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Summary 

The NF-κB signaling pathway performs a pivotal role in the acute-phase of 

microbial infection, by activating immune-related gene expression. The NF-κB 

transcription factors are evolutionarily conserved from Drosophila to humans.  

Unexpectedly, the canonical NF-κB signaling pathway is not functional in the immune 

system of C. elegans.  Therefore, the ancient origin of NF-κB signaling pathway is still 

unknown.  This project focused on tracing the ancient origin of the NF-κB signaling 

pathway, characterization of its functions in innate immune response and regulation of its 

activity by thioredoxin.  To this end, the horseshoe crab was examined as this species 

boasts >500 million years of evolutionary success. 

This thesis reports the discovery and characterization of a primitive and functional 

NF-κB/IκB cascade in the immune defense of a “living fossil”, the horseshoe crab, 

Carcinoscorpius rotundicauda.  The ancient NF-κB/IκB homologues, CrNFκB, CrRelish 

and CrIκB, share numerous signature motifs with their vertebrate orthologues.  CrNFκB 

recognizes both horseshoe crab and mammalian κB response elements.  CrIκB interacts 

with CrNFκB and inhibits its nuclear translocation and DNA-binding activity.  We 

further show that Gram-negative bacteria infection causes rapid degradation of CrIκB 

and nuclear translocation of CrNFκB.  Infection also leads to an increase in the κB-

binding activity and up-regulation of immune-related gene expression, like inducible 

nitric oxide synthase and Factor C, an LPS-activated serine protease.  Altogether, our 

study shows that, although absent in C. elegans, the NF-κB/IκB signaling cascade 
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remained well-conserved from horseshoe crab to human playing an archaic but 

fundamental role in regulating the expression of critical immune defense molecules. 

  In connection with the NF-κB mediated immune signaling, we discovered a 

novel 16 kDa thioredoxin (TRX) from the horseshoe crab, designated Cr-TRX1.  TRX is 

a small ubiquitous protein-disulfide reductase, hitherto known to be conserved from 

prokaryotes to human.  This novel 16 kDa TRX is larger than the known classical 12 kDa 

counterpart and contains an atypical WCPPC catalytic motif.  Although Cr-TRX1 

contains three Cys, only the two in its active motif are exposed and redox sensitive.  Cr-

TRX1 possesses the classical thiodisulfide reductase activity, as indicated by the insulin 

reduction assay and thioredoxin reductase assay.  Additionally, Cr-TRX1 protected DNA 

from reactive oxygen species-mediated nicking.  Over-expression of Cr-TRX1 regulated 

the expression of NF-κB-dependent genes by enhancing NF-κB DNA-binding activity, 

suggesting possible roles of the Cr-TRX1 in modulating NF-κB signaling pathway.  In 

vivo, the antioxidant downregulated the expression of NF-κB controlled genes, such as 

IκB and inducible nitric oxide synthase, which further supports our suggestion that 

oxidative stress is a regulator of NF-κB signaling pathway, a phenomenon which has 

been entrenched for several hundred million years.   Furthermore, we demonstrated that 

the 16 kDa TRXs are evolutionarily conserved from C. elegans to human.  Interestingly, 

thioredoxin-like 6, a human homologue of Cr-TRX1, could enhance the NF-κB DNA-

binding activity as well, suggesting that the NF-κB regulatory ability of the 16 kDa TRXs 

is well conserved through evolution. (470 words) 
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CHAPTER 1:  INTRODUCTION 

 

1.1 The innate immune system 

1.1.1 The innate and adaptive immunity 

The immune response is the body's natural defense mechanism that protects us 

from foreign invaders, such as viruses and bacteria.  The vertebrate immune system uses 

two types of defense mechanisms to combat pathogens –the innate immunity and the 

adaptive immunity (Medzhitov and Janeway, 2000).  Adaptive immunity is mediated by 

T and B cells by generating antigen-specific antibody through DNA rearrangement, and 

responding specifically to pathogens.  The cornerstone of vertebrate adaptive immunity is 

the possibility to “remember” previous infections through generating long living memory 

cells and thereby mount a faster and stronger immune reaction the next time the 

individual encounters the same pathogen.  However, the adaptive immunity is far too 

slow to take care of invading microorganisms by its own.  The sequence of events from 

the adaptation to the antigens, the maturation of B lymphocytes and thence the production 

of such a repertoire of antibodies takes several days to be established after an infection 

(Janeway and Medzhitov, 2002).  On the other hand, innate immunity is the immediate 

front line defense that also shapes the ensuing adaptive immunity.  Without the presence 

of the innate immune system, the adaptive immunity would not even have a chance to 

initiate its defense, before the host organism is dead. 

The innate immune system is phylogenetically the oldest immune system and is 

present in all higher eukaryotic organisms.  Although by the late nineteenth and early 
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twentieth century, important advances had been made in the study of innate immunity in 

invertebrates; such as the finding that insects have macrophage-like cells and produce a 

variety of antimicrobial substances (Kurz and Ewbank, 2003),  it was only comparatively 

recent that the attention of the scientific community turned towards innate immunity.  

This was partially, a result of the realization that even in the vertebrates, the innate 

immune mechanisms are extremely important –they can often successfully block 

infections at an early stage, and if not, they can influence the subsequent adaptive 

immune response (Medzhitov and Janeway, 1998).  In contrast to the adaptive immune 

system, the innate immune system is functional at birth and includes the first line of 

defense against foreign agents.  Innate immunity is mediated by a repertoire of 

recognition molecules and responds non-specifically to a broad-spectrum of invaders 

(Janeway and Medzhitov, 2002).  Upon the recognition of invading pathogens by the 

receptors, the innate immune system rapidly mounts various responses including 

phagocytosis, synthesis of antimicrobial peptides, production of reactive oxygen species, 

and activation of the alternative complement pathway to contain the proliferation of 

infective pathogens until the adaptive immune response is ready to execute effective 

defense actions (Akira and Takeda, 2004). 

 

1.1.2 Recognition of pathogens by pattern recognition receptors 

The first step in innate immune responses is the recognition of microbial 

components by the germ-line encoded receptors, called pattern recognition receptors, 

PRRs (Medzhitov and Janeway, 2000).  In contrast to the amazing diversity of the T- and 

B-cell receptors of adaptive immunity, which are generated by somatic recombination 
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and hypermutation events, the repertoire of PRRs is much more restricted due to the 

limited number of genes encoded in the genome of every organism.  To overcome this 

limitation, rather than detect every possible antigen, the PRRs have evolved to recognize 

invariant molecular motifs common for the large groups of microorganisms.  These 

pathogen-specific molecular motifs are called pathogen-associated molecular patterns 

(PAMPs).  Furthermore, most PRRs have evolved into multiple isoforms, which interact 

in variable combinations during an infection to form formidable pathogen recognition 

assemblies (Ng et al, 2004; Zhu et al, 2005).  This feature not only allows the detection 

of a wide variety of microorganisms by a restricted repertoire of PRRs but also ensures 

that the innate immune system mounts the most appropriate responses at the critical time 

of infection.  Examples of PAMPs are lipopolysaccharide (LPS) of the Gram-negative 

bacteria, lipoteichoic acid of Gram-positive bacteria; zymosan, mannan and β-glucan of 

fungi (Aderem and Ulevitch, 2000).  On recognition, those receptors activate signaling 

cascades that regulate the transcription of target genes encoding regulator and effector 

molecules.  One outcome of the recognition, which is probably common to all animals, is 

the induction of genes encoding antimicrobial peptides that act by damaging the 

microbial cell membranes (Lehrer and Ganz, 1999; Li et al, 2004). 

 

1.1.3 The innate immunity of invertebrates 

As the first line of defense against infectious microorganisms, innate immunity is 

an evolutionarily ancient mechanism in many aspects.  Due to the lack of adaptive 

immunity, the invertebrates have developed a potent innate immune system.  Indeed, the 

findings over the last decade have demonstrated that the study of innate immunity in 
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invertebrates can aid our understanding of how mammals defend themselves against 

infection (Kurz and Ewbank, 2003).  The invertebrate innate immunity is mainly 

composed of three parts: (i) cellular response, namely phagocytosis of invading 

microorganisms by blood cells, (ii) proteolytic cascades leading to localized blood 

clotting, melanin formation, and opsonization, and (iii) transient expression of potent 

antimicrobial peptides (Hoffmann et al, 1999).  Other important components include 

nitric oxide synthase, clotting reaction and serine protease inhibitors (Little et al, 2005).   

Among all the mechanisms, the strong and rapid induction of antimicrobial 

peptides in Drosophila is most well-studied and serves as a model system for the analysis 

of innate immunity (Imler and Bulet, 2005).  At least seven distinct antimicrobial 

peptides have been isolated in Drosophila.  Among them, drosomycin is potently 

antifungal, whereas the others (cecropins, diptericin, drosocin, attacin, defensin, and 

metchniknowin) act primarily on bacteria (Lemaitre et al, 1996).  The production of 

antimicrobial peptides is slightly delayed and usually occurs within a few hours after 

entry of the pathogen.  Obviously, the recognition of the foreign particles has to take 

place in order to transfer the message to the cells that synthesize the appropriate immune 

effectors. Recognition of the invading pathogen in Drosophila is believed to occur 

through the Toll receptor on the membrane and transmitted to the downstream signaling 

pathways.  Several signaling pathways have been reported to control the innate immune 

response in Drosophila such as JAK/STAT, NF-κB and JNK signaling pathways 

(Agaisse and Perrimon, 2004; Boutros et al, 2002).  Within the scope of this thesis, the 

following sections will focus on the significance of NF-κB-mediated signaling pathway 

to the host defense against infections. 
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1.2 The NF-κB signaling pathway 

1.2.1 Introduction to the NF-κB signaling pathway 

The NF-κB signaling pathway is one of the most important pathways in innate 

immunity because it controls the expression of numerous immune-related genes including 

antimicrobial peptides, cytokines and enzymes for the production of reactive oxygen and 

nitrogen species (ROS, RNS) (Dixit and Mak, 2002; Ghosh et al, 1998).  NF-κB 

transcription factors are the central components of the NF-κB signaling pathway as all of 

the signals will be conveyed to various isoforms of the NF-κB transcription factors.  

Different stimuli cause the formation of different hetero- or homo- dimers of NF-κB 

proteins which control the specificity and duration of the immune response (Hayden and 

Ghosh, 2004).  Up to now, five NF-κB transcription factors have been found in mammals: 

RelA (p65), RelB, c-Rel, NF-κB1 (p105/p50) and NF-κB2 (p100/p52) (Figure 1.1).  A 

common feature of the NF-κB proteins is that all of them contain a Rel-homology 

domain (RHD) which is located towards the N-terminus of the protein.  The RHD is 

involved in the dimerization, DNA-binding and interaction with the inhibitory IκB 

(inhibitor of NF-κB) proteins.  The difference is that RelA, RelB and c-Rel have an 

activation domain in their C-terminal which is absent in NF-κB1 and NF-κB2 (Figure 

1.1).  On the contrary, NF-κB1 and NF-κB2 contain a C-terminal inhibitory IκB-like 

domain which are later processed to produce the DNA-binding subunits, p50 and p52, 

respectively (Gilmore, 1999).  



 6

The NF-κB members dimerize to form homo- or hetero-dimers, which are 

associated with specific responses to different stimuli and they induce differential effects 

on transcription.  The balance between different NF-κB homo- and hetero-dimers will 

determine which dimers are bound to specific κB sites and thereby regulate the level of 

transcriptional activity (May and Ghosh, 1997).  In addition, these proteins are expressed 

in a cell- and tissue-specific manner providing an additional level of regulation.  For 

example, NF-κB1 (p50) and p65 are ubiquitously expressed, and the p65/p50 

heterodimers constitute the most common inducible NF-κB binding activity.  In contrast, 

NF-κB2, RelB, and c-Rel are expressed specifically in lymphoid cells and tissues 

(Caamano and Hunter, 2002).   

In unstimulated cells, NF-κB dimers are retained in the cytoplasm in an inactive 

form, because of their association with members of another family of proteins called IκB.  

The IκB family of proteins includes IκBα, IκBβ, IκBγ, IκBε, Bcl-3, and the carboxyl-

terminal regions of NF-κB1 (p105) and NF-κB2 (p100) (Figure 1.1).  The IκB proteins 

are characterized by the presence of five to seven ankyrin repeats that assemble into 

cylinders that bind the dimerization domain of NF-κB dimers (Hatada et al, 1992).  The 

IκB proteins bind with different affinities and specificities to NF-κB dimers.  Activation 

of the NF-κB proteins requires phosphorylation and subsequent degradation of the IκB 

inhibitors, thus allowing the translocation of NF-κB into the nucleus for the 

transcriptional activation of genes harbouring κB response elements.  Therefore, not only 

are there different NF-κB dimers in a specific cell type, but the large number of 
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combinations between IκB and NF-κB dimers illustrates the sophistication of the system 

(Caamano and Hunter, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The family of mammalian NF-κB and IκB proteins.  (A) Schematic representation 
of the seven mammalian NF-κB proteins — RelA/p65, c-Rel, RelB, p105, p50, p100 and p52. 
The N-terminal portion of the RHD is responsible for DNA-binding. The C-terminal portion of 
the RHD mediates dimerization with other NF-κB family members and binds to the IκB proteins. 
The p105 and p100 proteins also contain ankyrin repeats (circles), as well as glycine-rich regions 
(GRRs). The GRRs are important for processing of p100 to p52. Phosphorylation of p65 at S276, 
S311, S529 and/or S536 is required for optimal NF-κB transcriptional activity. Acetylation of p65 
at K122, K123, K218, K221 and K310 regulates distinct functions of NF-κB, including DNA 
binding, IκBα association and p65-mediated transactivation. (B) The family of IκB proteins. The 
IκB family protein includes IκBα, IκBβ, IκBγ, IκBε and BCL3.  A hallmark of these IκB proteins 
is an ankyrin-repeat domain, which mediates the assembly with NF-κB proteins. When bound by 
IκBα, the nuclear localization signal (NLS) of p65 is masked, and p65 cannot localize to the 
nucleus or bind to DNA.  Phosphorylation of two serine residues (SS) at the amino-terminal 
region of IκBα triggers polyubiquitylation and proteasome-mediated degradation of IκBα.  
Adapted from Chen and Greene (2004). 
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In mammals, two major signaling pathways (the classical and alternative 

pathways) lead to the translocation and activation of NF-κB dimers (Bonizzi and Karin, 

2004).  In the classical pathway, NF-κB family proteins are sequestered in the cytoplasm 

by their natural inhibitor, IκB proteins.  Bacterial factors such as lipopolysaccharides 

(LPS) and peptidoglycans can be recognized by the Toll-like receptor (TLR) on the cell 

membrane.  TLRs are evolutionarily conserved PRRs that recognize conserved PAMPs 

present on the surface of various microbes.  Up to now, 11 mammalian TLRs have been 

described and different TLRs can recognize different PAMPs including LPS, 

peptidoglycan, DNA, RNA and flagellin.  After recognition, the TLR will convey signals 

stimulated by these factors, through the adapter proteins such as MyD88 and TRAF6 to 

the IκB kinase (IKK) complex (Hayden and Ghosh, 2004).   

The IKK complex comprises IKKα and IKKβ catalytic subunits and IKKγ 

regulatory subunits.  In the classical NF-κB pathway, the IKKβ will phosphorylate the 

IκBs (Ghosh et al, 1998).  The phosphorylated IκB proteins are then degraded by the 

proteasome via the ubiquitin pathway (Figure 1.2).  The degradation of IκB unmasks the 

nuclear localization signal (NLS) of the NF-κB protein, leading to its nuclear 

translocation.  In the nucleus, NF-κB transcription factor binds to the promoter of various 

genes with the consensus κB sequence, 5’–GGGRNNYYCC–3’, and upregulate the 

expression of these target genes (Bonizzi and Karin, 2004).  The activation and nuclear 

translocation of classical NF-κB dimers (mostly p50-p65) activate the expression of 

genes encoding chemokines, cytokines and adhesion molecules.  These molecules are 

important components of the innate immune response to invading pathogens and are 

required for the ability of inflammatory cells to migrate into areas where NF-κB is being 
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activated (Bonizzi and Karin, 2004).  The activated NF-κB pathway can then be 

downregulated through multiple mechanisms, such as the synthesis of IκBα proteins. 

Recently, a new pathway for NF-κB activation that is strictly dependent on IKKα 

but not IKKβ and IKKγ was described (Figure 1.2) (Senftleben et al, 2001).  The 

alternative pathway is activated by LTβ (lymphotoxin), BAFF (B-cell activating factor) 

and CD40L (CD40 ligand) and leads to the phosphorylation and processing of p100, 

generating the p52/RelB heterodimers.  It has been shown that the NF-κB inducing 

kinase (NIK) is responsible for directly phosphorylating and activating IKKα; however 

events that occur upstream of NIK are still unclear.   

Because LTβ, BAFF and CD40L also activate the classical pathway, it would 

appear that intracellular signaling domains of these receptors possess additional sequence 

motifs that allow their coupling to NIK and activation of the alternative pathway (Hayden 

and Ghosh, 2004).  Many findings strongly support that the alternative pathway plays a 

central role in the expression of genes involved in the development and maintenance of 

secondary lymphoid organs (Bonizzi and Karin, 2004).  Based on evolutionary 

considerations, the original function of the NF-κB signaling pathway was the activation 

of innate immune responses.  Indeed, the function of IKK and NF-κB in the fruit fly is in 

the activation of innate immune responses.  Thus, it has been proposed that the function 

of the alternative NF-κB pathway in adaptive immunity and lymphoid organ 

development is probably a more recent adaptation (Bonizzi and Karin, 2004).  

 



 10

 

 

 
 
 
Figure 1.2: Classical and alternative NF-κB signaling pathway. (A) The classical NF−κB 
pathway is activated by a variety of inflammatory signals, resulting in coordinate expression of 
multiple inflammatory and innate immune genes.  The proinflammatory cytokines IL-1β and 
TNF-α activate NF-κB, and their expression is induced in response to NF-κB activation, thus 
forming an amplifying feed forward loop. (B) The alternative pathway for NF-κB results in 
nuclear translocation of p52–RelB dimmers, which is strictly dependent on IKKα homodimers 
and is activated by LTβR, BAFF and CD40L by NIK. Many data strongly suggest that the 
alternative pathway plays a central role in the expression of genes involved in development and 
maintenance of secondary lymphoid organs. Abbreviations: BAFF, B-cell-activating factor 
belonging to the TNF family; BLC, B-lymphocyte chemoattractant; CD40L, CD40 ligand; COX-
2, cyclooxygenase 2; ELC, Epstein–Barr virus-induced molecule 1 ligand CC chemokine; GM-
CSF, granulocyte–macrophage- colony-stimulating factor; ICAM-1, intercellular adhesion 
molecule 1; IKK, IκB kinase; IL-1β, interleukin-1β; iNOS, inducible nitric oxide synthase; LT, 
lymphotoxin; MCP-1, monocyte chemotactic protein-1; MIP-1α, macrophage inflammatory 
protein-1α; NIK, NF−κB-inducing kinase; PLA2, phospholipase 2; SDF-1, stromal cell-derived 
factor-1α; SLC, secondary lymphoid tissue chemokine; TLRs, Toll-like receptors; VCAM-1, 
vascular cell adhesion molecule-1. Adapted from Bonizzi and Karin (2004). 

 

 

A B



 11

1.2.2 NF-κB signaling pathway in Drosophila 

The NF-κB signaling pathway is conserved in many different species, 

underscoring its pivotal role in immune response.  Studies on Drosophila NF-κB 

signaling pathway have had a major impact on this field, leading to the key discoveries 

on the fundamental concepts on how organisms effectively fight pathogens (Hoffmann, 

2003).  In Drosophila, three NF-κB homologues have been described -Dorsal, Dif, and 

Relish (Figure 1.3).  Of these three NF-κB proteins, Dif is the predominant transactivator 

in the antifungal and anti-Gram-positive bacterial defense in adults.  Dorsal can substitute 

for Dif in the larvae (Baeuerle and Baltimore, 1996; Rutschmann et al, 2000).  Both 

Dorsal and Dif can be activated by a transmembrane protein called Toll, which is a 

homologue of human TLR.  Two main groups of microorganisms (Gram-positive 

bacteria and fungi) can induce the Toll pathway.  Among Gram-positive bacteria, 

Micrococcus luteus is a very strong inducer of this pathway.  In contrast to what has been 

proposed for the TLRs in mammals, Drosophila Toll is not a bona fide pattern 

recognition receptor for microbial substances, but binds instead to the cleaved form of its 

endogenous ligand, Spätzle (Schneider et al, 1994).  The recognition of Gram-positive 

bacteria requires PGRP-SA, which initiates an extracellular signaling cascade (Royet et 

al, 2005).  Recently, Wang et al (2006a) found that gram-negative binding protein 1 

(GNBP1) is essential for for sensing of pepitoglycan (PG) by PGRP-SA and the 

interaction between these proteins and PG is essential for downstream signaling.  

Downstream of the extracellular signaling events is the cleavage of Spätzle, which then 

binds to and activates the Toll receptor (Belvin and Anderson, 1996). 
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Most of the intracellular signaling components of the Toll pathway are related to 

factors of the human IL-1 and Toll-like receptor pathways (Hoffmann and Reichhart, 

2002).  Upon activation, Toll binds to the intracellular adapter protein, MyD88, which is 

a homologue of the adapter protein MyD88 in mammals.  Then the signal is transmitted 

to Pelle (a homologue of mammalian IRAK) which leads to the phosphorylation of 

Cactus (Figure 1.3) (Hoffmann et al, 1999).  Cactus is a homologue of the mammalian 

IκB protein, which keeps transcription factors of Dorsal and Dif at the resting stage, 

preventing them from entering the nucleus (Geisler et al, 1992).  The phosphorylation of 

Cactus is believed to be mediated by an unknown serine protease, which leads to its 

degradation.  Like IκB, the ubiquitin/proteasome pathway is required for signal-

dependent Cactus degradation.  Mutants in slimb, the Drosophila β-TrCP homolog, 

exhibit defects in dorsoventral patterning (Spencer et al, 1999).  Like the mammalian NF-

κB proteins, after the inhibitor Cactus is degraded, Dif and Dorsal are released and 

translocated into the nucleus (Figure 1.3).  Thus, it appears that the mechanisms involved 

in the activation of the Drosophila Dorsal and Dif proteins during antifungal immunity 

are highly similar to those required for the activation of NF-κB in mammals.   

The most specific target gene of the Toll pathway is Drosomycin, which have 

antifungal activity (Silverman and Maniatis, 2001).  The Toll/Dif pathway also partially 

activates the expression of Cecropins and Attacins and seems to be indispensable for 

some Gram-positive bacterial infections.  However many insect antibacterial genes, 

including cecropin, defensin and diptericin are not regulated by Dorsal or Dif.  It suggests 

that an additional NF-κB transcription factor is involved in responding to microbial 

infection in Drosophila. Indeed, the third NF-κB protein known as Relish was described 
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in 1996, which is the homolog of the mammalian p105 and p100 proteins (Dushay et al, 

1996).  

 

Figure 1.3:  The Drosophila NF-κB signaling pathway. (A) Toll/anti-fungal signaling pathway. 
The pattern recognition receptors that recognize fungal pathogens are believed to activate a serine 
protease cascade, culminating in the cleavage of the Toll ligand Spätzle. Ligand binding to Toll 
leads to the recruitment of two proteins, the adaptor Tube and the kinase Pelle. Recruitment of 
Pelle is thought to cause its activation and disassociation from Toll. Activated Pelle may then 
activate, directly or indirectly, a Cactus kinase that is responsible for signaling the proteasome-
mediated degradation of Cactus. Currently, the biochemical steps between Pelle and Cactus 
degradation remain undetermined, and the Cactus kinase has not yet been identified.  (B) The 
antibacterial signaling pathway. In this model, the signaling pathway is activated by LPS through 
unidentified receptor(s) and leads to Relish cleavage. Downstream of the receptors, this signaling 
pathway bifurcates. One part leads to activation of the Drosophila IKK complex, which then 
phosphorylates Relish. The other part functions through the caspase Dredd and leads to the 
cleavage of phosphorylated Relish. At present it is not known whether Dredd acts directly or 
indirectly to cleave Relish. The Imd protein may function in one or both of these pathways. N: 
Amino-terminal domain; C: carboxy-terminal domain. Adapted from Silverman and Maniatis 
(2001). 
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Compared to Dorsal and Dif, Relish contains both the transcription factor and the 

inhibitor in one protein (see Figure 1.1A).  Like mammalian p105 and p100, the Relish 

contains the N-terminal Rel-homology domain and the C-terminal IκB-like domain 

(Dushay et al, 1996).  This Relish pathway shares similarity with the human TNF 

pathway, however there is no TNF receptor homolog found in Drosophila.  Subsequently, 

it was shown that the putative transmembrane protein PGRP-LC is the receptor of the 

Relish pathway (Choe et al, 2002).  Intracellular activation of the Relish pathway 

commences with recruitment of Imd, a death domain protein sharing similarities with the 

mammalian TNF-α receptor interacting protein, RIP, although the mechanism of how 

PGRP-LC signals to Imd is still unknown.   

In unstimulated cells the Relish C-terminal IκB module sequesters its own N-terminal 

NF-κB module in the cytoplasm.  Upon activation of the antibacterial signaling pathway, 

Relish is proteolytically cleaved and the N-terminal NF-κB module translocates into the 

nucleus (Figure 1.3B), while the stable C-terminus remains in the cytoplasm.  The 

activation of Relish requires the Drosophila IKKγ homolog, Kenny, for which Relish is 

the substrate (Silverman et al, 2000).  Genetic studies with mutant flies for the Relish 

gene revealed that the Relish pathway has influence on all antimicrobial peptides.  The 

Diptericin gene stands solely under the regulation of Relish, while all the other genes are 

also partially influenced by Dif  (Hedengren et al, 1999).  It suggests that different 

members of the NF-κB family are activated to regulate distinct sets of antimicrobial genes 

in response to different pathogens. 
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1.2.3 Evolution and conservation of NF-κB signaling pathway 

An intriguing parallel to the human NF-κB signaling pathway also exists in other 

insects and vertebrates such as mosquito, beetle and zebrafish.  The second NF-κB 

homologue in invertebrates was cloned from Anopheles gambiae, a species of mosquito 

(Barillas-Mury et al, 1996).  Gambif, which is the mosquito orthologue of Dorsal, has 

been characterized and shown to translocate to the nucleus following bacterial infection.  

In 2002, a Relish-like NF-κB protein was described in Aedes aegypti, another species of 

mosquito (Shin et al, 2002).  The A. aegypti Relish gene has three alternatively spliced 

transcripts encoding three different proteins: full length Relish, IκB-type, which lacks the 

Rel homology domain (RHD) and the Rel-type in which the carboxy-terminal ankyrin 

repeats are missing.  The involvement of A. aegypti Relish in the regulation of immune 

response to bacterial challenge has been shown using transgenic mosquitoes (Shin et al, 

2003).  Although no orthologue of Dif has been found in the mosquito genome, the 

identification of the mosquito orthologue of MyD88, Tube and Pelle indicates that the 

Toll pathway in the mosquito is at least partially conserved (Christophides et al, 2002).  

The absence of a Dif orthologue in the mosquito genome suggests that Dorsal may play a 

functional role in the mosquito Toll-mediated innate immune responses.  Indeed, Shin et 

al. (2005) found that AaREL1, the mosquito homologue of Drosophila Dorsal, is a key 

regulator of the Toll antifungal immune pathway in A. aegypti female mosquitoes. 

The evolutionary conservation of NF-κB transcription factors was further 

demonstrated by the cloning and characterization of NF-κB proteins in zebrafish, beetles 

and mollusk in 2004 (Correa et al, 2004; Montagnani et al, 2004; Sagisaka et al, 2004).  

The evolutionary conservation of the NF-κB transcription factors, from Drosophila to 
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humans, probably suggests that the NF-κB signaling pathways of Drosophila and humans 

have evolved from a common ancestral family of building blocks (Hoffmann and 

Reichhart, 2002).  

 

1.2.4 TLR/NF-κB signaling pathway in C. elegans 

Unexpectedly, the NF-κB signaling pathway seems not to be conserved in the C. 

elegans.  Although sequence comparisons show the worm possesses homologues of 

certain components of the NF-κB pathway (Figure 1.4), the genetic studies showed that 

these functional homologues (Toll, Traf, Cactus) in C. elegans  are not involved in 

resistance to  pathogen infection (Pujol et al, 2001).   Most strikingly, there is no obvious 

NF-κB homologue in the genome of the C. elegans (Figure 1.4) (Pujol et al, 2001).  

These observations suggest that the classical NF-κB signaling pathway is not functional 

in the immune system of C. elegans (Kim and Ausubel, 2005).  Those findings indicate 

that the NF-κB signaling pathway should have originated in a species between C. elegans 

and Drosophila in the evolutionary chain.  However, the origin of the NF-κB signaling 

pathway remains unknown.  Furthermore, whether the similarities between Drosophila 

and human NF-κB signaling pathway have resulted from convergent evolution or 

reflected common ancestral pathways is still a conundrum.  As Hoffmann and Reichhart 

(2002) have suggested, more information on the NF-κB-signaling pathway in species 

more ancient than the Drosophila will shed light on this mystery.  
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Figure 1.4: The NF-κB signaling pathways in human, Drosophila and C. elegans.  (A) A 
simplified Toll signaling pathway in Drosophila (a) compared to the mammalian TLR4 pathway 
(b). Homologues of some, but not all, of these proteins can be found in C. elegans (c). (B) A 
simplified Imd signaling pathway in Drosophila (a) compared to the mammalian tumor necrosis 
factor (TNF) pathway (b). Activation of the Drosophila Toll and Imd pathways leads to the 
nuclear import of Relish-type transcription factors. Crosses indicate the degradation of 
Cactus/IκB. CD, cluster of differentiation; Dif, Dorsal-related immunity factor; DREDD, death-
related cell death abnormality-3 (ced-3)/Nedd2-like; FADD, Fas-associated death domain protein; 
Ird, immune response deficient; Imd, immune deficiency; IRAK, interleukin 1 receptor associated 
kinase; IRD, immune response deficient; MEKK, mitogen-activated protein kinase kinase; MOM, 
more of MS; NF, nuclear factor; PIK, Pelle/IRAK homologue; RIP, receptor interacting protein; 
TAK, TGFβ activated kinase; TOL, Toll homologue; TRAF, TNF receptor associated factor; 
TRF, TRAF homologue.  Adapted from Kurz and Ewbank (2003). 
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1.2.5 Some clues on the possible existence of NF-κB signaling pathway   

in the horseshoe crab 

The horseshoe crab, commonly referred to as Limulus is one of the most ancient 

arthropods, which has survived unchanged for almost ~550 million years (Størmer, 1952). 

