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SUMMARY 

  

 Based on the free radical theory of aging, the imbalance between free radicals and 

antioxidant defense system causes oxidative damage of major biomolecules, the 

accumulation of which is attributed to the aging process. We hypothesized that grape seed 

extract (GSE) and calorie restriction (CR) attenuated age related oxidative damage in 

middle-aged rats. To choose the most suitable tissue for the evaluation of anti-aging 

intervention of GSE and CR we started by quantifying  the gene expression of the major 

antioxidant enzymes in rat liver, kidney, auditory cortex and cochlea during the aging 

process since these enzymes form the major antioxidant defense. For accurate gene 

expression quantification, real time RT-PCR with valid housekeeping gene (HKG) protocol 

was established, and the necessity of the validation of HKG was investigated. The second 

part was aimed at evaluating the effect of GSE and CR in middle-aged rats by detecting 

age-related oxidative damage in rat kidney tissue, which was suggested as the most suitable 

tissue for the evaluation of anti-aging intervention based on the first part results. The 

molecular mechanism was further explored using microarray and real time RT-PCR at the 

gene expression level. The extent of protective effects of GSE and CR were evaluated by 

pathological grading of the kidney. 

  

 Firstly, real time RT-PCR with valid HKG protocol was established. We found for the 

first time that a wide variation in HKG expression existed during the aging process in 

liver, kidney, cochlear and auditory cortex of rats. Our data also showed that invalid 
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HKGs could result in the misinterpretation of gene expression levels, and that choosing 

appropriate HKGs was vital for accurate gene quantification and analysis in aging 

research. Furthermore, we found the significantly decreased catalase expression in both 

rat liver and kidney during aging while Cu/Zn-superoxide dismutase (SOD) expression 

was decreased in kidney aging. No significant antioxidative gene changes were found in 

auditory cortex and cochlea. Our data suggested that the decreased catalase gene 

expression might be involved in the decline of the antioxidant defense system in the rat 

liver aging process, and the decreased Cu/Zn-SOD and catalase gene expression might be 

involved in the decline of the antioxidant defense system in the rat kidney aging process.  

  

Secondly, the effect of GSE and CR in middle-aged rats was investigated. 12 months old 

rats were fed a NIH31 diet for 6 months with either a low GSE dose (0.2% w/w),  high 

GSE (1% w/w), or controls without GSE. The CR group was fed a NIH31/NIA Fortified 

diet, which was enriched in vitamins to ensure the same level of vitamins consumption 

with control group to avoid confounding. We found the low and high dose GSE and CR 

significantly decreased urinary 8-isoprostane, a reliable marker of lipid peroxidation 

(P<0.05) and the high dose GSE and CR have significantly decreased protein carbonyl, a 

marker of protein oxidation, in kidney (P<0.05). Furthermore, microarray and real time 

RT-PCR data showed that the mRNA expression of 15 lipoxygenase (15-LO) and S100 

calcium binding protein A8 (S100A8) was significantly down regulated by high dose 

GSE in kidney (P<0.05). In addition, CR decreased age related renal pathological 

changes. The mRNA expression of catalase, Mn-SOD and kallikrein was significantly 

increased and the mRNA expression of complement 3 (C3) and chemokine C-C motif-
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ligand 5 (CCL-5) was significantly decreased by CR. Our data indicated that GSE could 

prevent age related oxidative damages, even those initiated in middle age, which might 

be regulated through the decreased 15-LO and S100A8 genes expression. Furthermore, 6 

months CR retarded age related oxidative damages and renal pathological changes, which 

might be regulated through the increased catalase, Mn-SOD and kallikrein and the 

reduced expression of C3 and CCL-5 gene expression. 

. 
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Chapter I: Introduction 

 
1.1 Free radical theory of aging 

 

The exact mechanism of aging has not been established until now. Among the several 

theories that were proposed to explain the aging process, the free radical theory of aging 

(Harman, 1956) has become increasingly popular as numerous investigations support this 

theory (Bokov et al., 2004). The discovery of the enzyme Cu/Zn-superoxide dismutase 

(Cu/Zn-SOD) provided support for this theory because the sole function of the 

intracellular enzyme, Cu/Zn-SOD, is to scavenge superoxide, which indicates that free 

radicals must be continuously produced in cells (McCord and Fridovich, 1969). Later, 

Harman modified the free radical theory of aging and proposed the mitochondrial theory 

of aging in 1972, emphasizing the central role of mitochondria because mitochondria are 

the major sources of reactive oxygen species (ROS) (Harman, 1972). With new findings, 

the theory is continuously refined. Many ROS and reactive nitrogen species (RNS), 

which are not free radicals, had an important role in the formation of oxidative damage. 

Thus, this theory was finally refined as the oxidative stress theory of aging (Sohal et al., 

1996). The theory can be illustrated in Figure 1.1. In brief, the imbalance of free radicals 

and antioxidant defense causes oxidative damage to major biomolecules, the 

accumulation of which contributes to the aging process. 

 

 

 

 



 2

 

 

Figure 1.1 A summary of the free radical theory of aging (Reproduced with permission 
from Hermans et al., 2007) 
 

 

Free radicals are any molecules or ions which have one or more unpaired electrons 

(Halliwell & Gutteridge, 1999). Free radicals are generally more reactive than their 

parent species because the unpaired electrons are unstable.  ROS comprise of free 

radicals such as superoxide, hydroxyl and hydroperoxyl, and certain nonradicals that are 

also oxidizing agents such as hydrogen peroxide (Halliwell et al., 2004). RNS include 

free radicals such as nitric oxide, and nonradicals, such as peroxynitrite anion (Halliwell 

et al., 2004). ROS and RNS are produced in multiple ways.  The major source of ROS 

generation is mitochondrial electron transport, which couples oxidative phosphorylation 

and cellular respiration (Cadenas & Sies, 1998). In addition, lipid metabolism in the 
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peroxisomes (Valko et al., 2004), activated phagocytes in imflammatory response 

(Chanock et al., 1994) and cytochrome P450 reactions are capable of generating ROS 

under normal and pathological conditions (Goeptar et al., 1995). Nitric oxide is generated 

by nitric oxide synthases (Ghafourifar et al., 2005). Peroxynitrite anion is generated from 

the reaction between nitric oxide and superoxide, which is a powerful oxidant (Carr et al., 

2000). 

 

ROS/RNS have multiple functions depending on different biological milieu.  They have 

some beneficial functions such as the regulation of vascular tone, antimicrobial agents 

and intra- and inter-cellular signaling mechanisms. For example, free radicals produced 

by activated phagocytes can kill foreign invaders. Resting phagocytes consume little 

oxygen, whereas activated phagocytes have a large increase in oxygen uptake at the onset 

of phagocytosis. Activated phagocytes produce superoxide and hydrogen peroxide, which 

are toxic to bacteria (Segal, 2005). In addition, nitrogen oxide is an important signaling 

molecule to regulate vascular tone.  Nitrogen oxide produced by the vascular endothelial 

cells activates guanylate cyclases of vascular smooth muscle cells that cause more cyclic 

guanosine monophosphate (GMP) generation. Cyclic GMP can further decrease 

intracellular free calcium concentration, which causes the dilation of vessel and lowers 

the blood pressure (Bredt, 1999).  Nitrogen oxide also has other important physiological   

roles, such as the inhibition of platelet aggregation and bladder control (Bredt, 1999). 

 

However, the overproduction of ROS and RNS causes harmful effect on related targets 

such as protein oxidation, lipid peroxidation and DNA damage. For example, hydroxyl 
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attacks polyunsaturated fatty acids of membrane phospholipids, which causes lipid 

peroxidation chain reaction and affects the function of membrane proteins and oxidizing 

cholesterol (Utteridge et al., 1990). With the accumulation of lipid peroxidation, cell 

membrane is destabilized, causing ion leakage. These potential harmful effects of 

ROS/RNS are controlled by the antioxidant defense system. This system includes 

antioxidant enzymes, low-molecular-mass antioxidants and sequestration of transition 

metal ions. Antioxidant enzymes consist of Cu/Zn-superoxide dismutase (SOD), Mn-

SOD, catalase and glutathione peroxidase (GPX). Cu/Zn-SOD can convert superoxide 

into hydrogen peroxide, which is further catalyzed into water molecules by catalase or 

GPX. In addition, a variety of low-molecular-mass antioxidants such as vitamin C and E, 

also participate in scavenging free radicals. Finally, several kinds of proteins can 

sequester transition metal ions to avoid being the catalyst, which causes the conversion of 

fairly inactive ROS into highly active ROS. For example, ferritin and transferrin can 

sequester iron. If transition metal ions are available, lipid peroxidation will be more 

serious.  

 

Even though there are several antioxidant defenses in the biological systems, oxidative 

damage occurs frequently because of the imbalance between ROS/RNS and antioxidant 

defenses. According to free radical theory of aging, ROS/RNS can attack many important 

biological molecules such as DNA, protein and lipids, resulting in oxidative damage, 

which impairs the normal physiological function of cells and organs and prompts the 

occurrence of the aging process and aging-related diseases. Numerous investigations 

have been reported to support this theory. The major evidence is as follows: (1) there was 
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an increase in age-related oxidative biomolecular damage in organisms from 

invertebrates to humans (Warner, 1994; Bohr and Anson, 1995). (2) Calorie restriction, 

which prevented the aging process and aging-related diseases, decreased the aging-

related accumulation of oxidative damage in rodents (Yu, 1996). (3) P66shc knockout 

mice had an increased resistance to oxidative stress, resulting in a significantly longer life 

span of mice (Migliaccio et al., 1999). (4) Cu/Zn-SOD knockout mice had an elevated 

oxidative damage in plenty of the tissues, and suffered from the accelerated age-related 

pathologies and a decrease of life span (Elchuri et al., 2005).  Moreover, overexpression 

of catalase in mitochondria of mice extended the life span of mice and decreased age-

related oxidative damage changes (Schriner et al., 2005). However, some studies 

indicated that oxidative stress was not the only key factor in the aging process, because 

mice with growth hormone receptor/binding protein knockout had increaseded life span, 

while the mice had the decreased resistance to oxidative stress (Hauck et al., 2002). Thus, 

the current free radical theory of aging still needs further modification. 

 

1.2 Anti-aging Intervention 

 

With increasing understanding of the aging process, how to retard the aging process and 

age related diseases has become the most intriguing research area. Currently, there are 

three major anti-aging interventions such as calorie restriction, dietary supplementation 

and genetic manipulation. 
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 1.2.1 Calorie restriction 

 

1.2.1.1 Calorie restriction: history and mechanisms 

 

Calorie restriction (CR), also known as dietary and food restriction, refers to the 

consumption of less diet while essential nutrients are provided to avoid malnutrition (Yu, 

1996).  The effect of CR on aging process was for the first time explored by McCay in 

1935 (McCay et al., 1935). They found that CR, initiated from weaning, markedly 

increased the life span of rats. Since then, CR has been proven to effectively extend life 

span of diverse animals such as nematodes, fish, dogs and hamsters, and also prevent age 

related diseases, such as tumors, diabetes and heart diseases (Weindruch, 1996). An 

ongoing investigation of the effect of CR on nonhuman primate models also shows that 

CR may have an anti-aging effect, even though a final conclusion will not be available 

for 20 years because the maximum life span of rhesus monkey is above 40 years 

(Anderson and Weindruch, 2006). Therefore, CR has been regarded as the only most 

accepted intervention to extend the life span of mammalian animal models (Warner et al., 

2000) and has also been used as a powerful tool for exploring the aging process and age 

related diseases. The exact mechanism of the effect of CR on the aging process is still 

unknown. Several hypotheses have been proposed, such as oxidative damage attenuation 

hypothesis, growth retardation hypothesis, the attenuation of insulin-like signaling 

hypothesis and the hormesis hypothesis (Masoro, 2005). Among them, the oxidative 

damage attenuation hypothesis is the most accepted hypothesis at present (Sohal and 

Weindruch 1996). Thus, this hypothesis will be discussed in detail. 
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According to the oxidative damage attenuation hypothesis, CR extends life span and 

slows aging by decreasing age related oxidative damage accumulation. There are many 

reports that support this hypothesis. (1) CR could effectively prevent age related increase 

in lipid peroxidation (Ward et al., 2005); protein oxidative damage (Youngman et al., 

1992; Sohal et al., 1994) and DNA oxidative damage (Hamilton et al., 2001). (2) The 

formation of ROS was reduced by CR in rat liver mitochondria (Lambert et al., 2004). (3) 

DNA oxidative damage could be effectively repaired in CR rats (Guo et al., 1998).  

 

The mechanisms mediating the prevention of oxidative damage by CR remain unclear. 

One possible mechanism is that CR reduces the generation of free radicals during the 

aging process. Sohal et al reported that CR could decrease the formation of superoxide 

and hydrogen peroxide in kidney and heart in mice during aging (Sohal et al., 1994). 

Another possible mechanism is that CR improves the antioxidant defense system. CR 

was reported to increase the antioxidant enzyme activity by increasing their gene 

expression in rat liver (Rao G et al., 1990). However, it was noticed that different tissues 

had different antioxidant gene expression changes under CR (Mote et al., 1997). Thus, it 

is interesting to further examine whether CR can affect antioxidant defense systems to 

slow the aging process. 
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1.2.1.2 Adult-onset CR 

 

The age of animals for CR implementation had an important effect on the results of CR. 

The majority of CR studies that initiated after weaning or early in life showed the 

consistent effect of extending life span in different animals (Weindruch, 1996). In 

contrast, adult-onset CR studies were very limited and the findings were contradictory, 

especially the effect of CR on life span (Masoro, 2006). However, adult onset CR had 

more practical implications for application and important significance for the exploration 

of the fundamental mechanisms in CR. CR initiated in C57 BL/6J mice at 12 months of 

age could extend life span and decrease cancer incidence (Weindruch, 1982). CR, 

initiated at 6 months of age in F344 rats, could also extend life span and reduce age 

related disease such as heart diseases and renal diseases (Maeda et al., 1985).  However, 

when CR was initiated in C57 BL/6L mice at 10 months of age, there were no life span 

changes (Goodrick et al., 1990). These differences among studies might be attributed to 

different experimental methodologies and rat strains. 

 

Although the effects of adult-onset CR on life span were inconsistent, some 

investigations showed that adult-onset CR might have beneficial effects on age related 

diseases and the aging process. The incidence of liver tumors could be decreased by 8 

weeks of CR initiated at 19 months of age of rats (Spindler, 2005). Age related renal 

pathological changes were also reduced by adult-onset CR initiated at 18 months of age 
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in male Fischer 344 x Brown Norway hybrid rats (McKiernan et al., 2007). Adult-onset 

CR was reported to reduce protein carbonylation of rat skeletal muscles (Radak et al., 

2002). Thus, these findings indicated that adult-onset CR might be helpful to improve 

quality of life by reducing the risk of age related disease.It is worth further investigating 

the effect and mechanism of adult-onset CR. 

 

1.2.1.3 Challenges for the applications of CR  

 

One of the major ultimate purposes of CR research is to improve the health of human 

beings. Even though positive effects of CR on non-human primates are reported, there are 

several considerations to be evaluated for the possible applications of CR in human 

beings. The first question is the compliance of the methods for human beings. The 

advantages of CR have continuously been proven in animal models (Weindruch, 1996; 

Yu, 1996). CR refers to consume fewer calories while essential nutrients were provided 

to avoid malnutrition (Yu, 1996). If people follow CR, they have to eat a restricted diet 

for several years. For most of people, it is not practical. In addition, the beneficial effect 

of adult-onset CR needs further investigation to confirm. Finally, even though the 

effectiveness of the life long CR was confirmed in many animal models, it is not likely 

that one would apply CR in the childhood or adolescence of human beings. Moreover, the 

side effects of CR should also be noticed. For example, CR might increase the incidence 

of osteoporosis and sarcopenia in elderly people (Dirk et al., 2006). 
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1.2.2 Dietary supplements intervention 

 

1.2.2.1 Dietary supplements intervention  

 

According to the free radical theory of aging, oxidative damage plays an important role in 

the aging process. Dietary supplements, which have antioxidant effects, are likely to slow 

the aging process by correcting the imbalance between free radicals and antioxidant 

defense and decreasing oxidative damage. Many kinds of dietary supplements such as 

vitamin E (Miquel et al., 1982), vitamin C (Davies et al., 1977), butylated 

hydroxytoluene (Clapp et al., 1979) and thiazolidine carboxylic acid (Economos et al., 

1982) have been evaluated in different animal models since the 1970s. But, these 

investigations could not provide the definitive conclusion of whether the life span of 

animals was effectively extended. Some possible explanations are as follows: (1) some 

antioxidants such as vitamin E and C (Yu et al., 1998), had pro-oxidant effects under 

certain physiological conditions. (2)  Free radicals are involved in the normal signaling 

process. The dosages of dietary supplements are required to be optimized so that they 

could remove the harmful effects of free radicals and keep the beneficial effects of free 

radicals (Finkel et al., 2000; Kitani et al., 2006).  

 

Recently, several dietary supplement interventions appear to be promising: lifespan was 

extended in nematode C. elegans by using SOD/catalase mimetics (EUK-8 and EUK-
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134) (Melov et al., 2000). Oxidative stress-related diseases such as age-related learning 

deficits were effectively reversed and brain oxidative stress in mice were also reversed by 

using SOD/catalase mimetics (EUK-189 and EUK-207) (Liu et al., 2003).  Deprenyl 

supplement has been reported to extend life span of four animal species: mice (Archer et 

al., 1996), rats (Kitani, et al., 2005), hamsters (Stoll et al., 1997) and dogs (Ruehl et al., 

1997), when an optimized dose was used. The possible mechanism of deprenyl protection 

was attributed to the up-regulation of antioxidant enzyme gene expression and enzyme 

activity in many organs, such as heart, kidney, brain and spleen (Carrillo et al., 2000; 

Kitani et al., 2006). 

 

Resveratrol has also been reported to increase lifespan in several different organisms such 

as worm (Wood et al.,2004) and a short-lived fish, Nothobranchius furzeri (Valenzano et 

al.,2006).  The survival of mice on a high-calorie diet can also be improved by resveratrol 

(Baur et al., 2006). These mice that were supplemented with resveratrol had a 27.5% 

lower risk of death than other mice on the high-calorie diet. Based on microarray assay, 

the supplement of resveratrol reversed the change of 144 out of 153 significantly altered 

gene pathways by high caloric intake.  Further evidence came from the National Institute 

on Aging's Interventions Testing Program, in which the potential dietary supplements 

were evaluated using sufficient mice to detect 10% changes in lifespan at three 

investigation sites: the Jackson Laboratory, University of Michigan, and University of 

Texas. Observations from these sites found that nordihydroguiaretic acid (NDGA) 

significantly increased the life span of mice (Miller et al., 2007). The exact mechanisms 

of resveratrol and NDGA were still unknown. The common characteristic of resveratrol 
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and NDGA was their powerful antioxidant effect. The antioxidant effect of NDGA was 

more powerful than vitamin C of the same concentration (Abou-Gazar et al., 2004). 

NDGA could prevent oxidative stress and pathological changes in diabetic nephropathy 

of rats (Anjaneyulu et al., 2004). Resveratrol was reported to scavenge the superoxide 

anion and inhibit the production of free radicals by decreasing complex III activity of the 

mitochondrial respiratory chain and inhibition of human LDL oxidation (Zini et al., 1999; 

Frankel et al., 1993). 

 

In summary, compared with CR, dietary supplements are more practical intervention for 

retarding the aging process and age related diseases. After more than thirty years 

investigation, dietary supplements begin to appear promising. But, the knowledge of the 

overall regulation of the internal antioxidant defense and the interaction between dietary 

supplements and internal antioxidant defense remains unclear, bringing the challenges to 

the investigation of the anti-aging effects of dietary supplements. 

 

1.2.2.2 Grape seed extract 

 

The main active component of grape seed extract (GSE) is proanthocyanidins, which 

became noticed because of the “French Paradox”. The “French Paradox” stems from the 

people in southern France, who eat a high-fat diet, but they have a relatively low 

incidence of coronary heart disease. Proanthocyanidins have been proposed as a 

candidate to elucidate this Paradox (Rasmussen et al., 2005; Corder et al., 2006). 
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1.2.2.2.1 Chemistry and food sources of proanthocyanidins 

 

Proanthocyanidin is a specific group of polyphenolic compounds. Proanthocyanidins 

comprise different flavan-3-ols subunits, the monomers of proanthocyanidin.  The most 

common types of flavan-3-ols subunits are catechin, epicatechin, epiafzelechin, 

afzelechin and gallocatechin, which form the major subclass of proanthocyanidins, such 

as procyanidin, propelargonidin and prodelphinidin (Figure 1.2). 
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flavan-3-ols 
subunits 

Subclass of 
proanthocyanidins 

R1 R2 R3 R4 R5 

afzelechin propelargonidins  H OH H H OH 

epiafzelechin Propelargonidins H OH H OH H 

catechin Procyanidin H OH OH H OH 

epicatechin Procyanidin H OH OH OH H 

Gallocatechin Prodelphinidin OH OH OH H OH 

 

Figure 1.2 Chemical structures of proanthocyanidins. 
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Proanthocyanidins are oligomers or polymers of flavan-3-ols subunits, which are linked 

mainly through C4 → C8 bond, and can also be linked through C4 → C6 bond, or ether 

bond between C2 and C7. 

 

Proanthocyanidins are mainly found in fruits and berries, but also in nuts and beans, 

which are summarized in Table 1 (Rasmussen et al., 2005). This table clearly shows that 

grape seeds have plenty of proanthocyanidins. In addition, since the method to purify 

adequate proanthocyanidins is not well developed, proanthocyanidin-rich extracts such as 

grape seed extract and cocoa are used in most animal studies. The major 

proanthocyanidin monomers of GSE are catechin and epicatechin (Santos-buelga et al., 

1995). Gas chromatography - mass spectrometry analyses showed that grape seed extract 

comprised 54 %  proanthocyanidin dimer, 13 % proanthocyanidin trimer, 7 % 

proanthocyanidin tetramer, and small amounts (<5% each) of monomeric and high-

molecular-weight oligomeric proanthocyanidins (Pataki, et al., 2002). 
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Table 1.1 Content of proanthocyanidins in common foods a) 

 

a) All data are obtained from (Gu et al., 2004) unless otherwise is stated in a footnote. 
Values are means ± SD, n = 4–8. See (Gu et al., 2004) for detailed data on food content 
of proanthocyanidins. ND = not detected 
b) Type: PP, propelargonidins, PC, procyanidins, PD, prodelphinidins, A, A-type linkage 
(Gu et al., 2004) 
c) Red delicious with peel 
d) Data are obtained from (Auger et al., 2004). Mean of 95 different French wines, see 
original paper for ranges in the wines. Only monomers (catechin and Epicatechin) up to 
trimers were measured. The total given is the sum of monomers to trimers. 
(Reproduced with permission from Rasmussen et al., 2005) 
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1.2.2.2.2. Absorption and bioavailability of proanthocyanidins 

 

The absorption and bioavailability of proanthocyanidins are not well studied because 

purification of sufficient amounts of pure proanthocyanidins is very difficult. From 

available data, absorption and bioavailability of proanthocyanidins depends on their 

chemical structures. The low-molecular-weight monomers and dimmers of 

proanthocyanidins can be absorbed in the gastrointestinal tract. The monomers and 

dimers of proanthocyanidins were found to be permeable in the Caco-2 human intestinal 

cell line (Deprez et al., 2001). In addition, Spencer et al. reported that epicatechin was the 

primary bioavailable form of the procyanidin dimers B2 and B5 after crossing the small 

intestine (Spencer et al., 2000). In rats, procyanidin B2 was found to be absorbed and 

excreted in urine and a portion of procyanidin B2 was degraded as epicatechin (Baba et 

al., 2002). In humans, proanthocyanidins dimers have been detected in the plasma, after 

drinking a cocoa beverage (Holt et al., 2002). However, the high-molecular-weight 

oligomers were poorly absorbed and were proposed to have local effects in the digestive 

tract (Hagerman et al., 1998), where they were degraded into small phenolic acids by the 

colonic microflora (Manach et al., 2005). In summary, these preliminary studies showed 

that low-molecular-weight oligomers could be bioavailable. The detailed mechanisms of 

absorption and metabolism of proanthocyanidins still remain to be investigated. 
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1.2.2.2.3. Safety evaluation of proanthocyanidins 

As a natural compound, proanthocyanidins have been reported to be very safe. Most of 

the safety data was available from studies using GSE. In an acute oral toxicity study, the 

LD50 of GSE administered by gavage in rat was more than 5000mg/kg, and no 

detrimental effects were observed at the necropsy (Ray et al., 2001).  In a chronic toxicity 

study, no toxicological effects were found in B6C3F1 mice fed with 500mg GSE/kg/day 

for 6 months (Ray et al., 2001). Similarly, no toxicological effects were found in Fischer 

344 rats fed with 2.0% GSE supplement for 90 days (Yamakoshi et al., 2001). Sprague-

Dawley rats fed with 2.0% GSE supplement for 90 days, which was equal to 1586 mg 

GSE/kg/day, did not cause significant toxicological effects (Wren et al., 2002).  The 

specific advantages of proanthocyanidins over the flavonols, such as quercetin, were their 

high stability and inability to transform into potential prooxidants (Bors et al., 2000).    

