
THE MECHANISMS OF LACTACYSTIN-INDUCED

APOPTOSIS OF MOUSE PRIMARY CORTICAL NEURONS

CHOY MENG SHYAN

B.Sc (Hons), M.Sc, NUS

A THESIS SUBMITTED FOR THE DEGREE OF PHD IN THE FIELD OF

MEDICINE

DEPARTMENT OF BIOCHEMISTRY

NATIONAL UNIVERSITY OF SINGAPORE

2006



ii

Acknowledgements

I thank my supervisors, Dr Steve Cheung Nam Sang and Dr Alan Lee Yiu Wah for

their supervision and support in my study.

I am very grateful to my collaborator Heung-Chin Cheng from the Department of

Biochemistry and Molecular Biology, Melbourne University for his help and

guidance in the PTEN work.  I also want to thank Dr Bay Boon Huat, Ms Chan Yee

Gek and Ms Liu Ya Jun from the Department of Anatomy, National University of

Singapore (NUS) for their assistance in the electron microscopy work.  I also thank

Jayapal Manikandan from the department of Physiology, NUS for his help in the

Microarray data analysis using Genespring 7.  I thank Dr Andrew M. Jenner for

valuable advice on the measurement of neuronal cholesterol using gas

chromatography mass spectrometry.  Lastly, I want to thank Dr Markus Wenk and

Guan Xue Li for their assistance in the lipidomic work of this project.  I also wish to

thank all the people in my laboratory, whom I have jointly published many papers.

I want to expression my sincere gratitude to my family and friends for their constant

support.  I am especially thankful to Joyce Koh for critical reading of this thesis.



iii

Table of Contents

THE MECHANISMS OF LACTACYSTIN-INDUCED APOPTOSIS OF MOUSE
PRIMARY CORTICAL NEURONS .............................................................................i
Acknowledgements....................................................................................................... ii
Table of Contents......................................................................................................... iii
List of Figures ............................................................................................................. vii
List of Tables ................................................................................................................ix
List of Publications .......................................................................................................xi
Abbreviations Used in the Text ................................................................................. xiii
Summary ......................................................................................................................xv
CHAPTER 1 ..................................................................................................................1
1 INTRODUCTION .................................................................................................1

1.1 The ubiquitin-proteasome system..................................................................1
1.1.1 Structure and function of proteasome....................................................2
1.1.2 Structure and function of ubiquitin ........................................................4

1.2 Ubiquitin-proteasome system and neurodegeneration...................................5
1.3 Ubiquitin-proteasome system in aging ..........................................................7
1.4 Proteasome-inhibition-induced neuronal cell death.......................................8
1.5 Proteasome inhibitors.....................................................................................9

1.5.1 Many effects of proteasome inhibitors ................................................10
1.5.2 Lactacystin ...........................................................................................11

1.6 The aims of this study ..................................................................................12
CHAPTER 2 ................................................................................................................17
2 MATERIALS AND METHODS.........................................................................17

2.1 Primary cortical neurons ..............................................................................17
2.2 Drug treatment .............................................................................................19

2.2.1 Lactacystin stock solution preparation.................................................19
2.2.2 (-)-Epigallocatechin-3-gallate from green tea......................................19
2.2.3 Caspase and calpain inhibitors.............................................................19

2.3 Immunocytochemistry .................................................................................20
2.4 Immunofluorescence and confocal microscopy...........................................20
2.5 Transmission electron microscopy ..............................................................20
2.6 Preparation of plasma membrane sheet and gold labeling for transmission
electron microscopy .................................................................................................21
2.7 MTT cell viability assay ..............................................................................22
2.8 Western blotting...........................................................................................22
2.9 Antibodies ....................................................................................................23
2.10 Caspase activities measurement...................................................................23
2.11 Proteasome activity measurement using fluorogenic substrates..................24
2.12 Plasma membrane isolation using Percoll gradient .....................................25
2.13 Microarray GeneChip® ...............................................................................25

2.13.1 Experimental design for lactacystin treatment.....................................25
2.13.2 Experimental design for (-)-epigallocatechin-3-gallate treatment.......26
2.13.3 Total RNA isolation.............................................................................26
2.13.4 One-cycle cDNA synthesis ..................................................................27

2.13.4.1 First-strand cDNA synthesis ........................................................27



iv

2.13.4.2 Cleanup of double-stranded cDNA for one-cycle target labeling
assay 29
2.13.4.3 Synthesis of biotin-labeled cRNA for one-cycle target labeling
assay 29
2.13.4.4 Cleanup and quantification of biotin-labeled cRNA ...................30
2.13.4.5 Fragmenting the cRNA for target preparation .............................31
2.13.4.6 Eukaryotic target hybridization....................................................31
2.13.4.7 Washing, staining and scanning of the probe array .....................32

2.13.5 Microarray data analysis ......................................................................34
2.14 RNA gel electrophoresis ..............................................................................34
2.15 Quantitative real-time PCR..........................................................................35
2.16 Cellular ATP and GSH measurement ..........................................................36
2.17 Cholesterol measurement using gas chromatography mass spectrometry...37
2.18 Lipid profiling using Electro-Ionization Mass Spectrometry ......................39

2.18.1 Lipid extraction from cultured neurons ...............................................39
2.18.2 Electrospray-Ionization mass spectrometry.........................................39

CHAPTER 3 ................................................................................................................41
3 PTEN accumulation in detergent-insoluble fraction during lactacystin-induced
neuronal apoptosis .......................................................................................................41

3.1 Introduction..................................................................................................41
3.1.1 PTEN and cell death ............................................................................41
3.1.2 The role of PTEN in central nervous system.......................................41
3.1.3 The structure of PTEN.........................................................................43
3.1.4 The possible role of PTEN in proteasome inhibition-induced neuronal
apoptosis 45

3.2 Results and discussions................................................................................46
3.2.1 Lactacystin-induced neuronal apoptosis ..............................................46
3.2.2 Changes of PTEN level in cultured neuronal cells during development

50
3.2.3 Lactacystin treatment enhances the conversion of PTEN to a 50kDa
truncated fragment and accumulation of both forms of PTEN in the detergent-
insoluble membrane fraction................................................................................50
3.2.4 Lactacystin treatment enhances accumulation of PTEN in the
detergent-insoluble fraction that has been co-purified with plasma membrane
protein markers ....................................................................................................56
3.2.5 Implications of the appearance of the 50kDa truncated PTEN in
neuronal cells induced by lactacystin treatment ..................................................60

3.3 Follow-up work............................................................................................62
3.3.1 Identification of the protease responsible for converting the full length
PTEN to the truncated PTEN...............................................................................62
3.3.2 Recruitment of PTEN onto the plasma membrane during lactacystin-
induced neuronal apoptosis..................................................................................67

CHAPTER 4 ................................................................................................................70
4 Microarray GeneChip® analysis of gene expression during lactacystin-induced
neuronal apoptosis .......................................................................................................70

4.1 Introduction..................................................................................................70
4.2 Results..........................................................................................................71

4.2.1 Time course of lactacystin-induced proteasome inhibition and neuronal
apoptosis 71
4.2.2 RNA isolation from lactacystin-treated cultured cortical neurons ......75



v

4.2.3 Microarray analysis..............................................................................78
4.2.3.1 Genes differentially expressed during the early phase of lactacystin-
induced neuronal apoptosis..............................................................................97
4.2.3.2 Genes differentially expressed during the late phase of lactacystin-
induced neuronal apoptosis..............................................................................98

4.2.4 Validation of differentially expressed genes identified by microarray
analysis 99

4.2.4.1 Endoplasmic reticulum stress ..........................................................99
4.2.4.2 The down-regulation of cholesterol biosynthesis ..........................101

4.3 Discussion ..................................................................................................101
4.3.1 Ubiquitin-proteasome system ............................................................103
4.3.2 Heat shock proteins and molecular chaperones .................................107
4.3.3 Endoplasmic reticulum stress ............................................................109
4.3.4 Inflammation......................................................................................111
4.3.5 Antioxidants.......................................................................................112
4.3.6 Cholesterol biosynthesis ....................................................................113
4.3.7 Apoptosis ...........................................................................................115

4.4 Conclusion .................................................................................................116
CHAPTER 5 ..............................................................................................................118
5 Lipid profile of the neural membrane during lactacystin-induced neuronal
apoptosis ....................................................................................................................118

5.1 Introduction................................................................................................118
5.2 Results........................................................................................................120

5.2.1 Lipid profile of lactacystin-treated cultured neurons.........................120
5.3 Discussion ..................................................................................................124

5.3.1 Lactacystin induces the accumulation of ceramide during neuronal
apoptosis 124
5.3.2 Lactacystin induces accumulation of NAPE during neuronal apoptosis

126
CHAPTER 6 ..............................................................................................................129
6 Microarray analysis of gene expression during exposure to (-)-epigallocatechin-
3-gallate on cultured cortical neurons........................................................................129

6.1 Introduction................................................................................................129
6.2 Results........................................................................................................131

6.2.1 EGCG induced apoptosis in primary cortical neurons with caspase-3
activation and proteasome inhibition .................................................................131
6.2.2 Microarray analysis............................................................................134
6.2.3 Effect of EGCG on the protein expression of CHOP, Atf3 and the
cleavage of p35 ..................................................................................................134

6.3 Discussion ..................................................................................................149
6.3.1 ER stress is not involved in EGCG-induced neuronal apoptosis.......149
6.3.2 EGCG treatment and the up-regulation of genes encoding ubiquitin-
proteasome system components.........................................................................149
6.3.3 The effect of EGCG on the induction of genes encoding heat shock
proteins 150
6.3.4 The effect of EGCG on the regulation of lipid and cholesterol
biosynthesis genes..............................................................................................151

CHAPTER 7 ..............................................................................................................153
7 General Conclusion............................................................................................153
8 REFERENCES ..................................................................................................158



vi

9 APPENDIX A: Reagents and Buffers ................................................................... I
9.1 Western blot ................................................................................................... I
9.2 Immunofluorescence...................................................................................... I
9.3 Composition of Neurobasal Medium (Brewer et al, 1993)........................... II
9.4 Composition of B27 Medium Supplement for Neurons (Brewer et al, 1993).

III
9.5 Microarray: Eukaryotic Target Hybridization .............................................III

9.5.1 Materials needed ..................................................................................III
9.5.2 Reagent Preparation .............................................................................III

10 APPENDIX B: The gene list of microarray analysis (lactacystin treatment):
>2FC, one-way ANOVA, p<0.01.................................................................................V



vii

List of Figures

Figure 1.1. The ubiquitin-proteasome system................................................................3
Figure 1.2. Mechanism of proteasome inhibition by lactacystin in cells.....................13
Figure 2.1. Immunocytochemical staining of the mouse cortical neurons for

microtubule-associated protein-2 (Map-2) and glia fibrillary acidic protein
(GFAP).................................................................................................................18

Figure 3.1. PTEN translocation and the PI3-kinase/Akt cell survival pathway.. ........42
Figure 3.2. A cartoon drawing of the structure of PTEN.............................................44
Figure 3.3. Morphological changes of cultured cortical neuronal cells induced by

lactacystin treatment. ...........................................................................................47
Figure 3.4. The effects of lactacystin treatment on viability and proteasome activity of

cultured cortical neurons......................................................................................48
Figure 3.5. Detection of active caspase-3 in cultured cortical neurons treated with

lactacystin. ...........................................................................................................49
Figure 3.6. Western blot analysis of PTEN expression in the cultured mouse primary

cortical neurons....................................................................................................51
Figure 3.7. Western blots and graphic representation of the relative amounts of the 55

kDa and 50 kDa PTEN species found in the whole cell lysate of cortical neurons
treated with increasing concentrations of lactacystin. .........................................53

Figure 3.8. Distribution of the 55 kDa PTEN and the 50 kDa PTEN species in the
soluble and insoluble fractions of cortical neurons treated with lactacystin. ......54

Figure 3.9. PTEN protein sequence and potential caspase-3 cut sites.........................55
Figure 3.10. Effects of lactacystin treatment on PTEN subcellular localization in

cultured neuronal cells. ........................................................................................57
Figure 3.11. Lactacystin-induced changes in PTEN distribution in the various

subcellular compartments of neuronal cells separated by Percoll gradient
centrifugation. ......................................................................................................58

Figure 3.12. Hypothetical model of PTEN regulation associated with its tumor
suppressor activity and cell death. .......................................................................61

Figure 3.13. PTEN is cleaved by caspase-3 during lactacystin-induced neuronal
apoptosis. .............................................................................................................63

Figure 3.14. The effects of caspase and calpain inhibitors on the cleavage of PTEN
and cell viability...................................................................................................65

Figure 3.15. Accumulation of PTEN at the plasma membrane of mouse cortical
neurons treated with lactacystin...........................................................................68

Figure 4.1. Effects of lactacystin (Lact) on proteasome activities and cell viability of
mouse cultured cortical neurons. .........................................................................72

Figure 4.2. Time-course study of caspase-3 activation and substrate cleavage during
lactacystin-induced neuronal apoptosis.. .............................................................74

Figure 4.3. Fig. 4.3.  Apoptotic cell death of cultured cortical neurons exposed to
lactacystin.. ..........................................................................................................76

Figure 4.4. Total RNA extracted from cultured cortical neurons. ...............................77
Figure 4.5.  The gene expression profile of lactacystin-treated cultured cortical

neurons.. ...............................................................................................................96
Figure 4.6. Lactacystin-induced ER stress associated cell death events....................100
Figure 4.7. Cellular GSH and ATP level of lactacystin-treated cultured cortical

neurons...............................................................................................................102



viii

Figure 4.8. Exposure to lactacystin caused the down-regulation of genes associated
with cholesterol biosynthesis. ............................................................................104

Figure 5.1. Differential analysis of lipid profile. .......................................................121
Figure 5.2. Lactacystin-induced changes in lipid profile of neurons and identification

of lipid molecular species as revealed by ESI-MS and ESI-MSMS.  Relative
changes in lipid compositions 24 h after lactacystin exposure. .........................122

Figure 5.3. MSMS of ions at m/z (A) 744, (B) 812 and (C) 976, corresponding to 34:1
PC or 36:1 PE, 38:3 PS and 54:2 NAPE............................................................123

Figure 5.4. Lactacystin-induced changes in lipid profile of neurons and identification
of lipid molecular species as revealed by ESI-MS and ESI-MSMS..................125

Figure 6.1. The effects of EGCG treatment on cell viability and caspase-3 activity
activation of culture cortical neurons.................................................................132

Figure 6.2. The effect of EGCG treatment on the chymotrypsin-like proteasome
activity................................................................................................................133

Figure 6.3. Effects of EGCG on the protein expression of CHOP, Atf3 and the
cleavage of p35.. ................................................................................................148

Figure 7.1.  The mechanism of lactacystin-induced neuronal apoptosis. ..................155



ix

List of Tables

Table 2.1.  Preparation of RNA/T7-Oligo(dT) Primer Mix.........................................27
Table 2.2.  Preparation of First-Strand Master Mix.....................................................28
Table 2.3.  Preparation of Second-Strand Master Mix ................................................28
Table 2.4.  In vitro transcription (IVT) reaction ..........................................................29
Table 2.5.  Sample fragmentation reaction ..................................................................31
Table 2.6.  Hybridization cocktail for a single 49 format (standard)/64 format array.31
Table 2.7.  SAPE solution mix.....................................................................................33
Table 2.8.  Antibody solution mix ...............................................................................33
Table 4.1.  Differentially expressed gene after lactacystin treatment: Ubiquitin-

proteasome system. ..............................................................................................79
Table 4.2.  Differentially expressed genes after lactacystin treatment (continue): ER

stress; heat shock proteins and molecular chaperone; apoptosis. ........................80
Table 4.3.  Differentially expressed genes after lactacystin treatment (continue):

Proteolysis; inflammatory response; glutathione synthesis; metal ion
homeostasis. .........................................................................................................81

Table 4.4.  Differentially expressed genes after lactacystin treatment (contineu):
Calcium homeostasis and calcium binding; cell adhesion...................................82

Table 4.5.  Differentially expressed genes after lactacystin treatment (continue): Lipid
and cholesterol. ....................................................................................................83

Table 4.6.  Differentially expressed genes after lactacystin treatment (continue):
Protein biosynthesis; protein modification. .........................................................84

Table 4.7.  Differentially expressed genes after lactacystin treatment (continue):
Transport. .............................................................................................................85

Table 4.8.  Differentially expressed genes after lactacystin treatment (continue):
Electron transport; Cytoskeleton..........................................................................86

Table 4.9.  Differentially expressed genes after lactacystin treatment (continue): Cell
cycle; signalosome complex; carbohydrate metabolism......................................87

Table 4.10.  Differentially expressed genes after lactacystin treatment (continue): Cell
signaling...............................................................................................................88

Table 4.11.  Differentially expressed genes after lactacystin treatment (continue):
Growth and development.....................................................................................89

Table 4.12.  Differentially expressed genes after lactacystin treatment (contineu):
Other processes. ...................................................................................................90

Table 4.13.  Differentially expressed genes after lactacystin treatment (continue):
Unknown biological function. .............................................................................91

Table 6.1.  Differentially expressed genes after EGCG treatment: Ubiquitin-
proteasome system; heat shock proteins and molecular chaperones; response to
stress; apoptosis. ................................................................................................135

Table 6.2.  Differentially expressed genes after EGCG treatment (continue):
Transcription. .....................................................................................................136

Table 6.3.  Differentially expressed genes after EGCG treatment (continue): Protein
biosynthesis; protein modification.....................................................................137

Table 6.4.  Differentially expressed genes after EGCG treatment (continue): Lipid and
cholesterol biosynthesis; grwoth and development; electron transport; metal ion
homeostasis.. ......................................................................................................138



x

Table 6.5.  Differentially expressed genes after EGCG treatment (continue):
Transmission of nerve impulse; transport..........................................................139

Table 6.6.  Differentially expressed genes after EGCG treatment (continue):
Cytoskeleton; cell cycle; proteolysis; calcium homeostasis and binding. .........140

Table 6.7.  Differentially expressed genes after EGCG treatment (continue): Cell
signaling; cell adhesion; carbohydrate metabolism. ..........................................141

Table 6.8.  Differentially expressed genes after EGCG treatment (continue):
Nucleobas, nucleoside, nucleotide and nucleic acid metabolism; other biological
processes. ...........................................................................................................142

Table 6.9.  Differentially expressed genes after EGCG treatment (continue):
Unknown biological processes. .........................................................................143

Table 10.1.  Ubiquitin-proteasome System...................................................................V
Table 10.2.  Heat shock proteins and molecular chaperone ...................................... VII
Table 10.3.  Stress.....................................................................................................VIII
Table 10.4.  Inflammatory responses.......................................................................... IX
Table 10.5.  Cholesterol biosynthesis ......................................................................... IX
Table 10.6.  Lipid..........................................................................................................X
Table 10.7.  Apoptosis ................................................................................................ XI
Table 10.8.  Proteolysis.............................................................................................. XII
Table 10.9.  Growth and development....................................................................... XII
Table 10.10.  Regulation of transcription .................................................................XIV
Table 10.11.  Regulation of cell cycle .................................................................... XVII
Table 10.12.  Transport.............................................................................................XIX
Table 10.13.  Electron transport................................................................................XXI
Table 10.14.  Protein biosynthesis .......................................................................... XXII
Table 10.15.  Protein transport...............................................................................XXIV
Table 10.16.  Signal transduction ...........................................................................XXV
Table 10.17.  Calcium binding...............................................................................XXVI
Table 10.18.  DNA and RNA.................................................................................XXVI
Table 10.19.  Protein modification .....................................................................XXVIII
Table 10.20.  Cytoskeleton ....................................................................................XXXI
Table 10.21.  Cell adhesion....................................................................................XXXI
Table 10.22.  Energy............................................................................................ XXXII
Table 10.23.  Other biological processes ............................................................XXXIII
Table 10.24.  Unknown biological processes ...................................................... XXXV



xi

List of Publications

Papers
1.  Cheung N.S., Choy M.S., Halliwell B., Teo T.S., Bay B.H., Lee A.Y.W., Qi R.Z.,
Koh C.H.V., Whiteman M., Koay E.S.C., Chiu L.L., Zhu H.J., Wong K.P., Beart
P.M., and Cheng H.C. (2004) Lactacystin-induced apoptosis of cultured mouse
cortical neurons is associated with accumulation of PTEN in the detergent-resistant
membrane fraction. Cell Mol Life Sci. 61(15):1926-1934.

2.  Choy MS, Halliwell B, Manikandan J, Jenner AM, Romero AJM and Cheung NS
(2005).  Proteasome inhibition by lactacystin induces the early up regulation of
endoplasmic reticulum stress related genes in cultured cortical neurons.  Submitted to
Aging Cell.

3.  Choy M.S., Bay B.H., Cheng H.C. and Cheung N.S. (2006).  Recruitment of
PTEN into the plasma membrane during lactacystin-induced neuronal apoptosis.
Neuroscience Letters, in press.

4.  Choy M.S. and Cheung N.S. (2006).  Neuroprotective and pro-apoptotic responses
of ubiquitin proteasome system.  In: The ubiquitin Proteasome System in Central
Nervous System: From Physiology to Pathology.  Edited by Di Napoli M and Wojcik
C, NovaScience Publisher, Inc. In press.

5.  Choy M.S., Guan X.L., Wenk M.R. and Cheung N.S. (2006).  Lipid profile of
lactacystin-treated cortical neurons: the accumulation of ceramide and N-acyl
phosphatidylethanolamine during neuronal apoptosis.  In preparation.

Poster presentations:

1.  M.S. Choy, H.C. Cheng, Q.T. Li, R.Z. Qi, A.Y.W. Lee, E.S.C. Koay, L. Chiu, D.
Qi, H.J. Zhu P.M. Beart and N.S. Cheung (2003).  PTEN expression in AMPA
Receptor-mediated Apoptosis in Cultured Murine Cortical Neurons.  Lorne Proteins
2003, Australia, P105

2.  Lactacystin-induced apoptosis of cultured mouse cortical neurons is associated
with accumulation of PTEN to specific detergent-resistant membrane micro-domains.
Choy M.S., Cheng H.C., Halliwell B., Bay B.H., Lee A.Y.W., Qi R.Z., Koh C.H.V.,
and Cheung N.S. (2004) SfN Annual Meeting.

Other publications

1.  Yew E.H.J., Cheung N.S., Choy M.S., Romero A.J.M., Manikandan J., Koay E.S.
Chiu L.L., Ng W.L., Whiteman M., Kandiah J. and Halliwell B. (2005).  Proteasome
inhibition by lactacystin in primary neuronal cells induced both potentially
neuroprotective and pro-apoptotic transcriptional responses: A microarray analysis.  J
Neurochem, 94: 943 – 956.



xii

2.  Cheung NS, Koh CHV, Bay BH, Qi RZ, Choy MS, Li QT, Wong KP, and
Whiteman M (2004) Chronic exposure to U18666A induces apoptosis in cultured
murine cortical neurons. Biochem Biophys Res Commun. 315(2):408-417.

3.  Chen M.J., Yap Y.W., Choy M.S., Koh C.H.V., Seet S.J., Duan W., Whiteman M.
and Cheung N.S. (2006).  Early induction of calpains in rotenone-mediated neuronal
apoptosis.  Neurosci Lett, in press.



xiii

Abbreviations Used in the Text

ANOVA Analysis of variance

ASK Apoptosis-signal regulating kinase 1

ATF Activating Transcription Factor

CHIP Carboxyl terminus of Hsp70-interacting protein

CHOP C/EBP-homologous protein

CNS Central nervous system

COX-2 Cyclooxygenase 2

CREB cAMP response element binding protein

DAB 3,4-diaminobenzidine

DUBs Deubiquitinating enzymes

DMSO Dimethyl sulfoxide

E1 Ubiquitin-activating enzyme

E2 Ubiquitin-conjugating enzyme

E3 Ubiquitin protein ligase

EGCG (-)-Epigallocatechin-3-gallate

ER Endoplasmic reticulum

ESI-MS Electrospray-Ionisation Mass Spectrometry

ESTs Expressed sequence tags

GC-MS Gas Chromatography Mass Spectrometry

GSH Glutathione

HSP Heat shock protein

LDH Lactate dehydrogenase

NAE N-acylethanolamine



xiv

NAPE N-acyl phosphatidylethanolamine

NB Neurobasal™ medium

PI3-kinase Phosphoinositide-3 kinase

PLD Phospholipase D

PNS Post nuclear supernatant

PtdIns(3,4,5)P3 Phosphatidylinositol-(3,4,5)-triphosphate

PTEN Phosphatase and tensin homolog deleted from chromosome 10

SMase Sphingomyelinase

SREBP Sterol regulatory element binding protein

TCA Tricholroacetic acid

UPS Ubiquitin-proteasome system



xv

Summary

The Ubiquitin-proteasome system (UPS) is involved in the degradation of many

proteins, including the short-lived regulatory proteins.  Thus, UPS plays an important

role in many biological processes, such as controlling the cell cycle, cell

differentiation and cell death.  UPS has another important role in the cell — it is able

to degrade misfolded or unfolded proteins, thus protecting the cell against the

accumulation of protein aggregates.  Dysfunction of the proteasome is believed to be

the main cause of neurodegenerative disease, since the presence of ubiquitinated

protein aggregates is commonly found in diseased neurons.  However, proteasome-

inhibition-mediated apoptosis is still not well understood.

Exposure of the proteasome inhibitor lactacystin to mouse primary cortical neurons

induced neuronal apoptosis.  Upon the activation of cell death, the tumor suppressor

PTEN (phosphatase tensin homolog deleted from chromosome 10) was cleaved and

accumulated in the detergent-insoluble fraction of the plasma membrane, suggesting

the translocation of PTEN to its membrane-bound substrate phosphatidylinositol-

(3,4,5)-triphosphate during cell death.  PTEN’s tumor suppressor function is

attributed to its phospholipid phosphatase activity, that specifically dephosphorylates

the plasma membrane phospholipid secondary messenger phosphatidylinositol-

(3,4,5)-triphosphate (PtdIns(3,4,5)P3).  The recruitment of PTEN, which is commonly

localized in the cytosol, into the plasma membrane where PtdIns(3,4,5)P3 accumulates

is believed to be necessary during apoptosis.  In this study, translocation of PTEN to

the plasma membrane microdomain is demonstrated for the first time in primary

cortical neurons treated with the proteasome inhibitor lactacystin.  In addition,



xvi

proteolysis of PTEN to a shorter 50 kDa form that is preferentially targeted to the

plasma membrane was observed.  This truncated species of PTEN might play an

important role in suppressing cell growth and promotes apoptosis by antagonizing the

PI3-kinase/Akt signaling pathway.

Microarray analysis of neurons exposed to lactacystin reveals the early up-regulation

of genes in response to unfolded proteins, such as those encoding proteasome

subunits, heat shock proteins (HSPs), and endoplasmic reticulum (ER) stress.  A

mechanism of apoptotic cell death through the abnormal accumulation of protein and

ER stress is suggested.  ER stress can also cause the disruption of calcium

homeostasis and oxidative stress in cells.  The up-regulation of genes which encode

calcium-binding proteins and enzymes involved in oxidative defense are likely to be

regulated by the downstream effects of ER stress.

The lipid profile of the neural membrane reveals the accumulation of ceramides and

N-acyl phosphatidylethanolamines (NAPEs) during lactacystin-induced apoptosis.

Ceramide has been known to be involved in the apoptotic cell death pathway, but the

role of NAPE is so far unclear.  NAPE accumulation has been associated with

excitotoxic or necrotic cell death, but the accumulation of NAPE in the apoptotic cell

death pathway has not been reported.

(-)-Epigallocatechin-3-gallate (EGCG) from green tea extract is a naturally occurring

proteasome inhibitor.  Although high concentrations of EGCG were able to induce

neuronal cell death through the activation of caspase-3, microarray analysis reveals

that low concentrations of EGCG caused the up-regulation of genes encoding



xvii

proteasome subunits and ubiquitin, suggesting a potential neuroprotective effect

against neurodegeneration.
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CHAPTER 1

1 INTRODUCTION

1.1 The ubiquitin-proteasome system

The ubiquitin-proteasome system (UPS) and the lysosomal pathway constitute the

major mechanisms of protein degradation in eukaryotic cells.  Lysosomal degradation

is responsible for the degradation of membrane-associated proteins and extracellular

proteins taken up by endocytosis.  On the other hand, UPS is an ATP-dependent

protein degradation system which is responsible for the degradation of soluble

proteins in the cytosol.  UPS degrades proteins selectively — only proteins that have

been tagged for degradation by a process called ubiquitination (or ubiquinylation) will

be degraded.  Many short-lived regulatory proteins are degraded by UPS; this

selective degradation of regulatory proteins by UPS underlies the regulation of many

cellular processes, including regulation of the cell cycle, modulation of cell surface

receptors and ion channels, and antigen presentation (Ciechanover and Schowartz,

2002).  In the central nervous system (CNS), UPS plays a role, among others, in

neuronal signaling, synapse formation and function (review by Hegde, 2004), and in

the prevention of abnormal protein accumulation.  UPS is particularly important in the

mechanism that controls the quality of newly synthesized proteins in the endoplasmic

reticulum (ER), degrading any protein that fails to be folded properly in a process

called ER-associated degradation (ERAD) (Travers et al, 2000; Hampton, 2002; Sitia

and Braakman, 2003).  It is becoming increasingly evident that the dysfunction or

altered activity of UPS is involved in pathogenesis of neurodegenerative diseases such

as Alzheimer’s disease (Lam et al, 2000; Layfield, 2000; Lopez Salon et al, 2000;

Hope et al, 2003; Song and Jung, 2004), Parkinson’s disease (Shimura et al, 2000;
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Snyder et al, 2003; Cookson, 2005; McNaugh and Olanow, 2005), Huntington’s

disease, Amyotrophic Lateral Sclerosis, prion diseases and spinocerebellar ataxia

(Alves-Rodrigues et al, 1998; Sherman and Goldberg, 2001; Layfield et al, 2003).

The molecular mechanisms that underlie these processes are presently being

unraveled.

The UPS consists of different components: a multi-component protease, ubiquitin,

ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin

protein ligase (E3) (Fig. 1.1).  The structures and functions of these components are

described below.

1.1.1 Structure and function of proteasome

The proteasome is a multi-component protease (review by DeMartino and Slaughter,

1999).  The fully assembled proteasome (26S) is a large 1500–2000 kDa protein

complex.  It is formed by the association of one core 20S proteasome (catalytic

complex) with one or two 19S regulatory subunits (also known as PA700) at each end

of the barrel-shaped 20S (Fig. 1.1).  The eukaryotic 20S consists of two outer and two

inner rings that are stacked to form a barrel structure.  Each outer ring has seven α-

subunits (α1 to α7) while each inner ring contains seven β-subunits (β1 to β7) (Groll

and Clausen, 2003).  The three main proteolytic activities of the 20S proteasome

complex are: chymotrypsin-like (mediated by the β5-subunit), trypsin-like (mediated

by the β2-subunit) and peptidyl-glutamyl peptide hydrolyzing or caspase-like

(mediated by β1-subunit) (DeMartino and Slaughter, 1999).  The chymotrypsin-like

activity of the 20S proteasome is believed to be the rate-limiting step in the protein

d e g r a d a t i o n  p a t h w a y .   T w o  a d d i t i o n a l
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Figure 1.1. The ubiquitin-proteasome system.  An E3 enzyme recognizes the substrate
and mediates the transfer of ubiquitin from an E2.  The latter receives its
ubiquitin by transfer from an E1.  Poly-ubiquitinated proteins are targeted for
degradation by the 26S proteasome.  The 26S proteasome is made up of the core
20S catalytic complex and the 19S regulator complexes.  It releases free
ubiquitin and degrades the substrate into short peptides.  Poly-ubiquitinated
proteins can be deubiquitinated by the action of numerous deubiquitinating
enzymes (DUBs)
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activities, called branched chain amino acid-preferring and small neutral amino acid-

preferring activities have been recently described.  Several evidences suggest that the

peptidyl-glutamyl peptide hydrolyzing activity and the branched amino acid-

preferring activity are expressed by the same active site, enabling the 20S proteasome

alone to degrade a wide variety of protein substrates, such as poorly-folded or

unfolded proteins, and oxidized proteins characterized by an increase of surface

hydrophobicity (Amici et al, 2003).

Situated at both ends of the 20S catalytic complex, the 19S acts in an ATP-dependent

fashion to unfold proteins for degradation and feed them into the catalytic barrel of

the 20S proteasome for degradation (DeMartino and Slaughter, 1999).  In addition to

that, an ubiquitin recognition function is present in the 19S to selectively degrade

proteins that are ubiquitinated.  The functions of 19S are coupled to its ATPase

activity, making it highly susceptible to ATP depletion, such as during ischemia.

1.1.2 Structure and function of ubiquitin

Ubiquitin is a small protein with 76 amino acids.  It is present in all studied eukaryotic

cells and tissues.  Ubiquitin is encoded by the ubiquitin B (Ubb) gene and is one of

the most conserved proteins known; the yeast’s ubiquitin protein sequence differs

from that of the human’s in only 3 out of the 76 amino acids (Hershko and

Ciechanover, 1998).  Ubiquitin can be covalently attached to another protein, or to

another ubiquitin, by a tightly controlled ATP-dependent process known as

ubiquitination, involving an ubiquitin-activating enzyme (E1 or Uba), an ubiquitin-

conjugating enzyme (E2, also known as Ubc) and an ubiquitin protein ligase (E3).

The process of ubiquitination is as follows: first, an E1 activates the free ubiquitin in



5

an ATP-dependent manner.  Next, the activated ubiquitin is transferred to an E2.

Finally, an E3 brings together the target protein and the conjugating enzyme,

facilitating the transfer of the activated ubiquitin to the targeted protein.  The

attachment of ubiquitin to the targeted protein is through the N-terminal of a lysine

residue of the target.  Subsequent rounds through the E1 ubiquitin-activating enzyme,

E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase lead to the formation of a

poly-ubiquitinated target protein, ready to be recognized and degraded by the 26S

proteasome (DeMartino and Slaughter, 1999; Wójcik, 2002).  The ubiquitination

cascade leading to the degradation of the substrate by the 26S proteasome is depicted

in Fig. 1.1.  In some instances, the proteasome can degrade proteins through

alternative regulatory mechanisms, which include the binding of adaptor proteins or

covalent modification by ubiquitin-like proteins (eg. Nedd8).  The UPS degradation

pathway is further complicated by the existence of numerous deubiquitinating

enzymes (DUBs).  DUBs can cleave not only the free poly-ubiquitin chains released

from tagged substrates which have already been degraded by the proteasome, but also

the poly-ubiquitin chains bound to undegraded substrates.  In the latter case, DUBs

can perform a rescue function, releasing the tagged substrate from the fate of

degradation (Wójcik, 2002).

1.2 Ubiquitin-proteasome system and neurodegeneration

The accumulation of unfolded proteins in the cell is a threat to its function and

viability (Sherman and Goldberg, 2001; Schröder and Kaufman, 2005).  Intra- or

extra-cellular accumulation of often cross-linked and misfolded proteins is a

characteristic feature of many neurodegenerative diseases, including Amyotrophic

Lateral Sclerosis, Alzheimer’s disease and Parkinson’s disease (Sherman and
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Goldberg, 2001; Shen et al, 2004; Grune et al, 2004).  The protein aggregates found in

diseased brains do not have a common terminology; the terms ‘protein aggregates’,

‘plaques’, ‘inclusion bodies’ or ‘aggresomes’ are commonly used (Wójcik and

DeMartino, 2003).  Johnston et al, defines an aggresome as a “peri-centriolar,

membrane-free, cytoplasmic inclusion containing misfolded, ubiquitinated proteins

ensheeted in a cage of intermediate filaments formed specifically at the microtubuli

organization centre (MTOC)” (Johnston et al, 1998).  On the other hand, the term

‘protein aggregate’ appears to have a rather wide specificity, requiring mainly the

existence of aggregations of misfolded protein.  For extracellular protein aggregates,

the term ‘plaque’ is more common.  The terms lipofuscin and ceroid are used in

general to describe protein material that accumulates during the aging process (Grune

et al, 2004).

Aggregation-prone proteins linked to neurodegenerative diseases have been shown to

disrupt the function of the UPS (reviewed in Song and Jung, 2004). The majority of

neurodegenerative disease cases are sporadic.  However, the identification of a

number of genes responsible for rare familial forms of neurodegenerative disease has

provided insights into the underlying mechanisms of the disease’s formation (Bossy-

Wetzel et al, 2004; Moore et al, 2005).  For example, loss-of-function mutation in the

gene encoding the E3 ubiquitin ligase, Parkin, is linked to autosomal recessive

juvenile parkinsonism (ARJP) (Shimura et al, 2000; Mizuno et al, 2001; Bossy-

Wetzel et al, 2004).  On the other hand, over-expression of Parkin could counter

unfolded protein stress-induced cell death (Imai et al, 2000).  Recent studies also

found that a frame-shift mutation of the ubiquitin B gene produces a variant form of

ubiquitin, UBB+1, which is found in intracellular protein inclusions in Alzheimer’s
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diseases and progressive supranuclear palsy (de Vrij et al, 2001).  This mutation

abolishes the C-terminal G76 of ubiquitin, preventing the ligation of UBB+1 to target-

protein substrates, or poly-ubiquitin chains.  Instead, UBB+1 is readily poly-

ubiquitinated and acts as a potent competitive inhibitor of the 26S proteasome (Lam et

al, 2000; Hope et al, 2003; Song and Jung, 2004).

1.3 Ubiquitin-proteasome system in aging

Familial types of neurodegenerative diseases are linked to loss-of-function mutations

of ubiquitin protein ligase, such as in the case of Parkinson’s disease.  However,

sporadic forms of neurodegeneration are often associated with aging.  Proteins, once

synthesized, will be folded into their functioning conformation (Schröder and

Kaufman, 2005).  In the cell however, the properly folded proteins are subject to a

highly reactive environment, and can undergo post-synthetic damage and

modification through oxidation, isomerization or glycation (Goldberg, 2003).  The

rate of such damage inflicted will increase markedly upon the exposure of cells to

stresses such as an increase of temperature, or reactive oxygen species (Sherman and

Goldberg, 2001).  Eukaryotic cells have two main strategies to counteract these

stresses and avoid the accumulation of protein aggregates.  These include the (i)

induction of heat shock proteins (HSPs) and molecular chaperones that are involved

in the protein refolding systems and (ii) targeted degradation of damaged and

unfolded proteins by the UPS (Taylor et al, 2005).  In an aging cell, the capacity to

handle the building up of unfolded or damaged proteins becomes insufficient to

prevent their accumulation and toxic consequences (Keller et al, 2002).  Recent

studies report that the expression of neuroprotective antioxidants and molecular

chaperones decrease in aging cells (Keller et al, 2004).  The decrease in
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neuroprotective antioxidants exposes proteins to oxidative stress and enhances the

building up of protein aggregates.  This building up of protein aggregates contributes

to the overloading and inhibition of the UPS, causing it to be less effective (Keller et

al, 2004).  Much remains to be discovered about the inducibility and functioning of

heat shock proteins, molecular chaperones and the UPS in mammalian cells.  Such

studies appear very important to undertake, since genetic polymorphism in these

protective systems, and in their expression with aging may play critical roles in the

accumulation of abnormal proteins and pathogenesis of neurodegenerative diseases.

Moreover, pharmacological induction or activation of these protein repair-and-

degradative systems could present an attractive new approach to treatment or delaying

the neurodegenerative process (Sherman and Goldberg, 2001).

1.4 Proteasome-inhibition-induced neuronal cell death

The use of proteasome inhibitors to inhibit proteasome activities in cells is sufficient

to induce both the formation of protein aggregates and neuronal apoptosis (Sawada et

al, 2004).  Therefore, research on the prevention of neurodegenerative diseases has to

be focused on the mechanisms of protein aggregation and the resultant neuronal cell

death that is caused by the inhibition of proteasome activities.  The mechanism of cell

death through the inhibition of the proteasome is, however, unclear.  Proteasome

inhibition has been found to mediate several cell death signaling pathways, including

the activation of the cysteine-dependent aspartate-directed (caspase) protease family,

the c-jun N-terminal kinase (JNK) pathway, and its upstream kinase and apoptosis-

signal regulating kinase 1 (ASK) pathway.  Recently, studies have also proposed the

ER stress-mediated cell death pathway to be involved in the toxicity of proteasome

inhibition (Nakagawa et al, 2000; Rao et al, 2005).  Caspase-12 is an ER-localized
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caspase, which is activated by ER stress and can possibly lead to the cleavage of

caspase-3 (Rutkowski and Kaufman, 2004).  It is worth noting that caspase-12 was

identified in the mouse, but its presence in human tissues is controversial (Rao et al,

2005).  Nevertheless, pro-apoptotic signals resulting from ER stress can also be sent

through the induction of the pro-apoptotic transcription factor C/EBP-homologous

protein (CHOP).  CHOP is normally undetectable, but is expressed at high levels in

cells exposed to conditions that perturb protein folding in the ER, and induces ER

stress-mediated apoptosis (Wang et al, 1996).  The increase in CHOP protein

expression is believed to suppress the anti-apoptotic Bcl-2 expression in cells, which

makes them more susceptible to apoptosis induction (McCullough et al, 2001; Rao et

al, 2004).  Furthermore, ER stress can also cause the disruption of calcium

homeostasis in cells, which in turn activates the calcium-regulated protease calpain

and subsequently induces cell death (Rutkowski and Kaufman, 2004).

1.5 Proteasome inhibitors

Proteasome inhibitors can be divided into 5 classes: (1) peptide aldehydes, (2) peptide

vinyl sulfones, (3) peptide boronates, (4) peptide epoxyketones (epoxomycine and

eponomycin), and (5) β-lactones (lactacystin and its derivatives), based on the

pharmacophore that reacts with the threonine residue in the active site of the

proteasome (reviewed by Adam, 2003).  In addition to being useful research tools for

dissecting the roles of the proteasome, these inhibitors elicit appreciable interest

because of their potential applications in biotechnology and medicine.  For example,

through their ability to block the activation of NFκB, proteasome inhibitors can

dramatically reduce in vitro and in vivo production of inflammatory mediators, as

well as that of various leukocyte adhesion molecules, which play crucial roles in
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many diseases (Lee and Goldberg, 1998; Di Napoli and Papa, 2003; Wójcik and Di

Napoli, 2004).  Also of appreciable promise is the potential use of these proteasome

inhibitors in cancer therapy (Rajkumar et al, 2005).  The proteasome inhibitor PS-341

(generic name bortezomib) has become the first proteasome inhibitor to be used in

clinical practice to treat relapse cases of multiple myeloma (Adams, 2003; Rajkumar

et al, 2005; Elliott and Ross, 2001).  The other potential proteasome inhibitor is MLN-

519, a small-molecular-weight lactacystin analog developed by Millennium

(Leukosite) for the potential treatment of inflammatory disease and stroke (Wojcik

and De Napoli, 2004).  However, of all the inhibitors mentioned above, only two

currently exhibit properties that are suitable for clinical development.  Reasons to

reject a proteasome inhibitor for future clinical development include metabolic

instability (Adams et al, 2003), lack of enzyme specificity, and irreversible binding to

the proteasome, such as in the case of β-lactone.  Nonetheless, proteasome inhibitors

such as peptide aldehydes and lactacystin have been useful in the study of UPS in

cancer cell lines or in neurons (Adam, 2003).

1.5.1 Many effects of proteasome inhibitors

Although the inhibition of proteasomes by proteasome inhibitors leads to cell death

and is related to neurodegenerative disease, other studies have also shown that

proteasome inhibition can cause the induction of various HSPs, which increase cell

tolerance to stressful conditions (Bush et al, 1997).  For example, Meriin et al

reported that proteasome inhibition using peptidyl aldehyde MG-132 was able to

trigger both pro-apoptotic and anti-apoptotic responses in U937 lymphoid and 293

kidney human tumor cells (Meriin et al, 1998).  In their study, the prolonged

incubation of cells with MG132 activates the apoptotic program through the c-Jun N-
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terminal kinase (JNK) pathway.  However, a short incubation of cells with MG-132,

followed by its withdrawal caused the accumulation of the heat shock protein 72

(Hsp72) and thus suppressed the JNK-dependent apoptosis caused by heat-shock or

ethanol treatment (Meriin et al, 1998).  In another study using cultured rat cerebellar

granule neurons, prolonged incubation with MG132 increased the expression and

phosphorylation of c-Jun and the pro-apoptotic protein Bim, and triggered neuronal

apoptosis.  Short-term incubation, on the other hand, exerted a neuroprotective effect

by stabilizing the MEF2 transcription factor (Butts et al, 2005).  Drug exposure time

is not the only factor that determines the fate of cells.  In a separate report, Suh et al

observed that a lower concentration of MG-132 (0.1 µM) induced neuronal apoptosis

in mouse cortical neuronal cultures, while a higher concentration (10 µM) attenuated

apoptosis (Suh et al, 2005).  The authors concluded that the complete inhibition of

proteasome activity might have prevented neuronal cell death through the regulation

of mitochondrial-mediated apoptotic pathways.  Therefore, both the concentrations

and the times of exposure to the proteasome inhibitor might define the fate of cells.

1.5.2 Lactacystin

Lactacystin, a proteasome inhibitor, was first isolated from the soil bacteria

Streptomyces sp. OM-6519 because of its ability to promote differentiation in mouse

neuroblastoma cell line (Neuro 2a) and rat Oligodendroglial cells (Nakagawa, 1994;

Pasquini et al, 2003).  Lactacystin was found to induce apoptosis in actively dividing

cancerous cell lines (Imajoh-Ohmi et al, 1995), and more recently, in cultured cortical

neurons (Qiu et al, 2000).  Lactacystin is specific, non-reversible and potent as a

proteasome inhibitor.  It can inhibit the chymotrypsin-like and trypsin-like activities

of 20S proteasome; many studies suggest that chymotrypsin-like activity is the rate-
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limiting step in protein degradation (Lee and Goldberg, 1998).  Lactacystin does not

react with the proteasome; rather, it undergoes a spontaneous conversion

(lactanization) to the active proteasome inhibitor, clasto-lactacystin β-lactone (or β-

lactone in short).  When β-lactone is added to mammalian cells in culture, it rapidly

enters the cells, where it can react with the sulfhydryl of glutathione (GSH) to form a

thioester adduct that is both structurally and functionally analogous to lactacystin

(called lactathione).  Like lactacystin, lactathione does not react with the proteasome,

but can undergo lactanization to yield back the active β-lactone (Dick et al, 1996).  In

cells, β-lactone binds specifically to the β5 subunit of 20S and inhibits its

chymotrypsin-like activities (Dick et al, 1996).  Fig. 1.2 illustrates the mechanism of

proteasome inhibition by lactacystin in cells.

1.6 The aims of this study

Aberration of the UPS has been implicated in the pathogenesis of many

neurodegenerative disorders.  The mechanism of proteasome inhibition-induced

neuronal apoptosis is still not well understood.  Therefore, the aim of this study is to

address the mechanism of proteasome dysfunction-mediated neuronal apoptosis,

using the proteasome inhibitor lactacystin.  Understanding the underlying mechanism

involved in this cell death system is important for the development of novel,

mechanism-based drugs for the treatment of neurodegeneration.

I started out my research by studying the role of the tumor suppressor PTEN

(phosphatase and tensin homolog deleted from chromosome 10) in lactacystin-

induced neuronal apoptosis.  PTEN is a novel phospholipid and protein phosphatase.
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Figure 1.2. Mechanism of proteasome inhibition by lactacystin in cells.  The detailed
information of proteasome inhibition by lactacystin is described in the text.  This
diagram is according to the report of Dick et al, 1997.
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Mutation of the PTEN gene is associated with many cancer types such as gliomas and

endometrial cancers (Leslie and Downes, 2002; Waite and Eng, 2002), mammalian

cells transfected with the PTEN gene are more sensitive to the induction of apoptosis

(Wang et al, 1999; Gary and Mattson, 2002), suggesting that its interplay with PI3-

kinase is an important regulatory step in the cellular cascades related to apoptosis.  It

has been suggested that PTEN needs to be translocated to the plasma membrane

during apoptosis to dephosphorylate the phospholipid secondary messenger

phosphatidylinositol-(3,4,5)-triphosphate (PtdIns(3,4,5)P3), a product of PI3-kinase.

It is tempting to speculate that PTEN regulates neuronal cell death and is involved in

the pathogenesis of neurodegeneration.  The initial aim of this study was therefore to

demonstrate that translocation of PTEN occurred during proteasome inhibition-

induced neuronal cell death.  Using mouse primary cortical neurons as a cell death

model, it was tedious but not difficult to prove that PTEN was recruited into the

detergent-insoluble fraction or lipid raft of the plasma membrane during neuronal cell

death.  The tough part however, would have been to demonstrate that this

translocation could actually result in the dephosphorylation of the PtdIns(3,4,5)P3 on

the neural membrane.  Furthermore, recent studies have shown that PTEN has a

complex role in the central nervous system, and is involved in the differentiation and

maturation of neurons.  This led to a decision to switch the research interest to focus

on the study of the mechanisms of proteasome inhibition-induced neuronal apoptosis

using microarray GeneChip® technology.

Gene expression studies lie at the heart of a wide variety of medical and biological

research projects, including classifying diseases, understanding basic biological

processes, and identifying new drug targets.  Until recently, comparing expression
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levels across different tissues or cells was limited to tracking one or a few genes at a

time. Using GeneChip® arrays, it is possible to simultaneously monitor the activities

of thousands of genes.  Global views of gene expression are often essential for

obtaining comprehensive pictures of complex biological processes.  For example,

microarray technology has been applied to study neuroprotective gene expression in

ischemic preconditioned in vitro and in vivo models (Stenzel-Poore et al, 2003).  In

this study, Affymetrix GeneChip® was used to study the global gene expression of

cultured cortical neurons exposed to lactacystin.