It has evolved a formidable host defense system (Iwanaga, 2002).  Therefore, it will be 

interesting to examine if horseshoe crab harbors an NF-κB signaling pathway, as it will 

be helpful in the understanding of the origin and evolution of this crucial innate immune 

signaling pathway.  Recently, Inamori et al (2004) reported the presence of TLR in the 

horseshoe crab.  However the existence of TLR does not necessarily suggest the presence 

of NF-κB proteins as was observed in the C. elegans (Kim and Ausubel, 2005).  Thus, 

the question of whether the horseshoe crab possesses functional NF-κB homologue 

remains uncertain.  Recently, in our laboratory, it has been found that the Factor C (the 

LPS-activated serine protease that triggers the coagulation cascade in immune defense) 

promoter contains several functional κB motifs, suggesting the possible existence of NF-

κB transcription factor in this ancient animal (Wang et al, 2003).  Besides this clue, there 

is no direct evidence to demonstrate the presence of NF-κB transcription factor in the 

horseshoe crab.  Thus, the issue of whether the ancient origin of the NF-κB signaling 

cascade can be traced back to this “living fossil” remains a mystery.  Therefore, we 

decided to investigate if the NF-κB signaling pathway also existed in the horseshoe crab 

and the function of the ancient NF-κB signaling pathway in innate immunity in this 

archaic arthropod species.  The cloning of NF-κB transcription factors from horseshoe 

crab will provide critical insights into the evolution of the NF-κB transcription factor.  
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This will clarify the viewpoint that the NF-κB signaling cascade originated from a 

common ancestral family of building blocks and was already present in the Urbilateria 

(Hoffmann and Reichhart, 2002). 

 

1.3 Thioredoxins and their roles in regulating immune 
response 

 
1.3.1 Reactive oxygen species (ROS) and antioxidant system 

It is well known that ROS plays important roles in immune defense by directly 

killing the pathogen, or as a signaling molecule (Flohe et al, 1997; Nakano et al, 2006; 

Segal, 2005; Swain et al, 2002).  Although the ROS response is designed to restrict any 

damage to the smallest possible region where the pathogen is located, some of the ROS 

inevitably leak into the surrounding areas where they have the capacity to inflict tissue 

damage at sites of inflammation (Swain et al, 2002).  Thus, it is essential that the host 

defense responses of these cells are finely tuned to result in the appropriate level of 

oxidative response to any given situation.  To protect themselves against ROS toxicity, 

the hosts have developed different antioxidant systems.  Amongst these are low 

molecular weight antioxidant molecules, such as ascorbic acid, uric acid and glutathione 

(GSH) as well as antioxidant enzymes such as superoxide dismutase (SOD), catalase, 

glutathione peroxidase (GPX), glutathione reductase (GR) and the thioredoxin (TRX) 

system (Nakano et al, 2006).  Figure 1.5 illustrates the mechanisms for the generation of 

ROS in the mitochondria and their elimination by cellular antioxidants.  Within the scope 

of this thesis, the following sections will focus on the significance of thioredoxin in 
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regulating the redox status to ensure accurate self-nonself recognition, and antimicrobial 

combat without inflicting damage to the host. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5: Generation of ROS in the mitochondria and their elimination by cellular 
antioxidants. (A) The mitochondrial respiratory chain consists of four multimeric complexes 
(complexes I–IV), coenzyme Q (CoQ), and cytochorome c (Cyt C). Electrons (e−) are transferred 
from the reducing equivalent (NADH-FADH2) to molecular oxygen through the mitochondrial 
respiratory chain, finally generating water at complex IV. During the electron transfer, reactive 
oxygen species (ROS) are generated at complexes I and III. The mitochondrial permeability 
transition pore (mPTP) is regulated by cyclophilin D. Opening of this pore results in massive loss 
of ions and metabolites from the matrix.  (B) O−

2 is converted into H2O2 by superoxide 
dismutases (SODs). H2O2 is then eliminated by catalase, glutathione peroxidases (GPXs), and 
peroxiredoxins (PRXs). During elimination of H2O2, reduced glutathione (GSH) is converted to 
disulfide form (GSSG) by GPXs, and then GSSG is recycled to GSH by glutathione reductase 
(GR). However, PRXs also catalyze H2O2 into H2O by using reduced thioredoxin (TRX). 
Oxidized TRX is then recycled back to reduced TRX by thioredoxin reductase (TR).  NADPH is 
essential for both recycling reactions.  Adapted from Nakano et al (2006). 
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1.3.2 Thioredoxin superfamily 

Thioredoxin (TRX), which functions as a general protein-disulfide reductase, is 

commonly known to be a small ubiquitous protein of 12 kDa.  It is evolutionarily 

conserved from prokaryotes to eukaryotes, plants, and animals (Holmgren, 1985).  The 

redox activity of TRX has been reported to reside in a conserved active site, Cys-Gly-

Pro-Cys (CGPC), in which the two Cys residues undergo reversible oxidation, converting 

its dithiol group to a disulfide bond (Powis and Montfort, 2001).  The three-dimensional 

structure of TRX is conserved throughout evolution and consists of four or five central β-

sheets externally surrounded by three or four α-helices (Figure 1.6).  The active site is 

located in a protrusion of the protein between the β2-strand and the α2-helix.  Both the 

conserved active site sequence and the three-dimensional structure of TRX are the 

hallmarks of this superfamily (Martin, 1995).   

TRX is maintained in its active reduced form by the thioredoxin reductase (TR), a 

selenocysteine-containing protein that uses the reducing power of NADPH (Powis and 

Montfort, 2001).  TRXs have been implicated in a number of mammalian cell functions: 

(a) outside the cell in cell growth stimulation and chemotaxis, (b) in the cytoplasm as an 

antioxidant and a cofactor, and (c) in the nucleus in regulation of transcription factor 

activity.  TRX is also upregulated in response to a wide variety of oxidative stresses, 

including viral infections and ultraviolet irradiation (Nakamura et al, 1997).   

Furthermore, abnormal expression of TRX has been correlated with a number of 

pathophysiological conditions such as cancer, Alzheimer’s and Parkinson’s diseases, 



 22

suggesting that the activation-regulation of TRX plays an important role in human 

diseases (Hirota et al, 2002). 

Thioredoxin functions in a variety of cellular processes that can be generalized 

into two major roles.  Firstly, the TRX functions as an electron carrier to catalyze the 

biosysthesis of antioxidant enzymes such as ribonucleotide reductases, methonine 

sulfoxide reductase and the peroxiredoxins.  Secondly, they act as antioxidants to protect 

cytosolic proteins from inactivation via oxidant-mediated disulfides (Arner and 

Holmgren, 2000).   

 

 
 
Figure 1.6: The three-dimensional structure of TRX.  Schematic drawing of the T. brucei 
TRX with central pleated five β sheets surrounded by four α helices.  The redox active disulfide 
(Cys30 & Cys33) is located in a small cleft between the main body of the molecule and a 
protrusion in the protein at the N-terminus of the α2A helix.  Adapted from Friemann et al (2003). 
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So far, several kinds of TRX with different catalytic sites have been characterized 

in various organisms (see Figure 3.44).  The first characterized human TRX (TRX1) is a 

12 kDa protein with a catalytic sequence of CGPC.  Although the 12 kDa bacterial TRX 

only contains the two cysteine residues at its catalytic site, the human 12 kDa TRX 

contains three other cysteine residues.  The C-terminal Cys73
  is involved in dimerization, 

and may convey unique biological properties to mammalian TRX (Holmgren, 1985).  A 

second slightly larger TRX (TRX2) is a 166-amino acid protein with a molecular weight 

of 18 kDa, containing a conserved TRX catalytic site. It has been identified in the 

mitochondria of pig’s heart (Spyrou et al, 1997).  The 60-amino acid N-terminal 

extension of TRX-2 exhibits characteristics consistent with a mitochondrial translocation 

signal, and mitochondrial localization of TRX-2 was confirmed by Western blotting 

(Miranda-Vizuete et al, 2000).  A 32 kDa thioredoxin-like cytosolic protein was first 

cloned from a human testis cDNA library (Lee et al, 1998).  The 289 amino acid protein 

has an N-terminal TRX domain of 105 amino acids, a conserved TRX active site (CGPC), 

and a high degree of homology to human TRX.  It is ubiquitously expressed in human 

testis.  In 1997, a type of TRX called nucleoredoxin (NRX) with a WCPPC catalytic site 

was cloned from mice. Interestingly, this 435-amino acid protein is localized to the 

nucleus (Kurooka et al, 1997).  Recently, a family of 16 kDa TRX has been identified 

from the Nematodes and protozoa of the family Trypanosomatidae with an active site of 

WCPPC (Kunchithapautham et al, 2003).  Despite notable differences in the molecular 

mass and amino acid sequence of the catalytic site, those forms of TRXs appear to be 

functionally similar to the classical 12 kDa TRXs.  Therefore, it appears that there is 
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considerable flexibility in the two residues between the conserved Cys residues in the 

active site, and that the different catalytic sequences might confer diverse enzymatic 

activity and substrate specificity (Kunchithapautham et al, 2003).  This observation 

supports the versatility of the TRX molecule and reflects its prowess in anti-oxidative 

protection of the host. 

 

1.3.3 The influence of TRX in NF-κB signaling pathway  

In resting cells, TRX does not have a specific localization signal; and is hence 

expressed in the cytoplasm.  However, under pathophysiological stress, TRX shows 

various intracellular localizations.  It was observed that in HeLa cells, TRX translocates 

from the cytoplasm into the nucleus after exposure to phorbol 12-myristate 13-acetate, 

PMA (Hirota et al, 1999).   In human retinal pigment epithelial cells, TRX was detected 

in the mitochondria after H2O2 treatment.  From the varied subcellular localizations of 

TRXs, it may be suggested that TRXs play essential roles in many cellular processes 

(Hirota et al, 2002).  Indeed, several functions have been assigned to TRX, mostly related 

to its redox activity, including the regulation of transcription factor DNA-binding activity, 

antioxidant defense, modulation of apoptosis, and the immune response (Hirota et al, 

2002; Powis and Montfort, 2001).  Furthermore, TRX has been shown to selectively 

activate the DNA-binding activity of a number of transcription factors, including NF-κB, 

AP-1, p53, estrogen receptor and glucocorticoid receptor (Hirota et al, 2002).   This 

thesis will focus on the roles of TRX in the NF-κB signaling pathway. 
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The binding of NF-κB to DNA requires the NF-κB to be fully reduced especially 

the Cys62 of the NF-κB p50 subunit.  If the Cys62 of one subunit is linked in a disulfide 

bridge with the Cys62 of the other subunit, the DNA can no longer gain access to the 

binding surface of the p50 homodimer (Powis and Montfort, 2001).  In the nucleus, the 

human 12 kDa TRX1 enhances the DNA-binding of NF-κB by directly reducing the 

cysteine groups in the DNA-binding motif of NF-κB (Figure 1.7) (Flohe et al, 1997).  It 

has been shown that TRX1 is 500 times more effective in enhancing NF-κB DNA-

binding ability than 2-mercaptoethanol or DTT, conventionally used in EMSA 

(Electrophoretic mobility shift assay) techniques to demonstrate DNA-binding (Hayashi 

et al, 1993).  However, other studies have found that transient transfection of TRX1 also 

inhibits NF-κB activation upon PMA stimulation (Schenk et al, 1994).   From the study 

of  Hirota et al. (1999), it has been suggested that TRX plays dual and opposing roles in 

the regulation of NF-κB in the nucleus and cytoplasm.  In the cytoplasm, TRX interferes 

with the signals to IκB kinases, and blocks the degradation of IκB, thus maintaining the 

inactivity of NF-κB as a complex; but in the nucleus, it was observed that TRX enhances 

NF-κB transcriptional activities by augmenting its DNA-binding ability.  The authors 

proposed that this two-step TRX-dependent opposing regulation of the NF-κB complex 

might be a novel activation mechanism of redox-sensitive transcription factors.  However, 

the dual roles of TRX in the regulation of NF-κB underlying the accompanying redox 

processes have to be viewed as events separate in time, or space, or both (Flohe et al, 

1997). 
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Figure 1.7: Activation of NF-κB signaling pathway involves TRX. Oxidative stress causes 
activation signals to phosphorylate IκB, which results in the dissociation of IκB from NF-κB and 
ubiquitination of IκB. Activated NF-κB translocates into the nucleus, and TRX enhances NF-κB 
DNA binding, resulting in the transcription of NF-κB dependent genes.  Adapted with 
modification from Alberts et al (2002). 

 

 

1.3.4 The thioredoxin family in arthropods 

It has been shown that the defense mechanisms against oxidative damage in 

insects have diverged from both higher and lower organisms.  In insects, which lack a 

genuine glutathione reductase, TRXs fuel the glutathione system with reducing 

equivalents (Kanzok et al, 2001).   The crucial role of the thioredoxin system in vivo is 

supported by the fact that Drosophila TRX reductase (TRXR) null mutations are lethal in 
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the larval stage and that reduced TRXR activity severely affects the life span of the 

insects.  Thus, characterizing TRXs from these organisms contributes to our 

understanding of redox control in glutathione reductase-free systems and provides 

information on novel targets for insect control (Wahl et al, 2005).  So far, two TRX 

proteins from Drosophila melanogaster and one TRX from Anopheles gambiae have 

been biochemically characterized (Bauer et al, 2002).  However, no report is available on 

the TRX system in other arthropod species besides insects.  Furthermore, in invertebrates, 

the functions of TRX in regulating transcription factors are still unknown.  

Previously, we utilized subtractive cDNA hybridization to identify genes that are 

important for immune defense in horseshoe crab (C. rotundicauda) (Ding et al, 2005).  

The subtracted cDNAs were subsequently cloned into plasmids and screened for 

differential expression.  Using this approach, we identified one cDNA clone that was 

differentially expressed in the hepatopancreas (equivalent to liver in mammals) upon P. 

aeruginosa challenge.  Sequence analysis revealed that this gene encodes a protein 

possessing the characteristic organization of TRX proteins, henceforth referred to as C. 

rotundicauda TRX (Cr-TRX1).  In order to understand the functions of TRX in the 

arthropod anti-oxidant system and NF-κB signaling pathway, we decided to examine the 

biochemical characteristics of the Cr-TRX1 and investigate its roles in regulating the NF-

κB signaling pathway. 
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1.4 The horseshoe crab as model for innate immunity study 

1.4.1 Horseshoe crab is a “living fossil” 

The horseshoe crab belongs to the order Xiphosura that has more than 500 million 

years of evolutionary success. Because its basic body design remains virtually unchanged 

for millions of years, the horseshoe crab is often called the “living fossil” (Størmer, 1952). 

Today, there are four species of horseshoe crabs in different habitats around the world: 

Limulus polyphemus in the East coast of USA; Tachypleus tridentatus in China and Japan 

and Tachypleus gigas and Carcinoscorpius rotundicauda in South Asia.  The species of 

interest in this project is Carcinoscropius rotundicauda, which thrive in 30 % seawater 

condition, in brackish mangrove swamps that teem with very high counts of pathogenic 

microbes. 

 

1.4.2 Advantages of using horseshoe crab for innate immunity 

research 

Several obvious reasons have made invertebrates good models for the study of 

innate immunity.  First, the invertebrates lack adaptive immunity and rely solely on the 

innate immune system for protection against pathogen infection.  Therefore, the influence 

from the adaptive immune system to the innate immune responses is totally absent.  

Secondly, due to the evolutionary conservation of innate immune-related molecules, 

knowledge of the innate immunity in the invertebrates is very useful for the 

understanding of molecular mechanisms underlying the innate immune responses in the 

vertebrates (Little et al, 2005).  Particularly, those molecules which have counterpart 
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homologs in humans will be an important translational significance to understanding the 

immune system in humans. 

Over the last two decades, a wide variety of invertebrates have been used as 

experimental models for the studies of the innate immunity, such as the C. elegans, 

freshwater crayfish, ascidians, Pacific oysters, horseshoe crab and insects including 

Drosophila melanogaster (fruit fly), Bombyx mori (silkworm), Manduca sexta (tobacco 

hornworm), Anopheles gambiae (mosquito) (Iwanaga and Lee, 2005).  Amongst these 

species, the Drosophila and C. elegans are the animal models of choice due to the 

availability of genome sequences that allows the high throughput genomic and proteomic 

analysis and ease of genetic manipulation (Royet, 2004).  Indeed, studies in these 

organisms have greatly contributed to the understanding of innate immunity, especially 

the discovery of Toll/NF-κB signaling pathway in Drosophila.  However, there are some 

drawbacks with the model organism, Drosophila.  These include such impracticalities 

such as the low volume of hemolymph obtainable from each individual and the fragile 

nature of the experimental subject.  In contrast, the horseshoe crab is a good model for 

innate immune study since it has much larger volume of blood and bigger tissues 

compared with most of the other invertebrate models, allowing convenient physiological 

and molecular manipulations.  In addition, this organism harbors a very sophisticated 

innate immune system that has enabled it to survive for more that 500 million years.  

Furthermore, it has been shown that the horseshoe crab possesses some critical 

components in innate immune response, for example, the complements which are 

evolutionarily conserved in the human but absent in Drosophila (Zhu et al, 2005). 
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1.4.3 Horseshoe crab possesses a powerful innate immune system 

The burrowing habits of the horseshoe crabs cause them to encounter large 

numbers of challenging microorganisms.  The horseshoe crab has developed a powerful 

innate immune system to combat the pathogenic microorganisms, especially Gram-

negative bacteria.  Indeed, it has been demonstrated that the horseshoe crab, C. 

rotundicauda, survived an infection of 2 × 107 CFU of P. aeruginosa / kg of body weight 

(Ng et al, 2004), a dose that was shown to be lethal to mice (Stieritz and Holder, 1975).  

The immune response was so fast and efficient that the majority of the bacterial inoculum 

was cleared from the plasma after three hours of infection and the rest was completely 

eradicated within 72 hours (Ng et al, 2004).  

The horseshoe crab relies completely on innate immunity, employing a unique 

array of efficient host defense system.  The hemolymph of the horseshoe crab contains 

soluble defense molecules and large members of granular hemocytes (amoebocytes), 

which undergo degranulation upon contact with Gram-negative bacteria. Ninety nine % 

of the circulating hemocytes are granular being filled with two types of granules (Figure 

1.8): large (L)- and small (S)- granules (Iwanaga et al, 1998).  In Tachypleus tridentatus 

(the Japanese species),  the L-granule selectively stores more than 20 defense molecules 

with molecular masses mainly between 8 and 123 kDa, such as clotting factors (Factor C, 

B and G), a clottable protein coagulogen, proteinase inhibitors, lectins and antimicrobial 

peptides (Iwanaga, 2002).  In contrast, the S-granule contain at least 6 proteins with 

molecular masses of less than 30 kDa, and large amounts of hairpin-like tachyplesin 

peptides, tachystatins, tachycitins and big defensins (Table 1.1), all of which show 
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antimicrobial activities against Gram-negative and Gram-positive bacteria, and fungi 

(Iwanaga, 2002).  The hemocytes are extremely sensitive to LPS and respond to its 

presence by degranulation, so releasing large numbers of defense molecules that work in 

concert to defend the host from the invading microbes. 

The presence of such a broad spectrum of immune responsive molecules suggests 

that the molecular mechanisms of innate immune responses in the horseshoe crab are 

very complex.  However, how the sophisticated immune system is regulated is largely 

unknown and the cellular signaling pathways that are critical for controlling innate 

immunity in the horseshoe crab remain to be uncovered and exploited.  Since the 

horseshoe crab contains many innate immune molecules which are well conserved in 

humans, an understanding on the molecular mechanism of actions of these functional 

homologues would be very beneficial towards the understanding of the functions of their 

counterparts in the humans for meaningful translational research on human immune 

response.   
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Figure 1.8: Defense systems in horseshoe crab hemocytes. The hemocytes detect LPS on 
Gram-negative bacteria and initiates exocytosis of the large and small granules. The clotting 
factors thus released are activated by LPS or (1, 3)-β-D-glucan on the pathogens, which result in 
hemolymph coagulation. Thus, the pathogens are cell-agglutinated by various lectins and 
subsequently killed by antibacterial substances. The large granules also contain protease 
inhibitors, such as serpins, α2-macroglobulin, and cystatin, and an azurocidin-like pseudoserine 
protease with antibacterial activity, named factor D. The figure was adapted from Iwanaga and 
Kawabata (1998). 
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    Table 1.1: Defense molecules found in the horseshoe crab 

LICI, Limulus intracellular coagulation inhibitor; LTI, Limulus trypsin inhibitor; LEBP-PI, 
Limulus endotoxin-binding protein-protease inhibitor; FN, fungus;  LAF, Limulus 18-kDa 
agglutination-aggregation factor; KDO, 2-keto-3-deoxyoctonic acid; PC, phosphorylcholine; PE, 
phosphorylethanolamine; SA, sialic acid; TTA, Tachypleus tridentatus agglutinin; LCRP, 
Limulus C-reactive protein; HLA, hemolytic activity; LTA, lipoteichoic acid; GBP, galactose-
binding protein; PAP, protein A binding protein; PO, phenoloxidase; ND, not determined. 
Adapted from Iwanaga and Lee (2005). 
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1.4.4 Homology between the two serine protease cascades in horseshoe 

crab and Drosophila 

Serine protease cascades are indispensable in various fundamental biological 

processes in both the invertebrates and vertebrates. They play major roles in signal 

transduction in development, immunity, and hemostasis.  

In Drosophila, a well-established serine protease cascade is thought to be 

upstream of the Toll/NF-κB signaling pathway.  This serine protease cascade includes 

four different members of the serine protease family (Figure 1.9), Nudel, Gastrulation 

defective (Gd), Snake and Easter (Smith and DeLotto, 1992).  The proteolytically 

processed product of this cascade---Spätzle, in its active form, is thought to be recognized 

by the Toll receptor (Figure 1.9).  Toll receptor triggers signal transduction through Tube 

and Pelle, and ultimately leads to the nuclear translocation of the Dorsal transcription 

factor and promotes ventral and lateral development of the embryo (Belvin and Anderson, 

1996).  

In the horseshoe crab, two serine protease pathways that involve either an LPS-

mediated or a (1-3)-β-D-glucan-mediated coagulation reaction have been well-

established.  Three serine protease zymogens: Factor C, Factor B and proclotting enzyme 

are involved in the coagulation cascade triggered by LPS (Ding et al, 1993).  In this 

cascade, Factor C responds to LPS, and is autocatalytically activated to its active form; 

this in turn transforms Factor B to its active form (Figure 1.9).  The activated Factor B 

converts the proclotting enzyme to clotting enzyme, which converts coagulogen to an 

insoluble coagulin gel (Ding et al, 2004).  
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Figure 1.9: Serine protease cascades in the Drosophila and horseshoe crab (Limulus).  On 
the left are the serine protease cascades in dorsoventral determination, immune response against 
Gram-positive bacteria and fungal infection in Drosophila. Dotted arrows with "?" indicate 
unidentified components in the cascades. On the right are the serine protease cascades in limulus 
blood coagulation and innate immunity, which are activated by Gram-negative bacteria and fungi, 
respectively. Factor G is the upstream serine protease in the alternate blood coagulation pathway 
that is triggered by β-1, 3-glucan. Discontinuous arrows annotate the putative signaling pathway.  
Homologues in all the cascades are boxed. Gd, gastrulation defective. Adapted from Wang et al. 
(2003). 

 

A striking similarity between the horseshoe crab blood clotting serine protease 

cascade and the Drosophila dorsoventral-determination serine protease cascade has long 

been noticed (Gay and Keith, 1992).  The horseshoe crab clotting enzyme and the 



 36

Drosophila serine protease, Snake and Easter, show significant sequence homology. 

Therefore, they have been considered as members of a distinct subfamily of serine 

proteases (Ding et al, 2004; Smith and DeLotto, 1992).  Horseshoe crab Factor B also 

exhibits a similar primary structure and the disulfide linkage to the clotting enzyme and 

Easter.   Furthermore, persephone, a serine protease involved in signal transduction of 

anti-fungal immune responses, is deduced to contain structural domains homologous to 

those in Easter, Snake in Drosophila and proclotting enzymes in horseshoe crab (Ding et 

al, 2005).  Spätzle, the ligand for Toll, also shares homology with the horseshoe crab 

coagulogen (Osaki and Kawabata, 2004).  The proposed similarity amongst these serine 

proteases in each cascade (Factor B, Proclotting enzyme and Coagulogen versus Snake, 

Easter and Spätzle) strongly suggests a common ancestry of the two serine protease 

pathways in the Drosophila and horseshoe crab (Figure 1.9). 

Interestingly, a Toll-like receptor has recently been reported in the Japanese 

horseshoe crabs (Inamori et al, 2004) and a C. rotundicauda TLR cDNA clone has also 

been isolated from a hepatopancreas cDNA library in our laboratory (Loh et al).  

Although the ligand of the horseshoe crab TLRs remains to be determined, the structural 

homology between coagulogen and Spätzle has raised speculations that the processed 

coagulogen might be the candidate ligand for horseshoe crab TLR (Figure 1.9) (Osaki 

and Kawabata, 2004; Wang et al, 2003).  Therefore, it is reasonable to postulate that the 

horseshoe crab blood coagulation cascade probably transduces an extracellular signal into 

the hemocytes during the innate immune response initiated by LPS.  The bacterial 

infection signaled by the serine protease cascades ultimately results in the activation of 

the NF-κB transcription factors as illustrated in Figure 1.9 (Ding et al, 2004; Wang et al, 
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2003).  Similar to its counterparts in Drosophila, the putative horseshoe crab NF-κB 

transcription factors also transactivate other antimicrobial effector genes to defend against 

microbial infection.  

 
 
1.5 Objectives and experimental approaches 

1.5.1 Objectives of this project 

The main objective of this research was twofold: (1) to trace the ancient origin of 

the NF-κB signaling pathway in the horseshoe crab and investigate the function of the 

ancient NF-κB/IκB signaling cascade in innate immunity; (2) to define the biochemical 

characteristics of the novel 16 kDa TRX and examine its roles in regulating the NF-κB 

signaling pathway. 

 

1.5.2 Experimental strategies 

First, degenerate PCR, using primers that were designed based on the sequence 

analysis of RHDs and ankyrin repeats was used to isolate the horseshoe crab (C. 

rotundicauda) NF-κB and IκB homologues.  Then, the following main experiments were 

carried out to study the functions of NF-κB signaling pathway in the immune defense of 

horseshoe crab.  (1) Electrophoretic mobility shift assay (EMSA) was used to examine 

the DNA-binding activity of recombinant horseshoe crab NF-κB.  (2) The interaction 

between the horseshoe crab NF-κB and IκB proteins was examined by in vitro pull-down 

and immunoprecipitation assays.  (3) Transient co-transfection studies in Drosophila S2 

cells with the κB-reporter were utilized to investigate if the horseshoe crab NF-κB can 
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regulate gene transcription.  Then the inhibitory effects of horseshoe crab IκB on NF-κB 

transactivation activity were determined by co-transfection. (4) The subcellular 

localization of horseshoe crab NF-κB and IκB in transfected cells and horseshoe crab 

hemocytes was investigated by method of immunocytochemistry.  (5) The functions of 

the horseshoe crab NF-κB signaling pathway on the expression of immune-related gene 

were examined by RT-PCR, with or without NF-κB specific inhibitors. 

 

To investigate the functions of horseshoe crab TRX, first the recombinant protein 

was expressed.   After that, a series of mass spectrometric methods was used to determine 

the active motif of the horseshoe crab TRX.  To understand the biochemical 

characteristics of the 16 kDa Cr-TRX1, an array of enzymatic assays were carried out, 

such as insulin reduction assay, thioredoxin reductase assay and DNA-nicking assay.  

The relationship between Cr-TRX1 and NF-κB signaling pathway was then examined in 

a mammalian cell line, HeLa, by overexpression using the gel shift assay and κB-reporter 

assay.  Finally, using bioinformatics methods, we identified the human homologue of Cr-

TRX1 and examined its NF-κB regulatory ability by EMSA. 
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CHAPTER 2:  MATERIALS AND METHODS 

 

2.1 Organisms and Materials 

2.1.1 Organisms 

The horseshoe crab, C. rotundicauda, was collected from mangrove swamps at 

the northeastern part of Singapore and cleaned off mud and barnacles.  The specimens 

were acclimated overnight in 30% (v/v) sea water/fresh water before being used for 

experiments. 

Drosophila Schneider S2 cells were maintained at 25 °C in Drosophila SFMTM, 

Serum-Free Medium, (Invitrogen, Carlsbad, CA) supplemented with 20 mM L-

Glutamine and 5% fetal bovine serum (FBS).  HeLa cells are routinely grown in 

complete medium consisting of Dulbecco’s modified Eagle’s medium, DMEM 

(Invitrogen) supplemented with 10 % FBS and 1 % penicillin/streptomycin at 37 ºC in a 

humidified atmosphere of 5 % CO2 and 95 % air.  Bacteria strains used for infection 

experiments was Pseudomonas aeruginosa ATCC 27853.   Escherichia coli BL21 (DE3) 

was used for recombinant protein expression. 

 

2.1.2 Biochemicals, enzymes and antibodies  

Glutathione Sepharose 4B, protein A Sepharose, redivue [γ-p32] ATP, thrombin 

and hybond-N+ nylon membrane were products of GH Healthcare.  Advantage 2 DNA 

polymerase and X-α-gal was from BD Biosciences, Clontech.  Complete cocktail 
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protease inhibitors were from Roche.  SuperSignal® West Pico Chemiluminescent 

Substrate was from Pierce. Phenylmethylsufonylfluoride (PMSF), bovine serum albumin 

(BSA) fraction V, the recombinant TRX (thioredoxin), rat liver TRXR (TRX reductase) 

and NADPH were from Sigma.  Super RX X-ray film was from Fuji.  Common 

chemicals of molecular biology grade were from Sigma and Merck.  The NF-κB 

inhibitors MG-132 and helenalin were from Calbiochem.  All restriction enzymes were 

from New England Biolabs, Roche or Fermentas. 

