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Summary 
 

Bis-(3’,5’)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a global second 

messenger uniquely found in bacteria that modulates diverse biological processes such as 

biofilm formation, motility, photosynthesis and virulence. Formation of c-di-GMP is 

catalyzed by diguanylate cyclase (DGC) from two GTP molecules with the release of two 

pyrophosphates, while degradation of c-di-GMP to linear dimer pGpG is accomplished 

by phosphodiesterase A (PDE-A). Studies have revealed that two widespread conserved 

domains, GGDEF and EAL domains are responsible for the DGC and PDE-A activities, 

respectively.  

 

Here we study the possibility of the presence of c-di-GMP in Pseudomonas putida and its 

relationship with MorA, a GGDEF-EAL domain containing protein that controls the 

timing of flagellar development and affects motility, chemotaxis and biofilm formation. 

A method for extracting and detecting c-di-GMP was established using 

Gluconacetobacter xylinus as a model and c-di-GMP was successfully detected from P. 

putida. The intracellular level of c-di-GMP is growth-dependant with peak levels at 

middle log phase and dropping drastically at log-to-stationary transition phase.  

 

MorA has been shown to affect c-di-GMP levels via a direct or indirect way. In morA 

knock-out strain of P. putida, the intracellular c-di-GMP level is higher than that in wild 

type, whereas when morA is overexpressed, the c-di-GMP concentration reduces below 

that in the wild type. DGC activity assay showed that MorA does not have apparent in 

 v



vitro DGC activity under the conditions tested. Combined with the observation that 

MorA negatively regulates c-di-GMP levels of P. putida, it is highly possible that MorA 

may function as a PDE-A.  

 

With the interest to investigate factors affecting c-di-GMP metabolism, we identified 

potential GTP-binding proteins in P. putida using GTP-agarose affinity chromatography. 

Four proteins were identified as being polyribonucleotide nucleotidyltransferase, 

dihydrolipoamide dehydrogenase, lysine-arginine-ornithine-binding periplasmic protein 

and phosphoribosyltransferase. As GTP is the substrate for c-di-GMP production, these 

putative GTP-binding proteins may have an impact on GTP pool and subsequently, affect 

c-di-GMP metabolism.  

 

Findings from this study have established a protocol for isolation and detection of c-di-

GMP and identification of GTP-binding proteins in bacteria and will be helpful in further 

investigation on the mechanism of c-di-GMP action and MorA signaling pathway.
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1.  Introduction 

 

Cyclic nucleotides such as cyclic adenosine 3’,5’- monophosphate (cAMP) and cyclic 

guanosine 3’,5’- monophosphate (cGMP) are the best known second messengers 

involved in numerous intracellular signaling pathways. They regulate a great number 

of physiological processes in mammalian systems, including neuromuscular 

transmission, cell proliferation and apoptosis, smooth muscle relaxation, retinal photo 

transduction, intermediate metabolism, etc. In higher plants, they play a role in ion 

channel regulation, cell cycle progression, action of phytochrome and plant defence 

response (Newton and Smith, 2004). While their actions are well characterized in 

complex eukaryotic cells, cyclic nucleotides are also present in simplest organisms 

such as fungus, Eubacteria and Archae (Botsford and Harman, 1998). However, their 

functions in lower organisms seem to be mainly involved in response system to 

starvation, as in the case of Escherichia coli and yeast (Newton and Smith, 2004). 

While cAMP is widely found in both prokaryotes and eukaryotes, cGMP seems to 

function only in the eukaryotic kingdom and its presence in bacteria as a functional 

molecule is controversial. However, increasing experimental evidence shows that 

another cyclic guanosine compound, bis-(3’,5’)-cyclic dimeric guanosine 

monophosphate (c-di-GMP) is used as a global second messenger uniquely in 

bacteria, modulating diverse biological processes such as biofilm formation, motility, 

photosynthesis and virulence. c-di-GMP was first discovered 19 years ago in 

bacterium Gluconacetobacter xylinus (formerly called Acetobacter xylinum) as an 

allosteric activator of cellulose synthase (Ross et al., 1986). Levels of c-di-GMP are 

controlled by the actions of two opposing enzymatic activities involved in the 
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formation and turnover, respectively, of this molecule. Formation of c-di-GMP in G. 

xylinus is catalyzed by diguanylate cyclase (DGC) from two GTP molecules with the 

release of two pyrophosphates, while phosphodiesterase A (PDE-A) is responsible for 

degrading c-di-GMP to linear dimer pGpG (Ross et al., 1987). DGC and PDE-A 

proteins in G. xylinus share conserved domain structures, GGDEF and EAL domains, 

which were named after highly conserved sequence motifs, Gly-Gly-Asp-Glu-Phe and 

Glu-Ala-Leu (Tal et al., 1998).  

GGDEF and EAL domains are widespread in diverse bacteria. Recently, the functions 

of these two domains have been experimentally characterized. GGDEF domain is 

demonstrated to possess DGC activity whereas EAL domain is responsible for the 

hydrolysis of c-di-GMP. However, the studies on the biological functions of proteins 

containing both GGDEF and EAL domains (DGC-PDE proteins) still remain 

insufficient. Among the few DGC-PDE proteins which have been studied, some 

exhibit DGC activity while others have a function of PDE-A. No bifunctional DGC-

PDE proteins have been reported so far.   

Recently, MorA, a novel regulator affecting flagellar development and biofilm 

formation in diverse Pseudomonas species, was discovered in our laboratory. MorA is 

a transmembrane DGC-PDE protein, the mutation of which leads to constitutive 

expression of flagellar and reduction of biofilm formation.  However, the molecular 

biochemical function and regulation of MorA is still unknown and needs to be 

investigated. With such an overall goal, we outlined the following objectives: 

(i) To establish method for isolating and detecting c-di-GMP from Pseudomonas and 

Gluconacetobacter, and compare its levels between wild type P. putida PNL-MK25, 
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morA knockout and morA overexpressed strains, respectively. Our hypothesis is that 

MorA regulates multiple bacterial phenotypes via intracellular c-di-GMP levels.  

(ii) To examine the enzymatic activity of MorA. Although MorA has both GGDEF 

and EAL conserved domains, it is not currently known whether one or both domains 

have functional activities. Here, we designed the enzymatic assay to test its DGC 

activity. The PDE-A activity assay could not be performed at the current time due to 

lack of sufficiently purified c-di-GMP and a suitable protein control.  

(iii) To identify putative GTP-binding proteins in P.  putida.  GTP acts as a substrate 

for the synthesis of c-di-GMP. In order to test whether GTP is freely available for 

conversion to c-di-GMP or it is possibly sequestered in bound form, we attempted to 

identify GTP-binding proteins in P. putida. This is an initial step to study how GTP 

might affect selected pathways in Pseudomonas. There is currently no report of GTP-

binding proteins involved in c-di-GMP signaling pathway in bacteria. 
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Chapter 2.   Literature Review 
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2.  Literature Review 

 

2.1.  Introduction of bacteria used in this study 

 

Two bacterial strains from two different genera were used in this study. One is 

Gluconacetobacter xylinus 1306-21 (ATCC®53524), the other is Pseudomonas putida 

PNL-MK25 (Adaikkalam and Swarup, 2002).  

 

2.1.1. Gluconacetobacter xylinus 

 

Gluconacetobacter, under the family Acetobacteraceae, is a genus comprised of 11 

species of gram-negative acetate-oxidizing bacteria. These bacteria species are 

unicellular and have an elongated rod shape typical of the Gluconacetobacter strains. 

This genus was recently elevated from a subgenus Gluconoacetobacter (sic), 

previously belonging to the genus Acetobacter, to the generic level and renamed as 

Gluconacetobacter by Yamada et al. (Yamada et al., 1997).  Some species under the 

sublineage B of Gluconacetobacter, such as G. oboediens, G. hansenii, G. europaeus, 

can be used for vinegar fermentation (Yamada, 2003). 

 

G. xylinus also belongs to the sublineage B of Gluconacetobacter. It has served for 

decades as a classical model system of investigating cellulose synthesis due to its 

excellent cellulose-synthesizing capacity. Each bacterial cell can polymerize 200,000 

D-glucose units per second. Certain G. xylinus strains, such as strain 1306-3 can 

utilize numerous carbon and nitrogen source for cellulose synthesis. For example, 

mannitol, sorbitol, sucrose, fructose and glucose can serve as carbon sources whereas 
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casein hydrolysate, protein hydrolysate, yeast extract, malt extract, ammonium salts, 

corn steep liquor and other nitrogen-rich substances can be used as a general source of 

amino acids, nitrogen, minerals and vitamins (Johnson and Neogi, 1989). The 

colonies of the strain on agar plate are small, circular, smooth, glistening and opaque 

while in the broth, it forms a thick, rubbery pellicle comprised of mainly cellulose at 

the surface of the broth. However, the broth itself remains clear. 

 

 G. xylinus 1306-21 was used in this study as a model for establishing methods for 

isolating and detecting c-di-GMP and as a source of DGC from which c-di-GMP can 

be enzymatically synthesized in vitro. This is mainly because c-di-GMP was 

discovered and described first in this strain (Ross et al., 1987). The strain 1306-21 

was derived from G. xylinus 1306-3 by treating the latter with a mutagen. Compared 

with 1306-3, G. xylinus 1306-21 produces less gluconic acid and keto-gluconic acids 

yet retains a stable productivity of cellulose.  

 

2.1.2. Pseudomonas putida 

 

 The genus Pseudomonas comprises more than 140 species of bacteria, which share 

the following characteristics: gram-negative, aerobic,  rod-shaped, non-spore forming, 

typically motile with one or more polar flagella, able to grow on a wide range of 

organic substrates. These bacteria are common inhabitants of water and soil, and most 

of them are saprophytic. They are present on the surfaces of plants, occasionally on 

the surfaces of animals. Many species of Pseudomonas can cause opportunistic 

infections in humans. Among them, P. aeruginosa is most well-known since it is a 

7 



leading cause in hospital-acquired infections such as urinary tract infections, 

respiratory system infections and so on. 

 

Unlike P. aeruginosa, P. putida is a non-pathogenic bacterium with multitrichous 

flagella commonly found colonizing the root area of plants. As a rhizosphere-

associated bacterium, it can enhance plant growth by the exclusion of pathogenic 

microorganisms, release of antifugal compounds, indole acetic acid (IAA) production 

or phosphate solubilization (Mehnaz and Lazarovits, 2006). In addition, it can resist 

adverse effects of organic solvent such as aliphatic or aromatic hydrocarbons and has 

the most genes of any known bacteria species engaged in aromatic hydrocarbon 

degradation. Therefore, it is one of the most promising bacteria which have the 

possibility to be applied in environmental biotechnology. For these reasons, its 

genome has been fully sequenced from P. putida KT2440 and the related strains P. 

fluorescens PfO-1. KT2440 genome is 6.1 million base pairs in length with an 

average GC content of 61.6%. There are a total of 5,420 open reading frames (ORFs), 

of which putative role assignments could be made for 3,571 ORFs. PfO-1 genome is 

6.4 million base pairs in length with an average GC content of 60%. It has 5,833 

genes of which 5,736 are protein coding genes. P. putida and P. fluorescens both 

belong to the non-phytopathogenic and non-necrogenic type species and they are 

often responsible for meat and milk degradation (Bossis et al., 2000).    

 

P. putida PNL-MK25, an antibiotic-resistant derivative of the plant growth-promoting 

rhizobacterial (PGPR) strain ATCC 39169 (Adaikkalam and Swarup, 2002) was taken 

as a model in this study for the reason that it is the strain where MorA was first 

discovered and most previous experiments were done. We hypothesize that findings 
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here will be directly relevant to P. aeruginosa, where MorA ortholog has been 

previously described by our laboratory (Choy et al., 2004). 

 

2.2      Cyclic nucleotide messengers 

 

Second messengers are low-molecule weight molecules that are involved in signal 

transduction pathway to relay signals received by the receptors on the cell surface to 

target molecules inside the cells. They are usually synthesized or released by specific 

enzymatic reactions in response to external signals received by surface receptors and 

subsequently cause massive adaptive changes in the cell.  

 

There are four basic types of second messengers, which include:  (1) Inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol (DG), which are generated through the 

hydrolysis of plasma membrane lipid phosphatidylinositol 4,5-bisphosphate by 

phospholipase C in animal cells. The water soluble IP3 diffuses from the plasma 

membrane to the endoplasmic reticulum to trigger transient increase of cytosolic Ca2+  

level, which in turn, trigger other responses in the cell, whereas hydrophobic DG stays 

at the plasma membrane and activates protein kinase C that can phosphorylate many 

other proteins (Sato et al., 2006). (2) Calcium ions (Ca2+), one of most widely used 

second messengers in eukaryotic organisms that regulates various intracellular 

responses, such as exocytosis in neurons and endocrine cells, muscle contraction, 

plant defence, etc (Lecourieux et al., 2006). (3) Gases such as nitric oxide (NO) and 

carbon monoxide (CO), which can diffuse both in cytosol and across the cellular 

membrane in eukaryotic cells. NO functions as a neurotransmitter by simply diffusing 

from nerve terminals into adjacent cells and forming covalent linkages to the target 
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molecules. In addition, it has a role in inflammatory responses, blood vessel 

reactivity, brain functions and so on (Snyder et al., 1998). Similarly, CO is discovered 

to play a role in neurotransmission, hormone release and regulation of vascular tone 

(Farrugia et al., 2003). (4) Nucleotides, such as guanosine-3',5'-(bis) pyrophosphate 

(ppGpp), a major stringent response factor in bacteria; and cyclic nucleotides, such as 

cAMP, cGMP and c-di-GMP (Fig 2-1). 

  

 

cAMP                           cGMP                                          c-di-GMP 

Fig 2-1 Chemical structure of cyclic nucleotide messenger molecules. 

 

Cyclic nucleotides such as cAMP and cGMP are among the most widely studied 

second messengers. In both unicellular and multicellular organisms, they play a role 

in numerous physiological processes, for example, ion channel regulation, cell cycle 

progression, neuromuscular transmission, smooth muscle relaxation, to just name a 

few. Research on their function and mechanism of action has shaped our 

understanding of this important area of biology and paved the road for further studies. 

Recently, a novel cyclic nucleotide, c-di-GMP, is emerging as a global second 

messenger in various bacterial species and studies are undergoing to unravel more 

about its role and mode of action in signaling transduction pathway (for reviews, see 

Römling and Amikam, 2006; Römling et al., 2005). 
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2.2.1  cAMP signaling 

 

The discovery of cAMP in animal tissues can be dated back to 1957 when Rall and 

Sutherland found that a heat stable factor, produced by certain liver enzyme in 

response of adrenaline and glucagon, can stimulate liver phosphorylase formation 

(Berthet et al., 1957). This heat stable factor was later characterized to be cAMP 

(Sutherland and Rall, 1958). Subsequent studies revealed cAMP was synthesized 

from ATP by the adenylyl cyclase and was degraded by phosphodiesterase (Butcher 

and Sutherland, 1962). In 1968, another research group demonstrated that cAMP can 

mediate cell activity by binding to the regulatory subunit of a specific tetrameric 

protein complex, namely cyclic AMP-dependent protein kinase (PKA) complex, 

(Walsh et al., 1968) and causing the dissociation of active PKA, which subsequently 

phosphorylates various substrate proteins. With this discovery, the concept of cAMP 

signaling pathway system was established that the activation of adenylyl cyclase with 

the presence of hormones or neurotransmitters leads to the production of cAMP, 

which binds to PKA and trigger downstream cellular responses. 

