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SUMMARY 

 

Malignant glioma remains one of the most lethal forms of cancer in humans. 

However, current therapy for glioma rarely achieves long-term tumor control. 

Stem cell–based gene therapy is a promising new strategy for the treatment 

of glioma. Neural stem cells are highly efficacious in targeting brain tumors 

and show a specific affinity for invading glioma cells. Genetically engineered 

neural stem cells expressing therapeutic genes can inhibit the growth of 

glioma, facilitate elimination of tumor cells, and repair damaged brain tissue. 

As such, neural stem cells may be effective delivery vehicles for gene therapy 

to malignant neoplasms in the brain. However, the mechanism of glioma-

tropic behavior in neural stem cells is not well understood. Furthermore, there 

are significant ethical issues limiting the use of stem cells of fetal origin. This 

study aimed to discover new regulators that might enhance cell migration 

toward gliomas and sought to develop alternative, large-scale sources of 

neural stem cells for use in gene therapy for glioma. 

 

In this study, we identified and characterized a novel cell motility modulator, 

TMEM18. Overexpression of TMEM18 was observed to provide neural stem 

cells and neural precursors an increased capacity to migrate toward 

glioblastoma cells, both in vitro and in the rat brain. Functional inactivation of 

the TMEM18 gene resulted in almost complete loss of migration activity in 

these cells, demonstrating that TMEM18 is a novel cell-migration modulator. 
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Overexpression of this protein could be used favorably in neural stem cell–

based therapy for glioma. 

 

A population of human glioma-tropic precursor cells, NT2.RA2 migrating cells, 

was then derived from retinoid acid (RA)–treated neural precursor NT2 cells. 

After systemic administration in nude mice, the NT2.RA2 migrating cells 

targeted intracranially and subcutaneously implanted U87 gliomas. When 

genetic engineered to express the suicide gene HSVtk, NT2.RA2 migrating 

cells showed significant antitumor effects and prolonged the animals’ survival. 

Thus, we had successfully derived glioma tropic precursor cells from NT2 

cells and used them as efficient delivery vectors in gene therapy for glioma. 

 

Finally, this study demonstrated, for the first time, that human embryonic stem 

cells can provide a potentially unlimited source for glioma gene therapy. Using 

a novel monolayer culture condition, we successfully derived long-term 

proliferating neural stem cells from HES1 and HES3 human embryonic stem 

cell lines. The embryonic stem cell-derived neural stem cells showed strong 

glioma-specific tropic behavior in Boyden migration assays. When carrying 

the suicide gene HSVtk, these cells possess resistance to phospho-GCV, and 

demonstrated strong antitumor effects in vitro. 

 

This work may improve brain tumor gene therapy and provide unlimited, 

clinically viable cell sources for use as vehicles for gene delivery. We hope 
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that this thesis will lead to improvements in glioma therapy and help prolong 

the survival of patients with malignant glioblastomas. 
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1.1 Brain tumors 

Malignant brain tumors are one of the most devastating forms of human 

cancers. With an incidence of just 1 in 10,000 in Western countries, they are 

responsible for about 2% of all deaths (Counsell and Grant, 1998; Pobereskin 

and Chadduck, 2000). In adults, one-half of brain malignancies are primary 

and the rest metastatic (Annegers et al, 1981). Brain tumors are classified on 

an ascending scale of malignancy from I to IV according to cell type (Louis et 

al, 2007). Grade IV gliomas are most common in the elderly, while 

medulloblastomas have the highest incidence in children. 

 

1.1.1 Gliomas 

Gliomas can arise from either astrocytes or oligodendrocytes (Berger, 1998). 

About 50% of primary neoplasms are gliomas and 50% of gliomas are the 

most malignant type, glioblastoma (Kleihues and Sobin, 2000). The incidence 

of malignant gliomas seems to be increasing, especially in the elderly (Hess 

et al, 2004). Malignant glioma remains one of the most lethal forms of cancer 

in humans, with average survival of less than 1 year. Grade IV glioma, known 

as glioblastoma multiforme (GBM), is the most malignant. A recent 

population-based study showed that the survival of patients with glioblastoma 

multiforme was 42.4% at 6 months, 17.7% at 1 year, and 3.3% at 2 years 

(Ohgaki et al, 2004). 
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Highly aggressive gliomas develop either de novo (primary) or progress from 

lower grade tumors through mutation (secondary). The origin of primary brain 

tumors is not clear. Recent studies of cancer stem cells show that brain tumor 

stem cells are crucial for the initiation and maintenance of gliomas. A 

population of glioblastoma stem cells expressing the neural stem cell (NSC) 

marker CD133 was first isolated from brain tumors (Singh et al, 2004). Like 

NSCs, glioblastoma stem cells possess the fundamental stem cell properties 

of self-renewal and multipotency. The most important feature of CD133+ cells 

is that they will generate secondary tumors when transplanted into the 

striatum of adult immunodeficient mice, demonstrating their self-renewal in 

vivo (Galli et al, 2004). Studies of the origin of brain cancer stem cells reveal 

that they arise from the malignant transformation of normal somatic stem cells 

or of more mature cells within the high-proliferation zone, such as the 

subventricular zone (Vescovi et al, 2006). 

 

Glioma cells can infiltrate into normal brain tissue and migrate long distances. 

It has been reported that gliomas infiltrate and migrate along perivascular, 

perineuronal, and subpial spaces, as well as white matter such as the corpus 

callosum (Holland, 2000). The highly invasive nature of glioma makes it 

impossible to surgically remove the entire tumor mass. Remnants cause 

tumor recurrence and lead to patient mortality. 
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1.1.2 Glioma therapy: current status and challenge 

Current therapy for intracranial glioma is most commonly surgical resection 

with adjuvant radio- or chemotherapy. Despite dramatic advances in 

neurosurgery, radiotherapy, and chemotherapy in recent decades, the median 

survival of patients with malignant glioma remains unchanged, at about 12 

months. 

 

After neurosurgical resection, the survival of patients with glioma may be 

prolonged by up to 6 months (Shand et al, 1999). Recent advances in surgical 

techniques have improved the treatment of glioma. Neurosurgeons can now 

locate and characterize lesions using new imaging technologies, such as 

high-resolution magnetic resonance imaging (MRI), MR spectroscopy, 

positron emission tomography (PET) scans, and diffusion and perfusion 

imaging (Nelson and Cha, 2003). Precise and aggressive surgical tumor 

resection can be achieved using combined frameless stereotaxis and 

intraoperative MRI translated imaging (Oh and Black, 2005). However, the 

lack of a defined tumor edge makes resection difficult. In addition, brain 

tumors may invade normal brain tissue and may form in critical areas. 

 

Radiotherapy may be used as follow-up treatment to kill residual tumor cells 

after surgical resection. It may also be employed when the tumor is in an area 

that renders it inoperable. Normal brain tissue can tolerate up to 60 Gy of 

radiation, which is below the threshold required to kill glioma cells. Several 
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new technologies, including hyperfractionated radiation therapy, stereotactic 

radiosurgery or radiotherapy, interstitial radiotherapy, and boron neutron 

capture therapy have been used to enhance the efficiency of radiotherapy 

while minimizing side effects. Although these technologies reduce the 

radiation to some degree within normal brain tissue, they do not significantly 

improve therapeutic efficiency. 

 

Chemotherapy may be used at initiation of glioma therapy or following surgery 

and/or radiotherapy. Chemotherapy of brain tumors is not curative; its goals  

are to control tumor growth and maintain the patient’s quality of life for as long 

as possible (Castro et al, 2003). The most commonly used chemotherapy 

drugs are nitrosoureas (BCNU, CCNU); platinum-based drugs (cisplatin, 

cisplatinum, carboplatin); temozolomide; procarbazine; and naturally 

occurring compounds such as taxol (Burton and Prados, 2000).  Glioblastoma 

tends to be more resistant than other types of brain tumors. Use of multiple 

types of antitumor drugs sometimes overcomes this chemoresistance, but 

cells within the tumor mass have different sensitivities to the drugs. Cells with 

lower sensitivity can produce resistant clones, which may then develop 

secondary tumors.The blood - brain barrier (BBB), may also cause 

chemotherapy to fail. The BBB is a physical barrier separating the brain from 

the blood and prevents most hydrophilic substances and large hydrophobic 

molecules from reaching the tumor site through passive diffusion. Efflux 

pumps presenting in BBB, such as P-glycoproteins, organic anion 
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transporters, and multidrug resistance–associated proteins may also pump 

foreign molecules out of the brain. 

 

Current glioma therapy is often not curative and rarely achieves long-term 

tumor control. Thus there is a great need for novel therapies. 

 

1.2  Glioma gene therapy 

Because gliomas consist of localized dividing cells and seldom metastasize 

outside the central nervous system (CNS), gene therapy is a promising new 

treatment. It would allow vector delivery directly to the tumor site, reducing the 

risk of systemic side effects (Immonen et al, 2004). The goal of glioma gene 

therapy is to achieve therapeutic-level transgene expression at the tumor site 

while minimizing damage to the surrounding normal brain tissue. Although 

glioma gene therapy has produced encouraging results in animal models, 

clinical trials have not yet achieved considerable therapeutic effect because of 

low gene transduction in patients. Viral, chemical, and cellular vectors are 

being studied as vehicles for gene delivery. 

 

1.2.1 Viral vectors 

 Viral vectors are the most effective in vivo gene delivery reagents and have 

been well studied in clinical trials. Adenovirus, retrovirus, and herpes simplex 

virus type 1 (HSV-1) are the most commonly used viral vectors in glioma gene 

therapy. 
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Adenovirus is a nonenveloped particle with a double-stranded DNA genome 

of 36 kb (Horne et al, 1975). Adenovirus vectors are used in replication-

deficient and replicating forms (Chiocca et al, 2003). After deletions in the 

early regions of the adenoviral genome, adenovirus vectors become 

replication deficient. In glioma gene therapy, replication-deficient adenovirus 

can transduce dividing and nondividing cells efficiently without risk of insertion 

mutagenesis, and its safety has been proven in a number of clinical trials 

(Immonen et al, 2004; Trask et al, 2000). Adenovirus has high antigenicity in 

vivo, especially in early-generation adenoviruses. The immune responses 

activated by the adenovirus virions may have provided additional antitumor 

effects in glioma treatment (Danthinne and Imperiale, 2000; Kay et al, 2001; 

Sandmair et al, 2000). Replicating viruses are oncolytic, selectively lysing, 

dividing tumor cells, and thus spread throughout the tumor (Chiocca, 2002). 

There are several ways to engineer replicating oncolytic adenovirus to 

achieve tumor selectivity. Replicating adenovirus mutated in E1A specifically 

lyses retinoblastoma-defective glioma cells (Fueyo et al, 2000). The ONYX-

015 vector mutated in E1B restricts virus replication to p53-deficient tumor 

cells, and its tumor-specific lysis has been enhanced in clinical trials when 

combined with chemotherapy (Bischoff et al, 1996; Heise et al, 1997). An 

adenovirus mutated in both E1A and E1B showed a potent antitumor effect in 

intracranial glioma xenografts, with increased tumor selectivity (Gomez-

Manzano et al, 2004). 
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Retrovirus vectors are enveloped RNA viruses derived primarily from 

Moloney murine leukemia virus (MoMLV), with a transgene capacity of up to 

8.5 kb. During transduction, the virus RNA is reverse transcripted to double-

stranded DNA, which is then transported to the nucleus and randomly 

integrate into the host cell genome. Retrovirus vectors are usually used in 

replication-deficient form, which is rendered by deleting the genes gag, pol, 

and env. Retrovirus vectors can be delivered directly by intratumor injection. A 

more efficient method is to graft the engineered vector-producing cells 

intratumorally to produce virus in situ (Rainov and Kramm, 2003). However, 

the application of retrovirus vectors in glioma gene therapy is limited by the 

vectors’ inability to infect nondividing cells and by low transduction efficiency 

in vivo (Rainov and Ren, 2003; Vile and Russell, 1995). To improve 

transduction efficiency, replication-defective HSV-1 or adenovirus has been 

used to deliver retrovirus packaging sequence and transgene directly to the 

tumor site, transforming the tumor cells to vector-producing cells and 

increasing transgene expression (Hampl et al, 2003). 

 

HSV-1 is an enveloped virus carrying a double-stranded DNA of 152 kb. HSV 

may prove particularly useful in the treatment of gliomas located in the CNS 

because of viruses’ known tropism for nervous tissue (Barnett et al, 1999; 

Lilley et al, 2001). Similar to adenovirus, replicating and replication-deficient 

HSV-1 vectors have been developed for use in glioma gene therapy. 
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Replicative HSV-1 vectors mutated in neurovirulence or ribonucleotide 

reductase genes showed tumor-specific replication and lysis in early-phase 

clinical trials (Shah et al, 2003; Varghese and Rabkin, 2002). 

 

1.2.2 Chemical vectors 

In clinical trials, chemical vectors have shown lower transfection efficiency in 

vivo with fewer safety concerns than with viral vectors. Naked DNA, liposome, 

and DNA/polymer complex are currently being studied. 

 

Naked DNA does not cause an immune response against the carriers. 

Physical modification, including calcium phosphate precipitation, DEAE-

dextran/chloroquine permeabilization, heat shock, and intracellular 

microinjection is required for naked DNA to enter host cells (Castro et al, 

2003). Unfortunately, most of these techniques are restricted to in vitro gene 

delivery and transfection efficiency is quite poor. Naked plasmid DNA has 

been used only occasionally in glioma gene therapy (Barnett et al, 2004). 

 

Liposomes are highly successful in transfecting cell lines; several clinical trials 

have used liposomes in glioma gene therapy. One brain tumor trial in humans 

used cationic liposomes to deliver therapeutic genes (Yoshida et al, 2004). 

Immunoliposomes conjugated with monoclonal antibodies have also been 

reported to target glioma cells (Zhang et al, 2004). However, liposomes are 

limited by ineffective delivery in vivo. 
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A series of polymers has been developed to facilitate gene delivery. Among 

them, the polycationic polymer polyethylenimine (PEI) has shown high 

transfection efficiency in vitro and in vivo. PEI-siRNA complex was reported to 

exert antitumor effects in an animal glioma model (Grzelinski et al, 2006). 

 

1.2.3 Cellular vectors 

In gene therapy, the transgene could be delivered directly by viral or chemical 

vectors (in vivo gene transfer) or delivered to donor cells that are later 

transplanted in the patient (ex vivo gene transfer). Ex vivo gene therapy 

allows the characterization of transfected cells before grafting and the 

selection of transgene-expressing cells. Both somatic and stem cells are used 

as donor cells (Tinsley and Eriksson, 2004). In glioma gene therapy, stem cell 

vectors provide more advantages, such as homing patholigies and damage-

repairing capacities. In the following sections, we discuss stem cell–based 

glioma gene therapy in detail. 

 

1.3  Stem cell–based glioma gene therapy 

Glioma gene therapy clinical trials over the past 10 years have tested 

adenovirus, retrovirus, HSV-1, and liposome vectors. The results of most of 

these clinical studies have been poor, and transfection efficiency of these 

vectors was low in vivo. These poor results were due to the inability to kill 

tumor cells in situ and the limited distribution of transgene and vectors within 
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the tumor mass. Stem cells are recently merged gene-delivery vectors for 

glioma gene therapy and could resolve this difficulty. 

 

1.3.1 Stem cells: embryonic and adult 

Stem cells have two important features distinguishing them from other cell 

types. One is self-renewal, meaning that these cells renew themselves for 

long periods by cell division. Second, under certain conditions, stem cells can 

give rise to one or more mature cell types. Stem cells are composed mainly of 

embryonic stem cells (ESCs) and adult stem cells (ASCs). ESCs are primitive 

(undifferentiated) cells from embryos that have the potential to become a wide 

variety of specialized cell types; ASCs are undifferentiated cells found in a 

differentiated tissue that can renew itself and (with certain limitations) 

differentiate to yield all the specialized cell types of the tissue from which they 

originated (Stem Cells: Scientific Progress and Future Research Directions, 

NIH, 2001).  

 

1.3.1.1 Embryonic stem cells (ESCs) 

Mouse ESCs were first isolated in 1981 by two independent groups (Evans 

and Kaufman, 1981; Martin, 1981). Extensive studies of mouse ESCs have 

broadened our understanding of these cells’ early development and 

differentiation pathways. The later successful isolation of human ESCs 

encouraged today’s tremendous interest in the potential therapeutic 

applications of stem cells. In 1998, Thomson first isolated human ESCs from 
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the inner cell mass of the blastocyst stage (100-200 cells) of embryos 

generated by in vitro fertilization (Thomson et al, 1998). Other methods were 

developed to derive human ESCs from the late morula stage (30-40 cells) 

(Strelchenko et al, 2004), arrest embryos (16-24 cells incapable of further 

development) (Zhang et al, 2006), and single blastomeres isolated from eight-

cell embryos (Klimanskaya et al, 2006). 

 

ESCs can proliferate without limit and differentiate into derivatives of all three 

germ layers (ectoderm, mesoderm, and endoderm). Human ESCs provide an 

unlimited source of normal human differentiated cells, offering great potential 

applications in basic developmental biology studies, drug screening, 

degenerative diseases, and gene therapy. For example, studying the 

pathways involved in the development of human embryos would yield a better 

understanding of fetal development that could then be used in the prevention 

and treatment of birth defects. Second, the pluripotency of human ESCs 

allows the establishment of various new cell-culture models for drug 

screening and toxicity testing. Third, using well-defined protocols, human 

ESCs could be directed toward specific cell types; for example, insulin-

producing cells and neurons. These cells could then be used in 

transplantation therapies for degenerative diseases such as diabetes and 

Parkinson’s disease. Finally, human ESCs provide an unlimited supply of 

cellular vectors for novel ex vivo gene therapy. After genetic modification by 
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virus or liposome, cellular vectors derived from human ESCs could be 

transplanted into the patient to deliver the therapeutic gene. 

 

1.3.1.2 Adult stem cells (ASCs) 

ASCs were originally isolated from adult tissue. Their role is to maintain 

mature cell types in steady-state numbers and replace cells that have died 

due to injury or disease. Unlike ESCs, ASC proliferation is limited; ASCs can 

differentiate only into the cell types specific to their originating tissue. 

However, the therapeutic applications of ASCs are much better studied in 

clinics. Hematopoietic stem cells (HSCs) are the best characterized and 

understood ASCs in therapeutic application. Syngeneic and allogeneic HSC 

transplantations can be used to replace depleted hematopoietic systems and 

induce immune tolerance in patients with severe aplastic anemias, fatal 

leukemias, and other hematological malignancies (Denham et al, 2005). 

HSCs (Aiuti et al, 2002), mesenchymal stem cells (MSCs) (Nakamura et al, 

2004), and neural stem cells (NSCs)  (Aboody et al, 2000) have demonstrated 

utility in animal models undergoing gene therapy. 

 

1.3.1.2.1 Embryonic stem cells versus adult stem cells 

The differences between ESCs and ASCs have been reviewed by Cheng 

(2008) (Table 1.1). 

 



                                                                                                                      14 

Table 1.1 Fundamental differences between ESCs and ASCs (Cheng, 2008). 

 ESCs ASCs 

Origin Blastocyst Developed tissue 

Proliferation in vitro Indefinite Limited 

Differentiation 

spectrum 
All tissue types Limited 

Homing ability No Yes 

Reconstitution 

efficiency 
Low High 

Tumorigenesis Teratoma No or rare 

Availability Restricted (human) Less restricted 

Ethical issues 
Severe (human subjects or 

human-xeno models) 
Fewer 

Clinical proof No Yes (HSC) 

Most challenging 

technique in 

therapeutics 

Efficient induction of 

specific tissue types 

without tumorigenesis 

In vitro expansion 

without loss of 

physiological properties 

 

ESC research is still in an experimental stage, but ASCs have become 

therapeutically usable. In the future, the therapeutic choice between ESCs 

and ASCs will depend on the specific tissue types required by the diseases. 