                 Mouse monoclonal anti-V5, anti-c-Myc, anti-c-Myc-HRP and anti-pEGFP 

antibody were from Invitrogen.  Mouse monoclonal antibody to FLAG (M2) and rabbit 

antibody to actin were obtained from Sigma.  Polyclonal antibodies to NF-κB p50 and 

IκB were from eBiosciences.  Anti-CrNFκB and anti-CrIκB antibodies were raised in 

rabbits against Keyhole Limpet Hemocyanin (KLH)-conjugated peptides (CrNFκB: 

LPVNRDPEGLSRKR; CrIκB: VSSHSHHSPQKEYK), by BioGenes (Germany).  The 

antibodies were affinity-purified using specific peptide as ligand.  All antibodies were 

tested for specificity by Western blot using recombinant CrNFκB and CrIκB as controls. 

 

2.2 cDNA cloning of targeted molecules 

In order to clone the NF-κB gene from the horseshoe crab, we first prepared the 

mRNA from naïve and Gram-negative bacteria challenged horseshoe crab tissues.  Those 

mRNA were then used for RT-PCR to clone the targeted molecules and gene expression 

analysis.   
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2.2.1 Infection of horseshoe crab and RNA extraction 

2.2.1.1 Preparation of P. aeruginosa for infection 

A single clone of P. aeruginosa was inoculated into 5 ml of Tryptone soy broth 

(Oxoid) and cultured overnight at 37 °C with shaking at 230 rpm.  Bacteria was collected 

by centrifugation at 5,000 × g for 10 min at 4 °C, washed with 10 ml of saline (0.9 % 

NaCl) and resuspended to the original culture volume in saline.  An aliquot of 100 μl of 

this Pseudomonas suspension was serially diluted for bacterial enumeration and the rest 

was stored at 4 oC as stock culture for infection of the horseshoe crabs.  

 

2.2.1.2 Challenging horseshoe crabs with bacteria and collection of tissues 

              Prior to infection, the dorsal hinge of the horseshoe crab leading to the cardiac 

chamber was swabbed with 70 % ethanol.  A sub-lethal dose of 1.2 × 107 colony-forming 

unit (CFU) of P. aeruginosa/ kg body weight was injected intracardially to challenge the 

horseshoe crab (Ng et al, 2004).  Sample collection was performed at indicated hours 

post infection (hpi). Uninfected (naïve) or infected horseshoe crabs were bled for the 

collection of the hemocytes.  The animals were bled by cardiac puncture using an 18 G 

needle (Becton-Dickinson). The hemolymph was collected in pre-chilled pyrogen free 

tubes (Falcon). The hemolymph was diluted with the same volume of 3 % pyrogen-free 

NaCl.  The mixture was immediately pelleted by centrifugation at 150 × g for 5 min at 4 

oC.  The supernatant was discarded and the hemocytes were snap-frozen in liquid 

nitrogen before storage at -80 oC.  Hepatopancreas was excised under RNase-free 

condition and immediately frozen in liquid nitrogen and stored at - 80 oC until use. 

 



 42

 

2.2.1.3 RNA purification 

RNA is extremely sensitive to RNase contamination.  In order to maintain the 

RNase free condition, water and solutions were treated overnight with 0.1 % of 

diethylpyrocarbonate (DEPC, Sigma) at 37 °C and autoclaved for 2 h to remove residual 

DEPC.  Plastic-wares were soaked overnight in 3 % hydrogen peroxide, rinsed 

thoroughly with DEPC treated water and autoclaved for 2 h.  Metal and glass apparatus 

were baked at 200 oC for 4 h. 

Tissues were homogenized in Trizol reagent (Invitrogen) on ice with an Ultra-

Turrax T25 homogenizer (IKA-labotechnik).  The total RNA was extracted according to 

the manufacturer’s instructions with slight modifications.  Briefly, homogenized samples 

were left at room temperature for 5 min.  Chloroform (1/5 volume of the homogenate) 

was then added and the mixture was shaken vigorously for 15 s, and incubated at room 

temperature for 2 min.  Next, the mixture was centrifuged 1,000 × g for 15 min at 4 oC 

and the top colorless aqueous phase, which contained RNA, was transferred to a fresh 

tube.  RNA was precipitated by incubation with isopropanol for 10 min and the RNA 

precipitate was collected by centrifugation.  The RNA pellet was washed twice with 75 % 

ethanol and the air-dried RNA pellet was stored at – 70 oC.  

The RNA pellet was dissolved in DEPC treated water by incubation at 60 oC for 

10 min. The concentration of the isolated RNA was determined by OD reading at 260 nm.  

The ratio of OD260nm and OD280nm of ≥ 1.8 was the acceptable purity of RNA for 

subsequent experiments. 
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2.2.2 Cloning of CrNFκB, CrIκB and CrRelish 

To obtain a cDNA fragment of targets, cDNA was first synthesized with 

SuperScriptTM RT-PCR System (Invitrogen) using oligo-dT primers according to the 

manufacturer’ instructions.  Briefly, a mixture of 1 μl of 0.5 μg/μl oligo-(dT), 1 μl of 10 

mM dNTP and 3 μg of total RNA was made to a final volume of 10 μl with DEPC-

treated water.  The RNA was incubated at 65 °C for 5 min and then placed on ice.  A 

reaction mixture containing 2 μl of 10 × RT buffer, 2 μl of 0.1 M dithiothreitol (DTT) 

stock, 4 μl of 25 mM MgCl2, 1 μl of RNaseOUT and 1 μl of Reverse Transcriptase 

enzyme was prepared in a final volume of 10 μl and added to the denatured RNA sample.  

The 20 μl sample was then incubated for 50 min at 42 °C for cDNA synthesis.  The 

reaction was terminated at 70 °C for 15 min and 1 μl of RNase H was added and 

incubated for 20 min at 37 °C to remove the RNA.  The synthesized cDNA was then 

frozen at -20 °C for later use. 

Homologues of NF-κB (CrNFκB) and IκB (CrIκB) from C. rotundicauda were 

obtained by RT-PCR using degenerate primers designed from the conserved region of 

insect and mammalian NF-κB and IκB proteins.  The primers used were: CrNFκB 

forward primer, 5′-TTTCGCTAYRARTGCGARGG-3′; CrNFκB reverse primer, 5′-

TCCTTIGTWACRCAWGAIACMAC-3′; CrIκB forward primer, 5′-

GAYGGIGACWCRIYIITSCACYTRGC-3′; CrIκB reverse primer, 5′-

CAGGMMAIRTGIARIGSIGTRTIDCC-3′.  The PCR products were electrophoresed on 

1-1.2 % agarose gels.  The correctly sized bands were excised and isolated from the gel 
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using QIAquick gel extraction kit (Qiagen) and cloned into pGEM-T Easy vector 

(Promega) for sequencing.  

 

2.2.3 Cloning of PCR products and sequencing 

For ligation into pGEMT-Easy vector (Promega), purified cDNA was incubated 

overnight at 4 °C with pGEM®-T Easy vector and T4 DNA ligase in the Rapid Ligation 

Buffer.  The next day, the ligation product was transformed into competent cells, E. coli 

Top 10.  For transformation, 5 μl of the ligated product was added to 80 μl of competent 

bacteria, and the mixture was incubated in ice for 30 min.  This was followed by a 90 s 

‘heat shock’ treatment at 42°C and rapid cooling in ice for 2 min.  The cells were then 

incubated in 900 μl of LB broth for 1 h at 37°C with shaking at 150 rpm.  The 

transformed bacteria cells was resuspended with fresh LB and plated on selective LB-

ampicillin plates.  The plates were incubated overnight at 37°C.   

Transformed bacteria were isolated and cultured for purification of recombinant 

DNA for sequence verification.  The Wizard® Plus SV Minipreps DNA Purification 

System (Promega) was used to purify plasmid DNA for sequencing.  The sequencing 

reaction was performed in a 20 μl volume, using 2 μl of BigDye Terminator V3.1 

(Applied Biosystems), 100-250 ng of DNA template, 3 μl of 5 × buffer and 100 nM  

primer.  The sequencing reaction was then subjected to 1 min of incubation at 95 °C, 

followed by 40 cycles of 95 °C for 10 s, 50 °C for 10 s and 60 °C for 4 min.  At the end 

of the reaction, the extension products were precipitated with 70 % ethanol with sodium 

acetate (pH 4.6) to remove excess dye terminators.  The DNA was pelleted by 

centrifugation at 14,000 × g for 30 min.  The pellet was rinsed twice with 70 % ethanol 



 45

and air-dried.  The precipitated DNA was redissolved in HiDye formamide (Applied 

Biosystems) before loading in the capillary sequencer for sequencing (ABI 3100, Applied 

Biosystems). 

 

2.2.4 Isolation of full length cDNA by RACE PCR 

The 3′ and 5′ ends of CrNFκB, CrIκB and CrRelish were obtained using BD 

SMART™ RACE cDNA amplification kit (Clontech).  The first strand cDNA for 5′ and 

3′-RACE PCR were generated with 3.0 μg of total RNA from naïve hemocytes according 

to the instructions in the manual.  The reaction mixture was then diluted in 50 μl of water 

and stored at – 20 oC until use.  

RACE PCR was performed with the gene-specific primers and the universal 

primer mix (UPM), which was the mixture of the long (5’-

CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT-3’) and the 

short (5’-CTAATACGACTCACTATAGGGC-3’) oligonucleotides.  Typically, the 

RACE PCR reactions were set up with 2.5 μl of first strand cDNA, 1 μl of 10 mM gene 

specific primer, 5 μl of 10 × UPM (0.4 mM of long and 2.0 mM of short oligonucleotide), 

0.2 mM dNTP mix, and 1 μl of 50 × BD Advantage 2 Polymerase Mix in 1 × Advantage 

2 PCR Buffer.  Standard PCR program was performed with one cycle at 95 °C for 3 min, 

followed by 28 - 35 cycles of denaturing at 95 °C for 30 s, annealing at 68 °C for 30 s, 

extension at 72 °C for 3 min, and termination with one cycle at 72 °C for 8 min.  In some 

cases, touchdown PCR that is performed by cycles of decreasing annealing temperature 

and nested PCR were used for the amplification of the 3′ or 5′ end.  After agarose gel 

analysis, the correctly sized bands were excised and isolated from the gel using QIAquick 
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gel extraction kit (Qiagen).  The purified band was cloned into pGEMT-Easy vectors and 

then sequenced using primers that bind to the vectors at the regions flanking the insert. 

 

2.2.5 Phylogenetic analysis of target molecules 

To investigate the evolutionary relationship of CrNFκB, CrIκB, CrRelish, Cr-

TRX-1 and their homologues, multiple sequence alignments were performed to compare 

the degree of sequence homology between them.  The amino acid sequences of their 

homologues were obtained from the NCBI database.  Sequence alignment was performed 

using Clustal X (version 1.83) or DNAMAN with the default parameters.  Based on the 

alignments, unrooted phylogenetic trees were constructed using neighbor-joining method.  

Bootstrap tests at 1000 replicates were carried out to examine the validity of the 

branching topologies.  

 

2.2.6 Transcriptional analysis during Pseudomonas infection 

First strand cDNAs of various tissues were synthesized using SuperScript™ First-

Strand Synthesis System (Invitrogen).  For each sample, 20 μl reaction mixture was set 

up with 3 μg of total RNA, 0.5 mM dNTP mix, 500 ng of oligo-(dT)12-18 primers, 5 mM 

of MgCl2, 10 mM DTT, 40 Units of RNaseOUT™ recombinant RNase inhibitor and 50 

units of SuperScript™ II reverse transcriptase in 1 × RT buffer.  Reverse transcription 

reaction was carried out for 50 min at 42 oC and terminated by incubation at 70 oC for 15 

min.  Next, RNA was removed by incubation of the reaction mixture with 2 Units of 

RNase H at 37 oC for 20 min.  First strand cDNA was stored at - 20 oC until use.  

Changes in the transcription level of CrNFκB, CrIκB and Cr-TRX1 were studied by 
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semi-quantitative RT-PCR.  Horseshoe crab Actin-11 was used as an internal 

normalization standard to eliminate sample-to-sample variations in the initial cDNA 

concentrations.  PCR was performed under the following conditions: initial denaturation 

at 95 oC for 3 min, followed by 25 - 35 cycles of denaturation at 95 oC for 30 s, annealing 

at 56 oC for 30 s, and extension at 72 oC for 1 min.  PCR products were resolved on 1.2 % 

agarose gel, stained with ethidium bromide and the gel image was acquired and analyzed 

by Image Master VDS version 2.0 software (Pharmacia Biotech). 

 

2.3 Functional characterization of CrNFκB and CrIκB 

2.3.1 Construction of expression vectors 

For bacterial recombinant protein expression, a cDNA fragment encoding the N-

terminal half of the CrNFκB including RHD (amino acids: 1-353), was subcloned into 

the NdeI and BamHI sites of the pET15b expression vector (Novagen).  The full length 

CrIκB was subcloned into the BamHI and XhoI sites of expression vector pGEX-4T-1 

(GE Healthcare).  

For insect expression plasmids, Drosophila expression vector, pAc5.1/V5-HisA 

(Invitrogen), was used for expression of full-length and truncated CrNFκB proteins 

(CrNFκB-RHD and CrNFκB-ΔNLS).  All fusion proteins are tagged with His and V5.  

Except for CrNFκB-ΔNLS, the other 2 constructs contained the nuclear localization 

signal (NLS) (see Figure 2.1 & Figure 3.12).  All the primers were designed according to 

the CrNFκB sequence with the additional digestion site sequences.  Figure 2.1 illustrated 

the cloning strategies of full-length and truncated CrNFκB.  The full-length CrIκB with a 
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c-Myc epitope was similarly cloned into the KpnI and AgeI sites of pAc5.1/V5-HisA.  

The primers used for cloning CrIκB with a c-Myc tag at the C-terminus are listed below.  

The underlined nucleotides encode the c-Myc tag.  Forward primer: 5’-

GGTACCATGGGAAAATCAAAAGAATT-3’; Reverse primer: 5’ ACCGGTCAGATC 

TTCCTCTGAGATGAGCTTCTGCTCCACTGCTCTAACTTCATCTCC-3’. 

 

Figure 2.1: The cloning strategy of the full-length and truncated CrNFκB into the pAc5.1 
expression vector.  After PCR reaction, the fragment was doubled digested by KpnI and ApaI 
and gel purified.  The purified fragment was subsequently cloned into the KpnI and ApaI sites of 
the pAc5.1 expression vector.  The full length CrIκB with the c-Myc tag was similarly cloned 
into the pAc5.1 vector.   
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2.3.2 SDS-PAGE & Western Blot  

SDS-PAGE was carried out in vertical gel composed of 10 % - 15 % running gel 

and 5 % stacking gel using the Mini-Protean II system (Biorad).  Prior to electrophoresis, 

samples were reduced with SDS-PAGE gel loading buffer (125 mM Tris-HCl, pH 6.8, 10 

% glycerol, 2 % β-mercaptoethanol, 0.1 % bromophenol blue and 2 % SDS) and boiled 

for 5 min to denature the proteins.  Electrophoresis was performed in Tris-glycine buffer 

(25 mM Tris, pH 8.3, 250 mM glycine, and 0.1 % SDS).  Precision Plus Protein 

Standards (prestained protein ladder, GibcoBRL, USA) was electrophoresed alongside 

the sample for molecular weight determination. 

 In Western blot, the electrophoretic transfer was performed in the Mini Trans-

Blot Electrophoretic Transfer Cell (Biorad).  The transfer of proteins was carried out at a 

constant current of 220 mA for 2 h at 4 °C.  After transfer, the membrane was incubated 

for 2 h at room temperature with 20 ml of blocking buffer containing 5 % (w/v) skim 

milk in PBST (PBS containing 0.1 % of Tween-20, v/v).  After incubation, the membrane 

was rinsed 3 times with 20 ml of PBST.  The blot was then incubated overnight at 4 ºC 

with primary antibody at indicated dilution in PBST containing 3 % BSA.  Subsequently, 

the membrane was washed four times with 20 ml of PBST to remove unbound antibody.  

Secondary antibody in PBST containing 3 % BSA was then added to the membrane and 

incubated for 2 h with gentle shaking.  The antigen-antibody complexes were then 

immunoblotted by incubating the blot with Supersignal® West Pico (Pierce) 

chemiluminescent substrate.  The film was subsequently developed in an automated 

developer. 
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2.3.3 Pull-down assay for protein-protein interaction analysis 

The GST-CrIκB recombinant protein was expressed in E. coli strain BL21.  After 

4-6 h induction with 0.1 mM IPTG at 30 °C, the bacterial culture was pelleted at 6,000 × 

g for 5 min and resuspended in PBS.  The cell lysate was prepared by sonicating on ice at 

28 amplitude microns, for 6 × 10 s each with intervals of 30 s chilling in ice and 

centrifuged at 12,000 × g.  The bacterial lysate containing the recombinant GST-CrIκB 

was immobilized onto Glutathione-Sepharose 4B beads (GE Healthcare).  The 

preparation of His-tagged CrNFκB will be described under Section 2.3.5.1.  For protein-

protein interaction assays, one μg of GST-CrIκB fusion protein was bound to 25 μl of 

Glutathione Sepharose 4B beads in phosphate-buffered saline (PBS).  The beads were 

washed 5 times with 0.5 ml of ice-cold PBS after incubating with bacterial lysate 

expressing recombinant CrNFκB-RHD.  Bound proteins were eluted with 30 μl of SDS-

PAGE sample buffer, resolved by SDS-PAGE, and detected with anti-GST and anti-His 

antibodies. 

  

2.3.4 Immunoprecipitation assay 

For immunoprecipitation assays, Drosophila S2 cells were transfected with 

several combinations of 500 ng CrNFκB-V5 and 500 ng IκB-c-Myc using CellFectin kit 

(Invitrogen).  After 48 h of transfection, the cells were disrupted by lysis buffer (50 mM 

Tris, pH 8.0, 150 mM NaCl, 0.2 % Nonidet P40, protease inhibitor cocktail (Roche) and 

10 μM MG-132.  The cell lysate was centrifuged at 12,000 × g for 10 min at 4 ºC to 

remove particulate matter.  The supernatant was transferred to a fresh tube and pretreated 
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with Protein A Sepharose (GE Healthcare) at 4 oC for 1 h.  After centrifugation at 12,000 

× g for 20 s, the supernatant was precipitated with 2 μg of anti-V5 antibody and 2 μg 

rabbit anti-mouse bridge antibody at 4 oC overnight.  Then the immunocomplex was 

precipitated by adding the Protein A Sepharose beads and incubated at 4 oC for 1 h.  The 

immunoprecipitates were then washed three times with lysis buffer and analyzed by 

Western blot. 

 

2.3.5 Electrophoretic gel mobility-shift assay (EMSA) 

The electrophoretic mobility shift assay (EMSA) was used to study DNA-protein 

interactions.  This technique is based on the fact that DNA-protein complexes migrate 

slower than non-bound DNA in a native polyacrylamide gel, resulting in a “shift” in 

migration of the DNA.   

 
2.3.5.1 Preparation of recombinant CrNFκB from bacteria and whole hemocyte      

lysate for EMSA 

To obtain the His-tagged CrNFκB recombinant protein extract, the recombinant 

plasmid was transformed into E. coli BL21 and cultured at room temperature with 

shaking at 230 rpm until the OD600 reaches 0.8.  The culture was then induced with 0.02 

mM IPTG and for another 8 h.  The bacteria was harvested by centrifugation at 5,000 × g 

for 5 min, washed with PBS and then pelleted again.  The cells were resuspended in 

binding buffer (50 mM NaCl, 2 mM MgCl2, 2 mM DTT, 1 mM EDTA, 10 % glycerol 

and 10 mM HEPES, pH 7.8) and sonicated for 6 times on ice at 28 amplitudes for 10 s 

each time.  After centrifugation at 9,000 × g for 1 h at 4 °C, the supernatant was collected 
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into a fresh tube.  The freshly prepared supernatant of the lysate was immediately used in 

EMSA.   

Horseshoe crab hemocytes were collected according to Section 2.2.1.2.  

Hemocytes were washed with PBS and homogenized in binding buffer (50 mM NaCl, 2 

mM MgCl2, 2 mM DTT, 1 mM EDTA, 10 % glycerol and 10 mM HEPES, pH 7.8).  

Whole hemocyte extracts were centrifuged at 4 °C for 10 min at 13,000 × g, and the 

resulting supernatants were used for subsequent EMSA.   

 
2.3.5.2 Extraction of nuclear proteins from hemocytes 
 

Nuclear extracts were prepared according to the procedures described previously 

(Lin et al, 2004; Wang et al, 2003) with modifications.  Briefly, the horseshoe crab 

hemocytes were collected by centrifugation for 10 min at 150 × g.  Cell pellets were 

resuspended in ice cold PBS to remove the plasma and collected again by centrifugation.  

All the remaining steps were carried out at 4 oC. Washed cells were resuspended in two 

packed cell volumes of lysis buffer (10 mM HEPES pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 

0.5 mM DTT and 0.2 mM PMSF).  After 10 min, cells were homogenized with 20 

strokes of a loose fitting Dounce homogenizer (Wheaton, USA).  Nuclei were collected 

by centrifugation for 10 min at 3,000 × g, and resuspended in 5 volumes of lysis buffer.  

Proteins were extracted from washed nuclei by high salt buffer (20 mM HEPES pH 7.9, 

25 % (v/v) glycerol, 420 mM KCl. 0.2 mM EDTA, 0.5 mM PMSF, 0.5 mM DTT and 1.5 

mM MgCl2).  After centrifugation, the extracts was dialysised against buffer (20 mM 

HEPES, pH 7.8, 25 mM NaCl, 25 mM KCl, 0.1 mM EDTA, 0.5 mM DTT, 0.5 mM 

PMSF, 20 % glycerol and 0.05 % Nonidet-P40).  The supernants and nuclear extracts 

were quickly frozen and stored at – 70 oC for subsequent use by EMSA.  
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2.3.5.3  [γ−32P] ATP labeling of the oligonucleotides 

The sequences of the commercially synthesized oligonucleotides for EMSA are 

listed in Table 3.2 (page 85).  Before labeling, the single-stranded oligonucleotides were 

annealed in the annealing buffer (10 mM Tris-HCl pH 7.9, 2 mM MgCl2, 50 mM NaCl 

and 1 mM EDTA) with corresponding DNA strands at 85 oC for 15 min.  After 

incubation, the reaction was cooled down slowly to 25 oC and incubated for another 30 

min.  Subsequently, the annealed double-stranded oligonucleotides were end-labeled with 

fresh [γ−32P] ATP with T4 polynucleotide kinase (NEB).  The 32P labeled probes were 

subsequently purified using the Qiagen Nucletide Removal Kit (Qiagen).  The 

radioactivity and labeling efficiency of the labelled probes were measured by dry 

Cerenkov count. 

 

2.3.5.4 Electrophoretic gel mobility-shift assay (EMSA) 

EMSA was performed using the recombinant CrNFκB protein, whole hemocyte 

lysate or nuclear extract of hemocytes.  The reactions were set up in the presence of 

1×105 cpm/pmol 32P-labeled oligonucleotide and 2 μg of poly (dI-dC) at 25 °C for 30 min 

in binding buffer (50 mM NaCl, 2 mM MgCl2, 2 mM DTT, 1 mM EDTA, 10 % glycerol 

and 10 mM HEPES, pH 7.8) before electrophoresis on a 4 % native PAGE gel 

(acrylamide:bisacrylamide ratio of 79:1).  In competition assays, 10×, 100× cold probes 

(see Table 3.2) or indicated amounts of recombinant CrIκB were used in each reaction 

and incubated for 30 min before adding the 32P-probe.  For supershift assays, hemocyte 

extracts were incubated with the respective antibody for 30 min on ice before adding the 



 54

probe.  After 2-3 h of electrophoresis at 120 V-130 V at 25 oC, the gel was fixed in 7 % 

acetic acid for 5 min.  Next, the gel was transferred to a Whatman paper with a 

comparable size to the gel and covered with a saran wrap to be dried in the gel drier 

(Biorad, model 583) for 1.5-2 h.  The dried gel was subsequently exposed to an X-ray 

film (Biomax, Kodak).  After autoradiography, the film was developed in an automated 

X-ray developer (Kodak). 

 

2.3.6 Cell culture and transfection 

Because of the lack of direct cell lines derived from the horseshoe crab, and the 

relative evolutionary closeness of horseshoe crabs to insects, Drosophila S2 cell line was 

used in our transfection studies (Wang et al, 2003).  The Drosophila Schneider S2 cells 

were maintained at 25 °C in Drosophila SFMTM supplemented with 20 mM L-glutamine 

and 5 % FBS.  Twelve hours prior to transfection, cells were seeded in a 6-well plate at 

1.2 × 106
 cells/well.  When the cells had attached to the well surface and had reached 60-

80 % confluency, transfections were conducted with 2 μg of DNA using CellFectin 

(Invitrogen) according to the manufacturer's recommendation.  After 6 h incubation of the 

cells with the transfection medium, the cells were renewed with 2 ml fresh medium.  At 

36 - 48 h post-transfection, the cell were harvested and lysed.  In this study, the κB 

reporter was horseshoe crab Factor C promoter (p186) CAT reporter (CrFC-CAT) whose 

activity correlates with the activity of NF-κB (Wang et al, 2003).  pACH110 containing 

the β-galactosidase gene fused with the Drosophila actin promoter, was used as internal 

control (Wang et al, 2003).  Plasmids used for transfection were isolated using 

CsCl/ethidium bromide gradient ultracentrifugation described by Sambrook et al (1988). 
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2.3.7 CAT and β-Gal ELISA assay  

CAT and β-Gal activities were measured in the cell extracts using the CAT and β-

Gal ELISA kits (Roche).  Following lysis of the transfected cells, 200 μl of the cell 

extracts, which contain the CAT enzyme and the β-Gal enzyme, were added to the wells 

of the microtiter plate modules (MTP modules), and incubated at 37 °C for 2 h.  After 

rinsing with the wash buffer, a digoxigenin-labeled antibody to CAT (anti-CAT-DIG) or 

to β-Gal (anti-β-Gal-DIG) was added and incubated at 37 °C for 1 h.  The excess 

antibody was removed by rinsing with the wash buffer.  Next, an antibody to digoxigenin 

conjugated to peroxidase was added.  This was incubated at 37°C for 1 h, followed by 

rinsing to remove excess antibody.  Finally, the peroxidase substrate ABTS® was added.  

The peroxidase enzyme catalyzes the cleavage of the substrate yielding a colored product.  

The absorbance of the sample was determined at 405 nm using an ELISA reader 

(Molecular Divices, Spectra MAX 340) and is directly correlated to the level of CAT 

present in the cell extract.  

 

2.3.8 Immunofluorescence 

To determine the subcellular localization of CrNFκB and CrIκB, 

immunofluorescence experiments were performed.  In these experiments, the S2 cells 

were transfected with plasmids expressing either CrNFκB-V5 or CrIκB-c-Myc fusion 

proteins.  After 24 h, cells were transferred to an 8-well chamber slide (NUNC) and 

allowed to attach for 2 h.  The cells were fixed for 15 min in 4 % paraformaldehyde and 
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permeabilized by 0.1 % Triton X−100/PBS for 2 min at room temperature.  The 

permeabilization reagent was removed and the cover slip was rinsed thrice with PBS for 

5 min each time.  They were then incubated with mouse monoclonal antibody against V5 

or c-Myc (1:500 dilutions, Invitrogen) overnight at room temperature.  After washing 

with PBS, the cells were incubated with Alex594 rabbit anti-mouse IgG antibody (1:500 

dilutions, Molecular Probes) for 2 h at room temperature.  These cells were 

counterstained with DAPI (1 μg/ml) for 1 min and rinsed thrice with PBS prior to 

fluorescence microscopy analysis (Olympus, BX60). 

To examine the subcellular localization of CrNFκB and CrIκB in horseshoe crab 

hemocytes, the hemocytes from naïve horseshoe crab or 30 min-challenged with P. 

aeruginosa (1.2 × 107 colony forming units/kg) were collected into 3 % saline at 42 °C.  

The diluted hemocytes were spread on pyrogen free cover slip for cell attachment.  After 

5 min, the cells were fixed in 2 % paraformaldehyde, blocked with 5 % goat pre-immune 

serum (Sigma) in PBS for 1 h and incubated for 2 h with anti-CrNFκB or anti-CrIκB 

antibody (1:500 dilutions).  After washing with PBS, cells were incubated with Alex594 

goat anti-rabbit IgG antibody (1:500 dilutions, Molecular Probes) which has been pre-

absorbed to paraformaldehyde-fixed hemocytes in 5 % goat pre-immune serum for 1 h.   

The secondary antibody was then completely removed and the cover slip was rinsed 

thrice with PBS for 5 min each time. The cover slips were carefully blotted dry using 

Kimwipes, and a drop of Prolong® Gold antifade reagent with DAPI (Molecular Probes) 

was added onto the center of the cover slip.  The cover slip was carefully placed onto a 

glass slide.  Cells were then observed under the confocol microscope (Zeiss). The 

procedures for immunocytochemistry are summarized in Figure 2.2. 
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Figure 2.2: A schematic diagram of immunocytochemistry.  Indirect cell stainining method is 
used.  Cell was fixed onto a glass slide, permeabilized 0.1 % Triton X-100 and tagged with rabbit 
or mouse antibody against the target protein of interest. A secondary fluorophore-coupled 
antibody is directed against the rabbit or mouse antibodies, and cells were observed directly under 
fluorescence microscope for location of antigen. This figure is adapted from:  
http://www.mbl.co.jp/e/diagnostics/product/method.html#IIF. 
 
 

2.3.9 Inhibitor treatments and reverse-transcription PCR 

NF-κB inhibitors were obtained from Calbiochem. Helenalin and MG-132 were 

dissolved in dimethylsulfoxide (DMSO) at stock concentrations of 10 mM and 25 mM 

respectively.  Five hundred microliters/kg (body weight) of DMSO or inhibitor drug 

solution were given intracardially.  One hour later, the horseshoe crabs were injected with 
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P. aeruginosa at 1.2 × 107 colony forming units/kg of horseshoe crab body weight (Ng et 

al, 2004).  The hemocytes were collected at indicated time points.  Total RNA was 

prepared by the Trizol technique according to previous description.  RT-PCR was 

performed by using the Invitrogen RT-PCR kit with 3 μg of total RNA and oligo dT.  

