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SUMMARY 
 
Currently two broad categories of drugs known as “typical antipsychotics” and “atypical 

antipsychotics” are used in the treatment of schizophrenia. The typical (e.g. haloperidol) 

were the first to be used and are known to be effective in treating the positive symptoms 

of the disease. The atypicals (e.g. clozapine, olanzapine) are the newer drugs and are 

genetally more effective in treating the negative symptoms. 

 

The exact cause of better efficacy of the atypical drugs is not precisely known. In my 

research work, I have focused on the role of the noradrenergic system.  I have 

investigated the effect of antipsychotics on immediate early gene (IEG) and tyrosine 

hydroxylase (TH) expression in the medial prefrontal cortex (mPFC) and locus coeruleus 

(LC) in rat brain. In addition I validated an animal model of schizophrenia by conducting 

prepulse inhibition (PPI) and latent inhibition (LI) studies in the genetically modified 

“chakragati (ckr)” mice. Effects of antipsychotic drugs and noradrenergic drugs on the 

PPI in these mice were also studied. In the last part of the thesis, experiments were 

conducted to study the effect of antipsychotic drugs and noradrenergic drugs on the PPI 

and water maze performance in an N-methyl-D-aspartic acid (NMDA) antagonist 

induced model of schizophrenia. 

 

The study involving the IEG expression changes demonstrated that atypical and typical 

antipsychotics differ qualitatively in their effects on IEG and TH expression in the mPFC 

and LC.  In particular, the atypical antipsychotics, risperidone and clozapine, produce 

greater increases in TH expression in the LC and mPFC than the typical antipsychotic, 
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haloperidol. I also charted effects of different olanzapine doses and treatment durations 

on IEG and TH protein expression in the mPFC and LC of the rat. There are immediate 

as well as delayed dose-dependent effects of olanzapine on the patterns of expression. 

Future investigation of how changes in IEG and TH expression correlate with each other 

in the mPFC and to prefrontal cortical dependent behaviours is required. 

 

It was found that the ckr mice have disrupted LI and PPI.  These effects were attributed to 

sensorimotor gating defects. I further showed that atypical antipsychotics were more 

successful in reversing the PPI defects than the typical antipsychotics. Over all the ckr 

mice has given indication that in future it could serve as a useful animal model of 

schizophrenia. 

 

The experiments with adrenergic drugs, both in ckr mice as well as rats, show an additive 

effect of the alpha1 antagonist, prazosin, and atypical antipsychotics in reversing PPI 

deficits. In spatial memory tests in rats, there seemed to be an additive effect of the 

alpha2 antagonist, idazoxan, with the atypical antipsychotics, in improving the water 

maze performance. 

 

Starting from IEG expression to behavior testing in animals, a role for adrenergic system 

is visible in the patho-psysiology as well as treatment of schizophrenia. The additive 

effects of adrenergic drugs to the atypical antipsychotic drugs is encouraging and has the 

potential to develop into a novel therapeutic regime.  
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INTRODUCTION 

 

1.1 SCHIZOPHRENIA 

 

1.1.1 Disease and History 

Schizophrenic disorders as defined by the American Psychiatric Association’s Diagnostic 

and Statistical Manual of Mental Disorders, are mental disorders which impair 

functioning and are characterized by psychotic symptoms involving disturbances of 

thought, perception, feeling and behavior (American Psychiatric Association, 1994). Six 

specific criteria for the diagnosis of schizophrenic disorders include (i) psychotic 

symptoms of delusions, hallucinations, formal thought disorder; (ii) deterioration from a 

previous level of functioning; (iii) chronicity of the disorder for at least 6 month; (iv) a 

tendency toward onset before the age of 45; (v) symptoms not due to mood (affective) 

disorders; and (vi) symptoms not due to organic mental disorder or mental retardation 

(American Psychiatric Association, 1994). 

 

The incidence of schizophrenic disorders varies depending on the breadth of criteria used. 

Using a relatively narrow concept of the disorder, studies of European and Asian 

populations show a lifetime prevalence of 0.2% to almost 1% (McGrath et al, 2004). 

Although paranoid schizophrenia typically has a later onset, most schizophrenia 
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manifests itself in the late adolescence or early adult life (American Psychiatric 

Association, 1994). A higher prevalence in lower socioeconomic classes is also observed, 

which has been mainly attributed to social disorganization and consequent stresses. There 

is evidence to suggest that this association arises partly because some patients in a pre-

psychotic phase drift down the social scale (Goodman et al, 1983). 

 

Many patients who develop schizophrenia show pre-morbid personality traits such as 

hypersensitivity, a shyness, unsociability, lack of affect and paranoid attitudes (Erkwoh et 

al, 2003). Recently, a two syndrome hypothesis of schizophrenia suggests that there are 2 

main types of schizophrenia (Huppert and Smith, 2005). Type 1, or positive 

schizophrenia, is characterized by acute onset, good pre-morbid adjustment, prominent 

positive symptoms, good response to drug therapy, and hyperdopaminergic transmission. 

Type 2, or the negative syndrome, is characterized by insidious onset, poor pre-morbid 

adjustment, prominent negative symptoms, cognitive impairment, structural brain 

abnormalities, and poor response to treatment (Huppert and Smith, 2005).  

 

 

1.1.2 Signs and Symptoms 

Thought disorder: Clear, goal-oriented thinking becomes a challenge, as shown in a 

diffuseness and incoherence of speech. Sudden and incomprehensible changes of subject 

and flaws in reasoning occur due to distractions of thought processes. Some 

schizophrenics may claim that their thoughts are being broadcast or shared with others; 

delusional interpretations of these experiences lead to the belief that their minds are being 

controlled by external agencies.  
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Emotional (affective) changes: Blunting and inappropriateness of affect are the most 

characteristic emotional changes noted in schizophrenic patients however, this can be 

difficult to evaluate as their assessment is subjective and unreliable. Withdrawal from 

external reality and failure to coordinate internal drives are frequent findings. 

 

Perceptual disorder: Auditory hallucinations are the most common but hallucinations of 

sight, touch, smell and taste may occur. Specifically the hallucinations of a running 

commentary on the patient’s actions or of voices talking about the patient, strongly 

suggest schizophrenia. Poverty of speech is commonly reported, and ritualistic behavior 

associated with magical thinking often occurs. 

 

Delusions: Delusions of persecution are frequent, as are those involving hypochondriacal 

or religious ideas, jealousy, grandeur and sexual identity. Delusional interpretations of 

strange thoughts and conversations or that they are under the control of an external 

agency may seem illuminating to the patient but is incomprehensible to others. 

 

Catatonic signs: Movement disturbances range from hyperactivity and excitement to 

marked retardation and ever stupor. In some cases, posturing may occur by which the 

patient may take up a bizarre position for prolonged periods. Extreme negativism or 

automatic obedience is sometimes seen. Mannerisms such as a facial contortion or 

overemphasis of normal movements are more common. There may be abnormalities of 

psychomotor activities; eg, rocking, pacing, peculiar motor responses and even 

immobility. 
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Violent behavior: In acute schizophrenic states and relapses, minor aggression and threats 

of violence are common but dangerous behavior when the patient obeys commanding 

voices is uncommon. The risk of suicide is increased in all stages of schizophrenia. Ten 

percent of schizophrenic patients commit suicide. 

 

 

1.1.3 Treatment of Schizophrenia 

Current treatment of schizophrenia relies primarily on somatic drug therapy. But the 

pharmacological treatment of schizophrenia did not begin, however, until approximately 

a century ago. Before this, all kinds of mental illnesses were thought to be related to 

religious causes. People suffering from mental illnesses were hidden away, 

institutionalized or executed. The first major advancement was made when it was 

discovered that exogenous opiates had mood altering effects. It was realized that there 

could be a pathological cause and an appropriate drug treatment for schizophrenia. In the 

present day other treatments of schizophrenia consist of sedatives, electroconvulsive 

therapy (ECT), artificially induced comas and frontal lobotomies. Though each treatment 

had its benefits, the side effects and the complications associated with them, often 

outweighed any therapeutic results  (Kaplan and Sadock, 1995). 

 

In 1963 Carleson and Lindquist noted the impact of antipsychotic medication on 

dopamine metabolism (Kaplan and Sadock, 1995). Since then there has been a 

tremendous increase in the pharmacological knowledge pertaining to the treatment of 

schizophrenia. Chlorpromazine was discovered in 1979. This revolutionized  psychiatric 

treatment. It was originally thought of as a sedative for the cattle, but soon its value in 
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treating schizophrenia in humans was realized (Hemmings and Hemmings, 1978). 

Currently two broad categories of antipsychotics are used in the treatment of 

schizophrenia. They have been called typical and atypical antipsychotics. 

 

The typical antipsychotics (previously known as neuroleptics) were the first group of 

antipsychotics to be used routinely in the treatment of schizophrenia. They primarily 

acted on the brain dopaminergic pathways and showed very little regional specificity. 

They are very effective in controlling the positive symptoms of the disease. These drugs 

also have many serious side effects. These range from neuroleptic malignant syndrome to 

extrapyramidal side effects (EPS) or even tardive dyskinesia. They are still commonly 

used in many countries but over the last few years they have lost their pre-eminent 

position to the drugs belonging to the atypical group. Common example of the typical 

antipsychotic is haloperidol. 

 

Atypical antipsychotics are the newer group of drugs. The commonly used atypical 

antipsychotics include clozapine (the prototype drug for this category), risperidone and 

olanzapine. Atypical antipsychotic drugs not only produce less extrapyramidal side 

effects than typical antipsychotics but also show better efficacy against the negative and 

cognitive symptoms of schizophrenia (Kasper and Resinger, 2003; Meltzer and McGurk, 

1999; Tandon and Jibson, 2003). In contrast, the typical antipsychotics may even 

exacerbate the negative and cognitive symptoms of schizophrenia (Kasper and Resinger, 

2003; King, 1998; Markowitz et al., 1999). Many studies have shown that most patients 

show improved symptomatology on being treated by atypical drug clozapine. Of the 



 16

neuroleptic resistant subjects 79 % showed superior clinical results with clozapine 

(Baldessarini and Frankenburg, 1991). 

 

 

1.2 THEORIES OF SCHIZOPHRENIA 

 

Schizophrenia is generally considered a biochemical disorder of the brain. This has 

prompted many researchers to study the various chemicals and the chemical pathways 

involved in the brain function. Following are the prominent pathways, which have been 

studied: 

 

1.2.1 The Dopaminergic Pathway 

The first model for this pathway was the dopamine hyperactivity hypothesis. This states 

that the hyperactivity of the brain’s dopaminergic systems is directly responsible for the 

symptoms of schizophrenia (Hemmings and Hemmings, 1978).  Supporting this theory 

are observations related to the actions of the drugs that antagonize the activity of 

dopaminergic systems. 

 

1.2.2 The Serotonergic Pathway   

Serotonin’s (5-hydroxytryptamine, 5-HT) role in schizophrenia was first recognized in 

the 1950s when people noted its similarity to psychosis produced by lysergic acid diethyl 

amide (LSD). LSD was known to produce symptoms of psychosis and it did so by acting 

on the serotonin receptors. A “hyper serotonin” hypothesis was formed because of this. 
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Further studies, which probed brain-behavior relationships, neurotransmitter systems, 

drug mechanisms and post mortem studies, provided more evidence of serotonin’s 

involvement in schizophrenia. Atypical antipsychotics combine very weakly with 

dopaminergic receptors and it was suggested that they act on serotonin receptors. When 

atypical antipsychotics were combined with 5-HT2 antagonists, there occurred substantial 

relief in the negative symptoms of the patients (Kaplan and Sadock, 1995). This further 

highlighted the involvement of serotonin in schizophrenic pathophysiology. In addition a 

dopamine-serotonin interaction was also proposed whereby increased levels of serotonin 

in the prefrontal cortex caused the dopamine levels to fall. These reduced dopamine 

levels, which could cause the negative symptoms, further lead to increased dopamine 

levels in secondary dopaminergic systems. This increase is probably responsible for the 

positive symptoms. Serotonin’s exact role is still not clear though. 

 

1.2.3 The Glutamatergic Pathways  

Deficiency in glutamatergic pathways was first suggested by Kim et al, 1980. They 

observed a reduced concentration of glutamate in the cerebrospinal fluid of a group of 

schizophrenic patients, compared to control subjects. A primary deficit in cortico-striatal 

glutaminergic neurotransmission was suggested, which led to an increase in nigrostriatal 

dopaminergic output. Subsequent studies failed to support this hypothesis though (Gattaz 

et al, 1982; Korpi et al, 1987a; Perry, 1982; Prieto-Rincon et al, 1991; Toru et al, 1988). 

Actions of a NMDA glutamate antagonist Phencyclidine (PCP), have also helped in 

implicating glutamate in the pathogenesis of schizophrenia. Domino (1980), and Javitt 

(1987) showed that PCP psychosis was a good drug model of schizophrenia. This is 

considered to be due to reduced NMDA glutamate receptor function. Although if we 
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follow this hypothesis, then the drugs which enhance glutamate activity should improve 

psychotic symptoms. In reality studies have not supported this (Cascella et al, 1994; 

Costa et al, 1990, Javitt et al, 1994). 

 

1.2.4 The GABAergic Pathways  

This pathway was first suggested by Roberts (1972). It was mentioned that a combination 

of reduced GABAergic function as well as an imbalance between dopaminergic-

GABAergic system is responsible for schizophrenia. There were few studies which 

showed a reduction of GABA in certain parts of the brain (Perry et al, 1979; Spokes et al, 

1980) but some other refuted these findings (Cross et al, 1979; Korpi et al, 1987b). 

 

1.2.5 The Noradrenergic Pathway  

The major part of this thesis is dedicated to investigation of this pathway. All the 

experiments were conducted to investigate role of the noradrenergic pathway in the 

actions of drugs used to treat schizophrenia. Noradrenaline is a catecholamine found in 

high concentrations throughout the nervous system. The system consists of a positive and 

negative feedback circuits, which affects the concentration levels of both noradrenaline as 

well as dopamine. The neurotransmitter acts on alpha and beta-receptors. The 

involvement of this pathway was proposed as early as 1971 (Stein and Wise, 1971; 

Hartman, 1976; and Hornykiewicz, 1982, 1986). Later on Van Kammen et al (1991) too 

provided evidence in support of this theory when they linked noradrenergic system to 

negative symptoms of schizophrenia. 
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1.3 ANIMAL RESEARCH IN SCHIZOPHRENIA 

 

1.3.1 Animal Models of Schizophrenia  

Over the past few decades various scientific teams have tried different animal models of 

schizophrenia. They vary from drug-induced models, to gene manipulation models. 

These models have been shown to mimic various symptoms of schizophrenia ranging 

from cognitive function like working memory to motor function like hyperactivity. A 

model of working memory deficits associated with schizophrenia can be seen by 

administering the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist 

drug phencyclidine (PCP) in animals (Jentsch et al 1997). This same drug has also been 

shown to produce psychomimetic effects in humans (Buuse, 2005; Krystal et al 1994; 

Malhotra et al 1996). A hyperactivity model can be produced by administering 

amphetamine to the experimental animals (Creese and Iverson, 1975; Geyer and Markou, 

1995; Buuse, 2005). 

 

It is difficult to produce all the symptoms of schizophrenia in a single model, but a few 

features can be produced consistently, which have good validity. In these experiments it 

is important that the test has “Construct Validity”. This refers to the similarity in the 

underlying mechanisms that are involved in a particular behavior, although these 

behaviors may be expressed in a different way in humans and experimental animals 

(Buuse, 2005). As discussed by Kilts (2001), there are two very prominent areas of 

studies regarding the symptoms of schizophrenia. They are related to deficits in the 

sensory processing of stimuli, which show up as stimulus filtering and attentional 
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impairment. Prepulse inhibition (PPI) and latent inhibition (LI) are two behavioural 

phenomenas, which are related to the sensory inhibition processes that are impaired in 

schizophrenia. Tests like the Morris water maze can be used to assess the spatial memory 

changes in rodent models of schizophrenia, created by administering drugs like PCP or 

dizocilipine (MK-801). These are discussed in greater detail in the following paragraphs. 

 

Another area where a lot of work has been done recently is the creation of genetic-based 

models of schizophrenia. Rapid improvement in technology has aided this a great deal. 

These genetic manipulations can be broadly classified as “reverse” genetic approach or 

“forward” genetic approach (Kilts, 2001). The “reverse” methods have been discussed in 

detail in an article by Tarantino & Bucan (2000). The method involves creating a genetic 

change in the animal and then proceeding to look at the behavioral changes caused by 

that genetic manipulation. The “forward” approach entails looking out for schizophrenic 

characteristics in an animal first and then proceeding to analyze it’s genetic make up.  

 

This thesis investigated the genetically modified “Chakragati (ckr)” mice. These mice 

were serendipitously created as a result of a transgenic insertional mutation (Torres et al., 

2004). A 24-kb genomic fragment containing the mouse Ren-2d rennin gene was 

microinjected into BCF (c57BL/10Rospd x C3H/HeRos) fertilized oocytes (Ratty et al., 

1990). Genetic and physical analysis of this insertion revealed that 2.5 copies of the 

transgene, comprising 65-70 kb, had integrated, duplicated and inverted portions of a 

particular locus within chromosome 16 of the mouse genome. The apparent loss-of-

function of the endogenous gene produced a mice that in homozygous condition, 

exhibited abnormal circling behaviour phenotype. Futher it was found that this 
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phenotypic behaviour could be corrected by atypical antipsychotics clozapine and 

olanzapine. The increased motor activity of these mice was similar to that observed in 

wild type animals treated with dizocilipine, a NMDA receptor antagonist that produces 

behaviour resembling the positive symptoms of schizophrenia. 

 

1.3.2 Prepulse Inhibition (PPI)  

PPI is a sensory-motor gating phenomenon, which is found to be in deficit in 

schizophrenic patients (Kumari et al, 1999) as well as animal models (Mansbach and 

Geyer, 1989; Keith et al, 1991; Bakshi et al, 1994; Wedzony et al, 1994; Swerdlow et al, 

1996) of schizophrenia.  In the experimental set up, when a loud sound stimulus  

presented to an animal, is preceeded by a weak sound, the startle response to the loud 

sound gets attenuated. Although the pre-stimulus weak sound is not able to elicit a 

response on its own, it does activate the inhibitory mechanisms, which gate further 

stimulation until the processing of the prepulse has been completed. Over all there is a 

disrupted processing and reduced impact of the pulse, and hence the PPI effect (Kumari 

and Sharma, 2002). 

 

In experimental set ups in laboratories acoustic stimuli are used both as pulse (strong 

sound) as well as the prepulse (weak sound). Usually the animal is placed on a transducer 

platform, which is located in a sound attenuated box. Sound stimuli are provided to the 

animal and it’s startle reaction is captured by the transducer platform. This reaction is 

then quantified with the help of computer software. This test is considered to have good 

predictive, face and construct validity for schizophrenia (Braff and Geyer, 1990). 
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Research has showed that there are various ways in which deficits in PPI can be induced 

in animals. Although these animals are not the perfect model of schizophrenia as a whole, 

they do serve as good model of the sensori-motor gating problems associated with 

schizophrenia (Geyer and Markou, 2001). PPI deficit can be produced by stimulation of 

D2 dopamine receptors, with amphetamine or apomorphine (Davis, 1988); by activation 

of serotonergic system, produced by 5-HT releasers or direct agonists at multiple 

serotonin receptors (Kehne et al, 1996; Padich et al, 1996); by blocking of N-methyl-D-

aspartate (NMDA) receptors, produced by drugs like phencyclidine (PCP) (Johansson et 

al. 1995); or by developmental manipulations of the animals, like rearing in isolation 

(Varty et al. 1999).  