 



                                                                                                                      15 

1.3.2 Neural stem cells (NSCs) 

NSCs are multipotent cells with the ability to self-renew and generate mature 

cells of all three fundamental neural lineages (neurons, astrocytes, and 

oligodendrocytes) throughout development, as well as to reconstitute those 

cell types in damaged regions of the CNS (Parker et al, 2005). 

 

NSCs like “proliferating neurons” were first identified in the adult rat brain in 

1965 (Altman and Das, 1965). NSCs were later isolated from the embryonic 

and adult CNS. In embryos, NSCs are isolated from the ganglionic eminence, 

whereas in adults NSCs are isolated from the subventricular zone of the 

lateral ventricles and the subgranular zone of the hippocampal dentate gyrus 

(Gage, 2000). After the in vivo identification of NSCs, several procedures 

were developed to propagate NSCs in vitro. Commonly, rodent and human 

NSCs isolated from fetal and adult brains are expanded as neurospheres 

from single cells in a serum-free medium with both epidermal growth factor 

(EGF) and basic fibroblast growth factor (bFGF) (Piper et al, 2001; Tropepe et 

al, 1999). When EGF and bFGF are withdrawn, NSCs give rise to neurons, 

astrocytes, and oligodendrocytes. 

 

NSCs can also be derived from ESCs. It seems that neuronal fate is most 

favored by ESCs when there is no other instructive cue (Smukler et al, 2006). 

Many NSCs and other specific neural cells, such as dopamine neurons and 

motor neurons, have been differentiated from mouse and human ESCs. A 
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variety of methods have been developed to induce NSCs from human ESCs, 

but most of these methods have used the formation of neurospheres or 

embryoid bodies (EBs). NSCs could be generated by overgrowth of human 

ESCs to a higher cell density (Reubinoff et al, 2001). After prolonged culture 

of human ESCs, without changing feeder cells for 3 to 4 weeks, NSC marker-

positive cells are mechanically isolated and put into the serum-free medium to 

form neurospheres. EBs may also be formed to induce neural differentiation 

of human ESCs (Carpenter et al, 2001; Zhang et al, 2001). The EBs are 

subsequently seeded onto an appropriate substrate in a defined medium 

containing mitogens to further select NSC population. However, in cell culture, 

the proliferation of NSCs derived by neurospheres and EBs is limited, and the 

difficulty of handling cell aggregations limits large-scale preparation. In 

addition to neurosphere and EB formation, directed differentiation of ESCs to 

NSCs has been achieved by coculture with mouse PA6 stromal cells (Song et 

al, 2007). However, exposure to animal cells is a safety concern when 

considering therapeutic applications.Recently, Smith and colleagues showed 

that simple plating of mouse ESCs and human embryo cells in monolayer 

culture could successfully develop NSCs (Conti et al, 2005; Ying et al, 2003). 

This novel and straightforward method makes bulk preparation of NSCs from 

ESCs possible. 

 

NSCs represent a renewable source for transplantation therapies in neuronal 

disorders. After transplantation, exogenous NSCs integrate seamlessly in 
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large numbers into the surrounding host brain tissues and differentiate into 

three neural lineages, making them attractive candidates for CNS repair 

(Temple, 2001). In experimental models, NSC-based therapies have been 

developed for nervous system disorders, such as stroke, Parkinson’s disease, 

Huntington’s disease, and spinal cord injury (Martino and Pluchino, 2006). 

 

Another potential application of NSCs is as gene-delivery vehicles for 

therapeutic genes. NSCs are ideal in this respect for the treatment of many 

neurological diseases because of their remarkable migration capacity and 

their innate tropism for brain pathologies (Lindvall et al, 2004; Muller et al, 

2006). NSCs are the preferred vectors used in glioma gene therapy because 

of their inherent glioma-specific tropism and may overcome the low efficiency 

of viruses and liposomes. 

 

1.3.3 Neural stem cells: specific glioma tropism property 

Both exogenous and endogenous NSCs show unique tropism toward gliomas.  

 

1.3.3.1 Exogenous neural stem cells 

Using an implanted brain tumor model in nude mice, Aboody and colleagues 

first reported the extensive homing ability of NSCs and illustrated that NSCs 

could deliver therapeutic genes to malignant cells in the brain (Aboody et al, 

2000). When injected directly into the intracranial tumor, NSCs not only 

distributed themselves extensively throughout the main tumor bed, but also 
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migrated in juxtaposition to individual tumor cells migrating away from the 

tumor mass and infiltrating into the normal tissue. After intracranial 

implantation at a distance from the tumor site, such as in normal tissue in the 

same hemisphere, the contralateral hemisphere, and the cerebral ventricles, 

NSCs migrated through normal tissue and homed in on the transplanted brain 

tumor cells. Interestingly, NSCs could target the brain tumor even after 

intravascular administration. When using NSCs to deliver the therapeutic 

gene (cytosine deaminase), tumor bulk was reduced and survival improved in 

mice bearing tumors. In a second report published at the same time, NSCs 

were used to deliver interleukin-4 in gene therapy of experimental brain 

tumors (Benedetti et al, 2000). The findings indicated that NSCs engineered 

to express antitumor genes might be used to track and destroy brain tumors. 

 

1.3.3.2 Endogenous neural stem cells 

NSCs share a variety of similarities with brain tumor cells, including the 

capacity for migration, infiltration into normal brain tissue, and self-renewal, as 

well as a molecular signature. It has been hypothesized that endogenous 

NSCs are involved in the development of brain tumors, providing multiple 

neural lineage cell types (Fomchenko and Holland, 2005). The extensive 

glioma tropism of endogenous NSCs has been reported in mice (Glass et al, 

2005). In elderly mice, endogenous NSCs migrated from the subventricular 

zone to the grafted tumor, and the NSC accumulation in the tumor site 

decreased in conjunction with increased tumor size and shorter survival times. 
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Moreover, coculture of NSCs and glioma cells resulted in the apoptosis of 

glioma cells. 

 

1.3.4 Mechanism of glioma tropism 

The mechanism of NSCs’ glioma tropic behavior is not well understood, but it 

seems that their glioma-specific migration is mediated by multiple cell-surface 

receptors and secreted proteins. NSCs express a wide variety of receptors. 

These receptors modulate the migration of NSCs to glioma and enable NSCs 

to respond to factors released by glioma cells, the tumor stroma (composed of 

adjacent reactive astrocytes, microglia, oligodendrocytes), the tumor-derived 

endothelium, and the damaged surrounding normal brain. Several cytokines, 

chemokines, growth factors, and their receptors have been reported to 

regulate the migration of NSCs in vitro and in vivo; these include stromal cell-

derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) (Allport et al, 

2004; Ehtesham et al, 2004; Imitola et al, 2004), stem cell factor/c-kit 

(Erlandsson et al, 2004; Sun et al, 2004), HGF/c-Met (Heese et al, 2005), 

VEGF/VEGFR (vascular endothelial growth factor/receptor, Schanzer et al, 

2004; Schmidt et al, 2005), MCP-1/CCR2 (Ji et al, 2004; Widera et al, 2004), 

and HMGB1/RAGE (Palumbo and Bianchi, 2004; Palumbo et al, 2007). It has 

been proposed that at least three important physiological processes influence 

the migratory behavior of transplanted NSCS: inflammation; reactive 

astrocytosis; and angiogenesis (Muller et al, 2006). In these processes, 

microglia, astrocyte, and endothelial cells are activated and secrete cytokines, 
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chemokines, and growth factors to attract NSCs. Extracellular matrix proteins 

might also contribute to the glioma tropism of NSCs (Ziu et al, 2006). 

Understanding of the molecular mechanism of NSC migration toward glioma 

is still quite limited. Additional research is needed to find other molecules with 

the potential to regulate glioma tropic behavior. 

 

1.3.5 Advantages of neural stem cell vectors in glioma gene therapy 

The infiltrative nature of glioma has led to the failure of viral and chemical 

vectors in clinical trials. Because the distribution of these vectors in brain 

tumors is limited, only the tumor cells surrounding the injection site are 

transfected; thus, individual cells migrating from therapeutic areas later give 

rise to secondary tumors. The unique features of NSCs make them well 

suited for glioma therapy and may enable them to overcome the limited 

therapeutic effects of viral and chemical vectors. 

 

NSCs can home in on the main tumor bed and invade single tumor cells over 

great distances to target the therapeutic genes at the tumor site. Stem cell–

based gene therapy may remove the significant obstacle that current glioma 

therapy faces: the recurrence of secondary tumors due to escaped tumor 

cells. After genetic modification, NSCs can express transgenes or become 

vector-producing cells that can deliver therapeutic genes or viruses coding the 

therapeutic genes. 
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NSCs might also be able to deliver antitumor transgenes even after systemic 

administration. The BBB impedes successful delivery of molecules to the 

CNS neoplasm. However, when NSCs are injected into the cerebral ventricles 

or even into peripheral circulation, the BBB does not affect the capacity of 

NSCs to home in on CNS-malignant cells. Tail vein–injected murine NSCs 

migrated to implanted intracranial gliomas and single infiltrating glioma cells in 

a manner similar to that of intracranially implanted NSCs (Aboody et al, 2000).  

Systemic administration of NSCs could eliminate the physiological damage 

caused by intracranial surgery, and therapeutic effects might be further 

improved by repeated treatment. 

 

Besides the antitumor effect of therapeutic genes, NSCs themselves can 

inhibit the tumor growth. In vitro, apoptosis of glioma cells has been observed 

when cocultured with murine NSCs (Glass et al, 2005). In mice, NSCs without 

a therapeutic gene had a tumor-inhibitory effect and extended the survival of 

animals with pretransplanted gliomas (Benedetti et al, 2000). The innate 

tumor-killing capacity of NSCs has also been demonstrated in a rat model 

(Staflin et al, 2004). Rat neural progenitor cell lines HiB5 and ST14A inhibited 

tumor growth after coinjection with rat glioma cells into the rat brain. 

 

In addition to their glioma tropic behavior and capacity to cross the BBB and 

kill tumors, the “stemness” of NSCs makes them more suitable gene-delivery 

vehicles than other cell types (ie, fibroblast cells). NSCs may integrate 
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seamlessly into the host brain and repair the CNS damage associated with 

brain tumors. After implantation, NSCs could generate neurons and glias 

while stimulating the endogenous repair and neurogenic pathways to promote 

self-repair in the host (Ourednik et al, 2002; Park et al, 2002). Moreover, self-

renewing NSCs can be propagated for long periods in cell culture, fulfilling the 

requirements of ex vivo genetic modification and selection. 

 

1.3.6 Stem cell–based glioma gene therapy 

NSCs have a great capacity to home in on brain tumors and show a specific 

affinity for invading glioma cells. Taking the advantages of inherent tumor 

tropic, tumor killing and CNS damage repairing properties, researchers have 

genetically engineered NSCs to selectively deliver various antitumor gene 

products to disseminating tumors. Gene products, including prodrug-

converting enzymes, immunomodulatory cytokines, cytokines with direct 

antitumoral activity, and proteins with antiangiogenic activity, have been 

examined in preclinical studies (Muller et al, 2006). Besides, NSCs may be 

modified into virus-producing cells that can deliver oncolytic viruses directly. 

 

1.3.6.1 Therapeutic genes 

1.3.6.1.1 Prodrug-converting enzymes 

The prodrug-converting enzyme/prodrug system is also called suicide gene 

therapy because the enzyme converts the nontoxic prodrugs into an active 

toxin and causes cell death. NSCs expressing prodrug-converting enzyme in 



                                                                                                                      23 

conjunction with the prodrug reduced tumor growth in animal models bearing 

glioma and extended the survival of mice. The NSCs’ glioma tropism ensures 

a high concentration of prodrug-converting enzyme in the tumor cell region, 

not only in the main tumor bulk, but also in glioma cells escaping the tumor 

bulk. Systemically administered prodrug reaches the brain and is activated by 

the converting enzyme expressed by the NSCs in juxtaposition to the tumor 

cells. One of the most attractive advantages of suicide gene therapy is its so-

called “bystander effect”, meaning that the tumor cells without transgene 

expression will also be killed by the activated prodrug. The activated prodrug 

is further transferred from a small number of killed tumor cells to “bystanders,” 

causing tumor-cell death in an even broader region.  Therefore, the ‘by-

stander effect’ amplifies the therapeutic effect by broadening the therapeutic 

region. Suicide gene therapy improves therapeutic efficacy without 

introducing additional toxicity. By using NSCs to deliver the suicide gene, the 

concentration of active drug is increased at the tumor site, but the plasma 

concentration of active drug or prodrug-converting enzyme does not increase 

compared with treatment using prodrug alone (Aboody et al, 2008). In respect 

to the potential tumorigenicity of stem cells, the prodrug-converting enzyme 

serves as a suicide gene and eliminates NSCs after therapy (Li et al, 2005). 

Prodrug converting enzymes, thymidine kinase, cytosine deaminase, and 

carboxylesterase are being studied for use in stem cell–based glioma gene 

therapy. 
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Herpes simplex virus-thymidine kinase/ganciclovir (HSVtk/GCV) is the most 

widely used suicide gene therapy and has been best characterized in clinical 

trials of malignant glioma gene therapy (Pulkkanen and Yla-Herttuala, 2005). 

In the HSVtk/GCV suicide gene therapy system, the systemic nontoxic GCV 

passes through the BBB and is converted to active drug by HSVtk in NSCs. 

The phosphorylated GCV (analog of deoxyguanosine) incorporates itself into 

the replicating DNA, causing chain termination and cell death. The 

phosphorylated GCV can pass through gap junctions between adjacent cells 

and kill the surrounding actively dividing tumor cells. In rat glioma models, 

HSVtk-transduced primary rat NSCs were intracranially implanted either 

together with the tumor cells or in the hemisphere contralateral to the tumor 

site. After the administration of GCV, intracranial tumor growth was markedly 

inhibited, and survival was significantly prolonged through the bystander 

effect mediated by HSVtk-transduced NSCs (Li et al, 2007; Li et al, 2005). 

 

The E. coli cytosine deaminase (CD)/5-FC system has been tested 

successfully on murine NSC line C17.2, rat NSC line ST14A, and human NSC 

line HB1.F3 (Aboody et al, 2000; Aboody et al, 2006b; Barresi et al, 2003; 

Kim et al, 2006; Shimato et al, 2007). The rabbit carboxylesterase (CE)/ CPT-

11 (irinotecan) system has been recently developed and evaluated on HB1.F3 

in the treatment of neuroblastoma (Aboody et al, 2006a; Danks et al, 2007). 
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1.3.6.1.2 Other gene payloads 

Interleukins (ie, interleukin-4 [IL-4], interleukin-12 [IL-12], and interleukin-23 

[IL-23]) modulate the host immune system to initiate an antitumor response. 

Genetically modified primary mouse NSCs and rat NSCs expressing IL-4 

were tested for efficacy in glioma treatment, resulting in prolonged survival of 

the treated rats compared with untreated controls (Benedetti et al, 2000). In 

another study, implantation of NSCs expressing IL-12 in rats bearing GL261 

tumors extended survival and produced long-term antitumor immunity 

(Ehtesham et al, 2002b). Another interleukin, IL-23, has been delivered by 

bone marrow–derived NSC-like cells (BM-NSCs) and showed an antitumor 

effect in a mouse model with glioma (Yuan et al, 2006). 

 

Tumor necrosis factor–related apoptosis inducing ligand (TRAIL), a 

proapoptotic protein in the tumor necrosis family, induces apoptosis 

selectively in tumor cells in animal models (Walczak et al, 1999). Inoculation 

of TRAIL-secreting NSCs caused tumor apoptosis and reduction in nude mice 

bearing human U343 glioma xenografts (Ehtesham et al, 2002a). 

 

Interferon-β (IFN-β) can inhibit tumor growth by indirect immunomodulatory 

and antiangiogenic properties or by direct antiproliferative effects on 

malignant cells (Studeny et al, 2002). Human NSC line HB1.F3 was exploited 

to target delivery of IFN-β to disseminated neuroblastoma (Dickson et al, 

2007). Intravascularly administrated IFN-β-HB1.F3 cells significantly delayed 
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tumor growth and might circumvent limitations associated with the systemic 

toxicity of IFN-β. Bone marrow–derived MSCs could also serve as vehicles for 

IFN-β delivery into intracranial glioma and melanoma lung metastasis, 

resulting in tumor inhibition and prolonged survival that could not be achieved 

by systemic administration of IFN-β (Nakamizo et al, 2005; Studeny et al, 

2002). 

 

PEX, a natural fragment of human metalloproteinase-2, inhibits glioma 

angiogenesis, cell proliferation, and migration (Bello et al, 2001; Brooks et al, 

1998). In nude mice with U87 gliomas, PEX-producing human NSC HB1.F3 

reduced tumor volume by 90% after intratumoral implantation (Kim et al, 

2005). The tumor reduction was associated with a significant decrease in 

angiogenesis and proliferation. 

 

Oncolytic viruses also can be targeted to brain tumors by using the NSC 

itself to produce and deliver the viral particles to widespread tumor cells. 

Murine NSCs were used to produce and deliver replication-conditional HSV-1 

(Herrlinger et al, 2000). Tumor growth in mice bearing glioma was inhibited by 

NSC-released HSV-1, thus overcoming the typical hurdle of low transduction 

efficiency that impedes virus-based glioma gene therapy. 
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1.3.6.2 Cell sources 

To date, one of the major limitations of stem cell–based glioma gene therapy 

is the use of fetal-derived NSCs. Human NSCs used in experimental models 

are mainly isolated from the fetal human brain by FACS (Rossi and Cattaneo, 

2002). The process is quite tedious and NSCs are difficult to expand after 

isolation. Moreover, the fetal source of NSCs raises serious ethical and legal 

concerns. To overcome these hurdles, alternative large-scale sources of 

NSCs must be identified (Martino and Pluchino, 2006). 

 

Primary adult NSCs may be a viable choice in terms of the similarity 

between primary NSCs and endogenous NSCs, as well as the encouraging 

results seen in primary rodent NSC-mediated glioma gene therapy (Ehtesham 

et al, 2002a; Ehtesham et al, 2002b; Li et al, 2007; Li et al, 2005; Shah et al, 

2005), but unlike the isolation of HSCs from bone marrow, the procedure to 

derive primary NSCs from the adult brain is extremely invasive and offers a 

low yield. In cell culture, human adult NSCs express low levels of telomerase 

and stop proliferation after serial passaging (Ostenfeld et al, 2000), so 

optimized protocols to expand adult NSCs in vitro will be required. In addition, 

because the behavior of NSCs derived from diverse sources and maintained 

under different culture conditions may vary in vivo, researchers should 

establish standards for the isolation, expansion, and characterization of adult 

NSCs. 
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Immortalized NSC lines (eg, v-myc immortalized mouse fetal NSC line 

C17.2 and human fetal NSC line HB1.F3) have shown outstanding migratory 

capacity and antitumor effect in a variety of experimental brain tumor models 

(Aboody et al, 2000; Aboody et al, 2008; Aboody et al, 2006b; Danks et al, 

2007; Dickson et al, 2007; Herrlinger et al, 2000; Kim et al, 2005; Kim et al, 

2006; Shimato et al, 2007). Compared with primary NSCs, immortalized NSC 

lines are well characterized and can be propagated indefinitely with defined 

properties on a large scale. Hence, by comprehensive analysis on cell lines, 

the quality of cells used in implantation can be easily controlled. But the utility 

of oncogenes during immortalization and the potential tumorigenicity of cell 

line in vivo raise safety concerns. Furthermore, the transplantation of 

allogeneic NSC lines may cause immune rejection, although NSCs have been 

reported to have low immunogenic potential in their undifferentiated state 

(Hori et al, 2007). 