Semi-quantitative RT-PCR was performed with a rapid heating to 95 °C for 3 min 

followed by 19−25 cycles of 56 °C for 30 s, 72 °C for 1 min, and 95 °C for 30 s.  PCR 

products were resolved on 1.2 % agarose gel, stained with ethidium bromide and the gel 

image was acquired and analyzed by Image Master VDS version 2.0 software (Pharmacia 

Biotech).  The mRNA expression was normalized according to the expression level of 

horseshoe crab actin-11 gene.  The primers used for RT-PCR experiments are listed as 

follows: Actin, primer 1 (5′-CGAGGGTACAGTTTCACCAC-3′) and primer 2 (5′-

TCCTTTTGCATTCTATCAGC-3′); CrNFκB, primer 1 (5′-

AAATGGTGCCAACAAATCCTAC-3′) and primer 2 

(5′ACAACAACTACTGCTGAGCCTTT-3′); CrIκB, primer 1 (5′-

CAACAGTGGACATGAGGGATCGCCAT-3′) and primer 2 (5′-

GTCAACATCACTTTCTGGAGGTCTTC-3′); CrFC, primer 1 (5′-

AATAGGTCAGTGGCCGTGG-3′) and primer 2 (5′-TGCTGGCTGCAACAACAG-3′); 

CriNOS, primer 1 (5′-CCATCAGTTAAAATCAACGCTGCAT-3′) and primer 2 (5′-

CTTGAACATACTTCTTTGGGTTTAGG-3′); Transglutaminase, primer 1 (5′-

TGGGCAGTTTAAAGACTCGG-3′) and primer 2 (5′-TCATGAGCTGGCACGAAGT-

3′). 
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2.4 Functional characterization of Cr-TRX1 

2.4.1 Construction of plasmids 

In order to study the enzymatic function of horseshoe crab TRX homologue 

(henceforth referred to as C. rotundicauda TRX, Cr-TRX1), we expressed the full length 

Cr-TRX1 in bacteria.  For bacterial expression, the full length Cr-TRX1 was cloned into 

the BamHI-XhoI sites of the pGEX-4T-1 expression vector (GE Healthcare).  Figure 2.3 

illustrated the cloning strategies of the full-length Cr-TRX1. TRX6, the human 

homologue of Cr-TRX1, was similarly cloned into the pGEX-4T-1 plasmid for bacterial 

expression. 

 

Figure 2.3: The cloning strategy of GST-Cr-TRX1 expression vector.  The Cr-TRX1 
fragment was PCR-amplified from the pGEM-T easy Cr-TRX1 construct. With the BamHI and 
XhoI sites introduced into the primers, the fragment was subcloned into the BamHI and XhoI sites 
in the pGEX-4T-1 construct as illustrated above. 
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For mammalian expression, full-length Cr-TRX1 was cloned into the expression 

vector pcDNA3.1 (Invitorgen) as follows.  We used PCR to amplify the Cr-TRX1 with 

the following two primers: Primer1:  5’-GGTACCATGGAATTTATCCAAGG-3’; 

Primer 2: 5’-ACCGGTTTTGTCGTCATCGTCCTTATAGTCTCTTGCCCAGTTCTGG 

AA-3’. The primer 2 introduced a FLAG tag at the C-terminus of the Cr-TRX1.  The 

amplified Cr-TRX1-FLAG sequence was inserted into pGEM-T vector (Promega).  Then, 

the insert was released by digestion with KpnI and AgeI and ligated into pcDNA3.1 

vector using T4 DNA ligase.  For the mutant Cr-TRX1, both of the cysteine residues at 

the active site were replaced with alanine residues using QuikChange® XL Mutagenesis 

Kit (Stratagene). 

 

2.4.2 Site-directed mutagenesis of Cr-TRX1 

The two cysteine residues in the catalytic site (CXXC) are responsible for the 

oxido-reductase function of the thioredoxin superfamily. Hence, to investigate the 

importance of these two residues in catalyzing the redox function of Cr-TRX1, they were 

converted to alanine residues.  Alanine was selected due to its small functional group and 

non-polarity; hence the effect on protein structure would be minimized without change in 

polarity of protein.   The primers used for the mutagenesis are listed at below:  

Cr-TRX1-DM-For: 5’-CAGTGCCCACTGGGCTCCCCCAGCTCGAGGGTTCACC-3’ 

Cr-TRX1-DM-Rev: 5’-GGTGAACCCTCGAGCTGGGGGAGCCCAGTGGGCACTG-

3’.  The underlined nucleotides are the ones that are responsible for the amino acid 

change. 
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Site-directed mutagenesis of both the cysteine residues at the active site of Cr-

TRX1 was performed using QuikChange® XL Site-Directed Mutagenesis Kit (Stratagene) 

according to the kit manual.  Briefly, 10 ng of pcDNA3.1-Cr-TRX1, 5 µl of 10 × reaction 

buffer, 125 ng each of the primers for mutation, dNTP mixture, QuikSolution and 2.5 U 

of Pfu Turbo DNA polymerase were sequentially added and mixed in a PCR tube.  PCR 

was carried out with initial denaturation at 95 ºC for 1 min, denaturation at 95 ºC for 50 s, 

annealing at 60 °C for 50 s, and extension at 68 °C for 6 min for 18 cycles, and kept at 68 

°C for 7 min.  Following the temperature cycling, the product was treated with 10 U Dpn 

I endonuclease, which was used to digest the parental DNA template.  The nicked vector 

DNA incorporating the desired mutations was then transformed into XL10-Gold® 

ultracompetent cells (Stratagene). 

 

2.4.3 Expression and purification of Cr-TRX1 

The pGEX-4T-1 Cr-TRX1 plasmids were transformed into E. coli BL21 (DE3) 

for bacterial expression.  The induction and purification of the GST-Cr-TRX1 fusion 

protein was performed as previously described (Sadek et al, 2003).  Briefly, after 4-6 h 

induction with 0.1 mM IPTG at 30°C, the bacterial culture was pelleted at 6,000 × g for 

10 min and resuspended in 20 ml PBS.  Overexpressing cells were disrupted by 

sonication on ice at 28 amplitude microns, for 6 × 10 s each with intervals of 30 s and 

centrifuged at 12,000 × g, and the supernatant was loaded onto a Gutathione-Sepharose 

4B column (GE Healthcare).  Binding to the matrix was allowed to occur overnight at 4 

°C.  Thrombin (5 Units/mg of fusion protein) was used to cleave off the Glutathione S-
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transferase.  The protein concentration was determined by Bradford method (Bradford, 

1976) using bovine serum albumin, BSA, fraction V (Sigma) at calibration standard. 

 

2.4.4 Mass spectrometric analysis 

In addition to the two conserved Cys residues, the horseshoe crab TRX contains 1 

extra Cys residues (Cys15) at the N-terminus (Figure 3.27).  Therefore, it was important to 

identify which Cys residue is redox sensitive in Cr-TRX1.  To achieve this, we 

determined the number and the position of the active Cys residues in horseshoe crab TRX 

molecule using mass spectrum. 

First, the number of active Cys residues in Cr-TRX1 molecule was determined 

using MALDI-TOF. In this experiment, the reduced Cr-TRX1 was prepared by 

incubation with 1 mM dithiothreitol (DTT) for 30 min at room temperature.  The 

unreduced controls were treated under identical conditions but in the absence of DTT.  

The reduced and non-reduced Cr-TRX1 were incubated with 3 mM iodoacetamide (IAM) 

for 30 min at room temperature for derivatisation (Gommel et al, 1997).  The samples 

were diluted 10 times with 0.1 % (v/v) trifluoroacetic acid and mixed with an equal 

volume of a saturated solution of sinapinic acid in 33 % (v/v) acetonitrile and 0.1 % (v/v) 

trifluoroacetic acid.  An aliquot of 0.5 μl of this mixture was crystallized on a 

microcrystalline layer and analyzed using ABI Voyager-DE™ STR Biospectrometry™ in 

the linear model.   

To identify the position of active Cys residues, aliquots of the Cr-TRX1 samples 

were subjected to SDS-PAGE.  The Cr-TRX1 bands were recovered and subjected to in-

gel digestion analysis according to the methods described by Shevchenko et al (1997). 



 63

However, the alkylation step was omitted.  After overnight in-gel digestion with trypsin, 

the protein fragments were extracted from the gel with 20 mM ammonium bicarbonate, 

followed by 5 % formic acid in 50 % aqueous acetonitrile and with 100 % acetonitrile. 

The extracts were pooled and the solvent was allowed to vaporize in a speed-vacuum 

before mass spectrometric analysis.  The peptide samples were analyzed by the Applied 

Biosystems 4700 Proteomics Analyzer. 

 

2.4.5 Biochemical characterization of Cr-TRX1 

In order to investigate the enzymatic function of Cr-TRX1, we expressed and 

purified the recombinant full-length Cr-TRX1 in E. coli.   With this recombinant Cr-

TRX1, the following biochemical experiments were performed. 

 

2.4.5.1 Fluorescence spectroscopy analysis 

Reduction of oxidized E. coli TRX was previously shown to increase tryptophan 

fluorescence due to the quenching effect of the active site disulfide on the fluorescence of 

the adjacent tryptophan (Windle et al, 2000).  The horseshoe crab TRX also contains a 

Trp residue in the active site motif, WCPPC.  Therefore, we examined the fluorescence 

emission spectra of horseshoe crab TRX before and after reduction.  The change of 

fluorescence emission spectra indicates the status of the disulfide band in the active motif.  

The fluorescence emission spectra of Cr-TRX1 were determined with a Perkin Elmer 

LS50B spectrofluorimeter by excitation at 280 nm and emission was recorded from 300 

to 400 nm using a light path of 1 cm.  The bandwidth of the excitation and emission were 

5 nm.  All measurements were made in 50 mM Tris-HCl, pH 7.4 containing 1 mM EDTA 
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and 20 μg/ml TRX at room temperature.  Complete reduction of TRX was achieved by 

the addition of 1 mM DTT (Windle et al, 2000).  The solvent blanks were run as control 

spectra.  

 

2.4.5.2 Insulin reduction assay & thioredoxin reductase assay 

Enzymatic activity of TRX is usually assayed by their capacity to reduce the 

disulfide bonds of insulin using DTT as artificial reductant (Kunchithapautham et al, 

2003).  Insulin reduction can be measured spectrophotometrically as an increase in 

turbidity due to precipitation of the free insulin B chain.  To examine the enzymatic 

antivity of horseshoe crab TRX, the insulin reduction assay was performed using DTT, 

insulin and recombinant TRX as previously described (Sadek et al, 2001).  The reduction 

of insulin was recorded by monitoring the OD600.   

Except for DTT, the NADPH and TRX reductase (TRXR) can function as a 

physiological system to reduce TRX.  Therefore, we also examined whether oxidized 

horseshoe crab TRX is reduced by TRXR in the presence of NADPH by monitoring 

NADPH oxidation at 340 nm.  Thioredoxin reductase assays were conducted at room 

temperature in phosphate buffered saline (PBS), pH 7.4, containing 2 mM EDTA, 55 μM 

insulin, 100 μM NADPH and 1 μm Cr-TRX1.  The assay was initiated by the addition of 

50 nM rat liver TRXR (Reckenfelderbaumer et al, 2000). 

 

2.4.5.3 Peroxidase activity assay of Cr-TRX1 

Like peroxidase, the human TRX1 has been suggested to act as an antioxidant that 

directly scavenges H2O2 (Hirota et al, 2002).  The reactive CXXC motif of TRX readily 
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undergoes oxidation-reduction in the presence of H2O2, NADPH and TRXR.  In order to 

examine if the horseshoe crab TRX also possesses the peroxidase activity, we performed 

the peroxidase activity assay.  The peroxidase reactions were performed at room 

temperature and the absorbance at 340 nm (A340) was monitored.  Sample mixtures 

lacking Cr-TRX1 served as controls.  The reaction mixtures contained phosphate 

buffered saline, pH 7.4, 2 mM EDTA, 100 μM NADPH, 50 nM rat  liver TRXR, 2.5 mM 

H2O2, and Cr-TRX1 (Jeong et al, 2004b). 

 

2.4.5.4 DNA nicking assay 

Thioredoxin is detectable in human plasma up to a concentration of 6 nM and it 

has been suggested that TRX plays a direct role as an antioxidant (Kunchithapautham et 

al, 2003).  A DNA nicking assay was performed to determine whether recombinant 

horseshoe crab TRX was capable of functioning as an antioxidant protein.  pGEM-T easy 

plasmid DNA (Promega) was used as a substrate for detecting DNA damage mediated by 

the mixed function oxidase (MFO) system which generates hydroxyl (OH-) and thiol 

(RS*) radicals capable of damaging a DNA template (Kunchithapautham et al, 2003).  

The extent of MFO-mediated nicking can be evaluated by assessing the shift in gel 

mobility of the plasmid as it was converted from the supercoiled to the nicked form.  The 

MFO system consists of 66 μM FeCl3, 3.3 mM DTT and 2 mM EDTA in 25 mM HEPES 

buffer, pH 7.0.  Plasmid DNA (500 ng) was incubated in the MFO system at 37 °C with 

or without recombinant Cr-TRX1.  The recombinant GST and commercial BSA were 

used as controls.  The extent of DNA damage was evaluated on ethidium bromide-stained 

agarose gels.   
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2.4.6 Gene reporter assay 

To determine if Cr-TRX1 could regulate the NF-κB transactivation activity, we 

performed the co-transient transfection assay in HeLa cells with the wild type and mutant 

Cr-TRX1 and κB-reporter.  In this project, the κB reporter was p5 × NF-κB-luciferase 

(Stratagene, La Jolla, CA), whose activity correlates with the expression of NF-κB.  pRL-

CMV (Promega) was used as an internal control.  pcDNA3.1 vector (Invitrogen) was 

used for the expression of wild type and mutant Cr-TRX1 proteins.   

For transient transfection, HeLa cells were maintained at 37 °C in DMEM 

supplemented with 10 % FBS.  Twelve hours prior to transfection, cells at a density of 

0.8×106
 cells/well were seeded in a 6-well plate.  Transfection was conducted using 

Lipofectamine 2000 (Invitrogen), according to the manufacturer's recommendation.  

Briefly, cells were transfected by incubation with 2 μg of DNA and 5 μl of Lipofectamine 

2000 dissolved in 1.5 ml of Dulbecco’s modified Eagle’s medium (DMEM) alone for 6 h 

at 37 ºC.  The transfection medium was completely removed, replaced with complete 

growth medium and incubated for another 36-48 h.   

Collection of cell lysate was performed using the passive lysis buffer (PLB) from 

the Dual Luciferase Reporter Assay System (Promega).  In brief, the growth medium was 

removed and the cells in the six-well plate were rinsed twice with 2 ml of ice-cold 

phosphate buffered saline (PBS).  Five hundred μl of 1 × PLB was added to each well 

and the plate was placed on an orbital shaker with gentle shaking for 15 min at room 

temperature.  The lysate was then transferred into a 1.5 ml tube and centrifuged for 30 s 

at 14,000 × g at 4 ºC in a refrigerated centrifuge.  The cleared lysate was then transferred 
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to a new 1.5 ml tube.  The protein concentration in the soluble cell lysate was quantified 

by Bradford analysis. To perform gene reporter assays, dual luciferase activities were 

measured using the Dual-Luciferase Reporter (DLR) Assay System (Promega) at 36 h 

after transfection according to the manufacturer’s manuals.  The luminescent signal was 

measured using TD-20/20 Luminometer (Turner Designs). 

 

2.4.7 Non-radioactive electrophoretic mobility shift assay (EMSA) 

In order to examine if Cr-TRX1 could affect the NF-κB DNA-binding activity, 

we performed the EMSA.  In this experiment, the LightShift® Chemiluminescent EMSA 

Kit (Pierce), based on a non-isotopic method, was used to detect DNA-protein 

interactions.  To perform the EMSA, we first extracted the nuclear extraction and 

prepared the biotin-labeled DNA probe according to the procedures described below. 

 

2.4.7.1 Preparation of nuclear and cytoplasmic extraction 

Nuclear extract was prepared using NE-PER® Nuclear and Cytoplasmic 

Extraction Reagents (Pierce).  In brief, the growth medium was removed and the cells in 

the six-well plate were rinsed with 2 ml of PBS.  An aliquot of 0.5 ml of TryLETM 

Express (Invitrogen) was added to each well and incubated for 5 min at 37 °C until all 

cells have detached.  The cell suspension was transferred to a 2 ml centrifuge tube. The 

nuclear and cytoplasm extracts were prepared according to the manufacturer's 

recommendation.  The nuclear and cytoplamic extracts were immediately stored at - 80 

°C.    The extracts were thawed just before use in EMSA. 
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2.4.7.2 3’ End biotin labeling 

Biotin-labeled double stranded DNA was prepared using the Biotin 3’ End DNA 

Labeling kit (Pierce).  The mammalian κB DNA sequence was synthesized in both the 

forward and reverse orientations. The complementary oligos were first end-labeled 

separately as follows: 1 × TdT Reaction Buffer, 5 pmol ends of DNA, 0.5 μM biotin-11-

UTP and 0.2 U/μl diluted TdT were incubated at 37 ºC for 30 min; and the reaction was 

stopped by adding 2.5 μl of 0.2 M EDTA.  Fifty μl of chloroform/isoamyl alcohol (24:1) 

was added to extract the TdT.  The mixture was then vortexed and centrifuged at 16,000 

× g for 2 min to separate the phases.  The aqueous phase, containing the biotin-labeled 

DNA, was removed and saved.  The labeled complementary oligos were annealed by 

adding equal amounts of each and incubating at room temperature for 1 h.  The 

mammalian κB DNA sequence is 5’-AGTTGAGGGGACTTTCCCAGGC-3’.  The 

annealed oligos were stored at -20 ºC. 

 

2.4.7.3 Electrophoretic mobility shift assay (EMSA) 

            The EMSA was used to study DNA-protein interactions. The LightShift
®

 

Chemiluminescent EMSA Kit (Pierce), based on a non-isotopic method, was used to 

detect DNA-protein interactions.  A 4 % native polyacrylamide gel in 0.5 × TBE was 

prepared.  The gel was pre-electrophoresed for 60 min at 100 V.  Twenty fmol of biotin 

end-labeled DNA was incubated with 2 µl of nuclear extract, 1 × Binding Buffer and 50 

ng/µl Poly (dI•dC) for 30 min at room temperature, and finally mixed with Loading 

Buffer via gentle pipetting.  Twenty µl samples were loaded and electrophoresed at 100 

V until the bromophenol blue dye had migrated approximately 3/4 down the length of the 
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gel.  The Hybond-N+ (GE Healthcare) membrane was soaked in 0.5 × TBE for 15 min, 

before transfer.  Electrotransfer was carried out at 380 mA for 30 min in 0.5 × TBE 

cooled to 10 ºC.  The membrane was placed on a dry paper towel and cross-linked at 120 

mJ/cm2 using the SpectrolinkTM XL-1000 UV Crosslinker (Spectronics Corporation). The 

membrane was then processed according to the manual of LightShift® Chemiluminescent 

EMSA Kit (Pierce). 

 

2.4.8 Antioxidant inhibits NF-κB signaling pathway 

To determine if oxidative stress could also play a crucial role in mediating 

immune response in the horseshoe crab, we checked the effect of an antioxidant -

pyrrolidine dithiocarbamate, PDTC (Calbiochem) on the expression of immune-related 

genes.  At 50 mM, the antioxidant PDTC was administered intracardially at 500 μl/kg 

body weight of horseshoe crab.  After 1 h, the horseshoe crabs were injected with 1.2 × 

107-colony forming unit of P. aeruginosa / kg body weight.  The hemocytes were 

collected at indicated time points after infection with P. aeruginosa.   The semi-

quantitative RT-PCR was performed according to the descriptions in Section 2.3.9. 
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CHAPTER 3:  RESULTS 

 

3.1 Isolation of C. rotundicauda NF-κB and IκB homologues 

To address the issue of whether the ancient origin of the NF-κB signaling cascade 

can be traced back to this “living fossil”, we decided to clone the horseshoe crab 

homologues of NF-κB and IκB.  Because the genome of the horseshoe crab is still 

unknown and the homology of Rel homology domains (RHD) amongst different NF-κB 

proteins is relatively well-conserved from the vertebrate and insect, we used the 

degenerate primers that were designed based on the RHDs from various species to isolate 

the horseshoe crab NF-κB homologue.  Similarly, in order to clone the IκB gene from the 

horseshoe crab, we designed the degenerate primers based on the sequence homology of 

the ankyrin repeats. 

 

3.1.1 Cloning and characterization of NF-κB p65 homologue, CrNFκB 

Using degenerate primers that were designed based on sequence homology of 

RHDs and C. rotundicauda hemocyte cDNA as template, we performed the RT-PCR to 

isolate the horseshoe crab NF-κB.  The RT-PCR amplified a 160 bp product.  Sequence 

analysis of this PCR fragment confirmed that it is a homologue of NF-κB transcription 

factor.  Based on this 160 bp sequence, we designed two gene specific primers and 

performed the 3′ and 5′ RACE to obtain the full-length horseshoe crab NF-κB.  By 3′ and 
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5′ RACE, the full-length C. rotundicauda NF-κB cDNA of 2527 bp was isolated 

(GenBank accession number: DQ090482).  With an open reading frame of 1686 bp, the 

horseshoe crab NF-κB encodes a protein of 562 amino acids with a predicted molecular 

weight of 62 kDa (Figure 3.1).  Amino acid analysis revealed that C. rotundicauda NF-

κB possesses the characteristic organization of Rel/NF-κB proteins, thus, it is henceforth 

referred to as CrNFκB.   

The overall sequence identity of CrNFκB with other NF-κB proteins ranged from 

16 % to 32 %.  In particular, CrNFκB shares homology with insect Dorsal-like proteins 

with highest sequence similarity to that of the honey bee, Apis mellifera dorsal protein 

(GeneBank accession number: AAP23055).  Specifically, the CrNFκB contains an N-

terminal Rel homology domain (RHD) of 282 amino acids (residues: 19-301) and a C-

terminal transactivation domain, TD (residues: 315-562) (Figure. 3.1).  The CrNFκB 

contains two conserved motifs in the RHD: the DNA binding motif (R-XX-R-X-R-XX-C) 

and the nuclear localization signal, NLS, which characterizes all NF-κB family of 

proteins (Figure 3.1).  Sequences flanking the RHD show no homology to known 

proteins and do not contain any recognizable protein motifs.  Interestingly, like the 

molluscan NF-κB homologue Cg-Rel (Montagnani et al, 2004), the C-terminal TD of 

CrNFκB also lacks the polyglutamine, polyalanine or polyasparagine stretches which 

characterizes the TD of Drosophila Dorsal and several insect Dorsal-like proteins (Shin 

et al, 2005).   
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Figure 3.1: Comparison of amino acid sequence of CrNFκB with homologous proteins. 
Drosophila Dorsal (DmDorsal, AAA28479), Honey bee Dorsal (AmDorsal, AAP23055) and 
human RelA (HsRelA, AAH33522) were used for the comparison.  Alignments were done by 
Clustal X. The RHD (Rel homology domain) is indicated by black lines. The NLS (Nuclear 
localization signal) is indicated by *. The potential DNA binding motif is indicated by a dotted 
line. Black and grey shades indicate identity and similarity of the residues, respectively. 
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The availability of the vertebrate and invertebrate (mostly insect) NF-κB protein 

sequences in databases allowed us to perform a phylogenetic analysis of the NF-κB 

family to confirm the relationship between CrNFκB and the other NF-κB transcription 

factors.  The accession numbers of all the NF-κB and IκB proteins used in this study are 

listed in Table 3.1 (page 78).  Based on the multisequence alignment of full-length 

proteins built with ClustalX, we constructed an unrooted phylogenetic tree.  

The NF-κB protein family can be divided into two subfamilies.  The class I 

subfamily includes vertebrate p100, p105 and invertebrate Relish proteins.  The class II 

subfamily includes vertebrate RelA/p65, RelB, c-Rel and invertebrate Dorsal-like 

proteins (Gilmore, 1999).  The difference is that RelA, RelB and c-Rel have an activation 

domain in their C-terminal which is absent in NF-κB1 and NF-κB2.  On the contrary, 

NF-κB1 and NF-κB2 contains a C-terminal inhibitory IκB-like domain (see Figure 1.1).  

The phylogenetic analysis demonstrated that CrNFκB clustered amongst Dorsal-like 

proteins that belong to the invertebrate class ΙΙ NF-κB (Figure 3.2).  This cluster differs 

from the vertebrate class ΙΙ NF-κB, which includes RelA, RelB and c-Rel proteins.  This 

result is consistent with the previous sequence analysis where CrNFκB shared most 

similarities with insect Dorsal-like sequences.  The class II NF-κB proteins from the 

invertebrates and vertebrates are more distant from the class Ι NF-κB proteins (Figure 

3.2), which includes vertebrate p100, p105 and invertebrate Relish-like proteins (Gilmore, 

1999).    
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Figure 3.2: Phylogeny of CrNFκB and related NF-κB proteins. Multiple sequence alignments 
were produced with Clustal X using Gonnet series protein weight matrix. Unrooted phylogenetic 
tree was constructed using neighbor-joining method based on the alignments. The confidence 
scores (in %) of a bootstrap test of 1000 replicates are indicated for major branching nodes. The 
accession numbers of all the proteins used in this study are listed in Table 3.1 (page 78).  

 

3.1.2 Cloning of Cactus and IκB homologue, CrIκB 

The C. rotundicauda IκB (CrIκB) cDNA was similarly cloned using primers 

designed from the conserved ankyrin repeat regions of Drosophila and mammalian IκB 

proteins using horseshoe crab hemocyte cDNA as template.  Subsequently, the full-length 
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CrIκB cDNA was obtained by 3′ and 5′ RACE.  The full-length CrIκB cDNA (GenBank 

Accession number: DQ090483) contains 1566 bp encoding a 439 amino acid protein with 

a predicted molecular weight of 49 kDa.  The CrIκB protein (Figure 3.3) contains several 

features exemplified by IκB members: 5 ankyrin repeats with homology to the 

mammalian and Drosophila IκB counterparts; two serine residues at the N-terminal 

serine rich region that are critical for its degradation; and the C-terminal PEST (proline-, 

glutamic acid-, serine- and threonine-rich) domain necessary for phosphorylation and 

intrinsic stability of the IκB protein (Ernst et al, 1995).  Furthermore, at the C-terminal 

PEST domain, several putative casein kinase II phosphorylation sites can be identified 

which have been shown to be required for PEST-mediated Cactus degradation (Liu et al, 

1997).  

A comparison of full-length amino acid sequences between CrIκB and insect IκB 

proteins showed that CrIκB has the highest homology to Drosophila IκB homologue, 

Cactus.  Using the vertebrate and invertebrate (mostly insect) IκB protein sequences in 

databases, we performed a phylogenetic analysis of the IκB family.  The accession 

numbers of all the IκB proteins used in this study are listed in Table 3.1.  Based on the 

multisequence alignment, we constructed an unrooted phylogenetic tree.  The 

phylogenetic analysis revealed three main clusters: the invertebrate IκB, vertebrate IκBα, 

and vertebrate IκBβ and IκBε (Figure 3.4).  The horseshoe crab IκB, together with 

Drosophila IκBs, formed a separate cluster that is different from the group of vertebrate 

IκB proteins.  Interestingly, compared with that of the invertebrate IκB proteins, the 
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genetic distances between the vertebrate IκB clades are rather short.  This is in contrast to 

the large genetic distance between the sequences in the invertebrate IκB clade. 

 
 

 
 

Figure 3.3: Amino acid sequence alignment of CrIκB and homologous proteins.  Drosophila 
Cactus (AAA85908) and human IκBα (AAP35754) were aligned with CrIκB using Clustal X.  
The five ankyrin repeats of CrIκB are underlined in black lines. The N-terminal serine rich region 
is underlined by a black line. The potential N-terminal phosphorylation sites which have been 
shown to be critical for IκB degradation in response to extracellular signals are indicated by 
arrows. The C-terminal PEST domain implicated in regulating the stability of IκB is underlined 
in dashed line. The serine residues which are potentially phosphorylated by casein kinase II are 
indicated by triangles. 
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Figure 3.4: Unrooted phylogenetic tree of IκB proteins. The tree was built by the neighbor-
joining method based on the alignment of the sequences using Clustal X. The confidence scores 
(in %) of a bootstrap test of 1000 replicates are indicated for major branching nodes. The 
accession numbers of all the IκB proteins used in this study are listed in Table 3.1. 
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Table 3.1: The sequences used for phylogenetic analysis of the NF-κB and IκB proteins 

 

NF-κB proteins 
Code Name Name Accession Number Organism 
DmDif Drosophila Dif A49435 Drosophila melanogaster 
DmDorsal Drosophila Dorsal AAA28479 Drosophila melanogaster 
AmDorsal Honey bee Dorsal AAP23055 Apis mellifera 
AdRelA Beetle RelA BAD20728 Allomyrina dichotoma 
AgGambif1 Mosquito Gambif1 S71889 Anopheles gambiae 
CrNFκB Horseshoe crab NF-κB DQ090482 Carcinoscorpius rotundicauda
HsRelA Human RelA AAH33522 Homo sapiens 
MmRelA Mouse RelA AAH94053 Mus musculus 
GgRelA Chicken RelA NP_990460 Gallus gallus 
Hsc-Rel Human c-Rel X75042 Homo sapiens 
Drc-Rel Zebra fish c-Rel AAO26402 Danio rerio 
HsRelB Human RelB Q01201 Homo sapiens 
GgRelB Chicken RelB NP_990181 Gallus gallus 
XlRelB Frog RelB S60161 Xenopus laevis 
AsRel1 Ascidian  Rel1 BAB47172 Halocynthia roretzi 
CrRelish Horseshoe crab Relish DQ345784 Carcinoscorpius rotundicauda
Ggp105 Chicken p105 Q04861 Gallus gallus 
Mmp105 Mouse p105 NM_008689 Mus musculus 
Drp100 Zebra fish p100 NP_001001840 Danio rerio 
Hsp100 Human p100 AAW56071 Homo sapiens 
SpRel Sea urchin NF-κB NP_999819 Strongylocentrotus purpuratus
AaRelish Mosquito Relish AAM97895 Aedes aegypti 
DmRelish Drosophila Relish AAF20137 Drosophila melanogaster 

IκB proteins 
Code Name Name Accession Number Organism 
CrIκB Horseshoe crab IκB DQ090483 Carcinoscorpius rotundicauda
AgCactus Mosquito Cactus EAA12805 Anopheles gambiae 
DmCactus Drosophila Cactus AAA85908 Drosophila melanogaster 
AmIκB Honey bee IκB XP_394485 Apis mellifera 
HsIκBα Human IκBα AAP35754 Homo sapiens 
MmIκBα Mouse IκBα NP_035037 Mus musculus 
GgIκBα Chicken IκBα NP_001001472 Gallus gallus 
DrIκBα Zebra fish IκBα AAH62524 Danio rerio 
HsIκBβ Human IκBβ AAP36616 Homo sapiens 
MmIκBβ Mouse IκBβ Q60778 Mus musculus 
HsIκBε Human IκBε AAC51216 Homo sapiens 
MmIκBε Mouse IκBε AAB97517 Mus musculus 
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3.1.3 Cloning of horseshoe crab NF-κB p100 and Relish homologue, 

CrRelish  

              During the process of cloning CrIκB with the degenerate primers designed based 

on the ankyrin repeats, a 120 bp DNA fragment was serendipitously isolated, which 

shows moderate homology with mammalian p100.  Because the ankyrin repeat region is 

conserved between the IκB proteins and class I NF-κB, which include vertebrate p100, 

p105 and invertebrate Relish proteins, we speculated that this 120 bp fragment probably 

represents the horseshoe crab class I NF-κB homologue.  To confirm this possibility, the 

full-length sequence was cloned by 5′ and 3′ RACE.   