 

1.3.3 Latent Inhibition  

LI is one of the behavioral phenomena seen in schizophrenic patients. If a person or an 

animal is provided with a repeated stimulus, which is not followed by any significant 

consequence, there is observed, retarded conditioning to that stimulus. This is in 

comparison to a new stimulus to which the person or organism had not been exposed 

before. Normal LI is modulated by attentional processes. These processes are not 

working properly in the case of schizophrenics and hence we see disrupted LI in these 

subjects (Lubow, 2005). LI is seen to quantify an organism’s ability to ignore irrelevant 

stimuli (Lubow, 1973; Lubow, 1989; Lubow and Gewirtz, 1995). It helps the organism 

concentrate more on newer inputs rather than the older unimportant one (Lubow, 2005). 

Various studies have linked latent inhibition to schizophrenia (Braff and Geyer, 1990; 

Gray et al., 1991; Feldon and Weiner, 1992; Gray, 1998). 
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Validity of the relationship between LI and schizophrenia was shown when amphetamine, 

which produces positive symptoms of schizophrenia in normal subjects, decreased LI in 

rat studies (Ellinwood, 1967; Zahn et al. 1981). Similarly it has been shown that atypical 

antipsychotics like clozapine (Moran et al. 1996), olanzapine (Gosselin et al. 1996) and 

remoxipride (Trimble et al. 1997) produced the expected increase in LI or prevented the 

LI lowering effect of indirect dopamine agents (Moser et al. 2000; Weiner, 2000; 

Tzschentke, 2001). 

 

1.3.4 Morris Water Maze  

Cognitive impairment is seen in patients of schizophrenia. This is also seen in some 

animal models of schizophrenia. One test which is routinely employed to assess spatial 

memory is the Morris water maze. The open field water maze is an apparatus in which 

rodents are trained to escape from the water by swimming to a hidden platform. The 

location of this platform can only be identified using extra-mazal cues. The water maze 

task was introduced by Morris (1981) and colleagues as a spatial localization or 

navigation task. The task has been extensively used to study the neurobiological 

mechanisms that underlie spatial learning and memory, age associated changes in spatial 

navigation (Gage et al. 1984; Rapp et al. 1987; Pitsikas et al. 1990), and the ability of 

psychopharmacological agents (Sutherland et al. 1982; Hagan et al. 1983; McNaughton 

and Morris, 1987), lesions (Morris et al. 1982; Kolb et al. 1983) or gene mutations (Tsien 

et al. 1996; Crawley et al. 1997) to influence specific cognitive processes. 

 

The water maze challenge tests a set of “cognitive” processes in the animal whereby the 

process involved in the storage and retrieval of spatial information interact with the 
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process involved in planning and navigational strategies. Performance in the water maze 

can be affected by lots of factors and these should be considered before comparing the 

results of any two experiments. These factors could be the sex of the animal, their strain, 

the dimensions of the pool which has been used for the experiment, the temperature of 

the water when the experiment were conducted and the particular training schedule which 

was followed during the study (Wenk, 1998). The results of the test can also vary due to 

the factors, which can effect the swim speed of the animal. These could include the body 

weight of the animal, it’s muscle development, and its age. Brandeis et al (1989) made a 

detailed comment on the role of these factors on the water maze performance of the 

animals. 

 

The water maze task is a labor-intensive task where the experimenter needs to be 

involved at all the times. As far as problems related to the experiment itself are concerned, 

there are two major areas of concern: first is the stress caused to the animal when it is 

immersed into the water. This stress may cause endocrinological changes in the animal as 

such might go on to interfere with the experimental results (Wenk, 1998).  This problem 

can be solved by continued exposure to the pool. The second problem is related to the 

method by which the pool water is made opaque. If powered milk is used, then the pool 

needs to be cleared everyday otherwise there could be a bacterial contamination and 

odour which might arise very quickly in the pool water. If some coloring agent is used 

then it needs to be taken into account that it is not toxic to the animal (Wenk, 1998). 
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1.3.5 Immediate Early Genes (IEGs) Expression  

Immediate early genes (IEGs) are genes whose induction is a primary response to an    

external stimulus. It is not secondary to other waves of gene expression. IEGs and their 

proteins are links through which external stimuli can alter the gene transcription process 

within a cell. A large number of IEGs have been identified. A few of them for example, 

c-fos, c-jun and egr-1 fall under the category of “transcription factors”. These are DNA 

binding proteins having several related homologs (Hai and Curran, 1991; Nakabeppu et 

al, 1988). Most of them have the ability to form homodimers and heterodimers amongst 

themselves and then attach to promoters such as the activator protein (AP-1) consensus 

site (TGACTCA). Affinity of each of these complexes for the AP-1 site is different from 

the others (Hai and Curran, 1991; Kovary and Bravo, 1991; Ryseck and Bravo, 1991). 

Also these complexes sometimes undergo posttranslational modifications that further 

enhance their ability to affect the transcription process in a more diverse way (Barber and 

Verma, 1987; Ofir et al, 1990; Boyle et al, 1991). 

 

Induction of expression of c-Fos and related Fos-like immediate early gene proteins has 

been considered a marker of neuronal activation (Sagar et al., 1988; Dragunow and Faull, 

1989) and has been used to map the brain regions activated by antipsychotic drugs in 

numerous studies (Deutch and Duman, 1996; Fink-Jensen and Kristensen, 1994; 

Robertson et al., 1994; Robertson and Fibiger, 1992; Robertson and Fibiger, 1996).  

 

Both atypical and typical antipsychotics induce expression of Fos-like immunoreactivity 

in the shell of the nucleus accumbens. In the dorsolateral striatum, while typical 

antipsychotics strongly induce Fos expression, atypical antipsychotics only weakly 
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induce expression of Fos-like immunoreactivity (Deutch and Duman, 1996; Fink-Jensen 

and Kristensen, 1994; Robertson et. al., 1994; Robertson and Fibiger, 1992; Robertson 

and Fibiger, 1996). The difference in the extent to which antipsychotics induce 

expression of Fos-like immunoreactivity in the shell of the nucleus accumbens and the 

dorsolateral striatum has been proposed as a measure of  “atypicality” reflecting the 

likelihood that they will produce extrapyramidal side effects (Robertson et. al., 1994).  

 

The prefrontal cortex is involved in working memory and executive function (Callicott et. 

al., 1999; Dalley et al., 2004; Goldman-Rakic, 1996; Robbins, 1996) and is well 

characterized as a site of abnormal brain function in schizophrenia (Bunney and Bunney, 

2000; Callicott and Weinberger, 1999; Goldman-Rakic, 1999; Goldman-Rakic and 

Selemon, 1997; Weinberger et. al., 2001). Hence, because atypical antipsychotics, but 

not typical antipsychotics, readily induce expression of Fos-like immunoreactivity in the 

prefrontal cortex (Deutch and Duman, 1996; Robertson et al., 1994; Robertson and 

Fibiger, 1992; Robertson and Fibiger, 1996), it has been suggested that the induction of 

Fos-like immunoreactivity in the prefrontal cortex may correlate with the greater efficacy 

of atypical antipsychotics against the negative symptoms and cognitive dysfunction in 

schizophrenia (Deutch and Duman, 1996; Robertson et al., 1994; Robertson and Fibiger, 

1992; Robertson and Fibiger, 1996; Ananth et. al., 2001) 
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1.4 NORADRENERGIC THEORY OF SCHIZOPHRENIA 

 

1.4.1 Role of the Noradrenergic system in PPI  

Studies have been conducted which point towards an involvement of the noradrenergic 

system in the occurrence of prepulse inhibition. Bakshi and Geyer (1997) showed that the 

PPI deficit caused in experimental animals by administering the psychomimetic drug 

phencyclidine (PCP), could be reversed by prazosin, an alpha-1 noradrenergic antagonist. 

In the same experiment they also tested the impact of alpha-2 antagonist RX821002 in 

reversing the effect of PCP. But the alpha-2 antagonist failed to show any effect. In a 

separate experiment Bakshi and Geyer (1999) showed that alpha-1 adrenergic receptors 

mediated the sensorimotor gating deficits produced by intracerebral dizocilipine 

administration in rats. In this experiment they administered quetiapine (a drug having 

strong alpha-1 affinity) and prazosin, 15 minutes prior to bilateral infusion of dizocilipine 

into either the dorsal hippocampus or amygdala. Both quetiapine and prazosin blocked 

the PPI deficit producing effect of dizocilipine. In 1998, Carasso et. al. showed that 

cirazoline, the alpha-1 adrenergic agonist disrupted PPI in rats and that this effect was 

reversed by prazosin and atypical antipsychotics. Disruption of PPI by cirazoline was 

also reported by Shilling et. Al. (2004). Another study done by Mishima et. al. (2004), 

reported that mutant mice lacking alpha-1d-adrenergic receptors showed lower levels of 

acoustic startle responses than the wild-type group at lower pulse intensities, although the 

acoustic prepulse inhibition was not impaired in the alpha-1d knockout mice. It was also 

reported that MK-801 (Dizocilipine) induced deficits of PPI were not observed in these 
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knockout mice. All these clearly suggest a role of the alpha-1 adrenergic receptors in PPI 

mechanism. 

 

A few studies have also looked into the role of alpha-2 receptors in PPI. Sallinen et. al. 

(1998) worked in a genetically modified mouse in which they inactivated the gene 

encoding alpha-2C adrenergic receptor. The animal showed enhanced startle response as 

well as diminished PPI. In animals with tissue specific over expression of the alpha-2c 

receptors was associated with the opposite effects. Lahdesmaki et. al. (2004) also were 

involved in an experiment with genetically modified mice in which alpha-2A receptor 

was deleted.  The paper suggests that the alpha-2 adrenoceptors regulate the excitability 

and transmitter release of brain monoaminergic neurons mainly as inhibitory presynaptic 

auto- and hetero-receptors. The knockout mice, when treated with D-amphetamine, 

showed increased startle responses and more pronounced disruption of PPI. The startle 

attenuation was not observed after administering the alpha-2 agonist dexmedetomide in 

the knockout mice as compared to the wild type. Shishkina et. al. (2004) also showed the 

involvement of the alpha-2 adrenoceptors in the process of PPI. In a recent article, Powell 

et. al. (2005) have shown that alpha-2 antagonist drugs like yohimbine and atipamezole 

decreases PPI in experimental animals, while the alpha-2 agonist, clonidine, showed an 

increase in PPI. 

 

Overall these studies point towards an alpha-1 antagonistic or alpha-2 agonistic 

mechanism for increasing PPI, while the decrease in PPI has been suggested to be 

because of alpha-1 adrenoceptor antagonism or alpha-2 noradrenoceptor agonism. 
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1.4.2 Noradrenergic System and IEG Expression 

As discussed previously, antipsychotic drugs lead to IEG expression changes in the brain. 

The induction of Fos-like immunoreactivity in the prefrontal cortex by atypical 

antipsychotics, clozapine and olanzapine, was blocked by the beta-adrenoceptor 

antagonist, propranolol (Ohashi et al., 2000). As atypical antipsychotics are not reported 

to exhibit beta agonist activity, this suggests that activation of the LC, the major source of 

noradrenergic innervation of the prefrontal cortex (Berridge and Waterhouse, 2003), and 

release of noradrenaline is instrumental in inducing this Fos-like activity in the mPFC.  

 

Consistent with this hypothesis, acute administration of atypical antipsychotics has been 

shown to increase c-Fos and Fos-like immunoreactivity in the LC (Dawe et. al., 2001; 

Ohashi et. al., 2000), increase the firing rate of LC cells (Dawe et al., 2001; Nilsson et al., 

2005; Ramirez and Wang, 1986; Souto et al., 1979), and release noradrenaline in the 

prefrontal cortex (Nutt et. al., 1997; Li et. al., 1998; Westerink et. al., 1998).  Importantly 

however, while the acute activation of c-Fos expression in the prefrontal cortex appears 

to be unique to atypical antipsychotics and dependent upon beta-adrenoceptors, both 

typical and atypical antipsychotics can activate firing of the LC. Haloperidol also 

increases the firing rate and burst firing of LC cells (Dinan and Aston-Jones, 1984; 

Nilsson et. al., 2005), although arguably less so than clozapine (Nilsson et. al., 2005). 

Moreover, acute haloperidol also increases noradrenaline release in the prefrontal cortex 

(Westerink et. al., 1998), although perhaps to a lesser degree than risperidone and 

clozapine, and although it induces less Fos-like activation in the prefrontal cortex, the 

activation that they produce is beta-adrenoceptor sensitive (Ohashi et. al., 1998).  These 

data based on acute administration of antipsychotics seem to imply that the difference in 
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effects of typical and atypical antipsychotics is quantitative rather than qualitative, which 

is not consistent with clinical findings. However, clinically antipsychotics are invariably 

administered chronically and the benefits of atypical antipsychotics against negative 

symptoms and cognitive dysfunction appear to be manifest later than their effects on 

positive symptoms and are seen most markedly after several weeks of treatment (Stahl, 

2005). 

 

It would be interesting to compare the effects of chronic treatment with typical and 

atypical antipsychotics on immunoreactivity to an antibody to c-Fos in the mPFC and LC. 

Other stimuli, such as stress and nicotine administration, that induce activation of the LC 

are reported to induce increases in expression of tyrosine hydroxylase (TH) the rate 

limiting enzyme in catecholamine synthesis (Kvetnansky and Sabban, 1998; Mitchell et. 

al., 1993; Sabban et. al., 2004; Serova et. al., 1999; Smith et. al., 1991; Zigmond et. al., 

1974). Likewise, chronic treatment with high doses of olanzapine have been reported to 

increase TH expression in the LC (Ordway and Szebeni, 2004). TH expression may 

influence release of noradrenaline in the prefrontal cortex. It is not known whether 

chronic treatment with other antipsychotics similarly influences TH expression.  Both 

AP-1 complex Fos family proteins and Egr-1 have been linked to induction of TH 

expression (Nakashima et. al., 2003; Papanikolaou and Sabban, 1999; Papanikolaou and 

Sabban, 2000). Therefore in the present study, we have incorporated the investigation of 

TH immunoreactivity and the expression of two Egr-family immediate early gene 

proteins. 
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1.4.3 Noradrenergic System and Performance in the Water Maze   

Several studies have been performed to look into the role of the noradrenergic system and 

it’s receptors in spatial navigational tasks. Usually these tasks are impaired in 

schizophrenic patients as well as schizophrenic animal models. The studies have 

implicated both the alpha-1 and alpha-2 adrenoceptors to certain extent. Suggestions have 

also been made about the involvenment of beta adrenoceptors. Bjorklund et. al. (1998; 

1999; 2000) worked with genetically modified mice, which over expressed for alpha-2C 

receptors. These animals were found to be impaired in spatial water maze tests. 

Following treatment with alpha-2 antagonist drugs, like atipamezole, this impairment was 

fully reversed. Chopin et. al. (2002) used dexefaroxan, a potent and selective alpha-2 

adrenoceptor antagonist to study it’s effect on spatial memory processes in the Morris 

water maze tasks in rats. Dexefaroxan facilitated the spatial memory processes and 

ameliorated the age related memory deficits of 24 month old rats to a level that was 

compatible with that of adult animals. In a separate experiment Chopin et. al. (2004) 

again showed the protective effects of dexefaroxan against spatial memory deficit 

induced by cortical devascularization in the adult rat. 

 

A few studies have also implicated the role of alpha-1 adrenoceptors. Puumala et. al. 

(1998) showed that administration of St-587 (a putative alpha-1 agonist) improved water 

maze navigation to a hidden platform in rats. In the same experiment they also showed 

that pre-training administration of St-587 ameliorated scopolamine induced impairment 

in the performance of rats. In a separate experiment Riekkinen et. al. (1997) also showed 

that treatment with St-587 facilitated acquisition of water maze spatial navigation in rats.  
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Spreng et. al. (2001) showed while working with alpha-1 adrenoceptor knockout mice, 

that these animals were unable to learn water maze task.   

 

Interestingly enough a few studies have also looked into the role of beta adrenoceptors. Ji 

et. al. (2003) showed that DL-propranolol, the beta adrenergic antagonist causes a deficit 

in 48 hr memory for the spatial water maze task in rats, when administered 5 minutes 

post training. Over all they mention that beta-adrenoceptors are involved in regulating 

consolidation of spatial memory for the water maze. In a conflicting study Decker et. al. 

(1990) mention that pretraining administration of propranolol has no effect on the spatial 

learning in Morris water maze. 

  

Thse data signify involvement of alpha-1 and alpha-2 adrenoceptors in spatial learning 

tasks of water maze. Alpha-2 antagonism or alpha-1 agonism seems to improve the 

process in rodents. Experiments done by Arnsten and her team on monkeys, show 

contrary results. Their studies suggest that alpha-2 agonism improves, while alpha-1 

agonism impairs, spatial working memory in monkeys (Arnsten and Jentsch, 1997; 

Arnsten et. al., 1988). These contrary results in rodents and monkeys could be due to 

species difference and I need investigate whether my experiments with rats show results 

similar to rodents or to the monkey. 
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1.5 AIM OF THE THESIS 

 

Typical and atypical antipsychotics play a major role in the treatment of schizophrenia. 

The atypical ones, for example clozapine and olanzapine, have shown better efficacy in 

treating the cognitive and negative symptoms of schizophrenic patients. The exact reason 

for this is not known. Since these drugs act on multiple neurotransmitter receptors, it is 

possible that actions at a combination of these receptors is the cause of this superiority of 

atypical antipsychotics. Over the years it has also been observed that the noradrenergic 

drugs tend to play an important role in schizophrenic charecteristics. It seemed very 

interesting to investigate the role of noradrenergic system and its interaction with the 

antipsychotic drugs. 

 

This thesis analyzes the role of noradrenergic system in the superiority of atypical 

antipsychotics over typical ones. There are three parts to the thesis. They are as follows: 

 

Part I: I have investigated the effect of chronic antipsychotic drug administration on the 

expression of IEG expression in LC and PFC. I have also investigated the expression of 

TH, the rate limiting enzyme in catecholamine synthesis. We studied if there was any up-

regulation, i.e., an increase in IEG expression or down-regulation, i.e., a decrease in the 

expression levels of the IEGs. 

 

Part II: I conducted baseline PPI and LI experiments on the transgenic chakragati mice 

so as to validate these tests in this putative animal model of schizophrenia. This was 
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followed by investigating the effects of antipsychotics and noradrenergic drugs on PPI in 

this mouse model. 

 

Part III: I have investigated the effect of treatment with antipsychotics and 

noradrenergic drugs on PPI as well as spatial navigation performance tasks in rats. These 

animals were administered antipsychotics and noradrenergic drugs separately as well as 

simultaneously, so as to observe their independent effects and also their concomitant 

interactions. 

 

SUMMARY OF AIMS : 

1. To investigate the effects of chronic antipsychotic administration on IEG and TH 

expression in LC and PFC. 

 

2. To investigate the chakragati mouse as a model of schizophrenic deficit in PPI 

and LI tests in chakragati mice and observe the effect of antipsychotic and 

noradrenergic drug treatments on their PPI. 