 

Human ESC-derived NSCs might provide an unlimited cell source for 

therapeutic applications. They also offer several advantages over other types 

of stem cells. Self-renewing ESCs are inherently immortal and their 

proliferation capacity is preserved during long-term cell culture. So far, 21 

independent human ESC lines, characterized by the National Institutes of 

Health (NIH) using universally accepted criteria, are commercially available 

worldwide, suggesting that all labs can start from the same cell populations. 

The great plasticity of ESCs allows the derivation and isolation of glioma 
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tropic NSCs, which can serve as targeting gene-delivery vehicles in the 

treatment of patients with malignant glioma. Several strategies have been 

developed to differentiate NSCs from human ESCs. ESC-derived NSCs have 

shown extensive migratory ability, differentiating into neurons, astrocytes, and 

oligodendrocytes in normal and lesioned rat brains (Tabar et al, 2005). 

Additional work should compare the migratory potential of human ESC-

derived NSCs with other NSCs to gliomas in vitro and in vivo and further 

explore the possibility of ESC-derived NSCs as antitumor gene-delivery 

vectors for glioma therapy. However, the tumorigenicity of undifferentiated 

ESCs is a serious concern, and the protocol to avoid teratoma formation in 

vivo after transplantation of ESC-derived cells is still not available (Martino 

and Pluchino, 2006). Immunogenicity might be another problem with ESC-

derived NSCs, as it is in immortalized cell lines. Since the first derivation of 

human ES cell line in 1998, debate on the embryo destruction involved in the 

development of human ES cell lines has never stopped. To circumvent this 

ethical issue, a number of alternative sources of ESCs are being investigated 

(eg, single blastomeres, growth-arrested embryos, and somatic cells through 

somatic cell nuclear transfer and cellular reprogramming) (Klimanskaya et al, 

2008). Recent scientific breakthroughs in deriving induced pluripotent stem 

(iPS) cells by cellular reprogramming of adult human fibroblasts opens a new 

window on stem cell research. 
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Induced pluripotent stem (iPS) cells may succeed ESCs in the near future 

in clinical therapeutic applications. Reprogramming to a pluripotent state was 

first achieved in mouse tail fibroblasts in 2006 by overexpressing four 

transcription factors, Oct4, Sox2, Myc, and Klf4 (Takahashi and Yamanaka, 

2006). Until the end of 2007, two groups had reported successful 

reprogramming of human somatic cells to iPS cell lines with defined 

transcription factors, either Oct4, Sox2, Myc, and Klf4 (Takahashi et al, 2007), 

or another set, Oct4, Sox2, Nanog, and Lin28 (Yu et al, 2007). This novel 

cellular reprogramming technique allowed the derivation of patient-specific 

pluripotent stem cells from their own somatic cells, thus avoiding ethical 

issues. Current studies support that, based on the characterization of 

morphology, chromosome profile, and gene expression profile of human iPS 

cells, there is no major difference between human iPS cells and human ESCs  

(Cyranoski, 2008; Lowry et al, 2008). NSCs derived from iPS cells might 

provide an autologous cell source for glioma gene therapy, possibly removing 

the immune rejection induced by other type of stem cells. More effort should 

be focused on testing the differentiation protocols of human ESCs in iPS cells 

and comparing the function and behavior of the derivatives of ESCs and iPS 

cells in vivo.  

 

MSCs might be another vector candidate for gene delivery in glioma gene 

therapy. In glioma models, MSCs exhibited a migratory capacity similar to that 

of NSCs toward tumor cells and inhibited tumor growth when expressing 
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antitumor genes (Miletic et al, 2007; Nakamizo et al, 2005; Nakamura et al, 

2004; Studeny et al, 2002). 

 

1.4  Purpose 

Via two main objectives, this study aims to improve the treatment of patients 

with malignant glioma and overcome hurdles faced by glioma gene therapy in 

clinical trials. 

1) To discover new regulators that enhance cell migration toward gliomas 

once overexpressed. Manipulation of the expression of these 

molecules could then facilitate the use of NSCs as gene-therapy 

vectors to reach scattered glioma cells. 

2) To develop new sources of NSCs and thus overcome the source 

limitations and ethical issues of NSCs isolated from fetal brains. To 

achieve this, we derived glioma tropic stem cells from human ESC 

lines and human neural precursor cell (NPC) lines. 

 

In Chapter 2, we used Boyden chambers to select the cells that were primed 

by gene transfer of a tumor cDNA expression library. A novel gene encoding, 

transmembrane protein 18 (TMEM18), emerged from the screen and was 

selected for extensive characterization. The regulatory effects of TMEM18 on 

the glioma tropism of NSCs were studied after overexpressing and siRNA 

silencing. The mechanism of TMEM18-mediated glioma-specific migration of 

NSCs also was explored. 
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In Chapter 3, the glioma tropic stem cells were derived from human neural 

precursor cell (NPC) line NTera2/D1 (NT2) by controlled differentiation. The 

neural differentiation of NT2 was induced by 2-week retinoic acid (RA) 

treatment, and glioma tropic precursor cells were isolated using the Boyden 

chamber migration screening. The migration capacity of the glioma tropic 

precursor cells (NT2.RA2 migrating cells) toward glioma cells was studied in 

vitro and in vivo. The antitumor effect of NT2.RA2 migrating cells expressing 

therapeutic gene HSVtk was further investigated in nude mice. 

 

In Chapter 4, ESC lines HES1 and HES3 were differentiated to NSCs (named 

NSC1 and NSC3, respectively) in an adherent monolayer culture. NSC1 and 

NSC3 cells could be expanded easily in defined medium while maintaining 

their neural multipotency. In a Boyden chamber migration assay, we 

compared the migration of NSC1 and NSC3 cells with that of mouse NSC line 

C17.2, which had already been well studied. The in vitro therapeutic effects of 

NSC1 cells as gene-delivery vectors for glioma gene therapy were also 

examined. 

 

This thesis describes, for the first time, stem cells derived from human ESCs 

and human neural precursor NT2 cells as gene-delivery vehicles in glioma 

gene therapy. By using these novel stem cell vectors, efficient and targeting 

glioma gene therapy may be achieved. Furthermore, this study could indicate 
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an unlimited new clinically viable cell source, considering the long-term 

proliferation of the stem cells. When combined with the new somatic cell–

reprogramming technique, we may able to develop patient-specific stem cell–

based gene therapy. The research on TMEM18 broadens the scope of 

understanding of glioma tropism, and overexpression of this protein could be 

favorably used in stem cell–based glioma gene therapy. In the future, we will 

use the TMEM18 genetic-engineering strategy together with ESC-derived 

stem cells to further improve efficiency. Hopefully, our efforts will lead to 

improvements in glioma therapy, prolonging the survival of patients with 

malignant glioblastoma. 
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CHAPTER 2 

TRANSMEMBRANE PROTEIN 18 ENHANCES THE 

TROPISM OF NEURAL STEM CELLS FOR GLIOMA 

CELLS 
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2.1 Introduction 

Glioma cells misregulate the expression of growth factors, proteases, and 

extracellular matrix and cell surface proteins to gain their devastating invasion 

capacity (reviewed by Tysnes and Mahesparan, 2001; Mueller et al, 2003). 

Localized treatments are thus inefficient and comprehensive treatments are 

too damaging to the delicate brain. A solution is to find a treatment that can 

specifically locate the tumor cells. Neural stem and precursor cells have an 

intrinsic tropism for sites of brain injuries including gliomas and, as 

demonstrated first by Benedetti et al. (2000) and Aboody et al. (2000), 

engrafted primary and immortalized neural stem cells can be used in gene 

therapy of gliomas in animal models. These engrafted stem cells have been 

shown to spread through the existing migratory pathways in healthy brain as 

well as non-typical routes when gliomas are present (Flax et al, 1998; Aboody 

et al, 2000). Besides primary and immortalized neural stem/precursor cells, 

embryonic stem cell–derived neural progenitor cells seem to have the same 

aptitude for glioma cell tracking (Arnhold et al, 2003). Moreover, neural stem 

cells are able to locate not only gliomas but also tumors of a non-neural origin, 

suggesting that there exist common regulators of cell trafficking probably 

composed of secreted factors from a tumor site and receptors present on 

neural stem cells (Brown et al, 2003; Allport et al, 2004).  

 

Candidate signals to attract neural stem cells to the sites of brain 

injuries and tumors have been studied. Among them are cytokines released 
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from brain’s immunoreactive migroglial cells during inflammation (Aarum et al, 

2003), which also provide cues for neural stem cell migration in brain 

development (reviewed by Tran and Miller, 2003). Stromal Cell Derived 

Factor 1 (SDF-1) chemokine can attract neural stem cells too. When its 

receptor CX Chemokine Receptor 4 (CXCR4) is blocked, SDF-1 hinders the 

neural stem cell migration to the site of injury (Aarum et al, 2003; Imitola et al, 

2004; Ehtesham et al, 2006). Also, chemokine Monocyte Chemoattractant 

Protein-1, which expression can be induced by Tumor Necrosis Factor-alpha, 

can activate migration of neural stem cells (Widera et al, 2004). Cytokine 

Stem Cell Factor, expressed by glioma cell lines and overexpressed in 

neurons at the sites of brain injury, is another possible contributing attractant 

for neural stem cells (Erlandsson et al, 2004; Sun et al, 2004; Serfozo et al, 

2006). Similar to cytokines and chemokines, growth factor-mediated signaling, 

for example Vascular Endothelial Growth Factor and Epidermal Growth 

Factor Receptor, has been shown to regulate neural stem and progenitor cell 

migration (Boockvar et al, 2003; Schmidt et al, 2005). Glioma invasion 

depends largely on the cell ability to modify the extracellular matrix and 

interestingly the extracellular matrix secreted from glioma cell lines is able to 

promote neural stem cell motility (Ziu et al, 2006). 

 

The picture emerging from the above studies seems to support a 

model of the complex interaction of several factors in regulating neural stem 

cell migration toward tumors. We hypothesized that other regulators are likely 
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to exist and their genes can be identified through expression cloning on the 

basis of gene function in influencing the tropism of neural stem cells toward 

glioma cells. We were particularly interested in the molecules that once over-

expressed in neural stem and precursor cells are able to enhance cell 

migration toward gliomas, as the manipulation of the expression of these 

molecules could then facilitate the use of neural stem/precursor cells as gene 

therapy vectors to reach scattered glioma cells. We used Boyden chambers in 

the current study to select the cells that were primed by gene transfer of a 

tumor cDNA expression library. A novel gene encoding Transmembrane 

Protein 18 (TMEM18) emerged from the screen and was selected for 

extensive characterizations. We demonstrate that TMEM18 is an endogenous 

regulator of general motility of neural stem cells and that once over-expressed 

it provides the cells an improved preference for glioma cells.  
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2.2 Materials and methods 

2.2.1 Cell culture 

NT2, U87MG, H4, and NIH3T3 cell lines were purchased from American Type 

Culture Collection (ATCC, Manassas, Virginia) and HEK 293FT cells were 

purchased from Invitrogen (Carlsbad, CA). All the cell lines were maintained 

in DMEM supplemented with 10% fetal calf serum (Gibco Life Technologies, 

Gaithersburg, MD), penicillin-streptomycin (Gibco), normoxin (Invivogen, San 

Diego, CA), and Non-essential amino acids (Gibco). C17.2 cells were kindly 

provided by Prof E. Arenas, Department of Medical Biochemistry and 

Biophysics, Karolinska Institute, Stockholm, Sweden and were maintained in 

DMEM supplemented with 10% fetal calf serum (Gibco), 5% horse serum 

(Gibco), penicillin-streptomycin (Gibco), normoxin (Invivogen), and Non-

essential amino acids (Gibco). The National Institutes of Health (NIH) Human 

Embryonic Stem Cell Registry listed hES cell line, HES-1, and its feeder cell 

K4 mouse embryonic fibroblasts (mEFs) were obtained from ES Cell 

International (ESI), Singapore. The hES cells were amplified and maintained 

according to the protocol provided by ESI. Embryoid boides and neural 

spheres from hES cells were generated as previously described (Zeng et al, 

2007). 

 

Primary murine NSCs and NPCs were isolated from the embryonic forebrain 

of C57BL/6 mice. The treatment of animals was performed in accordance with 

the Guidelines for the Care and Use of Laboratory Animals of our institution. 
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Pregnant C57BL/6 mice at the specified gestational age of 14 d (E14) were 

killed via cervical dislocation and the uteri were aseptically removed. Fetuses 

were removed from the amniotic sac and transferred to a Petri dish containing 

ice-cold HBSS. Cortices were rapidly excised from the fetuses and 

mechanically dissociated by pipetting into a single-cell suspension. Cells were 

plated at a density of 2 x 105/mL into 10-cm culture dishes (Nunc) in 

DMEM/nutrient mixture F-12 (1:1) mixture medium (Invitrogen) containing B27 

supplement (Invitrogen), 20 ng/mL basic fibroblast growth factor (Sigma-

Aldrich), 20ng/mL EGF (Invitrogen), and 1% penicillin-streptomycin 

(Invitrogen). Floating neurospheres with diameter range between 150 and 250 

Am were passaged every 6 to 7 d. The multipotency of the cells was 

confirmed by immunocytochemical analysis after differentiation into three 

fundamental lineages in central nervous system (neurons, astrocytes, and 

oligodendrocytes).  

 

2.2.2 cDNA expression library screening 

Human Daudi cell cDNA library containing retrovirus supernatants were 

purchased from Stratagene (La Jolla, CA) and used as recommended by the 

supplier. One million of NT2 cells were infected with the cDNA library 

retrovirus supernatants to yield 20% infection efficiency in order to ensure a 

proper presentation of all the cDNAs in the library. Cells were allowed to 

recover for 4 days, after which they were selected in transwell migration 

assays using Boyden chambers as described below. Migrating cells were 
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collected and let recover for 5 days before the next migration assay. After 

three rounds of the migration assays, both non-migrating and migrating cells 

were collected. 

 

  For analysis of virus-imported cDNAs, chromosomal DNA was purified 

from non-migrating or migrating cells using DNeasyTM kit (Qiagen, Hilden, 

Germany) as recommended by the manufacture. Retrovirus imported 

sequences were recovered according to a PCR protocol suggested in 

ViraPort manual (Stratagene). Same amount of chromosomal DNA was used 

in PCR for non-migrating and migrating cells. The success of the PCR was 

verified by running aliquots of the reactions on an agarose gel. PCR products 

were subsequently cloned into pDrive using TA-cloning kit (Qiagen). DH5α E. 

coli cells were transformed with the cloning products and plated. After 

overnight incubation, bacterial clones were picked and plasmid DNA was 

isolated, and then subsequently used in PCR using the same conditions as 

previously described to isolate individual sequences for sequencing.  

 

2.2.3 Overexpression and gene silencing 

TMEM18 was cloned from Human Daudi cell cDNA library infected cells by 

PCR using primers 5’ caccatgccgtccg ccttctctg and 5’ aaagtcttctttc cttctccttttc 

into pLenti6/V5-TOPO vector (Invitrogen), followed by sequencing to ensure 

that the cloned sequence was correct. TMEM18A virus contained one amino 

acid mutation from alanine to threonine at position 103, which did not seem to 
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have any effect in later experiments. Empty and TMEM18 Lentiviruses were 

produced using ViraPower™ Lentiviral Directional TOPO® Expression Kit 

respectively (Invitrogen). Virus transduction in NT2 and C17.2 cells to express 

TMEM18, cell selection for stable expression and cell maintenance were 

carried out as recommended by the manufacturer (Invitrogen). The titer of 

lentivirus infection was controlled to have one virus per cell.  

 

For TMEM18 overexpression in primary murine NSCs/NPCs, neural spheres 

were dissociated on the day of transfection, and plasmid DNA pLenti6/V5-

TMEM18 was transfected into the cells with Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s protocol. pLenti/V5-eGFP plasmid was used 

as a vector control. Thirty hours after the transfection, cells were collected for 

the migration assay and reverse transcription-PCR (RT-PCR) study described 

below. 

 

For siRNA-mediated TMEM18 gene silencing, two sequences, 5’-

tcatcttagtctactgtgctgaata and 5’-tgctcacgcagacggactggactga, were cloned into 

double promoter siRNA expression vector pFIV-H1/U6-PURO (System 

Biosciences, Mountain View, CA) as recommended by the manufacturer’s 

protocol. A siRNA sequence against luciferase provided in pFIV-vector 

cloning kit (System Biosciences) was used as a control. Cells were plated to 

reach 90% confluence on the day of transfection of the siRNA expression 

plasmids, and plasmid DNA was transfected with Lipofectamine 2000 
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(Invitrogen) according to the manufacturer’s protocol. Puromycin resistant 

cells were selected for 4 days, after which cells were used for migration assay 

and for RT-PCR study.  

 

2.2.4 RT-PCR 

Cytoplasmic RNA was collected with RNeasy KitTM (Qiagen) as 

recommended by the manufacturer. The concentration and purity was verified 

before equal amounts of RNAs from all the samples were used to produce 

cDNAs by reverse transcription using oligo-T-priming of Superscript III First-

Strand Synthesis System (Invitrogen). PCR amplification for the produced 

cDNAs was carried out using HotStart Taq system (Qiagen) as suggested by 

the HotStart Taq manual. Real-time PCR was done using Power Sybr Green 

PCR master mix and protocol (Applied Biosystems, Foster City, CA), with 

primers for TMEM18 5’-atg ccg tcc gcc ttc tct g and 5’-gtc ttc ttt cct tct cct ttt c, 

and primers for beta-actin 5’-tcatgtttgagaccttcaa and 5’-gtctttgcggatgtccacg. 

Opticon 2 real-time PCR machine (Applied Biosystems) was used to run the 

PCR reactions. The program for TMEM18 PCR was 10 minutes at 95°C, 

followed 45 cycles of 15 seconds at 95°C followed by 1minute at 68°C; and 

the program for beta-actin was 10 minutes at 95°C, followed by 40 cycles of 

10 seconds at 95°C, 20 seconds at 55°C, and 20 seconds at 68°C. Real-time 

PCR results were presented as a ratio of TMEM18 mRNA to beta-actin 

mRNA. 
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2.2.5 Immunostaining and Western blot analysis 

Antibody against TMEM18 was produced in rabbits against peptide 122-135: 

C-DLKNAQERRKEKKR (Biogenes GmbH, Berlin, Germany). This peptide is 

unique to TMEM18 based upon BLAST search. The anti-TMEM18 serum was 

tested using Western blotting and detected one band with molecular mass of 

18 kDa, which was blocked when the serum was incubated in the presence of 

the immunizing peptide. The serum was used in 1:200 for immunostaining 

and Western blot analysis. Antibody against alpha-tubulin (ab7291) was 

purchased from Zymed (South San Francisco, CA) and used in 1:100 in 

immunofluorescence. Secondary fluorescence antibodies were purchased 

from Jackson immunoresearch (West Grove, PA). 4',6-Diamidino-2-

phenylindole (Invitrogen-Molecular Probes, Eugene, OR), DAPI, was used in 

concentration of 2 nM.  