The breakdown of the neuronal membrane is a characteristic feature of neuronal

degeneration (Klein, 2000).  Changes in plasma membrane phospholipid

compositions might increase the susceptibility of neurons to pro-apoptotic signals

(Farooqui et al, 2004).  Furthermore, neural plasma membrane is also a rich source of

lipid messengers, which are known to regulate cell death and survival.  Differential

lipid profiling (analogous to differential protein expression profiling) between healthy

and dying cells will provide insight into the changes of lipid compositions in

apoptotic cells.  Information on alterations in lipid metabolites in dying cells may

facilitate subsequent studies to examine the kinetics of lipid metabolism and the

interactions of lipids with cellular proteins, and provide new insight into the function

of cellular networks.  Lipid profiling can thus be integrated with genomics and

proteomics to provide a multidimensional perspective of the biological system.  In

this study, lipid profiling was carried out to complement the results obtained from the

microarray analysis.
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(-)-Epigallocatechin-3-gallate (EGCG) is the major flavonoid (or polyphenol) in green

tea (Camelliea sinensis) leaf extract.  Most of the experimental and epidemiological

studies with green tea extract have been targeted at its possible cardiovascular,

anticarcinogenic and anti-inflammatory activities, which are thought to rely on the

antioxidant and iron-chelating actions of its polyphenol constituents, and on

modulation of endogenous metabolizing and antioxidant enzymes (Mandel and

Youdim, 2004).  However, it has been found that EGCG can selectively inhibit the

chymotrypsin-like activity of proteasomes by binding to the active site of the β5-

subunit of 20S proteasome (Wan et al, 2004).  Furthermore, Nam et al shows that

EGCG can potently inhibit proteasome activity in vitro and in vivo (Nam et al, 2001).

Recent studies suggest that the neuroprotective effect of EGCG is due to its ability to

inhibit proteasomes (Mandel and Youdim, 2004; Shay and Banz, 2005).  EGCG was

therefore chosen as a comparative proteasome inhibitor to lactacystin in the

microarray study.

This thesis therefore contains the following topics of interest:

1) PTEN accumulation in the detergent-insoluble fraction during lactacystin-induced

neuronal apoptosis

2) Microarray GeneChip® study of gene expression during lactacystin-induced

neuronal apoptosis

3) Lipid profile of neural membrane during lactacystin-induced neuronal apoptosis

4) Microarray GeneChip® study of gene expression of cultured cortical neurons

during exposure to (-)-epigallocatechin-3-gallate
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CHAPTER 2

2 MATERIALS AND METHODS

2.1 Primary cortical neurons

Cultures of mouse neocortical neurons (gestational days 15–16) were prepared from

cortices microdissected from the brains of fetuses and subjected to trypsin digestion

and mechanical trituration (Cheung et al, 1998).  The dissociated cells were harvested

by centrifugation and resuspended in Neurobasal™ (NB) medium with 2.5% B-27

supplement, 0.25% GlutaMAX™-I supplement (all of the above are from GIBCO™),

10% fetal calf serum and 1% penicillin and streptomycin.  Cells were seeded to a

density of 2×105 cells per cm2 culture area previously coated with 100 µg/ml poly-D-

lysine.  The cultures were maintained in a humidified 5% CO2 incubator at 37°C.

After 24 h in vitro, the culture medium was replaced with serum-free NB medium

with 2.5% B-27 supplement, 0.25% GlutaMAX-I supplement and 1% penicillin and

streptomycin and cultured for 5 days in vitro before treatment.  Immunocytochemical

staining of the cultures for microtubule-associated protein 2 (MAP-2) and glia

fibrillary acidic protein (GFAP) indicated >95% of the cells were neurons with

minimal contamination by glia (Fig. 2.1).
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Figure 2.1. Immunocytochemical staining of the mouse cortical neurons for
microtubule-associated protein-2 (Map-2) and glia fibrillary acidic protein
(GFAP).  Green color (Map-2) indicates cortical neurons while red color (GFAP)
indicates glial cells
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2.2 Drug treatment

2.2.1 Lactacystin stock solution preparation

The synthetic lactacystin (cat# 426100, CALBIOCHEM®, Lajolla, CA, USA) was

dissolved and maintained as a 10 mM stock solution [200 µg in 53 µl Dimethyl

sulfoxide (DMSO)].  The 10 mM stock solution was stored at -20° for not more than

6 months.  The stock solution was further diluted to 2 mM in DMSO and added into

NB medium to obtain the final concentrations of drug in the range of 0.1 to 5 µM for

cell culture treatment.  The same volume of DMSO was used in the control treatment

as the drug vehicle.

2.2.2 (-)-Epigallocatechin-3-gallate from green tea

EGCG from green tea (≥95%, cat# E-4143, Sigma-Aldrich, USA) was dissolved in

water to make a 10 mM stock solution.  The stock solution was further diluted to

concentrations (0.1–10 µM) in NB before treatment.  Fresh stock solution was

prepared from the powder for each set of experiments.

2.2.3 Caspase and calpain inhibitors

The irreversible, cell-permeable, broad-spectrum caspase inhibitor z-VAD-FMK (cat#

P-416, BIOMOL®, PA, USA), caspase-3 inhibitor IV (cat# 235421,

CALBIOCHEM®, Lajolla, CA, USA) and calpain inhibitor calpeptin (cat#03-34-

0051, CALBIOCHEM®, Lajolla, CA, USA) were prepared as 50 mM stock solutions

in DMSO.  All stock solutions were kept at -20°C for not more than two months.  For
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treatment with cultured neurons, the stock solutions were diluted to 50–100 µM

concentrations using NB medium before treatment.

2.3 Immunocytochemistry

Fixed cells were quenched in 1% H2O2 and non-specific binding was subsequently

blocked with 10% normal goat serum and 0.1% Triton X-100 in Tris buffered saline

(TBS) for 1 h at 4°C.  Cells were incubated with polyclonal antibody to PTEN

(1:2000) overnight at 4°C and then secondary antibody for 3 h in solution with 2%

normal goat serum and 0.1% Triton X-100 in TBS.  Detection of immunoreactive

cells was carried out using 3,4-diaminobenzidine (DAB) substrate solution (0.5

mg/ml DAB and 0.01% H2O2 in TBS).  Immunoreactive cells were visualized under

bright-field microscopy.

2.4 Immunofluorescence and confocal microscopy

Cells were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS).

Fixed cells were treated with 100 mM NH4Cl and with 0.2% Triton X-100 and then

blocked with 10% goat serum in PBS, immuno-labeled with primary antibodies and

with Alexa Fluor 488 goat anti-rabbit IgG or Alexa Fluor 594 goat anti-mouse

IgG (Molecular Probes).  Images were obtained using laser scanning confocal

microscope (Carl Zeiss LSM510).

2.5 Transmission electron microscopy

Cells were fixed in 3% glutaraldehyde and 2% paraformaldehyde.  After osmication

in 2% osmium tetroxide, samples were dehydrated in an ascending series of ethanol
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and embedded in araldite.  Ultra-thin sections (70 nm) were cut and mounted on

formvar-coated copper grids.  Grids were stained with uranyl acetate and lead citrate

before viewing in a Philips BioTwin CM 120 transmission electron microscope.

2.6 Preparation of plasma membrane sheet and gold labeling for transmission

electron microscopy

Plasma membrane rip-off and gold labeling was done according to Wilson et al

(Wilson et al, 2004).  In brief, coverslips with cultured cortical neurons on it were

rapidly chilled by immersion in ice-cold HEPES buffer (25 mM HEPES, pH 7, 25

mM KCl, 2.5 mM Mg acetate) and inverted onto nickel electron microscopy grids that

had been coated with Formvar and carbon and, on the day of the experiment, glow

discharged and floated on poly-L-lysine (0.8 mg/ml for 30 min, followed by 10 s

distilled water rinse and air drying.  Pressure was applied to the coverslip for 20 s by

bearing down with a cork.  The coverslips were lifted, leaving sections of the upper

cell surface adherent to the poly-L-lysine-coated grid. Membranes were then fixed in

2% paraformaldehyde for 10 min at 4°C immediately after cell membrane sheet

preparation.  PTEN were labeled from the inside by incubating sequentially with

primary antibodies and gold-conjugated secondary reagents, by inverting the grids

onto the droplets.  Samples were then post-fixed in 2% glutaraldehyde in phosphate-

buffered saline.  The samples were then incubated with antibodies specific for PTEN

(10 nm gold) and Flottilin-1 (15 nm gold) at the dilution of (1:100).  Next, samples

were stained for 10 min with 1% OsO4 prepared in 0.1 M cacodylate buffer, then

washed for 5 min with cacodylate buffer and then twice for 5 min in H2O.  Samples

were then processed for 10 min in 1% aqueous tannic acid, followed by two 5-min
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rinses with H2O, 10 min with 1% aqueous uranyl acetate, and two 1-min rinses with

H2O.  Grids were air-dried and examined using a TEM.

2.7 MTT cell viability assay

3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was dissolved

in RPMI medium 1640 (GIBCO) at a stock concentration of 5 mg/ml.  MTT

solution (30 µl) was added to each well of the 24-well plate containing cells in 300 µl

culture medium and the plate was incubated at 37°C for 30 min.  The culture medium

was then removed by aspiration.  An aliquot of 200 µl DMSO was added to dissolve

the formazan formed in each well and the absorbance of the solution at the

wavelength of 570 nm was read using a TECAN plate reader.  MTT assay measures

the loss of mitochondrial Krebs cycle activity.

2.8 Western blotting

For whole cell lysate preparation, neurons were lysed in 5× sample buffer (0.5 M Tris

(pH 6.8), 10% SDS, 20% glycerol, 0.05% bromophenol blue, 20% β -

mercaptoethanol).  When RIPA buffer (10 mM Tris HCl (pH 7.4), 1 mM EDTA, 150

mM NaCl, 1% Nonidet P-40, 0.5% Deoxycholate, 0.1% SDS) was used for

extraction, cells were lysed in RIPA buffer and the insoluble materials were pelleted

by centrifugation at 14,000 rpm for 10 min.  Pellets were re-dissolved in 5× sample

buffer.  Equal volumes of the whole cell lysate and the pellet obtained from extraction

using RIPA buffer were loaded onto SDS-PAGE gels.  An aliquot of the supernatant

containing an equal amount of proteins was used for Western blot analysis.  After
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SDS-PAGE, proteins were electro-transferred to PVDF membranes and probed with

antibodies.

2.9 Antibodies

A PTEN polyclonal antibody was raised by immunizing rabbits with 5 synthetic

peptides from different regions of PTEN.  The peptides were

K352ANRYFSDNFKVKLYF367,  T2AIIKEIVSRNKRRYQED19,

T232RREDKFMYFEF243,  E388NEPFDEDQHTQITKV403 a n d

K260QNKMLKKDKMF271.  Two other PTEN antibodies, one of which recognizes the

N-terminal of PTEN [anti-PTEN (N-19), sc-6818] from Santa Cruz Inc. (CA, USA)

and the other of which recognizes the C-terminal of PTEN [anti-PTEN (26H9),

cat#9556] from Cell Signaling Technology (Beverly, MA, USA) were obtained

commercially.  Anti-β-tubulin (ATN01) was purchased from Cytoskeleton Inc.

(Denver, CO, USA).  Anti-β-actin (clone AC-74, cat#A-5316) and anti-MAP-2 (clone

AP-20, cat# M 1406) were obtained from Sigma, USA.  Anti-active caspase-3 (cat#

557035) was obtained from BD Biosciences PharMingen (San Diego, CA, USA).

Anti-PARP (AB-2) (Clone C-2-10, cat# AM30) was obtained from Oncogene

Research Products (San Diego, CA, USA).  Anti-p35 (cat# sc-820) was obtained from

Santa Cruz Inc. CA, USA.

2.10 Caspase activities measurement

Caspase activities were measured using 9 types of fluorogenic substrates from

BioVision, California, USA according to the manufacturer protocol.  The substrates

used were Ac-YVAD-AFC (caspase-1), Ac-VDVAD-AFC (caspase-2), Ac-DEVD-
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AFC (caspase-3), Ac-LEVD-AFC (caspase-4), Ac-WEHD-AFC (caspase-5), Ac-

VEID-AFC (caspase-6), Ac-IETD-AFC (caspase-8), Ac-LEHD-AFC (caspase-9) and

Ac-AEVD-AFC (caspase-10).  In brief, 2.25×106 cells were lysed in 150 µl chilled

cell lysis buffer (Cat# 1201-1).  The protein concentrations were determined using

BCA protein assay kit (Pierce, USA).  In a black 96-well plate, 10 µg of total proteins

were added into each well, containing 50 µl of 2× reaction buffer (Cat# 1068-20) with

10 mM DTT (freshly added).  25 µM of AFC conjugated substrates were added into

each well last, and incubated at 37ºC for one hour.  The samples were read in the

TECAN ULTRA 384 plate reader (Tecan, Austria) using 400 nm excitation filter and

505 nm emission filters.  The fold-increase in caspase activity was determined by

comparing the fluorescence of the treated sample with that of the non-induced control.

2.11 Proteasome activity measurement using fluorogenic substrates

The fluorogenic peptide substrates: substrate II (Z-Leu-Leu-Glu-AMC), substrate III

(Suc-Leu-Leu-Val-Tyr-AMC) and substrate VI (Z-Ala-Arg-Arg-AMC) were used

respectively to assay for the postglutamate, chymotrypsin-like and trypsin-like

peptidase activities of the neuronal cell proteasomes.  Cells were lysed in ice-cold

homogenization buffer (10 mM Tris, pH 7.5, 5 mM EDTA, 1 mM DTT, 5 mM ATP,

20% glycerol, 0.04% Nonidet P-40).  The protein concentration was determined, and

an equal amount of protein (5 µg) was incubated with 50 µM of substrate II, substrate

III, or substrate VI in assay buffer (50 mM Tris and 0.5 mM DTT) prior to protease

activity measurement using a TECAN plate reader with excitation wavelength of 360

nm and emission wavelength of 465 nm.  All fluorogenic substrates were purchased

from Calbiochem®, San Diego, CA, USA.
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2.12 Plasma membrane isolation using Percoll gradient

All steps were carried out at 4°C.  Each well was washed once with 3 ml of buffer A

(0.32 M sucrose, 1 mM EDTA, 20 mM Tris, pH 7.8) containing a protease inhibitor

cocktail (Complete mini, Roche, Switzerland) and phosphatase inhibitors (25 mM

sodium fluoride, 2 mM sodium orthovanadate and 10 mM sodium pyrophosphate),

and the cells were scraped off and collected in 3 ml of buffer A.  The cells were

pelleted by centrifugation for 5 min at 1,000 g.  Cells were resuspended in 0.5 ml

buffer A, placed in a Dounce homogenizer and homogenized using a tight-fitted

plunger for 20 strokes.  The suspension was transferred to a 1.5-ml Eppendorf tube

and centrifuged at 1,000 g for 10 min.  The post nuclear supernatant (PNS) were

stored on ice and the pellet from each tube was resuspended in 0.5 ml buffer A,

homogenized and centrifuged again.  The PNS were combined and layered on top of

30% Percoll in buffer A and centrifuged at 84,000 g for 30 min in a Beckman SW 41

Ti rotor.  This method was modified from Smart et al, 1995.  Plasma membrane

fractions were determined using anti-flotillin-1 (BD Transduction Laboratories,

610820) and anti-caveolin-1 (Santa Cruz, sc-894).  Cytosolic fractions were

determined by measuring lactate dehydrogenase (LDH) using the CytoTox 96®Non-

Radioactive Cytotoxicity Assay (Promega).  Protein concentrations of fractions were

determined using BCA protein assay kit (Pierce, USA).

2.13 Microarray GeneChip®

2.13.1 Experimental design for lactacystin treatment

A total of 15 murine genome U74Av2 GeneChips® (Affymetrix, Santa Clara, CA,

USA) were used in this experiment.  U74Av2 was selected for the experiment
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because it contains all the known genes of mouse and some ESTs.  The following

treatments were used: 24 h control (n=4), 4.5 h 1 µM lactacystin treatment (n=2), 7.5

h 1 µM lactacystin treatment (n=3), 24 h 1 µM lactacystin treatment (n=3) and 48 h 1

µM lactacystin treatment (n=3).

2.13.2 Experimental design for (-)-epigallocatechin-3-gallate treatment

A total of 7 murine genome U74Av4 GeneChips® were used in this experiment.  The

following treatments were used: control 24 h (n=2), 1 µM 24 h EGCG treatment

(n=2), 25 µM 24 h EGCG treatment (n=3).

2.13.3 Total RNA isolation

Total RNA was extracted from cultured cortical neurons using RNeasy mini Kit

(Qiagen, Valencia, CA) according to manufacturer protocol.  Total RNA from a 6-

well plate was pooled by adding 350 µl of RLT buffer into each well and scrapping

with a cell scraper.  The cell lysate collected was passed through a 20-gauge needle

10 times, after which 350 µl of 70% ethanol was added to the homogenized lysate.

The mixture was then applied into an RNeasy mini column and subjected to

centrifugation.  The flow-through was discarded.  The column was washed with 700

µl RW1 and after that twice with 500 µl RPE buffer.  The column was spun dry and

the total RNA eluted using 30 µl RNase-free water.  The quality and the yield of the

total RNA extracted were determined by spectrophotometer (A260 and A280) and by

running a 1% agarose formaldehyde denaturing gel to check the integrity of the 28S

and 18S ribosomal RNA bands.
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2.13.4 One-cycle cDNA synthesis

One Cycle Kit (Affymetrix, Santa Clara, CA, USA) was used to synthesize

biotinylated cRNA according to manufacturer protocol.  10 µg of total RNA was used

for the cDNA synthesis.  For details of microarray GeneChip® protocol, reagents and

suppliers, please refer to the technical manual (expression_print_manual.pdf) which

can be obtained from the Affymetrix website (www.affymetrix.com).  This section of

the thesis documents the conditions under which the microarray experiments were

conducted.

2.13.4.1 First-strand cDNA synthesis

The RNA sample, diluted poly-A RNA controls and T7-Oligo(dT) primer were mixed

as in Table 2.1.

Table 2.1.  Preparation of RNA/T7-Oligo(dT) Primer Mix
Component Volume/µl
Sample RNA 10 µg (variable volume)
Diluted poly-A RNA controls 2
T7-Oligo(dT) primer, 50 µM 2
RNAse-free water Variable
Total volume 11

The above mixture was subjected to incubations in a thermal cycler with the

following program:

70°C 10 min
4°C Hold for the addition of First-Strand Master Mix
42°C 2 min, then SuperScript II was added
42°C 1 h
4°C Hold
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The First-strand Master Mix is assembled as in Table 2.2:

Table 2.2.  Preparation of First-Strand Master Mix
Component Volume/µl
5× 1st Strand Reaction Mix 4
DTT, 0.1 M 2
DNTP, 10 mM 1
Total volume 7

SuperScript II (2 µl) was added after 2 min of incubation at 42°C.  After incubation

for 1 h at 42°C, the sample was cooled for at least 2 min at 4°C before the second-

strand cDNA synthesis.

The following program was used to perform the second-strand cDNA synthesis in a

thermal cycler:

16°C 2 h
4°C Hold for the addition of T4 DNA Polymerase
16°C 5 min
4°C Hold

A Second-Strand Master Mix was prepared according to Table 2.3.

Table 2.3.  Preparation of Second-Strand Master Mix
Component Volume/µl
RNase-free water 91
5×2nd Strand Reaction Mix 30
dNTP, 10 mM 3
E. coli DNA ligase 1
E. coli DNA polymerase I 4
RNase H 1
Total volume 130

The Second-Strand Master Mix (130 µl) was added to each first-strand synthesis

sample for a total volume of 150 µl.  The mixtures were incubated for 2 h at 16°C.

T4 DNA polymerase (2 µl) was added to each sample and incubated for another 5
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min at 16°C.  After that, 10 µl of 0.5 M EDTA was added into each sample before the

cleanup of double-strand cDNA.

2.13.4.2 Cleanup of double-stranded cDNA for one-cycle target labeling assay

cDNA Bidding Buffer (600 µl) was added to the double-stranded cDNA synthesis

preparation.  This mixture was applied into the cDNA Cleanup Spin Column,

centrifuged and the flow-through was discarded.  The spin column was then washed

with 750 µl cDNA Wash Buffer, dried and the cDNA was eluted from the column

with 14 µl cDNA Elution Buffer.  The average volume of eluate was 12 µl from 14 µl

Elution Buffer.

2.13.4.3 Synthesis of biotin-labeled cRNA for one-cycle target labeling assay

The template cDNA (6 µl) was transferred to RNAse-free microfuge tubes and the

following reaction components were added in the order indicated in Table 2.4.

Table 2.4.  In vitro transcription (IVT) reaction
Reagent Volume/µl
Template cDNA 6
RNase-free water 14
10× IVT Labeling NTP Mix 4
IVT Labeling NTP Mix 12
IVT Labeling enzyme Mix 4
Total volume 40

The mixtures were incubated at 37°C for 16 h.  To prevent condensation, incubation

was carried out in a thermal cycler with a heated lid.
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2.13.4.4 Cleanup and quantification of biotin-labeled cRNA

RNase-free H2O (60 µl) was added into the IVT reaction and mixed for 3 s.  After that

350 µl of IVT cRNA Binding Buffer was added, followed by 750 µl 96–100%

ethanol.  The samples were applied to the IVT Cleanup Spin Column sitting on a 2 ml

collection tube.  The column was centrifuged and the flow-through was discarded.

The column was then washed with 500 µl IVT cRNA Wash Buffer, followed by 500

µl 80% (v/v) ethanol.  The column was spun dry and the cRNA was eluted by 11 µl

RNase-free water.  A second elution using 10 µl was performed to maximize the

yield.  The cRNA was diluted 1:100 fold for quantification.

The yield of cRNA was determined by: 1 absorbance unit at 260 nm equals 40 µg/ml

RNA.  The purity of the cRNA was checked by calculating the A260/A280 ratio.

Ratios between 1.9 and 2.0 were considered acceptable.

For quantification of cRNA using total RNA as starting material, an adjusted cRNA

yield must be calculated to reflect carryover of unlabeled total RNA.  The following

formula was used to determine adjusted cRNA yield:

Adjusted cRNA yield = RNAm-(total RNAi) (y)

Where,

RNAm = amount of cRNA measured after IVT (µg)

Total RNAi = starting amount of total RNA (µg)

y = fraction of cDNA reaction used in IVT
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2.13.4.5 Fragmenting the cRNA for target preparation

Fragmentation of cRNA target before hybridization onto GeneChip probe arrays has

been shown to be critical in obtaining optimal assay sensitivity.  The reaction mix was

set up as in Table 2.5.

Table 2.5.  Sample fragmentation reaction
Component For 49 (standard)/64 array format
cRNA 20 µg
5× Fragmentation Buffer 8 µg
RNase-free water Top up to 40 µl final volume

The reaction was incubated at 94°C for 35 min and cooled down on ice following

incubation.  The fragmented sample cRNA can be stored at -20°C (or -70°C for

longer-term storage) until ready to perform the hybridization.  An aliquot of the

fragmented cRNA was run on 1% agarose gel to check the quality of the

fragmentation.  The standard fragmentation procedure should produce a distribution

of RNA fragment sizes from approximately 35 to 200 bases.

2.13.4.6 Eukaryotic target hybridization

Table 2.6 shows the components in the hybridization cocktail for a single probe array.

Table 2.6.  Hybridization cocktail for a single 49 format (standard)/64 format array
Component Volume/µl
Fragmented cRNA 15 µg (variable volume)
Control oligonucleotide B2 (3 nM) 5
20X Eukaryotic Hybridization Control 15
Herring Sperm DNA (10 mg/ml) 3
Acetylated BSA (50 mg/ml) 3
2× hybridization buffer 150
DMSO 30
Water Top up to final volume of 300 µl

The frozen stock of 20× GeneChip® Eukaryotic Hybridization Control cocktail was

heated to 65°C for 5 min to completely resuspend the cRNA before aliquoting.  It

contains bioB, bioC, bioD and cre prokaryotic enzymes.  bioB, bioC and bioD are
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genes of the biotin synthesis pathway from the bacteria E. coli.  c r e  is the

recombinase gene from P1 bacteriophage.  These genes can be labeled and serve as

hybridization controls when mixed with labeled eukaryotic cRNA samples.  The

probe array was equilibrated to room temperature immediately before use.  The array

was wetted by filling it through the lower septa with 100 µl of 1×hybridization buffer

while the array was held in a vertical position.  The probe array was incubated at

45°C for 10 min in an incubator with rotation.  The hybridization cocktail was heated

to 99°C for 5 min in a heat block, cooled down to 45°C for 5 min and centrifuged for

5 min at maximum speed to spin down any insoluble material from the hybridization

mixture.  After incubation, the 1× hybridization buffer was aspirated out and the

hybridization cocktail was added into the probe array.  Test chips were used before

the actually probe arrays (U74Av2) to ensure the quality of the targets and reagents.

Tapes were stuck over the septa to prevent leakage.  The probe array was placed into

the hybridization oven at 45°C, rotated at 60 rpm and hybridized for 16 h.

2.13.4.7 Washing, staining and scanning of the probe array

After 16 h of hybridization, the hybridization cocktail was removed from the probe

array and kept in a centrifuge tube.  The probe array was filled with 200 µl of non-

stringent wash buffer.  For staining, Streptavidin phycoerythrin (SAPE) staining

reagent was prepared before use as in Table 2.7.  For each probe array to be stained,

the following components were combined in a microfuge tube:
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Table 2.7.  SAPE solution mix
Component Volume/µl
2× MES stain buffer 600
50 mg/ml acetylated BSA 48
1 mg/ml SAPE 12
Milli-Q water 540
Total volume 1,200

The SAPE solution was mixed well and divided into 2 aliquots of 600 µl each to be

used for the first and third staining respectively.  An antibody mixture was prepared

with the following reagents as in Table 2.8.

Table 2.8.  Antibody solution mix
Component Volume/µl
2×MES stain buffer 300.0
50 mg/ml acetylated BSA 24.0
10 mg/ml normal goat IgG 6.0
0.5 mg/ml biotinylated antibody 3.6
Milli-Q water 266.4
Total volume 600.0

The staining and washing of probe arrays were performed in GeneChip® Fluidics

Station 450.  The fluidic protocol (Micro_1v1, Appendix B) was used for the test

chip. For the U74Av2 probe array, the EukGE-WS2v5 Fluidics Scripts (Appendix B)

were used.  At the end of the wash protocol, the probe array was scanned using

Affymetrix® GeneChip® Scanner 3000.  The data obtained was saved.  The probe id,

signal, detection and detection p value from the absolute analysis results file were

extracted and saved as .txt file for analysis using GeneSpring® (Silicon Genetics,

Redwood City, CA, USA; www.silicongenetics.com).
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2.13.5 Microarray data analysis

The microarray analysis was conducted with GeneSpring 7 Software (Silicon

Genetics, Redwood City, CA).  The raw data from the treatments were normalized to

the median of the control values.  GeneSpring 7 calculates the median expression for

each gene in the control samples, then uses that value to normalize all the samples.

The data is represented as fold change, relative to the median of all four control

samples.  All genes demonstrating smaller than 2-fold change were eliminated from

further consideration.  Furthermore, the genes that showed absence in all the

treatments were removed from the differentially expressed gene list.  To determine

whether the difference in gene expression in response to the treatments was

significant, a one-way ANOVA test was performed and genes with values of p<0.05

were considered to be significant.  To further test the integrity of the gene list,

Bonferroni Correction, a very stringent statistical analysis (Jung et al, 2005) was

performed.  The gene list with comprehensive functional annotations (molecular

and/or biological) was exported to Microsoft Excel for further analysis.  Genes were

then clustered according to their biological function in Excel spreadsheet with

reference to Gene Ontology Mining Tool from Affymetrix® NetAffx™ Analysis

Center (www.affymetrix.com/analysis/). Follow-up experiments were done to address

the biological relevance of the findings.

2.14 RNA gel electrophoresis

Denaturing agarose-formaldehyde gel electrophoresis was used for the size

fractionation of RNA.  A 1% (w/v) agarose-formaldehyde was prepared by melting

0.5 g of agarose in 43.5 ml of milli-Q water and cooled to 60%.  5 ml of 10× MOPS



35

and 1 ml of 37% formaldehyde were added and casting of the gel was carried out in

the fume hood.  The RNA samples were prepared as follows:

RNA (1 µg) 4.5 µl
10× MOPS buffer 2.0 µl
Formaldehyde (pH>4, 37%) 3.5 µl
Deionized formamide 10 µl
RNA loading buffer 3.5 µl

The sample was mixed and heated to 60°C for 10 min prior to loading and

electrophoresis was carried out in 1× MOPS buffer.  RNA bands were visualized

under UV-light after electrophoresis.  The image was recorded using Chemi Genius

gel documentation system (Syngene, Cambridge, UK).

2.15 Quantitative real-time PCR

Total RNA was extracted using the High Pure RNA Isolation Kit (Roche Applied

Science, Indianapolis, IN, USA) with on-column DNase treatment according to

manufacturer’s specifications.  The RNA was then reverse transcribed using

TaqMan Reverse Transcription Reagents (Applied Biosystems, Foster City, CA).

The final reverse transcription reaction includes 200 ng of RNA, 1×RT Buffer, 5.5

mM MgCl2, 0.5 µM per dNTP mixture, 2.5 µM Random Hexamers, 4 U RNase

Inhibitor and 12.5 U MultiScribe™ Reverse Transcriptase.  Reaction conditions were

25°C for 10 min, 37°C for 60 min and 95°C for 5 min.  The reaction was carried out

using a thermocycler (PTC-100™ Peltier Thermal Cycler, MJ Research).  A

Multiplex real-time PCR amplification was then carried out in the TagMan 7000

Sequence Detection System (Applied Biosystems) using TagMan Universal PCR

Master Mix (Applied Biosystems) and the specific primers and probes according to
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the manufacturer’s protocol.  The probes were labeled with 6-carboxyfluorescein as

the reported fluorescent dye at their 5’ ends while the 3’ ends were labeled with 6-

carboxy-tetramethyl-rhodamine as the quencher.  18S ribosomal RNA was used as the

internal control and its probe was labeled with reporter dye VIC at the 5’ end instead.

All primers and probes were synthesized by Applied Biosystems and details of

sequences are available upon request.

The PCR conditions were: an initial incubation of 50°C for 2 min and 95°C for 10

min followed by 40 cycles of 94°C for 15 s and 60°C for 1 min.  All reactions were

carried out in triplicates.  The threshold cycle, CT, which correlates inversely with the

levels of target mRNA, was measured as the cycle number at which the reporter

fluorescence emission exceeded a preset threshold level.  The amplified transcripts

were quantified using the comparative CT methods as described previously (Livak

and Schmittgen, 2001), with the formula for relative fold change = 2-ΔΔCT, where

ΔΔCT = [ΔCT gene of interest (treated sample)-ΔCT 18S rRNA (treated sample)]-

[ΔCT gene of interest (control sample)-ΔCT 18 rRNA (control sample)].  ΔC T

represents the mean CT value of each sample.  Data were obtained by carrying out at

least three independent experiments.

2.16 Cellular ATP and GSH measurement

Cells were washed twice in ice-cold PBS.  A volume of 250 µl of ice-cold

tricholroacetic acid (TCA) 6.5% (w/v) was added and the plate was left on ice for 10

min.  The TCA extract was removed and either stored at -80ºC or used immediately

for analysis.  NaOH (200 µl of 1 M solution) was then added to solubilize cellular

protein.  Protein concentration then was measured using BioRad protein assay.
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Cellular ATP concentration was assessed by using firefly lantern extract (Sigma,

FLE-50).  Each sample (3 µl) was incubated with 200 µL of sodium arsenite buffer

(comprising 26.67 mM MsSO4.7H2O/3.33 mM KH2PO4/33.33 mM Na2HASO4.7H2O,

pH 7.4).  After the addition of 25 µL of firefly lantern extract per sample, light

emission was measured for 3 s per sample by using TECAN ULTRA 384.  The

concentrations of ATP were determined by comparing the values obtained with a

freshly prepared standard curve of ATP.

For cellular GSH measurement, 7.5 µl of TCA extract was added to a 96-well black

plate followed by the addition of 227.5 µl of 100 mM KH2PO4-KOH buffer, pH 10

and 15 µl of o-phthaldialdehyde (10 mg/ml freshly prepared in methanol).  Samples

were stored in the dark at room temperature for 25 min and measured by fluorescence

(excitation=350 nm; emission=420 nm) using TECAN ULTRA 384.  Concentrations

of GSH were then determined by comparing the values obtained with a freshly

prepared standard curve of GSH.  The GSH concentrations were normalized with the

protein concentrations to get the final value.

2.17 Cholesterol measurement using gas chromatography mass spectrometry

Cells were washed twice with PBS.  The internal standard, consisting of a cholesterol

control containing heavy isotopes was added into each well before the extraction.

Cholesterol was extracted by adding 200 µl methanol, followed by 200 µl of KOH (1

M).  Cells from each well were scraped, collected into glass vials and hydrolyzed at

RT for 2 h in the dark.  Twenty-five µl of HCl (5 M) were added into each glass vial

to neutralize the KOH.  The samples were dried under a stream of N2 for 15 min in a

fume hood.  One hundred microliters of 200 mM formic acid (pH 4.5) were added
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into each vial followed by 1 ml of ethyl ether / Hexane (30:70) and mixed by

vortexing.  The aqueous phase was removed from the bottom of the glass vial and the

solvent was dried under a stream of N2.  The samples were then subjected to

derivatisation with acetonitrile (20ul) and BSTFA + 1% TMCS (20ul, Pierce, USA)

for 1 h in the dark, and then injected into gas chromatography mass spectrometer

(GC-MS).

Derivatised samples were analyzed by a Hewlett-Packard 5973 mass selective

detector interfaced with a Hewlett- Packard 6890 gas chromatograph and equipped

with an automatic sampler and a computer workstation.  The injection port, MS

source and GC-MS interface were kept at 280°C, 180°C and 290°C, respectively.

Separations were carried out on a fused silica capillary column (12m x 0.2mm i.d.)

coated with cross-linked 5% phenylmethylsiloxane (film thickness 0.33µm), (Agilent,

J and W). Helium was the carrier gas with a flow rate of 0.8 ml/min (average velocity

= 55cm/sec).  Derivatised samples (1 µl) were injected with a 10:1 split into the GC

injection port (280°C). Column temperature was increased from 240°C to 300°C at

25°C/min after 1 min at 240°C, then held at 300°C for 4 min.  Selected-ion

monitoring was performed using the EI mode at 70eV with the ion source maintained

at 230°C and the quadrapole at 150°C.  Selected-ion monitoring was performed to

monitor one target ion and two qualifier ions selected from each compound mass

spectrum to optimize sensitivity and specificity. Quantitation of cholesterol was

achieved by relating the peak area of the cholesterol with its corresponding internal

standard 5a-cholestane peak and comparison with a standard calibration curve.
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2.18 Lipid profiling using Electro-Ionization Mass Spectrometry

2.18.1 Lipid extraction from cultured neurons

All buffers and reagents were kept chilled in an icebox.  Control and treated cells

were washed with 3 ml of PBS twice.  Once all trace amounts of PBS was removed,

0.3 ml of 50% Methanol/HCl was added into each well of a 6-well culture plate.

Cells were scraped immediately and transferred to a microfuge tube (cells from two

wells were combined into one tube).  Internal standards were spiked into the sample

prior to lipid extraction.  Tubes were vortexed and stored on ice until all the cells had

been collected.  Prechilled chloroform (0.6 ml) was added into each tube and the

mixtures were subjected to vigorous vortexing for 30 s.  This was repeated twice.

Tubes were then centrifuged for 2 min at 9,000 rpm in a microcentrifuge.  The

organic layer (bottom layer) was transferred to clean microfuge tubes, pooling organic

layers from two tubes into one.  The organic layers were dried in a speed vac.  The

lipid film was later resuspended in 0.5 ml choloroform:methanol (1:1).

2.18.2 Electrospray-Ionization mass spectrometry

Electrospray-Ionisation Mass Spectrometry (ESI-MS) was performed using a Waters

Micromass Q-Tof micro (Waters Corp., Milford, MA) mass spectrometer. Typically,

2 µl of sample were injected for mass spectrometry analysis. The capillary voltage

and sample cone voltage were maintained at 3.0 kV and 50 V respectively. The

source temperature was 80°C and the nano-flow gas pressure was 0.7 bar. The mass

spectrum was acquired from m/z 400–1200 in the negative ion mode with an

acquisition time of ten minutes [mrw], and the scan duration was 1 sec. The HPLC

system, consisting of a Waters CapLC Autosampler and a Waters CapLC Pump, was
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used to provide the mobile phase and to inject samples. Chloroform-methanol 1:1

(v/v) at a flow rate of 3 µl/min was used as the mobile phase. Individual molecular

species were identified using tandem mass spectrometry and in general, the collision

energy used ranged from 25–80 eV.
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CHAPTER 3

3 PTEN accumulation in detergent-insoluble fraction during lactacystin-

induced neuronal apoptosis

3.1 Introduction

3.1.1 PTEN and cell death

PTEN (phosphatase and tensin homolog deleted from chromosome 10) is a novel

phospholipid and protein phosphatase.  Its tumor suppressor function is attributed to

its phospholipid phosphatase activity that specifically dephosphorylates the plasma

membrane phospholipid secondary messenger phosphatidylinositol-(3,4,5)-

triphosphate (PtdIns(3,4,5)P3), a product of phosphoinositide-3 kinase (PI3-kinase)

(Fig. 3.1).  Mutation of the PTEN gene is associated with many cancer types such as

gliomas and endometrial cancer (Leslie and Downes, 2002; Waite and Eng, 2002).

Furthermore, mammalian cells transfected with the PTEN gene are more sensitive to

the induction of apoptosis (Wang et al, 1999; Gary and Mattson, 2002), suggesting

that its interplay with PI3-kinase is an important regulatory step in the cellular

cascades related to apoptosis.

3.1.2 The role of PTEN in central nervous system

In the central nervous system (CNS), PTEN is a regulatory molecule with multiple

functions at multiple subcellular sites (Review by Ross et al, 2001).  PTEN plays a

very important role in brain development.  Recent in vivo studies have revealed a

novel role for PTEN in the size control of neurons; dysregulation of cell growth
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Figure 3.1. PTEN translocation and the PI3-kinase/Akt cell survival pathway.  Figure
shows the hypothetical model for pro-apoptotic PTEN translocation during
neuronal cell death.
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control by PTEN is associated with the neurological disorder Lhermitte-Duclos

disease, a rare CNS manifestation of Cowden’s disease caused by a hamartomatous

overgrowth of the cerebellum (Backman et al, 2002).  In addition, PTEN also

regulates migration of precursor cells in the subventricular zone to the olfactory bulb

(Li et al, 2003).  Recently, Perandones et al reported an observation that PTEN might

be involved in synaptogenesis during brain development (Perandones et al, 2004).

Furthermore, the lost and altered distribution of PTEN in Alzheimer’s diseased

neurons suggests the important role of PTEN in the pathogenesis of

neurodegenerative diseases (Griffin et al, 2005).

3.1.3 The structure of PTEN

The PTEN structure can be divided into a phosphatase domain in the N-terminal

portion, a C2 domain and a C-terminal tail (Fig. 3.2).  The phosphatase domain

contains the active site responsible for catalyzing the dephosphorylation reaction.

Mutations abolishing PTEN phosphatase activity are frequently found in cancer.

Both phosphatase- and C2- domains contain phospholipid-binding motifs that are

essential for targeting PTEN to the plasma membrane and activation of PTEN (Waite

and Eng, 2002; Das et al, 2003).  The 50-residue C-terminal tail contains the

physiological phosphorylation sites Ser-380, Thr-382 and Thr-383 and the ITKV-

motif at the C-terminus that mediates binding of PTEN to PDZ domain-containing

cellular proteins (Georgescu et al, 1999; Leslie and Downes, 2002).  In most

mammalian cells, PTEN is mainly localized in the cytosol, with little or no

association with the plasma membrane (Leslie et al, 2001).  In the PC12 cell line, a

significant portion of PTEN is also localized in the nucleus (Lachyanker et al, 2000;

Ross et al, 2001; Lian and Di Cristofano, 2005).  Since PtdIns(3,4,5)P3 is located on
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Figure 3.2. A cartoon drawing of the structure of PTEN.  PTEN protein contains 3
main parts, the phosphatase at the N-terminal, the C2 domain and the C-terminal
tail with the PDZ sequence.  The C-terminal tail contains 3 main phosphorylation
sites at Ser-380, Thr-382 and Thr-383.
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the plasma membrane, PTEN needs to translocate from the cytosol and/or the nucleus

to the plasma membrane before it can dephosphorylate the phospholipid substrate.

However, the mechanism of recruitment of PTEN to the plasma membrane is still

poorly understood. Data presented in a recent report by Das et al. suggests

dephosphorylation of Ser-380, Thr-382 and Thr-383 in the C-terminal tail enhances

PTEN targeting to the plasma membrane and nucleus (Das et al, 2003).  In spite of

this, physiological and pathological conditions that induce PTEN targeting to the

plasma membrane have not been identified.

3.1.4 The possible role of PTEN in proteasome inhibition-induced neuronal

apoptosis

Inhibition of the proteasome has been postulated to be responsible for the

pathogenesis of neurodegenerative diseases such as Alzheimer’s and Parkinson’s

diseases (Keller et al, 2000; Naujokat and Hoffmann, 2002; Halliwell, 2002; Song and

Jung, 2004; Bossy-Wetzel et al, 2004).  Inhibition of proteasome function by

lactacystin treatment induces apoptosis of cultured cortical neurons and cerebellar

granule cells via stimulation of mitochondrial cytochrome c release and activation of

a caspase-3-like protease activity (Qiu et al, 2000; Pasquini et al, 2000).  Herein, this

study reports that neuronal apoptosis and activation of caspase-3 induced by

lactacystin treatment is associated with conversion of PTEN to a truncated form that

lacks parts of the C-terminal tail, and accumulation of both PTEN and its truncated

fragment to the detergent-insoluble membrane fraction.  This data suggests the

association of PTEN with the plasma membrane in a pathological condition.
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3.2 Results and discussions

3.2.1 Lactacystin-induced neuronal apoptosis

Lactacystin treatment suppresses proteasome activity and induces apoptosis of

cultured cortical neurons.  The morphological and biochemical changes of cultured

cortical neurons induced by treatment with the proteasome inhibitor lactacystin were

examined.  As shown in Fig. 3.3, treatment of cultured neuronal cells with 1 µM

lactacystin for 48 h induced apoptosis-associated phenotypic changes such as cell

shrinkage, DNA condensation and chromatin fragmentation.  The MTT assay

confirmed that the viability of the treated cells decreased in a dose- and time-

dependent manner (Fig. 3.4A).  Decrease in cell viability was concomitant with the

dose-dependent decrease in proteasome activities — the postglutamyl peptidase

(caspase-like) activity, chymotrypsin-like peptidase activity and the trypsin-like

peptidase activity of the proteasome in the treated cells (1 µM for 48 h) were

decreased to 54.3 ± 1.2 %, 40.6 ± 2.4 % and 42.8 ± 2.7 %, respectively, of the level in

untreated cells (Fig. 3.4B).  To ascertain if the caspase-3 signaling pathway is

involved in lactacystin-induced neuronal cell death, the level of the active caspase-3

generated from proteolysis of procaspase-3, and the caspase-3 activity level in

cultured neurons treated with different doses of lactacystin were measured.  As shown

in Fig. 3.5, Western blotting of the whole cell lysate extracted from lactacystin-treated

neurons reveals the presence of a cleaved form of caspase-3.  The appearance of the

cleaved form of caspase-3 is accompanied with a dose-dependent activation of

caspase-3 activity in the lactacystin-treated neurons.  Taken together, the results

demonstrate that treatment with lactacystin at 1 µM for 48 h could efficiently inhibit

proteasome activity, activate caspase-3 activity and induce apoptosis of cultured

neuronal cells.
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Figure 3.3. Morphological changes of cultured cortical neuronal cells induced by
lactacystin treatment.  (A) Staining of apoptotic nuclei using Hoechst 33258.
Control and treated (1 µM lactacystin for 48 h) cells were stained and viewed
under the fluorescence microscope (Carl Zeiss LSM510).  White arrow indicates
the apoptotic nuclei in treated cells.  (B) Transmission electron micrographs of
cultured cortical neurons.  Control and lactacystin-treated (1 µM lactacystin for
48 h) cells showing the normal (a) and condensed nuclei (b).
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Figure 3.4. The effects of lactacystin treatment on viability and proteasome activity of
cultured cortical neurons.  (A) Cell viability of lactacystin-treated (1 µM
lactacystin for 48 h) cultured cortical neurons was determined using the MTT
assay (as described in materials and methods).  Cell injury was found to be
concentration- and time-dependent.  Values are mean ± standard error of at least
3 independent samples and *p<0.05 (ANOVA with Tukey’s test) compared with
the corresponding control.  (B) Proteasome activity measurement of cultured
cortical neurons treated with lactacystin (0, 0.05, 0.1, 0.25, 1 and 2 µM for 48 h)
using fluorogenic peptide substrate.  Five micrograms of total protein were
incubated with substrate II, substrate III or substrate VI for the measurements of
postglutamyl, chymotrypsin-like or the trypsin-like peptidase activities
respectively and the fluorescent products were detected using a TECAN plate
reader.  Values are mean ± standard error of at least 3 independent samples and
*p<0.05 (ANOVA with Tukey’s test) compared with the corresponding control.
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Figure 3.5. Detection of active caspase-3 in cultured cortical neurons treated with
lactacystin.  Western blot showing the presence of a cleaved form of caspase-3
and the increase in caspase-3 activity in lactacystin-treated (0, 1 and 2 µM for 48
h) cells.  Statistically significant (*p < 0.01) over control cells determined by
one-way ANOVA with Tukey’s test.
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3.2.2 Changes of PTEN level in cultured neuronal cells during development

PTEN has been implicated in enhancing the apoptosis of neurons induced by several

pathological conditions (Gary and Mattson, 2002).  Since the regulatory properties of

PTEN are not fully understood, the exact role played by PTEN in enhancing neuronal

apoptosis is not known.  As a part of the ongoing study of the molecular mechanism

of lactacystin-induced neuronal cell death, this study examined if lactacystin

treatment induced biochemical changes of PTEN.  As a background study, the time-

dependent changes in PTEN expression levels in cultured primary cortical neurons

were examined.  Fig. 3.6 shows that PTEN expression could be detected from as early

as day 2 in the in vitro culture, and the expression level increased in a time-dependent

fashion until it reached the maximum level on day 6–9 in culture.  This observation is

reminiscent of the report by Luukko et al. of the high level of PTEN expression in

embryonic mouse brain (Luukko et al, 1999).  Since the PTEN expression level of

cultured neurons was relatively high at day 5, reaching a maximum level at day 7 in

culture, and neuronal cells required treatment with lactacystin for 48 h before they

exhibited prominent apoptotic phenotypes (Fig. 3.3), neurons at day 5 to day 7 in

culture were used for this investigation into the effect of lactacystin on PTEN

expression level and subcellular localization.

3.2.3 Lactacystin treatment enhances the conversion of PTEN to a 50kDa

truncated fragment and accumulation of both forms of PTEN in the

detergent-insoluble membrane fraction

Western blot analysis of the whole cell lysate of neurons in treated and untreated cells

revealed two forms of PTEN — a 55 kDa form
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Figure 3.6. Western blot analysis of PTEN expression in cultured mouse primary
cortical neurons.  (A) PTEN expression in cultured mouse cortical neurons from
day 1 to day 9 in vitro.  Equal amount of proteins (5 µg) were loaded and run on
a SDS-PAGE, transferred to PVDF membrane and immuno-labeled with anti-
PTEN and anti-actin.  Since the expression of actin increased from day 1 to 6
before reaching a plateau, it was used as an internal control for cultures from day
6 onwards only.  (B) Graph represents the densitometric intensities of the bands
in (A).
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and a 50 kDa truncated form (Fig. 3.7).  PTEN in untreated cells exists predominantly

as the 55 kDa form.  Treatment with increasing concentrations of lactacystin

decreased the total expression level of PTEN (Fig. 3.7).  Intriguingly, the treatment

also caused the conversion of a significant amount of the 55 kDa species to the

truncated 50 kDa species.  After lysis of the neuronal cells with RIPA buffer, PTEN

levels in the soluble and the insoluble fractions were determined by Western blotting.

As shown in Fig. 3.8A, only the 55 kDa species appeared in the soluble fraction while

both the 55 kDa and the 50 kDa species were present in the insoluble fraction (Fig.

3.8B).  Since RIPA buffer contains detergents (NP40, deoxycholate and SDS), the

soluble portion represents the cytosolic fraction and the detergent-soluble membrane

fraction of the neuronal cells, while the insoluble portion represents the detergent-

resistant plasma membrane.  To establish the identity of the 50 kDa species, the blots

were re-probed with two other PTEN antibodies, the PTEN-N-19 and PTEN 26H9,

that target the N-terminal segment and the C-terminal segment, respectively. The

PTEN 26H9 antibody failed to recognize the 50 kDa truncated PTEN (Fig. 3.8B),

indicating that the latter lacks part of the C-terminal tail. Taken together, the data in

Fig. 3.8 demonstrate that lactacystin treatment of neuronal cells induced proteolysis of

PTEN to the truncated 50 kDa form of PTEN, which is preferentially targeted to the

detergent-resistant fraction.