Indeed, this clone shows high homology with Drosophila Relish and mammalian 

p100 (Figure 3.5), therefore, it was designated as CrRelish.  The full-length CrRelish 

contains 3405 bp encoding an 1135 amino acids protein.  Like the p100, p105 and Relish 

proteins, it contains an N-terminal RHD with conserved DNA-binding motif and NLS, 

and a C-terminal IκB-like domain (Figure 3.5).  Like Drosophila Relish, the CrRelish 

also contains 6 ankyrin repeats in its C-terminal IκB-like domain.  In Drosophila Relish, 

two serine-rich stretches are located at the N-terminal region (S22-S45) and just 

downstream of the nuclear localization signal (S460-S475).   Similarly, in CrRelish, two 

long serine-rich stretches were found in the N-terminal region and downstream of the 

nuclear localization signal.  Interestingly, similar to mosquito Relish and mammalian 

p100 and p105 but not Drosophila Relish (Shin et al, 2002), a death domain is located at 

the C-terminus of the CrRelish.  Another apparent difference between the CrRelish and 

Drosophila Relish is that the length of the linker sequence between the RHD and C-

terminal IκB domain in CrRelish is longer than that of the Drosophila homologue. 
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Figure 3.5: Amino acid sequence comparison of CrRelish with homologous proteins. 
Drosophila Relish (NM_206467) and human p100 (NM_002502) were used for the comparison.  
Alignments were done by Clustal X. The potential DNA binding motif is indicated by a yellow 
line. The Rel homology domain 1 (RHD) is underlined by blues lines and the Rel homology 
domain 2 (IPT) is marked by purple lines. The NLS (nuclear localization signal) is indicated by a 
black line. The six ankyrin repeats of CrIκB are underlined in red.  The C-terminal death domain 
is indicated by a green line. 
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A phylogenetic study demonstrated that both the horseshoe crab and insect Relish 

proteins were clustered to the same subgroup, distinctive from the invertebrate class II 

NF-κB family proteins (Figure 3.6).  This Relish subgroup could be clustered with p105 

and p100, indicating that these Rel/IκB compound proteins might have branched off at an 

early evolutionary stage from other NF-κB family proteins including the insect NF-κB 

proteins. 

 

Figure 3.6: Phylogeny of CrRelish and related NF-κB proteins. Multiple sequence alignments 
were produced with Clustal X using Gonnet series protein weight matrix. Unrooted phylogenetic 
tree was constructed using neighbor-joining method based on the alignments. The confidence 
scores (in %) of a bootstrap test of 1000 replicates are indicated for major branching nodes. The 
accession numbers of all the proteins used in this study are listed in Table 3.1 
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3.2   CrNFκB binding to κB motif is inhibited by CrIκB 

3.2.1 CrNFκB binding to the κB motif 

To examine the ability of CrNFκB to recognize the κB motif, recombinant His-

tagged RHD of CrNFκB (amino acids: 1-353) was produced.  EMSA was performed 

using the recombinant protein with the C. rotundicauda Factor C (CrFC) promoter NF-

κB binding site.  This CrFC NF-κB response element (-143 to -133) was previously 

reported to be recognized by the human NF-κB and Drosophila Dorsal protein (Wang et 

al, 2003).    

The results of EMSA revealed that the RHD of the CrNFκB could interact with 

the κB response element on CrFC promoter (Figure 3.7).  As a negative control, the GST 

(Glutathione S-transferase) and CrIκB could not bind to the CrFC κB probe.  The 

presence of κB motif is critical to the binding; since mutation of the κB motif (-143 to -

141), from GGG to ATT, abolished the binding (Figure 3.7; lane 8).  The interaction is 

specific as the binding was markedly reduced by excess cold competitor oligonucleotides 

(Figure 3.7; lane 2-3), whereas the addition of mutant competitor did not affect the 

binding (Figure 3.7; lane 6-7).  The identity of the two small bands below the NF-κB-

DNA complexes is still unknown at present.  However, when the mutant probe was used 

for EMSA (lane 8), the intensity of the two lower bands decreased significantly. This 

suggests that they are probably the CrNFκB-DNA complexes as well.  Furthermore, 

because only the N-terminal CrNFκB was used for the EMSA experiments, this result 

indicates that the C-terminal TD of CrNFκB is not necessary for DNA binding activity, 
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which was similarly observed for Drosophila Dorsal and mosquito NF-κB homologues 

(Shin et al, 2002).  

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Binding of CrNFκB protein to horseshoe crab Factor C (CrFC) κB probe.  
Sequences of all probes used in this assay are listed in Table 3.2. Complex formations (lane 1) 
were significantly abolished by cold CrFC probes (lanes 2 & 3), but not by an excess of unlabeled 
mutant CrFC (Mut CrFC) probes (lanes 6 & 7). As a negative control, GST alone or recombinant 
CrIκB showed no binding to the CrFC probe (lanes 4 & 5).  Almost no complex was formed 
when mutant CrFC probe was used (lane 8).  The NF-κB-DNA complexes are indicated by an 
arrow.  

Further analysis of the CrFC promoter revealed other potential Dorsal-like 

binding sites:  Prox3Dor (-219 to -209; -200 to -190; -193 to -183), Dor348 (-359 to -

348), Dor586 (-596 to -586) and Dor788 (-798 to -788) (Wang et al, 2003).  Previous 

studies have shown that the Prox3Dor and the Dor788 site can be recognized by the 

Drosophila Dorsal protein.  Therefore, we examined the binding ability of CrNFκB on 

those potential κB sites.  As shown in Figure 3.8A, the EMSA results indicated that 
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except for Prox3Dor site, the recombinant CrNFκB protein showed no obvious binding to 

the other individual dorsal sites.  This is different with the Drosophila Dorsal protein. 

The probe sequences and the binding characteristics of all the probes with CrNFκB are 

listed in Table 3.2.  Interestingly, CrNFκB also recognizes the consensus mammalian 

NF-κB binding motif, 5′-AGTTGAGGGGACTTTCCCAGGC-3′ (Figure 3.8B), and thus 

CrNFκB may serve as a functional substitute for the vertebrate NF-κB or vice versa.  

Furthermore, our results also suggest that the specific sequence recognition of NF-κB 

transcription factor was acquired early and maintained during evolution. 

 

Figure 3.8: Binding ability of CrNFκB on potential κB sites on Factor C promoter 
and mammalian consensus κB sites.   (A) The CrNFκB can form stable complexs with 
Prox3Dor probe.  The possible NF-κB-DNA complexes are indicated by arrows. Almost no 
complex was formed when Dor348, Dor586, Dor788 probe was used. (B) The CrNFκB binds 
with mammalian consensus κB probe.  The bacteria expressing CrNFκB were sonicated in the 
binding buffer. The bacterial lysate was used for EMSA (lane 1 & lane 2).  The NF-κB-DNA 
complexes are indicated by an arrow.  Almost no complex was formed when bacterial lyste 
without expressing CrNFκB was used (lane 3).  Sequences of all probes used in this assay are 
listed in Table 3.2. 
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Table 3.2: Probes used in EMSA and binding characteristics of CrNFκB and Dorsal  

                   to various probes 
Binding 

characteristics 
Probes DNA Sequence Potential NF-κB or Dorsal-like binding 

sites 
CrNFκB Dorsal#

CrFC κB 5’-AAAAGCCGGGAAATCCATTAGA-3’ (-143) 5’-GGGAAATCCA-3’ (-133) + + 

(-200) 5’-TTGGAAAACGT-3’ (-190) 

(-183) 5’-CGTGAAAACGT-3’ (-193)* Prox3Dor 
5’-AAATTTTTCCTTCTTGTACATTGG
AAAACGTTTTCACGTGACGTACTG 

ATTTGTCTGTCATGCA-3’ 
(-209) 5’-AAGGAAAAATT-3’ (-219)* 

+ + 

Dor348 5’-GTTGTTGTTTTCTTGTAACAG-3’ (-348) 5’-CAAGAAAACAA-3’ (-359)* − − 

Dor586 5’-GTGTGTGTTTTCTTATAGCA-3’ (-586) 5’-TAAGAAAACAC-3’ (-596)* − − 

Dor788 5’-CAAACGAAGAAAAAACTTCC-3 (-798) 5’-GAAGAAAAAAC-3’ (-788) − + 

*Sequences shown are in the antisense strand.  # Adapted from Wang et al (2003). 

 

 

3.2.2 CrNFκB interacts with CrIκB 

By binding to the RHD and masking the NLS of NF-κB, the IκB is the natural 

endogenous inhibitor of the NF-κB activity (Karin and Ben-Neriah, 2000).  To 

investigate whether CrIκB can interact with CrNFκB, pull-down assay and 

immunoprecipitation were performed.  In vitro GST pull-down was performed using 

recombinant His-tagged RHD of CrNFκB (amino acids: 1-353) and full length GST-

tagged CrIκB.  First, we purified the recombinant GST-CrIκB fusion protein and the 

purified GST-CrIκB fusion protein was resolved on SDS-PAGE (Figure 3.9, lane 1).  The 

molecular weight of the purified protein (75 kDa) is consistent with the predicted size of 



 86

the recombinant GST-CrIκB fusion protein.  The His-fusion CrNFκB protein was 

expressed in bacteria as well.  The expression of CrNFκB was confirmed by probing 

bacteria lysates with anti-His antibody (Figure 3.9, lane 2).  Next, the GST-CrIκB fusion 

protein was immobilized on glutathione beads and assessed for its ability to retain 

recombinant His-fusion CrNFκB.  As shown in Figure 3.9, the pull-down assay showed a 

stable complex between these two recombinant proteins (lane 5).  This interaction 

between CrNFκB-RHD and CrIκB was specific as no interaction was observed between 

either control Sepharose beads or GST protein with CrNFκB-RHD (Figure 3.9, lane 3-4).   

 

 

Figure 3.9: In vitro interaction of CrNFκB and CrIκB. GST pull-down assay. The purified 
GST-CrIκB fusion protein was resolved on SDS-PAGE (lane 1). His-fusion CrNFκB protein was 
recombinantly expressed in bacteria. The expression of CrNFκB was confirmed by probing 
bacteria lysates with anti-His antibody (lane 2). His-fusion CrNFκB expression bacteria lysates 
were incubated with glutathione-Sepharose beads loaded with GST-IκB. After washing the beads, 
the eluted proteins were analyzed by SDS-PAGE and detected by anti-His antibody (lane 5). One-
tenth volume of the His-CrNFκB was also electrophoresed as positive control (lane 6). Negative 
control included Sepharose beads alone (lane 3) and Sepharose beads with GST (lane 4). His-
CrNFκB band is indicated by an arrow. 
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To determine whether CrNFκB interacts with CrIκB in vivo, we performed the 

immunoprecipitation assay.  First, we transiently co-expressed full length V5-tagged 

CrNFκB and c-Myc-tagged CrIκB in Drosophila S2 cells.  As shown in Figure 3.10, the 

expression of CrNFκB and CrIκB was confirmed by Western blot using anti-V5 and anti-

c-Myc antibodies. Then the extracts of transfected cells were subjected to 

immunoprecipitation using anti-V5 antibody.  The immunecomplexes were resolved in 

SDS-PAGE and subjected to Western blotting analysis with anti-c-Myc antibody to 

detect interaction.  The CrIκB was confirmed to interact with CrNFκB to form an 

immunoprecipitated complex (Figure 3.10).  This interaction between CrNFκB and 

CrIκB was specific as no interaction was observed without the expression of CrNFκB.   

 

 

Figure 3.10: Immunoprecipitation (IP) of CrNFκB and CrIκB in Drosophila S2 cell. S2 cells 
were transiently transfected with the indicated combination of CrNFκB-V5 and CrIκB-c-Myc 
expression plasmids. The cell lysates were subjected to IP using anti-V5 antibody 48 h after 
transfection. The beads were washed 3 times with lysis buffer and subjected to Western analysis 
with antibodies against V5 and c-Myc. 5 % volume of the cell lysates used for IP was 
electrophoresed as control. 
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3.2.3 CrIκB inhibits CrNFκB DNA-binding activity 

It has been shown that the human IκBα but not IκBβ can efficiently remove NF-

κB from the DNA (Tran et al, 1997).  To verify whether CrIκB could also inhibit the 

DNA-binding activity of CrNFκB, we performed EMSA with or without purified CrIκB 

proteins.  The EMSA results showed that the presence of CrIκB inhibited the DNA-

binding activity of CrNFκB in a dose-dependent manner (Figure 3.11).  However, the 

adding of excess amount of GST did not affect CrNFκB DNA-binding ability.  This 

suggests that CrIκB can specifically inhibit the DNA-binding activity of CrNFκB, which 

was similarly observed in IκBα (Karin and Ben-Neriah, 2000).  We noticed that the 

adding of CrIκB increased the intensity of the nonspecific binding complexes (Figure 

3.11, arrowhead).  This is probably caused by the contaminant in the purified CrIκB or 

the increased amount of free κB probe because CrIκB significantly inhibited the binding 

of CrNFκB to the κB probe.  Altogether, the results demonstrate that CrIκB interacts 

with and specifically inhibits the DNA binding activity of CrNFκB.  In addition, in spite 

of their ancient origin, this familiar relationship between the two homologues forming the 

NF-κB/IκB cascade suggests that they probably underwent co-evolution.   

 

3.3 Functional activation of the CrNFκB/CrIκB cascade 

Sequence analysis of the CrNFκB showed strong similarities between NFκB 

proteins in the horseshoe crab and insects.  The effect of CrNFκB on the gene 

transcription was analyzed in Drosophila S2 cell line.  First, we examined whether 
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overexpression of CrNFκB might activate the expression of an NFκB-controlled reporter 

gene. 

 

 

 

 

 

 

 

 

 

Figure 3.11: CrIκB protein inhibits the CrNFκB DNA-binding activity. A known amount of 
CrNFκB was titrated with increasing amounts of CrIκB (lanes 2-6). As a negative control, GST 
(3 μg) alone does not inhibit the CrNFκB binding to the CrFC κB probe (lane 7). The NF-κB-
DNA complexes are indicated by an arrow.  The unspecific bindings are marked by an arrowhead. 

 

3.3.1 Overexpression of CrNFκB activates κB reporter expression 

Previously, it has been shown that the horseshoe crab Factor C promoter contains 

several potential NF-κB binding motifs which can be recognized by Drosophila Dorsal 

protein (Wang et al, 2003).  Therefore, we examined the ability of CrNFκB to regulate 

gene transcription of CrFC promoter (-186 to +1)-CAT reporter using transient co-

transfection studies with the horseshoe crab wild-type or truncated V5-tagged CrNFκB 

expression constructs.  The schematic representation of the expression vectors and 

reporters used in transfection experiments are shown in Figure 3.12. 
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Figure 3.12: Schematic representation of the expression vectors and reporters used in 
transfection experiments. (A) Schematic representation of the expression vectors used in 
transfection experiments: CrNFκB (full-length); CrNFκB-RHD (lacks the C-terminal 
transactivation domain, TD); CrNFκB-∆NLS (lacks the C-terminal TD and nuclear localization 
signal, NLS); (B) Schematic representation of the wild type (κB) and mutant CrFC-CAT (Mut κB) 
reporter vectors. 

 

As shown in Figure 3.13, the overexpression of full-length CrNFκB resulted in 

10-fold increase in CAT reporter expression compared to the control vector suggesting 

that the CrNFκB has the gene transactivation ability.  However the CrNFκB-RHD 

(amino acids: 1-321) and CrNFκB-ΔNLS (amino acids: 1-266) led to significantly 

reduced CAT expression.  This suggests that the C-terminal TD of CrNFκB, which is not 

necessary for DNA-binding (Figure 3.7), is essential for reporter gene activation.  The 

transactivation activity of CrNFκB-ΔNLS was even lower compared with that of 

CrNFκB-RHD suggesting that the NLS of CrNFκB is also important in regulating NF-κB 

activity.  To show that the κB motif (-143 to -133) of CrFC promoter is responsible for 

the transcriptional activation, transfection studies were carried out using a CrFC promoter 
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(-186 to +1)-CAT reporter where the 5′ end of the potential NF-κB binding motif, 

GGGAAA (-143 to -138), was deleted.  The mutant κB reporter showed significantly 

reduced CAT expression suggesting that the putative κB motif of Factor C promoter is 

functional and necessary for transactivation.  The slight induction by the mutant promoter 

construct (Figure 3.13) is likely due to the presence of putative non-canonical κB 

response element (-156 to -146) in the reporter (Wang et al, 2003).  These results 

demonstrated that CrNFκB is able to trigger the expression of κB reporter.  This 

transactivation capacity relied primarily on the integrity of the C-terminal domain and 

NLS of CrNFκB and on the presence of functional κB binding sites in the reporter gene 

promoter. 

 

 
Figure 3.13: The transactivation ability of CrNFκB. S2 cells were transiently co-transfected 
with wild type and mutant CrFC-CAT reporters (1 μg), a β-galactosidase expression plasmid (50 
ng), together with full length or truncated CrNFκB constructs (500 ng). CAT expression level 
was normalized against the levels of β-galactosidase expression. 
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3.3.2 CrIκB inhibits CrNFκB transactivation ability 

To examine the effect of CrIκB on CrNFκB transactivation ability, similar 

transfection studies were also performed in the presence of increasing amounts of CrIκB.  

Consistent with the role of IκB, which is the natural inhibitor of NF-κB, the 

overexpression of CrIκB caused a dose-dependent reduction in CAT reporter expression 

(Figure 3.14).  Therefore, functional analysis of the CrNFκB and CrIκB revealed that the 

CrNFκB was an efficient NF-κB like activating transcription factor and the CrIκB can 

interact with CrNFκB and inhibited its transactivation activity.  Taken together, these 

results strengthen the idea that horseshoe crab IκB proteins are functionally identical to 

mammalian IκBα. 

 

Figure 3.14: The transactivation ability of CrNFκB is inhibited by CrIκB. Co-transfection of 
CrNFκB (500 ng) and increasing amounts of CrIκB in S2 cells. Results are expressed as relative 
fold-induction in CAT expression as compared to control cells transfected with vector backbone. 
Data are presented as mean ± S.D. of three independent experiments.   
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3.3.3 Subcellular localization of CrNFκB and CrIκB 

To verify whether the decreased gene activation ability of truncated CrNFκB 

(CrNFκB-RHD and CrNFκB-ΔNLS) was attributable to the lack of transactivation 

activity or to impaired nuclear translocation, the subcellular localization of full-length 

and truncated CrNFκB was examined.  Expression vectors for wild type and truncated 

V5-tagged CrNFκB were transiently transfected into S2 cells. The subcellular 

localization of the CrNFκB proteins in Drosophila S2 cells was examined by 

immunofluorescence using anti-V5 antibody. 

As shown in Figure 3.15, the immunofluorescence images demonstrated that both 

the full-length CrNFκB and CrNFκB-RHD (amino acids: 1–321) were evenly distributed 

in the cytoplasm as well as in the nucleus indicating that the TD did not affect the nuclear 

localization of CrNFκB.  This suggests that the decrease in transactivation ability of 

CrNFκB-RHD (Figure 3.13) was not due to the subcellular localization.  Taken together, 

it indicates that despite CrNFκB harboring an atypical carboxy-terminal TD, as compared 

to that of vertebrate or insect homologues (Shin et al, 2005), it is still essential and 

functional for transcriptional activation.  On the other hand, the truncated CrNFκB-ΔNLS 

(amino acids: 1-266) lacking the NLS remained localized to the cytoplasm (Figure 3.15).  

This result indicates that the NLS (RKRQK) of CrNFκB is functional and necessary for 

the nuclear localization.  It is also consistent with the negligible transactivation ability 

observed with the CrNFκB-ΔNLS. 
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Figure 3.15: Localization of full length and truncated CrNFκB and CrIκB in S2 cells.  S2 
cells were transfected with plasmids (1 μg) expressing various CrNFκB-V5 or CrIκB-c-Myc 
proteins. Full length CrNFκB and CrNFκB-RHD are evenly distributed in the cytoplasm as well 
as in the nucleus when expressed alone. CrNFκB-∆NLS and CrIκB localized to the cytoplasm. 
Co-expression of CrIκB results in the re-localization of full-length CrNFκB to the cytoplasm. 
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Next, we examined the subcellular localization of CrIκB using anti-c-Myc 

antibodies.  The immunofluorescence revealed that the overexpressed CrIκB was 

exclusively located in the cytoplasm, which is consistent with the role of IκB proteins.  

To determine the effect CrIκB on the localization of CrNFκB, we co-expressed these two 

proteins. As shown in Figure 3.15, the overexpression of CrIκB resulted in the 

sequestration of CrNFκB exclusively to the cytoplasmic compartment which is similar to 

mammalian IκBα (Huang et al, 2000). 

Taken together, the results show that the interaction between CrIκB and CrNFκB 

interferes with the latter’s ability to translocate into the nucleus and consequential DNA-

binding and gene transactivation.  Interestingly, the activation of CrNFκB is analogous to 

the canonical activation cascade observed in the vertebrate (Chen and Greene, 2004), thus 

lending support to our proposal that the NF-κB/IκB signaling co-evolved early during 

evolution. 

 

3.4 Biological significance of a primitive CrNFκB/CrIκB 

cascade 

Thus far, our studies have utilized purified recombinant proteins and over-

expression of CrNFκB and CrIκB.  However, the relevance of this cascade in vivo is still 

unclear.  To this end, we examined CrNFκB DNA-binding and gene regulation activity in 

the hemocytes, the major immune cell in this invertebrate.  First, to examine the 

relevance of the NF-κB cascade in vivo, we investigated the κB-binding activity in the 

hemocytes – the major immune cells in this invertebrate.  Horseshoe crab hemocyte 
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extracts were tested to see whether they contained proteins that could bind specifically to 

the κB site of the CrFC promoter.  EMSA using whole hemocyte lysates and CrFC κB 

motif showed a stable complex; however mutation of the 5’-end of the CrFC κB motif 

from GGG to ATT abolished the binding.  It suggests the presence of proteins in 

hemocytes which bind specifically to the κB site of CrFC promoter (Figure 3.16).   

To investigate the identity of the proteins that were bound to the CrFC κB motif, 

we incubated CrNFκB with helenalin, which specifically inhibits human NF-κB p65 

DNA-binding activity (Lyss et al, 1998), during the EMSA.  As shown in Figure 3.16, 

the EMSA results indicated that the gel shift complexes were partially reduced by 

increasing doses of helenalin, further suggesting that the complexes were formed by NF-

κB related proteins.  To examine whether CrIκB, the natural inhibitor of CrNFκB, could 

inhibit the formation of DNA-binding complex, we performed similar EMSA in the 

presence of increasing doses of CrIκB.  The EMSA results clearly demonstrate that 

increasing amounts of recombinant CrIκB protein disrupted the formation of CrNFκB-

DNA complex in the horseshoe crab hemocytes (lane 3-6) providing further support to 

the conclusion that the complexes were formed by NF-κB related proteins.  The 

inhibitory effects of CrIκB were specific as no inhibition was observed when 

recombinant GST protein was added (Figure 3.16; lane 7).  This suggests that CrIκB can 

specifically inhibit the DNA-binding activity of NF-κB, which was similarly observed in 

IκBα (Karin and Ben-Neriah, 2000).  Similar to previous observation (Figure 3.11), the 

addition of CrIκB also increased the intensity of the unspecific binding as indicated in 

Figure 3.16 by an arrowhead (lanes 4-6).  This unspecificity is probably caused by the 

contaminant from the CrIκB, as without CrIκB, this complex is undetectable. 
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Figure 3.16: EMSA of hemocyte extracts incubated with the CrFC κB probe. Hemocyte 
extracts from adult horseshoe crab were used for EMSA. Approximately 20 mg of extract was 
incubated with CrFC κB probe (lanes 1 & 3-9) or mutant (Mut) CrFC κB probe (lane 2). Binding 
complexes were progressively abolished by addition of increasing amounts of recombinant CrIκB 
(lanes 3-6) compared to GST (lane 7), which remained unaffected.  Helenalin, a specific inhibitor 
of NF-κB, partially decreases the intensity of the binding which remained unaffected by DMSO 
(vehicle) (lanes 8, 9). The NF-κB-DNA complexes are indicated by an arrow. The unspecific 
binding caused by the adding of CrIκB is marked by an arrowhead.  

  

Next, we carried out super-shift assay using anti-CrNFκB antibodies which were 

produced from synthetic peptides (Biogenes, Germany), and purified using affinity 

column coupled with the peptide.  As shown in Figure 3.17A, anti-CrNFκB antibodies 

caused a partial supershift of the κB-binding-complex confirming that the CrNFκB binds 

κB probe.  We noticed that the majority of the κB-binding complex cannot be 
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supershifted by anti-CrNFκB antibody suggesting that there might be other κB motif-

binding proteins in the horseshoe crab hemocytes.  Indeed, we have cloned another NF-

κB homologue, CrRelish, which shows high homology to the Drosophila Relish and 

mammalian NF-κB p100 and p105.  Previous study has shown that amongst the three 

Drosophila NF-κB homologues  (Dorsal, Dif and Relish), Relish has relatively higher 

and broader binding activity to κB motifs (Han and Ip, 1999).  The similar mechanism 

probably also exists in horseshoe crab indicating that CrRelish may play a major role in 

forming the κB complex.  Nevertheless, the partial supershift with anti-CrNFκB antibody 

suggests that the DNA–protein complex formed with κB motif at least involves the 

presence of CrNFκB.  Furthermore, although the exact identity of the unshifted 

complexes is unknown at this juncture, the data in Figure 3.16 provide evidence to show 

that the complexes are formed by κB motif binding proteins. 

 

 

Figure 3.17: Bacterial infection activates CrNFκB DNA-binding activity. (A) Supershift of 
κB-binding complex by anti-CrNFκB antibody.  The supershift was indicated by an arrow and 
the κB complex was marked by an arrow.  (B) The naïve, 1 and 3 hpi Pseudomonas-challenged 
horseshoe crab hemocyte nuclear extracts were incubated with CrFC κB probe. The intensity of 
the DNA-binding complexes increased significantly after bacterial challenge. 
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To examine the in vivo activation of CrNFκB by infection, horseshoe crabs were 

injected with 1.2 × 107 cfu of P. aeruginosa per kg of body weight.  After infection, the 

hemocytes were isolated at indicated time points and the nuclear extracts were prepared 

to perform EMSA.  As shown in Figure 3.17B, upon infection, the EMSA signal 

increased markedly in the hemocyte nuclear extract suggesting that bacterial infection 

activates the NF-κB pathway.   

We also examined if bacterial infection could cause the degradation of CrIκB 

proteins using anti-CrIκB antibodies.   After infection, the hemocytes were isolated at 

indicated time points and the protein extracts were prepared to perform Western blot.  As 

shown in Figure 3.18, the CrIκB protein was rapidly degraded upon P. aeruginosa 

infection providing further support to our suggestion that bacterial infection can activate 

the CrNFκB signaling pathway. 

 

 
 
 
 

 

 

 

Figure 3.18: Degradation of CrIκB after bacterial infection. Hemocyte extracts were 
prepared from naïve and infected animals according to Materials and Methods.  Western 
blots show proteins extracted from hemocytes over time (min) of infection. Equal protein 
loading and transfer was verified using Limulus actin as a control. 

 



 100

 

We next examined the subcellular localization of CrNFκB and CrIκB in the 

hemocytes upon bacterial challenge.  The cytoplasmic CrNFκB in the naïve hemocytes 

was enriched in the nucleus 30 min after bacterial infection (Figure 3.19) indicating the 

activation of CrNFκB.  Although, the CrIκB remained in the cytoplasm with or without 

bacterial challenge, its intensity decreased significantly upon infection (Figure 3.19).  

This is in agreement with the Western blot (Figure 3.18); which further lends support that 

bacteria infection activates the CrNFκB signaling pathway.   

We also noticed that, in the overexpressed S2 cells, the CrNFκB was evenly 

distributed in the cytoplasm and nucleus (Figure 3.15); however the endogenous CrNFκB 

was exclusively located at the cytoplasm (Figure 3.19).  The overexpression may be 

responsible for the discrepancy, in which the endogenous IκB protein is insufficient to 

capture all of the CrNFκB in the cytoplasm.  Accordingly, coexpression of CrNFκB with 

CrIκB sequesters all of the CrNFκB in the cytoplasm.  
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Figure 3.19: Localization of CrNFκB and CrIκB in horseshoe crab hemocytes.  Hemocytes 
from naïve horseshoe crab or 30 min challenged with P. aeruginosa were collected into 3 % 
saline at 42 °C. The diluted hemocytes were spread on pyrogen free cover slip for cell attachment 
and stained with anti-CrNFκB and CrIκB antibodies. Confocol microscopy showed that the 
CrNFκB and CrIκB exclusively distributed in the cytoplasm in the naïve hemocytes. The 
CrNFκB was enriched in the nucleus after bacterial infection. The CrIκB protein significantly 
decreased 30 min after infection. All the images of CrIκB were taken under the identical 
parameters. 
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In order to determine the expression pattern of CrNFκB and CrIκB upon P. 

aeruginosa infection, RT-PCR was performed with total RNA from hemocytes collected 

at indicated time points post challenge (hpi).  CrNFκB and CrIκB mRNA expression 

were normalized against actin-11 gene for each time point.  As shown in Figure 3.20, the 

RT-PCR results indicated that CrNFκB mRNA was constitutively expressed in the 

hemocytes and remained unchanged throughout the course of infection.  In contrast to 

CrNFκB, the expression of CrIκB was significantly induced after bacterial challenge 

(Figure 3.20). This is consistent with studies on Drosophila and humans in which 

activation of the NF-κB pathway increases the expression of IκB and negatively 

autoregulates the NF-κB activity (Ghosh et al, 1998).  In comparison, CrFC exhibited a 

slight up-regulation over the same time frame as CrIκB, suggesting that both CrIκB and 

CrFC are NF-κB-responsive genes (Figure 3.20).  