 

3. To investigate the hypothesis that the noradrenergic system is involved in the 

effects of antipsychotics on PPI and spatial navigational memory in rats. 

 

 

 
 



 35

METHODOLOGY 

 
 

2.1 IMMUNOSTAINING EXPERIMENTS 

 

2.1.1  Comparison between typical and atypical antipsychotics: 

Subjects 

Adult male Sprague-Dawley rats (Laboratory Animals Centre, National University of 

Singapore) weighing 180-200 g at the start of treatment were used. Animals were group 

housed and maintained on a 12 h light / 12 h dark cycle (lights on 07:00-19:00 h) in a 

temperature-controlled (22 ºC) colony room with ad libitum access to food and water. All 

experiments were approved by the institutional animal ethics review board of the 

National University of Singapore and were conducted in accordance with the 

International Guiding Principles for Animal Research (Howard-Jones, 1985). 

 

Drug Treatment 

After one week of acclimatization in the colony room, the rats were randomly assigned to 

groups for chronic treatment with antipsychotic drugs or vehicle (n = 8 per group). The 

drugs haloperidol (Sigma), clozapine (Tocris) and risperidone (Sigma) were dissolved in 

distilled water acidified to pH 4.5 to 5 with acetic acid. Three groups were administered 

antipsychotic drugs once daily subcutaneously for 4 weeks: haloperidol (4 mg/kg/day), 

clozapine (10 mg/kg/day) and risperidone (1 mg/kg/day). The fourth group was 
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administered acidified saline (0.9% NaCl in distilled water acidified to pH 4.5 to 5 with 

acetic acid) once daily subcutaneously for 4 weeks. Injections were administered between 

16:00 h and 17:00 h. 

 

Perfusion and Tissue Processing 

Between 16 and 18 hours after the final injection, the rats were anaesthetized with an 

overdose of sodium pentobarbital and fixed by transcardial perfusion with 0.9% saline 

followed by 4% paraformaldehyde in phosphate buffer (pH 7.4). The brains of the rats 

were recovered, divided into four coronal blocks of 5 mm each, and post-fixed for 2 to 3 

days 4% paraformaldehyde in phosphate buffer (pH 7.4) before paraffin embedding with 

an automatic tissue processor (Leica TP1020, Leica Microsystems, Germany). The 

blocks were serially sectioned at 6 µm on a rotary microtome (Leitz 1512, Leica 

Microsystems, Germany) and mounted on slides. 

 

Immunohistochemistry 

Alternate serial sections through the mPFC and LC were immunostained with antibodies 

against c-Fos, Egr-1, Egr-2 and TH. For immunohistochemistry the sections were 

processed as previously described (Dawe et. al., 2001) with minor modifications. Briefly, 

the sections were dewaxed in xylene and rehydrated through an ethanol series to distilled 

water.  The tissue was then quenched for endogenous peroxidase activity by treating it 

with 0.3% hydrogen peroxide. After washing the tissue thrice with distilled water, normal 

serum (from the species donating the secondary antibody) was added to block nonspecific 

background staining. This was followed by application of the primary antibody to the 
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sections. Sections were then left to incubate under appropriate conditions. For post 

incubation, the tissue was washed thrice with phosphate buffered saline (PBS) and treated 

with biotinylated secondary antibody. This was followed by three washes with PBS and 

application of an avidin-biotinylated HRP complex (rabbit ABC staining system, Santa 

Cruz Biotechnology, CA, USA). Again the tissue was washed three times with PBS. 

Immunoreactivity in the tissues was visualized using the diaminobenzidine (DAB) 

chromogen.  

 

All the primary antibodies were rabbit polyclonal antibodies. The antibodies against the 

IEGs were from Santa Cruz Biotechnology, CA, USA. The antibody against TH was 

from Chemicon International, CA, USA. The primary antibodies were initially titrated 

from 1:50 to 1:1000 with incubations of 12 to 72 hours, both at room temperature and in 

a fridge at 4 ºC. The following incubation protocols were adopted: anti-c-Fos (1:100, 72 

hours at room temperature), anti-Egr-1 (1:100, 48 hours at room temperature), anti-Egr-2 

(1:50, 24 hours at 4 ºC) and anti-TH (1:150, 24 hours at room temperature).  

 

Counting of labelled cells 

Images of 400 x 400 µm areas were captured using a light microscope (BX51, Olympus, 

Japan) and a digital camera (Magnafire SP, Optronics, CA, USA).  The prelimbic area of 

the mPFC was sampled at approximately 2.7 mm anterior to bregma. The LC was 

sampled at approximately 9.8 mm posterior to bregma. The LC was identified by 

histological landmarks, including juxtaposition to the large cells of the mesencephalic 

nucleus of the Vth nerve (Me5), and with reference to sequential sections immunostained 
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for TH. Immunopositive cells were counted only within the LC. Area of the LC sampled 

by the 400 x 400 µm box was measured. Immunopositive cells were counted according to 

a protocol adapted from procedures previously described (Dawe et. al., 2001).  The 

immunoreactive nuclei in the region of interest were detected by binary segmentation to a 

fixed threshold and application of a binary dilation-erosion filter to remove artifacts 

(Image Pro Plus, Media Cybernetics Inc, MD, USA). The segmentation threshold was 

fixed for each antibody across all samples. For sections immunostained for sections 

immunostained for the immediate early genes, fixed object size and roundness filters 

were applied to select for immunoreactive nuclei. For sections immunostained with TH, 

the procedure was modified to count immunoreactive profiles of axonal and 

somatodendritic elements for quantification of immunoreactivity in the mPFC and LC.  

Four regions of interest were sampled bilaterally from two sections at least 72 µm apart 

in each brain and the mean number of immunoreactive nuclei or profiles per µm2 was 

calculated. The data are expressed as the mean percentage change in the number of 

immunoreactive nuclei or profiles relative to the pooled mean count for vehicle-treated 

control group (mean ± std).  

 

Statistics 

Data were analyzed by one-way analysis of variance (ANOVA) for the effect of drug 

treatment followed by post-hoc Dunnet’s tests against the acidified saline vehicle-treated 

control group and Tukey’s honestly significant difference test between drug treatment 

groups. All tests were applied with a two-tailed significance criterion of p < 0.05.  
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2.1.2 Effect of different dosages and treatment durations of Olanzapine 

on IEG  and TH expression 

Subjects 

Adult male Sprague-Dawley rats (180-200 g) were obtained from the Laboratory Animals 

Centre, National University of Singapore. They were group-housed with free access to 

food and water.  A 12 h:12 h light:dark cycle was maintained. All experiments were 

approved by the institutional animal ethics review board of the National University of 

Singapore and were conducted in accordance with the International Guiding Principles for 

Animal Research (Howard-Jones, 1985). 

 

Drugs 

Olanzapine (Eli Lilly and Company, Indianapolis, IN, USA) was dissolved in distilled 

water acidified to pH 5.5 by application of 1 M HCl and adjusted back to pH 6.0 with 

1 M NaOH. Saline (0.9% NaCl in distilled water) was acidified to pH 6.0 by application 

of 1 M HCl.  

 

Implantation of osmotic pumps 

Rats were anaesthetized with sevoflurane (8 % for induction and 3 to 4 % for 

maintenance) and osmotic minipumps (Alzet Model 2ML2 or 2ML4, Durect Corporation, 

CA, USA) were implanted subcutaneously. The rats (n = 64) received either 2, 4, 8, or 15 

mg/kg/day of olanzapine for durations of either 4 hours, 1 week, 2 weeks, or 4 weeks (n = 

4 rats for each dose at each treatment duration).    
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Perfusion fixation and tissue processing 

This was done as described earlier in the section 2.1.1 

Immunocytochemistry 

This was done as described in section 2.1.1. 

 

The following incubation protocols were adopted: anti-c-Fos (1:100, 72 hrs at room 

temperature), anti-c-Jun (1:100, 48 hrs at 4 OC), anti-ATF-2 (1:150, 16 hrs at 4 OC), anti-

Egr-1 (1:100, 48 hrs at room temperature), and anti-Egr-2 (1:50, 24 hrs at 4 OC). All the 

primary antibodies against immediate early gene proteins were from Santa Cruz 

Biotechnology, CA, USA.  Sections were also stained with rabbit anti-TH (1:150, 24 hr at 

room temperature, Chemicon International, CA, USA).  

 

Image analysis 

This was done as described in section 2.1.1. 

 

Statistical analysis 

The data were analyzed by two-factor ANOVA for between-subjects effects of treatment 

duration and dose followed by post-hoc analysis with Tukey’s Honestly Significantly 

Different (HSD) test. An alpha level of 0.05 was applied.  
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2.2 CHAKRAGATI  MOUSE  EXPERIMENTS 

Subjects:  

Experimental subjects were the genetically modified chakragati mice and heterozygous 

and wild type littermates. They were housed two to a cage during the duration of the stay 

in the animal holding unit. One week prior to the start of the experiment they were placed 

on a 23-hour water restriction schedule that continued throughout the experiment. During 

the days of the experimental procedure on which water was available in the test apparatus, 

this availability was in addition to the daily ration of the 1-hour given in the home cages. 

The animals were tested between 0800 and 1700hours. All experiments were approved 

by the institutional animal ethics review board of the National University of Singapore 

and were conducted in accordance with the International Guiding Principles for Animal 

Research (Howard-Jones, 1985) 

 

2.2.1  LI 

Apparatus 

The apparatus consisted of a TSE operant behavior box (Model 259900-SK-MAU-ST/2). 

The box was operated in sound-attenuating housings equipped with a ventilation fan 

(model 259900-Hou-SK-M). The box had dimensions of 159 x 165 x 175 mm (LxWxH). 

The floor comprised of a “grid” through which electric shock could be applied to the test 

animal. The walls of the box could be fitted with various types of stimulus lights or sound 

stimulators. One of the walls housed the receptacle for the liquid dispenser. The dispenser 

itself was a drop-type dispenser featuring a software controlled magnetic valve that was 

opened for a user–defined length, allowing the experimenter to control the fluid volume 
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dispensed. Numbers of licks were monitored by infra-red sensors fitted at the opening of 

the receptacle. The pre-exposed, to be conditioned stimulus was a 2 watt white house 

light. Shock was delivered through the cage floor. It was supplied from the control unit, 

which was equipped with a microprocessor-controlled shocker scrambler module (model 

259900-SHOCK). The scrambler was set to 0.1 mA. Equipment programming and data 

recording was computer controlled. 

 

Procedure: 

Pretreatment handling and the stages of the LI procedure are described below. The stages 

of preexposure, conditioning, rebaseline, and test were administered 24 hr apart.  

 

Handling: Prior to the beginning of the experiment, the animals were handled for about 5 

minutes everyday for 5 days and then put back into the cage. 

Baseline: With the water flow on, for five days the mice were placed into the 

experimental chamber and allowed to drink water for 20 minutes. 

Preexposure: The flow of water was stopped and then the mice were placed in the 

chamber. The preexposed (PE) group received forty 10 second house light exposures 

with a variable interstimulus interval (ISI) with a mean of 35 seconds. The non 

preexposed (NPE) animals were confined to the chamber for an identical period of time , 

but they did not receive the light stimuli. 

Conditioning: With the water flow stopped, each animal received two light-shock 

pairings 5 and 10 minutes after the start of the session. The light parameters were 

identical to those used in preexposure. The 0.1 mA shock immediately followed the light 
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termination. After the second pairing, the animal was left in the experimental chamber for 

an additional 5 minutes. 

Rebaseline: Each animal was given a drinking session similar to the baseline sessions. 

Latency to first lick and the total number of licks were recorded for each mouse. 

Test: Each animal was placed in the chamber and allowed to drink water from the 

receptacle. When the animal completed 75 licks, the house light was presented for 5 

minutes. The following time points were observed: time to first lick, time to complete 1-

50 licks, time to complete 50-75 licks(pre light), latency to first lick after light 

presentation and the time to complete 75-100 licks (light on). Animals that failed to 

complete 25 licks within the 5 minute duration when the light was on were given a score 

of 300.  

 

The amount of suppression of licking was measured using a suppression ratio, A/(A+B), 

where A was the period prior to the presentation of the houselight (licks 51-75) and B 

was the period of the house light presentation (licks 76-100). A suppression ration of 0.01 

indicates complete suppression (no LI) and a suppression ratio of 0.50 indicates no 

change in response rate from the period prior to the presentation of the stimulus to the 

period of stimulus presentation (LI). 

 

Statistical Analysis 

Statistical analysis was done using a two-factor ANOVA (Exposure and genotype were 

the two fixed factors). Post hoc tests were done using the Tukey’s test. P levels were 

fixed at 0.05.  
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2.2.2  PPI 

Apparatus 

The startle reactivity was measured using a startle chamber (SR-LAB, San Diego 

Instruments, San Diego, CA). The chamber consisted of a clear plexi glass cylinder 

resting on a platform inside a ventilated box. A high frequency loudspeaker inside the 

chamber produced both a continuous background noise of 65 db as well as the various 

acoustic stimuli. Vibrations of the plexi glass cylinder caused by the whole body startle 

response of the animal, were transduced into analog signals by a piezoelectric unit 

attached to the platform. These signals were then digitized and stored in a computer. The 

startle response was ascertained with the computer software. 

The following experiments were conducted in the ckr mice to test the PPI. 

 

a) Validation Experiment: A “schizophrenia model” validation experiment was 

conducted where three different types of genotypic mice were tested (wild type, 

heterozygous and homozygous ckr). 

 

Statistical analysis:  

Data were analyzed by a Two-way ANOVA with genotype as between subjects factor 

and the trial type (prepulse intensity) as a repeated measure. Post hoc tests were carried 

out using Tukey’s test. P level was set at 0.05. Startle magnitude was calculated as the 

average response to all of the PULSE-ALONE trials. Startle magnitude significance was 

analyzed with a one way ANOVA.  
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 b) Hearing Defect Experiment: This was followed by an experiment so as to ascertain 

whether the homogenous ckr mice had any hearing defect. In this the time duration 

between the prepulse and pulse tones was varied. Three different time durations between 

prepulse and pulse tones was used (25ms, 100 ms and 175 ms)] 

 

Statistical analysis:  

This was done for double repeated measures (time gaps and prepulse intensity) for the 

homozygous mice. 

 

 c) Drug Experiments: Finally the effect of antipsychotic drugs and adrenergic drugs 

were tested on the ckr mice.  

- Phase I: PPI was tested after three different doses of Clozapine (1/4/10 mg/kg 

s.c), Risperidone (0.1/0.5/1.0 mg/kg s.c) and Haloperidol (0.1/0.5/1.0 mg/kg 

s.c) were administered to the animals. 

-  Phase II: PPI was tested for effect of alpha-1 adrenergic  agonist drug 

cirazoline ( 0.75 mg/kg s.c) and alpha-1 adrenergic antagonist drug Prazosin 

(1.0 mg/kg i.p) alone. Then PPI was tested for combined effect of clozapine 

(1/4/10 mg/kg s.c) dosages and alpha-1 antagonist drug Prazosin (1.0 mg/kg 

i.p). 

 

The drugs haloperidol (Sigma), clozapine (Tocris) and risperidone (Sigma) were 

dissolved in distilled water acidified to pH 4.5 to 5 with acetic acid. Cirazoline (Tocris) 

was dissolved in 0.9 % saline. Prazosin (Tocris) was dissolved in a vehicle solution of 

isotonic saline-propylene glycol-ethanol (5:4:1). 
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Procedure 

The following broad based protocol was followed for the PPI experiments: 

Acclimatization: The animals were left in the plexi glass chamber for 5 minutes to get 

acclimatize. During this period a background noise of 65 db was present. 

Trials: Five different types of trials were conducted: 

- Pulse alone: A stimuli of 120 db is provided for 40 ms. 

- Pulse + Prepulse: A 68 db (+3) stimuli for 20 ms precedes the 120 db 

stimuli by 100 ms. 

- Pulse + Prepulse: A 71 db (+6) stimuli for 20 ms precedes the 120 db 

stimuli by 100 ms. 

- Pulse + Prepulse: A 77 db (+12) stimuli for 20 ms precedes the 120 db 

stimuli by 100 ms. 

- No pulse: Just the background noise is present. 

 

[The + sign denotes the difference between the prepulse and the background noise 

intensity.] 

 

In one session a total of 52 trials are conducted in pseudorandom order: 20 Pulse Alone 

trials, and 8 each of the other four trials. These are preceded by 4 Pulse Alone trials, 

which are discarded. An average of 15 s was kept as Inter-Trial Interval  (9-21 s range). 

For the hearing defect experiment, the time duration between prepulse and pulse stimuli 

were altered as mentioned above. 
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The data was used to find out two parameters: 

- Pre Pulse Inhibition: This is given by the formula 

      (Pulse – Prepulse)     

----------------------   x     100 

          Pulse 

- Startle Amplitude: Measure of the average startle for Pulse Alone trials. 

 

Statistical analysis  

Because the prepulse intensity factor did not interact significantly with any other factor in 

the experiment, this factor was collapsed by averaging the PPI values for the different 

prepulse intensities, there by creating a global PPI score for each mice. All PPI and startle 

magnitude data were analysed with two-factor ANOVA where the genotype and the drug 

treatments were the fixed factors. Post hoc analysis was conducted using Tukey’s test. 

The α level was set to 0.05. 

 

 

2.3 RAT EXPERIMENTS 

The same sets of animals were used in both the rat behavior experiments of PPI and 

Water Maze. 

 

2.3.1 Subjects 

Experimental subjects were male SD rats weighing 200-250 gm at the time of testing. 

They were housed four to a cage during the duration of the stay in the animal holding unit. 
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They were maintained in a humidity and temperature controlled room with a constant 12 

hour light / dark cycle (lights on at 7.00 am). Food and water were freely available 

throughout the experiments except during the behavior testing. The animals were allowed 

to habituate to the animal maintenance facilities for a period of at least one week before 

the initiation of the experiments. During this time the experimenter handled the animals 

gently every day so as to minimize the stress during the testing. The animals were 

brought to the experiment room in plastic cages and were allowed to have a habituation 

period of 60 minutes in the room for the first day and 30 minutes on the following days. 

The animals were tested between 0800 and 1600 hours. All experiments were approved 

by the institutional animal ethics review board of the National University of Singapore 

and were conducted in accordance with the International Guiding Principles for Animal 

Research (Howard-Jones, 1985). 

 

2.3.2 Drug Treatment 

Both PPI and WM were conducted in two phases. In phase I, I tried to compare the 

differences between four groups (n=8) which were given the following drug treatments: 

i) Haloperidol (0.5 mg/kg/day) for 4 weeks and MK-801 (0.1 mg/kg) on the day of 

the testing. 

ii) Olanzapine (10 mg/kg/day) for 4 weeks and MK-801 (0.1 mg/kg) on the day of 

the experiment. 

iii) MK-801 (0.1 mg/kg) on the day of the testing. 

iv) Saline injection for 4 weeks as well as on the day of the testing. 
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In phase II we tested four groups of animals (n=8), these were given the following drug 

treatments: 

i) Olanzapine (10 mg/kg/day) and alpha-1 agonist drug Cirazoline (0.75 

mg/kg/day s.c) for 4 weeks and MK-801 (0.1 mg/kg s.c) on the day of the 

testing. 

ii) Olanzapine (10 mg/kg/day s.c) and alpha-1 antagonist drug Prazosin (1.0 

mg/kg/day i.p) for 4 weeks and MK-801 (0.1 mg/kg) on the day of the testing. 

iii) Olanzapine (10 mg/kg/day s.c) and alpha-2 agonist drug Clonidine (0.2 

mg/kg/day i.p) for 4 weeks and MK-801 (0.1 mg/kg) on the day of the testing. 

iv) Olanzapine (10 mg/kg/day s.c) and alpha-2 antagonist drug Idazoxan (1.5 

mg/kg/day s.c) for 4 weeks and Mk-801 (0.1 mg/kg) on the day of the testing. 