Recently, Torres et al. reported that PTEN is cleaved by caspase-3 at several target

sites located in unstructured regions within the C-terminus of the molecule (Torres et

al, 2003) (Fig. 3.9).  In this study, caspase-3 was activated upon treatment with

lactacystin (Fig. 3.5).  This makes caspase-3 the most likely candidate that cleaved

PTEN to its 50 kDa truncated form during lactacystin-induced apoptosis.
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Figure 3.7. Western blots and graphic representation of the relative amounts of 55
kDa and 50 kDa PTEN species found in the whole cell lysate of cortical neurons
treated with increasing concentrations of lactacystin.  Mouse cortical neurons
were treated with increasing concentrations of lactacystin (0, 0.25, 0.5 and 1 µM)
for 48 h and proteins were harvested using 5× sample loading buffer.  Proteins
were resolved in a 10% gel SDS-PAGE and electro-transferred to PVDF
membrane.  The blot was later immuno-labeled with PTEN polyclonal antibody
raised from 5 peptides chemically synthesized according to 5 regions of the
PTEN protein.  β-tubulin is the internal control for equal loading of protein.  The
graph represents the densitometric intensities of the 50 and 55 kDa PTEN
species found in different concentrations of lactacystin treatments.
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Figure 3.8. Distribution of the 55 kDa PTEN and the 50 kDa PTEN species in the
soluble and insoluble fractions of cortical neurons treated with lactacystin.  (A)
The 55 kDa PTEN species in the detergent-soluble fraction of the lactacystin-
treated cells.  (B) The 55 kDa and 50 kDa species of PTEN in the detergent-
insoluble fraction of the lactacystin-treated (1 µM for 48 h) cells.  Relative
amounts of the 55 kDa and 50 kDa species of PTEN were quantitated by
densitometric scan of the immunoreactive bands in the Western blots and were
expressed in densitometry units.
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Figure 3.9. PTEN protein sequence and potential caspase-3 cut sites.  Arrows
indicates potential caspase-3 cleavage sites.  The underlined protein sequences
are the sequences of peptides generated for poly-clonal anti-PTEN antibody, as
described in Materials and Methods sections.
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3.2.4 Lactacystin treatment enhances accumulation of PTEN in the detergent-

insoluble fraction that has been co-purified with plasma membrane protein

markers

As PtdIns(3,4,5)P3 is localized on the plasma membrane, it is likely that the detergent-

insoluble fraction in which PTEN and its truncated form accumulate upon lactacystin

treatment are part of the plasma membrane.  To examine this notion,

immunocytochemistry was performed to investigate how lactacystin treatment

affected localization of PTEN in cultured cortical neurons.  Fig. 3.10A shows that

PTEN in the untreated neurons was localized predominantly in the cytosol and

nucleus.  The image, however, could not reveal if PTEN was associated with the

plasma membrane.  Since flotillin-1 is expressed exclusively in specific micro-

domains of the plasma membrane such as the lipid-raft, its localization was therefore

compared with that of PTEN.  As shown in Fig. 3.10B, the localization of flotillin-1

had little, if any, overlap with that of PTEN in the untreated cells.  In contrast, the

significant overlap of the confocal images of PTEN and flotillin-1 in the lactacystin-

treated neurons suggests that PTEN was co-localized with flotillin-1 in the

lactacystin-treated cells.

To further investigate the subcellular distribution of PTEN in lactacystin-treated and

untreated neuronal cells, the post-nuclear supernatants of cell lysates from both the

treated and untreated cells were subjected to Percoll gradient centrifugation. Analysis

of the centrifugation fractions with various protein markers revealed: (i) the plasma

membrane lipid-raft markers caveolin-1 and flotillin-1 resided predominantly in

fractions 4-6 (Fig. 3.11A), corresponding to the low-density membrane fraction; (ii)
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Figure 3.10. Effects of lactacystin treatment on PTEN subcellular localization in
cultured neuronal cells.  (A) Immunocytochemistry showing PTEN localized at
the plasma membrane during neuronal apoptosis (arrow).  (B)
Immunofluorescence showing PTEN co-localized with flotillin-1 during
neuronal apoptosis.  Cortical neurons were treated with 1 µM lactacystin for 48 h
for the induction of neuronal apoptosis.
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Figure 3.11. Lactacystin-induced changes in PTEN distribution in the various
subcellular compartments of neuronal cells separated by Percoll gradient
centrifugation.  (A) The plasma membranes of cortical neurons treated and
untreated with 1 µM lactacystin for 48 h were isolated with Percoll gradient
centrifugation.  Fractions (from top to bottom of the gradient) were collected and
immunoblotted for PTEN, flotillin-1 and caveolin-1 (plasma membrane lipid-raft
markers).  (B) LDH enzyme activity measurement of fractions from cells treated
with 1 µM lactacystin for 48 h.  Graph shows the majority of LDH was in
fraction 2, which corresponds to the cytosolic fraction.
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besides residing in fractions 4-6, the plasma membrane-bound protein tyrosine kinase

c-Src was also present in fractions 21-22, which correspond to the high-density

membrane fraction; and (iii) the catalytic activity of the cytosolic protein marker

lactate dehydrogenase (LDH) peaked at fraction 2 (Fig. 3.11B), suggesting that

fractions 1-3 were derived from the cytosolic compartment of the neuronal cells.  In

the untreated cells, PTEN was present in the cytosol (fractions 1-3), the low-density

membrane fraction (fractions 4-6) and the high-density membrane fraction (fractions

21-22).  However, in the lactacystin-treated cells, PTEN and its truncated fragment

were almost absent in the cytosol and accumulated in both the low-density and high-

density membrane fractions.  In summary, the data shown in Fig. 3.10 and 3.11 lend

further support to the conclusion drawn from the biochemical data (Fig. 3.8) that

lactacystin treatment induced accumulation of PTEN and its truncated fragment to the

membrane fraction.

Co-localization of anti-PTEN and anti-flotillin-1 immunoreactivities in the

lactacystin-treated cells (Fig. 3.10) and co-migration of PTEN and its truncated

fragment with the plasma membrane markers in Percoll density gradient

centrifugation (Fig. 3.11), suggest that the detergent-insoluble fraction at which both

forms of PTEN accumulate (Fig. 3.8) are parts of the plasma membrane.  However,

unequivocal proof that both forms of PTEN are targeted to the plasma membrane such

as the lipid-raft upon lactacystin treatment entails demonstration of a correlative

decrease in plasma membrane PtdIns(3,4,5)P3 level and/or binding of PTEN and its

fragments to protein complexes that are found exclusively in the plasma membrane.
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3.2.5 Implications of the appearance of the 50kDa truncated PTEN in neuronal

cells induced by lactacystin treatment

Previously, Das et al. 2003 demonstrated that deletion of the segment corresponding

to residues 354 to 403, or prevention of PTEN C-terminal tail phosphorylation by

replacing Ser-380, Thr-382 and Thr-383 with alanine, targets the “phosphatase-dead”

[C124A] PTEN mutant to the plasma membrane.  Their results suggest that the C-

terminal tail, upon phosphorylation, prevents PTEN from targeting to the plasma

membrane.  This notion is reminiscent of this study’s finding that the C-terminally

truncated 50 kDa PTEN species preferentially accumulated to the detergent-insoluble

membrane fraction in the lactacystin-treated neuronal cells. It is possible that the

truncated PTEN species is an activated form of PTEN, which upon dephosphorylation

of PtdIns(3,4,5)P3 in the plasma membrane, suppresses cell growth and promotes

apoptosis by antagonizing the PI-3 kinase/PKB signaling pathway.  A model of PTEN

phosphorylation or truncation corresponding to its tumor suppressor activity or pro-

apoptotic role is therefore proposed (Fig. 3.12).  Since PTEN phosphorylation and

dephosphorylation are reversible processes, the regulation of PTEN through

phosphorylation might play a role in PTEN tumor suppressor activity.  On the other

hand, the deletion of the C-terminal tail during apoptosis is most likely to be

associated with cell death since this process is not reversible.  Cells undergoing

apoptosis probably activate proteases such as caspase-3 to cleave PTEN, causing the

latter to translocate to the plasma membrane to suppress the PI3-kinase/Akt survival

pathway.
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Figure 3.12. Hypothetical model of PTEN regulation associated with its tumor
suppressor activity and cell death.
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In spite of these findings, the exact mechanism of PTEN in mediating apoptotic

effects during lactacystin treatment is still not known.  Future investigation should

focus on (i) identifying the proteases responsible for converting the full length PTEN

to the truncated PTEN, (ii) defining the segments deleted from PTEN to generate the

50 kDa truncated form in neurons, (iii) ascertaining how the deletion facilitates

targeting of PTEN to the plasma membrane and (iv) ascertaining if the truncated

PTEN is enzymatically active.

3.3 Follow-up work

3.3.1 Identification of the protease responsible for converting the full length

PTEN to the truncated PTEN

Western blot analysis of α-fodrin, a caspase-3 substrate, showed a clear 120 kDa band

associated with caspase-3 cleavage 24 h after lactacystin treatment.  Interestingly, a

very faint doublet (145 and 150 kDa), which is associated with calpain cleavage, was

observed too (Fig. 3.13A). Calpain is known to cleave p35, the neuronal-specific

activator of cyclin-dependent kinase 5 (Cdk5) to produce the truncated form called

p25.  p25 has been reported to accumulate in the brains of patients with Alzheimer’s

disease (Patrick et al, 1999; Lee et al, 2000).  Unlike p35, p25 is not readily degraded,

and the binding of p25 to cdk5 constitutively activates cdk5 and hyper-phosphorylates

tau to disrupt the cytoskeleton and promote neuronal death (Patrick et al, 1999; Lee et

al, 2000).  Incidentally, p35 was found to have been cleaved into its truncated form of

p25 24 h after lactacystin treatment (Fig. 3.13A).  The cleavage of p35 into p25 in

lactacystin-treated neurons strongly supports the involvement of calpain in

lactacystin-induced neuronal cell death.  To further confirm this observation, caspase
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Figure 3.13. PTEN is cleaved by caspase-3 during lactacystin-induced neuronal
apoptosis.  (A) Western blot analysis of the cleavage of caspase-3 and α-fodrin
in protein samples obtained from cultured cortical neurons treated with 1 µM
lactacystin alone (Lact), or with 100 µM z-VAD-FMK caspase inhibitor
(Lact+VAD), or with 100 µM caspase-3 inhibitor IV (Lact+C3), or with 10 µM
calpeptin (Lact+CP), or with both 100 µM z-VAD-FMK and 10 µM calpeptin
(Lact+VAD+CP) for 24 h.  The 120 kDa α-fodrin fragment corresponds to
caspase-3 cleavage and the 145/150 doublet corresponds to calpain cleavage.
(B) In vitro digestion of recombinant PTEN by calpains and caspase-3.
Recombinant PTEN (1 µg) was incubated with calpain 1, calpain 2 and caspase-
3 for 3 h and the products were analyzed using Western blot.  Both calpain 1 and
calpain 2 produced truncated TPEN with molecular size <50 kDa.  Caspase-3-
digested recombinant PTEN produced 50 kDa truncated PTEN, similar to those
observed in the detergent-insoluble pellets of lactacystin-treated cultured cortical
neurons.  The control soluble proteins were extracted from untreated cultured
cortical neurons using RIPA buffer.
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and calpain inhibitors were used in the following experiments.  As expected, Western

blot showed a more intense caspase-3-cleavage-associated 120 kDa α-fodrin fragment

compared to the 145/150 kDa calpain-cleavage-associated doublet (Fig. 3.13A) in

protein samples extracted from cultured neurons exposed to lactacystin (1 µM) alone.

When caspase pan-specific inhibitor z-VAD-FMK (100 µM) or caspase-3 inhibitor IV

(100 µM) were used together with lactacystin (1 µM), Western blot analysis of α-

fodrin cleavage showed a more intense calpain-cleavage-associated 145/150 kDa

doublet but a faint  120 kDa caspase-3-cleavage-associated band, indicating that

calpain activity was dominant when caspase-3 activity was blocked (Fig. 3.13A).  On

the other hand, when the calpain inhibitor calpeptin (10 µM) was used together with

lactacystin (1 µM), the absence  of the 145 kDa calpain-cleavage-associated band and

the presence of a more prominent caspase-3-cleavage associated 120 kDa band in the

western blot of α-fodrin suggest an increase in caspase-3 activity (Fig. 3.13A).  This

western blot result indicates that the inhibition of caspase-3 activity using inhibitors

could affect the activity of calpain or vice versa.  This observation suggests that a

cross-talk between caspase-3 and calpain exists in lactacystin-induced neuronal

apoptosis.

To confirm if caspase-3 was the protease that cleaved PTEN to generate the truncated

form of 50 kDa during lactacystin-induced neuronal apoptosis, in vitro enzymatic

digestion was performed on recombinant PTEN obtained from an insect cell line (a

gift from Heung-Chin Cheng, Department of Biochemistry and Molecular Biology,

Melbourne University) using recombinant caspase-3 enzyme (recombinant protein

expressed in E. coli, cat#14-264, Upstate Biotechnology, Lake Placid, NY, USA).
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Figure 3.14. The effects of caspase and calpain inhibitors on the cleavage of PTEN
and cell viability.  (A) Both caspase-3 inhibitor IV and z-VAD-FMK can
effectively inhibit the cleavage of PTEN.  (B) Caspase-3 inhibitor IV, z-VAD-
FMK and calpeptin when co-treated with lactacystin cannot protect the cultured
neuron against cell death.
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The Western blotting result shows that the recombinant PTEN was cleaved to exactly

the same truncated form as the lactacystin-treated control (Fig. 3.13B).  This

observation supports the hypothesis that caspase-3 was the protease responsible for

the cleavage of PTEN to the 50 kDa-truncated form.  Both calpain-1 and -2 generated

a smaller (<50 kDa) truncated PTEN fragment (Fig. 3.13B), indicating a different cut

site.  Furthermore, both z-VAD-FMK and caspase-3 inhibitor IV could effectively

inhibit the cleavage of PTEN during lactacystin-induced neuronal apoptosis (Fig.

3.14A).

Cell viability assay was performed on cultured cortical neurons treated with

lactacystin (1 µM), caspase-3 and calpain inhibitors to investigate whether these

inhibitors could effective attenuate cell death.  MTT assay shows that they were

ineffective in protecting neurons from lactacystin-induced apoptosis (Fig. 3.14B). The

result shows that inhibition of caspase-3 and calpain activity could not block

lactacystin-induced neuronal apoptosis in cultured cortical neurons.

Caspase-3 was identified as the protease responsible for the cleavage of PTEN to the

truncated 50 kDa form during lactacystin-induced neuronal apoptosis.  Calpain was

found to be activated, although not as much as caspase-3, and was found to cleave

p35 into p25.  In vitro digestion study using recombinant PTEN showed that PTEN

could be cleaved by calpain, but the cleavage generates a smaller PTEN fragment

compared to those generated by caspase-3.  In lactacystin-treated cultured cortical

neurons, this <50 kDa PTEN fragment was not observed and probably served no

physiological role in the cell death.
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3.3.2 Recruitment of PTEN onto the plasma membrane during lactacystin-

induced neuronal apoptosis

In this study, an attempt was made to demonstrate the recruitment of PTEN onto the

plasma membrane of cultured cortical neurons treated with lactacystin using

immunogold TEM.  Under the TEM, the plasma membrane sheets contained dark

(electron-dense) patches (Fig. 3.15).  These patches were caused by the accumulation

of Osmium, which is a stain for lipids with double bonds; therefore the dark patches

indicated areas rich in lipids or cholesterol, such as the lipid raft or the detergent-

insoluble plasma membrane microdomain (Wilson et al, 2004).  In this experiment,

the immuno-reactivity of anti-flotillin-1 against the antigens on the membrane sheets

was not as good as that of anti-PTEN antibody.  Nevertheless, both treated and

untreated neurons showed small clusters of flotillin-1 (2–5 size 15-nm gold particles)

on the inner surface of the membrane sheets (Fig. 3.15A).  In contrast, lactacystin-

treated neurons showed a marked increased of the 10-nm gold particles corresponding

to PTEN on the inner membrane sheets, compared to the untreated neurons (Fig.

3.15B).  A closer examination revealed the localization of gold particles in the

electron-dense patches (Fig 3.15B, inset), confirming that PTEN accumulated in the

lipid-rich membrane microdomain or lipid-raft.
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Figure 3.15. Accumulation of PTEN at the plasma membrane of mouse cortical
neurons treated with lactacystin.  (A) Control membrane sheet showing some
immunogold labeling of PTEN (10 nm) and flotillin-1 (15 nm).  (B) Membrane
sheet from lactacystin-treated neurons showing marked increased in PTEN
immunogold labeling.
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Lipid rafts are plasma membrane microdomains that contain high concentrations of

cholesterol and glycosphingolipids (Pike, 2003).  Lipid rafts exist as liquid-ordered

regions of membrane that are resistant to extraction with nonionic detergents such as

Triton X-100 (Schroeder et al, 1998).  A variety of proteins, especially those involved

in cell signaling have been shown to partition into lipid rafts (Pike, 2003).  PTEN

accumulation into the detergent-insoluble fraction during lactacystin-induced

neuronal apoptosis was previously reported.  In this study, the localization of PTEN in

the electron-dense and lipid-rich microdomains was shown using immuno-gold TEM

on the plasma membrane sheets.
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CHAPTER 4

4 Microarray GeneChip® analysis of gene expression during lactacystin-

induced neuronal apoptosis

4.1 Introduction

Global views of gene expression are often essential for obtaining comprehensive

pictures of cell function.  Understanding the critical relative changes among all the

genes would be impossible without the use of whole-genome analysis. Whole-genome

analyses also provide an efficient tool to sort through the activities of thousands of

genes, and to recognize the key players.  Global analyses frequently provide insights

into multiple facets of a biological process and may also reveal clues about the basic

biology of disorders, and suggest novel drug targets.

The GeneChip® probe array, with its sensitivity, specificity, and reproducibility, is an

excellent tool for the study of global gene expression.  Taking advantage of these

capabilities, many researchers have used GeneChip® probe arrays to study the

regulation of gene expression associated with a wide variety of basic biological

functions and disease conditions (Stenzel-Poore et al, 2003; Fribley et al, 2004).

Microarray GeneChip® technology has also been used to study the global response of

proteasome inhibition in Saccharomyces cerevisiae (Flemming et al, 2002) and in

human breast carcinoma cells, demonstrating the up-regulation of members of various

transcription factor families (Zimmermann et al, 2000).  Recently, the chronic effect

of proteasome inhibitors was tested on SH-5Y5Y neural cell lines (Ding et al, 2004).

However, a similar analysis of the effects of proteasome inhibition upon primary
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neurons has not been reported.  Because proteasome inhibition is likely to contribute

to neurodegeneration and is also able to generate initial neuroprotective proteins, the

identification of genes that are differentially expressed upon proteasome inhibition in

a primary neuronal culture model might enable us to have a clearer idea of the

possible pro-apoptotic and neuroprotective pathways activated in this process.  The

fundamental objective in any neurodegeneration and neuroprotection research is to

determine which of these factors constitutes the primary event, the sequence in which

these events occur, and whether they act in concurrence in the pathogenic process

(Mandel and Youdim, 2004).  In this study, Affymetrix U74Av2 microarray was used

to analyze the changes in gene expression upon lactacystin treatment of mouse

primary cortical neurons at different time points.  The microarray result showed that

lactacystin-induced proteasome inhibition caused differential expression of genes

involved in the UPS, heat shock protein (HSP), ER stress, oxidative stress and

cholesterol biosynthesis among others.

4.2 Results

4.2.1 Time course of lactacystin-induced proteasome inhibition and neuronal

apoptosis

Proteasomal chymotrypsin-like activity was assayed using flurogenic substrate on the

cell lysate extracted from cultured cortical neurons treated with 1 µM lactacystin.

The chymotrypsin-like activity was inhibited considerably (94% decrease in activity

compared to the control) at the earliest time point (4.5 h) measured (Fig. 4.1A).  The

slight recovery of chymotrypsin-like activity was observed at 24 h after lactacystin
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Figure 4.1. Effects of lactacystin (Lact) on proteasome activities and cell viability of
mouse cultured cortical neurons.  (A) Proteasomal chymotrypsin-like activity
was measured using fluorogenic substrate III.  Activity was presented as percent
relative fluorescence unit (RFU) compared to the control.  * denotes significant
difference compared to the control according to the one-sample t test, p<0.05.
(B) MTT cell viability assay showing cell viability of cultured cortical neurons
treated with 1 µM lactacystin at 4.5 h, 7.5 h and 24 h time points.  * indicates
significant difference according to ANOVA with post hoc Tukey’s test, p<0.05.
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treatment; this was probably due to the degradation of fluorogenic substrates by other

proteases during apoptosis. The calpain inhibitor calpeptin (10 µM) effectively

suppressed the increase of chymotrypsin-like activity at 24 h, suggesting that calpain

could be involved in the interference of chymotrypsin-like activity measurement.

MTT cell viability assay showed a time-dependent decrease of neuronal cell viability

after treatment by 1 µM of lactacystin; a more significant decrease was observed at

the 24 h time point (Fig. 4.1B).

Western blot analyses were performed to investigate when caspase-3 was activated

during lactacystin-induced neuronal apoptosis.  Pro-caspase-3 (32 kDa) was cleaved

to its active form (17 kDa) at 15 h after lactacystin treatment (Fig. 4.2A).  Similarly,

the caspase-3 substrates (α-fodrin and poly (ADP-ribose) polymerase or PARP) were

cleaved at the same time point as when caspase-3 was activated (Fig. 4.2A).

Likewise, measurement of caspase activity in the cell lysate of cultured cortical

neurons treated with 1 µM lactacystin showed a maximum increase (1,200% caspase-

3 activity compared to the untreated control) at the 15 h time point (Fig. 4.2B).  Other

caspases activated during lactacystin-induced neuronal apoptosis include: caspase-2

(700% at 15 h), caspase-10 (600% at 15 h), caspase-4 (400% at 15 h), caspase-6

(250% at 15 h), caspase-8 (160% at 15 h) and caspase-9 (200% at 15 h).  Caspase-1,

caspase-4 and caspase-5 are caspases involved in inflammation (Salvesen and Dixit,

1997; Nicholson, 1999) but among them, only caspase-4 was activated (400%

increase) at the 15 h time point.  Taken together, the data above suggest that

apoptosis, as determined by the activation of caspase-3, was initiated at 15 h after

lactacystin treatment.
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Figure 4.2. Time-course study of caspase-3 activation and substrate cleavage during
lactacystin-induced neuronal apoptosis.  (A) Western blots show the cleavage of
pro-caspase-3 to active caspase-3, and the cleavage of caspase-3 substrates
PARP and α-fodrin.  (B) The measurement of caspase activities using caspase-
family fluorogenic substrates detected a maximum increase (12-fold) of caspase-
3 activities 15 h after 1 µM lactacystin treatment.
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To investigate whether there were any apoptotic cells in the neuronal cultures 7.5 h

after exposure to 1 µM lactacystin, the fixed cells were stained with DNA-staining

dye (Hoechst 33258) at 7.5 h and 24 h after lactacystin exposure and observed under

the microscope.  As expected, no chromatin fragmentation was observed at the 7.5 h

time point, confirming the absence of apoptotic cells at this time point (Fig. 4.3A).

On the other hand, nuclear condensation and chromatin fragmentation were observed

in the neuronal cultures 24 h after treatment with lactacystin (Fig. 4.3).  Apoptotic

cells can also be detected using annexin V-FITC dye. The change in the apoptotic cell

plasma membrane exposes phosphatidylserine to the outer cell surface without

compromising membrane integrity; annexin V-FITC binds to the exposed

phosphatidylserine on the surface of the apoptotic cell, giving out green fluorescence

under FITC excitation/emission wavelengths (485/530 nm).  According to the annexin

V-FITC staining assay, only neuronal cultures subjected to 24 h lactacystin treatment

contained apoptotic cells (Fig. 4.3B).

4.2.2 RNA isolation from lactacystin-treated cultured cortical neurons

The quality of RNA extracted from cells needs to be evaluated before microarray

analysis.  Fig. 4.4 shows gel photos of total RNA extracted from cultured cortical

neurons, taken from RNA samples used in both microarray analysis and verification

real-time PCR analysis.  Using the Qiagen RNeasy Mini Kit for RNA extraction, the

yield of total RNA obtained was in the range of 40–80 µg with a purity of 1.4–1.8

(A260/A280 ratio) from each 6-well culture plate.  A yield of 2.1–5.9 µg of total

RNA with a purity of 1.3–1.6 (A260/A280 ratio) could be obtained from a single well

of cultured neurons in a 6-well plate using High Pure Isolation Kit (Roche, Penzberg,

Germany).
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Figure 4.3.  Apoptotic cell death of cultured cortical neurons exposed to lactacystin.
(A) Hoechst staining showing the presence of chromatin fragmentation in
cultures treated with lactacystin (1 µM) for 24 h.  (B) Annexin V-FITC staining
showing apoptotic cells (round and green) in cultures treated with lactacystin (1
µM) for 24 h.  During the late stage of apoptosis, the nuclei of dead cells are
stained red with propedium iodide, indicating that the plasma membranes have
been disrupted.
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Figure 4.4. Total RNA extracted from cultured cortical neurons.  (A) Total RNA
extracted from cultured cortical neurons treated with 1 µM lactacystin for 7.5 h
using RNeasy Mini Kit (Qiagen) for microarray analysis and (B) total RNA
extracted from untreated and treated (1 µM lactacystin) cultured cortical neurons
in time-course real-time PCR study.
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4.2.3 Microarray analysis

Microarray analyses revealed that a large number of genes were differentially

expressed in cultured cortical neurons which underwent neuronal apoptosis after

treatment with 1 µM lactacystin; out of a total of 12,488 genes and Expressed

Sequence Tags (ESTs) in the murine genome GeneChip® U74Av2, 1,168 genes were

differentially expressed by more than two-fold according to the one-way ANOVA,

p<0.01.  To reduce the number of genes to a manageable size, a more stringent

condition was applied; genes that were differentially expressed by more than three-

fold at least once in any of the time points (4.5 h, 7.5 h, 24 h and 48 h) tested were

selected for analysis.  Under this condition, the number of genes was reduced to 342.

These genes were then arranged according to their biological functions and listed in

Tables 4.1–4.13.  Bonferroni correction, a very stringent statistical analysis was

performed to check the integrity of the gene list.  Genes that passed the Bonferroni

correction were indicated by an asterisk (*).  More than one-third of genes (123

genes) passed the Bonferroni test, indicating a highly significant set of data.

For an overview of the changes in global gene expression across the time points,

selected genes from Tables 4.1–4.13 are shown in Fig. 4.5 as gene clusters with their

expression profile indicated by colors: red for up-regulation and blue for down-

regulation (Fig 4.5).  Most genes were up-regulated during earlier time points

compared to later time points, as shown in Figure 4.5.
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Table 4.1.  Differentially expressed genes after lactacystin treatment: Ubiquitin-
proteasome system.  Gene expression is indicated as fold change±Standard
Error.  Only genes differentially expressed >3-fold and significantly expressed
according to one-way ANOVA, p<0.05 are included in this list.  * indicates
genes that passed the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Ubiquitin-proteasome system

95600_at Arih2* ariadne homolog 2 (Drosophila) 2.61 ± 0.14 4.11 ± 0.14 1.24 ± 0.15 -1.05 ± 0.19 AJ130975

96892_at Psma1* proteasome subunit, alpha type 1 2.79 ± 0.09 3.37 ± 0.10 2.49 ± 0.20 -1.06 ± 0.14 AI836804

93988_at Psma7* proteasome subunit, alpha type 7 2.60 ± 0.08 3.53 ± 0.07 2.35 ± 0.13 -1.09 ± 0.19 AI836676

94025_at Psmb3 proteasome subunit, beta type 3 2.78 ± 0.06 4.50 ± 0.20 3.22 ± 0.21 1.10 ± 0.24 AW045339

160152_at Psmc1* proteasome 26S subunit, ATPase
1

2.28 ± 0.12 3.79 ± 0.09 2.29 ± 0.16 -1.06 ± 0.13 U39302

93734_i_at Psmc3* proteasome 26S subunit, ATPase
3

2.71 ± 0.07 3.13 ± 0.11 2.27 ± 0.12 -1.05 ± 0.13 D49686

160305_at Psmd11 proteasome 26S subunit, non-
ATPase, 11

5.34 ± 0.07 5.03 ± 0.27 2.75 ± 0.17 1.02 ± 0.12 AW121693

93971_f_at Psmd12 proteasome 26S subunit, non-
ATPase, 12

3.34 ± 0.06 3.62 ± 0.20 2.56 ± 0.31 -1.09 ± 0.17 AI838669

94302_at Psmd4 proteasome 26S subunit, non-
ATPase, 4

2.85 ± 0.07 5.29 ± 0.12 3.07 ± 0.35 -1.05 ± 0.21 AF013099

103350_at Psmd7 proteasome 26S subunit, non-
ATPase, 7

2.38 ± 0.08 3.03 ± 0.08 1.88 ± 0.30 -1.31 ± 0.15 M64641

95124_i_at Rbx1 ring-box 1 3.18 ± 0.11 2.00 ± 0.19 1.13 ± 0.15 -1.21 ± 0.17 AW122337

97906_at Siah2 seven in absentia 2 1.54 ± 0.12 2.90 ± 0.08 -1.06 ± 0.26 -1.51 ± 0.19 Z19581

101255_at Ubb* ubiquitin B 3.10 ± 0.07 3.62 ± 0.06 1.08 ± 0.15 -1.19 ± 0.14 X51703

95215_f_at Ubc* ubiquitin C 4.04 ± 0.09 4.79 ± 0.07 1.39 ± 0.16 -1.25 ± 0.12 D50527

101581_at Ube3a* ubiquitin protein ligase E3A 3.65 ± 0.08 1.93 ± 0.09 1.24 ± 0.11 -1.20 ± 0.10 U82122

93303_at Ufd1l* ubiquitin fusion degradation 1
like

2.49 ± 0.07 4.45 ± 0.07 2.05 ± 0.34 -1.43 ± 0.16 U64445

161870_at Usp15 ubiquitin specific protease 15 -3.77 ± 0.09 -3.28 ± 0.12 -1.57 ± 0.12 1.50 ± 0.24 AV359471

101069_g_at Mkrn1* makorin, ring finger protein, 1 1.96 ± 0.09 3.10 ± 0.08 -1.25 ± 0.12 -1.32 ± 0.12 AA656621

161814_f_at Rnf19* ring finger protein (C3HC4 type)
19

4.51 ± 0.12 2.67 ± 0.18 -1.03 ± 0.10 -1.48 ± 0.10 AV355427

102131_f_at Rnf20* ring finger protein 20 -3.05 ± 0.08 -2.93 ± 0.06 1.01 ± 0.13 1.08 ± 0.13 AU014874

101966_s_at Rnf13* ring finger protein 13 2.09 ± 0.09 3.13 ± 0.12 1.00 ± 0.10 1.13 ± 0.12 AF037206

93164_at Rnf2* ring finger protein 2 1.79 ± 0.10 3.25 ± 0.17 -1.57 ± 0.10 -1.12 ± 0.14 Y12783
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Table 4.2.  Differentially expressed genes after lactacystin treatment (continued): ER
stress; heat shock proteins and molecular chaperones; apoptosis. Gene
expression is indicated as fold change±Standard Error.  Only genes differentially
expressed >3-fold and significantly expressed according to one-way ANOVA,
p<0.05 are included in this list.  * indicates genes that passed the Bonferroni
Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

ER stress

104155_f_at Atf3* activating
transcription factor 3

3.77 ± 0.13 11.13 ± 0.38 6.68 ± 1.76 2.06 ± 0.27 U19118

100599_at Atf4 activating
transcription factor 4

3.52 ± 0.06 3.73 ± 0.09 -1.03 ± 0.25 -2.13 ± 0.12 M94087

92925_at Cebpb CCAAT/enhancer
binding protein
(C/EBP), beta

-1.13 ± 0.18 4.26 ± 0.14 3.44 ± 0.34 1.32 ± 0.13 M61007

101429_at Ddit3 DNA-damage
inducible transcript 3

2.90 ± 0.10 5.01 ± 0.12 2.65 ± 0.42 1.02 ± 0.15 X67083

95057_at Herpud1 homocysteine-
inducible,
endoplasmic
reticulum stress-
inducible, ubiquitin-
like domain member
1

1.93 ± 0.08 3.18 ± 0.16 1.17 ± 0.22 -1.32 ± 0.11 AI846938

96773_at Txndc4* thioredoxin domain
containing 4
(endoplasmic
reticulum)

2.45 ± 0.11 3.46 ± 0.11 1.38 ± 0.11 1.28 ± 0.18 AW125408

Heat shock proteins and molecular chaperones

96254_at Dnajb1 DnaJ (Hsp40)
homolog, subfamily
B, member 1

2.11 ± 0.20 3.52 ± 0.15 1.42 ± 0.26 -1.12 ± 0.12 AB028272

93875_at Hspa1a heat shock protein 1A
(HSP70)

-1.27 ± 0.13 4.70 ± 0.53 13.82 ± 6.14 1.78 ± 0.53 M12571

97914_at Hspa9a heat shock protein, A 1.68 ± 0.07 3.68 ± 0.07 2.18 ± 0.27 1.07 ± 0.16 D17666

160139_at Hspb8* heat shock 27kDa
protein 8

-1.37 ± 0.12 1.67 ± 0.16 8.08 ± 0.47 2.22 ± 0.48 AI848798

94817_at Serpinh1* serine (or cysteine)
proteinase inhibitor,
clade H, member 1
(HSP47)

1.14 ± 0.08 3.10 ± 0.06 6.16 ± 0.15 3.30 ± 0.43 X60676

Apoptosis

161980_f_at Bag3 Bcl2-associated
athanogene 3

1.37 ± 0.29 1.97 ± 0.24 6.36 ± 1.02 3.41 ± 0.70 AV373612

97724_at Cry2 cryptochrome 2
(photolyase-like)

1.85 ± 0.26 3.47 ± 0.09 -1.75 ± 0.17 -1.29 ± 0.22 AB003433

95545_at Igf1 insulin-like growth
factor 1

-4.23 ± 0.08 -2.11 ± 0.07 -1.49 ± 0.11 -1.45 ± 0.14 X04480

95750_at Nipa nuclear interacting
partner of anaplastic
lymphoma kinase
(Alk)

2.07 ± 0.08 3.06 ± 0.07 1.55 ± 0.37 -1.25 ± 0.17 AI848853
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Table 4.3.  Differentially expressed genes after lactacystin treatment (continued):
proteolysis; inflammatory response; glutathione synthesis; metal ion
homeostasis. Gene expression is indicated as fold change±Standard Error.  Only
genes differentially expressed >3-fold and significantly expressed according to
one-way ANOVA, p<0.05 are included in this list.  * indicates genes that passed
the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Proteolysis

93048_at Clpp caseinolytic protease,
ATP-dependent,
proteolytic subunit
homolog (E. coli)

2.43 ± 0.10 3.38 ± 0.10 1.75 ± 0.18 -1.15 ± 0.19 AJ005253

92256_at Ctsb* cathepsin B 2.85 ± 0.27 3.18 ± 0.16 2.20 ± 0.12 1.82 ± 0.20 AI853714

101019_at Ctsc cathepsin C 1.79 ± 0.45 3.27 ± 0.26 6.64 ± 1.10 3.65 ± 0.87 U74683

161358_r_at Dpep3 dipeptidase 3 -1.64 ± 0.13 -3.89 ± 0.09 -1.48 ± 0.11 -1.13 ± 0.11 AV209030

98287_at Dpp6 dipeptidylpeptidase 6 -3.44 ± 0.07 -2.61 ± 0.06 -1.41 ± 0.11 -1.26 ± 0.14 AF092507

160290_at Ide* insulin degrading
enzyme

3.17 ± 0.07 3.03 ± 0.08 2.78 ± 0.43 -1.04 ± 0.10 AI574278

94238_at 2310046G
15Rik*

RIKEN cDNA
2310046G15 gene

-1.24 ± 0.11 -2.06 ± 0.09 1.65 ± 0.23 3.29 ± 0.21 AW228316

Inflammatory response

98088_at Cd14* CD14 antigen -2.35 ± 0.13 -3.62 ± 0.07 -1.13 ± 0.11 1.33 ± 0.13 X13333

101341_at H2-M9 histocompatibility 2,
M region locus 9

-5.34 ± 0.14 -5.30 ± 0.06 -1.52 ± 0.10 -1.01 ± 0.13 AF016308

102029_at Il16 interleukin 16 -5.36 ± 0.17 -1.82 ± 0.18 -1.12 ± 0.16 -1.14 ± 0.13 AF017111

Glutathione biosynthesis
160335_at Gclm glutamate-cysteine

ligase , modifier
subunit

2.97 ± 0.10 2.63 ± 0.14 3.25 ± 0.48 1.51 ± 0.25 U95053

96085_at Gsta4* glutathione S-
transferase, alpha 4

1.17 ± 0.10 1.03 ± 0.08 5.07 ± 0.12 4.56 ± 1.18 L06047

97681_f_at Gstm3 glutathione S-
transferase, mu 3

-5.19 ± 0.15 -3.77 ± 0.07 -1.11 ± 0.11 1.06 ± 0.11 J03953

93026_at Mgst1* microsomal
glutathione S-
transferase 1

1.63 ± 0.14 1.07 ± 0.12 4.13 ± 0.61 2.97 ± 0.36 AW124337

Metal ion homeostasis

93573_at Mt1 metallothionein 1 -1.24 ± 0.07 -2.35 ± 0.06 2.98 ± 0.10 4.14 ± 1.04 V00835

95340_at Mt3 metallothionein 3 -4.44 ± 0.06 -3.65 ± 0.06 1.15 ± 0.11 1.85 ± 0.27 M93310
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Table 4.4.  Differentially expressed genes after lactacystin treatment (continued):
calcium homeostasis and calcium binding; cell adhesion.  Gene expression is
indicated as fold change±Standard Error.  Only genes differentially expressed
>3-fold and significantly expressed according to one-way ANOVA, p<0.05 are
included in this list.  * indicates genes that passed the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Calcium homeostasis and calcium binding
102815_at Anxa11 annexin A11 -6.37 ± 0.18 -6.68 ± 0.13 1.41 ± 0.16 1.85 ± 0.11 U65986

100569_at Anxa2* annexin A2 1.45 ± 0.09 1.80 ± 0.08 4.56 ± 0.25 2.84 ± 0.43 M14044

101393_at Anxa3* annexin A3 -1.81 ± 0.18 -2.57 ± 0.24 12.33 ± 3.14 9.26 ± 0.80 AJ001633

104006_at Eps15 epidermal growth factor
receptor pathway substrate
15

1.78 ± 0.09 3.26 ± 0.38 1.02 ± 0.10 1.16 ± 0.11 L21768

98475_at Matn2 matrilin 2 -5.18 ± 0.36 -1.81 ± 0.11 -1.06 ± 0.15 1.34 ± 0.13 U69262

92539_at S100a10* S100 calcium binding
protein A10 (calpactin)

-1.80 ± 0.10 -1.23 ± 0.06 4.77 ± 0.55 2.54 ± 0.22 M16465

98600_at S100a11* S100 calcium binding
protein A11 (calizzarin)

-3.12 ± 0.08 -3.10 ± 0.06 5.31 ± 0.85 8.03 ± 0.50 U41341

100959_at S100a13 S100 calcium binding
protein A13

-3.02 ± 0.08 -3.37 ± 0.13 -1.23 ± 0.12 1.52 ± 0.11 X99921

162428_I_at S100a14* S100 calcium binding
protein A14

-3.78 ± 0.06 -3.92 ± 0.06 -1.46 ± 0.10 -1.28 ± 0.12 AV293396

101051_at S100a3 S100 calcium binding
protein A3

-5.37 ± 0.13 -2.44 ± 0.16 -1.20 ± 0.10 1.00 ± 0.10 AF004941

Cell adhesion
94886_at Canx* calnexin -3.08 ± 0.08 -3.06 ± 0.06 -1.14 ± 0.15 -1.16 ± 0.11 L18888

94305_at Col1a1 procollagen, type I, alpha 1 -1.71 ± 0.38 -8.55 ± 0.07 -1.14 ± 0.22 1.38 ± 0.22 U03419

99800_at L1cam L1 cell adhesion molecule 1.39 ± 0.11 2.49 ± 0.10 -3.41 ± 0.13 -3.06 ± 0.27 X12875

99669_at Lgals1* lectin, galactose binding,
soluble 1

-1.06 ± 0.07 -1.03 ± 0.06 4.01 ± 0.36 5.89 ± 0.72 X15986

95706_at Lgals3 lectin, galactose binding,
soluble 3

2.70 ± 0.29 1.91 ± 0.24 8.66 ± 2.94 7.08 ± 1.46 X16834

161708_f_at Mpdz multiple PDZ domain
protein

-1.01 ± 0.39 -3.97 ± 0.16 1.48 ± 0.14 1.29 ± 0.17 AV244715

160469_at Thbs1* thrombospondin 1 -2.17 ± 0.07 -3.20 ± 0.06 2.16 ± 0.39 2.91 ± 0.31 M62470

103088_at Chl1* cell adhesion molecule
with homology to L1CAM

3.83 ± 0.08 1.93 ± 0.11 -1.83 ± 0.11 -1.79 ± 0.12 X94310

103492_at Cpxm1* carboxypeptidase X 1
(M14 family)

1.16 ± 0.35 3.05 ± 0.22 3.44 ± 0.21 1.38 ± 0.18 AF077738
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Table 4.5.  Differentially expressed genes after lactacystin treatment (continued): lipid
and cholesterol. Gene expression is indicated as fold change±Standard Error.
Only genes differentially expressed >3-fold and significantly expressed
according to one-way ANOVA, p<0.05 are included in this list.  * indicates
genes that passed the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Lipid and Cholesterol

95425_at Acadl acetyl-Coenzyme A dehydrogenase,
long-chain

1.99 ± 0.39 1.35 ± 0.28 3.85 ± 0.22 4.33 ± 0.70 U21489

101006_at Acat2* acetyl-Coenzyme A acetyltransferase 2 1.10 ± 0.07 -2.20 ± 0.06 -3.50 ± 0.09 -2.90 ± 0.10 M35797

93320_at Cpt1a* carnitine palmitoyltransferase 1a, liver 1.03 ± 0.08 1.05 ± 0.06 2.79 ± 0.13 3.23 ± 0.49 AF017175

94916_at Cyp51 cytochrome P450, 51 -1.41 ± 0.06 -1.47 ± 0.10 -3.21 ± 0.10 -3.12 ± 0.10 AW122260

98989_at Dhcr7 7-dehydrocholesterol reductase -1.64 ± 0.07 -2.25 ± 0.06 -3.65 ± 0.11 -3.52 ± 0.10 AF057368

97518_at Fdft1 farnesyl diphosphate farnesyl
transferase 1

1.25 ± 0.08 1.71 ± 0.10 -3.17 ± 0.10 -3.22 ± 0.10 D29016

99098_at Fdps farnesyl diphosphate synthetase 1.22 ± 0.06 1.21 ± 0.06 -4.21 ± 0.10 -4.63 ± 0.09 AW045533

161682_f_at Gpaa1 GPI anchor attachment protein 1 -3.57 ± 0.07 -2.88 ± 0.07 -1.90 ± 0.13 -1.08 ± 0.15 AV161234

104285_at Hmgcr* 3-hydroxy-3-methylglutaryl-Coenzyme
A reductase

-1.77 ± 0.06 -1.53 ± 0.06 -2.43 ± 0.10 -3.38 ± 0.09 M62766

96269_at Idi1* isopentenyl-diphosphate delta
isomerase

-1.53 ± 0.06 -2.39 ± 0.06 -5.82 ± 0.09 -4.78 ± 0.09 AA716963

160737_at Lss lanosterol synthase -1.23 ± 0.12 -1.11 ± 0.13 -2.65 ± 0.11 -3.17 ± 0.11 AW060927

160770_at Mvd mevalonate (diphospho) decarboxylase -3.06 ± 0.07 -2.61 ± 0.06 -6.96 ± 0.08 -4.98 ± 0.09 AW049778

95632_f_at Mvk* mevalonate kinase 1.51 ± 0.15 1.17 ± 0.09 -8.26 ± 0.09 -7.52 ± 0.09 AW122653

98631_g_at Nsdhl* NAD(P) dependent steroid
dehydrogenase-like

1.51 ± 0.06 -1.28 ± 0.06 -4.73 ± 0.09 -3.41 ± 0.11 AW106745

100927_at Pltp* phospholipid transfer protein -3.48 ± 0.09 -3.43 ± 0.09 1.45 ± 0.27 3.04 ± 0.12 U28960

160388_at Sc4mol* sterol-C4-methyl oxidase-like -1.12 ± 0.07 -1.59 ± 0.06 -2.95 ± 0.10 -3.66 ± 0.09 AI848668

94056_at Scd1* stearoyl-Coenzyme A desaturase 1 -2.08 ± 0.06 -2.02 ± 0.07 -5.64 ± 0.09 -7.42 ± 0.09 M21285

160865_at Vldlr* very low density lipoprotein receptor 3.68 ± 0.16 1.83 ± 0.15 -1.68 ± 0.12 -1.46 ± 0.16 L33417
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Table 4.6.  Differentially expressed genes after lactacystin treatment (continued):
protein biosynthesis; protein modification. Gene expression is indicated as fold
change±Standard Error.  Only genes differentially expressed >3-fold and
significantly expressed according to one-way ANOVA, p<0.05 are included in
this list.  * indicates genes that passed the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Protein biosynthesis
104048_at Cars cysteinyl-tRNA synthetase 2.11 ± 0.07 3.77 ± 0.11 1.23 ± 0.34 -1.32 ± 0.13 AI848732

100636_at Eif4ebp1 eukaryotic translation initiation
factor 4E binding protein 1

3.25 ± 0.25 3.89 ± 0.31 3.17 ± 0.33 1.55 ± 0.21 U28656

98141_at Eif5b* eukaryotic translation initiation
factor 5B

3.76 ± 0.11 1.78 ± 0.13 1.52 ± 0.14 -1.30 ± 0.11 AA647048

103891_i_at Ell2 elongation factor RNA
polymerase II 2

1.69 ± 0.14 1.72 ± 0.16 3.50 ± 0.41 1.49 ± 0.15 AI197161

161683_r_at Gtpbp1* GTP binding protein 1 -2.94 ± 0.07 -3.60 ± 0.06 -1.31 ± 0.09 -1.16 ± 0.10 AV239949

93752_at Iars isoleucine-tRNA synthetase 2.12 ± 0.07 3.22 ± 0.07 1.17 ± 0.26 -1.32 ± 0.14 AI848393

103630_at Lars leucyl-tRNA synthetase 1.85 ± 0.06 2.97 ± 0.08 1.42 ± 0.29 -1.30 ± 0.14 AI844089

96693_at Rars arginyl-tRNA synthetase 2.10 ± 0.10 3.57 ± 0.26 2.54 ± 0.37 -1.16 ± 0.16 AI849453

Protein modification

93219_at Acp1 acid phosphatase 1, soluble 1.94 ± 0.12 3.74 ± 0.13 1.13 ± 0.19 -1.10 ± 0.12 Y17343

92383_at Dyrk1a dual-specificity tyrosine-(Y)-
phosphorylation regulated
kinase 1a

1.01 ± 0.17 2.91 ± 0.24 -1.03 ± 0.10 -1.23 ± 0.12 U58497

98771_at Ephb2 Eph receptor B2 2.86 ± 0.08 2.67 ± 0.13 -2.00 ± 0.17 -1.42 ± 0.17 L25890

161492_i_at Mgat1* mannoside
acetylglucosaminyltransferase 1

-2.72 ± 0.07 -3.21 ± 0.06 -1.02 ± 0.13 -1.03 ± 0.11 AV089873

102047_at Nmt1* N-myristoyltransferase 1 2.84 ± 0.12 3.45 ± 0.11 2.46 ± 0.20 1.23 ± 0.15 AF043326

95079_at Pdgfra platelet derived growth factor
receptor, alpha polypeptide

-3.86 ± 0.08 -3.31 ± 0.07 -1.75 ± 0.19 -1.10 ± 0.15 M57683

97096_at Prkar2a protein kinase, cAMP dependent
regulatory, type II alpha

3.58 ± 0.17 3.63 ± 0.09 -2.13 ± 0.23 -1.76 ± 0.23 J02935

161964_r_at Prkcz protein kinase C, zeta -2.07 ± 0.12 -3.14 ± 0.08 -1.38 ± 0.12 -1.10 ± 0.12 AV367375

161270_i_at Prkwnk1 protein kinase, lysine deficient 1 1.22 ± 0.13 -5.24 ± 0.07 1.55 ± 0.14 -1.07 ± 0.25 AV319920

92380_r_at Ptprz1 protein tyrosine phosphatase,
receptor type Z, polypeptide 1

1.45 ± 0.17 -3.42 ± 0.07 -1.81 ± 0.12 1.26 ± 0.12 AJ133130
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Table 4.7.  Differentially expressed genes after lactacystin treatment (continued):
transport. Gene expression is indicated as fold change±Standard Error.  Only
genes differentially expressed >3-fold and significantly expressed according to
one-way ANOVA, p<0.05 are included in this list.  * indicates genes that passed
the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Transport
100074_at 2400003B06Rik* RIKEN cDNA

2400003B06 gene
-6.99 ± 0.06 1.31 ± 0.20 1.59 ± 0.14 -1.34 ± 0.13 AW046723

104453_at 2310079P12Rik RIKEN cDNA
2310079P12 gene

2.78 ± 0.12 3.44 ± 0.06 1.89 ± 0.34 -1.02 ± 0.21 AW046336

92288_at Ap1g1 adaptor protein
complex AP-1, gamma
1 subunit

2.53 ± 0.10 3.99 ± 0.22 -1.48 ± 0.16 -1.50 ± 0.30 X54424

100492_at Ap2a2* adaptor protein
complex AP-2, alpha 2
subunit

-3.73 ± 0.07 1.17 ± 0.08 -1.18 ± 0.11 -1.29 ± 0.11 AW122807

102704_at Aqp4 aquaporin 4 -1.59 ± 0.08 -6.24 ± 0.09 -6.17 ± 0.10 1.22 ± 0.16 U88623

