified the lead 

compound, curcumin (1-1) to produce five series of curcumin analogues with diverse 

linkers joining the terminal phenyl rings as well as different substituent at the phenyl 

rings. These compounds were synthesized by base-catalyzed Clasien-Schmidt 

condensation reactions of substituted aromatic aldehydes with the appropriate 

acetophenones (see Material and methods). The structures of curcumin analogues are 

presented in Table 4-1. Series 1 consists curcumin-type compounds that retain the 7-

carbon spacer between the terminal phenyl rings known as the diarylheptanoids while 

Series 2 represents diarylpentanoid analogues with a 5-carbon spacer between the 

terminal phenyl rings. Series 3 (dibenzylidene-cyclohexanones) and 4 (dibenzylidene-

cyclopentanones) consist of diarylpentanoid-type compounds in which flexibility of the 

5-carbon chain is constrained by incorporating it as part of a cyclohexanone and 

cyclopentanone ring respectively. Lastly, Series 5 compounds, known as chalcones, were 

considered as structures equivalent to “half a curcuminoid” with loss of symmetry and a 

shortened linker.   
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The choice of these templates and the associated substitutions at the terminal phenyl rings 

were prompted by the following observations: Firstly, natural derivatives of curcumin 

with different substitutions on the end rings were reported to suppress β-catenin/TCF 

transcription. Hence, regioisomers of diarylheptanoids (Series 1) were included to 

determine how changes in substitution pattern would impact inhibitory activity [96]. 

Second, the deletion of the β-ketone moiety in curcumin to give diarylpentanoids (Series 

2), dibenzylidene-cyclohexanones (Series 3) and dibenzylidene-cyclopentanones (Series 

4) is known to give rise to analogues with improved pharmacological and metabolic 

profiles [243, 244, 246]. These compounds may also be more potent inhibitors of the 

Wnt/β-catenin signaling pathway. Finally, the substitution pattern on the terminal phenyl 

rings were kept symmetrical (i.e. both rings share the same substitution pattern) and 

largely restricted to groups present on curcumin. Thus the 3’OCH3-4’OH substitution 

pattern of curcumin was modified by (i) excluding either one substituent to give 3’OCH3 

or 4’OH analogs; (ii) removing both substituent; (iii) switching their positions to give 

3’OH-4’OCH3 substituted rings; and (iv) introducing an additional OCH3 in place of OH.  

An exception was the introduction of fluorine which was made in view of the bioisosteric 

relationship between F and H, as well as the anomalous properties of fluorine which have 

led to improved activities in many instances [247-249]. It is noteworthy that except for 

some fluorinated analogues, other compounds have physicochemical properties that 

comply with the Lipinski’s Rule of Five [250] which provide guidelines for drug-like 

profiles related to good oral bioavailability. In fact, 38 of the 43 synthesized analogues 

have enhanced lipohilicity compared to parental curcumin (Appendix 1). For example, 

the LogP for analogue 3-7 is 5.76 compared to 2.94 for parental curcumin.  
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Table 4-1. Structures of curcumin analogues (Series 1-5). 
 
Compound R1 (3’) R2 (4’) 

 
Series 1 

O OH

R2

R1

R2

R1

 
 

  

1-1 (curcumin) OCH3 OH 
1-2 OCH3 OCH3 
1-3 OH OCH3 
1-4 H H 
1-5 OCH3 H 
1-6 H OH 
1-7 F F 
 

 
Series 2 

O

R2

R1 R1

R2 
 

  

2-1 OCH3 OH 
2-2 OCH3 OCH3 
2-3 OH OCH3 
2-4 H H 
2-5 OCH3 H 
2-6 H OH 
2-7 F F 
 

 
Series 3 

O

R2

R1 R1

R2 
 

  

3-1 OCH3 OH 
3-2 OCH3 OCH3 
3-3 OH OCH3 
3-4 H H 
3-5 OCH3 H 
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3-6 H OH 
3-7 F F 
3-8 2’F  
3-9 F H 
3-10 H F 
 

 
Series 4 

O

R1

R2 R2

R1

 
 

  

4-1 OCH3 OH 
4-2 OCH3 OCH3 
4-3 OH OCH3 
4-4 H H 
4-5 OCH3 H 
4-6 H OH 
4-7 F F 
4-8 2’F  
4-9 F H 
4-10 H F 
 

 
Series 5 

O

R1

R2 R2

R1

 
 

  

5-1 OCH3 OH 
5-2 OCH3 OCH3 
5-3 OH OCH3 
5-4 H H 
5-5 OCH3 H 
5-6 H OH 
5-7 F F 
5-1 OCH3 OH 
5-2 OCH3 OCH3 
5-3 OH OCH3 
5-4 H H 
5-5 OCH3 H 
5-6 H OH 
5-7 F F 
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In total, we evaluated the effects of 43 curcumin analogues on the Wnt/β-catenin pathway 

and identified 6 promising analogues that were effective in suppressing β-catenin/TCF 

transcriptional activities in osteosarcoma with a lower EC50 compared to parental 

curcumin. Results from invasion assays further demonstrated that these analogues were 

more potent than curcumin in osteosarcoma, possibly through suppressing MMP-9. 

Perturbations of genes related to Wnt signaling components and other Wnt-targeted genes 

following treatment with the most potent analogue (3-3) indicated that 3-3 may be 

capable of disrupting Wnt signaling in U2OS cells at multiple intersections of the Wnt 

cascade including interrupting cell surface FZD receptor-Wnt ligand interactions, 

inducing proteasomal degradation of cytoplasmic β-catenin, preventing β-catenin/TCF 

complexation and transcription and down-regulating Wnt target oncogenes. In addition, 

Wnt inhibitory effects were observed to be markedly enhanced by shortening and 

restraining the flexibility of the 7-carbon linker moiety connecting the terminal aromatic 

rings of curcumin. Our results strongly suggest that curcumin analogues especially those 

with the dibenzylidene-cyclohexanone and dibenzylidene-cyclopentanone scaffolds are 

promising templates for lead optimization and may yield clinically useful candidate drugs 

for the treatment and prevention of osteosarcoma.  

 

4.2 Experimental Methods 

4.2.1 General experimental details for synthesis 

Reagents (synthetic grade or better) were obtained from Sigma-Aldrich Chemical 

Company Inc (Singapore) and used without further purification. Melting points were 

determined in open capillary tubes on a Gallenkamp melting point apparatus and were 
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uncorrected. Mass spectra were captured on an LCQ Finnigan MAT equipped with an 

Atmospheric Chemical Ionization probe and m/z ratios for the molecular ions (M+1)+ 

were reported.  Chemical shifts of 1H-NMR and 13C-NMR spectra, obtained on a Bruker 

Spectrospin 300 Ultrashield spectrometer at 300 MHz and 75 MHz respectively, were 

analyzed using MestRec-C 4.9.9.6 (Mestrelab Research SL, Spain) and reported in δ 

(ppm) relative to tetramethylsilane (TMS) as an internal standard.  Silica 60 F254 sheets 

(Merck, Darmstadt, Germany) and silica gel 60 (0.040-0.063) (Merck, Darmstadt, 

Germany) were used for Thin Layer Chromatography (TLC) and flash chromatography 

respectively. Purity of the final compounds were verified either by elemental analysis on 

a Perkin Elmer PRE-2400 Elemental Analyzer or by High Pressure Liquid 

Chromatography (HPLC) using two different solvent systems. Spectroscopic data, 

melting points, yields and purities of individual compounds were listed in Appendix 2. 

 

4.2.2 Mechanism of reaction for Series 1 curcumin analogues 
 
Various methods to prepare Series 1 curcumin analogues were previously reported [251-

253].  Their basic principles remained the same, but differed in technique, reaction time 

and temperature. Generally, the first step is the protection of the active methylene group 

by reacting acetylacetone with boron anhydride to yield the acetylacetone-boric 

anhydride complex in order to avoid Knoevenagel condensation reaction of the active 

methylene group (Scheme 4-1). Subsequently, the less reactive methyl terminals of this 

complex will react with aromatic aldehyde to give Series 1 curcumin analogues in the 

form of the complex with boron, which is easily hydrolyzed by dilute hydrochloric acid.    
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Scheme 4-1. General method for the synthesis of Series 1 curcumin analogues 
 

4.2.2.1 General procedure for the synthesis of Series 1 curcumin analogues 

Specifically, our curcumin analogues from Series 1 were prepared according to Pedersen 

method with slight modifications [251]. A mixture of boric anhydride (0.35 g, 5 mmol), 

suspended in ethyl acetate (EtOAc), and acetylacetone (1.00 g, 10 mmol) was first stirred 
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for 3 h at 70 ºC. After removing the solvent, the resultant white residue was washed with 

hexane. Following this, substituted aldehyde (20 mmol), tributyl borate (4.60 g, 20 mmol) 

and 20 ml EtOAc were added and stirred at room temperature for a further 30 mins. 

Butylamine (73 mg, 1 mmol) dissolved in EtOAc (5 ml) was then added drop wise over 

15 mins and the mixture was stirred at 70 ºC for another 24 h. Next, the reaction mixture 

was heated for 30 mins at 60 ºC after adjusting to pH5 by adding 1 N HCl. EtOAc (3 x 50 

ml) was then used to extract the crude product from the water layer. The organic layer 

was washed with brine, dried with anhydrous NaSO4 and evaporated in vacuo to give 

either a solid or liquid residue and purified by column chromatography on silica gel using 

hexane: ethyl acetate as eluting solvents. Further purification by re-crystallization from 

ethyl acetate yielded yellow crystals.   

 

4.2.3   Mechanism of reaction for Series 2, 3, 4 and 5 curcumin analogues 

The alkoxylated Series 2, 3, 4 and 5 curcumin analogues were synthesized using a base-

catalyzed Clasien-Schmidt condensation of a substituted aromatic aldehyde with the 

appropriate acetophenone in the ratio of 2:1 (Series 2-4) and 1:1 (Series 5) (Scheme 4-2) 

[246].   
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RR
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Scheme 4-2.  Curcumin analogues from Series 2, 3, 4 and 5 
 

 

Briefly, sodium hydroxide (20% w/v) acted as a base catalyst to protonate the methyl 

group of the acetophenone, forming a carbanion. The resultant carbanion attacks the 

carbonyl carbon of the substituted benzaldehyde via a nucleophilic addition reaction to 

obtain the final α, β unsaturated ketone product (Scheme 4-3).  
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H3C CH3

O

H3C CH2

O

H

O

O

RR

O

RR

OH OH

(i)

(ii)

(iii)

 

Scheme 4-3. General method for the synthesis of Series 2, 3 and 4 curcumin 
analogues. Reagents and conditions: (i) 20% NaOH, RT, 3h. (ii) carbanion attacks 
aldehyde by nucleophilic addition. (iii) Dehydration.  
 

For the synthesis of the hydroxylated analogues from Series 2-4, protection of the 

phenolic groups on the aromatic aldehyde with 2H-3, 4-dihydropyran is necessary to 

minimize reaction between these OH groups and the carbonyl group of the benzaldehyde 

for improved yields (Scheme 4-4). In the case of Series 5 analogues, phenolic groups 

from both the aromatic aldehyde and ketone were needed. Protection converts the OH 

groups to tetrahydropyranyl ethers which can easily be removed by acid hydrolysis to 

give the desire curcumin analogues.  

 

The dihydropyran is an enol ether which is susceptible to electrophilic attack by an acid 

provided by the pyridinium cation of pyridinium p-toluenesulphonate. The phenolic OH, 

to be protected, act as a nucleophile and attacks the α-carbon on the pyran ring, resulting 

in the removal of a proton form the intermediate by pyridine (which is a stronger base 

than p-toluenesulphonate), thus reforming pyridinium p-toluenesulphonate. The aromatic 
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aldehyde with its hydroxyl groups protected is then subjected to based-catalyzed Claisen-

Schmidt condensation as described earlier (Scheme 4-3).  

 

O

O O

CHO

O

O OOO

O

HO OH

CHO

OH
O

(i)

(ii)

(iii)

 

Scheme 4-4. Protection and deprotection of phenolic hydroxyl groups for the 
synthesis of compound 2-6. Reagents and conditions: (i) pyridinium p-
toluenesulphonate, RT, 4 h. (ii) 20% NaOH, RT, 3h. (iii) 4M HCl, RT, 4 h. 
 

4.2.3.1 General procedure for the synthesis of Series 2, 3, 4 and 5 alkoxylated 

curcumin analogues 

The method by Liang et al. was followed [246]. To a solution of substituted 

benzalaldehyde (30 mmol) in methanol (20 ml) was added appropriately substituted 

ketone (15 mmol) such as acetone (Series 2), cyclohexanone (Series 3) and 

cyclopentanone (Series 4). For the synthesis of Series 5 analogues, 15 mmol of 
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substituted benzalaldehyde and 15 mmol of substituted ketone were used instead. The 

resultant mixture was stirred at room temperature for 20 mins before 20 % (w/v) NaOH 

(3.0 ml, 15 mmol) was added drop wise. After the reaction has completed, the residue 

was poured into saturated NH4Cl solution and filtered. The precipitate was washed with 

brine and cold ethanol, dried with anhydrous NaSO4, evaporated in vacuo to give either a 

solid or liquid residue and purified by column chromatography on silica gel using hexane: 

ethyl acetate as eluting solvents. Further purification by re-crystallization from ethyl 

acetate or ethanol yielded yellow crystals.   

 

4.2.3.2 General procedure for the synthesis of Series 2, 3 and 4 hydroxylated  

curcumin analogues 

For compounds with phenolic hydroxyl substituent, additional protection and de-

protection of the phenolic hydroxyl groups on the benzalaldehyde were required and the 

method by Liang et al. was followed [246]. A solution of 3, 4-dihydro-α-pyran (44 mmol) 

in dichloromethane (40 ml) was added drop wise to a well stirred suspension of hydroxyl 

benzalaldehyde (28.8 mmol) and pyridium p-tolenesulfonate (0.32 mmol) in 

dichloromethane (80 ml) and stirred at room temperature for 4 h. The reaction mixture 

was then washed with 1 M NaCO3 solution (60 ml x 3) and brine (60 ml x 3), dried with 

anhydrous Na2SO4, evaporated in vacuo and purified by column chromatography on 

silica gel using hexane: ethyl acetate as eluting solvents to yield 4-(tetrahydropyran-2-

yloxy) as a pale yellow oil. This purified protected derivative was condensed with 

substituted ketone at a ratio of 2:1 using similar procedures as described earlier for 

alkoxylated curcumin analogues (Section 4.2.3.1).  At the end of the reaction, the 



 
 

 94 

protecting groups were removed by acidifying with 4 M HCl, followed by stirring the 

mixture for 4 h at room temperature. The reaction mixture was then diluted with water, 

followed by extracting with ethyl acetate (50 ml x 3) and the combined organic phase 

was washed with brine (50 ml x 3), dried over anhydrous NaSO4, evaporated in vacuo 

and purified by column chromatography and/or re-crystallization as described earlier in 

Section 4.2.3.1.  

 

4.2.3.3 General procedure for the synthesis of Series 5 hydroxylated chalcones 

For chalcones with phenolic hydroxyl substituent, additional protection and de-protection 

of the phenolic hydroxyl groups on both the acetophenone and substituted aromatic 

aldehyde were required. The benzaldehyde (15 mmol) and aromatic ketone (15 mmol), 

were reacted separately each with pyridinium p-toluenesulphonate (1 mmol) and 3,4-

dihydro-2H-pyran (40 mmol) in dichloromethane (40ml) and stirred  at room temperature 

for 4 h. The reaction mixture was then washed with 1 M NaHCO3 solution (60 ml x 3) 

and brine (60 ml x 3), dried with anhydrous Na2SO4, evaporated in vacuo to yield the 

crude tetrahydropyranyl ether as a pale yellow oil and used without purification. This 

crude protected aromatic aldehyde and ketones were then reacted at a ratio of 1:1 using 

similar procedures as described earlier for alkoxylated Series 5 analogues (Section 

4.2.3.1). At the end of the reaction, the protecting groups were removed by acidifying 

with 4 M HCl, followed by stirring the mixture for 4 h at room temperature. The reaction 

mixture was then diluted with water, followed by extracting with ethyl acetate (50 ml x 3) 

and the combined organic phase was washed with brine (50 ml x 3), dried over anhydrous 
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NaSO4, evaporated in vacuo and purified by column chromatography and/or re-

crystallization  as described earlier (Section 4.2.3.1).  

 

4.2.4  High Pressure Liquid Chromatography (HPLC) analysis of compounds 

The purity of most analogues was verified by HPLC using Waters Delta 600-2487 

systems. Briefly, the compounds were dissolved in methanol and injected through a 50 µl 

loop at a flow rate of 1 ml/min in a Nova Pak C18 column (2.0 x 150 mm, 10 μm particle 

size, (Waters Corp., Milford, USA) with UV detection at λmax 254 nm. Elution was done 

using two different mobile phases namely methanol: water (80:20) and acetonitrile: water 

(80:20). The retention times and peak Area Under Curve (AUC) were recorded from at 

least two independent determinations for each compound. Peaks were found to 

have >95% AUC for all compounds.  

 

4.2.5  Cell culture, transfection and plasmids 

All cell culture reagents were purchased from Sigma Chemical Co. (St Louis, MO) unless 

otherwise stated. The U2OS human osteosarcoma cell line was purchased from American 

Tissue Culture Collection (Rockville, MD) and cultured in McCoy’s 5A medium. The 

human embryonic kidney cells HEK293T was a gift from Dr Yang Yi Yan (Institute of 

Biotechnology and Nanotechnology, (IBN), Singapore). These cells were grown in 

DMEM. Both control L cells and L cells stably transfected with a Wnt-3A expression 

factor (L Wnt-3A cells) were kindly provided by Professor Victor Nurcombe (Institute of 

Medical Biology, A*STAR, Singapore) and were maintained in DMEM supplemented 

with 400 µg/ml of G418. All culture media were also supplemented with 10-15 % FBS 
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(Invitrogen, Carlsbad, CA), 10U/ml penicillin G and 100μg/ml streptomycin. The cells 

were cultured in a humidified atmosphere at 37 ºC containing 5 % CO2. For the 

preparation of Wnt-3A conditioned medium (Wnt-3A CM), Wnt-3A secreting L Wnt-3A 

cells were cultured in DMEM supplemented with 10 % FBS for four days before this first 

batch of CM was harvested. Fresh medium was added and the cells were cultured for 

another three days. Following this, the medium was collected, combined with the 

previous batch and filtered using a 0.22 µM filter. TOPglow and FOPglow reporters used 

in the dual luciferase reporter gene assays were purchased from Upstate Biotechnology 

(Lake Placid, NY). The pCMV-RL renilla control vector was purchased from Promega 

(Madison, WI). The synthesized curcumin analogues were dissolved in DMSO before use. 

The final concentration of DMSO did not exceed 0.1 % in all instances. 

 

4.2.6  Luciferase reporter gene assay 

HEK cells (1.4x 106) grown to 40% confluency in 60 mm culture dish were transiently 

co-transfected with either 3ug TOPGlow, or 3ug FOPGlow, a negative control plasmid, 

and 0.012ug pCMV-RL Renilla control plasmids for normalization of transfection 

efficiency using Lipofectamine 2000 (Invitrogen, Carlsbad, CA), according to the 

manufacturer’s instructions. On the other hand, U2OS cells (1.0 x 105/well) grown to 90–

95% confluency in 24-well plates were transiently co-transfected with either 0.3µg 

TOPGlow or 0.3 µg FOPglow, and 1.2 ng pCMV-RL renilla plasmids. Twenty hours post 

transfection, both type of cells were treated with curcumin analogues at various 

concentrations (0.01 - 20µM) for 24 h before cell lysis and harvesting. For HEK293T 

cells, they were re-seeded into 96-well plates at a density of 18 x 103 cells/well before 
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treatment. To activate the Wnt/β-catenin signaling pathway, HEK cells were co-incubated 

with Wnt-3A CM and the curcumin analogues for 24 h. Luciferase assays were 

performed with the Dual Luciferase assay kit (Promega, Madison, WI) according to the 

manufacturer’s instructions. For firefly luciferase activity, 20 µl cell lysate was mixed 

with Dual-Glo® Luciferase Reagent (100 µl) and the light output was determined in a 

luminometer (Tecan, MTX Lab Systems Inc., Vienna, VA). An equal volume of Dual-

Glo® Stop & Glo® Reagent (100 µl) was subsequently added to the same samples and a 

second luminescence measurement was taken for the Renilla luciferase activity. Results 

were expressed as mean ± SEM of normalized ratios of Firefly luciferase and Renilla 

luciferase activities for each triplicate sets. Reporter activities in curcumin analogue-

treated cells were expressed as the percentage of DMSO-treated samples. For HEK293T 

cells, the EC50 values were obtained from the sigmoidal curve by plotting the percentage 

normalized luciferase activity against the concentration of curcumin analogues using 

GraphPad Prism version 4.00 for Windows, GraphPad Software (San Diego, CA). 

 

4.2.7  MTS cell cytotoxicity assay 

MTS cell cytotoxicity assay was used to evaluate the cytotoxic profile of the curcumin 

analogues. Briefly, HEK293T and U2OS cells were seeded into 96-well plates at a 

density of 18 x 103 cells/well and 10 x 103 cells/well respectively and cultured for 24 h. 

HEK293T cells were then treated with curcumin analogues at their respective 

concentrations for 24 h while U2OS cells were treated with selected curcumin analogues 

at 1 and 5 µM. After treatment, cell viability was analyzed by adding 20 μl of CellTiter 

96 AQueous One Solution Reagent (Promega, Madison, WI). Following an incubation 
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period of 4 h, the absorbance of the formazan product was determined at λmax of 490 nm 

using a Tecan Spectra Fluor spectrophotometer (MTX Lab Systems Inc Vienna, VA). 

The percent cell viability after treatment with curcumin analogues was calculated using 

the following formula:  % viability = (AAnalogues  –  ABlank)/ (AControl (DMSO)  – ABlank)  X 

100%, where AAnalogue = absorbance of wells with cells treated with curcumin analogues, 

ABlank = absorbance of wells with media and AControl (DMSO) = absorbance of wells with 

cells treated with DMSO (vehicle control). Each concentration of curcumin analogue was 

performed in triplicate on three separate occasions.  

 

4.2.8  Western blot analysis 

Western blotting was used to examine the protein expression levels of β-catenin, MMP-9, 

and cyclin D1 before and after 24 h treatment of curcumin analogues using similar 

methods detailed in section 3.2.5. Primary and secondary antibodies used were similar to 

those mentioned earlier (section 3.2.5). For the collection of proteins from the cytosolic 

and nuclear fractions, the NE-PER cytoplasmic and nuclear protein extraction kit (Pierce, 

Rockford, IL) was used according to the manufacturers’ protocol. Bands were quantified 

using Quantity One software (BioRad, Hercules, CA), normalized to either α-tubulin or 

lamin A/C loading controls, before bands in treatment group are expressed relative to 

DMSO control (set as 100%). 

 

4.2.9  Cell invasion assay 

U2OS cell invasion were determined using the Matrigel invasion assays as previously 

described in section 3.2.4. Briefly, cells were treated with curcumin analogues at various 
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concentrations for 24 h and allowed to invade through the precoated inserts for a period 

of 48 h. Cells that have invaded to the lower surface of the membrane were then fixed 

with 70% ethanol and stained with 0.2% w/v crystal violet before they were counted 

using the Nikon Eclipse TE2000U microscope (Melville, NY). Invaded cells from ten 

random microscopic fields (200 x magnifications) were enumerated and all experiments 

were performed in triplicates at least.   

 

4.2.10 Gene expression profiling using real-time PCR array 

The Human Wnt Signaling Pathway RT2 ProfillerTM PCR Array (SA Bioscience, MD) 

was used to identify changes in expression of 84 key genes related to Wnt-mediated 

signaling transduction with curcumin analogue treatment. The 84 genes comprises 

representative upstream and downstream components of the Wnt pathway including 

glycosylated extracellular signaling molecule and ligands belonging to Frizzled family, 

cell surface receptors serving as ligands of the Wnt genes, competitive Wnt binding 

antagonists, intracellular signaling molecules, targets genes implicated in cancer 

tumorigenesis and metastasis, as well as those involved in protein modifications 

downstream of Wnt signaling. These genes are shown in Appendix 3. Total RNA from 

the osteosarcoma cell lines, treated with compounds or DMSO for 24 h, were extracted 

using Qiagen’s RNeasy mini kit (Qiagen, Valencia, CA), followed by on-column DNase 

treatment to remove genomic contaminants, according to the manufacturer’s instructions. 

RNA samples were reverse-transcribed to cDNA using RT2 first strand kit provided 

according to the manufacturer’s instructions (SA Bioscience, MD). Thermal cycling was 

performed using iQ5 machine (BioRad, Hercules, CA) and the cycling conditions are as 

follows: 95 ºC for 10 mins, 40 cycles of denaturation at 95 ºC for 15 s, annealing and 
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extension at 60 ºC for 1 min, followed by melt curve analysis (95°C, 1 min; 65 °C, 2 min 

(OPTICS OFF); 65 °C to 95 °C at 2 °C / min (OPTICS ON)). Gene expression was 

normalized to internal control housekeeping gene (GAPDH) to determine fold changes in 

gene expression between control (DMSO) and test (treated with analogue) samples. 

Average ∆Ct value for each gene across triplicate arrays for each treatment group was 

calculated. ∆∆Ct for each gene across control and experimental group were determined. 

Finally the fold difference was computed for each gene from control and other group as 

2^ (- ∆∆Ct).  

 

4.2.11 Statistical analysis 

Statistical significance for treatment groups were analyzed using the two-tailed Student’s 

t-test (SPSS, Chicago, IL). The difference between values for each treatment 

concentration and the respective controls was considered to be statistically significant 

when P < 0.05. 

 

4.3 Results 

4.3.1  Purity of curcumin analogues synthesized 

The purity of all final compounds were at least ± 0.4 % or 95% AUC based on elemental 

analysis and HPLC respectively (Appendix 2).   

 

4.3.2 Preliminary evaluation of curcumin analogues on the inhibition of Wnt-3A-

induced Wnt activity in HEK293T cells 
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Preliminary screening of curcumin analogues for potent inhibition of the Wnt/β-catenin 

signaling pathway was first performed with a cell-based screening system using 

HEK293T cells. Cells were stimulated with Wnt-3A CM following co-transfection with 

TOPGlow and CMV-RL renilla control vector for normalization of transfection 

efficiency. The transfectants were treated with increasing concentrations of curcumin 

analogues (1-20 µM) for 24 h. HEK293T cells have low β-catenin/TCF transcriptional 

activity because of low endogenous levels of β-catenin protein [254] and are thus suitable 

cell model for screening Wnt inhibitory activities [255, 256]. Wnt/β-catenin signaling in 

HEK293T cells is stimulated by incubation with Wnt-3A CM, which causes the 

accumulation of and stabilization of unphosphorylated β-catenin [257]. As expected, β-

catenin/TCF transcriptional activities were increased approximately 30-fold with Wnt-3A 

CM treatment in our experiments. Table 4-2 shows the normalized luciferase activity in 

the presence of curcumin analogues (1-20 µM), expressed as % of DMSO with Wnt-3A 

activation. Compared with control, Wnt-3A CM-induced β-catenin response transcription 

(CRT) was inhibited by approximately 18.5 % and 38.2 % with  1 0 μM an d  2 0 μM 

curcumin treatment respectively (Table 4-2). Given that our lead compound, curcumin 

(compound 1-1) was found to have an EC50 value of 20.67 ± 0.82 μM, a total of 16 other 

analogues (Table 4-2, bold and indicated with *) that were capable of suppressing the 

Wnt-3A-induced CRT by more than 50 % at 20 µM or lower concentrations (i.e. more 

potent than curcumin) were shortlisted for EC50 determinations and subsequent 

experiments.  
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Table 4-2. Screening of Series 1-5 for Wnt-3A-induced Wnt inhibitory activity in 
HEK293T cells.  
 