 

1.2.2.2.4. The protection effects of proanthocyanidins 

Proanthocyanidins have powerful antioxidant effects and multiple biological activities. 

The main benefit was attributed to its antioxidant properties against oxidative damage 

(Cos et al., 2003). Proanthocyanidins effectively scavenged free radicals, chelated 

transition metals, and inhibited prooxidative enzymes, (Cos et al., 2004).  Major evidence 

is as follows: (1) Free radical scavenging. Proanthocyanidins from GSE effectively 

removed superoxide anion and also suppressed hydroxyl radical using a spin-trapping 

electron spin resonance method (Yamaguchi et al., 1999).  (2) Chelation of transition 
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metals. Proanthocyanidins could sequester iron and copper and prevent the ions from 

acting as catalyst in the the formation of hydroxyl (Maffei et al., 1996). (3) Inhibition of 

prooxidative enzymes.  Proanthocyanidins could prevent lipid peroxidation by inhibiting 

the enzyme activity of 15-Lipoxygenase (Schewe et al. 2001).  (4) Proanthocyanidins, as 

a powerful antioxidant, showed the ability to prevent oxidative damage. GSE could 

suppress lipid peroxidation caused by oxidative stress in animal models such as: 

experimental ischemia in brain (Feng Y et al., 2005) and heart (Bagchi et al., 2003). GSE 

provided a higher protection than vitamin E, C and β-carotene against 12-O-tetradeca-

noylphorbol-13-acetate (TPA) induced lipid peroxidation and DNA damage in liver and 

brain tissue of mice (Bagchi et al., 1998). Flavanol-rich cocoa drink, of which the main 

active component was proanthocyanidins, was reported to lower plasma F2- isoprostane 

concentrations in humans (Wiswedel et al., 2004).  

 

In addition to the antioxidant activity, proanthocyanidins have other beneficial effect such 

as anticancer and cardioprotective effect. In anticancer effect, proanthocyanidins had 

been reported to have anti-proliferative effect in various tumor cell lines, including 

human breast cancer cells (Agarwal et al., 2000), human prostate carcinoma cells (Tyagi 

et al., 2003) and human colorectal carcinoma cells (Kaur et al., 2006). In animal 

experiments, proanthocyanidins exerted chemopreventive effect in rats bearing 

carcinogen-induced mammary cancer (Kim et al., 2004). Proanthocyanidins inhibited the 

formation of azoxymethane-induced colonic aberrant crypt foci in the colons of rats by 

72–88 % (Singletary et al., 2001). Moreover, several studies suggested that 

proanthocyanidins had cardioprotective effect. (1) Platelet aggregation contributes to the 
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formation of atherosclerosis. The thrombin-induced platelet aggregation was inhibited by 

proanthocyanidins in rats (Xia et al., 1998), and similar effect was observed in dogs and 

monkeys (Osman et al., 1998). (2)  The oxidation of low-density lipoprotein (LDL) is a 

key factor of the formation of atherosclerosis (Steinberg et al., 1989). The protective 

effect of proanthocyanidins on inhibiting LDL oxidation has been proposed in vitro and 

in vivo studies. In vitro, proanthocyanidins were reported to inhibit the copper-catalyzed 

oxidation of human LDL (Frankel et al., 1995; Aviram 2002). The number of oxidized 

LDL-positive macrophage-derived foam cells in atherosclerotic lesions in the aorta of 

rabbits was decreased by proanthocyanidins (Yamakoshi, et al., 1999). The decrease in 

oxidized LDL in the plasma of human was observed after taking proanthocyanidins for 

12 weeks (Sano et al., 2007). (3) The protective effects of proanthocyanidins on heart 

diseases have also been investigated in animal models. In apolipoprotein E deficient 

mice, the atherosclerotic lesion areas were reduced by 41% after taking 

proanthocyanidins for 10 weeks (Fuhrman et al., 2005). After rats were fed 

proanthocyanidin-rich extract for 3 weeks, the recovery of the reperfusion-induced injury 

in rat hearts was improved (Pataki et al., 2002). 

 

In aging research, the protective effect of GSE is only limitedly studied. It was reported 

that GSE could prevent age related oxidative protein damage in the central nervous 

system in aged rats (Balu et al., 2005). However, the protective effects of GSE on other 

organs during aging have not been explored. In addition, the complexity of the aging 

process and diverse effects of GSE make it difficult to explore the mechanism of GSE. 

The detailed mechanism of GSE has not been elucidated. However, microarray method 
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that can study the gene expression profiling of whole genome at short time makes it 

possible. In this study, microarray analysis was used to explore the molecular mechanism 

of GSE protective effects. 

 

1.2.3 Genetic manipulation 

 

Even though genetic manipulation can effectively extend the life span of several kinds of 

animals, this intervention is mainly used to identify aging determinant genes that control 

the life span in the present stage because the knowledge of the complex genome systems 

in eukaryotic organisms is limited and the feasibility of such manipulation is widely 

questionable (Yu, 1999). Thus, genetic manipulation will only be concisely discussed 

here. Although the practicability of genetic manipulation is problematic, genetic 

manipulation in aging research provide the powerful tools to understand the mechanism 

of aging. The drosophila with Cu/Zn-SOD-null phenotype had a shortened life span with 

only about 20% life span of normal drosophila, and was more sensitive to oxidative stress 

(Phillips et al., 1989). The inducible overexpression of CuZnSOD in drosophila could 

extend the life span and increase the resistance to oxidative stress (Parkes et al., 1994). 

Similar results were reported in Mn-SOD-null drosophila (Duttaroy et al., 2003; Sun, et 

al., 2002). In addition, the average life span of Cu/Zn-SOD knockout mice was decreased 

by about 30% (Sentman et al., 2006), and plasma F2-isoprostane was increased twofold 

compared to control mice (Muller et al., 2006). These investigations provided further 

support for the free radical theory of aging. However, Mn-SOD+/- mice, which had 

increased oxidative damage and higher tumor incidence, had similar survival curves with 
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control mice, even though the activity of Mn-SOD was decreased by 50% (Van Remmen 

et al., 2003). These investigations remind us that the free radical theory of aging still 

needs to be further refined.  

 

1.3 Biomarkers of aging 

 

The ideal biomarker of the aging process should predict remaining longevity and reflect 

some basic biological process of aging (Warner, 2004). Biomarkers of aging are highly 

desirable and will be very helpful for evaluating anti-aging interventions. Even though 

many traits vary with age, validated biomarkers of aging in animal models have not been 

found (Warner, 2004). 

 

According to the free radical theory of aging, biomolecular oxidative damage plays an 

important role in the aging process, which is also related to the development of age 

related diseases. In general, the evaluation of oxidative damage of biomolecules is more 

important than the evaluation of the amount of free radical generated because free 

radicals might react with unimportant targets, rather than with important biological 

molecules such as DNA, protein and lipids. Pathological assessment can predict the later 

development of diseases, even though pathological assessment is not sensitive in 

evaluating the effect of the anti-aging intervention. Thus, biomarkers of oxidative 

damage and pathological assessment are recommended to evaluate anti-aging 

interventions (Warner, et al., 2000). 
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1.3.1 Biomarkers of   oxidative damage  

 

Oxidative damage is the damage of biomolecules caused by direct attack of ROS/RNS 

(Halliwell et al., 2004). An ideal biomarker of oxidative damage should fulfill the 

following requirements. First of all, the biomarker should predict the progression of 

diseases. Another critical criterion is that it should detect a certain percentage of total 

oxidative damage in vivo and have a relatively small variation between different 

individuals. Finally, the biomarker should be stable and not be interfered by diet during 

detection (Halliwell et al., 2004). Unfortunately, the ideal biomarker of oxidative damage 

has not been identified.  However, some new biomarkers of oxidative damage meet 

several criteria and are better than previous biomarkers. To some extent, these new 

biomarkers of oxidative damage, such as 8-isoprostane and carbonyl protein, can 

accurately reflect the changes of oxidative damage (Morrow et al., 1990; Dalle-Donne et 

al., 2003). These new biomarkers will be reviewed in this thesis. 

 

1.3.1.1 8-isoprostane 

 

Isoprostanes are non-enzymatic free radical-catalysed peroxidation products of 

arachidonic acid, which are prostaglandin-like compounds (Morrow et al., 1990). They 

are also called F2- isoprostanes because they have F-type prostane rings. In structure, 

there are almost exclusive cis side chains to the cyclopentane ring in isoprostanes; while 

there are trans orientations in the prostaglandins. The formation of isoprostanes is 
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illustrated in Figure 1.3 (Morrow et al., 1990). In step 1, arachidonic acid abstracts a bis-

allylic hydrogen atom. In step 2, an oxygen molecule is added to arachidonic acid, 

forming a peroxyl radical. In step 3, endocyclisation occurs. In step 4, prostaglandin-like 

compounds are formed by the addition of another molecule of oxygen. In step 5, these 

unstable prostaglandin-like compounds are transformed to be parent isoprostanes by the 

reduction of glutathione. Based on the carbon atom to which the side chain hydroxyl is 

attached, isoprostane regioisomers are denoted as 5-, 12-, 8-, or 15-series regioisomers 

(Taber, 1997). In theory, each isoprostane regioisomer has 16 stereoisomers. Thus, a total 

of 64 isoprostane isomers can be formed (Morrow et al., 1990). 5- and 15-series 

regioisomers were reported to be more abundantly present than 12-and 8-series 

regioisomers (Yin, 2004). Isoprostanes were formed in situ in esterified form to 

phospholipids in tissue, and could be released by phospholipases to form free 

isoprostanes (Morrow et al., 1992).  
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Figure 1.3 Mechanism of formation of isoprostanes (Reprinted with kind permission 
from Morrow et al., 1990) 
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8-isoprostane, a member of 15-series regioisomers, is the most extensively studied   

isoprostane and is considered to be a reliable biomarker of lipid peroxidation (Roberts LJ 

et al., 2000; Cracowski et al., 2002). 8-isoprostane is also called 8-iso-PGF2а, 8-epi-

PGF2а and 15-F2t-isoprostane. 8-isoprostane is chemically stable and can be detected in 

many tissues or body fluids. More importantly, rats treated with carbon tetrachloride 

(CCl4), which is a classical model of oxidative stress, had a time- and dose-dependent 

increase of urinary and plasma 8-isoprostane (Kadiiska et al., 2005).  8-isoprostane was 

also reported to reflect oxidative stress in several kinds of diseases of animals and human 

beings, such as diabetes (Davi, et al., 1999; Murai et al., 2000) and atherosclerosis 

(Praticò et al., 1997), and could be modulated by dietary antioxidant supplementation 

(Roberts and Morrow, 2000). In addition, unlike malondialdehyde (MDA), 8-isoprostane 

is a specific free radical-catalysed lipid peroxidation product, which is not affected by 

diet (Richelle et al., 1999).  8-isoprostane can be measured by several methods, such as 

gas chromatography with mass spectrometry (GC-MS), liquid chromatography (LC)-MS, 

LC-MS-MS and enzyme immunoassays. MS based methods are regarded as the best 

methods because of its high sensitivity and specificity (Roberts and Morrow, 2000). 

However, MS based methods require expensive equipment and well-trained technical 

personnel, making these methods unavailable for general laboratories. Enzyme 

immunoassays have been widely used in this research area owing to the low cost and 

relative ease of use, even though they have less sensitivity and specificity than MS based 

methods. To avoid these problems, purification of samples is desirable before 

immunoassay. Urine and plasma samples after purification by immunoaffinity or solid 

phase extraction give good correlation to GS-MS method. A recent report also showed 
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that the detection of urinary 8-isoprostane was well consistent between GS-MS method 

and immunoassay method in CCl4 -induced oxidative stress in rats (Kadiiska et al., 

2005). But, the accuracy of detecting 8-isoprostane in tissue samples is still problematic 

using immunoassay method because 8-isoprostane extracted from tissue samples may 

bring potential bias. 

 

Compared with plasma samples, urine samples have several advantages in 8-isoprostane 

assay. The circulating half life of  8-isoprostane is only about 16 minutes so that plasma 

8-isoprostane only reflect a single time point, while 24 hour urinary 8-isoprostane can 

overcome this problem (Proudfoot et al., 1999). In addition, plasma samples are lipid- 

containing samples, which are easy to generate artifactual 8-isoprostane, whereas urinary 

8-isoprostane is relatively stable. Finally, urinary 8-isoprostane is a ‘whole body’ 

measurement because most of them come from the blood circulation (Meagher et al., 

1999; Burke et al., 2000), even though one part of urinary 8-isoprostane originates from 

the kidneys. Thus, 24 hour urinary 8-isoprostane assay is used as a general marker of 

oxidative stress in our experiments. 

 

1.3.1.2 Protein carbonyl 

 

Protein carbonyl is the most commonly used and well characterized biomarker of protein 

oxidation (Levine, 2002; Dalle-Donne et al., 2003). There are several sources of the 

formation of protein carbonyl.  (1) A main source of protein carbonyl in biological 

samples is from direct oxidation of lysine, arginine, proline and threonine amino acid 
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residues. Metal-catalysed oxidation of protein systems catalyze the conversion of 

arginine and proline to glutamic semialdehyde and the conversion of lysine to 

aminoadipic semialdehyde, which are the major carbonyl products of metal-catalysed 

oxidation of proteins (Requena, et al., 2001). (2) Proteins react with aldehydes (4-

hydroxy-2-nonenal, malondialdehyde) derived from lipid peroxidation, causing carbonyl 

groups to be introduced into proteins (Esterbauer et al., 1991). (3) The reaction of 

reducing sugars or their oxidation products with lysine residues of proteins generates 

reactive carbonyl derivatives (ketoamines, ketoaldehydes, deoxyosones), which further 

react with proteins and then introduce carbonyl groups into proteins (Baynes, 1996). 

Thus, protein carbonyl has been widely used as a biomarker of protein oxidation. 

 

The physiological importance of protein carbonyl has been identified. Glutamine 

synthetase was inactivated by introducing carbonyl groups to this enzyme (Levine, 1983). 

In addition, carbonylation affects the degradation of protein. For example, when 

sufficient iron caused the metal-catalysed oxidative modification of iron regulatory 

protein 2, carbonylated iron regulatory protein 2 was ubiquitinylated and then degraded 

by the proteasome (Iwai K et al., 1998). Most of the protein carbonyl is irreversible and 

repaired by protein turnover. Only a few protein carbonyls are reversible such as 

methione sulfoxide (Moskovitz et al., 1995). 

 

Several methods have been developed to quantitate protein carbonyl. The most common 

and reliable method is based on the reaction between protein carbonyl with 2, 4-

dinitrophenylhydrazine, forming a 2, 4-dinitrophenylhydrazone, which can be analyzed 
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spectrophotometrically (Levine, 2002). This method is used to determine protein 

carbonyl in most investigations. In addition, Western blot and ELISA techniques are also 

available because antibodies directed against the dinitrophenyl group are commercially 

available. The advantage of Western blot analysis is the ability of identifying specific 

oxidatively modified protein.  

 

Protein carbonyl is a good biomarker of age related protein oxidation, as supported by the 

following facts. (1) An age-related increase in protein carbonyl has been found in 

different species, such as C. elegans (Adachi et al., 1998), rat liver (Starke-Reed, et al., 

1989) and human brain (Smith et al., 1991). (2) Methionine sulfoxide reductase knockout 

mice had a reduced life span with increased protein carbonyl (Moskovitz et al., 2001). (3) 

Mice fed with a calorie restriction diet had an increased life span with decreased level of 

protein carbonyl (Youngman et al., 1992). (4) Strains of short life span houseflies had 

higher levels of protein carbonyl than their longer lived strains, when compared at the 

same chronological age (Sohal et al., 1993). 

 
1.4 Animal models in aging research 
 

The animal models in aging research include invertebrates and vertebrates. Invertebrates, 

such as caenorhabditis elegans and drosophila, have been used for identifying possible 

pathways and genes that influence longevity. For example, the increased expression of 

Sir-2 gene could extend the lifespan of caenorhabditis elegans by up to 50%, which 

suggested that Sir-2 was an important longevity controlling gene (Tissenbaum et al., 

2001).   In addition, the short lifespan of invertebrates makes them useful animal models 
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to screen the possible anti-aging compound. However, considerable differences in age-

related pathologies between invertebrates and vertebrates limit invertebrates as animal 

models for evaluating the likely effect of anti-aging interventions on humans in future.  

Rodents are the most widely used animal models in aging research. More than 70% of 

total animal models used in aging research were rat and mice (Masoro, 1998). There are 

some advantages of using rodents as animal models in aging research.  (1) They are 

mammals and their life span is relatively short. (2) Rodents have been extensively used as 

animal models in many biomedical research fields for many years. Extensive information 

about their pathological and gerontologic characteristics is available, which is very useful 

for designing further gerontologic experiments (Masoro, 1998). 

1.4.1 Fischer 344 rat    

 

The Fischer 344 rat originated at Columbia University Institute for Cancer Research in 

1920 (Boorman et al., 1990). National Institutes of Health (NIH) bred Fischer 344 rats in 

1951(Hansen et al., 1982). National Institute on Aging (NIA) bred Fischer 344 rats using 

Harlan Sprague Dawley Inc.’s pedigreed stock that came from NIH stock in 1988. The 

Fischer 344 rats became a standard animal model to be used in the study of aging.  

 

Fischer 344 rats are inbred rats. They were obtained by multiple sequential (brother x 

sister) mating applied for at least 20 generations so that their genetic background is 

homogeneous. The theoretical inbreeding coefficient is more than 0.99 (Falconer, 1981). 

Thus, the animals are genetically constant for a long time, even though new gene 
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mutations may cause some genetic changes over long periods. In order to avoid possible 

gene mutations, Fischer 344 rats from NIA are monitored regularly to detect genetic 

changes. In addition, inbred rats are phenotypic uniformity because they are genetically 

identical. This characteristic of Fischer 344 rats is of particularly importance for aging 

research because the aging process is under strong genetic control. For example, the 

overexpression of catalase or Klotho extended life span and slowed the aging process in 

mice (Schriner et al., 2005; Kurosu et al., 2005). The experimental variation of inbred 

rats will be less than that of outbred rats because inbred rats are phenotypic uniformity. 

Thus, the study requires fewer inbred animals than outbred animals, and the results from 

different laboratories were more comparable. Finally, two individuals of inbred rats will 

only differ from nongenetic factors such as dietary conditions, which is helpful to 

evaluate the effect of antiaging intervention. One disadvantage of inbred rats is that the 

decline of breeding performance may be caused by “inbreeding depression” in the early 

stage of producing a new inbred rat, and then some inbred rats die out. However, it is not 

a problem in Fischer 344 rats because Fischer 344 rats have been bred for more than 

eighty years. No further decline in breeding performance in Fischer 344 rats is reported. 

Thus, Fischer 344 rats were chosen as the animal model in this study. 

 

The Fischer 344 rat is very well characterized because it is a popular animal model in 

cancer and toxicology research. About 400 toxicity/carcinogenicity studies of the 

National Cancer Institute/National Toxicology Program (NCI/NTP) used the Fischer 344 

rat as their animal model, which included data on over 100,000 rats and more than eight 

million histological slides. Based on these studies, Boorman et al exhaustively described 
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the pathology of Fischer 344 rats in “Pathology of the Fischer rat”, which also included 

relevant information from the anatomy, physiology and gerontology (Boorman et al., 

1990). This book provided an invaluable resource for further study using the Fischer 344 

rat as an animal model. 

 

In aging research, the Fischer 344 rat is also very widely used. More than 50% of papers 

that were published in the Journal of Gerontology, a leading journal in aging research, 

used Fischer 344 rats as animal models (Weindruch et al., 1991).  Through these studies, 

the gerontologic characteristics were elaborately described. Sass et al reported a median 

lifespan of 31 months in male rats and a median lifespan of 29 months in female rats 

(Sass et al., 1975).  

 

 Aging process of different tissues differs (Grune et al, 2001). The tissues that are more 

likely to follow the free radical theory of aging were chosen for this study. Liver, kidney, 

cochlea and auditory cortex tissues were chosen as candidates in this study because these 

tissues have relatively high oxygen consumption (Rolfe et al., 1997; Susan et al., 2007; 

Mgbor et al., 2004) and a higher likelihood of having an imbalance in free radicals and 

antioxidant defenses, thus producing oxidative damage based on the free radical theory of 

aging (Rolfe et al., 1997). This inference has been supported by the fact that the increase 

of age related oxidative damage had been found in these tissues. Ward et al. reported that 

there were age related increases in lipid oxidation and DNA damage in kidney and liver 

tissues of Fischer 344 rats (Ward et al., 2005). Yee et al. also found similar results in 

kidney and liver tissues of Fischer 344 rats (Yee et al., 2006). Age-dependent increase in 
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lipid oxidation was also reported in brain tissues of Fischer 344 rats (Cai et al., 1996). 

Seidman et al. reported an age related increase in DNA damage in the cochlea of Fischer 

344 rats (Seidman et al., 2000). 

 

In kidney tissue of Fischer 344 rats, the age related renal pathological changes are well 

characterized because chronic nephropathy is a very common and age-related renal 

disease (Maeda et al, 1985). Yu et al. classified age related renal pathological changes 

into Grade 0 (no lesions), Grade 1-4 (damage at different levels) and Grade E (end-stage 

lesions), based on glomeruli and tubule lesions, inflammation, interstitial fibrosis  and 

cast formation (Yu, et al, 1982).Six-month-old rats were found to have Grade 1 lesions. 

The severity of renal pathology changes progressed with age. From 12-month-old to 18- 

month-old Fischer 344 rats, there were obvious age related pathological changes in 

kidney tissue, but renal function did not change obviously so that the detection of 

biomarkers was not affected (Maeda et al, 1985). Twenty-seven-month-old rats were 

found to have Grade E lesions, and their renal function was significantly decreased 

(Maeda et al., 1985). In addition, the age related decrease in the activities of antioxidant 

enzymes in kidney tissues has been reported in several research groups (Rao et al., 1990; 

Tian et al., 1998), which was proposed to explain age related increase in oxidative 

damage. There were only limited studies on the gene expression of antioxidant enzymes 

in kidney during the aging process in Fischer 344 rats. 

 

In liver tissue of Fischer 344 rats, the age related pathological change is not very distinct. 

The incidence of bilary hyperplasia and portal fibrosis increased with age, but the 
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hepatocytes did not have obvious changes (Yu, et al, 1982). The decline of liver function 

during the aging process was relatively small (Maeda et al, 1985).Several studies reported 

the age related decrease in the activities of antioxidant enzymes in liver tissues, which 

might be one reason of age related increase in lipid peroxidation (Rao et al., 1990; Tian et 

al., 1998; Grune et al, 2001). However, the effect of age on the gene expression of 

antioxidant enzymes in liver tissues was only limitedly studied and findings were 

contradictory (Rao et al, 1990; Thomas et al, 2002). 