   

cAMP does not only exist in mammalian cells. In fact, it is present both in eukaryotic 

cells and in prokaryotes. In eukaryotes, it plays a role in the action of various 

hormones and neurotransmitters, olfactory signal transduction, metabolic processes, 

cell cycle progression and plant defence response. In bacteria, cAMP is involved in a 

variety of regulatory networks, ranging from the classical role of cAMP as a 

regulatory cofactor in control of carbon utilization, amino acid biosynthesis, transport, 

stress resistance, to the expression of virulence factors by pathogens (Lory et al., 
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2004). For example, in E. coli, cAMP is synthesized in response to reduced glucose 

levels and induces expression of other nutrient degradative enzymes such as β-

galactosidase; in V. cholerae, cAMP is involved in regulation of expression of cholera 

toxin co-regulated pili (Skorupski and Taylor, 1997). Instead of binding to PKA, 

cAMP in most prokaryotic cells acts as an activator of cAMP-receptor protein (CRP), 

an allosteric DNA-regulatory protein which mediates the transcription of downstream 

genes (Fig 2-2 ).  
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Fig 2-2 Summary of CRP-cAMP-mediated binding and activation of CRP-
dependent promoters in E. coli.  
"In vitro" designates the properties of the two-component system for which data have 
been obtained from in vitro experiments. "In vivo" represents the properties of the 
two-component system for which data have been obtained in whole-cell experiments. 
Rectangles represent either the monomeric or the dimeric form of unliganded CRP. 
Circles represent the cAMP bound form(s) of CRP whose conformation differs from 
that of unliganded CRP. DNA refers to nonspecific DNA lacking sequences 
homologous to the consensus CRP-binding sequence. TGTGA-containing DNA is 
represented by a double-stranded helical structure and refers to DNA that contains 
sequences homologous to the consensus CRP-binding sequence. No data exist to 
indicate that (i) nonspecific DNA sequences cause unliganded CRP to monomerize in 
vivo, (ii) a stoichiometry of CRP-cAMP complex can be 1:2 in vivo, and (iii) a CRP-
cAMP complex having 1:2 stoichiometry can function in activating transcription in 
vivo or in vitro; these regions are therefore identified by question marks. Adapted 
from Botsford and Harman (1992). 
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In contrast to many enterobacteria, the catabolite response of P. aeruginosa is not 

regulated by the levels of cAMP. However, P. aeruginosa does express proteins 

necessary for the synthesis of cAMP and for transcriptional control. Recent studies 

show that cAMP influences P. aeruginosa gene expression by acting as an allosteric 

regulator of Vfr, a functional homologue of the E. coli CRP. Genome microarray 

analyses revealed that mutants lacking cAMP or vfr exhibited reduced expression of 

nearly 200 genes, including those involved in the type III secretion system (T3SS), 

type IV pilus biogenesis and type II secretion (Wolfgang et al., 2003). This suggested 

that T3SS is integrated into a global regulatory network that specifically controls 

genes related to pathogenesis. Genetic evidence indicated that cAMP and Vfr act 

upstream of or at the same level as ExsA, a master transcriptional regulator of all 

T3SS genes, because an exsA mutant can not be complemented by overproduction of 

either cAMP or Vfr. Also, another recent report suggested that the cAMP/Vfr 

complex does not directly regulate exsA expression (Shen et al., 2006). P. aeruginosa 

produces two adenylate cyclases (CyaA and CyaB), but they do not contribute equally 

to the production of cAMP necessary for the virulence regulator network. Mutants in 

the cyaB gene were more severely attenuated than those in cyaA, based on 

enumeration of bacteria in lungs, liver and spleen, as well as by assessment of mouse 

lung pathology (Lory et al., 2004). Fig 2-3 showed the environmental signals and 

regulatory systems controlling the expression of the T3SS, in which the role of cAMP 

was also explained. 
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Fig 2-3 Environmental signals and regulatory systems controlling expression of 
the T3SS.  
Solid lines indicate regulatory connections that have been demonstrated 
experimentally whereas dashed lines indicate hypothetical regulatory connections. 
Adapted from Yahr and Wolfgang (2006). 
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2.2.2. cGMP signaling 

 

cGMP, a structural homolog of cAMP, is also an important second messenger, which 

was first discovered in rat urine (Ashman et al., 1963). In contrast to the ubiquity of 

cAMP, cGMP is only restrict to eukaryotic kingdom and it regulates a less number of 

cellular and physiological processes compared with cAMP, including 

phototransduction, vascular and smooth muscle function, learning and memory and so 

on. Currently, there are no confirmative reports of cGMP for prokaryotes. 

 

Although cGMP functions differently from cAMP in many aspects, the metabolism of 

cGMP, which involves guanylyl cyclases for synthesizing cGMP and cGMP-specific 

PDEs, is similar to that of cAMP. According to their common features, nucleotide 

cyclases in eukaryotes and prokaryotes can be divided into six different classes that 

have no sequence similarity with each other. However, all the adenylyl cyclases 

(ACs) and guanylyl cyclases (GCs) have homologous catalytic domains and they 

catalyze stereochemically analogous reactions, which proceed with inversion of 

configuration, presumably by direct in-line attack of the 3’ hydroxyl on the α-

phosphate ( Liu et al., 1997). With respect to cAMP and cGMP specific PDEs, they 

all contain a conserved catalytic domain of approximately 270 amino acids at the 

carboxyl terminus (Zhang et al., 2004). High resolution three dimensional crystal 

structures of cAMP and cGMP specific PDEs reveal a glutamine switch mechanism 

for the control of PDE selectivity toward cyclic nucleotides. To be more specific, an 

invariant glutamine residue in the catalytic site can alternatively adopt two different 

orientations, one is in favor of guanine binding while the other supports adenine 

binding, leading to selectivity of two cyclic nucleotides, respectively (Zhang et al., 
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2004). 

In mammalians, cGMP plays a role in visual transduction. Upon receiving light 

stimulus, cGMP-specific retinal PDE is activated. The resultant decreased level of 

cGMP leads to the hyperpolarization of plasma membrane in rod cells, after which the 

output signal is sent to visual cortex of the brain to generate vision (Takemoto and 

Cunnick, 1990).  

 

Apart from light, cGMP signaling pathway is also mediated by natriuretic peptide 

hormones such as atrial natriuretic peptides and guanylin (Kuhn, 2004). Natriuretic 

peptides, once released into the blood stream, activate the membrane-bound 

homodimeric guanylate cyclase and increase the cGMP level. cGMP then exerts its 

effect on cGMP-gated ion channels, cGMP-specific phosphodiesterase or cGMP-

dependent protein kinases to regulate different physiological processes in the 

cardiovascular and gastrointestinal system, the kidney, bone and other tissues. 

 

The third type of molecule which mediates the cGMP signal transduction is NO 

(Synder et al., 1998). In the cells, NO is synthesized by isoforms of nitric oxide 

synthase, which is mostly present in the nervous system. When NO binds to the heme 

of the soluble isoforms of heterodimeric guanylate cyclase, it triggers the synthesis of 

cGMP.  

 

2.2.3     c-di-GMP biology 

 

It is widely known that cGMP, unlike cAMP, is absent from bacteria as a second 

messenger. Therefore, whether any guanosine nucleotide plays a role of second 
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messenger in the bacteria becomes an open question. As studies going on, there is 

accumulating evidence that c-di-GMP, the homolog of cGMP, is ubiquitously present 

in numerous bacteria and functions as a signaling molecule to regulate complicated 

biological processes from motility, biofilm formation, virulence to photosynthesis 

(Römling and Amikam, 2006).  

 

2.2.3.1  Conservation of GGDEF and EAL domains in bacterial genomes  

 

The discovery journey of c-di-GMP began 21 years ago when late Moshe Benziman’s 

group from Israel found an unusual guanyl dinucleotide while studying the 

mechanism of cellulose biogenesis in G. xylinus, which could activate the cellulose 

synthase (Ross et al, 1986). One year later, they identified the guanyl oligonucleotide 

to be c-di-GMP by mass spectrometry and nuclear magnetic resonance analysis (Ross 

et al, 1987). In 1989, c-di-GMP was also found to play the same role in cellulose 

synthesis in the plant pathogen Agrobacterium tumefaciens (Amikam and Benziman, 

1989). However, the enzymes responsible for the turnover of c-di-GMP remained 

obscure until the first evidence came in 1998, when Benziman’s group discovered 

DGCs and PDE-As in G. xylinus, which control the synthesis and degradation of c-di-

GMP, respectively (Tal et al, 1998). The DGC and PDE-A proteins contain two 

conserved domains, GGDEF and EAL domains, which were named after highly 

conserved sequence motifs, Gly-Gly-Asp-Glu-Phe and Glu-Ala-Leu. The domain 

sizes are approximately 180 and 240 amino acid residues, for GGDEF and EAL 

domains, respectively. Genome analysis showed that these two domains are present in 

diverse branches of the phylogenetic tree (Fig 2-4) of bacteria but are absent in 

genomes of any Archaea or Eukarya. Over 2200 proteins with either GGDEF/EAL 
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domain or both domains are found in public protein databases currently. However, the 

abundance of the two domains is not equal in diverse bacteria (Römling et al, 2005).  

For example, Vibrio vulnificus encodes 66 proteins with GGDEF domain and 33 with 

EAL domain, which is the number one among bacteria species, whereas Bacillus 

subtilis only has 4 and 3, respectively (Römling et al, 2005). 

 

 

Fig 2-4 Phylogenetic distribution of the GGDEF domains in sequenced 
prokaryotic genomes. Adapted from Römling et al (2005). 
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2.2.3.2   c-di-GMP cyclase and phosphodiesterase enzymology  

 

Recently, the precise roles of GGDEF and EAL domains were experimentally 

verified. PleD, a response regulator in Caulobacter crescentus polar development has 

GGDEF domain in its C-terminal serving as an output module (Hecht and Newton, 

1995). Purified PleD was shown to have GTP-specific c-di-GMP synthesizing ability 

and mutations at GGDEF motif abolish the nucleotide cyclase activity (Paul et al, 

2004). Six GGDEF domain-encoding genes from diverse branches of the bacterial 

phylogenetic tree were overexpressed and all the purified recombinant proteins were 

demonstrated to possess DGC activity (Ryjenkov et al, 2005). It was shown that 

GGDEF domain alone is sufficient to encode DGC activity as an oligomeric form, 

although at a very low level compared with full-length protein. In many proteins, both 

GGDEF and EAL domains either singly or jointly, can be found in the same molecule 

together with various types of sensory domains (Fig 2-5). It has been shown that 

regulations by sensory domains can affect activities of DGC and PDE-A domains.  

For example, the GGDEF protein Rrp1 from Borrelia burgdorferi only displays DGC 

activity when its input receiver domain, REC domain, is phosphorylated (Ryjenkov et 

al, 2005).  In other cases, the presence of GAF domain stimulated DGC activities of 

the proteins (Ryjenkov et al, 2005). It is noteworthy that GAF domains are implicated 

in cyclic nucleotide signaling with the capability of binding to cAMP/cGMP 

(Hurley, 2003) and are found together with GGDEF and EAL domain-containing 

proteins. 

 

While more is known currently of the GGDEF domain, functional studies of EAL 

domain are also undergoing. The E. coli EAL domain-containing protein YahA and 
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its individual EAL domain were overexpressed, purified and characterized in vitro. 

Results suggested that both full length YahA and EAL domain have c-di-GMP 

specific phosphodiesterase activity that leads to hydrolysis of c-di-GMP into linear 

dimeric GMP (pGpG) (Schmidt et al, 2005).  Similarly, the V. cholerae EAL domain 

protein was demonstrated in vitro to possess c-di-GMP specific hydrolytic activity 

(Tamayo et al, 2005). Nevertheless, in both cases, the phosphodiesterase activity of 

EAL domain containing proteins is only responsible for digesting c-di-GMP into 

pGpG while the subsequent hydrolysis of pGpG into two 5’-GMP are performed by 

other enzymes in the bacteria.  In addition, when tested, the phosphodiesterase 

activity is dependent on Mg2+ and inhibited by Ca2+ (Schmidt et al, 2005). 

 

 

Fig 2-5 Domain structure of GGDEF and EAL domain proteins. Adapted from 
Römling and Amikam (2006). 
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Since GGDEF and EAL domains possess opposite functions from each other towards 

c-di-GMP enzymology, question arises that what the function of proteins containing 

both domains is. Only a limited number of GGDEF and EAL fusion proteins have 

been studied so far. In G. xylinus, six proteins with both GGDEF and EAL domains 

were identified. However, three of them were assigned to possess DGC activity while 

others possess PDE-A activities, respectively. STM 3388, a protein of Salmonella 

enterica serovar typhimurium with conventional GGDEF and EAL domains, only has 

DGC activity (Kader et al., 2006). CC3396, a GGDEF-EAL protein from C. 

crescentus is a soluble PDE-A with an altered inactive GGDEF domain, served as a 

GTP-dependent regulatory domain (Christen et al., 2005). These observations suggest 

that one of the domains is enzymatically inactive when both domains are present in a 

protein. However, the factors affecting the inactivity at the molecular level are 

currently unknown. It is also likely that under in vitro conditions tested, either 

GGDEF or EAL domains are not activated and hence hypothesized to be “silent” 

domain in these proteins. 

 

2.2.3.3  Biological processes regulated by c-di-GMP 

 

Although c-di-GMP is a late comer compared with other cyclic nucleotide messengers, 

intensive research on its biological functions in bacteria has revealed that c-di-GMP is 

involved in diverse biological processes including motility, biofilm formation, cell 

morphology, exopolysaccharide production, cell-cell communication, virulence, etc. 
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Bacterial cells exist either in planktonic forms or in surface-attached communities 

called biofilms. In biofilms, bacterial cells are enclosed by extracellular matrix 

consisting of exopolysaccharide, proteins and other components. Biofilm formation is 

monitored by a complex regulatory system, in which c-di-GMP was found to play a 

role via GGDEF and/ or EAL domain containing proteins. The main content of 

extracellular matrix, expolysaccharides, were shown to be activated by GGDEF 

domain-containing proteins in G. xylinus, E. coli, S. typhimurium, Rhizobium 

leguminosarum and P.  fluorescens (Tal et al., 1998; Ausmees et al., 1999; Zogaj et 

al., 2001; Spiers et al., 2002). The expression of GGDEF domain proteins raises the 

cellular c-di-GMP level, leading to the production of extracellular matrix components, 

which inhibits the motility of cells and promotes the formation of highly structured 

biofilm. In contrast, the production of EAL domain proteins decreases the c-di-GMP 

level and consequently suppresses biofilm formation but stimulates motility.  In V. 

cholerae, biofilm formation was reduced threefold by arabinose-induced expression 

of VieA, an EAL domain protein (Tischler and Camilli, 2004). YhjH, an EAL 

domain-containing protein of S. typhimurium, when overexpressed, enhances all the 

forms of motility such as swimming, swarming and twitching (Simm et al., 2004). In 

E. coli, the swimming motility defect in an hns mutant was overcome by producing an 

EAL domain protein (Ko and Park, 2000). In Shewanella oneidensis, the attachment 

of cells to and detachment from the biofilm matrix is regulated by c-di-GMP in a 

concentration-dependent manner (Thormann et al., 2006). In P. aeruginosa, the 

mutant of a GGDEF and EAL domain containing protein, FimX, have strongly 

reduced levels of extracellular pili, indicating the normal pilus function is impaired, 

which in turn affects the twitching motility (Huang et al., 2003). 
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c-di-GMP has been reported to play a role in virulence in many bacterial systems. 

Investigation showed that VieA, which maintains c-di-GMP at a low level in V. 

cholerae, can positively affect the production of cholera toxin (Tischler and Camilli, 

2004). In Bordetella pertussis, the expression of EAL domain protein BvgR can 

suppress virulence-inhibiting genes and consequently enhances virulence in the 

mouse aerosol challenge model (Merkel et al., 1998). A set of mutants created in the 

selected GGDEF and EAL encoding genes in the opportunistic pathogen P. 

aeruginosa PA14 strain displayed attenuated virulence in a mouse infection model 

(Kulasakara et al., 2006). 

 

2.2.3.4  c-di-GMP binding domains 

 

Although separate role has been assigned to GGDEF and EAL domains, the 

mechanisms of c-di-GMP signaling pathway still remain unclear due to the limited 

information on the target of c-di-GMP action. 

 

The first available experimental information on c-di-GMP binding protein came from 

the study of cellulose synthase. c-di-GMP is the allosteric activator of membrane-

bound cellulose synthase system in G. xylinus. In 1997, Weinhouse and co-workers 

discovered a c-di-GMP binding protein complex, which is structurally associated with 

cellulose synthase. This 200kD-protein complex appears to play a major role in 

modulating the intracellular concentration of free c-di-GMP and may act as an 

essential factor in regulating cellulose synthase in vivo (Weinhouse et al., 1997). The 

protein complex was not further characterized; however, it could correspond to a 

dimer of the α-subunit of cellulose synthase BscA or a fusion protein of BscA and β-
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subunit of cellulose synthase BscB (Saxena and Brown, 1995). 

 

Recently, Amikam and Galperin proposed the first c-di-GMP binding domain — PilZ 

domain, a 118 amino acid long protein which is distributed in a variety of bacteria 

with a phyletic pattern similar to those of GGDEF and EAL domains (Amikam and 

Galperin, 2006). In P. aeruginosa, PilZ protein, encoded by PA2960 gene, is involved 

in type IV pili biosynthesis pathways, which is also regulated by c-di-GMP (Simm, et 

al., 2004). Moreover, PSI-BLAST search identified the PilZ domain near the C-

terminus of the α-subunit of cellulose synthase BcsA from G. xylinus, which is 

consistent with the discovery of Weinhouse’s. Other available experimental data also 

indicated that PilZ domain is (part of) the long-sought c-di-GMP binding protein. 

 

Early in this year, another protein domain, HD-GYP domain, was shown to be 

involved in cell-cell signaling of Xanthomonas campestris pv. campestris (Xcc) via 

functioning in c-di-GMP turnover (Ryan et al., 2006). HD-GYP domain is a subgroup 

of the HD superfamily of metal dependent phosphohydrolases (Aravind and Koonin, 

1998; Galperin et al., 1999; 2001). In Xcc, RpfG, a HD-GYP domain containing 

protein, was shown to possess PDE-A activity. The isolated HD-GYP domain was 

overexpressed and it alone could degrade c-di-GMP. Recent experiment also revealed 

that the HD-GYP domain of RpfG interacts with a number of GGDEF domain-

containing proteins in Xanthomonas axonopodis pv citri (Andrade et al., 2006). These 

observations, therefore, add new information towards a greater understanding of c-di-

GMP regulatory system in diverse bacteria. 
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2.3        Motility Regulatory (Mor) pathway in Pseudomonas 

 

2.3.1     Overview 

 

Ability to move, namely, motility provides numerous advantages to a bacterium for 

better survival, including movement towards favourable conditions, avoidance of 

detrimental conditions, and successful competition with other micro-organisms 

(Fenchel, 2002). In pathogenic bacteria, motility is usually considered a virulence 

factor essential for colonization of host organism or target organ (Ottemann and 

Miller, 1997; Josenhans and Suerbaum, 2002). There are several forms of bacterial 

motility, such as swimming, swarming, twitching and gliding, the first two of which 

require flagella whereas the last two do not. The flagellum (pl. flagella), which is the 

principal locomotory organelle, plays additional crucial roles in cell adhesion, biofilm 

formation, colonization, and dispersal in the environment. Flagellar biogenesis is 

highly complex, requiring coordinated expression of over 40 genes. The flagellar 

regulatory pathway has been well elucidated in several bacteria, such as E. coli and S. 

typhimurium and P. aeruginosa (Prouty et al., 2001; Givskov et al., 1995; Amsler et 

al., 1993, Dasgupta et al., 2003). 