 
Compound 

 
Normalized luciferase activity (Firefly/Renilla)a  

Concentration of curcumin analogues  
1µM 5µM 10µM 20µM 

Series 1 Analogues 

1-1 (curcumin) 99.36 ± 3.64 98.20 ± 3.25 82.50 ± 7.86 62.82 ± 12.43 
   1-2 * 101.58 ± 3.85 69.97 ± 1.73 46.51 ± 7.23 N.D b 

1-3 99.74 ± 3.11 110.28 ± 3.12 104.61 ± 10.28 112.77 ± 1.05 
1-4 108.92 ± 4.38 104.09 ± 3.44 107.10 ± 0.78 97.18 ± 7.52 
1-5 97.69 ± 0.93 107.44 ± 4.01 107.46 ± 4.23 101.41 ± 6.09 
1-6 100.33 ± 8.28 77.73 ± 1.80 72.47 ± 0.56 69.08 ± 1.90 
1-7 83.32 ± 9.01 92.19 ± 0.54 89.20 ± 19.22 93.10 ± 20.00 

 
Series 2 Analogues 

2-1 118.41 ± 4.13 110.87 ± 10.53 110.36 ± 23.04 90.35 ± 12.99 
2-2 107.13 ± 1.15 107.55 ± 0.12 108.61 ± 0.18 103.39 ± 1.05 

   2-3 * 82.49 ± 4.05 38.79 ± 4.05 34.36 ± 7.72 N.D b 
2-4 92.95 ± 2.42 82.68 ± 9.03 79.70 ± 14.16 77.94 ± 17.69 
2-5 100.43 ± 5.73 113.88 ± 3.38 102.71 ± 2.53 102.89 ± 4.83 

   2-6 * 62.29 ± 2.35 51.30 ± 6.61 51.97 ± 4.99 37.82 ± 3.55 
2-7 102.95 ± 12.98 100.02 ± 12.46 110.08 ± 6.17 110.85 ± 9.73 
2-8 83.32 ± 4.79 91.17 ± 10.68 70.43 ± 9.61 57.04 ± 5.33 
2-9 82.26 ± 1.03 85.89 ± 9.32 69.38 ± 2.90 64.60 ± 3.38 

 
Series 3 Analogues 

  3-1 * 86.13 ± 0.83 28.92 ± 5.58 21.33 ± 3.76 N.D b 
  3-2 * 97.67 ± 3.10 64.33 ± 7.73 62.77 ± 3.54 40.82 ± 7.13 
  3-3 * 37.30 ± 1.89 27.70 ± 1.52 24.73 ± 3.69 21.36 ± 1.86 
  3-4 * 85.77 ± 5.65 49.57± 6.14  40.60 ± 9.16 39.01 ± 11.22 

3-5 93.28 ± 11.15 60.65 ± 17.70 72.65 ± 5.78 81.51 ± 21.17 
   3-6 * 51.88 ± 5.86 26.87 ± 3.49 26.33 ± 4.33 16.65 ± 2.85 

3-7 94.54 ± 3.15 125.86 ± 14.37 117.90 ± 7.36 113.71 ± 7.28 
   3-8 * 52.20 ± 1.78 21.86 ± 1.50 14.46 ± 0.63 20.85 ± 3.64 

3-9 96.07 ± 9.85 119.07 ± 22.15 105.06 ± 22.08 103.61 ± 12.14 
3-10 70.25 ± 5.39 65.23 ± 6.27 61.58 ± 8.81 60.18 ± 2.29 

 
Series 4 Analogues 

  4-1 * 91.57 ± 5.80 54.09 ± 3.98 37.50 ± 2.31 13.29 ± 2.71 
  4-2 * 88.86 ± 2.67 65.91 ± 6.72 55.48 ± 6.18 39.14 ± 7.24 
  4-3 * 52.57 ± 6.70 45.04 ± 4.96 39.48 ± 4.14 39.19 ± 4.99 
  4-4 * 82.66 ± 4.01    41.48 ± 5.41 25.28 ± 6.32 18.38 ± 2.08 
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4-5 92.30 ± 3.09 72.74 ± 2.69 72.02 ± 5.56 61.33 ± 9.42 
  4-6 * 34.34 ± 1.49 28.25 ± 3.16 19.63 ± 3.31 7.99 ± 2.35 

4-7 71.04 ± 7.59 73.11 ± 6.01 60.20 ± 2.41 59.50 ± 6.74 
4-8 79.97 ± 12.11 75.70 ± 12.09 85.27 ± 5.60 72.80 ± 4.70 
4-9 123.83 ± 16.40 119.20 ± 5.37  109.00 ± 10.25 102.60 ± 7.07 
4-10 119.50 ± 10.83 112.53 ± 15.60 105.43 ± 6.10 107.71 ± 5.35 

 
Series 5 Analogues 

5-1 111.96 ± 8.25 115.28 ± 13.91 86.91 ± 9.69 69.64 ± 6.69 
5-2 94.95 ± 6.48 86.63 ± 7.68 60.30 ± 4.34 41.58 ± 5.45 

  5-3 * 95.72 ± 3.92 53.85 ± 6.94 41.95 ± 4.71 25.72 ± 2.79 
  5-4 * 101.46 ± 5.68 90.57 ± 14.07 69.03 ± 8.78 18.91 ± 5.43 

5-5 106.81 ± 4.31 107.79 ± 6.37 111.19 ± 10.51 72.94 ± 7.04 
5-6 92.72 ± 1.70 89.57 ± 8.74 70.85 ± 0.41 68.31 ± 6.96 
5-7 117.13 ± 14.80 111.53 ± 13.34 90.21 ± 15.68 59.08 ± 6.77 

 
a  Results are presented as the mean ± S.E.M of normalized luciferase activity (Firefly/Renilla) 

from three  independent experiments, expressed as % of DMSO under Wnt-3A induced 

condition.  (*) indicates analogues designated as ‘actives’ and shortlisted for EC50 determinations 

(With an estimated EC50 value of less than 20 µM compared to curcumin (EC50 20.67 ± 0.82). b 

Not determined (N.D). Tested at 1, 5 and 10 µM because of toxicity at higher concentrations. 

 
 
4.3.3 Determination of EC50 values for Wnt-3A-induced Wnt inhibitory activity of 

‘active’ curcumin analogues in HEK293T cells 

EC50 values were used for the qualitative comparison of Wnt inhibitory activity for the 16 

selected active curcumin analogues (Table 4-2, bolded and indicated with *) and found to 

be more potent than curcumin (1-1). As shown in Table 4-3, Series 3 and Series 4 

analogues were the most promising, with several members such as 3-3, 3-6, 3-8, 4-3 and 

4-6 having EC50 values in the submicromolar ranges. Specifically, the most potent 

analogue from these series, 3-3 (EC50 0.35 ± 0.03 µM) and 4-6 (EC50 0.41 ± 0.02 µM) 

were approximately 60 and 51 times more potent than curcumin (EC50 20.67 ± 0.82 µM) 

in inhibiting CRT respectively. The other analogues were between 1.2- and 40.4-fold 

more potent that curcumin. Transcriptional activities of the negative control FOPglow 
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plasmids were unaffected with treatment of all analogues at the EC50 values (Table 4-3), 

indicating that these analogues specifically inhibited β-catenin/TCF transcription. Except 

for 1-2, 3-1, 3-2, 4-1, and 4-2, all the other analogues have limited cytotoxicity at their 

EC50 for inhibition of TOPGlow β-catenin/TCF transcriptional activity (Table 4-3). 

Taken together, we have identified several novel curcumin analogues (3-3, 3-6, 3-8, 4-3 

and 4-6) with novel effects of inhibiting the Wnt/β-catenin pathway, yet with limited cell 

cytotoxicity at submicromolar concentrations.  

 
Table 4-3. EC50 values of selected curcumin analogues in HEK293T cells. 
 
Series Compound R1 R2 EC50 of Wnt 

inhibition 
(µM)a 

Potency 
(fold)b 

Cell viability 
(%)c 

FOPGlow 
(%)c 

Series 1 1-1 OCH3 OH 20.67 ± 0.82 1.0 42.43 ± 2.34 89.3 ± 3.64 
1-2 OCH3 OCH3 8.34 ± 0.19 2.5 41.58 ± 0.09 117.6 ± 17.36 

Series 2 2-3 OH OCH3 1.84 ± 0.34 11.2 86.57 ± 1.52 105.1 ± 16.0 
2-6 H OH 3.16 ± 0.24 6.5 99.2 ± 6.90 100.4 ± 11.1 

Series 3 3-1 OCH3 OH 2.63 ± 0.21 7.9 57.64 ± 12.42 87.6 ± 7.09 
3-2 OCH3 OCH3 15.86 ± 0.38 1.3 62.13 ± 8.65 103.6 ± 6.40 
3-3 OH OCH3 0.34 ± 0.01 59.7 91.64 ± 7.59 93.8 ± 8.27 
3-4 H H 2.04 ± 0.26 10.1 99.99 ± 11.85 90.7 ± 7.08 
3-6 H OH 0.80 ± 0.03 25.8 105.85  ± 10.14 85.1 ± 9.24 

 3-8 # 2’F H 0.90 ± 0.10 22.8 87.01 ± 1.84  93.0 ± 4.49 
Series 4 4-1 OCH3 OH 5.91 ± 0.46 3.5 38.40 ± 7.81 90.8 ± 4.77 

4-2 OCH3 OCH3 17.07 ± 1.80 1.2 40.02 ± 9.45 85.2 ± 5.97 
4-3 OH OCH3 0.51 ± 0.04 40.4 86.94 ± 4.52 110.2 ± 12.33 
4-4 H H 3.08 ± 0.39 6.7 83.53 ± 3.34 82.9 ± 7.15 
4-6 H OH 0.40 ± 0.01 50.5 81.43 ± 1.77 101.3 ± 11.3 

Series 5 5-3 OH OCH3 3.89 ± 0.46 5.3 87.15 ± 6.87 130.7 ± 11.7 
 5-4 H H 10.95 ± 0.99 1.9 73.09 ± 12.37 111.9 ± 6.49 

a The concentration of curcumin analogues that inhibits 50 % of TOPGlow β-catenin/TCF 

transcriptional activity. EC50 values are presented as the mean ± S.E.M from three independent 

experiments repeated in triplicate at least. 
b  Potency fold: EC50 values of curcumin/ EC50 values of other analogues.  
c Normalized FOPglow transcriptional activities and cell viability of the cells on treatment with 

analogues at the concentrations of  EC50
 a. 

# Ring substitutions at 2’ Position. 
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4.3.4 Inhibition of the intrinsic downstream β-catenin/TCF transcriptional activity 

by active curcumin analogues in U2OS cells 

The effects of several potent and specific curcumin analogues 2-3, 3-3, 4-3, 2-6, 3-6 and 

4-6 on the intrinsic downstream β-catenin/TCF transcriptional activity were further 

evaluated in U2OS osteosarcoma cells. These cells present with activated Wnt/β-catenin 

signaling which culminates in the abnormal accumulation of β-catenin in the nucleus [73, 

74]. These six analogues were selected based on the observations that analogues with 3’-

OH-4’OCH3 and 4’OH ring substituent have the most promising Wnt inhibitory effects 

(Table 4-3). Cells were transiently transfected with either TOPglow or the inactive 

mutant FOPglow luciferase reporter plasmids, together with the pCMV-RL renilla 

control vector for normalization of transfection efficiency followed by incubation with 

increasing concentrations of curcumin analogues for 24 h. We have previously shown 

that curcumin significantly inhibited β-catenin/TCF transcriptional activity in U2OS cells 

by approximately 27.1 % and 59.3 % at 10 μM and 20 μM respectively (Figure 4-1). As 

shown in Figure 4-1, curcumin analogues 2-3, 3-3, 4-3, 2-6, 3-6 and 4-6 were more 

potent than curcumin in suppressing β-catenin/TCF transcriptional activity in U2OS. Our 

findings were in parallel to our previous results using HEK293T cells which showed that 

these analogues were 7- to 60-fold more potent than curcumin (Table 4-3). Specifically, 

at as low as 0.5 μM, analogue 3-3, 4-3 and 3-6 significantly reduced β-catenin/TCF 

transcriptional activity in U2OS cells by approximately 27.5 %, 35.1 % and 29.2 % 

respectively (Figure 4-1). Compared with control, β-catenin/TCF transcriptional activities 

were reduced by 25.7 % and 37.0 % with analogue 2-6 and 4-6 treatments at 1 μM. The 

least potent analogue among those tested was also capable of significantly suppressing 
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49.4 % of β-catenin/TCF transcriptional activity in U2OS cells at 5 μM. Transcriptional 

activities of the negative control FOPglow plasmids were again unaffected in all 

instances, indicating that the curcumin analogues specifically inhibited β-catenin/TCF 

transcription in U2OS osteosarcoma cells. Taken together, our results demonstrated that 

curcumin analogue 2-3, 3-3, 4-3, 2-6, 3-6 and 4-6 were more potent than curcumin in 

suppressing β-catenin/TCF transcription in U2OS osteosarcoma cells and are promising 

candidates for treatment of osteosarcoma. 
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Figure 4-1. Effects of curcumin analogues on the transcriptional activity of β-
catenin/TCF in U2OS cell line. U2OS cells were co-transfected with reporter genes 
harboring Tcf-4 binding sites (TOPglow) or a mutant TCF-4 binding site (FOPglow) and 
CMV Renilla gene. 20 hours post-transfection, increasing amount of test compounds 
were added to the cells. Firefly luciferase activity was determined 24h post-treatment, 
normalized against values for the corresponding Renilla luciferase activity. Results were 
expressed as the means ± SEM of normalized ratios of firefly luciferase and renilla 
luciferase measurements of three independent experiments. Reporter activity in 
compound-treated cells is expressed as the percentage of DMSO-treated samples.             
* P<0.05, ** P<0.01.  
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4.3.5 Effects of selected curcumin analogues on the nuclear translocation of β-

catenin in U2OS cells 

The activation of β-catenin/TCF transcriptional activity results from the accumulation of 

nuclear β- catenin [77]. As we have previously shown that curcumin was capable of 

disrupting the translocation of β-catenin into the nucleus without changing the total 

cellular levels [195], we asked the question if the analogues were also able to effect 

changes in the cellular contents and localization of β-catenin protein. Both nuclear and 

cytosolic U2OS cell lysates were collected and used for western blot analysis to 

determine the amount of β-catenin in each cellular fraction following treatment with 1 

μM and 5 μM curcumin analogues for 24 h. As shown in Figure 4-2c, we found that the 

amount of β-catenin in the cytoplasm was not altered by treatments with 3-3, 2-6 and 4-6, 

whereas those in the nuclear fractions were decreased by 3-3, 2-6 and 4-6 at 5 μM, 

suggesting that these analogues disrupted the translocation of nuclear β-catenin. 

Specifically, treatment with analogues 3-3, 2-6 and 4-6 resulted in an approximately 

41.8 %, 52.9 % and 41.9 % reduction in nuclear β-catenin protein expression respectively 

(Figure 4-2d). β-catenin protein levels of both the nuclear and cytoplasmic fractions were, 

however, not altered with treatment of these analogues at 1 μM (Figure 4-2a-b). In 

contrast to analogues 3-3, 2-6, 4-6, and curcumin, treatment with the other analogues (2-3, 

4-3 and 3-6) had no effects on either the nuclear or cytoplasmic β-catenin protein levels 

at any of the concentrations tested (Figure 4-2), suggesting that the substitution groups on 

the benzene rings may affect the components of the Wnt/ß-catenin cascade differentially 

to effect Wnt inhibition. In addition, we cannot rule out the possibility that other novel 
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mechanisms may be involved. Further experiments are needed to investigate the specific 

mechanisms of Wnt inhibition by the curcumin analogues. 
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Figure 4-2 Effects of curcumin analogues treatment on the cellular and nuclear 
accumulation of β-catenin. (a, c) U2OS cells were pre-treated with curcumin analogues 
at the stated concentrations for 24 h, followed by collection of protein from the 
cytoplasmic and nuclear fraction. α-tubulin and lamin A/C were used for cytoplasmic and 
nuclear protein loading controls respectively. (b,d) β-catenin protein expression in 
analogue-treated cells were expressed as the percentage of DMSO-treated samples. 
* ,P<0.05, ** P<0.01.                                           

 

4.3.6 Effects of selected curcumin analogues in inhibiting U2OS cell invasion 

We have recently reported that activation of the Wnt/β-catenin pathway via forced 

expression of wild-type β-catenin plasmid drastically enhanced the invasive capacity of 

U2OS cells, but this effect was significantly reversed by curcumin in a dose-dependent 

manner [195]. To determine if curcumin analogues could exert similar, but more potent 

anti-invasive effects, we next performed Matrigel invasion assays using U2OS cells. 

U2OS has been reported to be highly metastatic [213], but as shown in Figure 4-3a the 

curcumin analogues significantly reduced the ability of U2OS cells to invade through the 

Matrigel-coated inserts over a period of 48 h dose-dependently. While curcumin 

treatment significantly reduced the invasive capacity of U2OS cells by 29.0 ± 5.1 % at 5 
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μM, treatment with analogue 2-3, 3-3, 4-3, 2-6, 3-6 and 4-6 drastically suppressed U2OS 

cell invasiveness by 63.0 ± 2.4 %, 76.2 ± 1.4 %, 69.3 ± 4.9 %, 81.6 ± 2.6 %, 74.5 ± 5.4 %, 

72.8 ± 0.96 % at the same respectively concentration (Figure 4-3b). We found that these 

analogues were also effective in suppressing U2OS cell invasion by between 34.8 ± 

2.2 % to 71.0 ± 5.9 % at a lower treatment concentration of 1 μM. The anti-invasive 

effects of these analogues were observed at concentration ranges (1-5 μM) that are shown 

to inhibit downstream β-catenin/TCF transcriptional activities (Figure 4-1) and were not a 

result of cell toxicity given that U2OS cells did not exhibit significant growth inhibition 

at these concentrations (Figure 4-3c). Altogether, our results suggest that analogues 2-3, 

3-3, 4-3, 2-6, 3-6 and 4-6 were more potent than the parental curcumin in inhibiting 

U2OS invasiveness.   
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Figure 4-3. Dose-dependent inhibition of U2OS cell invasion by curcumin analogues. 
(a) Representative images from three independent experiments showing a dose- and time-
dependent inhibition of U2OS migration by curcumin analogues at 1 μM. (b) U2OS cells 
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pre-treated with curcumin analogues or DMSO for 24 h were seeded into Matrigel-coated 
inserts. Cells that invaded to the lower surface of the insert over a period of 48 h were 
captured with a light microscope at 200x magnification after staining with crystal violet 
dye. Ten random fields were counted for the number of invaded U2OS cells. Data were 
presented as means ± SEM of three independent experiments. Cell invasion in 
compound-treated cells was expressed as the percentage of DMSO-treated samples, *, 
P<0.05, **, P<0.01. (c) Effect of curcumin analogues on osteosarcoma cell proliferation. 
MTS cell cytotoxicity assay was used to evaluate the cytotoxic profile of the curcumin 
analogues. U2OS cells were treated with curcumin analogues for 24 h at the 
concentrations indicated. The results shown were means ± SEM from three independent 
experiments repeated in triplicate. Cell viability in compound-treated cells was expressed 
as the percentage of DMSO-treated samples. 
 

4.3.7 Effects of selected curcumin analogues on protein expression of Wnt 

responsive genes (MMP-9 and cyclin D1) in U2OS cells. 

MMPs play important roles in the degradation of extracellular matrix to facilitate 

osteosarcoma cancer cell invasion and metastasis [216]. In particular, MMP-9 is a well 

known Wnt target gene that is associated with enhanced osteosarcoma tumor invasion 

and metastasis [217-219]. Indeed, in our earlier study, we showed that curcumin elicited a 

reduction in the secretion of MMP-9 under conditions of either endogenous and/or 

exogenous Wnt/β-catenin activation, possibly giving rise to reduced invasiveness of 

U2OS cells (Figure 3-9). Thus using Western blotting, we further examined whether 

reduced invasion with curcumin analogues treatment correlated with MMP-9 protein 

levels in U2OS cells. As shown in Figure 4-4, we observed reductions in MMP-9 protein 

expression with analogue treatments at 1 μM and 5 μM. These effects correlated to the 

reduced anti-invasive effects of these analogues at similar concentrations used in the 

Matrigel invasion assays (Figure 4-3). Taken together, our findings suggest that curcumin 

analogues elicited a reduction in the MMP-9 protein expression at more potent 
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concentrations compared to curcumin, possibly explaining the reduced invasiveness of 

U2OS cells as seen in Figure 4-3. 

 

Besides MMP-9 levels, we also tested the effects of curcumin analogue treatments on 

other Wnt downstream markers such as cyclin D1. As shown in Figure 4-4 , we observed 

a dose-dependent suppression of cyclin D1 with treatment of the analogues. 
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                   α-Tubulin 
 
 
Figure 4-4. Curcumin analogues inhibit MMP-9 and cyclin D1 protein expression in 
osteosarcoma. U2OS cells were treated with indicated concentrations of curcumin 
analogues or DMSO for 24 h before proteins were collected for western blot.  These blots 
shown were representative of three independent experiments. α-Tubulin was used as a 
loading control. 
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4.3.8 Structure-Activity-Relationship (SAR) Analysis of  the Wnt-inhibitory 

activity of curcumin analogues 

To have a better understanding of the structural features important for Wnt inhibitory 

effects, we examined the SAR among the curcumin analogues. As shown in Tables 4-2 

and  4-3, out of 16 compounds identified to be more potent than curcumin (1-1, EC50 

20.67 ± 0.82 μM), 11 were from Series 3 and 4, in which the terminal phenyl rings were 

linked by conformationally restricted dibenzylidene-cyclopentanone and dibenzylidene-

cyclohexanone ring structures. All non-fluorinated cyclic analogues from both series, 

except those with 3’-methoxy ring substituent (3-5 and 4-5) were found to be more potent 

than curcumin. These active cyclic analogues significantly reduced luciferase activity in 

HEK293T cells by approximately 78.1 % to 34.1 % at as low as 5μM. A few others such 

as 3-3, 3-6, 3-8, 4-3 and 4-6 significantly suppressed Wnt activity at even lower 

concentrations of 1 μM. Interestingly, compound 3-8, which was mono-fluorinated at the 

2’ position, was found to be active, with luciferase activity reduced to only approximately 

45.7 % and 15.0 % at 5 µM and 10 µM concentrations respectively. This trend was 

however not seen for compound 4-8 in Series 4. Nor was it observed among other 

fluorinated analogs (4’-F or 3’, 4’-diF) represented across the different series.  We also 

observed that analogues that were substituted with a methoxy group at the 3’ position 

showed consistently poor activity in all series. On the other hand, the inclusion of another 

methoxy group to give 3’4’-dimethoxy improved activity in Series 1, 3 and 4. Next, 

comparison of the EC50 values among analogues from Series 2-5 with various aromatic 

ring substitutions showed that Wnt inhibitory effects were influenced by the nature of the 

ring substituent which may be broadly ranked in the sequence: 3’-OH-4’-OCH3  ≈  4’-
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OH (most active)  >>  3’-H-4’-H  > 3’-OCH3 4’-OH  > 3’-OCH3 -4’-OCH3  >> 3’-OCH3  

≈  4 ’-F  ≈  3’ -4’-F (least active). For Series 1 analogues, the only compound that 

exhibited significantly greater Wnt activity than curcumin was compound 1-2, which has 

a 3’-4’-di-methoxyl substituent. A couple of chalcones, which lacks structural symmetry 

is capable of suppressing Wnt activity with an EC50 values that were at least 2-fold higher 

than curcumin.   

 

4.3.9 Real time PCR array analysis of related Wnt components and target genes 

with  curcumin analogue 3-3 treatment in U2OS cells 

The global changes in gene expression of related Wnt components with analogue 3-3 

treatment (most potent) was tested using the Human Signaling Pathway RT2 ProfilerTM 

PCR array. As mentioned in Section 4.2.10 (Material and Methods), these 84 genes 

comprises representative upstream and downstream components of the canonical Wnt/β-

catenin pathway. Expressions of selected genes that were significantly up- or down-

regulated (p-value < 0.05) were presented in Table 4-4 while the others were reported in 

Appendix 3. As shown in Table 4-4, the expressions of β-TrCP and Transducin-like 

Enhancer of Split 2 (TLE2) were significantly up-regulated 1.54- and 2.40-fold following 

analogue 3-3 treatment at 1 µM for 24 h respectively. On the other hand, the gene 

expressions of Wnt ligands including WNT 5a, 5b, 6, 7a, 7b, 8a, 10a and 11 were 

significantly suppressed, while all 16 Wnt ligands tested, except WNT 2b, were down-

regulated with curcumin analogue 3-3 treatment (Appendix 3). Similarly, the gene 

expression of all FZD (FZD1-8) were decreased following 1 µM curcumin analogue 3-3 

treatment, but statistical significance was observed only for FZD2, FZD3 and FZD4, with 
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3.77-, 1.34- and 2.60-fold reduction respectively. Furthermore, expressions of several 

Wnt target genes that are critical for cancer tumorigenesis and metastasis such as FOS-

like antigen 1 (FOSL1), PITX2, WISP1 and cyclin D1 were markedly suppressed in 

U2OS cells after treatment with curcumin analogue 3-3. T-cell specific transcription 

factor 7-like 1 (TCF7L1), a member of TCF/LEF transcription factors that function as a 

mediator of the Wnt/β-catenin transcription, was also inhibited. Much to our surprise, we 

found a reduction in the gene expressions of two negative regulators of the Wnt/β-beta-

catenin/TCF signaling pathway. These two genes were SFRP1 belonging to a family of 

five glycoprotein (SFRP1-5) that competes with FZD for binding of Wnt ligands and 

Naked Cuticle Homolog 1 (NKD1), a dishevelled-binding protein (Table 4-4). Taken 

together, this global analysis has provided some preliminary observations that may 

explain the mechanism of Wnt inhibition by curcumin analogue 3-3 in U2OS cells. Our 

results suggest that down-regulation of target oncogenes critical for cancer tumorigenesis 

and metastatic transformation including FOSL1, PITX2, WISP1 and cyclin D1, may 

possibly contribute synergistically to the reduction of invasiveness of U2OS cells 

observed in the preceding invasion assay (Figure 4-3).  
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Table 4-4. Effects of curcumin analogue 3-3 on related Wnt components and target genes in U2OS cells using Human Wnt 
signaling real time PCR array analysis. 