 

The cochlea in the Fischer 344 rat during the aging process has been extensively studied 

because it is a common animal model of age related hearing loss. Fischer 344 rats have a 

dramatic, progressive age related hearing loss, mainly at high frequencies in Fischer 344 

rats older than 12 months (Popelar et al., 2006). The  pattern of age related hearing 

threshold changes in Fischer rats is similar to age related hearing loss in human beings 

(Meisami et al., 2002), indicating that it is a suitable animal model for investigating age 

related hearing loss. From pathological data, the pronounced outer hair cell loss in the 

cochlea has been observed in old Fischer 344 rats. The number of outer hair cell loss was 

more than 50%, and the number of inner hair cell loss was relatively small and did not 

exceed 10% in old Fischer 344 rats (Popelar et al., 2006). Auditory cortex is the central 

neural system for hearing function and might participate in the formation of age related 

hearing loss (Jennings et al., 2001). The gene expression of antioxidant enzymes in the 

cochlea and auditory cortex in Fischer 344 rats has not been reported until now, which 

may be caused by the fact that gene expression is hard to detect in these small tissues. 
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The incidence of spontaneous diseases, especially cancer, started to increase after the 

middle age in Fischer 344 rats (Sass et al., 1975).  The obvious age related renal 

pathological changes and hearing function changes from 12-month-old to 18- month-old 

Fischer 344 rats. Thus, the middle-aged Fischer 344 rats were chosen as animal model to 

evaluate whether the effects of GSE and CR could prevent age related change.  

 

   1.5. The methods of gene quantification 

  

Because the major regulation of cellular function takes place through gene expression, 

accurate gene expression quantification is important to understand the mechanisms of 

aging and anti-aging interventions. 

 

Investigating gene expression relies on techniques to detect mRNA, which includes 

several methods such as northern blot analysis, ribonuclease protection assay, 

conventional reverse transcription-polymerase chain reaction (RT-PCR) and real time 

RT-PCR.  In the past, Northern bolt analysis was widely used because this technique was 

relatively easy. Different RNA species were separated based on size by denaturing gel 

electrophoresis and detected by isotopic or non-isotopic labeled probes. This method can 

assess the size of mRNA and compare the abundance between samples on a membrane. 

However, its sensitivity is limited and RNA quality obviously influences the reliability of 

this method (Reue et al., 1998).  In addition, the requirement of large amounts of RNA 

makes it impossible to detect gene expression change from small samples, such as 

cochlea and auditory cortex. A more sensitive method is ribonuclease protection assay, 
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which could detect 5pg mRNA and provided at least 10-fold higher sensitivity than 

Northern blot (Dvořák et al., 2003). But, similar to Northern blot assay, densitometry is 

also used to quantify the mRNA, which limits further improvement on the sensitivity of 

ribonuclease protection assay. 

 

The sensitivity of conventional RT-PCR has been largely improved, compared to the 

relatively low sensitivity in northern blot analysis and ribonuclease protection assay. 

However, the end point of PCR reaction analyses used in this approach influences the 

accuracy of the results. A PCR reaction can be divided into four phases: lag, exponential, 

linear and plateau phase (Freeman, 1999). Four phases are related to the change in PCR 

reaction efficiency, which is caused by the decrease of reagent concentration and enzyme 

instability during PCR. Conventional RT-PCR measures the total of accumulated PCR 

product at the end of the PCR cycle, which is from the non-exponential phase and are not 

accurate. Moreover, agarose gels are used to detect final product, which limits the 

sensitivity of this method and increases the possibility of contamination, causing false 

positive detection. 

 

1.5.1. Real time RT-PCR 

 

Real time RT-PCR is the most sensitive  and popular technique of gene quantification 

(Bustin, 2002), which is about 10,000 and 1,000 times more sensitive than northern blot 

and ribonuclease protection assay, respectively (Dvořák et al., 2003). Real time RT-PCR 

has overcome the drawback conventional RT-PCR of by collecting all information from 
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the PCR product changes during PCR reaction, using fluorescent reporter dyes. The 

number of amplified product generated is directly proportional to the increase of 

fluorescent reporter dyes during the exponential phase of PCR. The data acquired in the 

exponential phase of amplification are analyzed because amplification only in this phase 

is extremely reproducible and precise. In the exponential phase, there is a doubling of 

PCR product every cycle since all of the PCR components are available. Thus, real time 

RT-PCR can quantify gene expression more reliably. 

 

1.5.2. Two major formats of Real time PCR 

 

Real time RT-PCR has two major formats, SYBR Green I dye and probe format. The 

principle of the SYBR Green I dye is that the SYBR Green I dye will bind all double-

stranded DNA, and generate increasing fluorescence at the same time without inhibition 

of PCR. During the progress of PCR, more PCR product is generated.  The increase in 

fluorescence signal is proportionate to the amount of PCR product during each PCR cycle 

through the SYBR Green I dye binding to double-stranded DNA. The advantages of the 

SYBR Green I dye are as follows. (1) Assay setup and running costs are more 

economical, compared with probe methods because no probe is required. (2) The assay 

design is relatively simple because only two primers are needed and probe design is not 

necessary. The disadvantages of the method include the relatively lower specificity 

because the SYBR Green I dye binds to any double-stranded DNA and it also bind to the 

possible nonspecific PCR products. The optimizations of PCR and melt curve analysis 
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are necessary to avoid this problem. In addition, the format cannot be used to detect 

several target genes in a single PCR reaction. 

 

Probe format has several kinds of probes generated by different companies. The basic 

principle is similar, using fluorescent resonance energy transfer (FRET) or similar 

interactions between donor and quencher molecules. The most popular probe is Taqman 

probe, which is an oligonucleotide probe containing a reporter fluorescent dye on the 5´ 

end and a quencher dye on the 3  ́end. When the probe is intact, the quencher dye greatly 

decreases the fluorescence emitted from the reporter dye by fluorescence resonance 

energy transfer (FRET). During the progress of PCR, Taqman probe anneals PCR 

products and is cleaved by the 5´ nuclease activity of Taq DNA polymerase, which 

causes the separation of the reporter dye and the quencher dye, thus increasing the 

reporter dye signal. The increase in fluorescence signal is directly proportionate to the 

amount of amplicons during each PCR cycle. The advantages of this method are the 

improved specificity from the specific probes binding to amplicons, and detecting several 

target genes in a single PCR tube by being labeled with distinguishable reporter dyes. 

The major disadvantage of the method is the expensive costs, particularly multiple genes 

to be quantified. 

 

1.5.3 Challenges and strategies 
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Real time RT-PCR includes three steps: (1) RNA isolation and quantification. (2) cDNA 

was synthesized from RNA  through  reverse transcription (3) real time PCR 

amplification using cDNA  as the template. 

 

With the increasing use of real time RT-PCR in gene quantification, some problems that 

influence the accuracy of this method have been widely noticed. The quality of RNA is 

regarded as the most important determinant of the reliability of real time RT-PCR (Bustin 

and Nolan, 2004). The quality of RNA includes the RNA integrity and whether it is free 

of genomic DNA contamination. The degradation of RNA is the most noticeable problem 

because the ubiquitous RNase is ready to cause the degradation of RNA, which directly 

affects the accurate gene quantification using real time RT-PCR method. The best way is 

to evaluate RNA integrity, using formaldehyde gel electrophoresis or 2100 Bioanalyzer 

to inspect the 28S and 18S ribosomal RNA bands. For a limited amount of RNA, such as 

the total RNA extracted from cochlea, 2100 Bioanalyzer is the only choice. In addition, 

genomic DNA contamination is common during RNA isolation.  Bustin showed that 

most of non-DNase treated RNA samples isolated from tissue samples had genomic DNA 

contamination (Bustin, 2002). Genomic DNA will obviously prevent accurate 

quantification, especially when studying genes with unknown intron/exon structure, or 

the existence of pseudogenes (Overbergh et al., 1999). Peters et al. exhaustively 

discussed the necessity of combining on-column and off-column DNase treatment in real 

time RT-PCR and its impact on efficiency of removing genomic DNA contamination 

(Peters et al., 2004). 
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1.5.3.1 The selection of housekeeping gene in real time RT-PCR 

 

How to choose the appropriate housekeeping gene (HKG) is another major challenge of 

real time RT-PCR.  HKG corrects variation in RNA integrity, reverse transcription 

efficiency and initial sample amount among different samples (Dheda et al., 2004). These 

widely used HKGs have been assumed to be stable in previous experiments.  In fact, they 

vary so considerably that invalid HKGs can cause confusing, even misleading 

interpretation of gene expression data. For example, in a study of the effect of inhaled 

corticosteroids on human asthma, when interleukin-2 was normalized to β-actin, a 

significant difference was detected between the control group and the treatment group. In 

fact, the difference was not due to interleukin-2, but β-actin gene expression that changed 

during that study (Glare, et al., 2002). Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), a common used HKG, has also been questioned because it varied in many 

experimental conditions (Ke et al., 2000, Suzuki et al., 2000). This might partly be 

attributed to the fact that GAPDH was not only implicated in the basal cell metabolism as 

an important glycolytic pathway enzyme, but also participated in other functions, such as 

DNA replication and repair, phosphotransferase activity, cytoskeletal organisation and 

exocytotic membrane fusion (Sirover 1999). In addition, 18S rRNA was regarded as 

unsuitable HKG because its high abundance, compared with most target mRNAs, might 

cause different amplification kinetics in real time PCR. In addition, the transcription of 

rRNA could be affected by biological factors and drugs (Spanakis, 1993). It has been 

recognised that a valid HKG is a prerequisite for accurate quantification, especially for in 

vivo samples, which vary more obviously than in vitro samples. However, unfortunately, 
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the expression of these assumed HKGs vary greatly in different tissues and different 

experimental conditions, making the selection of a ‘universal’ HKG for all experiments 

problematic. This has brought about the proposal that appropriate HKGs should be 

validated in each specific experiment (Vandesompele, 2002). 

   

There are some software packages available that can be used for the process of HKG 

validation. The GeNorm software is regarded as the authoritative method for analysis and 

is consequently the most popular method used (Bustin, 2004). It chooses a valid HKG 

based on average expression stability values that represent the average pairwise variation 

of a HKG compared with all other HKGs. In iterative steps, the least stable HKG was 

excluded in each step, and finally the two most stable HKG were found. The two most 

stable HKGs could not be further ranked because gene ratios were used for gene stability 

measurement. Lower average expression stability values indicate more stable gene 

expression. The use of more than one HKG for normalization has been proposed because 

of the obvious HKG expression variations in some experiments. In those cases, the 

normalization factor calculated from several HKGs was believed as a robust method, 

bringing more accurate normalization (Huggett et al., 2005). The cost and limited amount 

of samples may restrict the application of the normalization factor using two or more 

HKGs.  

 

However, co-regulation of HKGs will influence the efficiency of GeNorm method 

because of the pairwise comparison used in this method. Trying to predict the co-

regulation of HKGs is difficult because in addition to their basic roles, some HKGs also 
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have other diverse functions (Singh et al, 1993; Ishitani et al, 1996). The alternative 

software Normfinder ranks gene stability by stability values which are derived from intra-

group variation and inter-group variation (Andersen et al., 2004). According to their 

theory, this method may be more effective to control the influence of co-regulation of 

HKGs and can choose the stablest HKG, instead of the two most stable HKGs by 

GeNorm software. Compared to GeNorm software, it is less used in published paper 

partly because GeNorm software was available earlier and easier to use than Normfinder 

software. Thus, both methods were used in this study to select for the appropriate HKG in 

the detection of aging process in animal tissues. 

. 

1.5.3.2 The appropriate housekeeping gene chosen in aging research 

 

In aging research, real time RT-PCR has been increasingly used to detect changes in gene 

expression (Masternak et al., 2004; Mohamed et al., 2004; Salles et al., 2005). However, 

as yet there has not been a study to identify valid HKGs to use in aging research. Under 

certain experimental conditions and disease states, the expression of some HKGs can 

vary greatly whilst other HKGs remain relatively stable (Thellin et al., 1999; Warrington 

et al., 2000). Because these candidate genes affect the final chosen HKG, we try to 

choose the possible stable HKGs for kidney, liver, cochlea and auditory cortex from 

available information, respectively. In the present study, we used real time RT-PCR to 

study the expression of commonly used HKGs: β-actin, GAPDH, ubiquitin C (UBC), 

HPRT, EF, cyclophilin A (CYPa) or tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide (YWHAZ) in young and old Fischer 
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344 rats and chose a valid HKG using the HKG identification softwares, GeNorm and 

Normfinder. The chosen HKGs were selected as they all have different physiological 

functions - cytoskeleton (β-actin), carbohydrate metabolism (GAPDH), protein folding 

(CYPa), metabolic salvaging of nucleotides (HPRT), protein degradation (UBC), 

translation elongation factor activity (EF) and signal transduction (YWHAZ), thus 

minimizing the risk that the aging process would affect all these genes. Each of the genes 

studied here has been recommended as a suitable HKG in at least one biological 

condition (Choi et al., 1991; Foss et al., 1998; Warrington et al., 2000; Wall et al., 2002; 

Kim et al., 2003; Biederman et al., 2004; Peinnequin et al., 2004;). GAPDH, β -actin and 

18s rRNA or 28s rRNA were the most commonly used HKGs for gene expression studies 

(Suzuki et al., 2000). But, 18s rRNA or 28s rRNA was continually argued as an 

inappropriate HKG because there was the differential gene expression pattern between 

mRNA and rRNA (Spanakis, 1993; Vandesompele et al., 2002). UBC and HPRT had 

relatively constant expressions in 13 different human tissues (Vandesompele et al., 2002). 

EF was also regarded as a stable HKG in many experimental conditions (Warrington et 

al., 2000; Hamalainen et al. 2001).  Kim et al showed that UBC was recommended as the 

stable HKG in liver diseases (Kim et al., 2003), while YWHAZ was recommended as the 

stable HKG in kidney disease (Biederman et al., 2004). So, for liver aging studies in this 

thesis we chose the most stable HKG from the HKGs reported in literature (β-actin, 

GAPDH, HPRT, CYPa and UBC). Based on literature the suitable HKG for kidney aging 

was chosen from β-actin, GAPDH, HPRT, EF and YWHAZ, and for cochlea and auditory 

cortex aging from β-actin, GAPDH, UBC, HPRT, and EF.  

 



 44

Chapter II: Objectives and Significance 

                                               Objectives        
 

We hypothesized that GSE and CR attenuated age related oxidative damage in middle-aged 

rats. Further, the molecular mechanisms mediating the prevention of oxidative damage by 

GSE and CR were explored by microarray, and confirmed by real time RT-PCR. The 

extent of protective effects of GSE and CR was evaluated by pathological grade. 

 

This study consisted of two parts: 

 

I) Intrinsic antioxidant defense changes in liver, kidney, cochlea and auditory cortex 

during the aging process. 

For detecting gene expression changes in the intrinsic antioxidant defence system, real 

time RT-PCR with valid HKG protocol was established. The mRNA expression changes 

of major antioxidant enzymes with age were explored in rat liver, kidney, auditory cortex 

and cochlea by real time RT-PCR with validated HKG method. The most suitable tissue 

for the evaluation of anti-aging intervention of GSE and CR were chosen. 

 

II) Evaluate effects of GSE and CR on age related oxidative damage and gene expression 

profile in middle-aged rats.   

 

 1) Effects of GSE and CR on age related oxidative damage and age related renal 

pathological changes, using 8 isoprostane and carbonyl protein as oxidative markers. 
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2) Explore the molecular mechanisms mediating the prevention of oxidative damage by 

GSE and CR using microarray and real time RT-PCR from gene expression level in rat 

kidney tissue. 

 

In order to illustrate the experimental design of objective I and II, a flow chart is 

summarized in Figure 2.1 and Figure 2.2, respectively. 
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Figure 2.1 the flow chart of evaluating antioxidant enzyme gene expression change in the 

aging rat liver, kidney, auditory cortex and cochlea 

 

 

 

 

 

 

 

 

 

 

 

  Evaluate the variation of HKG expression during the aging process and the necessity of 
using validated HKG for gene expression analysis based on the valid HKG  
 

 Explore mRNA expression changes of major antioxidant enzymes during the 
aging process 

 

Collect liver, kidney, cochlea and auditory cortex tissue  

       8-month-old male Fischer 344 rats (N=9) and 26-month-old male Fischer 344 rats (N=8) 
 

Investigate gene expression of HKGs by real time RT-PCR; 
Choose the stablest HKG using GeNorm and Normfinder software 

Choose the suitable tissue for the evaluation of anti-aging intervention of GSE and 
CR based on age related antioxidant enzyme gene expression change 
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Figure 2.2 the flow chart of evaluating effects of GSE and CR on age related oxidative 

damage and gene expression profile in middle-aged rats 

 

 

 

 

 

 

 

12-month-old male Fischer 344 rats (N=44) were divided into four groups 

Control group 
(N=11) 

Low dose GSE 
group (N=11) 

High dose GSE 
group (N=11) 
 

CR group (N=11) 

Detect biomarkers of 
oxidative damage,  

After 6 months, collect urine and kidney tissue 

Renal pathological  
assessment  

Microarray and Real time 
RT-PCR analysis  
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                                                  Significance 

 

The free radical theory of aging relies heavily on two major components, the formation of 

free radicals and antioxidant protection. Antioxidant enzymes constitute the major part of 

the antioxidant protection system. More recently, investigations on age related 

antioxidant enzyme gene expression changes are becoming fundamental parts of aging 

research. Investigating age related antioxidant enzyme gene expression changes in four 

different rat tissues not only helped us choose the most suitable tissue to effectively 

evaluate the effect of GSE and CR on age related oxidative damage, but also answered 

the fundamental question in aging.  

 

Real time RT-PCR with valid HKG protocol was established for accurately quantifying 

age related antioxidant enzyme gene expression changes. This is the first report 

discussing validation of HKGs in aging research, which will improve gene quantification 

not only by real time RT-PCR, but also by other methods that use HKGs for 

normalization, such as Northern blot analysis. For the first time a wide variation in HKG 

expression was found during the aging process in liver, kidney, cochlear and auditory 

cortex of rats. Our studies showed that choosing appropriate HKGs was vital for accurate 

gene quantification and analysis in aging research because invalid HKGs caused the 

misinterpretation of gene expression levels, even though aging was regarded as a 

physiological process. In addition, the real time RT-PCR with valid HKG protocol was 
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also very useful to validate the microarray data, which was used to explore the molecular 

mechanism of the effects of GSE and CR on age related oxidative damage. 

 

This is the first report using real time RT-PCR with a validated HKG to accurately 

evaluate antioxidant enzyme gene expression changes in the rat liver, kidney, cochlea and 

auditory brain during the aging process, which provides us with a better understanding of 

the mechanisms of aging. We found that age related antioxidant enzyme gene expression 

changes in these four tissues were different, and the most obvious antioxidant enzyme 

gene expression changes occurred in kidney tissue. Thus, kidney tissue was chosen as the 

suitable tissue to evaluate the effects of GSE and CR on age related oxidative damage. 

 

2.2 Evaluate effects of grape seed extract and calorie restriction on age related oxidative 

damage and gene expression profile in middle-aged rats   

 

With increasing understanding of the aging process, aging research becomes a more and 

more intriguing research area. Currently, the only generally accepted intervention to 

retard aging across many species is CR that was initiated after weaning or early in life 

(Weindruch, 1996). More significantly, age related diseases are also prevented by CR 

(Weindruch, 1996). But, the practicability of CR limits the application of CR in human 

being because CR means eating less than 30-40% for a long time. Based on the free 

radical theory of aging, antioxidant intervention is regarded as a more reasonable and 

practical approach (Finkel et al, 2000). GSE has powerful antioxidant effects and 

multiple biological activities. The main active constituent of GSE is proanthocyanidins, 
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which was proposed to be related to increased longevity from epidemiological data 

(Corder et al., 2006). But, the relation between aging and proanthocyanidins was less 

known.  

 

This is the first report to explore the effect of GSE supplementation on the gene 

expression profiling of whole genome in vivo. In addition, we showed that GSE could 

reduce age related lipid oxidative damage based on measuring 8 isoprostane, a reliable 

marker of lipid peroxidation. This paper will be helpful to other researchers to further 

investigate the potential therapeutic effects of GSE. Moreover, age related diseases are 

also closely related with oxidative damage. It can be suggested that GSE might have the 

potential therapeutic effects for age related diseases because GSE can effectively prevent 

age related oxidative damage.  

 

 In addition, this is also the first report to explore the effect of CR   in middle-aged rats on 

the gene expression profiling of whole genome in kidney tissue. Our data showed that 

age related oxidative damage and age related renal pathological changes were effectively 

decreased by adult-onset CR, suggesting that CR initiated in middle-aged was a 

promising rejuvenation model in aging studies.  
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Chapter III: Materials and Methods 

 

3.1 Antioxidant enzyme gene expression change in the aging rat liver, kidney, 

auditory cortex and cochlea 

 

3.1.1 Animals and harvesting tissues 

 

Young (8 months, n=9) and old (26 months, n=8) male specific pathogen free Fischer 

344 rats were obtained from the National Institute of Aging (USA), and the livers and 

kidneys were removed following euthanasia. The Liver and kidney tissues were 

immersed in RNALater (Ambion, USA) overnight at 4 °C before storage at -20°C until 

analysis. Auditory cortexes, identified based on brain maps (Swanson, 1992), and 

cochleae were collected. Auditory cortexes were immersed in RNALater (Qiagen, 

Germany) overnight at 4 °C before storage at -20°C, and cochleae were frozen in liquid 

nitrogen and stored at -80°C. All animal procedures were approved by the Institutional 

Animal Care and Use Committee of National University of Singapore, Singapore.  

 

3.1.2 RNA isolation using the RNeasy Mini kit and quantification 

 

Total RNA was isolated from liver, kidney and auditory cortexes using the RNeasy Mini 

kit (Qiagen, Germany), based on the manufacturer’s instructions. In brief, animal tissues 

were taken out for RNAlater and were weighed. After 600ul RLT buffer was added, 
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about 15mg tissue was homogenized by a power homogenizer. The tissue lysate was 

centrifuged for 3minutes at maximum speed, and then the supernatant was transferred to 

a new tube. After one volume of 70% ethanol was added and mixed, 700ul sample was 

loaded into RNeasy mini column and centrifuged for 15 s at 10,000 x g. It was followed 

by washing with 350ul Buffer RW1, and adding 80ul DNase I (RNase-free DNase set, 

Qiagen) incubation mix for 15 minutes at room temperature, and then washing with 

Buffer 350ul RW1. After RNeasy mini column was washed by 500ul Buffer RPE two 

times, the column was centrifuged at full speed for 1 minute in a new tube. Finally, RNA 

was eluted by 50 ul RNase-free water. To avoid contamination with genomic DNA, an 

off-column (Amplification Grade DNase I kit, Invitrogen, USA) was also performed, 

following the manufacturer’s instructions. RNA sample, 1 ul10X DNase I Reaction 

Buffer, 1 ul DNase I, Amp Grade and DEPC-treated water were added into 0.5ml tube. 

After the incubation of 15 min at room temperature, 1 ul of 25 mM EDTA solution was 

added to the reaction mixture and heated for 10 min at 65°C to make the DNase I 

inactivated.  The concentration of total RNA was quantified using a spectrophotometer at 

260nm, with the OD260/OD280 ratio routinely between 2.00 and 2.12. 