 

Haloperidol (Sigma) was dissolved in distilled water acidified to pH 4.5 to 5 with acetic 

acid. Olanzapine (Eli Lilly and Company, Indianapolis, IN, USA) was dissolved in 

distilled water acidified to pH 5.5 by application of 1 M HCl and adjusted back to pH 6.0 

with 1 M NaOH. Saline (0.9% NaCl in distilled water) was acidified to pH 6.0 by 

application of 1 M HCl. MK-801 ((+)-10.11-dihydro-5-methyl-5H-dibenzo [a,d]-

cyclohepten-5, 10-imine hydrogen maleate) (Tocris) , Clonidine (Tocris), Idazoxan 

(Sigma) and Cirazoline (Tocris) were dissolved in 0.9 % saline. Prazosin (Tocris) was 

dissolved in a vehicle solution of isotonic saline-propylene glycol-ethanol (5:4:1). 

Chronic daily dosages were administered between 16:00 h and 17:00 h.  
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2.3.3 PPI Study 

Apparatus 

The apparatus used was same as described before in section 2.2.2. 

 

Procedure 

The procedure followed was same as described before in the section 2.2.2. 

  

Statistical analysis  

Because the prepulse intensity factor did not interact significantly with any other factor in 

the experiment, this factor was collapsed by averaging the PPI values for the different 

prepulse intensities, there by creating a global PPI score for each rat. All PPI and startle 

magnitude data were analyzed with two-factor ANOVA where the treatment duration (1 

week, 2 week or 4 week) and the drug treatments were the fixed factors. Post hoc analysis 

was conducted using Tukey’s test. The α level was set to 0.05. 

 

 

2.3.4  Water Maze Study 

 Apparatus 

The rats were tested in a black circular pool (190 cm diameter, 60 cm height). The pool 

was filled with water, which was made opaque by adding non irritant ink to the water. 

The temperature of the water was maintained at 24 ± 2 C. An escape platform (18 x 18 

cm) stood 2 cm below the water surface and provided the only escape form the water. 

The pool was located in the center of the room, which contained several extramazal cues 
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for the animal. These cues were kept constant throughout the experiment. A digital 

system consisting of CCTV camera was attached to the roof of the room above the center 

of the pool. The camera was connected to a computer system carrying the software 

system EthoVision version 2.3.19 (Noldus Information Technology BV, Wageningen, 

The Netherlands). The parameters monitored were latency to the escape platform, swim 

distance and swim speed. 

 

Procedure 

Once a day the rats received the respective antipsychotic (Haloperidol or Olanzapine) and 

adrenergic drug (Prazosin, Cirazoline, Clonidine or Idazoxan) injections. The drug 

schedule followedwas asdescribed in section 2.3.2. Thirty minutes before the experiment, 

the animals received either MK-801 or saline injections. The pool was divided into four 

equal sized quadrants. These were designated as north, east, south and west. On day 1, 

the first trial started from starting point “East”. The starting points varied over the next 

four days of training, and they were rotated clockwise, one quarter of a turn per trial 

(Ahlander et. al., 1999). The position of the platform was fixed and it remained in the 

center of the southwest quadrant throughout the training. 

 

For each trial the animal was gently lowered in the water with its face towards the wall of 

the pool. The animal was allowed to swim for 60 seconds. If the animal failed to locate 

the platform within this time period, it was guided by hand towards the platform. They 

were then allowed to rest on the platform for about 30 s. after each trial (Inter trial 

interval). After the last trial they were put in a drying cage and allowed to dry for about 5 



 52

minutes. They were then returned to their experimental cages. At the end of the session 

the animals were brought back to the animal house and returned to their home cages. 

 

Statistical analysis  

A nested repeated measures analysis of variance was used to examine the difference 

between treatments within day and differences between days within treatment for three 

outcomes measures: latency, distance and swim speed. For each ANOVA model, fixed 

effects included day (1, 2, 3 and 4) and treatment (control, MK-801, MK-801 + 

Haloperidol, MK-801 + Olanzapine). The two-factor interaction between treatment and 

day was also included in the model. Tukey’s post-hoc tests were further conducted with P 

level at 0.05. 
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RESULTS 
 
 
 
3.1   IMMUNOHISTOCHEMISTRY  EXPERIMENTS 
 
 
 
3.1.1 Comparison between typical and atypical antipsychotics  
 
 

c-Fos immunoreactivity 

The antipsychotic drug treatment for 4 weeks significantly influenced the expression of c-

Fos in the mPFC (one-way ANOVA, F3,28 = 37.32, p < 0.001; Fig. 2a)  but not in the LC 

(one-way ANOVA, F3,28 = 0.667, n.s.; Fig. 2b).  Haloperidol significantly reduced the 

number of c-Fos immunopositive nuclei (post-hoc Dunnett’s test, p < 0.01), while 

clozapine increased the number of c-Fos immunopositive nuclei (post-hoc Dunnett’s test, 

p < 0.001). Risperidone did not significantly change number of c-Fos positive nuclei.  

 
Egr-1 immunoreactivity 

The 4-weeks antipsychotic drug treatment significantly influenced the expression of Egr-

1 in both the mPFC (one-way ANOVA, F3,28 = 4.472, p < 0.05; Fig. 6a)  and the LC 

(one-way ANOVA, F3,28 = 5.213, p <0.01; Fig. 6b).  Post-hoc Dunnett’s tests against the 

acidified saline-treated control group revealed that in the mPFC the effect was largely 

attributable to the significant increase in Egr-1 expression on treatment with haloperidol 

(p < 0.01; Fig. 6a). Neither risperidone nor clozapine had any significant effect on Egr-1 

expression in the mPFC. In contrast in the LC, all three antipsychotics reduced Egr-1 

expression (haloperidol, p < 0.001; risperidone, p < 0.05; clozapine, p < 0.05; Fig. 6b). 
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Egr-2 immunoreactivity 

In the mPFC, there was a general trend towards upregulation of Egr-2 expression 

following 4-weeks treatment with all three antipsychotic drugs (Fig. 7a), but this did not 

reach significance (one-way ANOVA, F3,28 = 5.213, n.s.).   In the LC, drug treatment for 

4 weeks resulted in a significant downregulation of Egr-2 expression (one-way ANOVA, 

F3,28 = 11.337, p < 0.001; Fig. 7b). Post-hoc Dunnett’s test comparisons with the 

acidified saline-treated control group revealed that all three drugs significantly reduced 

the number of Egr-2 immunopositive nuclei (haloperidol, p < 0.001; risperidone, p < 

0.005; clozapine, p < 0.01; Fig. 7b).  

 

TH immunoreactivity 

In both the mPFC and LC, 4-weeks treatment with the antipsychotic drugs significantly 

influenced TH immunoreactivity in both the mPFC (one-way ANOVA, F3,28 = 91.944, p 

< 0.001; Fig. 10a) and the LC (one-way ANOVA, F3,28 = 420.873, p < 0.001, Fig 10b). 

In the mPFC, post-hoc Dunnett’s test comparisons against the acidified saline-treated 

control group showed that risperidone (p < 0.001) and clozapine (p < 0.001) both 

significantly increased TH immunoreactivity.  In the LC, all three antipsychotic drugs 

increased TH immunoreactivity compared to the acidified saline-treated control group 

(post-hoc Dunnett’s tests, p < 0.001 for all three drugs). However, post-hoc Tukey HSD 

comparisons to the haloperidol-treated group revealed that risperidone and clozapine (p < 

0.001, in both cases) resulted in greater increases in counts of TH immunopositive 

profiles. Clozapine in turn produced greater increases in TH expression than risperidone 

(Tukey HSD test, p < 0.001).  
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a)                                                                b) 

 

Fig. 1: Drawings of representative sections showing (boxes) the regions of the a) 
prelimbic (PrL) area of the medial prefrontal cortex and b) Locus Coeruleus (LC) 
sampled.The drawings are adapted from Paxinos and Watson (1997). 
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(a) Medial Prefrontal cortex 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Locus coeruleus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Effects of 4-week antipsychotic drug treatment on c-Fos expression in (a) the medial 
prefrontal cortex (mPFC) and (b) the locus coeruleus (LC). The data are the number of c-Fos 
immunopositive nuclei expressed as a percentage of the number in the acidified saline-treated 
control group (mean ± std).  There was a significant treatment effect (one-way ANOVA, p < 
0.001) in the mPFC but not in the LC. Post-hoc Dunnett’s tests against the acidified saline-treated 
control group revealed significant effects of haloperidol in the mPFC (** p < 0.01) and clozapine 
(**** p < 0.001) in the mPFC.   
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a)                                                                      b) 
 

                     
 
Fig. 3: Showing c-Fos Expression with a) Clozapine and b) Haloperidol. 
 
 
 
 
 
 
 

                
 
Fig. 4: Counting of c-Fos immunoreactive nuclei. (a) A representative photomicrograph 
stained with anti-c-Fos antibody. (b) The same image as in (a) after selection of activated, 
intensely staining immunopositive nuclei by binary thresholding and application of object 
size and roundness filters. (c) The same image as in (b) superimposed on the original 
photomicrograph shown in (a) to illustrate the accuracy of the selection of intensely 
stained c-Fos immunopositive nuclei. The scale bar represents 75 μm. 
 
 
 
 
 
 
 

a b c
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Fig. 5: Representative examples of photomicrographs of immunostaining with anti-c-Fos 
antibody in the mPFC following chronic treatment. Sections from matched regions of the 
mPFC of animals treated for 4 weeks with (a) acidified saline, (b) haloperidol and (c) 
clozapine. To select immunopositive nuclei for counting the images were processed by 
binary thresholding, binary erosion and dilation filtering, and application of object size 
and roundness filters. The same images as in (a)–(c) are shown after image process in 
(d)–(f), respectively. The scale bar represents 200 mm. 
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(a) Medial Prefrontal cortex 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Locus coeruleus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6:  Effects of 4-week antipsychotic drug treatment on Egr-1 expression in (a) the medial 
prefrontal cortex (mPFC) and (b) the locus coeruleus (LC). The data are the number of Egr-1 
immunopositive nuclei expressed as a percentage of the number in the acidified saline-treated 
control group (mean ± std).  There were significant treatment effects in both the mPFC (one-way 
ANOVA, p < 0.05) and LC (one-way ANOVA, p < 0.01). * p < 0.05, and ** p < 0.01 on post-
hoc Dunnett’s test comparisons with the acidified saline-treated control group. 
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(a) Medial Prefrontal cortex 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Locus coeruleus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Effects of 4-week antipsychotic drug treatment on Egr-2 expression in (a) the medial 
prefrontal cortex (mPFC) and (b) the locus coeruleus (LC). The data are the number of Egr-2 
immunopositive nuclei expressed as a percentage of the number in the acidified saline-treated 
control group (mean ± std).  There was a significant treatment effect in LC (one-way ANOVA, p 
< 0.001) but not in the mPFC (one-way ANOVA, n.s.). ** p < 0.01, *** p < 0.005, and **** p < 
0.001 on post-hoc Dunnett’s test comparisons with the acidified saline-treated control group. 
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       Acidified Saline                       Haloperidol                            Clozapine 
 
Fig. 8: Representative examples of photomicrographs of immunostaining with anti-Egr-1 
antibody in the mPFC. Sections from matched regions of the mPFC of animals treated for 
4 weeks with (a) acidified saline, (b) haloperidol and (c) clozapine. The scale bar 
represents 200 mm. 
 
 
 
 
 

     
 
        Acidified Saline                         Halopreidol                                Clozapine 
 
Fig. 9: Representative examples of photomicrographs of immunostaining with anti-Egr-2 
antibody in the LC. Sections containing the LC of animals treated for 4 weeks with (a) 
acidified saline, (b) haloperidol and (c) clozapine. The IVth ventricle in the upper left-
hand side of the photomicrographs and the large cells of the mesencephalic nucleus of the 
Vth nerve (Me5) lateral and ventral to the LC serve as landmarks for locating the LC. 
The scale bar represents 200 mm. 
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(a) Medial Prefrontal cortex 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Locus coeruleus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10:  Effects of 4-week antipsychotic drug treatment on tyrosine hydroxylase (TH) expression 
in (a) the medial prefrontal cortex (mPFC) and (b) the locus coeruleus (LC). The data are the 
number of TH immunopositive profiles expressed as a percentage of the number in the acidified 
saline-treated control group (mean ± std).  There were significant treatment effects both the 
mPFC (one-way ANOVA, p < 0.001) and LC (one-way ANOVA, p < 0.001). **** p < 0.001 on 
post-hoc Dunnett’s test comparisons with the acidified saline-treated control group. ++++ p < 0.001 
on Tukey’s HSD test between drug treatment groups.  
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Anti – TH in mPFC 
          Clozapine                               Binary                                  Merged 

     
 
Anti- TH in LC 
     Acidified saline                     Acidified saline                          Clozapine 

     
 
Fig. 11: Illustration of the immunostainning for TH. (a) A representative photomicrograph of 
immunostaining with anti-TH antibody in the mPFC of an animal treated with clozapine. (b) The 
same image as in (a) after selection of immunopositive fibre profiles by binary thresholding, 
binary erosion and dilation filtering, and application of object size filters. (c) The same image as 
in (b) superimposed on the original photomicrograph shown in (a) to illustrate the accuracy of the 
selection of TH-immunopositive fibre profiles. (d) A representative photomicrograph of 
immunostaining with anti-TH antibody in the LC of an animal treated with acidified saline. (e) 
The same image as in (d) after selection of immunopositive profiles of neurites and cell bodies by 
binary thresholding, binary erosion and dilation filtering, and application of object size and 
roundness filters. The bold black line encircling the LC illustrates the region defined as the LC 
for the purpose of counting the TH immunopositive profiles and measuring the area of the LC. (f) 
A representative example of an image from an animal treated with clozapine subjected to the 
same image processing. The scale bars represent 100 μm. 
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3.1.2 Effect of different dosages and treatment durations of olanzapine 

on IEG and TH expression 

 

c-Fos immunoreactivity 

Two-way ANOVA of c-Fos immunoreactivity revealed significant main effects of dose 

and duration of olanzapine treatment, as well as an interaction of these two factors, in 

both the LC (dose, F4, 60 = 68.0, p < 0.0001; duration, F3, 60 = 465, p < 0.0001; dose x 

duration interaction, F12, 60 = 43.2, p < 0.0001) and mPFC (dose, F4, 60 = 19.45, p < 0.0001; 

duration, F3, 60 = 32.5, p < 0.0001; dose x duration interaction, F12, 60 = 9.54, p < 0.0001).  

Post-hoc Tukey HSD tests confirmed that in both LC and mPFC there was a dose-

dependent increase in c-Fos immunoreactivity for 4-hour, 1-week, and 2-week durations 

of treatment (Figure 13). In the LC, the increase in c-Fos immunoreactivity induced by 

the doses 2/4/8 mg/kg/day did not reach significance until 2-weeks treatment.  However, 

on 4-weeks treatment a down regulation of c-Fos immunoreactivity was observed in both 

LC and mPFC (Figure 13). 

 

c-Jun immunoreactivity 

Two-way ANOVA of c-Jun immunoreactivity revealed significant main effects of dose 

and duration of olanzapine treatment, as well as an interaction of these two factors, in the 

both the LC (dose, F4, 60 = 122, p < 0.0001; duration, F3, 60 = 15.2, p < 0.0001; dose x 

duration interaction, F12, 60 = 7.89, p < 0.0001) and mPFC (dose, F4, 60 = 649, p < 0.0001; 

duration, F3, 60 = 487, p < 0.0001; dose x duration interaction, F12, 60 = 112, p < 0.0001).  

Post-hoc Tukey HSD tests confirmed that in both LC and mPFC there was a dose-
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dependent increase in c-Jun immunoreactivity for 4 hrs, 1 week, and 2 weeks durations of 

treatment (Figure 14). For the lowest dose, 2 mg/kg/day, consistent increases in the 

number of c-Jun immunoreactive cells were only detected after 2-weeks treatment. The 

pattern of dose-dependent increases in c-Jun immunoreactivity continued with 4-weeks 

treatment in the LC, but in the mPFC on 4-weeks treatment a down regulation of c-Jun 

immunoreactivity was observed which significantly reduced immunoreactivity below the 

control level for the highest doses, 15 mg/kg/day  (Figure 14).  

 

ATF-2 immunoreactivity 

Two-way ANOVA of ATF-2 immunoreactivity revealed significant main effects of dose 

and duration of olanzapine treatment, as well as an interaction of these two factors, in the 

both the LC (dose, F4,60 = 1402, p < 0.0001; duration, F3,60 = 13.9, p < 0.0001; dose x 

duration interaction, F12,60 = 4.6, p < 0.0001) and mPFC (dose, F4,60 = 208, p < 0.0001; 

duration, F3,60 = 50.7, p < 0.0001; dose x duration interaction, F12,60 = 63.8, p < 0.0001).  

Post-hoc Tukey HSD tests confirmed that in the LC all doses had increased ATF-2 

immunoreactivity by 4 hrs and that the number of ATF-2 immunoreactive cells was 

sustained at all treatment durations (Figure 15).  In the mPFC, post-hoc Tukey HSD tests 

revealed that the lowest dose, 2 mg/kg/day, decreased the number of cells expressing 

ATF-2 following 4 hrs and 1 week treatments but increased ATF-2 immunoreactivity at 2 

weeks and 4 weeks treatments (Figure 15). Higher doses increased ATF-2 

immunoreactivity even at the 4 hr time-point, but on treatment with the highest dose, 15 

mg/kg/day, ATF-2 expression reduced to control levels again by 2 weeks treatment 

(Figure 15).  
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Egr-1 immunoreactivity 

Two-way ANOVA of Egr-1 immunoreactivity revealed significant main effects of dose 

and duration of olanzapine treatment, as well as an interaction of these two factors, in the 

both the LC (dose, F4,60 = 271, p < 0.0001; duration, F3,60 = 12.7, p < 0.0001; dose x 

duration interaction, F12,60 = 17.2, p < 0.0001) and mPFC (dose, F4,60 = 309, p < 0.0001; 

duration, F3,60 = 41.9, p < 0.0001; dose x duration interaction, F12,60 = 5.80, p < 0.0001). 

Post-hoc Tukey HSD tests confirmed that in both LC and mPFC there was a down-

regulation of Egr-1 immunoreactivity at all treatment durations (Figure 16). In both the 

LC and the mPFC, the down-regulation of Egr-1 immunoreactivity was inversely related 

to dose and greatest at lower doses.  In the LC, the down-regulation was greatest on 1-

week treatment with 2 mg/kg/day and decreased with longer treatment durations at this 

dose (Figure 16). In the mPFC, the down-regulation was also greatest on treatment with 

2 mg/kg/day, but was similar with 4 hr, 1-week and 2-week treatments, and slightly 

greater with 4-weeks treatment.  