96032_at Atp5g1* ATP synthase, H+
transporting,
mitochondrial F0
complex, subunit c
(subunit 9), isoform 1

-3.88 ± 0.08 -2.23 ± 0.07 -1.69 ± 0.10 -1.34 ± 0.11 L19737

102854_s_at Atp7a* ATPase, Cu++
transporting, alpha
polypeptide

3.21 ± 0.13 2.24 ± 0.16 1.23 ± 0.13 1.04 ± 0.12 U03434

95654_at Clic1* chloride intracellular
channel 1

1.45 ± 0.11 1.76 ± 0.09 3.64 ± 0.18 3.20 ± 0.45 AF109905

97248_at Dbi* diazepam binding
inhibitor

-1.52 ± 0.06 -3.44 ± 0.06 -1.91 ± 0.09 1.19 ± 0.14 X61431

94376_s_at Mre11a* meiotic recombination
11 homolog A (S.
cerevisiae)

3.09 ± 0.21 3.00 ± 0.23 1.52 ± 0.13 -1.18 ± 0.11 U60318

92952_f_at Napb* N-ethylmaleimide
sensitive fusion protein
attachment protein beta

3.63 ± 0.15 2.19 ± 0.09 -1.18 ± 0.13 -1.91 ± 0.14 X61455

93466_at Sec8l1 SEC8-like 1 (S.
cerevisiae)

3.02 ± 0.08 2.60 ± 0.09 -1.16 ± 0.21 -1.10 ± 0.34 AF022962

98457_at Slc4a4 solute carrier family 4
(anion exchanger),
member 4

-1.30 ± 0.13 -3.96 ± 0.11 -1.48 ± 0.13 1.46 ± 0.15 AF020195

161573_at Slc4a7* solute carrier family 4,
sodium bicarbonate
cotransporter, member
7

-3.75 ± 0.07 -2.01 ± 0.07 -1.12 ± 0.10 1.02 ± 0.16 AV278013

102319_at Snx12 sorting nexin 12 1.55 ± 0.08 3.10 ± 0.13 1.31 ± 0.12 -1.22 ± 0.13 AF062484

96019_at Sypl synaptophysin-like
protein

2.22 ± 0.18 3.17 ± 0.22 1.51 ± 0.11 -1.01 ± 0.18 AI843476

98339_at Syt11 synaptotagmin 11 2.85 ± 0.07 3.38 ± 0.11 -1.59 ± 0.17 -1.61 ± 0.19 AB026808

160190_at Syt4* synaptotagmin 4 3.50 ± 0.20 1.10 ± 0.06 -1.45 ± 0.10 -1.40 ± 0.10 U10355

101420_at Viaat vesicular inhibitory
amino acid transporter

-2.76 ± 0.07 -3.23 ± 0.06 -1.45 ± 0.12 -2.57 ± 0.14 AJ001598
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Table 4.8.  Differentially expressed genes after lactacystin treatment (continued):
electron transport; cytoskeleton.  Gene expression is indicated as fold
change±Standard Error.  Only genes differentially expressed >3-fold and
significantly expressed according to one-way ANOVA, p<0.05 are included in
this list.  * indicates genes that passed the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Electron transport

101991_at Fmo1* flavin containing
monooxygenase 1

-2.32 ± 0.08 -4.02 ± 0.07 -2.35 ± 0.12 -1.45 ± 0.11 D16215

98984_f_at Gpd2* glycerol phosphate
dehydrogenase 2,
mitochondrial

3.92 ± 0.22 2.12 ± 0.14 1.19 ± 0.12 -1.54 ± 0.10 D50430

98918_at Txndc5 thioredoxin domain
containing 5

-3.23 ± 0.12 -1.25 ± 0.06 1.18 ± 0.15 1.10 ± 0.17 AI841920

94209_g_at Txndc7* thioredoxin domain
containing 7

2.11 ± 0.14 3.17 ± 0.17 1.04 ± 0.10 -1.26 ± 0.10 AW045202

102000_f_at Uqcrc2* ubiquinol cytochrome
c reductase core
protein 2

3.40 ± 0.10 2.28 ± 0.11 1.19 ± 0.10 -1.03 ± 0.12 AI842835

103922_f_at 1500005G05Rik RIKEN cDNA
1500005G05 gene

-1.38 ± 0.08 1.73 ± 0.10 4.87 ± 0.97 1.32 ± 0.34 AI839690

Cytoskeleton

93100_at Acta2* actin, alpha 2, smooth
muscle, aorta

-2.11 ± 0.07 -4.06 ± 0.08 1.68 ± 0.37 3.89 ± 0.49 X13297

95705_s_at Actb actin, beta,
cytoplasmic

-10.94 ± 0.06 -6.82 ± 0.05 1.45 ± 0.22 -1.67 ± 0.26 J04181

94863_r_at Dncl2a dynein, cytoplasmic,
light chain 2A

3.05 ± 0.16 1.88 ± 0.17 1.27 ± 0.17 -1.16 ± 0.19 AI850000

101698_f_at Krt2-17 keratin complex 2,
basic, gene 17

-3.27 ± 0.15 -1.89 ± 0.07 -1.17 ± 0.13 1.07 ± 0.13 AI852429

98059_s_at Lmna* lamin A 1.26 ± 0.07 2.82 ± 0.19 3.54 ± 0.18 1.34 ± 0.18 D49733

102742_g_at Mapt* microtubule-associated
protein tau

3.07 ± 0.07 2.10 ± 0.06 -1.16 ± 0.12 -1.51 ± 0.11 M18775

160308_at Msn* moesin -2.05 ± 0.07 -1.19 ± 0.08 5.12 ± 0.35 2.80 ± 0.61 AI839417

102108_f_at Myh9 myosin heavy chain IX 1.69 ± 0.31 1.30 ± 0.07 3.20 ± 0.24 1.82 ± 0.16 AI505453

93541_at Tagln transgelin -1.63 ± 0.09 -2.06 ± 0.07 2.53 ± 0.49 4.16 ± 0.53 Z68618

93413_at Terf2 telomeric repeat
binding factor 2

2.95 ± 0.17 1.97 ± 0.10 1.05 ± 0.16 -1.09 ± 0.18 AF003000

101543_f_at Tuba6* tubulin, alpha 6 2.41 ± 0.06 3.07 ± 0.06 1.06 ± 0.12 -1.19 ± 0.14 M13441

162379_r_at Vim* vimentin -8.34 ± 0.07 -7.48 ± 0.08 -1.49 ± 0.10 -1.01 ± 0.12 AV245272



87

Table 4.9.  Differentially expressed genes after lactacystin treatment (continued): cell
cycle; signalosome complex; carbohydrate metabolism. Gene expression is
indicated as fold change±Standard Error.  Only genes differentially expressed >
3-fold change and significantly expressed according to one-way ANOVA,
p<0.05 are included in this list.  * indicates genes that passed the Bonferroni
Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Cell cycle
96146_at Btg3 B-cell translocation gene 3 1.65 ± 0.08 2.12 ± 0.14 4.15 ± 0.43 1.62 ± 0.35 D83745

96236_at Cdc16 CDC16 cell division cycle 16
homolog (S. cerevisiae)

3.04 ± 0.23 2.92 ± 0.11 1.81 ± 0.21 -1.34 ± 0.18 AW122965

98067_at Cdkn1a cyclin-dependent kinase
inhibitor 1A (P21)

1.27 ± 0.09 1.25 ± 0.08 3.14 ± 0.33 1.19 ± 0.17 U09507

97411_at Ect2 ect2 oncogene 2.94 ± 0.09 2.13 ± 0.16 1.10 ± 0.19 2.20 ± 0.23 L11316

160901_at Fos* FBJ osteosarcoma oncogene 1.84 ± 0.20 2.05 ± 0.13 3.11 ± 0.30 2.66 ± 0.21 V00727

100130_at Jun Jun oncogene 4.76 ± 0.45 8.30 ± 0.13 1.91 ± 0.42 -1.45 ± 0.14 X12761

161931_r_at Mki67 antigen identified by
monoclonal antibody Ki 67

-4.08 ± 0.18 -1.83 ± 0.13 -1.29 ± 0.10 1.22 ± 0.13 AV309347

103418_at Rfc4 replication factor C (activator
1) 4

3.54 ± 0.17 2.36 ± 0.10 1.34 ± 0.11 1.21 ± 0.26 AW122092

103520_at Vegfa vascular endothelial growth
factor A

2.88 ± 0.43 4.89 ± 0.21 -1.07 ± 0.22 -1.38 ± 0.14 M95200

102292_at Gadd45a* growth arrest and DNA-
damage-inducible 45 alpha

2.49 ± 0.12 4.20 ± 0.16 4.73 ± 0.62 1.98 ± 0.26 U00937

101979_at Gadd45g* growth arrest and DNA-
damage-inducible 45 gamma

2.45 ± 0.12 3.10 ± 0.07 1.78 ± 0.20 2.57 ± 0.18 AF055638

Signalosome complex
99113_at Cops3 COP9 (constitutive

photomorphogenic)
homolog, subunit 3
(Arabidopsis thaliana)

3.73 ± 0.20 3.08 ± 0.09 1.37 ± 0.17 -1.12 ± 0.18 AF071313

95460_at Cops5* COP9 (constitutive
photomorphogenic)
homolog, subunit 5
(Arabidopsis thaliana)

2.90 ± 0.07 3.30 ± 0.08 1.55 ± 0.18 -1.07 ± 0.12 U70736

Carbohydrate metabolism

96803_at Gbe1 glucan (1,4-alpha-),
branching enzyme 1

2.78 ± 0.32 1.57 ± 0.42 2.95 ± 0.22 2.33 ± 0.49 AW210370

103637_at Naga N-acetyl galactosaminidase,
alpha

-3.61 ± 0.27 1.23 ± 0.07 -1.17 ± 0.14 1.52 ± 0.11 AJ223966

100573_f_at Gpi1 glucose phosphate isomerase
1

1.93 ± 0.07 2.49 ± 0.13 3.13 ± 0.16 1.28 ± 0.21 M14220
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Table 4.10.  Differentially expressed genes after lactacystin treatment (continued):
cell signaling. Gene expression is indicated as fold change±Standard Error.  Only
genes differentially expressed >3-fold and significantly expressed according to
one-way ANOVA, p<0.05 are included in this list.  * indicates genes that passed
the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Cell signaling
95022_at Akap12* A kinase (PRKA) anchor

protein (gravin) 12
1.19 ± 0.09 -1.03 ± 0.08 3.13 ± 0.30 1.02 ± 0.10 AB020886

99481_at Atp1a2 ATPase, Na+/K+ transporting,
alpha 2 polypeptide

1.02 ± 0.08 -1.64 ± 0.07 -3.57 ± 0.09 -1.03 ± 0.26 AI839697

94006_at Azi2* 5-azacytidine induced gene 2 3.29 ± 0.28 2.49 ± 0.15 -1.19 ± 0.13 -1.21 ± 0.11 AB007141

102773_at Car8 carbonic anhydrase 8 -1.54 ± 0.37 -3.26 ± 0.14 -1.69 ± 0.13 -1.63 ± 0.11 X61397

102896_at Dok1* downstream of tyrosine kinase
1

3.28 ± 1.07 6.24 ± 0.31 3.79 ± 0.14 1.17 ± 0.17 U78818

97740_at Dusp16 dual specificity phosphatase 16 2.35 ± 0.26 3.35 ± 0.11 2.67 ± 0.51 1.02 ± 0.20 AI642662

103550_at Ednrb endothelin receptor type B 1.63 ± 0.09 -3.50 ± 0.07 -1.62 ± 0.10 1.98 ± 0.17 U32329

98446_s_at Ephb4* Eph receptor B4 2.48 ± 0.09 3.16 ± 0.09 1.53 ± 0.11 -1.11 ± 0.12 U06834

101096_s_at Hs1bp1 HS1 binding protein 2.20 ± 0.09 2.88 ± 0.06 1.42 ± 0.14 -1.07 ± 0.13 AF023482

99491_at Il10rb* interleukin 10 receptor, beta -2.07 ± 0.16 -3.73 ± 0.07 -1.01 ± 0.11 1.25 ± 0.13 U53696

161796_r_at Kcnq1* potassium voltage-gated
channel, subfamily Q, member
1

-2.37 ± 0.07 -4.41 ± 0.07 -1.56 ± 0.10 -1.19 ± 0.12 AV367240

103235_at Npy* neuropeptide Y 1.09 ± 0.08 -1.19 ± 0.06 -3.07 ± 0.09 -3.12 ± 0.10 AI848386

93007_at Npy1r neuropeptide Y receptor Y1 1.92 ± 0.10 1.15 ± 0.15 -4.01 ± 0.15 -2.59 ± 0.14 Z18280

102255_at Osmr oncostatin M receptor -1.83 ± 0.41 -1.59 ± 0.25 3.84 ± 0.17 2.70 ± 0.21 AB015978

102049_at Pdk4 pyruvate dehydrogenase kinase,
isoenzyme 4

-1.74 ± 0.18 -4.52 ± 0.19 1.25 ± 0.16 1.81 ± 0.16 AJ001418
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Table 4.11.  Differentially expressed genes after lactacystin treatment (continued):
growth and development. Gene expression is indicated as fold change±Standard
Error.  Only genes differentially expressed >3-fold and significantly expressed
according to one-way ANOVA, p<0.05 are included in this list.  * indicates
genes that passed the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Growth and development
101475_at Bmi1 B lymphoma Mo-MLV insertion

region 1
3.02 ± 0.14 2.88 ± 0.07 1.13 ± 0.12 -1.14 ± 0.16 M64068

100022_at Cish* cytokine inducible SH2-
containing protein

2.16 ± 0.40 3.02 ± 0.14 -1.34 ± 0.10 -1.12 ± 0.10 D89613

93294_at Ctgf connective tissue growth factor 2.94 ± 0.70 2.11 ± 0.28 14.63 ± 0.63 7.93 ± 1.62 M70642

97426_at Emp1* epithelial membrane protein 1 1.18 ± 0.15 1.04 ± 0.08 4.98 ± 0.45 4.06 ± 0.14 X98471

100277_at Inhba inhibin beta-A -2.15 ± 0.09 -3.25 ± 0.06 -1.77 ± 0.12 -1.59 ± 0.10 X69619

160463_at Myd116 myeloid differentiation primary
response gene 116

1.93 ± 0.09 4.30 ± 0.09 2.71 ± 0.47 1.12 ± 0.15 X51829

97474_r_at Ptn* pleiotrophin -1.04 ± 0.08 -3.79 ± 0.07 1.04 ± 0.10 1.46 ± 0.13 D90225

95387_f_at Sema4b sema domain, immunoglobulin
domain (Ig), transmembrane
domain (TM) and short
cytoplasmic domain,
(semaphorin) 4B

8.87 ± 0.47 3.89 ± 0.12 1.07 ± 0.20 -1.36 ± 0.17 AA266467

99911_at Sema6b sema domain, transmembrane
domain (TM), and cytoplasmic
domain, (semaphorin) 6B

-4.00 ± 0.07 -2.12 ± 0.06 -1.66 ± 0.10 -1.82 ± 0.12 AF036585

103302_r_at Sox3* SRY-box containing gene 3 -3.45 ± 0.07 -2.25 ± 0.06 -1.12 ± 0.11 1.29 ± 0.11 AA866668

95436_at Sst somatostatin 1.35 ± 0.11 1.64 ± 0.08 -1.19 ± 0.19 -4.06 ± 0.10 X51468

161258_at Wt1* Wilms tumor homolog -3.34 ± 0.10 -3.99 ± 0.07 -1.23 ± 0.10 -1.20 ± 0.10 AV322247

99549_at Ogn osteoglycin 1.03 ± 0.31 -6.87 ± 0.19 1.62 ± 0.49 4.77 ± 0.64 D31951
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Table 4.12.  Differentially expressed genes after lactacystin treatment (continued):
other processes. Gene expression is indicated as fold change±Standard Error.
Only genes differentially expressed >3-fold and significantly expressed
according to one-way ANOVA, p<0.05 are included in this list.  * indicates
genes that passed the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Other processes
97689_at F3* coagulation factor III -1.16 ± 0.11 1.42 ± 0.14 3.29 ± 0.17 2.14 ± 0.17 M26071

98372_at Aldh1a3 aldehyde dehydrogenase
family 1, subfamily A3

1.43 ± 0.29 -1.94 ± 0.29 3.25 ± 0.21 -1.31 ± 0.13 AW050387

95133_at Asns asparagine synthetase 1.74 ± 0.07 3.13 ± 0.13 1.11 ± 0.24 -1.50 ± 0.17 U38940

96775_at Cbx1 chromobox homolog 1
(Drosophila HP1 beta)

4.97 ± 0.10 1.47 ± 0.13 -1.36 ± 0.14 1.16 ± 0.12 X56690

160711_at Decr1 2,4-dienoyl CoA reductase 1,
mitochondrial

-1.97 ± 0.17 -4.46 ± 0.21 1.31 ± 0.37 2.94 ± 0.34 AI844846

160101_at Hmox1 heme oxygenase (decycling) 1 1.11 ± 0.14 2.34 ± 0.11 5.39 ± 0.82 2.23 ± 0.49 X56824

162387_f_at Mfn1 mitofusin 1 -4.95 ± 0.09 -2.55 ± 0.21 -1.31 ± 0.10 1.20 ± 0.11 AV255723

94485_at Peci* peroxisomal delta3, delta2-
enoyl-Coenzyme A isomerase

2.00 ± 0.10 2.23 ± 0.09 3.11 ± 0.12 2.42 ± 0.38 AI840013

93542_at Pter phosphotriesterase related 1.33 ± 0.15 1.02 ± 0.12 1.56 ± 0.11 3.54 ± 0.51 U28016

162317_r_at Rps12 ribosomal protein S12 -5.09 ± 0.18 1.30 ± 0.19 1.13 ± 0.22 -1.23 ± 0.16 AV064697

95049_at Snrpd2 small nuclear
ribonucleoprotein D2

3.17 ± 0.12 2.52 ± 0.18 1.21 ± 0.12 -1.10 ± 0.19 AI837853

94564_at Sult4a1 sulfotransferase family 4A,
member 1

1.40 ± 0.13 3.05 ± 0.07 -2.26 ± 0.16 -2.37 ± 0.19 AF059257

93794_at Appbp1 amyloid beta precursor protein
binding protein 1

3.45 ± 0.16 1.85 ± 0.13 1.13 ± 0.13 -1.21 ± 0.14 AI846393

102780_at Npn3 neoplastic progression 3 4.13 ± 0.19 8.60 ± 0.52 18.46 ± 0.98 2.64 ± 1.18 Z31362
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Table 4.13.  Differentially expressed genes after lactacystin treatment (continued):
unknown biological functions. Gene expression is indicated as fold
change±Standard Error.  Only genes differentially expressed >3-fold and
significantly expressed according to one-way ANOVA, p<0.05 are included in
this list.  * indicates genes that passed the Bonferroni Correction.

Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

Unknown biological processes

97012_f_at 0610033H09Rik RIKEN cDNA 0610033H09
gene

3.00 ± 0.23 2.44 ± 0.27 1.73 ± 0.14 1.08 ± 0.18 AI838702

104400_at 0610042I15Rik RIKEN cDNA 0610042I15
gene

2.11 ± 0.10 2.97 ± 0.10 -1.80 ± 0.21 -1.98 ± 0.17 AF076956

95732_at 1110005L13Rik RIKEN cDNA 1110005L13
gene

3.23 ± 0.12 2.17 ± 0.09 1.20 ± 0.10 -1.11 ± 0.16 AW047746

103773_at 1110020K19Rik RIKEN cDNA 1110020K19
gene

1.66 ± 0.09 3.01 ± 0.46 1.06 ± 0.15 -1.30 ± 0.13 AW047874

104314_r_at 1110032A03Rik RIKEN cDNA 1110032A03
gene

3.12 ± 0.95 4.51 ± 0.25 -1.08 ± 0.16 -1.03 ± 0.19 AI851206

96068_at 1500034J20Rik RIKEN cDNA 1500034J20
gene

3.48 ± 0.19 1.97 ± 0.12 1.31 ± 0.16 1.10 ± 0.26 AI848821

95561_at 1700013H19Rik RIKEN cDNA 1700013H19
gene

3.10 ± 0.27 1.53 ± 0.17 -1.05 ± 0.25 1.27 ± 0.12 AW120867

161004_at 1700097N02Rik* RIKEN cDNA 1700097N02
gene

-2.14 ± 0.12 -3.37 ± 0.06 -1.03 ± 0.11 -1.01 ± 0.10 AA250414

98942_r_at 2310032D16Rik RIKEN cDNA 2310032D16
gene

-2.99 ± 0.10 -4.97 ± 0.06 1.03 ± 0.19 1.14 ± 0.30 AW125284

92703_at 2310032M22Rik RIKEN cDNA 2310032M22
gene

3.33 ± 0.15 1.95 ± 0.08 -1.05 ± 0.14 -1.37 ± 0.13 AI325791

104100_at 2310075E07Rik* RIKEN cDNA 2310075E07
gene

-3.46 ± 0.10 -2.52 ± 0.07 1.31 ± 0.14 1.65 ± 0.11 AI845915

95449_at 2310075G12Rik RIKEN cDNA 2310075G12
gene

-3.12 ± 0.11 -1.83 ± 0.06 -1.10 ± 0.11 1.16 ± 0.12 AW049793

161906_f_at 2410022L05Rik* RIKEN cDNA 2410022L05
gene

-3.11 ± 0.09 -3.26 ± 0.06 -1.28 ± 0.10 -1.61 ± 0.12 AV113045

97864_at 2510049I19Rik RIKEN cDNA 2510049I19
gene

3.66 ± 0.36 2.42 ± 0.13 1.15 ± 0.17 1.26 ± 0.17 AW258842

93802_at 2610103J23Rik RIKEN cDNA 2610103J23
gene

5.92 ± 0.55 3.46 ± 0.62 1.56 ± 0.19 1.12 ± 0.21 AA815890

98973_at 2610318G08Rik* RIKEN cDNA 2610318G08
gene

3.15 ± 0.22 4.09 ± 0.35 1.39 ± 0.18 1.10 ± 0.11 AA982595

100306_at 2700007P21Rik RIKEN cDNA 2700007P21
gene

2.70 ± 0.22 6.66 ± 0.34 1.29 ± 0.18 -1.13 ± 0.15 AI510297

92268_at 2700007P21Rik RIKEN cDNA 2700007P21
gene

2.60 ± 0.10 4.08 ± 0.22 1.49 ± 0.21 1.06 ± 0.14 AI854851

104470_at 2700066J21Rik RIKEN cDNA 2700066J21
gene

2.61 ± 0.67 4.61 ± 0.13 1.77 ± 0.22 1.20 ± 0.18 AI957346

160752_at 2810002D13Rik RIKEN cDNA 2810002D13
gene

-4.05 ± 0.17 -1.20 ± 0.14 -1.13 ± 0.10 1.00 ± 0.13 AA667021

104089_at 2810026P18Rik* RIKEN cDNA 2810026P18
gene

3.53 ± 0.23 5.50 ± 0.23 1.35 ± 0.11 1.05 ± 0.10 AW045664

103071_at 2810429C13Rik* RIKEN cDNA 2810429C13
gene

3.33 ± 0.10 2.52 ± 0.09 1.22 ± 0.11 1.35 ± 0.13 AI843655

92840_at 3110079L04Rik* RIKEN cDNA 3110079L04
gene

4.91 ± 0.58 6.87 ± 0.17 1.54 ± 0.32 1.04 ± 0.12 AA683712

104356_at 4921516M08Rik RIKEN cDNA 4921516M08
gene

3.39 ± 0.22 1.75 ± 0.25 1.10 ± 0.13 1.13 ± 0.11 AI465543

104639_i_at 4930553M18Rik RIKEN cDNA 4930553M18
gene

3.05 ± 0.35 5.24 ± 0.18 1.13 ± 0.24 1.12 ± 0.28 AI464596

92992_i_at 5730497N03Rik* RIKEN cDNA 5730497N03
gene

4.26 ± 0.39 3.11 ± 0.32 -1.20 ± 0.12 1.12 ± 0.15 AI324972

94426_at 6330575P11Rik RIKEN cDNA 6330575P11
gene

2.72 ± 0.11 2.86 ± 0.08 -1.04 ± 0.26 -2.08 ± 0.18 AI851052

161104_at 9430099J10Rik RIKEN cDNA 9430099J10
gene

3.82 ± 0.25 1.91 ± 0.22 1.10 ± 0.17 1.79 ± 0.13 AI846811
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160713_at AA407930 expressed sequence
AA407930

2.08 ± 0.07 3.61 ± 0.21 2.74 ± 0.52 1.01 ± 0.15 AI841579

93464_at Akap9 A kinase (PRKA) anchor
protein (yotiao) 9

1.54 ± 0.08 -3.17 ± 0.07 -1.27 ± 0.10 -1.35 ± 0.14 AI561567

93900_at Bat2 HLA-B associated transcript
2

1.42 ± 0.21 3.01 ± 0.12 -1.67 ± 0.13 -1.69 ± 0.18 AW050268

100946_at Bat9 HLA-B-associated transcript
9

-1.21 ± 0.07 1.92 ± 0.07 5.47 ± 2.18 -1.07 ± 0.20 AF109906

103485_at BC030046 cDNA sequence BC030046 -2.20 ± 0.07 -4.47 ± 0.07 -1.32 ± 0.26 1.07 ± 0.16 AA795415

100410_at C330027G06Rik RIKEN cDNA C330027G06
gene

3.24 ± 0.31 1.82 ± 0.15 1.14 ± 0.15 -1.04 ± 0.16 AW122781

103016_s_at Cd68* CD68 antigen -1.39 ± 0.11 1.01 ± 0.09 3.10 ± 0.23 2.79 ± 0.51 X68273

162251_f_at Centg2 centaurin, gamma 2 -1.51 ± 0.08 -3.15 ± 0.09 -1.38 ± 0.10 -1.22 ± 0.12 AV335015

160330_at Chordc1* cysteine and histidine-rich
domain (CHORD)-
containing, zinc-binding
protein 1

1.66 ± 0.07 3.00 ± 0.07 1.56 ± 0.20 -1.24 ± 0.10 AW122453

97352_f_at Coxvib2 cytochrome c oxidase
subunit VIb, testes-specific

-1.93 ± 0.08 -3.61 ± 0.08 1.00 ± 0.27 2.66 ± 0.11 AW123567

95432_f_at D16Wsu109e* DNA segment, Chr 16,
Wayne State University 109,
expressed

3.00 ± 0.07 2.78 ± 0.10 -1.04 ± 0.11 -1.57 ± 0.10 AI844034

103861_s_at D7Wsu128e* DNA segment, Chr 7,
Wayne State University 128,
expressed

1.62 ± 0.07 3.86 ± 0.10 1.88 ± 0.13 -1.14 ± 0.11 AA388099

103862_r_at D7Wsu128e* DNA segment, Chr 7,
Wayne State University 128,
expressed

1.96 ± 0.08 3.01 ± 0.11 1.51 ± 0.11 -1.05 ± 0.10 AA388099

103460_at Ddit4 DNA-damage-inducible
transcript 4

2.36 ± 0.11 3.79 ± 0.19 1.11 ± 0.17 -1.03 ± 0.19 AI849939

100037_at Ddx18 DEAD (Asp-Glu-Ala-Asp)
box polypeptide 18

1.82 ± 0.23 2.98 ± 0.16 1.01 ± 0.12 -1.12 ± 0.21 AW213225

99096_at Ddx24 DEAD (Asp-Glu-Ala-Asp)
box polypeptide 24

1.82 ± 0.10 3.05 ± 0.07 1.35 ± 0.16 -1.30 ± 0.13 U46690

99366_at E030024M05Rik* RIKEN cDNA E030024M05
gene

-1.32 ± 0.13 1.01 ± 0.10 3.48 ± 0.21 3.24 ± 0.34 AI553536

98525_f_at Erdr1 erythroid differentiation
regulator 1

1.64 ± 0.12 3.02 ± 0.07 1.51 ± 0.24 -1.12 ± 0.18 AJ007909

92553_at Es10 esterase 10 1.78 ± 0.09 1.67 ± 0.08 4.08 ± 0.11 2.21 ± 0.50 AB025408

96569_at Fignl1* fidgetin-like 1 -2.61 ± 0.07 -3.11 ± 0.06 -1.17 ± 0.10 1.13 ± 0.11 AA266298

93443_at Fndc1 fibronectin type III domain
containing 1

-3.37 ± 0.11 -1.90 ± 0.09 -1.38 ± 0.10 1.08 ± 0.16 AW212271

98531_g_at Gas5* growth arrest specific 5 2.25 ± 0.07 3.20 ± 0.08 2.08 ± 0.20 1.30 ± 0.14 AI849615

94805_f_at Hist1h2ac histone 1, H2ac 4.05 ± 0.10 3.04 ± 0.10 1.03 ± 0.14 1.03 ± 0.21 M33988

98090_at Hrb2* HIV-1 Rev binding protein 2 4.04 ± 0.21 3.24 ± 0.24 1.75 ± 0.11 -1.10 ± 0.13 AW210014

99109_at Ier2 immediate early response 2 1.77 ± 0.08 3.53 ± 0.07 1.72 ± 0.14 1.24 ± 0.18 M59821

94384_at Ier3* immediate early response 3 4.75 ± 0.30 7.40 ± 0.48 7.33 ± 0.22 1.29 ± 0.28 X67644

102152_f_at Igh-VS107* immunoglobulin heavy chain
(S107 family)

-3.88 ± 0.07 -3.28 ± 0.08 -1.36 ± 0.10 -1.12 ± 0.10 M16724

162006_r_at Immt* inner membrane protein,
mitochondrial

-1.34 ± 0.07 -3.01 ± 0.07 -1.32 ± 0.10 -1.07 ± 0.10 AV334115

101501_r_at Impact imprinted and ancient 1.86 ± 0.26 1.29 ± 0.11 3.21 ± 0.56 1.19 ± 0.14 D87973

103523_at Leng8 leukocyte receptor cluster
(LRC) member 8

-5.32 ± 0.11 -1.12 ± 0.13 1.43 ± 0.24 1.10 ± 0.10 AI851703
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101214_f_at LOC14433 similar to glyceraldehyde-3-
phosphate dehydrogenase

2.78 ± 0.07 3.07 ± 0.11 1.51 ± 0.17 -1.07 ± 0.16 M32599

92564_at Lrrfip1 leucine rich repeat (in FLII)
interacting protein 1

2.84 ± 0.35 1.22 ± 0.26 3.92 ± 0.30 2.37 ± 0.22 AI891475

98440_at Ltb4dh* leukotriene B4 12-
hydroxydehydrogenase

1.13 ± 0.22 1.33 ± 0.16 10.74 ± 1.04 6.95 ± 1.90 AA596710

96151_at Mocos* molybdenum cofactor
sulfurase

2.25 ± 0.28 2.16 ± 0.29 3.26 ± 0.13 1.08 ± 0.13 AA839813

96285_at Myadm myeloid-associated
differentiation marker

-2.24 ± 0.10 -3.54 ± 0.07 -1.10 ± 0.12 1.03 ± 0.10 AJ001616

101366_f_at Nvl* nuclear VCP-like 3.47 ± 0.26 2.60 ± 0.20 1.26 ± 0.11 -1.26 ± 0.11 AA250299

100626_at Odf2 outer dense fiber of sperm
tails 2

1.64 ± 0.19 3.04 ± 0.31 1.08 ± 0.10 -1.16 ± 0.16 AF034105

103388_at P42pop Myb protein P42POP -3.59 ± 0.06 -3.12 ± 0.07 -1.25 ± 0.13 -1.10 ± 0.12 AW047050

99926_at Pigr* polymeric immunoglobulin
receptor

-4.91 ± 0.11 -3.78 ± 0.06 -1.42 ± 0.09 -1.11 ± 0.10 AB001489

96145_at Pigt phosphatidylinositol glycan,
class T

-3.12 ± 0.08 -1.78 ± 0.07 -1.28 ± 0.16 1.03 ± 0.16 AW211407

95631_at Ppp4c* protein phosphatase 4,
catalytic subunit

1.52 ± 0.10 3.06 ± 0.09 1.11 ± 0.11 1.02 ± 0.11 AF088911

97496_f_at Prkcdbp* protein kinase C, delta
binding protein

1.17 ± 0.23 1.23 ± 0.18 5.96 ± 0.65 3.36 ± 0.17 AW048944

161006_at R75096 expressed sequence R75096 -2.93 ± 0.10 -3.07 ± 0.07 -1.36 ± 0.10 -1.38 ± 0.11 AI853978

102724_at Rabep1* rabaptin, RAB GTPase
binding effector protein 1

5.36 ± 0.50 3.28 ± 0.26 -1.14 ± 0.10 -1.43 ± 0.10 AI608324

95077_at Rabggtb* RAB geranylgeranyl
transferase, b subunit

2.60 ± 0.09 3.77 ± 0.07 1.51 ± 0.26 -1.04 ± 0.10 U12922

97838_at Rnu22* RNA, U22 small nucleolar 3.38 ± 0.13 4.31 ± 0.22 2.16 ± 0.19 1.14 ± 0.12 AA684508

95664_at Sec14l1* SEC14-like 1 (S. cerevisiae) 2.21 ± 0.08 3.43 ± 0.09 -1.43 ± 0.11 -1.44 ± 0.13 AW048159

97160_at Sparc secreted acidic cysteine rich
glycoprotein

1.28 ± 0.07 -1.84 ± 0.10 3.00 ± 0.17 3.64 ± 0.59 X04017

94387_at Spata5 spermatogenesis associated 5 1.94 ± 0.11 2.87 ± 0.19 1.36 ± 0.26 -1.47 ± 0.19 AF016544

101995_at Sqstm1* sequestosome 1 3.11 ± 0.06 5.59 ± 0.09 3.58 ± 0.34 1.17 ± 0.27 U40930

104283_at Tbc1d15* TBC1 domain family,
member 15

3.18 ± 0.11 3.82 ± 0.22 1.98 ± 0.14 1.39 ± 0.12 AI037493

99144_s_at Tgoln1 trans-golgi network protein 1.74 ± 0.18 3.11 ± 0.10 1.25 ± 0.16 1.14 ± 0.20 D50031

92437_at Tm7sf2 transmembrane 7
superfamily member 2

-1.29 ± 0.11 -1.09 ± 0.07 -4.50 ± 0.10 -2.69 ± 0.10 AW047445

100039_at Tmem4 transmembrane protein 4 2.86 ± 0.24 2.93 ± 0.13 1.34 ± 0.10 1.25 ± 0.17 AW125880

162362_f_at Tnc tenascin C 3.27 ± 0.24 2.00 ± 0.16 2.46 ± 0.39 1.03 ± 0.33 AV230686

162463_at Tpd52 tumor protein D52 -3.26 ± 0.25 -2.46 ± 0.09 -1.07 ± 0.10 -1.07 ± 0.15 AV059497

100717_at U90926* cDNA sequence U90926 -2.99 ± 0.07 -3.01 ± 0.06 -1.38 ± 0.10 1.02 ± 0.10 U90926

103753_at Zzz3* zinc finger, ZZ domain
containing 3

3.06 ± 0.10 2.43 ± 0.18 1.29 ± 0.15 1.05 ± 0.11 AI159572
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95685_at Adult male testis cDNA,
RIKEN full-length enriched
library, clone:1700092M07
product:unknown EST, full
insert sequence

2.55 ± 0.08 3.74 ± 0.11 1.22 ± 0.18 -1.30 ± 0.13 AI849678

161535_at --- -2.76 ± 0.07 -3.37 ± 0.06 -1.31 ± 0.11 -1.23 ± 0.11 AV234882

162311_f_at --- -2.22 ± 0.07 -3.54 ± 0.08 -1.11 ± 0.10 -1.20 ± 0.10 AV050648

161528_r_at --- -1.14 ± 0.11 -3.51 ± 0.11 -1.99 ± 0.10 -1.06 ± 0.14 AV227261

161737_at --- -5.94 ± 0.08 -2.93 ± 0.17 1.13 ± 0.12 -1.05 ± 0.13 AV312560

96963_s_at Anti-PC rearranged Ig kappa
chain V-J region mRNA,
hybridoma 31-23-1, partial
cds.

-5.41 ± 0.19 -3.10 ± 0.19 -1.41 ± 0.11 1.00 ± 0.11 L14553

101863_at --- -5.45 ± 0.18 -1.42 ± 0.22 -1.18 ± 0.13 1.00 ± 0.16 C78246

161655_at --- -1.78 ± 0.18 -8.10 ± 0.20 -1.02 ± 0.11 1.02 ± 0.13 AV099898

101217_at --- -11.95 ± 0.15 -3.15 ± 0.11 -1.30 ± 0.10 1.06 ± 0.12 D18865

95891_at Hypothetical LOC328660
(LOC328660), mRNA

-3.83 ± 0.10 -2.60 ± 0.09 -1.48 ± 0.10 1.10 ± 0.13 AI591977

102348_at --- -2.41 ± 0.07 -4.37 ± 0.06 1.66 ± 0.25 1.17 ± 0.19 AI551087

96316_at Transcribed sequences 3.01 ± 0.23 1.82 ± 0.15 -1.08 ± 0.12 1.21 ± 0.15 AI839289

103709_at  --- -5.41 ± 0.12 -3.78 ± 0.07 -1.27 ± 0.10 1.24 ± 0.18 AA763466
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Figure 4.5.  The gene expression profile of lactacystin-treated cultured cortical
neurons.  Total RNAs were isolated from lactacystin-treated cultured cortical
neurons at different time points: Control (n=4), 4.5 h (n=2), 7.5 h (n=3), 24 h
(n=3) and 48 h (n=3). Expression of each gene was determined using Affymetrix
GeneChip U74Av2.  The data analysis was carried out using GeneSpring 7.  The
differentially expressed genes were grouped according to their biological
processes: a)  UPS, b) stress, c) cholesterol, d) lipid, e) calcium, f) transcription,
g) protein synthesis, h) proteolysis, I) transport, j) electron transport, k) cell
cycle, l) apoptosis, m) signaling and n) inflammation.  The color bar=scale bar
denotes changes in expression in fold-change, red indicates up-regulation and
blue indicates down-regulation of genes.
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4.2.3.1 Genes differentially expressed during the early phase of lactacystin-induced

neuronal apoptosis

Ubiquitin-proteasome system

Almost all genes in cluster a) UPS were up-regulated in the early time points, as

shown in red (Fig. 4.5).  Genes that encode the proteasome subunits (Psma1, Psmd12

and Psmd7), ubiquitins (Ubb), E2 ubiquitin conjugating enzyme (Ubc), ubiquitin

protein ligase E3A (Ube3a) and ubiquitin fusion degradation 1-like (Ufd1l) were up-

regulated as early as 4.5 h after lactacystin treatment.  Most of the genes encoding the

proteasome subunits were up-regulated persistently (until 24 h after lactacystin

treatment), while others like Ubb and Ubc lasted only until 7.5 h after treatment

(Table 4.1).

Heat shock proteins and molecular chaperones

The genes encoding heat shock proteins (HSPs) such as DnaJ (Hsp40) homolog

subfamily B (Dnajb1), HSP A (Hspa9a), HSP70 (Hspala), HSP27 (Hspb8) and

HSP47 (Serpinh1) were up-regulated later (at 7.5 h) compared with genes that encode

proteasome subunits and ubiquitin.  There was hardly any HSP gene expression

detected at the 4.5 h time point (Table 4.2).

Endoplasmic reticulum stress

The group of genes that encodes protein response to ER stress consisted of the earliest

pro-apoptotic genes to be up-regulated at early time points (Table 4.2).  Genes

encoding the transcription factor DNA-damage inducible transcript 3 (Ddit3), also

known as C/EBP-homologous protein (CHOP), as well as its interaction partner
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CCAAT/enhancer binding protein (C/EBP) beta (Cebpb), are involved in the

induction of apoptosis mediated by ER stress (Rutkowski and Kaufman, 2004).

Inflammation

Genes associated with in inflammatory response, such as CD14 antigen (Cd14), histo-

compatibility 2, M region locus 9 (H2-M9) and interleukin 16 (Il16), were down-

regulated at early time points (Table 4.3).

4.2.3.2 Genes differentially expressed during the late phase of lactacystin-induced

neuronal apoptosis

Antioxidant

Microarray data shows late up-regulation of genes involved in glutathione (GSH)

biosynthesis, such as the glutamate-cysteine ligase, modifier subunit (Gclm),

glutathione S-transferase, alpha 4 (Gsta4) and microsomal glutathione S-transferase 1

(Mgst1).  Similarly, the gene encoding metallothionein 1 (Mt1) was also up-regulated

at a later time point (Table 4.3).

Calcium homeostasis and binding

Genes encoding calcium-binding proteins such as Annexin A2 (Anxa2), Annexin A11

(Anxa11), S100 calcium-binding protein A10 (S100a10) and S100 calcium-binding

protein A11 (S100a11) were also up-regulated at a later time point (24 h) (Table 4.4).

Cholesterol biosynthesis

Interestingly, most of the genes involved in the biosynthetic pathway of cholesterol

were down-regulated after lactacystin treatment (Table 4.5).  Genes encoding
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enzymes involved in determining the rate of cholesterol biosynthesis, such as 3-

hydroxy-3-methylglutaryl-Coenzyme A reductase (Hmgcr), as well as others such as

cytochrome P450, 51 (Cyp51) 7-dehydrocholesterol reductase (Dhcr7), lanosterol

synthase (Lss ), mevalonate kinase (Mvk) and NAD(P)-dependent steroid

dehydrogenase-like (Nsdhl) were all down-regulated during lactacystin-induced

neuronal apoptosis.

4.2.4 Validation of differentially expressed genes identified by microarray

analysis

4.2.4.1 Endoplasmic reticulum stress

Western blot analysis of proteins extracted from cultured cortical neurons treated with

lactacystin (1 µM) for 7.5 h and 24 h detected CHOP protein expression (Fig. 4.6A).

Similarly, the stress-associated activating transcription factor 3 (Atf3) protein was

detected in protein samples from these two time points (Fig. 4.6A).  Since ER stress-

mediated cell death is associated with the disruption of calcium homeostasis and the

activation of calpain, a calcium-regulated protease (Rutkowski and Kaufman, 2004),

Western blot analysis was performed on the cell lysate of cultured cortical neurons

treated with lactacystin, to check whether the calpain substrate p35 was cleaved into

its truncated form of p25.  Fig. 4.6A shows the presence of p25, the product of calpain

cleavage, in the cell lysate 24 h after lactacystin treatment.  Fig. 4.6B shows that the

intracellular calcium chelator BAPTA-AM (2.5 µM), when co-applied with

lactacystin (1 µM), could mildly improve the cell viability of cultured cortical

neurons.  This observation suggests that calcium homeostasis disruption might be

involved in lactacystin-induced neuronal apoptosis (Fig. 4.6B).
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Figure 4.6. Lactacystin-induced ER stress-associated cell death events.  (A) Western
blotting showing the induction of Atf3 and Ddit3/CHOP proteins at 7.5 h and 24
h after lactacystin treatment.  p35 was cleaved to p25 24 h after the cultured
cortical neurons were exposed to 1 µM lactacystin.  Since p35 is degraded by the
UPS (Patrick et al, 1999), the increased p35 expression at the 7.5 h time point
could have been due to the inhibition of proteasome degradation by 1 µM
lactacystin.  (B) MTT cell viability assay demonstrates a mild neuroprotective
effect of 2.5 µM BAPTA-AM on lactacystin-induced neuronal apoptosis.  *
denotes significant difference compared to the treatment with 1 µM lactacystin
(Lact), according to ANOVA with post hoc Tukey’s test, p<0.05.
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ER stress can also lead to the production of reactive oxygen species (ROS) (Pahl,

1999).  ROS production can lead to the reduction of cellular GSH and ATP.  The

level of cellular GSH in lactacystin-treated cortical neurons decreased to 60% at 7.5 h,

but rebounded to 80% at 24 h after lactacystin treatment (Fig 4.7).  This could be due

to the up-regulation of the GSH biosynthesis genes (Table 4.3).

4.2.4.2 The down-regulation of cholesterol biosynthesis

Real-time quantitative PCR reveals the down-regulation of mRNA expression of both

acetyl-Coenzyme A acetyltransferase 2 (Acat2) and mevalonate (diphospho)

decarboxylase (Mvd), confirming the microarray data (Fig 4.8A, Table 4.5).

Corresponding to that, the total cholesterol levels in the lactacystin treated neurons

were found to be significantly decreased compared to the untreated control (Fig

4.8B).

4.3 Discussion

Most microarray analyses are done at a single time point.  This approach provides

only a snapshot of molecular events.  However, by performing a time course

microarray study, we can determine the sequence in which these events occur, and

whether they act in concurrence in a process like apoptosis.  The time course

microarray analysis revealed that a large number of genes were differentially

expressed during lactacystin-induced neuronal apoptosis.  Some of these genes were

potentially neuroprotective while others were potentially pro-apoptotic.  When these

differentially expressed genes were grouped according to their biological functions, it
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Figure 4.7. GSH and ATP levels in lactacystin-treated cultured cortical neurons.  (A)
Cellular ATP of cultured cortical neurons treated with 1 µM lactacystin
decreased significantly  24 h after treatment.  (B) Cellular GSH of cultured
cortical neurons treated with 1 µM lactacystin decreased 7.5 h and 24 h after
treatment.  * denotes significant difference compared to the control according to
ANOVA with post hoc Tukey’s test, p<0.05.
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became obvious that some groups of genes were differentially expressed at early time

points while others were expressed at later time points.  The following section

discusses, in detail, the different groups of genes that might play important roles

during lactacystin-induced neuronal apoptosis.

4.3.1 Ubiquitin-proteasome system

It is now evident that UPS plays an important role in the degradation of misfolded and

unfolded proteins in neurons (Sherman and Goldberg, 2001; Schroder and Kaufman,

2005).  The abnormal accumulation of proteins in neurons might be the main cause of

neurodegeneration (Halliwell, 2002).  Consistent with this hypothesis, alterations in

proteasome function have been found in many biological processes, including aging

(review in Gaczynska et al, 2001) and neurodegenerative diseases (Mandel et al,

2005).  A recent study showed that genes encoding proteasome subunits were down-

regulated in the Parkinson’s diseased substantia nigra pars compacta, suggesting that

a robust transcription of proteasome subunits might play an important role in the

survival of cells under stress conditions (Mandel et al, 2005).  In another study,

pretreatment of cultured neocortical neurons with sub-lethal concentrations of

proteasome inhibitors (for example with 10–100 nM MG-132, 0.1–3 nM epoxomicin

or 10–30 nM clasto-lactacystin β-lactone) could increase proteasomal activity and

promote resistance to oxidative injury (Lee et al, 2004).  Recently, Chondrogianni et

al demonstrated that stable over-expression of the proteasome β5 subunit alone was

able to increase the amount of assembled proteasomes and confer protection against

oxidative stress in primary IMR90 human fibroblasts (Chondrogianni et al, 2005).

All these observations imply that enhancement of proteasomal activity is

neuroprotective.
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Figure 4.8. Exposure to lactacystin caused the down-regulation of genes associated
with cholesterol biosynthesis.  (A) Real-time quantitative PCR performed on
total RNA extracted from cultured cortical neurons treated with 1 µM lactacystin
at different time points show the down-regulation of Mvd and Acat2 gene
expression after treatment.  (B) Total cholesterol of cells treated with 1 µM
lactacystin was significantly lower compared to the control according to one
sample t test (p<0.05), 24 h after treatment.  * denotes significant difference
compared to the control according to ANOVA with post hoc Tukey’s test,
p<0.05.
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In this study, the microarray results revealed that genes encoding various proteasome

subunits were up-regulated after lactacystin treatment (Table 4.1).  This result is

consistent with a similar study using primary cultures of rat vascular smooth muscle

cells (Meiners et al, 2003).  In the yeast Saccharomyces cerevisiae, genes encoding

proteasomal subunits are preceded by a common upstream activating cis-element

called the proteasome-associated control element.  This proteasome-associated control

element serves as a target sequence for the transcription factor Rpn4 that activates

proteasomal gene expression in a concerted manner (Mannhaupt et al, 1999).

Interestingly, Rpn4 is also a substrate of the 26S proteasome:  the same protein that

controls the induction of proteasome formation is also destroyed by the proteasome;

such a combination, or regulatory mechanism, yields a negative feedback circuit in

yeast.  More recently, Rnp4 was found to be responsible for the elevation of

proteasome subunit mRNA levels in response to various stress conditions such as the

abnormal accumulation of proteins, suggesting that Rpn4 is indeed a master regulator

responsible for the ability of the cell to compensate for proteasome inhibition

(London et al, 2004; Glickman and Raveh, 2005).

Knowledge of the mechanisms by which mammalian proteasome formation is

regulated is still very limited.  Meiners et al showed that not only was there a transient

and concerted up-regulation of the genes encoding the 26S proteasome subunit

mRNA during proteasome inhibition, the inhibitor-induced proteasome gene

activation resulted in enhanced de novo protein synthesis of all subunits, increasing

the de novo formation of proteasomes.  Their experiments present the first evidence

that the amount of proteasomes in mammalian cells is regulated at the transcriptional

level, and that there exists an autoregulatory feedback mechanism that compensates
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for reduced proteasomal activity (Meiners et al, 2003; Goldbaum and Richter-

Landsberg, 2004).