  

3.1.3 RNA isolation using the RNAqueous-Micro Kit and quantification 

 

Before RNA isolation, cochleae were immerged in RNAlater-ICE (Ambion, TX). All 

external cochlear tissue was removed. Bone parts of the cochlea were removed using fine 

forceps. Total RNA was isolated from the membranous parts of the cochlea using 

RNAqueous-Micro Kit (Ambion, TX), including DNase I treatment (Ambion, TX) to 
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remove genomic DNA contamination.  In brief, cochlea in 100 µl Lysis Solution was 

homogenized by a power homogenizer. After that, one-half volume of 100% ethanol was 

added. 150ul sample was put into a Micro Filter Cartridge Assembly, and then 180 µl 

wash Solution 1, and 2 x 180 µl wash Solution 2/3 s were added sequentially to wash the 

filter. The column was centrifuged at full speed for 1 minute in a new tube. Finally, RNA 

was eluted by 10 µl preheated elution solution. 1 µL TURBO DNase and 0.1 volume 10X 

TURBO DNase Buffer was added to the RNA, and then incubated at 37˚C for 30 

minutes. 0.1 volume 10X TURBO DNase Buffer was added and incubated for 2 minutes 

at room temperature. After centrifuging, RNA was transferred to a fresh tube. To 

effectively control genomic DNA contamination, a second DNase digestion of total RNA 

from cochleae was carried out using Amplification Grade DNase I kit (Invitrogen, CA), 

according to the manufacturer’s instructions. The quality of total RNA  was evaluated by 

an Agilent 2100 Bioanalyzer (Agilent, CA) using RNA 6000 Nano kit, which also 

quantify total RNA from auditory cortexes (in triplicate). Only qualified samples were 

further investigated. Since the concentration of total RNA from cochleae was below the 

detectable limit by Bioanalyzer, it was quantified by Tecan Safire² (Switzerland) using 

Ribogreen RNA quantitation kit (Molecular Probes, CA) in triplicate.  

 

3.1.4 RNA integrity analysis using formaldehyde agarose gel electrophoresis. 

 

RNA integrity from kidney and liver tissue was evaluated by formaldehyde agarose gel 

electrophoresis, following the protocol in the manual of Qiagen RNeasy Mini kit. The 

high secondary structure of RNA could be denatured by formaldehyde.  Mixed 2 gram 
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agarose, 10ml 10X formaldehyde agarose buffer (200mM MOPS, 50mM sodium acetate 

and 10mM EDTA) and 90 ml RNase free water. After the mixture being heated to melt 

agarose, 8ml 37% formaldehyde and 1ul of 10 mg/ml ethidium bromide were added into 

the cooled mixture. The mixed gel was immediately poured into a gel tank to assemble. 

After 30 minutes, 1X formaldehyde agarose buffer was added to cover the gel. About 1 

ug RNA was incubated with 5X loading buffer for 5 minutes at 65˚C, chill on ice, and 

then loaded into the wells of the gel. Electrophoresis was carried out at 5V/ml for about 1 

hour. The bands were visualized on a UV transilluminator. 

 

3.1.5 RNA integrity analysis using Agilent 2100 Bioanalyzer 

 

RNA integrity from cochlea and auditory cortexes tissue was evaluated by Agilent 2100 

Bioanalyzer (Agilent, CA) using RNA 6000 Nano kit. Compared with formaldehyde 

agarose gel electrophoresis, Agilent 2100 Bioanalyzer only needed very small amount of 

RNA, which was suitable for cochlea and auditory cortexes because small amount of 

RNA from cochlea and auditory cortexes were available. In brief, 1 µl of RNA 6000 

Nano dye was added into a 65 µl aliquot of filtered gel, and 9 ul of the gel-dye mix was 

loaded in appropriate wells in RNA 6000 Nano chip. After the chip was primed, 5 µl of 

RNA 6000 Nano marker and 1 µl of heat denatured RNA ladder or heat denatured sample 

were loaded in suitable wells, respectively. The chip was horizontally vortexed for 1 min 

at 2400 rpm, and then was put in the Agilent 2100 Bioanalyzer. 
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3.1.6 Reverse transcription 

 

Based on accurate quantification of total RNA, the same amount of total RNA were 

loaded in reverse transcription. First-strand cDNA was synthesized using the SuperScript 

III First Strand Synthesis System (Invitrogen), according to the manufacturer’s 

instructions with OligodT 20 and 600 ng RNA. Briefly, appropriate RNA sample, 1 ul 50 

µM oligodT20, 1 ul 10 mM dNTP mix  and DEPC-treated water  were added to 10ul into 

0.5ml tube. After the incubation of 5 min at 65°C, 10 µl of cDNA Synthesis Mix (2ul 

10X RT buffer, 4ul 25 mM MgCl2, 2 µl 0.1 M DTT, 1ul RNaseOUT and  1ul 

SuperScript III RT) was added to the reaction mixture and incubated 50 min at 50°C. The 

reaction was terminated at 85°C for 5 min. 1 µl of RNase H was added and incubated for 

20 min at 37°C. CDNA was stored at -20°C. One sample without reverse transcriptase 

(RT) was included as the negative control.  

 

3.1.7 Optimization of Polymerase chain reaction and Real time PCR 

 

Optimization was carried out using the QuantiTect SYBR Green PCR kit (Qiagen), using 

the gradient procedure of a DNA Engine Opticon 2 (MJ research, USA). The specificity 

of PCR products was confirmed by both melting curve analysis. Real time PCR was 

performed under optimal conditions using the following PCR amplification mixture (20µl 

total) – 2x QuantiTect SYBR Green PCR master mix, 0.3uM forward and reverse primers 

(Table 3.1), and 0.8ul of 1:10 dilution cDNA. The cycling conditions were: 15 minutes 

initial activation step at 95 °C; then 94°C for 15 s, annealed at optimal temperature for 30 



 56

s, and 72°C for 30 s, repeated for 40cycles. Finally the melting curve analysis was 

performed, and samples were then cooled to 10 °C. Fluorescent data was acquired at high 

temperatures to avoid inference of non-specific fluorescence signals (Ball et al, 2003). 

Each assay included a no-template control and a RT negative control. For each gene 

tested, all samples were detected in triplicate in the same plate, avoiding inter-plate 

variation. A relative standard curve was produced from a three-fold dilution series across 

five data points to calculate amplification efficiencies and correlation coefficient (R2). 

Amplification efficiencies were calculated using the equation: E=10[-1/slope] –1.  
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Table 3.1 PCR primers for detecting housekeeping genes and antioxidant genes expression 
 

Gene 5'-3' primer sequence Reference 

For CTCATGGACTGATTATGGACAGGAC 
HPRT‡ 

Rev GCAGGTCAGCAAAGAACTTATAGCC 
Peinnequin et al,2004 

For TATCTGCACTGCCAAGACTGAGTG 
CYPA‡ 

Rev CTTCTTGCTGGTCTTGCCATTCC 
Peinnequin et al,2004 

For AGGGCTGCCTTCTCTTGTGAC 
GAPDH 

Rev TGGGTAGAATCATACTGGAACATGTAG 
 Zhang et al,2004 

For TCGTACCTTTCTCACCACAGTATCTAG 
UBC 

Rev GAAAACTAAGACACCTCCCCATCA 
Depreter et al,2002 

For ATCGCTGACAGGATGCAGAAG 
β-actin 

Rev AGAGCCACCAATCCACACAGA 
Noda et al,2003 

For CGAGCATGGGTTCCATGTC 
Cu/ZnSOD‡ 

Rev CTGGACCGCCATGTTTCTTAG 
Song et al,2001 

For ACAACTCCCAGAAGCCTAAGAATG 
Catalase‡ 

Rev GCTTTTCCCTTGGCAGCTATG 
Depreter et al,2002 

For GGAGAATGGCAAGAATGAAGA 
GPX 

Rev CCGCAGGAAGGTAAAGAG 
* 

For ATTGTTGCTGCTGGT GTTGG 
EF 

Rev GTATGGTGGCTCGGTGGAA 
# 

For GCTGGCTTGGCTTCAATAAG 
Mn-SOD 

Rev AATCCCCAGCAGTGGAATAA 
Pang et al,2002 

 For - forward primer, Rev - reverse primer  
‡ - Indicates primer sets that flanked intron sequences 
* These primers were designed by Prime 3, and the accession number of GPX was X12367. 
# These primers were designed by Prime 3, and the accession number of EF was NM_175838. 
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3.1.8 HKG stability analysis 

 

GeNorm 3.4 and Normfinder were used to evaluate HKG stability. GeNorm ranked gene 

stability by average expression stability values (M), which was the average pairwise 

variation of a HKG compared with all other HKGs. Normfinder ranked gene stability by 

stability values which were derived from intra-group variation and inter-group variation. 

More stable gene expressions indicated lower average expression stability values. 

 

3.1.9 Normalization factor determination by GeNorm 

 

The normalization factor (NF) was calculated from multiple HKG and was thought to be 

a more accurate method of normalization. In our experiment, a NF from HPRT-GAPDH- 

β actin was determined by GeNorm. The theory of choosing and calculating NF by 

GeNorm was described in Vandosempele et al (2002). From the stability analysis using 

GeNorm, it was known that the two most stable HKGs in our experiment were HPRT and 

GAPDH. The NF2 was based on the expression levels of these two genes and 

furthermore calculated using different combinations of genes by including the most stable 

remaining control gene (HPRT-GAPDH- β actin (NF3), HPRT-GAPDH- β actin-CYPa 

(NF4), and HPRT-GAPDH- β actin-CYPa-UBC (NF5)). For every series of NFn and 

NFn+1, pairwise variation was calculated, for example, NF2:NF3, then NF3:NF4 and 

finally NF4:NF5. A high pairwise variation value meant that the added gene had a 

significant effect on normalization and should be included in the NF. According to 

Vandosempele et al (2002), the ideal pairwise variation value is less than 0.15. Thus, 
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following the pair-wise variation analysis, it was decided that the NF would be derived 

from HPRT-GAPDH-β actin in our experiment. 

 

3.1.10 Data analysis 

 

Data analysis of HKG stability was carried out according to the manual of GeNorm 3.4 

(http://medgen.ugent.be/%7Ejvdesomp/genorm/) (Vandesompele et al., 2002) and 

Normfinder (http://www.mdl.dk/publications_normfinder.htm) (Andersen et al. 2004), 

respectively. GeNorm software, an authoritative and popular method (Bustin and Nolan, 

2004), chooses a valid HKG based on average expression stability values, which 

represent the average pair wise variation of a HKG compared with all other HKGs. But, 

average expression stability values are influenced by co-regulation of HKGs. In order to 

resolve this problem, the alternative software Normfinder was also used because it ranks 

genes according to their stability values, which are derived from intra- and inter- group 

variations and are more effective in controlling the influence of co-regulation of HKGs. 

Statistically significant differences were evaluated by the Mann Whitney U non 

parametric analysis. p values below 0.05 were considered significant differences. Data 

was presented as the mean ±SE (standard error). 
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3.2 Effect of grape seed extract and CR on gene expression 

 

3.2.1 Animals and harvesting tissues 

 

Specific pathogen free 12 months male Fischer 344 rats were obtained from (NIA, 

Bethesda, MD). The control group (n=11) was fed with NIH31 diet ad libitum. GSE 

(Interhealth Nutraceuticals Incorporated, Benicia, CA) was added to the NIH31 diet at the 

concentrations of 0.2% (w/w) as low dose group (n=11) and 1% (w/w) as high dose 

group (n=11). CR group(n=11) was fed with NIH31/NIA Fortified diet, which was 

enriched in vitamins to make sure the same level of vitamins consumption with control 

group to avoid the potential confounding in antioxidant supplement experiment. CR is 

gradually initiated from12 months of age, at first week at 10% restriction, increased to 

25% restriction at second week and to 40% restriction at third week and was maintained 

throughout the experiment, according to the CR protocol of National Institute of Aging. 

Food consumption was measured every week. Animals were weighed every week in the 

first 3 months, and every two weeks in the last three months since the animal weight was 

relatively stable during this period.  

 

After six months, 24h urine was collected by metabolic cages and stored at -80°C in the 

presence of 0.005% BHT, to avoid oxidative formation. These animals were sacrificed 

via anesthesia using a mixture of ketamine (40mg/kg) and xylazine (10mg/kg) by 

intraperitoneal injection. Before samples collection, a perfusion was performed using 

PBS solution. A portion of the renal cortex was collected and stored at -80°C for further 
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use, and the other portion was immersed in RNALater (Ambion, TX) overnight at 4 °C 

before storage at -20°C. In addition, a part of kidney tissue was placed in 4% 

paraformaldehyde to fix. These tissue were processed in the Tissue-Tek® VIP™ 5 

Vacuum Infiltration Processor (Sakura finetek, USA), and paraffin-embedded for 

histological evaluation. All animal studies in this paper were approved by the Biological 

Resource Centre Institutional Animal Care and Use Committee.    

 

3.2.2 RNA isolation, quantification and integrity analysis 

 

RNA isolation and integrity analysis were carried out as previously described in 3.1.2 and 

3.1.5, respectively. Briefly, total RNA was isolated using the RNeasy Mini kit (Qiagen, 

Germany) with on-column DNase digestion step using RNase-free DNase set (Qiagen, 

Germany). To effectively control genomic DNA contamination, a second DNase 

digestion of total RNA was carried out using Amplification Grade DNase I kit 

(Invitrogen, CA). The quality of total RNA was evaluated by an Agilent 2100 

Bioanalyzer (Agilent, CA) using RNA 6000 Nano kit (Agilent). RNA was quantified by 

Nanodrop ND-1000 spectrophotometer. 1 ul of distilled water was used to blank the 

system. After that, 1.5 ul of RNA was placed onto the pedestal. OD260 and OD280 were 

measured at the same time. OD260/OD280 ratio was between 2.00 and 2.18. 

 

3.2.3 Microarray and data analysis  

 

The GeneChip® Rat Genome 230 2.0 Array (Affymetrix, Santa Clara, CA, USA) was 
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used according to the instruction manual. In this study, total RNA from the kidney of   10 

samples of control groups, 7 samples of high dose GSE group and 7 samples of CR group 

was used. In brief, 3 microgram of total RNA sample was converted into double-stranded 

cDNA using The One-Cycle cDNA Synthesis Kit (Affymetrix). After cleanup, the 

Biotin-labeled cRNA was synthesized by The IVT Labeling Kit (Affymetrix). After 

purification and fragmentation, the biotin-labeled cRNA fragment was hybridized to Rat 

Genome 230 2.0 Array for 16 hours. After incubation, the chips were washed and stained 

using the GeneChip® Hybridization, Wash, and Stain Kit (Affymetrix). These chips were 

scanned by a GeneChip Scanner 3,000 and converted into GeneChip Cell files (CEL) 

with the GeneChip Operating Software package.   

 

Rat Genome 230 2.0 Array have the ability of measuring 30,000 transcripts and variants 

from over 28,000 well-substantiated rat genes. These CEL files were analyzed using the 

Genespring GX 7.3 software (Agilent Technologies). Normalization was performed using 

the GC RMA method. Expression filter was used to remove low unreliable 

measurements. 

 

Volcano plot was used to identify the genes, which had 1.5 fold change and P value less 

than 0.05. For the comparison between control group and CR group, a Bejamini and 

Hochberg false discovery rate was used to control false positive. For the comparison 

between control group and high dose GSE group, false discovery rate filter was not used 

because the gene expression change by high dose GSE was so small that no gene passed 
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the false discovery rate filter. The related heatmaps were plotted by Genespring GX7.3 

software. 

 

3.2.4 Real time RT-PCR using Applied Biosystems 7300 Real Time PCR System 

 

Real time RT-PCR was carried out to confirm microarray data. First-strand cDNA was 

synthesized using the SuperScript III First Strand Synthesis System with Oligo (dT) 20 

(Invitrogen, CA), as described in 3.1.6. Real time RT-PCR was performed using Taqman 

universal PCR master mix kit in Applied Biosystems 7300 Real Time PCR System, and 

primer sets were used as described (table 3.2). The cycling conditions were: initial 

activation step at 50 °C for 2 min and 95 °C for 15 min; 40cycles at 94°C for 15 s, 

annealing and   extension at 60°C for 60 s.  According to Bustin’s suggestion (Bustin and 

Nolan, 2004), for low expression genes whose Ct values were above 37, the reaction ran 

for 45 cycles. Since low copy genes have large variation, they were detected in 

quadruplicate. The replicate farthest away from the mean was regarded as the outlier 

according to Stankovic’s method (Stankovic and Corfas, 2003). For other genes tested, all 

samples were performed in duplicate. Both a no-template control and a RT negative 

control were included in each assay. 
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Table 3.2 PCR primers from Applied Biosystems 

Genes Assay ID Genes Assay ID 

β actin Rn00667869_m1 Catalase Rn00560930_m1 

GAPDH Rn99999816_s1 GPX Rn00577994_g1 

HPRT Rn01527840_m1 Mn-SOD Rn00566942_g1 

EF Rn01639851_g1 15-LO Rn00696151_m1 

YWHAZ Rn00755072_m1 S100a8 Rn00587579_g1 

Cu/Zn-SOD Rn00566938_m1 Cdc25B Rn00592081_m1  

kallikrein   Rn01458139_g1 C 3 Rn00566466_m1 

CCL5  Rn00579590_m1   

 

Based on our previous finding, there was a wide variation in housekeeping gene 

expression during aging and invalid housekeeping genes caused misleading results (Chen 

et al., 2006). GeNorm software was used to choose the reliable housekeeping genes. Data 

analysis of housekeeping gene stability was carried out according to the manual of 

GeNorm 3.4 (http://medgen.ugent.be/%7Ejvdesomp/genorm/) (Vandesompele et al., 

2002). The GeNorm software, an authoritative and popular method (Bustin and Nolan, 

2004), selects valid housekeeping gene based on average expression stability values, 

which represent the average pair wise variation of a housekeeping gene compared with 

all other housekeeping genes. To provide more accurate normalization, the normalization 

factor was calculated from multiple housekeeping genes in this experiment. The method 

has been described in 3.1.9 in detail. 
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3.2.5 Oxidative damage marker measurement 

 

3.2.5.1 8-isoprostane: the marker of lipid peroxidation 

 

Urinary 8-isoprostane was measured by 8-isoprostane enzyme immunoassay (EIA) kit 

(Cayman Chemical, Ann Arbor, MI, USA.) with purification by 8-isoprostane affinity 

column (Cayman Chemical), according to the manufacturer’s instructions. Briefly, after 

centrifugation, 0.5ml of urine was added into 8-isoprostane affinity column. After that, 

the column was washed with 2ml column buffer and ultrapure water, sequentially. 8-

isoprostane was eluted by 2ml elution solution. The final eluted fraction was evaporated 

with nitrogen gas, and then was resuspended in EIA buffer. Following the manual of 8-

isprostane EIA kit, sample, standard, tracer and antiserum was added into the appropriate 

wells. The plate was incubated for 18 hours at room temperature, and then developed by 

Ellman’s reagent. The plate was read at a wavelength of 412nm. EIADouble Excel 

workbook from Cayman Chemical was used to calculate the concentration of 8-

isoprostane. To avoid the influence of muscle mass and dehydration among the different 

rats, the creatinine level of urine was measured by creatinine assay kit (Cayman 

Chemical, Ann Arbor, MI, USA.). In brief, following the manual of creatinine assay kit, 

sample and standard was added into the appropriate wells. 150 ul of alkaline picrate 

solution was added to all wells and incubated for 10minutes at room temperature, and 

then was read at a wavelength of 495nm as initial absorbance reading. 5 ul of acid 
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solution was added to the wells being used, and incubated for 20minutes at room 

temperature, and then was read at a wavelength of 495nm as final absorbance reading. 

Initial and final absorbance readings were used to calculate the concentration of 

creatinine following the manual of this kit. 

 

3.2.5.2 Protein carbonyl: the marker of protein oxidation 

 

The Protein oxidation in kidney tissue was measured by protein carbonyl, which was 

assayed by using the protein carbonyl assay kit (Cayman Chemical, Ann Arbor, MI, 

USA). Protein concentration was quantified by spectrophotometric method, according to 

the protein carbonyl assay kit’s instructions. In brief, 100mg kidney tissue was 

homogenized by a power homogenizer in cold PBS buffer (containing 1mM EDTA). The 

tissue lysate was centrifuged for 15minutes at 10,000g at 4 ˚C, and then the supernatant 

was transferred to a new tube .To remove nucleic acids, samples were incubated with 

streptomycin sulfate at a final concentration of 1% for 15minutes at room temperature, 

and then centrifuged for 10minutes at 6,000g at 4 ˚C. The supernatant was kept for 

carbonyl assay. 200ul of supernatant was transferred to two plastic tubes, in which one 

was used as sample tube and another one was used as control tube. 800ul of DNPH was 

added into sample tube, while 800 ul of 2.5M HCl was added into control tube. After 1 

hour incubation in the dark, 1ml of 20% TCA was added and vortexed. After 

centrifugation for 10minutes at 10,000g at 4 ˚C, the supernatant was discarded and the 

pellet was resuspended in 1ml of 10% TCA. After centrifugation for 10minutes at 

10,000g at 4 ˚C, the supernatant was discarded and the pellet was resuspended in 1ml of 
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(1:1) ethanol/ethyl acetate mixture for three times. Finally, the pellet was resuspended in 

0.5ml of guanidine hydrochloride. After centrifugation for 10minutes at 10,000g at 4 ˚C, 

220 ul of the supernatant was transferred to a 96 well plate, and then measured at a 

wavelength of 370 nm using a plate reader. The formula from protein carbonyl assay kit 

was used to calculate the concentration of protein carbonyl. 

 

3.2.6 Pathology evaluation 

 

4 μm sections from the paraffin-embedded kidney were stained with hematoxylin and 

eosin staining for histological evaluation. According to Yu’s method (Yu, et al, 1982), 

kidney pathological changes were classified. In brief, Grade 0, no lesions; Grade 1, all 

lesions were minimal and local in glomeruli and tubule, such as little changes in 

glomeruli and swollen tubular cells; Grade 2, lesions were mild severity in glomeruli and 

tubule, involving thickening of mesangial matrix and tubular atrophy; Grade 3, lesions 

were moderate severity in glomeruli and tubule involving the same structure of grade 2 

but more widely, and thickening of Bowman’s capsule and mild interstitial fibrosis; 

Grade 4, lesions were very severity and diffuse in glomeruli and tubule involving diffuse 

sclerosis in  glomeruli; Grade E, end-stages lesions, involving a wide glomerulosclerosis 

and lack of normal morphological evidence of renal tissue. In addition, 

glomerulosclerosis and tubular atrophy were evaluated according to Melk’s method 

(Melk et al., 2005). The pathological grading was carried out by a pathologist, in a 

blinded way.  

. 
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3.2.7 Urinary protein quantification 
 

 
The urinary protein was quantified according to Bio-Rad Protein Assay Kit II manual 

(Bio-Rad, CA).Briefly, dye reagent was prepared by diluting 1 part Dye Reagent 

Concentrate with 4 parts ultrapure water. Five dilutions of a protein standard (bovine 

serum albumin) were prepared. Each urine sample was diluted at a 1:20 dilution using 

ultrapure water. 10 μl of each standard or sample solution was pipette into a 96-well 

microtiter plate in triplicate. 200 μl of diluted dye reagent was added to each well. The 

plate was incubated for 15 minutes at room temperature. After incubation, the plate was 

read at a wavelength of 595 nm. 

 

3.2.8 Data analysis 

 

Data was presented as the mean ± SE (standard error). For data that are normality and 

homogeneity of variance, statistically significant differences were evaluated by one way 

ANNOVA; for all other data, the Mann-Whitney U non parametric analysis was used. P 

values below 0.05 were considered significant differences.  
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Chapter IV: Antioxidant enzyme gene expression change in the aging rat liver, 

kidney, auditory cortex and cochlea 

 

4.1 Results 

4.1.1 Real time RT-PCR specificity, efficiency and linearity 

 

Following real time RT-PCR the resulting PCR products were analyzed to confirm the 

specificity of the reaction. The PCR products from each gene of interest were analyzed 

by melting curve analysis as shown in Figure 4.1.1A (Cu/Zn SOD) & 4.1.1B (HPRT). 

Only one single PCR product was evident in melting curve analysis, confirming the 

specificity of the PCR reaction. A relative standard curve method was used to calculate 

amplification efficiencies and correlation coefficients (R2). For all these tested genes, 

PCR efficiencies were above 96% and correlation coefficients were more than 0.99.This 

proved that the data obtained from the real time RT-PCR experiments were reliable and 

could be used for further analysis. 
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Figure 4.1.1 The real time RT-PCR was specific 

In real-time RT-PCR, a melting curve analysis was performed to demonstrate the 

specificity of the reactions. The plots showed melting curves of (A) Cu/Zn-SOD and (B) 

HPRT. Only a single peak was evident in the melting curve demonstrating the high 

specificity of the reaction.  
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4.1.2 The stability sequence of HKGs in liver, kidney, auditory cortex and cochlea 

 

To identify the HKG with the most stable expression in the liver during the aging 

process, the HKG selection software packages GeNorm and Normfinder were used. In 

liver tissue, HPRT was identified as the most stable HKG by both analysis packages. 