Gene Gene 
symbol  

Function  Fold  
change  

p-value Up (↑) / 
down (↓) 

Regulation 

Beta-transducin 
repeat containing 

β-TrCP A component of an E3 ubiquitin ligase complex, which 
functions in phosphorylation-dependent ubiquitination of 
cytoplasmic β-catenin, thus destabilizes it. 

1.54 0.047 ↑ 

Transducin-like 
enhancer of split 2 

TLE2 Mammalian homologue of the Drosophila groucho which serves 
as a nuclear transcriptional co-repressor by interacting with TCF 
family of proteins to block TCF/β-catenin transcription and thus 
repress Wnt target oncogenes 

2.41 0.00052 ↑ 

Cyclin D1 CCND1 Wnt target oncogene that stimulates tumor cell proliferation and 
cell cycle progression in the G1/S phase.  

1.46 0.042 ↓ 

FOS-like antigen 1 FOSL1 Member of FOS protein family that is implicated as regulator of 
tumor cell proliferation, invasion, motility, differentiation and 
transformation.  

4.57 0.044 ↓ 

Frizzled receptor 2 FZD2 Member of the 'frizzled' gene family encode 7-transmembrane 
domain proteins receptors that interacts with Wnt signaling 
proteins to initiate Wnt signaling. 

3.77 0.030 ↓ 

Frizzled receptor 3 FZD3 1.34 0.015 ↓ 

Frizzled receptor 4 FZD4 2.60 0.029 ↓ 

naked cuticle NKD1 A Dishevelled-binding protein that functions as a negative 2.29 0.017 ↓ 



 
 

 119 

homolog 1 regulator of the Wnt/β-beta-catenin/TCF signaling pathway 

paired-like 
homeodomain 2 

PITX2 A transcriptional factor of the Wnt/β-catenin signaling that 
promotes tumorigenesis by directly activating cyclin D1, cyclin 
D2 and c-Myc expressions. 

3.85 0.030 ↓ 

secreted frizzled-
related protein 1 

SFRP1 Belongs to a family of five glycoprotein (SFRP1-5) that 
competes with Frizzled receptors for bind Wnt ligands, but  has 
been shown to be capable of increasing Wnt signaling rather 
than antagonizing it in some conditions  

1.56 0.00062 ↓ 

T-cell specific 
transcription factor 
7-like 1  

TCF7L1 Member of TCF/LEF transcription factors that function as 
mediator of the Wnt/β-catenin transcription  

2.92 0.031 ↓ 

WNT1 inducible 
signaling pathway 
protein 1 

WISP1 A member of the connective tissue growth factor that is 
frequently over-expressed in various tumors, and is involve in 
the regulation of various processes leading to tumorigenesis and 
malignant transformation including cell proliferation, migration, 
adhesion, angiogenesis and extracellular matrix formation. 

2.82 0.027 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 5a 

WNT 5a Secreted signaling protein that are implicated in oncogenesis and 
in several developmental processes 

2.55 0.019 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 5b 

WNT 5b 2.36 0.012 ↓ 
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Wingless-type 
MMTV integration 
site family, 
member 6 

WNT 6 4.37 0.029 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 7a 

WNT 7a 2.47 0.039 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 7b 

WNT 7b 4.21 0.011 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 8a 

WNT 8a 1.35 0.0055 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 10a 

WNT 10a 3.40 0.015 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 11 

WNT 11 9.89 0.000005 ↓ 
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Selected genes that are involved in the Wnt/β-catenin signaling in U2OS cells treated with curcumin analogue 3-3 were listed. The 
gene symbol, gene function, fold-change, p-value, status of transcription has been described for each gene. The fold-changes in gene 
expression and p-values of the full list of the 84 genes were reported in Appendix 3. 
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4.4 Discussion  

We have established in Chapter 3 that Wnt inhibition mediated by curcumin could result 

in reduced osteosarcoma proliferation and invasion. However, the clinical application of 

curcumin as a Wnt inhibitor is likely to be curtailed given its poor bioavailability due to 

poor absorption and rapid metabolism, and high concentrations needed for effective Wnt 

inhibition for good in vivo pharmacological bioavailability [243, 244, 246]. We thus 

aimed in this chapter to identify more potent curcumin analogues, elucidate important 

chemical features for improved Wnt inhibitory potency and provide preliminary 

observations on their mechanism of action.  

 

Based on the rationale of drug design as described in (Sections 4.2.2 and 4.2.3), we have 

synthesized and evaluated five series of curcumin analogues for improved potency as 

Wnt inhibitors in osteosarcoma. Our preliminary screening yielded 16 compounds that 

were 1.2- to 40.4-fold more potent than curcumin in suppressing CRT (Table 4-3). A 

study of SAR revealed that Series 3 (dibenzylidene-cyclohexanones) and Series 4 

(dibenzylidene-cyclopentanones) analogues, both with conformationally restricted and 

bulkier tethers between the terminal phenyl rings, exhibited much higher Wnt inhibitory 

potency than the other analogues in which the terminal rings were linked by longer and 

more flexible carbon spacers such as the diarylheptanoids (Series 1), diarylpentanoids, 

(Series 2) and chalcones (Series 5). Specifically, 11 of the 16 analogues that were 

identified to be more potent than our lead compound (curcumin, 1-1) in suppressing the 

Wnt-3A-mediated transcriptional activity were from Series 3 and 4. In addition, all 

analogues from Series 3 and 4, except compounds 3-5 and 4-5 were capable of inhibiting 
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activated Wnt activity in HEK293T cells. Besides having the largest number of potent 

analogues, cyclic analogues (Series 3 and 4) also gave rise to the most potent analogues 

such as compound 3-3 (EC50 0.34 ± 0.01 μM) and 4-6 (EC50 0.40 ± 0.01 μM) which were 

51- to 60-fold more potent than curcumin (1-1, EC50 20.67 ± 0.82 μM), strongly 

suggesting the importance of restricting the flexibility of the central linker for Wnt 

inhibitory potency. In fact, in terms of number of rotatable bonds, the Series 3 and 4 

compounds (two rotatable bonds) have the most restricted carbon tethers. This is 

followed by the chalcones (three rotatable bonds), series 2 (four rotatable bonds) and 

series 1 (five rotatable bonds). There is also a change in lipophilicity across the five series. 

Based on analogs with unsubstituted phenyl rings (1-4,2-4, 3-4, 4-4, 5-4), lipophilicities 

estimated by ClogP decreased in the order 3-4 (ClogP 5.33) > 4-4 (ClogP 4.77) > 1-4 

(ClogP 4.57) > 2-4 (ClogP 4.20) > 5-4 (ClogP 3.62).  It is notable that besides restricting 

flexibility, embedded ring structures within the linker as in Series 3 and 4, led to 

increases in lipophilicity. However, no significant correlation could be established 

between EC50 for Wnt inhibition and ClogP values. 

 

In curcumin, the terminal phenyl rings were substituted with 3’-OCH3-4’-OH substituent. 

A recent study by Ryu et al. showed that natural derivatives of curcumin, such as 

demethoxycurcumin and bisdemethoxycurcumin, which lack one or more methoxy 

groups on both rings, suppressed the transcriptional co-activator, CBP/p300, but had no 

effects on the protein expression of both cytoplasmic and nuclear ß-catenin and nuclear 

TCF-4 whereas removal of the double bond in tetrahudrocurcumin abolished Wnt 

inhibitory activity entirely [96]. In our study, the importance of maintaining these 
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substituents at the terminal rings of Series 1-5 compounds was investigated by various 

permutations centered on the OH/OCH3 groups. Thus, the positions of these groups were 

reversed (3’-OH-4’-OCH3) or replaced with 3’4’-di-OCH3 or one group was omitted or 

both were removed to give the unsubstituted ring. One or more fluorine atoms were also 

introduced to the rings to test the bioisosteric relationship of F and H. Compounds in 

Series 1 bear the same scaffold as curcumin. It is seen that the Wnt inhibitory activity of 

this Series was significantly affected by the type of substituent on the terminal phenyl 

rings. Except for the dimethoxy analog 1-2 which was more potent than curcumin, the 

other analogs in this Series fared poorly in terms of Wnt inhibitory activity. Thus, it 

would seem that there is limited tolerance for the type of groups that can be introduced 

into phenyl rings of the Series 1 template.  A similar trend was observed in Series 2 and 5 

where no more than 2 different substitution patterns were permissible. As mentioned 

earlier, the central linker in these Series are of intermediate flexibility.  It is observed that 

for both Series 2 and 5, the preferred substituent were 3’-OH-4’-OCH3 and not 

dimethoxy as noted for Series 1.  It is evident that optimal ring substitution pattern is 

influenced in part by the type of linker present and would be expected to vary from one 

series to another. 

 

In contrast to the earlier series, Series 3 and 4 have restricted and lipophilic linkers and 

interestingly, their Wnt inhibitory activities were less influenced by the type of 

substituent on the terminal phenyl rings. Thus, the shortlisted compounds in Series 3 

represent six out of the 10 different substitution patterns investigated, while in Series 4, 

they represent five out of the 10 different substitution patterns. Notwithstanding the 
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greater tolerance for different substituent on the phenyl rings, there were some groups 

that fared better than others,  notably the 3’OH-4’OCH3 identified for Series 2 and 5, as 

well as 4-OH emerged as top contenders. The good activity associated with the 4’-OH 

group (3-6, 4-6) is notable as 4’-OH groups are also present on the phenyl rings of 

curcumin.  On the other hand, a 3’-OCH3 group is also present in curcumin but no analog 

with 3’-OCH3 (Series 1-5) was shortlisted for EC50 determination.     

 

The poor activity of the 3’OCH3 analogs may suggest the need to restrain the steric 

dimensions of groups at this position. It may also reflect a preference for groups that are 

not electron withdrawing at this position. It is notable that 3’OCH3 is electron 

withdrawing unlike 4’OCH3 which is electron donating, as seen from their Hammett 

sigma values (σp OCH3 -0.27 ; σm OCH3 = 0.12). Inhibitory activity may be determined 

by an interplay of the size and electrostatic nature of groups at this position. Thus, the 

poor activity of 3’F analogs would suggest that the strong electron withdrawing effect of 

F has more than offset its small steric dimensions while the moderate activities of analogs 

with unsubstituted phenyl rings (3-4, 4-4) may be attributed to their limited size 

requirements. Taken together, it is tempting to suggest that Wnt inhibitory activity is 

favored by the absence of electron withdrawing groups on the terminal phenyl rings of 

Series 3 and 4.  Support for this view is seen from the exceptionally good activities of the 

4’OH analogs (3-6, 4-6) and the 3’OH-4’OCH3 analogs (3-3, 4-3). As to why switching 

3’OH-4’OCH3 to 3’OCH3-4’OH resulted in analogs (3-1, 4-1) with a modest decline in 

activity, this may be attributed to the location of the bulkier OCH3 at the 3’ position.  A 
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larger lost in inhibitory activity was observed when both 3’ and 4’ positions were 

occupied by OCH3 groups.    

 

Taken together, some general structure activity trends may be deduced from the present 

results (Figure 4-5). First, reducing the flexibility of the intermediate linker joining the 

terminal phenyl rings improved inhibitory activity. Notably, incorporating the linker as 

part of a ring structure like those represented in Series 3 and 4 resulted in several 

compounds with outstanding activities. Second, the flexibility of the intermediate side 

chain influenced the substitution on the terminal phenyl rings that were required for good 

activity. In those compound series (Series 1, 2, 5) that had more flexible linkers, only 

limited substitution patterns were tolerated at the phenyl rings. In contrast, a wider range 

of substitution patterns were permitted in compound series that had less flexible linkers 

(Series 3, 4). In Series 3 and 4, the preferred substituent were deduced to be electron 

donating and/or of limited size requirements if sited at the 3’ position. These 

requirements may reflect the involvement of these groups in key interactions with target 

proteins and would require further confirmation with additional analogs. These SAR 

trends observed would be highly valuable and may served as leads for future rational 

drug design for even more potent Wnt antagonists.   
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Figure 4-5. Structural features of curcumin analogues important for enhanced Wnt 
inhibitory activity. (a) Reducing the flexibility of the intermediate linker joining the 
terminal phenyl rings improved Wnt inhibitory activity. Incorporating the linker as part 
of a ring structure such as dibenzylidene-cyclohexanone (Series 3) and dibenzylidene-
cyclopentanone (Series 4) spacers are favored. (b) Flexibility of the intermediate side 
chain influenced the substitution on the terminal phenyl rings. Only limited ring 
substitution patterns were tolerated in analogues with flexible linkers (Series 1, 2, 5), but 
a wider range of substitution patterns were permitted in analogues that had less flexible 
linkers (Series 3, 4). (c) Electron donating ring substitutions are more favorable. (d) Ring 
substitutions with limited size requirements are preferred at the 3’ position.  
 

To provide preliminary understanding of the interactions of curcumin analogues with 

various critical Wnt players, perturbations in gene levels of 84 Wnt signaling components 

and target genes by curcumin analogue 3-3 (the most potent analogue) were evaluated 

using the Human Wnt Signaling Pathway RT2 ProfilerTM PCR Array. Our preliminary 

findings support a model in which analogue 3-3 is likely to attenuate the Wnt/β-catenin 

signaling pathway at various points of the pathway including interruption of receptor-

ligand interactions at the cell surface, enhancement of proteasomal degradation of 
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cytoplasmic β-catenin, disruption of β-catenin/TCF complexation and transcription and 

inactivation of Wnt target oncogenes within the nucleus. This is supported by these 

observations: Firstly, suppression of mRNA expressions of several frizzled receptors 

(FZD2, FZD 3, FZD4) and Wnt ligands (WNT 10a, 11, 5a, 5b, 6, 7a, 7b, 8a) suggest that 

analogue 3-3 may attenuate receptor-ligand interactions and thus block signal initiation at 

the membranous level. However, it is practically challenging to determine precise 

binding affinities and specificities of the native WNT-FZD complexes due to the lack of 

purified Wnt ligands and the sheer number of members identified to date [37, 38]. 

Secondly, the significant up-regulation of β-TrCP protein, a component of an E3 

ubiquitin ligase complex, indicated that analogue 3-3 could have increased the 

phosphorylation-dependent ubiquitination of β-catenin, thus destabilizing β-catenin in the 

cytoplasm and consequently reducing its nuclear translocation. A similar mechanism of 

Wnt inhibition was previously observed with curcumin, which was reported to induce 

G2/M phase arrest and apoptosis of HCT116 colon cells through caspase-mediated 

degradation of cytoplasmic β-catenin [193, 207].  Thirdly, analogue 3-3 may be capable 

of disrupting β-catenin/TCF complexation and transcription through attenuating the 

nuclear translocation of β-catenin protein (Figure 4-2) and regulating the expression of 

several transcriptional factors such as TLE2, TCF7L1 and PITX2: TLE2 gene is a 

mammalian homologue of the Drosophila transcriptional repressor groucho which serves 

as a nuclear transcriptional co-repressor by interacting with TCF family of proteins to 

block TCF/β-catenin transcription and thus repress Wnt target oncogenes [129, 258, 259] 

while PITX2, a bicoid-related homeodomain factor [260], has been shown as a 

downstream gene target and a transcriptional factor of the Wnt/β-catenin signaling 
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pathway by interacting with LEF-1 and β-catenin to activate Wnt target genes [141, 261, 

262]. Collectively, analogue 3-3 may possibly disrupt β-catenin/TCF transcriptional 

activity and complexation through up-regulating transcriptional repressor, groucho, 

inhibiting TCF7L1 and/or suppressing level of PITX2 transcription factor. In particular, 

PITX2 is required for the temporally ordered and growth factor-dependent recruitment of 

a series of specific co-activator complexes that prove necessary for cyclin D1, cyclin D2 

and c-Myc gene induction [261, 263]. Furthermore, silencing of PITX2 gene by 

hypermethylation has been closely associated with prognosis, metastasis-free survival 

and reduced risk of developing disease recurrence in breast cancer patients [264]. Most 

recently, Huang et al demonstrated that knockdown of PITX2 gene expression in human 

thyroid cancer cells and mouse in in vivo models significantly suppressed cell 

proliferation and soft-agar colony formation by down-regulating cyclin D1 and cyclin D2 

[265]. Parallel to results from our western blot analysis (Figure 4-4), we found a 

suppression of cyclin D1 mRNA level with analogue 3-3 treatment. Given that both 

PITX2 mRNA levels, as well as cyclin D1 protein and mRNA expressions, were 

suppressed in U2OS cells by analogue 3-3 treatment, it is tempting to speculate that 

attenuation of PITX2/Wnt/β-catenin pathway may have resulted in the down-regulation 

of cyclin D1 in U2OS cells, although further studies using chromatin immunoprecipitaion 

and/or reporter assays would be necessary to confirm this. 

 

Our curcumin analogues were also found to be effective in reducing osteosarcoma cell 

invasiveness by between 34.8 - 71.0 % and 63.0 - 81.6 % at 1 µM and 5 µM respectively 

(Figure 4-3). The observed anti-invasive effects correlated with the down-regulation of 
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MMP-9 protein expressions with curcumin analogue treatment (Figure 4-4). In addition, 

through our global analysis, we found that the most potent compound (3-3) could 

effectively suppress the mRNA expressions of several other oncogenes including WISP1 

and FOSL1 that play critical roles in promoting tumorigenesis and metastatic 

transformation in various tumor models. WISP-1, a member of the connective tissue 

growth factor that belongs to the Cry61, CTGF and Noc (CCN) super family, is involved 

in the regulation of various processes leading to tumorigenesis and malignant 

transformation including cell proliferation, migration, adhesion, angiogenesis and 

extracellular matrix formation [266]. Several lines of evidence support a role for WISP-1 

in tumorigenesis, although none has been reported with osteosarcoma. WISP-1 is over-

expressed in many tumors types, including breast, colon, cholangiocarcinoma and 

plexiform neurofibromas [267-270]. Moreover, forced expression of WISP-1 in normal 

kidney fibroblasts was sufficient to induce morphological transformation, accelerate cell 

growth and induce tumor formation in nude mice [146]. Elevated levels of WISP-1 in 

both primary breast and rectal cancers correlated with more advanced features such as 

late-stage disease, lymph node involvements and larger tumor size [269, 271]. Similarly, 

FOSL1, shown to be over-expressed in numerous cancers, promotes invasion, metastasis 

and angiogenesis [272]. For instance, Debinski at el. demonstrated that gliomas over-

express FOSL1, which is capable of modulating malignant properties in these cancer 

cells including morphology changes, anchorage-dependent growth and tumorigenic 

potential [273]. On the other hand, down-regulation of FOSL1 was reported to suppress 

breast cancer cell motility and proliferation through inhibition of tumor progression-

association proteins including MMP-9, VEGF, MMP-1 and cyclin D1 [274]. Given their 
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oncogenic properties, the potential implications of regulating WISP-1 and FOSL1 

expressions in osteosarcoma pathogenesis is highly relevant. Further studies are however 

needed to fully understand the contributory roles of these oncogenes in regulating 

osteosarcoma metastasis and tumorigenesis.  

 

Anomalous observation was made with regards to two genes, namely SFRP1 and NKD1. 

The down-regulation of mRNA SFRP1 level following treatment with analogue 3-3 is not 

unexpected since SFRP1 has been shown to be capable of increasing Wnt signaling in 

some conditions [54, 275], although it belongs to a family of five gylcoproteins (SFRP1-

5) that disrupts the pathway at the cell surface by competing with Frizzled receptors for 

Wnt ligands [55]. NKD1, a protein that binds to PDZ domain of DVL, is known for its 

function as a negative regulator of the Wnt-beta-catenin-TCF signaling pathway [106, 

276]. Our observation that NKD1 was down-regulated in U2OS cells following treatment 

with analogue 3-3 suggested that NKD1 or/and DVL-NKD1 complex could have 

mediated other unknown Wnt-independent signal transduction. We also cannot rule out 

the possibility of compensatory response or biphasic effects of NKD1 on Wnt signaling.  
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CHAPTER 5. Role of SFRPs as tumor suppressors in human osteosarcoma 

 
5.1 Introduction  

SFRPs, a family of five glycoproteins (SFRP1-5) are the largest family of endogenous 

Wnt inhibitors. Structurally, SFRPs contain an N-terminal cysteine–rich domain (CRD) 

which share 30-50 % sequence similarity with those of the ligand binding domain of the 

FZD and a netrin (NTR) domain. The NTR domains of SFRP1, SFRP2 and SFRP5 share 

a similar pattern of cysteine spacing that is related to that of netrin 1, whereas those of 

SFRP3 and SFRP4 display a different cysteine-spacing pattern and thus a distinct pattern 

of disulphide bonds [54]. Crystallographic resolution studies revealed a number of 

different mechanisms by which SFRPs can modulate Wnt signaling: (1) sequestering 

WNT ligands through both the CRD and NTR domains; (2) functioning as a dominant-

negative form by formation of inactive complexes with FZD; (3) titrating out one 

another’s activity to favor Wnt signaling; (4) favoring Wnt-FZD interaction by binding to 

both molecules simultaneously and (5) binding of CRD to FZD [277]. 

 

Epigenetic silencing due to hypermethylation of the promoter regions of SFRP1, 2, 4 and 

5 has been found in different human cancers, suggesting tumor suppressor function of 

these SFRPs [61, 62, 278]. On the other hand, restoration of sFRP functions in these 

tumor types has been shown to effectively attenuate Wnt signaling even in the presence 

of downstream mutation [61]. Unlike the other SFRPs, SFRP3 does not have the CpG-

islands in its promoter region. Instead, chromosomal deletion and loss of heterozygosity 

of the SFRP3 gene may account for its down-regulation in human malignancies, given 
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that the SFRP3 gene is located at 2q where frequent deletion and loss of heterozygosity 

are observed.  

 

Differences in the biological effects of the various SFRPs have previously been reported 

in various malignancies. This is not surprising given that SFRPs do not bind to Wnt 

ligands in an equivalent manner, neither in terms of specificity and number of binding 

sites nor in terms of interaction domain. Furthermore, post-translation modifications may 

very likely confer additional differences that might further diversify the functions of 

different SFRP family members.  

 

Recently, the loss of SFRP3 expression was reported in osteogenic sarcoma biopsy 

specimens and several osteosarcoma cells lines [56]. Despite strong evidence of their 

status as tumor suppressors, the functional significance of other family members 

including SFRP1, 2, 4 and 5 in the pathogenesis of osteosarcoma has yet been reported. 

Therefore, we hypothesized that these genes function as tumor suppressors and 

restoration of these may inhibit osteosarcoma tumorigenesis and metastasis. The 

objective of this chapter is thus to examine functional roles and mechanisms of SFRPs as 

tumor suppressors in regulating osteosarcoma cell proliferation, motility and invasion. 

Understanding this may be useful in the development of SFRPs as a therapeutic strategy 

in osteosarcoma.  

 

We first examined the transcriptional expressions of SFRP genes and showed that these 

Wnt antagonists were down-regulated in several metastatic osteosarcoma cells lines, 



 
 

 134 

compared to human fetal osteoblasts. Using SFRPs-stably transfected U2OS cell lines, 

we further demonstrated that forced expressions of these genes effectively suppressed β-

catenin/TCF transcriptional activities and β-catenin protein levels, as well as resulted in 

redistribution of β-catenin protein from the nucleus to the membrane of U2OS cells. We 

found that ectopic expressions of SFRPs are capable of disrupting the cascade of events 

that leads to osteosarcoma tumorigenesis and/or metastasis including inhibition of 

anchorage-dependent growth rates, colony formation efficiencies, cell invasion, 

migration, as well as induction of G0/G1 cell cycle arrest and apoptosis. These tumor 

suppressing effects may be mediated though down-regulation of protein expressions of 

several Wnt responsive oncogenes such as MMP-2, cyclin D1, c-Myc and survivin. 

Furthermore, using the Human Wnt Signaling Pathway RT2 ProfilerTM PCR Array 

analysis, we identified additional Wnt target genes including WISP1, Brachyury, 

SLC9A3R1 and JUN that may account for the tumor-suppressing effects of SFRP2 and 

SFRP5 in U2OS cells. Lastly, we observed dysregulation of several Wnt signaling 

proteins when SFRP2 or SFRP5 expressions were restored in U2OS cells, suggesting that 

the molecular mechanisms of SFRP2 and SFRP5 functions may involve disruption of the 

Wnt signaling via interrupting WNT-FZD interactions, enhancing proteasomal 

degradation of cytoplasmic β-catenin, disrupting of β-catenin/TCF complexation and 

transcription, inactivating Wnt target oncogenes as well as up-regulating tumor 

suppressors genes. Taken together, our findings strongly suggest that SFRPs function as 

tumor suppressors in osteosarcoma, and that restoration of these genes in SFRPs-deficient 

osteosarcoma may be exploited as a new therapeutic approach for the treatment and 

prevention of osteosarcoma disease progression.  
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5.2 Experimental Methods 

5.2.1 Cell culture, plasmids and stable transfection 

The human osteosarcoma cell lines CRL11226, CRL1423, OS1, OS2 and OS3 were 

kindly provided by Dr Saminathan S. Nathan (Department of Orthopaedic Surgery, Yong 

Loo Lin School of Medicine, NUS) and have been described previously [194]. 

CRL11226, CRL1423, OS1-3 cells were cultured in RPMI, McCoy’s 5A and RPMI: 

DMEM 9:1 media respectively. Human fetal osteoblasts (hFOB1.19) are a gift from Dr 

Tong Cao (Department of Dentistry, NUS) and were maintained in DMEM/F-12 medium. 

U2OS cells stably transfected with SFRPs were cultured in McCoy’s 5A medium 

supplemented with 400 µg/ml of G418. All media were supplemented with 10-15 % FBS 

(Invitrogen, Carlsbad, CA), 10U/ml penicillin G and 100μg/ml streptomycin. The cells 

were cultured in a humidified atmosphere at 37 ºC containing 5% CO2. TOPglow and 

FOPglow reporters used in the luciferase reporter gene assays were purchased from 

Upstate Biotechnology (Lake Placid, NY) while the pSV-β-galactosidase control vector 

was from Invitrogen (Carlsbad, CA). pcDNA3.1-HIS-SFRPs plasmids and pcDNA3.1-

HIS empty vector controls were generous gift from Dr. Hiromu Suzuki (Sapporo Medical 

University, Sapporo, Japan) [61]. For stable transfection, U2OS cells were transfected 

with one of the pcDNA3.1-HIS-SFRP vectors or pcDNA3.1-HIS empty vector, using 

Lipofectamin 2000 (Invitrogen, Carlsbad, CA), according to the manufacturer’s protocol. 