 

2.2.6 In vitro cell migration assay 

In vitro migration of neural progenitor cells toward glioma cells was examined 

using Boyden chamber assays. A migration kit from BD Falcon (Franklin 

Lakes, NJ) with 24-well cell culture plates was utilized. Each well of the plates 

was separated into two chambers by an insert membrane of 8 μm pores. One 

day before assays 50,000 glioma cells were seeded into each lower chamber. 

The next day cell culture medium in the lower chamber was removed and 

replaced with 500 µl of non-supplemented DMEM. Neural stem/precursor 

cells (50,000 in 500 µl of non-supplemented DMEM) were then seeded into 
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the upper chamber. For the assay using a neutralization antibody to block cell 

migration, 40 µg/ml of anti-chemokine receptor 4 (CXCR4) monoclonal 

antibodies (R&D Systems, Minneapolis, MN) was incubated with neural stem 

and precursor cells for 30 minutes at room temperature prior to the cell 

seeding. After 12 or 24 hours of incubation at 37°C, migrating cells on the 

bottom of the insert membrane and non-migrating cells on the upper side of 

the membrane were dissociated by trypsination. These cells were 

subsequently lysed and stained using a CyQUANT cell proliferation assay kit 

(Molecular probes). Flurorescence was measured with a fluorescence plate 

reader (GENios pro, Tecan, Dorset, United Kingdom). Values from 6 to 12 

wells were expressed as the mean ± standard deviation (SD) in percentage 

control. In most of in vitro migration assays, the migration of cells transduced 

with a vector control in response to serum-free DMEM was used as the basal 

migration rate. In those experiments without the use of a vector control, cell 

migration in response to serum-free DMEM was used as the basal migration 

rate. Statistical analyses were done using Student’s t-test. 

 

2.2.7 In vivo cell migration assay 

Rat C6 glioma cells (1 million cells in 5 μl PBS) were injected into the right 

striatum of the rat brain (AP+1.0 mm, ML +2.5 mm, and DV -5.0 mm from 

bregma and dura) using a 10 μl Hamilton syringe connected with a 30-gauge 

needle at a speed of 0.5 μl/min. Three days later, 1.25 million of green 

fluorescent DiO dye (Invitrogen)-labeled TMEM18-overexpressing C17.2 cells 
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were mixed with the equal number of red fluorescent Dil dye (Invitrogen)-

labeled vector control C17.2 cells and injected into the contralateral side of 

the rat brain. The brain samples were collected 3 weeks later for sectioning 

and examination. To quantify the number of migrating cells in the migration 

front, red and green fluorescent cells were counted in 10 sections, with dots of 

yellow color being considered as co-migration of green and red cells. In the 

handling and care of animals, the Guidelines on the Care and Use of Animals 

for Scientific Purposes issued by National Advisory Committee for Laboratory 

Animal Research, Singapore was followed. The experimental protocols of the 

current study were approved by the Institutional Animal Care and Use 

Committee (IACUC), National University of Singapore and Biological 

Resource Center, the Agency for Science, Technology and Research 

(A*STAR), Singapore.  

 

2.2.8 Nuclear localization assay 

GFP fusion protein expression plasmids were created as instructed in NT-

GFP Fusion TOPO® Expression Kit manual (Invitrogen). The TMEM18 N-

terminus with 15 amino acid residues was cloned by PCR using primers 5’-

tcagtcttctttccttctcc and 5’-aagaatgcacaagagagaag. TAT coding sequence was 

formed by annealing oligos 5’-cagcgcaaaaaacgccgccagcgccgctaga and 5’-

ctagcggcgctggcggcgttttttgcgctga. Plasmid constructs generated were 

sequenced to confirm GFP fusion and transfected into U87MG cells by 

Lipofectamine 2000 (Invitrogen). 
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2.3 Results 

2.3.1 TMEM18 is a novel modulator identified by cDNA expression 

library screening for the genes that promote glioma-directed stem cell 

migration    

To identify genes that promote the migration of stem cells toward glioma cells, 

we preformed cDNA expression library screening. A cDNA library derived 

from the Daudi Burkitt lymphoma cell line was used for expression cloning, in 

view of the capacity of the cells to invade locally and to metastatize via 

mechanisms similar to those developed by solid tumors (Makrynikola et al, 

1994; Vacca et al, 1998). Retrovirus vectors were used to transduce the 

cDNA library into human neural precursor cell line NT2. The transduced cells 

were evaluated subsequently for their glioma-directed migration ability in a 

transwell cell migration assay using Boyden chambers. In the assay, non-

migrating cells stayed on the top of the membrane, whereas cells that were 

primed to migrate went through 8 micrometer pores into the opposite site of 

the transwell insert membrane. Migrated cells were isolated and passed 

through two more rounds of the migration assay selection, after which virus-

imported cDNAs in migrating cells were cloned by PCR and identified by 

sequencing. The protocol is summarized in Figure 2.1. Non-migrating cells 

were used as controls for the cDNA analysis.  

 

We sequenced 70 virus imported cDNA clones from migrating cells and 46 

clones from non-migrating cells and identified a number of cDNAs that 
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express proteins capable of enhancing the tropism of NT2 cells for glioma 

cells. Among the clones collected from the migrating cells for sequence 

analysis, two were found to encode for TMEM18, while no clone from the non-

migrating cells had virus imported TMEM18 gene sequence. TMEM18 was 

thus a promising candidate for further analysis for its role in regulating neural 

stem cell migration. 
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Figure 2.1. Flowchart of cDNA expression library screening to discover novel 
proteins able to promote neural precursor cell migration toward glioma cells. 
Human neural precursor cell line, NT2, was infected with retrovirus carrying a 
cDNA library. Infected cells were plated on transwell migration insert on top of 
glioma cell culture in a Boyden chamber. The neural precursor cells able to 
migrate through insert’s pores to the opposite site of the insert’s membrane 
were collected and passed two more times through the same migration assay. 
The virus imported cDNAs in migrated cells were cloned by PCR and 
sequenced. 
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2.3.2 TMEM18 is a potential transmembrane protein with a C-terminal 

nuclear localization signal 

The TMEM18 gene encodes a novel protein with no published reports 

describing its function so far. When we search for functional motifs in 

TMEM18 amino acid sequence using several web-based programs 

(ca.expacy.org/tools/), no strong association with any previously 

characterized domains was found, though weak potential sites for 

phosphorylation and N-myristoylation did appear. TMEM18 is predicated to 

contain four transmembrane spanning alpha-helixes (Figure 2.2) by TMpred, 

a program designed for identification of transmembrane proteins (Hofmann 

and Stoffel, 1993), although the first membrane spanning part is less probable 

than the other three based on some other prediction programs. Using 

PredictNLS-program (Cokol et al, 2000), we noted a putative nuclear 

localization signal (NLS) sequence (RKEKKRRRK) at the strongly hydrophilic 

C-terminus of TMEM18 (Fig. 1C underlined sequence). ClustalW-program 

(ch.EMBnet.org) was used to align TMEM18 protein sequences from human 

(NCBI accession no. NP_690047.2), mouse (NP_742046.1), rat 

(NP_001007749.1), dog (XP_848731.1), and chicken (XP_419929.1). The 

strong conservation across species (Figure 2.3) implies that TMEM18 has a 

key function(s). Moreover, using National Center of Biotechnology Information 

(NCBI) search program for homologous protein sequences (Homologene), 

homologous sequences from fruit fly (D. melanogaster) to rice (O.sativa) were 

also found (data not shown).  
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Figure 2.2. TMpred-program predicts TMEM18 to have four membrane 
spanning alpha-helixes (Hofman and Stoffel, 1993). Schematic interpretation 
of the TMEM18 protein structure is overlaid with TMpred-graph to illustrate 
the results from the program.  
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Figure 2.3. Sequence alignment of TMEM18 proteins from human, mouse, 
rat, dog, and chicken. A star (*) indicates perfect amino acid conservation and 
a colon (:) one amino acid difference in the sequences. Only the end of C-
terminus is shown for the dog sequence. Bold underlined sequence 
represents possible nuclear localization signal peptides predicted by 
PredictNLS-program.  
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2.3.3 Overexpression of TMEM18 enhances the in vitro glioma-specific 

migration ability of neural stem/precursor cell lines  

TMEM18 was identified as a promoting factor for neural stem cell migration 

toward glioma cells in our cDNA expression library screening. To verify the 

observation, we investigated whether the overexpression of the TMEM18 

cDNA in NT2 human neural precursor cells and C17.2 murine neural stem 

cells would affect the migration. We used lentiviral vectors to create stable 

cells lines overexpressing TMEM18 in NT2 and C17.2 cells. Two populations 

of stable cell lines that express different levels of TMEM18 were selected for 

each type of neural precursor cells. TMEM18 overexpression was confirmed 

using RT-PCR (Figure 2.4 A NT2 cells and 2.5 A for C17.2 cells).  

 

To assess the effects of TMEM18 overexpression on cell migration, we used 

Boyden chamber assay to examine the movement of these cells lines toward 

human U87MG glioma cells, the same tumor cell line that was used in the 

cDNA expression library screening earlier. TMEM18-overexpressing NT2 and 

C17.2 cells displayed significantly higher migration capacities when compared 

with their parental cells and empty vector controls (Figure 2.4 B & 2.5 B). 

These cells also responded to other glioma cell lines, H4 and C6, by 

displaying significant migration advantage over control cells. Interestingly, the 

TMEM18-overexpressing NT2 cells did not change their migration capacities 

when non-tumor cell lines, mouse fibroblast cell line NIH3T3 and human 

kidney cell line HEK 293FT, were seeded in the bottom chamber in the 
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assays. Moreover, the amount of cells migrating to plain DMEM cell culture 

medium remained similar between the TMEM18-overexpressing cells and the 

controls. Hence, the preference of TMEM18-overexpressing cells for glioma 

cells implies a role for the protein in response to glioma secreted factors. 
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      B. 

 

Figure 2.4. TMEM18 overexpression increases the migration activity of 
human neural precursor NT2 cells in Boyden chamber assays. Lentivirus-
mediated TMEM18 overexpression was examined by RT-PCR (A). B. In vitro 
migration of TMEM18 overexpression NT2. Columns, percentage of DMEM 
control; bars, SD. Statistical analysis to DMEM control is calculated using 
Student’s t test. *, P<0.05; **, P<0.01; ***, P<0.001. (Contributed by Dr. 
Jurvansuu Jaana) 
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     B. 

 

Figure 2.5. TMEM18 overexpression increases the migration activity of 
mouse neural stem cells C17.2 in Boyden chamber assays. Lentivirus-
mediated TMEM18 overexpression was examined by RT-PCR (A). B. In vitro 
migration of TMEM18 overexpression C17.2. Columns, percentage of DMEM 
control; bars, SD. Statistical analysis to DMEM control is calculated using 
Student’s t test. *, P<0.05; ***, P<0.001. (Contributed by Dr. Jurvansuu Jaana) 
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2.3.4 Overexpression of TMEM18 enhances the in vitro glioma-specific 

migration ability of primary mouse neural stem cells 

The function of overexpressing TMEM18 in regulating the glioma tropism of 

NSCs was further investigated in primary mouse neural stem cells. In Boyden 

chamber assay, significantly higher migration capacity to U87 and H4 has 

been achieved in TMEM18-overexpressing primary NSCs, which also 

displaying migration advantage over control 293FT cells (Figure 2.6).  

 

Primary NSCs/NPs isolated from E14 mouse forebrains are a heterogenous 

population with multipotency, each of subpopulations capable of giving rise to 

specific type of neural cells. To understand whether TMEM overexpression 

has any specific effect on the migration of a particular subtype of NSCs/NPs, 

we examined the differentiation ability of the primary cells, migrating 

TMEM18-overexpressing NSCs/NPs collected on the bottom of the insert 

membrane of the Boyden chamber, and non-migrating cells on the upper side 

of the membrane. Although there was no obvious difference in cell type 

distribution between the cells derived from primary NSCs/NPs and the cells 

from non-migrating TMEM18-overexpressing NSCs/NPs, the cells derived 

from migrating TMEM18-overexpressing NSCs/NPs displayed morphological 

features typical of astrocytes and were strongly positive for GFAP, a marker 

for astroglial precursors and astrocytes (Figure 2.7). The cells derived from 

migrating NSCs/NPs were negative for O4, a marker for oligodendrocytes, 

and only weakly stained with anti-β-III-tubulin, a marker for neurons. These 
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results indicate that glioma-tracking populations of TMEM18-overexpressing 

NSCs/NPs comprise largely of astrocytic precursors, which is consistent with 

previous observations from an in vivo study reporting that the majority of 

NSCs that migrated along with glioma outgrowths and satellites were 

astrocytic precursors (Ehtesham et al, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                      58 

 

 

 

 

 

 

 

  

Figure 2.6. TMEM18 overexpression increases the migration activity of 
primary NSCs in Boyden chamber. Columns, percentage of DMEM control; 
bars, SD. Statistical comparisons are calculated between cells 
overexpressing TMEM18 and vector controls using Student’s t test. *, P<0.05; 
**, P<0.01. 
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Figure 2.7. Glioma-tracking cells of TMEM18-overexpressing NSCs/NPs in 
Boyden chamber assay are mainly astrocytic precursors. The upper panels: 
phase-contrast and fluorescence images show the transfection efficiency of 
control plasmid pLenti/V5-eGFP. The lower panels: immunostaining using 
antibodies against β-tubulin, GFAP and O4 (green). DAPI (blue) was used to 
counterstain nuclei. Note that the cells derived from migrating TMEM18-
overexpressing NSCs/NPs were stained strongly with anit-GFAP. 
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2.3.5 Overexpression of TMEM18 enhances the glioma-directed 

migration C17.2 in rat C6 glioma models 

Encouraged by the above in vitro results, we moved on to test whether 

overexpression of TMEM18 would improve the migration of C17.2 murine 

neural stem cells toward gliomas in the brain. In a rat C6 glioma xenograft 

model, green fluorescent dye-labeled TMEM18-overexpressing C17.2 cells 

were injected together with red fluorescent dye-labeled vector control C17.2 

cells on the side of the brain contralateral to the tumor inoculation site. Three 

weeks after the injection, the brain samples were collected for examination. 

As shown in Figure 2.8, the labeled green and red cells migrated together 

(exhibited a yellow color in Figure 2.8 C) toward the tumor side and about half 

of them had already crossed the middle line of the brain by Week 3. At the 

front of the migrating cells, many cells with green fluorescence only were 

observed. The brain sections around the front region were evaluated, where 

approximately 60% of the migrating cells were stained with the green 

fluorescent dye and 40% labeled with the red fluorescent dye. These findings 

suggest an improved migration of the TMEM18-overexpressing cells toward 

gliomas in the brain.  
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Figure 2.8. TMEM18 overexpression increases the migration of C17.2 neural 
stem cells toward C6 glioma cells in the rat brain. TMEM18-overexpressing 
C17.2 cells were labeled with green fluorescence dye-labeled and vector 
control C17.2 cells were labeled with red fluoresce dye. The squares on the 
right side in A indicate the front of cell migration toward the tumor, which were 
shown in a high magnification in B. C is the merged picture of A and B. Dots 
with yellow color present green and red fluoresce dye-labeled cells moving 
together. Note many of green fluorescence dye-labeled TMEM18-
overexpressing C17.2 cells (arrows) migrating alone. D. Quantification of 
fluorescence dye-labeled C17.2 (red) and C17.2/TMEM18B (green) cells in 
the front of cell migration toward the C6 glioma inoculation site. Three stars 
(***) denote a p-value less than 0.001. 
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2.3.6 Endogenous TMEM18 is critical for the migration of neural 

stem/precursor cells  

To determine the effect of endogenous TMEM18 in regulating neural stem cell 

migration, we used RNA interference approach to reduce the expression of 

TMEM18 in NT2 cells. Puromycin resistant siRNA expression vector was 

constructed to express siRNA sequences against TMEM18 and against the 

luciferase gene (as a siRNA control). Two different transductions with two 

siRNA constructs against TMEM18 in NT2 cells yielded four populations with 

different levels of reduction of TMEM18 mRNA expression, ranging from 31, 

35, 37 to 65% of the original endogenous TMEM18 mRNA level (Figure 2.9 A). 

In a 24 hour Boyden chamber assay, siRNAs against TMEM18 displayed 

strong inhibitory effects on the migration of NT2 cells when compared with 

cells transfected with plasmids expressing siRNA against the luciferase gene 

(Figure 2.9 B). Reduction in the amount of TMEM18 mRNA to 60% of the 

normal levels lowered the number of cells migrating towards glioma cells to 

about 50% of the control. Further reduction of TMEM18 mRNA expression to 

31% of the normal level in NT2 cells almost abolished the cell migration ability 

completely (Figure 2.9 B). Moreover, down-regulation of TMEM18 comparably 

reduced cell migration toward plain DMEM medium as well (Figure 2.9 B), 

suggesting that TMEM18 is an important factor regulating general cell motility.  

The effect of endogenous TMEM18 on the movement was also studied in 

human embryonic stem (hES) cell-derived neural progenitor cells. Along with 

the differentiation of hES cells into embryoid body and neural sphere, 
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TMEM18 mRNA expression increased (Figure 2.10 A). This increase was 

accompanied with an enhanced migration of cells in neural sphere towards 

glioma U87MG cells (Figure 2.10 B). Taken together, these findings suggest 

that the expression of endogenous TMEM18 at a physiological level is crucial 

to the migration capacity of neural progenitor/stem cells.  
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Figure 2.9. Endogenous TMEM18 expression affects cell migration. (A) Short 
interfering RNAs against TMEM18 transcripts reduced the expression of 
TMEM18 transcripts in NT2 cells, as quantified by real-time PCR. Two 
different sequences of short interfering RNAs against TMEM18 were tested in 
NT2 cells and yielded four different knock-down levels of the TMEM18 mRNA. 
siRNA against luciferase was used as a control. (B) Silencing endogenous 
TMEM18 expression reduced the migration activity of neural stem/precursor 
cells towards both DMEM and U87MG. (Contributed by Dr. Jurvansuu Jaana) 
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A.                                                         B. 

 

 

 

Figure 2.10. Endogenous TMEM18 expression affects cell migration during 
the differentiation of hES cells. Neural differentiation of hES cells was 
accompanied by progressive increase in TMEM18 mRNA expression and cell 
migration toward glioma cells. Results are presented as percentage of control 
and the standard deviation is indicated with error bars. Statistical comparison 
is calculated between cells with downregulated TMEM18 and controls using 
students T-test. One star (*), two stars (**) and three stars (***) denote p-
values less than 0.05, 0.01 and 0.001, respectively. 
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2.3.7 Up-regulation of CXCR4 by TMEM18 mediates the glioma-specific 

migration capacity of neural stem/precursor cells  

In view of the importance of the chemokine receptor 4 (CXCR4) that governs 

the migration of stem cells towards gliomas (reviewed by Kucia et al, 2005), 

we investigated whether TMEM18 would affect its expression in neural 

stem/precursor cells. We observed that, although weak CXCR4 expression 

was visible in parental NT2 and C17.2 cells as well as the vector controls, 

stable overexpression of TMEM18 appeared to raise its expression levels 

(Figure 2.11). Using an antibody against CXCR4 to block cell surface CXCR4 

receptors on these cells, we further observed that the tropism of TMEM18-

overexpressing NT2 and C17.2 cells toward U87MG cells was inhibited 

drastically in Boyden chamber assays and the number of migrating cells went 

down to a level close to that of basal cell migration in response to serum-free 

DMEM medium (Figure 2.12). These results suggest that up-regulation of 

CXCR4 in TMEM18-overexpressing cells might be one possible mechanism 

underlying the augmented glioma tropism of these cells. 
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Figure 2.11.   RT-PCR demonstrates increased levels of CXCR4 mRNA 
transcripts in TMEM18-overexpressing NT2 and C17.2 cells. 
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Figure 2.12. Addition of an anti-CXCR4 neutralization antibody significantly 
decreased neural stem and precursor cell migration toward U87 glioma cells 
compared to cells treated with nonspecific isotype IgG. Results are presented 
as percentage of the DMEM control and the standard deviation is indicated 
with error bars. Two stars (**) and three stars (***) denote p-values less than 
0.01 and 0.001 respectively. 
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2.3.8 The NLS sequence of TMEM18 is sufficient for nuclear targeting 

To uncover the cellular localization of TMEM18, a polyclonal antibody against 

TMEM18 C-terminal peptide was produced. The activity and specificity of the 

antibody were examined using cellular immunostaining and Western blot 

analysis (data not shown). In NT2 cells, pre-immunization serum produced 

almost no signal, whereas the serum against TMEM18 gave a strong 

immunofluorescence. Western analysis with the serum revealed both 

endogenous and over-expressed TMEM18 with molecular mass of 18 kDa.  