GeNorm identified GAPDH and HPRT as the most stable HKG (Figure 4.1.2) with 

stability values of 0.42 for both genes. When the analysis from Normfinder was also 

taken into account (Table 4.1.1), we were able to select HPRT over GAPDH as our HKG. 

This was based on the very small intra-group variation for HPRT compared to GAPDH 

(0.010 compared to 0.064 for young rats and 0.018 compared to 0.089 for old rats). The 

inter-group variations were comparable (0.040 for HPRT, 0.038 for GAPDH). 

 

In kidney tissue, HPRT was also identified as the most stable HKG by both analysis 

packages. GeNorm identified HPRT and YWHAZ as the most stable HKG (Figure 4.1.3). 

The stability value of HPRT and YWHAZ was 0.379. Furthermore, Normfinder was used 

to evaluate gene stability by considering intergroup variation and intragroup variation 

(Table 4.1.2). The stability value of HPRT was 0.117, which was better than that of 

YWHAZ (0.148).  The stability of HPRT was obviously better in intragroup variation of 

young and old rats (0.017 compared to 0.086 for young rats and 0.030 compared to 0.044 

for old rats), and both genes had similar inter-group variations. Thus, HPRT was 

identified as the most stable housekeeping gene in rat kidney aging. 
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Figure 4.1.2 HPRT and GAPDH were the most stable housekeeping genes by GeNorm 
in liver  
The GeNorm software was used to identify the most stable HKG using a pairwise 
variation analysis. The plot showed the average expression stability values for the HKGs, 
with a low value representing stable HKG expression. 
 
Table 4.1.1 Expression stability of housekeeping genes evaluated by Normfinder in liver  
 
Gene Rank Stability 

Value∗ 
Intragroup  
Variation 
(Y) 

Intragroup  
Variation 
(O) 

Intergroup  
Variation 

β-actin 3 0.182 0.021 0.155 0.065 

CYPa 4 0.339 0.106 0.015 0.261 

GAPDH 2 0.162 0.064 0.089 0.038 

HPRT 1 0.096 0.010 0.018 0.040 

UBC 5 0.343 0.033 0.142 0.248 

∗ Stability values were derived from both intragroup and intergroup variation. The lower 
the value; the more stable the gene expression.  (Y) = young rats; (O) = old rats 
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Figure 4.1.3 HPRT and YWHAZ were the most stable housekeeping genes by GeNorm 
in kidney  
The GeNorm software was used to identify the most stable HKG using a pairwise 
variation analysis. The plot shows the average expression stability values for the HKGs, 
with a low value representing stable HKG expression. 
 

Table 4.1.2 Expression stability of housekeeping genes evaluated by Normfinder in 
kidney  
 

Gene Rank Stability 

Value∗ 

Intragroup 
Variation 

(Y) 

Intragroup 
Variation 

(O) 

Intergroup 
Variation 

β-actin 4 0.188 0.054 0.117 0.063 

EF 3 0.171 0.130 0.003 0.179 

GAPDH 5 0.231 0.071 0.016 0.120 

HPRT 1 0.117 0.017 0.030 0.051 

YWHAZ 2 0.148 0.086 0.044 0.049 

∗ Stability values were derived from both intragroup and intergroup variation. The lower 
the value; the more stable the gene expression.  (Y) = young rats; (O) = old rats 
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As shown in Figure 4.14, the stability of HKGs in the auditory cortex of rat was ranked 

using GeNorm software. EF and UBC were chosen as the two most stable HKGs with 

stability values of 0.208. However, GeNorm software could not determine any further 

ranking between EF and UBC since gene ratios were used for gene stability analysis in 

this software. As a result, Normfinder software was used to evaluate the stability of 

HKGs, and the values are summarized in Table 4.1.3. The stability of EF was better than 

the stability of UBC (0.058 for EF, 0.070 for UBC). This was based on the intergroup 

variation that was obviously smaller for EF as compared to UBC (0.011for EF, 0.033 for 

UBC), and the intragroup variations were relatively comparable between EF and UBC 

(0.003 compared to 0.004 in young rats and 0.022 compared to 0.012 in old rats). Thus, 

these results indicated that EF was the most stable HKG in rat auditory cortex. 
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Figure 4.1.4 Housekeeping genes ranked by GeNorm software in rat auditory cortex 
The picture shows the average expression stability values of the HKGs, with a low value 
representing stable HKG expression. 
 

Table 4.1.3 Expression stability of Housekeeping genes was evaluated by Normfinder 
software in auditory cortex of rats. 

Gene Rank Stability Value∗ Intra-group 
Variation(Y) 

Intra-group 
Variation(O) 

Intergroup 
Variation 

β-actin 4 0.116 0.016 0.010 0.072 

EF 1 0.058 0.003 0.022 0.011 

GAPDH 3 0.107 0.049 0.014 0.040 

HPRT 5 0.180 0.032 0.028 0.134 

UBC 2 0.070 0.004 0.012 0.033 

 (Y) = young rats; (O) = old rats ∗ Stability values were derived from both intragroup and 
intergroup variation. The lower the value; the more stable the gene expression.  

 

 



 76

In rat cochlea, GAPDH was ranked as the most stable HKG by both software packages. 

GAPDH and HPRT were identified as the most stable HKG with stability values of 0.323 

by GeNorm software (Fig.4.1.5), whereas the stability values of β-actin and EF were 

0.461 and 0.425, respectively. Furthermore, Normfinder was used to evaluate gene 

stability by considering inter- and intra- group variations (Table 4.1.4). The stability value 

of GAPDH was 0.063, which was better than that of HPRT (0.081). The stability value of 

GAPDH was obviously better in intragroup variation of old rats than the stability value of 

HPRT (0.009 for GAPDH, 0.044 for HPRT). Thus, GAPDH is the most stable HKG in 

rat cochlea. 
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Figure 4.1.5 Housekeeping genes ranked by GeNorm software in rat cochlea  
The picture shows the average expression stability values of the HKGs, with a low value 
representing stable HKG expression. 
 
 
Table 4.1.4 Expression stability of Housekeeping genes was evaluated by Normfinder 
software in the cochlea of rats 
 

Gene Rank Stability 
Value∗ 

Intragroup 
Variation(Y) 

Intragroup 
Variation(O) 

Intergroup 
Variation 

β-actin 5 0.123 0.084 0.124 0.009 

EF 2 0.072 0.013 0.063 0.009 

GAPDH 1 0.063 0.062 0.009 0.056 

HPRT 3 0.081 0.047 0.044 0.017 

UBC 4 0.097 0.035 0.099 0.056 

(Y) = young rats; (O) = old rats. ∗ Stability values were derived from both intragroup and 
intergroup variation. The lower the value; the more stable the gene expression.  
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4.1.3 The housekeeping genes expression variation between young and old rats in 

liver, kidney, auditory cortex and cochlea  

 

Base on valid HKGs, the HKGs expression variation was further evaluated between 

young and old rats in liver, kidney, auditory cortex and cochlea, respectively.  In liver 

tissue, after normalization to the confirmed HKG, HPRT, compared to young rats, 

mRNA expression of UBC was significantly decreased in old rats (p<0.01), while mRNA 

expression of CYPa was significantly increased in old rats (p<0.01) (Figure 4.1.6). There 

were no significant differences in GAPDH and β-actin between the two groups, even 

though β-actin mRNA in old rats increased by 29.6% compared to young rats (p=0.07).  

 

In kidney tissue, as shown in Figure 4.1.7, mRNA expression of β-actin was significantly 

increased in old rats (p<0.05). There was no significant difference in GAPDH, EF and 

YWHAZ between young and old rats in kidney aging. 

 

The variations of HKGs in auditory cortex and cochlea of rats are illustrated in Figure 

4.1.8 and 4.1.9. In rat auditory cortex, mRNA expression of HPRT and β-actin 

significantly decreased (p<0.05) and increased (p<0.05) respectively in old rats as 

compared to young rats while no significant differences in GAPDH and UBC were found 

between the two groups of rats. In rat cochlea, the expression of UBC mRNA increased 

significantly in old rats (p<0.05). Therefore, these data suggested variations in HKGs in 

rat liver, kidney, auditory cortex and cochlea tissue during the aging process, and thus the 

importance of selecting a suitable HKG when analysing aging in specific tissue. 
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Figure 4.1.6 Housekeeping genes expression variation between young and old rats in 
liver  
To compare the HKGs expression variation between young and old rats, each HKGs 
expression was normalized to the confirmed HKG, HPRT. The graph represents the 
average HKG gene expression in the liver of young (white bar, n=9) and old (black bar, 

n=8) rats ± SE (standard error). ∗ Represents p<0.01  
 

 

Figure 4.1.7 Housekeeping genes expression variation between young and old rats in 
kidney  
To compare the HKGs expression variation between young and old rats, each HKGs 
expression was normalized to the confirmed HKG, HPRT. The graph represents the 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

EF GAPDH β-actin YWHAZ

N
o

rm
al

iz
ed

 m
R

N
A

 e
xp

re
ss

io
n

* 



 80

average HKG gene expression in the liver of young (white bar, n=9) and old (black bar, 
n=8) rats ± SE (standard error). ∗ Represents p<0.05 

 

Figure 4.1.8 Housekeeping genes expression variation in auditory cortex  
The level of different HKGs was normalized to the validated HKG, EF. Data were 
expressed as mean ± SE. Young rats (white bar, n=9) and old rats (black bar, n=8).  
∗ represents p<0.05. 
 
 

 

Figure 4.1.9 Housekeeping genes expression variation in cochlea 
The level of different HKGs was normalized to the validated HKG, GAPDH. Data were 
expressed as mean ± SE. Young rats (white bar, n=8) and old rats (black bar, n=6).  

∗ represents   p<0.05. 
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4.1.4 Analysis of Cu/Zn-SOD and catalase gene expression normalized by different 

housekeeping genes  

 

To demonstrate the importance of selecting the correct HKG when using gene expression 

analysis techniques, we used different HKGs to compare the gene expression of Cu/Zn-

SOD and catalase in liver tissues from young and old rats. As shown in Figure 4.1.10, 

when expression levels were normalized using UBC, an invalid HKG, Cu/Zn-SOD 

expression had a significant difference in expression levels in liver tissues between young 

and old rats. On the contrary, after normalization to HPRT, the validated HKG, there was 

no statistically significant difference in Cu/Zn-SOD expression. An alternative method to 

quantify gene expression used the normalization factor (NF), which is based on the 

expression level of multiple HKGs. The GeNorm analysis software was used to calculate 

the NF in our samples, and then a NF value derived from HPRT-GAPDH-β actin 

expression was selected. When Cu/Zn-SOD expression was normalized using the NF, no 

statistically significant difference was seen (Figure 4.1.10). In addition, there was a 

statistically significant decease in catalase gene expression in liver during the aging 

process when it was normalized to HPRT (p<0.001) and UBC (p<0.05), yet it should be 

noted that compared to young rats, the level of catalase mRNA decreased by only 31.20% 

in old rats when normalized using UBC, which was about half value when normalized 

using HPRT (57.73%). This data demonstrated that selection of a validated HKG was 

essential for the correct interpretation of gene expression analysis data in aging research.  
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Figure 4.1.10 Influence of different housekeeping genes on interpretation of Cu/Zn-SOD 
mRNA expression in the rat liver aging process. 
 
The level of Cu/Zn-SOD mRNA was normalized to UBC (first two bars), HPRT (middle 
two bars) and NF (last two bars), respectively. NF= normalization factor. Data were 
expressed as mean ± SE. Young rats (white bar, n=9) and old rats (black bar, n=8).  
∗ represents p<0.05  
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Similarly, Figure 4.1.11 showed how different HKGs influenced the interpretation of 

Cu/Zn-SOD and catalase mRNA expressions in the aging process of rat auditory cortex. 

When Cu/Zn-SOD gene expression was normalized by EF, the validated HKG, no 

significant difference was found in auditory cortex between young and old rats. In 

contrast, when Cu/Zn-SOD gene expression was normalized by β-actin, the invalid HKG, 

there was a statistically significant (p<0.05) difference between young and old rats. This 

is due to the significant increase of β-actin expression in the auditory cortexes of old rats 

rather than the variations in Cu/Zn-SOD gene levels. A similar situation was observed in 

the interpretation of catalase gene expression. In the cochlea, no statistically significant 

difference in Cu/Zn-SOD gene expression was found when it was normalized to GAPDH 

(p>0.05) and UBC (p>0.05). However, it was worth noting that the level of Cu/Zn-SOD 

mRNA decreased in old rat cochlea by only 1.0% when normalized using GAPDH, the 

validated HKG, whereas it decreased by 18.4% when normalized using UBC, the invalid 

HKG.  Thus, these results suggest that the validated HKG is a prerequisite for analyzing 

gene quantification. 
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Figure 4.1.11 Interpretation of Cu/Zn-SOD and catalase gene expression by different 
housekeeping genes in rat auditory cortex. 
The level of Cu/Zn-SOD mRNA and catalase mRNA was normalized to EF and β-actin 
respectively. Data were expressed as mean ± SE. Young rats (white bar, n=9) and old rats 
(black bar, n=8).  
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4.1.5 Antioxidant enzyme gene expression changes in the liver, kidney, auditory 

cortex and cochlea of aged rat  

 

As shown in Table 4.1.5, mRNA expression of catalase decreased significantly in liver 

tissues between young and old rats with expression levels in the old rats’ only 42.27% of 

that seen in the young rats. Similar to the results for Cu/Zn-SOD, there was no significant 

difference in GPX expression, however there did appear to be a trend for increased 

expression of GPX in the elderly rats, although it did not reach significance (p=0.06).  

 

In kidneys, the mRNA of Cu/Zn-SOD and catalase was significantly lower in old rats 

than in young rats. The expression level of Cu/Zn-SOD mRNA decreased by 52.7%, 

while the level of catalase decreased by 46.2% between 8 and 26 months of age. There 

was no significant difference in the expression of Mn-SOD and GPX expression in 

kidney tissues between young and old rats (Table 4.1.5).  

 

Antioxidant enzymes variations in rat cochlea and auditory cortex during the aging 

process were shown in Table 4.1.5.  In rat cochlea and auditory cortex, there was no 

significant difference in Cu/Zn-SOD, Mn-SOD, catalase and GPX mRNA expressions 

between young and old rats. However, Mn-SOD mRNA expression decreased by 29.7% 

in the cochlea of old rats, compared with the young rats, even though there was no 

statistical difference. 
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Table 4.1.5 Antioxidant enzymes expression variation between young and old rats in 
liver, kidney, auditory cortex and cochlea  
 

 Cu/Zn-SOD Mn-SOD Catalase GPX 

Young liver 1.18±0.13 1.61±0.23 1.45±0.11 0.69±0.05 

Old  liver 1.09±0.12 1.75±0.13 0.61±0.05* 1.23±0.24 

Young kidney 1.31±0.13 0.71±0.06 1.17±0.06 1.31±0.13 

Old kidney 0.62±0.08* 0.82±0.11 0.63±0.09* 1.21±0.16 

Young Cochlea 2.24±0.36 1.48±0.29 1.50±0.15 1.61±0.29 

Old  Cochlea 2.22±0.26 1.04±0.08 1.72±0.04 1.96±0.30 

Young auditory 

cortex 

1.20±0.05 1.05±0.06 0.75±0.06 1.03±0.04 

Old auditory cortex 1.14±0.05 1.03±0.06 0.76±0.05 1.00±0.05 

 

To compare antioxidant enzymes expression variation between young and old rats, each 
antioxidant enzyme expression was normalized to the appropriate HKG. In liver and 
kidney, the confirmed HKG was HPRT. In cochlea and auditory cortex, the confirmed 
HKGs were GAPDH and EF, respectively.  Data were expressed as mean ± standard 
error (SE). ∗ represents p<0.05. 
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4.2 Discussion 

 

In this chapter, the most suitable tissue for the evaluation of anti-aging intervention of 

GSE and CR were chosen according to the mRNA expression changes of major 

antioxidant enzymes during the aging process. In previous studies using Northern blot 

analysis, an age-dependent decline in gene expression of antioxidant enzymes was found, 

and the extent of expressional change of these enzymes was less than 3 fold (Rao et al., 

1990a, and b). The limited sensitivity of the Northern blot analysis might not be suitable 

for identifying small change in expression, so these results need to be investigated 

further. In addition, it was reported that more than 90% of age related gene changes were 

less than 3 fold in magnitude (Pahlavani et al., 1994; Van Remmen et al., 1995). Real 

time RT-PCR is believed to be able to determine changes as small as twofold using 

statistical methods (Walker, 2002). Therefore, the use of real time RT-PCR with valid 

HKGs will be a reasonable and practical tool for detecting age-related gene expression 

change.    

 

In this study, real time RT-PCR was employed to detect the mRNA expression of the 

commonly used HKGs such as β-actin, GAPDH, UBC, EF, HPRT, YWHAZ or CYPa in 

the liver, kidney, auditory cortex and cochlea of young and old male Fischer 344 rats. 

HKGs selection software such as GeNorm and Normfinder were used to identify the most 

stable HKGs. Based on valid HKGs, we evaluated the variation of HKGs in the aging 

process in four different tissues. In addition, in order to illustrate the significance of 

choosing appropriate HKGs, normalization of Cu/Zn-SOD and catalase gene expression 
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to the different HKGs was performed in different tissues. After identification of the valid 

HKGs, mRNA expression of Cu/Zn-SOD, Mn-SOD, catalase and glutathione peroxidase 

(GPX) were evaluated based on the validated HKGs in liver, kidney, cochlea and 

auditory cortex of young and old rats.  

 

4.2.1 Establishment of reliable real time RT-PCR 

 

Obtaining reliable real time RT-PCR data is a prerequisite for selecting appropriate 

HKGs. Real time RT-PCR consists of multiple steps, and even small errors can 

significantly affect the reliability and reproducibility of final results. Thus, quality control 

must be performed in all stages. A number of measures were taken to achieve the desired 

specificity of PCR product in this study. Firstly, genomic DNA contamination was 

sufficiently controlled by DNase treatment both on-column and off-column, because 

traces of genomic DNA will obviously prevent accurate quantification, especially when 

studying genes with unknown intron/exon structure, or the existence of pseudogenes. 

Peters et al. (2004) exhaustively discussed the necessity of combining on-column and off-

column DNase treatment in real time RT-PCR and its impact on efficiency. Secondly, 

primers that flanked introns were used to ascertain the absence of genomic DNA since 

genomic DNA would have the intron sequence amplified. Absence of genomic DNA was 

confirmed by the negative control of real time RT-PCR.  Finally, the specificity of the 

PCR products was verified by melting curve analysis. In addition, during the real time 

RT-PCR, fluorescent data was acquired at a higher temperature, avoiding the inference of 

non-specific fluorescence signals (Zhang et al., 2004). During data analysis, PCR 
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efficiency corrected quantification was performed because small PCR efficiency 

differences between target genes and the HKG will have an effect on the calculation of 

gene expression 

 

4.2.2 The selection of suitable HKG in rat liver, kidney, auditory cortex and cochlea 

during aging 

 

We have identified HPRT as the most stable HKG to use for studying rat liver aging 

using the software GeNorm and Normfinder. Analysis using GeNorm identified HPRT 

and GAPDH as the two most stable HKGs in liver tissue, but could not differentiate 

further between them because the use of gene ratios was needed for gene stability 

measurements. When using Normfinder, HPRT had more stable intra-group variation and 

had similar inter-group variation when compared to GAPDH. Thus, HPRT was chosen as 

the most stable HKG in liver aging. Recently, HPRT had also been recommended as the 

best HKG to use in human cancer research (de Kok et al., 2005). UBC has previously 

been identified as the best HKG in human liver diseases (Kim et al., 2003) and human 

bone marrow by GeNorm method (Vandosempele et al., 2002). In contrast to those 

studies, UBC was ranked as the most unstable HKG by both methods in this present 

study of rat liver aging. This discrepancy might be attributed to different species and 

different experimental conditions. As shown in Table 4.2.1, one HKG was suitable HKG 

at one experimental condition, whereas it was unstable HKG at other experimental 

condition. These data suggested that a ‘universal’ HKG for all cell types or tissues did not 

exist (Vandosempele et al., 2002).  In this study, HPRT, EF and GAPDH were identified 
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by GeNorm and Normfinder software as appropriate HKGs in rat kidney, auditory cortex 

and cochlea, respectively. These data supported the proposal that HKG had to be 

validated for a particular experimental condition on an individual basis (Vandosempele et 

al., 2002; Dheda et al., 2004).  

 
Table 4.2.1 Housekeeping genes in different experimental conditions 
 

House 
keeping 
genes 

Pro Con  

β-actin Rat mesocorticolimbic brain a  Human bone marrow 
GAPDH Human neuroblastoma Rat pancreas b 

UBC Human bone marrow, Human liver 
diseases c 

Human fibroblast 

HPRT Human fibroblast Human leukocyte 

 EF human T helper cell differentiation d unknown 

CYPa Rat pro-inflammatory cytokine e unknown 

YWHAZ Human leukocyte , rat kidney diseases f Human neuroblastoma 

 
a Data was referred to the paper(Koya et al., 2005);  b Data was referred to the paper(  
Yamada, et al 1997); c Data was referred to the paper  (Kim et al., 2003); d Data was 
referred to the paper (Hamalainen et al. 2001) ; e Data was referred to the paper( 
Peinnequin A et al.,2004); f  Data was referred to the paper(Biederman et al., 2004). 
Other data was referred from the paper (Vandesompele et al., 2002.)  
 

 

 

The appropriate HKGs might vary because of different rat strains or species.  GAPDH 

was chosen as a valid HKG in Fischer 344 rat cochlea by GeNorm and Normfinder 

software. Laer et al. reported that HPRT and hydroxymethylbilane synthase were chosen 

as HKGs in the cochlea of mice by GeNorm software, but they did not specifically state 

the amount and type of HKGs to choose them (Van Laer et al., 2005). Similar situation 
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was found in auditory cortex. EF was the most stable HKG in auditory cortex of aging 

rats.  However, the validation of HKGs in the medial prefrontal cortex by GeNorm 

software suggested that HPRT, neuron-specific enolase, and β-actin were the most stable 

HKG of 10 putative HKGs between high and low grooming Wistar rats (Koya et al., 

2005). Taken together, these results suggested that the appropriate HKG should be 

validated according to the specific tissues and specific strains or species, which was in 

agreement with the conclusion that HKGs should be validated for different experimental 

conditions (Vandesompele et al., 2002; Andersen et al., 2004). 

 

 

4.2.3 The variation of HKG expression in rat liver, kidney, auditory cortex and 

cochlea during aging 

 

Based on valid HKGs, the variation of HKG expression in rat liver, kidney, auditory 

cortex and cochlea during aging was evaluated, respectively. Although aging is a 

physiological process, we found that there was a wide variation in HKG expression 

during the aging process. Previous studies have identified obvious HKG variations which 

have been attributed to pathological changes (Aerts  et al., 2004; Dheda et al., 2004 and 

de Kok et al., 2005) or cell differentiation (Hamalainen et al., 2001; Bas et al., 2004). 

UBC and CYPa had significantly different expression levels in liver tissue between 

young and old rats. In addition, β-actin mRNA level in the liver of old rats increased by 

29.6 % although this finding did not reach statistical significance. Similarly, Moshier et 

al. (1993) found that β-actin expression was also different in rat gastric mucosa, where 
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there was a decrease in expression by 37% in old rats (24 months) compared to young 

rats (6 months) using Northern blot analysis. The difference in β-actin expression 

between our study and the study by Moshier and colleagues might be attributed to tissue 

specific HKG variation, as has been discussed above. However, the validation of the 

HKG could not be further improved at that time because of the lack of a powerful 

statistical method and the decreased sensitivity of Northern blot analysis compared with 

real time RT-PCR.  