 

 

 

 

 

 

 

Figure 3.20: Expression of CrNFκB, CrIκB and CrFC. The hemocytes were collected from 
adult horseshoe crab 1-72 h post-infection (hpi) with P. aeruginosa.  The mRNA was reverse 
transcribed as described in "Materials and Methods".  The cDNA was used as template for PCR 
analysis with specific primers.  The horseshoe crab actin-11 gene was analyzed under the same 
conditions as the internal control. 



 103

To examine whether the expression of CrIκB is indeed affected by NF-κB 

pathway, we studied the effect of NF-κB specific inhibitors on the up-regulation of 

CrIκB.  Two different types of NF-κB inhibitors, MG-132 and helenalin were used in this 

experiment.  MG-132 is a proteasome inhibitor which will block the degradation of IκB 

proteins (Gao et al, 2000).  Helenalin is a more specific inhibitor for NF-κB.  It acts by 

alkylating the p65 subunit of NF-κB and prevents its DNA-binding (Lyss et al, 1998).  

As shown in Figure 3.21A, the injection of DMSO (vehicle) did not affect the activation 

of CrIκB during infection, whereas treatment with two unrelated NF-κB specific 

inhibitors, helenalin or MG-132, prior to infection consistently suppressed the up-

regulation of CrIκB.  This indicates a possible role of NF-κB pathway in the regulation of 

CrIκB expression in vivo.  

 

Figure 3.21: Involvement of NF-κB signaling pathway in the transcription of CrIκB and 
CriNOS.  The expression of these genes were examined in horseshoe crab hemocytes that were 
administered with a vehicle, DMSO (•), helenalin (■) or MG-132 (▲) before challenge with P. 
aeruginosa. One hour after treatment with DMSO, helenalin or MG-132, the horseshoe crabs 
were either left unstimulated (0 h) or challenged with P. aeruginosa and the hemocytes were 
collected at the indicated time points (in h). The RT-PCR products were analyzed on gels and 
quantified relative to the levels of Limulus actin-11 mRNA. Results are expressed as relative fold 
increase as compared to naïve control (0 h) which was set to 1 (A). Without infection of P. 
aeruginosa, the expression of CriNOS was undetectable. Therefore, the expression level of 
CriNOS at 3 h post infection was set to 1 (B). 
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To investigate whether NF-κB signaling also plays a role in regulating other 

immune–related gene transcription, we analyzed the expression of C. rotundicauda 

inducible nitric oxide synthase, CriNOS.  iNOS is a classical NF-κB target gene required 

for a robust innate immune response both in the Drosophila and vertebrates (Bogdan, 

2001; Foley and O'Farrell, 2003).  The iNOS activity has been detected in horseshoe crab 

hemocytes and it has been shown to regulate the aggregation of hemocytes (Radomski et 

al, 1991).     As shown in Figure 3.21B, the expression of CriNOS was significantly 

induced after infection by P. aeruginosa.  When cells were treated with the NF-κB 

specific inhibitors, there was negligible increase of CriNOS mRNA clearly showing that 

NF-κB inhibitors blocked the increase of CriNOS gene transcription (Figure 3.21B).  It 

suggests that, like the iNOS in the vertebrates (Lin et al, 1996), the expression of 

horseshoe crab iNOS mRNA is probably under the control of NF-κB signaling pathway. 

Next, we analyzed the expression of horseshoe crab coagulogen and CrC3, a 

functional homologue of vertebrate complement 3 (Zhu et al, 2005), with or without NF-

κB inhibitors.  The observation that the expression levels of coagulogen and CrC3 

remained unchanged during the bacterial challenge with or without NF-κB inhibitors 

(Figure 3.22A & B) suggests that they are probably not target genes of CrNFκB and that 

these NF-κB inhibitors do not exert a non-specific global effect on gene transcription.   

To further demonstrate that the NF-κB inhibitors only affect NF-κB pathway, we 

analyzed the expression of transglutaminase, which has been shown to be under the 

control of Sp1 and CREB/AP-1 in the vertebrate (Medvedev et al, 1999).  Indeed, 

injection of NF-κB inhibitors did not affect the activation of transglutaminase 

transcription upon infection (Figure 3.22C). 
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Figure 3.22: The effects of NF-κB inhibitors on the transcription of horseshoe crab 
coagulogen, CrC3 and transglutaminase.  The expression of these genes were examined in 
horseshoe crab hemocytes that were administered with a vehicle, DMSO (•), helenalin (■) or 
MG-132 (▲) before challenge with P. aeruginosa.  The RT-PCR products were analyzed on gels 
and quantified relative to the levels of Limulus actin-11 mRNA. Results are expressed as relative 
fold increase as compared to naïve control (0 h) which was set to 1. 

  

Taken together, in this part of the thesis, we have revealed the presence of a 

primitive but functional CrNFκB/CrIκB signaling cascade and demonstrated its relevance 

to the immune defense of the horseshoe crab, C. rotundicauda.  We showed that the 

CrNFκB and CrIκB displayed similar signature motifs found in the vertebrate 

orthologues, despite the huge evolutionary distance between horseshoe crab and 

vertebrates.  The functional studies indicate that the NF-κB activation pathway of 
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horseshoe crab is functionally comparable to that of the Drosophila and mammals, 

suggesting that the roles of NF-κB and its natural inhibitor IκB have co-evolved and 

remained conserved through evolution.  Its ubiquitous regulatory role over many 

downstream immune response genes studied strongly suggests the global function of 

horseshoe crab NF-κB signaling pathway in infection and immunity.  In conclusion, 

although incomplete and non-functional in the C. elegans, the NF-κB/IκB signaling 

pathway has co-evolved and remained well-conserved from horseshoe crab to human, 

playing an archaic but crucial and fundamentally role in innate immune response to 

regulate the expression of critical immune defense molecules. 
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3.5 Isolation and sequence analysis of the horseshoe crab 
TRX 

 
The development of high-throughput methods of gene identification by EST 

analysis has become a commonly used approach to identify genes involved in specific 

biological functions.  This is especially so in organisms where genome data is unavailable 

or limited (Aaronson et al, 1996)  and has accelerated the pace at which new immune 

functions can be discovered.  Recently, our lab has used the subtractive cDNA 

hybridization approach, to isolate and identify differentially expressed genes from the 

horseshoe crab, C. rotundicauda, in response to P. aeruginosa infection (Ding et al, 

2005).  Using this approach, we identified one cDNA clone that was differentially 

expressed in the hepatopancreas (equivalent to liver in mammals) when stimulated with P. 

aeruginosa.  Sequence analysis revealed that this gene encodes a protein possessing the 

characteristic organization of TRX proteins, henceforth referred to as C. rotundicauda 

TRX, Cr-TRX1 (Wang et al, 2007). 

Thioredoxin (TRX), which functions as a general protein-disulfide reductase, is 

commonly known to be a small ubiquitous protein of 12 kDa.  Up to now, no TRX 

protein has been identified in the horseshoe crab and the function of TRX proteins in this 

ancient species is still unknown.  Previously, it has been shown that the human 12 kDa 

TRX1 enhances the DNA-binding of NF-κB by directly reducing the cysteine groups in 

the DNA-binding motif of NF-κB (Figure 1.7).  Therefore, it is interesting to examine if 

the horseshoe crab TRX functions as an NF-κB regulator in this “living fossil”.  In order 

to understand the ancient functions of TRX in the horseshoe crab anti-oxidant system and 
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NF-κB signaling pathway, we decided to first examine the biochemical characteristics of 

the Cr-TRX1 followed by investigating its roles in regulating the NF-κB signaling 

pathway. 

 

3.5.1 Sequence analysis of Cr-TRX1 

Sequence analysis showed that the complete sequence of the Cr-TRX1 cDNA 

encompasses an ORF of 429 bp, a 5’-UTR of 40 bp and a 3’-UTR of 353 bp upstream of 

the poly A tail.  The deduced sequence of Cr-TRX1 encodes a protein of 143 residues 

with a predicted molecular mass of 16 kDa and predicted pI of 5.2.  The overall similarity 

to other 12 kDa TRXs from mammalian, insect and bacterial species were approximately 

18 % suggesting that the 16 kDa and 12 kDa TRX molecules have diverged early during 

evolution (Figure 3.23).  A majority of this homology is clustered in the region 

surrounding the respective active sites which are involved in the interaction with 

substrates (Figure 3.23).  Compared with the 12 kDa TRXs, the Cr-TRX1 is about 35 

residues longer.  The sequence alignment shows that most of the additional residues 

appear as an insertion downstream of the active site (Figure 3.23, black line).  The 

classical 12 kDa TRXs are characterized by a conserved WCGPC motif in the active site, 

which is clearly different from the WCPPC motif in the 16 kDa Cr-TRX1 (Figure 3.23).   

Hitherto, two clusters of 16 kDa TRXs have been identified from the nematodes 

and the trypanosomes (Kunchithapautham et al, 2003; Ludemann et al, 1998), which also 

contain the putative WCPPC active site, and these sequences are 42 % and 25 % identical 

respectively, to Cr-TRX1 (Figure 3.24).  Interestingly, except for the 16 kDa TRXs found 

in the nematodes and trypanosomes, several other 16 kDa TRXs containing WCPPC 
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active site can be identified from the zebrafish, pufferfish and frog (Figure 3.25).  

However, a search of the fully sequenced genomes of the Drosophila and mosquito 

showed that such a 16 kDa TRX is absent in these arthropods.  This provides further 

support to the notion that antioxidant defense in insects differs fundamentally from that in 

other organisms (Kanzok et al, 2001).  Furthermore, the Cr-TRX1 also shows high 

homology (18 % to 29 %) to protein disulfide isomerases (PDI) from several plants, 

which also contain the WCPPC active site sequences (Figure 3.25). 

 
 

 
Figure 3.23: Amino acid sequence comparison between Cr-TRX1 and the 16 kDa TRX, 
Tryparedoxin and 12 kDa TRX.  Alignments were done by Clustal X.  The active sites are 
demarcated by a dashed line.  The extra sequence of 16 kDa TRX is indicated by a black line.  
The additional C-terminal Cys residue of Cr-TRX1 is marked by a big arrow.  Residues 
highlighted in black box are invariant for all of the sequences tested.  The GenBank accession 
numbers of the sequences used in this study are listed in Table 3.3.  
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A phylogenetic analysis demonstrates that Cr-TRX1 clustered amongst the 16 

kDa TRX proteins (Figure 3.25).  This cluster differs from the common 12 kDa TRX and 

the 16 kDa Tryparedoxin from parasitic trypanosomes.  The phylogenetic analysis clearly 

shows that the 16 kDa Cr-TRX1 shares a common ancestor with the nematode 16 kDa 

TRX which is consistent with their high sequence similarity.  This observation suggests 

that the 16 kDa TRXs has evolutionarily diverged from the 12 kDa TRXs at an early 

stage.   

 

Figure 3.24: The homology analysis of Cr-TRX1 and related TRX proteins.  The homology 
tree was produced with DNAMAN.  The sequence homology (in %) of TRX proteins are 
indicated at the branching nodes.  GenBank accession numbers of the sequences are listed in 
Table 3.3. 
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Table 3.3: The sequences used for phylogenetic analysis of the Cr-TRX1 and TRX6 
                  proteins 

 

 

 

16 kDa TRX 
Name Accession Number Organism 

Cr-TRX1 DQ489712 Carcinoscorpius rotundicauda 
B. malayi AY117545 Brugia malayi 
C. elegans AAB37590 Caenorhabditis elegans 
Roundworm AAS78778 Ascaris suum 
Frog AAH71162 Xenopus laevis 
Zebrafish AAH86727 Danio rerio 
Pufferfish CAF97179 Tetraodon nigroviridis 
Mouse NP_083449 Mus musculus 
Human CAH71401 Homo sapiens 

Tryparedoxin (16 kDa) 
T. brucei AJ006403 Trypanosoma brucei 
C. fascicul AAD20445 Crithidia fasciculata 
L. infantum AAS48351 Leishmania infantum 

24 kDa TRX (TRX6) 
Zebrafish XP_696316 Danio rerio 
Frog AAH80091 Xenopus laevis 
Dog XM_541952 Canis familiaris 
Mouse  NP_663573 Mus musculus 
Human BC014127 Homo sapiens 

12 kDa TRX 
E. coli P00274 Escherichia coli 
Yeast TXBY1 Saccharomyces cerevisiae 
Drosophila AF220362 Drosophila melanogaster 
Mosquito AAK70900 Aedes aegypti 
Zebrafish AAH49031 Danio rerio 
Frog AAH72884 Xenopus laevis 
Mouse X77585 Mus musculus 
Human JH0568 Homo sapiens 

Plant protein disulfide isomerase (PDI)-like proteins 
Z. mays AAD04231 Zea mays 
Muskmelon AAU04766 Cucumis melo 
Oak CAC87937 Quercus suber 
A. thaliana AAM64945 Arabidopsis thaliana 
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Figure 3.25: Phylogeny of Cr-TRX1 and related TRX proteins.  Multiple sequence 
alignments were produced with Clustal X using Gonnet series protein weight matrix.  An 
unrooted phylogenetic tree was constructed using neighbor-joining method based on the 
alignments.  The confidence scores (in %) of a bootstrap test of 1000 replicates are indicated for 
major branching nodes.  GenBank accession numbers of the sequences are listed in Table 3.3. 

 
3.5.2 Bacterial expression and purification of recombinant Cr-TRX1 

To obtain large quantities of pure Cr-TRX1 protein for functional studies, the full-

length Cr-TRX1 was cloned into the pGEX-4T-1 plasmid for bacterial expression of GST 

fusion protein.  The cell extract from E. coli transformed with pGEX-TRX and induced 

with IPTG showed a major protein band of 42 kDa in the SDS-PAGE analysis.  The 

molecular weight of this protein agreed well with that predicted for the fusion protein 
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indicating that the GST-Cr-TRX1 fusion protein was successfully expressed.  The cell-

free extract containing the fusion proteins was loaded onto a glutathione-Sepharose 4B 

column and the bound fusion protein was eluted from the matrix with glutathione buffer.  

The purified fusion protein was analyzed with SDS-PAGE.  As shown in Figure 3.26 

(lane 1), the GST-Cr-TRX1 fusion protein was purified satisfactorily.  To obtain the Cr-

TRX1 protein without the GST tag, we digested the fusion protein on the column with 

thrombin.  The eluted Cr-TRX1 was then extensively dialyzed against PBS and analyzed 

by SDS-PAGE (Figure 3.26, lanes 2-4).  The results suggest that the recombinant Cr-

TRX1 has been purified successfully and the purified protein was suitable for functional 

studies. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.26: SDS-PAGE analysis of purified GST-Cr-TRX1 and Cr-TRX1 protein.  Lane 1: 
purifed GST-Cr-TRX1 protein.  Lanes 2-4: Different amounts of purified Cr-TRX1 after 
digestion with thrombin.  Recombinant GST protein was run as a control (lane 5).  Lane 6: 
Protein marker. 
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3.5.3 The CPPC motif of Cr-TRX1 is the redox-active site 

In addition to the two conserved cysteines in the active site, mammalian TRXs 

have three conserved cysteines at their C-terminus.  Those Cys residues may impart 

unique biological properties to the mammalian 12 kDa TRXs (Holmgren, 1985).  The 

crystal structure also revealed that human TRX1 can form a dimer via the Cys73 at the C-

terminus (Weichsel et al, 1996).  However all of these conserved Cys residues are absent 

from the bacterial TRXs and the 16 kDa TRX proteins in C. elegans and the parasite 

trypanosomes (Figure 3.27).  Similar to these 16 kDa TRXs, the Cr-TRX1 also does not 

contain the extra C-terminal cysteines. 

 

 

Figure 3.27 Comparison of CXXC motif, numbers and positions of cysteine residues in 
various TRXs.  The Cys residues are indicated by dashed lines.  The sequences of catalytic motif 
are indicated as well.  TRP14: human 14 kDa TRX-related protein. The GenBank accession 
numbers of the sequences used in this analysis are listed in Table 3.3. 
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Interestingly, in addition to the conserved Cys38 and Cys41, the Cr-TRX1 contains 

1 extra Cys residues (Cys15) at the N-terminus (Figure 3.23, big arrow & Figure 3.27).  

To our knowledge, Cr-TRX1 is the first 16 kDa TRX reported to contain an extra Cys at 

the N-terminus of the active site (Figure 3.27).  Therefore, it is important to identify 

which Cys residue is redox sensitive in Cr-TRX1.  To achieve this, we firstly determined 

the number of active Cys residues in Cr-TRX1 molecule using mass spectrometry.  It has 

been demonstrated that the free SH groups in TRX can be modified with iodoacetamide, 

IAM, however the IAM dose not react with the cysteines that are engaged in the disulfide 

bond.  Therefore, the number of free Cys can be deduced from the molecular weight 

change before and after treatment with IAM (Gommel et al, 1997).  

To determine the number of active Cys residues, we treated oxidized and reduced 

Cr-TRX1 with IAM and compared their molecular masses by MALDI-TOF mass 

spectrum.  As shown in Figure 3.28, the molecular mass of the oxidized Cr-TRX1 was 

not changed on exposure to IAM suggesting none of the three Cys residue is active in the 

oxidized Cr-TRX1.  However the molecular mass of the reduced form of Cr-TRX1 was 

increased from 16,209 Da to 16,323 Da after adding IAM.  The molecular mass 

difference (114 Da) precisely corresponds to the addition of two carboxyamidomethyl 

residues (57 Da) indicating that only two Cys can be reduced by DTT and modified by 

IAM and the remaining one Cys residues remained unmodified.  These results indicate 

that the DTT can reduce the disulfide bond of the oxidized Cr-TRX1 which is 

comparable to the observations in human and bacterial homologues (Holmgren, 1985; 

Powis and Montfort, 2001).  
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Figure 3.28: Identification of the number of active Cys in Cr-TRX1 by MALDI-TOF.  The 
mass increment (114 Da) shown in oxidized Cr-TRX1 (left) and reduced Cr-TRX1 (right), which 
are derivatized with iodoacetamide (IAM) correspond to the addition of two caboxyamidomethyl 
groups (57 Da). The molecular mass difference (114 Da) precisely corresponds to the addition of 
two carboxyamidomethyl residues (57 Da) indicating that two Cys residues can be reduced by 
DTT and modified by IAM. 

 

To investigate which of the Cys residues are redox sensitive, the unmodified and 

modified Cr-TRX1(s) were digested by trypsin and the digested peptides were analyzed 

using mass spectrum.  From the mass differences of the peptides, we can determine 

which peptide is modified by IAM and deduce the position of active cysteines.  As shown 

in Figure 3.29, both the unmodified and modified samples showed characteristic peaks of 

Cr-TRX1.  However, the IAM-modified sample contained 2 additional peaks with 

molecular masses of 2,027 and 2,270 Da, respectively, which are absent from the list of 

trypsin-digested peaks (Table 3.4).  Further examination revealed that these two peaks 

corresponded to the peptides 25-42 and 27-42, in which the two Cys residues have been 



 117

modified by IAM (Table 3.4) suggesting that the two Cys residues in the active motif 

WCPPCR are redox active and can be modified by IAM.  The formation of the peptide 

25-42 is probably due to the missing cleavage by the trypsin at Lys26. 

 

 

 
Figure 3.29: MALDI-TOF analysis of peptides generated by trypsin from IAM-labeled Cr-
TRX1.  Oxidized (top panel) and reduced (lower panel) forms of Cr-TRX1 were labeled with 
IAM and digested before mass spectrometry. The two additional peaks in lower panel 
corresponded to the peptides 25-42 and 27-42, with the two Cys residues modified by IAM.  
Compared to peak 2027.2, peak 2270.3 contains two additional amino acids (DK) because of one 
missed cleavage. 

 

 Further confirmation was obtained from the MS/MS sequencing spectrum.  The 

results clearly showed that both peptide sequences of 25-42 and 27-42 fit unambiguously 

with the active site containing peptide (DKDIIGFYFSAHWCPPCR) and the two Cys 

residues were modified by IAM (Figure 3.30).  Taken together, these results confirmed 

that the conserved Cys residues in the active site of Cr-TRX1 are redox active. 
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Figure 3.30: Identification the position of active Cys residues by MS/MS sequencing.  The 
amino acid sequence of the peptide could be deduced from two complementary series of N-
terminal and C-terminal fragment ions, respectively.  The mass difference between the ions y4 
and y5 is 160 Da which is almost exactly the molecular weight of Cys with the modification of 
IAM. Cys_CAM: carbamidomethyl-cysteine.  Although the y2 ion cannot be identified, the mass 
difference between y1 and y3 ions (257 Da) is just the molecular weight of IAM-modified Cys 
plus Pro (Cys_CAM+Pro) indicating that the Cys38 was modified by IAM as well. 

 

 

Figure 3.31: SDS-PAGE electrophoretic analysis of Cr-TRX1 
in non-reducing (-DTT) and reducing (+DTT) conditions.  The 
dimer formed in non-reducing condition is indicated by an arrow. 
The Cr-TRX1 monomer is indicated by an arrowhead. 
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Table 3.4: The list of trypsin digestion peaks of Cr-TRX1 

 
 
The list of trypsin digestion peaks of Cr-TRX1 was predicted with PeptideMass of ExPASy at   
http://kr.expasy.org/tools/peptide-mass.html using average masses of the occurring amino acid 
residues and giving peptide masses as [M+H]+. The two cysteines containing peptides which can 
be modified by iodoacetamide (IAM) were underlined. *Cys_CAM: cysteines have been treated 
with iodoacetamide to form carbamidomethyl-cysteine. #MC: number of missed cleavages. 

 

It has been reported that the 12 kDa human TRX1 forms covalently linked 

homodimers in solution through intermolecular disulfide bonding via Cys73 (Powis and 

Montfort, 2001).  Interestingly, although it lacks the C-terminal extra Cys residue, the 16 

kDa Cr-TRX1 molecule could also form a stable dimer, yielding a molecular mass of 32 

kDa (Figure 3.31).  To confirm the identity of the 32 kDa band, we performed the mass 

spectrum analysis.  As shown in Figure 3.32, the identity of the 32 kDa Cr-TRX1 dimer 

mass position #MC modification(s) peptide sequence 

966.1829 1-8 0   MEFIQGIK 

1091.2238 15-24 0 Cys_CAM*: 
15 1148.2750
 

CEVNANEALK 

1913.2210 27-42 0 Cys_CAM:  
38, 41 2027.3250
 

DIIGFYFSAHWCPPCR 

2156.4837 25-42 1 Cys_CAM:  
38, 41 2270.5877
 

DKDIIGFYFSAHWCPPCR 

3236.6170 43-71 0   
GFTPILADMYSELVDDSAPF 
EIIFVSSDR 

2723.0210 72-93 0   SEDDMFQYMMESHGDWLAIPYR

932.0209 94-103 0   SGPASNVTAK 

1344.6800 104-116 0   YGITGIPALVIVK 

1064.2011 118-127 0   DGTLISMNGR 

943.0471 128-136 0   GEVQSLGPR 

892.9921 137-143 0   AFQNWAR 
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was confirmed by mass spectrometry.  It is still unclear if such dimer also exists under 

physiological conditions, and therefore, the role of the extra Cys in the dimer formation 

needs further examination.  Further mutation and structure studies would be useful to 

define the function of the extra N-terminal Cys residue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: MALDI-TOF Mass Spectrum of 16 kDa and 32 kDa bands of Cr-TRX1. The 
purified Cr-TRX1 was run in SDS-PAGE in non-reducing (-DTT) condition. As shown in Figure 
3.26, the 16 kDa (upper panel) and 32 kDa bands (lower panel) were cut out and digested with 
trypsin prior to MALDI-TOF analysis. The fingerprints of the two bands suggest that both of 
them are Cr-TRX1. 
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3.6 Biochemical characterization of Cr-TRX1 

3.6.1 The spectral properties of Cr-TRX1 

It has been demonstrated previously that the classic 12 kDa TRX from the E. coli 

shows a 3.5-fold increase in fluorescence intensity upon reduction of the active site Cys 

residue(s) due to the quenching effect of the active site disulfide bond on the fluorescence 

of two adjacent Trp (W) residues, Trp26 and Trp28 (Windle et al, 2000).  Here, we found 

that the 16 kDa Cr-TRX1 also contains a Trp residue in the active site motif, WCPPC, 

although it lacks the Trp26 residue that is found in the E. coli TRX (Figure 3.23).  To 

confirm whether the 16 kDa Cr-TRX1 displays a similar intrinsic fluorescence 

characteristic, the recombinant Cr-TRX1 was reduced by 1 mM DTT.  The reduction of 

Cr-TRX1 resulted in a 2-fold increase in the Trp fluorescence intensity at 340 nm (Figure 

3.33), suggesting changes in the microenvironment around the Trp residue juxtaposing 

the CXXC active site.  The slightly lower increase in fluorescence intensity (2-fold) 

compared with that of E. coli TRX (3.5-fold) may be attributable to the absence of Trp26 

in Cr-TRX1.   

 

3.6.2 Insulin reduction activity of Cr-TRX1 

The interchain disulfide bonds of insulin are substrates of thioredoxin.  Reduction 

of the disulfide linkage releases the A and B chains of insulin, the latter of which 

precipitates. Therefore, the insulin reduction can be measured turbidometrically due to 

the precipitation of the free insulin B chain (Kunchithapautham et al, 2003).  To 

investigate the activity of Cr-TRX1 in catalyzing the reduction of insulin, we compared 

the rates of insulin reduction by DTT in the presence and absence of Cr-TRX1 and E. coli 
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TRX.  In the reactions containing only DTT or DTT plus 5 μM recombinant GST, 

measurable precipitation was observed through 30 min.  With the addition of Cr-TRX1 or 

E. coli TRX, precipitates were detected within 5 min indicating that both TRXs have the 

disulfide reductase activities targetting insulin as a substrate (Figure 3.34).  Interestingly, 

the kinetics of disulfide reduction observed for Cr-TRX1 was approximately 2-fold more 

efficient at reducing insulin than the equivalent amounts of E. coli TRX (Figure 3.34).  In 

addition, the initial rate of insulin reduction was greater with Cr-TRX1.  These observed 

redox activities of Cr-TRX1 (Figure 3.34) and the differential spectral properties of 

reduced and oxidized Cr-TRX1 (Figure 3.33) indicate that the Cr-TRX1 is not only 

functional, but it appears more efficacious than the E. coli counterpart.   

 

 
Figure 3.33: Fluorescence emission spectra of reduced and oxidized Cr-TRX1.  Reduction of 
oxidized Cr-TRX1 was achieved by addition of DTT to a final concentration 1 mM.  The Tris 
solution without Cr-TRX1 was run as control (blank). 
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Figure 3.34: Reduction of insulin by recombinant Cr-TRX1.  The increase in turbidity 
measured at OD600 nm was plotted against reaction time.  E. coli TRX was used as a positive 
control (× and ▲).  Recombinant GST was included as a negative control (•). 

 
3.6.3  Reduction of Cr-TRX1 by mammalian thioredoxin reductase 

The TRX function requires a reversible change in the redox status of the CXXC 

motif, and the reduction of oxidized TRX molecules is catalyzed by the NADPH-

dependent enzyme, TRX reductase (TRXR).  To test the cross-species (cross-phylum in 

this case) functionality of Cr-TRX1, we examined whether oxidized Cr-TRX1 can be 

reduced by rat TRXR in the presence of NADPH, by monitoring NADPH oxidation at 

340 nm.  As shown in Figure 3.35, the oxidized Cr-TRX1 was reduced by the rat TRXR 

and the reduction rate was slightly faster than that of the oxidized E. coli TRX, 

suggesting the 16 kDa Cr-TRX1 is functionally conserved with the classical 12 kDa TRX.  

As negative controls, the recombinant GST and commercial BSA cannot be reduce by the 

rat TRX reductase.  
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Figure 3.35: Reduction of Cr-TRX1 by rat TRX reductase (TRXR).  Reduction of Cr-TRX1 
by TRXR was assayed at room temperature by monitoring A340 nm in the presence of GST 5 mM 
(×), BSA 5 mM (∗), Cr-TRX1 1 mM (•) and E. coli TRX 1 mM (▲).  

 

3.6.4 The horseshoe crab thioredoxin functions as an antioxidant  

Normal cellular processes that involve oxygen result in the production of reactive 

oxygen species (ROS) such as singlet oxygen, hydroxyl radical and hydrogen peroxide, 

(H2O2).  Each of these species has the ability to oxidize macromolecules and thereby to 

induce mutation of DNA, impairment of protein function, and lipid peroxidation.  

Intracellular ROS is removed mostly by superoxide dismutase (SOD), catalase, 

glutathione peroxidase and peroxiredoxin (Chang et al, 2004).  It has been suggested that 

TRX also plays a direct role as an antioxidant or scavenger of ROS.  TRX by itself can 

scavenge singlet oxygen, hydroxyl radical and hydrogen peroxide, H2O2 (Hirota et al, 
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2002), thereby buffering the effect of the avalanche of ROS.  To test whether the novel 

Cr-TRX1 is capable of functioning as an antioxidant to scavenge H2O2, the peroxidase 

activity assay (Jeong et al, 2004b) was performed using the recombinant Cr-TRX1.  

Indeed, Cr-TRX1 was capable of reducing H2O2 with an activity comparable to that of 

TRX from E. coli (Figure 3.36).  Like the E. coli TRX, the peroxidase activity of Cr-

TRX1 was also dependent on the enzyme concentration. 

 

 

Figure 3.36: Peroxidase activities of Cr-TRX1.  Peroxidase reactions were performed at 30 ℃ 
and monitored on the basis of A340.  Assay mixtures containing GST (•) served as negative 
controls. 

 

To further confirm that Cr-TRX1 can function by itself as an antioxidant and 

protect DNA, we performed the DNA nicking assay (Kunchithapautham et al, 2003).  