Besides that of proteasome subunits, the genes encoding ubiquitin (Ubb), ubiquitin-

conjugating enzyme E2 (Ubc) and ubiquitin protein ligase E3A (Ube3a) were also

significantly up-regulated, according to the microarray data (Table 4.1).  The up-

regulation of these genes might be neuroprotective, since they encode proteins that are

essential for the UPS.  Both Ubb and Ubc genes were reported to be up-regulated

following ischemic injury in animal models, and therefore might play a role in the

degradation of the denatured proteins resulting from oxidative stress during the injury

(Noga and Hayashi, 1996).  A recent report revealed that the presence of wild type or

mutant ubiquitin transgenes resulted in a small but significant delay in the onset of

clinical symptoms, and mild acceleration, respectively, of familial amyotrophic lateral

sclerosis in animal models, although the neuroprotective mechanism at present is still

not clear (Gilchrist et al, 2005).

The other group of genes that shows an early up-regulation during proteasomal

inhibition is that of the ring finger protein.  The ring finger proteins are proteins with

the consensus sequence CX2CX(9-39)CX(1-3)HX(2-3_C/HX2CX(4-48)CX2C, with

the Cys and His representing zinc-binding residues (Joazeiro and Weissman, 2000).

Recent studies demonstrated that many ring finger-containing proteins are E3s that

catalyze autoubiquitination and/or ubiquitination of their substrates (Joazeiro and

Weissman, 2000; Yang and Yu, 2003).  Ring finger-containing E3s play pivotal roles

in diverse cellular processes and have been implicated in contributing to disease, such

as in the case of the Parkin gene mutation and juvenile parkinsonism (Joazeiro and
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Weissman, 2000).  Ring finger E3 also plays key roles in the quality control of protein

synthesis.  For example, Hrd1p is a yeast ER membrane ring finger protein that

regulates the degradation of abnormal ER protein via the UPS (Shen et al, 2004).

Therefore, the up-regulation of these ring finger proteins might have a

neuroprotective role against the accumulation of abnormal unfolded protein in

neurons.

4.3.2 Heat shock proteins and molecular chaperones

Heat shock proteins (HSPs) with chaperoning function work together with the UPS to

prevent the accumulation of misfolded, potentially toxic proteins, as well as to control

catabolism of the bulk of cytoplasmic, cellular protein.  The levels of these proteins

are often increased in response to stress and they have been shown to enhance cell

resistance to various insults (Bush et al, 1997; Ding and Keller, 2001).  HSPs and

molecular chaperones facilitate the refolding of misfolded proteins to prevent them

from aggregating in the cell (Meriin and Sherman, 2005).  Mammalian cells possess a

number of HSPs, which are induced in response to stresses and display protective

chaperone activity (Ohtsuka and Suzuki, 2000).

HSPs can act via two mechanisms to confer cellular protection.  First, as molecular

chaperones, where HSPs are active in the formation and maintenance of the native

conformation of cytosolic proteins and the stabilization of actin filaments which make

up the cytoskeleton of the cell.  Second, both Hsp70 and Hsp27 can inhibit the release

of cytochrome c by suppressing Bid, a pro-apoptotic member of the Bcl-2 family

(review by Franklin et al, 2005).
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Hsp70 proteins and their associated co-chaperones CHIP (carboxyl terminus of

Hsp70-interacting protein)and Hsp40 are the best characterized among these proteins.

Functionally, Hsp70 are ATPases that can bind newly exposed hydrophobic

sequences on denatured proteins.  The co-chaperones from the Hsp40 (Dnaj) family

play essential roles in this process by stimulating the ATPase activity of Hsp70.

When correct refolding is not possible, Hsp70/Hsp40 target bound substrates to

proteasomal degradation in collaboration with other Hsp70-interacting proteins such

as CHIP, and ubiquitin E3 ligase (McDonough and Patterson, 2003).  Hsp70 can

suppress both necrosis and apoptosis induced by various injuries in vivo and in vitro

(Mosser et al, 2000; Sun et al, 2005; Lai et al, 2005).  Although the majority of

studies on the protective effect of individual HSPs have concentrated on the major

inducible Hsp70, a variety of evidence suggests that the small Hsp27 may have a

more potent protective effect in the nervous system (Latchman, 2005).

Another group of HSPs, called the small HSPs (sHSPs), consists of 10 members in

humans and mice (Hspb1–10), of which Hsp27 (Hspb1) and Hsp22 (Hspb8) are the

best-known representatives (Carra et al, 2005).  Unlike Hsp70, sHSPs have no

ATPase activity and binding to substrates appears to be modulated by the de-

oligomerization of the sHSPs, a process itself modulated by mechanisms such as

phosphorylation or temperature change (Giese and Vierling, 2002).

According to the microarray analysis, genes encoding both HSPs and sHSPs were up-

regulated (Table 4.2).  Recent findings have demonstrated that mutation of either

Hsp27 or the related protein Hsp22 can be observed in specific families with

hereditary motor neuropathy caused by premature axonal loss, possibly due to
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neuronal death and subsequent degeneration.  Therefore, Hsp27 appears to be a potent

protective factor for neuronal cells whose mutation results in neuronal cell death and

disease, whilst enhanced expression of the wild type protein may be a therapeutic

option for human diseases involving excessive neuronal cell death (Latchman, 2005).

A recent report demonstrated that Hsp27 expression is regulated by members of the

cAMP response element binding protein (CREB)/ATF families, such as  Atf3 and c-

Jun.  Atf3 is considered to be a nerve injury marker because it is not normally found

in neuronal cells but is highly expressed in response to nerve injury (Takeda et al,

2000; Tsujino et al, 2000).  Atf3 is also known as a stress-inducible gene (Liang et al,

1996; Hai et al, 1999).  Recently, the expression of Atf3 is linked to proteasome

inhibition (Zimmermann et al, 2000) and ER stress (Jiang et al, 2004).  The Atf3

homodimer is known to function as a repressor, whereas the heterodimer, for instance

in combination with c-Jun, functions as an activator for Hsp27, conferring

neuroprotection against nerve injury (Nakagomi et al, 2003).  Consistent with this

observation, the microarray results (Table 4.2) show that up-regulation of the genes

encoding both Atf3 and c-Jun preceded the up-regulation of the Hsp27 gene.

Much of the research to date has focused on the actions of Hsp27 and Hsp70

individually, whereas the full therapeutic benefit of these molecules may be

dependent on a better understanding of their combined neuroprotective action.

4.3.3 Endoplasmic reticulum stress

The ER is the site of protein synthesis in eukaryotic cells.  The UPS regulates the

removal of misfolded proteins in cells.  Proteasome inhibitors can, however, disrupt

this process and cause ER stress. Genes encoding these ER stress-associated
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transcription factors, such as DNA-damaged inducible transcript 3 (Ddit3), also

known as C/EBP-homologous protein (CHOP), CCAAT/enhancer binding protein

(C/EBP) beta (Cebpb), and activating transcription factor 4 (Atf4), have been reported

to be up-regulated during proteasomal inhibition and ER stress (Reimertz et al, 2003;

Yew et al, 2005).

Ddit3/CHOP is a small nuclear protein transcription factor of the C/EBP family that is

normally undetectable, but expressed at high levels in cells exposed to conditions that

perturb protein folding in the ER and induce the ER stress response (Wang et al,

1996).  The expression of Ddit3/CHOP in stressed cells is linked to the development

of programmed cell death (Wang et al, 1998; Zimmermann et al, 2000, Fribley et al,

2004, Rao et al, 2004).  The increase in Ddit3/CHOP protein expression is believed to

lead to the suppression of Bcl-2 expression in cells, making them more susceptible to

apoptosis (McCullough et al, 2001; Rao et al, 2004).

Besides being a principal site for protein synthesis and folding, the ER also acts as a

site for calcium storage and calcium signaling (Rao et al, 2004).  The pro-apoptotic

response of ER stress can also be due to the disruption of calcium homeostasis in the

cells.  Thus, ER stress may result in the activation of calpain and subsequently trigger

apoptosis through the activation of caspase-3 (Rutkowski and Kaufman, 2004).  The

calcium-regulated calpain is known to cleave p35, the neuronal-specific activator of

cyclin-dependent kinase 5 (Cdk5), to produce p25, which is known to accumulate in

the brains of patients with Alzheimer’s disease (Lee et al, 2000).  p25 could hyper-

phosphorylate tau to disrupt the cytoskeleton and promote neuronal death (Lee et al,

2000; Kusakawa et al, 2000).
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4.3.4 Inflammation

Neuroinflammation plays a key role in the pathophysiology of cerebral ischemia.

Proteasomal inhibition is able to attenuate the inflammatory cascade in cerebral

ischemia and reduce ischemic damage (Wojcik and Di Napoli, 2004).  The

mechanism of this neuroprotection involves the deactivation of NF-κB by stabilizing

the inhibitor IκB, and preventing the translocation of NF-κB to the nucleus where it

can bind to the promoter regions of pro-inflammatory genes.  The effect of

proteasome inhibitors on animal models has been recently evaluated.  Intravenous

infusion of PS-519 (analog of clasto-lactacystin β-lactone) effectively attenuated the

expression of cell adhesion proteins, reducing the invasion of leukocytes and hence

limiting brain tissue damage (Phillips et al, 2000).  The microarray analysis shows

that proteasomal inhibition by lactacystin caused an early down-regulation of genes

associated with the inflammatory response (Table 4.3).  This is so far consistent with

the anti-inflammatory effect of proteasome inhibitors.

Other studies, however, reported that proteasome inhibition induced cyclooxygenase-

2 (COX-2) activation in neuronal culture (Rockwell et al, 2000; Yew et al, 2005).

Inflammatory pathways involving COX-2 enzymes and the subsequent generation of

prostaglandins are potential causes of neurodegeneration such as amyotrophic lateral

sclerosis (Consilvio et al, 2004) and Alzheimer’s disease.  Several regulatory

elements on the murine COX-2 promoter, including a cyclic AMP response element,

two C/EBP sites and a single NFκB site, have been shown to be involved in COX-2

promoter activation (Cieslik et al, 2002).  The regulation of COX-2 expression during

proteasome inhibition is unlikely to be mediated by NF-κB (Rockwell et al, 2000).
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Instead, COX-2 may be activated by CCAAT/enhancer-binding protein-β (C/EBP-β)

binding to the promoter region of COX-2 (Cieslik et al, 2002).  Since C/EBP-β

expression is mediated by ER stress, ER stress may be the trigger for the activation of

COX-2 in neurons during proteasome inhibition.

Furthermore, the caspase activity assay reveals that both caspase-1 and caspase-5

were not activated in the course of lactacystin treatment; only caspase-4 activity was

detected (Fig. 4.2B).  Caspase-1, -4 and -5 are primarily involved in inflammatory

response (Salvesen and Dixit, 1997).   These caspases are needed in the maturation of

cytokines.  ER stress triggers apoptosis via an alternative intrinsic pathway that might

involve the activation of caspase-12 (Rao et al, 2004).  The involvement of caspase-

12 during ER stress-mediated apoptosis in humans is still unclear since human

counterparts of murine caspase-12 have not yet been identified.  Recently, caspase-4

has been suggested to be involved in ER stress-mediated cell death (reviewed in

Katayama et al, 2004).  This report is consistent with the results of the current study.

4.3.5 Antioxidants

Oxidative stress has been linked to ER stress. The release of calcium into the cytosol

could lead to the production of reactive oxygen species (ROS) (Pahl, 1999;

McCullough et al, 2001).  In our study, the groups of genes which are associated with

antioxidant response, such as glutathione S-transferase, alpha 4 (Gsta4), microsomal

glutathione S-transferase 1 (Mgst1) and metallothionein 1 (Mt1), were up-regulated at

the later time points (Table 4.3).  Besides their role in sequestration and distribution

of metal ions such as copper and zinc, metallothioneins are known to provide

cryoprotection from ROS.  The down-regulation of metallothioneins is implicated in
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redox status and increased susceptibility to oxidative stress and metal-induced

neurotoxicity (Aschner et al, 1997).  Cells also respond to oxidative stress by

increasing the expression of genes associated with the antioxidant GSH, such as

Gsta4, Mgst1 and Gclm (Coppedè et al, 2005; Maeda et al, 2005; Chen et al, 2005).

The Gsta4 gene was previously reported to be up-regulated at a later time point after

lactacystin treatment (Yew et al, 2005).  Gsta4 is known for its high catalytic

efficiency in the conjugation of 4-hydroxinonenal and other genotoxic products of

lipid peroxidation during oxidative stress (Hubatsch et al, 1998).  Mgst1, an ER-

bound enzyme known for its oxidative stress protection, was also up-regulated.

Cellular GSH is an important antioxidant in the cell.  A decrease in its level was

reported to be an early event in the pathogenesis of Parkinson’s disease (Owen et al,

1996).  In our study, the depletion of cellular ATP and GSH indicated that the neurons

were under oxidative stress after lactacystin treatment (Fig. 4.7A and 4.7B).  Since

Gclm is the rate-limiting enzyme in GSH biosynthesis, an increased Gclm expression

might have accounted for the ‘rebound synthesis’ of cellular GSH in the cultured

neurons treated with lactacystin at the 24 h time point (Fig. 4.7B).

4.3.6 Cholesterol biosynthesis

Cholesterol, an essential component of cellular membranes, is synthesized on the ER

surface (Chapman et al, 1998; Pahl, 1999).  The disruption of cholesterol homeostasis

in neurons has been associated with Alzheimer’s disease.  Furthermore, the down-

regulation of the rate-limiting enzyme 3-hydroxy-3-methylglutaryl-Coenzyme A

reductase (Hmgcr), encoded by the Hmgcr gene, causes cell death.  The microarray

data reveals that all genes involved in cholesterol biosynthesis were down-regulated

24 h after lactacystin treatment (Table 4.5).  This data is supported by the decrease of
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total cholesterol in neurons treated with lactacystin (Fig. 4.8B).  In cultured neurons,

the inhibition of Hmgcr using inhibitors such as pravastatin is sufficient to cause the

reduction of neurite growth and ultimately cell death (Schulz et al, 2004; Tanaka et al,

2000).  Not much is understood about the regulation of fatty acid and cholesterol

synthesis in neurons (Koudinova et al, 2003; Pfrieger 2003).  Cholesterol is a

multifaceted molecule that serves as an essential membrane component (lipid raft) as

well as a precursor for steroid hormone synthesis.  In neurons, cholesterol is important

for the stability of the synapse, in addition to maintaining synaptic plasticity (Pfrieger

2003).

How lactacystin treatment induces the down-regulation of lipid and cholesterol

biosynthesis genes is not clear, but it is not unexpected that the synthesis of lipid and

cholesterol will be affected during ER stress, since cholesterol is synthesized in the

ER.  A recent report suggests that cholesterol and fatty acid biosynthesis are

controlled by a common family of transcription factors, known as the sterol regulatory

element binding proteins (SREBPs) (Eberlé et al, 2004).  Upon activation (eg. when

the ER is deficient in lipid and sterol), the ER-anchored SREBP precursor transits to

the Golgi, where it undergoes a sequential two-step cleavage process to release the

NH2-terminal active domain, the designated nuclear form of SREBP, SREBP(N),

which is transported to the nucleus and promotes the expression of many genes

involved in cholesterol and fatty acid synthesis.  Similarly, activating transcription

factor 6 (ATF6), an ER membrane-bound transcription factor, can also undergo a

similar two-step cleavage process to form ATF6(N) during ER stress.  This

proteolytic cleavage can cause the nuclear translocation of ATF6(N) to direct the

transcriptional activation of chaperone molecules and enzymes essential for protein
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folding.  Zeng et al showed that over-expression of ATF6(N) in HepG2 (liver cell

line) could suppress the SREBP(N)-mediated transcription of HMGCR  and 3-

hydroxy-3-methylglytaryl-Coenzyme A synthase (HMGCS) (Zeng et al, 2004).  This

report suggests a direct link between ER stress and the down-regulation of lipid and

cholesterol biosynthesis.

Cholesterol biosynthesis is a complex synthetic pathway that requires dozens of

enzymes and large amounts of energy (Pfrieger 2003).  The down-regulation of

cholesterol synthesis genes might be a step taken by cells to conserve energy,

especially when cells are under stress.

4.3.7  Apoptosis

The microarray analysis picks up other genes that might be involved in the survival

and cell death action of lactacystin.  The gene encoding Bcl-2-associated athanogene

3 (Bag3) was found to be up-regulated strongly 24 h after lactacystin treatment (Table

4.2).  Bag3 can form a complex with more than one apoptosis-modulating factor such

as Hsp70 and Bcl-2 proteins, and thus can participate in apoptosis regulation (Antoku

et al, 2001). An earlier study showed that the down-regulation of Bag3 enhanced the

apoptotic response to chemotherapy in human primary B chronic lymphocytic

leukemia cells (Romano et al, 2003).  The role of Bag3 in neurons is, however, less

clear, but based on the microarray results, it might have an important role in

neuroprotection.

Insulin-like growth factor 1 (Igf1) is a 70-amino acid protein that is structurally

similar to insulin.  It acts as a major neurotrophic factor, promoting neuronal
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proliferation and differentiation during normal brain development.  Igf1 also acts as a

neuroprotective survival factor under pathological conditions such as stroke, brain

trauma, multiple sclerosis and Alzheimer’s disease (Trejo et al, 2003; Carro and

Torres-Aleman, 2004).  The biological functions of Igf1 are mediated by the Igf1

receptor.  Binding of Igf1 to the extracellular domain of the Igf1 receptor leads to the

phosphorylation of the insulin receptor substrates IRS-1 and IRS-2, which results in

the activation of two downstream signaling cascades for cell survival, namely the

mitogen-activated protein kinase (ERK) and PI3-kinase/Akt pathways (Mendez et al,

2005).  A recent study showed that direct administration of Igf1 into the intrathecal

space may have a therapeutic benefit for amyotrophic lateral sclerosis (Nagano et al,

2005).  In this microarray study, Igf1 gene expression was down-regulated as early as

4.5 h after lactacystin treatment.  This down-regulation of Igf1 might contribute to the

apoptosis of the neurons treated with lactacystin.

4.4 Conclusion

The UPS is involved in the regulation of many important biological processes in

neurons.  The study using microarray GeneChip® revealed that many potentially

neuroprotective and pro-apoptotic genes were differentially expressed during

proteasome inhibition by lactacystin.  The early up-regulation of some genes is

important in determining the fate of cells; genes encoding the proteasome subunits

and HSPs were up-regulated early, before the onset of apoptosis in the lactacystin-

treated cells.  These genes seemed to have responded to the abnormal build-up of

unfolded proteins in the cells caused by the inhibition of proteasome activity.  Since

lactacystin is an irreversible proteasome inhibitor, cells exposed to lactacystin can

undergo apoptosis.  The microarray data shows an early ER stress response after
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lactacystin treatment, in spite of the up-regulation of neuroprotective genes such as

those encoding proteasome subunits and HSPs.

The microarray data also reveals that some genes encoding neuroprotective

antioxidants were up-regulated later, after the onset of apoptosis.  This suggests the

neurons were under oxidative stress at the later stages of proteasome inhibition.  ER

stress has been reported to cause oxidative stress in many cell death models

(McCullough et al, 2001).  The fact that ER stress-associated genes were up-regulated

before the genes encoding antioxidants might suggest that ER stress is the main cause

of cell death in lactacystin-induced cultured cortical neurons.
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CHAPTER 5

5 Lipid profile of the neural membrane during lactacystin-induced neuronal

apoptosis

5.1 Introduction

The microarray analysis of cultured cortical neurons subjected to proteasome

inhibition using lactacystin reveals a significant down-regulation of genes associated

with cholesterol and lipid biosynthesis, metabolism and homeostasis (Chapter 4,

Table 4.5).  The collective evidence from many studies suggests that neural

membrane phospholipid metabolism is disrupted in neural trauma neurodegenerative

diseases (review by Farooqui et al, 2004).  The neural membrane is very complicated

and diverse.  It contains three major categories of lipids, phospholipids, cholesterol

and sphingolipids, that form the membrane lipid bilayer.  The cytoplasmic leaflets of

membranes are enriched in the negatively-charged phospholipids that interact with

positively-charged protein surfaces.  Phosphoinositides play a particularly important

role in the regulation of protein binding, because the number and location of negative

charges on the inositol ring are controlled by a variety of kinases and phosphatases.

The non-cytoplasmic leaflet of the membrane contains a variety of glycolipids, that,

together with their interacting proteins, may contribute to the generation of lipid

microdomains (Wenk and De Camilli, 2004).  Phospholipids and sphingolipids not

only form the lipid bilayer of membranes, but also act as reservoirs for the precursors

of lipid signaling molecules or messengers such as acetylcholine, eicosanoids,

diacylglycerol and ceramides (Review by Araki and Wurtman, 1998; Ariga et al,

1998; Buccoliero and Futerman 2003; Colombaioni and Garcia-Gil, 2004; Bazan et
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al, 2005).  Specific lipid messengers can be released from this reservoir of lipids by a

class of proteins known as the phospholipases (Farooqui et al, 2004).  This can

happen in response to signals such as hormones, growth factors, cytokines, membrane

depolarization, ion channel activation and neurotransmitters such as glutamate (Bazan

et al, 2005).  These lipid messengers are known to play important roles in the

regulation of cell proliferation, differentiation and death.

The electrospray ionization mass spectrometry (ESI-MS) has been used successfully

to study the lipid profile in complex lipid mixtures from human fibroblasts and

cultured cortical neurons (Wenk et al, 2003).  ESI-MS was used in this study to

investigate the lipid profile of cultured cortical neurons during lactacystin-induced

neuronal apoptosis.  By comparing the lipid profile of apoptotic neurons with the

control cells, it was observed that two groups of lipids were prominently accumulated

in lactacystin-treated cultured neurons undergoing apoptosis. Ceramide, a second

messenger, can be generated in cells undergoing cell death (review by Goswami and

Dawson, 2000).  Ceramide accumulation in neurons has been reported in various

disorders associated with acute or chronic neurodegeneration.  For example, recent

studies have shown that ceramides accumulate in the normal aging brain and in the

diseased brains of Alzheimer’s disease patients (Goswami and Dawson, 2000).  More

interestingly, the lipid profile analysis also shows the accumulation of N-acyl

phosphatidylethanolamine (NAPE) during lactacystin-induced neuronal apoptosis.

NAPE is the precursor of anandamide (N-arachidonoylethanolamine) and other N-

acylethanolamines (NAEs).  Anandamide is an endogenous cannabinoid receptor

ligand and has been reported to have neuroprotective property in vivo (Veldhuis et al,

2003).  Therefore the accumulation of NAPE during lactacystin-induced neuronal
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apoptosis might be a neuroprotective response.  The significance of these results will

be discussed subsequently.

5.2 Results

5.2.1 Lipid profile of lactacystin-treated cultured neurons

Lipids were extracted from mouse cultured cortical neurons and analyzed using

negative-ion ESI-MS.  The differences in the lipid profiles between control and

lactacystin-treated cells (1 µM for 24 h) were computed using a chemometric method

in a semi-quantitative fashion (Fig. 5.1).  Among the most pronounced differences are

(i) an increase in levels of ions with m/z 536, 564 and 600, (ii) a drop in levels of ions

with m/z of 597, 714, 732, 760, 786, 965, and 967 and (iii) increased signals in m/z

980, 1004, and 1030. Some of these m/z correspond to small yet readily visible peaks

in the single mass spectrum (e.g. 564, 760), while others, such as 965, 980, 1004, and

1030, are minor ions (Fig 5.1).  Based on tandem mass spectrometry, the following

trends were observed: (i) an increase in m/z which corresponds to ceramides; (ii) a

drop in lysophosphatidylinositol, phosphatidylinositol phosphate (PIP),

phosphatidylethanolamine (PE) and phosphatidylserine (PS) and (iii) up-regulation of

levels of N-acyl phosphatidylethanolamines (NAPEs) (Fig. 5.2).  In order to better

characterize some of the ions which showed differential response, we used tandem

mass spectrometry to show the MSMS of ions at m/z (A) 744, (B) 812 and (C) 976,

which correspond to 34:1 PC or 36:1 PE, 38:3 PS and 54:2 NAPE (Fig. 5.3).  The up-

regulation of ceramide was confirmed by employing the precursor ion scan with the

use of an internal standard (C-19-ceramide).
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Figure 5.1. Differential analysis of lipid profile.  Negative ion mode ESI-MS of
control (A) and lactacystin-treated (B) cultured mouse cortical neuron lipids 24 h
after treatment.  Average spectra of independent experiments (n=4) for each
condition was aligned and the relative difference (Lactacystin/Control) in peak
intensity of negative molecular ions within the scan range of 400–1200 was
computed (C).
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Figure 5.2. Lactacystin-induced changes in lipid profile of neurons and identification
of lipid molecular species as revealed by ESI-MS and ESI-MSMS.  Relative
changes in lipid compositions 24 h after lactacystin exposure.
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Figure 5.3. MSMS of ions at m/z (A) 744, (B) 812 and (C) 976, corresponding to 34:1
PC or 36:1 PE, 38:3 PS and 54:2 NAPE.
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To check whether the changes of lipid profile changes in response to neuronal

apoptosis, ESI-MS was used to analyze lipids extracted from cultured cortical neurons

treated with 1 µM lactacystin for 7.5 h.  Under this condition, neurons have yet to

undergo apoptosis  (Fig. 4.3B).  The lipid profile obtained at this time point (Fig. 5.4)

is different from that of cultures 24 h after lactacystin treatment.  The changes in

lipids from the early time point (7.5 h) are primarily of the ethanolamine/choline-

containing lipids (note: ethanolamine and choline lipids can share the same mass and

a single stage scan MS cannot differentiate the two).  Other phospholipids (eg.

Phosphatidyl-inositol-serine) did not show an observable change (Fig. 5.4).  In

contrast to the lipid profile obtained from apoptotic neurons (24 h time point), there

were no elevations of NAPEs or ceramides at this time point.

5.3 Discussion

5.3.1 Lactacystin induces the accumulation of ceramide during neuronal

apoptosis

The role of ceramide in neuronal cell death is well documented (Ariga et al, 1998;

Goswami and Dawson, 2000; Buccoliero and Futerman, 2002).  Ceramides can be

generated in the cell either from de novo synthesis, by the action of

sphingomyelinases (SMase) or from breakdown of complex glycolipids (Goswami

and Dawson, 2000; Buccoliero and Futerman, 2003).  Experimental manipulations

that increase intracellular ceramide levels, for example, by treatment with bacterial

sphingomyelinase or exposure to synthetic preparations of ceramide, potently induce

apoptosis in mammalian cells (Ariga et al, 1998).  Numerous signaling systems are

associated with ceramide action, including activation of the mitogen-activated protein
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Figure 5.4. Lactacystin-induced changes in the lipid profile of neurons and
identification of lipid molecular species as revealed by ESI-MS and ESI-MSMS.
Relative changes in lipid compositions of mouse cultured cortical neurons 7.5 h
after lactacystin exposure.
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kinase (MAPK) cascade (Sotica et al, 2005) and death-associated protein kinase

(DAPK) cascade (Pelled et al, 2002).  Cutler et al recently reported that the

accumulation of long-chain ceramides and cholesterol in the brain of Alzheimer’s

disease patients suggests the involvement of ceramides in the pathogenesis of

Alzheimer’s disease (Cutler et al, 2004).  In spite of these, the role of ceramides in

neuronal apoptosis induction is still debatable, since some data suggests that the

formation of ceramides might be a post-apoptotic event (Sillence and Allan, 1998)

5.3.2 Lactacystin induces accumulation of NAPE during neuronal apoptosis

NAPE in which the free amino group of phosphatidylethanolamine is acylated by a

further fatty acid is a common constituent of cereal grains (eg. wheat, barley and

oats), and of some other seeds, but it may occur in other plant tissues too, especially

under conditions of physiological stress (Chapman, 2000; Holmback et al, 2001).

NAPE can be found in very small amounts in brain tissue.  NAPE is the precursor of

N-arachidonoylehtanolamine (anandamide) and N-acylethanolamines (NAEs).  In

animal tissues, anandamide and NAEs are principally biosynthesized through the

transacylation-phosphodiesterase pathway, which consists of two enzyme reactions.

The first reaction is the transfer of an acyl group from sn-1 position of

glycerophospholipid to the amino group of phophatidylethanolamine (PE) and this is

catalyzed by calcium-dependent N-acyltransferase.  The resultant NAPE is then

hydrolyzed to become NAE and phosphatidic acid by a phosphodiesterase of the

phospholipase D (PLD)-type, generally abbreviated to NAPE-PLD (Ueda et al, 2005).

The gene of NAPE-PLD has recently been cloned, and over-expression of NAPE-

PLD was able to cause significant decreases in the NAPE level in transfected cells

(Okamoto et al, 2005).



127

Anandamide is an endocannabinoid (or endogenous ligand) of the brain cannabinoid

receptor (Maccarrone and Ainazzi-Agró, 2003).  Anandamide is involved in many

biological processes such as pain relief, regulation of cell growth, differentiation and

even apoptosis (Calignano et al, 1998; Maccarrone and Ainazzi-Agró, 2003).  The

levels of anandamide and its precursor NAPE were markedly increased upon post-

decapitative brain ischemia, experimental stroke and traumatic brain injury (Hansen et

al, 2001; Ueda et al, 2005).  The role of NAPE accumulation in cultured cortical

neurons undergoing neuronal apoptosis is not clear, but recent studies have shown

that anandamide was able to protect neurons against excitotoxicity and ischemic

injury (Shen and Thayer, 1998; Sinor et al, 2000).  Therefore, NAPE accumulation

might indirectly confer neuroprotective effect on cells under cellular insults (Hansen

et al, 2001).

So far, the accumulation of NAPE has been reported only in necrotic cell death

models such as decapitative brain ischemia, experimental stroke and traumatic brain

injury models (Hansen et al, 2001).  In this study, however, the accumulation of

NAPE was observed in an apoptotic cell death model.  The apoptotic nature of the

lactacystin-induced cell death model has been demonstrated in Chapter 3 of this

thesis.  One possible explanation for the accumulation of NAPE species during

lactacystin-induced neuronal apoptosis is the involvement of ER stress in this cell

death pathway.  In the previous chapter, the microarray and Western blot data show

that exposure of lactacystin (1 µM) to cultured cortical neurons can induce the up-

regulation of ER stress-associated genes and proteins.  Since ER is the main calcium

store in cells, ER stress can cause the elevation of cellular calcium levels in affected
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cells (Verkhratsky and Toescu, 2003).  The elevation of cellular calcium could cause

the activation of N-acyltransferase, and this would lead to the accumulation of NAPE

species in neural membranes undergoing apoptosis.

The role of NAPE in neurons during neuronal apoptosis remains to be explored.

Currently, there are only a handful of laboratories working on NAPE-related projects.

With the recent successful cloning of the NAPE-PDL gene from mouse (Okamoto et

al, 2005), a step closer to understanding the role of NAPE in neurons has been taken.
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CHAPTER 6

6 Microarray analysis of gene expression during exposure to (-)-

epigallocatechin-3-gallate on cultured cortical neurons

6.1 Introduction

The leaves of green tea (Camellia sinensis) contain many constituents; among these

are the polyphenolic catechins, which are thought to confer beneficial biological

effects such as neuroprotective, anti-carcinogenic and anti-inflammatory activities.

Fresh tea leaves contain high amounts of polyphenolic catechins, which constitute

30–40% of the solid green tea extract (Wang et al, 1994).  Among the tea catechins, (-

)-epigallocatechin-3-gallate (EGCG) is the major constituent, accounting for more

than 10% of the extract dry weight (Mandel and Youdim, 2004).

Initially, the beneficial biological effects of these polyphenolic catechins were thought

to rely on the antioxidant and/or iron-chelating actions of its polyphenol constituents,

and on modulation of endogenous metabolizing and antioxidant enzymes (reviewed in

Mandel and Youdim, 2004).  However, several recent studies have begun to associate

the biological activity of the polyphenols present in green tea, especially EGCG, with

the inhibition of proteasome activity (Wan et al, 2004; Shay and Banz, 2005).  Like

lactacystin, EGCG is found to specifically inhibit the chymotrypsin-like activity of

the proteasome (Nam et al, 2001; Wan et al, 2004).  The experiments carried out by

Nam et al demonstrated that EGCG, at concentrations typically observed in the serum

of green tea drinkers (1–10 µM), can inhibit proteasome activity and cause growth
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arrest in the G1 phase of the cell cycle in several tumor and transformed cell lines

(Nam et al, 2001).

In addition to its role in reducing the risk of cancers, consumption of EGCG-

containing tea has also been shown to lessen the risk of atherosclerosis and to

improve blood lipid levels (Shay and Banz, 2005).  These clinically observed

improvements were probably due to the inhibitory effect of EGCG on proteasomes.

In this case, the target of proteasomal regulation may be the sterol regulatory element-

binding proteins (SREBPs).  SREBPs are a family of transcription factors that

regulate lipid homeostasis in cells.  Three isoforms of SREBPs have been known to

control the expression of more than 30 genes required for the biosynthesis of

cholesterol, fatty acids, triacylglycerols and phospholipids (Horton, 2002).  Two

SREBP genes encode three different isoforms; the isoform most directly related to

cholesterol regulation is SREBP-2.  Genes regulated by SREBP-2 include that of the

low-density lipoprotein (LDL) receptor, and genes encoding enzymes of the

cholesterol biosynthetic pathway, such as Hmgcr.  Thus, the activation of SREBP-2

can lead to an increase in the transcription and synthesis of receptors that promote the

uptake of cholesterol-containing lipoprotein from the serum into cells.  Concurrently,

intracellular cholesterol synthesis will also be promoted by the up-regulation of genes

encoding the cholesterol biosynthetic enzymes.  Since proteasome inhibition can

stabilize the active SREBP-2 and induce the expression of LDL receptors (Hirano et

al, 2001), the proteasomal inhibitory effect of EGCG might contribute to the

cholesterol lowering (in serum) and heart disease-preventive effects of green tea

(Kuhn et al, 2003).
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In Chapter 4, the differentially expressed genes during lactacystin-induced neuronal

apoptosis were analyzed using microarray GeneChip. In this chapter, microarray

analysis was carried out once again to study the genes that were differentially

expressed after the cultured cortical neurons were exposed to EGCG.  The special

focus for this study was to investigate whether EGCG could induce a gene expression

profile similar to that observed for cultured cortical neurons treated with lactacystin (1

µM).

6.2 Results

6.2.1 EGCG induced apoptosis in primary cortical neurons with caspase-3

activation and proteasome inhibition

The MTT assay results showed decreasing cell viability with increasing EGCG

concentrations, with about 67.46±2.08% and 31.64±1.61% residual cell viability with

treatment with 20 µM and 50 µM EGCG for 24 h respectively; treatment with 1 µM

EGCG for 24 h had little effect on cell viability (Fig. 6.1A).  The caspase activity

measurement using fluorogenic substrates indicated a 491% increase in caspase-3

activity (compared with the control) with treatment with 25 µM EGCG for 24 h.

Treatment with 1 µM EGCG for 24 h, however, did not activate the caspase-3 activity

(Fig. 6.1B).  Other caspases that were found to be activated 24 h after treatment with

25 µM EGCG were caspase-2 (238%), caspase-4 (207%), caspase-6 (184%) and

caspase-10 (248%) (Fig. 6.1B). The proteasomal activity (chymotrypsin-like) assay

reveals that chymotrypsin-like activity in the cell lysate decreased to 60±0.3% after

the cells were exposed to 25 µM EGCG for 24 h.  The decrease of chymotrypsin-like

activity was not detected in cells exposed to 25 µM EGCG for 7.5 h.  Cells exposed to
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Figure 6.1. The effects of EGCG treatment on cell viability and caspase-3 activity
activation of cultured cortical neurons.  (A) The viability of EGCG-treated
primary cortical neurons was quantified using the MTT assay.  Cell injury was
found to be concentration-dependent.  * indicates significant difference
according to ANOVA with post hoc Tukey’s test, p<0.05.  (B) Caspase activity
measurement reveals the activation of caspase-3, as well as other caspases
(caspase-2, caspase-4, caspase-6 and caspase-10) after treatment with 25 µM
EGCG for 24 h.
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Figure 6.2. The effect of EGCG treatment on the chymotrypsin-like proteasome
activity.  Chymotrypsin-like activity of the proteasome was measured at (A) 7.5
h and (B) 24 h after the cultured cortical neurons were exposed to EGCG.  *
indicates significant difference according to ANOVA with post hoc Tukey’s test.
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1 µM EGCG did not show any inhibition of chymotrypsin-like activity at both 7.5 h

and 24 h time points (Fig. 6.2).  Taken together, the results from the chymotrypsin-

like proteasomal activity assay and MTT assay show that exposure to a low dosage of

EGCG (1 µM) did not induce chymotrypsin-like activity inhibition and neuronal cell

death, but exposure to a high dosage of EGCG (25 µM) induced chymotrypsin-like

activity inhibition and neuronal apoptosis.

6.2.2 Microarray analysis

Two EGCG treatment conditions were chosen for the microarray analysis: a low

concentration (1 µM EGCG) that does not induce chymotrypsin-like proteasomal

activity inhibition and neuronal apoptosis, and a high concentration (25 µM EGCG)

that inhibits the chymotrypsin-like activity and induces neuronal apoptosis.  Out of

the 12,488 genes and ESTs from the Murine Genome U74Av2 GeneChip®, 387 were

differentially expressed based on the criteria of genes showing a change of two-fold

or more with a p-value of <0.01. These genes were identified and sorted according to

their biological functions (Table 6.1–6.9).

6.2.3 Effect of EGCG on the protein expression of CHOP, Atf3 and the cleavage

of p35

Western blot analysis shows that EGCG at high concentrations induced the expression

of Atf3, but not CHOP, in the cultured cortical neurons (Fig. 6.3).  This result is

consistent with the microarray data (Table 6.1).  There was no cleavage of p35 to p25

when the cultured cortical neurons were exposed to EGCG (25 µM), suggesting the

absence of calpain activation during EGCG-induced neuronal apoptosis.
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Table 6.1.  Differentially expressed genes after EGCG treatment: Ubiquitin-
proteasome system; heat shock proteins and molecular chaperones; response to
stress; apoptosis.  Gene expression is indicated as fold change ± Standard Error.
Only genes differentially expressed >2-fold and significantly expressed
according to one-way ANOVA, p<0.01 are included in the list.

EGCG (µM)Probe id Symbol Gene Title
1 25

Genbank

Ubiquitin-proteasome system
96892_at Psma1 proteasome subunit, alpha type 1 1.81 ± 0.41 2.08 ± 0.35 AI836804
92544_f_at Psma3 proteasome subunit, alpha type 3 2.15 ± 0.41 2.14 ± 0.35 AF055983
93988_at Psma7 proteasome subunit, alpha type 7 1.97 ± 0.41 2.05 ± 0.35 AI836676
103319_at Psmd10 proteasome 26S subunit, non-ATPase,

10
1.80 ± 0.41 2.41 ± 0.35 AB022022

160305_at Psmd11 proteasome 26S subunit, non-ATPase,
11

2.14 ± 0.41 2.53 ± 0.35 AW121693

94302_at Psmd4 proteasome 26S subunit, non-ATPase,
4

1.94 ± 0.41 2.07 ± 0.35 AF013099

98522_at Psmd8 proteasome 26S subunit, non-ATPase,
8

1.92 ± 0.41 2.04 ± 0.35 AI839158

95124_I_at Rbx1 ring-box 1 2.36 ± 0.41 3.41 ± 0.35 AW122337
160205_f_at Rnf11 ring finger protein 11 2.07 ± 0.41 2.30 ± 0.35 AB024427
161814_f_at Rnf19 ring finger protein (C3HC4 type) 19 3.08 ± 0.41 2.63 ± 0.35 AV355427
101966_s_at Rnf13 ring finger protein 13 2.14 ± 0.41 2.16 ± 0.36 AF037206
101255_at Ubb ubiquitin B 3.00 ± 0.41 3.26 ± 0.35 X51703
95215_f_at Ubc ubiquitin C 2.71 ± 0.41 2.95 ± 0.35 D50527
93069_at Ube2d2 ubiquitin-conjugating enzyme E2D 2 2.04 ± 0.41 2.35 ± 0.35 U62483
101581_at Ube3a ubiquitin protein ligase E3A 3.15 ± 0.41 4.13 ± 0.78 U82122
94018_at Ubl3 ubiquitin-like 3 1.61 ± 0.41 2.07 ± 0.35 AW120725
93303_at Ufd1l ubiquitin fusion degradation 1 like 1.67 ± 0.41 2.05 ± 0.35 U64445
Heat shock proteins and molecular chaperones
93743_at Hsbp1 heat shock factor binding protein 1 2.20 ± 0.41 2.34 ± 0.35 AI838388
95699_f_at 2010009J04Rik DnaJ (Hsp40) homolog, subfamily C,

member 8
1.88 ± 0.41 2.08 ± 0.35 AI848094

97870_s_at Ero1l ERO1-like (S. cerevisiae) -2.40 ± 0.41 -1.93± 0.35 AA798624
101207_at Ppia peptidylprolyl isomerase A 2.51 ± 0.41 2.59 ± 0.35 X52803
Response to stress
95092_at Ppp3ca protein phosphatase 3, catalytic

subunit, alpha isoform
2.05 ± 0.41 1.98 ± 0.35 J05479

100606_at Prnp prion protein 2.05 ± 0.41 2.27 ± 0.35 M18070
96773_at Txndc4 thioredoxin domain containing 4

(endoplasmic reticulum)
1.97 ± 0.41 2.62 ± 0.35 AW125408

Apoptosis
102727_at Bdnf brain derived neurotrophic factor 1.46 ± 0.41 2.59 ± 0.35 X55573
160696_at Tia1 cytotoxic granule-associated RNA

binding protein 1
2.20 ± 0.42 2.07 ± 0.35 U00689

102599_at Tpt1 tumor protein, translationally-
controlled 1

2.08 ± 0.41 2.15 ± 0.35 X06407
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Table 6.2.  Differentially expressed genes after EGCG treatment (continued):
Transcription. Gene expression is indicated as fold change ± Standard Error.
Only genes differentially expressed >2-fold and significantly expressed
according to one-way ANOVA, p<0.01 are included in the list.

EGCG (µM)Probe id Symbol Gene Title

1 25

Genbank

Transcription

104155_f_at Atf3 activating transcription factor 3 -2.58 ± 0.41 1.64 ± 0.36 U19118

95674_r_at Basp1 brain abundant, membrane attached signal
protein 1

3.16 ± 0.41 3.52 ± 0.35 AI851985

94490_at Cnot8 CCR4-NOT transcription complex, subunit 8 1.63 ± 0.41 2.04 ± 0.35 AW122419

95460_at Cops5 COP9 (constitutive photomorphogenic)
homolog, subunit 5 (Arabidopsis thaliana)

2.46 ± 0.41 2.49 ± 0.35 U70736

160502_at Creg cellular repressor of E1A-stimulated genes 2.16 ± 0.42 2.80 ± 0.36 AF084524

97550_at Hdac7a histone deacetylase 7A -2.20 ± 0.41 -1.99 ± 0.35 AW047228

161051_at Hes5 hairy and enhancer of split 5 (Drosophila) -1.12 ± 0.41 -2.34 ± 0.35 D32132

99024_at Mad4 Max dimerization protein 4 2.15 ± 0.41 2.13 ± 0.35 U32395

104590_at Mef2c myocyte enhancer factor 2C 2.55 ± 0.41 2.30 ± 0.35 L13171

160138_at Mxi1 Max interacting protein 1 1.50 ± 0.41 2.16 ± 0.35 L38822

96497_s_at Myt1l myelin transcription factor 1-like 1.91 ± 0.41 2.78 ± 0.35 AI848062

92893_at Nfia nuclear factor I/A 2.09 ± 0.41 2.28 ± 0.35 D90173

93740_at Nsep1 nuclease sensitive element binding protein 1 3.48 ± 0.41 3.64 ± 0.35 U33196

99015_at Pml promyelocytic leukemia -2.24 ± 0.41 -2.07 ± 0.35 U33626

160146_r_at Polr2c polymerase (RNA) II (DNA directed)
polypeptide C

2.82 ± 0.41 2.65 ± 0.35 D83999

93325_at Polr2e polymerase (RNA) II (DNA directed)
polypeptide E

1.96 ± 0.41 2.09 ± 0.35 AI845735

95003_at Polr2k polymerase (RNA) II (DNA directed)
polypeptide K

6.43 ± 0.41 8.08 ± 0.35 AA880275

98085_f_at Rpo1-1 RNA polymerase 1-1 2.82 ± 0.41 3.01 ± 0.35 U11248

99665_at Satb1 special AT-rich sequence binding protein 1 2.12 ± 0.41 2.48 ± 0.35 U05252

160869_at Sirt3 sirtuin 3 (silent mating type information
regulation 2, homolog) 3 (S. cerevisiae)

2.21 ± 0.41 2.08 ± 0.35 AI849490

104158_at Skiip SKI interacting protein 4.23 ± 0.60 5.94 ± 0.35 AW046671

101684_r_at Srst simple repeat sequence-containing transcript 2.78 ± 0.41 3.86 ± 0.35 X67863

103504_at Ssbp2 single-stranded DNA binding protein 2 2.21 ± 0.41 2.40 ± 0.35 AI837107

93918_at Taf9 TAF9 RNA polymerase II, TATA box
binding protein (TBP)-associated factor

2.69 ± 0.41 2.78 ± 0.36 AA673500

94008_at Tceb1 transcription elongation factor B (SIII),
polypeptide 1

2.04 ± 0.41 1.95 ± 0.35 AW045358

100947_at Tcf20 transcription factor 20 3.38 ± 0.41 3.59 ± 0.35 AI847906

99603_g_at Tieg1 TGFB inducible early growth response 1 2.08 ± 0.41 2.20 ± 0.35 AF064088

92444_f_at Zfp1 zinc finger protein 1 1.94 ± 0.41 2.13 ± 0.35 X16493

94937_at Zfp277 zinc finger protein 277 2.14 ± 0.41 2.89 ± 0.36 AW121594
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Table 6.3.  Differentially expressed genes after EGCG treatment (continued): Protein
biosynthesis; protein modification. Gene expression is indicated as fold change ±
Standard Error.  Only genes differentially expressed >2-fold and significantly
expressed according to one-way ANOVA, p<0.01 are included in the list.

EGCG (µM)Probe id Symbol Gene Title
1 25

Genbank

Protein biosynthesis
101213_at Arbp acidic ribosomal phosphoprotein P0 2.56 ± 0.41 2.60 ± 0.35 X15267
94766_at Eef1a1 eukaryotic translation elongation

factor 1 alpha 1
2.46 ± 0.41 2.60 ± 0.35 M17878

98141_at Eif5b eukaryotic translation initiation
factor 5B

2.27 ± 0.41 3.00 ± 0.36 AA647048

98120_at Mrpl27 mitochondrial ribosomal protein L27 1.86 ± 0.41 2.11 ± 0.35 AI844807
93859_at Mtif2 mitochondrial translational initiation

factor 2
2.39 ± 0.41 2.59 ± 0.35 AI875598

100720_at Pabpc1 poly A binding protein, cytoplasmic
1

2.29 ± 0.41 2.04 ± 0.35 X65553

99975_at Prkrir protein-kinase, interferon-inducible
double stranded RNA dependent
inhibitor, repressor of (P58
repressor)

2.15 ± 0.41 2.25 ± 0.35 AA879937

96693_at Rars arginyl-tRNA synthetase 2.47 ± 0.41 2.41 ± 0.35 AI849453
94767_at Rnu35b /// Rps11 RNA, U35b small nucleolar ///

ribosomal protein S11
2.55 ± 0.41 2.69 ± 0.35 U93864

96290_f_at Rpl21 ribosomal protein L21 2.20 ± 0.41 2.23 ± 0.35 U93863
100729_at Rpl26 ribosomal protein L26 2.43 ± 0.41 2.69 ± 0.35 X80699
100734_at Rpl3 ribosomal protein L3 2.34 ± 0.41 2.25 ± 0.35 Y00225
92577_f_at Rpl37 ribosomal protein L37 2.07 ± 0.41 2.26 ± 0.35 AW047116
101129_at Rpl5 ribosomal protein L5 1.86 ± 0.41 2.00 ± 0.35 X83590
97695_s_at Rpl7 ribosomal protein L7 2.02 ± 0.41 2.05 ± 0.35 M29015
100694_at Rplp1 ribosomal protein, large, P1 2.04 ± 0.41 2.05 ± 0.35 U29402
99590_at Rps17 ribosomal protein S17 2.13 ± 0.41 2.29 ± 0.35 D25213
100686_at Rps2 ribosomal protein S2 2.21 ± 0.41 2.10 ± 0.35 M20632
96300_f_at Rps27 ribosomal protein S27 2.15 ± 0.41 2.49 ± 0.35 AI854238
101664_at Rps3a ribosomal protein S3a 2.48 ± 0.41 2.58 ± 0.35 Z83368
101212_at Rps7 ribosomal protein S7 2.58 ± 0.41 2.57 ± 0.35 AF043285
Protein modification

93460_at Acvr1 activin A receptor, type 1 2.08 ± 0.42 2.20 ± 0.36 L15436
101936_at Clk4 CDC like kinase 4 -2.29± 0.41 -2.33 ± 0.35 AF033566
161171_at Dusp8 dual specificity phosphatase 8 1.52 ± 0.41 2.40 ± 0.35 AV226788
95298_at Epha3 Eph receptor A3 2.26 ± 0.41 1.51 ± 0.36 M68513
161119_at Epha5 Eph receptor A5 1.52 ± 0.41 2.07 ± 0.35 AI854630
92906_at Epha7 Eph receptor A7 2.65 ± 0.41 2.56 ± 0.35 X79083
98446_s_at Ephb4 Eph receptor B4 2.00 ± 0.41 1.99 ± 0.35 U06834
99511_at Prkcb protein kinase C, beta 2.07 ± 0.41 2.04 ± 0.35 X53532
97890_at Sgk serum/glucocorticoid regulated

kinase
1.91 ± 0.41 2.16 ± 0.35 AW046181
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Table 6.4.  Differentially expressed genes after EGCG treatment (continued): Lipid
and cholesterol biosynthesis; grwoth and development; electron transport; metal
ion homeostasis. Gene expression is indicated as fold change ± Standard Error.
Only genes differentially expressed >2-fold and significantly expressed
according to one-way ANOVA, p<0.01 are included in the list.