  

Egr-2 immunoreactivity 

Two-way ANOVA of Egr-2 immunoreactivity revealed significant main effects of dose 

and duration of olanzapine treatment, as well as an interaction of these two factors, in the 

both the LC (dose, F4,60 = 526, p < 0.0001; duration, F3,60 = 11.0, p < 0.0001; dose x 

duration interaction, F12,60 = 12.6, p < 0.0001) and mPFC (dose, F4,60 = 916, p < 0.0001; 

duration, F3,60 = 58.3, p < 0.0001; dose x duration interaction, F12,60 = 32.1, p < 0.0001). 

Post-hoc Tukey HSD tests confirmed that in both LC and mPFC there was a dose-

dependent down-regulation of Egr-2 immunoreactivity at all treatment durations (Figure 

17) . In the LC the down regulation was significant at all doses and treatment durations. 
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In the mPFC, the down-regulation was significant only at the higher doses (8 and 12 

mg/kg/day) for all but the 4-week treatment duration (Figure 17).  

 

TH immunoreactivity 

Two-way ANOVA of TH immunoreactivity revealed significant main effects of dose and 

duration of olanzapine treatment, as well as an interaction of these two factors, in the 

both the LC (dose, F4,60 = 447, p < 0.0001; duration, F3,60 = 13.0, p < 0.0001; dose x 

duration interaction, F12,60 = 4.6, p < 0.0001) and mPFC (dose, F4,60 = 61.2, p < 0.0001; 

duration, F3,60 = 61.4, p < 0.0001; dose x duration interaction, F12,60 = 9.4, p < 0.0001).  

Post-hoc Tukey HSD tests confirmed that in the LC all doses and durations of treatment 

increased TH immunoreactivity (Figure 18). The increases in TH immunoreactivity were 

most marked for treatment with 4 mg/kg/day, while lower and higher doses produced less 

significant changes. While doses of 4 mg/kg/day and above produced similar increases in 

TH immunoreactivity at all treatment durations (Figure 18), post-hoc Tukey HSD tests 

suggest that the significance of the dose x duration interaction in the LC may be 

attributable a duration-dependent reduction in the increase TH immunoreactivity seen on 

treatment with 2 mg/kg/day olanzapine (320 ± 24.3 % increase at 4 hrs compared with 

151 ± 7.0 % increase at 4 weeks, P < 0.001). 

 
Post-hoc Tukey HSD tests showed that in mPFC that the increase TH immunoreactivity 

was both duration-dependent and dose-dependent (Figure 18).  The greatest increases in 

TH immunoreactivity were seen on treatment with 8 mg/kg/day olanzapine. With doses 

of 8 and 15 mg/kg/day of olanzapine there were significant increases in TH 

immunoreactivity only after 2-weeks treatment.  Treatment with lower doses (2 and 4 
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mg/kg/day) only produced significant increase in immunoreactivity after 4-weeks 

treatment (Figure 18).  

The figures for this experiment are given below. 

 

a)                                                                     b) 

   

 

    

                                  

Fig. 12: The brain regions within which IEG immunoreactive nuclei and TH immunoreactive 
profiles were counted in the (a) LC and (b) prelimbic area of the mPFC in the rat brain. The areas 
sampled are denoted by black squares. Drawings are adapted from Paxinos and Watson (1998). 
Examples of immunostaining for (c) Fos-like protein and (d) c-Jun in the mPFC following 
treatment with 4 mg/kg/day olanzapine for 2 weeks; (e) ATF-2, (f) Egr-1 and (g) Egr-2 in the 
mPFC, (h) ATF-2 in the LC, and TH in the (i) LC and (j) mPFC following administration of 
acidified saline vehicle for 2 weeks. Scale bars:100 μm (c) to (g), (h) 150μm, and (i) and (j) 10 
μm. 

c d e f
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Fig. 13: Effects of olanzapine dose and treatment duration on c-Fos immunoreactivity in (a) the 
locus coeruleus (LC) and (b) the medial prefrontal cortex (mPFC). c-Fos immunoreactivity is 
expressed as the number of c-Fos immunopositive nuclei as a percentage of the pooled mean of 
the acidified saline vehicle control groups (mean ± sem).  Following two-way analysis of 
variance, effects of olanzapine dose were compared with the acidified saline controls within each 
treatment duration by Tukey’s HSD post hoc tests (* p < 0.05, *** p < 0.0005). 
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Fig. 14: Effects of olanzapine dose and treatment duration on c-Jun immunoreactivity in (a) the 
locus coeruleus (LC) and (b) the medial prefrontal cortex (mPFC). c-Jun immunoreactivity is 
expressed as the number of c-Jun immunopositive nuclei as a percentage of the pooled mean of 
the acidified saline vehicle control groups (mean ± sem).  Following two-way analysis of 
variance, effects of olanzapine dose were compared with the acidified saline controls within each 
treatment duration by Tukey’s HSD post hoc tests (* p < 0.05, ** p < 0.005, *** p < 0.0005). 
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Fig. 15: Effects of olanzapine dose and treatment duration on ATF-2 immunoreactivity in (a) the 
locus coeruleus (LC) and (b) the medial prefrontal cortex (mPFC). ATF-2 immunoreactivity is 
expressed as the number of ATF-2 immunopositive nuclei as a percentage of the pooled mean of 
the acidified saline vehicle control groups (mean ± sem).  Following two-way analysis of 
variance, effects of olanzapine dose were compared with the acidified saline controls within each 
treatment duration by Tukey’s HSD post hoc tests (* p < 0.05, ** p < 0.005, *** p < 0.0005). 
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Fig. 16: Effects of olanzapine dose and treatment duration on Egr-1 immunoreactivity in (a) the 
locus coeruleus (LC) and (b) the medial prefrontal cortex (mPFC). Egr-1 immunoreactivity is 
expressed as the number of Egr-1 immunopositive nuclei as a percentage of the pooled mean of 
the acidified saline vehicle control groups (mean ± sem).  Following two-way analysis of 
variance, effects of olanzapine dose were compared with the acidified saline controls within each 
treatment duration by Tukey’s HSD post hoc tests (* p < 0.05, ** p < 0.005, *** p < 0.0005). 
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Fig. 17: Effects of olanzapine dose and treatment duration on Egr-2 immunoreactivity in (a) the 
locus coeruleus (LC) and (b) the medial prefrontal cortex (mPFC). Egr-2 immunoreactivity is 
expressed as the number of Egr-2 immunopositive nuclei as a percentage of the pooled mean of 
the acidified saline vehicle control groups (mean ± sem).  Following two-way analysis of 
variance, effects of olanzapine dose were compared with the acidified saline controls within each 
treatment duration by Tukey’s HSD post hoc tests (** p < 0.005, *** p < 0.0005). 
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Fig. 18: Effects of olanzapine dose and treatment duration on tyrosine hydroxylase (TH) 
immunoreactivity in (a) the locus coeruleus (LC) and (b) the medial prefrontal cortex (mPFC). 
TH immunoreactivity is expressed as the number of TH immunopositive nuclei as a percentage of 
the pooled mean of the acidified saline vehicle control groups (mean ± sem).  Following two-way 
analysis of variance, effects of olanzapine dose were compared with the acidified saline controls 
within each treatment duration by Tukey’s HSD post hoc tests (** p < 0.005, *** p < 0.0005). 
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Fig.19: Representative photomicrographs of serial sections through the LC immunostained for (a) 
Egr-1 and (b) TH after administration of acidified saline for 2 weeks. IV, IVth ventricle; Me5, 
mesencephalic nucleus of the Vth nerve. The scale bar: 200 μm. 
 
 
 

  
Fig. 20: Representative photomicrographs of TH immunoreactivity in the LC after administration 
of (a) acidified saline and (b) 8 mg/kg/day olanzapine for 1 week.. The scale bar: 200 μm. 
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3.2  CHAKRAGATI  MOUSE  EXPERIMENTS 
 
 
3.2.1 Validity Experiments 

A.) PPI Experiment: I started off with a routine PPI test comparing the wild type, 

heterozygous and the homozygous groups. Statistical analysis on a Two-factor ANOVA 

was done with genotype as between subjects factor and the trial type (prepulse intensity) 

as a repeated measure. The tests were significant for the genotype effect and the prepulse 

effect while the prepulse x genotype interaction effect was not significant. The results are 

as follows: prepulse effect F(2,42) = 30.91, p < 0.001; genotype effect F(2,21) = 32.36, p < 

0.001; prepulse x genotype interaction effect F(4,42) = 0.416, p = 0.796. Post hoc tests 

were carried out using Tukey’s test. P level was set at 0.05. There was a significant 

reduction in the PPI of homozygous group. (Figure. 21) 
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Fig. 21: Effects of gene manipulation on the Prepulse Inhibition in experimental mice (wild type, 
heterozygous and homozygous). The effect is expressed as prepulse inhibition percentage. Each point 
represents the mean ± SEM for these percentages. Following a Two-factor ANOVA with genotype as 
between subjects factor and the trial type (prepulse intensity) as a repeated measure, effects of gene 
manipulation in heterozygous and homozygous mice were compared with the wild type control mice for 

   *    *    * 
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each prepulse intensity category by Tukey’s HSD post hoc tests.( * signifies p < 0.05 in comparison to the 
wild type group.). 
The startle amplitude of all the three strains was also compared. Startle magnitude was 

analyzed with a one way ANOVA. Although the homozygous mice showed slightly 

raised startle amplitudes (266.87 ± 51.53) compared to the wild-type (221.62 ± 31.86) 

and the heterozygous strain (218.75 ± 50.25), this was not significant. (Figure. 22) 
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Fig. 22: Effects of gene manipulation on the startle amplitude in experimental mice (wild type, 
heterozygous and homozygous). The effect is expressed as the startle response in mille volts. The points 
represent the mean ± SEM for the pulse alone amplitudes 
 

Following the routine PPI test I tried to ascertain if the mice were suffering from any 

hearing defect. For this we tested only the homozygous mice, but the time duration 

between the prepulse and pulse sounds were altered (25ms, 100 ms and 175 ms) with 100 

ms being the control value. Statistical analysis was done for double repeated measures 

(time gaps and prepulse intensity) for the homozygous mice. The PPI were significantly 

lower when the time gap between prepulse and pulse was reduced to 25 ms. There was 

not much difference in PPI for time gaps 100 ms and 175 ms. The tests were significant 

for the time gap effect, prepulse intensity effect as well as time gap x prepulse intensity 
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interaction effect. The resuls are as follows: prepulse effect F(2,14) = 35.19, p < 0.001; 

Time gap effect F(2,14) = 1158.15, p < 0.001; prepulse x time gap interaction effect F(4,28) 

= 5.00, p = 0.004. (Figure. 23)  
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Fig. 23: Effects of different time gaps between prepulse and the pulse tones, on the Prepulse Inhibition in 
experimental mice (homozygous strain). The effect is expressed as prepulse inhibition percentage. Each 
point represents the mean ± SEM for these percentages. Statistical analysis was done for double repeated 
measures (time gaps and prepulse intensity) for the homozygous mice. Post hoc test was done usning 
Tukey’s HSD test. (* signifies p < 0.001 in comparison to the 100ms group in the same prepulse category). 
 
 
 
B.) LI Experiment: For the LI experiment statistical analysis was done using a Two-

factor ANOVA (Exposure and genotype were the two fixed factors). The results showed 

a significant genotype effect, exposure effect as well as genotype x exposure interaction 

effect on the suppression rations. The results were as follows: genotype effect F(2,18) = 

24.47, p < 0.001; exposure effect F(1,18) = 411.46, p < 0.001; exposure x genotype 

interaction effect F(2,18) = 55.09, p < 0.001. Post hoc tests were done using the Tukey’s 

test and it was seen that the pre-exposed homozygous mice had significantly lower 

     *      *      *
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suppression ratio as compared to the pre-exposed witld-type and pre-exposed 

heterozygous mice. Also there was not significantly different suppression ratio for 

exposed and non-pre exposed animals in the homozygous category. This result was 

different from the wild-type and the heterozygous groups which showed significantly 

different suppression ratios between their respective pre-exposed and non pre-exposed 

animals. (Figure. 24) 
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NPE = Non Pre-Exposure;  PE = Pre-Exposure 
 
Fig. 24: Effects of gene manipulation on the Latent Inhibition in experimental mice (wild type, 
heterozygous and homozygous). The effect is expressed as suppression ratio. Each point represents the 
mean ± SEM for these ratios. Following a two-way analysis of varience, effects of gene manipulation in 
heterozygous and homozygous mice were compared with the wild type control mice for each exposure 
category by Tukey’s HSD post hoc tests. (* signifies p< 0.001 in comparison to the wild-type pre-exposed 
group. # signifies p < 0.001 in comparison to the non pre-exposed animals of the same genotype). 
 
 
 
 
 
 
 
 
 

 * 

 # 
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3.2.2 Drug Experiments 
 
 
A.) Phase I:  It was found out that irrespective of the treatment given to the wild type 

mice, there was no significant change in their PPI percentage as compared to the baseline 

PPI for the wild type. The baseline PPI of the homozygous mice was significantly lower 

than the baseline PPI of the wild type mice (p< 0.01). Administration of risperidone or 

haloperidol did not lead to any significant change in the PPI of the homozygous mice, 

while administration of clozapine (all three dosages) led to a significant increase in the 

PPI of the homozygous mice as compared to their baseline values. Statistical analysis was 

done using a two factor ANOVA (genotype and the drug treatment being the fixed 

factors). The results are as followings: treatment effect F(9,140) = 5.97, p < 0.001; genotype 

effect F(1,140) = 186.61, p < 0.001; genotype x treatment effect F(9,140) = 3.71, p < 0.001. 

Post hoc test was utilized and it showed significantly higher PPI values for all the three 

clozapine treated homozygous groups compared to the baseline homozygous PPI (Fig. 25) 

 

To analyze the data pertaining to the startle amplitudes, we conducted a one way 

ANOVA for the different treatment groups, both for wild type as well as homozygous 

strains. Risperidone (all doses), haloperidol (all doses) and the two lower doses of 

clozapine did not show any significant effect on the startle amplitudes. It was found out 

that for both wild type mice and the homozygous mice, the group receiving high dosage 

of clozapine had significantly lower startle amplitude than the control group. The result in 

the wild type mice was F(9,70) = 3.58, p = 0.001. (Figure. 26). The result in the 

homozygous mice was F(9,70) = 2.55, p = 0.013 (Figure. 27). Post hoc tests were done 

using Tukey’s test. 
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Fig. 25:  Showing the effect of drug treatment on the PPI of wild type as well as the homozygous strain of 
ckr mice. * signifies p < 0.05 compared to the baseline homozygous PPI. 
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Fig. 26:  Showing the effect of drug treatment on the startle amplitude of wild type mice. * signifies p < 
0.05 compared to the baseline startle amplitude of the wild type control group. 
 
 

Treatments: 1) Base = No drug treatment; 2) Risp (L) = Risperidone 0.1 mg/kg ; 3) Risp (M) = Risperidone 
0.5 mg/kg; 4) Risp (H) = Risperidone 1.0 mg/kg; 5) Halo (L) = Haloperidol 0.1 mg/kg; 6)  Halo (M) = 
Haloperidol 0.5 mg/kg; 7) Halo (H) = Haloperidol 1.0 mg/kg;  8)  Cloz(L) = Clozapine 1.0 mg/kg; 9)  
Cloz(M) = Clozapine 4.0 mg/kg;  10)  Cloz(H) = Clozapine 10.0 mg/kg  
 

  * 
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Phase I Homozygous mice Startle amplitudes
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Fig. 27:  Showing the effect of drug treatment on the startle amplitude of homozygous ckr mice. * signifies 
p < 0.05 compared to the baseline startle amplitude of the homozygous control group. 
 
Treatments: 1) Base = No drug treatment; 2) Risp (L) = Risperidone 0.1 mg/kg ; 3) Risp (M) = 
Risperidone 0.5 mg/kg; 4) Risp (H) = Risperidone 1.0 mg/kg; 5) Halo (L) = Haloperidol 0.1 mg/kg; 6)  
Halo (M) = Haloperidol 0.5 mg/kg; 7) Halo (H) = Haloperidol 1.0 mg/kg;  8)  Cloz(L) = Clozapine 1.0 
mg/kg; 9)  Cloz(M) = Clozapine 4.0 mg/kg;  10)  Cloz(H) = Clozapine 10.0 mg/kg  

 
 
B.) Phase II: In phase II experiments also, the various drug treatments failed to produce 

any significant change in the PPI percentage of the wild type mice. For the homozygous 

mice, all the treatments showed an increase in the PPI %, except for alpha1 agonist drug. 

Statistical analysis was done using a two-factor ANOVA (genotype and the drug 

treatment being the fixed factors). The effect of genotype, treatment and genotype x 

treatment interaction were all significant. The results are as followings: treatment effect 

F(6,98) = 7.15, p < 0.001; genotype effect F(1,98) = 5.59, p = 0.020; genotype x treatment 

effect F(6,98) = 7.16, p < 0.001. Post hoc tests were done using Tukey’s test and all the 

three dose combinations of clozapine and prazosin were found to be having significantly 

higher PPI than the baseline PPI in homozygous mice. (Figure. 28) 

  * 
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To analyze the data pertaining to the startle amplitudes, we conducted a one-way 

ANOVA for the different treatment groups, both for wild type as well as homozygous 

strains. Except for two treatment groups ( High Dose Clozapine ; High dose clozapine + 

alpha-1 antagonist), no other treatment group showed any significant effect on the startle 

amplitude. It was found out that for both wild type mice and the homozygous mice, the 

group receiving high dosage of clozapine and the group receiving the combination of 

clozapine (high dosage) and alpha1-antagonist, had significantly lower startle amplitude 

than the control group. The result in the wild type mice was F(6,49) = 10.05, p < 0.001 

(Figure. 29).  The result in the homozygous mice was F(6,49) = 8.06, p < 0.001 (Figure. 

30). Post hoc tests were done using Tukey’s test.  
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Fig. 28:  Showing the effect of drug treatment on the PPI of wild type as well as the homozygous strain of 
chakra mice. * p < 0.05 compared to the baseline homozygous PPI. [Note: the data for baseline control 
group and Clozapine (high dosage) group is the same as in phase I study] 
 
 
Treatments: 1) Base = No drug treatment; 2) Cloz (H) = Clozapine 10 mg/kg/day ; 3) α-1 Ago = 
Cirazoline 0.75 mg/kg/day; 4) α-1 Anta = Prazosin 1.0 mg/kg/day; 5) C(L) +  α-1 Anta = Clozapine 1.0 
mg/kg/day + Prazosin 1.0 mg/kg/day; 6) C(M) +  α-1 Anta = Clozapine 4.0 mg/kg/day + Prazosin 1.0 
mg/kg/day;         7) C(H) +  α-1 Anta = Clozapine 10.0 mg/kg/day + Prazosin 1.0 mg/kg/day 

 *  *   *  * 
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Fig. 29:  Showing the effect of drug treatment on the startle amplitude of wild type mice. * signifies p < 
0.05 compared to the startle amplitude of baseline control wild type mice. [Note: the data for baseline 
control group and Clozapine (high dosage) group is the same as in phase I study] 
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Fig. 30:  Showing the effect of drug treatment on the startle amplitude of homozygous ckr  mice. * signifies 
p < 0.05 compared to the baseline startle amplitude of the control homozygous mice. [Note: the data for 
baseline control group and Clozapine (high dosage) group is the same as in phase I study] 
 
 

Treatments: 1) Base = No drug treatment; 2) Cloz (H) = Clozapine 10 mg/kg/day ; 3) α-1 Ago = Cirazline 
0.75 mg/kg/day; 4) α-1 Anta = Prazosin 1.0 mg/kg/day; 5) C(L) +  α-1 Anta = Clozapine 1.0 mg/kg/day + 
Prazosin 1.0 mg/kg/day; 6) C(M) +  α-1 Anta = Clozapine 4.0 mg/kg/day + Prazosin 1.0 mg/kg/day;         
7) C(H) +  α-1 Anta = Clozapine 10.0 mg/kg/day + Prazosin 1.0 mg/kg/day 

  *    *
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3.3 RAT  EXPERIMENTS 

 

3.3.1 Water maze experiments 

 

A) Phase I: Latencies, swim distances and the swim speeds required to locate the hidden 

platform in the water maze for days 1-4 are shown in the figures below. 