 

Recently, a series of motility regulators, MorA, MorB and MorC were identified in P. 

putida in our laboratory. All these regulators can affect bacterial motility and biofilm 

formation. These proteins have been included in the Mor family based on their 

domain structures. All of them contain GGDEF domain. MorA and MorC, 

additionally, contain EAL domain (Fig 2-6) (Ng, 2006; Fu, 2006). 
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MorA

MorB

MorC
 

Fig 2-6 Domain structure of MorA, MorB and MorC. 
Vertical line represents transmembrane domain. 
 
 

2.3.2     MorA regulator 

 

MorA is a membrane-localized regulator containing GGDEF and EAL domains, 

transmembrane domain and PAS-PAC sensory domain (Fig 2-6). It controls the 

timing of flagellar development and affects motility, chemotaxis, and biofilm 

formation in P. putida (Choy et al., 2004). Unlike wild type P. putida, where flagellar 

biogenesis occurs during the log-to-stationary phase, morA mutants constitutively 

expresses flagella in all growth phases. It is noteworthy that flagellar development 

involves coordinate expression of over twenty proteins and the loss of MorA in P. 

putida affected the expression of fliC, a key flagellar biosynthetic gene, in the log-to-

stationary transition phase. However, other flagellar pathway transcriptional 

regulators, such as FleQ and FliA, which stand at a higher hierarchy regulatory level 

in the flagellar pathway, were not affected. Hence, MorA is perhaps a global regulator 

of an alternative regulatory system that normally restricts the timing of expression of 

the flagellar biosynthesis pathway to late phases of growth in P. putida. Enhanced 

motility of MorA mutant leads to secondary phenotype changes such as enhanced 

chemotaxis and reduced biofilm formation. MorA is highly conserved in various 

Pseudomonad species such as P. aeruginosa, P. fluorescens and others. However, the 
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morA mutant of P. aeruginosa does not show any change in motility, albeit it retains 

the reduced biofilm phenotype (Choy et al., 2004). 

 

Considering the presence of GGDEF domain in MorA, which implicates the possible 

DGC activity, isothermal calorimetry (ITC) was performed to investigate influence of 

GTP on the recombinant MorA proteins. A distinct exothermic change was observed, 

indicating formation of hydrophobic and electrostatic contacts and hydrogen bonds 

between the protein residues and GTP substrates. Titration data revealed that the 

specific binding of GTP to the GGDEF domain is comparatively more favorable than 

that of the EAL domain and the recombinant MorA could remain active in 

conformation even when highly expressed in a non-native microorganism such as E. 

coli (Lye, 2006). 

 

In spite of all the above-mentioned information, it is not clear how MorA mediates the 

flagellar pathway, whether MorA has any enzymatic activity, and whether it affects 

the c-di-GMP levels in P. putida. Therefore, further studies are needed to address the 

above-mentioned questions. 
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3.  Materials and Methods 

 

3.1  Bacterial strains and media 

 

Bacterial strains used in this study are described in Table 3-1. G. xylinus were grown 

in R-20 medium (Weinhouse, et al., 1997) with the presence of 0.1% cellulase at 

30oC. P. putida strains were grown in Luria-Bertani (LB) medium at 30oC with 

suitable antibiotics. E. coli strains were grown, unless otherwise specified, in LB 

medium at 37°C with suitable antibiotics (Table 3-1). Bacterial growth was measured 

by determining the optical density at 600 nm (OD600). 

 

Table 3-1 Bacterial strains. 

Strain Relevant characteristicsa Source or 
reference 

G.xylinus 
1306-21 
 
P. putida 
PNL-MK25 
 

 
c-di-GMP production; cellulose production 
 
 
Wild-type P. putida strain; Cmr  Rfr 

 

PNL-MK25 mutant (morAPp::aacC1); Cmr  Rfr  Gmr 

 
ATCC® 53524 
 
 
Adaikkalam and 
Swarup, 2002 

   morA knock out strain Choy et al., 2004 
   morA overexpressed strain Choy et al., 2004 Wile-type PNL-MK25 containing plasmid pGB1 where 

full-length morAPp gene with its native promoter were 
cloned into; 
Cmr  Rfr  Tetr

  

 
E. coli   
morA-BL21 Protein expression strain containing plasmid pGEX 

where recombinant MorA was cloned into; Ampr  Tetr

aCm, chloramphenicol 15 μg/ml; Rf, rifampicin 20 μg/ml; Gm, gentamycin 20 μg/ml ; Amp, ampicillin 
100 μg/ml; Tet, tetracycline 25 μg/ml. 

Lye, 2006 
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3.2  Extraction and detection of c-di-GMP 

 

3.2.1    c-di-GMP extraction 

 

G. xylinus was used as a model to establish method of extracting and detecting c-di-

GMP. Cells of G. xylinus were harvested at mid log phase (OD600 1.0) and extracted 

using an acid method modified from what previously described (Weinhouse et al., 

1997). Generally, the cell pellet was extracted with 0.6M perchloric acid. Denatured 

protein was removed by centrifugation and supernatant was neutralized with 5M 

K2CO3. The precipitate was again removed by centrifugation and resultant 

supernatant was filtered through 0.2μm filter, lyophilized and resuspended in minimal 

amount of H2O for later analysis. P. putida wild type (WT) strains were harvested and 

extracted as above.  

 

3.2.2  HPLC analysis 

 

Reversed-phase high pressure liquid chromatography (RP-HPLC) was performed on a 

250×4.6mm Merck LiChrospher® 5 μm RP-18 100A column (Merck KGaA, 

Germany) at room temperature, detection at 252 nm, on Äkta purifier 10 (Amersham 

Biosciences, USA). Runs were carried out with isocratic elution (1ml/min) in 50mM 

triethylammonium biocarbonate (TEAB) buffer pH 7.0 containing 10% (V/V) of 

methanol.  Relevant fractions of 1ml were collected, lyophilized and resuspended in 

minimal amount of H2O. HPLC profile of crude c-di-GMP was used as control for the 

HPLC analysis. Crudely purified c-di-GMP extract is a gift from the late Professor 
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Moshe Benziman and Dr Haim Wienhouse, Department of Biological Chemistry, 

Institute of Life Sciences, Hebrew University of Jerusalem, Israel.  

 

3.2.3    Mass spectrometric analysis of c-di-GMP 

 

The resuspended HPLC fractions were mixed 1:1 with saturated a-cyano-4-

hydroxycinnamic acid in 50% acetonitrile containing 0.1% trifluoroacetic acid (TFA). 

1 μl was spotted onto a laser-etched stainless sample plate for matrix-assisted laser 

desorption ionization time-of-flight (MALDI-TOF) analysis. The samples were 

analyzed in negative-ion mode with the Voyager DE™ STR mass spectrometer 

Biospectrometry™ Workstation (Applied Biosystems, USA).  

 

3.2.4    Relative quantification of c-di-GMP 

 

Relative quantification was carried out by comparing the peak area of c-di-GMP from 

HPLC profiles. Due to the non-availability of sufficiently purified c-di-GMP, the 

homolog of c-di-GMP, i. e., cGMP was selected as a HPLC standard. With the 

presumption that the peak area generated by 1 nmole of c-di-GMP in HPLC analysis 

is twice the peak area generated by 1 nmole of cGMP, a calibration curve for relative 

quantification of c-di-GMP levels was established with various concentrations of 

cGMP in the range of 2µm to 150µm in triplicate.  

 

The nucleotides of P. putida WT strain at early log phase (OD600 0.3), middle log 

phase (OD600 1.0) and log-to-stationary transition phase (OD600 1.7) were extracted 

and analyzed by HPLC as described above. The relative concentrations of c-di-GMP 
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were determined according to the calibration curve and expressed as pmole per 

milligram dry weight of cells. For determination of dry weight, cells were harvested, 

washed in distilled water, and dried in drying oven until the weight remained 

consistent. 

 

Comparison of intracellular c-di-GMP levels in P. putida WT, morA knock out (KO) 

strain and morA overexpressed (OE) strain was carried out. P. putida KO strain is a 

morA targeted double cross-over knockout P. putida strain in which MorA losses its 

function while P. putida OE strain is wild-type P. putida that contains plasmid pGB1 

where full-length morA gene with its native promoter were cloned into (Choy et al., 

2004). For comparison, equal amount of P. putida WT, KO and OE strains were 

harvested at early log phase, middle log phase and log-to-stationary transition phase. 

Nucleotides were extracted, analyzed and intracellular c-di-GMP levels were 

determined and compared as described above.   

 

3.3       Enzymatic studies of MorA 

 

To study whether MorA possesses DGC activity, DGC from G. xylinus was extracted 

and used as a positive control. Crude MorA from P. putida WT strain was prepared 

and the presence of MorA was checked by western blotting. Recombinant MorA was 

extracted and purified, and the resultant protein profile was analysed by SDS-PAGE. 

DGC activity assay was performed to positive control, crude MorA extract and 

purified recombinant MorA. The flowchart of experiment is shown in Fig 3-1. 
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Fig 3-1 Flowchart of experiment to study DGC activity of MorA. 

Positive control:  DGC 
from G. xylinus 

Crude MorA extracted 
from P. putida 

Western blotting 

Purification of 
recombinant MorA SDS-PAGE 

DGC activity 
assay 

HPLC 
analysis 

MS 
analysis 

 

3.3.1   DGC extraction from G.  xylinus  

 

G. xylinus was grown in R-20 medium supplemented with 0.1% cellulase with 

constant shaking. Cells were harvested at OD600 1.0 and washed once in buffer 

containing 50 mM Tris (pH 7.5), 10 mM MgCl2, and 1 mM EDTA (TME buffer). 

DGC were extracted with the protocol adapted from Ross et al. (1986). Generally, the 

washed cell pellets were suspended in TME buffer with the presence of 20% (w/v) 

PEG-4000 (TME-PEG buffer). 1 litre culture of cells was suspended in 30 ml buffer. 

This suspension was passed through a French press cell. The lysed extract was 

centrifuged at 12,000 ×g for 10 min and the resultant precipitation prepared in PEG-

4000 was homogenized in TME buffer to one fourth the original volume. The 

resuspended extract was recentrifuged at 1,500 ×g for 3 min to remove large 

particulate material. The supernatant was recentrifuged at 18,000×g for 20 min at 4oC 

and the resultant supernatant contained DGC. 

 

3.3.2 Crude MorA extraction from P. putida 

 

The protocol for crude MorA extraction was the same as the preparation of DGC from 

G. xylinus described in Section 3.3.1. 
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3.3.3    Western blotting 

 

The presence of MorA protein was checked by Western blotting as was described in 

Choy et al (2004). The anti-MorA polyclonal antibodies against partial MorA were 

produced by a previous Ph.D student in our laboratory. Goat anti-rabbit 

immunoglobulin G, conjugated with alkaline phosphatase (Promega, USA), was used 

as the secondary antibody for detection of MorA.  

 

Crude MorA extract from P. putida WT strain was electrophoresed in 8% 

polyacrylamide gels and transferred onto Hybond™ ECL™ nitrocellulose membranes 

(Amersham Biosciences, UK) in Transfer Buffer (25 mM Tris, 0.15 M glycine, 20% 

(v/v) methanol) at 70 V for 1 h 15 min at 4oC. The membrane blots were first washed 

three times with phosphate-buffered saline (PBS) after the transfer and then incubated 

overnight in Blocking Solution (7% (w/v) nonfat day milk, 0.05% Tween 20) at 4oC. 

The blots were then removed from the Blocking Solution and washed twice for 5 min 

each in PBS. The blots were incubated in either rabbit anti-MorA antibodies (1500× 

dilution) prepared in Blocking Solution for 1 h at room temperature. After incubation, 

the blots were washed four times for 10 min each in Wash Buffer 1 (PBS, 0.1% 

Tween 20). Next, they were incubated in goat anti-rabbit IgG, conjugated with 

alkaline phosphatase (2500× dilution, Promega) prepared in Blocking Solution for 1 h 

at room temperature followed by washing for 4 times at 10 min each in Wash Buffer 2 

(50 mM Tris, 0.15 M NaCl, 0.1% Tween 20, pH 7.5). The final washing step involved 

2 rounds of rinsing in Wash Buffer 3 (50 mM Tris, 0.15 M NaCl, pH 7.5) before 
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immersion in NBT/BCIP detection reagent (Promega). The blots were subsequently 

washed with 20 mM EDTA after the bands had appeared. 

 

3.3.4    Extraction and purification of recombinant MorA 

 

Recombinant MorA without transmembrane domain was previously cloned into a 

glutathione S-transferase (GST) gene fusion system for expression (Lye, 2006). E. 

coli strain BL21 transformed with recombinant MorA was grown at 37°C in 2× YTA 

medium to OD6001.0. The cell culture was cooled down to room temperature before 

induction with 0.1 mM IPTG overnight at 28°C. Bacterial cells were harvested and 

lysed by sonication in lysis buffer (400 mM NaCl, 20 mM DTT, 5% glycerol, 50 mM 

Tris-HCl, pH 8.0, and cocktail protease inhibitors without EDTA). Triton X-100 was 

then added to a final concentration of 1% and subsequently clarified by centrifugation 

at 6,000g for 40 min at 4°C. The crude protein extract was partially purified by 

passing through DEAE sepharose Fast Flow Column (Amersham Pharmacia Biotech., 

USA). Then GST fusion proteins were further purified under non-denaturing 

conditions by selectively binding to glutathione–Sepharose 4B Beads (Amersham 

Pharmacia Biotech.). The GST-fusion protein-bound column was washed with two 

column volumes of 50 mM Tris-HCl buffer. The GST-fusion proteins were then 

cleaved by PreScission Protease (Amersham Pharmacia Biotech.) at 4°C for 16 h in 

the cleavage buffer (50 mM Tris–HCl, pH 7.0, 150 mM NaCl, 1 mM DTT, and 1 mM 

EDTA). Recombinant proteins were then eluted out and the purify of the eluted 

proteins analyzed on 8% SDS–PAGE and Coomassie-stained. Protein concentration 

was determined by the Bradford assay (BioRad, USA) and spectrophotometrically at 

OD595. 
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3.3.5    DGC activity assay 

 

The enzymatic reaction was performed at 30oC with occasional gentle shaking. The 

total volume of the reaction mixture is 2 ml. The components of the reaction mixture 

contained protein to be tested, Tris HCl (pH 7.5), MgCl2, EDTA, CaCl2 and NaCl. 

Different concentrations of the components were applied to obtain the optimized 

conditions (Table 3-2).  For DGC activity assay of MorA, another set of experiment 

was carried out with the presence of 0.1mM, 1mM and 10mM acetyl phosphate (AcP) 

in the reaction mixture, while other conditions remained the same. The reaction was 

started by the addition of the substrate GTP to the prewarmed reaction mixture. 

Aliquots of 350µl were withdrawn at time points of 0, 5, 30, 60 and 120 min and 

equal volume of 0.5M EDTA was immediately added to the aliquot to stop the 

reaction. The mixture was then centrifuged at 15,000×g for 5 min to remove the 

protein and the supernatant was filtered through a 0.2-µm-pore-size filter. The 

supernatant was then loaded onto the RP-18 column and analyzed with the same 

buffer and running conditions as described in Section 3.2.2. The corresponding 

fractions of c-di-GMP were collected, lyophilized, redissolved in H2O and analyzed 

by MALDI-TOF mass spectrometer at negative mode. 
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Table 3-2 Concentrations of  reaction components tested in DGC activity assay. 
The concentrations in gray cells are optimized conditions. 
 

Component  Concentration 

Protein 0.4~0.6mg per reaction 

GTP 100μM 150μM 200μM 

Tris HCl (pH 7.5) 25mM  50mM 75mM 

MgCl2 1mM 5mM 10mM 

EDTA 0.1mM 0.5mM 1mM 

CaCl2 1mM 2mM 4mM 

NaCl 50mM 100mM 150mM 

 

 

3.4       Isolation and purification of GTP-binding proteins in P. putida 

 

3.4.1    Protein extraction and purification 

 

Cells from 3 L culture of P. putida WT strain at OD600 1.0 were harvested, first 

washed with TME buffer and resuspended in TME-PEG buffer as described in 

Section 3.3.1. PEG-4000 was selected as the precipitating agent due to its non-toxicity 

and inert chemical properties. The percentage of PEG-4000 was determined to be 

20% (w/v), the same as described in another experiment of extraction of c-di-GMP 

related proteins carried out by Ross et al. (1986). Cells were then lysed by passing 

through a French Press cell and the lysed extract was centrifuged at 12,000 ×g for 10 

min. The precipitate was suspended in TME buffer and centrifuged at 1,500 ×g for 3 

38 



min to remove large particulate material. The resultant supernatant was then passed 

through 0.45µm-pore-size filter for further clarification before being loaded onto 

GTP-agarose column. 