Transfected cells were selected with G418 (400 µg/ml) for 14 days, starting 48 h after 

transfection.   
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5.2.2 Western blot analysis 

Western blot analyses used to examine the protein expression levels of β-catenin, active- 

β-catenin, SFRP1, SFRP2, SFRP4, SFRP5, MMP-2, MMP-9, cyclin D1, c-Myc and 

survivin in U2OS transfectants, were carried out as previously described (section 3.2.5). 

Anti-active-β-catenin antibody (clone 8E7), which is specific for β-catenin 

dephosphorylated on Ser31 and Thr41, was purchased from Upstate (Lake Placid, NY, 

USA). Antibodies for SFRP1, SFRP2 and SFRP4 were from Santa Cruz Biotechnology, 

Inc. (Santa Cruz, CA) while that of SFRP5 was purchased from ThermoFisher Scientific, 

(Waltham, MA). 

 

5.2.3 Polymerase Chain Reaction (PCR) 

Total RNA from the osteosarcoma cell lines was extracted using Qiagen’s RNeasy mini 

kit (Qiagen, Valencia, CA), according to the manufacturer’s instructions. Samples were 

treated with DNase (Ambion DNA-free kit, Applied Biosystems, Austin, TX) to remove 

genomic contaminants. RNA samples were reverse-transcribed to cDNA using iSCRIPT 

cDNA synthesis kit (BioRad, Hercules, CA), after which cDNA was amplified by PCR 

with primers specific for SFRP1, SFRP2, SFRP4, SFRP5 and GAPDH, using iTaq DNA 

polymerase kit (BioRad, Hercules, CA) and dNTP Mix (BioRad, Hercules, CA). The 

cycling conditions were as follows: 95 ºC for 3 mins, 30-35 cycles of denaturation at 95 

ºC for 30s, annealing at 55 ºC for 30s and extension at 72 ºC for 45s, followed by a 10 

mins final extension at 72 ºC. The PCR products were analyzed by electrophoresis on 3 

% agarose gels. The specific primers listed in Appendix 4 were kindly provided by Dr. 

Hiromu Suzuki (Sapporo Medical University, Sapporo, Japan).    
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5.2.4 Luciferase reporter gene assay 

Luciferase reporter gene assays using the U2OS transfectants were performed with 

Luciferase assay systems kit (Promega, Madison, WI) according to the manufacturer’s 

instructions, as detailed previously (section 3.2.3). Results were expressed as mean ± 

SEM of normalized ratios of luciferase and β-galactosidase activities for each triplicate 

sets. Reporter activities in U2OS/SFRPs transfectants were expressed as the percentage 

of that in U2OS/pcDNA3.1-HIS control cells.  

 

5.2.5 Immunofluorescence microscopy analysis 

U2OS stable transfectants were seeded and cultured in tissue culture-treated Lab-Tek™ 

Chambered Coverglass (Bio Laboratories, Singapore). On the following day, the cells 

were washed with PBS, fixed with 4 % formaldehyde, permeabilized with 0.5 % Triton 

X-100 and blocked in 1% Bovine Serum Albumin. The cells were then incubated with 

anti-β-catenin antibody (Santa Cruz, CA), followed by FITC-conjugated secondary 

antibody (Invitrogen, Carlsbad, CA). The cell nuclei were also counterstained with DAPI 

(Invitrogen, Carlsbad, CA). Images were acquired on an LSM 5 DUO inverted confocal 

microscope (Carl Zesis Inc, Germany).  

 

5.2.6 Anchorage-dependent MTT cell proliferation assay 

The effects of SFRPs on the proliferation of U2OS cells were assessed using MTT assays. 

U2OS transfectants were seeded into 96-well plates at a density of 10 x 103 cells/well and 

cultured over a period of 3, 5 and 7 days before cell growth was analyzed by adding 100 

μl of 1mg/ml MTT (Sigma Chemical Co., St Louis, MO). Following an incubation period 

of 4 h, DMSO was added to lyse the cells and dissolve the purple formazan crystals. The 
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absorbance of the formazan product was determined at λmax of 595 nm using a Tecan 

Spectra Fluor spectrophotometer (MTX Lab Systems Inc., Vienna, VA). Cell growth 

over the periods of 3, 5 and 7 days was expressed relative to that on Day 1 (set as 1.0).     

 

5.2.7 Colony formation assay 

U2OS cells were transfected with each of the pcDNA3.1-HIS-SFRP vectors or 

pcDNA3.1-HIS empty vector, using Lipofectamine 2000 (Invitrogen, Carlsbad, CA), 

according to the manufacturer’s protocol. Transfected cells were then reseeded in 100-

mm culture dishes at a density of 1:20 and selected with G418 (400 µg/ml) for 14 days. 

Colonies were then fixed with 70% ethanol and stained with 0.2% w/v crystal violet 

before they were enumerated.  

   

5.2.8 Cell migration and invasion assay 

U2OS cell migration and invasion were determined using the wound healing and 

Matrigel invasion assays as previously described (section 3.2.4).  

 

5.2.9 Cell cycle analysis 

The effect of SFRPs over-expression on the cell cycle distribution was accessed by flow 

cytometry after staining the cells with PI as described earlier (section 3.2.8).  

 

5.2.10 Gene expression profiling using real-time PCR array 

The Human Wnt Signaling Pathway RT2 ProfillerTM PCR Array (SA Bioscience, MD) 

was used to identify changes in expression of 84 key genes related to Wnt-mediated 
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signaling transduction with forced expressions of either SFRP2 or SFRP5 in U2OS cells 

as described earlier in section 4.2.10.  

 

5.2.11 Statistical analysis 

Statistical significance for treatment groups were analyzed using the two-tailed Student’s 

t-test (SPSS, Chicago, IL). The difference between values for each treatment 

concentration and the respective controls was considered to be statistically significant 

when P < 0.05. 

 

5.3 Results 

5.3.1  Analysis of Wnt antagonist genes, SFRP1, 2, 4 and 5 in osteosarcoma cell 

lines 

Down-regulation of SFRP genes through epigenetic silencing was commonly found in 

various malignancies [58, 61, 62, 278, 279]. While the loss of SFRP3 expression has 

previously been observed in osteogenic sarcoma biopsy specimens and several 

osteosarcoma cells lines [56], the functional roles of SFRP1, 2, 4 and 5 as potential tumor 

suppressors in osteosarcoma have yet been explored. We therefore hypothesized that a 

loss of SFRP1, 2, 4 or 5 may contribute to the activation of Wnt signaling and, thus be 

implicated in the pathogenesis of osteosarcoma. To this end, we first compared the 

expression status of these Wnt genes in a panel of eight osteosarcoma cell lines against 

hFOB using PCR. As osteosarcoma is a mesenchymal neoplasm that can result from 

morphologically abnormal osteoblastic cells producing defective immature bone (osteoid), 

hFOB have been commonly used in previous studies as normal control of gene profile 



 
 

 140 

against osteosarcoma cell lines and tissue samples [19, 26, 56, 65]. As shown in Figure 

5-1, SFRP1, 2 and 5, but not SFRP4 mRNA were expressed in hFOB cells. Compared to 

hFOB cells, the expression of SFRP1 was down-regulated in U2OS, HOS, CRL1423 and 

OS2 cell lines and completely absent in SaOS-2 cells. We found that SFRP2 mRNA 

expression was completely absent in four of the eight osteosarcoma cell lines tested 

(U2OS, CRL11226, CRL1423 and OS3) and was down-regulated in HOS, compared to 

hFOB. While SFRP4 expression was absent in HOS and CRL11226 cell lines, the other 

cell lines showed varied expressions of SFRP4 gene: strong expression in OS1 and weak 

but detectable expressions in U2OS, SaOS-2, CRL1423, OS2 and OS3 cell lines. On the 

other hand, SFRP5 expression was markedly suppressed in all eight osteosarcoma cell 

lines tested compared to hFOB cells, and completely absent in U2OS and CRL1423 cells. 

To investigate the anti-tumor effects of SFRPs in osteosarcoma, U2OS cells were used 

for the restoration of SFRPs in subsequent studies, given that they consistently showed 

low expressions of SFRP1, 2 and 5 compared to hFOB.  

 

                                  CRL    CRL 
    U2OS   HOS  SAOS  11226  1423    OS1    OS2    OS3   HFOB   NTC   

 
Figure 5-1. Frequent inactivation of Wnt antagonist genes, SFRP1, 2, 4 and 5 in 
osteosarcoma cell lines. RT-PCR analysis of SFRP1, 2, 4 and 5 in hFOB, together with 
eight osteosarcoma cell lines. GAPDH was used as a loading control.  NTC, no template 
control was included as a negative control.    

SFRP1 

SFRP2 

SFRP4 

SFRP5 

GAPDH 
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5.3.2  Establishment of stable transfectants of SFRP1, 2, 4 and 5 in U2OS cells 

To elucidate the role of SFRP1, 2, 4 and 5 in osteosarcoma disease progression, we stably 

transfected U2OS cells with each of the SFRPs under study and pcDNA3.1-HIS control 

vectors. The reexpressions of the SFRPs genes in stable clones were confirmed by 

western blotting and RT-PCR (Figure 5-2). U2OS/SFRP1 clone #2, U2OS/SFRP2 clone 

#7, U2OS/SFRP4 clone #1 and U2OS/SFRP5 clone #3 were selected and used for 

subsequent experiments as the mRNA and protein expressions of SFRPs in these clones 

were highly up-regulated in U2OS/SFRP cells compared with the U2OS/pcDNA3.1-HIS 

cells. Other clones were not selected as the SFRPs expressions in these clones were either 

low or totally absent.  

 

(a) 
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(b) 

 

 

(c)  

 

Figure 5-2. Successful establishment of stable transfectants of SFRP1, 2, 4 and 5 in 
U2OS cell. (a) Successful selection of several stable clones, verified by western blots 
using antibodies against the respective SFRPs. α-Tubulin was used as a loading control. 
(b-c) Selected stable clones to be used for subsequent experiments, with SFRPs protein 
and mRNA expressions verified using (b) western blot analysis and (c) RT-PCR analysis 
respectively. GAPDH was used as a loading control in RT-PCR.     
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5.3.3  Restoration of SFRPs expression decreased β-catenin production and 

inhibited TCF-dependent transcriptional activity 

Activation of the Wnt/β-catenin signaling pathway results in phosphorylation of GSK-3β 

and stabilization of cytosolic β-catenin leading to activation of TCF-mediated 

transcriptional activity [35]. To evaluate the effects of SFRP1, 2, 4 and 5 on the 

downstream  β-catenin/TCF transcriptional activity in osteosarcoma cells, U2OS/SFRP1, 

U2OS/SFRP2, U2OS/SFRP4  and  U2OS/SFRP5 stable transfectants were transiently co-

transfected with reporter plasmids containing either wild-type (TOPGlow) or mutant 

(FOPGlow) consensus TCF/LEF binding elements and pSV-β-galatosidase control vector 

for normalization of transfection efficiency. As shown in Figure 5-3a, β-catenin/TCF 

transcriptional activities were significantly suppressed in all the stable transfectants. 

Compared to the U2OS/pcDNA3.1-HIS control cells, TCF-mediated transcription were 

inhibited by approximately 88 %, 57 %, 49 % and 62 % in the U2OS/SFRP1, 

U2OS/SFRP2, U2OS/SFRP4 and U2OS/SFRP5 cells respectively. Transcriptional 

activity for FOPGlow remained low at all instances. Consistently, the suppression of β-

catenin/TCF transcriptional activities in the U2OS/SFRPs transfectants were 

accompanied by marked decrease in total β-catenin protein expressions (Figure 5-3b).  
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Figure 5-3. SFRPs over-expression inhibited TCF-dependent transcriptional activity 
and decrease β-catenin protein. (a) Luciferase reporter gene assays by using either 
reporter gene TOPGlow or a negative control with mutant TCF-4 binding sites 
(FOPGlow) was used to analyze TCF-dependent transcriptional activity. Results were 
expressed as mean ± SEM of normalized ratios of luciferase and β-galactosidase 
activities for each triplicate sets. Reporter activities in U2OS/SFRPs transfectants were 
expressed as the percentage of that in U2OS/pcDNA3.1-HIS control cells. ** P>0.01, 
compared with U2OS/pcDNA3.1-HIS control group. (b) Western blot analysis of total β-
catenin protein expression in U2OS/SFRPs stable transfectants. α-Tubulin was used as a 
loading control. 
  

5.3.4  Ectopic expressions of SFRP1, 2, 4 and 5 decreased nuclear β-catenin and 

facilitated the translocation of β-catenin protein to the cell membrane 

Using immunofluorescence microscopy analysis, we next examined whether over-

expression of SFRPs were associated with changes in the localization of β-catenin protein. 

As shown in Figure 5-4, over-expression of SFRP1, 2, 4 or 5 is associated with a 
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reduction in nuclear β-catenin immunofluorescence signal and a corresponding increase 

in membranous β-catenin localization compared to the control vector pcDNA3.1 U2OS 

cells, suggesting that restoration of SFRPs resulted in β-catenin translocating from the 

nucleus to adherent junctions of the cell membrane in U2OS cells.   

 

                             DAPI                          β-catenin                      Merged 
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                              DAPI                          β-catenin                      Merged 
 

   
 

   
 

Figure 5-4. Immunofluorescence microscopy analysis of β-catenin protein 
localization in U2OS cells over-expressing SFRPs. The cells were incubated with anti-
β-catenin antibody and the nuclei were also counter stained with DAPI. Representative 
images from three independent experiments shown were acquired on an LSM 5 DUO 
inverted confocal microscope.  
 

5.3.5  Over-expression of SFRPs suppressed both anchorage-dependent cell 

growth, colony formation and disrupted cell cycle progression through 

affecting  proliferation-associated Wnt-responsive genes expressions in U2OS 

cells 

Previous studies have reported that disruption of Wnt/β-catenin signaling using DN-

LRP5 inhibited both in vitro and in vivo osteosarcoma growth [52]. We have also 

recently demonstrated that PKF118-310, a specific Wnt/β-catenin antagonist, induced 

apoptosis and G2/M phase cell cycle arrest but suppressed osteosarcoma cell proliferation 

[195]. Given that β-catenin/TCF signaling and its gene products such as cyclin D1, c-

Myc and survivin are known to collectively regulate cell proliferation, cell cycle 
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distribution and apoptosis, we next investigated the effects of SFRP1, 2, 4 and 5 on the 

expressions of these Wnt responsive oncogenes such as cyclin D1, c-Myc and survivin 

[97, 98]. 

 

As shown in Figure 5-5a, we observed a significant decrease in cyclin D1 protein 

expression in all the SFRPs transfectants. Survivin protein expression was also down-

regulated with over-expression of SFRP2, 4 and 5 while the protein expression for c-Myc 

was markedly suppressed by the restoration of SFRP2, but up-regulated by ectopic 

expressions of SFRP4 and SFRP5. Given the observations, we further asked if the 

perturbation of cyclin D1, c-Myc and survivin protein expressions correlated with anti-

proliferation and pro-apoptotic effects with over-expression of SFRPs antagonist in 

U2OS cells.  

 

Anchorage-dependent growth of each transfectant was determined using the MTT cell 

proliferation assay, Figure 5-5b showed correspondingly lower rate of growth over a 

period of 7 days in SFRPs transfected U2OS cells compared to that of U2OS/pcDNA3.1-

HIS control cells. Specifically, transfection with SFRP1, 2, 4 and 5 exhibited 

approximately 1.5-, 2.0-, 2.7- and 1.6-fold lower rate of anchorage-dependent growth 

than the U2OS/pcDNA3.1-HIS control cells after 7 days of cell seeding respectively.  

 

Consistent with both the suppression of proliferation-associated Wnt responsive targets 

and the inhibition of anchorage-dependent growth, results from the colony formation 

assay demonstrated that restoration of SFRP1, 2, 4 and 5 attenuated anchorage-

independent growths of osteosarcoma cells (Figure 5-5c). Compared with the 
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U2OS/pcDNA3.1-HIS control cells, transfection of SFRP-1, 2, 4 and 5 resulted in 88.7 %, 

83.2 %, 65.6 % and 72.9 % reduction in the number of colonies formed respectively.   

 

To examine if SFRPs could exert their anti-proliferative effects through disruption of cell 

cycle progression and/or apoptosis, we performed flow cytometry analysis. Our results 

revealed that over-expression of SFRP4 and SFRP5 significantly induced the rate of 

apoptosis (Sub-G1 phase) by 229.3 % and 249.2 % respectively, compared to the 

U2OS/pcDNA3.1-HIS control cells (Figure 5-5d). We also found that restoration of 

SFRP1, 2 and 5 resulted in an increase in the number of cells in the G0/G1 phase (66.3 % 

in control vs. 72.8 %, 74.8 % and 68.5 % respectively), with a corresponding decrease in 

the number of cells in the G2/M phase (17.2 % in control vs. 10.7 %, 12.6 % and 10.6 % 

respectively), suggesting an induction of G0/G1 phase arrest. On the other hand, a G2/M 

phase arrest was observed for over-expression of SFRP4, as indicated by the 

accumulation of cells in the G2/M phase (51.06 %), but a reduction in the number of cells 

in the G0/G1 phase (6.6 %). Taken together, our studies showed that restoration of 

SFRPs in U2OS cells resulted in the suppression of both anchorage-dependent (Figure 

5-5b) and -independent growth (Figure 5-5c), possibly through disruptions of the cell 

cycle progression (Figure 5-5d) and alterations of proliferation-associated Wnt target 

oncogenes (Figure 5-5a).     

 

 

 

 



 
 

 149 

(a) 

 

(b) 

SFRP1

0

2

4

6

8

10
pcDNA3.1-HIS

SFRP1

1 3 5 7

**

Days after seeding

C
el

l v
ia

bi
li

ty
(R

el
at

iv
e 

to
 D

ay
 1

)

SFRP2

0

2

4

6

8

10
pcDNA3.1-HIS

SFRP2

1 3 5 7

**
*

Days after seeding

C
el

l v
ia

bi
li

ty
(R

el
at

iv
e 

to
 D

ay
 1

)

SFRP4

0

2

4

6

8

10
pcDNA3.1-HIS

SFRP4

1 3 5 7

****
*

Days after seeding

C
el

l v
ia

bi
li

ty
(R

el
at

iv
e 

to
 D

ay
 1

)

SFRP5

0

2

4

6

8

10
pcDNA3.1-HIS

SFRP5

1 3 5 7

**
**

*

Days after seeding

C
el

l v
ia

bi
li

ty
(R

el
at

iv
e 

to
 D

ay
 1

)

 

 

pcDNA3.1 
HIS  

SFRP1  pcDNA3.1 
HIS  

SFRP5  pcDNA3.
1 HIS  

SFRP4  pcDNA3.1 
HIS  

SFRP2 

Cyclin D1 

Survivin  

c-Myc 

α-Tubulin 



 
 

 150 

(c) 

 

0

20

40

60

80

100

****

**

pcDNA3.1
      HIS

**

SFRP1 SFRP2 SFRP4 SFRP5

R
el

at
iv

e 
co

lo
ny

 fo
rm

at
io

n
 (%

 o
f c

on
tr

ol
)

 

(d) 

     

0
10
20
30
40
50
60
70
80 Sub-G1

G0/G1
S
G2/M

pcDNA
3.1-HIS

SFRP1 SFRP2 SFRP4 SFRP5

**

**** **

**

**

**

****

**

**

** **
**

C
el

l c
yc

le
 p

ha
se

s (
%

)

 

Figure 5-5. Over-expression of SFRP1, 2, 4 and 5 suppressed anchorage-dependent 
cell growth and colony formation, disrupted cell cycle progressions through down-
regulating proliferation-associated Wnt-responsive genes in U2OS cells. (a) Western 
blot analysis of proliferation-associated Wnt target oncogenes such as cyclin D1, c-Myc 
and survivin in U2OS/SFRPs stable transfectants. α-Tubulin was used as a loading 
control. (b) Anchorage-dependent growth over periods of 3, 5 and 7 days were evaluated 
by MTT proliferation assay and expressed as mean ± SEM relative to that on Day 1 (set 
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as 1.0). (c) Representative images from three independent experiments showing a 
decrease in the number of colonies formed with U2OS cells stably transfected with 
SFRP, compared to pcDNA3.1-HIS control vector, after selection with G418 (400µg/ml) 
for 14 days. Relative colony formation was expressed as the percentage of colonies 
formed with U2OS transfected with empty vector, pcDNA3.1-HIS. ** P<0.01, compared 
with the pcDNA3.1-HIS control vector group. (d) Cell cycle distribution of the U2OS 
transfectants was measured by flow cytomerty analysis and the results were plotted as the 
percentage of cell in each cell cycle phase. Data were presented as mean ± S.E.M from 
three independent experiments. ** P<0.01, indicated the difference in the various cell 
cycle phases with SFRP over-expression, compared with the pcDNA3.1-HIS control 
vector group. 
 
 
5.3.6  Restoration of SFRPs expression inhibited U2OS cell invasion and migration 

through regulating MMP-2 and MMP-9 proteins 

Our group and several others have recently shown that inhibition of Wnt/β-catenin 

signaling using either PKF118-310, a specific antagonist of the pathway or endogenous 

inhibitors such as DN-LRP5 and DKK-3 could result in the suppression of cell 

invasiveness and motility of osteosarcoma cells [52, 63, 195]. Given these observations, 

we also examined the in vitro invasiveness and motility of U2OS cells expressing SFRP1, 

SFRP2, SFRP4, SFRP5 or pcDNA3.1-HIS vector control in Matrigel invasion and 

wound healing assays. As shown in Figure 5-6a, the capacity of SFRP1, SFRP2, SFRP4 

and SFRP5-transfected U2OS cells to invade through the Matrigel-coated inserts over a 

period of 24 h were significantly decreased (80.3 %, 53.4 %, 73.9 % and 83.0 % 

respectively) compared with control cells (100 %). Except for SFRP4, over-expressions 

of SFRP1, 2 and 5 resulted in a parallel reduction in cell motility in U2OS cells using the 

wound healing assay (Figure 5-6b). 

 

MMPs play important roles in the degradation of extracellular matrix to facilitate cancer 

cell metastasis [216]. Given that MMP-2 and MMP-9 are the two major extracellular 
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matrix degradation enzymes associated with enhanced osteosarcoma tumor invasion and 

metastasis [217-219], we examined whether reduced invasion with ectopic expression of 

SFRP1, 2, 4 and 5 correlated with MMP-2 and MMP-9 protein expressions in U2OS cells. 

Western blot analysis showed that restoration of SFRP1 and SFRP4 resulted in a decrease 

in both MMP-2 and MMP-9 protein expressions (Figure 5-6c). On the other hand, with 

over-expression of SFRP2, we observed a reduction in MMP-9 expression but an 

unexpected increase in MMP-2 protein expression. SFRP5 did not have any effects on 

both the MMP-2 and MMP-9 protein expressions, although the invasive capacity and 

motility of U2OS cells were markedly reduced with ectopic expression of this Wnt 

antagonist gene. Altogether, our results suggest that restoration of SFRPs in U2OS cells 

significantly inhibited U2OS cell invasiveness (Figure 5-6a) and/or motility (Figure 5-6b), 

and that other metastasis-associated genes, besides MMP-2 or MMP-9, may be involved 

in regulating U2OS metastasis.   
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Figure 5-6. SFRPs over-expression inhibited OS cell metastasis through suppressing 
MMP-2 and MMP-9 protein. (a) Inhibition of U2OS cell invasion by SFRPs over-
expression. Cells invaded through to the lower surface of the Matrigel-coated inserts over 
a period of 24 h were captured on a light microscope at 200 x magnification after staining 

pcDNA3.1-HIS  

 0h                       
 
 
24h                     

SFRP1  SFRP5  SFRP2  

pcDNA3.1 
HIS  

SFRP1  pcDNA3.1 
HIS  

SFRP5  pcDNA3.1 
HIS  

SFRP4  pcDNA3.1 
HIS  

SFRP2 

 

 

SFRP4 

MMP-9 

MMP-2 

α-Tubulin 



 
 

 154 

with crystal violet. Ten random fields were enumerated and data were presented as means 
± SEM of three independent experiments. Cell invasion in U2OS/SFRP transfectants 
were expressed as the percentage of invasion in U2OS/pcDNA3.1-HIS. ** P>0.01, 
compared to the U2OS/pcDNA3.1-HIS group. (b) Representative images from three 
independent experiments showing differential wound closure rates of U2OS cells stably 
transfected with SFRPs or empty vector, pcDNA3.1-HIS, captured using microscope at 
10 x objective. (c) Western blot analysis of MMP-2 and MMP-9 protein expressions in 
U2OS/SFRPs stable transfectants. α-Tubulin was used as a loading control. 
 

 

5.3.7 Changes in gene expression profile induced by over-expression of SFRP2 or 

SFRP5 in U2OS cells 

To identify critical targets of Wnt inhibition, we next examined the global changes in 

gene expression of 84 genes related to Wnt-mediated signal transduction in U2OS cells 

over-expressed with either SFRP2 or SFRP5 using the Human Signaling Pathway RT2 

ProfilerTM PCR arrays. Expressions of selected genes that were significantly up- or down-

regulated (p-value < 0.05) were presented in (Table 5-1) while the others were reported in 

Appendix 5 and 6. As shown in Table 5-1, over-expression of SFRP2 resulted in the 

significant up-regulation of several endogenous Wnt antagonists such as DKK1, WIF-1 

and SFRP1 while the transcription levels of DKK1 and FRZB were elevated with 

restoration of SFRP5. With ectopic expression of SFRP2, the levels of several Wnt 

ligands and receptors including WNT 5a, WNT 5b, WNT 11, FZD2, FZD4, FZD6 and 

FZD7 were significantly suppressed. In contrast, those of WNT 1, WNT 2, WNT 2b, 

WNT 3, WNT 7a, WNT 8a, WNT 9a, WNT 16, FZD3, FZD5 and FZD8 were up-

regulated. The expressions of a different set of Wnt ligands and receptors were 

perturbated with over-expression of SFR5: Compared with pcDNA3.1 HIS control U2OS 

cells, mRNA levels of WNT 5a, WNT 11, FZD4 and FZD7 were significantly suppressed, 
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while those of WNT 10a, WNT 16, WNT 2b and FZD3 were up-regulated in U2OS cells 

over-expressing SFRP5. 

 

Furthermore, the transcriptional expressions of several Wnt signaling components that 

play important roles in facilitating the phosphorylation-dependent ubiquitination of 

cytoplasmic β-catenin including APC, β-TrCP, CSNK1G1, FBXW2 and FBXW11 and 

were significantly up-regulated in both SFRP2 and SFRP5 over-expressed U2OS cells 

(Table 5-1). Forced expression of SFRP5 also resulted in a significant up-regulation of 

SENP2 mRNA levels. The expressions of other Wnt signaling components necessary for 

ubiquitination of cytoplasmic β-catenin such as CSNK1D, GSK-3β and FBXW4 were 

enhanced with restoration of SFRP2, but remained unchanged in U2OS cell over-

expressing SFRP5.  