The assay employed the mixed function oxidation (MFO) system that generates hydroxyl 

(OH-) and thiol (RS*) radicals capable of damaging a DNA template.  The extent of 

DNA damage was evaluated by assessing the shift in gel mobility of a plasmid as it was 
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converted from the supercoiled to the nicked form (Kunchithapautham et al, 2003).  In 

the DNA nicking assay, when the plasmid DNA was exposed to the MFO system, all of 

the plasmid DNA was converted to the nicked form within 60 min.  The recombinant Cr-

TRX1 proteins rescued the nicking reaction in a dose-dependent manner (Figure 3.37, 

lanes 2 to 5).  As a control, GST or BSA showed no marked effect on rescuing the 

plasmid DNA nicking activity (Figure 3.37, lanes 6 & 7) suggesting that the protection 

effect was specific to Cr-TRX1 and not simply due to the presence of proteins in the 

reaction. 

 

 

 
Figure 3.37: Cr-TRX1 functions as an antioxidant to protect DNA from being nicked by 
MFO.  DNA nicking assays were performed in the MFO system with or without Cr-TRX1.  The 
extent of protection against MFO-mediated nicking was evaluated with increasing concentrations 
of Cr-TRX1.  Recombinant glutathione S-transferase (GST) and bovine serum albumin (BSA) 
were used as negative controls.  The supercoiled, nicked and linearized forms of DNA are 
indicated. 
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3.7 Involvement of Cr-TRX1 in the NF-κB signaling pathway 

It has been shown that the binding of NF-κB to DNA requires the NF-κB to be 

fully reduced especially the Cys62 of the NF-κB p50 subunit (Powis and Montfort, 2001).  

In the nucleus, the human 12 kDa TRX1 enhances the DNA-binding of NF-κB by 

directly reducing the cysteine groups in the DNA-binding motif of NF-κB (Figure 1.7) 

(Flohe et al, 1997; Matthews et al, 1992).  Tumor necrosis factor α (TNFα) was one of 

the first receptor ligands shown to generate ROS in nonphagocytic cells and is among the 

ligands whose signaling pathways have been studied most extensively in relation to ROS 

production (Jeong et al, 2004a; Schreck et al, 1991).  We therefore examined the effect of 

overexpression of Cr-TRX1 on TNFα-induced NF-κB activation in HeLa cells.   

 

3.7.1 Cr-TRX1 activates NF-κB in HeLa cells 

As shown in Figure 3.38, transient overexpression of wild type Cr-TRX1 caused a 

dose-dependent activation of TNFα-induced κB-reporter expression.  However, the 

overexpression of mutant Cr-TRX1 caused a slight decrease of κB-reporter expression 

suggesting that the oxidoreductive activity of Cr-TRX1 is essential to enhance the NF-κB 

activity.  Furthermore, the Western blot with anti-p50 antibody revealed equal expression 

of NF-κB p50 protein suggesting that the overexpression of Cr-TRX1 did not affect the 

protein synthesis of p50 (Figure 3.39A).  The overexpression of the 12 kDa TRX has 

been shown to affect TNFα-induced degradation of IκBα in HeLa cells (Zhu et al, 2005).  

Therefore, we also examined the effects of Cr-TRX1 on the IκBα degradation.  Unlike 

the 12 kDa TRX, the Cr-TRX1-transfected cells showed no obvious effect on the 
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TNFα−induced degradation of IκBα (Figure 3.39A).  Then, we investigated whether the 

enhanced NF-κB activity is attributable to its nuclear translocation.  However, the nuclear 

localization of NF-κB p50 was not affected by overexpression of Cr-TRX1 (Figure 

3.39B). 

Subsequently, to examine whether Cr-TRX1 affects the NF-κB DNA-binding 

activity, electrophoretic mobility-shift assay (EMSA) was applied.  As demonstrated in 

Figure 3.40, the wild type Cr-TRX1 slightly enhanced NF-κB DNA-binding activity.  In 

contrast, the mutant form of Cr-TRX1 inhibited the NF-κB DNA-binding activity (Figure 

3.40).  This result is consistent with the κB-reporter assay in which the mutant Cr-TRX1 

also slightly inhibited the TNFα-induced NF-κB activity (Figure 3.38), further 

suggesting that the oxidoreductive activity of Cr-TRX1 is essential in regulating the NF-

κB activity. 

 
Figure 3.38: Effect of overexpression of Cr-TRX1 on the NF-κB activity.  HeLa cells were 
transfected with indicated amounts of wild type and mutant (Mut) Cr-TRX1 together with 0.5 μg 
of pκB-Luc & pRL-CMV (internal controls).  The luciferase activities were measured with dual-
luciferase assay kit and were expressed as fold-increase relative to the internal control.  Data are 
means ± S.D. of values from 3 independent experiments. 
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Figure 3.39: Effect of Cr-TRX1 on the expression and subcellular localization of NF-κB. (A) 
Effects of Cr-TRX1 expression on NF-κB p50 and IκBα expression. HeLa cells were transfected 
with Cr-TRX1 as mentioned in Figure. 3.38. Cell lysates were subjected to Western blot analysis.  
The FLAG-tagged Cr-TRX1 was detected with anti-FLAG antibody. (B) Cr-TRX1 
overexpression did not affect the subcellular localization of NF-κB p50.  After transfection with 
wild-type or mutant Cr-TRX1, cells were treated by TNFα (20ng/ml). The cytoplasmic and 
nuclear extracts were prepared using NE-PER Nuclear and Cytoplasmic Extraction Reagents 
(Pierce).  The nuclear and cytoplasmic extracts were subjected to Western blot analysis using 
anti-p50 antibodies.  The level of actin was analyzed as control.    

 
 
 

 
Figure 3.40: Cr-TRX1 increases TNFα-induced NF-κB DNA-binding activity.  HeLa cells 
were transfected with indicated amounts of wild type and mutant (Mut) Cr-TRX1.  Cells were 
harvested at 48 h after transfection.  Nuclear extracts were prepared and EMSA was performed as 
described under “Materials and Methods”. 
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3.7.2 Biological significance of oxidative stress in the regulation of NF-

κB signaling pathway 
 

Thus far, our studies have demonstrated that Cr-TRX1 acts as an antioxidant to 

regulate NF-κB activity in mammalian cells and the regulatory roles of Cr-TRX1 are 

attributable to its oxidoreductive activity.  Therefore, we reasoned that oxidative stress 

could also play a crucial role in mediating immune response in the horseshoe crab, an 

ancient protostome species (Zhu et al, 2005).  In our recent study, we have shown that 

Gram-negative bacteria infection activates the expression of immune-related genes, such 

as CriNOS (C. rotundicauda inducible nitric oxide synthase) and CrIκB (C. rotundicauda 

inhibitor of NF-κB) via NF-κB signaling pathway in horseshoe crab (Wang et al, 2006b).   

To examine the potential effect of the antioxidant on the NF-κB-regulated 

immune gene expression in response to Gram-negative bacterial infection, we treated 

horseshoe crabs with an antioxidant, pyrrolidine dithiocarbamate (PDTC), before 

challenging with P. aeruginosa.  As shown in Figure 3.41A & B, the administration of 

PDTC consistently suppressed the anticipated up-regulation of immune-responsive genes, 

CriNOS and CrIκB, indicating a possible role of reactive oxygen species in the activation 

of NF-κB mediated gene expression in vivo.  As a positive control, we showed that the 

expression of CriNOS and CrIκB genes were also suppressed by an inhibitor of NF-κB 

pathway, MG-132 (Simeonidis et al, 2003).  Furthermore, we analyzed the expression of 

horseshoe crab transglutaminase, whose expression in the vertebrate has been shown to 

be under the control of Sp1 and CREB/AP-1 (Lu et al, 1995; Medvedev et al, 1999).  

Injection of the NF-κB inhibitor, MG-132, did not affect the activation of the 

transglutaminase transcription upon Gram-negative bacterial infection (Figure 3.41C).  
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However, injection of PDTC inhibited the expression of transglutaminase by 50 % 

suggesting that the antioxidant also regulates the AP-1 signaling pathway as has been 

observed in humans (Witte et al, 2000).  As a negative control, the expression of CALF 

(C. rotundicauda anti-LPS factor) was shown to be unaffected with or without NF-κB 

inhibitors, suggesting that the action of the antioxidant, PDTC, was specific and did not 

randomly affect the overall mRNA synthesis (Figure 3.41D). 

 

Figure 3.41: Antioxidant regulates NF-κB signaling pathway in horseshoe crab.  The 
expression of horseshoe crab iNOS (CriNOS), IκB (CrIκB), transgultaminase 
(CrTransgultaminase) and CALF (C. rotundicauda anti-LPS factor) genes in hemocytes was 
examined after challenge with P. aeruginosa with or without inhibitors (■).  One hour after 
treatment with PDTC (♦) or MG-132 (▲), the horseshoe crabs were either infected with P. 
aeruginosa or left unchallenged (0 h) and the hemocytes were collected at the indicated time 
points (in h).  The RT-PCR products were analyzed on gels and quantified relative to the levels of 
horseshoe crab actin-11 mRNA.  Results are expressed as relative fold-increase compared to 
naïve control (0 h) which was set to 1. 
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To examine whether P. aeruginosa infection affects Cr-TRX1 expression, the 

transcript profile of Cr-TRX1 was monitored using RT-PCR with total RNA extracted 

from hemocytes collected at indicated time points post P. aeruginosa challenge.  As 

shown in Figure 3.42, the expression level of Cr-TRX1 decreased slightly after infection.  

This is in agreement with our earlier finding that the Cr-TRX1 gene was obtained from 

the hepatopancreas reverse subtractive library (Ding et al, 2005).  

 

 
Figure 3.42: RT-PCR analysis of the expression level of Cr-TRX1 during bacterial infection.  
The mRNA expression of Cr-TRX1 was analyzed 1-72 h post-infection (hpi) with P. aeruginosa. 
The horseshoe crab actin-11 gene was analyzed under the same conditions as the internal control. 

 
 
3.8 The 16 kDa TRX is conserved from C. elegans to human 

3.8.1 Evolutionary conservation of 16 kDa TRX 

A homology search of the GenBankTM database was conducted using the Cr-

TRX1 cDNA as template.  Interestingly, a number of putative 16 kDa TRX sequences 

were revealed from a variety of organisms.  As shown in Figure 3.43, the 16 kDa TRXs 

are present in several nematode species and in the vertebrates, from zebrafish to human 

suggesting that the 16 kDa TRXs are evolutionary conserved.  Sequence alignment of 
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these homologous proteins revealed that the WCPPC motif was fully conserved amongst 

the invertebrates (Figure 3.44), indicating the potential importance of this motif in the 

function of the16 kDa TRX. 

 

 

 

Figure 3.43: Phylogenetic study of the 16 kDa Cr-TRX1 and related TRX proteins.  Multiple 
sequence alignments were produced with Clustal X using Gonnet series protein weight matrix.  
GenBank accession numbers of the sequences are listed in Table 3.3. 
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Figure 3.44: Sequence analysis of the 16 kDa Cr-TRX1 and related TRX proteins.  Amino 
acid sequences comparison between Cr-TRX1 and the 16 kDa, 24 kDa and 12 kDa TRXs.  
Alignments were done by Clustal X.  The Cys residues in the active sites are demarcated by *.  
Black and grey shades indicate identity and similarity of the residues, respectively.  GenBank 
accession numbers of the sequences are listed in Table 3.3. 
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 Surprisingly, in the vertebrates, another family of TRX-like proteins, with a 

molecular weight of 24 kDa, also shows high homology to the 16 kDa Cr-TRX1 

suggesting that the 16 kDa TRX probably underwent gene duplication and divergence in 

the vertebrates and gave rise to the 24 kDa TRX (Zhang, 2003).  An alignment of the 16 

kDa and 24 kDa TRXs revealed that the active sites of these TRXs have undergone 

marked changes (Figure 3.44).  Alternative active-site sequences include ACPQCQ and 

WCSPCR.  For several members of the 16 kDa TRXs and 24 kDa TRXs, even the most 

conserved Cys has been replaced with Ser (Figure 3.44).  However, besides the active 

motif, several other regions remained conserved amongst the 16 kDa TRXs compared 

with 12 kDa TRXs (Figure 3.44).  This observation suggests that the 16 kDa TRX has 

evolutionary diverged from the 12 kDa TRX at an early stage.   

 

3.8.2 Human TRX6, a homologue of Cr-TRX1, regulates NF-κB DNA 
binding activity 

 
In order to assess whether the function of this family of TRX are also 

evolutionarily conserved, we decided to examine the function of a human homologue of 

Cr-TRX1.  There are two highly homologous proteins of the Cr-TRX1 in the human 

genome, one is 16 kDa and another one is 24 kDa.  Because the 16 kDa human TRX 

harbors a change in one of the two conserved cysteines in the active motif (Cys to Ser) 

(Figure 3.44), we chose the human 24 kDa TRX protein (GeneBank accession number, 

BC014127) for further functional studies.  The human 24 kDa TRX is henceforth referred 

to as TRX6 (“thioredoxin-like 6”, NCBI).  The DNA sequence of TRX6 consists of an 

ORF of 636 bp, a 5’-untranslated region of 47 bp including an in-frame stop codon.  



 136

Compared with the 16 kDa Cr-TRX1, the TRX6 is 8 kDa longer.  The predicted protein 

does not contain a known signal peptide for a specific subcellular localization.  A search 

of the human genome sequence revealed that the gene for TRX6 is located at 

chromosome 19p13.12 and comprises 2 exons as well as 1 intron.  BLAST search using 

Cr-TRX1 as template indicated the the TRX6 protein shares 27% identities and 54% 

homology with Cr-TRX1 respectively.  The sequence alignment shows that most of the 

additional residues appear at the extreme C-terminus (Figure 3.44).  Next, we predicted 

the structures of TRX6 and Cr-TRX1 using the Swiss-model program at the Expasy 

website.  The structure of TRX6 is highly superimposable on that of Cr-TRX1 and 

Trypanosoma 16 kDa TRX, despite limited sequence identity.  Like other 16 kDa TRXs, 

the Cr-TRX1 and TRX6 contain a characteristic thioredoxin fold, (Alphey et al, 1999;  

Martin, 1995) consisting of 5 central β-sheets and 4 flanking α-helices (Figure 3.45).  

  

Figure 3.45:  The predicted structures of Cr-TRX1 and the human TRX6.  The structure of 
Trypanosoma 16 kDa TRX was obtained from the Protein Data Bank (PDB).  The structures of 
Cr-TRX1 and human TRX6 were predicted using the Swiss-model program at the Expasy 
website: http://swissmodel.expasy.org/SWISS-MODEL.html.  The white arrows indicate the 
active sites of the Trypanosoma 16 kDa TRX and Cr-TRX1.  The additional sequence after the 
conserved active site in TRX6 (dashed arrow) is hypothesized to affect the activity of the TRX6.  

 

Trypanosoma 16 kDaTRX Cr-TRX1 Human TRX6 

Active site Additional sequence 
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In order to determine the enzymatic functions of TRX6, we expressed the 

recombinant TRX6 in E. coli.  However, when expressed in vitro, the TRX6 lacked 

detectable oxido-reductase activity.  This loss of function is probably due to an additional 

sequence (FYVLRAAQ) after the active site (Figure 3.44), resulting in a different 

structure around the catalytic site of the TRX6 (Figure 3.45).  Furthermore, a highly 

conserved tryptophan (W) residue, located before the active site motif of TRX6 was 

replaced by alanine (A) residue (Figure 3.44), which might also have affected the 

enzymatic activity or substrate specificity of the recombinant TRX6. 

To examine if TRX6 has conserved the NF-κB regulatory activity of Cr-TRX1, 

we expressed the recombinant TRX6 in E. coli and examined its ability to regulate 

horseshoe crab NF-κB, CrNFκB (a homologue of human NF-κB p65), DNA-binding 

activity by EMSA (Wang et al, 2006b).  As shown in Figure 3.46, the TRX6 alone did 

not bind to the κB motif (lane 2).  However, it can significantly enhance the DNA-

binding activity of CrNFκB (lane 4) suggesting that like Cr-TRX1, the human TRX6 

probably also possesses the NF-κB regulatory ability although the recombinant TRX6 

has no detectable oxidoreductase activity.  The augmentation is specific, as the control 

recombinant GST showed no effect on the binding activity of CrNFκB (lane 5). 

The TRXs that have been characterized to date are nearly uniformly 12 kDa 

proteins with an active motif of WCGPC.  In this thesis, we report the identification of a 

16 kDa TRX, with an active motif of WCPPC, in horseshoe crab (an arthropod) and 

demonstrate that the 16 kDa TRX are evolutionarily conserved from C. elegans to human 

(Wang et al, 2007).  Despite notable differences in the molecular mass and amino acid 

sequence of the catalytic site, the 16 kDa Cr-TRX1 appears to be functionally similar to 
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the classical 12 kDa TRXs.  Our studies also showed that the 16 kDa Cr-TRX1 could 

positively regulate the TNFα-induced NF-κB activation and the enhancement of NF-κB-

dependent gene expression was associated with increased NF-κB DNA-binding activity.  

Although the exact mechanism underlying the regulation of the NF-κB activity by Cr-

TRX1 and TRX6 is still unknown; our studies strongly suggest that the NF-κB regulatory 

activity might be a common characteristic of the 16 kDa TRXs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.46: TRX6 enhances horseshoe crab NF-κB (CrNFκB) DNA-binding activity.  
EMSA was performed using the recombinant CrNFκB, TRX6 protein and κB probe.  Purified 
recombinant TRX6 (200 ng) or GST (2 μg) were preincubated with CrNFκB at room temperature 
for 30 min and mixed with the labeled κB oligonucleotide (lanes 4 & 5). Complex formations 
were significantly enhanced by TRX6 (lanes 4), but not by recombinant GST (lane 5).  The 
negative control, TRX6 or recombinant GST alone, showed no binding to the κB probe (lanes 2 
& 3).  The complexes are indicated by an arrow.  Experiments were repeated three times with 
almost identical outcome and a representative result is shown. 
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CHAPTER 4:   DISCUSSION 

 

4.1 The evolutionarily conserved NF-κB signaling pathway 

NF-κB family members are transcriptional factors that regulate the expression of 

a large number of target genes involved in physiological processes such as immune 

response, inflammation, apoptosis and progression of the cell cycle in different organisms 

(Bonizzi and Karin, 2004).  Since the discovery of NF-κB transcription factors in 1986 

(Sen and Baltimore, 1986), a wealth of information in understanding the mechanisms that 

operate in the NF-κB signaling pathway, and the functions of NF-κB in various diseases, 

has been generated for the mammalian systems (Hayden and Ghosh, 2004).  However, 

other than evidence of Toll homologues in several insect species, an IKKβ homologue in 

an oyster and NF-κB homologues in several dipteran insects (Hoffmann and Reichhart, 

2002), little is known about the NF-κB signaling pathway in other invertebrates.  

Therefore, we are in great need of information on the NF-κB signaling pathway in other 

invertebrates besides the insects.  In this study, we have isolated and characterized the 

NF-κB and IκB from the horseshoe crab (C. rotundicauda), and named these homologues 

CrNFκB and CrIκB, respectively.  To the best of our knowledge, except for Cactus in 

Drosophila, CrIκB is the only IκB characterized in invertebrates and CrNFκB is the only 

NF-κB identified in a non-insect species of arthropods. 
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4.1.1 The NF-κB/IκB signaling cascade of horseshoe crab is 

functionally comparable to that of the Drosophila and mammals 

Phylogenetic analysis showed that CrNFκB and CrIκB share high level of 

similarities with their mammalian homologues.  Despite the huge evolutionary distance 

between horseshoe crab and vertebrates, we showed that the CrNFκB and CrIκB display 

similar signature motifs as their respective vertebrate orthologues, notably, the Rel 

homology domain (RHD), the DNA binding motif and the nuclear localization signal 

(NLS) of CrNFκB; the 5 ankyrin repeats and the N-terminal potential phosphorylation 

sites of CrIκB (Figure 3.1 and 3.3).  In addition, from a fragment obtained during the 

cloning of CrIκB, we isolated the horseshoe crab p100 and p105 homologue, CrRelish.  

Like human p100, p105 and insect Relish proteins, the CrRelish is a mosaic protein 

which contains both RHD and inhibitory IκB domain (Figure 3.5).  It will be important to 

determine whether CrRelish is proteolytically processed during bacterial challenge.  The 

fact that human p100 and Drosophila Relish are cleaved to release its N-terminal 

activation domains suggests that the CrRelish probably undergoes similar process of 

activation upon bacterial infection.  Also, demonstrating the presence of a compound NF-

κB protein (CrRelish contains both RHD and inhibitory IκB domain) in horseshoe crab, 

insects, as well as mammals provides further support for the postulation that these 

proteins may serve important regulatory roles that cannot be accomplished by separating 

Rel/NF-κB and IκB proteins (Dushay et al, 1996).  Furthermore, the discoveries of 

CrNFκB, CrIκB and CrRelish in horseshoe crab strengthen the similarity of the 

mechanisms used by invertebrates and vertebrates to regulate their immune responses.   
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It has been shown that the RHD of the NF-κB transcription factor is the domain 

that binds the κB site.  Therefore, we examined the specific binding of the recombinant 

CrNFκB RHD with oligonucleotides harboring κB motif(s).  Results of EMSA strongly 

suggest that the horseshoe crab CrNFκB can bind to the κB site and its binding 

specificity was also confirmed.  Using EMSA, we demonstrated that the DNA 

recognition mechanism of CrNFκB is reminiscent of that of mammalian and Drosophila 

species.  We also observed that horseshoe crab CrNFκB proteins could physically 

interact with CrIκB proteins, providing evidence that horseshoe crab NF-κB molecules 

are functionally compatible with their mammalian counterparts.   

CrNFκB shows highest homology with NF-κB proteins in insects.  Thus, given 

the lack of horseshoe crab cell lines, it appeared appropriate to investigate the CrNFκB 

functions by performing transfection experiments in Drosophila cell line.  To test the 

transcription activation, the CrNFκB and κB reporter constructs were transfected into the 

Drosophila S2 cell.  Our results indicated that overexpression of CrNFκB can activate the 

C. rotundicauda Factor C (CrFC) κB reporter expression and the κB motif on the 

promoter of the reporter is necessary for the transactivation activity.  Furthermore, we 

demonstrated that CrIκB could specifically inhibit the binding of CrNFκB to the κB 

motif of the CrFC promoter and reduce its transcriptional activity.  Cell imaging also 

revealed that the NLS of CrNFκB is critical for its translocation into the nucleus.  The 

process can be inhibited by overexpression of CrIκB suggesting that the activity of 

CrNFκB is modulated by an autoregulatory feedback mechanism akin to that of the 

mammalian and Drosophila systems (Ghosh et al, 1998).   
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Gram-negative bacterial infection caused rapid degradation of CrIκB and nuclear 

translocation of CrNFκB, suggesting that the horseshoe crab NF-κB signaling pathway 

can be activated by pathogen infection.  Using RT-PCR, we confirmed that CrIκB is a 

target gene of CrNFκB.  This feedback regulation of NF-κB activity has also been 

observed in the vertebrates and Drosophila (Tran et al, 1997).  Lastly, we demonstrated 

that CriNOS, a homologue of mammalian iNOS, which is a classical target gene of NF-

κB pathway in mammals, is also transcriptionally regulated by CrNFκB in the horseshoe 

crab.  In summary, this study showed that the NF-κB activation pathway of the horseshoe 

crab is functionally comparable to that of the Drosophila and mammals, suggesting that 

the roles of NF-κB and its natural inhibitor, IκB, have co-evolved and remained 

conserved through evolution.  We anticipate that these findings would provide 

evolutionary perspectives into the signal transduction of immune response and provoke 

further interests in the scientific community to understand the origin of innate immunity 

and how it influences adaptive immunity. 

 

4.1.2 A proposed NF-κB signaling pathway in the horseshoe crab 

The phenomenal success of the immune defense of the horseshoe crab, one of the 

most ancient living arthropods, has contributed to its survival for ~550 million years 

(Størmer, 1952) and makes this species an excellent model to understand the origin of 

innate immunity.  Previously, the striking similarities between the extracellular 

Drosophila dorsoventral determination cascade and the horseshoe crab LPS-sensitive 

blood coagulation cascade have been observed (Ding et al, 2004).  In Drosophila, the 

dorsoventral cascade can activate the Toll-ligand, Spätzle, which then binds to the Toll 
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on the cell membrane and triggers the intracellular NF-κB signaling pathway.  In this 

work, we have revealed the presence of a primitive but functional CrNFκB/CrIκB 

signaling cascade and demonstrated its relevance to the immune defense of a horseshoe 

crab, C. rotundicauda.     

Our findings herein and the recent cloning of Toll-like receptor in the horseshoe 

crab (Inamori et al, 2004) have provided compelling evidence for a functional 

intracellular TLR/NF-κB signaling cascade.  Although, the direct ligand for horseshoe 

crab TLR activation is unclear, it has been proposed that the activation of LPS-sensitive 

blood coagulation cascade converts coagulogen (a homologue of Spätzle) to coagulin, 

which may serve as a ligand of horseshoe crab TLR (Bergner et al, 1996; Osaki and 

Kawabata, 2004; Wang et al, 2003).  Furthermore, we have isolated two cDNAs which 

are highly homologous to other components of the Rel/NF-κB pathway, including the 

TNF receptor-associated factor, CrTRAF and CrSlimb (Ding et al, 2005).  The CrSlimb 

is a homologue of human β-TrCP and Drosophila Slimb which are involved in the 

degradation of IκB proteins (Spencer et al, 1999).   Although the biological functions of 

these components remain to be elucidated further, their existence nonetheless provides 

additional evidence for a functional TLR/NF-κB cascade since several hundred million 

years ago, and the co-evolution of this signaling cascade.  Our findings provide further 

support to the view that a signaling mechanism mediated via NF-κB family of proteins, 

which controls the expression of immune defense genes probably originated from a 

common ancestry and was already present in the Urbilateria (Hoffmann and Reichhart, 

2002).  Figure 4.1 illustrates a scheme for this conservation and co-evolution of the NF-

κB signaling pathway (Wang et al, 2006b). 
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4.2  The horseshoe crab Imd/Relish pathway 

In Drosophila, the Toll pathway mainly mediates immune defense against Gram-

positive bacteria and fungi.  The Imd pathway confers protection against Gram-negative 

bacterial infection.  In mosquito (Aedes aegypti), researches have shown that the Relish 

homologue is responsible for the regulation of the immune response to bacterial challenge; 

and REL1, a homologue of Drosophila Dorsal, regulates the antifungal immune pathway 

(Shin et al, 2005; Shin et al, 2003).   

In this project, we also isolated two NF-κB transcription factors, CrNFκB (a 

homologue of Drosophila Dorsal and mammalian p65) and CrRelish (a homologue of 

Drosophila Relish and mammalian p100).  The Gram-negative bacterial infection 

significantly enhanced the κB binding activity in the horseshoe crab hemocytes 

suggesting that Gram-negative bacterial infection could activate the horseshoe crab NF-

κB signaling pathway in vivo.  Addition of specific antibodies against CrNFκB only 

caused a partial supershift of the κB-binding complex.  The majority of the κB-binding 

complex could not be supershifted by the anti-CrNFκB antibody, which suggests the 

presence of κB motif-binding proteins other than CrNFκB in the horseshoe crab 

hemocyte.  Previous study has shown that amongst the three Drosophila NF-κB 

homologues  (Dorsal, Dif and Relish), Relish has relatively higher and broader binding 

activity to κB motifs (Han and Ip, 1999).  A similar mechanism is probably operational in 

the horseshoe crab as well and CrRelish may play a major role in forming the κB 

complex and in mediating the protection against Gram-negative bacterial infection.  

However, at this stage, whether the horseshoe crab CrNFκB and CrRelish play similar 
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roles as their corresponding homologues in the Drosophila and mosquito remains 

unknown.  The functional relevance of CrRelish and CrNFκB in mediating anti-bacterial 

activities against Gram-positive and against Gram-negative bacteria is the subject for 

further studies.  Nevertheless, the partial supershift with anti-CrNFκB antibody suggests 

that the DNA–protein complex formed with κB motif at least involves the presence of 

CrNFκB (Figure 3.17A).  Furthermore, although the exact identity of the unshifted 

complexes is unknown at this juncture, the data in Figure 3.16 nevertheless provide 

adequate evidence to show that the complexes are formed by κB motif binding proteins. 

 

4.3 The activation of NF-κB signaling pathway in horseshoe 

crab 

 
It has been observed that the activation of Toll in Drosophila and the activation of 

TLR in mammals are clearly different with regards to the detection of microorganisms 

(Hoffmann and Reichhart, 2002).  In the Drosophila, fungi and Gram-positive bacteria 

are recognized by circulating PRRs which then lead to the activation of a serine protease 

cascade and the proteolytically processed product of this cascade, Spätzle, is believed to 

be the ligand for Toll activation (Wang et al, 2003).  However, in mammals, the TLRs on 

the cell membrane interact directly with the PAMPs and activate the downstream NF-κB 

signaling pathway.  So far, only one Toll receptor in Drosophila is known to be strictly 

required for immune defense, although fruit flies express nine distinct Toll receptors 

(Tauszig et al, 2000).   This is distinct from the extensive roles played by the various 

mammalian TLRs which can recognize various PAMPs such as peptidoglycan, 
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lipoproteins, LPS, flagellin, DNA and RNA (Akira and Takeda, 2004).  It has been 

suggested that a significant number of circulating recognition proteins (such as the 

peptidoglycan recognition protein, PGRP) in the Drosophila may reflect the recognition 

of a broad spectrum of microbial patterns by the mammalian TLR family (Hoffmann and 

Reichhart, 2002).   

The exact mechanism of how horseshoe crab NF-κB is switched on upon 

pathogen infection is still uncertain.  However, like Drosophila, the horseshoe crab 

contains a plethora of proteins that have been shown to function as pathogen recognition 

proteins, such as Factor C, Factor G and C-reactive proteins (Iwanaga, 2002).   So far, 

only one type of TLR has been cloned from the horseshoe crab (Inamori et al, 2004).  

Therefore it is reasonable to postulate that similar to Drosophila, horseshoe crab probably 

utilizes a plethora of circulating pathogen recognition proteins in the blood, not a family 

of TLRs on the cell membrane, to detect the presence of intruding pathogens. 