The bands disappeared when the serum was incubated in the presence of the 

immunizing peptide (data not shown).  

 

 The TMEM18 antibody stained the cytoplasm of NT2 cells, with 

Intensive staining in the perinuclear area (Figure 2.13 A & B). In comparison 

with cytoskeletal structures stained with an alpha-tubulin antibody (Fig 2.13 B, 

in green), TMEM18 was localized only partly with the areas of the tubulin 

network (Figure 2.13 B in yellow). Several structures within the nucleus were 

also positively stained (Figure 2.13 B). With a closer look, the TMEM18 

antibody recognized a ring structure superimposed on the nucleus, 

presumably the nuclear membrane (Figure 2.13 B). This structure became 

even clearer when the TMEM18 immunofluorescence staining was overlaid 

with nuclear staining (Fig 2.13 B, in blue). 
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As TMEM18 contains a putative NLS sequence (Figure 2.3), we tested 

whether it was effective in directing nuclear location in U87MG cells using a 

GFP fusion protein approach. Transfection of the control GFP plasmid in 

U87MG cells led to green fluorescent signals all over the cells, in both the 

nucleus and the cytoplasm (Figure 2.13 C, GFP). This was expected because 

the small size of GFP (30 kDa) permits diffusion between the nucleus and the 

cytoplasm. Noticeably, transfection with a plasmid vector encoding a hybrid 

protein composed of GFP linked to the putative NLS at the C-terminus of 

TMEM18 (KED) resulted in significant accumulation of fluorescent signals in 

the cell nucleus (Figure 2.13 C, GFP-KED). The TMEM18 KED peptide 

appeared as effective as Tat peptide (Figure 2.13 C, GFP-TAT), a well-

established nuclear localization signal peptide, in directing GFP into the 

nucleus. In addition, diffuse fluorescence signals were detectable in these 

U87MG cells transfected with the fusion genes.  
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Figure 2.13. Cellular localization of TMEM18 and the function of its NLS. (A, 
B) Cellular localization of TMEM18 protein. NT2 cells were stained against 
TMEM18 (A & B, red), alpha-tubulin (B, green) and DNA (B, blue). A 
superimposition of TMEM18, DNA, and alpha-tubulin is shown in (B). The 
immunostaing reveals the nuclear membrane (a ring structure around the 
nucleus in A and B) recognized by the TMEM18 antibody. (C) GFP fusion 
protein with N-terminus of TMEM18 is localized to the nucleus. U87 cells were 
transfected with plasmid vectors expressing GFP, TMEM18 N-terminus-linked 
GFP (GFP-KED), or HIV TAT-linked GFP (GFP-TAT). Light microscope 
pictures on left side and fluorescence microscope pictures on right of the 
same cells. (Contributed by Dr. Jurvansuu Jaana) 
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2.4 Discussion 

We have described in this report the identification and characterization of a 

novel cell motility modulator TMEM18. TMEM18 was first identified in a 

screen to discover membrane spanning proteins (Hofmann and Stoffel, 1993). 

There have been no other publications on this protein since. The functional 

importance of this protein is highlighted in the strong amino acid conservation 

throughout mammalians and even reaching to lower forms of multicellular 

eukaryotes. Furthermore, according to the profile of TMEM18 expressed 

sequence tags, the protein is transcribed in embryonic developmental states 

and in many of the adult human tissues (NCBI’s EST expression profile 

viewer). Clearly TMEM18 has a crucial biological function. Based on our 

results, this function would probably be linked to cell mobility. In particular with 

respect to tumor therapy, TMEM18 can be used as a specific enhancer for 

glioma-directed migration of neural stem cells.  

 

The procedure of expression cloning from a cDNA library used in the current 

study could in theory select the cells that displayed an enhanced ability to 

migrate specifically to glioma cells, improved nonspecific cell movement, 

and/or enhanced proliferation rate. The last possibility appears to be invalid, 

as TMEM18-overexpressing cells had a cell proliferation profile similar to the 

controls (our unpublished observation). When nonspecific cell movement is 

taken into consideration, the results that TMEM18-overexpressing cells and 

control cells migrated at the same rate in plain cell culture medium or toward 
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non-glioma cells (NIH3T3 mouse fibroblast and 293T human embryonic 

kidney cells) suggest that TMEM18 overexpression provided no beneficial 

effects on the general movement of neural stem cells. However, knockdown 

of endogenous TMEM18 expression with RNA interference had enormous 

inhibitory effects on the overall movement of neural stem cells. Likewise, 

along with the increase of TMEM18 expression from an undetectable level to 

an easily detectable level when human embryonic stem cells differentiated 

into neural precursor cells, these neural stem/precursor cells displayed an 

increased capacity of cell migration (Fig. 5E & F). These findings indicate a 

crucial role of the basal, physiological level expression of TMEM18 for cell 

movement, which is well consistent with the highly conserved and 

ubiquitously expressed pattern of TMEM18. 

 

Most interestingly, TMEM18 overexpressing cells respond strongly to glioma 

cell-secreted cues in both in vitro transwell assays and an in vivo migration 

experiment. In transwell assays, cells will have to force themselves through 

holes in Boyden chamber membrane that are smaller than the normal size of 

a cell body. It could be even more difficult for cells to migrate to a target site in 

the brain where cell migration needs to overcome numerous extracellular 

interactions. We thus conclude that TMEM18 overexpression increases the 

sensitivity of neural stem cells to appropriate signals that stimulate cell 

migration. In other words, without appropriate cues, TMEM18 overexpression 

will have undetectable effects on the movement of neural stem cells.  
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TMEM18 is expected to be a transmembrane protein. But it did not seem to 

be located to outer cell membrane, as would be expected for example for 

chemokine receptors, nor was it spread to cover cytoskeletal structures that 

would affect cell movement directly. TMEM18 is predicated to possess a NLS 

sequence at the C-terminus. NLS sequences occur in a subset of soluble 

nuclear proteins that are imported into the cell nucleus by transport receptors. 

Membrane proteins with NLS-like sequences are found in the majority of 

mammalian inner nuclear membrane (INM) proteins (Horton and Nakai, 1997). 

A recent study in budding yeast demonstrates that NLS sequences are 

essential for passage of integral membrane proteins through the nuclear pore 

complex and receptor-mediated transport of the proteins to the INM (King et 

al, 2006). Further studies are warranted to assess whether TMEM18 is really 

located along the inside of the nuclear envelope.  

 

Cell motility is a highly complex process and involves several factors, from 

sensing of environmental cues, restructuring the cytoskeleton, dynamic 

regulation of cell attachment and detachment to extracellular matrix, to 

signaling between all these processes to coordinate the movements. Cell 

movement in general can be divided into five different states starting from 

formation of cell membrane protrusion (lamellabodia and filopbodia), 

establishment of adhesion complexes into the leading end of the cell, cell 

body contraction to push the cell forward, and finally release of the adhesion 
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from the rear end of the migrating cell (Larsen et al, 2003). Hence, there are 

many steps downstream of chemoattractant receptor signaling that can affect 

cell movement and migration. Bioinformatics searches for protein domains did 

not reveal any informative features related to a possible biochemical function 

of TMEM18. Our preliminary data on the up-regulation of CXCR4 in TMEM18-

overexpressing cells and inhibiting cell migration by antibodies against 

CXCR4 suggests an enhanced effect of the SDF-1/CXCR4 axis by TMEM18.  

 

Further research is necessary to define the basic mechanisms underlying the 

effects of endogenous TMEM18 on general cell migration and the effects of 

over-expressed TMEM18 to enhance cell response to migration stimulating 

signals. An adequate understanding of these mechanisms could have 

important implications for effective cellular delivery of therapeutic agents for 

brain tumor therapy.  

 

 

 

 

 

 

 

 

 



                                                                                                                      76 

 

 
 
 
 

 

 

 

CHAPTER 3 

 

TARGETED SUICIDE GENE THERAPY OF 

MALIGNANT GLIOMAS USING GLIOMA TROPIC 

HUMAN PRECURSOR CELLS DERIVED FROM NT2 

CELLS 
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3.1 Introduction 

The infiltrative nature of glioma has led to the failure of viral and chemical 

vectors in clinical trials of glioma gene therapy. Because the distribution of 

these vectors in brain tumors is limited, only the tumor cells surrounding the 

injection site are transfected; thus, individual cells migrating from the 

therapeutic area later give rise to secondary tumors. The inherent glioma 

tropic property of NSCs makes them well suited for glioma therapy and may 

overcome the limited therapeutic effects of viral and chemical vectors. 

Researchers have used genetically engineered NSCs to selectively deliver 

various antitumor gene products to disseminating tumors. Among them, the 

best established approach is HSVtk/GCV suicide gene therapy, which has 

been already well characterized in clinical trials of malignant glioma gene 

therapy (Pulkkanen and Yla-Herttuala, 2005). In the HSVtk/GCV system, the 

systemic, nontoxic GCV passes through the BBB and is converted to active 

drug by HSVtk in NSCs. Hence, the phosphorylated GCV (analog of 

deoxyguanosine) incorporates itself into the replicating DNA, causing chain 

termination and killing proliferating cells selectively. The phosphorylated GCV 

can pass through gap junctions between adjacent cells and kill the 

surrounding actively dividing tumor cells (Mesnil et al, 1996). 

 

To date, one of the major limitations of stem cell–based glioma gene therapy 

has been the use of fetal-derived NSCs. To overcome the source limitations 

and the ethical hurdles faced in therapeutic applications, alternative large-
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scale sources of NSCs must be identified (Martino and Pluchino, 2006). The 

human NPC line NT2 may be a promising cell source for ex vivo glioma gene 

therapy. NT2 NPCs, originally isolated from the testis teratocarcinoma, are 

able to differentiate to neurons and glias in vitro and in vivo (Bani-Yaghoub et 

al, 1999; Fenderson et al, 1987; Miyazono et al, 1995; Pleasure and Lee, 

1993; Pleasure et al, 1992; Trojanowski et al, 1993). The gene-expression 

profile change of NT2 cells during neural differentiation is similar to that of 

neural progenitor cells during neurogenesis (Przyborski et al, 2000). 

Interestingly, after 4 to 6 weeks of RA treatment, NT2 cells can differentiate to 

homogeneous functional neurons with high purity (Pleasure et al, 1992; 

Saporta et al, 2000; Zeller and Strauss, 1995). RA is a derivative of vitamin A 

and is known to be functional in the development of the vertebrate CNS 

(Maden, 2002). During the neuron differentiation of NT2 cells, RA exposure 

plays a key role in directing neuron phenotype differentiation and suppressing 

tumorigenicity (Newman et al, 2005). 

 

In this study, we derived glioma tropic precursors from human NPC line, NT2, 

through treatment with RA. We explored the potential application of these 

cells in targeted suicide gene therapy of malignant gliomas. 
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3.2 Materials and methods 

3.2.1 Cell culture 

NT2 (Ntera-2/D1) NPC line (ATCC ), U87 MG (ATCC), and H4 (ATCC) glioma 

cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; 

GIBCO™) supplemented with 10% fetal bovine serum (FBS, GIBCO), 1% 

penicillin-streptomycin (GIBCO), 2 mM glutamine (GIBCO) and 0.1 mM 

nonessential amino acids (GIBCO). 293FT cell line was purchased from 

Invitrogen™, maintained in DMEM supplement with 10% FBS containing 500 

μg/mL geneticin (GIBCO). 

 

To produce the stable U87 cell clone–expressing luciferase gene, U87-Luc, 

U87 cells were seeded in a six-well plate at a density of 5 × 105 per well and 

transfected with pRC-CMV2-luc plasmid using Lipofectamine™ 2000 

(Invitrogen), according to the manufacturer’s protocol. One day later, 

transfected cells were transferred to a 100-mm cell-culture dish and 1 mg/mL 

geneticin was added to the medium to select the resistant cells. After 1 

week’s selection, resistant cells were seeded in a 96-well plate at density of 1 

cell per well to form colonies. Ten colonies were selected and further 

expanded, and the luciferase activity was confirmed using a luminometer 

(Berthold Lumat LB 9507, Bad Wildbad, Germany) with an assay kit from 

Promega. The U87-luc clone with the highest luciferase activity was chosen 

and maintained in medium with 1 mg/mL geneticin. 
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 The neural differentiation of NT2 cells was induced as previously described 

by Pleasure et al(1992). 2 × 106 cells were seeded in a T75 cell-culture flask 1 

day before the RA treatment. Cells were differentiated in complete DMEM 

culture medium containing 10 μM all trans-RA for 1, 2, and 4 weeks. The 

culture medium with RA was changed every 2 days and the RA stock solution 

(10 mM all trans-RA in dimethyl sulfoxide [DMSO]) was diluted with culture 

medium just before use. Following treatment with RA, differentiated cells were 

maintained in DMEM supplement with 10% FBS. 

 

3.2.2 Lentivirus preparation and genetic engineering 

HSVtk gene was cloned from expression vector pORF-HSVtk (InvivoGen) by 

PCR using primers 5’-CACC ATGGC CTCGT ACCCC GGCCA TC and 

5’TCAGT TAGCC TCCCC CATCT CCCGG into pLenti6/v5-TOPO vector 

(Invitrogen) followed by sequencing to confirm the construction. HSVtk 

lentiviruses were produced using the ViraPower™ Lentiviral Directional TOPO 

Expression Kit (Invitrogen). HSVtk lentiviruses were packaged in 293FT cells 

by cotransfection of the expression vector pLenti6/v5-HSVtk and the 

packaging plasmids (pLP1, pLP2, and pLP/VSVG). Lentiviral supernatants 

were harvested 48 hours after transfection and filtered through a 0.45 μm 

membrane. To concentrate the lentivirus, virus suspension was centrifuged 

for 2 hours at 50,000 rpm and 4°C. The virus particles were resuspended with 

DMEM, stored at –80°C, or immediately used in transduction. In genetic 

engineering of NT2.RA2 migrating cells and NT2 cells, cells were transduced 
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overnight by HSVtk lentiviruses in 6 μg/mL polybrene (Invitrogen), followed by 

blasticidin selection at a concentration of 5 μg/mL for 2 weeks. 

 

3.2.3 Reverse transcription-PCR (RT-PCR) 

Total RNA was extracted using an RNeasy Kit (Qiagen) according to the 

manufacturer’s instructions. First-strand cDNA was synthesized using the 

SuperScript™ III First-Strand Synthesis System for RT-PCR (Invitrogen). One 

microliter of cDNA reaction mix was subjected to PCR amplification using 

PCR SuperMix (Invitrogen) as recommended by the manual. Reactions were 

subjected to 30 PCR cycles after denaturation at 94°C for 4 minutes as 

follows: 94°C for 30 seconds; 55°C for 30 seconds; 72°C for 60 seconds or 2 

minutes. An extension step of 72°C for 5 minutes was included. All products 

were electrophoresised on a 2% agarose gel. The forward and reverse 

primers and sizes of RT-PCR productions were as follows: c-Kit, 570 bp, 5’-

GCCCACAATAGATTGGTATTT-3’ (forward) and 5’-AGCATCTTTACAGC

GACAGTC-3’ (reverse); CXCR4, 558 bp, 5’-CTCTCCAAAGGAAAGCGAGG

TGGACAT-3’ (forward) and 5’-AGACTGTACACTGTAGGTGCTGAAATCA-3’ 

(reverse); VEGFR1, 512 bp, 5’-GCAAGGTGTGACTTTTGTTC-3’ (forward) 

and 5’-AGGATTTCTTCCCCTGTGTA-3’ (reverse); VEGFR2, 438 bp, 5’-

ACGCTGACATGTACGGTCTAT-3’ (forward) and 5’-GCCAAGCTTGTACCA

TGTGAG-3’ (reverse); β-actin, 513 bp, 5’-GCCCAGAGCAAGAGAGGCAT-3’ 

(forward) and 5’-GGCCATCTCTTGCTCGAAGT-3’ (reverse); HSVtk, 593 bp, 
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5’-CAATCGCGAACATCTACACCACA-3’ (forward) and 5’-CCGAAA

CAGGGTAAATAACGTGTC-3’ (reverse). 

 

3.2.4 In vitro migration assay 

The directed migration ability of precursor cells was determined by a modified 

Boyden chamber assay, with the BD Falcon HTS FluoroBlok 96-Multiwell 

Insert System (8 μm pore size). One day before the migration assays, glioma 

cells were seeded at a density of 6.4 × 104/well in 96-well companion plates 

(BD Falcon™) and the medium was replaced with 200 μl Opti-MEM® 

(Invitrogen). Precursor cells were labeled with Calcein-AM (molecular probes). 

During labeling, cells were incubated with 5 μg/mL Calcein-AM in culture 

medium for 10 minutes and then washed with culture medium three times, for 

10 minutes each time. Labeled cells were starved overnight in Opti-MEM. The 

next day, 96-multiwell cell-culture inserts were put into the 96-well companion 

plates. The labeled cells were suspended in Opti-MEM and seeded into 

multiple inserts at 2.5 × 104/insert. The plates and inserts were incubated 

together for 24 hours at 37°C in 5% CO2. The fluorescence from the top side 

(corresponding to nonmigrating cells) and the bottom side (corresponding to 

migrating cells) of the plates was measured using a microplate reader 

(GENios™ Pro, Tecan). Fluorescence background was subtracted during 

calculation. Values were calculated as the percentage of the bottom reading 

of the total reading. All experiments were conducted in quadruplicate and 

values expressed as mean ± SD. Statistical analyses were done using 
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ANOVA analysis or Student’s t test. To collect the nonmigrating and migrating 

cells, a six-well insert system (BD Falcon, 8 μm pore size) was used instead 

of a 96-multiwell insert system. The cell-culture inserts were washed three 

times with PBS, and migrating cells on the bottom of the insert membrane and 

nonmigrating cells on the top side of the membrane were dissociated by 

trypsination. 