 

We also found perturbations in several genes that play critical roles in TCF/β-catenin 

transcription when SFRPs are over-expressed in U2OS cells. Our gene array analysis 

showed a 2.2-fold increased in AES gene which encodes groucho, a nuclear 

transcriptional co-repressor that blocks TCF/β-catenin transcription with ectopic 

expression of SFRP5 in U2OS cells (Table 5-1). The expressions of transcriptional co-

repressor proteins such as CTBP2 and TLE1 were up-regulated 2.03- and 2.00-fold 

respectively, while levels of LEF transcriptional factor was significantly suppressed with 

restoration of SFRP2.  
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In addition, forced expressions of both SFRP2 and SFRP5 resulted in the suppression of 

oncogene WISP1 but induced levels of T tumor suppressor gene. The expressions of 

other Wnt target oncogenes such as JUN and c-Myc were also significantly down-

regulated in U2OS cells stably transfected with SFRP2 and SFRP5 respectively. 

Consistent with results from the western blot analysis Figure 5-5a, we further observed 

that the cyclin D1 transcriptional levels were suppressed by approximately 2-fold in 

SFRP2 stable transfectants, but an increased in cyclin D2 mRNA was also observed.  

Much to our surprise, we found up-regulations in the gene expressions of several 

activators of the Wnt/β-catenin/TCF signaling pathway such as DVL1 and DVL2 while 

NKD1, a dishevelled-binding protein was significantly suppressed with restoration of 

either SFRP2 or SFRP5. Unexpectedly, TCFL1 expression was found to be up-regulated 

in U2OS cells over-expressing SFRP5.  

 

Taken together, we identified several novel Wnt signaling components and target genes 

that may possibly explain the mechanism of Wnt inhibition and tumor suppressive effects 

of SFRP2 and SFRP5 in U2OS cells observed in the preceding anti-cancer functional 

assays.  
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Table 5-1. Wnt signaling components and target genes that significantly dysregulated with over-expression of SFRP2 or SFRP5 
in U2OS cells.   

  SFRP2 over-expression SFRP5 over-expression 

Gene           
(Gene Symbol) 

Function  Fold  
change 

p-value Up (↑) / 
down (↓) 

Regulation 

Fold  
change 

p-value Up (↑) / 
down (↓) 

Regulation 

Amino-terminal 
enhancer of split 
(AES) 

Mammalian homologue of the Drosophila 
groucho which serves as a nuclear 
transcriptional co-repressor by interacting 
with TCF family of proteins to block 
TCF/β-catenin transcription and thus 
repress Wnt target oncogenes 

- - - 2.16 0.041 ↑ 

Adenomatosis 
polyposis coli 
(APC)  

 

Tumor suppressor gene which facilitates 
the degradation of β-catenin by binding it 
and recruiting it to the APC-Axin-GSK-3β 
β-catenin destructive complex as well as 
by exporting nuclear β-catenin 

2.16 0.0019 ↑ 1.79 0.038 ↑ 

Beta-transducin 
repeat containing 
(β-TrCP) 

A component of an E3 ubiquitin ligase 
complex, which functions in 
phosphorylation-dependent ubiquitination 
of cytoplasmic β-catenin, thus destabilizes 
it. 

1.23 0.011 ↑ 1.79 0.040 ↑ 

Cyclin D1 Wnt target oncogene that stimulates tumor 
cell proliferation and cell cycle 

1.97 0.00030 ↓ - - - 



 
 

 158 

(CCND1) progression in the G1/S phase.  

Cyclin D2 
(CCND2) 

Wnt target oncogene that stimulates tumor 
cell proliferation and cell cycle 
progression in the G1/S phase, 
compensatory increase in cyclin D2 was 
observed with cyclin D2 knockdown  

2.63 0.000076 ↑ - - - 

Casein kinase 1, 
delta       
(CSNK1D) 

Facilitate phosphorylation and 
destabilization of cytoplasmic β-catenin 

1.96 0.0010 ↑ - - - 

Casein kinase 1, 
gamma 1 
(CSNK1G1) 

 3.47 0.00026 ↑ 2.05 0.00046 ↑ 

C-terminal binding 
protein 2    
(CTBP2) 

A transcriptional co-repressor that function 
as a scaffold protein to recruit chromatin-
modifying enzymes to TCF/LEF family of 
DNA-binding transcriptional factors, thus 
facilitating the transcriptional repression 
activity of TCF/LEF, as well as 
antagonizing the activity of p300 co-
activator complex  

2.03 0.00054 ↑ - - - 

Dickkopf 1 
(DKK1) 

Endogenous Wnt antagonist that attenuates 
Wnt signaling by binding to LRP and 
Kremen receptors, and sterically hindering 
Wnt interaction with LRPs 

3.32 0.000005 ↑ 1.178 0.037 ↑ 

Dishevelled A critical cytoplasmic transducer regulator 1.38 0.0075 ↑ 1.447 0.019 ↑ 
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homolog 1 (DVL1) that functions to release β-catenin from 
ubiquitin-dependent degradation 

Dishevelled 
homolog 2  
(DVL2) 

 2.24 0.0011 ↑ 1.395 0.046 ↑ 

F-box and WD 
repeat domain 
containing 2 
(FBXW2) 
 

A member of the F-box protein family that 
constitutes one of the four subunits of 
ubiquitin protein ligase complex called 
SCFs (SKP1-cullin-F-box), which function 
in phosphorylation-dependent 
ubiquitination. 

3.78 0.0010 ↑ 2.76 0.019 ↑ 

F-box and WD 
repeat domain 
containing 4 
(FBXW4) 
 

 1.66 0.0061 ↑ - - - 

F-box and WD 
repeat domain 
containing 11 
(FBXW11) 
 

 1.49 0.0030 ↑ 1.44 0.0066 ↑ 

Frizzled receptor 2 
(FZD2) 

Member of the 'frizzled' gene family 
encode 7-transmembrane domain proteins 
receptors that interacts with Wnt signaling 
proteins to initiate Wnt signaling. 

1.87 0.0052 ↓ - - - 

Frizzled receptor 3 
(FZD3) 

 1.81 0.00075 ↑ 1.811 0.045 ↑ 



 
 

 160 

Frizzled receptor 4 
(FZD4) 

 2.70 0.0037 ↓ 2.55 0.016 ↓ 

Frizzled receptor 5 
(FZD5) 

 2.63 0.00032 ↑ - - - 

Frizzled receptor 6 
(FZD6) 

 5.02 0.000032 ↓ - - - 

Frizzled receptor 7 
(FZD7) 

 3.72 0.00062 ↓ 1.34 0.052 ↓ 

Frizzled receptor 8 
(FZD8) 

 1.62 0.0013 ↑ - - - 

Glycogen synthase 
kinase 3β   
(GSK3β) 

A component of Axin-GSK-3β β-catenin 
destructive complex which function in 
phosphorylation-dependent ubiquitination 
of cytoplasmic β-catenin, thus destabilize 
it.  

1.48 0.0016 ↑ - - - 

Jun oncogene 
(JUN) 

A Wnt target oncogene that is over-
expressed in osteosarcoma, and its 
suppression inhibited growth and 
metastasis of osteosarcoma in an 
orthotopic spontaneously metastasizing 
neoplasia model 

1.72 0.00039 ↓ - - - 

Lyphoid enhancing 
factor 1        

Member of TCF/LEF transcription factors 
that function as mediator of the Wnt/β-
catenin transcription, also a Wnt target 

1.43 0.053 ↓ - - - 
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(LEF1) gene 

V-myc 
myelocytomatosis 
viral oncogene 
homolog       
(MYC) 
 

A multifunctional, nuclear phosphoprotein 
that is frequently over-expressed in various 
malignancies, and plays a role in cell cycle 
progression, apoptosis and cellular 
transformation, as well as functions as a 
transcription factor that regulates 
transcription of specific target genes. 

- - - 2.81 0.047 ↑ 

Naked cuticle 
homolog 1  
(NKD1) 

A Dishevelled-binding protein that 
functions as a negative regulator of the 
Wnt/β-beta-catenin/TCF signaling 
pathway 

1.63 0.0048 ↓ 1.61 0.016 ↓ 

Frizzled-related 
protein 1    
(SFRP1) 

Belongs to a family of five glycoprotein 
(SFRP1-5) that competes with Frizzled 
receptors for bind Wnt ligands and 
silencing of this tumor suppressor gene is 
implicated in several malignancies  

1.49 0.0026 ↑ - - - 

Frizzled-related 
protein 3      
(FRZB) 

 - - - 2.445 0.010 ↑ 

SUMO1/sentrin/S
MT3 specific 
peptidase 2 
(SENP2) 

Axin-binding protein that promotes β-
catenin ubiquitination and degradation 

- - - 1.66 0.052 ↑ 

Solute carrier 
family 9 (sodium/ 

β-catenin-associating protein that 
potentiates β-catenin/TCF-dependent 

1.15 0.011 ↓ - - - 
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hydrogen 
exchanger), 
member 3 regulator 
1         
(SLC9A3R1) 

transcription, and function as a tumor 
suppressor to regulate anti-cancer activities 

T, brachyury 
homolog             
(T) 
 

Epigenetic silencing of this tumor 
suppressor is implicated in non-small-cell 
lung cancer 

1.62 0.0048 ↑ 1.44 0.027 ↑ 

T-cell specific 
transcription factor 
7-like 1    
(TCF7L1) 

Member of TCF/LEF transcription factors 
that function as mediator of the Wnt/β-
catenin transcription  

- - - 1.36 0.0073 ↑ 

Transducin-like 
enhancer of split 1 
(TLE1) 

Mammalian homologue of the Drosophila 
groucho which serves as a nuclear 
transcriptional co-repressor by interacting 
with TCF family of proteins to block 
TCF/β-catenin transcription and thus 
repress Wnt target oncogenes 

1.97 0.00030 ↑ - - - 

WNT inhibitor 
factor 1 (WIF1) 
 

A Wnt antagonist that is frequently 
silenced in many tumors including 
osteosarcoma, and restoration of this 
tumor suppressor gene suppressed cell 
proliferation, invasiveness and in vivo 
lung metastasis in many cancers  

3.32 0.000005 ↑ - - - 
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WNT1 inducible 
signaling pathway 
protein 1     
(WISP1) 

A member of the connective tissue growth 
factor that is frequently over-expressed in 
various tumors, and is involve in the 
regulation of various processes leading to 
tumorigenesis and malignant 
transformation including cell proliferation, 
migration, adhesion, angiogenesis and 
extracellular matrix formation. 

7.67 0.00025 ↓ 2.85 0.0021 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 1   
(WNT1) 

Secreted signaling protein that are 
implicated in oncogenesis and in several 
developmental processes 

3.32 0.000005 ↑ - - - 

Wingless-type 
MMTV integration 
site family, 
member 2   
(WNT2) 

 3.21 0.00005 ↑ - - - 

Wingless-type 
MMTV integration 
site family, 
member 2B 
(WNT2B) 

 1.16 0.0047 ↑ 1.37 0.011 ↑ 

Wingless-type 
MMTV integration 
site family, 

 1.41 0.0036 ↑ - - - 



 
 

 164 

member 3   
(WNT3) 

Wingless-type 
MMTV integration 
site family, 
member 5A 
(WNT5A) 

 1.85 0.0022 ↓ 1.47 0.022 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 5B 
(WNT5B) 

 1.52 0.0054 ↓ - - - 

Wingless-type 
MMTV integration 
site family, 
member 7A 
(WNT7A) 

 3.38 0.0053 ↑ - - - 

Wingless-type 
MMTV integration 
site family, 
member 8A 
(WNT8A) 

 1.92 0.00061 ↑ - - - 

Wingless-type 
MMTV integration 
site family, 
member 9A 

 2.15 0.0034 ↑    
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(WNT9A) 

Wingless-type 
MMTV integration 
site family, 
member 10A 
(WNT10A) 

 - - - 1.66 0.0015 ↑ 

Wingless-type 
MMTV integration 
site family, 
member 11 
(WNT11) 

 11.21 0.00025 ↓ 5.57 0.00044 ↓ 

Wingless-type 
MMTV integration 
site family, 
member 16 
(WNT16) 

 3.32 0.000005 ↑ 1.57 0.041 ↑ 

 
Selected genes that are involved in the Wnt/β-catenin signaling with forced expression of SFRP2 in U2OS cells were listed. The gene 
symbol, gene function, fold-change, p-value, status of transcription has been described for each gene. The fold-changes in gene 
expression and p-values of the full list of the 84 genes were reported in Appendix 5. 
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5.4  Discussion  

The Wnt/β-catenin pathway was first linked to cancer formation when it was found to be 

chronically activated in spontaneous forms of colon cancer. Approximately 90 % of 

colon cancers showed aberrant Wnt signaling, usually as a result of mutation in APC 

(80 %) [79-81], and less frequently due to mutations in β-catenin [76, 77] or Axin [85, 

86]. On the other hand, mutations in APC and β-catenin are rare in osteosarcoma, despite 

accumulation of β-catenin protein [73, 74]. Instead, epigenetic silencing of genes 

encoding upstream components seemed to be the preferred route to chronic Wnt signaling 

dysfunction in osteosarcoma. Attention has therefore been focused on the contributory 

role of Wnt upstream components in osteosarcoma pathogenesis. 

 

Indeed, over-expressions of numerous upstream membrane-bound Wnt components 

including Wnt ligands (Wnt 1, 4, 5a, 7, 10b, 11) [47, 48], Frizzled receptors (FZD1-10) 

[47] and LRP5 co-receptor [47, 51, 52] have been implicated in osteosarcoma 

tumorigenesis and metastasis. Epigenetic silencing of genes encoding endogenous Wnt 

pathway cell surface inhibitors such as DKK3 [63] and WIF-1 [65, 149] were observed to 

promote osteosarcoma disease progression. Furthermore, it has been previously reported 

that SFRP3 transcription was severely suppressed in osteogenic sarcoma biopsy 

specimens and several osteosarcoma cells lines [56], while the forced expression of 

SFRP3 inhibited in vivo tumor growth and lung metastasis [232]. However, the molecular 

functions of other members of the SFRPs family in the pathogenesis of osteosarcoma 

have not been reported, despite strong evidence of their status as tumor suppressors. 
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Therefore, we hypothesized that SFRP1, 2, 4 or 5 function as tumor suppressor genes and 

restoration of these may inhibit osteosarcoma tumorigenesis and metastasis.  

 

To test our hypothesis, we first established the constitutive levels of SFRPs in 

osteosarcoma cells by PCR. In general, SFRPs expressions in osteosarcoma cells are 

down-regulated compared hFOB cell lines (Figure 5-1). However, we did not detect 

mRNA expression of SFRP4 in hFOB cells. In agreement with our observations, several 

studies have previously reported undetectable mRNA levels of one or more SFRPs levels 

in normal human tissues or cell lines such as normal breast, lung and mesothelioma [58, 

280]. Despite lacking abundant expression in hFOB, SFRP4 may nevertheless bear 

crucial tumor-suppressive functions that only become effective under certain tumorigenic 

circumstances. This speculation is supported by a study which found that low levels of 

SFRP5 was readily inducible by activating Wnt signaling through forced expression of 

Wnt-1 or treatment with LiCl [281]. Effective inhibitions of the Wnt/β-catenin pathway 

by restoration of SFRPs in U2OS cells were subsequently shown by marked suppression 

of both β-catenin/TCF transcriptional activities (Figure 5-3a) and total β-catenin protein 

levels (Figure 5-3b), as well as re-distribution of β-catenin protein from the nucleus to the 

cell membrane (Figure 5-4) using luciferase reporter assays, western blotting and 

immunofluorescence confocal microscopy analyses respectively.  

 

Upon restoration of the SFRPs, anchorage-dependent (Figure 5-5b) and –independent 

(Figure 5-5c) growths of osteosarcoma cells were found to be negatively regulated. 

Analysis of cell cycle progression by flow cytometry further revealed that ectopic 
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expressions of SFRP1, 2 and 5 resulted in G0/G1 mitosis exit abnormity while a G2/M 

phase delay was observed with over-expression of SFRP4 in U2OS cells, accounting for 

the anti-proliferation effects of SFRPs in U2OS (Figure 5-5d). High apoptotic rate in 

SFRP4 and SFRP5 over-expressing cells might contribute additionally to cell 

proliferation suppression in U2OS cells (Figure 5-5d). Our western blot results 

demonstrated that perturbations of protein expressions of several Wnt target proliferation-

associated oncogenes including cyclin D1, c-Myc and survivin [234-241], correlated with 

anti-proliferation and pro-apoptotic effects with over-expression of SFRPs antagonist in 

U2OS cells. 

 

Interestingly, we observed an up-regulation of c-Myc protein expression in U2OS over-

expressing SFRP4 or SFRP5. Consistent with these results, c-Myc mRNA level was also 

significantly induced 2.8-fold in U2OS cell over-expressing SFRP5 (Table 5-1). c-Myc is 

known to play multiple roles in cell cycle progression, apoptosis and cellular 

transformation, and is regulated in a multi-factorial and tissue specific manner [98]. Our 

observation that restoration of SFRP4 and SFRP5 up-regulated c-Myc protein expression, 

but induced anti-proliferative and pro-apoptotic effects in U2OS cell, is thus not 

unexpected. A similar phenomenon was reported previously by Thompson et al. who 

found that both a decrease and increase of c-Myc led to apoptosis [282]. In another study, 

a decreased expression of c-Myc was found in human colorectal adenocarcinoma cells 

over-expressing β-catenin [283]. Furthermore, c-Myc may be positively or negatively 

regulated based on combinatorial interactions involving E2F transcriptional factors and 

other classes of transcriptional activators and repressors [284].  
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Besides their anti-proliferative effects, SFRPs may function as anti-invasive agents in 

osteosarcoma by inhibiting U2OS cell invasion and motility. As shown in Figure 5-6, we 

found that ectopic expressions of SFRP1, 2 and 5 decreased the invasiveness and motility 

of U2OS. On the other hand, restoration of SFRP4 inhibited U2OS cell invasion but had 

no effect on U2OS cell migration, suggesting that SFRP4 has less effects on motility in 

U2OS cells than the other members of the SFRPs family of Wnt antagonists. Reduction 

in MMP-2 and MMP-9 protein was observed only in SFRP1 and SFRP4 transfectants, 

suggesting that other invasion-associated genes may be involved in regulating 

osteosarcoma cell invasion and migration. In agreement with our observations, Zhao et al 

also found no significant correlation between SFRP5 expression and MMP-2 or MMP-9 

expressions in gastric cancer cells, however, both MMP-7 and MT1-MMP mRNA 

expressions correlated inversely with SFRP5 expressions in these cell lines [285]. Further 

experiments are necessary to investigate the roles of other members of the MMP family, 

such as MMP-1 [286], MMP-3 [287] MMP-7 [288] , MMP-13 [289], MMP-26 [101], 

MT1-MMP [290], MT3-MMP [231], that may be affected through direct or indirect Wnt 

activation. 

 

As a means to elucidate novel targets that can mediate the anti-tumor effects of SFRPs 

restoration, we examined changes in the global expressions of 84 Wnt signaling 

components and target genes expression profile induced by SFRP2 and SFRP5 over-

expressions in U2OS stable transfectants using the Human Wnt Signaling Pathway RT2
 

ProfilerTM PCR Array. SFRP2 and SFRP5 were chosen for Wnt array analysis over 

SFRP1 or SFRP4 for the following reasons: (1) SFRP2 and SFRP5 are less well known 
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members of the SFRPs family; (2) Both SFRP2 and SFRP5 are markedly down-regulated 

in U2OS cells and in many other osteosarcoma cell lines while the suppression of the 

other SFRPs was less obvious (Figure 5-1) and (3) To test our hypothesis that Novel Wnt 

target genes, besides MMPs (Figure 5-6), may play a more significant role in regulating 

the anti-metastatic effects of SFRP2 or SFRP5. 

 

Firstly, based on the RT-PCR array data, we observed suppressions of mRNA 

expressions of specific frizzled receptors (SFRP2: FZD2, FZD 4, FZD6, FZD7; SFRP5: 

FZD4, FZD7) and Wnt ligands (SFRP2: WNT 5a, WNT 5b, WNT 11; SFRP5: WNT 5a, 

WNT 11), suggesting that restoration of SFRP2 or SFRP5 may disrupt specific WNT-

FZD interactions and thus block signal initiation at the membranous level. Up-regulation 

of expressions of other endogenous antagonists such as DKK-1, SFRP1, SFRP3 and/or 

WIF-1 by SFRP5 and SFRP2 over-expression respectively may additionally prevent or 

reduce Wnt signaling by binding competitively to the LRP5 and/or FZD receptors. 

Notably, these Wnt antagonists function as tumor suppressor genes and were previously 

reported to inhibit both in vitro and in vivo cell proliferation, invasion, migration, 

angiogenesis as well as induce apoptosis in several malignancies such as osteosarcoma 

[56, 65, 149], prostate [232], liver multiple myeloma [279, 291], breast [62] and kidney 

[292]. Given that epigenetic silencing of SFRP3 and WIF-1 have been implicated in the 

pathogenesis of osteosarcoma [56, 65] and that restoration of WIF-1 and DKK3 have 

been shown to inhibit in vivo lung metastasis and invasiveness of osteosarcoma cells 

respectively [63], our findings suggest that SFRP2 or SFRP5 may offer a clinically 

relevant role in activating the tumor suppressive functions of DKK-1, SFRP1, SFRP3 and 
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WIF-1 in osteosarcoma to achieve effective therapy. However, further studies are needed 

to examine the specific effects for the disruption of the native WNT-FZD complexes by 

SFRP2 and SFRP5. 

 

Secondly, it is tempting to speculate that over-expressions of SFRP2 or SFRP5 could 

have attenuated Wnt signaling in U2OS cells through enhancing the phosphorylation-

dependent ubiquitination and destabilization of cytoplasmic β-catenin, given that 

restorations of SFRP2 and SFRP5 both resulted in a collective up-regulations of signaling 

components that are responsible for these processes such as APC, CSNK1G1, CSNK1D, 

GSK3β, β-TrCP, FBXW2, FBXW4, FBXW11 and SENP2. As shown in Table 5-1, over-

expression of SFRP2 or SFRP5 increased the mRNA expression of APC, a tumor 

suppressor which plays critical roles in facilitating the degradation of β-catenin by 

binding and recruiting it to the APC-Axin-GSK-3β β-catenin destructive complex as well 

as by exporting nuclear β-catenin [109, 131, 293]. Furthermore, as proposed by Ha et al. 

who found that the subsequent phosphorylation of APC by CSNK slowed the release of 

β-catenin from the destructive complex [294], the up-regulation of CSNK observed with 

ectopic expressions of SFRP2 and SFRP5 may possibly further enhance ubiquitination of 

β-catenin in U2OS cells. Phosphorylated β-catenin is then recognized by and associates 

with specific member of the SCF (SKP1-cullin-F-box) family of the E3 ubiquitin ligase 

complex, the Beta-transducin repeat containing and F-box proteins before it gets 

degraded by the proteosome [295].  
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Thirdly, SFRP2 may be capable of disrupting β-catenin/TCF complexation and 

transcription through attenuating the nuclear translocation of β-catenin protein by 

redistribution to the cell membrane (Figure 5-4) and regulating the expression of several 

transcriptional factors such as TLE1, LEF1, and CTBP2. TLE1 gene is a mammalian 

homologue of the Drosophila transcriptional repressor groucho which serves as a nuclear 

transcriptional co-repressor by interacting with TCF/LEF family of proteins to block 

TCF/β-catenin transcription and thus repress Wnt target oncogenes [129, 258, 259]. As a 

co-repressor, CTBP2 primarily functions as a scaffold protein to recruit chromatin-

modifying enzymes, including HDACS, histone methyltranferases and polycomb group 

proteins, to TCF/LEF family of DNA-binding transcriptional factors, thus facilitating the 

transcriptional repression activity of TCF/LEF [296, 297] and antagonizing the activity of 

p300 co-activator complex [298]. Notably, mutations which affect the CTBP2 interaction 

with TCF/LEF have been reported to contribute to carcinogenesis [93, 299]. Given that 

LEF1, a DNA binding transcriptional factor, has been shown to be a bona fide target gene 

[300, 301], down-regulation of LEF may possibly reduce the magnitude of Wnt 

activation since a smaller amount of LEF protein would be available for complex 

formation with β-catenin. Taken together, SFRP2 may possibly disrupt β-catenin/TCF 

transcriptional activity and complexation through up-regulating transcriptional repressors 

such as groucho and CTBP2, while suppressing the level of LEF1 transcription factor. On 

the other hand, SFRP5 may be capable of disrupting β-catenin/TCF transcription by up-

regulating expressions of AES gene which encodes groucho, a nuclear transcriptional co-

repressor.  
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Lastly, ectopic expression of both SFRP2 and SFRP5 were found to effectively suppress 

the mRNA expressions of oncogene WISP1 but induced expression of tumor suppressor 

T gene, Brachyury. Both WISP1 and Brachyury genes play critical roles in regulating 

tumorigenesis and metastatic transformation in various tumor models. Indeed, several 

lines of evidence support a role for WISP-1 in tumorigenesis: WISP-1, a member of the 

connective tissue growth factor that belongs to the Cry61, CTGF and Noc (CCN) super 

family, has been shown to promote cell proliferation, migration, adhesion, angiogenesis 

and extracellular matrix formation [266, 302]. WISP-1 is over-expressed in many tumors 

types, including breast, colon, cholangiocarcinoma and plexiform neurofibromas [267-

270] and its over-expression correlated with more advanced features such as late-stage 

disease, lymph node involvements and larger tumor size in both primary breast and rectal 

cancers [269, 271]. In in-vivo mouse models, forced expression of WISP-1 in normal 

kidney fibroblasts were found to induce morphological transformation, accelerate cell 

growth and induced tumor formation [146]. On the other hand, Brachyury was recently 

identified as a tumor suppressor gene in non-small-cell lung cancer [303] whereas other 

members of the T-box family genes that share T box motif with Brachyury such as TBX2 

and TBX3, are known to be transcriptional repressors that inhibit cell proliferation and 

oncogenic transformation [304]. Since our earlier results from the western blot analysis 

showed that protein expressions of MMP-2 and MMP-9 remained unaltered and did not 

correspond to the reduction in invasive capacity of SFRP5 over-expressing U2OS cells, it 

is tempting to speculate that other metastasis-associated Wnt target genes including 

WISP1 and Brachyury might play a significant contributory role in regulating 

osteosarcoma metastasis and disease progression and additional experiments using 
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siRNA or forced expressions of these genes would be necessary to fully elucidate their 

effects in regulating osteosarcoma cell invasion by SFRP5.    

 

Furthermore, we observed suppressions of several other Wnt target oncogenes such as 

SLC9A3R1, JUN and cyclin D1 with forced expression of SFRP2. Parallel to results 

from the western blot analysis (Figure 5-5a), we found a reduction of cyclin D1 mRNA 

level in U2OS cell over-expressing SFRP5. On the other hand, we observed an up-

regulation of cyclin D2 in these cells. Such compensated effects of cyclin D2 with the 

knockdown of cyclin D1 was previously observed in mantle lymphoma cells as well as in 

an in vivo mouse model, but more studies are required to explain these observed 

phenomenon. SLC9A3R1, a β-catenin-associating protein that potentiates β-catenin/TCF-

dependent transcription [305] was found to be up-regulated in breast cancer [306], 

schwannoma [307] and hepatocellular carcinomas [305] compared to their non-tumor 

counterparts. Elevated level of SLC9A3R1 is closely associated with the invasive 

behavior of malignant glioma cells in vivo and in vitro, and when silenced, tumor cells 

exhibited reduced migratory activity, leading to an increased susceptibility to 

chemotherapy [308]. Furthermore, SLC9A3R1 has been reported to regulate formation of 

invadopodia-cell structures that mediate tumor cell migration and invasion [309]. 