 

The obvious fluctuations in the expression levels of HKGs were also found in kidney, 

auditory cortex and cochlea of aging rats. β-actin increased significantly in kidney and 

auditory cortex of old rats when compared to young rats. β-actin was also repoted as a 

invalid HKG  in asthmas and food deprivation (Glare et al., 2002; Yamada et al., 1997). 

Furthermore, Compared to young rats, mRNA expression of HPRT significantly 

decreased (p<0.05) in auditory cortex of old rats. HKG variation in cochlea was also 

present. The expression level of UBC in cochlea was significantly higher in old rats than 

young rats. These results suggested that the variation of HKGs expression was a common 

phenomenon during the aging process and was tissue specific. 

 

4.2.4 Interpretation of Cu/Zn-SOD and catalase gene expression normalized by 

different HKGs 

 

HKG variation could cause confusing, even misleading interpretation of gene expression 

data. Normalization to the confirmed HKG, HPRT, did not identify any significant 
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difference in Cu/Zn-SOD expression during rat liver aging process; while normalization 

to the invalid HKG, UBC, demonstrated significant differences in the same experiment. 

Normalization of Cu/Zn-SOD expression to the normalization factor (the normalization 

factor calculated from several HKGs) produced similar result to using HPRT alone and 

not that of UBC alone. Thus the variation in Cu/Zn-SOD expression normalized against 

UBC was attributed to the fluctuation in expression of the inappropriate HKG, UBC, 

instead of the fluctuation in Cu/Zn-SOD expression in the aging process. Even though 

normalization to different HKGs did not influence the findings for catalase expression, 

the quantification of catalase expression was distorted. When normalized to HPRT 

expression in the aged rats decreased by 57.73% compared to 31.20% when normalized 

to the invalid UBC gene.  

 

 Invalid HKG also misinterpreted the evaluation of target genes expression in rat auditory 

cortex during the aging process. When β-actin, the invalid HKG, was chosen as HKG, 

there was a significant decrease in the mRNA of Cu/Zn-SOD and catalase in rat auditory 

cortex; whereas, no significant difference in the expression of Cu/Zn-SOD and catalase 

was found when they were normalized with EF, the valid HKG.  The variation of β-actin 

gene expression caused the misleading interpretation of Cu/Zn-SOD and catalase gene 

expression. From current data, most of the age-related gene expression changes occurred 

in the 0.3 to 3 fold range (Pahlavani et al., 1994; Van Remmen et al., 1995). Therefore, 

validation of HKGs in aging research is absolutely vital for accurate gene expression 

quantification.  
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Poor selection of HKGs can also invalidate the normalization process and lead to the 

generation of misleading information in cancer research. For example, in a study of 

human clear cell renal cell carcinoma (CCRCC), when the target gene, tumor suppressor 

gene P53 (TP53), was normalized to the selected HKG, lamin B1 (LMNB1), a significant 

difference was detected between normal and CCRCC groups. However, it was not TP53, 

but LMNB1 gene expression that changed during that study (Haller et al., 2004). Similar 

cases have been reported in human asthma (Glare et al., 2002). 

 

The use of more than one HKG for normalization has been proposed because of the 

obvious HKG expression variations in some experiments (Vandesompele et al., 2002). In 

those cases, the NF calculated from several HKGs may bring more accurate 

normalization. In the present study, a NF calculated from HPRT-GAPDH-β-actin was 

recommended for gene expression analysis in rat liver aging process by GeNorm 

software. However, the feasibility of using NF has been argued (de Kok et al., 2005), 

especially in studies in which RNA is limited. Normalization of Cu/Zn-SOD expression 

to the NF or to HPRT alone produced similar results in this study. Our study showed that 

real time RT-PCR with valid HKGs was a reliable tool for the detection of alteration in 

age-related gene expression. 

 

4.2.5 Antioxidant enzymes gene expression changes in rat liver, kidney, auditory 

cortex and cochlea 
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In our study, the expression of catalase was significantly decreased in old rats whereas 

Cu/Zn-SOD, Mn-SOD and GPX expression did not show a significant change in liver 

tissue between young and old male Fischer 344 rats. In liver tissue, studies using 

Northern blot analysis showed decreasing expression of Cu/Zn-SOD and catalase and no 

change in GPX expression with age in male Fischer 344 rats (Rao et al., 1990a); while a 

study using common RT-PCR showed no change in Cu/Zn-SOD with age in male Fischer 

344 rats (Thomas et al., 2002). Thus, the investigations of age-related catalase and GPX 

gene expression were relatively consistent, and the discrepancy in Cu/Zn-SOD gene 

expression might be partly from different experimental methodologies. Interestingly, it 

has been reported that changes in antioxidant enzyme activities during aging may be 

dependent on the rat strains (Rikans et al., 1991; Jang et al., 2001), yet age related 

antioxidant enzyme gene expression changes presented here from male Fischer 344 rats 

were similar to those reported from male Wistar rats (Martin et al., 2002). A study using 

Northern blot analysis in Wistar rats showed increasing expression of Cu/Zn-SOD, 

catalase and GPX expression from 6 to 30 months of age (Sanz et al., 1997). Real time 

RT-PCR was also used in that study but without the use of a validated HKG, thus the 

differences in antioxidant enzyme gene expression in the two rat strains would still 

needed further validation. In addition, because Cu/Zn-SOD, catalase and GPX are major 

antioxidant enzymes in eukaryotes and the decrease of antioxidant defense had been 

widely demonstrated during rat liver aging (Rao et al. 1990a; Tian et al., 1998; Grune et 

al., 2001), the decrease in catalase gene expression might contribute to the diminution of 

the intricate antioxidant defense system in liver. GPX mRNA expression seemed to 

increase, even though it did not reach significance (p=0.06). The trend for increased 
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expression of GPX may compensate for the decreased expression of catalase because 

catalase and GPX cooperate to remove hydrogen peroxide. This inference needs further 

investigation. Thus, our data showed that catalase mRNA expression decreased during 

the rat liver aging process, which might be involved in the decline of the intricate 

antioxidant defense system.  

 

In kidney tissue, Cu/Zn-SOD and catalase expression showed a significantly decreased 

expression in old rats, compared to young male Fischer 344 rats. These results were in 

agreement with previous studies in which age related decrease in Cu/Zn-SOD and 

catalase expression and no change in GPX expression with age were reported in kidney 

tissue using Northern blot method in male Fischer 344 rats, even though pooled RNA 

samples were used in that study because large amounts of RNA are needed for Northern 

blotting (Rao et al., 1990). However, a study using real time RT-PCR without validated 

HKG showed that the expression of Cu/Zn-SOD and GPX was significantly higher in old 

male Wistar rats than in young rats. The discrepancy might be partly due to the use of 

different rat strains (Rikans et al., 1991), and the use of invalid HKG might be another 

possible explanation. The age related decrease in enzyme activity of Cu/Zn-SOD and 

catalase in kidney tissue was consistently reported in these two rat strains (Cand at al, 

1989; Semsei et al., 1989; Rao et al., 1990). Since Cu/Zn-SOD and catalase are major 

antioxidant enzymes, the decrease in Cu/Zn-SOD and catalase gene expression might be 

involved in the decline of the antioxidant defense system in the rat kidney aging process. 
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Based on validation of HKGs, antioxidant gene expression changes with age in rat 

cochlea and auditory cortex were evaluated between young and old Fischer 344 rats. 

Cu/Zn-SOD, Mn-SOD, catalase and GPX expression remained constant between 8 and 

26 months of age male Fischer 344 rats. It was reported that Fischer 344 rats older than 

12 months had a significant age-related hearing loss (Popelar et al., 2006). Similar results 

of Cu/Zn-SOD and catalase expression in temporal cortex of male Wistar rats were 

demonstrated by Tsay, et al. using ribonuclease protection assay method (Tsay et al., 

2000). In contrast, previous studies showed a significant increase of Cu/Zn-SOD 

expression at 9 months of age in C57B16/J mouse cochlea by real time RT-PCR, 

compared with young mice, but with a large variance in their gene expression values 

(Staecker et al., 2001). For C57BL/6 mouse, hearing loss started from 6 months of age 

and then completely lost hearing at 12 months of age (Spongr et al., 1997). This 

discrepancy may be due to different animal models. In addition, the relatively small 

number of animals used in this study might not detect the very small statistical difference 

of antioxidant enzyme gene expression change with age, even though Fischer 344 rats are 

inbred rats and have a smaller experimental variation than outbred animals. Complete 

elimination of Cu/Zn-SOD in knockout mice prompted the formation of age related 

hearing loss (McFadden et al., 1999), but the total loss of Cu/Zn-SOD rarely occurred in 

the normal aging process. Recently, an investigation reported that the loss of 50% Cu/Zn-

SOD activity did not bring about the increasing risk of age related hearing loss (Keithley 

et al. 2005). Further, some investigations showed that the over-expression of Cu/Zn-SOD 

could not effectively prevent age related hearing loss (Coling et al., 2003; Keithley et al. 

2005). Taken together, these data indicated that the role of antioxidant enzyme during rat 
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cochlea and auditory cortex aging process was limited and complex as reported (Coling 

et al., 2003).  

 

In summary, antioxidant enzyme gene expression changes in rat liver, kidney, auditory 

cortex and cochlea during the aging process were different. It was consistent with the 

report that antioxidant enzyme activity changes during the aging process were tissue-

specific (Rao, et al., 1990).  Antioxidant enzyme activity in rat liver and kidney decreased 

with age (Rao, et al., 1990; Tian et al., 1998), while antioxidant enzyme activity in rat 

diaphragm was unchanged during the aging process (Powers, et al., 1992). It reflected the 

complexity of the aging process.  

 

4.3 Conclusion 

 

Real time RT-PCR with valid HKG protocol was established. Based on this method, we 

found that there was a wide variation in HKG expression in liver, kidney, auditory cortex 

and cochlea during aging. We have identified HPRT as an appropriate HKG for accurate 

normalization during gene expression analysis of the effects of aging on the rat liver and 

kidney, and EF and GAPDH were appropriate HKGs in rat auditory cortex and cochlea 

during aging, respectively. These data suggested that different HKGs should be used for 

different experimental conditions. In addition, our results showed that invalid HKG 

caused the misinterpretation of targeted genes expression levels. To our knowledge, this 

is the first report discussing validation of HKGs in aging research where choosing 

appropriate HKGs is vital for accurate gene quantification and analysis. Further 
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investigation showed that antioxidant enzyme gene expression changes in liver, kidney, 

auditory cortex and cochlea during the aging process were different. Among them, kidney 

had the most obvious antioxidant enzyme gene expression changes during the aging 

process in the Fischer 344 rat. In addition, age related pathological changes in rat kidney 

had been well characterized (Yu, et al, 1982; Maeda et al, 1985).Thus, kidney tissue was 

chosen to explore the molecular mechanisms of the effects of GSE and CR.  
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Chapter V Effects of grape seed extract and calorie restriction on age 

related oxidative damage and gene expression profile in middle-aged 

rats 

 

5.1 Results  

12 month old male Fischer 344 rats were fed a NIH31diet with a low dose (0.2%) , high 

dose of GSE(1%) ,or without GSE as control group for 6 months.The rats CR groups 

were fed with NIH31/NIA fortified diets, which was enriched with vitamins to maintain 

similar consumption of vitamins as the rats in control group. Because GSE was added to 

the diet, the GSE intake paralleled the diet intake. The calculated average GSE 

consumption was 82.37 mg/kg per day in the low dose group, while it was 413.56 mg/kg 

per day in the high dose group. 

 

5.1.1 Animal weight  

 

  There were no significant differences in animal weight between low dose GSE, high 

dose GSE and control group in this study.  The body weight of low dose GSE group and 

high dose GSE group was 461.16 ± 7.80 gram and 477.25 ± 12.40 gram, respectively, 

compared to that of the control group (477.98 ± 10.78 gram). This indicated that GSE did 

not affect animal weight.  Under CR condition, weight lost was observed. The body 

weight of CR group gradually declined to 282.25 ± 2.14 gram after 6 months , which was 

significantly lower than that of control group (477.98 ± 10.78 gram, p<0.001) .  
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5.1.2 Effect of GSE and CR on lipid and protein oxidative damage in urine and 

kidney 

 

To determine the protective effect of GSE and CR on oxidative damage, urinary 8- 

isoprostane was measured as an indicator of lipid peroxidatio nafter feeding the rats in the 

different diet for 6 months. Figure 5.1 showed that both the low and high dose GSE 

significantly reduced urinary 8-isoprostane by 56.3% and 57.7%, respectively, compared 

to the control group(150.21  ±15.24 ng/mmol creatinine) (p <0.05). Urinary 8-isoprostane 

was also significantly decreased in the CR group (87.3±23.2 ng/mmol creatinine) (p 

<0.05). 
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Figure 5.1 Effect of GSE and CR on urinary 8-isoprostane 
Control represented control group rats (n=11), LG represented low dose GSE group rats 
(n=11), HG represented high dose group rats (n=11). CR represented calorie restriction 

group rats (n=11). Data was expressed as mean ± SE (standard error) (ng/mmol 
creatinine). 

 ∗ represented  p<0.05. 
 

* * 
* 
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We further assessed whether GSE and CR could attenuate protein oxidative damage. 

Carbonyl protein, a biomarker of protein oxidative damage, was measured in kidney 

tissue. Compared to the control group (1.33 ± 0.22 nmol/mg protein), carbonyl protein in 

kidney tissue was significantly decreased in the high dose GSE group (0.81 ± 0.10 

nmol/mg protein, p<0.05) and CR group (0.63 ± 0.12 nmol/mg protein, p<0.05) (Figure 

5.2). No significant change in carbonyl protein content was detected in the low dose GSE 

group (1.29 ± 0.16 nmol/mg protein). Together, these findings indicated that GSE and 

CR could attenuate age related oxidative damage.  
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Figure 5.2 Effect of GSE and CR on protein carbonyl in kidney tissue 
Control represented control group rats (n=11), LG represented low dose GSE group rats 
(n=11), HG represented high dose group rats (n=11). CR represented calorie restriction 
group rats (n=11).Data was expressed as mean ± SE (nmol /mg protein). ∗ represented   
p<0.05. 
 

 

* * 
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5.1.3 Renal pathological analyses and urinary protein quantification 

 

Pathological scoring of renal sections was performed according to Yu’s grading system 

(Yu et al., 1982). Scores in our tissue samples ranged from 1 to 4. None of the tissue 

samples had a grade of 0 (no lesions) or a grade of E (end stage) because middle-aged 

rats were used in this study. The photomicrographs of samples exhibiting representative 

lesions of each grading score used in this analysis were shown in the appendices (Figure 

6.1). In the kidney tissues with the higher grading score, thickening of mesangial matrix 

became severer, which caused the wider of the individual lobules of glomerui. As the 

disease advanced, the incidence of tubular atrophy increased. The age-related 

pathological degenerative damage in kidney tissue was reduced significantly (p<0.05) in 

rats from CR group when compared with rats in the control group. Further, 

glomerulosclerosis and tubular atrophy were evaluated, and tubular atrophy was 

significantly less in the rats from CR compared to the control group.  But, there was no 

significant difference between low dose GSE, high dose GSE and control group in the 

age-related pathological degenerative damage in kidney tissue (Table 5.1).   However, 

there did appear to be a trend for decreased tubular atrophy in low and high dose GSE 

group, although it did not reach statistical significance. In addition, 24 hours of urinary 

protein quantification showed that urinary protein was significantly reduced to 15.29 

±1.52 mg/24 hours in rats from CR group when compared to control group (64.33±3.51 
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mg/24 hours). 24 hours of urinary protein quantification remained unchanged in low and 

high dose GSE group (69.65±13.69 mg/24 hours and 73.67± 6.07 mg/24 hours, 

respectively).  

 

 

Table 5.1 Renal pathological grading 

Rat number with lesions of grade Glomerulos
clerosis 

Tubular 
atrophy 

Group 

1 2 3 4 
Control 0 4 6 1 0.70±0.70% 4.43±1.65% 

LG 0 5 3 3 1.31±0.61% 3.60±0.54% 
HG 2 4 3 2 0.75±0.51% 2.74±0.89% 
CR* 6 5 0 0 0.00±0.00% 1.54±0.35%* 

 
 
Control represented control group rats (n=11), LG represented low dose GSE group rats 
(n=11), HG represented high dose group rats (n=11). CR represented calorie restriction 
group rats (n=11). There was a significant pathological difference in kidney tissue 
between CR and Control group. In addition, tubular atrophy was significantly lower in 
CR than in Control group. ∗ represented   p<0.05. 
 
 
 

5.1.4 Microarray analysis and real time RT-PCR validation 

 

In view of the finding that high dose GSE and CR could attenuate oxidative damage in 

kidney tissue, the changes in gene profiles regulating the amelioration of age-related 

oxidative damage in kidney tissue of rats by high dose GSE and CR were outlined using 

microarray analysis. Because low dose GSE could not attenuate oxidative damage in 

kidney tissue, this group was not further analyzed with microarray. Genes that were 

significantly changed by high dose GSE and CR were listed in table 5.2 and table 5.3(in 

appendices), respectively. In microarray analysis, the expressions of the oxidative stress 
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related genes (15-lipoxygenase, 15-LO and S100 calcium binding protein A8, S100A8) 

and the DNA damage checkpoint related gene (cell division cycle 25B, Cdc25B) were 

significantly decreased by high dose GSE. The expression of oxidative stress related gene 

(kallikrein) was significantly increased and the expression of oxidative stress related 

genes (complement 3, C3 and chemokine C-C motif-ligand 5, CCL-5) was significantly 

decreased in CR group, whereas four major antioxidant genes: Cu/Zn-SOD, Mn-SOD, 

catalase and GPX remained unchanged among the three groups. 
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Table 5.2 Gene expression significantly changed by high dose grape seed extract 

Probe 
Fold 
Change  Gene name 

1371245_a_at 8.693 Rat hemoglobin beta-chain mRNA 
1371102_x_at 6.527 hemoglobin beta chain complex 
1367985_at 6.145 aminolevulinic acid synthase 2 
1367553_x_at 4.637 hemoglobin beta chain complex 
1388608_x_at 4.592 hemoglobin, alpha 1 
1370239_at 3.716 Similar to hemoglobin alpha chain (LOC367986), mRNA 
1370240_x_at 3.468 Similar to hemoglobin alpha chain (LOC367986), mRNA 
1375519_at 3.164 Similar to alpha globin (LOC287167), mRNA 
1370034_at 2.632 cell division cycle 25 homolog B (S. pombe) 
1387154_at 2.453 neuropeptide Y 
1368494_at 1.996 S100 calcium binding protein A8 (calgranulin A) 
1387796_at 1.965 arachidonate 15-lipoxygenase 
1379794_at 1.786 granzyme B 
1368289_at 1.743 group specific component 
1370628_at 1.734 granzyme B 
1370096_at 1.621 perforin 1 (pore forming protein) 

1379368_at 1.613 
Transcribed sequence with moderate similarity to protein 
sp:P00722 (E. coli) BGAL_ECOLI Beta-galactosidase 

1383143_at 1.601 

Transcribed sequence with weak  similarity to protein 
ref:NP_115642.1 (H.sapiens)  hypothetical protein 
DKFZp434G118 [Homo sapiens] 

1379293_at 1.598 granzyme A 
1368300_at 1.577 adenosine A2a receptor 
1380142_at 1.559 homeo box B8 
1368377_at 1.545 granzyme C 
1397251_at 0.66 Transcribed sequences 

1387149_at 0.648 
type 1 tumor necrosis factor receptor shedding aminopeptidase 
regulator 

1390671_at 0.644 Transcribed sequences 
1380041_at 0.566 Transcribed sequences 
1391533_at 0.559 Similar to MGC52019 protein (LOC362188), mRNA 
1379768_at 0.559 Transcribed sequences 

1394112_at 0.488 
EST200622 Normalized rat liver, Bento Soares Rattus sp. 
cDNA clone RLIAG78 3' end, mRNA sequence. 

1375475_at 0.433 
UI-R-BJ1-ava-c-02-0-UI.s1 UI-R-BJ1 Rattus norvegicus cDNA 
clone UI-R-BJ1-ava-c-02-0-UI 3', mRNA sequence. 

 

Fold change >1 indicated that the gene  was down regulated in high dose grape seed 
extract, compared to control group, and vice-versa. 
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To validate the results of microarray and further identify the potential genes involved in 

the protective role of GSE and CR, four major antioxidant genes (Cu/Zn-SOD, Mn-SOD, 

catalase and GPX) in the kidney were quantified by real time RT-PCR in the high GSE, 

CR and control group. 15-LO, S100A8 and Cdc25B were quantified by real time RT-

PCR in the high dose GSE and control group. Kallikrein, C3 and CCL-5 between CR and 

control group were also quantified by real time RT-PCR.  The GeNorm software was 

used to choose suitable housekeeping genes to normalize the data of real tine RT-PCR. 

HPRT and β-actin were selected as the most stable housekeeping genes (Figure 5.3). 

Based on HPRT and β-actin, the normalization factor was calculated for real time RT-

PCR analysis. As shown in Figure 5.4, the mRNA expressions of 15-LO, S100A8 and 

Cdc25B significantly decreased in rat kidney tissue in the high dose GSE group, 

compared to the control groups (p<0.05) by  real time RT-PCR analysis, which were 

consistent with the results of microarray. In addition, there were no significant 

differences in Cu/Zn-SOD expression, Mn-SOD, catalase and GPX mRNA expression 

between the control group and the high dose GSE group (p>0.05) (Figure 5.4A), which 

were similar to the results of microarray. Real time RT-PCR analysis also showed that 

the expression of kallikrein was significantly increased and the expression of C3 and 

CCL-5 was significantly decreased in CR group, similar to the results of microarray 

(Figure 5.4B). However, the significant increase of Mn-SOD and catalase was found in 

CR group (p<0.05), even though these changes were not indicated by microarray analysis 

(Figure 5.4A). This might be attributed to a Bejamini and Hochberg false discovery rate 
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that was used to decrease the false positive rate in CR group microarray data analysis, 

which brought higher false negative rate at the same time. 
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Figure 5.3 Housekeeping genes ranked by GeNorm software in rat kidney cortex. 
The picture showed the average expression stability values of the housekeeping genes, 
with a low value representing stable housekeeping genes expression. 
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A

 

B 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4 Effect of high dose GSE and CR on gene expression in kidney validated by 
real time RT-PCR   method. 
Control group (white bar, n=11), high dose group (slanted rule bar, n=11) and calorie 
restriction group rats (black bar, n=11). (A)Gene expression was normalized to the 
normalization factor respectively.  (B) The gene expression of C3, CCL5 and Kallikrein 
was normalized to the normalization factor respectively. ∗ represents p<0.05. 

* * 

* 
* 

* 

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C3 CCL-5 kallikrein

N
or

m
al

iz
ed

 m
R

N
A

 e
xp

re
ss

io
n



 110

5.2 Discussion 

 

5.2.1 Effects of grape seed extract and calorie restriction on age related oxidative 

damage  

 

We found that GSE supplementation and CR significantly attenuated urinary 8-

isoprostane. 8-isoprostane was non-enzymatic free radical catalysed-peroxidation of 

arachidonic acid, which was regarded as a reliable marker of lipid peroxidation (Roberts 

and Morrow, 2000). The level of 8-isoprostane specifically reflected oxidative stress of 

animal models, and could be modulated by antioxidants (Roberts and Morrow, 2000). 8-

isoprostane and other markers of lipid peroxidation have been reported to increase during 

the aging process (Ward et al., 2005) and age related pathological conditions, such as 

cancer and degenerative diseases.  Until now, the majority of studies of GSE protection 

measured lipid peroxidation, based on malondialdehyde (MDA) (Bagchi et al., 2001). 