 

3.2.5 In vivo migration assay 

Adult female Balb/c nude mice (weight 20 g; aged 6-8 weeks) were 

anesthetized with intraperitoneal injection of ketamine (150 mg/kg) and 

xylazine (10 mg/kg). In intracranial glioma models, green fluorescent dye DiO 

(Invitrogen)–labeled U87 glioma cells (5 × 105 cells in 10 μL PBS) were 

injected into the right striatum of the mouse brain (anterior-posterior: 0.0 mm, 

mediolateral: +2.0 mm and dorsoventral: –3.0 mm from bregma and dura) 

using a 10-µL Hamilton syringe connected with a 30 G needle at a speed of 

0.5 µL/min. The needle was allowed to remain in place for another 5 minutes 

before being slowly withdrawn at the end of each injection. In subcutaneous 

glioma models, 106 green fluorescent dye DiO (Invitrogen)–labeled U87 

glioma cells were subcutaneously injected. On day 14, red fluorescent dye 

CM-DiI–labeled NT2.RA2 migrating cells and NT2 cells (2 × 106 in 200 μL 

PBS) were tail-vein injected. On day 14, mice were sacrificed by cardiac 

perfusion with PBS and 4% paraformaldehyde in PBS. The brains were 

harvested, suspended in 30% sucrose, and embedded in tissue freezing 
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medium (Jung). Cryostat sections were prepared and observed under 

fluorescent microscopy. All handling and care of animals was carried out 

according to the Guidelines on the Care and Use of Animals for Scientific 

Purposes issued by the National Advisory Committee for Laboratory Animal 

Research, Singapore. The current study experimental protocols were 

approved by the Institutional Animal Care and Use Committee (IACUC), 

Biological Resource Center, the Agency for Science, Technology and 

Research of Singapore. 

 

3.2.6 In vitro bystander effect 

To test the cytotoxicity of GCV, 103 NT2 cells, NT2-tk cells, NT2.RA2 

migrating cells, NT2.RA2 migrating-tk cells, U87 cells, coculture of NT2-tk 

cells, and U87 cells at a ratio of 1:1, coculture of NT2.RA2 migrating-tk cells 

and U87 cells at a ratio of 1:1, were seeded in a 96-well cell-culture plate. 

Cells were cultured in medium containing 0, 0.1, 1, and 10 μg/mL GCV, and 

the conditional medium was changed every 2 days. The cell numbers were 

determined by CellTiter 96® AQueous Assay (MTS, Promega) on day 7. Cell 

viability was calculated as the percent absorbance of cells cultured without 

GCV. Values from six wells were expressed as mean ± SD and statistical 

analyses were carried out using Student’s t test. 

 

3.2.7 In vivo bystander effect 



                                                                                                                      85 

U87-luc cells (0.5 × 106 cells in 10 μL PBS) were intracranially injected into 

the right striatum (anterior-posterior: 0.0 mm; mediolateral: +2.0 mm; 

dorsoventral: –3.0 mm from bregma and dura) of female Balb/c nude mice as 

described previously. On day 7, NT2.RA2 migrating cells, NT2-tk cells, and 

NT2.RA2 migrating-tk cells (n = 4, 106 in 10 μL PBS) were injected into the 

contralateral side of the mouse brain. Animals were intraperitoneally 

administered 50 mg/mL GCV daily from day 14 to day 32. Tumor growth was 

monitored by bioluminescent imaging of U87-luc cells with the IVIS Imaging 

System (Xenogen). Twenty minutes before in vivo imaging, isoflurane gas–

anesthetized animals were injected intraperitoneally with D-luciferin (Promega) 

at 100 mg/kg in PBS. The animals were then placed on a warmed stage 

inside the camera box. The detected light emitted from U87-luc cells was 

digitized and electronically displayed as a pseudocolor overlay onto a 

grayscale image of the animal. Images and measurements of luminescent 

signals were acquired and analyzed using Living Image® software (Xenogen), 

quantified as photons per second. 
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3.3 Results 

3.3.1 Generation of glioma tropic precursor cells from NT2 cells 

3.3.1.1 Retinoid acid treatment induces the neuron differentiation of NT2 

cells and improves migration capacity toward U87 cells 

NT2 cells were treated with trans-RA for 1, 2, and 4 weeks, and differentiated 

cells were named NT2.RA1, NT2.RA2, and NT2.RA4, respectively. Figure 3.1 

shows the morphology changes after the RA treatment. Some cells formed 

extremely dense multilayered culture and others formed clumps of neuron-like 

cells, as described previously by pleasure et al(Pleasure et al, 1992). The 

longer the RA treatment lasted, the more neuron-like clumps were observed. 

To assess the effect of RA treatment on cell migration, we used a Boyden 

chamber migration assay to examine the migration of RA-treated NT2 cells 

toward human U87MG glioma cells. Blank medium was used as a negative 

control and 10% FBS was used as a positive control. The glioma tropism of 

NT2 cells was improved after RA treatment (Figure 3.2). Compared with 

NT2.RA1 and NT2.RA4 cells, NT2.RA2 cells displayed a high migration 

capacity toward U87 glioma cells (26%) and simultaneously maintained low 

unspecific migration toward blank medium MEM (4%). NT2.RA1 and 

NT2.RA4 cells showed considerable migration toward U87, but much higher 

unspecific migration toward MEM. These results suggest that, with the effect 

of RA-induced differentiation, NT2.RA2 cells have the highest glioma-specific 

migration. Thus, these cells were selected for further investigation. 

 



                                                                                                                      87 

 

 

 

 

 

 

 

Figure 3.1. RA treatment induces the neural differentiation of NT2 cells. 
Phase-contrast photographs show the morphologic changes to NT2 cells that 
occur during RA treatment for 1, 2, and 4 weeks. 
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Figure 3.2. RA treatment increases the migration of NT2 cells toward U87 
cells in modified Boyden chamber assays. Columns: percentage of 
fluorescence reading from transmigrating cells in total reading; bars: SD. 
Statistical analysis calculated using two-factor ANOVA and Student’s t test. 
***P <0.001. 
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3.3.1.2 Migration screening selects cells with enhanced glioma-directed 

migration 

To further improve glioma tropism, NT2.RA2 cells went through another 

transwell migration screening. In the screening, U87 glioma cells were loaded 

in the lower chamber of the system as attractants. Nonmigrating cells stayed 

on top of the membrane, whereas cells that were primed to migrate went 

through 8 µm pores into the opposite site of the transwell insert membrane. 

Migrating and nonmigrating cells were isolated, and the migration capacity 

toward U87 glioma cells was tested by modified Boyden chamber migration 

assays. The results of the migration assays were examined by both 

fluorescence microscope and microplate reader. Cells were labeled with 

green fluorescence dye, Calcein-AM so that the number of migrated cells 

could be observed under the fluorescence microscope (Figure 3.3). After the 

screening, NT2.RA2 migrating cells showed a higher migration capacity 

toward U87 cells than did NT2.RA2 nonmigrating cells. The results were also 

quantified using a TECAN microplate reader (Figure 3.4). The migration 

percentage of NT2.RA2 migrating cells was 42% and that of NT2.RA2 

nonmigrating cells was 15%. The glioma tropism of NT2.RA2 cells was further 

enhanced by migration screening. 
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Figure 3.3. NT2.RA2 migrating cells and NT2.RA2 nonmigrating cells after 
migration screening. Phase-contrast photographs show the morphology of 
NT2.RA2 migrating cells (A) and NT2.RA2 nonmigrating cells (B). 
Fluorescence photographs show the Calcein-AM–labeled transmigrated 
NT2.RA2 migrating cells (C) and NT2.RA2 nonmigrating cells (D) toward 
MEM, U87, and 10% FBS from the bottom side in Boyden chamber assays. 
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Figure 3.4. Glioma tropism of NT2.RA2 cells is improved by migration 
screening. In vitro migration of NT2.RA2 migrating cells toward U87 cells 
compared with NT2.RA2 nonmigrating cells; P <0.01. Columns: percentage of 
bottom reading in total reading; bars: SD. 
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3.3.2 In vitro glioma tropism evaluation of NT2.RA2 migrating cells 

3.3.2.1 The enhanced migration capacity of NT2.RA2 migrating cells is 

glioma specific and endured during long-term culture 

We went on to test the migration capacity of NT2.RA2 migrating cells toward 

more cell lines. Glioma cells lines U87 and H4 were selected to represent 

glioma cells. Human kidney cell line 293FT served as control. NT2.RA2 

migrating cells displayed significantly greater migration capacities when 

compared with NT2.RA2 nonmigrating cells and NT2 cells (Figure 3.5). These 

cells responded not only to U87 cells, but also to another glioma cell line, H4, 

by displaying a significant migration advantage over control 293FT cells. 

Moreover, the glioma-directed migration almost reached the level of the 

positive control, 10% FBS. At the same time, NT2.RA2 migrating cells again 

showed low migration capacities toward nontumor cell lines (ie, human kidney 

cell line 293FT), similar to plain medium. Hence, the enhanced migration 

capacity of NT2.RA2 migrating cells is glioma specific. The NT2.RA2 

migrating cells maintained long-term proliferation in cell-culture condition. The 

cells were passaged 36 times and maintained normal cell viability. In vitro 

migration assay showed that glioma-specific tropism remained conserved 

after 36 passages (Figure 3.6). The migration capacity of NT2.RA2 migrating 

cells toward glioma cells, U87 and H4, and nonglioma cells, 293FT, 

demonstrated a similar pattern after long-term subculture. The migration of 

NT2.RA2 migrating cells toward U87 was 2.5-fold of that of NT2 cells; and 

toward H4 the value was 6-fold of that of NT2 cells. 



                                                                                                                      93 

 

A 

 

B  

0

10

20

30

40

50

60

70

MEM 293FT U87 H4 FBS

Attractants

M
ig

ra
tio

n,
%

NT2.RA2
migrating

NT2.RA2
nonmigrating

NT2
***

***

***
***

 Figure 3.5. Glioma-specific tropism of NT2.RA2 migrating cells. (A) 
Fluorescence photographs showing the Calcein-AM–labeled transmigrated 
NT2.RA2 migrating cells, to MEM, 293FT, U87, H4, and 10% FBS from the 
bottom side of cell-culture inserts. (B) Percentage of transmigrating cells 
measured by a Tecan microplate reader. Columns: percentage of 
fluorescence reading from transmigrating cells in total reading; bars: SD. 
Statistical analysis calculated using Student’s t test. ***P <0.001. 
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Figure 3.6. Glioma-specific tropic behavior of NT2.RA2 migrating cells is 
preserved after 36 generations. In vitro migration of 36-times-subcultured 
NT2.RA2 migrating cells and NT2 cells to MEM, 293FT, U87, H4, and 10% 
FBS was measured by a Tecan microplate reader. Columns: percentage of 
fluorescence reading from transmigrating cells in total reading; bars: SD. 
Statistical analysis calculated using Student’s t test. ***P <0.001. 
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3.3.2.2 Molecular changes associated with enhanced glioma-specific 

migration 

There have been several instances showing that chemokines and growth 

factors secreted by tumors regulate the migration of stem cells toward 

gliomas. We investigated whether enhanced glioma-specific migration of the 

NT2.RA2 migrating cells could be related to the molecular changes of the 

chemokine and growth factor receptors. Four factors reported to regulate the 

NSC migration were selected in the study, including: the chemokine receptor 

4 (CXCR4), receptor of stromal cell-derived factor 1α (SDF-1α) (Allport et al, 

2004; Ehtesham et al, 2004; Imitola et al, 2004); c-kit, the receptor of stem 

cell factor (SCF) (Erlandsson et al, 2004; Sun et al, 2004); vascular 

endothelial growth factor receptor 1 (VEGF1), ; and vascular endothelial 

growth factor 2 (VEGF2) (Schanzer et al, 2004; Schmidt et al, 2005). We 

observed that, although weak expression of CXCR4, c-kit, VEGF1, and 

VEGF2 was visible in NT2 cells and NR2.RA2 nonmigrating cells, the four 

receptors were all highly expressed in NT2.RA2 migrating cells (Figure 3.7). 

These results suggest that the enhanced glioma-specific migration of 

NT2.RA2 migrating cells may be because of the high expression of 

chemokine and growth factor receptors. 
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Figure 3.7. The analysis of chemoattractant receptors using RT-PCR. The 
expression level of CXCR4, C-kit, VEGFR1, and VEGFR2 in NT2, NT2.RA2 
migrating, and NT2.RA2 nonmigrating cells was confirmed and visualized on 
2% agarose gel. 
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3.3.3 In vivo glioma tropic behavior of NT2.RA2 migrating cells 

3.3.3.1 NT2.RA2 migrating cells target subcutaneously implanted U87 

gliomas after systemic administration 

Nude mice were subcutaneously implanted with U87 gliomas to determine 

whether NT2.RA2 migrating cells have the capacity to migrate specifically 

toward tumors in vivo. Two weeks later, CM-DiI–labeled NT2.RA2 migrating 

cells and NT2 cells were injected into the tail vein. After another week, the 

animals were killed and the tumor sections were processed in order to detect 

the CM-DiI–labeled NT2.RA2 migrating cells and NT2 cells. The fluorescence 

images are shown in Figure 3.7. Both NT2.RA2 migrating cells and NT2 cells 

migrated to the tumor site after intravascular administration. NT2.RA2 

migrating cells migrated throughout the entire tumor mass while NT2 cells 

stayed mainly at the edge of the tumor, suggesting that NT2.RA2 migrating 

cells could target the subcutaneously implanted U87 gliomas in vivo. Glioma 

tropism is improved by RA treatment and migration screening. 
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Figure 3.8. After systemic administration, NT2.RA2 migrating cells target the 
subcutaneously implanted U87 gliomas. Fluorescence photographs show the 
distribution of CM-DiI–labeled NT2.RA2 migrating cells (A) and NT2 (B) cells 
in subcutaneously inoculated U87 gliomas. The morphology of tumor sections 
is presented in bright field images. 
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3.3.3.2 NT2.RA2 migrating cells target intracranial U87 gliomas after 

intravenous administration 

To determine whether the NT2.RA2 migrating cells could target the 

intracranial tumors, DiO-labeled U87 gliomas were injected into the striatum 

of nude mice. After 2 weeks of tumor formation, CM-DiI–labeled NT2.RA2 

migrating cells and NT2 cells were injected into the tail vein. One week later, 

NT2.RA2 migrating cells were distributed throughout the intracranial tumor 

mass, but were not found in surrounding normal-appearing brain tissue 

elsewhere in the brain. NT2 cells could also target the tumor, but some stayed 

in the normal brain region surrounding the tumor. These results indicate that 

NT2.RA2 migrating cells are potential gene-delivery vectors that, after 

systemic administration, could target the brain tumors. 
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Figure 3.9. After intravascular administration, NT2.RA2 migrating cells target 
intracranial U87 gliomas. Light microscopy shows U87 tumor formation after 
intracranial injection. Corresponding high-magnification fluorescent 
photographs show the distribution of CM-DiI–labeled NT2.RA2 migrating cells 
(red) (A) and CM-DiI–labeled NT2 cells (red) in DiO-labeled U87 glioma cells 
(green). 
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3.3.4 In vitro bystander effects mediated by precursor cells transduced 

with HSVtk gene 

3.3.4.1 Transgene expression and sensitivity to GCV 

Lentivirus-transduced NT2.RA2 migrating cells and NT2 cells expressing 

HSVtk transgene, NT2.RA2 migrating-tk, and NT2-tk, were prepared. 

Expression of HSVtk transcript was confirmed by reverse transcription-PCR 

(Figure 3.10). The HSVtk transcript was found to be expressed in NT2.RA2 

migrating-tk and NT2-tk cells, but not in the parental RA2 migrating and NT2 

cells. 

 

To test sensitivity to GCV, NT2, NT2-tk, NT2.RA2 migrating and NT2.RA2 

migrating-tk cells were cultured for 7 days with various concentrations of GCV 

(0.1-10 μg/mL). The results of MTS assays are shown in Figure 3.11. Cells 

cultured in medium without GCV were used as controls. The cytotoxicity of 

GCV to NT2-tk and NT2.RA2 migrating-tk cells was observed at a 

concentration as low as 0.1 μg/mL; about 80% of cells were killed by 

phosphorylated GCV. The cell number was decreased with the increase of 

GCV concentration; only about 10% survived at a concentration of 10 μg/mL. 

Interestingly, NT2.RA2 migrating-tk cells are more resistant to GCV than NT2-

tk cells, at low concentrations, 0.1 μg/mL and 1 μg/mL of GCV. In contrast, no 

significant toxicity was observed in parental NT2 and NT2.RA2 migrating cells. 

RA treatment may also enhance the resistance of precursor cells to toxins. 
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Figure 3.10. The analysis of HSVtk expression using reverse transcription-
PCR. 
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 Figure 3.11. In vitro sensitivity to GCV evaluated by MTS assay (6 repeats). 
Columns: mean cell viability (percentage of control cells cultured without 
GCV); bars: SD. Statistical comparisons to controls calculated using two-
factor ANOVA and Student’s t test. ***P <0.001. 
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33.3.4.2 In vitro therapeutic efficacy 

To examine the bystander effect of phosphorylated GCV released from tk 

precursor cells, cell viability studies were done in a coculture system (Figure 

3.12). The GCV-containing medium alone showed quite low toxicity to U87 

cells. When U87 cells were cocultured with NT2-tk and NT2.RA2 migrating-tk 

cells at the ratio of 1:1, cell proliferation was significantly inhibited by the 

phosphorylated GCV released from tk precursor cells, and at a GCV 

concentration of 10 μg/mL, 80% of cells were killed. It is worth noting that, at 

low concentrations of GCV (0.1 μg/mL and 1 μg/mL), NT2.RA2 migrating-tk 

cells showed a stronger tumor-inhibiting effect than NT2-tk cells. This 

phenomenon could be explained by previous findings that NT2.RA2 

migrating-tk cells are more resistant than NT2-tk cells are to GCV. These 

results indicate that NT2.RA2 migrating-tk cells can convert sufficient 

amounts of GCV to effectively kill U87 cells in vitro. 
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Figure 3.12. In vitro therapeutic efficacy of NT2.RA2 migrating-tk cells in the 
coculture system (6 repeats). Columns: mean cell viability (percentage of 
control cells cultured without GCV); bars: SD. Statistical comparisons to 
controls calculated using two-factor ANOVA and Student’s t test. *P <0.05; 
**P <0.01; ***P <0.001. 
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3.3.5 In vivo therapeutic effect of HSVtk precursor cells 

To assess antitumor efficacy in animal models with glioma, we intracranially 

injected NT2.RA2 migrating-tk cells into nude mice bearing tumors (Figure 

3.13). 0.5 × 106 U87-luc cells were inoculated into the right striatum of the 

brain. Seven days later, 106 NT2.RA2 migrating-tk, NT2-tk, and NT2.RA2 

migrating cells were contralaterally injected into the left striatum of the brain (n 

= 4 in each group). From days 14 to 32, 50 mg/mL GCV was intraperitoneally 

administered daily and tumor growth in the brain was monitored by 

bioluminescent imaging of U87-luc cells with the IVIS Imaging System (Figure 

3.14 and Figure 3.15). NT2.RA2 migrating-tk cells used together with GCV 

treatment significantly reduced tumor growth compared with the controls, 

NT2-tk and NT2.RA2 migrating cells. NT2-tk cells also showed an antitumor 

effect, though it was not as strong as with the NT2.TA2 migrating-tk cells. At 

day 32, the U87-luc signal in NT2.TA2 migrating-tk cell–implanted mice was 

approximately one-sixth of that in the NT2.RA2 migrating group, and 

approximately one-fourth of that in the NT2-tk group. Compared with the 

untreated U87 control, it was observed that NT2.RA2 migrating cells 

themselves might also inhibit tumor growth. Survival of the mice was 

prolonged by targeted suicide gene therapy (Figure 3.16). At day 32, only one 

mouse survived in the NT2.RA2 migrating control group, but three mice 

survived in the NT2.RA2 migrating-tk treatment group. NT2.RA2 migrating 

cell–mediated bystander effect could significantly inhibit tumor growth and 

prolong the survival of mice bearing intracranial U87 gliomas. 
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Figure 3.13. Protocol used in the in vivo therapeutic effect experiments. 0.5 × 
106 U87-luc cells were inoculated into the right striatum of the brain. Seven 
days later, 106 NT2.RA2 migrating-tk, NT2-tk, and NT2.RA2 migrating cells 
were contralaterally injected into the left striatum of the brain (n = 4 in each 
group). From days 14 to 32, 50 mg/mL GCV was intraperitoneally 
administered daily. 
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Figure 3.14. In vivo therapeutic effect: in vivo bioluminescent images of the 
brain with U87-luc cells inoculation at days 27, 29, and 32 after U87-luc tumor 
injection. Heat map represents the tumor area and color represents the 
intensity. 
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Figure 3.15. In vivo antitumor effect: quantification of in vivo bioluminescence. 
Columns: mean bioluminescence intensity (photons/sec); bars: SD. 
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Figure 3.16. Targeted suicide gene therapy mediated by NT2.RA2 migrating-
tk cells prolongs survival. Survival curve of eight nude mice in two groups. 
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3.4 Discussion 

A number of reports have demonstrated that HSVtk suicide gene therapy 

using genetically engineered NSCs might be a promising strategy for glioma 

therapy (Herrlinger et al, 2000; Li et al, 2007; Li et al, 2005a; Li et al, 2005b; 

Uhl et al, 2005). However, in these studies, C17.2 cells (immortalized mouse 

NSC line) or primary fetal-derived rat NSCs were used as gene-delivery 

vehicles. In this study, we successfully derived glioma tropic human precursor 

cells from the NPC line, NT2, as an efficient delivery vector for glioma gene 

therapy. Taking into account their extensive glioma tropism, cell-mediated 

targeted suicide gene therapy might improve the efficacy of glioma therapy 

and prolong patient survival. 