Another Wnt target gene, JUN has been found to be over-expressed in many cancers 

including osteosarcoma [310-312]. Indeed, JUN plays a critical role in the tumorigenesis 

and metastasis of osteosarcoma as reported recently by Dass et al. who demonstrated that 

knockdown of JUN using a c-jun DNAzyme, encapsulated within a novel cationic multi-

lamellar vesicle liposome inhibited the growth and metastasis of osteosarcoma in an 
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orthotopic spontaneously metastasizing model of the disease [313]. Consistent with our 

results, JUN was suppressed in breast cancer cells that ectopically expressed SFRP2 

[314]. While the suppression of WISP1, Brachyury, SLC9A3R1 and JUN in U2OS cells 

over-expressing SFRP2 correlated with inhibition of U2OS cell proliferation, invasion 

and migration, further studies are needed to fully understand the contributory roles of 

these oncogenes in regulating osteosarcoma metastasis and tumorigenesis. Nevertheless, 

the potential implications of regulating WISP-1 and Brachyury expressions by either 

over-expression of SFRP2 or SFRP5 in osteosarcoma pathogenesis are highly relevant 

and deserve in-depth investigation, given their oncogenic properties. 

 

Much to our surprise, we observed significant up-regulations in the gene expressions of 

several activators of the Wnt/β-catenin/TCF signaling pathway such as DVL 1 and 2, as 

well as TCFL1 while suppression of NKD1, a dishevelled-binding protein with forced 

expressions of either SFRP2 or SFRP5. The expressions of several Wnt ligands and 

receptors were also induced with restoration of either SFRP2 or SFRP5 in U2OS cells. A 

possible explanation to the discordant results is that external stimuli such as the forced 

expression of SFRP2 or SFRP5 may have induced a protective auto-regulatory positive 

feedback mechanism to enhanced Wnt signaling in U2OS cells. Other reasons to these 

aberrant effects may include the presence of unclassified biphasic functions of these 

signaling components in Wnt signaling and their multiple roles in regulating other cross 

talk signaling pathways.     
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Taken together, we identified several novel Wnt signaling components and target genes 

that possibly explain the mechanism of Wnt inhibition and tumor suppressive effects of 

SFRP2 or SFRP5 in U2OS cells. Further studies are however needed to gain a 

comprehensive understanding of the underlying mechanism of Wnt inhibition by these 

secreted proteins in U2OS cells. Nevertheless, our findings supplemented the limited 

existing knowledge in understanding the interactions of SFRPs with the various 

molecular Wnt targets, which are essential for designing more effective SFRPs-based 

therapeutics for the treatment of osteosarcoma.  

 

At present, we cannot rule out the fact that tumor-suppressive functions of SFRPs may be 

mediated through both Wnt/β-catenin-dependent and -independent signaling. In fact, 

restoration of SFRP4 expression in both β-catenin-dependent and β-catenin-deficient cell 

mesothelioma cell lines have been shown to promote apoptosis, suppress cancer cell 

growth and down-regulate Wnt signaling [315]. Another study showed that ectopic 

expression of SFRP1 reduced cell proliferation even though β-catenin/TCF is not 

activated in prostate cancer cells [316]. Recently, Shih et al. also found that β-catenin-

deficient SK-Hep1 hepatoma cell treated with SFRP1 shRNA showed enhanced cell 

growth, implicating involvement of Wnt-independent signaling [317]. Furthermore, 

analysis of global expression reveled that over-expression of SFRP2 repressed numerous 

genes that are implicated in Wnt/β-catenin-dependent signaling. More experiments 

involving the knockdown of the individual SFRPs in β-catenin-deficient osteosarcoma 

cell lines such as CRL1423 would be needed to clarify the contributory role of Wnt/β-
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catenin-independent signaling by SFRPs in regulating tumor-suppressive effects in 

osteosarcoma. 
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CHAPTER 6. Conclusions and Perspective  

 

The overall aim of this thesis is to develop novel Wnt-targeted therapeutics for the 

treatment of osteosarcoma. We tested the hypothesis of disrupting the Wnt/β-catenin 

signaling pathway as an effective therapeutic strategy in preventing osteosarcoma 

progression. The hypothesis was investigated using a two-pronged approach: The first 

approach builds on novel identification of small molecule compounds derived from 

natural sources as potent inhibitors of the Wnt pathway. Using curcumin as a lead 

compound, a series of 43 functionalized curcumin analogues were chemically 

synthesized to determine if structural modification would result in more potent Wnt 

antagonists. This part of the study also aimed at identifying critical structural motifs for 

Wnt inhibitory activity and understanding the underlying mechanism of Wnt inhibition of 

the most potent curcumin analogue. The second approach focuses on understanding the 

functional roles and mechanisms of SFRPs as tumor suppressors in regulating 

osteosarcoma cell proliferation, motility and invasion.    

 

In aim (1), several natural occurring small molecule compounds such as curcumin and 

PKF118-310 were successfully identified as effective Wnt antagonists in osteosarcoma 

(Chapter 3). We showed that curcumin significantly inhibited Wnt/β-catenin signaling 

and reverses Wnt/β-catenin-induced cell invasiveness and MMP-9 expression in U2OS 

cells. Furthermore, PKF118-310 inhibited osteosarcoma cell invasion, migration and 

proliferation, as well as induced apoptosis and G2/M phase cell cycle arrest, through 

down-regulating Wnt target genes including MMP-9, cyclin D1, c-Myc and survivin.  
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In aim (2), functionlization of curcumin was found to be an attractive approach of 

enhancing the potency of Wnt inhibitory activity (Chapter 4). Modification of the 

curcumin structure was made to the central linker between the terminal phenyl rings and 

various permutations centered on the OH/OCH3 groups as ring substitutions. Despite 

these simple structural modifications, we identified six analogues (2-3, 3-3, 4-3, 2-6, 3-6, 

4-6) that were more potent than parental curcumin in suppressing β-catenin/TCF 

transcriptional activities and inhibition of U2OS cell invasiveness. These analogues were 

approximately 6.5- to 60-fold more potent than parental curcumin. SAR analysis of the 

whole panel of 43 curcumin analogues provided four important observations relating to 

the Wnt inhibitory activity (Figure 4-5): Firstly, reducing the flexibility of the 

intermediate linker joining the terminal phenyl rings improved inhibitory activity. 

Incorporating the linker as part of a ring structure like those represented in Series 3 

(dibenzylidene-cyclohexanone) and Series 4 (dibenzylidene-cyclopentanone) resulted in 

several compounds with outstanding activities. Secondly, the flexibility of the 

intermediate side chain influenced the substitution on the terminal phenyl rings that were 

required for good activity. Thirdly, specifically for Series 3 and 4 analogues, the 

preferred substituents were deduced to be electron donating. Lastly, ring substitutions 

with limited size requirements are favored if sited at the 3’ position.  

 

In aim (3), we investigated the functional role of SFRP1, 2, 4 and 5 and found that these 

secreted Wnt antagonists differentially suppressed anchorage-dependent growth, colony 

formation efficiency, invasion and migration in U2OS cells (Chapter 5). These anti-tumor 



 
 

 180 

activities were mediated through down-regulations of Wnt responsive oncogenes 

including matrix metalloproteinases-2, cyclin D1, c-Myc and survivin. Lastly, using the 

Human Wnt Signaling Pathway RT2
 ProfilerTM PCR Array, we identified additional Wnt 

target genes such as WISP1, Brachyury, SLC9A3R1 and JUN that might play significant 

contributory role in regulating osteosarcoma tumorigenesis and metastasis. By analyzing 

significant perturbations of Wnt signaling components mRNA levels, we also identified 

potential critical targets for Wnt inhibition by the restoration of SFRP2 or SFRP5 or 

treatment of analogue 3-3 in U2OS cells.  

 

The present work has raised several issues to be pursued in future investigations. In 

Chapter 4, we evaluated a set of curcumin analogues with improved potency and high 

selectivity as Wnt/β-catenin antagonists. An important outcome of this study is the 

recognition of the curcumin backbone as a potential lead for compounds with potent Wnt 

inhibitory activity. Additional analogues with the symmetrical terminal phenyl rings 

substituted with electron-donating groups such as N(OCH3)2  (σp N(OCH3)2 , -0.63 ; σm 

N(OCH3)2, -0.10) and NH2  (σp NH2 , -0.57 ; σm NH2, -0.09) would be required to 

confirm our findings that Wnt inhibitory activity is favored by the absence of electron-

withdrawing groups at these phenyl rings. In addition, the structural modifications 

described here have been fairly limited and there is ample scope for further exploration 

with more structurally diverse curcumin analogues. These proposed modifications are 

summarized in Figure 6-1. For example, would tri- or multiple-substitutions of the phenyl 

rings with electron-donating groups further improve Wnt inhibitory activity? How would 

Wnt inhibitory activity be affected by replacing both the terminal phenyl rings with other 
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aromatic rings such as furan, thiophene, pyrrole or naphthalene? Would incorporation of 

other aromatic rings as part of the linker and varying the substitutions on these rings lead 

to enhanced Wnt inhibition?  

O

X

OO

Tri- or multi-subsitutions
of ring A with electron
donating groups

Ring A = furan, thiophene, 
pyrrole or naphthalene

A A

A A

X = O, S, N, CH2, NH

B

Subsitutions on ring B?

O

A AC

Subsitutions on ring C?

 

Figure 6-1. Proposed modifications of curcumin template for improved Wnt 
inhibitory activity. 

 

Another objective of this thesis is to examine the underlying mechanism of Wnt 

inhibition of curcumin analogues (Chapter 4) and SFRPs (Chapter 5). Perturbations in 
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mRNA levels of several Wnt targeted genes following treatment with either the most 

potent analogue (3-3) or U2OS cells over-expressing SFRP2 or 5 collectively suggest that 

3-3 and forced expressions of SFRP2 or 5 attenuated the Wnt/β-catenin signaling 

pathway at various critical nodal points of the pathway. However, further experiments are 

needed to verify and confirm our results: (1) Perturbations were observed on the mRNA 

levels, thus these findings needs to be validated at the protein levels using 

immunohistochemistry or western blotting; (2) Anti-sense and siRNA strategies against 

tumor-suppressor genes including Brachyury and WIF1 that are up-regulated with our 

treatments would be essential to verify their contributory roles in regulating osteosarcoma 

growth and metastasis; (3) On the other hand, additional experiments using forced 

expressions of other oncogenes including WISP1, FOSL1, JUN and cyclinD2 that are 

down-regulated are necessary to further elucidate their effects in inhibiting various anti-

tumor activities in osteosarcoma; (4) Further immunoprecipitation assays needs to be 

performed to investigate protein interactions of the various components of the APC-

Axin-GSK-3β-β-catenin complex to fully elucidate its role in enhancing phosphorylation-

dependent ubiquitination of β-catenin following treatment with analogue 3-3 and 

restoration of SFRP2 or 5 respectively; (5) Lastly, it would be interesting to examine the  

specificities for disruption of the native WNT-FZD complexes interacts by over-

expression of SFRP2 or 5 using appropriate binding assays and X-ray crystallography.  

 

Our results suggest that manipulating this pathway through new small molecule 

compounds or recombinant/therapeutic molecules is of great promise for osteosarcoma 

therapy. Nevertheless, the application of Wnt therapeutics may be relevant in only a 
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subset of osteosarcoma tumors since only a few osteosarcoma cell lines were studied. 

Future studies with a wider range of osteosarcoma cell lines, primary tumors and patient 

tissue samples are required to confirm and supplement our findings and to better clarify 

the implication of canonical Wnt signaling pathway in osteosarcoma tumorigenesis and 

metastasis. Furthermore, our in vitro results may be encouraging but the true therapeutic 

potential of the Wnt/β-catenin inhibitors will only become evident when their in vivo 

efficacies as anti-tumor agents are rigorously tested in nude mice tumor models.  

 

Other challenges remain to be overcome before Wnt therapeutics becomes a reality for 

osteosarcoma treatment. Given that the Wnt/β-catenin signaling pathway is also involved 

in normal developmental processes such as the regulation of tissue regeneration and stem 

cell renewal in the bone marrow and gut, persistent inhibition of this signaling pathway 

may result in potential fatal side effects including anemia, immunosuppression and 

gastrointestinal damages. The challenge of this study will therefore be to ensure both 

therapeutic strategies of using small molecule antagonists and SFRPs secreted inhibitors 

result in sufficient selectivity to avoid these detrimental side effects resulting from 

inappropriate disruption of Wnt signaling in normal tissues. Finally, Wnt/β-catenin 

signaling pathway does not occur in isolation from other signaling pathways, and there is 

considerable evidence suggesting that other cross-talk pathways can cooperate in 

unexpected ways in the pathogenesis of osteosarcoma. The mechanism by which this 

combinatorial signaling occurs and whether it is functionally significant in osteosarcoma 

are largely unknown. As such, the potential benefit of combining the use of inhibitors of 
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different pathways with Wnt therapeutics for osteosarcoma treatment needs further 

attention.   

 

Most recently, Cai et al. reported that canonical Wnt/β-catenin signaling appear to be 

inactive in osteosarcoma and concluded that silencing of Wnt signaling may contribute to 

osteosarcoma tumorigenesis [318]. They found that β-catenin expression was localized to 

the cytoplasm and cell membrane, rather than the nucleus. They also demonstrated that a 

GSK3β inhibitor, GIN, inhibited osteosarcoma cell growth and stimulated markers of 

osteoblast differentiation. In contrast to their findings, we found the majority of the β-

catenin protein localized in the nucleus of U2OS cells (Figure 5-4). The effects of GIN on 

osteosarcoma should be verified using a specific Wnt antagonist, especially since GSK3β 

kinase plays multiple roles in cellular processes, aside from those linked to β-catenin. In 

addition, there are no examples of signaling pathways that have been identified where 

gain-in-function clearly results in tumor suppression in one tumor type, but stimulate 

tumor formation in others. Therefore, the findings from this isolated report need further 

confirmation.  

 

In this thesis, we have proven the hypothesis that osteosarcoma tumorigenesis and 

metastasis may be delayed by small molecule Wnt inhibitors or restoration of endogenous 

antagonist SFRPs. The contributory role of aberrant canonical Wnt/β-catenin signaling in 

osteosarcoma disease progression has been demonstrated by enhanced U2OS cell 

invasion with forced expression of β-catenin (Figure 3-10b). In Chapter 3, we further 

provided important in-vitro proof-of-concept for the potential use of small molecule 
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Wnt/β-catenin inhibitors to delay osteosarcoma progression and metastasis (Aim 1). In 

Chapter 4, we evaluated and identified curcumin analogues with enhanced Wnt inhibitory 

potency and reported critical structural motifs for Wnt inhibitory activity using structure-

activity–relationship analysis (Aim 2).  Lastly, we demonstrated the role of SFRPs as 

tumor suppressors in delaying osteosarcoma disease progression (Chapter 5, Aim 3). All 

in all, our findings strongly supported the prevailing view that activated Wnt/β-catenin 

signaling is critical in the pathogenesis of osteosarcoma and that Wnt targeted 

therapeutics hold great promises for the treatment of osteosarcoma.  
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 APPENDICES 
 
Appendix 1: Table of structures of synthesized compounds and their physiochemical 
properties  
a C log P/molecular weight values were determined on ChemDraw Ultra 10.0, 
CambridgeSoft, Cambridge, MA. 
b No. of rotatable bonds/No. of hydrogen bond donors and acceptors values were 
determined on MOE, 2009. 10 Chemical Computing Group 
 
Compound 
No. 

R1(3’) R2(4’) Moleculara 
weight 

No. of  
rotatable  
bonds b 

No. of 
hydrogen 
bond 
donors b  

No. of 
hydrogen 
bond 
acceptorsb 

C 
logPa 

Series 1 Analogues 
 

 
 
 

1-1  
(curcumin) 

OCH3 OH 368.38 7  2 4 2.94 

1-2 OCH3 OCH3 396.43 9 0 4 3.89 
1-3 OH OCH3 368.38 7 2 4 2.94 
1-4 H H 276.33 5 0 0 4.58 
1-5 OCH3 H 336.38 7 0 2 4.41 
1-6 H OH 308.33 5 2 2 3.24 
1-7 F F 348.29 5 0 0 5.01 
 
Series 2 Analogues 
 

 
 
 
2-1 OCH3 OH 326.34 6 2 5 2.64 
2-2 OCH3 OCH3 354.40 8 0 5 3.59 
2-3 OH OCH3 326.34 6 2 5 2.64 
2-4 H H 234.39 4 0 1 4.28 
2-5 OCH3 H 294.34 6 0 3 4.11 
2-6 H OH 266.29 4 2 3 2.94 
2-7 F F 306.25 4 0 1 4.71 
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Series 3 Analogues 
 

 
 
 
3-1 OCH3 OH 366.41 4 2 5 3.70 
3-2 OCH3 OCH3 394.46 6 0 5 4.65 
3-3 OH OCH3 366.41 4 2 5 3.70 
3-4 H H 274.36 2 0 1 5.33 
3-5 OCH3 H 334.41 4 0 3 5.17 
3-6 H OH 306.36 2 2 3 4.00 
3-7 F F 346.32 2 0 1 5.76 
3-8 2’F  310.34 2 0 1 5.62 
3-9 F H 310.34 2 0 1 5.62 
3-10 H F 310.34 2 0 1 5.62 
 
Series 4 Analogues 
 

 
4-1 OCH3 OH 352.38 4 2 5 3.14 
4-2 OCH3 OCH3 380.43 6 0 5 4.09 
4-3 OH OCH3 352.38 4 2 5 3.14 
4-4 H H 260.33 2 0 1 4.77 
4-5 OCH3 H 320.38 4 0 3 4.61 
4-6 H OH 292.33 2 2 3 3.44 
4-7 F F 332.29 2 0 1 5.20 
4-8 2’F  296.31 2 0 1 5.06 
4-9 F H 296.31 2 0 1 5.06 
4-10 H F 296.31 2 0 1 5.06 
 
Series 5 Analogues 
 

 
 
5-1 OCH3 OH 300.31 5 2 5 2.50 
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5-2 OCH3 OCH3 328.36 7 0 5 3.18 
5-3 OH OCH3 300.31 5 2 5 2.50 
5-4 H H 208.26 3 0 1 3.62 
5-5 OCH3 H 268.31 5 0 3 3.77 
5-6 H OH 240.25 3 2 3 2.83 
5-7 F F 280.22 3 0 1 4.16 
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Appendix 2: Characterization of compounds in Series 1-5 
 
Compound 1-1(Curcumin): C21H20O6. Yellow-orange crystals. Melting point: 183°C. 
1H-NMR (300 MHz, CDCl3) δ: 3.95 (6H, s, OCH3 × 2), 5.80 (1H, s, COCH=C), 6.48 (2H, 
d, J=16Hz, CHCO ×2), 6.93 (2H, d, J=8Hz, Ar-H), 7.05 (2H, s, Ar-H), 7.12(2H, d, J= 
8Hz, Ar-H), 7.59 (2H, d, J = 16Hz, Ar-CH=C ×2 ). 13C-NMR (75 MHz, CDCl3) δ: 
55.928, 101.089, 109.626, 114.800, 121.769, 122.828, 127.677, 140.491, 
140.491,146.755, 147.823, 151.915, 183.229. MS (APCI) m/z: 369.0 (M+1)+. Anal calcd 
for C17H14O5: C, 68.45; H, 4.73; Found: C, 68.03; H, 4.78. 
 
Compound 1-2: Orange powder. C23H24O6. Melting point: 130-131°C. 1H-NMR (300 
MHz, CDCl3) δ: 3.92 (6H, s, OCH3 ×2), 3.93 (6H, s, OCH3 ×2), 5.82(1H, s, COCH=C), 
6.50 (2H, d, J=16Hz, CHCO ×2), 6.88 (2H, d, J=8  Hz, Ar-H), 7.10 (4H, m, Ar-H), 
7.61(2H, d, J=16 Hz, Ar-CH=C ×2). 13C-NMR (75 MHz, CDCl3) δ: 55.843, 55.912, 
76.642, 77.066, 77.490, 101.274, 109.754, 111.096, 121.967, 122.578, 128.002, 140.334, 
149.173, 150.992, 183.204. MS (APCI) m/z: 396.9 (M+1)+. HPLC (MeOH: H2O=80:20) 
tR (min): 9.394. PHPLC/ %: 97.50. HPLC (ACN: H2O=80:20) tR (min): 2.931. PHPLC/ %: 
100.00.  
 
Compound 1-3: Orange powder. C21H20O6. Melting point: 192°C. 1H-NMR (300 MHz, 
CDCl3) δ: 3.92(6H, s, OCH3 ×2), 5.82 (1H, s, COCH=C), 6.48 (2H, d, J=16 Hz, CHCO 
×2), 6.87 (2H, d, J= 8Hz, Ar-H), 7.04 (2H, d, J=8Hz, Ar-H),7.15 (2H, s, Ar-H), 7.53 (2H, 
d, J=16 Hz,  Ar-CH=C ×2 ). 13C-NMR (75 MHz, CDCl3) δ:  MS (APCI) m/z: 369.0 
(M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 2.450. PHPLC/ %: 95.97. HPLC (ACN: 
H2O=80:20) tR (min): 1.849. PHPLC/ %: 95.48  
 
Compound 1-4: Yellow powder. C19H16O2. Melting point: 138-140°C. 1H-NMR (300 
MHz, DMSO-d6) δ: 6.209 (1H, s, COCH=C), 6.953 (2H, d, J=16 Hz, CHCO ×2), 7.442 
(6H, s, Ar-H ), 7.688 (2H, s, Ar-H ),7.719 (2H, m, Ar-H). 13C-NMR (75 MHz, DMSO-
d6) δ: 101.752, 124.194, 128.237, 128.878, 13.200, 134.551, 140.264, 183.092 . MS 
(APCI) m/z: 277.0 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 9.281. PHPLC/ %: 99.86. 
HPLC (ACN: H2O=70:30) tR (min): 12.003. PHPLC/ %: 98.50 
 
Compound 1-5: Brownish-orange powder. C23H24O4. Melting point: 59-60°C. 1H-NMR 
(300 MHz, CDCl3) δ: 3.85 (6H, s, OCH3 ×2), 5.86 (1H, s, COCH=C), 6.62 (2H, d, 
J=16Hz, -CHCO-×2), 6.88 (2H, d, J=2Hz, Ar-H), 6.95 (2H, d, J=10 Hz, Ar-H), 7.08 (2H, 
s, Ar-H),7.30 (2H, s, Ar-H), 7.633 (2H, d, J= 16 Hz, Ar-CH=C ×2). 13C-NMR (75 MHz, 
CDCl3) δ: 55.289, 101.794, 113.037, 115.908, 120.794, 124.328, 129.882, 136.329, 
140.543, 159.889, 183.230 . MS (APCI) m/z: 337.0 (M+1)+. HPLC (MeOH: H2O=80:20) 
tR (min): 1.784. PHPLC/ %: 95.81. HPLC (ACN: H2O=80:20) tR (min): 1.608. PHPLC/ %: 
97.30 
 
Compound 1-6: Orange-red crystals. C19H16O6. Melting point: 229-230°C. 1H-NMR 
(300 MHz, DMSO-d6) δ: 6.03 (1H, s, COCH=C), 6.65 (2H, J = 16 Hz, -CHCO-×2), 6.83 
(4H, d, J = 8.4 Hz, Ar-H), 7.53-7.57 (m, 6H, Ar-H + Ar-CH=C ×2), 10.2 (2H, s, OH). 
13C-NMR (75 MHz, DMSO-d6) δ: 110.180, 116.095, 120.891, 125.979, 130.464, 140.522, 
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159.893, 183.325 MS (APCI) m/z: 369.0 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 
5.055. PHPLC/ %: 96.85. HPLC (ACN: H2O=80:20) tR (min): 1.670. PHPLC/ %: 99.14 
 
Compound 1-7: Yellow powder. C19H12F4O. Melting point: 229-230°C. 1H-NMR (300 
MHz, DMSO-d6) δ: 5.82 (1H, s, COCH=C), 6.53 (2H, J = 16 Hz, -CHCO-×2), 7.14-7.41 
(m, 7H, Ar-H + Ar-CH=C ×2), 7.57 (2H, d, 8Hz, Ar-H). 13C-NMR (75 MHz, DMSO-d6) 
δ: 76.5764, 77.0000, 77.2022, 77.4236, 78.3575, 102.1870, 116.0418, 117.7460, 
117.9771, 124.8419, 132.1689, 138.4753, 182.7933. MS (APCI) m/z: 309.2 (M+1)+. 
HPLC (MeOH: H2O=80:20) tR (min): 14.846. PHPLC/ %: 99.85. HPLC (ACN: 
H2O=70:30) tR (min): 2.198. PHPLC/ %: 98.68 
 
Compound 2-1: Greenish-yellow powder. C19H18O5. Melting point: 106°C. 1H-NMR 
(300 MHz, CDCl3) δ: 3.96 (6H, s, OCH3 ×2), 6.90-6.95 (4H, m,  Ar-H + COCH= ×2), 
7.09-7.17 (m, 4H, Ar-H), 7.68 (2H, d, J=16 Hz, Ar-CH= ×2). 13C-NMR (75 MHz, 
DMSO-d6) δ: 55.689, 111.350, 115.632, 122.965, 123.334, 126.306, 142.754, 149.942, 
188.015 MS (APCI) m/z: 326.9 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 1.794. 
PHPLC/ %: 95.81. HPLC (ACN: H2O=70:30) tR (min): 1.608. PHPLC/ %: 97.40 
 
Compound 2-2: Orange-yellow solid. C21H22O5. Yield: 52.0%. Melting point: 93-95°C. 
1H-NMR (300 MHz, CDCl3) δ: 3.93(6H, s, OCH3 ×2), 3.95(6H, s, OCH3 ×2), 6.89 (2H, d, 
J =8.1 Hz, Ar-H), 6.96 (d, J = 16 Hz, COCH= ×2), 7.14-7.21 (m, 4H, Ar-H), 7.69 (d, J = 
16 Hz, Ar-CH= ×2). 13C-NMR (75 MHz, CDCl3) δ: 55.845, 55.892, 109.840, 111.035, 
123.033, 123.530, 127.763, 142.984, 149.156, 151.252, 188.629 MS (APCI) m/z: 355.0 
(M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 3.129. PHPLC/ %: 95.49. HPLC (ACN: 
H2O=70:30) tR (min): 2.762. PHPLC/ %: 94.59 
 