 

3.4.2     Affinity chromatography 

 

GTP-agarose beads (Cat No: G9768) were bought from Sigma-Aldrich, USA. The 

beads were first thoroughly washed with 50 volumes of cold water to remove the 

storage buffer and then equilibrated with 20 volumes of TME buffer. After loading 

the samples, the column was first washed with 20 volumes of TME buffer containing 

1 mM DTT (TME-DTT buffer), followed by 15 volumes of TME-DTT buffer 

containing 1 mM ATP, and 10 column volumes of TME-DTT buffer. Eluting buffer 

contains 50mM tris-HCl, 10mM EDTA, 1mM DTT and 200mM KCl. The eluted 

proteins were concentrated using Vivaspin® 15R (Cat No: VS02H91) centrifugal 

concentrators (Vivascience AG, Germany) before SDS-PAGE analysis. All the steps 

were carried out at 4oC. 

 

3.4.3    Protein identification by mass spectrometric analysis 

 

Eluted proteins were electrophoresed on 8% SDS-PAGE and coomassie-stained. 

Prominent bands were excised from the gel, washed and performed trypsin digestion. 

The resultant peptides were analyzed by MALDI-TOF-TOF mass spectrometry. 
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4.       Results 

 

4.1.  Extraction and detection of c-di-GMP  

 

4.1.1   Detection of c-di-GMP in G. xylinus and P. putida 

 

In a previous report, c-di-GMP was shown to be produced by DGC in G. xylinus 

(Ross et al., 1987).  Therefore, G. xylinus was used as a model to establish a protocol 

for extraction and detection of c-di-GMP. Nucleotides were extracted with an acid 

method and analyzed by HPLC. The HPLC profile of nucleotide extracts of G. xylinus 

is shown in Fig 4-1A. Compared with the control, i. e., the HPLC profile of the crude 

c-di-GMP sample from G. xylinus (gift by Dr. Weinhouse, Israel) (Fig 4-1B), a peak 

at retention time of 8-10 min was identified as a putative c-di-GMP peak. The 

relevant fraction was collected, lyophilized, resuspended in minimal amount of water 

and further analyzed by MALDI-TOF mass spectrometry in the negative mode. Fig 4-

2 shows the mass spectrum of the relevant HPLC fraction. Major ion was detected at 

m/z of 688.9, which corresponds to [c-di-GMP-H]-. These results suggested that the 

extraction and detection method was efficient for G. xylinus.   
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Fig 4-1 HPLC analysis of c-di-GMP in crude nucleotide extracts from G. xylinus. 
(A) HPLC profile of crude nucleotide extracts from G. xylinus. The red arrow 
indicates the peak position of c-di-GMP. 
 
(B) HPLC profile of crude c-di-GMP control sample. Peak 1 contains GTP and its 
degradation products. Peak 2 and 3 contain c-di-GMP degradation products and c-di-
GMP, respectively (adapted from Dr. Choy Weng Keong, Ph.D thesis). 
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Fig 4-2 MALDI-TOF analysis of c-di-GMP from HPLC fraction of G. xylinus. 
The HPLC fraction, as shown with red arrow in Fig. 4-1A, was analyzed by MALDI-
TOF mass spectrometer in negative mode. Major ion was detected at m/z of 688.9, 
representing [c-di-GMP-H]-. 
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Next, the extraction and detection of c-di-GMP were carried out with P. putida WT 

strain following the same protocol. A c-di-GMP peak was detected from HPLC 

analysis (Fig 4-3) and confirmed by mass spectrometry (Fig 4-4). Therefore, the 

method of extracting and detecting c-di-GMP could be applied to P. putida. 
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Fig 4-3 HPLC profile of crude nucleotide extracts from P. putida WT strain. 
Red arrow indicates the peak position of c-di-GMP. 
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Fig 4-4 MALDI-TOF analysis of c-di-GMP from HPLC fraction of P. putida WT 
strain. 
The HPLC fraction, as shown with red arrow in Fig. 4-3, was analyzed by MALDI-
TOF in negative mode. Major ion was detected at m/z of 689.0. 
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4.1.2    Comparison of c-di-GMP levels 

 

To study c-di-GMP levels in P. putida WT strain at different growth phases, equal 

amount of cells were harvested at early log phase, middle log phase and log-to-

stationary transition phase. c-di-GMP levels were determined by HPLC analysis from 

area under the curve of c-di-GMP peak (Fig 4-6). We also investigated whether MorA 

affects c-di-GMP levels in P. putida by comparing intracellular c-di-GMP levels in P. 

putida WT, KO and OE strains at different growth phases (Fig 4-7).  Due to the 

limited availability of c-di-GMP, a c-di-GMP homolog, cGMP was used as a HPLC 

standard to plot the calibration curve (Fig 4-5). The graph was linear in the range of 

2µm to 150µm with a correction coefficient, R2, >0.999. The relative intracellular 

concentration of c-di-GMP was calculated according to the HPLC profile and 

expressed as pmole per milligram (dry weight) of cells.  
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Fig 4-5 Standard curve of cGMP as detected by HPLC analysis. 
Peak area was calculated using the software of “UNICORN” (Amersham 
Biosciences). Experiment was repeated three times. 
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Fig 4-6 Intracellular c-di-GMP levels in P. putida WT strain at different growth 
stages. 
Intracellular concentrations of c-di-GMP in P. putida WT at early log phase, middle 
log phase and log-to-stationary transition phase were determined by HPLC analysis 
and expressed per milligram (dry weight) of cells. Experiment was done in triplicate 
and error bars represent standard deviation. 
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Fig 4-7 Intracellular c-di-GMP levels in P. putida WT, KO and OE strains at 
different growth phases. 
Intracellular concentrations of c-di-GMP in P. putida WT, KO and OE strains at early 
log phase, middle log phase and log-to-stationary transition phase were determined by 
HPLC analysis and expressed per milligram (dry weight) of cells. Experiment was 
done in triplicate and error bars represent standard deviation. 
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Relative concentrations of c-di-GMP in P. putida were determined in mg of pmole 

mg-1 dry weight cells, which are consistent with the c-di-GMP levels in several 

bacteria (Christen et al., 2005; Kader et al., 2006; Weinhouse et al., 1997; Simm et 

al., 2005). Due to the low abundance of c-di-GMP, a large amount of bacterial culture 

was raised in order to get sufficient starting material for the extraction and detection 

work. Especially in the case of extracting c-di-GMP from cells at early log phase 

when cell density was relatively low, the yield c-di-GMP is about 1.7 nmole per liter 

culture.  

 

The intracellular levels of c-di-GMP in P. putida WT strain are growth- dependent. 

Compared with that of cells at early log phase, the intracellular concentration of c-di-

GMP in WT at middle log phase increased by 5-fold. This might be explained that 

fast growing cells are undergoing vigorous metabolism and the demand for c-di-GMP, 

which is essential for coordinating several biological pathways, is also higher. When 

the cells are about to enter the stationary phase, the concentration dropped even below 

that of cells at early log phase. However, the concentration difference between the 

early log phase and log-to-stationary transition phase was not significant.  

 

The comparison of c-di-GMP levels of P. putida WT, KO and OE strains at different 

growth phases showed that the level of c-di-GMP increased in KO strain whereas  

when MorA was overexpressed, the c-di-GMP level was reduced below that of WT. 

This observation is more significant at middle log phase when 10-fold difference of c-

di-GMP level could be seen between KO and OE strains. The variation of c-di-GMP 

levels in these three strains indicated that MorA affects intracellular c-di-GMP levels, 

via a direct or indirect way. 
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4.2      Enzymatic study of MorA 

 

Since MorA contains both GGDEF and EAL domains, which have been implicated in 

the synthesis and degradation of c-di-GMP, respectively, it is possible that MorA may 

possess DGC and/or PDE-A activity. Therefore, experiments were designed to test the 

possible enzymatic activities of MorA. However, only DGC activity assay was 

performed in this study. PDE-A activity assay cannot be done currently owing to lack 

of sufficient amount of purified c-di-GMP as a substrate. 

 

4.2.1    DGC extraction and enzymatic assay 

 

To study the DGC activity of MorA, DGC was extracted from G. xylinus with the 

protocol described in “Materials and Methods” to serve as a positive control during 

the enzymatic assay. The protein content was determined to be 2~3 mg protein per ml 

extract using Bradford method. The enzymatic activity of DGC was tested by DGC 

activity assay, as mentioned in Section 3.3.2. Different concentrations of reaction 

components were used to obtain optimized conditions. Fig 4-8 showed the HPLC 

profile of the reaction mixture, where the c-di-GMP peak at retention time of 8~9 min 

was clearly seen. To further confirm the presence of c-di-GMP, the HPLC fraction of 

the relevant peak was collected, lyophilized, resuspended in minimal amount of water 

and analyzed by MALDI-TOF mass spectrometry in the negative mode. Fig 4-9 is the 

mass spectrum of the HPLC fraction, where the m/z value of 689.0 represented [c-di-

GMP-H]-. Hence we could successfully obtain functional DGC from G. xylinus. 
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Fig 4-8 HPLC analysis of enzymatic activity of crude DGC extract from G. 
xylinus. 
The reaction mixture was analyzed by HPLC using the running buffer and gradient 
described in Section 3.2.2. The peaks other than c-di-GMP were mainly GTP and its 
degradation products. After 2-hour incubation, the c-di-GMP concentration in the 
reaction mixture reached around 4μM. 
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 Fig 4-9 MALDI-TOF analysis of c-di-GMP from HPLC fraction of enzymatic 
mixture. 
The HPLC fraction of c-di-GMP, as shown in Fig. 4-7, was analyzed by MALDI-TOF 
in negative mode. Major ion was detected at m/z of 689.0. 
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4.2.2    Crude MorA extraction 

 

Previously, membrane fractions containing MorA were extracted from WT using a 

method adapted from Minghetti et al., 1992 (Choy et al., 2004). In the present study, 

the crude MorA was extracted from WT using the same protocol of DGC extraction 

as designed for G. xylinus (Ross et al., 1986). To test whether this method is efficient, 

the protein extracts were checked on 8% SDS-PAGE gel (Fig 4-10). The predicted 

molecular mass of MorA is 145 kDa. On the SDS-PAGE gel, a band with a molecular 

mass slightly less than 150 kDa was clearly seen. Next, Western blot was performed 

to confirm the presence of MorA in the crude protein extracts with anti-MorA 

polyclonal antibodies (Fig 4-11).  Results showed that MorA was present in the crude 

protein extracts. Hence, the extraction method was applicable to MorA. 
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Fig 4-10 SDS-PAGE analysis of crude MorA extracted from wild type P. putida. 
The gel was stained with coomassie blue. Lane M, Bio-Rad Precision Plus Protein 
standards; Lane 1, crude MorA extract. Arrow indicates the position of MorA band. 
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Fig 4-11 Western blot analysis of crude MorA extract from wild type P. putida. 
Membrane was probed with MorA antibody. Lane M, Bio-Rad Precision Plus Protein 
standards; Lane 1, crude MorA extract. 
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4.2.3 Extraction and purification of recombinant MorA 

 

In earlier studies, morA gene was cloned into GST gene fusion system for expression. 

The pGEX vector harbouring morA gene was introduced into Escherichia coli strain 

BL21. To obtain recombinant MorA, transformed E. coli BL21, after induction with 

IPTG, was harvested and lysed by sonication in lysis buffer. The GST fusion proteins 

are purified from crude cell lysate under non-denaturing conditions by selective 

binding to glutathione–Sepharose 4B Beads. The GST-fusion proteins were then 

cleaved by PreScission Protease and eluted out. Protein purity was assessed on 8% 

SDS-PAGE gel (Fig 4-12). 
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Fig 4-12 SDS-PAGE analysis of recombinant MorA purified from GST gene 
fusion system. 
The gel was stained with coomassie blue. Lane M, Bio-Rad Precision Plus Protein 
standards; Lane 1, recombinant MorA after the cleavage of GST tag by PreScission 
Protease. Arrow indicates the position of the band of recombinant MorA. 
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4.2.4    DGC activity assay of MorA 

 

To investigate whether MorA has DGC activity, the enzymatic assay was carried with 

the crude MorA extract as well as purified recombinant MorA, following the same 

conditions as enzymatic assay of DGC from G. xylinus. After the reaction was 

stopped, the reaction mixtures were processed and analyzed by HPLC. However, 

unlike the positive control of crude DGC (Fig 4-7), the crude MorA extract and 

purified recombinant MorA had no detectable DGC activity, even after 2-hour 

incubation (Fig 4-13 A and B). 

 

Taking into account the limit of sensitivity of the HPLC assay, we took the 

corresponding HPLC fractions of the enzymatic mixture, at which time c-di-GMP was 

supposed to be eluted out, for mass spectrometric analysis since the mass 

spectrometer has a much higher sensitivity. However, no c-di-GMP was detected 

(data not shown). The possibility that no detectable DGC activity for MorA was due 

to the very low amount of MorA present in the reaction mixture can be ruled out as 

the rough concentration of MorA was calculated prior to the experiment. The failure 

of MorA to exhibit DGC activity prompted us to consider further whether the activity 

of MorA is dependent on the phosphorylation status of the sensory or the catalytic 

domains. Therefore, in another set of enzymatic assay, MorA was incubated with 

acetyl phosphate (AcP), a small-molecule phosphate donor at different concentrations. 

Acp specifically phosphorylates the aspartyl residues of response regulators (Lukat et 

al., 1992). Nevertheless, no DGC activity was detected in MorA in spite of the 

addition of AcP (data not shown). As the verification of the phosphorylation of MorA 
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was not performed, we currently have no clue that whether the undetectable DGC 

activity was caused by poor efficiency of MorA phosphorylation. However, these 

results indicated that MorA does not have apparent in vitro DGC activity under the 

conditions we tested. Further experiments have to be carried out to test whether MorA 

has PDE-A activity. 
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Fig 4-13 HPLC analysis of DGC activity of MorA. 
The reaction mixture was incubated up to 2 hours, then stopped and loaded onto 
HPLC column. Both crude MorA extract (A) and purified recombinant MorA (B) 
showed no detectable activity. The peak present in (A) and (B) corresponded to that 
of GTP. Bold black lines were applied to the HPLC profile in order to differentiate it 
from x-axis, which was shown in fine line. 
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4.3 Isolation and purification of GTP-binding proteins in P. putida 

 

4.3.1   Protein extraction and purification 

 

Involvement of GTP as a substrate for c-di-GMP synthesis prompted us to carry out 

an identification of GTP-binding proteins in P. putida with affinity chromatography. 

In the first attempt, total proteins from the whole cell lysate were used in GTP-

agarose affinity chromatography. However, no bands were detected when checking 

the eluted proteins on the SDS-PAGE gel. The possible reason could be the limited 

amount of GTP-binding proteins in the whole cell lysate. Therefore, a method of 

protein fractionation and enrichment was used next. We then added PEG-4000 for 

fractional precipitation and purification of proteins due to relatively inert chemical 

properties of this polymer. The extraction and purification were repeated and the 

supernatants were combined and loaded onto the affinity column. Since only one 

specific concentration of PEG-4000 was used in the experiment, we recognize the fact 

that we could have lost some of the GTP-binding proteins. Hence, these results only 

provide a partial list of the GTP-binding proteins. Different concentrations of PEG-

4000 can be used in future experiment to optimize the protocol and identify more 

GTP-binding proteins. 

 

4.3.2    Affinity chromatography 

 

Affinity chromatography was carried out as described in Section 3.4.2. Due to the 

lability of the ligand GTP, all the procedures were carried out at 4oC. The eluted 

proteins were concentrated using centrifugal concentrators and analyzed by SDS-
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PAGE (Fig 4-14). For the convenience of protein sequencing, the gel was Coomassie- 

stained. Four prominent bands were visualized and given the names of p75, p50, p25 

and p20 according to their individual estimated molecular masses. At current stage, 

we did not perform the verification of the nonspecific binding of these four proteins 

with GTP-agarose beads, which is one of our future interests. 
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Fig 4-14 SDS-PAGE analysis of putative GTP-binding proteins from P. putida. 
Lane M, Bio-Rad Precision Plus Protein standards; Lane 1, concentrated putative 
GTP-binding proteins eluted from affinity chromatography column. Arrows indicate 
the position of the four bands. 
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4.3.3    Protein identification by mass spectrometric analysis 

 

The four bands p75, p50, p25, p20 were excised from the gel, washed and their tryptic 

digestion were done. The digested peptides were analyzed by MALDI-TOF-TOF 

mass spectrometry. The resulting spectrums were searched against protein sequence 

database MASCOT and the proteins were identified by peptide mass mapping (Table 

4-1; Fig 4-15). Since the complete genome sequence of P. putida PNL-MK25 is not 

available, p75 was identified in Pseudomonas syringae pv. tomato str. DC3000 while 

others were identified in P. fluorescens PfO-1. The domain structure of each protein 

was predicted and the alignment of respective protein with their homologs in 

Pseudomonas species was also performed (Fig 4-16, 4-17, 4-18, 4-19). As they are 

putative GTP-binding proteins, a comparison of the protein sequence between these 

four proteins were conducted with the purpose to find any conserved GTP-binding 

motifs. However, no sequence similarity was found (data not shown). In addition, 

none of the four proteins possess the classic ATP/GTP-binding site motif A (P-loop), 

which is a flexible glycine-rich loop that can interact with one of the phosphate 

groups of the nucleotide (Kjeldgaard et al., 1996). All these results indicate that the 

four identified proteins may contain GTP-binding motifs that are completely different 

from that of the P-loop and those motifs may be less characterized or even totally 

unknown. 
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Table 4-1 Putative GTP-binding proteins identified by mass spectrometry. 
This table shows the accession number, the nominal mass and the name of the 
proteins identified. 
 