 

A population of human glioma tropic precursor cells (NT2.RA2 migrating cells) 

was derived from RA-treated NT2 cells. These cells offer several advantages 

when used as gene-delivery vehicles in targeted suicide gene therapy of 

gliomas. First, like immortalized mouse NSCs and primary rat NSCs, 

NT2.RA2 migrating cells demonstrate specific glioma cell–directed migration 

in vitro and in vivo, and glioma tropism endured during long-term culture. The 

glioma tropism of NT2.RA2 migrating cells ensures a high concentration of 

the HSVtk enzyme in the region of the tumor cells. Systemically administered 

GCV reaches the brain and is activated by the HSVtk expressed by the 

NT2.RA2 migrating cells in juxtaposition to the tumor cells. NT2.RA2 

migrating cells may also be able to deliver antitumor transgenes even after 
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systemic administration. In vivo migration assays showed that, after 

intravenous administration, NT2.RA2 migrating cells could target 

subcutaneously implanted U87 tumors as well as intracranially injected U87 

gliomas. In the treatment of brain tumors, the BBB is the primary obstacle to 

successful delivery of molecules to the CNS neoplasm. However, the BBB 

does not affect the capacity of NSCs to home in on CNS-malignant cells when 

NSCs are injected into the cerebral ventricles and even into peripheral 

circulation (Aboody et al, 2000). Therefore, NT2.RA2 migrating cells with 

HSVtk genes could be implanted in the cavity in the brain during neurosurgery, 

and the therapeutic effect might be further improved by repeated systemic 

administrations after surgery. A study illustrated that high glioma tropism is 

possibly due to the high expression of chemokine and growth factor receptors. 

The chemokines and growth factors were secreted by tumor cells, attracting 

the NT2.RA2 migrating cells toward the glioma. In therapeutic models, 

NT2.RA2 migrating cells were more resistant than NT2 cells to GCV and 

mediated a stronger bystander effect when expressing HSVtk gene, which 

could be due to RA-induced cell cycle arrest and slowing of cell proliferation. 

The doubling time of NT2.RA2 migrating cells is about 3 to 4 days whereas 

that of NT2 cells is only 24 hours. NT2.RA2 migrating cell–mediated 

bystander effect kills surrounding tumor cells without HSVtk expression. The 

phosphorylated GCV is further transferred from a small number of killed tumor 

cells to bystanders, causing tumor cell death in an even broader region. The 

bystander effect thus amplifies the therapeutic effect. The use of HSVtk 



                                                                                                                      113 

suicide gene therapy may help to eliminate proliferating NT2.RA2 migrating 

cells after treatment, thus preventing malignant neoplasm formation (Li et al, 

2005a). 

 

NT2.RA2 migrating cells themselves could inhibit tumor growth. Several 

studies have demonstrated the innate tumor-killing capacity of rodent NSCs 

(Benedetti et al, 2000; Glass et al, 2005; Staflin et al, 2004). In this study, we 

further illustrated that the human precursor cells derived from NT2 cells may 

also have a tumor-inhibitory effect. We observed that NT2.RA2 migrating cells 

maintained long-term proliferation in common cell-culture conditions, ensuring 

the preparation of an amount of cells sufficient for transplantation, favorable 

for ex vivo genetic modification and selection. 

 

The potential formation of tumors by NT2.RA2 migrating cells is always a 

concern. RA treatment suppresses the tumorigenicity of NT2 cells because of 

RA-induced downregulation of FGF-4 and TGF-α (Newman et al, 2005). 

Several studies have shown that RA-treated NT2 cells have a remarkably 

reduced tumorigenicity compared with untreated NT2 cells when 

subcutaneously injected into athymic mice (Dmitrovsky et al, 1990; Maerz et 

al, 1998). Three months after RA-treated NT2 cells implantation, no tumor 

formation was found (Baselga et al, 1993). In addition, the use of HSVtk/GCV 

suicide gene therapy may help to eliminate proliferating NT2.RA2 migrating 
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cells after treatment, preventing the formation of malignant neoplasms. Future 

study is needed to verify the safety of the NT2.RA2 migrating cells in vivo. 
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4.1 Introduction 

The use of fetal-derived NSCs is a major limitation in stem cell–based glioma 

gene therapy. Human NSCs used in experimental models are isolated from 

the fetal human brain mainly by FACS (Rossi and Cattaneo, 2002), but the 

process is quite tedious and NSCs are difficult to expand after isolation. 

Moreover, the fetal source of NSCs raises serious ethical and legal concerns. 

To overcome the source limitations and the ethical hurdles faced in 

therapeutic applications, alternative large-scale sources of NSCs must be 

identified (Martino and Pluchino, 2006). 

 

Human ESC-derived NSCs could provide an unlimited cell source. Self-

renewing ESCs are inherently immortal, and their proliferation capacity is 

preserved during long-term cell culture. The great plasticity of ESCs allows 

the derivation and isolation of glioma tropic NSCs, which can serve as 

targeting gene-delivery vehicles in the treatment of patients with malignant 

glioma. It seems that neuronal fate is most favored by ESCs when there is no 

other instructive cue (Smukler et al, 2006). Many NSCs and other specific 

neural cells, such as dopamine and motor neurons, have been differentiated 

from mouse and human ESCs. A variety of methods have been developed to 

induce NSCs from human ESCs, but most of methods have used the 

formation of neurospheres or embryoid bodies (EBs). NSCs could be 

generated by overgrowth of human ESCs to a higher cell density (Reubinoff 

et al, 2001). After prolonged culture of human ESCs, without changing the 
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feeder cells for 3 to 4 weeks, NSC marker-positive cells are isolated 

mechanically and put into a serum-free medium to form neurospheres. 

Forming EBs is another way to induce neural differentiation of human ESCs 

(Carpenter et al, 2001; Zhang et al, 2001). The EBs are subsequently seeded 

onto an appropriate substrate in a defined medium containing mitogens to 

further select NSC population. However, the proliferation of NSCs derived by 

forming neurospheres and EBs is limited in cell culture, and the difficulty of 

handling cell aggregations limits large-scale preparation. In addition to 

neurosphere and EB formation, directed differentiation of ESCs to NSCs has 

been achieved by coculture with mouse PA6 stromal cells (Song et al, 2007). 

But the exposure to animal cells is always a safety concern in considering 

about the therapeutic applications. Recently, Smith and colleagues showed 

that simple plating of mouse and human ESCs in a monolayer culture could 

successfully achieve NSCs (Conti et al, 2005; Ying et al, 2003). This novel 

and straightforward method makes the bulk preparation of NSCs from ESCs 

possible. 

 

We derived NSCs from human ESC lines HES1 and HES3 using a simple 

adherent monoculture that included bFGF and EGF. The potential 

applications of these cells in targeted suicide gene therapy of malignant 

glioma were further explored. 
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4.2 Materials and methods 

4.2.1 Cell culture 

The NIH Human Embryonic Stem Cell Registry-listed hES cell lines HES-1 

and HES-3 were obtained from ES Cell International (ESI). The hES cells 

were amplified and maintained according to protocol provided by ES Cell 

International. The hES cells were cultured on mitotically inactivated mEFs 

(CF-1, American Type Culture Collection), seeded in gelatin-coated dishes in 

80% knockout DMEM (Invitrogen) supplemented with 20% Knockout™ Serum 

Replacement (Invitrogen), 2 mM L-glutamine (Invitrogen), 0.1 mM 

nonessential amino acids (Invitrogen), 0.1 mM 2-mercaptoethanol (Invitrogen), 

4 ng/mL bFGF (Invitrogen), 50 U/mL penicillin, and 50 g/mL streptomycin. 

The hES colonies were subcultured every 7 days by mechanical slicing and 

replating into fresh feeder layers. 

 

To form embryoid bodies (EBs), hES cells were grown to form large colonies 

and detached using 0.1 mg/mL dispase (Invitrogen). The hES cell clumps 

were transferred to a 15 mL conical tube containing 10 mL of a differentiation 

medium consisting of 80% knockout DMEM, 20% FBS (Hyclone, Logan, UT), 

2 mM L-glutamine, and 0.1 mM nonessential amino acids and allowed to 

settle to the bottom. The supernatant was removed. The cell clumps were 

resuspended in the differentiation medium and transferred to a Petri dish. The 

cells were fed every day by replacing half the medium with fresh 

differentiation medium and were cultured for 2 weeks. 
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U87 MG (ATCC) and H4 (ATCC) glioma cell lines were cultured in DMEM 

supplemented with 10% FBS, 1% penicillin-streptomycin, 2 mM glutamine, 

and 0.1 mM nonessential amino acids. 293FT cell line was purchased from 

Invitrogen, maintained in a basal medium containing 500 μg/mL geneticin 

(GIBCO). 

 

4.2.2 Neural differentiation of hES cells 

For monoculture differentiation of HES1 and HES3 cells, hES cell colonies 

were detached from the organ dish 7 days after plating by mechanical cutting. 

hES cells were then dissociated using trypsin and plated onto a 0.1% gelatin-

coated six-well cell-culture plate at a density of 106/well and cultured in NSC 

medium. NSC medium was a 1:1 mixture of DMEM/F12 (GIBCO) 

supplemented by 2% B27 (GIBCO), 2 mM L-glutamine, 50 U/mL penicillin, 50 

µg/mL streptomycin, 20 ng/mL EGF (Sigma), and 20 ng/mL bFGF (Invitrogen). 

Half the cell-culture medium was changed every 2 days. At 7 days of 

differentiation, cells reached 90% confluence and were split at 1:2. After 1 

month of expansion, NSC lines NSC1 and NSC3 were derived from HES1 

and HES3. Cells were digested using TrypLE Express Dissociation Enzyme 

(GIBCO) for NSC1 and NSC3 cell passage and subcultured at ratio of 1:2 

twice weekly. 
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To induce neural differentiation of NSCs, cells were transferred to a low–cell 

binding six-well plate (NUNC) in NSC medium. After culture of 1 to 3 weeks, 

round neural spheres were formed. The spheres were then plated into poly-D-

lysine (Sigma)- and laminin (Sigma)-coated dish. Neuronal and glial 

differentiation was induced by the withdrawal of grow factors EGF and bFGF 

from the culture medium. 

 

4.2.3 Immunocytochemistry and FACS analysis 

Cells were washed with PBS and fixed at room temperature with 4% 

paraformaldehyde for 10 minutes and permeated with 0.1% triton for 10 

minutes. The cells were then blocked with 5% normal goat serum for 1 hour 

and incubated overnight at 4°C with antinestin antibody (1:200; Chemicon), 

anti-NCAM antibody (1:200; Santa Cruz Biotechnology), anti-A2B5 antibody 

(1:200; Chemicon), anti-β tubulin III monoclonal antibody (1:200; Promega), 

anti-GFAP (1:200; Sigma), and anti-O4 antibody (1:100; Chemicon). Goat 

antimouse IgG-FITC antibody (Sigma) and Goat antirabbit IgG-FITC antibody 

(Sigma) were then applied for 60 minutes to visualize the antigens. In 

immunocytochemistry, 4', 6-diamidino-2-phenylindole (DAPI, 2 nM, Sigma) 

was applied before observation. Immunofluorescence was visualized and 

captured using an Olympus image analysis system. In FACS analysis, the 

cells were analyzed with a FACSCalibur™ flow cytometer (BD) for the 

percentage of fluorescence-positive cells. 
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4.2.4 Reverse transcription- PCR  

Total RNA was extracted using an RNeasy kit (Qiagen) according to the 

manufacturer’s instructions. First-strand cDNA was synthesized using the 

SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen). One 

microliter of cDNA reaction mix was subjected to PCR amplification using 

PCR SuperMix (Invitrogen), as recommended by the manual. Reactions were 

subjected to 30 PCR cycles after denaturation at 94°C for 4 minutes, as 

follows: 94°C for 30 seconds; 55°C for 30 seconds; and 72°C for 60 seconds 

or 2 minutes. An extension step of 72°C for 5 minutes was included. All 

products were electrophoresised on a 2% agarose gel. The forward and 

reverse primers and sizes of RT-PCR productions were as follows: Oct-4, 169 

bp, 5’-CTTGCTGCAGAAGTGGGTGGAGGAA-3’ (forward) and 5’-CTGCAGT

GTGGGTTTCGGGCA-3’ (reverse); Nanog, 426 bp, 5’-GCGCGGTCTTGGCT

CACTGC-3’ (forward) and 5’-GCCTCCCAATCCCAAACAATACGA-3’ 

(reverse); Brachyury T, 284 bp, 5’-CAACCACCGCTGGAAGTAC-3’ (forward) 

and 5’-CCGCTATGAACTGGGTCTC-3’ (reverse); AFP, 675 bp, 5’-AGAACCT

GTCACAAGCTGTG-3’ (forward) and 5’-GACAGCAAGCTGAGGATGTC-3’ 

(reverse); β-actin, 513 bp, 5’-GCCCAGAGCAAGAGAGGCAT-3’ (forward) and 

5’-GGCCATCTCTTGCTCGAAGT-3’ (reverse); HSVtk, 593 bp, 5’-CAATCG

CGAACATCTACACCACA-3’ (forward) and 5’-CCGAAACAGGGTAAA

TAACGTGTC-3’ (reverse). 
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4.2.5 Lentivirus preparation and genetic engineering 

HSVtk gene was cloned from expression vector pORF-HSVtk (InvivoGen) by 

PCR using primers 5’-CACCATGGCCTCGTACCCCGGCCATC-3’ and 5’-

TCAGTTAGCCTCCCCCATCTCCCGG-3’ into pLenti6/v5-TOPO vector 

(Invitrogen) followed by sequencing to confirm construction. HSVtk 

lentiviruses were produced using the ViraPower Lentiviral Directional TOPO 

Expression Kit (Invitrogen). In brief, HSVtk lentiviruses were packaged in 

293FT cells by cotransfection of the expression vector pLenti6/v5-HSVtk and 

the packaging plasmids (pLP1, pLP2 and pLP/VSVG). Lentiviral supernatants 

were harvested 48 hours after transfection and filtered through a 0.45 μM 

membrane. Virus suspension was centrifuged at 50,000 rpm and 4°C for 2 

hours to concentrate the lentivirus. The virus particles were resuspended with 

DMEM, stored at –80°C, or immediately used in transduction. In genetic 

engineering of NSC1 cells, cells were transduced overnight by HSVtk 

lentivirus in 6 μg/mL polybrene (Invitrogen), followed by blasticidin selection at 

a concentration of 5 μg/mL for 2 weeks. 

 

4.2.6 In vitro migration assay 

The directed migration ability of stem cells was determined by a modified 

Boyden chamber assay, with the BD Falcon HTS FluoroBlok 96-Multiwell 

Insert System (8 μm pore size). One day before the migration assays, glioma 

cells were seeded at a density of 6.4 × 104/well in 96-well companion plates 

(BD Falcon) and the medium was replaced with 200 μL Opti-MEM (Invitrogen). 
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Stem cells were labeled with Calcein-AM (molecular probes). During labeling, 

cells were incubated with 5 μg/mL Calcein-AM in culture medium for 10 

minutes and then washed three times with culture medium, each time for 10 

minutes. Labeled cells were starved overnight in Opti-MEM. The next day, 96-

multiwell cell-culture inserts were put into the 96-well companion plates. The 

labeled stem cells were suspended with Opti-MEM and seeded into multiple 

inserts at 2.5 × 104 /insert. The plates and inserts were incubated together for 

24 hours at 37°C in 5% CO2. The fluorescence from the top side 

(corresponding to nonmigrating cells) and the bottom side (corresponding to 

migrating cells) of the plates was measured using a microplate reader 

(GENios Pro, Tecan). Fluorescence background was subtracted during 

calculation. Values were calculated as the percentage of the bottom reading 

in the total reading. All experiments were conducted in quadruplicate and 

values were expressed as mean ± SD. Statistical analyses were made using 

Student’s t test. 

 

4.2.7 In vitro bystander effect 

To test the cytotoxicity of GCV, 103 NSC1 cells, NSC1-tk cells, U87 cells, a 

coculture at ratio of 1:1 of NSC1-tk cells and U87 cells was seeded in a 96-

well cell-culture plate. Cells were cultured in a medium containing 0.1 μg/mL, 

1 μg/mL, and 10 μg/mL GCV, and the conditional medium was changed every 

2 days. The cell numbers were determined by CellTiter 96 AQueous Assay 

(MTS, Promega) on day 10. Cell viability was calculated as the percent 
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absorbance of cells cultured without GCV. Values from six wells were 

expressed as mean ± SD and statistical analyses were made using Student’s 

t test. 
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4.3 Results 

4.3.1 Self-renewing neural stem cells are derived from human embryonic 

stem cells by adherent monoculture 

Human ESCs, HES1 and HES3, were converted to NSCs, NSC1 and NSC3, 

in a serum-free adherent monoculture. To induce neural differentiation, ESCs 

were dissociated and plated onto the 0.1% gelatin-coated cell-culture plate at 

a high density, in serum-free medium with EGF and bFGF. Approximately 

50% cells died after being transferred to serum-free medium due to failure to 

attach. However, after medium changing, abundant viable and proliferative 

cells remained inside the cell-culture plate. At as early as 7 days of 

differentiation, a high percentage of bipolar cells similar to NSCs was 

observed. After 1 month of expansion, homogenous NSC lines were achieved 

(Figure 4.1). NSC1 and NSC3 were routinely split into two twice per week. 