Compound 2-3: Yellow powder. C19H18O5. Yield: 33.27%. Melting point: 189-190°C. 
1H-NMR (300 MHz, DMSO-d6) δ: 3.77 (s, 6H, OCH3 ×2), 6.93 (d, 2H, J = 8 Hz, Ar-H), 
7.03 (d, J = 16 Hz, COCH= ×2), 7.14-7.17 (m, 4H, Ar-H), 7.57 (d, J = 16 Hz, 2H, Ar-
CH= ×2). 13C-NMR (75 MHz, DMSO-d6) δ:  56.0, 112.592, 114.706, 122.818, 123.919, 
128.057, 143.757, 147.087, 150.906, 189.454 MS (APCI) m/z: 327.0 (M+1)+. HPLC 
(MeOH: H2O=80:20) tR (min): 3.129. PHPLC/ %: 95.49. HPLC (ACN: H2O=70:30) tR 
(min): 2.762. PHPLC/ %: 94.59 
 
Compound 2-4: Yellow crystals. C17H14O. Yield: 28.3%. Melting point: 113°C. 1H-
NMR (300 MHz, CDCl3) δ: 7.09 (d, J= 16 Hz, 2H, COCH= ×2), 7.26-7.42 (m, 6H, Ar-H), 
7.60-7.63 (m, 4H, Ar-H), 7.75 (d, J = 16 Hz, 2H, Ar-CH= ×2). 13C-NMR (75 MHz, 
CDCl3) δ: 125.327, 128.310, 128.872, 130.411, 134.964, 143.206, 188.805 MS (APCI) 
m/z: 235.3 (M+1)+.PHPLC/ %: 95.37. HPLC (ACN: H2O=80:20) tR (min): 3.075. PHPLC/ %: 
99.72 
 
Compound 2-5: Yellow solid. C19H18O3. Yield: 45.7%. Melting point: 50-51°C. 1H-
NMR (300 MHz, CDCl3) δ: 3.847 (6H, s, CH3-O x2), 6.959(2H, d, J=3.15Hz, Ar-H), 
7.056(4H, m, Ar-H), 7.208 (2H, d, J=16Hz, -COCH= x2), 7.326(2H, t, J=8Hz, Ar-H), 
7.699(2H, d, J=16Hz, Ar–CH=Cx2). 13C-NMR (75 MHz, CDCl3) δ:  55.100, 113.127, 
116.158, 120.915, 113.127, 116.158, 120.915, 125.451, 129.759, 135.958, 143.043, 
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159.751, 188.641 MS (APCI) m/z: 295.0 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 
6.637. PHPLC/ %: 96.48. HPLC (ACN: H2O=80:20) tR (min): 3.040. PHPLC/ %: 96.71 
 
Compound 2-6: Dark yellow powder. C17H14O3. Yield: 24.26%. Melting point: 236-
239°C. 1H-NMR (300 MHz, DMSO-d6)  δ: 6.837 (4H, m, Ar-H x4 ), 7.099(2H, d, 
J=16Hz, -COCH= x2), 7.644 (6H, m, Ar-H=x4 + Ar–CH=Cx2), 10.062(2H, s, OH). 13C-
NMR (75 MHz, DMSO-d6)  δ: 115.836, 122.656, 125.821, 130.443, 142.400, 159.821, 
188.047. MS (APCI) m/z: 267.2 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 2.738. 
PHPLC/ %: 99.42. HPLC (ACN: H2O=70:30) tR (min): 1.793. PHPLC/ %: 99.67 
 
Compound 2-7: Yellow crystals. C17H10F4O. Melting point: 132-133°C. 1H-NMR (300 
MHz, DMSO-d6)  δ: 6.955(2H, d, J=7.95, Ar-H), 7.199(2H, t, J=8.9Hz, Ar-H), 7.332(2H, 
d, J= 16Hz, -COCH= x2), 7.443(2H, m, Ar-H), 7.637 (2H, d, J=16Hz, Ar–CH=Cx2). MS 
(APCI) m/z: 306.9 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 2.728. PHPLC/ %: 99.28. 
HPLC (ACN: H2O=70:30) tR (min): 1.793. PHPLC/ %: 99.67 
 
Compound 2-9: C17H12F2O Melting point: 147-149°C. 1H-NMR (300 MHz, DMSO-d6)  
δ: 6.981(4H, m, Ar-H), 7.248 (6H, m, Ar-H, -COCH= x2), 7.564 (2H, d, J=16Hz, Ar–
CH=Cx2). 13C-NMR (75 MHz, CDCl3) δ:  114.261, 114.550, 117.515, 130.417, 130.523, 
136.829, 136.935, 139.640, 142.124, 161.342, 164.616, 188.252 MS (APCI) m/z: 271.0 
(M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 5.418. PHPLC/ %: 99.08. HPLC (ACN: 
H2O=80:20) tR (min): 3.195. PHPLC/ %: 97.59 
 
Compound 2-10: C17H12F2O. Melting point: 149-150°C 1H-NMR (300 MHz, DMSO-d6)  
δ: 7.231(6H, m, Ar-H), 7.781 (6H, m, Ar-H, -COCH= x2, Ar–CH=Cx2) 13C-NMR (75 
MHz, CDCl3) δ:  114.936, 115.225, 124.006, 124.034, 129.166, 129.282, 129.908, 
141.018, 161.324, 164.655, 187.397 MS (APCI) m/z: 271.2 (M+1)+. HPLC (MeOH: 
H2O=80:20) tR (min): 3.373 . PHPLC/ %: 99.16. HPLC (ACN: H2O=80:20) tR (min): 3.228. 
PHPLC/ %: 95.74 
 
Compound 3-1: Yellow solid. C22H22O5. Melting point: 177-178°C. 1H-NMR (300 MHz, 
DMSO-d6)  δ: 1.72 (s, 2H, -CH2-), 2.88 (s, 4H, =C-CH2- × 2), 3.81 (s, 6H, OCH3 × 2), 
6.85 (d, J = 8.1 Hz, 2H, Ar-H), 7.03 (d, J = 8.4 Hz, 2H, Ar-H), 7.11 (s, Ar-H), 7.57 (s, 2H, 
CH=C × 2), 9.52 (br s, 2H, OH). 13C-NMR (75 MHz, CDCl3)  δ:   55.289, 76.574, 
76.994, 77.421, 101.794, 113.037, 115.908, 120.794, 124.328, 129.882, 136.329, 
140.543, 159.889, 183.230. MS (APCI) m/z: 367.0 (M+1)+. HPLC (MeOH: H2O=80:20) 
tR (min): 3.351. PHPLC/ %: 97.88. HPLC (ACN: H2O=80:20) tR (min): 3.209. PHPLC/ %: 
99.31.  
 
Compound 3-2: Yellow crystals. C24H26O5. Melting point: 149-151°C. 1H-NMR (300 
MHz, CDCl3)  δ: 1.830(2H, m, J=6Hz ,-CH2-), 2.95(4H, t, J=5Hz =C-CH2- x2), 
3.914(6H, s, CH3-O x2), 3.924 (6H, s, CH3-O x2), 6.911(2H, d, J=8.4Hz, Ar-H), 
7.023(2H, s, Ar-H), 7.114(2H, d, J=4.2Hz, Ar-H),7.753(2H, s,-CH=C- x2). 13C-NMR (75 
MHz, CDCl3) δ: 23.022, 28.503, 55.909, 76.725, 77.150, 77.754, 110.897, 113.714, 
123.936, 128.961, 134.490, 136.774, 148.640, 149.603, 189.929 MS (APCI) m/z: 395.1 



 
 

 210 

(M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 5.691. PHPLC/ %: 100.00. HPLC (ACN: 
H2O=80:20) tR (min): 2.750. PHPLC/ %: 97.80.   
 
Compound 3-3: Brownish-yellow powder. C22H22O5. Yield: 31.09%. Melting point: 
189°C. 1H-NMR (300 MHz, DMSO-d6)  δ: 1.72 (t, J =5Hz, 2H), 2.86 (s, 4H), 3.81 (s, 
OCH3 × 2), 6.99-7.01(m, 6H, Ar-H + CH=C × 2), 7.48 (s, 2H, Ar-H), 9.18 (br s, 2H, 
OH). 13C-NMR (75 MHz, DMSO-d6) δ: 22.237, 27.847, 55.504, 111.911, 117.060, 
122.884, 129.172, 133.957, 135.691, 146.173, 148.483, 188.514 S MS (APCI)  m/z: 
367.3 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 4.810. PHPLC/ %: 100.00. HPLC 
(ACN: H2O=80:20) tR (min): 1.747. PHPLC/ %: 99.83.    
 
Compound 3-4: Yellow crystals. C20H18O. Melting point: 116-120°C. 1H-NMR (300 
MHz, CDCl3)  δ: δ: 1.79 ( t, J=6 Hz , 2H -CH2-), 2.93 (4H, t, J=5 Hz, -CH2- ×2), 7.25-
7.48 (10H, m, Ar–H), 7.80 (2H, s,-CH=C- ×2). 13C-NMR (75 MHz, DMSO-d6) δ: 22.994, 
28.429, 76.579, 77.002, 100.686, 128.356, 128.556, 130.340, 135.963, 136.175, 136.916, 
190.373  . MS (APCI) m/z: 275.1 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 12.149. 
PHPLC/ %: 98.71. HPLC (ACN: H2O=80:20) tR (min): 5.549. PHPLC/ %: 98.60.     
 
Compound 3-5: Yellow crystals. C22H22O3. Yield: 41.1%. Melting point: 59-60°C. 1H-
NMR (300 MHz, CDCl3)  δ: 1.68 (2H, t, J=5Hz, -CH2-), 2.86(4H, s, =C-CH2-x2), 
3.835(6H, s, CH3-O), 6.96 (d, J=8 Hz, 2H, ArH), 7.05-7.10 (m, 4H, ArH), 7.32-7.38 (m, 
2H, ArH), 7.60 (s, 2H, CH=C- ×2). 13C-NMR (75 MHz, DMSO-d6) δ: 22.287, 27.780, 
55.023, 114.502, 115.474, 122.449, 129.459, 135.636, 136.404, 159.109, 188.80 MS 
(APCI) m/z: 335.0 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 5.049. PHPLC/ %: 95.43. 
HPLC (ACN: H2O=80:20) tR (min): 4.033. PHPLC/ %: 96.79.     
 
Compound 3-6: Brownish-yellow powder. C20H18O3. Yield: 25.44%. Melting point: 270-
271°C. 1H-NMR (300 MHz, DMSO-d6)  δ: 1.71(2H, t, J=6 Hz, -CH2-), 2.85(4H, t, 
J=5.4Hz, -CH2- ×2), 6.84 (4H, d, J=4Hz, ArH), 7.40(4H, d, J=4 Hz, ArH),7.53 (2H, s, 
Ar–CH=C ×2), 9.96 (2H, br s, OH ×2). 13C-NMR (75 MHz, DMSO-d6) δ: 22.476, 27.912, 
115.464, 126.393, 132.390, 133.242, 135.731, 158.250, 188.443 MS (APCI) m/z: 307.0 
(M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 7.542. PHPLC/ %: 98.28. HPLC (ACN: 
H2O=80:20) tR (min): 3.075. PHPLC/ %: 97.68.     
 
Compound 3-7: Yellow crystals. C20H14F4O Yield: 12.5%. Melting point: 105-106°C. 
1H-NMR (300 MHz, CDCl3)  δ: 1.79-1.87 (m, 2H, -C-CH2-), 2.89 (4H, t, J=5.7Hz, -C-
CH2- ×2), 7.18-7.31 (m, 6H, ArH), 7.67 (2H, s, Ar–CH=C ×2). 13C-NMR (75 MHz, 
DMSO-d6). MS (APCI) m/z: 347.0 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 6.923. 
PHPLC/ %: 92.43. HPLC (ACN: H2O=80:20) tR (min): 5.013. PHPLC/ %: 96.79.     
 
Compounds 3-8: Yellow powder. C20H16F2O. Melting point: 95-96°C. 1H-NMR (300 
MHz, CHCl3) δ: 1.7821(2H, m,-CH2-), 2.8086(4H, t, J=5.67Hz =C-CH2- x2), 7.1324(4H, 
m, Ar-H), 7.3441(4H, m, Ar-H), 7.8224(2H, s,-CH=C- x2). 13C-NMR (75 MHz, DMSO-
d6) δ: 22.9383, 28.5130, 76.5764, 77.0000, 77.4236, 115.5604, 115.8589, 123.6673, 
123.7154, 123.7636, 123.9455, 129.7041, 129.7522, 130.2722, 130.3781, 130.6669, 
130.7054, 138.1961, 159.1660, 162.4877, 189.5330. MS (APCI) m/z: 311.0(M+1) +. 
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HPLC (MeOH: H2O=80:20) tR (min): 5.535. PHPLC/ %: 97.00. HPLC (ACN: H2O=80:20) 
tR (min): 4.435. PHPLC/ %: 95.99.  
 
Compound 3-9: Yellow powder. C20H16F2O. Melting point: 84°C. 1H-NMR (300 MHz, 
CHCl3) δ: 1.8000 (2H, m,-CH2-), 2.9128(4H, t, J=5.28Hz =C-CH2- x2), 7.2148(8H, m, 
Ar-Hx2), 7.7270(2H, s,-CH=C- x2). 13C-NMR (75 MHz, DMSO-d6) δ: 22.6206, 28.2241, 
76.5764, 77.0000, 77.4236, 115.2909, 115.5701, 116.4452, 116.7351, 126.1321, 
126.1706, 129.7619, 129.8678, 135.6254, 135.6542, 135.8577, 137.8206, 137.9265, 
160.8509, 164.1148, 189.6774. MS (APCI) m/z: 311.0 (M+1) +. HPLC (MeOH: 
H2O=80:20) tR (min): 6.683. PHPLC/ %: 99.41. HPLC (ACN: H2O=80:20) tR (min): 5.609. 
PHPLC/ %: 97.23  
 
Compound 3-10: Yellow powder. C20H16F2O. Melting point: 151°C. 1H-NMR (300 
MHz, CHCl3) δ: 1.8055 (2H, m,-CH2-), 2.8952(4H, t, J=5.28Hz =C-CH2- x2), 7.0943(4H, 
m, Ar-H), 7.4458(4H, m, Ar-H), 7.7458(2H, s,-CH=C- x2). 13C-NMR (75 MHz, DMSO-
d6) δ: 22.8709, 28.3108, 115.3583, 115.6375, 132.1689, 132.2844, 135.6928, 135.8468, 
160.9857, 164.2978, 190.0048. MS (APCI) m/z: 310.9 (M+1) +. HPLC (MeOH: 
H2O=80:20) tR (min): 5.699. PHPLC/ %: 96.45. HPLC (ACN: H2O=80:20) tR (min): 5.316. 
PHPLC/ %: 95.44 
 
Compound 4-1: Dark yellow powder. C21H20O5. Melting point: 198-202 °C. 1H-NMR 
(300 MHz, DMSO-d6) δ : 3.06 (4H, s, -CH2-CH2), 3.84 (6H, s, OCH3 ×2), 6.89 (2H, d, 
J=8 Hz, Ar-H), 7.16 (2H, d, J=8 Hz, Ar-H), 7.24(2H, s, Ar-H), 7.35 (2H, s, CH=C×2), 
9.69(2H, br s, OH ×2). 13C-NMR (75 MHz, DMSO-d6) δ: 26.914, 56.605, 115.545, 
116.922, 125.793, 128.179, 133.841, 135.768, 148.727, 149.537, 195.480. MS (APCI) 
m/z: 353.0 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 2.464. PHPLC/ %: 98.66. HPLC 
(ACN: H2O=70:30) tR (min): 1.953. PHPLC/ %: 100.00.  
 
Compound 4-2: Yellow powder. C23H24O5. Yield: 44.0%. Melting point: 196-199°C. 1H-
NMR (300 MHz, CDCl3) δ : 3.10 (4H, s, CH2-CH2), 3.93 (12H, s, OCH3 ×4), 6.93 (2H, 
d, J= 8 Hz, Ar-H), 7.12-7.27 (m, 4H, Ar-H), 7.53 (2H, s, CH=C×2).13C-NMR (75 MHz, 
DMSO-d6) δ: 26.387, 55.822, 55.899, 111.112, 113.409, 124.534, 128.946, 133.622, 
135.319, 148.856, 150.223, 195.946. MS (APCI) m/z: 381.0 (M+1)+. HPLC (MeOH: 
H2O=80:20) tR (min): 7.734. PHPLC/ %: 96.91. HPLC (ACN: H2O=80:20) tR (min): 2.377. 
PHPLC/ %: 96.60.  
 
Compound 4-3: Dark yellow powder. C21H20O5.  Yield: 27.19%. Melting point: 224-
225°C. 1H-NMR (300 MHz, DMSO-d6) δ : 3.02 (4H, s, CH2-CH2), 3.82 (6H, s, OCH3 
×2), 7.02 (2H, d, J= 8 Hz, Ar-H), 7.12-7.14 (m, 4H, Ar-H), 7.28 (2H, s, CH=C × 2), 9.28 
(2H, s, OH ×2). 13C-NMR (75 MHz, DMSO-d6) δ: 25.846, 55.534, 112.095, 116.836, 
123.566, 128.334, 132.410, 135.260, 146.481, 149.148, 194.795 MS(APCI) m/z: 353.0 
(M+1)+.HPLC (MeOH: H2O=80:20) tR (min): 6.566. PHPLC/ %: 99.28. HPLC (ACN: 
H2O=80:20) tR (min): 3.083. PHPLC/ %: 99.79.  
Compound 4-4: Yellow powder. C19H16O. Yield: 63.9%. Melting point: 194-195°C. 1H-
NMR (300 MHz, CDCl3) δ: 3.07 (4H, s, CH2-CH2), 7.35-7.44 (m, 6H, Ar-H), 7.56-7.58 
(m, 6H, Ar-H + CH=C ×2). 13C-NMR (75 MHz, CDCl3) δ: 26.434, 128.675, 129.286, 
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130.652, 133.722, 135.717, 137.212, 196.220 MS (APCI)  m/z: 381.0 (M+1)+. HPLC 
(MeOH: H2O=80:20) tR (min): 22.011. PHPLC/ %: 97.12. HPLC (ACN: H2O=80:20) tR 
(min): 4.199. PHPLC/ %: 99.28  
 
Compound 4-5: Yellow crystals. C21H20O3. Yield: 56.8%. Melting point: 144-147°C. 1H-
NMR (300 MHz, CDCl3) δ : 3.05 (4H, s, CH2-CH2), 3.82 (6H, s, MeO ×2), 6.91 (dd, J= 2 
Hz, J = 10 Hz, 2H, ArH), 7.08 (s, 2H, ArH), 7.16 (d, J= 8 Hz, 2H, ArH), 7.30-7.35 (m, 
2H, Ar-H), 7.52 (s, 2H, CH=C ×2). 13C-NMR (75 MHz, DMSO-d6) δ : 26.387, 55.154, 
114.968, 115.888, 123.179, 129.592, 133.647, 136.978, 137.405, 159.579, 196.103. MS 
(APCI) m/z: 321.0 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 13.048. PHPLC/ %: 
98.85. HPLC (ACN: H2O=80:20) tR (min): 4.022. PHPLC/ %: 99.09 
 
Compound 4-6: Greenish-yellow powder. C19H16O3. Yield: 31.60%. Melting point: 
314°C. 1H-NMR (300 MHz, DMSO-d6) δ : 3.02 (4H, s, CH2–CH2), 6.87 (4H, d, J= 8Hz, 
Ar–H3,5 ×2), 7.33 (s, 2H, CH=C ×2), 7.54 (4H, d, J= 8Hz, Ar–H2,6x2), 10.1 (br s, 2H, 
OH×2 ). 13C-NMR (75 MHz, DMSO-d6) δ: 26.063, 116.110, 126.800, 132.912, 134.787, 
159.078, 195.280MS 795 MS (APCI) m/z: 293.0 (M+1)+. HPLC (MeOH: H2O=80:20) tR 
(min): 3.854. PHPLC/ %: 98.60. HPLC (ACN: H2O=70:30) tR (min): 1.784. PHPLC/ %: 
99.66 
 
Compound 4-7: Yellow crystals. C19H12F4O.Yield: 38.5%. Melting point: 239-240°C. 
1H-NMR (300 MHz, CDCl3) δ : 3.10(4H, s, CH2–CH2), 7.19-7.45 (m, 6H, Ar-H), 7.50 (s, 
2H, CH=C ×2). MS (APCI) m/z: 332.9 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 
20.240. PHPLC/ %: 96.92. HPLC (ACN: H2O=70:30) tR (min): 13.712. PHPLC/ %: 98.41 
 
Compound 4-8: Yellow powder. C19H14F2O. Melting point: 210°C. 1H-NMR (300 MHz, 
CHCl3) δ: 3.0484(4H, s, CH2–CH2), 7.7.167(4H, m, Ar-H), 7.3667(2H, m, Ar-H),7.5776 
(2H, m, Ar-H),7.8111(2H, s, Ar-CH=Cx2) .13C-NMR (75 MHz, DMSO-d6) δ: 26.0771, 
76.1527, 76.5764, 77.0000, 115.3775, 115.6664, 123.3496, 123.5132, 123.6095, 
123.6577, 125.2655, 125.3329, 129.7041, 130.5802, 130.6958, 138.5041, 159.6281, 
195.1076. MS (APCI) m/z: 297.0 (M+1) +.HPLC (MeOH: H2O=80:20) tR (min): 6.816. 
PHPLC/ %: 99.89. HPLC (ACN: H2O:80=20) tR (min): 4.057. PHPLC/ %: 94.18 
 
Compound 4-9: Yellow powder. C19H14F2O. Melting point: 191-192°C. 1H-NMR (300 
MHz, CHCl3) δ: 2.9969 (4H, s, CH2–CH2), 7.0071(2H, m, Ar-H), 7.2633 (6H, m, Ar-H), 
7.4257(2H, s, Ar-CH=Cx2). 13C-NMR (75 MHz, DMSO-d6) δ: 26.3370, 76.5764, 
77.0000, 77.4236, 100.6658, 116.1863, 116.4751, 116.5907, 116.8795, 126.7001, 
126.7386, 130.1662, 130.2818, 132.7273, 132.7658, 137.6954, 137.8109, 138.0420, 
139.6595, 161.1494, 164.4229, 195.9068. MS (APCI) m/z: 297.0 (M+1) +. HPLC (MeOH: 
H2O=80:20) tR (min): 5.848. PHPLC/ %: 97.32. HPLC (ACN: H2O=80:20) tR (min): 4.303. 
PHPLC/ %: 93.77 
Compound 4-10: Yellow powder. C19H14F2O. Melting point: 239-240°C. 1H-NMR (300 
MHz, CHCl3) δ:  2.7885(4H, s, CH2–CH2), 6.8292(8H, m, Ar-H), 7.3077 (2H, s, Ar-
CH=Cx2). 13C-NMR (75 MHz, DMSO-d6) δ: 26.3274, 76.5764, 77.0000, 77.4236, 
115.8108, 116.0996, 131.9956, 132.0437, 132.5444, 132.6599, 132.7177, 136.6556, 
161.4864, 164.8177, 196.0416. MS (APCI) m/z: 297.0 (M+1) +. HPLC (MeOH: 
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H2O=80:20) tR (min): 7.108. PHPLC/ %: 99.57. HPLC (ACN: H2O=80:20) tR (min): 4.387. 
PHPLC/ %: 95.02 
 
Compound 5-1: Yellow powder .C17H16O5. Yield: 34.07%. Melting point: 108-110°C. 
1H-NMR (300 MHz, DMSO-d6) δ: 3.87 (6H, s, MeO ×2), 6.82 (1H, d, J= 8 Hz, ArH), 
6.91(1H, d, J=8Hz, ArH), 7.27 (1H, d, J= 8 Hz, ArH), 7.48-7.80 (m, 5H, Ar-H + 
CH=CH), 9.62 (s, 1H, OH), 9.99 (s, 1H, OH). 13C-NMR (75 MHz, DMSO-d6) δ: 55.637, 
55.776, 111.519, 111.722, 114.848, 115.540, 118.643, 123.480, 126.445, 129.786, 
143.527, 147.711, 149.334, 151.593, 186.957 MS (APCI) m/z: 301.0 (M+1)+. HPLC 
(MeOH: H2O=80:20) tR (min): 4.252. PHPLC/ %: 97.30. HPLC (ACN: H2O=80:20) tR 
(min): 3.234. PHPLC/ %: 95.495.624 
 
Compound 5-2: Light yellow solid. C19H20O5. Yield: 69.0%. Melting point: 110°C. 1H-
NMR (300 MHz, CDCl3) δ: 6.85 (t, 2H, J = 7.8 Hz, Ar-H), 7.12 (m, 1H, Ar-H), 7.18 (d, J 
= 8.1 Hz, 1H, Ar-H), 7.38 (d, J = 15 Hz, 1H, COCH=), 7.57-7.65 (m, 2H, Ar-H), 7.71 (d, 
J = 15 Hz, 1H, Ar-CH=). 13C-NMR (75 MHz, CDCl3) δ:  55.788, 55.854, 109.768, 
110.044, 110.616, 110.954, 119.404, 122.732, 127.858, 131.334, 143.937, 149.026, 
151.084, 152.935, 188.401 MS (APCI)   m/z: 329.0 (M+1)+. HPLC (MeOH: H2O=80:20) 
tR (min): 7.043. PHPLC/ %: 99.34. HPLC (ACN: H2O=80:20) tR (min): 3.742. PHPLC/ %: 
99.12 
 
Compound 5-3: Yellow powder. C17H16O5. Melting point: 144-147°C. 1H-NMR (300 
MHz, CDCl3) δ: 3.94 (s, 3H, OCH3), 3.98 (s, 3H, OCH3), 6.86 (d, J= 8 Hz, 1H, ArH), 
6.93 (d, J= 8 Hz, 1H, ArH), 7.13 (dd, J = 1.8 Hz, J = 10 Hz, 1H, ArH), 7.27-7.28 (m, 1H, 
ArH), 7.39 (d, J = 16 Hz, 1H, COCH=), 7.61-7.63 (m, 2H, ArH), 7.72 (d, J = 16 Hz, 1H, 
ArCH=). 13C-NMR (75 MHz, DMSO-d6) δ:  56.197, 56.288, 111.821, 112.542, 114.804, 
115.151, 119.781, 122.406, 122.779, 128.088, 131.317, 144.265, 146.882, 147.027, 
150.793, 152.766, 188.593 MS (APCI) m/z: 301.0 (M+1)+. HPLC (MeOH: H2O=80:20) 
tR (min): 3.366. PHPLC/ %: 99.40. HPLC (ACN: H2O=80:20) tR (min): 2.934. PHPLC/ %: 
99.91 
 
Compound 5-4: Light yellow crystals. C15H12O. Yield: 66.1%. Melting point: 53-55°C. 
1H-NMR (300 MHz, CDCl3) δ: 7.41-7.79 (m, 10H, Ar-H + -CH=CH-), 8.03 (d, J = 7.5 
Hz, 2H, Ar-H). 13C-NMR (75 MHz, CDCl3) δ: 121.980, 128.358, 128.407, 128.530, 
128.862, 130.450, 132.689, 134.781, 138.104, 144.714, 190.393 MS (APCI) m/z: 209.0 
(M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 8.273. PHPLC/ %: 100.00. HPLC (ACN: 
H2O=70:30) tR (min): 4.465. PHPLC/ %: 99.27 
 
Compound 5-5: Yellow liquid. C17H16O3. Yield: 15.8%. Liquid state. 1H-NMR (300 
MHz, CDCl3) δ: 3.85 (s, 3H, OMe), 3.88 (s, 3H, OMe), 6.97 (d, J = 8 Hz, 1H, ArH), 
7.12-7.61 (m, 8H, Ar-H + COCH=), 7.77 (d, J=16 Hz, 1H, Ar-CH=). 13C-NMR (75 MHz, 
CDCl3) δ: 121.980, 128.358,55.038, 55.156, 112.704, 113.263, 116.053, 118.978, 
120.818, 120.857, 122.060, 129.343, 129.696, 135.993, 144.437, 159.650, 159.700, 
189.781 MS (APCI) m/z: 241.2 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 6.073. 
PHPLC/ %: 98.13. HPLC (ACN: H2O=70:30) tR (min): 2.867. PHPLC/ %: 97.85 
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Compound 5-6: Pale yellow powder. C15H12O3. Yield: 12.05%. Melting point: 190-
195°C. 1H-NMR (300 MHz, DMSO-d6) δ: 6.80-6.88 (m, 4H, ArH), 7.56-7.62 (m, 4H, 
ArH + -CH=CH-), 7.94 (d, J = 8 Hz, 2H, Ar-H).  MS (APCI) m/z: 241.2 (M+1)+. HPLC 
(MeOH: H2O=80:20) tR (min): 3.326. PHPLC/ %: 99.69. HPLC (ACN: H2O=70:30) tR 
(min): 2.941. PHPLC/ %: 99.69 
 
Compound 5-7: White crystals. C15H8F4O. Yield: 14.3%. Melting point: 132-134°C. 1H-
NMR (300 MHz, CDCl3) δ: 7.18-7.39 (m, 4H, Ar-H + COCH=), 7.45-7.51 (m, 1H, Ar-
H), 7.73 (d, J = 16 Hz, 1H, Ar-CH=), 7.79-7.90 (m, 2H, Ar-H). 13C-NMR (75 MHz, 
CDCl3) δ:  55100.711, 116.482, 116.715, 117.508, 117.742, 117.894, 117.978, 118.127, 
121.670, 121.694, 125.335, 125.403, 131.783, 131.841, 134.884, 143.229, 148.946, 
152.249, 187.095 MS (APCI) m/z: 280.9 (M+1)+. HPLC (MeOH: H2O=80:20) tR (min): 
4.523. PHPLC/ %: 95.64. HPLC (ACN: H2O=80:20) tR (min): 3.812. PHPLC/ %: 96.05 
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Appendix 3: Effects of curcumin analogue 3-3 on 84 related Wnt components and 
target genes in U2OS cells using Human Wnt signaling real time PCR array analysis. 
The gene symbol, gene description, fold-change and p-value were reported for each gene. 
Genes that are significantly dysregulated (p-value < 0.05) are bold and indicated with *.  
 