 Locus tag Nominal 

mass (Da) 
Name 

p75 PSPTO_4486 75112 Polyribonucleotide 
nucleotidyltransferase 

p50 Pfl_1616 49999 Dihydrolipoamide dehydrogenase 

p25 Pfl_2064 28458 Lysine-arginine-ornithine-binding 
periplasmic protein 

p20 Pfl_4727 20996 Phosphoribosyltransferase 
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      A 
1 MNPVIKKFQF GQSTVTLETG RIARQASGAV LVTVDDDVSV LVTVVGAKQA  

    51 DAGKGFFPLS VHYQEKTYAA GKIPGGFFKR EGRPSEKETL TSRLIDRPIR  

   101 PLFPEGFMNE VQVVCTVVST SKKIDPDIAA MIGTSAALAI SGIPFDGPVG  

   151 AARVAFHEST GYLLNPTYEQ LQASSLDMVV AGTSEAVLMV ESEAKELTED  

   201 QMLGAVLFAH DEFQVVINAI KELAAEAAKP TWDWQPKPEA TALLGAIRAE  

   251 FGDAISQAYT ITVKADRYAR LGELKDQVVA KLAVEEGSPS AGEVKAAFGE  

   301 IEYRTVRENI VNGKPRIDGR DTRTVRPLNI EVGVLPKTHG SALFTRGETQ  

   351 ALVVATLGTA RDAQLLDTLE GEKKDPFMLH YNFPPFSVGE CGRMGGAGRR  

   401 EIGHGRLARR SVQAMLPGAD VFPYTIRVVS EITESNGSSS MASVCGASLA  

   451 LMDAGVPMKA PVAGIAMGLV KEGEKFAILT DILGDEDHLG DMDFKVAGTS  

   501 KGVTALQMDI KIKGITEEIM EIALGQALEA RLNILGQMNQ IIGQSRNELS  

   551 ANAPTMIAMK IDTDKIRDVI GKGGATIRAI CEETKASIDI EDDGSIKIFG  

   601 ESKEAAEAAR QRVLGITAEA EIGKIYLGKV ERIVDFGAFV NILPGKDGLV  

   651 HISMLSDARV EKVTDILKEG EEVEVLVLDV DNRGRIKLSI KDVAAAKASG  

   701 V 
 
B  1 MSQKFDVVVI GAGPGGYVAA IKAAQLGLST ACIEKYTDAE GKQALGGTCL  

    51 NVGCIPSKAL LDSSWKYKEA KESFNVHGIS TGEVKMDVAA MVGRKAGIVK  

   101 NLTGGVATLF KANGVTSIQG HGKLLAGKKV EVTKPDGSVE VIEAENVILA  

   151 PGSRPIDIPP APVDQKVIVD STGALEFQSV PKRLGVIGAG VIGLELGSVW  

   201 SRLGAEVTVL EALDTFLMAA DTAVSKEALK TLTKQGLDIK LGARVTGSKV  

   251 NGDEVVVNYT DANGEQTITF DKLIVAVGRR PVTTDLLAAD SGVTLDERGF  

   301 VHVDDHCATT VPGVYAIGDV VRGMMLAHKA SEEGIMVVER IKGHKAQMNY  

   351 DLIPSVIYTH PEIAWVGKTE QALKAEGVEV NVGTFPFAAS GRAMAANDTG  

   401 GFVKVIADAK TDRVLGVHVI GPSAAELVQQ GAIGMEFGTS AEDLGMMVFS  

   451 HPTLSEALHE AALAVNGGAI HIANRKKR 

 

     1 MKKLVMFGAL ALSMLSLTAV AEDAKPIRIG IEAGYPPFSM KTPDGKLAGF  
C 
    51 DVDIGDALCE QMKVKCTWVE QEFDGLIPAL KVKKIDAILS SMTITDDRKK  

   101 NVDFTIKYYH TPARFVMKAG SGVKDPLTEL KGKKVGVLRA STHDRYATEV  

   151 LVPAGIELVR YGSQQEANLD MVSGRIDAML ADSVNLSDGF LKTDAGKGFE  

   201 FVGPTYEDAK YFGGGAGIAV RKGDTELAEK FNTAINEIRA NGKYKQVQDK  

   251 YFDFDVYGH 
 D 

1 MSADLEHIRQ IMREADCLYT EAEVEAAIAR VGAQINEQLA DSNPVVFCVM  

    51 NGGLIFSGKL LTHLQFPLEA SYLHATRYRN ETSGGDLFWK AKPEVSFIDR  

   101 DVLIIDDILD EGHTLGAIID FCRHAGARKV HTAVLIDKDH DRKARPDLKA  

   151 DFVGLPCIDR YIFGYGMDYK GYWRNANGIF AVKGM 

 
Fig 4-15 Protein sequences of identified GTP-binding proteins. 
(A) P. syringae pv. tomato str. DC3000 polyribonucleotide nucleotidyltransferase  
(B)P. fluorescens PfO-1 dihydrolipoamide dehydrogenase 
(C) P. fluorescens PfO-1 lysine-arginine-ornithine-binding periplasmic protein 
(D) P. fluorescens PfO-1 phosphoribosyltransferase. 
Sequences in red are the peptides identified in mass spectrometry.
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A 

B 
 

PSPTO_4486          MNPVIKKFQFGQSTVTLETGRIARQASGAVLVTVDDDVSVLVTVVGAKQADAGKGFFPLS 60 

Psyr_4176           MNPVIKKFQFGQSTVTLETGRIARQASGAVLVTVDDDVSVLVTVVGAKQADAGKGFFPLS 60 

PSPPH_4185          MNPVIKKFQFGQSTVTLETGRIARQASGAVLVTVDDDVSVLVTVVGAKQADAGKGFFPLS 60 

PFL_0848            MNPVIKKFQFGQSTVTLETGRIARQASGAVLVTVDDDVSVLVTVVGAKQADPGKGFFPLS 60 

Pfl_0783            MNPVIKKFQFGQSTVTLETGRIARQASGAVLVTVDDDVSVLVTVVGAKQADPGKGFFPLS 60 

PSEEN0799           MNPVIKTFQFGQSTVTLETGRIARQATGAVLVTVDNDVTVLVTVVGAKQADPGKGFFPLS 60 

PputDRAFT_2361      MNPVIKTFQFGQSTVTLETGRIARQATGAVLVTVDNDVTVLVTVVGAKQADPGKGFFPLS 60 

                    ******.*******************:********:**:************.******** 

 

PSPTO_4486          VHYQEKTYAAGKIPGGFFKREGRPSEKETLTSRLIDRPIRPLFPEGFMNEVQVVCTVVST 120 

Psyr_4176           VHYQEKTYAAGKIPGGFFKREGRPSEKETLTSRLIDRPIRPLFPEGFMNEVQVVCTVVST 120 

PSPPH_4185          VHYQEKTYAAGKIPGGFFKREGRPSEKETLTSRLIDRPIRPLFPEGFMNEVQVVCTVVST 120 

PFL_0848            VHYQEKTYAAGKIPGGFFKREGRPSEKETLTSRLIDRPIRPLFPEGFMNEVQVVCTVVST 120 

Pfl_0783            VHYQEKTYAAGKIPGGFFKREGRPSEKETLTSRLIDRPIRPLFPEGFMNEVQVVCTVVST 120 

PSEEN0799           VHYQEKTYAAGKIPGGFFKREGRPSEKETLTSRLIDRPIRPLFPEGFMNEVQVVCTVVST 120 

PputDRAFT_2361      VHYQEKTYAAGKIPGGFFKREGRPSEKETLTSRLIDRPIRPLFPEGFMNEVQVVCTVVST 120 

                    ************************************************************ 

 

PSPTO_4486          SKKIDPDIAAMIGTSAALAISGIPFDGPVGAARVAFHESTGYLLNPTYEQLQASSLDMVV 180 

Psyr_4176           SKKIDPDIAAMIGTSAALAISGIPFDGPVGAARVAFHESTGYLLNPTYEQLQASSLDMVV 180 

PSPPH_4185          SKKIDPDIAAMIGTSAALAISGIPFDGPVGAARVAFHESTGYLLNPTYEQLQASSLDMVV 180 

PFL_0848            SKKTDPDIAAMIGTSAALAISGIPFDGPIGAARVAFHESTGYLLNPTYEQLAASSLDMVV 180 

Pfl_0783            SKKTDPDIAAMIGTSAALAISGIPFDGPIGAARVAFHESTGYLLNPTYEQQAASSLDMVV 180 

PSEEN0799           SKKTDPDIAAMIGTSAALAISGIPFEGPIGAARVAFHESTGYLLNPTYEQLAASSLDMVV 180 

PputDRAFT_2361      SKKTDPDIAAMIGTSAALAISGIPFEGPIGAARVAFHESTGYLLNPTYEQLAASSLDMVV 180 

                    *** *********************:**:*********************  ******** 

 

PSPTO_4486          AGTSEAVLMVESEAKELTEDQMLGAVLFAHDEFQVVINAIKELAAEAAKPTWDWQ--PKP 238 

Psyr_4176           AGTSEAVLMVESEAKELTEDQMLGAVLFAHDEFQVVINAIKELAAEAAKPTWDWQ--PKP 238 

PSPPH_4185          AGTSEAVLMVESEAKELTEDQMLGAVLFAHDEFQVVINAIKELAAEAAKPVWDWQ--PKP 238 

PFL_0848            AGTEEAVLMVESEAKELTEDQMLGAVLFAHDEFQSVIKAVKELAAEAAKPTWDWDWAAAP 240 

Pfl_0783            AGTSDAVLMVESEAKELTEDQMLGAVLFAHDEFQVVINAVKELAAEAAKPTWTWA--PAP 238 

PSEEN0799           AGTSDAVLMVESEAQELTEDQMLGAVLFAHDEFQAVIKAVKELAAEAAKPTWDWK--PAD 238 

PputDRAFT_2361      AGTSDAVLMVESEAQELTEDQMLGAVLFAHDEFQAVIQAVKELAAEAGKPTWDWK--PAV 238 

                    ***.:*********:******************* **:*:*******.**.* *   .   

 

PSPTO_4486          EATALLGAIRAEFGDAISQAYTITVKADRYARLGELKDQVVAKLAVEEGSPSAGEVKAAF 298 

Psyr_4176           EATALLGAIRAEFGDAISQAYTITVKADRYARLGELKDQVVAKLAVEDGSPSASEVKAAF 298 

PSPPH_4185          EATALLGAIRAEFGDAISQAYTITVKADRYARLGELKDQVVAKLAVEEGSPSASEVKAAF 298 

PFL_0848            EATELLGAIRAEFGEAISQAYTITVKADRYARLGELKDQVVAKLSGEEGQPSASDVKAAF 300 

Pfl_0783            EATELLAAIRSEFGEAISQAYTITIKADRYARLGELRDQVVAKLSGEEGQPSAADVKAAF 298 

PSEEN0799           KNSALFDAIRAEFGEAVSQGYTITVKADRYARLGELRDQAVAKFSGEEGQPSAGEVKDIF 298 

PputDRAFT_2361      ANTELFNAIRAEFGEAVSQGYTITVKADRYARLGELRDQAVAKFSGEEGQPSASEVKDIF 298 

                      : *: ***:***:*:**.****:***********:**.***:: *:*.***.:**  * 

 

PSPTO_4486          GEIEYRTVRENIVNGKPRIDGRDTRTVRPLNIEVGVLPKTHGSALFTRGETQALVVATLG 358 

Psyr_4176           GEIEYRTVRENIVNGKPRIDGRDTRTVRPLNIEVGVLPKTHGSALFTRGETQALVVATLG 358 

PSPPH_4185          GEIEYRTVRENIVNGKPRIDGRDTRTVRPLNIEVGVLPKTHGSALFTRGETQALVVATLG 358 

PFL_0848            GEIEYRTVRENIVNGKPRIDGRDTRTVRPLNIEVGVLPKTHGSALFTRGETQALVVATLG 360 

Pfl_0783            GEIEYRTVRENIVNGKPRIDGRDTRTVRPLNIEVGVLPKTHGSALFTRGETQALVVATLG 358 

PSEEN0799           GEIEYRTVRENIVNGKPRIDGRDTKTVRPLNIEVGVLPKTHGSALFTRGETQALVVATLG 358 

PputDRAFT_2361      GEIEYRTVRENIVNGKPRIDGRDTKTVRPLNIEVGVLPKTHGSALFTRGETQALVVATLG 358 

                    ************************:*********************************** 
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PSPTO_4486          TARDAQLLDTLEGEKKDPFMLHYNFPPFSVGECGRMGGAGRREIGHGRLARRSVQAMLPG 418 

Psyr_4176           TARDAQLLDTLEGEKKDPFMLHYNFPPFSVGECGRMGGAGRREIGHGRLARRSVQAMLPG 418 

PSPPH_4185          TARDAQLLDTLEGEKKDPFMLHYNFPPFSVGECGRMGGAGRREIGHGRLARRSVQAMLPG 418 

PFL_0848            TARDAQLLDTLEGEKKDPFMLHYNFPPFSVGECGRMGGAGRREIGHGRLARRSVQAMLPA 420 

Pfl_0783            TARDAQLLDTLEGEKKDPFMLHYNFPPFSVGECGRMGGAGRREIGHGRLARRSVSAMLPA 418 

PSEEN0799           TARDAQLLDTLEGEKKDPFMLHYNFPPFSVGECGRMGGAGRREIGHGRLARRSVQAMLPA 418 

PputDRAFT_2361      TARDAQLLDTLEGEKKDPFMLHYNFPPFSVGECGRMGGAGRREIGHGRLARRSVQAMLPA 418 

                    ******************************************************.****. 

 

PSPTO_4486          ADVFPYTIRVVSEITESNGSSSMASVCGASLALMDAGVPMKAPVAGIAMGLVKEGEKFAI 478 

Psyr_4176           ADVFPYTIRVVSEITESNGSSSMASVCGASLALMDAGVPMKAPVAGIAMGLVKEGEKFAI 478 

PSPPH_4185          ADVFPYTIRVVSEITESNGSSSMASVCGASLALMDAGVPMKAPVAGIAMGLVKEGEKFAI 478 

PFL_0848            ADVFPYTIRVVSEITESNGSSSMASVCGASLALMDAGVPMKAPVAGIAMGLVKEGEKFAV 480 

Pfl_0783            ADVFPYTIRVVSEITESNGSSSMASVCGASLALMDAGVPMKAPVAGIAMGLVKEGEKFAV 478 

PSEEN0799           ADVFPYTIRVVSEITESNGSSSMASVCGASLALMDAGVPMKAPVAGIAMGLVKEGEKFAV 478 

PputDRAFT_2361      ADVFPYTIRVVSEITESNGSSSMASVCGASLALMDAGVPMKAPVAGIAMGLVKEGDKFAV 478 

                    *******************************************************:***: 

 

PSPTO_4486          LTDILGDEDHLGDMDFKVAGTSKGVTALQMDIKIKGITEEIMEIALGQALEARLNILGQM 538 

Psyr_4176           LTDILGDEDHLGDMDFKVAGTSKGVTALQMDIKIKGITEEIMEIALGQALEARLNILGQM 538 

PSPPH_4185          LTDILGDEDHLGDMDFKVAGTSKGVTALQMDIKIKGITEEIMEIALGQALEARLNILGQM 538 

PFL_0848            LTDILGDEDHLGDMDFKVAGTAKGVTALQMDIKIKGITEEIMEIALGQALEARLNILGQM 540 

Pfl_0783            LTDILGDEDHLGDMDFKVAGTAKGVTALQMDIKIKGITEEIMEIALGQALEARLNILGQM 538 

PSEEN0799           LTDILGDEDHLGDMDFKVAGTAKGVTALQMDIKINGITEEIMEIALGQALEARLNILGQM 538 

PputDRAFT_2361      LTDILGDEDHLGDMDFKVAGTAKGVTALQMDIKINGITEEIMEIALGQALEARLNILGQM 538 

                    *********************:************:************************* 

 