Interestingly, it was recently reported that the Factor C of the Japanese horseshoe 

crab, like the mammalian TLR4 but not Drosophila Toll (Wasserman, 2000), could 

function as a pattern-recognition protein for LPS on the hemocyte surface. In this regard, 

the proteolytic activity of Factor C on the hemocytes was found to trigger a G protein-

mediated exocytosis for innate immune response (Ariki et al, 2004).  It will be interesting 

to investigate whether the membrane-localized Factor C could function as a receptor to 

activate the downstream signaling pathway that regulates the innate immune response.  

Indeed, previous studies also suggested that the exocytosis is mediated by a 

heterotrimeric GTP-binding protein that stimulates the inositol-1,4,5,-triphosphate (IP3)-

signaling pathway which leads to the increase of intracellular Mg2+ and Ca2+ (Solon et al, 
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1996).  It has also been reported that NF-κB signaling pathway can be activated by G-

protein coupled receptors via the IP3-Ca2+ signaling (Ye, 2001).  These observations 

corroborate the possibility that, like mammalian TLR (Hoffmann and Reichhart, 2002), 

Factor C may also function as a receptor on the membrane for the activation of NF-κB 

signaling pathway in the horseshoe crab (Wang et al, 2003).  

It is widely believed that LPS is a strong inducer of Toll/NF-κB signaling 

pathway in mammals (Akira and Takeda, 2004), however the function of LPS in 

activating NF-κB signaling in invertebrates is still unclear.  In 2003, Werner et al 

reported that both LPS and peptidoglycan could induce the expression of Drosophila 

antimicrobial peptides that is mediated by peptidoglycan recognition protein, PGRP-LC.  

They found that PGRP-LCx is the only isoform required to mediate signals from Gram-

positive bacterial peptidoglycan.  In contrast, the recognition of Gram-negative bacteria 

and bacterial LPS requires both PGRP-LCa and LCx (Werner et al, 2003).  They also 

postulated that the simultaneous requirement of two splice forms for the response to LPS 

suggests that the PGRPs may act as heterodimers or perhaps as higher multimers (Werner 

et al, 2003).  However, in the same year, Leulier et al. reported in Drosophila, that the 

Toll pathway is predominantly activated by Gram-positive lysine-type peptidoglycan, and 

that Gram-negative diaminopimelic acid-type peptidoglycan is the most potent inducer 

for the Imd pathway.  This observation suggests that the ability of Drosophila to 

discriminate between Gram-positive and Gram-negative bacteria relies on the recognition 

of specific forms of peptidoglycan but not LPS.  Indeed, they clarified that LPS is not the 

main determinant for Gram-negative bacterial recognition in Drosophila, which is in 

contrast to vertebrates (Leulier et al, 2003).  Because peptidoglycans from Gram-negative 
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bacteria are crosslinked with a peptide containing a diaminopimelic acid (DAP) residue, 

whereas a lysine is found in the same position of Gram-positive bacteria (Figure 4.2), 

they suggested that this variation probably results in distinct conformational difference, 

allowing discriminatory recognition (Leulier et al, 2003). 

In our studies, we observed that the Gram-negative bacteria could strongly induce 

the degradation of CrIκB and activate the NF-κB signaling pathway.  However, it is still 

unknown whether LPS or the Gram-negative peptidoglycan triggered the NF-κB 

signaling pathway.  Also, in horseshoe crabs, LPS has been shown to trigger the 

coagulation cascade that involves three serine protease zymogens: Factor C, Factor B and 

proclotting enzyme (Ding et al, 1993).  Factor C responds to picomolar of LPS and 

autocatalytically converts to its active form, which in turn transforms Factor B.  The 

activated Factor B converts the proclotting enzyme to clotting enzyme which converts 

coagulogen to an insoluble coagulin gel (Ding et al, 2004).   Therefore, it will be 

interesting to determine whether the ligands for the NF-κB signaling pathway are similar 

to that of the coagulation cascade, as well as to study the relationship between NF-κB 

signaling pathway and the coagulation cascade. 
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Figure 4.2: The structural comparison of Gram-negative and Gram-positive peptidoglycan. 
Peptidoglycan is a vast polymer consisting of interlocking chains of identical peptidoglycan 
monomers.  A peptidoglycan monomer consists of two joined amino sugars, N-acetylglucosamine 
(NG) and N-acetylmuramic acid (NM), with a pentapeptide.  The long sugar chains are joined to 
one another by means of peptide cross-links between the peptides.  The major difference between 
the Gram-negative and Gram-positive peptidoglycan is the third amino acid in the peptide chain.  
The third amino acid in the peptide chain of the Gram-negative bacterial peptidoglycan is 
diaminopimelic acid (DAP) (A).  However, the third amino acid in the peptide chain of the Gram-
positive bacterial peptidoglycan is lysine (B). Furthermore, the peptidoglycan of Gram-
negative bacteria is cross-linked by bond formation between the DAP molecule extending 
from one sugar backbone and the terminal Alanine of another (A). However, the Gram-
positive peptidoglycan is linked by a 5 amino acids interbridge between the Lysine of one 
sugar backbone to the Alanine of the second (B).  This figure is adapted from this website: 
http://www.arches.uga.edu/~emilyd/mibo3510/theory.html. 
 

 

4.4 The exocytosis and NF-κB signaling 

It is well known that the LPS-induced exocytosis of granular hemocytes is a key 

component of innate immunity in horseshoe crab.  In response to stimulation by LPS, the 

antimicrobial elicitors stored in the hemocyte granules are immediately secreted by 

A B
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exocytosis (Solon et al, 1996).  However, how these intra-granular molecules are 

replenished remains a mystery.  Our finding suggests that the expression of CrFC, which 

is an important defense molecule in the large granules, is under the control of NF-κB 

signaling pathway.  It is well known that the expression of a plethora of antimicrobial 

peptides in the Drosophila and mosquito is under the control of NF-κB signaling 

pathway (De Gregorio et al, 2002; Osta et al, 2004).   Hence, it is conceivable that the 

expression of horseshoe crab antimicrobial peptides is under similar transcriptional 

regulation. This phenomenon indicates that upon infection, the NF-κB signaling 

pathway-controlled transcription activation is a possible mechanism for replenishing the 

store of CrFC and antimicrobial peptides after exocytosis of the hemocyte granules.  This 

requires the sacrificial degranulation of the hemocyte (Iwanaga, 2002). 

In conclusion, although absent in C. elegans, the NF-κB/IκB signaling pathway 

has co-evolved and remained well-conserved from horseshoe crab to human, playing an 

archaic but crucial and fundamental role in innate immune response to regulate the 

expression of critical immune defense molecules.  We believe that the accumulation of 

data on NF-κB signal pathway from different invertebrates other than Drosophila should 

provide further insights into the invertebrate immunity.   
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4.5 A novel form of TRX which regulates NF-κB activity 

TRX is generally a low-molecular weight 12 kDa cellular redox protein that is 

involved in numerous biological functions.  TRX is generally characterized by an amino 

acid sequence motif containing an active site, CGPC.  The two cysteine residues can be 

reversibly oxidized to form a disulfide bridge.  TRX has been reported to function as a 

reductive factor through its dithiol group and has multiple biological activities via the 

regulation of intracellular redox status (Hirota et al, 2002).  A majority of the TRX that 

have been reported to date from eukaryotic and prokaryotic organisms are initially 

translated as a 12 kDa protein (Powis and Montfort, 2001).  In this thesis, we describe the 

identification and characterization of a novel 16 kDa TRX which contains a WCPPC 

active motif in the horseshoe crab Carcinoscorpius rotundicauda (Cr-TRX1).  Despite 

notable differences in the mass and sequence of the catalytic site, the Cr-TRX1 appears to 

be functionally similar to the 12 kDa TRXs. 

 

4.5.1 The 16 kDa Cr-TRX1 is functionally similar to the 12 kDa TRX 

The Cr-TRX1 was cloned from a hemocyte subtractive library.  Sequence analysis 

revealed that the Cr-TRX1 is larger than the known classical 12 kDa counterpart and 

contains an atypical WCPPC catalytic motif.  Although Cr-TRX1 contains three Cys, 

only two in its active motif are exposed and redox sensitive.  The extra Cys residue at the 

N-terminus may be involved in homodimer formation.  To evaluate the TRX activity of 

Cr-TRX1, insulin reduction assay was performed according to the classical method 

described by Holmgren (1985).  The results suggest that the Cr-TRX1 is not only 
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functional, but it appears more efficacious than the E. coli counterpart.  To test the cross-

species (cross-phylum in this case) functionality of Cr-TRX1, we examined whether 

oxidized Cr-TRX1 can be reduced by rat TRXR in the presence of NADPH, by 

monitoring NADPH oxidation at 340 nm.  The results indicate that Cr-TRX1 could 

undergo cross-phylum reduction by mammalian thioredoxin reductase.  To confirm that 

Cr-TRX1 can function by itself as an antioxidant and protect DNA, we performed the 

DNA nicking assay.  The results indicate that Cr-TRX1 can protect DNA from reactive 

oxygen species-mediated nicking.   All of these results suggest that despite notable 

differences in its molecular mass and the active site sequence, the Cr-TRX1 is 

functionally similar to the 12 kDa TRX. 

 

4.5.2 The 16 kDa TRX is conserved from C. elegans to human 

The TRXs that have been characterized to date are nearly uniformly 12 kDa 

proteins with an active motif of WCGPC.  More recently, a 16 kDa class of TRX with an 

active motif of WCPPC (see Figure 3.23) was identified in the parasitic protozoa, 

trypanosomes (Ludemann et al, 1998).  All of these parasitic protozoa lack of the 

ubiquitous glutathione/glutathione reductase system and are very sensitive towards 

oxidative stress (Reckenfelderbaumer and Krauth-Siegel, 2002).  Since then, the 16 kDa 

TRX is believed to exist only in this protozoan and; therefore, it has been used as an 

attractive target for the development of new anti-parasitic drugs  (Krauth-Siegel and 

Coombs, 1999).   

Here, we report the identification of a 16 kDa TRX, with an active motif of 

WCPPC, in the horseshoe crab (an ancient arthropod) and demonstrate that the 16 kDa 
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TRXs are evolutionarily conserved from C. elegans to human.  Sequence alignment of 

these homologous proteins revealed that the catalytic WCPPC motif was largely 

conserved, indicating the potential importance of this motif in the 16 kDa TRX function.  

Although the active motifs of the 16 kDa TRXs in mammals have undergone marked 

changes, several other regions remained well conserved amongst the 16 kDa TRXs 

compared with the 12 kDa TRXs.  This observation suggests that the members of the 16 

kDa TRX has evolutionarily diverged from the 12 kDa TRXs at an early stage.  The 

predicted three-dimensional structure of 16 kDa revealed a folding very similar to that of 

parasitic protozoa 16 kDa TRX with five-stranded β-sheet surrounded by four α-helices 

(see Figure 1.6) (Alphey et al, 1999).  In particular, the active site motif CPPC is in a 

position homologous to that of the corresponding motif in parasitic protozoa 16 kDa TRX.  

Interestingly, although the 16 kDa TRX is present in many species, from C. elegans to 

human, it is absent in several insect species such as Drosophila and mosquito which, like 

horseshoe crab, also belong to arthropods.  It has been demonstrated that the antioxidant 

system in Drosophila, and probably in related insects, differs fundamentally from that in 

other organisms.  It lacks the glutathione reductase and the thioredoxin system supports 

GSSG reduction (Kanzok et al, 2001).  Our observation provides further support to the 

notion that antioxidant defense in insects is unusual compared to that in other organisms 

(Kanzok et al, 2001).   Our findings of the functional Cr-TRX1 (this work) and a full 

repertoire of GSTs (Ding et al, 2005) in the horseshoe crab suggest that although this 

species belongs to the arthropods, shared by insects, its oxidoreductase systems must 

have undergone substantial divergence from the insects. 

 



 155

 

4.6 The catalytic sequences of TRX families 

All organisms from bacteria to mammals contain multiple TRX isoforms.  

Although the amino acid sequences of TRX proteins from different species are not highly 

conserved, they all contain the conserved catalytic sequence, CXXC.  The sequence of 

the catalytic site from the 12 kDa class of TRX is highly conserved.  However, members 

of the TRX protein family that are larger than 12 kDa have variable residues associated 

with the active-site motif (Kunchithapautham et al, 2003).  For example, a human 32 kDa 

transmembrane protein, TMX, was found to contain the active site sequence WCPAC 

(Matsuo et al, 2001), a human 45 kDa TRX-related protein (PC-TRP) with the active site 

sequence of WCGHC (Wrammert et al, 2004), and a human 14 kDa TRX (TRP14) with 

the active site sequence WCPDC (Jeong et al, 2004b).  Similarly, the 16 kDa horseshoe 

crab TRX also contains an unusual WCPPC active-site motif.  Except for the diversity in 

the active site sequences, the enzymatic activity of various TRX isoforms is also different.  

For example, the 14 kDa human TRX (TRP14), with an active motif of WCPDC, exhibits 

markedly different substrate specificity compared to the 12 kDa TRXs.  Although TRP14 

could reduce small disulfide-containing peptides, it did not reduce the disulfides of 

known human TRX1 substrates, ribonucleotide reductase and peroxiredoxin (Jeong et al, 

2004b).  In contrast, despite notable differences in the amino acid sequence of the 

catalytic site, the 16 kDa Cr-TRX1 appeared to be functionally similar to the classical 12 

kDa TRXs.  This is consistent with the reports that the same variant active site (WCPPC) 

of TRXs in trypanosomes, Arabidopsis thaliana and human nucleoredoxin displayed 

comparable activity (Kurooka et al, 1997; Ludemann et al, 1998).  Therefore, it appears 
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that there is considerable flexibility in the two residues between the conserved Cys 

residues in the active site, and that the different catalytic sequences might confer diverse 

enzymatic activity and substrate specificity, indicating the functional diversity of the 

TRX system. 

Interestingly, like the other 16 kDa thioredoxin, the Cr-TRX1 also lacks the 

highly conserved Asp26, which is present in the E. coli TRX, and has been shown to play 

a crucial role for catalytic activity.  It is the only acidic residue not localized on the 

surface of the protein and mutation to an Ala increased the Km value for thioredoxin 

reductase by a factor for 10 (Katti et al, 1990).  In addition, the mutant E. coli thioredoxin 

protein had a drastically lowered ability to serve as a hydrogen donor for ribonucleotide 

reductase (Reckenfelderbaumer et al, 2000).  Our results clearly showed that the Cr-

TRX1 is an excellent substrate of mammalian thioredoxin reductase and is able to reduce 

insulin effectively.  These findings indicate that unlike the classical 12 kDa TRX, an 

acidic residue at this position is not essential for the catalytic activity of Cr-TRX1.  

 

4.7 The N-terminal extra cysteine residue of Cr-TRX1   

Based on the study on the human TRX1, it has been shown that the mammalian 

12 kDa TRXs have three conserved cysteine residues at positions 62, 69 and 73, besides 

the two conserved cysteines in the active motif.  Those Cys residues may impart unique 

biological properties to the mammalian 12 kDa TRXs (Holmgren, 1985).  The crystal 

structure also revealed that human TRX1 can form a dimer via Cys73, and the active site 

residues are buried in the dimer interface (Weichsel et al, 1996).  Surprisingly, although 

most of the 16 kDa TRXs, like the bacterial 12 kDa TRX, do not contain an extra Cys 
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residue besides the ones in the active site, the Cr-TRX1 possesses an extra Cys residue at 

the N-terminus (Figure 3.23).  Interestingly, while the Cr-TRX1 lacks the C-terminal 

extra Cys residue, it could form a dimer with a molecular mass of 32 kDa (Figure 3.31).  

It is possible the Cr-TRX1 can form a dimer via the N-terminal Cys15.  However, at this 

stage, it is still unclear if such dimer also exists under physiological conditions, and 

therefore, the role of the extra N-terminal Cys in the dimer formation needs further 

examination. Nevertheless, the mass spectrometric analysis of the Cr-TRX1 

demonstrated that only the two conserved Cys residues in the active site were redox 

active indicating that, similar to the human TRX1, the Cr-TRX1 dimer may represent a 

naturally occurring form of protein (Weichsel et al, 1996).  Further mutation and 

structure studies would be useful to define the function of the extra N-terminal Cys15 

residue in Cr-TRX1. 

 

4.8 The origin of the vertebrate 24 kDa TRXs   

In the vertebrates, there are two families of TRXs with high homology to the 16 

kDa TRX; one is 16 kDa and another one is 24 kDa (TRX6) (Figure 3.43).  However the 

invertebrates only possess the 16 kDa TRXs and the bacteria are devoid of these 

homologues.  This observation suggests that the 16 kDa TRXs have evolutionarily 

diverged from the 12 kDa TRXs at an early stage and the 16 kDa TRXs probably 

underwent gene duplication and divergence in the vertebrates and gave rise to the 24 kDa 

TRXs (Zhang, 2003) (Figure 3.43).  Interestingly, unlike the invariable WCPPC catalytic 

motif in the 16 kDa TRXs of invertebrates, the active sites of the 16 kDa and 24 kDa 

TRXs of vertebrates have undergone marked changes (Figure 3.44).  For human 16 kDa 
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TRX and zebrafish 24 kDa TRX, even the most conserved Cys residues has been 

replaced with Ser residues.  It is therefore reasonable to postulate that the duplication and 

further evolution of the gene encoding the 16 kDa TRX in the vertebrates have probably 

relaxed the selection pressures and accelerated the evolution of novel catalytic motifs and 

functions (Force et al, 1999; Zhang, 2003).  Therefore, it will be interesting to investigate 

if the 16 kDa and 24 kDa TRXs in mammals still conserve and exhibit the basic 

enzymatic functions of the invertebrate 16 kDa counterparts.  Simultaneously, it would be 

pertinent to explore the functional similarities /differences between the 16 kDa and 24 

kDa TRXs in the vertebrates.  This begs the following question: is it possible that each of 

these very similar TRX proteins will fulfill specific and important roles in the cell in 

addition to their ability to backup one another under some stress or inflammatory 

conditions?  The differing specificities may be due to their different amino acid 

sequences in the active motif that permit interactions with particular substrate proteins 

(Aslund and Beckwith, 1999).  Alternatively, there might be an adaptor molecule that 

connects the various TRXs and links TRXs to their respective substrates. 

 

4.9 Cr-TRX1 regulates NF-κB signaling pathway 

Human TRX1 has been shown to regulate the NF-κB activity distinctly in the 

cytoplasm and in the nucleus.  In the nucleus, TRX1 enhances NF-κB transactivation 

activity; however in the cytoplasm, TRX1 inhibits the degradation of IκB and prevents 

the activation of NF-κB (Hirota et al, 1999).  Studies by Matthews et al. (1992) and 

Meyer et al. (1993) showed the DNA-binding activity of NF-κB to be under redox 

regulation through the modulation of Cys residues, and that the NF-κB components, p50 



 159

and p65, contain well-conserved cysteine residues in their DNA-binding loops (Ghosh et 

al, 1995).  This implies that to activate NF-κB, an oxidative process that is antagonized 

by TRX must first facilitate IκB degradation, then translocated NF-κB in the nucleus  

must be reduced by TRX for effective DNA binding and transactivation (Flohe et al, 

1997).    

Our transient transfection studies showed that the 16 kDa Cr-TRX1 could 

positively regulate the TNFα-induced NF-κB activation and the enhancement of NF-κB-

dependent gene expression was not due to the expression level and subcellular 

localization of NF-κB proteins (Figure 3.39).  This regulation of NF-κB activity could be 

due to the redox regulation through the modulation of cysteine residues in Cr-TRX1, as 

observed from the complete loss of the augmentation of NF-κB activity when the HeLa 

cells were transfected with Cys-mutant Cr-TRX1 instead (Figure 3.38).  This suggests 

that, like human TRX1, the activity of the Cr-TRX1 could be attributable to the two 

strategically located cysteine residues at its active site, and that its activation of NF-κB 

activity is via the redox regulation. 

To determine whether the increase in NF-κB activity observed was indeed due to 

increase in its DNA-binding activity, gel shift assay utilizing biotin-labeled human NF-

κB consensus sequence was performed.  From Figure 3.40, it could be observed that 

under normal conditions, the DNA-binding activity of NF-κB was minimal.  However, 

with TNFα stress alone, there was a dramatic increase in the DNA-binding activity of 

NF-κB, as observed from the increased intensity of the protein-DNA complex.  With 

overexpression of Cr-TRX1 in the HeLa cells, the protein-DNA complex formation 

became more intense; but when mutant Cr-TRX1 was introduced instead, this complex 
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returned to the basal level (HeLa with TNFα stress only).  Hence, the TNFα-mediated 

increase in NF-κB activity in association with the overexpression of Cr-TRX1 is 

specifically attributable to the increase in DNA-binding activity of NF-κB.  Therefore, it 

is reasonable to postulate that similar to human TRX1 (Hirota et al, 1999; Matthews et al, 

1992), the Cr-TRX1 could reduce the Cys residue in the CrNFκB DNA-binding motif to 

enhance its binding to κB site. 

Interestingly, we found that the NF-κB-modulating activity is rather conserved in 

the human TRX6 as it could cross-enhance the horseshoe crab NF-κB DNA-binding 

activity as well (Figure 3.46), suggesting the functional conservation amongst the 16 kDa 

and 24 kDa TRXs.  Although the exact mechanism underlying the regulation of the NF-

κB activity by Cr-TRX1 and TRX6 is still unknown, our studies strongly suggest that the 

NF-κB regulatory activity might be a common characteristic of the 16 kDa TRXs.  The 

mechanism of TRX6-mediated regulation of the human NF-κB signaling pathway upon 

various stress conditions is being investigated in this lab to further define the functions of 

TRX6. 

Recently, Leveillard et al. (2004) demonstrated that a mouse homologue of the 24 

kDa human TRX6, named rod-derived cone viability factor (RdCVF), could slow down 

the degeneration of cone cell in animal models.  Thus, it offers a possible treatment for 

retinitis pigmentosa – an untreatable retinal disease.  The disease initiates with the loss of 

night vision due to rod photoreceptor degeneration, followed by irreversible, progressive 

loss of cone photoreceptors (Kajiwara et al, 1994).  As cones are essential for day and 

high-acuity vision, loss of the cones is responsible for the main visual handicap. 

Although the mechanism of how RdCVF protects the cone cells is still unknown, another 
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study by Krishnamoorthy (1999) found that preservation of NF-κB binding activity in the 

nucleus may be essential for mouse cone photoreceptor cells to survive photo-oxidative 

damage induced apoptosis.  

In this study, we have found that the human TRX6 could enhance the DNA 

binding ability of the horseshoe crab NF-κB in electrophoretic mobility shift assay, 

thereby indicating cross-species functionality and the conservation of an important 

biological function of the TRX6.  Therefore, we hypothesize that the human TRX6 might 

express a protective function similar to RdCVF, via modulating the NF-κB signaling 

pathway. 
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CHAPTER 5:   CONCLUSIONS AND FUTURE PERSPECTIVES 

 

5.1 Conclusions 

5.1.1 NF-κB/IκB signaling cascade 

In this thesis, we have reported the elucidation of similar homologues of NF-κB 

and IκB in a species of horseshoe crab, the C. rotundicauda, and showed that their 

activation mechanism and transactivation properties were functionally comparable to that 

of the Drosophila and mammals.  We further demonstrated that the activated NF-κB can 

regulate the expression of immune-related genes in the hemocytes, including Factor C 

and iNOS.  Our findings clearly demonstrate that although absent in the C. elegans, the 

NF-κB/IκB signaling pathway has co-evolved and remained well-conserved from 

horseshoe crab to human, playing an archaic but crucial and fundamental role in innate 

immune response to regulate the expression of critical immune defense molecules (Wang 

et al, 2006b).  These observations reveal the earliest origin of a seminal signaling cascade 

and provide critical insights into the evolution of the NF-κB transcription factors.  Our 

findings provide further support to the view that NF-κB proteins originated from a 

common ancestry and was already present in the Urbilateria (Hoffmann and Reichhart, 

2002).  
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5.1.2 The novel 16 kDa Cr-TRX1 and its role in NF-κB signaling 
pathway 

 
We also discovered a novel 16 kDa thioredoxin (Cr-TRX1) from the horseshoe 

crab which regulates the CrNFκB activity.  Previously, this 16 kDa TRX was thought to 

only exist in the parasitic protozoa of trypanosomes, an etiological cause of severe 

tropical diseases.  However we found that these 16 kDa TRXs also exist in higher 

eukaryotes and are evolutionary conserved from C. elegans to humans.  Although the Cr-

TRX1 is larger than the classical 12 kDa counterpart and contains an atypical catalytic 

motif, it possesses the classical thioredoxin activity.  Cr-TRX1 activates the NF-κB 

activity by enhancing its DNA-binding activity, suggesting possible roles of the Cr-TRX1 

in modulating NF-κB signaling pathway.  Importantly, we found that the 16 kDa TRX 

probably underwent gene duplication in the mammals to give rise to a novel 24 kDa TRX.  

We also demonstrated, surprisingly, that the human 24 kDa TRX could exert a cross-

phylum enhancement of the DNA-binding activity of the horseshoe crab NF-κB, 

suggesting the functional conservation amongst the 16 kDa and 24 kDa TRXs. 

 

5.2 Future perspectives 

Based on work done in this thesis, there are several interesting directions for 

future work in the areas of NF-κB signaling pathway and thioredoxin–mediated 

regulation of the NF-κB activity.  The following questions may be posed and innovative 

experiments may be designed to elucidate:  
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1)   What are the functional differences/ similarities between CrNFκB and CrRelish? 

We have isolated two NF-κB homologues, CrNFκB and CrRelish.  To better 

understand their roles in immune response, it will be necessary to examine the functional 

similarities/differences between the two NF-κB proteins.  Challenging the horseshoe 

crabs with different pathogens and inspecting the resulting activation of CrNFκB and 

CrRelish may serve to give an indication on how these NF-κB homologues mediate 

pathogen specific immune reactions.  Like its insect and mammalian homologues, the 

CrRelish is a mosaic protein which contains both RHD and inhibitory IκB domain.  It 

will be important to determine whether CrRelish is proteolytically processed during 

bacterial challenge and the consequential subcellular localization of the full-length and 

the cleavaged CrNFκB proteins.  Furthermore, the interactions between CrRelish and 

CrNFκB and the roles of different homo- and heterodimers on gene transcription may be 

investigated to better characterize their roles in innate immunity.    

 

2)  What are the receptors for horseshoe crab NF-κB pathway activation? 

Further study is also needed to demonstrate which receptor is responsible for the 

activation of horseshoe crab NF-κB signaling pathway (Inamori et al, 2004).   Recently, 

our lab has isolated a TLR homologue from the horseshoe crab (Loh et al. unpublished 

data).  It is therefore pertinent for us to examine if the horseshoe crab TLR could activate 

the NF-κB signaling pathway.  This can be achieved by overexpression of the horseshoe 

crab TLR and examining the activation of NF-κB pathway.  It will be interesting to 

demonstrate the membrane localization of the horseshoe crab TLR by 

immunocytochemistry.  Given that the horseshoe crab contains two NF-κB homologues, 
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further analysis may be required in order to understand the contribution of TLR to the 

activation of each of these NF-κB homologues upon pathogen infection.   

Recently, it has been demonstrated that the horseshoe crab Factor C also exist on 

the hemocytes membrane as a receptor for invading pathogens (Ariki et al, 2004).  It 

would be interesting to determine whether recognition of pathogen by the “Factor C 

receptor” would lead to the activation of NF-κB signaling pathway in horseshoe crab. 

 

3)   What are the functions of horseshoe crab iNOS in immune response and its    

      transcription regulation 

An iNOS homologue named CriNOS has been cloned from the horseshoe crab in 

our lab (unpublished data).  iNOS plays an important role in immune response in the 

Drosophila and mammals (Foley and O'Farrell, 2003).  Surprisingly, the C. elegans 

genome does not encode the NF-κB and iNOS gene.  It suggests that the CriNOS is 

probably the most ancient iNOS gene.  It also indicates that the NF-κB transcription 

factor and iNOS probably originated at the same time and have co-evolved.  Therefore, it 

will be interesting to investigate the function of CriNOS in the immune defense of 

horseshoe crab.  Several experiments can be carried out to characterize the functions of 

CriNOS:  i) analysis of the mRNA expression of iNOS and the level of NO in horseshoe 

crab hemocytes with or without bacterial challenge; ii) whether the recombinant iNOS 

can produce NO. 

Furthermore, our RT-PCR experiments already showed that bacterial infection 

can significantly induce the expression of iNOS and horseshoe crab NF-κB signaling 

pathway probably controls the up-regulation of CriNOS in the hemocytes (Figure 3.21).  
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The observation is very interesting because no such evidence has been forthcoming in 

any invertebrate.  In order to understand the mechanism of transcription regulation of 

CriNOS, the promoter of CriNOS could be isolated and characterized.  We expect the 

existence of potential κB site(s) on the promoter of CriNOS.  Then gel shift using iNOS 

promoter κB binding site(s) as probe may be performed to examine the binding 

characteristic of the CriNOS κB motif(s) with the NF-κB proteins.  Cotransfection of 

CrNFκB and iNOS promoter reporter can be performed as well to elucidate/delineate the 

promoter activity and active site(s) of CriNOS promoter. 

 

4)   What are the roles of the human 16 kDa TRX homologue (TRX6) in regulating     

      NF-κB signaling pathway? 

We have found that the 16 kDa Cr-TRX1 in the horseshoe crab could regulate the 

NF-κB signaling pathway.  Its human counterpart, TRX6, could enhance the horseshoe 

crab NF-κB DNA-binding activity as well.  It is thus imperative to seek translational 

insights from the horseshoe crab innate immune system to the human innate immune 

system.  To this end, it would be logical to test the ability of human TRX6 in regulating 

the human NF-κB signaling pathway. 

To achieve this, TRX6 will be overexpressed in different human cell lines and 

examined for its functions upon pathogen challenge and stress conditions.  We expect the 

TRX6 to synergistically up-regulate NF-κB activity upon challenge. To gain further 

insights into the mechanisms of action, real-time bioimaging may be exployed to 

examine whether TRX6 translocates into nucleus and colocalize with NF-κB using.  
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Furthermore, the role of TRX6 in regulating NF-κB signaling will be examined in NF-κB 

knockout mice. 

 

We envisage that research on the horseshoe crab innate immunity will establish 

fundamental understanding of the signaling pathway, which regulates the immune 

defense against the microbial infection.  Being devoid of adaptive immune response, our 

study on the horseshoe crab NF-κB signaling pathway and its regulation is unperturbed 

by potential interference of the adaptive immune response and serves as a prelude to the 

ultimate understanding of innate immune defense mechanisms in the vertebrate including 

the human. 
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