Gene 
symbol Gene Description  

Fold 
Regulation p-value 

 
Genes that are up-regulated with cucrumin analogue 3-3 treatment 
 
BTRC * Beta-transducin repeat containing 1.540 0.0475 
CCND2 Cyclin D2 1.099 0.7502 
CTBP2 C-terminal binding protein 2 1.012 0.9960 
DKK1 Dickkopf homolog 1 (Xenopus laevis) 1.602 0.0663 

FGF4 

Fibroblast growth factor 4 (heparin secretory 
transforming protein, Kaposi sarcoma 
oncogene) 1.000 0.9596 

FRZB Frizzled-related protein  1.307 0.3766 
KREMEN1 Kringle containing transmembrane protein 1 1.031 0.8588 

MYC 
V-myc myelocytomatosis viral oncogene 
homolog (avian) 1.606 0.0821 

TLE2 * 
Tranducin-like enhancer of split 2 (E(sp1) 
homolog, Drosophila) 2.406 0.000526 

WNT2B 
Wingless-type MMTV integration site 
family, member 2B 1.206 0.3665 

 
Genes that are down-regulated with curcumin analogue 3-3 treatment 
 
AES Amino-terminal enhancer of split 1.932 0.1798 
APC Adenomatosis polyposis coli 1.663 0.0798 
AXIN1 Axin 1 1.050 0.8786 
BCL9 B-cell CLL/lymphoma 9 1.498 0.2007 
FZD5 Frizzled homolog 5(Drosophila) 1.047 0.8533 
CCND1 * Cyclin D1 1.461 0.0421 
CCND3 Cyclin D3 1.146 0.6529 
CSNK1A1 Casein kinase 1, alpha 1 1.901 0.1223 
CSNK1D Casein kinase 1, delta 1 1.385 0.4049 
CSNK1G1 Casein kinase 1, gamma 1 1.195 0.5570 
CSNK2A1 Casein kinase 1, alpha 1 polypeptide 1.211 0.1538 
CTBP1 C-terminal binding protein 1 1.832 0.2304 

CTNNB1 
Catenin(cadherin-associated protein), beta 1, 
88kDa 1.461 0.0884 

CTNNBIP1 Catenin, beta interacting protein 1 2.009 0.0682 
CXXC4 CXXC finger 4 2.651 0.0697 
DAAM1 Dishevelled associated activator of 1.035 0.5478 
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morphogenesis 1 
DIXDC1 DIX domain containing 1 1.516 0.0675 
DVL1 Dishevelled, dsh homolog 1 (Drosophila) 1.110 0.4598 
DVL2 Dishevelled, dsh homolog 2 (Drosophila) 1.823 0.3636 
EP300 E1A binding protein p300 1.254 0.4232 
FBXW11 F-box and WD repeat domain containing 11 1.159 0.5991 
FBXW2 F-box and WD repeat domain containing 2 1.047 0.5459 
FOSL1 * FORolike antigen 1 4.574 0.0448 
FOXN1 Forkhead box N1 1.451 0.2374 

FRAT1 
Frequently rearranged in advanced T-cell 
lymphomas 1.495 0.313 

FSHB 
Follicle stimulating hormone, beta 
polypeptide 1.234 0.4260 

FZD1 Frizzled homolog 1 (Drosophila) 1.569 0.1054 
FZD2 * Frizzled homolog 2 (Drosophila) 3.776 0.0304 
FZD3 * Frizzled homolog 3 (Drosophila) 1.341 0.0153 
FZD4 * Frizzled homolog 4 (Drosophila) 2.597 0.0297 
FZD6 Frizzled homolog 6 (Drosophila) 1.357 0.5118 
FZD7 Frizzled homolog 7 (Drosophila) 1.509 0.2087 
FZD8 Frizzled homolog 8 (Drosophila) 1.097 0.7414 
GSK3A Glycogen synthase kinase 3 alpha 1.379 0.2654 
GSK3B Glycogen synthase kinase 3 beta 1.226 0.3865 
JUN Jun oncogene 1.686 0.1092 
LEF1 Lymphoid enhancer-binding factor 1 1.251 0.1993 

LRP5 
Low density lipoprotein receptor-related 
protein 5 1.198 0.6691 

LRP6 
Low density lipoprotein receptor-related 
protein 6 1.335 0.1809 

NKD1 * Naked cuticle homolog 1 (Drosophila) 2.292 0.0173 
NLK Nemo-like kinase 1.097 0.7933 

PITX2 * 
Paired-like homedomain transcription 
factor 2 3.855 0.0306 

PORCN Porcupine homolog (Drosophila) 1.026 0.8923 

PPP2CA 
Protein phosphatase 2(formerly 2A), catalytic 
subunit, alpha isoform 1.341 0.0535 

PPP2R1A 
Protein phosphatase 2(formerly 2A), 
regulatory subunit A, alpha isoform 1.678 0.2019 

PYGO1 Pygopus homolog (Drosophila) 1.184 0.2637 
RHOU Ras homolog gene family, member U 1.973 0.0833 
SENP2 SUMO1/sentrin/SMT3 specific peptidase 2 1.509 0.1791 
SFRP1 * Secreted frizzled-related protein 1 1.562 0.000628 
SFRP4 Secreted frizzled-related protein 4 1.606 0.1438 
FBXW4 F-box and WD repeat domain containing 4 1.231 0.4354 

SLC9A3R1 
Solute carrier family 9 (sodium/hydrogen 
exchanger), member 3 regulator 1  1.447 0.3604 
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SOX17 SRY (sex determining region Y)-box 17 1.162 0.5814 
T T, brachyury homolog (mouse) 1.289 0.2734 

TCF7 
Transcription factor 7 (T-cell specific, HMG-
box) 1.234 0.4260 

TCF7L1 * 
Transcription factor 7-like 1 (T-cell 
specific, HMG-box) 2.921 0.0307 

TLE1 
Tranducin-like enhancer of split 1 (E(sp1) 
homolog, Drosophila) 1.655 0.0699 

WIF1 WNT inhibitory factor 1 1.234 0.4260 

WISP1 * 
WNT inducible signaling pathway protein 
1 2.815 0.0276 

WNT1 
Wingless-type MMTV integration site 
family, member 1 1.234 0.4260 

WNT10A 
* 

Wingless-type MMTV integration site 
family, member 10A 3.403 0.0151 

WNT11 * 
Wingless-type MMTV integration site 
family, member 11 9.895 0.000005 

WNT16 
Wingless-type MMTV integration site 
family, member 16 1.228 0.4311 

WNT2 
Wingless-type MMTV integration site 
family, member 2 1.234 0.4260 

WNT3 
Wingless-type MMTV integration site 
family, member 3 1.437 0.2642 

WNT3A 
Wingless-type MMTV integration site 
family, member 3A 1.323 0.2490 

WNT4 
Wingless-type MMTV integration site 
family, member 4 2.292 0.1375 

WNT5A * 
Wingless-type MMTV integration site 
family, member 5A 2.549 0.0195 

WNT5B * 
Wingless-type MMTV integration site 
family, member 5B 2.357 0.0125 

WNT6 * 
Wingless-type MMTV integration site 
family, member 6 4.367 0.0295 

WNT7A * 
Wingless-type MMTV integration site 
family, member 7A 2.474 0.0397 

WNT7B * 
Wingless-type MMTV integration site 
family, member 7B 4.218 0.0115 

WNT8A * 
Wingless-type MMTV integration site 
family, member 8A 1.354 0.0055 

WNT9A 
Wingless-type MMTV integration site 
family, member 9A 1.228 0.4040 
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Appendix 4: Primer sequence for RT-PCR 

Gene   Sequence  Product 
size (bp) 
 

SFRP1 Sense 5'-CCAGC GAGTA CGACT ACGTG AGCTT-3' 497 
 Anti-sense 5'-CTCAGATTTCAACTCGTTGTCACAGG-3'  
SFRP2 Sense 5'-ATGAT GATGA CAACG ACATA ATG-3' 322 
 Anti-sense 5'-ATGCG CTTGA ACTCT CTCTG C-3'  
SFRP4 Sense 5'-CCAGA CATGA TGGTA CAGGA AAG-3' 380 
 Anti-sense 5'-CTTTTACTAAGCTGATCTCTCCAT-3'  
SFRP5 Sense 5'-CAGAT GTGCT CCAGT GACTT TG-3' 346 
 Anti-sense 5'-AGAAG AAAGG GTAGT AGAGG GAG-3'  
GAPDH Sense 5'-CGGAG TCAAC GGATT TGGTC GTAT-3' 307 
 Anti-sense 5'-AGCCT TCTCC ATGGT GGTGA AGAC-3'  
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Appendix 5: Effects of SFRP2 on 84 related Wnt components and target genes in 
U2OS cells using Human Wnt signaling real time PCR array analysis. The gene 
symbol, gene description, fold-change and p-value were reported for each gene. Genes 
that are significantly dysregulated (p-value < 0.05) are bold and indicated with *.  
 

Gene 
symbol Gene Description  

Fold 
Regulation p-value 

 
Genes that are up-regulated with SFRP2 over-expression 
 
AES  Amino-terminal enhancer of split 1.774 0.0829 
APC * Adenomatosis polyposis coli 2.163 0.0019 
AXIN1 Axin 1 1.102 0.2615 
BCL9 B-cell CLL/lymphoma 9 1.050 0.4808 
BTRC * Beta-transducin repeat containing 1.226 0.0106 
CCND2 * Cyclin D2 2.627 0.000076 
CCND3 Cyclin D3 1.060 0.6606 
CSNK1D * Casein kinase 1, delta 1 1.959 0.0010 
CSNK1G1*  Casein kinase 1, gamma 1 3.466 0.00026 
CSNK2A1 Casein kinase 1, alpha 1 polypeptide 1.231 0.3178 
CTBP1 C-terminal binding protein 1 1.057 0.2074 
CTBP2 * C-terminal binding protein 2 2.028 0.00054 
CTNNBIP1 Catenin, beta interacting protein 1 1.283 0.4021 
CXXC4 CXXC finger 4 1.074 0.0945 
DIXDC1 DIX domain containing 1 1.230 0.3597 
DKK1 * Dickkopf homolog 1 (Xenopus laevis) 3.317 0.000005 
DVL1 * Dishevelled, dsh homolog 1 (Drosophila) 1.376 0.0074 
DVL2 * Dishevelled, dsh homolog 2 (Drosophila) 2.245 0.0011 
EP300 E1A binding protein p300 1.209 0.0957 
FBXW2 * F-box and WD repeat domain containing 2 3.776 0.0010 
FBXW4 * F-box and WD repeat domain containing 4 1.655 0.0061 

FBXW11 * 
F-box and WD repeat domain containing 
11 1.488 0.0030 

FGF4 

Fibroblast growth factor 4 (heparin secretory 
transforming protein, Kaposi sarcoma 
oncogene) 1.335 0.6212 

FOXN1 Forkhead box N1 1.251 0.2438 
FRZB  Frizzled-related protein  1.495 0.1817 

FSHB 
Follicle stimulating hormone, beta 
polypeptide 2.378 0.061762 

FZD3 * Frizzled homolog 3 (Drosophila) 1.811 0.00075 
FZD5 * Frizzled homolog 5(Drosophila) 2.627 0.0003 
FZD8 * Frizzled homolog 8 (Drosophila) 1.617 0.00134 
GSK3B * Glycogen synthase kinase 3 beta 1.480 0.00167 
KREMEN1 Kringle containing transmembrane protein 1 1.014 0.7771 
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LRP5 
Low density lipoprotein receptor-related 
protein 5 1.128 0.2017 

LRP6 
Low density lipoprotein receptor-related 
protein 6 1.128 0.0796 

NLK Nemo-like kinase 2.751 0.2345 

PITX2  
Paired-like homedomain transcription factor 
2 1.079 0.6196 

PPP2R1A 
Protein phosphatase 2(formerly 2A), 
regulatory subunit A, alpha isoform 1.286 0.4072 

RHOU Ras homolog gene family, member U 1.220 0.1463 
SENP2  SUMO1/sentrin/SMT3 specific peptidase 2 1.526 0.2469 
SFRP1 * Secreted frizzled-related protein 1 1.491 0.0026 
SFRP4 Secreted frizzled-related protein 4 1.149 0.4850 
    
SOX17 SRY (sex determining region Y)-box 17 1.338 0.3052 
T * T, brachyury homolog 1.625 0.0048 

TCF7  
Transcription factor 7 (T-cell specific, HMG-
box) 1.231 0.5227 

TLE1 * 
Tranducin-like enhancer of split 1 (E(sp1) 
homolog, Drosophila) 1.968 0.0003 

TLE2  
Tranducin-like enhancer of split 2 (E(sp1) 
homolog, Drosophila) 1.733 0.2065 

WIF1 * WNT inhibitory factor 1 3.317 0.000005 

WNT1 * 
Wingless-type MMTV integration site 
family, member 1 3.317 0.000005 

WNT10A  
Wingless-type MMTV integration site 
family, member 10A 1.021 0.8557 

WNT16 * 
Wingless-type MMTV integration site 
family, member 16 3.317 0.000005 

WNT2 * 
Wingless-type MMTV integration site 
family, member 2 3.317 0.000005 

WNT2B * 
Wingless-type MMTV integration site 
family, member 2B 1.159 0.0047 

WNT3 * 
Wingless-type MMTV integration site 
family, member 3 1.408 0.0369 

WNT3A 
Wingless-type MMTV integration site 
family, member 3A 1.526 0.0967 

WNT4 
Wingless-type MMTV integration site 
family, member 4 1.021 0.8764 

WNT6  
Wingless-type MMTV integration site 
family, member 6 1.289 0.2158 

WNT7A*  
Wingless-type MMTV integration site 
family, member 7B 3.379 0.0053 

WNT8A * 
Wingless-type MMTV integration site 
family, member 8A 1.919 0.0006 
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WNT9A * 
Wingless-type MMTV integration site 
family, member 9A 2.154 0.0034 

 
Genes that are down-regulated with SFRP2 over-expression  
 
CCND1 * Cyclin D1 1.973 0.00029 
CSNK1A1 Casein kinase 1, alpha 1 1.424 0.1171 

CTNNB1 
Catenin(cadherin-associated protein), beta 1, 
88kDa 1.099 0.1991 

DAAM1 
Dishevelled associated activator of 
morphogenesis 1 1.110 0.3138 

FOSL1  FORolike antigen 1 1.190 0.6883 

FRAT1 
Frequently rearranged in advanced T-cell 
lymphomas 1.151 0.4000 

FZD1 Frizzled homolog 1 (Drosophila) 1.260 0.0893 
FZD2 * Frizzled homolog 2 (Drosophila) 1.875 0.0052 
FZD4 * Frizzled homolog 4 (Drosophila) 2.701 0.0037 
FZD6 * Frizzled homolog 6 (Drosophila) 5.016 0.000032 
FZD7 * Frizzled homolog 7 (Drosophila) 3.724 0.00062 
GSK3α Glycogen synthase kinase 3α 1.020 0.8131 
JUN * Jun oncogene 1.721 0.00039 
LEF1 * Lymphoid enhancer-binding factor 1 1.434 0.0533 

MYC  
V-myc myelocytomatosis viral oncogene 
homolog (avian) 1.077 0.5938 

NKD1 * Naked cuticle homolog 1 (Drosophila) 1.628 0.0048 
PORCN Porcupine homolog (Drosophila) 1.257 0.3911 

PPP2CA 
Protein phosphatase 2(formerly 2A), catalytic 
subunit, alpha isoform 1.140 0.2990 

PYGO1 Pygopus homolog (Drosophila) 2.357 0.0806 
SLC9A3R1 
* 

Solute carrier family 9 (sodium/hydrogen 
exchanger), member 3 regulator 1  1.146 0.0118 

TCF7L1  
Transcription factor 7-like 1 (T-cell specific, 
HMG-box) 1.162 0.1494 

WISP1 * 
WNT inducible signaling pathway protein 
1 7.569 0.00025 

WNT11 * 
Wingless-type MMTV integration site 
family, member 11 11.210 0.00025 

WNT5A * 
Wingless-type MMTV integration site 
family, member 5A 1.853 0.0022 

WNT5B * 
Wingless-type MMTV integration site 
family, member 5B 1.519 0.0054 

WNT7B 
Wingless-type MMTV integration site 
family, member 7B 1.064 0.6405 
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Appendix 6: Effects of SFRP5 on 84 related Wnt components and target genes in 
U2OS cells using Human Wnt signaling real time PCR array analysis. The gene 
symbol, gene description, fold-change and p-value were reported for each gene. Genes 
that are significantly dysregulated (p-value < 0.05) are bold and indicated with *.  
 

Gene 
symbol Gene Description  

Fold 
Regulation p-value 

 
Genes that are up-regulated with SFRP5 over-expression 
 
AES * Amino-terminal enhancer of split 2.163 0.0410 
APC * Adenomatosis polyposis coli 1.794 0.0380 
AXIN1 Axin 1 1.141 0.4515 
BTRC * Beta-transducin repeat containing 1.798 0.0404 
FZD5 Frizzled homolog 5(Drosophila) 1.289 0.2411 
CCND3 Cyclin D3 1.060 0.6979 
CSNK1D Casein kinase 1, delta 1 1.045 0.5434 
CSNK1G1*  Casein kinase 1, gamma 1 2.052 0.00046 
CTBP1 C-terminal binding protein 1 1.060 0.6914 
CTBP2 C-terminal binding protein 2 1.089 0.5701 

CTNNB1 
Catenin(cadherin-associated protein), beta 1, 
88kDa 1.372 0.1697 

CTNNBIP1 Catenin, beta interacting protein 1 1.023 0.8274 
CXXC4 CXXC finger 4 1.055 0.5615 

DAAM1 
Dishevelled associated activator of 
morphogenesis 1 1.043 0.7656 

DIXDC1 DIX domain containing 1 1.220 0.2515 
DKK1 * Dickkopf homolog 1 (Xenopus laevis) 1.178 0.0373 
DVL1 * Dishevelled, dsh homolog 1 (Drosophila) 1.447 0.0193 
DVL2 * Dishevelled, dsh homolog 2 (Drosophila) 1.395 0.0458 
EP300 E1A binding protein p300 1.401 0.2063 
FBXW2 * F-box and WD repeat domain containing 2 2.757 0.0186 
FBXW11 * F-box and WD repeat domain containing 11 1.437 0.0066 

FGF4 

Fibroblast growth factor 4 (heparin secretory 
transforming protein, Kaposi sarcoma 
oncogene) 1.181 0.5367 

FOSL1  FORolike antigen 1 1.461 0.1373 
FOXN1 Forkhead box N1 1.502 0.1666 
FRZB * Frizzled-related protein  2.445 0.00968 
FZD1 Frizzled homolog 1 (Drosophila) 1.263 0.2806 
FZD3 * Frizzled homolog 3 (Drosophila) 1.811 0.0445 
FZD8 Frizzled homolog 8 (Drosophila) 1.226 0.1030 
GSK3B Glycogen synthase kinase 3 beta 1.120 0.4285 
LEF1 Lymphoid enhancer-binding factor 1 1.043 0.8003 
LRP6 Low density lipoprotein receptor-related 1.102 0.5302 



 
 

 223 

protein 6 

MYC * 
V-myc myelocytomatosis viral oncogene 
homolog (avian) 2.809 0.0473 

NLK Nemo-like kinase 1.115 0.5519 

PPP2CA 
Protein phosphatase 2(formerly 2A), catalytic 
subunit, alpha isoform 1.464 0.1466 

PPP2R1A 
Protein phosphatase 2(formerly 2A), 
regulatory subunit A, alpha isoform 1.069 0.6371 

SENP2 * SUMO1/sentrin/SMT3 specific peptidase 2 1.659 0.0524 
SFRP4 Secreted frizzled-related protein 4 1.505 0.0686 
FBXW4 F-box and WD repeat domain containing 4 1.272 0.1951 

SLC9A3R1 
Solute carrier family 9 (sodium/hydrogen 
exchanger), member 3 regulator 1  1.040 0.6586 

SOX17 SRY (sex determining region Y)-box 17 1.526 0.2289 
T * T, brachyury homolog (mouse) 1.441 0.0265 

TCF7 * 
Transcription factor 7 (T-cell specific, 
HMG-box) 1.357 0.00737 

TLE2  
Tranducin-like enhancer of split 2 (E(sp1) 
homolog, Drosophila) 1.209 0.1542 

WNT10A * 
Wingless-type MMTV integration site 
family, member 10A 1.659 0.00149 

WNT16 * 
Wingless-type MMTV integration site 
family, member 16 1.566 0.0407 

WNT2B * 
Wingless-type MMTV integration site 
family, member 2B 1.366 0.0107 

WNT3 
Wingless-type MMTV integration site family, 
member 3 1.283 0.3457 

WNT3A 
Wingless-type MMTV integration site family, 
member 3A 1.128 0.6488 

WNT4 
Wingless-type MMTV integration site family, 
member 4 1.072 0.6682 

WNT5B  
Wingless-type MMTV integration site family, 
member 5B 1.117 0.1867 

WNT6  
Wingless-type MMTV integration site family, 
member 6 1.198 0.4048 

WNT7B  
Wingless-type MMTV integration site family, 
member 7B 1.107 0.7392 

WNT8A  
Wingless-type MMTV integration site family, 
member 8A 1.385 0.0757 

WNT9A 
Wingless-type MMTV integration site family, 
member 9A 1.278 0.2706 

 
Genes that are down-regulated with SFRP5 over-expression 
 
BCL9 B-cell CLL/lymphoma 9 1.045 0.8588 
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CCND1  Cyclin D1 1.278 0.2336 
CCND2 Cyclin D2 1.128 0.4163 
CSNK1A1 Casein kinase 1, alpha 1 1.002 0.8883 
CSNK2A1 Casein kinase 1, alpha 1 polypeptide 1.107 0.4711 

FRAT1 
Frequently rearranged in advanced T-cell 
lymphomas 1.326 0.3332 

FSHB 
Follicle stimulating hormone, beta 
polypeptide 1.016 0.9750 

FZD2  Frizzled homolog 2 (Drosophila) 1.094 0.8241 
FZD4 * Frizzled homolog 4 (Drosophila) 2.549 0.0156 
FZD6 Frizzled homolog 6 (Drosophila) 1.354 0.1132 
FZD7 * Frizzled homolog 7 (Drosophila) 1.341 0.0517 
GSK3A Glycogen synthase kinase 3 alpha 1.141 0.4442 
JUN Jun oncogene 1.170 0.6445 
KREMEN1 Kringle containing transmembrane protein 1 1.115 0.1604 

LRP5 
Low density lipoprotein receptor-related 
protein 5 1.149 0.7137 

NKD1 * Naked cuticle homolog 1 (Drosophila) 1.613 0.0158 

PITX2  
Paired-like homedomain trnascription factor 
2 1.079 0.5783 

PORCN Porcupine homolog (Drosophila) 1.089 0.3624 
PYGO1 Pygopus homolog (Drosophila) 1.014 0.8092 
RHOU Ras homolog gene family, member U 1.434 0.0734 
SFRP1  Secreted frizzled-related protein 1 1.587 0.1410 

TCF7L1  
Transcription factor 7-like 1 (T-cell specific, 
HMG-box) 1.016 0.9750 

TLE1 
Tranducin-like enhancer of split 1 (E(sp1) 
homolog, Drosophila) 1.263 0.0800 

WIF1 WNT inhibitory factor 1 1.016 0.9750 

WISP1 * 
WNT inducible signaling pathway protein 
1 2.848 0.00205 

WNT1 
Wingless-type MMTV integration site 
family, member 1 1.016 0.9750 

WNT11 * 
Wingless-type MMTV integration site 
family, member 11 5.566 0.00044 

WNT2 
Wingless-type MMTV integration site 
family, member 2 1.016 0.9750 

WNT5A * 
Wingless-type MMTV integration site 
family, member 5A 1.471 0.0218 

WNT7A 
Wingless-type MMTV integration site 
family, member 7A 1.411 0.1683 
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