PSPTO_4486          NQIIGQSRNELSANAPTMIAMKIDTDKIRDVIGKGGATIRAICEETKASIDIEDDGSIKI 598 

Psyr_4176           NQIIGQSRNELSANAPTMIAMKIDTDKIRDVIGKGGATIRAICEETKASIDIEDDGSIKI 598 

PSPPH_4185          NQIIGQSRNELSANAPTMIAMKIDTDKIRDVIGKGGATIRAICEETKASIDIEDDGSIKI 598 

PFL_0848            NQIIGQSRTELSANAPTMIAMKIDTDKIRDVIGKGGATIRAICEETKASIDIEDDGSIKI 600 

Pfl_0783            NQIIGQSRTELSANAPTMIAMKIDTDKIRDVIGKGGATIRAICEETKASIDIEDDGSIKI 598 

PSEEN0799           NQIIGESRTELSANAPTMIAMKIDTDKIRDVIGKGGATIRAICEETKASIDIEDDGSIKI 598 

PputDRAFT_2361      NQVIGQSRTELSANAPTMIAMKIDTDKIRDVIGKGGATIRAICEETKASIDIEDDGSIKI 598 

                    **:**:**.*************************************************** 

 

PSPTO_4486          FGESKEAAEAARQRVLGITAEAEIGKIYLGKVERIVDFGAFVNILPGKDGLVHISMLSDA 658 

Psyr_4176           FGESKEAAEAARQRVLGITAEAEIGKIYIGKVERIVDFGAFVNILPGKDGLVHISMLSDA 658 

PSPPH_4185          FGESKEAAEAARQRVLGITAEAEIGKIYVGKVERIVDFGAFVNILPGKDGLVHISMLSDA 658 

PFL_0848            FGETKEAAEAARQRVLGITAEAEIGKIYVGKVERIVDFGAFVNILPGKDGLVHISMLSDA 660 

Pfl_0783            FGETKEAAEAARQRVLGITAEAEIGKIYVGKVERIVDFGAFVNILPGKDGLVHISMLSDA 658 

PSEEN0799           FGETKEAADAAKQRILGITAEAEIGKIYVGKVERIVDFGAFVNILPGKDGLVHISMLSDA 658 

PputDRAFT_2361      FGETKEAADAAKQRILGITAEAEIGKIYVGKVERIVDFGAFVNILPGKDGLVHISMLSDA 658 

                    ***:****:**:**:*************:******************************* 

 

PSPTO_4486          RVEKVTDILKEGEEVEVLVLDVDNRGRIKLSIKDVAAAKASGV 701 

Psyr_4176           RVEKVTDILKEGQEVEVLVLDVDNRGRIKLSIKDVAAAKASGV 701 

PSPPH_4185          RVEKVTDILKEGQEVEVLVLDVDNRGRIKLSIKDVAAAKASGV 701 

PFL_0848            RVEKVTDILKEGQEVEVLVLDVDNRGRIKLSIKDVAAAKASGV 703 

Pfl_0783            RVEKVTDILKEGQEVEVLVLDVDNRGRIKLSIKDVAAAKASGV 701 

PSEEN0799           RVEKVTDVLKEGQEVEVLVLDVDNRGRIKLSIKDVAAAKASGV 701 

PputDRAFT_2361      RVEKVTDILKEGQEVEVLVLDVDNRGRIKLSIKDVAAAKASGV 701 

                    *******:****:****************************** 
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Fig 4-16 Domain structure and alignment of polyribonucleotide 
nucleotidyltransferase in Pseudomonas species.  
(A) Domain architecture of polyribonucleotide nucleotidyltransferase of P. syringae 
pv. tomato str. DC3000.  Domains are predicted using Simple Modular Architecture 
Research Tool (http://smart.embl-heidelberg.de). 
 
(B) Alignment of P. syringae pv. tomato str. DC3000 polyribonucleotide 
nucleotidyltransferase (PSPTO_4486), P. syringae pv. syringae B728a Psyr_4176, P. 
syringae pv.phaseolicola 1448A PSPPH_4185, P. fluorescens PfO-1 Pfl_0783, P. 
fluorescens Pf-5 PFL_0848, Pseudomonas entomophila L48 PSEEN0799 and P. 
putida F1 PputDRAFT_2361 was performed using ClustalW (http:// 
www.ebi.ac.uk/clustalw). 
 
(C) Phylogram tree of polyribonucleotide nucleotidyltransferase and its homologues 
was generated by ClustalW (http://www.ebi.ac.uk/clustalw). 
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A 

 

 

 B 
 

Pfl_1616            MSQKFDVVVIGAGPGGYVAAIKAAQLGLSTACIEKYTDAEGKQALGGTCLNVGCIPSKAL 60 

PFL_1720            MTQKFDVVVIGAGPGGYVAAIKAAQLGFTTACIEKYTDKEGKLALGGTCLNVGCIPSKAL 60 

PP_4187             MTQKFDVVVIGAGPGGYVAAIKAAQLGLKTACIEKYTDAEGKLALGGTCLNVGCIPSKAL 60 

PputDRAFT_3136      MTQKFDVVVIGAGPGGYVAAIKAAQLGLKTACIEKYTDAEGKLALGGTCLNVGCIPSKAL 60 

PSEEN3638           MTQKFDVVVIGAGPGGYVAAIKAAQLGFSTACIEKYTDAEGKLALGGTCLNVGCIPSKAL 60 

PSPPH_1982          MSQKFDVVVIGAGPGGYVAAIKAAQLGLKTACIEKYQDKEGKLALGGTCLNVGCIPSKAL 60 

PSPTO_2201          MSQKFDVVVIGAGPGGYVAAIKAAQLGLKTACIEKYQDKEGKLALGGTCLNVGCIPSKAL 60 

                    *:*************************:.******* * *** ***************** 

 

Pfl_1616            LDSSWKYKEAKESFNVHGISTGEVKMDVAAMVGRKAGIVKNLTGGVATLFKANGVTSIQG 120 

PFL_1720            LDSSWKFHEAQDGFAIHGINHAGVTMDVPAMVGRKANIVKGLTSGVATLFKANGVTSIQG 120 

PP_4187             LDSSWKYKEAKESFNVHGISTGEVKMDVAAMVGRKAGIVKNLTGGVATLFKANGVTSIQG 120 

PputDRAFT_3136      LDSSWKYKEAKESFNVHGISTGEVKMDVAAMVGRKAGIVKNLTGGVATLFKANGVTSIQG 120 

PSEEN3638           LDSSWKYKEAKESFNVHGISTGEVKMDVAAMVGRKAGIVKNLTGGVATLFKANGVTSIQG 120 

PSPPH_1982          LDSSWKFYEAKNGFSVHGISTSEVNIDVPAMIGRKSTIVKGLTGGVASLFKANGVTTLQG 120 

PSPTO_2201          LDSSWKFYEAKNGFAVHGISTSEVAIDVPAMIGRKSTIVKGLTGGVASLFKANGVTTLQG 120 

                    ******: **::.* :***. . * :**.**:***: ***.**.***:********::** 

 

Pfl_1616            HGKLLAGKKVEVTKPDGSVEVIEAENVILAPGSRPIDIPPAPVDQKVIVDSTGALEFQSV 180 

PFL_1720            HGKLLAGKKVEVTKPDGSVEVIEAENVILAPGSRPIDIPPAPVDQNVIVDSTGALEFQSV 180 

PP_4187             HGKLLAGKKVEVTKADGTTEVIEAENVILASGSRPIDIPPAPVDQNVIVDSTGALEFQAV 180 

PputDRAFT_3136      HGKLLAGKKVEVTKADGTTEIIETENVILASGSRPIDIPPAPVDQNVIVDSTGALEFQAV 180 

PSEEN3638           HGKLLAGKKVEVTKADGTTEIIEAENVILASGSRPIDIPPAPVDQNVIVDSTGALEFQSV 180 

PSPPH_1982          HGKLLAGKKVELTAADGTVEIIEADHVILASGSRPIDIPPAPVDQKVIVDSTGALEFQQV 180 

PSPTO_2201          HGKLLAGKKVELTAADGTVEIIEADHVILASGSRPIDIPPAPVDQKVIVDSTGALEFQQV 180 

                    ***********:* .**:.*:**:::****.**************:************ * 

 

Pfl_1616            PKRLGVIGAGVIGLELGSVWSRLGAEVTVLEALDTFLMAADTAVSKEALKTLTKQGLDIK 240 

PFL_1720            PKRLGVIGAGVIGLELGSVWSRLGAQVTVLEALDTFLMAADTAVSKEALKTLTKQGLDIK 240 

PP_4187             PKRLGVIGAGVIGLELGSVWARLGAEVTVLEALDTFLMAADTAVSKEAQKTLTKQGLDIK 240 

PputDRAFT_3136      PKRLGVIGAGVIGLELGSVWARLGAEVTVLEALDTFLMAADTAVSKEAQKTLTKQGLDIK 240 

PSEEN3638           PKRLGVIGAGVIGLELGSVWARLGAEVTVLEALDTFLMAADTAVSKEAQKTLTKQGLDIK 240 

PSPPH_1982          PQRLGVIGAGVIGLELGSVWARLGAQVTVLEALDKFIPAADEAVSKEALKTFTKQGLDIK 240 

PSPTO_2201          PQRLGVIGAGVIGLELGSVWARLGAQVTVLEALDKFIPAADEAVSKEALKTFTKQGLDIK 240 

                    *:******************:****:********.*: *** ****** **:******** 

 
Pfl_1616            LGARVTGSKVNGDEVVVNYTDANGEQTITFDKLIVAVGRRPVTTDLLAADSGVTLDERGF 300 

PFL_1720            LGARVTGSKVNGEEVVVTYTDANGEQTITFDKLIVAVGRRPVTTDLLAADCGVTLDERGF 300 

PP_4187             LGARVTGSKVNGNEVEVTYTNAEGEQKITFDKLIVAVGRRPVTTDLLASDSGVTIDERGY 300 

PputDRAFT_3136      LGARVTGSKVNGNEVEVTYTNAEGEQKITFDKLIVAVGRRPVTTDLLASDSGVTIDERGY 300 

PSEEN3638           LGARVTGSKVNGNEVEVTYTNAEGEQKITFDKLIVAVGRRPVTTDLLAADSGVTIDERGY 300 

PSPPH_1982          LGARVTGSKVEGEEVVVSYTDAAGEQSITFDRLIVAVGRRPVTTDLLASDSGVDLDERGF 300 

PSPTO_2201          LGARVTGSKVNGEEVVVSYTDAAGEQSITFDRLIVAVGRRPVTTDLLASDSGVDLDERGF 300 

                    **********:*:** *.**:* ***.****:****************:*.** :****: 
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Pfl_1616            VHVDDHCATTVPGVYAIGDVVRGMMLAHKASEEGIMVVERIKGHKAQMNYDLIPSVIYTH 360 

PFL_1720            VHVDDHCATTVPGVYAIGDVVRGMMLAHKASEEGIMVAERIKGHKAQMNYDLIPSVIYTH 360 

PP_4187             IFVDDYCATSVPGVYAIGDVVRGMMLAHKASEEGIMVVERIKGHKAQMNYDLIPSVIYTH 360 

PputDRAFT_3136      IFVDDYCATSVPGVYAIGDVVRGMMLAHKASEEGIMVVERIKGHKAQMNYDLIPSVIYTH 360 

PSEEN3638           IFVDDHCATSVPGVYAIGDVVRGMMLAHKASEEGIMVVERIKGHKAQMNYDLIPSVIYTH 360 

PSPPH_1982          IYVDDYCTTSVPGVYAIGDVVRGLMLAHKASEEGIMVVERIKGHKAQMNYNLIPSVIYTH 360 

PSPTO_2201          IYVDDYCTTSVPGVYAIGDVVRGLMLAHKASEEGIMVVERIKGHKAQMNYNLIPSVIYTH 360 

                    :.***:*:*:*************:*************.************:********* 

 

Pfl_1616            PEIAWVGKTEQALKAEGVEVNVGTFPFAASGRAMAANDTGGFVKVIADAKTDRVLGVHVI 420 

PFL_1720            PEIAWVGKTEQALKAEGVEVNVGTFPFAASGRAMAANDTGGFVKVIADAKTDRVLGVHVI 420 

PP_4187             PEIAWVGKTEQALKAEGVEVNVGTFPFAASGRAMAANDTGGFVKVIADAKTDRVLGVHVI 420 

PputDRAFT_3136      PEIAWVGKTEQALKAEGVEVNVGTFPFAASGRAMAANDTGGFVKVIADAKTDRVLGVHVI 420 

PSEEN3638           PEIAWVGKTEQALKAEGVEVNVGTFPFAASGRAMAANDTGGFVKVIADAKTDRVLGVHVI 420 

PSPPH_1982          PEIAWVGKTEQTLKAEGVEVNVGTFPFAASGRAMAANDTGGFVKIIADAKTDRVLGVHVI 420 

PSPTO_2201          PEIAWVGKTEQTLKAEGVEVNVGTFPFAASGRAMAANDTGGFVKIIADAKTDRVLGVHVI 420 

                    ***********:********************************:*************** 

 

Pfl_1616            GPSAAELVQQGAIGMEFGTSAEDLGMMVFSHPTLSEALHEAALAVNGGAIHIANRKKR 478 

PFL_1720            GPSAAELVQQGAIGMEFGTSAEDLGMMVFSHPTLSEALHEAALAVNGTAIHIANRKKR 478 

PP_4187             GPSAAELVQQGAIAMEFGTSAEDLGMMVFSHPTLSEALHEAALAVNGGAIHVANRKKR 478 

PputDRAFT_3136      GPSAAELVQQGAIAMEFGTSAEDLGMMVFSHPTLSEALHEAALAVNGGAIHVANRKKR 478 

PSEEN3638           GPSAAELVQQGAIAMEFGTSAEDLGMMVFSHPTLSEALHEAALAVNGGAIHVANRKKR 478 

PSPPH_1982          GPSAAELVQQGAIAMEFGSSAEDIGMMVFSHPTLSEALHEAALAVNGGAIHIQNRKKR 478 

PSPTO_2201          GPSAAELVQQGAIAMEFGSSAEDIGMMVFSHPTLSEALHEAALAVNGGAIHIQNRKKR 478 

                    *************.****:****:*********************** ***: ***** 

 

 

C 

Fig 4-17 Domain structure and alignment of dihydrolipoamide dehydrogenase in 
Pseudomonas species.  
(A) Domain architecture of dihydrolipoamide dehydrogenase of P. fluorescens PfO-1. 
Due to overlapping domains, there are 3 representations of the protein. Domains are 
predicted using Simple Modular Architecture Research Tool (http://smart.embl-
heidelberg.de). 
 
(B) Alignment of P. fluorescens PfO-1 dihydrolipoamide dehydrogenase (Pfl_1616), 
P. entomophila L48 PSEEN3638, P. fluorescens Pf-5 PFL_1720, P. putida KT2440 
PP_4187, P. putida F1 PputDRAFT_3136, P. syringae pv.phaseolicola 1448A 
PSPPH_1982, P. syringae pv. tomato str. DC3000 PSPTO_2201 was performed using 
ClustalW (http:// www.ebi.ac.uk/clustalw). 
 