TrypLE Express Dissociation Enzyme, which does not require the serum 

deactivation and is less toxic than trypsin, was used in the digestion and 

detachment of NSC cells. The NSC lines were continuously cultured for at 

least 6 months and maintained proliferation (data not shown). Furthermore, 

NSC1 and NSC3 could be cryopreserved in an NSC medium plus 10% 

DMSO and were recoverable from liquid nitrogen (data not shown). Long-term 

proliferating NSC lines were successfully derived from human ESCs in a 

defined adherent culture condition with growth factors bFGF and EGF. 
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Figure 4.1. Self-renewing NSC lines NSC1 and NSC3 are derived from hES 
cells. HES1 (A) and HES3 (B) ESCs are cultured on the feeder cells. NSC1 
(C) and NSC3 (D) NSCs are cultured as monolayers. 
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4.3.2 “Stemness” of human embryonic stem cell-derived neural stem 

cells 

 To characterize NSCs derived from ESCs, we examined the expression of 

the NSC markers and the neural multipotency of these cells. 

Immunocytochemistry analysis showed that both NSC1 and NSC3 cells were 

NSC marker positive (Figures 4.2 and 4.3). Nestin is an early-stage NSC 

marker, NCAM is a late-stage neural lineage stem cell marker, and A2B5 is a 

glia lineage marker. Nestin, NCAM, and A2B5 were all expressed in NSC1 

and NSC3 cells. This was further confirmed by FACS analysis (Figure 4.4). 

Ninety-eight percent of NSC1 cells were nestin positive, 90% were NCAM 

positive, and 97% were A2B5 positive. Through RT-PCR analysis (Figure 4.5), 

NSC1 and NSC3 cells were found to lack pluripotent stem cell markers Oct-4 

and Nanog. Unlike EBs, the transcripts of mesoderm mark, Brachyury T, and 

endoderm marker, AFP, were not detected in NSC1 and NSC3 cells. 

 

When transferred to cell suspension culture, NSC1 cells formed neural 

spheres, with the presence of bFGF and EGF in culture medium (Figure 4.6). 

After sequential withdrawal of bFGF and EGF, they generated mixed 

populations of β-Ш tubulin–positive neuron cells and GFAP–positive glia cells 

(Figures 4.6 and 4.7). These results support the fact that NSC1 and NSC3 are 

NSCs with high purity and have the potential to differentiate to neurons and 

glias. 
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Figure 4.2. Nestin, NCAM, and A2B5 expression in NSC1 cells. Fluorescence 
photographs show the immunostaining using antibodies against nestin, 
NCAM, and A2B5 (green). DAPI was used to counterstain nuclei (blue). 
 

 

 



                                                                                                                      129 

 

 

 

 

 

 

 

 

Figure 4.3. Nestin, NCAM, and A2B5 expression in NSC3 cells. Fluorescence 
photographs show the immunostaining using antibodies against nestin, 
NCAM, and A2B5 (green). DAPI was used to counterstain nuclei (blue). 
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Figure 4.4. FACS analysis of neural stem marker expression on NSC1 cells. 
Cells incubated only with FITC-conjugated secondary antibodies were used 
as control. (A) nestin; (B) NCAM; (C) A2B5. 
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Figure 4.5. The analysis of stem cell markers using RT-PCR. The expressing 
levels of Oct-4, Nanog, brachyury T, and AFP in HES1, NSC1, NSC3, and 
EBs were confirmed and visualized on 2% agarose gel. 
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Figure 4.6. Neural differentiation of ESC-derived NSCs. NSC1 cells were 
cultured in monoculture (A). In suspension culture, NSC1 cells formed neural 
spheres (B). After withdrawal of bFGF and EGF, neural spheres further 
differentiated to a mixed population of neurons and glias (C). 
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Figure 4.7. ESC-derived NSCs give rise to neurons and glias. Fluorescence 
photographs show the immunostaining using antibodies against β-Ш tubulin 
and GFAP (green). DAPI was used to counterstain nuclei (blue). 
 



                                                                                                                      134 

4.3.3 In vitro glioma tropism evaluation of human embryonic stem cell-

derived neural stem cells 

The extensive glioma tropic behavior of primary NSCs and NSC lines has 

been well documented. We used the modified Boyden chamber migration 

assay to test the capacity of human ESCs derived from NSCs to migrate 

toward gliomas. Mouse NSC C17.2 was used as a positive control and mouse 

fibroblast cell 3T3 was used as a negative control. We examined the 

migration of NSC1, NSC3, C17.2, and 3T3 toward plain medium (MEM), 

human kidney cell line (293FT), and human glioma cell lines (U87 and H4). 

Results were obtained using a fluorescence microscope (Figure 4.8) and 

fluorescence microplate reader (Figure 4.9). The results of in vitro migration 

assays showed that all NSCs (NSC1, NSC3, and C17.2) had a large number 

of cells migrating toward the glioma cells (U87 and H4), but not to MEM and 

293FT. Far fewer 3T3 cells migrated to glioma cells, and there was no 

difference between the migration toward glioma and nonglioma cells. When 

comparing the glioma-directed migration of three NSC lines, NSC3 was at a 

level similar to that of C17.2, whereas NSC1 showed the greatest glioma-

specific migration. The glioma tropism of ESC-derived NSCs makes them well 

suited as delivery vectors for glioma gene therapy. 
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Figure 4.8. In vitro migration of ESC-derived NSCs toward glioma cells. 
Fluorescence photographs show the Calcein-AM–labeled transmigrated 
NSC1, NSC3, C17.2, and 3T3 toward MEM, 293FT, U87, and H4 from the 
bottom side in Boyden chamber assays. 
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Figure 4.9. Glioma-specific tropic behavior of ESC-derived NSCs. In vitro 
migration of NSC1, NSC3, C17.2, and 3T3 to MEM, 293FT, U87, and H4 was 
measured by a Tecan microplate reader. Columns: percentage of MEM 
control; bars: SD. Statistical analysis of MEM control calculated using 
Student’s t test. ***P <0.001. 
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4.3.4 Human embryonic stem cell-derived neural stem cells as vectors 

for glioma gene therapy 

Lentivirus-transduced NSC1 cells expressing HSVtk transgene, NSC1-tk, 

were prepared. Expression of HSVtk transcript was confirmed by reverse 

transcription-PCR (Figure 4.10). The HSVtk transcript was found to be 

expressed in NSC1-tk cells, but not in the parental NSC1 cells. 

 

The therapeutic potential of NSC1-tk was evaluated in direct coculture 

experiments. To test their sensitivity to GCV, NSC1, U87, NSC1-tk, and 

U87+NSC1-tk (1:1) cells were cultured for 10 days in the presence of various 

concentrations of GCV (0.1 μg/mL-10 μg/mL). The cell viability observed 

under the microscope is shown in Figure 4.11 and results of the MTS assays 

are shown in Figure 4.12. Cells cultured in a medium without GCV were used 

as controls. No toxicity of GCV has been observed in U87 and NSC1 cells. 

NSC1-tk cells together with GCV significantly inhibited U87 cell growth in vitro. 

At a GCV concentration of 10 μg/mL, nearly all tumor cells were eradicated. 

However, the NSC1-tk cells by themselves could withstand the effect of 

phosphorylated GCV. This chemoresistance of ESC-derived NSCs also 

contributes to the antitumor effect. These results indicated that NSC1-tk cells 

can convert sufficient amounts of GCV to effectively kill U87 cells in vitro. 
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Figure 4.10. The analysis of HSVtk expression using reverse transcription-
PCR. 
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Figure 4.11. Phase contrast images showing the cytotoxicity of GCV in 
NSC1-tk cells and NSC1-tk cocultured with U87. 
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Figure 4.12. In vitro therapeutic efficacy of NSC1-tk cells in the coculture 
system (6 repeats). Columns: mean cell viability (percentage of control cells 
cultured without GCV); bars: SD. Statistical comparisons to controls 
calculated using two-factor ANOVA and Student’s t test. **P <0.01; ***P 
<0.001. 
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4.4 Discussion 

NSCs have a great capacity to home in on brain tumors and show a specific 

affinity for invading glioma cells. NSCs may be ideal gene-delivery vehicles 

for gene therapy of glioma because of their inherent tumor-tropic, tumor-killing 

and CNS damage–repairing properties. Genetically engineered NSCs that 

express a therapeutic gene can inhibit the growth of gliomas, facilitate 

elimination of tumor cells, and repair damaged brain tissue directly. However, 

the clinical relevance of using cells of fetal origin is limited by significant 

ethical issues. 

 

Primary adult NSCs may be a viable choice when considering the similarity 

between primary and endogenous NSCs, as well as the encouraging results 

in primary rodent NSC-mediated targeting glioma gene therapy (Ehtesham et 

al, 2002a; Ehtesham et al, 2002b; Li et al, 2007; Li et al, 2005; Shah et al, 

2005). However, unlike isolating haematopoietic stem cells (HSCs) from bone 

marrow, the procedure to derive primary NSCs from the adult brain is 

extremely invasive, and offers only a low yield. In cell culture, human adult 

NSCs express low levels of telomerase and stop proliferation after serial 

passaging (Ostenfeld et al, 2000), so optimized protocols to expand adult 

NSCs in vitro will be required. Because the behavior of NSCs derived from 

diverse sources and maintained under different culture conditions may vary in 

vivo, researchers should establish standards for the isolation, expansion, and 

characterization of adult NSCs. Immortalized NSC lines (eg, v-myc 
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immortalized mouse fetal NSC line C17.2 and human fetal NSC line HB1.F3) 

have shown an outstanding migratory capacity and antitumor effect in a 

variety of experimental brain tumor models (Aboody et al, 2000; Aboody et al, 

2008; Aboody et al, 2006; Danks et al, 2007; Dickson et al, 2007; Herrlinger 

et al, 2000; Kim et al, 2005; Kim et al, 2006; Shimato et al, 2007). Compared 

with primary NSCs, immortalized NSC lines are well characterized and can be 

propagated indefinitely with defined properties on a large scale. The quality of 

cells used in implantation can be easily controlled by comprehensive analysis 

of cell lines. However, the utility of oncogenes during immortalization and the 

potential tumorigenicity of cell line in vivo raises safety concerns. The 

transplantation of allogeneic NSC lines may cause immune rejection, 

although NSCs have been reported to have low immunogenic potential in 

their undifferentiated state (Hori et al, 2007). 

 

Human ESCs derived from NSCs might provide an unlimited source of cells 

for therapeutic applications and offer several advantages over other types of 

stem cells. Self-renewing ESCs are inherently immortal and their proliferation 

capacity is preserved throughout long-term cell culture. So far, 21 

independent human ESC lines, characterized by NIH using universally 

accepted criteria, are commercially available worldwide, suggesting that all 

labs may start from the same cell populations. The great plasticity of ESCs 

allows the derivation and isolation of glioma tropic NSCs, which can serve as 

targeting gene-delivery vehicles in the treatment of patients with malignant 
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glioma. Several strategies have been developed to differentiate NSCs from 

human ESCs, and the ESC-derived NSCs have demonstrated extensive 

migratory ability and have differentiated into neurons, astrocytes, and 

oligodendrocytes in normal and lesioned rat brains (Tabar et al, 2005). 

 

In this study, we demonstrated, for the first time, that human ESCs could 

provide a potentially unlimited source for glioma gene therapy. We 

successfully derived long-term proliferating NSCs from HES1 and HES3 

human ESCs using a novel monolayer culture condition without cell-

aggregation formation. Unlike in previously reported neural sphere 

differentiation protocols, which normally take several months, only 1 month 

was required in this study to produce pure NSCs from human ESCs using this 

monolayer differentiation method. Ninety-seven percent of NSC1 cells were 

NSC marker nestin positive, indicating a high purity in this population. In 

addition, neuron precursor marker N-CAM and glia precursor marker A2B5 

were positive in NSC1 and NSC3, meaning that NSC1 and NSC3 include 

both subpopulations of NSCs, neuron precursors and glia precursors. NSC1 

and NSC3 formed neural spheres in suspension culture, which is a universally 

accepted standard for NSCs. When put into the differentiation medium, NSC1 

progressed into neurons and glias. The special features of NSC1 and NSC3 

make them quite suitable for clinical applications. NSC1 and NSC3 

proliferated for at least 6 months in cell-culture conditions while their neuronal 
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multipotency was preserved. In addition, the cells are expanded in a defined 

medium, making it easier to control quality and scale up the culture. 

 

The strong glioma-specific tropism of NSC1 cells makes targeting gene 

delivery possible. In vitro migration assays showed that NSC1 and NSC3 cells 

migrated specifically to glioma cell lines, with a tropism similar to that of C17.2, 

the best-studied NSC cell line. When carrying the suicide gene HSVtk, 

NHES1 cells demonstrated strong antitumor effects in vitro because of their 

resistance to phospha-GCV. It has been reported that NSCs are more 

resistant to toxins because of the high level of expression of the ATP binding 

cassette transporter, which makes NSCs more efficient than other cellular 

vectors in suicide gene therapy (Dean et al, 2005). 

 

When stem cells are used in therapeutic application, tumorigenesis is always 

a concern. Even a single undifferentiated ESC possesses the ability to form 

teratoma after transplantation. Here, we have shown that pluripotent stem cell 

markers were not expressed in NSC1 and NSC3 cells. The safety and 

efficiency of this ESC-derived vector should be further investigated in large-

scale preclinical studies. Immunogenicity might be another problem posed by 

allogeneic ESC-derived NSCs, but the breakthrough in derivation of human 

iPS cells may overcome this limitation. At the end of 2007, two groups 

reported successful reprogramming of human somatic cells to iPS cell lines 

with defined transcription factors, using either the same set of transcription 
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factors (Takahashi et al, 2007) or another set, Oct4, Sox2, Nanog, and Lin28 

(Yu et al, 2007). This cellular reprogramming technique allows the derivation 

of patient-specific pluripotent stem cells from their own somatic cells; thus, no 

ethical issues arise. NSCs derived from iPS cells might provide an autologous 

cell source for glioma gene therapy, which could eliminate the immune 

rejection induced by other types of stem cells. 
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Chapter 5 

Conclusions 
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This work aimed to discover new regulators able to enhance cell migration 

toward gliomas and to develop alternative, large-scale cell sources of NSCs 

for glioma gene therapy. In this thesis, we presented three approaches for 

utilizing and optimizing the NSC vector in gene therapy of glioma. 

 

In Chapter 2, we described the identification and characterization of a novel 

cell motility modulator, TMEM18. TMEM18 was first identified in a screening 

searching for membrane-spanning proteins. Based on our results, the function 

of TMEM18 would probably be linked to cell mobility. TMEM18 could be used 

as a specific enhancer for glioma-directed migration of NSCs. However, 

knockdown of endogenous TMEM18 expression with RNA interference has 

enormous inhibitory effects on the overall movement of NSCs. Likewise, 

along with the increase of TMEM18 expression from an undetectable to an 

easily detectable level when human ESCs differentiated into NPCs, these 

NSC/NPCs displayed an increased capacity for cell migration. These findings 

indicated a crucial role of the basal, physiological level expression of 

TMEM18 for cell movement, which is consistent with the highly conserved 

and ubiquitously expressed pattern of TMEM18. Most interestingly, TMEM18-

overexpressing cells respond strongly to glioma cell–secreted cues, as 

observed in vitro transwell assays and in an in vivo migration experiment. We 

concluded that TMEM18 overexpression increases the sensitivity of NSCs to 

appropriate signals that stimulate cell migration. Without appropriate cues, 

TMEM18 overexpression will have undetectable effects on the movement of 
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NSCs. Our preliminary data on the upregulation of CXCR4 in TMEM18-

overexpressing cells and on the inhibition of cell migration by antibodies 

against CXCR4 suggested an enhanced effect of the SDF-1/CXCR4 axis by 

TMEM18. Further research is necessary to define the basic mechanisms 

underlying the effects of endogenous TMEM18 on general cell migration and 

the effects of overexpressed TMEM18 on enhancing cell response to 

migration-stimulating signals. An adequate understanding of these 

mechanisms could have important implications for effective cellular delivery of 

therapeutic agents in brain tumor therapy. 

 

In Chapter 3, a population of human glioma tropic precursor cells was derived 

from RA-treated NT2 (NT2.RA2) cells. RA treatment induced neuron 

differentiation of NT2 cells and improved migration capacity toward U87 cells.  

RA treated cells showed the greatest glioma tropism after 2 weeks treatment. 

Their migration toward glioma cells was further improved by migration 

screening. The enhanced migration capacity of NT2.RA2 migrating cells is 

glioma specific and preserved during long-term culture. At the molecular level, 

this high glioma tropism is possibly because of the high expression of 

chemokine and growth factor receptors. The chemokines and growth factors 

were secreted by tumor cells, attracting the NT2.RA2 migrating cells toward 

gliomas. In nude mice with subcutaneously implanted U87 gliomas and 

intracranially injected U87 gliomas, NT2.RA2 migrating cells were able to 

target tumor cells after tail-vein injection. In addition to enhanced glioma tropic 
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behavior, NT2.RA2 migrating cells were more resistant to GCV and, when 

expressing HSVtk gene, mediated a stronger bystander effect than NT2 cells. 

This may be because of RA-induced cell cycle arrest and slowing of cell 

proliferation. In a therapeutic model, NT2.RA2 migrating cells delivered the 

HSVtk gene to the tumor site and mediated a strong antitumor effect. In 

addition, the survival of nude mice with brain tumors was prolonged after 2 

weeks of GCV administration. We had successfully derived glioma tropic 

precursor cells from the NPC line NT2 and used them as efficient delivery 

vectors for gene therapy of glioma. This cell-mediated targeted suicide gene 

therapy may improve the efficacy of glioma therapy and prolong patient 

survival. However, considering the carcinomal origin of these cells, the safety 

of the NT2.RA2 migrating cells as a therapy should be further characterized. 

 

In Chapter 4, we demonstrated that human ESCs could provide a potentially 

unlimited source for glioma gene therapy. We successfully derived long-term 

proliferating NSCs from HES1 and HES3 human ESC lines using a novel 

monolayer culture condition. Unlike in previously reported neural sphere 

differentiation protocols, which normally take several months, only 1 month 

was required in this study to produce pure NSCs from human ESCs using this 

monolayer differentiation method. Ninety-seven percent of NSC1 and NSC3 

cells were NSC marker nestin positive, indicating a high purity in this 

population. In addition, neuron precursor marker N-CAM and glia precursor 

marker A2B5 were also positive in NSC1 and NSC3, meaning that NSC1 and 
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NSC3 include both subpopulations of NSCs, neuron precursors and glia 

precursors. NSC1 and NSC3 formed neural spheres in suspension culture, 

which is a universally accepted standard for NSCs. When put into the 

differentiation medium, NSC1 progressed into neurons and glias. The special 

features of NSC1 and NSC3 make them quite suitable for clinical applications. 

NSC1 and NSC3 proliferated for at least 6 months in cell-culture conditions, 

and their neuronal multipotency was preserved. In addition, the cells are 

expanded in a defined medium, making it easier to control quality and scale 

up the culture.The strong glioma-specific tropism of NSC1 cells makes 

targeting gene delivery possible. In vitro migration assays showed that NSC1 

and NSC3 cells could migrate specifically toward glioma cell lines, with a 

tropism similar to that of C17.2, the best-studied NSC cell line. When carrying 

the suicide gene HSVtk, NSC1 cells demonstrated strong antitumor effects in 

vitro because of their resistance to phospho-GCV. It has been reported that 

NSCs are more resistant to toxins because of the high level of expression of 

ATP binding cassette transporter, which makes NSCs more efficient than 

other cellular vectors in suicide gene therapy. When stem cells are used in 

therapeutic applications, tumorigenesis is a concern. Thus, the safety and 

efficacy of this ESC-derived stem cell vector should be further investigated in 

large-scale preclinical studies. 
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