However, MDA had been widely questioned because it was an unstable compound, a 

nonspecific marker of lipid peroxidation and confounded by diet (Janero et al., 1990; 

Indart et al., 2002); whereas 8- isoprostane was a stable compound, a specific marker of 

lipid peroxidation and not confounded by diet (Halliwell et al.,2002). In our study, we 

showed that urinary 8-isoprostane was significantly reduced by GSE supplementation in 

middle-aged rats. To our knowledge, this was the first report to show that GSE could 

suppress age related lipid oxidative damage, based on 8-isoprostane.  
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For CR, it has been reported that CR, which was initiated in young-aged rats, effectively 

attenuated lipid peroxidation in kidney, liver and brain during aging based on the 

measurement of MDA (Cook and Yu, 1998). Recently, Ward et al. reported that CR 

initiated in young-aged rats significantly reduced plasma F2- isoprostane concentrations 

(Ward et al., 2005). In this study, our data for the first time showed that 6 months CR, 

which was initiated in middle-aged rats, reduced lipid peroxidation based on 

measurement of the reliable marker of  lipid peroxidation, 8-isoprostane. 

 

In addition, age related protein oxidative damage in rat kidney was also alleviated by 

high dose of GSE supplement and CR. But, low dose of GSE had no effect in kidney 

tissue. Ineffective of the lower dose of GSE might be attributed to the middle age onset 

supplementation, reducing the efficacy of the intervention. A similar situation was 

reported in the lifespan extension by daf-2 RNAi treatment. When daf-2 RNAi treatment 

was initiated in different ages of C elegans, the magnitude of the lifespan extension 

declined with age (Dillin et al., 2002). During the aging process,   Goto et al. reported 

that carbonyl protein increased in aged kidney tissue (Goto et al., 1999).  GSE has been 

reported to protect Adriamycin induced protein oxidative damage in hepatocytes (Valls-

Belles et al., 2006) and protein oxidation in the brain of aged rats (Balu et al., 2005). In 

this study, high dose of GSE supplement effectively decreased the protein oxidative 

damage in kidney tissue, when initiated in middle age. These results showed that GSE 

protected protein oxidative damage. Although several studies showed that CR initiated in 

young age reduced age related increase of carbonyl protein in liver of rats (Youngman et 

al., 1992 )and  kidney, heart and brain of mice (Sohal et al., 1994), there was only limited 
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information on the effect of CR, initiated at middle-aged animal models, on protein 

oxidative damage. Radak reported that late onset CR could reverse age-related increase 

of carbonyl protein in rat tendon tissue, but no effect in rat skeletal muscle (Radak et al., 

2002). In this study, 6 months CR, initiated in middle-aged rats, also attenuated carbonyl 

protein in kidney. Combined with the effect of GSE and CR on the urinary 8-isoprostane, 

these results showed that GSE and CR reduced lipid peroxidation and protein oxidation 

in middle-aged rats. 

 

5.2.2 Effects of grape seed extract and calorie restriction on pathological changes  

 

Even though 8-isprostante and carbonyl protein were regarded as good available 

biomarkers of oxidative damage and were suggested to be used as suitable biomarker for 

testing the effect of anti-aging intervention (Warner et al., 2000), the ideal biomarker of 

the aging process is still unavailable (Warner, 2004). Thus, pathological assessment was 

also suggested to evaluate anti-aging intervention because pathological assessment could 

provide the information of the later development of diseases, even though pathological 

changes were not so sensitive in reflecting the effect of the compound. To further 

evaluate the protection role of GSE and CR in middle-aged rats, age related pathological 

changes in kidney tissue were evaluated. The middle-aged Fischer 344 rats were chosen 

because there were obvious pathological changes in kidney tissue during this period. 

Moreover, there are very few other spontaneous diseases, such as cancers, during this 

period, avoiding the potential confusion (Sass et al., 1975).  
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We found that 6 months of adult-onset CR decreased the age-related renal pathological 

changes in Fischer-344 rats, and retarded renal tubular atrophy in middle-aged rats. The 

majority of renal pathological grading in control group is grade 3, whereas the majority 

of renal pathological grading in CR group is grade 1 and 2. In addition, there were many 

mitochondria in renal tubule, which might be more susceptible to oxidative damage 

because mitochondria were the major source of free radicals (McKiernan et al., 2007). 

Tubular atrophy is one of the early renal pathological changes during the aging process. 

Our results showed that age related tubular atrophy was prevented by CR. Proteinuria 

was correlated with the degree of severity of age-related renal pathological changes. It 

was generally accepted that the increased renal pathological lesions resulted in protein 

hyperfiltration (Hard et al., 2004). We also found that 24 hours of urinary protein 

quantification was significantly decreased by CR. Only limited studies had been reported 

on the effect of CR on renal pathological changes in middle-aged animal. Recently, it has 

been reported that the adult-onset CR reduced renal pathological changes in 18 months 

male Fischer-344 x Brown Norway hybrid rats, but its related mechanism was not fully 

studied (McKiernan et al., 2007). In this study, our data showed that age related oxidative 

damage in kidney tissue could be effectively suppressed by CR, suggesting that the 

protective effect of CR on age related renal pathological change might partly be caused 

by the reduction of oxidative damage in kidney tissue. Taken together, our data showed 

that 6 months adult onset CR could retard age related renal pathological changes, even if 

initiated in middle-aged rat.  The detailed mechanism still needs to be further 

investigated. The possible molecular mechanisms of the protective effect of CR on age 
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related renal pathological change would be discussed in section 5.3.4, based on the data 

form microarray and real time RT-PCR.  

 

Even though GSE could effectively prevent oxidative damage in rat kidney tissue, GSE 

had no significant effect on renal pathological changes and 24 hours of urinary protein 

quantification. This was consistent with the fewer genes affected by GSE supplement 

from microarray analysis. Another possible explanation was that renal pathological 

changes were not sensitive enough in evaluating the effect of the compound, compared to 

oxidative damage markers. In addition, though not statistically significant, low and high 

dose GSE were observed to prevent age related tubular atrophy dose dependently. It is 

worth further investigation to evaluate the protective effects of GSE in kidney.  

 

5.2.3 The molecular mechanism mediating the prevention of oxidative damage by 

GSE in middle-aged rats 

 

To explore the molecular mechanism of GSE protection, the effects of GSE on gene 

expression were further evaluated. In this study, we found that GSE decreased the 

expression of 15-LO and S100A8, two oxidative stress related genes, but the antioxidant 

genes(Cu/Zn-SOD, Mn-SOD, catalase and GPX) were not affected in kidney tissue. 

Previous reports showed that GSE inhibited the enzyme activity of 15-LO in vitro (Sadik 

CD, et al., 2003). Our data showed for the first time that GSE inhibited the mRNA 

expression of 15-LO in vivo. In addition, we found that protein oxidative damage was 

also diminished. This result was consistent with the following reports. The brain 
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isoprostane and protein carbonyl were significantly attenuated in brain tissue of 15-LO 

deficient mice (Chinnici et al., 2005). The urinary isoprostane level was also significantly 

decreased in 15-LO deficient mice (Cyrus et al., 2001). Kim et al. reported that oxidative 

stress was reduced in 15-LO knockout mice (Kim et al., 2003). These findings supported 

the hypothesis that activated 15-LO could promote the production of free radical, which 

caused the generation of oxidative damage products (Spiteller, 1996; Funk CD and  

Cyrus T, 2001), even though the exact mechanism between the 15-LO pathway and the 

non-enzymatic oxidative reaction is still poorly understood.  

 

 In this study, the interesting discovery was that S100A8 was also down regulated by 

GSE in rat kidney tissue. S100A8 was regarded as a pro-inflammatory mediator and 

biomarker for inflammation, which was involved in diverse pathological conditions, such 

as systemic lupus erythematosus and rheumatoid arthritis (Foell et al., 2004). In addition, 

S100A8 was proposed to import arachidonic acid (AA) into the cell through the 

formation of S100A8/A 9+AA complex at the inflammatory foci (Kannan, 2003; Nacken 

et al., 2003). Thus, the imported AA could serve as a substrate of 15-LO to worsen 

inflammation and oxidative stress at original inflammatory foci. The inhibition effect of 

GSE on the expression of S100A8 might reduce the availability of AA. Combined with 

the suppressive effect of GSE on 15-LO expression, the oxidative damage derived from 

the 15-LO pathway might be effectively suppressed by GSE. Thus, these results 

suggested that the decreased 15-LO and S100A8 gene expression might be involved in 

the protective effects of GSE on age related oxidative damage in kidney. 
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In addition, the mRNA expression of Cdc25B was also inhibited by GSE. Cdc25B 

primarily activates cyclinB-Cyclin-dependent kinase 1 (Cdk1), which is vital for G2 

DNA damage checkpoint (Donzelli and Draetta, 2003). DNA damage checkpoint can 

cause cell cycle arrest and activate DNA damage repair. Notably, the overexpression of 

Cdc25B was found in many human cancers, which was regarded as a potential 

therapeutic target in anticancer therapy (Kristjansdottir and Rudolph, 2004). One merit of 

inhibiting Cdc25B was that Cdc25B deficiency did not obviously affect normal somatic 

mouse cells (Lincoln et al., 2002). GSE has been reported to have an anticarcinogenic 

effect in liver tumor (Ray et al., 2005) and to protect against smokeless tobacco extract-

induced oxidative stress in human oral keratinocyte cells (Bagchi et al., 2001). These data 

indicated that the chemoprevention effect of GSE might be related to the modulation of 

Cdc25B gene expression by GSE.  DNA damage was also regarded to be involved in the 

aging process (Dröge and Schipper, 2007). The beneficial effect of GSE on G2 DNA 

damage checkpoint might be helpful in preventing age related DNA damage through 

modulating Cdc25B expression. 

 

The 15-LO was regarded as a potential therapeutic target in the kidney diseases and 

atherogenesis (Kasinath, 2003; Zhao and Funk, 2004). Our study showed that GSE 

effectively inhibited the expression of 15-LO, S100A8 and Cdc25B in kidney tissue, 

indicating that GSE might be a new promising therapeutic compound for kidney disease. 

Because we cannot find the protective effect of GSE on age related renal pathological 

change in this study, further investigations need to evaluate the potential application 

value of GSE. As nutritional antioxidant, excellent safety of GSE has been demonstrated 
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(Ray, et al. 2001; Wren, et al. 2002). In addition, GSE is a mixture of monomeric, 

dimeric, trimeric and other oligomeric proanthocyanidin. Further studies need to be 

performed to investigate a more effective composition of GSE.  

 

 

 In this study, we did not observe any effect of GSE on the expression of four major 

antioxidant enzyme genes: Cu/Zn-SOD, Mn-SOD, catalase and GPX, by both microarray 

and real time RT-PCR method.  GSE was reported to increase GPX gene expression in 

human hepatocellular carcinoma cell line using real time RT-PCR without validated 

HKG (Puiggros et al., 2005). These differences among studies might be explained by 

different species and experimental methodologies. Two antioxidants, alpha-lipoic acid 

and coenzyme Q10 supplement, also did not have any effect on the four major 

antioxidant enzyme expression in the heart of aging mice (Lee et al., 2004).  

 

In addition, the effects of antioxidants might be dependent on the tissue type, the dose 

and the time of antioxidants exposure (Skibola et al., 2000). Carrillo et al. reported that 

deprenyl, a kind of antioxidant, increased Mn-SOD and catalase enzyme activity in 

parietotemporal cortex and striatum of rats; whereas Mn-SOD and catalase enzyme 

activity in cerebellum remained unchanged (Carrillo et al., 1992).  Moreover, the optimal 

dose of deprenyl to increase antioxidant enzyme activities varied widely based on 

different ages and sexes of rats (Kitani et al., 1996). The relation between antioxidants 

and antioxidant gene expression needs further detailed study. 
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5.2.4 The molecular mechanism mediating the prevention of oxidative damage and 

age related renal pathological changes by CR in middle-aged rats 

 

The mechanisms of the anti-aging effects of CR were still unknown (Masoro, 2005). We 

found that 6 months of CR performed in middle-aged rats could attenuate the decline of 

antioxidant defenses during rat kidney aging. Compared with control rats, adult onset CR 

showed a significantly higher expression of catalase and Mn-SOD in rat kidney tissue 

using real time RT-PCR method. This study was the first report to show that 6 months 

adult onset CR could increase the expression of Mn-SOD and catalase in the kidneys of 

rats. Life long CR initiated at a young age could enhance the expression of Mn-SOD and 

Cu/Zn-SOD in the muscle of rats (Sreekumar et al., 2002). In the first part of this thesis, 

we found that mRNA expression of catalase and Cu/Zn-SOD decreased significantly in 

kidney tissue of old rats, which might be involved in the declination of antioxidant 

defense during aging. Mn-SOD and catalase are major antioxidant enzymes which defend 

against the attack of free radicals. Mn-SOD located in the mitochondria can convert 

superoxide into hydrogen peroxide, which is further catalyzed into a water molecule by 

catalase. In Mn-SOD /+ mice, the decreased Mn-SOD activity resulted in the increase in 

protein and DNA oxidative damage (Williams et al., 1998). Overexpression of Mn-SOD 

prevented the diabetes-induced DNA oxidative damage and the total antioxidant capacity 

in retina of mice (Kowluru, 2006). Overexpression of catalase had been reported to delay 

age related cardiac pathology and oxidative damage (Schriner et al., 2005). 

Overexpression of catalase was also reported to delay age related oxidative damage in 

skeletal muscle of mice and extended life span of mice (Schriner et al., 2005). These data 
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indicated that the effects of CR on reducing oxidative damage and age related renal 

pathological change might partly be caused by improving major antioxidant enzyme 

expression in kidney tissue.  

 

 In addition to the increased expression of Mn-SOD and catalase in CR, the increased 

expression of kallikrein was found in kidney tissue in this study.  The effect of CR on 

kallikrein was not reported before. Kallikrein is a serine proteinase that cleaves high 

molecular weight kininogen to kinins, such as bradykinin and kallidin (Regoli et al., 

1980). The kallikrein-kinin system (KKS) can be categorized into a circulating KKS, 

which is a member of the coagulation system, and a tissue KKS, which is involved in the 

local synthesis of kinins through a paracrine or autocrine fashion (Bhoola et al., 1992). 

Recently, Yao et al. reported that kallikrein could diminish NADH oxidase activity, 

superoxide formation and lipid oxidation in myocardial infarction of rats (Yao et al., 

2007). Kinin, the product of Kallikrein, reduced renal fibrosis by inhibiting oxidative 

stress and oxidative damage (Chao et al., 2007). Overexpression of kallikrein in rats 

could inhibit isoproterenol-induced cardiac hypertrophy and fibrosis (Silva et al., 2000). 

In addition, adult onset CR significantly decreased the expression of C3 and CCL-5.  C3-

deficient mice showed decreased inflammatory cells infiltration and reduced oxidative 

damage (Mocco et al., 2006). CCL-5 is one of chemotactic factors and can cause 

leukocyte infiltration (Sorensen et al., 1999). Administration of anti-CCL5 decreased 

inflammatory cells infiltration accumulation and reduced inflammatory response (Glass 

et al., 2004). Although the effects of C3 and CCL5 on oxidative stress related 

pathological change was unavailable, these decreased inflammatory related genes 
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suggested that CR might suppress inflammation and the free radical generated from 

inflammation during aging because inflammatory response is the major resource of free 

radicals and causes the formation of oxidative damage (Chung et al., 2006). Taken 

together, our data for the first time showed that adult-onset CR could enhance the 

expression of kallikrein and reduce the expression of C3 and CCL-5, which might be 

involved in the protective effects of CR on age related oxidative damage and age related 

renal pathological change. 

 

It can be inferred that 6 months of adult-onset CR could retard the age-related renal 

pathological changes and possibly extend the lifespan of rats through the reduction of 

chronic nephropathy, since chronic renal disease is the major cause of death in Fischer-

344 rats. This inference needs to be further investigated. Thus, our data supported the 

idea that adult onset CR improved the health status by reducing age related diseases. 

 

5.3 Conclusion 

 

In conclusion, our study showed that GSE supplementation and CR initiated in middle 

age could inhibit age related oxidative damage. In addition, we investigated the gene 

expression pattern of the effects of GSE and adult onset CR on kidney tissue using the 

microarray method. To our knowledge, this is the first report that investigated the effect 

of GSE on the gene expression profiles in animal tissue. Our microarray and real time 

RT-PCR method analysis suggested that the decreased 15-LO and S100A8 gene 

expression by GSE might be involved in the protective role of GSE in the rat kidney. 6 
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months adult onset CR could retard age related oxidative damage and renal pathological 

changes through the increased catalase, Mn-SOD and kallikrein and the reduced 

expression of C3 and CCL-5 gene expression. 
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Chapter VI: Conclusion 

 

6.1 Summary of significant conclusions 

 

Firstly, a real time RT-PCR with valid housekeeping genes protocol was established. For 

the first time it was found that a wide variation in housekeeping gene expression existed 

in rat liver, kidney, auditory cortex and cochlea during the aging process, even though the 

aging process is regarded as a physiological process. Moreover, we found that HPRT was 

a valid HKG for liver and kidney; but EF and GAPDH were appropriate HKGs in rat 

auditory cortex and cochlea during aging studies, respectively, which suggested that the 

suitable HKG should be validated in different experiment conditions. Invalid 

housekeeping genes could cause the misinterpretation of gene expression levels. 

Especially, most of the age-related gene expression changes occurred in the 30% to 3 fold 

range (Pahlavani et al., 1994; Van Remmen et al., 1995). Taken together, validation of 

HKGs is absolutely vital for accurate gene expression quantification in aging research. 

   

 Furthermore, age related antioxidant gene changes were evaluated. We found age related 

decline of catalase expression in the rat liver and kidney and the decreased Cu/Zn-SOD 

expression in kidney aging, which suggested that the decrease of catalase mRNA 

expression might be involved in the decline of intrinsic antioxidant defense in liver, and 

the decrease of catalase mRNA and Cu/Zn-SOD mRNA expression might be involved in 

the decline of intrinsic antioxidant protection in kidney, supporting the free radical theory 

of aging. However, there was no significant antioxidative gene change in auditory cortex 



 123

and cochlea aging, which suggests that the role of antioxidant enzyme in auditory cortex 

and cochlea aging was complex as reported (Coling et al., 2003).  

 

 When the effect of GSE and CR in middle-aged rats was investigated, we found that 

urinary 8-isoprostane was significantly decreased by the low and high dose GSE and CR; 

and protein carbonyl in kidney was significantly decreased by the high dose GSE and 

CR. Furthermore, microarray and real time RT-PCR data for the first time showed that 

the high dose GSE significantly reduced the mRNA expression of 15-LO and S100A8 in 

kidney, which suggested that GSE could prevent age related oxidative damage by 

regulating 15-LO and S100A8 gene expression. In addition, age related renal 

pathological change could be retarded by CR initiated in middle-aged rats. In the CR 

group, the mRNA expression of catalase, Mn-SOD and kallikrein was significantly 

increased and the mRNA expression of C3 and CCL-5 was significantly decreased. These 

data indicated that 6 months CR could retard age related oxidative damage and renal 

pathological changes by increasing the expression of catalase, Mn-SOD and kallikrein 

and reducing the expression of C3 and CCL-5. 

 

6.2 Suggestions for Future Work 

 

There are some suggestions for future work. Our study showed that GSE could 

effectively reduce age related oxidative damage; however further investigation needs to 

be done to improve the effect of GSE in middle-aged rats. The main problem is how to 

improve the efficiency of GSE. Firstly, the effective components of GSE need to be 
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identified, since GSE is a mixture, which has proanthocyanidin dimer, trimer, tetramer 

and oligomer (Parakeet al., 2002). Our research showed that age related oxidative 

damage reduced by GSE was related with the decreased 15-LO and S100A8 genes 

expression by GSE supplement. Analysis of the expression of 15-LO and S100A8 genes 

expression and others oxidative marker might be helpful to identify the effective 

component(s) in GSE. However, the purification method of adequate proanthocyanidins 

is unavailable until now. Multidisciplinary cooperation will be needed to resolve these 

challenges. Secondly, oxidative damage is closely related with the development of age 

related diseases, such as atherosclerosis. Age related oxidative damage reduced by GSE 

suggests that it is worth investigating the effect of GSE on age related diseases. Thirdly, 

in future, after the most powerful component of GSE is identified and the technology to 

purify enough proanthocyanidin is available, the life span study could be performed.  

 

6 months CR initiated in middle-aged rats effectively reduced age related oxidative 

damage and retarded age related renal pathological changes. These results suggest that 

adult onset CR is a possible intervention to slow the aging process and age related 

diseases. It remains to be evaluated whether adult onset CR can extend life span. More 

important, in order to investigate whether adult onset CR can promote healthier aging, 

more pathological and functional assessments will be needed during life span study, such 

as cognitive function and tumor incidence. The possible side effects of adult onset CR 

should also be noticed. Another suggestion is how to make CR more practical. The 

possible method is to evaluate the effects of different CR strategies, such as 10%CR and 

20% CR because 40% CR, the classical CR protocol, is very difficult for most people.  If 
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10% CR has the beneficial effects, it will increase the feasibility of CR. Finally, these 

findings need to be confirmed in other strains of rats and species. The functional effects 

of GSE and CR on different tissues are worth investigating. 
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Photomicrographs made with 200x magnification; bar = 100 micrometers 
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Table 5.3 Gene expression significantly changed by CR 
 
 

Probe 
Fold 
Change Gene name 

1398390_at 6.993 

Transcribed sequence with weak  similarity to protein 
ref:NP_006410.1 (H.sapiens)  small inducible cytokine B 
subfamily 

1379340_at 5.373 
Similar to laminin gamma 2 chain precursor (LOC289096), 
mRNA 

1367998_at 4.423 secretory leukocyte peptidase inhibitor 
1368540_at 3.721 trophoblast glycoprotein 
1387306_a_at 3.606 early growth response 2 

1371412_a_at 3.464 

Transcribed sequence with moderate similarity to protein 
pdb:1LBG (E. coli) B Chain B, Lactose Operon Repressor 
Bound To 21-Base Pair Symmetric Operator Dna, Alpha 
Carbons Only 

1394051_at 3.377 Transcribed sequences 
1395126_at 3.353 Similar to MMAN-g (LOC310694), mRNA 
1367581_a_at 3.333 secreted phosphoprotein 1 

1389413_at 3.207 

Transcribed sequence with weak  similarity to protein 
pir:A35329 (H.sapiens) A35329 EVI2 protein precursor - 
human 

1384787_at 3.05 

Similar to T-cell surface glycoprotein CD3 gamma chain 
precursor (T-cell receptor T3 gamma chain) (LOC300678), 
mRNA 

1383747_at 3.003 Transcribed sequences 

1389675_at 2.997 

Transcribed sequence with strong similarity to protein 
ref:NP_084520.1 (M.musculus)  RIKEN cDNA 2610524G09 
[Mus musculus] 

1379345_at 2.988 Similar to type XV collagen (LOC298069), mRNA 
1376390_at 2.973 Similar to MS4A6D protein (LOC361735), mRNA 
1372006_at 2.894 Transcribed sequences 
1373628_at 2.877 Transcribed sequences 
1388116_at 2.859 collagen, type 1, alpha 1 
1370959_at 2.833 collagen, type III, alpha 1 

1393252_at 2.826 

Transcribed sequence with strong similarity to protein 
pir:S34968 (M.musculus) S34968 fibulin, splice form D 
precursor - mouse 

1393187_at 2.795 Transcribed sequences 

1373368_at 2.792 
UI-R-DE0-caf-d-09-0-UI.s1 UI-R-DE0 Rattus norvegicus 
cDNA clone UI-R-DE0-caf-d-09-0-UI 3', mRNA sequence. 

1382531_at 2.785 Similar to toll-like receptor 7 (LOC317468), mRNA 
1371079_at 2.763 Fc receptor, IgG, low affinity IIb 
1368519_at 2.758 serine (or cysteine) peptidase inhibitor, clade E, member 1 
1368482_at 2.72 B-cell leukemia/lymphoma 2 related protein A1 

1373309_at 2.703 
UI-R-DD0-bzr-f-03-0-UI.s1 UI-R-DD0 Rattus norvegicus 
cDNA clone UI-R-DD0-bzr-f-03-0-UI 3', mRNA sequence. 