EGCG (µM)Probe id Symbol Gene Title
1 25

Genbank

Lipid and cholesterol biosynthesis
94177_at Hsd17b7 hydroxysteroid (17-beta)

dehydrogenase 7
-1.47 ± 0.41 -2.43 ± 0.35 Y15733

95611_at Lpl lipoprotein lipase 1.62 ± 0.41 2.51 ± 0.35 AA726364
96909_at Ndufab1 NADH dehydrogenase (ubiquinone) 1,

alpha/beta subcomplex, 1
1.90 ± 0.41 2.21 ± 0.35 AI849803

98631_g_at Nsdhl NAD(P) dependent steroid
dehydrogenase-like

2.31 ± 0.41 1.59 ± 0.35 AW106745

98630_at Nsdhl NAD(P) dependent steroid
dehydrogenase-like

2.99 ± 0.41 1.85 ± 0.35 AW106745

94057_g_at Scd1 stearoyl-Coenzyme A desaturase 1 1.01 ± 0.41 -3.66 ± 0.35 M21285
103569_at Sh3glb1 SH3-domain GRB2-like B1

(endophilin)
2.70 ± 0.41 2.63 ± 0.35 AI842874

96534_at Vldlr very low density lipoprotein receptor 1.75 ± 0.42 2.58 ± 0.36 AA408956
Growth and development

101475_at Bmi1 B lymphoma Mo-MLV insertion region
1

3.35 ± 0.48 3.12 ± 0.35 M64068

160430_at Catnb catenin beta 1.86 ± 0.41 2.04 ± 0.35 M90364
100022_at Cish cytokine inducible SH2-containing

protein
2.51 ± 0.41 3.05 ± 0.35 D89613

104386_f_at Itgav integrin alpha V -1.63 ± 0.41 -2.05 ± 0.35 AI843901
93682_at Ldb2 LIM domain binding 2 2.78 ± 0.41 2.70 ± 0.35 U89489
103549_at Nes nestin -2.54 ± 0.41 -2.74 ± 0.35 AW061260
160668_at Ogfr opioid growth factor receptor 1.88 ± 0.41 2.10 ± 0.35 AI838195
95387_f_at Sema4b sema domain, immunoglobulin domain

(Ig), transmembrane domain (TM) and
short cytoplasmic domain, (semaphorin)
4B

7.13 ± 0.41 6.28 ± 0.40 AA266467

Electron transport
102124_f_at Cox4i1 cytochrome c oxidase subunit IV

isoform 1
2.04 ± 0.41 2.06 ± 0.35 AI836879

100550_f_at Cox6c cytochrome c oxidase, subunit VIc 2.65 ± 0.41 2.73 ± 0.35 AW060422
101580_at Cox7b cytochrome c oxidase subunit VIIb 3.83 ± 0.41 3.93 ± 0.35 AI851220
95072_at Cyc1 cytochrome c-1 2.58 ± 0.41 2.41 ± 0.35 AW121892
96112_at Etfa electron transferring flavoprotein, alpha

polypeptide
2.11 ± 0.41 1.77 ± 0.35 AI851178

160194_at Gcdh glutaryl-Coenzyme A dehydrogenase -2.28 ± 0.41 -2.28 ± 0.35 U18992
94208_at Txndc7 thioredoxin domain containing 7 3.07 ± 0.41 2.45 ± 0.35 AW045202
160115_at Txnl1 thioredoxin-like 1 2.40 ± 0.41 2.79 ± 0.35 AF052660
102000_f_at Uqcrc2 ubiquinol cytochrome c reductase core

protein 2
2.93 ± 0.41 3.31 ± 0.35 AI842835

Metal ion homeostasis
101561_at Mt2 metallothionein 2 -1.72 ± 0.41 -4.53 ± 0.35 K02236
95340_at Mt3 metallothionein 3 -2.71 ± 0.41 -5.56 ± 0.35 M93310
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Table 6.5.  Differentially expressed genes after EGCG treatment (continued):
Transmission of nerve impulse; transport. Gene expression is indicated as fold
change ± Standard Error.  Only genes differentially expressed >2-fold and
significantly expressed according to one-way ANOVA, p<0.01 are included in
the list.

EGCG (µM)Probe id Symbol Gene Title

1 25

Genbank

Transmission of nerve impulse

92946_f_at Gria2 glutamate receptor, ionotropic, AMPA2 (alpha
2)

2.00 ± 0.41 2.40 ± 0.35 L32372

92392_at Kcna3 potassium voltage-gated channel, shaker-
related subfamily, member 3

2.45 ± 0.42 2.40 ± 0.36 AI850484

98339_at Syt11 synaptotagmin 11 3.17 ± 0.41 3.29 ± 0.35 AB026808

160190_at Syt4 synaptotagmin 4 2.87 ± 0.41 3.63 ± 0.35 U10355

Transport

100032_at Aaas achalasia, adrenocortical insufficiency,
alacrimia

2.03 ± 0.41 2.17 ± 0.35 X60136

101016_at Arf1 ADP-ribosylation factor 1 2.34 ± 0.41 2.51 ± 0.35 D87898

102854_s_at Atp7a ATPase, Cu++ transporting, alpha polypeptide 2.09 ± 0.42 3.40 ± 0.36 U03434

94465_g_at Clcn3 chloride channel 3 2.10 ± 0.41 2.70 ± 0.35 AF029347

103642_at G3bp Ras-GTPase-activating protein SH3-domain
binding protein

-1.69 ± 0.41 -2.12 ± 0.35 AB001927

92749_at Gabrb1 gamma-aminobutyric acid (GABA-A) receptor,
subunit beta 1

2.42 ± 0.41 2.48 ± 0.35 U14418

161796_r_at Kcnq1 potassium voltage-gated channel, subfamily Q,
member 1

-2.72 ± 0.41 -2.94 ± 0.35 AV367240

101370_at Kpna1 karyopherin (importin) alpha 1 1.83 ± 0.41 2.02 ± 0.35 U20619

92952_f_at Napb N-ethylmaleimide sensitive fusion protein
attachment protein beta

3.26 ± 0.41 4.24 ± 0.35 X61455

102342_at Nsf N-ethylmaleimide sensitive fusion protein 2.14 ± 0.41 1.76 ± 0.35 U10120

101933_at Rab10 RAB10, member RAS oncogene family 2.31 ± 0.41 2.49 ± 0.35 AF035646

160868_at Rab3b RAB3B, member RAS oncogene family 2.30 ± 0.41 2.57 ± 0.35 AI835990

98927_at Rab6 RAB6, member RAS oncogene family 1.96 ± 0.41 2.53 ± 0.35 AI851048

104709_at Sec23a SEC23A (S. cerevisiae) 1.75 ± 0.41 2.00 ± 0.35 AI843665

93466_at Sec8l1 SEC8-like 1 (S. cerevisiae) 2.93 ± 0.41 3.36 ± 0.35 AF022962

92831_at Sfxn1 sideroflexin 1 2.22 ± 0.41 2.62 ± 0.35 AI846308

103918_at Slc15a2 solute carrier family 15 (H+/peptide
transporter), member 2

-1.01 ± 0.41 -8.64 ± 0.35 AI846682

93084_at Slc25a4 solute carrier family 25 (mitochondrial carrier,
adenine nucleotide translocator), member 4

2.32 ± 0.41 2.41 ± 0.35 U27315

104651_at Snx14 sorting nexin 14 2.06 ± 0.41 2.38 ± 0.35 AI839611

97477_at Timm8b translocase of inner mitochondrial membrane 8
homolog b (yeast)

2.02 ± 0.41 2.06 ± 0.35 AW124594

93215_at Tnfaip1 tumor necrosis factor, alpha-induced protein 1
(endothelial)

1.96 ± 0.41 2.04 ± 0.35 AF061346

101420_at Viaat vesicular inhibitory amino acid transporter -4.35 ± 0.41 -3.73 ± 0.35 AJ001598

97876_at Vps29 vacuolar protein sorting 29 (S. pombe) 2.34 ± 0.41 2.44 ± 0.35 AI842008



140

Table 6.6.  Differentially expressed genes after EGCG treatment (continued):
Cytoskeleton; cell cycle; proteolysis; calcium homeostasis and binding. Gene
expression is indicated as fold change ± Standard Error.  Only genes
differentially expressed >2-fold and significantly expressed according to one-
way ANOVA, p<0.01 are included in the list.

EGCG (µM)Probe id Symbol Gene Title

1 25

Genbank

Cytoskeleton

95705_s_at Actb actin, beta, cytoplasmic -10.86± 0.41 -10.31 ± 0.35 J04181

96573_at Actg actin, gamma, cytoplasmic 2.65± 0.41 2.50 ± 0.35 M21495

93288_at Arpc2 actin related protein 2/3 complex,
subunit 2

2.30± 0.41 2.48 ± 0.35 AI835883

94863_r_at Dncl2a dynein, cytoplasmic, light chain 2A 2.47± 0.41 2.89 ± 0.35 AI850000

93674_at Fgd1 FYVE, RhoGEF and PH domain
containing 1

1.14± 0.41 2.29 ± 0.35 U22325

100398_at Kif3a kinesin family member 3A 2.14± 0.41 2.02 ± 0.35 D12645

94321_at Krt1-10 keratin complex 1, acidic, gene 10 1.92± 0.41 2.16 ± 0.35 V00830

102742_g_at Mapt microtubule-associated protein tau 3.15± 0.41 3.49 ± 0.35 M18775

97909_at Stmn1 stathmin 1 2.15± 0.41 2.26 ± 0.35 AI838080

96426_at Tmsb4x thymosin, beta 4, X chromosome 2.05± 0.41 2.13 ± 0.35 U38967

100342_i_at Tuba1 tubulin, alpha 1 2.87± 0.41 2.94 ± 0.35 M28729

98759_f_at Tuba2 tubulin, alpha 2 2.47± 0.41 2.39 ± 0.35 M28727

101543_f_at Tuba6 tubulin, alpha 6 2.87± 0.41 2.75 ± 0.35 M13441

94835_f_at Tubb2 tubulin, beta 2 2.23± 0.41 2.22 ± 0.35 M28739

94789_r_at Tubb5 tubulin, beta 5 2.11± 0.41 2.02 ± 0.35 X04663

Cell cycle

98478_at Ccng2 cyclin G2 1.61± 0.41 2.18 ± 0.35 U95826

96236_at Cdc16 CDC16 cell division cycle 16
homolog (S. cerevisiae)

2.27± 0.41 2.87 ± 0.35 AW122965

160901_at Fos FBJ osteosarcoma oncogene -1.18 ± 0.41 3.05 ± 0.46 V00727

100130_at Jun Jun oncogene 2.28± 0.41 5.48 ± 0.35 X12761

92502_at Plagl1 pleiomorphic adenoma gene-like 1 -2.20 ± 0.41 -2.87 ± 0.35 X95504

97506_at Rnf2 ring finger protein 2 2.38± 0.41 2.36 ± 0.35 AI043016

98905_at Sept7 septin 7 2.35± 0.41 2.39 ± 0.35 AJ223782

Proteolysis

101040_at Capn2 calpain 2 2.30± 0.41 2.70 ± 0.35 D38117

99642_i_at Cpe carboxypeptidase E 1.91± 0.41 2.08 ± 0.35 X61232

92256_at Ctsb cathepsin B 2.51± 0.43 2.15 ± 0.37 AI853714

101763_at Gpr50 G-protein-coupled receptor 50 -1.84 ± 0.41 -2.53 ± 0.35 AF065145

102296_at Pcsk2 proprotein convertase
subtilisin/kexin type 2

1.70± 0.41 2.31 ± 0.35 M55669

96730_at Tpp2 tripeptidyl peptidase II 2.34± 0.41 2.03 ± 0.36 X81323

Calcium homeostasis and binding

93293_at Calm2 calmodulin 2 2.07± 0.41 2.06 ± 0.35 M27844

102632_at Calmbp1 calmodulin binding protein 1 1.64± 0.43 -2.60 ± 0.36 AF062378

104529_at Caml calcium modulating ligand 1.88± 0.41 2.06 ± 0.35 U21960

102197_at Nucb2 nucleobindin 2 2.35± 0.41 2.09 ± 0.35 AJ222586

162428_i_at S100a14 S100 calcium binding protein A14 -2.87 ± 0.41 -2.95 ± 0.35 AV293396
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Table 6.7.  Differentially expressed genes after EGCG treatment (continued): Cell
signaling; cell adhesion; carbohydrate metabolism. Gene expression is indicated
as fold change ± Standard Error.  Only genes differentially expressed >2-fold
and significantly expressed according to one-way ANOVA, p<0.01 are included
in the list.

Probe id Symbol EGCG (µM)Gene Title
1 25

Genbank

Cell signaling
104135_at Arl3 ADP-ribosylation factor-like 3 1.94 ± 0.41 2.10 ± 0.35 AW045474
103611_at Cd47 CD47 antigen (Rh-related antigen,

integrin-associated signal transducer)
1.96 ± 0.41 2.66 ± 0.35 AB012693

98535_at Comt catechol-O-methyltransferase 2.16 ± 0.41 2.81 ± 0.35 AF076156
97740_at Dusp16 dual specificity phosphatase 16 1.13 ± 0.42 2.25 ± 0.36 AI642662
93667_at Fbxw7 F-box and WD-40 domain protein 7,

archipelago homolog (Drosophila)
2.16 ± 0.41 2.33 ± 0.35 AW120511

93271_s_at Gnas GNAS (guanine nucleotide binding
protein, alpha stimulating) complex
locus

2.15 ± 0.41 2.52 ± 0.35 AF107848

99175_at Gng10 guanine nucleotide binding protein (G
protein), gamma 10

2.12 ± 0.41 2.45 ± 0.35 AI843396

97004_at Olfr71 olfactory receptor 71 -1.71 ± 0.41 -2.24± 0.35 AJ133429
102759_at Pik3r2 phosphatidylinositol 3-kinase,

regulatory subunit, polypeptide 2 (p85
beta)

1.82 ± 0.41 2.13 ± 0.35 Y13569

93962_at Rap1a RAS-related protein-1a 2.49 ± 0.41 2.26 ± 0.35 AI848598
160747_at Rgs3 regulator of G-protein signaling 3 -1.71 ± 0.41 -2.14± 0.35 AI844739
162468_at Rhoc ras homolog gene family, member C -1.91 ± 0.41 -2.19± 0.35 AV064502
100213_f_at Rpl41 ribosomal protein L41 2.49 ± 0.41 2.61 ± 0.35 U93862
98564_f_at Rps26 ribosomal protein S26 2.38 ± 0.41 2.60 ± 0.35 U67770
97243_at Slc9a3r1 solute carrier family 9

(sodium/hydrogen exchanger),
isoform 3 regulator 1

-1.85 ± 0.41 -3.51± 0.35 U74079

95669_g_at Stmn2 stathmin-like 2 2.20 ± 0.41 2.23 ± 0.35 AI840972
160551_at Vdac3 voltage-dependent anion channel 3 1.92 ± 0.41 2.06 ± 0.35 U30839
Cell adhesion
104407_at Alcam activated leukocyte cell adhesion

molecule
2.11 ± 0.41 2.51 ± 0.35 L25274

95661_at Cd9 CD9 antigen 2.21 ± 0.41 1.34 ± 0.35 L08115
104743_at Cdh13 cadherin 13 2.49 ± 0.42 2.40 ± 0.35 AB022100
92936_at Cntn1 contactin 1 2.16 ± 0.41 2.67 ± 0.35 X14943
93606_s_at Igsf4a immunoglobulin superfamily, member

4A
2.24 ± 0.41 1.86 ± 0.35 AB021966

160610_at Pcdha4 protocadherin alpha 4 1.71 ± 0.41 2.08 ± 0.35 D86916
92558_at Vcam1 vascular cell adhesion molecule 1 1.32 ± 0.41 -2.29± 0.35 M84487
Carbohydrate metabolism
161889_f_at Aldo1 aldolase 1, A isoform -2.76 ± 0.41 -2.07± 0.35 AV102160
160546_at Aldo3 aldolase 3, C isoform 1.56 ± 0.41 -2.31± 0.35 AW121134
98984_f_at Gpd2 glycerol phosphate dehydrogenase 2,

mitochondrial
4.28 ± 0.41 5.49 ± 0.35 D50430

100573_f_at Gpi1 glucose phosphate isomerase 1 1.71 ± 0.41 2.02 ± 0.35 M14220
162262_f_at Gyg1 glycogenin 1 2.09 ± 0.41 2.15 ± 0.35 AV357306
104148_at H6pd hexose-6-phosphate dehydrogenase

(glucose 1-dehydrogenase)
-2.50 ± 0.41 -2.40± 0.35 AA939571

99335_at Hk1 hexokinase 1 2.10 ± 0.41 1.92 ± 0.35 J05277
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Table 6.8.  Differentially expressed genes after EGCG treatment (continued):
Nucleobase, nucleoside, nucleotide and nucleic acid metabolism; other
biological processes. Gene expression is indicated as fold change ± Standard
Error.  Only genes differentially expressed >2-fold and significantly expressed
according to one-way ANOVA, p<0.01 are included in the list.

EGCG (µM)Probe id Symbol Gene Title
1 25

Genbank

Nucleobase, nucleoside, nucleotide and nucleic acid metabolism
93833_s_at Hist1h2bc histone 1, H2bc 2.55 ± 0.41 2.89 ± 0.35 X05862
160107_at Hprt hypoxanthine guanine phosphoribosyl

transferase
1.86 ± 0.41 2.15 ± 0.35 K01515

102819_at Nap1l2 nucleosome assembly protein 1-like 2 1.72 ± 0.41 2.18 ± 0.35 X92352
93831_at Nono non-POU-domain-containing, octamer

binding protein
2.21 ± 0.41 2.21 ± 0.35 AI316087

97254_at Rbm8 RNA binding motif protein 8 2.25 ± 0.41 2.16 ± 0.35 AA690061
160192_at Rbmxrt RNA binding motif protein, X chromosome

retrogene
2.31 ± 0.41 2.38 ± 0.35 AF031568

103457_at Rev3l REV3-like, catalytic subunit of DNA
polymerase zeta RAD54 like (S. cerevisiae)

2.23 ± 0.41 2.67 ± 0.35 AF083464

92196_f_at Sf3a2 splicing factor 3a, subunit 2 -3.00± 0.41 -2.95 ± 0.35 X83733
97808_at Sf3b1 splicing factor 3b, subunit 1 2.17 ± 0.41 2.59 ± 0.35 AI844532
102062_at Smarcc1 SWI/SNF related, matrix associated, actin

dependent regulator of chromatin, subfamily
c, member 1

2.07 ± 0.41 2.83 ± 0.35 U85614

95049_at Snrpd2 small nuclear ribonucleoprotein D2 3.25 ± 0.41 3.39 ± 0.35 AI837853
97486_at U2af1 U2 small nuclear ribonucleoprotein

auxiliary factor (U2AF) 1
-1.74± 0.41 -2.11 ± 0.35 AA693246

Other biological processes
95745_g_at Atp6v1a1 ATPase, H+ transporting, V1 subunit A,

isoform 1
2.12 ± 0.41 2.79 ± 0.35 U13837

98066_r_at Brd2 bromodomain containing 2 2.20 ± 0.41 2.20 ± 0.35 AL009226
92642_at Car2 carbonic anhydrase 2 2.09 ± 0.42 -1.49 ± 0.35 M25944
103088_at Chl1 cell adhesion molecule with homology to

L1CAM
4.04 ± 0.41 5.22 ± 0.35 X94310

93582_at Coq7 demethyl-Q 7 1.83 ± 0.41 2.11 ± 0.35 AF080580
96298_f_at Dnclc1 dynein, cytoplasmic, light chain 1 2.29 ± 0.41 2.14 ± 0.35 AF020185
161682_f_atGpaa1 GPI anchor attachment protein 1 -2.82± 0.41 -3.04 ± 0.35 AV161234
161492_I_atMgat1 mannoside acetylglucosaminyltransferase 1 -3.37± 0.41 -2.32 ± 0.35 AV089873
96082_at Mrpl30 mitochondrial ribosomal protein L30 2.83 ± 0.41 2.67 ± 0.35 AI850644
162168_r_atPhgdh 3-phosphoglycerate dehydrogenase -2.33± 0.43 1.79 ± 0.37 AV361953
101061_at Ssr2 signal sequence receptor, beta 1.99 ± 0.41 2.04 ± 0.35 AI845293
162104_f_atTapbp TAP binding protein -2.88± 0.41 -2.10 ± 0.35 AV361189
93333_at Tbca tubulin cofactor a 1.83 ± 0.41 2.04 ± 0.35 U05333
160533_r_atTnp1 transition protein 1 2.51 ± 0.41 2.34 ± 0.35 X12521
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Table 6.9.  Differentially expressed genes after EGCG treatment (continued):
Unknown biological processes. Gene expression is indicated as fold change ±
Standard Error.  Only genes differentially expressed >2-fold and significantly
expressed according to one-way ANOVA, p<0.01 are included in the list.

EGCG (µM)Probe id Symbol Gene Title
1 25

Genbank

Unknown biological processes
102094_f_at --- --- -1.77 ± 0.41 -2.76 ± 0.35 AI841270
101685_f_at --- --- -1.84 ± 0.41 -2.56 ± 0.35 AI463421
92778_i_at --- --- -1.97 ± 0.41 -2.12 ± 0.35 Z22552
162311_f_at --- --- -2.13 ± 0.41 -2.03 ± 0.35 AV050648
161615_f_at --- --- -2.36 ± 0.41 -1.87 ± 0.35 AV352346
103710_at --- Transcribed sequence with weak

similarity to protein
ref:NP_115973.1 (H.sapiens) zinc
finger protein 347; zinc finger 1111
[Homo sapiens]

1.73 ± 0.41 2.14 ± 0.35 AI037032

96526_at --- 9 days embryo whole body cDNA,
RIKEN full-length enriched library,
clone:D030029J20 product:unknown
EST, full insert sequence

1.43 ± 0.41 2.16 ± 0.35 AW228840

95685_at --- Adult male testis cDNA, RIKEN
full-length enriched library,
clone:1700092M07
product:unknown EST, full insert
sequence

2.48 ± 0.41 2.28 ± 0.35 AI849678

101179_at --- --- 2.97 ± 0.41 2.35 ± 0.35 D50494
161083_at --- Transcribed sequence with strong

similarity to protein
ref:NP_057365.1 (H.sapiens)
STE20-like kinase; STE2-like kinase
[Homo sapiens]

1.94 ± 0.41 2.43 ± 0.35 AW121616

160740_at --- Hypothetical LOC228715
(LOC228715), mRNA

1.92 ± 0.42 2.55 ± 0.36 AA615984

98129_at --- M.musculus mRNA for testis-
specific thymosin beta-10

2.45 ± 0.41 2.62 ± 0.35 AI852553

100379_f_at --- --- 1.97 ± 0.41 3.16 ± 0.35 AI837905
96316_at --- Transcribed sequences 2.52 ± 0.43 3.43 ± 0.37 AI839289
95714_at 0610009D07Rik RIKEN cDNA 0610009D07 gene 2.21 ± 0.41 2.43 ± 0.35 AI226264
99143_at 0610039N19Rik RIKEN cDNA 0610039N19 gene 1.72 ± 0.41 2.08 ± 0.35 AA614914
95458_s_at 1110001C20Rik RIKEN cDNA 1110001C20 gene 1.66 ± 0.41 2.38 ± 0.35 AW121960
93805_at 1110003H09Rik RIKEN cDNA 1110003H09 gene 2.08 ± 0.41 1.93 ± 0.35 AW121164
98037_at 1110003H18Rik RIKEN cDNA 1110003H18 gene 1.94 ± 0.41 2.12 ± 0.35 AW122782
95732_at 1110005L13Rik RIKEN cDNA 1110005L13 gene 3.12 ± 0.41 3.35 ± 0.35 AW047746
104314_r_at 1110032A03Rik RIKEN cDNA 1110032A03 gene 3.56 ± 0.41 3.96 ± 0.70 AI851206
104077_at 1110049G11Rik RIKEN cDNA 1110049G11 gene 1.82 ± 0.41 2.11 ± 0.35 AW121992
104076_at 1190017O12Rik RIKEN cDNA 1190017O12 gene 2.12 ± 0.41 2.39 ± 0.35 AW122061
160184_at 1200007D18Rik RIKEN cDNA 1200007D18 gene -2.20 ± 0.41 -2.22 ± 0.35 AA815795
95568_at 1500011J06Rik RIKEN cDNA 1500011J06 gene 2.18 ± 0.41 2.41 ± 0.36 AI853412
96068_at 1500034J20Rik RIKEN cDNA 1500034J20 gene 3.69 ± 0.41 4.28 ± 0.54 AI848821
95561_at 1700013H19Rik RIKEN cDNA 1700013H19 gene 3.12 ± 0.42 3.65 ± 0.44 AW120867
97237_at 1810003N24Rik RIKEN cDNA 1810003N24 gene 2.10 ± 0.41 2.09 ± 0.35 AI837771
96686_i_at 2010100O12Rik RIKEN cDNA 2010100O12 gene 2.65 ± 0.41 2.55 ± 0.35 AI853864
95105_at 2010110M21Rik RIKEN cDNA 2010110M21 gene 1.96 ± 0.41 2.27 ± 0.35 AI847697
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104620_at 2010300G19Rik RIKEN cDNA 2010300G19 gene 2.05 ± 0.41 2.33 ± 0.35 AW123402
99187_f_at 2010315L10Rik RIKEN cDNA 2010315L10 gene 2.33 ± 0.41 2.78 ± 0.35 AI835662
103076_at 2210412K09Rik RIKEN cDNA 2210412K09 gene 1.81 ± 0.41 2.08 ± 0.35 AW046093
92703_at 2310032M22Rik RIKEN cDNA 2310032M22 gene 2.23 ± 0.41 2.81 ± 0.35 AI325791
160475_at 2310034L04Rik RIKEN cDNA 2310034L04 gene 1.87 ± 0.41 2.43 ± 0.35 AI839116
101404_at 2310061I09Rik RIKEN cDNA 2310061I09 gene 2.12 ± 0.41 2.85 ± 0.35 AI853654
95103_at 2310065K24Rik RIKEN cDNA 2310065K24 gene 2.10 ± 0.41 2.33 ± 0.35 AI839824
98039_at 2410015M20Rik RIKEN cDNA 2410015M20 gene 3.37 ± 0.41 3.04 ± 0.35 AI853819
96780_at 2410022L05Rik RIKEN cDNA 2410022L05 gene 2.23 ± 0.41 2.19 ± 0.35 AW208818
97864_at 2510049I19Rik RIKEN cDNA 2510049I19 gene 2.32 ± 0.42 2.71 ± 0.35 AW258842
95058_f_at 2610205H19Rik RIKEN cDNA 2610205H19 gene 2.78 ± 0.41 2.79 ± 0.35 AW121984
96688_at 2610318G18Rik RIKEN cDNA 2610318G18 gene 2.04 ± 0.41 2.22 ± 0.35 AI845463
93768_f_at 2700059D21Rik RIKEN cDNA 2700059D21 gene 2.33 ± 0.41 2.40 ± 0.35 AW124052
103071_at 2810429C13Rik RIKEN cDNA 2810429C13 gene 1.77 ± 0.41 2.29 ± 0.35 AI843655
99185_at 2810443J12Rik RIKEN cDNA 2810443J12 gene 3.35 ± 0.41 3.03 ± 0.35 AW047026
103664_r_at 2810452K22Rik RIKEN cDNA 2810452K22 gene 1.93 ± 0.41 2.08 ± 0.35 AA959648
95135_at 3110038L01Rik RIKEN cDNA 3110038L01 gene -1.17 ± 0.41 -2.18 ± 0.35 AI844396
92840_at 3110079L04Rik RIKEN cDNA 3110079L04 gene 2.26 ± 0.42 3.58 ± 0.36 AA683712
160183_f_at 3930401E15Rik RIKEN cDNA 3930401E15 gene 2.50 ± 0.41 2.60 ± 0.35 AI846109
97437_f_at 4631416I11Rik RIKEN cDNA 4631416I11 gene 2.83 ± 0.42 2.50 ± 0.36 AW122483
161756_at 4833420N02Rik RIKEN cDNA 4833420N02 gene 2.04 ± 0.42 2.90 ± 0.36 AV298145
161015_at 4933402J24Rik RIKEN cDNA 4933402J24 gene 2.00 ± 0.41 2.43 ± 0.36 AI845273
100587_f_at 5730403B10Rik RIKEN cDNA 5730403B10 gene 2.50 ± 0.41 2.18 ± 0.35 AI843959
103978_at 5730454B08Rik RIKEN cDNA 5730454B08 gene 1.44 ± 0.41 2.01 ± 0.35 AA666669
97916_at 5730494N06Rik RIKEN cDNA 5730494N06 gene 1.92 ± 0.41 2.26 ± 0.35 AI116222
92992_i_at 5730497N03Rik RIKEN cDNA 5730497N03 gene 3.60 ± 0.76 4.29 ± 0.38 AI324972
104059_at 5830451P18Rik RIKEN cDNA 5830451P18 gene 2.05 ± 0.41 2.50 ± 0.35 AI851751
102870_at 5930418K15Rik RIKEN cDNA 5930418K15 gene 2.38 ± 0.41 2.90 ± 0.35 AW125272
101929_at 6720463E02Rik RIKEN cDNA 6720463E02 gene -2.03 ± 0.41 -2.11 ± 0.35 AI836322
94895_at 9430020E02Rik RIKEN cDNA 9430020E02 gene 2.65 ± 0.41 2.60 ± 0.35 AW122948
161104_at 9430099J10Rik RIKEN cDNA 9430099J10 gene 3.78 ± 0.41 2.32 ± 0.35 AI846811
93427_at 9930104H07Rik RIKEN cDNA 9930104H07 gene 2.08 ± 0.43 1.67 ± 0.38 AW122310
94663_at AA407151 expressed sequence AA407151 -2.11 ± 0.41 -2.38 ± 0.35 AA407151
97918_at AA536743 expressed sequence AA536743 1.55 ± 0.41 2.01 ± 0.36 AA623587
93472_at AI413331 expressed sequence AI413331 -2.02 ± 0.41 -1.66 ± 0.35 AA796989
95503_at AI839562 expressed sequence AI839562 2.04 ± 0.41 2.22 ± 0.35 U95498
93627_at Ankrd28 ankyrin repeat domain 28 1.62 ± 0.41 2.21 ± 0.35 AI852287
96529_at Ap1gbp1 AP1 gamma subunit binding protein

1
1.90 ± 0.41 2.34 ± 0.35 AW122059

93794_at Appbp1 amyloid beta precursor protein
binding protein 1

3.24 ± 0.41 3.31 ± 0.35 AI846393

97554_at BC005624 cDNA sequence BC005624 1.95 ± 0.41 2.03 ± 0.35 AI838889
94823_at BC029892 cDNA sequence BC029892 2.10 ± 0.41 2.24 ± 0.35 AI835315
95061_at Bcas2 breast carcinoma amplified sequence

2
1.96 ± 0.41 2.11 ± 0.35 AI838996

100963_at Brp17 brain protein 17 2.91 ± 0.41 2.50 ± 0.36 AI854243
103695_f_at C330007P06Rik RIKEN cDNA C330007P06 gene 2.11 ± 0.41 2.21 ± 0.35 AW047329
160623_at Cdkl2 cyclin-dependent kinase-like 2

(CDC2-related kinase)
2.39 ± 0.41 2.68 ± 0.35 AI847045

92841_f_at Chgb chromogranin B 1.96 ± 0.41 2.88 ± 0.35 X51429
94030_at Commd2 COMM domain containing 2 2.54 ± 0.41 2.33 ± 0.35 AI853431
96881_at Commd6 COMM domain containing 6 2.08 ± 0.41 2.45 ± 0.35 AW049394
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101976_at Cops4 COP9 (constitutive
photomorphogenic) homolog,
subunit 4 (Arabidopsis thaliana)

1.97 ± 0.41 2.21 ± 0.35 AF071314

160522_at D0H4S114 DNA segment, human D4S114 1.85 ± 0.41 2.21 ± 0.35 D45203
94526_at D10Ertd214e DNA segment, Chr 10, ERATO Doi

214, expressed
2.23 ± 0.41 2.49 ± 0.35 AI848453

101960_at D10Wsu52e DNA segment, Chr 10, Wayne State
University 52, expressed

1.90 ± 0.41 2.17 ± 0.35 AI842208

103314_at D13Ertd275e DNA segment, Chr 13, ERATO Doi
275, expressed

1.81 ± 0.41 2.17 ± 0.35 AW046158

104714_at D14Wsu89e DNA segment, Chr 14, Wayne State
University 89, expressed

2.08 ± 0.41 2.14 ± 0.35 AW125299

95431_at D16Wsu109e DNA segment, Chr 16, Wayne State
University 109, expressed

2.53 ± 0.41 2.51 ± 0.35 AA623426

95432_f_at D16Wsu109e DNA segment, Chr 16, Wayne State
University 109, expressed

3.24 ± 0.41 3.39 ± 0.35 AI844034

93841_at D3Ertd194e DNA segment, Chr 3, ERATO Doi
194, expressed

2.35 ± 0.41 2.59 ± 0.35 AW060249

99779_at D6Bwg1452e DNA segment, Chr 6, Brigham &
Women's Genetics 1452 expressed

1.95 ± 0.41 2.12 ± 0.36 N28141

104418_at D6Ertd365e DNA segment, Chr 6, ERATO Doi
365, expressed

2.27 ± 0.41 2.08 ± 0.35 AA796868

93821_at D8Ertd594e DNA segment, Chr 8, ERATO Doi
594, expressed

2.61 ± 0.41 2.46 ± 0.36 AW046101

93534_at Dcn decorin 2.84 ± 0.41 3.15 ± 0.35 X53929
96636_at Dctn5 dynactin 5 2.08 ± 0.41 1.90 ± 0.35 AI852649
160327_at Dctn6 dynactin 6 2.10 ± 0.41 1.76 ± 0.35 AI848936
99096_at Ddx24 DEAD (Asp-Glu-Ala-Asp) box

polypeptide 24
1.82 ± 0.41 1.99 ± 0.35 U46690

101542_f_at Ddx3x DEAD/H (Asp-Glu-Ala-Asp/His)
box polypeptide 3, X-linked

2.14 ± 0.41 2.27 ± 0.35 L25126

95688_at Degs degenerative spermatocyte homolog
(Drosophila)

2.24 ± 0.41 2.25 ± 0.35 Y08460

103356_at Dock7 dedicator of cytokinesis 7 1.70 ± 0.42 2.36 ± 0.36 AI843267
94492_at Dstn destrin 2.16 ± 0.41 2.31 ± 0.35 AB025406
161176_r_at Epb7.2 erythrocyte protein band 7.2 -2.08 ± 0.41 -2.36 ± 0.35 AV230593
93309_at Fin14 fibroblast growth factor inducible 14 2.11 ± 0.41 1.85 ± 0.35 U42386
95756_at Ftsj3 FtsJ homolog 3 (E. coli) 2.16 ± 0.41 2.09 ± 0.36 AI839681
98048_at Fusip1 FUS interacting protein (serine-

arginine rich) 1
-2.01 ± 0.41 -2.23 ± 0.35 AF060490

96943_at Gps1 G protein pathway suppressor 1 2.48 ± 0.41 2.32 ± 0.35 AW125234
99944_at Hpca hippocalcin 1.98 ± 0.41 2.27 ± 0.35 AB015200
92371_at Hrc histidine rich calcium binding

protein
-1.48 ± 0.41 -2.68 ± 0.36 AI505355

102152_f_at Igh-VS107 immunoglobulin heavy chain (S107
family)

-4.67 ± 0.41 -2.43 ± 0.35 M16724

93511_at Itm2a integral membrane protein 2A 1.51 ± 0.41 2.12 ± 0.36 L38971
101123_at Itm2b integral membrane protein 2B 2.00 ± 0.41 2.03 ± 0.35 U76253
160517_at Lmnb1 lamin B1 -2.76 ± 0.41 -3.32 ± 0.35 M35153
93339_at Mdm4 transformed mouse 3T3 cell double

minute 4
-2.02 ± 0.41 -1.88 ± 0.35 AI846243

95417_at Mgat2 mannoside
acetylglucosaminyltransferase 2

2.32 ± 0.41 2.14 ± 0.35 AI117848

93787_f_at Mrpl18 mitochondrial ribosomal protein L18 2.25 ± 0.41 2.07 ± 0.35 AI837302
92826_at Mrps33 mitochondrial ribosomal protein S33 1.86 ± 0.41 2.02 ± 0.35 Y17852
160308_at Msn moesin -2.20 ± 0.41 -2.41 ± 0.35 AI839417
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104147_at Nans N-acetylneuraminic acid synthase
(sialic acid synthase)

1.77 ± 0.41 2.09 ± 0.35 AW122052

101484_at Nbr1 neighbor of Brca1 gene 1 1.44 ± 0.41 2.53 ± 0.35 U73039
93025_at Ndfip1 Nedd4 family interacting protein 1 2.19 ± 0.41 2.46 ± 0.35 AI835257
101634_at Npm1 nucleophosmin 1 2.08 ± 0.41 2.14 ± 0.35 M33212
101366_f_at Nvl nuclear VCP-like 3.65 ± 0.43 3.09 ± 0.42 AA250299
92848_at Oat ornithine aminotransferase 2.05 ± 0.41 1.71 ± 0.35 X64837
93600_at Obrgrp leptin receptor gene-related protein 2.40 ± 0.41 2.48 ± 0.35 AJ011565
94461_at Pbef1 pre-B-cell colony-enhancing factor 1 1.98 ± 0.41 2.35 ± 0.35 AI852144
160899_at Pcp4 Purkinje cell protein 4 1.76 ± 0.41 2.11 ± 0.35 X17320
101451_at Peg3 paternally expressed 3 1.84 ± 0.43 2.77 ± 0.35 AF038939
99926_at Pigr polymeric immunoglobulin receptor -2.30 ± 0.41 -2.68 ± 0.35 AB001489
96145_at Pigt phosphatidylinositol glycan, class T -1.72 ± 0.41 -2.05 ± 0.35 AW211407
94445_at Pls3 plastin 3 (T-isoform) 1.56 ± 0.41 2.25 ± 0.35 AW125273
95059_at Pnrc2 proline-rich nuclear receptor

coactivator 2
2.08 ± 0.41 1.99 ± 0.35 AW047399

102724_at Rabep1 rabaptin, RAB GTPase binding
effector protein 1

4.14 ± 0.53 4.07 ± 0.39 AI608324

98511_at Raly hnRNP-associated with lethal yellow 1.94 ± 0.41 2.04 ± 0.35 L17076
98602_at Rangap1 RAN GTPase activating protein 1 2.12 ± 0.41 2.09 ± 0.35 U08110
93020_at Rex3 reduced expression 3 2.30 ± 0.41 2.50 ± 0.35 AF051347
98119_at Rpl30 ribosomal protein L30 1.90 ± 0.41 2.02 ± 0.35 K02928
92981_at Scg2 secretogranin II 1.45 ± 0.41 2.20 ± 0.35 X68837
160360_at Sep15 selenoprotein 2.10 ± 0.41 1.92 ± 0.35 AI838205
93806_at Sh3bgrl SH3-binding domain glutamic acid-

rich protein like
2.21 ± 0.41 2.41 ± 0.35 AI848671

103813_at Sh3yl1 Sh3 domain YSC-like 1 2.00 ± 0.41 2.79 ± 0.36 D85926
104216_at Shoc2 soc-2 (suppressor of clear) homolog

(C. elegans)
2.36 ± 0.41 1.72 ± 0.35 AF068921

93273_at Snca synuclein, alpha 2.24 ± 0.41 2.72 ± 0.35 AF044672
94313_at Snrp1c U1 small nuclear ribonucleoprotein

1C
2.21 ± 0.41 2.13 ± 0.35 X96767

160319_at Sparcl1 SPARC-like 1 (mast9, hevin) 2.02 ± 0.41 1.60 ± 0.35 U66166
95430_f_at Spg21 spastic paraplegia 21 homolog

(human)
1.90 ± 0.41 2.00 ± 0.35 AI854154

101995_at Sqstm1 sequestosome 1 2.21 ± 0.41 2.72 ± 0.35 U40930
96724_r_at Ssx2ip synovial sarcoma, X breakpoint 2

interacting protein
2.40 ± 0.41 3.13 ± 0.35 AW122911

93365_s_at Sugt1 SGT1, suppressor of G2 allele of
SKP1 (S. cerevisiae)

2.50 ± 0.41 2.91 ± 0.35 AI838149

104283_at Tbc1d15 TBC1 domain family, member 15 1.99 ± 0.41 2.20 ± 0.35 AI037493
95101_at Tde2 tumor differentially expressed 2 2.00 ± 0.41 2.47 ± 0.35 AI834772
95120_at Tm4sf13 transmembrane 4 superfamily

member 13
1.95 ± 0.41 2.68 ± 0.35 AI837621

98555_at Ttc3 tetratricopeptide repeat domain 3 1.68 ± 0.41 2.00 ± 0.35 AB008516
97900_at Txndc9 thioredoxin domain containing 9 2.19 ± 0.41 2.25 ± 0.35 AI845714
97285_f_at Ubxd1 UBX domain containing 1 2.46 ± 0.41 2.88 ± 0.35 AW120609
160079_i_at Wac WW domain containing adaptor with

coiled-coil
2.07 ± 0.41 2.09 ± 0.35 AI845773

100523_r_at Wbp5 WW domain binding protein 5 2.36 ± 0.41 2.76 ± 0.35 U92454
160130_at Wdr26 WD repeat domain 26 2.22 ± 0.41 2.43 ± 0.35 AA795284
101883_s_at Xlr3a X-linked lymphocyte-regulated 3a 2.17 ± 0.41 2.10 ± 0.36 L22977
94780_at Zfp288 zinc finger protein 288 1.74 ± 0.41 2.21 ± 0.35 AI987985
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104437_at Zfp30 zinc finger protein 30 1.90 ± 0.42 2.32 ± 0.35 Z30174
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Figure 6.3. Effects of EGCG on the protein expression of CHOP, Atf3 and the
cleavage of p35.  Western blot analysis shows EGCG treatment induced the
concentration-dependent increase of Atf3 but not CHOP expression.  p35 was
not cleaved to p25 during EGCG treatment.  β-tubulin was the internal control
for equal loading of proteins.
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6.3 Discussion

6.3.1 ER stress is not involved in EGCG-induced neuronal apoptosis

The exposure of cultured cortical neurons to high concentrations of EGCG could

induce neuronal apoptosis (Mandel et al, 2004).  In this study, it was found that

EGCG at a concentration of 25 µM could effectively inhibit chymotrypsin-like

proteasomal activity and activate the apoptotic-signaling pathway through the

activation of caspase-3 (Fig. 6.1).  In contrast to lactacystin-induced cell death, no up-

regulation of ER stress-associated genes such as the Ddit3/CHOP and Atf4 was

detected from the microarray data (Table 6.1).  Furthermore, Western blot analysis

demonstrated that the pro-apoptotic transcription factor Ddit3/CHOP protein was not

expressed in cultured cortical neurons treated with a lethal dosage of EGCG,

indicating the absence of ER stress in EGCG-induced neuronal cell death.  Calpain

activation has been associated with ER stress-mediated cell death (Rutkowski and

Kaufman, 2004).  The absence of p35 cleavage in the Western blot analysis of

proteins extracted from cultured cortical neurons exposed to EGCG also suggests

absence of calpain activation in the cell death system. Taken together, the results

suggest the absence of ER stress during EGCG-induced neuronal apoptosis.

6.3.2 EGCG treatment and the up-regulation of genes encoding ubiquitin-

proteasome system components

At both lethal and non-lethal concentrations, EGCG was able to induce the up-

regulation of genes encoding UPS components such as proteasome subunits, ubiquitin

and ubiquitin protein ligases (Table 6.1).  Higher expression levels of these genes

corresponded to higher concentrations of EGCG.  This observation is supported by
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the fact that higher concentrations of EGCG could inhibit chymotrypsin-like

proteasomal activity (Fig. 6.2).  Nevertheless, a non-lethal concentration of EGCG (1

µM) was also effective in up-regulating some of the genes encoding proteasome

subunits such as proteasome subunit alpha type 3 (Psma3) and proteasome 26S

subunit, non-ATPase, 11 (Psmd11), and also genes encoding ubiquitin b (Ubb),

ubiquitin c (Ubc), ubiquitin-conjugating enzyme E2D2 (Ube2d2) and Ubiquitin

protein ligase E3A (Ube3a) (Table 6.1).  These results suggest that EGCG at a low

concentration (1 µM) has the potential to protect neurons against the insult of

accumulated unfolded proteins, since the up-regulation of UPS components has been

reported to be neuroprotective by other studies (Meiners et al, 2003; Goldbaum and

Richter-Landsberg, 2004)

6.3.3 The effect of EGCG on the induction of genes encoding heat shock proteins

Unlike the case in lactacystin treatment (Chapter 4), not many genes encoding HSPs

were up-regulated by EGCG treatment (Table 6.1).  Atf3 and c-Jun have been

reported to play a major role in the transcriptional regulation of Hsp27 (Nakagomi et

al, 2003).  Although both Atf3 and c-Jun genes were up-regulated by EGCG (25 µM)

treatment, the low expression levels of the Atf3 gene and protein (Table 6.1 and Fig.

6.3) might have contributed to the absence of Hsp27 up-regulation in EGCG-treated

cultured neurons.
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6.3.4 The effect of EGCG on the regulation of lipid and cholesterol biosynthesis

genes

EGCG has been reported to regulate lipid metabolism by controlling SREBP-

regulated gene expression through the inhibition of proteasomes (Shay and Banz,

2005).  Kuhn et al reported that the exposure of the HepG2 cell line to EGCG caused

an increase in the low-density lipoprotein receptor (LDLR) protein expression (Kuhn

et al, 2003).  This effect of EGCG is believed to be responsible for the plasma

cholesterol-lowering and heart disease-preventative effect of green tea (Kuhn et al,

2003).  In this study, EGCG treatment was observed to up-regulate the expression of

the very low density lipoprotein receptor gene (Vldlr) (Table 6.4).  Vldlr is a member

of the LDLR family (Goudriaan et al, 2001).  The role of Vldlr in lipoprotein

metabolism has been suggested by in vitro experiments showing Vldlr binding and

internalizing particles that are rich in apolipoprotein E, such as very low density

lipoprotein (Goudriaan et al, 2001).

Unlike with lactacystin treatment, genes involved in the synthesis of cholesterol were

not down-regulated during EGCG-induced neuronal apoptosis (Table 6.4).  One

possible reason for this is that cultured neurons exposed to EGCG did not undergo ER

stress (Fig. 6.3).  A recent study demonstrated that ER stress in cells can lead to the

suppression of SREBP(N)-mediated transcription of cholesterol biosynthesis genes

(Zeng et al, 2004).  Therefore, the absence of ER stress during EGCG-induced

neuronal apoptosis might be the reason why no down-regulation of cholesterol

biosynthesis genes was observed in the microarray analysis (Table 6.4).
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The microarray data also shows that the gene encoding stearoyl-CoA desaturase-1

(Scd1) was down-regulated in neurons treated with EGCG.  Scd1 is the rate-limiting

enzyme in the synthesis of monosaturated fatty acids (Klaus et al, 2005).  Scd1 has

been reported to be down-regulated in liver cells exposed to EGCG (Klaus et al,

2005), but its role is not fully understood.  A recent study proposed that Scd1 might

play a major role in the process of cell regeneration (Breuer et al, 2004).  Thus, the

down-regulation of Scd1 gene expression might impair neuron regeneration.
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CHAPTER 7

7 General Conclusion

Proteasomal inhibition or dysfunction is likely to contribute to neuronal cell death and

neurodegeneration.  The study of the effects of lactacystin on cultured cortical

neurons shows that proteasome inhibition can lead to neuronal apoptosis.  The tumor

suppressor PTEN is one possible player in neuronal apoptosis.  The translocation of

PTEN to the plasma membrane during neuronal cell death is of significant interest

because PTEN can specifically dephosphorylate the phospholipid second messenger

PtdIns(3,4,5)P3 and act as an antagonist to the PI3-kinase/Akt survival signaling

pathway.  In this study, PTEN was found to be cleaved at the C-terminal end, forming

a shorter or truncated 50 kDa form during lactacystin-induced neuronal apoptosis.

The protease caspase-3 was found to be responsible for the cleavage of PTEN during

neuronal apoptosis.  Whether the cleavage of PTEN facilitates its translocation and

activation is still not clear.  Since the mutant PTEN without the C-terminal tail is

found to have a higher phosphatase activity compared to the wild-type PTEN

(personal correspondence with Heung-Chin Cheng), it is tempting to speculate that

PTEN can be activated by caspase-3 cleavage during cell death.

The study of the neural membrane lipid profile initially attempted to measure the

changes of PtdIns(4,5)P2 during lactacystin-induced neuronal apoptosis, in order to

complement the study of the role of PTEN in neuronal apoptosis.  However, the level

of PtdIns(4,5)P2 in the cultured neurons was too minute to be detected using ESI-MS.

Instead, the study of the neural lipid profile revealed the accumulation of ceramides

and NAPE in the cultured cortical neurons during lactacystin-induced neuronal
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apoptosis.  The accumulation of ceramides in neural membranes is known to be

involved in the activation of caspase-3 during apoptosis.  However, the accumulation

of NAPE in neural membranes during neuronal apoptosis has not been reported, since

NAPE accumulation has been associated with excitotoxic or necrotic, rather than

apoptotic cell death in both in vitro and in vivo systems (Hansen et al, 2001).