(C) Phylogram tree of dihydrolipoamide dehydrogenase and its homologues was 
generated by ClustalW (http://www.ebi.ac.uk/clustalw). 
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A 

 
 B 
 

PFL_4521            MKKLVLLGALALSVLSLPTFADE-KPLKIGIEAAYPPFASKAPDGSIVGFDYDIGNALCE 59 

Pfl_4292            MKKLVLLGALALSVLSLPTFADE-KPLKIGIEAAYPPFASKAPDGSIVGFDYDIGNALCE 59 

PSEEN3887           -------------MFSLVSHADE-KPLKIGIEAAYPPFAFKQPDGSIAGFDYDIGNALCE 46 

Pfl_2064            MKKLVMFGALALSMLSLTAVAEDAKPIRIGIEAGYPPFSMKTPDGKLAGFDVDIGDALCE 60 

PFL_2252            MNKFALFGALALSLFSFTASADEAKPIRIGIEAGYPPFSMKTPDGKLTGFDVDLGNALCE 60 

PA0888              MKKLALLGALALSVLSLPTFAAD-KPVRIGIEAAYPPFSLKTPDGQLAGFDVDIGNALCE 59 

PaerP_01000159      MKKLALLGALALSVLSLPTFAAD-KPVRIGIEAAYPPFSLKTPDGQLAGFDVDIGNALCE 59 

                                 ::*: : * : **::*****.****: * ***.:.*** *:*:**** 

 

PFL_4521            EMKVKCVWVEQEFDGLIPALKVRKIDAILSSMSITDDRKKSVDFTNKYYNTPARLVMKAG 119 

Pfl_4292            EMKVKCQWVEQEFDGLIPALKVRKIDAILSSMSITDDRKKSVDFTNKYYNTPARLVMKEG 119 

PSEEN3887           EMKAKCTWVEQEFDGLIPALKVRKIDAILSSMSITDDRKKSVDFSKRYYLTPARLVMKEG 106 

Pfl_2064            QMKVKCTWVEQEFDGLIPALKVKKIDAILSSMTITDDRKKNVDFTIKYYHTPARFVMKAG 120 

PFL_2252            QMQAKCTWVEQEFDGLIPALKVKKIDAILSSMTITDDRKKNVDFTIKYYHTPARFVMKAG 120 

PA0888              EMKVQCKWVEQEFDGLIPALKVRKIDAILSSMTITDERKRSVDFTNKYYNTPARFVMKEG 119 

PaerP_01000159      EMKVQCKWVEQEFDGLIPALKVRKIDAILSSMTITDERKRSVDFTNKYYNTPARFVMKEG 119 

                    :*:.:* ***************:*********:***:**:.***: :** ****:*** * 

 

PFL_4521            TQISDGLAELKGKNIGVQRGSIHERFAREVLAPLGAQIKPYGSQNEIYLDVAAGRLDGTV 179 

Pfl_4292            TQVSEGLAELKGKNIGVQRGSIHERFAREVLAPLGAEIKPYGSQNEIYLDVAAGRLDGTV 179 

PSEEN3887           TTVSESLDELKGKKIGVQRGSIHDRFAKEVLAPKGATVVPYGTQNEIYLDVAAGRLDGTV 166 

Pfl_2064            SGVKDPLTELKGKKVGVLRASTHDRYATEVLVPAGIELVRYGSQQEANLDMVSGRIDAML 180 

PFL_2252            TSIKDPLTELKGKKVGVLRASTHDRFATEVLVPAGIDLVRYGSQQEANLDMVSGRVDALL 180 

PA0888              ASLNDPKADLKGKKAGVLRGSTADRYASAELTPAGVEVVRYNSQQEANMDLVAGRLDAVV 179 

PaerP_01000159      ASLNDPKADLKGRKAGVLRGSTADRYASGELTPAGVEVVRYNSQQEANMDLVAGRLDAVV 179 

                    : :.:   :***:: ** *.*  :*:*   *.* *  :  *.:*:*  :*:.:**:*. : 

 

PFL_4521            ADATLLNDGFLKTDAGKGFAFVGPAFTDVKYFGDGVGIAVRKGDKADLDKINAAIAAIRE 239 

Pfl_4292            ADATLLNDGFLKTDAGKGFAFVGPAFTDVKYFGDGVGIAVRKGD-ALKDKINTAIAAIRE 238 

PSEEN3887           ADATLLEDGFLKTDAGKGFAFVGPSFTDVKYFGDGVGIAVRKGDKENADRINAAIDAIRA 226 

Pfl_2064            ADSVNLSDGFLKTDAGKGFEFVGPTYEDAKYFGGGAGIAVRKGDTELAEKFNTAINEIRA 240 

PFL_2252            ADSVNLDDGFLKTDAGKGFAFVGPEYNDPKYFGGGAGIAVRKGDQELAGKFNKAITEIRA 240 

PA0888              ADSVNLEDGFLKTDAGKGYAFVGPQLTDAKYFGEGVGIAVRKGDSELAGKFNAAIDALRA 239 

PaerP_01000159      ADSVNLEDGFLKTDAGKGYAFVGPQLNDVKYFGEGVGIAVRKGDSELAGKFNAAIDALRA 239 

                    **:. *.***********: ****   * **** *.********     ::* **  :*  

 

PFL_4521            NGKYKQIQDKYFDFDIYGK--- 258 

Pfl_4292            NGKYKAIQDKYFDFDIYGK--- 257 

PSEEN3887           NGKYKQIEAKYFNFDIYGPDSK 248 

Pfl_2064            NGKYKQVQDKYFDFDVYGH--- 259 

PFL_2252            NGKYKQVQDKYFDFDVYGE--- 259 

PA0888              NGKYKQIQDKYFSFDVYGSN-- 259 

PaerP_01000159      NGKYKQIQDKYFSFDVYGAN-- 259 

                    ***** :: ***.**:**     
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C 

 
Fig 4-18 Domain structure and alignment of lysine-arginine-ornithine-binding 
periplasmic protein in Pseudomonas species.  
(A) Domain architecture of lysine-arginine-ornithine-binding periplasmic protein of 
P. fluorescens PfO-1 (Pfl_2604). Red bar represents signal peptide. Domains are 
predicted using Simple Modular Architecture Research Tool (http://smart.embl-
heidelberg.de). 
 
(B) Alignment of P. fluorescens PfO-1 lysine-arginine-ornithine-binding periplasmic 
protein (Pfl_2064), P. fluorescens Pf-5 PFL_2252, P aeruginosa PAO1 PA0888, P. 
aeruginosa PA7 PaerP_01000159, P. fluorescens Pf-5 PFL_4521, P. entomophila 
L48 PSEEN3638, P. fluorescens Pf-5 PFL_1720, P. fluorescens PfO-1 Pfl_4292, P. 
entomophila L48 PSEEN3887 was performed using ClustalW (http:// 
www.ebi.ac.uk/clustalw). 
 
(C) Phylogram tree of lysine-arginine-ornithine-binding periplasmic protein and its 
homologues was generated by ClustalW (http://www.ebi.ac.uk/clustalw). 
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A 

 
 
B 

PSPPH_1019      MSADLEHIRQIMREADCLYTEAEVDAAIARVGAQINAELAERNPVVFCVMNGGLIFSGKL 60 

Psyr_0970       MSADLEHIRQVMREADCLYTEAEVDAAIARVGAQINAELAERNPVVFCVMNGGLIFSGKL 60 

PSPTO_1131      MSADIEHIRQIMREADCLYTEAEVDAAIARVGAQINAELADRNPVVFCVMNGGLIFSGKL 60 

PFL_5138        MSADLEHIRQIMREADCLYTEAEVEAAIARVGAQITEELAERNPVVFCVMNGGLIFAGKL 60 

Pfl_4727        MSADLEHIRQIMREADCLYTEAEVEAAIARVGAQINEQLADSNPVVFCVMNGGLIFSGKL 60 

PP_0747         MSADLEHIRQVMHEADCLYTEAEVEAAIAKVGEQICKDLHDKNPVVFCVMNGGLIFSGKL 60 

PSEEN0889       MSADLEHIRQVMREADCLYNEAEVEAAIAEVGKQICQDLHDKNPVVFCVMNGGLIFSGKL 60 

                ****:*****:*:******.****:****.** **  :* : **************:*** 

 

PSPPH_1019      LTHLNFPLEASYLHATRYRNETTGGDLFWKAKPEVSFIDRDVLIIDDILDEGHTLGAIID 120 

Psyr_0970       LTHLNFPLEASYLHATRYRNETTGGDLFWKAKPEVSFMDRDVLIIDDILDEGHTLGAIID 120 

PSPTO_1131      LTHLNFPLEASYLHATRYRNETTGGDLFWKAKPEVSFIDRDVLIIDDILDEGHTLGAIID 120 

PFL_5138        LTHLRFPLEASYLHATRYRNETSGGELFWKSKPEVSFIDRDVLIIDDILDEGHTLGAIID 120 

Pfl_4727        LTHLQFPLEASYLHATRYRNETSGGDLFWKAKPEVSFIDRDVLIIDDILDEGHTLGAIID 120 

PP_0747         LTHLQFPLEASYLHATRYRNQTSGGELFWKAKPEVSFIDRDVLIVDDILDEGHTLSAIIE 120 

PSEEN0889       LTHLQFPLEASYLHATRYRNTTSGGELFWKAKPEVSFIDRDVLIVDDILDEGHTLSAIIE 120 

                ****.*************** *:**:****:******:******:**********.***: 

 

PSPPH_1019      FCKHAGARAVHTAVLIDKDHDRKARPDLKADYVGLPCIDRYIFGFGMDYKGYWRNAAGIY 180 

Psyr_0970       FCKHAGARAVHTAVLIDKDHDRKARPDLKADYVGLPCIDRYIFGFGMDYKGYWRNAAGIY 180 

PSPTO_1131      FCKHAGARAVHTAVLIDKDHDRKARPDLKADYVGLPCIDRYIFGFGMDYKGYWRNAAGIY 180 

PFL_5138        FCKHAGARAVHTAVLIDKDHDRKARPDLKADYMGLPCVDRYVFGYGMDYKGYWRNAAGIY 180 

Pfl_4727        FCRHAGARKVHTAVLIDKDHDRKARPDLKADFVGLPCIDRYIFGYGMDYKGYWRNANGIF 180 

PP_0747         FCKHAGARSVYTAVLIDKDHDRKASPDLKANYVGLPCVDRYIFGYGMDYKGYWRNANGIF 180 

PSEEN0889       FCKHAGARAVHTAVLIDKDHDRKASPDLKATYTGLPCVDRYIFGYGMDYKGYWRNANGIF 180 

                **:***** *:************* ***** : ****:***:**:*********** **: 

 

PSPPH_1019      AVKGM 185 

Psyr_0970       AVKGM 185 

PSPTO_1131      AVKGM 185 

PFL_5138        AVKGM 185 

Pfl_4727        AVKGM 185 

PP_0747         AVKGL 185 

PSEEN0889       AVKGL 185 

                ****: 

 

 

C 
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Fig 4-19 Domain structure and alignment of phosphoribosyltransferase in 
Pseudomonas species.  
(A) Domain architecture of phosphoribosyltransferase of P. fluorescens PfO-1 
(Pfl_4727). Domains are predicted using Simple Modular Architecture Research Tool 
(http://smart.embl-heidelberg.de). 
 
(B) Alignment of P. fluorescens PfO-1 phosphoribosyltransferase (Pfl_4727), P. 
syringae pv. tomato str. DC3000 PSPTO_1131, P. syringae pv. phaseolicola 1448A   
PSPPH_1019, P. syringae pv. syringae B728a Psyr_0970, P. putida KT2440 
PP_0747, P. fluorescens Pf-5 PFL_5138, P. entomophila L48 PSEEN0889 was 
performed using ClustalW (http:// www.ebi.ac.uk/clustalw). 
 
(C) Phylogram tree of phosphoribosyltransferase and its homologues was generated 
by ClustalW (http://www.ebi.ac.uk/clustalw). 
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5.       Discussion 

 

5. 1      Presence of c-di-GMP in P. putida 

 

Since GGDEF and EAL domains have been found in various branches of 

phylogenetic tree of bacteria, both have been assigned with DGC and PDE-A 

activities, respectively, and roles of many proteins with these domains are assigned to 

various pathways, the involvement of c-di-GMP in bacterial signal transduction is 

well-established now. However, direct experimental data of c-di-GMP detection have 

for a long time been restricted to a few bacterial species, most of which are 

pathogenic bacteria. G. xylinus, the first bacterium in which c-di-GMP was first 

discovered, is non-pathogenic, however, it can cause fruit decay. The pathogenic 

bacteria in which the presence of c-di-GMP has been experimentally confirmed 

include human pathogens S. typhimurium and V. cholerae, opportunistic human 

pathogen P. aeruginosa, and plant pathogen A. tumefaciens (Simm et al., 2004; 

Tischer and Camilli, 2004; Kulesekara et al., 2006; Amikam and Benziman, 1989). 

The restriction of data to pathogenic bacteria may reflect people’s concern about the 

mechanism of diseases caused by various pathogens.   

 

Earlier this year, c-di-GMP was detected in non-pathogenic mineral-reducing soil 

bacterium Shewanella oneidensis (Thormann et al., 2006). Here, we report that c-di-

GMP is also present in P. putida, a non-pathogenic soil bacterium, adding new 

information to support the notion that c-di-GMP is widespread in bacterial species. 

The intracellular c-di-GMP concentrations of P. putida are determined to be at  pmole 

per mg dry weight level, consistent with those in G. xylinus and S. oneidensis 
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(Weinhouse et al., 1997; Thormann et al., 2006). It is noteworthy that the cAMP 

concentration of Arthrobacter crystallopoietes also falls within this range (Hamilton 

and Kolenbrander, 1977), indicating this may be the normal physiological level of 

cyclic nucleotide messengers in bacteria. However, unlike the intracellular level of 

cAMP, which peaks at the onset of starvation or stationary phase in Haemophilus 

influenzae (Macfadyen et al., 1998), the intracellular c-di-GMP concentration of P. 

putida reaches the highest level during exponential growth phase and decreases when 

cells enter log-to-stationary transition phase.  This suggests that c-di-GMP is actively 

involved in biological processes during exponential phase, in contrast to cAMP which 

mainly exerts its function when cells undergo living stresses. It is interesting to note 

that one of the phenotypes affected by c-di-GMP signaling is the flagellar biogenesis 

that is also initiated during this transition phase (Amsler et al., 1993). We have 

previously shown that mutational loss P. putida of the GGDEF and EAL-domain 

containing MorA leads to constitutive flagellar formation during all growth stages 

(Choy et al., 2004) 

 

5.2       MorA affects c-di-GMP levels in P. putida 

 

To study whether MorA affects c-di-GMP levels in P. putida, we compared 

intracellular c-di-GMP levels in P. putida WT, morA KO and OE strains at early log 

phase, middle log phase and log-to-stationary transition phase. At all three growth 

phases, the level of c-di-GMP of KO was higher that of WT and in OE, the c-di-GMP 

level was slightly below that of WT. In addition, the c-di-GMP concentrations in OE 

always remained low throughout all the growth stages.  This observation implies that 

MorA has a negative influence on the intracellular concentration of c-di-GMP in P. 
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putida, via a direct or indirect way. It is possible that MorA functions as a c-di-GMP 

specific PDE, hence the loss of functional MorA leads to the increase of c-di-GMP in 

the cell while overexpression of MorA leads to a drop of c-di-GMP level. It is also 

possible that MorA regulates c-di-GMP level indirectly by binding to DGC or other 

proteins which finally results in the inhibition of certain DGC. When MorA is 

mutated, DGC is released from inhibition and therefore, the production of c-di-GMP 

is on the rise. On the contrary, when MorA is overexpressed, the inhibition of DGC is 

enhanced and consequently the level of c-di-GMP is reduced. These speculations will 

soon be tested with the availability of synthetic c-di-GMP. It is noteworthy that 

another cytosolic GGDEF protein MorC has been identified to affect the MorA 

pathway. It is currently not known whether MorA and MorC interact directly. 

 

5.3       MorA does not have observable in vitro DGC activity 

 

As mentioned above, comparison of c-di-GMP levels in P. putida implies that MorA 

might be a PDE-A. Despite this possibility, the presence of GGDEF domain in MorA 

suggests that the possibility of DGC activity of MorA cannot be ruled out. Therefore, 

we performed enzymatic assay to test MorA DGC activity in vitro. Both crude MorA 

and purified recombinant MorA were tested and no DGC activity was detected, which 

is contrary to the positive control, DGC extracted from G. xylinus. We then 

hypothesized that the phosphorylation status of the PAS-PAC sensory domains or the 

catalytic domains may affect MorA activity. Therefore, another set of enzymatic 

assays with the addition of acetyl phosphate was carried out. Acetyl phosphate is a 

small-molecule phosphate donor that specifically phosphorylates the acceptor aspartyl 

residues of response regulators which are phosphorylated in vivo by histine protein 
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kinases (Lukat et al, 1992). However, we still could not detect any DGC activity. 

Considering the sensitivity limit of HPLC, it was possible that c-di-GMP was 

synthesized in such low amount that it could not be detected by HPLC. Therefore, we 

took HPLC fraction of the reaction mixture at the retention time when c-di-GMP was 

supposed to be eluted out and sent it for MALDI-TOF mass spectrometric analysis. 

Absence of positive signals indicated that under the conditions tested, mo cyclase 

activity was detected for MorA. 

 

The fact that MorA does not have apparent in vitro DGC activity under the conditions 

tested can be explained by the hypothesis that MorA is a likely c-di-GMP specific 

PDE.  The comparison of intracellular c-di-GMP levels in P. putida WT, KO and OE 

strains also supported this hypothesis. If this hypothesis is correct, it is then 

interesting to know the role of GGDEF domain in MorA. Previous binding 

experiment showed that GTP could bind specifically to the GGDEF domain of MorA. 

Does this GTP-binding capacity contribute to the enzymatic activity of MorA? In C. 

crescentus, the GGDEF-EAL protein, CC3396, is a soluble PDE-A, the activity of 

which is confined to EAL domain. The associated GGDEF domain of CC3396 is 

inactive. Instead, it is able to bind GTP and activate the PDE-A activity of 

neighboring EAL domain (Christen et al., 2005). The in vitro PDE-A activity of 

CC3396 is increased about 40-fold with the addition of GTP and this activation only 

occurs with the presence of GGDEF domain. However, the GGDEF domain of 

CC3396 is not a conserved one. It has one of the highly conserved Gly residues of the 

active site (A-site) motif replaced by Glu (GEDEF). A defined mutation in the A-site 

motif of the GGDEF domain (GQNEF) abolished allosteric activation of PDE-A 

activity. Therefore, It is proposed that the missing of key catalytic residues may 
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contribute to the loss of DGC activity of the GGDEF domain and the mutation may be 

the strategy of proteins which harbour GGDEF domain as a sensory domain for GTP.  

But in the case of MorA, the A-site motif is conserved. Previously, site-directed 

mutagenesis was used to mutate GGDEF motif of MorA to Ala-Ala-Ala-Ala-Ala 

(Yang, 2004). P. putida WT strain containing this mutant construct shows a 

significant increase in motility over P. putida WT and OE strain, suggesting the 

important role of GGDEF domain in MorA function. It is our hypothesis that the 

observed dominant negative effect may due to the formation of heterodimers of 

MorA, which competitively interfere with the function of wild type MorA 

homodimers. 