 

Analysis showed that the rats treated with MK-801 had significantly higher latencies as 

compared to the control group (p<0.01). Addition of haloperidol to MK-801 did not 

improve the situation. But when olanzapine was added to MK-801, the combination had 

significantly lesser latencies than ones treated with MK-801 alone (p < 0.001). There was 

significant improvement seen and MK-801 + olanzapine  group showed latencies which 

were more comparable to the control group. Olanzapine had led to the reversal of the 

effect of MK-801. Statistical comparisons for latencies across the four groups revealed 

the following results: treatment effect F(3,28) = 273.53, p< 0.001; day effect F(3,84) = 79.94, 

p < 0.001; day x treatment interaction F(9,84) = 24.87, p < 0.001. For post hoc, Tukey HSD 

test was done (Figure 31). 
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Fig. 31:  Effects of chronic exposure to different drug treatments on latency to find a hidden platform in a 
water maze task on 4 consecutive days of testing compared to vehicle controls.  

 
Treatments: 1) Base + Control group; 2) MK-801 = 0.1 mg/kg on the day of the experiment;  3) MK + 
Halo = Haloperidol 0.5 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment;  4) MK + Olan 
= Olanzapine 10 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment   

 

 

Analysis of the swim distances showed that treatment with MK-801 led to significant 

increase in the swim distance as compared to the control group (p< 0.01). Addition of 

olanzapine to MK-801, did improve the situation by bringing the swim distances down  

but these were not significant enough. The rats treated in the control group and the group 

treated with the combination of MK-801 and Haloperidol showed significantly shorter 

distances traveled as compared to the MK-801 group (p < 0.001). Statistical comparisons 

for distances across the four groups revealed the following results: treatment effect F(3,28) 

= 34.64, p< 0.001; day effect F(3,84) = 19.7, p < 0.001; day x treatment interaction F(9,84) = 

11.7, p < 0.001. For post hoc, Tukey HSD test was conducted (Figure 32). 
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Fig. 32: Effects of chronic exposure to different drug treatments on the swim distance to find a hidden 
platform in a water maze task on 4 consecutive days of testing compared to vehicle controls.  

 
Treatments: 1) Base + Control group; 2) MK-801 = 0.1 mg/kg on the day of the experiment;  3) MK + 
Halo = Haloperidol 0.5 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment;  4) MK + Olan 
= Olanzapine 10 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment   

 

 

Analysis for swim speeds showed that the MK-801 + Haloperidol grouphad the slowest 

swim speed. MK-801 alone also decreased the swim speeds as compared to the control 

group. But addition of olanzapine to MK-801 led to the reversal of this and these rats 

showed significantly faster swim speed compared to the MK-801 alone treated group (p < 

0.001). Statistical comparisons for swim speeds across the four groups revealed the 
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following results: treatment effect F(3,28) = 87.4, p< 0.001; day effect F(3,84) = 6.86, p 

< 0.001; day x treatment interaction F(9,84) = 2.12, p < 0.05. For post hoc, Tukeys HSD 

tests were conducted. (Figure 33) 
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Fig. 33:  Effects of chronic exposure to different drug treatments on swim speed while trying to find a 
hidden platform in a water maze task on 4 consecutive days of testing compared to vehicle controls.  

 

Treatments: 1) Base + Control group; 2) MK-801 = 0.1 mg/kg on the day of the experiment;  3) MK + 
Halo = Haloperidol 0.5 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment;  4) MK + Olan 
= Olanzapine 10 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment   

 

 
B) Phase II experiment: Latencies, swim distances and the swim speeds required to 

locate the hidden platform in the water maze for days 1-4 are shown in the figures below. 
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The following treatment groups were studied: 

 

1) MK-801 = MK-801 0.1 mg/kg on the day of the experiment;  

 

 2) MK + Olan = Olanzapine 10 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of 
experiment 

  

 3) Group A = Prazosin 1.0 mg/kg/day + Olanzapine 10 mg/kg/day, both for 4 weeks and 
MK-801 0.1 mg/kg on day of experiment   

 

4) Group B = Cirazoline 0.75 mg/kg/day + Olanzapine 10 mg/kg/day, both  for 4 weeks 
and MK-801 0.1 mg/kg on day of experiment 

   

5)  Group C = Idazoxan 1.5 mg/kg/day + Olanzapine 10 mg/kg/day, both for 4 weeks 
and MK-801 0.1 mg/kg on day of experiment 

  

6) Group D = Clonidine 0.2 mg/kg/day + Olanzapine 10 mg/kg/day, both  for 4 weeks 
and MK-801 0.1 mg/kg on day of experiment; 

 

Statistical comparisons for latencies across the six groups revealed the following results: 

treatment effect F(5,42) = 81.49, p< 0.001; day effect F(3,126) = 155.2, p < 0.001; day x 

treatment interaction F(15,126) = 18.26, p < 0.001. Post hoc Tukey HSD test showed that 

the rats in group C (containing alpha-2 antagonist idazoxan),  had significantly shorter 

latencies than the ones treated with MK-801 + Olanzapine combination (p < 0.001). 

(Figure 34) 

 

Statistical comparisons for swim distances across the six groups revealed the following 

results: treatment effect F(5,42) = 14.87, p< 0.001; day effect F(3,126) = 44.50, p < 0.001; 

day x treatment interaction F(15,126) = 12.99, p < 0.001. Post hoc Tukeys HSD test showed 

that the rats in group D (containing alpha-2 agonist clonidine),  had significantly longer 
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swim distances than the ones treated with MK-801+ Olanzapine combination (p < 0.001). 

(Figure 35) 

 

Statistical comparisons for swim speed across the six groups revealed the following 

results: treatment effect F(5,42) = 23.79, p< 0.001; day effect F(3,126) = 6.71, p < 0.001. 

While these two were statistically significant, the day x treatment interaction did not 

show any significance F(15,126) = 1.70, p = 0.058. Post hoc Tukey HSD test showed that 

the rats in group C (containing alpha-2 antagonist idazoxan), had significantly faster 

swim speeds than the ones treated with MK-801+Olanzapine combination (p < 0.05). 

(Figure 36) 
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Fig. 34:  Effects of chronic exposure to different drug treatments on latency while trying to find a hidden 
platform in a water maze task on 4 consecutive days of testing.  

 
 
 
Treatments: 1) MK-801 = 0.1 mg/kg on the day of the experiment;  2) MK + Olan = Olanzapine 10 
mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment;  3) Group A = Prazosin 1.0 mg/kg/day 
+ Olanzapine 10 mg/kg/day, both for 4 weeks and MK-801 0.1 mg/kg on day of experiment;  4) Group B = 
Cirazoline 0.75 mg/kg/day + Olanzapine 10 mg/kg/day, both  for 4 weeks and MK-801 0.1 mg/kg on day 
of experiment;  5)  Group C = Idazoxan 1.5 mg/kg/day + Olanzapine 10 mg/kg/day, both for 4 weeks and 
MK-801 0.1 mg/kg on day of experiment; 6) Group D = Clonidine 0.2 mg/kg/day + Olanzapine 10 
mg/kg/day, both  for 4 weeks and MK-801 0.1 mg/kg on day of experiment; 
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Fig. 35:  Effects of chronic exposure to different drug treatments on swim distance while trying to find a 
hidden platform in a water maze task on 4 consecutive days of testing.  

 
 
Treatments: 1) MK-801 = 0.1 mg/kg on the day of the experiment;  2) MK + Olan = Olanzapine 10 
mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment;  3) Group A = Prazosin 1.0 mg/kg/day 
+ Olanzapine 10 mg/kg/day, both for 4 weeks and MK-801 0.1 mg/kg on day of experiment;  4) Group B = 
Cirazoline 0.75 mg/kg/day + Olanzapine 10 mg/kg/day, both  for 4 weeks and MK-801 0.1 mg/kg on day 
of experiment;  5)  Group C = Idazoxan 1.5 mg/kg/day + Olanzapine 10 mg/kg/day, both for 4 weeks and 
MK-801 0.1 mg/kg on day of experiment; 6) Group D = Clonidine 0.2 mg/kg/day + Olanzapine 10 
mg/kg/day, both  for 4 weeks and MK-801 0.1 mg/kg on day of experiment; 
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Fig. 36:  Effects of chronic exposure to different drug treatments on swim speed while trying to find a 
hidden platform in a water maze task on 4 consecutive days of testing.  

 
 
Treatments: 1) MK-801 = 0.1 mg/kg on the day of the experiment;  2) MK + Olan = Olanzapine 10 
mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment;  3) Group A = Prazosin 1.0 mg/kg/day 
+ Olanzapine 10 mg/kg/day, both for 4 weeks and MK-801 0.1 mg/kg on day of experiment;  4) Group B = 
Cirazoline 0.75 mg/kg/day + Olanzapine 10 mg/kg/day, both  for 4 weeks and MK-801 0.1 mg/kg on day 
of experiment;  5)  Group C = Idazoxan 1.5 mg/kg/day + Olanzapine 10 mg/kg/day, both for 4 weeks and 
MK-801 0.1 mg/kg on day of experiment; 6) Group D = Clonidine 0.2 mg/kg/day + Olanzapine 10 
mg/kg/day, both  for 4 weeks and MK-801 0.1 mg/kg on day of experiment 
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3.3.2 PPI Experiments 

 
A) Phase I : The results show that compared to the control animals, the treatment with 

MK-801 leads to a marked deficit in the PPI. This effect is seen to be reversed by 

haloperidol as well as olanzapine treatments. The turnaround is more so in case of 

olanzapine. Statistical analysis following a two way ANOVA (Time-duration and the 

treatment being the two fixed factors) show significant effect of treatment while the 

treatment duration (weeks) or the weeks x treatment interaction, both failed to show any 

significance. The results are the following:  treatment effect F(3,28) = 15214.7, p < 0.001; 

treatment duration (week) effect F(2,56) = 1.05, p = 0.355; Week x Treatment effect F(6,56) 

= 1.65, p = 0.151. Post hoc tests showed that the Mk-801 + olanzapine treatment did 

significantly better than the MK-801 alone group and also the MK-801 + haloperidol 

group. (Figure 37) 

 

A two-way ANOVA was done to analyze the startle amplitudes of the different groups 

with drug treatment as between groups factor and weeks of treatment as repeated 

measures. There was no effect of treatment duration on the startle amplitudes. Only the 

drug treatment had significant effect on the startle amplitude. MK-801 treated group had 

significantly higher startle amplitude than the control group at 1 week and 2 week 

treatment durations while this effect was not seen at 4 week treatment duration. Addition 

of olanzapine to MK-801, helped in bringing down the startle amplitudes.This effect was 

significant compared to the MK-801 alone treatment group at 2 weeks of treatment 

duration. The results were as follows: Week effect F(2,56) = 0.280, p = 0.757; treatment 
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effect F(3,28) = 10.49, p < 0.001; week x treatment effect F(6,56) = 0.882, p = 0.514. Post 

hoc test were conducted using Tukey’s test . (Figure 38) 
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Fig. 37:  Showing the effect of various drug treatments on the prepulse inhibition in rats. Each point 
signifies the PPPI (mean ± SEM) for that group. For post hoc, Tukey’s test was conducted (* p < 0.001 
when compared to MK-801 treatment group) 
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Fig. 38:  Showing the effect of various drug treatments on the startle amplitude in rats. Each point signifies 
the Amplitude (mean ± SEM) for that group. For post hoc, Tukey’s test was conducted (* signifies p < 0.05 
compared to the baseline control group for that duration of treatment; # signifies p < 0.05 compared to the 
MK-801 group for that treatment duration). 
 
Treatments: 1) Base + Control group; 2) MK-801 = 0.1 mg/kg on the day of the experiment;  3) MK + 
Halo = Haloperidol 0.5 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment;  4) MK + Olan 
= Olanzapine 10 mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment   

 *    *    # 

 *   *    * 
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B) Phase II: The results show that adding alpha1 antagonist prazosin to the M-801 + 

olanzapine combination significantly increases the attenuation of the prepulse inhibition  

deficit caused by MK-801. Other treatments with alpha 1 agonist, alpha2 agonist and 

alpha2 antagonist do not significantly change the results obtained with the MK-801 + 

olanzapine combination. Statistical analysis following a two way ANOVA (Time-

duration and the treatment being the two fixed factors) show significant effect of 

treatment and the treatment duration (weeks) while the weeks x treatment interaction, 

failed to show any significance. The results are as following: treatment effect F(5,42) = 

241.30, p < 0.001; treatment duration (week) effect F(2,84) = 3.62, p = 0.031; Week x 

Treatment effect F(10,84) = 1.0, p = 0.242. Post hoc tests showed that the [alpha1 

antagonist prazosin + Olanzapine + MK-801] group had significantly better results than 

the [Olanzapine + MK-801] group. (Figure 39) 

 
A two-way ANOVA was done to analyze the startle amplitudes of the different groups 

with drug treatment as between groups factor and weeks of treatment as repeated 

measures. The duration of treatment had no effect on the startle amplitudes. Only the 

drug treatment had significant effect on the startle amplitude. At 1 week treatment 

duration, Group C (containing alpha-1 antagonist Prazosin) showed significantly lower 

amplitude compared to the MK-801 group. At 2 weeks of treatment duration, group MK-

801 + olanzapine group, group C and group D (containing alpha-2 agonist clonidine) 

showed significantly lower startle amplitudes compared to the MK-801 group. At 4 

weeks there were no significant differences between the treatment groups. The results 

were as follows: Week effect F(2,84) = 1.971, p = 0.146; treatment effect F(5,42) = 17.14, p 

< 0.001; week x treatment effect F(10,84) = 1.596, p = 0.122.  (Figure 40) 



 97

Phase II PPI Changes

0
10
20
30
40
50
60
70
80

1 Week 2 Week 4Week

Treatment Duration

PP
I (

%
)

MK-801
MK+Olanz
Group A
Group B
Group C
Group D

 
Fig. 39:  Showing the effect of various drug treatments on the prepulse inhibition in rats. Each point 
signifies the PPI (mean ± SEM) for that group. For post hoc, Tukey’s test was conducted (* p < 0.001 when 
compared to MK-801+ Olanzapine combination treatment group) [Note: The data for MK-801 and MK-
801 + Olanzapine groups is from phase I experiment] 
 

Phase II Startle Amplitudes

0

100

200

300

400

500

600

Week 1 Week 2 Week 4

Treatment Duration

St
ar

tle
 A

m
pl

itu
de

 (m
v) MK-801

MK+Olanz
Group A
Group B
Group C
Group D

 
Fig. 40:  Showing the effect of various drug treatments on the startle amplitude in rats. Each point signifies 
the Amplitude (mean ± SEM) for that group. For post hoc, Tukey’s test was conducted (* signifies p < 0.05 
compared to the MK-801 group for that duration of treatment). [Note: The data for MK-801 and MK-801 + 
Olanzapine groups is from phase I experiment] 

 

Treatments: 1) MK-801 = 0.1 mg/kg on the day of the experiment;  2) MK + Olan = Olanzapine 10 
mg/kg/day for 4 weeks + MK-801 0.1 mg/kg on day of experiment;  3) Group A = Prazosin 1.0 mg/kg/day 
+ Olanzapine 10 mg/kg/day, both for 4 weeks and MK-801 0.1 mg/kg on day of experiment;  4) Group B = 
Cirazoline 0.75 mg/kg/day + Olanzapine 10 mg/kg/day, both  for 4 weeks and MK-801 0.1 mg/kg on day 
of experiment;  5)  Group C = Idazoxan 1.5 mg/kg/day + Olanzapine 10 mg/kg/day, both for 4 weeks and 
MK-801 0.1 mg/kg on day of experiment; 6) Group D = Clonidine 0.2 mg/kg/day + Olanzapine 10 
mg/kg/day, both  for 4 weeks and MK-801 0.1 mg/kg on day of experiment. 

      *  *  * 

     *     *      *     *
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DISCUSSION 
 

In the first immunohistochemistry experiment I made an attempt to compare the effects 

of typical and atypical antipsychotics on IEG expression in the mPFC and LC areas of the 

brain. In the mPFC, four-weeks chronic treatment with the typical antipsychotic, 

haloperidol, reduced the number of nuclei immunoreactive for c-Fos, whereas chronic 

treatment with clozapine increased the number of nuclei immunoreactive for c-Fos. 

However, chronic treatment with risperidone, another atypical antipsychotic, had no 

effect on c-Fos immunoreactivity.  Despite numerous publications on the acute effects of 

antipsychotics on IEG expression, there have been few previous studies of the effects of 

chronic treatment with antipsychotic drugs on IEG expression in the prefrontal cortex. In 

one study, Kontkanen et. al. (2002) investigate the effects of chronic treatment with 

clozapine and haloperidol for 17 days on fos and jun family genes by measuring mRNA 

levels 2 hours, 24 hours and 6 days after discontinuation of antipsychotic treatment. In 

their study, the mRNA expression after delays of 24 hours and 6 days after withdrawal of 

antipsychotic most likely reflect changes of IEG expression in response to the 

antipsychotic withdrawal.  In my study, I perfused the animals 16 to 18 hours after the 

last injection. This was 6 to 8 hours before the time when the next dose would have been 

delivered, had treatment been continued. This time-point was selected to determine 

protein expression while plasma levels of antipsychotic were in the inter-dose trough in 

once daily dosing.  Kontkanen et al. (2002) observations at 2 hours probably correspond 

most closely to mine as protein levels are expected to change less rapidly than mRNA 

levels. Consistent with our observation of downregulation of c-Fos immunoreactivity in 

the mPFC following chronic haloperidol treatment, they saw downregulation of c-fos 
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mRNA in the prefrontal cortex 2 hours after 17 days treatment with haloperidol 

(Kontkanen et al., 2002).  However, while Kontkanen et. al. (2002) found significantly 

increased c-fos mRNA levels in the prefrontal cortex only 6 days after 17-days clozapine 

treatment, I found a significantly increase in the number of nuclei immunoreactive for c-

Fos protein after 4-weeks chronic treatment with clozapine.  

 

The difference in the duration of treatment may explain the difference in my results. Also, 

protein levels do not always correspond to mRNA levels as they are influenced by other 

factors such as rates of degradation. My observation of increased c-Fos protein 

immunoreactivity may reflect changes in protein processing that lead to increased protein 

levels in the absence of increased mRNA levels. These increases in Fos protein levels 

may have functional consequences for transcriptional regulation. While Kontakanen et. al. 