Incidentally, NAPE is a precursor of anandamide, an endogenous cannabinoid

receptor ligand.  The accumulation of NAPE during neuronal injury may suggest a

neuroprotective role of NAPE.

The use of microarray GeneChip® in this study has been beneficial in the

understanding of the mechanisms of lactacystin-induced apoptosis.  Microarray

analysis of the differentially expressed genes at different time points reveals the

sequence of events that leads to apoptosis. Genes that encode proteasome subunits,

ubiquitin, HSPs and molecular chaperones were up-regulated at early time points, as a

response to the abnormal accumulation of proteins during proteasome inhibition.

Incidentally, cultured cortical neurons exposed to a lethal dose of lactacystin (1 µM)

could also up-regulate the genes associated with ER stress, such asAtf4 and

Ddit3/CHOP.  The early detection of the pro-apoptotic transcription factor CHOP in

cultured neurons exposed to lactacystin suggests that ER stress was likely to be the

main cause of lactacystin-induced neuronal apoptosis.  ER stress is known to initiate

other secondary pro-apoptotic responses such as the disruption of calcium

homeostasis and oxidative stress in neurons.  ER stress can also cause the down-

regulation of genes associated with cholesterol biosynthesis, probably through a direct

binding of the ER stress-activated Atf6 to SREBP, which interferes with the

activation of cholesterol biosynthesis genes.  The down-regulation of cholesterol
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Figure 7.1.  The mechanism of lactacystin-induced neuronal apoptosis. The inhibition
of proteasomes by lactacystin induces the abnormal accumulation of proteins in
neurons.  To deal with this stress, the neurons activate the early neuroprotective
responses through the up-regulation of UPS and HSPs. Exposure to lactacystin
can also trigger ER stress responses, which lead to the activation of other pro-
apoptotic responses such as 1) oxidative stress, 2) up-regulation of ER stress-
associated pro-apoptotic transcription factor CHOP, 3) calcium disruption, 4)
decrease in cholesterol biosynthesis and 5) activation of the inflammatory
responses at the late phase of lactacystin treatment.
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synthesis might play a role in energy conservation during apoptosis, since cholesterol

biosynthesis requires a large amount of energy.  Furthermore, we would expect

cholesterol biosynthesis to be disrupted during ER stress, since the ER is the site of

cholesterol biosynthesis.  Fig. 7.1 summarizes the possible mechanism of lactacystin-

induced neuronal apoptosis based on the microarray study.

Lastly, the effect of EGCG from green tea extract on cultured cortical neurons was

studied as a comparison to the effect of lactacystin.  EGCG is known for its

neuroprotective properties, and recent studies suggest that some of the biological

effect of EGCG is due to its proteasome inhibitory property.  A lethal dosage of

EGCG (25 µM) could activate caspase-3 and induce neuronal apoptosis.  Unlike

lactacystin, however, the lethal dosage of EGCG did not up-regulate the ER stress-

associated pro-apoptotic transcription factor CHOP (based on the microarray and

Western blot data).  At a non-lethal concentration (1 µM), EGCG could induce the

up-regulation of genes encoding UPS components, but was not so effective in the

induction of HSP gene expression.  Since EGCG can induce the up-regulation of

genes encoding proteasome subunits and ubiquitin, it might be effective in protecting

neurons against the accumulation of abnormal proteins under pathological conditions.

Future work should study the effectiveness of EGCG in protecting neurons against the

abnormal accumulation of proteins.

The microarray studies of lactacystin-induced neuronal apoptosis have revealed both

potentially neuroprotective, as well as pro-apoptotic genes in the cultured cortical

neurons during proteasomal inhibition.  Since the dysfunction or decrease in UPS

activity might play a role in the pathogenesis of neurodegenerative diseases, it is
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therefore important to study the transcriptional regulation of genes associated with the

UPS and HSPs as a therapeutic approach for neurodegenerative diseases.
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9 APPENDIX A: Reagents and Buffers

9.1 Western blot

5X SDS/Glycine electrophoresis running buffer: 15.1 g/L Tris base, 72 g Glycine, 5 g
SDS (NUMI)
30% acrylamide, Bis solution, 37.5:1 (BioRad #161-0158)
TEMED (Fluka #87689)
Ammonium Persulfate (BioRad #161-0700)
SuperSignal® West Femto (Pierce # 34095)
SuperSignal® West Pico (Perice #34080)
SuperSignal® West Dura (Pierce #34075)
Western Blocking Reagent (Roche #1921681/1921673), or 5% Non-fat milk
(Anlene™ Gold), 4% non-fat milk+1% BSA (Albumin, bovine serum Fraction V
Sigma A-4503)
Complete Mini protease inhibitor tablets (Roche # 1836153)
Precision Plus Protein Standard (BioRad #161-0374)
Mild Ab stripping buffer (Chemicon #2502)
Strong Ab stripping buffer (Chemicon #2504)
Kodak BioMax film (Research Instruments)
PVDF membrane (Research Instruments)
Secondary antibodies, HRP conjugated (Pierce, BioRad, Sigma)
Beta-mercaptoethanol (Sigma #?)
Percision Plus protein™ standards (Dua Color) (#161-0374)
10_ Tris/Glycine buffer: 30.3 g/L Tris base, 144.13 g/L
Tris/Glycine transfer buffer: 1_Tris/Glycine buffer, 20% (v/v) methanol
RC DC Protein Assay (BioRad #500-0120)
Erase-It™ Background Eliminator (Pierce #21065)

9.2 Immunofluorescence

Paraformyldehyde(Sigma cat# 6148)
NH4Cl (Merck)
PBS  [80 g/L NaCl, 2 g/L KCl, 14.4 g/L Na2HPO4, 2.4 KH2PO4] NUMI
Triton X-100 (Merck)
Goat Serum (Sigma #)
Alexa Fluor® 488 goat anti-mouse IgG (H+L), cat# A-11029,  Molecular Probes,
storage 4C in secondary antibody box
Alexa Fluor® 488 goat anti-rabbit IgG (H+L), cat# A-11034, Molecular Probes,
storage at 4C in secondary antibody box
Alexa Fluor® 594 goat anti-mouse IgG (H+L), cat# A-11032, Molecular Probes,
storage at 4C in secondary antibody box
Alexa Fluor® 594 goat anti-rabbit IgG (H+L), cat# A-11037, Molecular Probes,
storage at 4C in secondary antibody box
FluorSave™ Reagent, cat# 345789, Calbiochem®, Storage RT
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9.3 Composition of Neurobasal Medium (Brewer et al, 1993)

Components Mg/liter µM
Inorganic salts
CaCl2 (Anhydrous) 200 1800
Fe(NO3)3.9H2O 0.1 0.2
Kcl 400 5360
MgCl2 (Anhydrous) 77.3 812
NaCl 3000 51300
NaHCO3 2200 26000
NaH2PO4.H2O 125 900
Other components
D-glucose 4500 25000
Phenol red 8.1 23
HEPES 2600 10000
Sodium Pyruvate 25 230
Amino acids
L-alanine 2 20
L-arginine-HCl 84 400
L-asparagine-H2O 0.83 5
L-cysteine 1.21 10
L-glutamine 73.5 500
L-glutamate - -
Glycine 30 400
L-histidine.Hcl.H2O 42 200
L-isoleucine 105 800
L-leucine 105 800
L-lysine.HCl 146 5
L-methionine 30 200
L-phenylalanine 66 400
L-proline 7.76 67
L-serine 42 400
L-threonine 95 800
L-tryptophan 16 80
L-tyrosine 72 400
L-valine 94 800
Vitamins
D-Ca pantothenate 4 8
Choline chloride 2 28
Folic acid 4 8
i-linositol 7.2 40
Niacinamide 4 30
Pyridoxal.HCl 4 20
Riboflavin 0.4 1
Thiamine.HCl 4 10
Vitamin B12 0.34 0.2
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9.4 Composition of B27 Medium Supplement for Neurons (Brewer et al, 1993).

Biotin Selenium
L-carnitine T3 (triodo-1-thyronine)
Corticosterone DL-α-tocopherol (vitamin E)
Ethanolamine DL-α-tocopherol acetate
D(+)-galactose Proteins:
Glutathione (reduced) Albumin, bovine
Linoleic acid Catalase
Linolenic acid Insulin
Progesterone Superoxide dismutase
Putrescine Transferrin
Retinyl acetate
Brewer GJ, Torricelli JR, Evege EK and Price PJ (1993).  Optimized Survival of
Hippocampal Neurons in B27-Supplemented Neurobasal, a New Serum-free
Medium Combination.  Journal of Neuroscience Research, 35: 567 – 576.

9.5 Microarray: Eukaryotic Target Hybridization

9.5.1 Materials needed

Bovine Serum Albumin (BSA) solution (50 mg/mL), Invitrogen Life Technologies,
P/N 15561-020
Herring Sperm DNA, Promega Corporation, P/N D1811
GeneChip Eukaryotic Hybridization Control Kit, Affymetrix, P/N 900454 (30
reactions) or
P/N 900457 (150 reactions), contains Control cRNA and Control Oligo B2
Control Oligo B2, 3 nM, Affymetrix, P/N 900301 (can be ordered separately)
5M NaCl, RNase-free, DNase-free, Ambion, P/N 9760G
MES hydrate SigmaUltra, Sigma-Aldrich, P/N M5287
MES Sodium Salt, Sigma-Aldrich, P/N M5057
EDTA Disodium Salt, 0.5M solution (100 mL), Sigma-Aldrich, P/N E7889
DMSO, Sigma-Aldrich, P/N D5879
Surfact-Amps 20 (Tween-20), 10%, Pierce Chemical, P/N 28320

9.5.2 Reagent Preparation

12X MES Stock Buffer (1.22M MES, 0.89M [Na+]) for 1,000 mL:
64.61g of MES hydrate
193.3g of MES Sodium Salt
800 mL of Molecular Biology Grade water
Mix and adjust volume to 1,000 mL.
The pH should be between 6.5 and 6.7. Filter through a 0.2 _m filter.

2X Hybridization Buffer (Final 1X concentration is 100 mM MES, 1M [Na+], 20
mM EDTA, 0.01% Tween-20) for 50 mL:
8.3 mL of 12X MES Stock Buffer
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17.7 mL of 5M NaCl
4.0 mL of 0.5M EDTA
0.1 mL of 10% Tween-20
19.9 mL of water
Store at 2°C to 8°C, and shield from light
Do not autoclave. Store at 2°C to 8°C, and shield from light.
Discard solution if yellow.

Eukaryotic Arrays: Washing, Staining, and Scanning
Reagents and Materials Required
R-Phycoerythrin Streptavidin, Molecular Probes, P/N S-866
20X SSPE (3M NaCl, 0.2M NaH2PO4, 0.02M EDTA), BioWhittaker Molecular
Applications / Cambrex, P/N 51214
Goat IgG, Reagent Grade, Sigma-Aldrich, P/N I 5256
Anti-streptavidin antibody (goat), biotinylated, Vector Laboratories, P/N BA-0500
Reagent Preparation

Wash Buffer A: Non-Stringent Wash Buffer (6X SSPE, 0.01% Tween-20) for
1,000 mL:
300 mL of 20X SSPE
1.0 mL of 10% Tween-20
699 mL of water
Filter through a 0.2 _m filter

Wash Buffer B: Stringent Wash Buffer(100 mM MES, 0.1M [Na+], 0.01%
Tween-20) for 1,000 mL:
83.3 mL of 12X MES Stock Buffer (see Section 2, Chapter 2 for reagent preparation)
5.2 mL of 5M NaCl
1.0 mL of 10% Tween-20
910.5 mL of water
Filter through a 0.2 _m filter
Store at 2°C to 8°C and shield from light

2X Stain Buffer (Final 1X concentration: 100 mM MES, 1M [Na+], 0.05%
Tween-20) for 250 mL:
41.7 mL of 12X MES Stock Buffer (see Section 2, Chapter 2 for reagent preparation)
92.5 mL of 5M NaCl
2.5 mL of 10% Tween-20
113.3 mL of water
Filter through a 0.2 _m filter
Store at 2°C to 8°C and shield from light
10 mg/mL Goat IgG Stock
Resuspend 50 mg in 5 mL of 150 mM NaCl
Store at 4°C
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10 APPENDIX B: The gene list of microarray analysis (lactacystin treatment):

>2FC, one-way ANOVA, p<0.01

Table 10.1.  Ubiquitin-proteasome System
Time points (h)

Probe id Symbol Gene Title
4.5 7.5 24 48

Genbank

100955_at 2700084L22Rik RIKEN cDNA
2700084L22 gene

2.24 ± 0.26 1.53 ± 0.11 1.06 ± 0.11 1.38 ± 0.16 AA989957

95600_at Arih2 ariadne homolog 2
(Drosophila)

2.61 ± 0.14 4.11 ± 0.14 1.24 ± 0.15 -1.05 ± 0.19 AJ130975

96892_at Psma1 proteasome subunit,
alpha type 1

2.79 ± 0.09 3.37 ± 0.10 2.49 ± 0.20 -1.06 ± 0.14 AI836804

92544_f_at Psma3 proteasome subunit,
alpha type 3

2.45 ± 0.09 2.83 ± 0.06 1.74 ± 0.14 -1.04 ± 0.15 AF055983

94841_at Psma5 proteasome subunit,
alpha type 5

2.16 ± 0.08 2.69 ± 0.10 2.48 ± 0.30 1.01 ± 0.21 AW048997

93988_at Psma7 proteasome subunit,
alpha type 7

2.60 ± 0.08 3.53 ± 0.07 2.35 ± 0.13 -1.09 ± 0.19 AI836676

98113_at Psmb1 proteasome subunit,
beta type 1

1.52 ± 0.07 1.80 ± 0.06 2.00 ± 0.10 1.04 ± 0.17 U60824

94219_at Psmb2 proteasome subunit,
beta type 2

-1.57 ± 0.06 2.28 ± 0.09 2.63 ± 0.39 -1.20 ± 0.22 AI853269

94025_at Psmb3 proteasome subunit,
beta type 3

2.78 ± 0.06 4.50 ± 0.20 3.22 ± 0.21 1.10 ± 0.24 AW045339

98557_f_at Psmb4 proteasome subunit,
beta type 4

2.21 ± 0.06 2.26 ± 0.07 1.95 ± 0.11 1.03 ± 0.19 U65636

101992_at Psmb6 proteasome subunit,
beta type 6

1.99 ± 0.10 2.60 ± 0.07 2.40 ± 0.16 -1.11 ± 0.18 U13393

160152_at Psmc1 proteasome 26S subunit,
ATPase 1

2.28 ± 0.12 3.79 ± 0.09 2.29 ± 0.16 -1.06 ± 0.13 U39302

95448_at Psmc2 proteasome 26S subunit,
ATPase 2

2.58 ± 0.09 2.53 ± 0.07 2.49 ± 0.26 -1.16 ± 0.13 AI839371

93734_i_at Psmc3 proteasome 26S subunit,
ATPase 3

2.71 ± 0.07 3.13 ± 0.11 2.27 ± 0.12 -1.05 ± 0.13 D49686

103319_at Psmd10 proteasome 26S subunit,
non-ATPase, 10

2.21 ± 0.10 1.19 ± 0.10 -1.21 ± 0.10 1.49 ± 0.18 AB022022

160305_at Psmd11 proteasome 26S subunit,
non-ATPase, 11

5.34 ± 0.07 5.03 ± 0.27 2.75 ± 0.17 1.02 ± 0.12 AW121693
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93971_f_at Psmd12 proteasome 26S subunit,
non-ATPase, 12

3.34 ± 0.06 3.62 ± 0.20 2.56 ± 0.31 -1.09 ± 0.17 AI838669

95742_at Psmd13 proteasome 26S subunit,
non-ATPase, 13

1.59 ± 0.07 2.30 ± 0.07 1.92 ± 0.11 1.02 ± 0.15 AW045451

97274_at Psmd14 proteasome 26S subunit,
non-ATPase, 14

2.26 ± 0.06 2.72 ± 0.09 2.22 ± 0.18 -1.18 ± 0.14 Y13071

92769_at Psmd3 proteasome 26S subunit,
non-ATPase, 3

1.12 ± 0.07 2.95 ± 0.07 1.95 ± 0.12 -1.12 ± 0.11 M25149

94302_at Psmd4 proteasome 26S subunit,
non-ATPase, 4

2.85 ± 0.07 5.29 ± 0.12 3.07 ± 0.35 -1.05 ± 0.21 AF013099

96698_at Psmd5 proteasome 26S subunit,
non-ATPase, 5

1.94 ± 0.07 2.79 ± 0.13 1.46 ± 0.19 -1.06 ± 0.14 AI835520

103350_at Psmd7 proteasome 26S subunit,
non-ATPase, 7

2.38 ± 0.08 3.03 ± 0.08 1.88 ± 0.30 -1.31 ± 0.15 M64641

98522_at Psmd8 proteasome 26S subunit,
non-ATPase, 8

2.30 ± 0.13 2.38 ± 0.10 1.38 ± 0.10 -1.11 ± 0.15 AI839158

95124_i_at Rbx1 ring-box 1 3.18 ± 0.11 2.00 ± 0.19 1.13 ± 0.15 -1.21 ± 0.17 AW122337

160205_f_at Rnf11 ring finger protein 11 2.04 ± 0.06 1.74 ± 0.09 1.01 ± 0.11 -1.29 ± 0.11 AB024427

101966_s_at Rnf13 ring finger protein 13 2.09 ± 0.09 3.13 ± 0.12 1.00 ± 0.10 1.13 ± 0.12 AF037206

93164_at Rnf2 ring finger protein 2 1.79 ± 0.10 3.25 ± 0.17 -1.57 ± 0.10 -1.12 ± 0.14 Y12783

96961_at Rnf110 ring finger protein 110 3.08 ± 0.15 1.55 ± 0.15 -1.08 ± 0.17 1.14 ± 0.17 AI503821

101069_g_at Mkrn1 makorin, ring finger
protein, 1

1.96 ± 0.09 3.10 ± 0.08 -1.25 ± 0.12 -1.32 ± 0.12 AA656621

100985_at Siah1a seven in absentia 1A 1.86 ± 0.07 2.33 ± 0.09 1.16 ± 0.11 -1.40 ± 0.12 Z19579

101255_at Ubb ubiquitin B 3.10 ± 0.07 3.62 ± 0.06 1.08 ± 0.15 -1.19 ± 0.14 X51703

95215_f_at Ubc ubiquitin C 4.04 ± 0.09 4.79 ± 0.07 1.39 ± 0.16 -1.25 ± 0.12 D50527

102812_i_at Ube1dc1 ubiquitin-activating
enzyme E1-domain
containing 1

1.82 ± 0.11 2.30 ± 0.06 1.66 ± 0.14 1.06 ± 0.13 AW210346

93069_at Ube2d2 ubiquitin-conjugating
enzyme E2D 2

2.46 ± 0.10 2.13 ± 0.12 1.08 ± 0.14 -1.30 ± 0.13 U62483
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101581_at Ube3a ubiquitin protein ligase
E3A

3.65 ± 0.08 1.93 ± 0.09 1.24 ± 0.11 -1.20 ± 0.10 U82122

94018_at Ubl3 ubiquitin-like 3 2.17 ± 0.06 1.57 ± 0.07 1.41 ± 0.13 1.13 ± 0.15 AW120725

95601_at Ubqln1 ubiquilin 1 1.31 ± 0.06 2.30 ± 0.10 1.08 ± 0.10 -1.29 ± 0.17 AW125420

93303_at Ufd1l ubiquitin fusion
degradation 1 like

2.49 ± 0.07 4.45 ± 0.07 2.05 ± 0.34 -1.43 ± 0.16 U64445

161870_at Usp15 ubiquitin specific
protease 15

-3.77 ± 0.09 -3.28 ± 0.12 -1.57 ± 0.12 1.50 ± 0.24 AV359471

99085_at Usp3 ubiquitin specific
protease 3

1.42 ± 0.14 2.55 ± 0.07 1.26 ± 0.12 1.03 ± 0.13 AI021421

99086_g_at Usp3 ubiquitin specific
protease 3

1.73 ± 0.10 2.74 ± 0.11 1.14 ± 0.12 -1.23 ± 0.15 AI021421

160724_at Usp49 ubiquitin specific
protease 49

2.06 ± 0.24 2.51 ± 0.08 -1.06 ± 0.10 -1.06 ± 0.11 AJ245617

Table 10.2.  Heat shock proteins and molecular chaperone
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

104589_at C80913 expressed sequence C80913 2.04 ± 0.10 -1.11 ± 0.06 1.38 ± 0.12 1.16 ± 0.11 AF091096

98153_at Cct3 chaperonin subunit 3 (gamma) 2.24 ± 0.10 2.54 ± 0.08 1.79 ± 0.22 -1.17 ± 0.14 L20509

160562_at Cct7 chaperonin subunit 7 (eta) 2.00 ± 0.10 2.09 ± 0.06 1.53 ± 0.25 -1.34 ± 0.12 Z31399

96254_at Dnajb1 DnaJ (Hsp40) homolog,
subfamily B, member 1

2.11 ± 0.20 3.52 ± 0.15 1.42 ± 0.26 -1.12 ± 0.12 AB028272

98572_at Dnajb11 DnaJ (Hsp40) homolog,
subfamily B, member 11

1.84 ± 0.10 2.21 ± 0.08 1.41 ± 0.13 -1.12 ± 0.12 AW122551

93853_at Dnajb4 DnaJ (Hsp40) homolog,
subfamily B, member 4

2.19 ± 0.16 2.69 ± 0.13 1.46 ± 0.21 -1.24 ± 0.12 AA763918

104625_at Dnajb6 DnaJ (Hsp40) homolog,
subfamily B, member 6

1.61 ± 0.21 2.16 ± 0.15 -1.30 ± 0.15 -1.03 ± 0.11 AA874130

103344_at Dnajc1 DnaJ (Hsp40) homolog,
subfamily C, member 1

2.31 ± 0.30 1.86 ± 0.09 1.42 ± 0.10 1.32 ± 0.11 L16953

94422_at Dnajc13 DnaJ (Hsp40) homolog,
subfamily C, member 13

2.12 ± 0.08 1.37 ± 0.08 1.07 ± 0.15 -1.17 ± 0.11 AI842938

102414_i_at Dnajc3 DnaJ (Hsp40) homolog,
subfamily C, member 3

2.05 ± 0.14 2.25 ± 0.15 1.31 ± 0.10 1.42 ± 0.12 U28423

93211_at Dnajc5 DnaJ (Hsp40) homolog,
subfamily C, member 5

1.41 ± 0.10 3.16 ± 0.17 -1.48 ± 0.17 -1.56 ± 0.16 AF032115

102761_at Grpel2 GrpE-like 2, mitochondrial 2.03 ± 0.12 2.07 ± 0.17 1.15 ± 0.13 -1.20 ± 0.10 AF041060

98111_at Hsp105 heat shock protein 105 1.57 ± 0.09 2.38 ± 0.08 2.54 ± 0.53 -1.20 ± 0.13 L40406

93875_at Hspa1a heat shock protein 1A -1.27 ± 0.13 4.70 ± 0.53 13.82 ± 6.14 1.78 ± 0.53 M12571
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101955_at Hspa5 heat shock 70kD protein 5
(glucose-regulated protein)

2.20 ± 0.07 2.39 ± 0.06 1.87 ± 0.17 -1.13 ± 0.11 AJ002387

96564_at Hspa8 heat shock protein 8 2.05 ± 0.08 1.96 ± 0.10 1.14 ± 0.14 -1.18 ± 0.10 X54401

97914_at Hspa9a heat shock protein, A 1.68 ± 0.07 3.68 ± 0.07 2.18 ± 0.27 1.07 ± 0.16 D17666

160139_at Hspb8 heat shock 27kDa protein 8 -1.37 ± 0.12 1.67 ± 0.16 8.08 ± 0.47 2.22 ± 0.48 AI848798

95359_at Hspcb heat shock protein 1, beta 2.06 ± 0.06 2.82 ± 0.11 1.46 ± 0.20 -1.08 ± 0.17 M18186

92829_at Hspe1 heat shock protein 1
(chaperonin 10)

1.60 ± 0.07 1.38 ± 0.06 2.34 ± 0.15 1.17 ± 0.15 U09659

101207_at Ppia peptidylprolyl isomerase A 2.43 ± 0.07 1.98 ± 0.06 -1.08 ± 0.10 -1.18 ± 0.13 X52803

100089_at Ppic peptidylprolyl isomerase C 1.20 ± 0.11 -1.27 ± 0.07 1.77 ± 0.16 2.10 ± 0.16 M74227

99350_at Sec63 SEC63-like (S. cerevisiae) 1.70 ± 0.36 2.32 ± 0.12 1.28 ± 0.10 -1.06 ± 0.13 C76102

94817_at Serpinh1 serine (or cysteine) proteinase
inhibitor, clade H, member 1

1.14 ± 0.08 3.10 ± 0.06 6.16 ± 0.15 3.30 ± 0.43 X60676

Table 10.3.  Stress
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

ER stress

104155_f_at Atf3 activating transcription factor 3 3.77 ± 0.13 11.13 ± 0.38 6.68 ± 1.76 2.06 ± 0.27 U19118

100599_at Atf4 activating transcription factor 4 3.52 ± 0.06 3.73 ± 0.09 -1.03 ± 0.25 -2.13 ± 0.12 M94087

101429_at Ddit3 DNA-damage inducible
transcript 3

2.90 ± 0.10 5.01 ± 0.12 2.65 ± 0.42 1.02 ± 0.15 X67083

95057_at Herpud1 homocysteine-inducible,
endoplasmic reticulum stress-
inducible, ubiquitin-like domain
member 1

1.93 ± 0.08 3.18 ± 0.16 1.17 ± 0.22 -1.32 ± 0.11 AI846938

94821_at Xbp1 X-box binding protein 1 1.99 ± 0.08 2.30 ± 0.09 -1.21 ± 0.12 -1.74 ± 0.10 AW123880

92925_at Cebpb CCAAT/enhancer binding
protein (C/EBP), beta

-1.13 ± 0.18 4.26 ± 0.14 3.44 ± 0.34 1.32 ± 0.13 M61007

Oxidative stress

94132_at Gpx1 glutathione peroxidase 1 -2.11 ± 0.07 -2.43 ± 0.06 -1.10 ± 0.10 -1.02 ± 0.10 X03920

97681_f_at Gstm3 glutathione S-transferase, mu 3 -5.19 ± 0.15 -3.77 ± 0.07 -1.11 ± 0.11 1.06 ± 0.11 J03953

93026_at Mgst1 microsomal glutathione S-
transferase 1

1.63 ± 0.14 1.07 ± 0.12 4.13 ± 0.61 2.97 ± 0.36 AW124337

93573_at Mt1 metallothionein 1 -1.24 ± 0.07 -2.35 ± 0.06 2.98 ± 0.10 4.14 ± 1.04 V00835

101561_at Mt2 metallothionein 2 -1.51 ± 0.06 -2.20 ± 0.06 2.22 ± 0.11 2.77 ± 0.45 K02236

95340_at Mt3 metallothionein 3 -4.44 ± 0.06 -3.65 ± 0.06 1.15 ± 0.11 1.85 ± 0.27 M93310

100606_at Prnp prion protein 1.46 ± 0.08 2.09 ± 0.07 1.43 ± 0.12 -1.02 ± 0.12 M18070

100538_at Sod1 superoxide dismutase 1, soluble -3.26 ± 0.06 -1.50 ± 0.07 2.19 ± 0.43 1.05 ± 0.33 M35725

Other

100081_at Stip1 stress-induced phosphoprotein 1 1.67 ± 0.10 2.46 ± 0.10 1.25 ± 0.12 1.04 ± 0.11 U27830
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Table 10.4.  Inflammatory responses
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

98088_at Cd14 CD14 antigen -2.35 ± 0.13 -3.62 ± 0.07 -1.13 ± 0.11 1.33 ± 0.13 X13333

160511_at Cxcl12 chemokine (C-X-C motif) ligand
12

2.37 ± 0.17 1.77 ± 0.22 -1.32 ± 0.17 -1.51 ± 0.14 L12029

103202_at Gbp3 guanylate nucleotide binding
protein 3

1.14 ± 0.18 -1.19 ± 0.15 2.87 ± 0.18 2.67 ± 0.21 AW047476

101341_at H2-M9 histocompatibility 2, M region
locus 9

-5.34 ± 0.14 -5.30 ± 0.06 -1.52 ± 0.10 -1.01 ± 0.13 AF016308

102250_at Il27ra interleukin 27 receptor, alpha -2.61 ± 0.08 -2.23 ± 0.07 -1.23 ± 0.12 -1.16 ± 0.15 AF053005

93077_s_at Ly6c lymphocyte antigen 6 complex,
locus C

-2.71 ± 0.07 -2.44 ± 0.08 -1.20 ± 0.10 -1.09 ± 0.13 D86232

96939_at Myl9 myosin, light polypeptide 9,
regulatory

1.01 ± 0.17 -1.09 ± 0.11 1.62 ± 0.16 2.18 ± 0.25 AI842649

101923_at Pla2g7 phospholipase A2, group VII
(platelet-activating factor
acetylhydrolase, plasma)

-1.20 ± 0.07 -1.66 ± 0.06 -1.61 ± 0.15 2.14 ± 0.18 U34277

97944_f_at Tcra T-cell receptor alpha chain -2.45 ± 0.07 -1.71 ± 0.07 -1.14 ± 0.13 1.06 ± 0.13 AF099808

Table 10.5.  Cholesterol biosynthesis
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

94325_at Hmgcs1 3-hydroxy-3-methylglutaryl-Coenzyme
A synthase 1

1.39 ± 0.07 -1.22 ± 0.06 -2.85 ± 0.09 -2.07 ± 0.10 AW124932

94916_at Cyp51 cytochrome P450, 51 -1.41 ± 0.06 -1.47 ± 0.10 -3.21 ± 0.10 -3.12 ± 0.10 AW122260

160770_at Mvd mevalonate (diphospho) decarboxylase -3.06 ± 0.07 -2.61 ± 0.06 -6.96 ± 0.08 -4.98 ± 0.09 AW049778

95632_f_at Mvk mevalonate kinase 1.51 ± 0.15 1.17 ± 0.09 -8.26 ± 0.09 -7.52 ± 0.09 AW122653

98970_at Ggps1 geranylgeranyl diphosphate synthase 1 2.67 ± 0.13 2.79 ± 0.18 1.06 ± 0.13 -1.30 ± 0.11 AB016044

98630_at Nsdhl NAD(P) dependent steroid
dehydrogenase-like

1.62 ± 0.09 1.01 ± 0.06 -3.50 ± 0.09 -2.91 ± 0.10 AW106745

96269_at Idi1 isopentenyl-diphosphate delta
isomerase

-1.53 ± 0.06 -2.39 ± 0.06 -5.82 ± 0.09 -4.78 ± 0.09 AA716963

104285_at Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme
A reductase

-1.77 ± 0.06 -1.53 ± 0.06 -2.43 ± 0.10 -3.38 ± 0.09 M62766

160737_at Lss lanosterol synthase -1.23 ± 0.12 -1.11 ± 0.13 -2.65 ± 0.11 -3.17 ± 0.11 AW060927

100418_at Gng2 guanine nucleotide binding protein (G
protein), gamma 2 subunit

1.39 ± 0.07 2.36 ± 0.13 -1.96 ± 0.11 -2.00 ± 0.11 AW123750
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Table 10.6.  Lipid
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

102381_at Acsl4 acyl-CoA synthetase
long-chain family
member 4

1.05 ± 0.07 -2.08 ±0.06 -1.92 ± 0.09 -2.37 ± 0.10 AA619207

93720_at Agpat1 1-acylglycerol-3-
phosphate O-
acyltransferase 1
(lysophosphatidic acid
acyltransferase, alpha)

-3.47 ± 0.08 -1.30 ±0.06 -1.44 ± 0.11 -1.28 ± 0.11 AB005623

98372_at Aldh1a3 aldehyde dehydrogenase
family 1, subfamily A3

1.43 ± 0.29 -1.94 ±0.29 3.25 ± 0.21 -1.31 ± 0.13 AW050387

93320_at Cpt1a carnitine
palmitoyltransferase 1a,
liver

1.03 ± 0.08 1.05 ±0.06 2.79 ± 0.13 3.23 ± 0.49 AF017175

103581_at Cte1 cytosolic acyl-CoA
thioesterase 1

1.09 ± 0.07 -1.14 ±0.07 1.59 ± 0.10 2.38 ± 0.37 Y14004

103924_at D8Ertd3
19e

DNA segment, Chr 8,
ERATO Doi 319,
expressed

-2.72 ± 0.06 -1.70 ±0.06 -1.09 ± 0.14 -1.24 ± 0.13 AW048884

94393_r_at Elovl2 elongation of very long
chain fatty acids
(FEN1/Elo2, SUR4/Elo3,
yeast)-like 2

-2.49 ± 0.06 -2.84 ±0.06 -1.45 ± 0.10 -1.40 ± 0.10 AI317360

94418_at Elovl6 ELOVL family member
6, elongation of long
chain fatty acids (yeast)

1.26 ± 0.07 -1.12 ±0.09 -2.30 ± 0.10 -2.13 ± 0.10 AI839004

98575_at Fasn fatty acid synthase -1.01 ± 0.07 -1.26 ±0.06 -2.29 ± 0.09 -2.22 ± 0.10 X13135

97518_at Fdft1 farnesyl diphosphate
farnesyl transferase 1

1.25 ± 0.08 1.71 ±0.10 -3.17 ± 0.10 -3.22 ± 0.10 D29016

103367_at Galgt1 UDP-N-acetyl-alpha-D-
galactosamine:(N-
acetylneuraminyl)-
galactosylglucosylcerami
de-beta-1, 4-N-
acetylgalactosaminyltran
sferase

-1.29 ± 0.09 -1.02 ±0.08 -1.32 ± 0.10 -2.13 ± 0.11 U18975

104134_at Gdap2 ganglioside-induced
differentiation-
associated-protein 2

2.17 ± 0.16 2.91 ±0.23 1.38 ± 0.31 -1.49 ± 0.14 Y17851

94854_g_at Gnb1 guanine nucleotide
binding protein, beta 1

1.20 ± 0.07 2.26 ±0.07 -1.59 ± 0.10 -1.81 ± 0.12 U29055

96909_at Ndufab1 NADH dehydrogenase
(ubiquinone) 1,
alpha/beta subcomplex, 1

2.14 ± 0.06 1.76 ±0.10 1.34 ± 0.10 1.06 ± 0.17 AI849803

104342_i_a
t

Pla2g12a phospholipase A2, group
XIIA

2.08 ± 0.12 1.10 ±0.08 -1.02 ± 0.11 1.18 ± 0.13 AI845798

92466_at Plcb1 phospholipase C, beta 1 -2.04 ± 0.07 -2.03 ±0.06 -1.24 ± 0.10 -1.07 ± 0.11 U85714

92465_at Plcb1 phospholipase C, beta 1 2.07 ± 0.13 2.02 ±0.09 -1.67 ± 0.10 -1.57 ± 0.17 U85713

92474_at Pld1 phospholipase D1 -1.70 ± 0.12 -2.08 ±0.09 -1.03 ± 0.10 1.66 ± 0.19 AF083497



XI

100927_at Pltp phospholipid transfer
protein

-3.48 ± 0.09 -3.43 ±0.09 1.45 ± 0.27 3.04 ± 0.12 U28960

100622_at Prdx6 peroxiredoxin 6 1.29 ± 0.06 -1.10 ±0.06 1.66 ± 0.23 2.26 ± 0.21 AF093857

160808_at Prkab1 protein kinase, AMP-
activated, beta 1 non-
catalytic subunit

1.75 ± 0.11 2.29 ±0.06 1.58 ± 0.15 1.06 ± 0.11 AI854287

161864_f_a
t

Ptdss1 phosphatidylserine
synthase 1

-1.56 ± 0.13 -2.27 ±0.08 1.19 ± 0.12 -1.18 ± 0.11 AV068306

103386_at Pte1 peroxisomal acyl-CoA
thioesterase 1

-1.08 ± 0.10 2.40 ±0.10 -1.39 ± 0.13 -1.65 ± 0.13 AW046123

160388_at Sc4mol sterol-C4-methyl
oxidase-like

-1.12 ± 0.07 -1.59 ±0.06 -2.95 ± 0.10 -3.66 ± 0.09 AI848668

94056_at Scd1 stearoyl-Coenzyme A
desaturase 1

-2.08 ± 0.06 -2.02 ±0.07 -5.64 ± 0.09 -7.42 ± 0.09 M21285

103569_at Sh3glb1 SH3-domain GRB2-like
B1 (endophilin)

2.71 ± 0.08 1.80 ±0.11 -1.30 ± 0.11 -1.24 ± 0.16 AI842874

160865_at Vldlr very low density
lipoprotein receptor

3.68 ± 0.16 1.83 ±0.15 -1.68 ± 0.12 -1.46 ± 0.16 L33417

Table 10.7.  Apoptosis
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

161980_f_at Bag3 Bcl2-associated athanogene 3 1.37 ± 0.29 1.97 ± 0.24 6.36 ± 1.02 3.41 ± 0.70 AV373612

94448_at Bcl10 B-cell leukemia/lymphoma
10

1.37 ± 0.14 2.06 ± 0.07 1.30 ± 0.10 1.11 ± 0.13 AJ006289

99018_at Bclaf1 BCL2-associated
transcription factor 1

1.21 ± 0.12 1.81 ± 0.09 -1.59 ± 0.12 1.33 ± 0.27 AA874446

102727_at Bdnf brain derived neurotrophic
factor

2.28 ± 0.19 1.23 ± 0.10 1.56 ± 0.12 -1.17 ± 0.13 X55573

95093_at Ccar1 cell division cycle and
apoptosis regulator 1

2.63 ± 0.09 1.58 ± 0.16 -1.02 ± 0.11 -1.27 ± 0.13 AI035334

95545_at Igf1 insulin-like growth factor 1 -4.23 ± 0.08 -2.11 ± 0.07 -1.49 ± 0.11 -1.45 ± 0.14 X04480

160309_at Map3k7ip2 mitogen-activated protein
kinase kinase kinase 7
interacting protein 2

2.00 ± 0.11 1.94 ± 0.11 1.29 ± 0.12 1.07 ± 0.15 AW259500

98110_at Mdm2 transformed mouse 3T3 cell
double minute 2

1.17 ± 0.07 1.18 ± 0.07 2.77 ± 0.41 1.26 ± 0.14 AI853375

93439_f_at Pawr PRKC, apoptosis, WT1,
regulator

-1.10 ± 0.17 1.06 ± 0.18 1.87 ± 0.27 2.70 ± 0.34 AA260005

160696_at Tia1 cytotoxic granule-associated
RNA binding protein 1

2.41 ± 0.08 1.95 ± 0.08 1.05 ± 0.10 1.03 ± 0.11 U00689

102599_at Tpt1 tumor protein,
translationally-controlled 1

2.10 ± 0.07 2.05 ± 0.06 1.10 ± 0.11 -1.10 ± 0.13 X06407

104275_g_at Trp53 transformation related
protein 53

-1.29 ± 0.08 2.01 ± 0.14 1.36 ± 0.15 1.16 ± 0.11 AB021961

160115_at Txnl1 thioredoxin-like 1 2.53 ± 0.09 1.79 ± 0.09 1.75 ± 0.11 1.13 ± 0.12 AF052660



XII

Table 10.8.  Proteolysis
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

94238_at 2310046G15Rik RIKEN cDNA
2310046G15 gene

-1.24 ± 0.11 -2.06 ± 0.09 1.65 ± 0.23 3.29 ± 0.21 AW228316

101040_at Capn2 calpain 2 2.23 ± 0.09 2.63 ± 0.12 1.57 ± 0.10 1.05 ± 0.14 D38117

93048_at Clpp caseinolytic protease,
ATP-dependent,
proteolytic subunit
homolog (E. coli)

2.43 ± 0.10 3.38 ± 0.10 1.75 ± 0.18 -1.15 ± 0.19 AJ005253

160349_at Cndp2 CNDP dipeptidase 2
(metallopeptidase M20
family)

1.56 ± 0.13 2.77 ± 0.13 1.88 ± 0.12 -1.13 ± 0.17 AI854839

92256_at Ctsb cathepsin B 2.85 ± 0.27 3.18 ± 0.16 2.20 ± 0.12 1.82 ± 0.20 AI853714

93810_at Ctsd cathepsin D 1.01 ± 0.06 1.69 ± 0.07 2.15 ± 0.13 1.91 ± 0.21 X68378

97336_at Ctsf cathepsin F -2.52 ± 0.07 1.11 ± 0.08 1.09 ± 0.10 1.14 ± 0.11 AJ131851

96270_at D11Bwg0434e DNA segment, Chr 11,
Brigham & Women's
Genetics 0434 expressed

-1.66 ± 0.06 -2.15 ± 0.06 -1.18 ± 0.10 -1.09 ± 0.10 AI847092

161358_r_at Dpep3 dipeptidase 3 -1.64 ± 0.13 -3.89 ± 0.09 -1.48 ± 0.11 -1.13 ± 0.11 AV209030

98287_at Dpp6 dipeptidylpeptidase 6 -3.44 ± 0.07 -2.61 ± 0.06 -1.41 ± 0.11 -1.26 ± 0.14 AF092507

94380_at Ide insulin degrading
enzyme

1.71 ± 0.07 3.48 ± 0.08 2.34 ± 0.53 -1.10 ± 0.13 AI852581

160290_at Ide insulin degrading
enzyme

3.17 ± 0.07 3.03 ± 0.08 2.78 ± 0.43 -1.04 ± 0.10 AI574278

92607_at Mest mesoderm specific
transcript

1.39 ± 0.07 -1.15 ± 0.08 2.56 ± 0.19 2.22 ± 0.19 AF017994

104015_at Metap1 methionyl
aminopeptidase 1

1.75 ± 0.10 2.27 ± 0.11 1.12 ± 0.19 -1.41 ± 0.12 AW047992

93981_at Plat plasminogen activator,
tissue

1.18 ± 0.14 1.05 ± 0.10 2.66 ± 0.13 2.11 ± 0.20 J03520

161446_r_at Prss25 protease, serine, 25 -2.11 ± 0.06 -2.26 ± 0.06 -1.32 ± 0.10 -1.06 ± 0.10 AV353694

104025_at Thop1 thimet oligopeptidase 1 -1.49 ± 0.07 1.96 ± 0.06 -1.02 ± 0.13 -1.15 ± 0.11 AW047185

96730_at Tpp2 tripeptidyl peptidase II 2.22 ± 0.14 2.98 ± 0.32 1.24 ± 0.10 -1.16 ± 0.13 X81323

Table 10.9.  Growth and development
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

100584_at Anxa4 annexin A4 -1.48 ± 0.18 -1.49± 0.22 2.69 ± 0.25 2.27 ± 0.21 U72941

93083_at Anxa5 annexin A5 -1.32 ± 0.11 -1.01± 0.07 1.75 ± 0.11 2.51 ± 0.13 D63423

101475_at Bmi1 B lymphoma Mo-
MLV insertion
region 1

3.02 ± 0.14 2.88 ± 0.07 1.13 ± 0.12 -1.14± 0.16 M64068

98066_r_at Brd2 bromodomain
containing 2

2.19 ± 0.07 2.18 ± 0.08 1.06 ± 0.20 -1.49± 0.11 AL009226

160430_at Catnb catenin beta 2.13 ± 0.07 1.84 ± 0.06 1.10 ± 0.11 -1.02± 0.10 M90364

103088_at Chl1 cell adhesion
molecule with
homology to
L1CAM

3.83 ± 0.08 1.93 ± 0.11 -1.83 ± 0.11 -1.79± 0.12 X94310

100022_at Cish cytokine inducible
SH2-containing
protein

2.16 ± 0.40 3.02 ± 0.14 -1.34 ± 0.10 -1.12± 0.10 D89613



XIII

99113_at Cops3 COP9 (constitutive
photomorphogenic)
homolog, subunit 3
(Arabidopsis
thaliana)

3.73 ± 0.20 3.08 ± 0.09 1.37 ± 0.17 -1.12± 0.18 AF071313

160098_s_at Cryab crystallin, alpha B 1.38 ± 0.07 2.67 ± 0.10 1.15 ± 0.12 -1.21± 0.11 AI842724

101450_at Csf1 colony stimulating
factor 1
(macrophage)

-1.41 ± 0.08 -1.32± 0.07 2.88 ± 0.24 2.02 ± 0.12 M21952

93294_at Ctgf connective tissue
growth factor

2.94 ± 0.70 2.11 ± 0.28 14.63 ± 0.63 7.93 ± 1.62 M70642

92777_at Cyr61 cysteine rich protein
61

1.44 ± 0.16 1.26 ± 0.17 2.69 ± 0.30 2.61 ± 0.14 M32490

97372_at Dazap1 DAZ associated
protein 1

-2.21 ± 0.10 -2.09± 0.08 -1.20 ± 0.10 -1.06± 0.11 AA880432

102896_at Dok1 downstream of
tyrosine kinase 1

3.28 ± 1.07 6.24 ± 0.31 3.79 ± 0.14 1.17 ± 0.17 U78818

97426_at Emp1 epithelial membrane
protein 1

1.18 ± 0.15 1.04 ± 0.08 4.98 ± 0.45 4.06 ± 0.14 X98471

97689_at F3 coagulation factor
III

-1.16 ± 0.11 1.42 ± 0.14 3.29 ± 0.17 2.14 ± 0.17 M26071

95637_at Flnb filamin, beta -1.53 ± 0.10 1.04 ± 0.12 2.11 ± 0.15 1.63 ± 0.13 AI838592

102196_at Gna11 guanine nucleotide
binding protein,
alpha 11

1.23 ± 0.14 2.15 ± 0.07 1.28 ± 0.11 -1.35± 0.10 U37413

95082_at Igfbp3 insulin-like growth
factor binding
protein 3

1.03 ± 0.14 -1.46± 0.08 2.41 ± 0.17 1.47 ± 0.28 AI842277

100566_at Igfbp5 insulin-like growth
factor binding
protein 5

1.65 ± 0.07 1.02 ± 0.06 -1.05 ± 0.10 2.06 ± 0.13 L12447

94335_r_at Ina internexin neuronal
intermediate
filament protein,
alpha

2.19 ± 0.06 -1.37± 0.06 -1.61 ± 0.14 -1.52± 0.12 L27220

100277_at Inhba inhibin beta-A -2.15 ± 0.09 -3.25± 0.06 -1.77 ± 0.12 -1.59± 0.10 X69619

160828_at Inhbb inhibin beta-B -1.58 ± 0.09 -2.41± 0.08 -1.14 ± 0.12 1.15 ± 0.18 X69620

104386_f_at Itgav integrin alpha V -1.88 ± 0.07 -2.69± 0.08 2.06 ± 0.13 2.23 ± 0.31 AI843901

93682_at Ldb2 LIM domain binding
2

2.84 ± 0.18 1.69 ± 0.09 -1.89 ± 0.10 -1.80± 0.10 U89489

103021_r_at Map3k1 mitogen activated
protein kinase kinase
kinase 1

-1.36 ± 0.19 -2.14± 0.11 -1.05 ± 0.18 1.39 ± 0.14 AI317205

94891_s_at Mea1 male enhanced
antigen 1

2.01 ± 0.15 2.63 ± 0.11 1.36 ± 0.10 -1.55± 0.15 M27938

96632_at Morf4l2 mortality factor 4
like 2

1.84 ± 0.07 2.40 ± 0.06 1.20 ± 0.13 -1.17± 0.12 AB025049

92717_at Neurod1 neurogenic
differentiation 1

1.31 ± 0.08 1.27 ± 0.10 -1.78 ± 0.11 -2.58± 0.11 U28068

160668_at Ogfr opioid growth factor
receptor

2.07 ± 0.13 2.92 ± 0.12 1.11 ± 0.10 -1.26± 0.11 AI838195

99023_at Pafah1b2platelet-activating
factor
acetylhydrolase,
isoform 1b, alpha2
subunit

1.41 ± 0.13 2.41 ± 0.15 -1.03 ± 0.11 -1.84± 0.16 U57747



XIV

95368_at Plxna2 plexin A2 2.24 ± 0.10 2.07 ± 0.15 -1.28 ± 0.10 -1.19± 0.13 D86949

93390_g_at Prom1 prominin 1 1.00 ± 0.11 -1.54± 0.14 1.03 ± 0.12 2.13 ± 0.11 AF039663

97474_r_at Ptn pleiotrophin -1.04 ± 0.08 -3.79± 0.07 1.04 ± 0.10 1.46 ± 0.13 D90225

98835_at Sema3a sema domain,
immunoglobulin
domain (Ig), short
basic domain,
secreted,
(semaphorin) 3A

2.21 ± 0.18 1.93 ± 0.13 -1.09 ± 0.14 -1.12± 0.12 D85028

95387_f_at Sema4b sema domain,
immunoglobulin
domain (Ig),
transmembrane
domain (TM) and
short cytoplasmic
domain,
(semaphorin) 4B

8.87 ± 0.47 3.89 ± 0.12 1.07 ± 0.20 -1.36± 0.17 AA266467

99911_at Sema6b sema domain,
transmembrane
domain (TM), and
cytoplasmic domain,
(semaphorin) 6B

-4.00 ± 0.07 -2.12± 0.06 -1.66 ± 0.10 -1.82± 0.12 AF036585

97519_at Spp1 secreted
phosphoprotein 1

2.90 ± 0.07 1.84 ± 0.07 1.00 ± 0.10 1.60 ± 0.23 X13986

103832_at Tfip11 tuftelin interacting
protein 11

2.14 ± 0.20 2.81 ± 0.15 1.15 ± 0.13 -1.21± 0.12 AF097181

100953_at Timeless timeless homolog
(Drosophila)