 

Regarding EAL domain, sequence alignment of eleven enzymatically active EAL 

domains led to identification of several highly conserved key residues (Schmidt et al., 

2005). Among five tested GGDEF-EAL proteins which possess DGC activity, the 

EAL domain of four proteins lack at least one of these conserved motifs. Although the 

basic requirement for PDE-A activity is unknown, these motifs may, to some extent, 

help differentiate active EAL domains from inactive ones. We analyzed the amino 

acid sequence of MorA and found that the EAL domain of MorA contains all the 

conserved motifs identified by Schmidt’s group, which may indicate the possibility of 

MorA to be a PDE-A.  

 

If MorA is indeed a PDE-A, based on our experiment that overexpression of MorA 

lead to an increase in biofilm formation, it implies that PDE-A promotes biofilm 

formation in P. putida. This is contradictory to the observations in V. cholerae and S. 

typhimurium, where the overexpression of PDE-A has been linked to a reduction in 
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biofilm formation (Simm et al., 2004; Tischler and Camilli, 2004). Biofilm formation 

is a complicated process that needs the participation and corporation of various factors 

so the relationship between c-di-GMP and biofilm formation may not be that direct 

and simple. For example, P. aeruginosa expressing PA2870 and PA3343, two DGCs 

that produce high levels of c-di-GMP in enzymatic assay do not cause any alteration 

in the biofilm phenotype (Kulesekara et al., 2006). Another example is Arr, an inner-

membrane PDE-A in P. aeruginosa, the activity of which can be enhanced by 

tobramycin, yet leading to augmented rather than decreased biofilm formation 

(Hoffman et al., 2005). Hence, it is also possible that MorA may function as a PDE-A 

which enhances biofilm formation in Pseudomonas species.  

 

5.4       Putative GTP-binding proteins in P. putida 

 

Since the synthesis of c-di-GMP needs the substrate GTP, we were interested to gain 

some knowledge on the potential factors that can influence the GTP pool in P. putida 

and to study whether these factors have an effect on c-di-GMP metabolism. Therefore, 

GTP-agarose affinity chromatography was performed to identify candidates of GTP-

binding proteins. The SDS-PAGE analysis of eluted proteins showed four prominent 

bands, which were then excised from the gel and sent for protein sequencing analysis. 

These four proteins were identified to be polyribonucleotide nucleotidyltransferase, 

dihydrolipoamide dehydrogenase, lysine-arginine-ornithine-binding periplasmic 

protein and phosphoribosyltransferase, respectively.  

 

Amino acid sequence alignment of these four proteins revealed no sequence similarity 

between each other, indicating that they may each belong to a different GTP-binding 
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protein family. Furthermore, the comparison of protein sequence of these four 

proteins with the classic ATP/GTP-binding site motif A (P-loop) showed that these 

four proteins do not harbour P-loop. P-loop, i. e., (A/G)XXXXGK(S/T), is the first 

identified motif that can bind purine nucleotide triphosphate (Kjeldgaard et al., 1996). 

It typically forms a flexible loop between a β-strand and an α-helix and interacts with 

one of the phosphate groups of the nucleotide. Numerous proteins that bind to 

ATP/GTP contain P-loop. Nevertheless, not all the ATP/GTP binding proteins are 

picked up by this motif because their structure of nucleotide binding site may be 

different from that of P-loop, and this may be the possible reason that the four 

proteins we identified do not have P-loop. 

 

5.4.1    Polyribonucleotide nucleotidyltransferase 

 

Polyribonucleotide nucleotidyltransferase, which is also called polynucleotide 

phosphorylase (PNPase) belongs to an expanding family of exoribonucleases with 

homologues widespread in eubacteria, Drosophila melanogaster, plants, mice and 

humans (Ygberg et al., 2006). It contains 2 RNase PH domains (PNPase 1 and 

PNPase 2) which are closely related functionally and in sequence similarity to 

ribonuclease PH (RPH) protein, and one KH domain and one S1 domain, both of 

which are oligonucleotide-binding motifs (Leszczyniecka et al., 2004). PNPase 

degrades RNA phosphorolytically and processively in a 3' to 5' direction and plays a 

central role in bacterial RNA degradation. It also assists bacterial adaptation to growth 

at low temperature(Yamanaka an M, 2001) in E.coli, Bacillus subtilis, and Yersinia 

enterocolitica (Favaro and DehÒ, 2005 ) by specifically degrading mRNAs that code 

for cold shock proteins (CSPs) so as to allow bacteria to restart replication after 
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shifting to decreased temperature (Ygberg et al., 2006). In S. enterica, apart from 

being a regulator of the cold shock response, PNPase also functions in turning the 

expression of virulence genes and bacterial fitness during infection (Ygberg et al., 

2006). PNPase mutated strain expressed increased levels of mRNAs coded for by 

genes from Samonella pathogenecity islands (SPIs) and Samonella plasmid virulence 

(spv) genes clusters, which are essential for bacteria to remain virulent and viable in 

host cells. It is noteworthy that in Streptomyces antibioticus, a bifunctional enzyme, 

GPSI, was identified to possess both PNPase activity and guanosine pentaphosphate 

(pppGpp) synthetase activity (Jones and Bibb, 1996). Since pppGpp is known as the 

biosynthetic precursor of ppGpp, a nucleotide second messenger, GPSI seems to 

establish a connection between RNA degradation and signal transduction pathway in 

S. antibioticus. Similarly, it is possible that the PNPase we identified from P. putida 

may have some connection with the metabolism of nucleotide second messengers, 

such as ppGpp or c-di-GMP. 

 

5.4.2    Dihydrolipoamide dehydrogenase 

 

Dihydrolipoamide dehydrogenases (DLDH) are homodimeric flavoproteins that 

catalyse the NAD+- dependent reoxidation of dihydrolipoamide (DLA) according to a 

ping-pong mechanism (de Kok et al., 1998). It is the E3 component of several 

multienzyme complexes such as pyruvate dehydrogenase, 2-oxo glutarate 

dehydrogenase and branched chain keto acid dehydrogenase complexes which 

generally function in the conversion of 2-oxo acids to acyl-CoA derivatives (De Kok 

et al., 1998). Being a subunit of 2-oxo acid dehydrogenase, DLDH in prokaryotes is 

involved in the cytosolic main stream of energy metabolism. It also plays a role in the 
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glycine cleavage multienzyme complex and the acetoin dehydrogenase complex in B. 

subtilis, Clostridium magnum and Pelobacter carbinolicus (Smith et al., 2002). 

 

Although traditionally DLDH would be considered as a metabolic factor, its role in 

pathogenecity is being investigated. In Mycoplasma gallisepticum, a primary etiologic 

agent of the chronic respiratory disease complex in chickens and infectious sinusitis in 

turkeys, one gene encoding dihydrolipoamide dehydrogenase has been identified to be 

a virulence-associated determinant (Hudson et al., 2006). A transposon insertion in 

the coding sequence resulted in diminished biological function and reduced virulence 

of the mutant. It is proposed that mutation of DLDH lowers the activity of ATP 

binding cassette transporters upon which bacteria rely to acquire various precursors 

necessary for viability, and persistence and adaptation in host cells (Hudson et al., 

2006). In Streptococcus pneumoniae, DLDH-negative bacteria can grow normally in 

vitro but remain avirulent in sepsis and lung infection models in mice, suggesting the 

necessity of active DLDH for the survival of the bacteria in the host. In addition, 

DLDH-negative bacteria produced only 50% of normal capsular polysaccharide and 

according to the experiment, this reduction is probably not directly linked to the 

impairment of carbohydrate metabolism (Smith et al., 2002). Currently we have no 

knowledge on the downstream changes occurred in DLDH mutants that lead to the 

reduction of capsular polysaccharide. Although so far there is no report on the 

presence of c-di-GMP in M. gallisepticum and S. pneumoniae, it is interesting to 

know that c-di-GMP also regulates virulence and exopolysaccharide production in 

various bacteria. Therefore, we cannot rule out the probability that there is crosstalk 

between DLDH and c-di-GMP signaling pathway.  
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5.4.3    Lysine-arginine-ornithine-binding periplasmic protein 

 

Lysine-arginine-ornithine-binding periplasmic protein (LAO) belongs to the family of 

periplasmic substrate binding proteins (PBPs), which are involved in ABC (ATP 

binding cassette) transporter system to transport a variety of substrates such as amino 

acids, peptides, sugars, vitamins, inorganic ions, etc (Oh et al., 1993). ABC 

transporter system is also known as the periplasmic binding protein-dependent 

transport system in Gram-negative bacteria which is made up of three types of 

components, including one or two integral membrane proteins (permeases) each 

having six transmembrane segments, two peripheral membrane proteins that bind and 

hydrolyze ATP, and a high affinity PBP. PBP is thought to bind the substrate in the 

vicinity of the inner membrane, and to transfer it to a complex of inner membrane 

proteins for concentration into the cytoplasm.  

 

LAO has high affinity for L-lysine, L-arginine, and L-ornithine ( Nikaido and Ames, 

1993). L-histidine also binds to LAO, but less tightly than the other three amino acids. 

BLAST analysis of LAO with other Pseudomonas species showed that it shares high 

homology with arginine/ornithine binding protein AotJ in P. aeruginosa PAO1 and P. 

entomophila L48. LAO can also be found in E.coli and S. typhimurium. The three-

dimensional structure of LAO from S. typhimurium with and without a ligand was 

determined (Oh et al., 1993). It was proposed that the unliganded protein undergoes a 

dynamic change between an “open” and a “closed” conformation and the role of the 

ligand is to stabilize the closed conformation rather than to induce conformational 

change directly.  
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The reason that LAO bound to GTP in our experiment is unknown. However, it is 

noteworthy that in protein SLR2077 from Synechocystis sp. PCC.6803, PBP domain 

is located upstream of GGDEF and EAL domain (Fig 5-1). This suggests that PBP 

may be involved in c-di-GMP signaling pathway as a sensory domain. It is our 

hypothesis that upon receiving signals, PBP may induce conformational changes of 

the protein, affecting the activity of GGDEF or EAL domain. As for LAO homologs 

in P. flurescens Pf-5 and PfO-1, their neighboring genes are mainly ABC transporter 

genes and those involved in carbohydrate and nucleotide metabolism such as acetyl-

coenzyme A synthetase and ribonucleotide reductase (Table 5-1). Hence, it is also 

possible that PBP plays a role in GTP metabolism.  
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Fig 5-1 Domain structure of protein SLR2077 from Synechocystis sp. PCC.6803. 
Adapted from Jenal, 2004. 
GGDEF and EAL domains were previously named as DUF1 (domain with unknown 
function 1) and DUF2, respectively. 
 
 
 
 
 
 
 
Table 5-1 LAO homologs and their upstream and downstream genes in P. 
flurescens Pf-5 and PfO-1. 
Gene names in bold are LAO homologs. 
 

Locus tag Genes 
PFL_4518 conserved hypothetical protein
PFL_4519 arginine/ornithine transport system permease protein AotM
PFL_4520 arginine/ornithine ABC transporter, permease protein
PFL_4521 arginine/ornithine ABC transporter, periplasmic 

arginine/ornithine-binding protein
PFL_4522 acetyl-coenzyme A synthetase 
PFL_4523 hypothetical protein
PFL_4524 ribonucleoside-diphosphate reductase, beta subunit, putative

 
Pfl_4289 succinylglutamate desuccinylase/aspartoacylase
Pfl_4290 amino acid ABC transporter, permease protein, 3-TM region,

His/Glu/Gln/Arg/opine
Pfl_4291 amino acid ABC transporter, permease protein, 3-TM region,

His/Glu/Gln/Arg/opine
Pfl_4292 lysine-arginine-ornithine-binding periplasmic protein
Pfl_4293 acetate--CoA ligase
Pfl_4294 hypothetical protein
Pfl_4295 ribonucleotide reductase
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5.4.4    Phosphoribosyltransferase 

 

The family of phosphoribosyltransferase (PRT) includes a range of diverse 

phosphoribosyl transferase enzymes such as adenine PRT, ribose-phosphate 

pyrophosphokinase, xanthine-guanine PRT, etc. The PRT identified in our experiment 

is a hypoxanthine-guanine phosphoribosyltransferase (HPRT, often renamed as 

HGPRT). It catalyzes the synthesis of inosine-5'-monophosphate (IMP) and 

guanosine-5'-monophosphate (GMP) from the purine bases hypoxanthine and 

guanine, respectively. Certain HGPRTs can also convert xanthine to xanthine 

monophosphate. The enzyme primarily functions to salvage purines from degraded 

DNA to renewed purine synthesis by acting as a catalyst in the reaction between 

guanine and phosphoribosyl pyrophosphate (PRPP) to form GMP. In patients with 

Lesch-Nyhan syndrome, HGPRT activity is strikingly reduced, leading to 

hyperuricemia and hyperuricaciduria (Arnold et al., 1972). Since HGPRT is essential 

for purine nucleotide metabolism, it may affect c-di-GMP signaling pathway 

indirectly by regulating the GTP pool inside bacteria cells.  
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6.       Conclusion and Future Work 

 

 Using G. xylinus as a model, we have established a method for extracting and 

detecting c-di-GMP from bacteria. In this method, crude nucleotides are extracted 

with perchloric acid, analyzed through HPLC and further confirmed by MALDI-TOF 

mass spectrometry. We have successfully detected c-di-GMP in P. putida with this 

method and this is the first report that c-di-GMP is present in P. putida. Although the 

combination of characteristic HPLC peak and specific m/z value in the mass spectrum 

can ensure the detected molecule is c-di-GMP, our conclusion will be more 

affirmative if more characterization work is carried out. For example, extracted c-di-

GMP could be analyzed by MALDI-TOF mass spectrometry at different pH so that 

different m/z values specific to c-di-GMP will be obtained; or tandem mass 

spectrometry could be used to break down extracted c-di-GMP into fragment ions, the 

m/z value of which are the characteristics of c-di-GMP. 

 

Comparison of intracellular c-di-GMP levels of wild type P. putida at different 

growth phases revealed that the c-di-GMP level in P. putida is growth-dependant. It is 

low at early log phase, rises to the peak at middle log phase and drops dramatically at 

log-to-stationary transition phase. MorA has been shown to affect intracellular c-di-

GMP levels according to the observation that c-di-GMP level in KO strain is higher 

than that in WT and in OE strain, c-di-GMP content is lower than that in WT. 

However, we have no evidence for whether the influence of MorA to c-di-GMP is 

direct or not. 
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DGC activity assay suggested that MorA does not have apparent in vitro DGC 

activity under the conditions tested. Combined with the result of comparison of c-di-

GMP levels in P. putida WT, KO and OE strains, it seems that MorA may function as 

a PDE-A. Therefore, PDE activity assay would be important for elucidating the 

enzymatic activity of MorA. For preparation of PDE activity assay, sufficient high 

purity c-di-GMP should be provided as the substrate.  Since currently c-di-GMP is not 

commercially available, chemical synthesis and enzymatic conversion are the only 

two ways for c-di-GMP production. On one hand, we have collaborated with 

scientists from Department of Chemistry, National University of Singapore for c-di-

GMP synthesis; on the other hand, we have started the initial step of enzymatic 

synthesis of c-di-GMP, i. e., cloning the DGC of G. xylinus into expression vector to 

produce recombinant DGC.  

 

Since GTP is the substrate for c-di-GMP synthesis, with the interest to investigate 

factors affecting c-di-GMP metabolism, we carried out GTP-agarose affinity 

chromatography to identify potential GTP-binding proteins in P. putida. Four proteins 

have been identified. They are polyribonucleotide nucleotidyltransferase (PNPase), 

dihydrolipoamide dehydrogenase (DLDH), lysine-arginine-ornithine-binding 

periplasmic protein (LAO) and phosphoribosyltransferase (PRT). PNPase mainly 

functions in bacterial RNA degradation, but it can also regulate virulence and in some 

case, biosynthesis of nucleotide second messenger, ppGpp. DLDH is an important 

component of several metabolic multienzyme complexes such as pyruvate 

dehydrogenase and it also plays a role in pathogenecity in some bacterial species. 

LAO belongs to the family of periplasmic substrate binding proteins (PBPs), which 

are involved in ABC transporter system. PRT identified in this study is essential for 
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purine nucleotide metabolism. Although these four proteins were all eluted out from 

GTP-agarose column and are supposed to be GTP-binding proteins, they do not share 

any protein sequence similarity with each other, nor do they have the classic 

ATP/GTP binding motif, P-loop, indicating that they may have different types of GTP 

binding sites. Future work such as isothermal titration calorimetry could be carried 

out to confirm their GTP binding capacity. Furthermore, mutations of these four 

proteins could be generated to see whether they have any impact on c-di-GMP levels 

inside the cells. At the same time, c-di-GMP related changes in phenotypes such as 

motility, chemotaxis and biofilm formation could also be examined. 
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Mass spectrums of protein sequencing analysis of four putative GTP-
binding proteins. 
(A) Polyribonucleotide nucleotidyltransferase  
(B) Dihydrolipoamide dehydrogenase 
(C) Lysine-arginine-ornithine-binding periplasmic protein 
(D) Phosphoribosyltransferase. 
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