(2002) measured fos family gene mRNA levels in tissue samples, my measure was a 

count of immunoreactive nuclei detected above threshold level of intensity and is thus 

more sensitive to increases in numbers of cells expressing c-Fos immunoreactivity than to 

total levels of expression. Therefore it may be that the difference in our observations is 

due to a subpopulation of mPFC cells that express c-Fos immunoreactivity on chronic 

treatment with clozapine.  

 

Although clozapine acutely activates Fos-like immunoreactivity in the LC (Dawe et. al., 

2001; Ohashi et. al., 2000), chronic treatment with clozapine did not change c-Fos 

immunoreactivity in the LC. Neither did chronic treatment with haloperidol or 

risperidone.  Haloperidol and clozapine are reported to acutely increase firing in the LC 

(Dinan and Aston-Jones, 1984; Nilsson et al., 2005; Ramirez and Wang, 1986; Souto et 
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al., 1979) , and chronic haloperidol, risperidone, and clozapine produce sustained 

increases in LC firing (Dinan and Aston-Jones, 1985; Nasif et al., 2000; Ramirez and 

Wang, 1986). As expression of c-Fos and Fos-like immediate early genes has been 

considered a marker of neuronal activation (Dragunow and Faull, 1989; Sagar et. al., 

1988), it might have been expected that, as there are sustained increases in LC cell firing, 

there would be sustained increases in c-Fos immunoreactivity. However, in other brain 

regions, it has been observed that chronic treatment with antipsychotics can result in a 

return to control levels of expression of Fos-like immunoreactivity and this has been 

attributed to the development of tolerance (Sebens et. al., 1998).  It may be that tolerance 

to the induction of c-Fos expression by neuronal activation develops in the LC.  

 

In the mPFC, chronic haloperidol treatment upregulated expression of Egr-1 (also known 

as Krox-24 and zif268) immunoreactivity. However, the atypical antipsychotics did not 

significantly influence Egr-1 expression and none of the antipsychotics tested had any 

effect on Egr-2 expression.  Once again chronic treatment with the typical antipsychotic 

had a qualitatively different effect from chronic treatment with the atypical antipsychotics. 

As it has been reported that Egr-1 expression in the mPFC is associated with 

consolidation of extinction of fear conditioning (Herry and Mons, 2004), the observation 

that chronic haloperidol treatment increases Egr-1 immunoreactivity in the mPFC leads 

to the testable prediction that chronic treatment with haloperidol, but not risperidone, will 

enhance consolidation of extinction of fear conditioning.  

 

In the LC, all three antipsychotics investigated in the present study down regulated both 

Egr-1 and Egr-2 expression but increased TH expression. It had been suggested that egr 
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family immediate early genes are involved in regulation of TH expression, perhaps in 

close association with AP-1 complex transcription factors such as c-Fos (Papanikolaou 

and Sabban, 1999; Papanikolaou and Sabban, 2000; Nakashima et. al., 2003). However, 

the current finding of downregulation to both Egr-1 and Egr-2 despite increases in TH 

suggests that this is not the case for antipsychotic-induced expression of TH in the LC. 

This is consistent with a recent report on immobilization stress-induced TH expression 

which found that while Egr-1 was associated with TH expression in the adrenal medulla, 

in the LC there was no association between Egr-1 and TH expression (Sabban et al., 

2004). 

 

In the mPFC, only risperidone and clozapine, but not haloperidol produced increases in 

TH immunoreactivity. In the mPFC, the TH immunoreactive profiles counted are likely 

to correspond to axonal projections both from the LC, but also from the dopaminergic 

cells of the ventral tegmental area. The increase in the number of immunoreactive 

profiles detected on chronic treatment with the atypical antipsychotics may in part 

represent sprouting or branching of noradrenergic and dopaminergic fibres.  It is also 

likely that the increase in the number of profiles counted reflects transport of newly 

synthesized TH protein from the cell bodies in the LC and ventral tegmental area 

resulting in more immunoreactive profiles being detected by our threshold sampling 

technique.  In the LC, all three antipsychotics increased TH immunoreactivity. In LC the 

TH immunoreactive profiles counted most likely represent somatodendritic (bodies of TH 

producing cells) elements rather than the dendrites(cellular projections) alone. The 

increase in TH immunoreactivity was greater for the atypical antipsychotics risperidone 

(1 mg/kg/day) and clozapine (10 mg/kg/day) than for the typical antipsychotic 
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haloperidol (4 mg/kg/day). Between the atypical antipsychotics, clozapine (10 mg/kg/day) 

produced greater increases in TH immunoreactivity in the LC than risperidone (1 

mg/kg/day).  These data are consistent with the relative potencies of these antipsychotics 

in releasing noradrenaline in the prefrontal cortex (Westerink et al., 1998). 

 

Although the effects of acute administration of antipsychotics on noradrenaline release 

have been extensively studied, to date few studies have investigated the effects of chronic 

antipsychotic treatment on noradrenaline release. One study on chronic risperidone 

administration found that, despite sustained increases in LC cell firing and contrary to the 

increase in TH immunoreactivity found in the present study, chronic treatment with 

risperidone reduced basal release of noradrenaline in the mPFC (Nasif et al., 2000). As 

beta-adrenoceptor-dependent mechanisms contribute to expression of Fos proteins in the 

cortex in response to various stimuli (Bing et al., 1992b; Bing et al., 1992a; Bing et al., 

1991; Ohashi et al., 1998; Ohashi et al., 2000; Stone et al., 1991; Stone et al., 1995; Stone 

and Zhang, 1995), this reduction in  noradrenaline release may contribute to an 

explanation for the absence of an effect of chronic risperidone treatment on c-Fos 

immunoreactivity in the mPFC. Alpha-2 adrenoceptor antagonism increases the firing 

rate of LC cells (Cedarbaum and Aghajanian, 1976; Freedman and Aghajanian, 1984). 

Clozapine has greater affinity for alpha-2 adrenoceptors and hence the greater effect of 

clozapine, as compared to risperidone, in increasing TH expression in the LC may relate 

to greater in vivo occupancy of alpha-2 adrenoceptors at the doses used in the present 

study (Schotte et. al., 1993).  
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The doses of antipsychotics were such that the atypical antipsychotic doses would be 

expected to generate peak plasma levels resulting in D2 occupancy levels corresponding 

approximately to that achieved by typical clinical doses (Kapur et al., 2005).  In contrast, 

for haloperidol relative to clinical equivalence a high dose was administered. The 

literature had suggested that haloperidol, like the atypical antipsychotics, can dose-

dependently induce LC firing and noradrenaline release in the PFC but that at doses of 

clinical equivalence haloperidol produces effects of smaller magnitude (Dinan and Aston-

Jones, 1984; Nilsson et al., 2005; Westerink et al., 1998). Therefore, as the biochemical 

effects of low and high doses of haloperidol are qualitatively similar (Marcus et al., 2002), 

I chose to administer a relatively high dose of haloperidol in order to test whether the 

effects of chronic haloperidol on the locus coeruleus-prefrontal cortical system are 

qualitatively different, rather than merely quantitatively different, from those of atypical 

antipsychotics. Despite this haloperidol had less effect on TH immunoreactivity in the LC, 

failed to influence TH immunoreactivity in the mPFC, and had effects opposite to those 

of clozapine on c-Fos immunoreactivity in the mPFC.  

 

In the other immunohistochemistry experiment I tried to look at the effect of different 

dosages and different treatment durations of antipsychotic drug olanzapine on IEG 

expression. In the LC and mPFC, acute (4 hrs) treatment with olanzapine increased the 

number of nuclei immunoreactive for c-Fos protein. This is consistent with previous 

reports (Dawe et al., 2001; Ohashi et al., 2000; Robertson and Fibiger, 1996).  Acute 

administration of olanzapine activates the LC (Dawe et al., 2001; Seager et al., 2004). As 

neuronal activity is associated with c-Fos expression (Dragunow and Faull, 1989; 

Morgan and Curran, 1991; Sagar et al., 1988), activation of LC cells may be sufficient to 
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induce c-Fos expression. Acute administration of olanzapine also induces noradrenaline 

release in the prefrontal cortex (Li et al., 1998; Westerink et al., 1998). LC activation can 

lead to β-adrenoceptor-dependent increases in Fos-like immunoreactivity in the cortex 

(Bing et al., 1992; Bing et al., 1991; Stone et al., 1995; Stone and Zhang, 1995).  Also the 

induction of Fos-like immunoreactivity in the mPFC by acute administration of 

olanzapine was seen to be blocked by a β-adrenoceptor antagonist (Ohashi et al., 2000). 

Hence it is likely that the increase in c-Fos expression seen in the mPFC is, at least in part, 

a consequence of increased noradrenaline release and perhaps the action of noradrenaline 

at β-adrenoceptors.  Alternatively, olanzapine may lead to activation of the mPFC, which 

in turn leads to activation of the LC. However, this is unlikely as self-stimulation of the 

mPFC did not lead to c-Fos expression in the LC (Arvanitogiannis et al., 2000). 

 

On treatment with olanzapine for 1 week and 2 weeks, increases in the numbers of c-Fos 

immunoreactive nuclei were sustained in both the LC and mPFC. However, with 4-weeks 

treatment the numbers of c-Fos immunoreactive nuclei in the mPFC of olanzapine-treated 

animals were not significantly different from those in saline-treated controls. Likewise in 

the LC, at all but the highest dose of olanzapine, there was no difference from saline-

treated controls with 4-weeks treatment.  Treatment with 15 mg/kg/day olanzapine for 4 

weeks reduced c-Fos immunoreactivity in the LC.  Sebens et al (1998) had found a down-

regulation of c-Fos expression in the prefrontal cortex of rats treated daily for 3 weeks 

with 5 mg/kg olanzapine and then challenged with 5 mg/kg olanzapine as a control in 

study of haloperidol and clozapine cross-tolerance.  In contrast i saw no evidence of 

significant down regulation of c-Fos in the mPFC. The difference may be due the dosing 

regimen. Sebens et. al (1998) administered once daily intraperitoneal injections and 
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perfused the animals 2 hours after a challenge injection, whereas i administered the 

olanzpaine by continuous infusion by subcutaneous osmotic minipump. Sebens et. al. 

(1998) attributed the down-regulation of c-Fos expression to the development of 

tolerance.  Development of tolerance may also explain the reduction of c-Fos expression 

to control levels observed in the present study.  

 

In both the mPFC and LC, at most of the time-points studied from 4 hours to 4 weeks, the 

patterns of change in c-Fos and c-Jun immunoreactivity were similar. This is to be 

expected as c-Fos and c-Jun are both intimately involved in forming the AP-1 complex 

and is consistent with previous reports that their expression in response to various stimuli 

is congruent (Herdegen and Leah, 1998).  At notable exception in the present study, is the 

pattern of expression in the LC on 4 weeks treatment with olanzapine. At this time-point, 

the increase in c-Jun expression is maintained but the expression of c-Fos returns to 

control levels or less at the highest dose.  This may be evidence that, at least in the LC, 

different signaling pathways regulate the expression of c-Fos and c-Jun.  

 

ATF-2 is constitutively expressed in many cells throughout the mammalian nervous 

system (Herdegen and Leah, 1998) but nevertheless treatment with olanzapine still 

increased the number of ATF-2-positive nuclei detected.  Our threshold detection method 

of counting immunoreactive nuclei may not be detecting de novo expression of ATF-2 

but rather activated nuclei expressing higher levels of ATF-2. In the LC, olanzapine 

treatment rapidly and persistently unregulated the number of ATF-2 immunoreactive 

nuclei.  The ATF-2 expression was up-regulated at all treatment durations. Intermediate 

doses of olanzapine (4 mg/kg/day and 8 mg/kg/day) were most effective at inducing both 
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ATF-2 and TH expression.  Administration of doses in this range by osmotic minipump 

in rats is likely to mimic plasma concentrations of olanzapine seen in humans (Seager et 

al., 2005; Seager et al., 2004).  It may be that the expression of ATF-2 leads to induction 

of increased TH expression as Suzuki et al. (2000) showed that ATF-2 is a transcription 

factor involved in the regulation of expression of the TH gene.   

 

In the mPFC, the intermediate doses of olanzapine increased ATF-2 immunoreactivity 

across all treatment durations, although less robustly than in the LC. However, the lowest 

dose (2 mg/kg/day) initially suppressed ATF-2 expression after treatment for 4 hrs and 1 

week but later increased ATF-2 expression. The highest dose of olanzapine (15 

mg/kg/day) was less effective than intermediate doses in inducing ATF-2 expression, 

especially on longer-term treatment. This tendency towards an inverse U-shaped dose-

dependence suggests that multiple mechanisms triggered by the complex pharmacology 

of olanzapine may be contributing to regulation of ATF-2 expression.  

 

ATF-2 may play a role in the induction of c-Jun. In some systems, it induces c-Jun in an 

AP-1 independent manner (van Dam et al., 1995). Also c-jun and ATF-2 can be acted 

upon by the same c-Jun N-terminal kinases, suggesting involvement of the same 

secondary messenger pathways in regulation of their expression (Derijard et al., 1994).  

The increase in the expression of ATF-2 in the LC is much more robust than in the mPFC. 

It may be that the increased ATF-2 expression in the LC at 4 weeks helps in the direct 

induction of c-Jun. This may contribute to the sustained expression of c-Jun, while the 

expression of the other AP-1 complex IEG, c-Fos, drops to control levels.  
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There is an overall downregulation of both Egr-1 (also known as Krox-24) and Egr-2 

(also known as Krox-20) in both the mPFC and LC across all treatment durations. In the 

present study, the Egr-1 expression was inversely proportional to the dose of olanzapine, 

while the expression of Egr-2 was directly proportional to the dose of olanzapine. The 

explanation for this is at present unclear. However, it is noted that Egr-1 can auto-

regulate its transcription by binding with high affinity to the response element in its own 

promoter, while Egr-2 transcription is suppressed by c-Fos in some systems (Gius et. al., 

1990). This may contribute to the observed pattern of expression.  

 

Olanzapine increased the number of TH immunoreactive profiles counted in both the LC 

and mPFC. In the LC, the TH immunoreactive profiles counted most probably represent 

mainly somatodendritic and axonal elements of LC cells. In the mPFC, the TH 

immunoreactive profiles counted likely represent mostly axonal projections from the LC 

and the dopaminergic cells of the ventral tegmental area. In the LC, the increase in the 

number of TH immunoreactive profiles appeared with only 4 hrs of olanzapine treatment 

suggesting that the increase is unlikely to be due to growth of new dendrites or axons by 

TH expressing cells. It is possible that this represents induction of de novo expression of 

TH , especially as tyrosine hydroxylase mRNA may be present in dendrites (Dumas et al., 

1990) allowing for rapid somatodendritic translation of protein. Alternatively, this may 

reflect redistribution of TH to fine dendritic or axonal profiles that would have otherwise 

fallen below our detection threshold.  

 

In contrast, Ordway and Szebeni (2004) found only modest effects of olanzapine 

treatment alone on TH immunoreactive protein in the LC measured by quantitative 
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Western blotting. The increase in TH was seen with 18 days of olanzapine treatment at 5 

mg/kg bid but not with treatment for 12 days or with 3 mg/kg/day for 18 days (Ordway 

and Szebeni, 2004). It is possible that the changes observed in the numbers of TH 

immunoreactive profiles that we observed reflect redistribution of TH rather than an 

increase in the synthesis of TH. As this redistribution does not necessarily correlate with 

increased overall expression of TH, our data are not inconsistent with those of Ordway 

and Szebeni (2004). Alternatively, continuous infusion of olanzapine by osmotic 

minipump in the present study may have resulted in earlier increases in TH expression. 

Other stimuli that trigger LC cell activation, for example stress, have been reported to 

result in rapid (less than 24 hrs) induction of  TH expression in LC cells (Melia and 

Duman, 1991; Serova et al., 1999; Smith et al., 1991b; Zigmond et al., 1974). As 

olanzapine activates the LC (Dawe et al., 2001), it might be expected to rapidly induce 

TH expression in the LC, especially if activation is sustained by continuous infusion.  As 

there is release of noradrenaline within the LC consistent with somatodendritic release 

(Pudovkina et al., 2001; van Gaalen et al., 1997), early increases in somatodendritic 

expression of TH may influence LC activity through increased local release of 

noradrenaline within the LC.  

 

In the mPFC, increases in the number of TH immunoreactive profiles relative to the saline 

treated control group were evident only after 2 and 4-weeks administration of olanzapine. 

This is consistent with studies of TH expression induced in the LC by other stimuli, such 

as nicotine administration, which suggest that it takes several weeks for newly 

synthesized TH to be transported along the projections of the LC to the forebrain 

(Mitchell et al., 1993).  The TH immunoreactive profiles detected in the mPFC in the 



 109

present study could also arise from the dopaminergic innervation of the mPFC by the 

ventral tegmental area, however levels of noradrenaline in the mPFC exceed those of 

dopamine (Fadda et al., 1984) so it is likely that many of the TH immunoreactive profiles 

detected represent noradrenergic fibres arising from the LC. Together with the finding 

that chronic olanzapine treatment for 3 weeks produced sustained increases in LC firing 

and bursting (Seager et al., 2005), this may suggest a mechanism to support further 

sustained increases in noradrenaline release in the mPFC on chronic treatment with 

olanzapine. However, while TH immunoreactivity in the mPFC continued to increase 

even with 4 weeks treatment, c-Fos expression dropped again after 4 weeks of 

administration of olanzapine. This suggests that on prolonged treatment tolerance or other 

compensatory mechanisms are activated that suppress the noradrenaline-induced 

activation of c-Fos in the mPFC. Perhaps these mechanisms include suppression of the 

noradrenaline release despite sustained increases in LC firing. To date microdialysis 

studies have focused on the effects of acute treatment with olanzapine on noradrenaline 

release in the mPFC. The present data suggest the need for further microdialysis studies to 

investigate the release of noradrenaline on chronic treatment with olanzapine.  

 

In the experiments on LI in chakragati (ckr) mice we see that i) the pre-exposed 

homozygous mice showed significantly lower suppression ratio than the pre-exposed 

wild type and pre-exposed heterozygous mice and ii) the difference in the suppression 

between the pre-exposed and non pre-exposed is reduced significantly in homozygous 

mice as compared to the wild type and the heterozygous mice. This second observation is 

brought about mainly by a reduction in the suppression ratio of the pre-exposed mice. 

The non pre-exposed ones show a similar suppression ratio to the ones shown by the non 
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pre-exposed wild type and heterozygous mice. This indicates a different conditioned 

suppression for pre-exposed and non pre-exposed animals. Over all the homozygous ckr 

mice shows significant differences in the results of LI as compared to the heterozygous 

and the wild type groups. The results are similar to those seen in schizophrenics or other 

animal models, which have been treated with amphetamine or MK-801.  

 

Different experiments have shown different results with respect to LI disruption in 

animals. In an experiment by Killcross et. al. (1994), it is proposed that disruption of LI is 

accompanied by nondifferential conditioned suppression in the PE and NPE groups. In 

this experiment amphetamine was used to produce the LI. In other experiments, like the 

one conducted by Weiner et. al., (1997) it is proposed that there is differential 

conditioned suppression in PE and NPE groups with the PE group showing better 

learning. In this experiment also the scientists employed amphetamine to produce LI. My 

results with ckr mice are similar to the ones shown by Weiner et al (1997), and I could 

possibly use the same explanation of “Switching Model” of LI to explain my results. 