1372685_at 2.648 
Similar to cyclin-dependent kinase inhibitor 3; CDK2-
associated dual specificity phosphatase; cyclin-dependent 
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kinase interactor 1; cyclin-dependent kinase interacting protein 
2; kinase-associated phosphatase (LOC289993), mRNA 

1370155_at 2.636 procollagen, type I, alpha 2 

1392296_at 2.633 
UI-R-C1-lc-g-03-0-UI.s1 UI-R-C1 Rattus norvegicus cDNA 
clone UI-R-C1-lc-g-03-0-UI 3', mRNA sequence. 

1373401_at 2.607 
EST219610 Normalized rat ovary, Bento Soares Rattus sp. 
cDNA clone ROVBJ66 3' end, mRNA sequence. 

1387854_at 2.581 procollagen, type I, alpha 2 
1368000_at 2.574 complement component 3 
1383320_at 2.563 lymphocyte-specific protein tyrosine kinase 

1390420_at 2.542 
Similar to Carboxypeptidase X 1 (M14 family) (LOC296156), 
mRNA 

1382622_at 2.532 
UI-R-C1-lb-g-10-0-UI.s1 UI-R-C1 Rattus norvegicus cDNA 
clone UI-R-C1-lb-g-10-0-UI 3', mRNA sequence. 

1376693_at 2.528 

Transcribed sequence with weak  similarity to protein 
ref:NP_060124.1 (H.sapiens)  hypothetical protein FLJ20073 
[Homo sapiens] 

1392264_s_at 2.507 serine (or cysteine) proteinase inhibitor, member 1 
1368464_at 2.482 macrophage galactose N-acetyl-galactosamine specific lectin 1 
1390659_at 2.481 Transcribed sequence 

1377023_at 2.474 
Similar to dual specificity phosphatase 2 (LOC311406), 
mRNA 

1382566_at 2.472 Transcribed sequences 
1379791_at 2.46 Similar to T3-epsilon protein (LOC315609), mRNA 
1385832_s_at 2.455 Similar to RIKEN cDNA 1200013B08 (LOC317578), mRNA 
1368171_at 2.45 lysyl oxidase 
1368914_at 2.445 runt related transcription factor 1 
1369964_at 2.443 coronin, actin binding protein 1A 
1376845_at 2.427 putative ISG12(b) protein 
1389006_at 2.422 macrophage expressed gene 1 
1388275_at 2.421 T-cell receptor beta chain 
1382311_at 2.419 Similar to Ab2-389 (LOC310877), mRNA 

1391450_at 2.4 

Similar to Lysyl oxidase homolog 2 precursor (Lysyl oxidase-
like protein 2) (Lysyl oxidase related protein 2) (Lysyl oxidase-
related protein WS9-14) (LOC290350), mRNA 

1392322_at 2.386 

Transcribed sequence with weak  similarity to protein 
ref:NP_060796.1 (H.sapiens)  hypothetical protein FLJ11110 
[Homo sapiens] 

1397167_at 2.364 
UI-R-C4-alm-d-12-0-UI.s1 UI-R-C4 Rattus norvegicus cDNA 
clone UI-R-C4-alm-d-12-0-UI 3', mRNA sequence. 

1387351_at 2.363 fibrillin 1 

1376197_at 2.347 
Transcribed sequence with moderate similarity to protein 
sp:P00722 (E. coli) BGAL_ECOLI Beta-galactosidase 

1389553_at 2.342 Similar to RIKEN cDNA 3110037K17 (LOC362431), mRNA 

1381357_at 2.319 

Similar to Protein-tyrosine phosphatase, non-receptor type 8 
(Hematopoietic cell protein-tyrosine phosphatase 70Z-PEP) 
(LOC295338), mRNA 

1370585_a_at 2.308 protein kinase C, beta 1 
1368683_at 2.305 oxidized low density lipoprotein (lectin-like) receptor 1 
1368518_at 2.298 CD53 antigen 
1391026_at 2.295 Transcribed sequence with moderate similarity to protein 
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sp:P00722 (E. coli) BGAL_ECOLI Beta-galactosidase 
1370895_at 2.293 collagen, type V, alpha 2 
1368167_at 2.264 cathepsin E 
1385702_at 2.255 Similar to Ifi204 protein (LOC304988), mRNA 
1390798_at 2.253 protein tyrosine phosphatase, receptor type, C 
1373463_at 2.25 collagen, type V, alpha 2 
1370603_a_at 2.235 Protein tyrosine phosphatase, receptor type, C 
1387276_at 2.223 Transcribed sequences 
1379598_at 2.22 Transcribed sequences 

1383322_at 2.218 
UI-R-CV1-bsu-c-11-0-UI.s1 UI-R-CV1 Rattus norvegicus 
cDNA clone UI-R-CV1-bsu-c-11-0-UI 3', mRNA sequence. 

1379766_at 2.198 src-like adaptor 
1368762_at 2.19 ubiquitin D 
1370892_at 2.184 palmitoyl-protein thioesterase 2 

1377239_at 2.166 
UI-R-CN1-cjf-k-17-0-UI.s1 UI-R-CN1 Rattus norvegicus 
cDNA clone UI-R-CN1-cjf-k-17-0-UI 3', mRNA sequence. 

1387134_at 2.164 schlafen 3 
1368829_at 2.158 fibrillin-1 
1368420_at 2.152 ceruloplasmin 
1375010_at 2.149 Similar to macrosialin (LOC287435), mRNA 

1392515_at 2.147 
Transcribed sequence with weak  similarity to protein 
pir:I49049 (M.musculus) I49049 Ly-49D-GE antigen - mouse 

1388939_at 2.139 Similar to type XV collagen (LOC298069), mRNA 
1372404_at 2.136 Similar to EN-7 protein (LOC366957), mRNA 
1382680_at 2.119 adipose differentiation-related protein 

1387945_at 2.113 
R.norvegicus (F344/Crj) rearranged mRNA for T-cell receptor 
gamma chain (1474bp) 

1382153_at 2.101 
Similar to dendritic cell immunoreceptor (LOC297584), 
mRNA 

1398616_at 2.095 
UI-R-C1-kh-a-12-0-UI.s1 UI-R-C1 Rattus norvegicus cDNA 
clone UI-R-C1-kh-a-12-0-UI 3', mRNA sequence. 

1389651_at 2.082 Transcribed sequences 
1381311_at 2.082 Similar to cell surface glycoprotein (LOC316137), mRNA 

1372097_at 2.081 
Similar to interferon consensus sequence-binding protein - 
mouse (LOC292060), mRNA 

1392407_at 2.069 Transcribed sequences 
1369943_at 2.061 transglutaminase 2, C polypeptide 

1393227_at 2.059 
UI-R-C1-kg-h-02-0-UI.s1 UI-R-C1 Rattus norvegicus cDNA 
clone UI-R-C1-kg-h-02-0-UI 3', mRNA sequence. 

1384187_at 2.058 
UI-R-C1-kk-e-12-0-UI.r1 UI-R-C1 Rattus norvegicus cDNA 
clone UI-R-C1-kk-e-12-0-UI 5', mRNA sequence. 

1391979_at 2.05 Transcribed sequences 
1368418_a_at 2.044 ceruloplasmin 

1382442_at 2.042 
Similar to transcription factor NRF; ITBA4 gene 
(LOC298316), mRNA 

1369944_at 2.042 MARCKS-like 1 
1368558_s_at 2.036 allograft inflammatory factor 1 
1380250_at 2.035 Transcribed sequences 
1379344_at 2.035 endothelial type gp91-phox gene 
1379499_at 2.032 Similar to lymphotoxin-beta (LOC361795), mRNA 
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1383137_at 2.025 

UI-R-E1-fh-g-01-0-UI.s1 UI-R-E1 Rattus norvegicus cDNA 
clone UI-R-E1-fh-g-01-0-UI 3' similar to 
gi|2064126|gb|AA406145|AA406145 zu20c07.s1 Soares 
NhHMPu S1 Homo sapiens cDNA clone 738540 3', mRNA 
sequence. 

1379482_at 2.016 hepatoma-derived growth factor, related protein 3 
1379688_at 2.009 Transcribed sequences 
1373860_at 2.008 Similar to sox-4 protein - mouse (LOC364712), mRNA 
1368419_at 2.007 ceruloplasmin 

1370924_at 2.006 
Rat T-cell receptor active beta-chain C-region mRNA, partial 
cds, clone TRB4 

1373286_at 1.996 Transcribed sequences 

1384939_at 1.995 
UI-R-C2p-rw-e-09-0-UI.r1 UI-R-C2p Rattus norvegicus 
cDNA clone UI-R-C2p-rw-e-09-0-UI 5', mRNA sequence. 

1368294_at 1.994 deoxyribonuclease I-like 3 

1385143_at 1.993 
Transcribed sequence with moderate similarity to protein 
pir:I60486 (R.norvegicus) I60486 gene trg protein - rat 

1369983_at 1.992 chemokine (C-C motif) ligand 5 
1388673_at 1.984 Similar to Lsp1 protein (LOC361680), mRNA 
1373932_at 1.984 endothelial type gp91-phox gene 
1380682_at 1.976 Similar to KIAA2009 protein (LOC308790), mRNA 

1373575_at 1.972 

Transcribed sequence with moderate similarity to protein 
pir:A35241 (H.sapiens) A35241 IgE Fc receptor gamma chain 
precursor - human 

1383658_at 1.972 lysosomal-associated protein transmembrane 5 
1384298_at 1.962 Similar to myosin-1F-like protein (LOC314654), mRNA 
1368455_at 1.961 natural killer cell group 7 sequence 
1383614_at 1.948 Similar to 1200013B22Rik protein (LOC289419), mRNA 

1389210_at 1.943 
Similar to lymphocyte cytosolic protein 1 (LOC306071), 
mRNA 

1381819_at 1.938 
UI-R-C2p-oj-d-05-0-UI.s1 UI-R-C2p Rattus norvegicus cDNA 
clone UI-R-C2p-oj-d-05-0-UI 3', mRNA sequence. 

1368896_at 1.937 MAD homolog 7 (Drosophila) 
1371518_at 1.935 nidogen (entactin) 
1368006_at 1.917 lysosomal-associated protein transmembrane 5 
1387776_at 1.915 tissue-type transglutaminase 
1367846_at 1.914 S100 calcium-binding protein A4 

1385571_at 1.908 

Transcribed sequence with weak  similarity to protein 
pir:A37244 (H.sapiens) A37244 nuclear autoantigen Sp-100 - 
human 

1387946_at 1.9 lectin, galactoside-binding, soluble, 3 binding protein 
1374493_at 1.898 Transcribed sequences 
1376282_at 1.894 Transcribed sequences 

1368565_at 1.892 
solute carrier family 1 (glial high affinity glutamate 
transporter), member 3 

1371441_at 1.882 
Similar to phosphoprotein enriched in astrocytes 15 
(LOC364052), mRNA 

1377955_at 1.881 LOC367996 (LOC367996), mRNA 
1370987_at 1.881 sialophorin 

1372439_at 1.875 
Similar to collagen alpha 1(IV) chain precursor - mouse 
(LOC290905), mRNA 
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1379284_at 1.874 Similar to RIKEN cDNA 2810457I06 (LOC315579), mRNA 
1390707_at 1.87 regulator of G-protein signaling 10 

1371016_at 1.864 
Rat T-cell receptor active alpha-chain C-region mRNA, partial 
cds, clone TRA29 

1368940_at 1.862 purinergic receptor P2Y, G-protein coupled 2 
1369958_at 1.858 ras homolog gene family, member B 
1369955_at 1.857 procollagen, type V, alpha 1 

1388339_at 1.854 
Similar to phosphoprotein enriched in astrocytes 15 
(LOC364052), mRNA 

1380909_at 1.841 Transcribed sequences 
1367776_at 1.838 cell division cycle 2 homolog A (S. pombe) 
1392547_at 1.835 Hypothetical LOC302884 (LOC302884), mRNA 
1389873_at 1.833 apoptosis-associated speck-like protein containing a CARD 
1368555_at 1.829 CD37 antigen 
1393149_at 1.822 protocadherin alpha 13 
1376030_at 1.82 Similar to centaurin, beta 1 (LOC287443), mRNA 
1370621_at 1.819 CD3 antigen, zeta polypeptide 
1370516_at 1.815 solute carrier family 15, member 3 
1370864_at 1.812 collagen, type 1, alpha 1 
1389189_at 1.81 actinin, alpha 1 
1373818_at 1.809 Transcribed sequences 
1369204_at 1.779 hemopoietic cell kinase 
1389885_at 1.778 Similar to RIKEN cDNA 0610025L06 (LOC360646), mRNA 
1393672_at 1.775 Similar to hemicentin; fibulin 6 (LOC289094), mRNA 

1392655_at 1.772 
Similar to Nuclear autoantigen Sp-100 (Speckled 100 kDa) 
(Nuclear dot-associated Sp100 protein) (LOC363269), mRNA 

1383702_at 1.761 
UI-R-BS0-anu-f-09-0-UI.s1 UI-R-BS0 Rattus norvegicus 
cDNA clone UI-R-BS0-anu-f-09-0-UI 3', mRNA sequence. 

1373785_at 1.755 

Transcribed sequence with weak  similarity to protein 
ref:NP_036400.1 (H.sapiens)  similar to vaccinia virus HindIII 
K4L ORF [Homo sapiens] 

1372852_at 1.753 Similar to S6 kinase 2 (LOC361696), mRNA 
1380621_at 1.749 Similar to tyrosine kinase Fps/Fes (LOC293041), mRNA 

1371537_at 1.742 

Transcribed sequence with strong similarity to protein 
sp:O43286 (H.sapiens) B4G5_HUMAN Beta-1,4-
galactosyltransferase 5 

1376652_at 1.738 
Similar to Complement component 1, q subcomponent, alpha 
polypeptide (LOC298566), mRNA 

1378150_at 1.737 
Similar to caspase recruitment domain family member 11 
(LOC304314), mRNA 

1372200_at 1.736 

Transcribed sequence with moderate similarity to protein 
ref:NP_071390.1 (H.sapiens)  chromosome 6 open reading 
frame 9; G18.2 protein [Homo sapiens] 

1390821_at 1.732 protocadherin alpha 13 
1368822_at 1.732 follistatin-like 

1388784_at 1.727 

Similar to Macrophage colony stimulating factor I receptor 
precursor (CSF-1-R) (Fms proto-oncogene) (c-fms) 
(LOC307403), mRNA 

1390738_at 1.724 DAMP-1 protein 
1388698_at 1.716 extracellular matrix protein 1 
1373245_at 1.714 Similar to collagen alpha 1(IV) chain precursor - mouse 
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(LOC290905), mRNA 
1388740_at 1.714 Similar to cDNA sequence BC032204 (LOC309186), mRNA 
1377916_at 1.709 Similar to schlafen2 (LOC303380), mRNA 

1378131_at 1.698 
Similar to hypothetical protein FLJ35613 (LOC363115), 
mRNA 

1389039_at 1.695 

Transcribed sequence with strong similarity to protein 
prf:2018199A (E. coli) 2018199A beta lactamase IRT-4 
[Escherichia coli] 

1391206_at 1.692 
Similar to hypothetical protein FLJ10901 (LOC289399), 
mRNA 

1379698_at 1.687 
Transcribed sequence with strong similarity to protein 
sp:P00722 (E. coli) BGAL_ECOLI Beta-galactosidase 

1388131_at 1.685 Rat mRNA for beta-tubulin T beta15 

1377390_at 1.685 
UI-R-CT0-bud-a-09-0-UI.s1 UI-R-CT0 Rattus norvegicus 
cDNA clone UI-R-CT0-bud-a-09-0-UI 3', mRNA sequence. 

1384292_at 1.682 downstream of tyrosine kinase-1 
1367784_a_at 1.682 clusterin 
1380930_at 1.68 Similar to KIAA1607 protein (LOC290569), mRNA 
1368754_at 1.677 pyrimidinergic receptor P2Y, G-protein coupled, 6 
1377325_a_at 1.675 Transcribed sequences 
1380410_at 1.672 Transcribed sequences 

1392922_at 1.668 
UI-R-BS1-ayd-d-02-0-UI.s1 UI-R-BS1 Rattus norvegicus 
cDNA clone UI-R-BS1-ayd-d-02-0-UI 3', mRNA sequence. 

1380537_at 1.666 Similar to RIKEN cDNA 4930568P13 (LOC315348), mRNA 
1374730_at 1.658 Similar to DAP12 (LOC361537), mRNA 
1373262_at 1.653 Transcribed sequences 
1367986_at 1.652 prostaglandin F2 receptor negative regulator 
1395781_at 1.652 Transcribed sequences 

1389208_at 1.648 
Similar to hypothetical protein MGC40053 (LOC363495), 
mRNA 

1385213_at 1.648 
Similar to Epithelial stromal interaction 1, isoform a 
(LOC364433), mRNA 

1376218_a_at 1.641 
Similar to Potential phospholipid-transporting ATPase ID 
(ATPase class I type 8B member 2) (LOC361984), mRNA 

1372055_at 1.634 Transcribed sequences 
1398294_at 1.63 actinin, alpha 1 

1391537_at 1.629 
Similar to hypothetical protein DJ667H12.2 (LOC360899), 
mRNA 

1371331_at 1.627 
DRABXE03 Rat DRG Library Rattus norvegicus cDNA clone 
DRABXE03 5', mRNA sequence. 

1389477_at 1.624 Transcribed sequences 
1368723_at 1.615 linker for activation of T cells 

1374337_at 1.615 

Transcribed sequence with moderate similarity to protein 
pdb:1LBG (E. coli) B Chain B, Lactose Operon Repressor 
Bound To 21-Base Pair Symmetric Operator Dna, Alpha 
Carbons Only 

1376153_at 1.614 Transcribed sequences 
1375908_at 1.613 Transcribed sequences 
1373656_at 1.607 Transcribed sequences 

1372604_at 1.605 
Similar to Apolipoprotein L3 (Apolipoprotein L-III) (ApoL-
III) (TNF-inducible protein CG12-1) (CG12_1) (LOC315106), 
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mRNA 
1367655_at 1.603 thymosin, beta 10 
1370265_at 1.591 arrestin, beta 2 
1391737_at 1.591 Similar to p40-phox (LOC366956), mRNA 

1373151_at 1.59 
Similar to lipoma HMGIC fusion partner (LOC365795), 
mRNA 

1368207_at 1.579 FXYD domain-containing ion transport regulator 5 
1378633_at 1.578 Similar to 4933402K05Rik protein (LOC293783), mRNA 

1373106_at 1.576 
R.norvegicus mRNA for parathyroid hormone regulated 
sequence (215bp) 

1389809_at 1.574 Transcribed sequences 
1382283_at 1.574 Wiskott-Aldrich syndrome protein interacting protein 

1393957_at 1.57 
UI-R-C3-td-e-06-0-UI.s1 UI-R-C3 Rattus norvegicus cDNA 
clone UI-R-C3-td-e-06-0-UI 3', mRNA sequence. 

1375224_at 1.565 

Transcribed sequence with strong similarity to protein 
ref:NP_036528.1 (H.sapiens)  pleckstrin homology-like 
domain, family A, member 3; pleckstrin homology-like 
domain, family A, member 2 [Homo sapiens] 

1388493_at 1.557 
Similar to Expressed sequence AW146242 (LOC362374), 
mRNA 

1372294_at 1.553 Similar to mKIAA0230 protein (LOC314016), mRNA 
1391741_a_at 1.55 Transcribed sequences 

1393638_at 1.54 
UI-R-C3-ts-g-07-0-UI.s1 UI-R-C3 Rattus norvegicus cDNA 
clone UI-R-C3-ts-g-07-0-UI 3', mRNA sequence. 

1392737_at 1.539 Transcribed sequences 

1379295_at 1.538 

Transcribed sequence with moderate similarity to protein 
ref:NP_113686.1 (H.sapiens)  guanine nucleotide binding 
protein-gamma transducing activity polypeptide 2; gamma-T2 
subunit; G protein cone gamma 8 subunit [Homo sapiens] 

1367791_at 1.538 receptor (calcitonin) activity modifying protein 1 
1375862_at 1.534 Similar to mKIAA0230 protein (LOC314016), mRNA 

1371923_at 1.534 
Similar to hypothetical protein FLJ20481 (LOC361467), 
mRNA 

1390925_a_at 1.527 Transcribed sequences 
1388427_at 1.521 Similar to adipocyte-specific protein 3 (LOC313770), mRNA 
1382043_at 1.52 Similar to unc93 homolog B (LOC361689), mRNA 
1376005_at 1.52 Transcribed sequences 
1372726_at 1.519 Similar to germinal histone H4 gene (LOC306963), mRNA 
1397866_at 1.51 Similar to NK13 (LOC364705), mRNA 

1372034_at 1.507 

Transcribed sequence with moderate similarity to protein 
pdb:1LBG (E. coli) B Chain B, Lactose Operon Repressor 
Bound To 21-Base Pair Symmetric Operator Dna, Alpha 
Carbons Only 

1392037_at 1.501 Transcribed sequences 

1394228_at 0.667 

Transcribed sequence with weak  similarity to protein 
ref:NP_060531.1 (H.sapiens)  hypothetical protein FLJ10330 
[Homo sapiens] 

1385624_at 0.665 
Similar to Transcription initiation protein SPT3 homolog 
(SPT3-like protein) (LOC301257), mRNA 

1368272_at 0.664 glutamate oxaloacetate transaminase 1 
1380828_at 0.663 Transcribed sequences 
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1379350_at 0.663 
Similar to transcription factor CP2; Transcription factor CP2, 
alpha globin (LOC315309), mRNA 

1393123_at 0.662 
UI-R-DO1-ckp-e-14-0-UI.s1 UI-R-DO1 Rattus norvegicus 
cDNA clone UI-R-DO1-ckp-e-14-0-UI 3', mRNA sequence. 

1372889_at 0.655 matrin F/G 1 
1370747_at 0.654 fibroblast growth factor 9 
1369081_at 0.653 neuraminidase 1 
1369705_at 0.647 X transporter protein 3 
1381006_at 0.645 hepatocyte growth factor activator 

1379726_at 0.641 
Similar to pre-B-cell leukemia transcription factor 4 
(LOC361131), mRNA 

1368084_at 0.632 deoxyribonuclease I 
1388426_at 0.625 sterol regulatory element binding factor 1 
1383722_at 0.621 Similar to Proline synthetase associated (LOC306544), mRNA 
1382496_at 0.616 hepatocyte nuclear factor 4, alpha 
1387672_at 0.616 glycine N-methyltransferase 
1369289_at 0.615 hepatocyte nuclear factor 4, alpha 

1378295_at 0.61 

Similar to six transmembrane epithelial antigen of prostate 2; 
six transmembrane prostate protein; prostate cancer associated 
gene 1; prostate cancer associated protein 1 (LOC312052), 
mRNA 

1368661_at 0.606 
solute carrier family 13 (sodium-dependent dicarboxylate 
transporter), member 2 

1381574_at 0.603 Transcribed sequences 
1387492_at 0.6 solute carrier organic anion transporter family, member 2a1 
1370329_at 0.597 cytochrome P450, family 2, subfamily d, polypeptide 22 
1371104_at 0.583 sterol regulatory element binding factor 1 
1387065_at 0.569 phospholipase C, delta 4 
1387913_at 0.561 cytochrome P450, family 2, subfamily d, polypeptide 22 
1371012_at 0.524 phytanoyl-CoA 2-hydroxylase 2 
1368442_at 0.519 coagulation factor II 
1381251_at 0.505 Transcribed sequences 

1380562_at 0.49 
Similar to hypothetical protein MGC29784 (LOC362416), 
mRNA 

1386969_at 0.477 neuritin 
1379376_at 0.457 Transcribed sequences 

1372920_at 0.432 
Similar to proline dehydrogenase; PRODH (LOC287950), 
mRNA 

1371080_at 0.355 kallikrein 
1393139_at 0.345 Similar to Apolipoprotein C2 (LOC292697), mRNA 

 
Fold change >1 indicated that the gene was down regulated by CR, compared to control group, 
and vice-versa. 
 

 