According to this model interventions resulting in LI changes shift the relative balance 

between the behavioral impact of pre-exposure and conditioning. This effect is restricted 

only to PE groups and not to the NPE ones. Manipulating the pre-exposure repetitions 

and their duration on one hand and the intensity of conditioning (in my case the shock 

intensity) can swing the balance of suppression in either direction. For example 

increasing the shock intensity may lead increase in the conditioning impact. Weiner et al 

(1997) also go on to suggest that a thorough parametric study should be conducted so as 

to assess the impact of all these variables in any model of LI. I realize the need to do this 
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and I do plan to conduct such an experiment in future to substantiate the “switching 

model” of LI in the ckr mice.  

 

In the experiments with the ckr mice I also observed that the homozygous mice showed 

significant reduction in the PPI compared to the wild type and the heterozygous mice. 

This result is similar to the other PPI results, which are seen in other genetically 

manipulated mouse models of schizophrenia like V lbR knock out mice (Egashira et. al., 

2005), or the corticotropin- releasing factor (CRF) over-expressing mice (Dirks et. al., 

2003) or the mGluR5 knockout mice (Brody et. al., 2004). The homozygous animals 

seem to have sensory-motor gating problems and there is a definite attenuation of PPI in 

these animals. The results hold true over different prepulse intensities. It is interesting to 

note that the genetic mutation does not seem to alter the baseline startle amplitude 

significantly in the homozygous mice. It seems unlikely that the decrease in PPI is merely 

an artifact of an alteration in the baseline startle reactivity. Rather it appears that the ckr 

mice have a veritable disruption of sensorimotor gating. 

 

As discussed by Torres et al (2004), the ckr mice seem to have certain abnormalities in 

brain anatomy. To test the fact that these mice did not have any hearing defect, I 

conducted the second test where I altered the time gap between the prepulse and the pulse 

stimuli. The results show that these mice do not have any hearing defect. The gap of 25 

ms is too small for the brain circuits to recognize the prepulse and act on it. Before this 

happens the pulse tone is received and as such there is almost negligible prepulse 

inhibition. If the mice had any hearing defect they would not respond to either the 

prepulse or the pulse tone. The results with the 100 ms gap and 175 ms gap are almost 
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identical and show prepulse inhibition. It demonstrates the fact that the animals are able 

to hear the tones properly and process the stimuli in a systematic pattern, thus showing 

the prepulse inhibition.  

 

Detailed examination of the ckr mice brain anatomy (Torres et al, 2004) showed that 

these animals have increased size of lateral ventricles. This increase was in the tune of 

approximately 1500 %. This is accompanied along with a loss of individual myelinated 

axons bordering these ventricles and agenesis of the corpus callosum. Apart from these 

changes no other gross abnormality was noticed in the brain structure. It is highly 

unlikely that the circling behaviour of the mice and these results in the PPI and LI 

experiments are related to the ventricular enlargement, because the enlargement is 

noticed in heterozygous mice also but they don’t show similar phenotypic character or 

this behavior in PPI test.  

 

 Ventricle enlargement has been noticed in patients of schizophrenia also (Harrison, 

1999). Torres et. al., (2004) have gone to suggest that even in humans there are relatives 

of schizophrenics who are not affected by schizophrenic symptoms but they do have 

ventricular enlargement like the schizophrenics. This seems to suggest that a similar 

pattern is observed in the ckr mice where the heterozygous and homozygous mice show 

similar anatomical changes but different schizophrenic characters. 

 

Ckr mice show hyperactivity similar to the animals treated with MK-801 or PCP. Even in 

humans, schizophrenia is sometimes associated with hyperactivity, which usually 

constitutes the positive symptoms of the disease. I have tried to test the validity of ckr 
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mouse as a model for schizophrenic deficits in PPI and LI. PPI and LI, and have got 

positive results. The animal looks very promising as a model of schizophrenia. It has 

shown some close parallels with human schizophrenics as well as other animal models of 

schizophrenia. To take my experiments further I tested the effect of anti psychotic drugs 

on the PPI of ckr mice. It was found that the drugs did not seem to have any significant 

effect on the PPI in the wild type mice. In the homozygous strain, although all the drugs 

showed improvement in the PPI, significant results were obtained only with clozapine. 

All three doses of clozapine improved the PPI significantly. High dose risperidone also 

showed promising result but fell a little short of significant levels. These results seem to 

corroborate past studies in animal models with disrupted PPI, where these drugs improve 

the PPI deficits, clozapine improving phencyclidine–induced deficits in PPI (Bakshi et al, 

1994); haloperidol improving MK-801 induced PPI deficits (Feifel and Priebe, 1999); 

risperidone, and clozapine  improving neonatal ventral hippocampal lesion induced PPI 

deficits (Le Pen and Moreau, 2002). I did not see any significant effect of these drugs on 

the PPI in wild-type mice. The results are similar to the study done by Egashira et al. 

(2005) and Brody et al. (2004). However a few studies are not consistant with our results. 

In wild type C57BL/6J mice haloperidol is seen to facilitate PPI (McCaughran et al, 

1997). Risperidone appears to produce dose –dependent improvement in PPI (Ouagazzal 

et al, 2001), although this particular finding is not unequivocal (Oliver et al, 2001).  Dirks 

et al (2003) found that high doses of clozapine, 10 mg/kg/day , reduced PPI in wild-type 

mice. The author has explained this effect by stating that there were concerns about the 

greatly reduced startle reactivity caused in those particular mice by clozapine. The author 

also talks about the difference in the basal PPI levels between his study and other studies, 

which may account for the unusual PPI impairing effect of clozapine observed in their 
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experiment. Other differences between the results for the wild type mice in the 

experiments and other experiments can be explained by factors as mentioned by Dirks et 

al. (2003). The differences may be due to substrain differences in drug responses, and / or 

differences in stimulus parameters, PPI parameters and startle measurement methods.  

 

Amongst all the antipsychotics only the high dose clozapine (10 mg/kg/day) had any 

significant effect on the startle amplitudes of the mice. This treatment significantly 

reduced the startle amplitude in both the wild-type as well as the homozygous strain. The 

small (1 mg/kg/day) and medium (4 mg/kg/day) dosages don’t show any effect on the 

startle amplitude. A few studies have reported similar results as me on this account. 

Egashira et al. (2005) showed that haloperidol and risperidone had no significant effect 

on wild-type as well as genetically modified mice, while high dosage of clozapine 

reduced the startle, but only in the knockout mice. Similar results were found with 

clozapine treatment in the study done by Brody et al. (2004) on mGluR5 knockout mice 

and Bakshi et al. (1994) on MK-801 treated rats. But Le Pen and Moreau, (2002) showed 

opposite results with all the three drugs clozapine, risperidone and haloperidol showing 

dose-dependant reduction in the startle in sham-operated and brain lesioned animals. 

Though in their case the animals used were rats. Studies on genetically modified mice 

have generally found similar results to mine (Egashira et al, 2005; Brody et al, 2004) and 

as such we can suggest that species difference can affect the influence of these drugs on 

the startle amplitude.  

 

Still this is an interesting data because this helps me in dissociating the PPI enhancing 

effect of clozapine from the effects on startle amplitude. Firstly, clozapine (10 mg/kg/day) 
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reduces amplitude in both wild-type and homozygous strain while the PPI is significantly 

raised only in homozygous mice. Secondly the low and medium dosages of clozapine, 

even though they don’t affect the startle amplitude, they still significantly enhance PPI in 

homozygous mice. Clozapine seems to affect the sensori-motor gating the homozygous 

mice and its effect on the PPI doesn’t seem to be due to the floor effect on the startle 

amplitude. Even in clinical settings clozapine is seen to cause a better improvement in the 

PPI deficits of schizophrenic patients, when compared to other atypical antipsychotics 

and typical antipsychotics (Oranje et. al, 2002). 

 

I proceeded to test the involvement of the adrenergic system in the PPI deficit of the 

homogenous ckr mice. I used alpha-1 adrenergic drugs cirazoline and prazosin  for this 

purpose. I saw that on their own, these drugs did not have any significant effect on PPI, 

both in wild-type as well as the homozygous ckr strain. But when the α-1 antagonist drug 

prazosin was combined with clozapine it managed to give higher PPIs than clozapine 

alone. An additive effect was observed in this case. Even when given alone, prazosin 

increased the baseline PPI of the homozygous mice, but just fell short of  significant 

levels. My results are similar in some respect to those carried out by Bakshi and Geyer 

(1999). In their experiment it was seen that although prazosin did not improved PPI in 

control rats, it did increase the PPI in animals treated with MK-801. Another study by 

Bakshi and Geyer (1997) mentions the ability of prazosin to significantly raise PPI in 

PCP treated rats. Carasso et al. (1998) showed that prazosin reversed disruptions in PPI 

produced by alpha1 agonist cirazoline. But one study (Powell et al., 2005) mentions the 

contrary result that prazosin was not able to increase PPI in yohimbine treated rats. The 

author goes on to explain that they got this result because in their opinion, yohimbine 
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disrupted PPI via 5-HT1A receptors and not adrenergic receptors. Different PPI models 

can be created using the involvement of various neuroreceptors. In the case of ckr mice it 

is suggested that the alpha1 adrenergic receptors are involved. My experiments show that 

although cirazoline reduced PPI, the results were not significant. Previously Shilling et al 

(2004) and Carasso et al. (1998) had found that cirazoline decreases PPI significantly. 

But these studies were again in rats. Ckr mice have an inherently higher locomotor 

activity. This could have something to do with the brain levels of noradrenaline. These 

could in turn affect the alpha-1 adrenoceptors so as to diminish the effect of this dose of 

cirazoline. 

 

For the startle amplitude it was seen that for both wild-type and homozygous strains, high 

dose clozapine, alone and in combination with prazosin, diminishes the startle amplitude. 

These results are consistent with my discussion of the effects of clozapine on the startle 

amplitude, as above. Addition of prazosin decreases the startle amplitude even further 

than clozapine alone. Prazosin alone seems to cause a small trend towards decrease in the 

startle amplitude, but it is not significant. This confirms earlier findings by Bakshi and 

Geyer (1997, 1999).  Another study mentions no significant effect of prazosin on the 

startle amplitude (Powell et al., 2005), although here it also did partially decrease the 

startle amplitude. As found in previous study Shilling et. al., 2004) cirazoline did not 

have any effect on the startle amplitude. 

 

In the rat experiments I investigated the role of antipsychotics and adrenergic drugs on 

spatial memory (tested by Morris water maze) and on prepulse inhibition in MK-801 

treated rats. I tested the effect of all the drug treatments on the spatial memory in rats 
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treated with MK-801. We saw that MK-801 administration greatly disrupted the 

performance of the animals in comparison to the controls. The latency to find the 

platform was significantly increased and the swim distance was also increased . My 

results are simlar to the results obtained in previous studies (Pitkanen et. al., 1995; 

Ahlander et. al., 1999; Winshaw and Auer, 1989; Lukoyanov and Paula-Barbosa, 2000; 

Heale and Harley, 1990). The combination of haloperidol to MK-801 further disrupt the 

performance of the animals. This is to be expected as haloperidol administered alone is 

also known to increase latency in finding the platform in rats (Terry et. al., 2002; 2003; 

Wilson et. al., 2003). These rats showed the slowest swim speed amongst all the groups 

which suggests that this may be due to sedation or motor impairment. Olanzapine was 

able to reverse the effects of MK-801 and improve the performance of the rats. In 

experiments done by Terry et al (2003), there was no improvement in the performance of 

animals after 45 days of treatment. These experiments were conducted after 4 days of 

wash-out after the last dosage. In my case, I performed the experiments without waiting 

for any wash out phase. Also Terry et al (2003) saw that by the last trial on the last day, 

the performance of the rats had improved a lot. It is possible that olanzapine on its own, 

does not effect the performance, but is able to improve MK-801 induced deficits.  

 

The MK-801 induced disruptions in the performance of rats was reversed to a greater 

extent in rats who had been pretreated with the adrenergic drugs alpha-2 antagonist,  

idazoxan, or the alpha-1 agonist, cirazoline, along with olanzapine, rather than just 

olanzapine administration alone. The performance of the animals deteriorated when 

olanzapine was combined either with alpha-2 agonist clonidine, or the alpha-1 antagonist, 

prazosin. Although out of all these effects only the improvement by idazoxan was 
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significant. This is not surprising since on their own alpha-2 antagonists like dexefaroxan 

are known to improve spatial memory processes (Chopin et. al., 2002). In patient studies 

(Frith et. al., 1985; Riekkinen et. al., 1999), clonidine was shown to be detrimental to 

memory performances. In my study, the alpha-2 drugs show similar effects even when 

they are combined with olanzapine, with idazoxan improving performance and clonidine 

depreciating the performance of the animals. Similarly the actions of alpha-1 drugs are 

consistant with previous studies, that showed cirazoline improving performance (another 

alpha1 agonist ST587 showing similar results, Riekkinen et. al., 1997). The alpha-2 

antagonist, idazoxan, showed an additive effect in the improvement of spatial memory in 

water maze. 

 

 For PPI I started by treating the rats with MK-801 and the antipsychotic drugs 

haloperidol and olanzapine. MK-801 significantly disrupted PPI in rats, confirming 

previous results obtained in various experiments (Mansbach and Geyer, 1989; Johansson 

et al. 1995). It was found that haloperidol treatment could not reverse this effect of MK-

801 even after 4 weeks of treatment. This is in conformity with previous studies (Geyer et. 

al. 1990; Keith et. al. 1991;  Feifel and Priebe, 1999). The results with olanzapine were 

different and this drug seemed to significantly improve the PPI deficit caused by MK-801. 

My results are similar to the ones obtained by Bakshi and Geyer (1995) in this regards. 

 

MK-801 in general, significantly increased the startle amplitude in animals. This is in 

accordance to previous studies (Feifel and Priebe, 1999; Schultz et. al. 2001). The results 

obtained for haloperidol, i.e., no significant effect on MK-801 induced increase in the 

startle amplitude, and for olanzapine, i.e., decrease in MK-801 induced increase in startle 
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amplitude also agree with previous studies (Bakshi and Geyer, 1995; Feifel and Priebe, 

1999). Olanzapine is also known to diminish startle activity in PCP treated animals. It 

matches the profile of clozapine in this matter. Combined with it’s effect on MK-801 

induced changes, over all olanzapine can be said to disrupt PPI effects of NMDA 

receptor antagonists in general.  

 

Following confirmation of previous findings I further investigated the effects of  

adrenergic drugs on the PPI and their interaction with olanzapine. It was noticed that only 

the combination of olanzapine and prazosin was able to significantly raise the PPI levels 

when compared to just olanzapine treatment in rats who’s PPI had been disrupted by 

MK-801. This change was seen throughout the four week treatment period. Combining 

olanzapine with other drugs like cirazoline, clonidine and idazoxan did not alter the MK-

801 induced PPI disruption significantly when compared to administration of olanzapine 

alone. However these groups still showed marked improvement over treatment with MK-

801 alone. Cirazoline has been to known to reduce PPI in animals on its own (Shilling et. 

al., 2004). It was seen that the presence of olanzapine prevents cirazoline from decreasing 

the PPI in conjunction with MK-801. Even alpha-2 receptors knockout, has been shown 

to disrupt PPI in studies by Lahdesmaki et. al. (2004) and Sallinen et. al. (1998). Sallinen 

et. al. (1998) went on to also show that alpha-2 receptor over-expression, which can be 

considered a form of agonism, led to opposite effects, i.e., increase in PPI and decrease in 

the startle  reactivity. In this study, the alpha-2 antagonist, Idazoxan, failed to 

significantly reduce the PPI and alpha-2 agonist clonidine, failed to increase PPI, in the 

presence of olanzapine. Considering all these data together, the additive effect of 



 120

adrenergic drugs with the antipsychotic drug olanzapine was seen only in the case on 

prazosin.  

 

For startle amplitudes at 1 week treatment duration, the combination of olanzapine + 

prazosin + Mk-801 had a significantly lower startle amplitude compared to MK-801 

alone treatment. At 2 week treatment duration, olanzapine + MK-801, olanzapine + 

prazosin + MK-801 combination and olanzapine + clonidine + MK-801 combinations 

showed significant decrease in startle amplitudes as compared to that of MK-801 treated 

animals. Acting alone, prazosin is not known to decrease the startle amplitude, but in PPI 

disruptions caused by yohimbine (Powell et. al., 2005) or PCP (Bakshi and Geyer, 1997), 

prazosin was seen to decrease the high startle amplitude. In my experiment, it was seen 

that for the MK-801 induced increase in startle amplitude prazosin plays a complimentary 

role with olanzapine in lowering startle amplitude. 

 

 
CONCLUSIONS 

The present study on change in IEG expression demonstrated that, despite qualitatively 

similar effects of acute treatment with atypical and typical antipsychotics on LC cell 

firing and Fos-like immunoreactivity in the prefrontal cortex, atypical and typical 

antipsychotics differ qualitatively in their chronic effects on immediate early gene and 

TH expression in the mPFC and LC.  In particular, it was observed that chronic treatment 

with the atypical antipsychotics, risperidone and clozapine, produce greater increases in 

TH expression in the LC and mPFC than the typical antipsychotic, haloperidol. Further 
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studies are required to understand how these increase in TH immunoreactivity related to 

noradrenaline release in the mPFC after chronic treatment with antipsychotics. Activity-

dependent increases in noradrenaline release in the mPFC may contribute to the greater 

efficacy of atypical antipsychotics against the negative and cognitive symptoms of 

schizophrenia. Although for many years it has been generally assumed that antipsychotics 

have a delayed onset of action, recent studied have questioned this delayed onset 

hypothesis and suggest that antipsychotics can have clinical effects as early as 2 hrs after 

initiation of treatment but that magnitude of the actions can increase over time (Agid et. 

al., 2003; Kapur et. al., 2005). In my study I have charted some of the effects of different 

olanzapine doses and treatment durations on IEG and tyrosine hydroxylase protein 

expression in the mPFC and LC of the rat.  While there are immediate effects of 

olanzapine treatment, there are also delayed dose-dependent adaptations in the patterns of 

expression, especially between 2 and 4 weeks of treatment in the mPFC. Future 

investigation of how changes in IEG and tyrosine hydroxylase expression relate in the 

mPFC relate to prefrontal cortical dependent behaviours may further understanding of 

how expression of these proteins relates to the mechanisms of action of olanzapine and 

other atypical antipsychotic drugs 

 

I showed that ckr mice have disrupted latent inhibition and prepulse inhibition.  These 

effects were most likely not due to anatomical abnormality but were attributable to 

sensorimotor gating defects. It was further shown that typical and atypical antipsychotics 

effect PPI in the ckr mice differently. Atypical antipsychotics were more successful in 

reversing the PPI defects than the typical ones. Over all the ckr mice has given indication 

that in future it could serve as a useful animal model of schizophrenia. 
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 The experiments with adrenergic drugs, both in ckr mice as well as the MK-801 induced 

deficit model in rats show an additive effect of alpha-1 antagonist, prazosin, and atypical 

antipsychotics in reversing PPI deficits. In the case of the spatial memory tests in rats, 

there seemed to be additive effects of the alpha-2 antagonist, idazoxan, with the atypical 

antipsychotic drug, in improving the water maze performance. 

 

Starting from IEG expression to behavior testing in animals, a role for adrenergic system 

is visible in the pathopsysiology as well as treatment of schizophrenia. The additive 

effects of adrenergic drugs to the atypical antipsychotic drugs is encouraging and with 

further studies has the potential to develop into a novel therapeutic regime.  
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