-1.49 ± 0.07 -2.01± 0.07 -1.06 ± 0.10 1.23 ± 0.11 AB015598

161258_at Wt1 Wilms tumor
homolog

-3.34 ± 0.10 -3.99± 0.07 -1.23 ± 0.10 -1.20± 0.10 AV322247

Table 10.10.  Regulation of transcription
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

95479_at C1d nuclear DNA binding
protein

-1.83 ± 0.09 -2.84 ± 0.06 1.00 ± 0.12 -1.02 ± 0.13 X95591

92681_at Magel2 melanoma antigen,
family L, 2

3.33 ± 0.44 2.02 ± 0.20 1.85 ± 0.46 -1.79 ± 0.12 AJ243608

100554_at Pdlim1 PDZ and LIM domain 1
(elfin)

-1.44 ± 0.11 -2.21 ± 0.09 1.59 ± 0.11 1.72 ± 0.15 AF053367

92280_at Strm striamin -2.32 ± 0.13 -1.43 ± 0.09 1.71 ± 0.32 1.54 ± 0.22 AA867778

103762_at 2810405L04Rik RIKEN cDNA
2810405L04 gene

1.69 ± 0.08 2.69 ± 0.08 1.55 ± 0.23 -1.31 ± 0.18 AI853340

97438_r_at 4631416I11Rik RIKEN cDNA
4631416I11 gene

2.12 ± 0.30 1.20 ± 0.21 -1.85 ± 0.13 -1.33 ± 0.13 AW122483

97437_f_at 4631416I11Rik RIKEN cDNA
4631416I11 gene

2.86 ± 0.30 1.56 ± 0.15 -1.09 ± 0.15 -1.52 ± 0.11 AW122483

96196_i_at 5730589K01Rik RIKEN cDNA
5730589K01 gene

2.25 ± 0.12 2.85 ± 0.12 1.56 ± 0.13 -1.19 ± 0.11 AI851708

162010_r_at Atf2 activating transcription
factor 2

-1.02 ± 0.14 -2.51 ± 0.09 -1.24 ± 0.10 -1.14 ± 0.13 AV246802

95673_s_at Basp1 brain abundant,
membrane attached
signal protein 1

2.83 ± 0.08 2.64 ± 0.07 -1.03 ± 0.12 -1.24 ± 0.13 AW124113



XV

95674_r_at Basp1 brain abundant,
membrane attached
signal protein 1

3.25 ± 0.09 2.25 ± 0.06 -1.09 ± 0.16 -1.39 ± 0.16 AI851985

100544_at Brd7 bromodomain
containing 7

1.63 ± 0.12 2.21 ± 0.14 1.12 ± 0.11 -1.30 ± 0.15 AW125534

98447_at Cebpa CCAAT/enhancer
binding protein
(C/EBP), alpha

-2.93 ± 0.07 -1.60 ± 0.07 1.11 ± 0.14 -1.09 ± 0.12 M62362

160894_at Cebpd CCAAT/enhancer
binding protein
(C/EBP), delta

-1.46 ± 0.09 -1.05 ± 0.13 2.82 ± 0.37 2.44 ± 0.11 X61800

92195_at Cebpg CCAAT/enhancer
binding protein
(C/EBP), gamma

2.08 ± 0.18 2.41 ± 0.11 1.33 ± 0.15 -1.13 ± 0.12 AB012273

103900_at Centg3 centaurin, gamma 3 1.00 ± 0.18 2.19 ± 0.09 -1.07 ± 0.12 -1.87 ± 0.12 AW124150

94490_at Cnot8 CCR4-NOT
transcription complex,
subunit 8

1.99 ± 0.17 2.03 ± 0.11 1.06 ± 0.11 -1.08 ± 0.14 AW122419

95460_at Cops5 COP9 (constitutive
photomorphogenic)
homolog, subunit 5
(Arabidopsis thaliana)

2.90 ± 0.07 3.30 ± 0.08 1.55 ± 0.18 -1.07 ± 0.12 U70736

160502_at Creg cellular repressor of
E1A-stimulated genes

3.72 ± 0.17 3.72 ± 0.33 3.45 ± 0.21 1.37 ± 0.15 AF084524

96793_at Dmap1 DNA methyltransferase
1-associated protein 1

2.17 ± 0.16 2.74 ± 0.08 1.32 ± 0.13 1.01 ± 0.17 AI607813

96297_at Ebna1bp2 EBNA1 binding protein
2

2.26 ± 0.13 2.51 ± 0.10 1.52 ± 0.10 1.00 ± 0.10 AI845934

160244_at Fem1a feminization 1 homolog
a (C. elegans)

1.65 ± 0.09 2.22 ± 0.13 1.25 ± 0.10 -1.09 ± 0.13 AI836048

96046_at Hdac1 histone deacetylase 1 1.89 ± 0.18 1.97 ± 0.07 1.19 ± 0.11 1.17 ± 0.13 X98207

97550_at Hdac7a histone deacetylase 7A -2.05 ± 0.06 -1.58 ± 0.08 -1.03 ± 0.10 -1.12 ± 0.11 AW047228

103765_at Hkr3 GLI-Kruppel family
member HKR3

1.84 ± 0.41 3.35 ± 0.32 1.70 ± 0.13 1.01 ± 0.11 AA718040

100007_at Irf2bp1 interferon regulatory
factor 2 binding protein
1

-2.53 ± 0.06 -1.67 ± 0.06 -1.25 ± 0.11 -1.16 ± 0.12 AI837573

160396_at Lass2 longevity assurance
homolog 2 (S.
cerevisiae)

1.47 ± 0.21 1.24 ± 0.15 2.27 ± 0.11 1.44 ± 0.12 AW121580

104590_at Mef2c myocyte enhancer
factor 2C

1.59 ± 0.07 1.36 ± 0.10 -1.94 ± 0.10 -2.19 ± 0.13 L13171

103925_at Mllt3 myeloid/lymphoid or
mixed lineage-leukemia
translocation to 3
homolog (Drosophila)

2.06 ± 0.08 1.15 ± 0.08 -1.45 ± 0.10 -1.19 ± 0.13 AW120605

96497_s_at Myt1l myelin transcription
factor 1-like

2.24 ± 0.12 2.07 ± 0.07 -1.47 ± 0.10 -1.56 ± 0.11 AI848062

100962_at Nab2 Ngfi-A binding protein
2

-1.42 ± 0.09 -1.28 ± 0.08 2.11 ± 0.13 1.44 ± 0.11 U47543

92562_at Nfe2l2 nuclear factor, erythroid
derived 2, like 2

1.07 ± 0.08 1.43 ± 0.08 2.99 ± 0.30 2.82 ± 0.15 U70475

99527_at Nfe2l3 nuclear factor, erythroid
derived 2, like 3

2.42 ± 0.58 2.47 ± 0.38 -4.39 ± 0.18 -1.21 ± 0.13 AB013852



XVI

102955_at Nfil3 nuclear factor,
interleukin 3, regulated

-1.02 ± 0.11 2.32 ± 0.14 1.05 ± 0.26 -1.83 ± 0.11 U83148

92747_at Nkx2-2 NK2 transcription
factor related, locus 2
(Drosophila)

-6.27 ± 0.12 -2.00 ± 0.16 1.14 ± 0.10 -1.03 ± 0.15 U31566

92956_at Notch3 Notch gene homolog 3
(Drosophila)

-1.48 ± 0.09 -2.07 ± 0.08 1.13 ± 0.15 1.10 ± 0.12 X74760

101665_at Nr5a1 nuclear receptor
subfamily 5, group A,
member 1

-2.03 ± 0.08 -2.21 ± 0.06 -1.35 ± 0.10 -1.16 ± 0.10 C85959

93740_at Nsep1 nuclease sensitive
element binding protein
1

3.42 ± 0.07 2.95 ± 0.09 1.01 ± 0.12 -1.15 ± 0.15 U33196

99158_at Ostf1 osteoclast stimulating
factor 1

-1.17 ± 0.16 -1.39 ± 0.09 2.71 ± 0.26 1.31 ± 0.13 U58888

102257_at Pknox1 Pbx/knotted 1
homeobox

1.99 ± 0.08 2.29 ± 0.08 -1.65 ± 0.16 -1.01 ± 0.20 AF061270

99015_at Pml promyelocytic leukemia -2.01 ± 0.07 -2.06 ± 0.06 -1.45 ± 0.10 1.05 ± 0.11 U33626

160146_r_at Polr2c polymerase (RNA) II
(DNA directed)
polypeptide C

2.47 ± 0.21 -1.15 ± 0.09 -1.23 ± 0.10 -1.26 ± 0.11 D83999

93325_at Polr2e polymerase (RNA) II
(DNA directed)
polypeptide E

2.03 ± 0.10 1.61 ± 0.07 1.33 ± 0.11 1.16 ± 0.13 AI845735

96306_at Polr2i polymerase (RNA) II
(DNA directed)
polypeptide I

1.76 ± 0.11 2.29 ± 0.09 1.08 ± 0.16 -1.97 ± 0.11 AI852210

95003_at Polr2k polymerase (RNA) II
(DNA directed)
polypeptide K

6.99 ± 0.18 4.09 ± 0.13 1.50 ± 0.20 1.15 ± 0.30 AA880275

102652_at Pou3f1 POU domain, class 3,
transcription factor 1

1.76 ± 0.17 -1.48 ± 0.13 -2.77 ± 0.11 1.03 ± 0.20 X56959

161347_r_at Rpo1-1 RNA polymerase 1-1 -2.40 ± 0.08 -5.28 ± 0.10 -1.27 ± 0.10 1.04 ± 0.10 AV148041

98085_f_at Rpo1-1 /// Rps28 RNA polymerase 1-1 ///
ribosomal protein S28

3.15 ± 0.11 2.86 ± 0.07 1.12 ± 0.14 -1.03 ± 0.19 U11248

98081_at Rpo1-3 RNA polymerase 1-3 1.96 ± 0.09 2.03 ± 0.12 1.11 ± 0.13 -1.19 ± 0.17 AI853173

102856_at Sox10 SRY-box containing
gene 10

-3.08 ± 0.08 -2.05 ± 0.08 -1.31 ± 0.11 1.08 ± 0.14 AF047389

101631_at Sox11 SRY-box containing
gene 11

2.53 ± 0.08 1.65 ± 0.17 -1.18 ± 0.10 -1.15 ± 0.13 AF009414

101684_r_at Srst simple repeat sequence-
containing transcript

3.59 ± 0.07 3.35 ± 0.19 -1.09 ± 0.11 -1.13 ± 0.10 X67863

103504_at Ssbp2 single-stranded DNA
binding protein 2

2.11 ± 0.08 1.87 ± 0.07 -1.23 ± 0.10 -1.25 ± 0.10 AI837107

100094_at Supt5h suppressor of Ty 5
homolog (S. cerevisiae)

1.92 ± 0.07 2.40 ± 0.07 1.27 ± 0.14 -1.04 ± 0.14 U88539

92339_at Taf1a TATA box binding
protein (Tbp)-
associated factor, RNA
polymerase I, A

1.70 ± 0.33 3.21 ± 0.08 1.38 ± 0.13 1.09 ± 0.11 Y09972

99041_at Taf1b TATA box binding
protein (Tbp)-
associated factor, RNA
polymerase I, B

1.49 ± 0.08 2.08 ± 0.10 1.11 ± 0.13 -1.21 ± 0.12 Y09973



XVII

93918_at Taf9 TAF9 RNA polymerase
II, TATA box binding
protein (TBP)-
associated factor

2.61 ± 0.07 2.53 ± 0.08 1.18 ± 0.12 -1.11 ± 0.13 AA673500

102700_at Tbr1 T-box brain gene 1 2.13 ± 0.10 1.44 ± 0.09 -1.09 ± 0.10 -1.19 ± 0.15 U49251

104622_at Tcea2 transcription elongation
factor A (SII), 2

1.45 ± 0.15 2.21 ± 0.28 1.16 ± 0.15 -1.12 ± 0.10 D86081

101008_at Tcerg1 transcription elongation
regulator 1 (CA150)

2.04 ± 0.16 1.89 ± 0.10 1.09 ± 0.13 -1.29 ± 0.10 AB023485

102354_at Tcf19 transcription factor 19 1.11 ± 0.14 1.05 ± 0.14 1.35 ± 0.14 2.34 ± 0.16 AI049398

100947_at Tcf20 transcription factor 20 3.65 ± 0.32 2.00 ± 0.28 -1.03 ± 0.11 -1.43 ± 0.19 AI847906

160363_at Tcfl1 transcription factor-like
1

1.95 ± 0.06 2.53 ± 0.09 -1.15 ± 0.10 -1.31 ± 0.11 D43643

100935_at Tcfl4 transcription factor-like
4

1.87 ± 0.15 2.31 ± 0.12 1.24 ± 0.10 -1.40 ± 0.13 U43548

94100_s_at Trpc4 transient receptor
potential cation
channel, subfamily C,
member 4

1.51 ± 0.27 -1.09 ± 0.09 -2.14 ± 0.10 -1.42 ± 0.10 AF011543

93656_g_at Usf1 upstream transcription
factor 1

-1.64 ± 0.07 2.10 ± 0.09 1.14 ± 0.15 -1.27 ± 0.12 X95316

103013_at Usf2 upstream transcription
factor 2

-1.87 ± 0.08 -2.24 ± 0.07 -1.22 ± 0.11 -1.23 ± 0.11 X77602

92444_f_at Zfp1 zinc finger protein 1 2.46 ± 0.09 2.65 ± 0.11 -1.01 ± 0.10 -1.16 ± 0.11 X16493

102263_at Zfp143 zinc finger protein 143 2.55 ± 0.15 2.27 ± 0.15 1.15 ± 0.23 -1.21 ± 0.10 U29513

99502_at Zfp148 zinc finger protein 148 2.65 ± 0.14 1.49 ± 0.12 1.26 ± 0.13 1.00 ± 0.11 U80078

94937_at Zfp277 zinc finger protein 277 2.46 ± 0.13 2.40 ± 0.15 1.17 ± 0.14 1.25 ± 0.11 AW121594

98032_at Zfp35 zinc finger protein 35 2.01 ± 0.23 2.19 ± 0.11 1.09 ± 0.16 -1.30 ± 0.12 M36146

93350_f_at Zfp422 zinc finger protein 422 1.87 ± 0.16 2.95 ± 0.08 -1.28 ± 0.10 -1.06 ± 0.19 AW209414

102304_f_at Zfp61 zinc finger protein 61 2.71 ± 0.13 2.65 ± 0.17 1.02 ± 0.10 -1.27 ± 0.10 L28167

103841_at Zfp64 zinc finger protein 64 2.03 ± 0.11 2.82 ± 0.15 1.62 ± 0.21 -1.23 ± 0.11 U49046

95521_s_at Zfp68 zinc finger protein 68 1.85 ± 0.18 2.57 ± 0.15 -1.17 ± 0.10 -1.35 ± 0.13 AB024005

92934_at Zfp90 zinc finger protein 90 2.38 ± 0.10 2.08 ± 0.18 -1.08 ± 0.13 -1.62 ± 0.11 X79828

96707_at Zipro1 zinc finger proliferation
1

2.06 ± 0.07 2.50 ± 0.07 1.22 ± 0.24 -1.21 ± 0.14 D10630

Table 10.11.  Regulation of cell cycle
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

96220_at Lig3 ligase III, DNA, ATP-
dependent

2.34 ± 0.13 1.43 ± 0.08 1.18 ± 0.16 -1.02 ± 0.14 AW123157

95471_at Cdkn1c cyclin-dependent kinase
inhibitor 1C (P57)

2.36 ± 0.15 1.18 ± 0.12 1.22 ± 0.13 1.03 ± 0.11 U22399

92477_at Spin spindlin 1.11 ± 0.11 2.10 ± 0.13 -1.70 ± 0.10 -1.87 ± 0.19 AA681862

161931_r_at Mki67 antigen identified by
monoclonal antibody Ki
67

-4.08 ± 0.18 -1.83 ± 0.13 -1.29 ± 0.10 1.22 ± 0.13 AV309347

95610_at Cdc5l cell division cycle 5-
like (S. pombe)

2.10 ± 0.21 2.09 ± 0.13 1.02 ± 0.16 1.03 ± 0.11 AA636547

92423_at Pard6a par-6 (partitioning
defective 6,) homolog
alpha (C. elegans)

2.02 ± 0.08 2.14 ± 0.06 -1.08 ± 0.12 -1.25 ± 0.14 AF070970
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94954_at Anapc4 anaphase promoting
complex subunit 4

1.94 ± 0.07 2.08 ± 0.07 1.25 ± 0.14 -1.20 ± 0.11 AI846628

96236_at Cdc16 CDC16 cell division
cycle 16 homolog (S.
cerevisiae)

3.04 ± 0.23 2.92 ± 0.11 1.81 ± 0.21 -1.34 ± 0.18 AW122965

96319_at Cdc20 cell division cycle 20
homolog (S. cerevisiae)

1.90 ± 0.07 2.30 ± 0.07 1.50 ± 0.10 1.42 ± 0.11 AW061324

104090_at Cdc23 CDC23 (cell division
cycle 23, yeast,
homolog)

1.89 ± 0.08 2.68 ± 0.15 -1.11 ± 0.18 -1.29 ± 0.14 AA657164

97527_at Cks2 CDC28 protein kinase
regulatory subunit 2

2.33 ± 0.10 2.19 ± 0.07 1.25 ± 0.11 1.64 ± 0.10 AA681998

94232_at Ccnd1 cyclin D1 -2.21 ± 0.11 -2.31 ± 0.08 1.64 ± 0.10 1.28 ± 0.10 AI849928

102292_at Gadd45a growth arrest and DNA-
damage-inducible 45
alpha

2.49 ± 0.12 4.20 ± 0.16 4.73 ± 0.62 1.98 ± 0.26 U00937

94482_at Csnk2a2 casein kinase II, alpha
2, polypeptide

1.45 ± 0.21 2.04 ± 0.13 1.00 ± 0.11 -1.46 ± 0.13 AF012251

98067_at Cdkn1a cyclin-dependent kinase
inhibitor 1A (P21)

1.27 ± 0.09 1.25 ± 0.08 3.14 ± 0.33 1.19 ± 0.17 U09507

99135_at Cdc37 cell division cycle 37
homolog (S. cerevisiae)

1.42 ± 0.09 2.34 ± 0.06 1.08 ± 0.12 -1.06 ± 0.13 U43076

103520_at Vegfa vascular endothelial
growth factor A

2.88 ± 0.43 4.89 ± 0.21 -1.07 ± 0.22 -1.38 ± 0.14 M95200

102821_s_at Ran RAN, member RAS
oncogene family

2.09 ± 0.07 2.34 ± 0.08 1.40 ± 0.15 1.02 ± 0.17 L32752

101254_at Ran RAN, member RAS
oncogene family

2.25 ± 0.07 2.14 ± 0.06 1.33 ± 0.14 1.00 ± 0.16 L32751

101959_r_at Tfdp1 transcription factor Dp
1

2.01 ± 0.07 1.46 ± 0.06 1.14 ± 0.11 -1.06 ± 0.12 X72310

94264_at Raf1 v-raf-1 leukemia viral
oncogene 1

1.56 ± 0.07 2.22 ± 0.06 1.21 ± 0.19 -1.24 ± 0.15 AW122170

92502_at Plagl1 pleiomorphic adenoma
gene-like 1

-1.38 ± 0.12 -1.03 ± 0.07 2.04 ± 0.42 2.13 ± 0.20 X95504

93300_at Tgfb2 transforming growth
factor, beta 2

1.40 ± 0.18 -2.22 ± 0.08 1.14 ± 0.12 1.45 ± 0.16 X57413

99068_at Anapc1 anaphase promoting
complex subunit 1

1.89 ± 0.08 2.29 ± 0.08 1.39 ± 0.12 1.07 ± 0.10 X80169

160127_at Ccng1 cyclin G1 -1.01 ± 0.07 -1.34 ± 0.06 2.59 ± 0.15 1.97 ± 0.13 L49507

98478_at Ccng2 cyclin G2 2.24 ± 0.10 1.39 ± 0.07 -1.25 ± 0.10 -1.14 ± 0.12 U95826

100130_at Jun Jun oncogene 4.76 ± 0.45 8.30 ± 0.13 1.91 ± 0.42 -1.45 ± 0.14 X12761

97991_at Kras2 Kirsten rat sarcoma
oncogene 2, expressed

1.82 ± 0.13 2.06 ± 0.07 1.07 ± 0.14 -1.34 ± 0.10 X02452

96598_at D430039C20Rik RIKEN cDNA
D430039C20 gene

2.14 ± 0.27 1.75 ± 0.10 -1.20 ± 0.10 1.03 ± 0.10 AA122714

100559_at Dhx16 DEAH (Asp-Glu-Ala-
His) box polypeptide 16

2.03 ± 0.08 2.00 ± 0.09 1.39 ± 0.13 1.03 ± 0.16 AI853344



XIX

160650_at Polr3d polymerase (RNA) III
(DNA directed)
polypeptide D

2.79 ± 0.11 2.31 ± 0.14 1.00 ± 0.10 -1.05 ± 0.11 AI844711

94820_r_at Ccni cyclin I -1.33 ± 0.07 -2.73 ± 0.06 -1.38 ± 0.10 1.37 ± 0.13 AF005886

Table 10.12.  Transport
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

161029_at 6330416G13Rik RIKEN cDNA
6330416G13 gene

1.84 ± 0.25 2.37 ± 0.16 -1.07 ± 0.12 -1.44 ± 0.11 AI849583

93626_at Abcg2 ATP-binding cassette,
sub-family G (WHITE),
member 2

1.40 ± 0.20 -1.20 ± 0.13 2.79 ± 0.17 1.26 ± 0.16 AF103875

92288_at Ap1g1 adaptor protein complex
AP-1, gamma 1 subunit

2.53 ± 0.10 3.99 ± 0.22 -1.48 ± 0.16 -1.50 ± 0.30 X54424

100492_at Ap2a2 adaptor protein complex
AP-2, alpha 2 subunit

-3.73 ± 0.07 1.17 ± 0.08 -1.18 ± 0.11 -1.29 ± 0.11 AW122807

103878_at Ap3b1 adaptor-related protein
complex 3, beta 1
subunit

1.78 ± 0.07 2.08 ± 0.06 1.24 ± 0.15 1.00 ± 0.15 AF103809

102704_at Aqp4 aquaporin 4 -1.59 ± 0.08 -6.24 ± 0.09 -6.17 ± 0.10 1.22 ± 0.16 U88623

92428_at Asna1 arsA (bacterial) arsenite
transporter, ATP-
binding, homolog 1

1.55 ± 0.11 2.49 ± 0.09 -1.11 ± 0.17 -1.34 ± 0.16 AF039405

93797_g_at Atp1a1 ATPase, Na+/K+
transporting, alpha 1
polypeptide

-1.26 ± 0.10 2.16 ± 0.09 1.13 ± 0.18 1.46 ± 0.14 AW123952

96032_at Atp5g1 ATP synthase, H+
transporting,
mitochondrial F0
complex, subunit c
(subunit 9), isoform 1

-3.88 ± 0.08 -2.23 ± 0.07 -1.69 ± 0.10 -1.34 ± 0.11 L19737

102854_s_at Atp7a ATPase, Cu++
transporting, alpha
polypeptide

3.21 ± 0.13 2.24 ± 0.16 1.23 ± 0.13 1.04 ± 0.12 U03434

102786_at Clcn3 chloride channel 3 1.51 ± 0.07 2.05 ± 0.09 1.16 ± 0.14 -1.28 ± 0.11 AI849432

94464_at Clcn3 chloride channel 3 2.01 ± 0.06 1.25 ± 0.07 1.20 ± 0.10 -1.22 ± 0.14 AF029347

94465_g_at Clcn3 chloride channel 3 2.23 ± 0.07 1.76 ± 0.07 1.14 ± 0.10 -1.26 ± 0.16 AF029347

95654_at Clic1 chloride intracellular
channel 1

1.45 ± 0.11 1.76 ± 0.09 3.64 ± 0.18 3.20 ± 0.45 AF109905

97248_at Dbi diazepam binding
inhibitor

-1.52 ± 0.06 -3.44 ± 0.06 -1.91 ± 0.09 1.19 ± 0.14 X61431

104469_at Gp38 glycoprotein 38 -1.70 ± 0.11 -2.19 ± 0.06 1.99 ± 0.13 2.67 ± 0.27 M73748

92946_f_at Gria2 glutamate receptor,
ionotropic, AMPA2
(alpha 2)

2.13 ± 0.07 1.18 ± 0.09 -1.15 ± 0.11 -1.18 ± 0.11 L32372

104684_at Grin1 glutamate receptor,
ionotropic, NMDA1
(zeta 1)

-2.44 ± 0.08 -1.47 ± 0.06 -1.32 ± 0.10 -1.11 ± 0.10 AI847120

104686_at Grin1 glutamate receptor,
ionotropic, NMDA1
(zeta 1)

-1.02 ± 0.13 2.30 ± 0.10 -1.68 ± 0.16 -1.73 ± 0.17 D10028

92392_at Kcna3 potassium voltage-gated
channel, shaker-related
subfamily, member 3

2.06 ± 0.16 1.22 ± 0.12 -1.16 ± 0.10 -1.14 ± 0.12 AI850484



XX

99450_at Kcnq2 potassium voltage-gated
channel, subfamily Q,
member 2

-2.33 ± 0.08 -1.90 ± 0.07 1.03 ± 0.15 -1.24 ± 0.10 AB000503

104464_s_at Kdelr3 KDEL (Lys-Asp-Glu-
Leu) endoplasmic
reticulum protein
retention receptor 3

-1.45 ± 0.15 1.22 ± 0.16 2.37 ± 0.18 1.66 ± 0.17 AI642389

93993_at Lman2 lectin, mannose-binding
2

1.97 ± 0.11 2.97 ± 0.12 1.30 ± 0.13 1.25 ± 0.10 AI851062

92952_f_at Napb N-ethylmaleimide
sensitive fusion protein
attachment protein beta

3.63 ± 0.15 2.19 ± 0.09 -1.18 ± 0.13 -1.91 ± 0.14 X61455

103953_at Sec22l1 SEC22 vesicle
trafficking protein-like 1
(S. cerevisiae)

2.36 ± 0.32 2.16 ± 0.07 1.76 ± 0.11 -1.04 ± 0.15 U91538

93711_at Sec23a SEC23A (S. cerevisiae) 1.55 ± 0.07 2.22 ± 0.06 -1.24 ± 0.10 -1.54 ± 0.15 D12713

161326_f_at Serpina6 serine (or cysteine)
proteinase inhibitor,
clade A, member 6

-2.25 ± 0.19 -1.67 ± 0.15 1.00 ± 0.11 1.10 ± 0.12 AV104178

92831_at Sfxn1 sideroflexin 1 2.50 ± 0.15 1.58 ± 0.08 1.04 ± 0.10 -1.08 ± 0.13 AI846308

104748_s_at Slc1a1 solute carrier family 1
(neuronal/epithelial high
affinity glutamate
transporter, system
Xag), member 1

1.15 ± 0.25 1.88 ± 0.17 -2.14 ± 0.15 -2.42 ± 0.15 D43797

100943_at Slc1a4 solute carrier family 1
(glutamate/neutral
amino acid transporter),
member 4

1.40 ± 0.06 2.41 ± 0.10 -1.03 ± 0.26 -1.52 ± 0.10 U75215

98470_at Slc25a14 solute carrier family 25
(mitochondrial carrier,
brain), member 14

2.13 ± 0.13 2.79 ± 0.12 1.01 ± 0.16 -1.63 ± 0.15 AF076981

93084_at Slc25a4 solute carrier family 25
(mitochondrial carrier,
adenine nucleotide
translocator), member 4

2.21 ± 0.07 1.96 ± 0.07 -1.05 ± 0.10 -1.19 ± 0.12 U27315

100618_f_at Slc25a5 solute carrier family 25
(mitochondrial carrier;
adenine nucleotide
translocator), member 5

-1.64 ± 0.08 -2.59 ± 0.06 -1.06 ± 0.17 1.06 ± 0.13 AA062013

93804_at Slc2a3 solute carrier family 2
(facilitated glucose
transporter), member 3

1.72 ± 0.10 2.35 ± 0.13 -1.06 ± 0.12 -1.23 ± 0.10 AI854156

102683_at Slc30a3 solute carrier family 30
(zinc transporter),
member 3

-2.52 ± 0.08 -2.06 ± 0.07 -1.26 ± 0.11 -1.20 ± 0.10 U76009

101877_at Slc31a1 solute carrier family 31,
member 1

1.96 ± 0.18 2.24 ± 0.06 1.02 ± 0.11 -1.15 ± 0.11 AI854432

98457_at Slc4a4 solute carrier family 4
(anion exchanger),
member 4

-1.30 ± 0.13 -3.96 ± 0.11 -1.48 ± 0.13 1.46 ± 0.15 AF020195



XXI

161573_at Slc4a7 solute carrier family 4,
sodium bicarbonate
cotransporter, member 7

-3.75 ± 0.07 -2.01 ± 0.07 -1.12 ± 0.10 1.02 ± 0.16 AV278013

93471_at Slc4a7 solute carrier family 4,
sodium bicarbonate
cotransporter, member 7

-1.51 ± 0.07 -2.17 ± 0.07 1.03 ± 0.14 -1.08 ± 0.12 AI594427

161695_f_at Slc6a4 solute carrier family 6
(neurotransmitter
transporter, serotonin),
member 4

-1.56 ± 0.12 -2.23 ± 0.08 -1.93 ± 0.13 1.25 ± 0.13 AV230927

96276_r_at Smbp SM-11044 binding
protein

-1.80 ± 0.07 -2.50 ± 0.06 -1.03 ± 0.21 1.13 ± 0.16 AI843327

101906_at Smc4l1 SMC4 structural
maintenance of
chromosomes 4-like 1
(yeast)

2.51 ± 0.08 1.57 ± 0.11 1.13 ± 0.10 1.66 ± 0.14 AA032310

94550_at Snx1 sorting nexin 1 1.57 ± 0.15 2.03 ± 0.10 1.19 ± 0.10 1.05 ± 0.13 AW121324

102319_at Snx12 sorting nexin 12 1.55 ± 0.08 3.10 ± 0.13 1.31 ± 0.12 -1.22 ± 0.13 AF062484

104651_at Snx14 sorting nexin 14 2.03 ± 0.09 1.50 ± 0.10 1.31 ± 0.10 1.01 ± 0.11 AI839611

160635_at Stx18 syntaxin 18 1.73 ± 0.12 2.97 ± 0.09 1.39 ± 0.13 -1.10 ± 0.10 AI849070

100933_at Stx1a syntaxin 1A (brain) 1.35 ± 0.08 1.34 ± 0.08 -1.98 ± 0.10 -2.29 ± 0.13 D45208

96019_at Sypl synaptophysin-like
protein

2.22 ± 0.18 3.17 ± 0.22 1.51 ± 0.11 -1.01 ± 0.18 AI843476

98339_at Syt11 synaptotagmin 11 2.85 ± 0.07 3.38 ± 0.11 -1.59 ± 0.17 -1.61 ± 0.19 AB026808

160190_at Syt4 synaptotagmin 4 3.50 ± 0.20 1.10 ± 0.06 -1.45 ± 0.10 -1.40 ± 0.10 U10355

103035_at Tap1 transporter 1, ATP-
binding cassette, sub-
family B (MDR/TAP)

-1.48 ± 0.15 1.05 ± 0.11 2.11 ± 0.14 1.45 ± 0.17 U60020

99481_at Atp1a2 ATPase, Na+/K+
transporting, alpha 2
polypeptide

1.02 ± 0.08 -1.64 ± 0.07 -3.57 ± 0.09 -1.03 ± 0.26 AI839697

94739_at Trpc1 transient receptor
potential cation channel,
subfamily C, member 1

1.03 ± 0.10 2.35 ± 0.10 -1.47 ± 0.10 -1.37 ± 0.13 U73625

Table 10.13.  Electron transport
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

99009_at Nnt nicotinamide nucleotide
transhydrogenase

1.89 ± 0.08 1.00 ± 0.08 1.44 ± 0.17 2.31 ± 0.30 Z49204

99985_at Txnrd1 thioredoxin reductase 1 1.40 ± 0.06 2.37 ± 0.06 2.11 ± 0.11 1.13 ± 0.14 AB027565

160194_at Gcdh glutaryl-Coenzyme A
dehydrogenase

-2.80 ± 0.06 -1.35 ± 0.07 -1.30 ± 0.12 -1.03 ± 0.15 U18992

102000_f_at Uqcrc2 ubiquinol cytochrome c
reductase core protein 2

3.40 ± 0.10 2.28 ± 0.11 1.19 ± 0.10 -1.03 ± 0.12 AI842835

103922_f_at 1500005G05Rik RIKEN cDNA
1500005G05 gene

-1.38 ± 0.08 1.73 ± 0.10 4.87 ± 0.97 1.32 ± 0.34 AI839690

100550_f_at Cox6c cytochrome c oxidase,
subunit VIc

2.68 ± 0.07 1.40 ± 0.06 1.02 ± 0.10 -1.06 ± 0.12 AW060422



XXII

96112_at Etfa electron transferring
flavoprotein, alpha
polypeptide

2.30 ± 0.08 1.42 ± 0.07 1.26 ± 0.11 1.65 ± 0.12 AI851178

98918_at Txndc5 thioredoxin domain
containing 5

-3.23 ± 0.12 -1.25 ± 0.06 1.18 ± 0.15 1.10 ± 0.17 AI841920

94209_g_at Txndc7 thioredoxin domain
containing 7

2.11 ± 0.14 3.17 ± 0.17 1.04 ± 0.10 -1.26 ± 0.10 AW045202

94208_at Txndc7 thioredoxin domain
containing 7

2.83 ± 0.07 4.28 ± 0.11 -1.33 ± 0.15 -1.48 ± 0.18 AW045202

162469_r_at Cyc1 cytochrome c-1 -2.83 ± 0.07 -1.84 ± 0.07 -1.06 ± 0.15 -1.09 ± 0.14 AV069997

95072_at Cyc1 cytochrome c-1 2.41 ± 0.06 1.97 ± 0.09 1.15 ± 0.11 -1.20 ± 0.13 AW121892

96773_at Txndc4 thioredoxin domain
containing 4
(endoplasmic reticulum)

2.45 ± 0.11 3.46 ± 0.11 1.38 ± 0.11 1.28 ± 0.18 AW125408

Table 10.14.  Protein biosynthesis
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

100636_at Eif4ebp1 eukaryotic translation
initiation factor 4E
binding protein 1

3.25 ± 0.25 3.89 ± 0.31 3.17 ± 0.33 1.55 ± 0.21 U28656

101213_at Arbp acidic ribosomal
phosphoprotein P0

2.51 ± 0.07 2.46 ± 0.06 1.12 ± 0.11 -1.06 ± 0.15 X15267

104048_at Cars cysteinyl-tRNA
synthetase

2.11 ± 0.07 3.77 ± 0.11 1.23 ± 0.34 -1.32 ± 0.13 AI848732

94766_at Eef1a1 eukaryotic translation
elongation factor 1
alpha 1

2.43 ± 0.06 2.62 ± 0.07 1.06 ± 0.11 -1.14 ± 0.12 M17878

160129_at Eef1d eukaryotic translation
elongation factor 1
delta (guanine
nucleotide exchange
protein)

1.09 ± 0.07 2.04 ± 0.06 1.30 ± 0.10 1.16 ± 0.17 AI839632

94462_at Eif2b1 eukaryotic translation
initiation factor 2B,
subunit 1 (alpha)

1.68 ± 0.23 2.25 ± 0.06 1.57 ± 0.10 -1.15 ± 0.11 AW120719

94530_at Eif2b2 eukaryotic translation
initiation factor 2B,
subunit 2 beta

1.73 ± 0.07 2.77 ± 0.08 1.34 ± 0.21 -1.16 ± 0.13 AI840376

160554_at Eif3s6 eukaryotic translation
initiation factor 3,
subunit 6

2.13 ± 0.19 1.19 ± 0.06 1.06 ± 0.10 1.21 ± 0.14 AI839363

100557_g_at Eif4b eukaryotic translation
initiation factor 4B

2.01 ± 0.09 2.65 ± 0.06 -1.25 ± 0.10 1.32 ± 0.12 AW121930

98608_at Etf1 eukaryotic translation
termination factor 1

1.95 ± 0.09 2.13 ± 0.16 1.70 ± 0.14 -1.01 ± 0.14 AI845886

160451_at Etf1 eukaryotic translation
termination factor 1

2.31 ± 0.17 2.84 ± 0.09 1.40 ± 0.13 1.24 ± 0.15 D87691

160231_at Farsla phenylalanine-tRNA
synthetase-like, alpha
subunit

1.42 ± 0.07 2.91 ± 0.08 1.16 ± 0.10 -1.37 ± 0.10 AI851129

161683_r_at Gtpbp1 GTP binding protein 1 -2.94 ± 0.07 -3.60 ± 0.06 -1.31 ± 0.09 -1.16 ± 0.10 AV239949

93752_at Iars isoleucine-tRNA
synthetase

2.12 ± 0.07 3.22 ± 0.07 1.17 ± 0.26 -1.32 ± 0.14 AI848393



XXIII

100136_at Lamp2 lysosomal membrane
glycoprotein 2

1.32 ± 0.12 1.24 ± 0.09 2.39 ± 0.12 2.48 ± 0.31 M32017

102019_at Mrpl13 mitochondrial
ribosomal protein L13

2.22 ± 0.07 2.07 ± 0.13 1.61 ± 0.10 1.15 ± 0.16 AA666635

99140_at Mrpl16 mitochondrial
ribosomal protein L16

2.31 ± 0.09 2.16 ± 0.19 1.63 ± 0.19 -1.31 ± 0.13 AW124920

98120_at Mrpl27 mitochondrial
ribosomal protein L27

1.97 ± 0.08 2.27 ± 0.07 1.56 ± 0.15 -1.05 ± 0.15 AI844807

102058_at Mrpl9 mitochondrial
ribosomal protein L9

2.03 ± 0.08 2.52 ± 0.15 1.24 ± 0.14 -1.08 ± 0.18 AI845667

97884_at Mrps11 mitochondrial
ribosomal protein S11

2.28 ± 0.08 2.10 ± 0.07 1.30 ± 0.10 1.05 ± 0.12 AI844175

95159_at Mrps18b mitochondrial
ribosomal protein
S18B

1.39 ± 0.07 2.10 ± 0.10 1.27 ± 0.10 -1.19 ± 0.12 AI846849

160423_at Mrps2 mitochondrial
ribosomal protein S2

1.85 ± 0.12 2.17 ± 0.09 1.42 ± 0.19 -1.05 ± 0.14 AI853575

93859_at Mtif2 mitochondrial
translational initiation
factor 2

2.95 ± 0.19 2.34 ± 0.12 1.11 ± 0.10 1.05 ± 0.17 AI875598

95070_at Nars asparaginyl-tRNA
synthetase

1.66 ± 0.07 2.35 ± 0.11 1.32 ± 0.19 -1.52 ± 0.12 AW125874

96693_at Rars arginyl-tRNA
synthetase

2.10 ± 0.10 3.57 ± 0.26 2.54 ± 0.37 -1.16 ± 0.16 AI849453

94767_at Rnu35b /// Rps11 RNA, U35b small
nucleolar /// ribosomal
protein S11

2.66 ± 0.07 2.27 ± 0.06 1.26 ± 0.11 -1.03 ± 0.17 U93864

100711_at Rpl10a ribosomal protein
L10A

1.98 ± 0.10 2.15 ± 0.06 1.20 ± 0.10 1.05 ± 0.15 U12403

102109_at Rpl13 ribosomal protein L13 2.24 ± 0.08 2.51 ± 0.07 1.30 ± 0.15 -1.01 ± 0.18 U28917

96290_f_at Rpl21 ribosomal protein L21 2.09 ± 0.06 1.74 ± 0.08 1.10 ± 0.10 -1.07 ± 0.13 U93863

92857_at Rpl22 ribosomal protein L22 1.74 ± 0.06 2.37 ± 0.07 1.14 ± 0.14 -1.32 ± 0.13 AI853960

100729_at Rpl26 ribosomal protein L26 2.42 ± 0.11 2.11 ± 0.06 1.27 ± 0.12 -1.03 ± 0.15 X80699

100734_at Rpl3 ribosomal protein L3 2.34 ± 0.08 2.32 ± 0.12 1.26 ± 0.12 -1.02 ± 0.16 Y00225

160081_at Rpl36a ribosomal protein L36a 2.03 ± 0.07 1.06 ± 0.12 -1.04 ± 0.10 1.14 ± 0.12 AW045418

92577_f_at Rpl37 ribosomal protein L37 2.06 ± 0.06 1.71 ± 0.06 1.21 ± 0.10 -1.11 ± 0.13 AW047116

101129_at Rpl5 ribosomal protein L5 2.03 ± 0.07 1.80 ± 0.06 1.27 ± 0.12 -1.03 ± 0.15 X83590

96962_at Rpl6 ribosomal protein L6 1.84 ± 0.07 1.96 ± 0.07 1.22 ± 0.13 -1.03 ± 0.16 X81987

97695_s_at Rpl7 ribosomal protein L7 2.12 ± 0.06 1.71 ± 0.06 1.15 ± 0.10 1.02 ± 0.12 M29015

98168_at Rpl7a ribosomal protein L7a 2.22 ± 0.06 2.23 ± 0.08 1.26 ± 0.13 1.00 ± 0.15 M14689

100694_at Rplp1 ribosomal protein,
large, P1

1.96 ± 0.06 2.56 ± 0.08 1.16 ± 0.13 -1.06 ± 0.15 U29402

160071_at Rpp30 ribonuclease P/MRP
30kDa subunit
(human)

1.90 ± 0.07 2.08 ± 0.10 1.04 ± 0.10 -1.41 ± 0.10 U95123

100686_at Rps2 ribosomal protein S2 2.11 ± 0.06 2.01 ± 0.08 1.17 ± 0.10 -1.11 ± 0.12 M20632

96300_f_at Rps27 ribosomal protein S27 2.29 ± 0.07 2.07 ± 0.10 1.27 ± 0.13 1.04 ± 0.17 AI854238

101137_at Rps3 ribosomal protein S3 2.03 ± 0.09 2.06 ± 0.06 1.28 ± 0.13 -1.10 ± 0.16 X76772

101664_at Rps3a ribosomal protein S3a 2.29 ± 0.08 2.39 ± 0.07 1.16 ± 0.11 -1.04 ± 0.15 Z83368

99336_at Rps5 ribosomal protein S5 1.98 ± 0.06 2.00 ± 0.06 1.28 ± 0.13 -1.02 ± 0.17 U78085

101577_at Rps6 ribosomal protein S6 2.03 ± 0.13 1.76 ± 0.06 1.25 ± 0.10 1.06 ± 0.13 Z54209



XXIV

101212_at Rps7 ribosomal protein S7 2.67 ± 0.07 2.45 ± 0.06 1.15 ± 0.12 -1.09 ± 0.17 AF043285

95054_at Tars threonyl-tRNA
synthetase

1.50 ± 0.15 2.50 ± 0.07 1.48 ± 0.22 -1.17 ± 0.13 AI849620

93564_at Yars tyrosyl-tRNA
synthetase

1.00 ± 0.08 2.05 ± 0.09 1.14 ± 0.25 -1.70 ± 0.13 AW122542

Table 10.15.  Protein transport
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

104297_at Ipo11 importin 11 1.20 ± 0.07 2.26 ± 0.07 1.29 ± 0.17 -1.13 ± 0.15 AW124742

95034_f_at Ipo4 importin 4 2.15 ± 0.10 1.71 ± 0.10 1.18 ± 0.10 -1.09 ± 0.13 AW212243

101104_at Dscr3 Down syndrome critical
region gene 3

1.65 ± 0.07 2.00 ± 0.13 1.13 ± 0.10 -1.09 ± 0.15 AB001990

102750_at Apba3 amyloid beta (A4)
precursor protein-
binding, family A,
member 3

-1.70 ± 0.09 1.85 ± 0.13 1.94 ± 0.20 1.29 ± 0.24 AF070975

94870_f_at Sara2 SAR1a gene homolog 2
(S. cerevisiae)

2.13 ± 0.12 2.16 ± 0.07 1.37 ± 0.11 -1.22 ± 0.17 AW124226

100074_at 2400003B06Rik RIKEN cDNA
2400003B06 gene

-6.99 ± 0.06 1.31 ± 0.20 1.59 ± 0.14 -1.34 ± 0.13 AW046723

160183_f_at 3930401E15Rik RIKEN cDNA
3930401E15 gene

2.83 ± 0.22 1.51 ± 0.07 1.19 ± 0.14 -1.16 ± 0.10 AI846109

92968_at Arf5 ADP-ribosylation factor
5

-2.76 ± 0.06 -1.66 ± 0.06 -1.05 ± 0.13 -1.36 ± 0.10 D87902

160868_at Rab3b RAB3B, member RAS
oncogene family

1.71 ± 0.24 1.92 ± 0.08 -1.89 ± 0.10 -2.30 ± 0.10 AI835990

101933_at Rab10 RAB10, member RAS
oncogene family

2.55 ± 0.13 1.42 ± 0.06 -1.39 ± 0.11 -1.49 ± 0.14 AF035646

97222_at Rab6 RAB6, member RAS
oncogene family

-1.97 ± 0.06 -2.09 ± 0.07 -1.20 ± 0.10 -1.14 ± 0.11 AI845921

98927_at Rab6 RAB6, member RAS
oncogene family

2.38 ± 0.11 1.10 ± 0.08 -1.14 ± 0.14 -1.44 ± 0.10 AI851048

160795_at Scamp1 secretory carrier
membrane protein 1

1.50 ± 0.10 2.23 ± 0.12 1.11 ± 0.16 -1.58 ± 0.11 AW123662

98106_at Timm44 translocator of inner
mitochondrial
membrane 44

1.87 ± 0.16 2.61 ± 0.08 1.14 ± 0.10 1.01 ± 0.12 U69898

104453_at 2310079P12Rik RIKEN cDNA
2310079P12 gene

2.78 ± 0.12 3.44 ± 0.06 1.89 ± 0.34 -1.02 ± 0.21 AW046336

95022_at Akap12 A kinase (PRKA)
anchor protein (gravin)
12

1.19 ± 0.09 -1.03 ± 0.08 3.13 ± 0.30 1.02 ± 0.10 AB020886

99156_at 2700099C19Rik RIKEN cDNA
2700099C19 gene

1.99 ± 0.08 1.86 ± 0.07 1.29 ± 0.12 -1.04 ± 0.17 AI853370

103642_at G3bp Ras-GTPase-activating
protein SH3-domain
binding protein

-2.09 ± 0.07 -1.94 ± 0.06 -1.02 ± 0.14 -1.04 ± 0.13 AB001927

101370_at Kpna1 karyopherin (importin)
alpha 1

2.02 ± 0.07 2.66 ± 0.14 1.14 ± 0.15 -1.37 ± 0.10 U20619

92790_at Kpna2 karyopherin (importin)
alpha 2

2.13 ± 0.16 1.39 ± 0.08 1.08 ± 0.10 1.44 ± 0.15 D55720



XXV

100710_at Vcp valosin containing
protein

1.76 ± 0.06 2.65 ± 0.08 2.10 ± 0.28 -1.02 ± 0.14 Z14044

Table 10.16.  Signal transduction
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

100439_i_at Ank1 ankyrin 1, erythroid -2.36 ± 0.10 -2.57 ± 0.06 -1.36 ± 0.11 -1.12 ± 0.11 U76758

100065_r_at Gja1 gap junction membrane
channel protein alpha 1

-1.68 ± 0.08 -2.55 ± 0.08 1.83 ± 0.19 1.96 ± 0.17 M63801

97195_at Gnai1 guanine nucleotide
binding protein, alpha
inhibiting 1

1.53 ± 0.13 2.49 ± 0.14 -1.76 ± 0.09 -1.96 ± 0.16 U38501

100386_at Gnaz guanine nucleotide
binding protein, alpha z
subunit

1.39 ± 0.11 1.99 ± 0.10 -1.67 ± 0.12 -2.10 ± 0.11 AF056973

160747_at Rgs3 regulator of G-protein
signaling 3

-2.16 ± 0.06 -1.35 ± 0.07 -1.35 ± 0.10 -1.02 ± 0.11 AI844739

92434_at Traip TRAF-interacting
protein

1.75 ± 0.13 2.66 ± 0.12 1.24 ± 0.10 -1.06 ± 0.12 U77844

97308_at 5730466P16Rik RIKEN cDNA
5730466P16 gene

1.75 ± 0.08 2.51 ± 0.09 1.16 ± 0.13 -1.21 ± 0.13 AI835409

99491_at Il10rb interleukin 10 receptor,
beta

-2.07 ± 0.16 -3.73 ± 0.07 -1.01 ± 0.11 1.25 ± 0.13 U53696

101096_s_at Hs1bp1 HS1 binding protein 2.20 ± 0.09 2.88 ± 0.06 1.42 ± 0.14 -1.07 ± 0.13 AF023482

102255_at Osmr oncostatin M receptor -1.83 ± 0.41 -1.59 ± 0.25 3.84 ± 0.17 2.70 ± 0.21 AB015978

92738_at Gdnf glial cell line derived
neurotrophic factor

-1.89 ± 0.09 -2.64 ± 0.07 -1.05 ± 0.10 -1.01 ± 0.12 D49921

104499_at Homer1 homer homolog 1
(Drosophila)

2.48 ± 0.22 1.89 ± 0.17 -1.08 ± 0.13 -2.12 ± 0.14 AB019479

102726_at Tac1 tachykinin 1 2.40 ± 0.23 2.00 ± 0.17 1.97 ± 0.19 -1.14 ± 0.13 D17584

103235_at Npy neuropeptide Y 1.09 ± 0.08 -1.19 ± 0.06 -3.07 ± 0.09 -3.12 ± 0.10 AI848386

102379_at Rassf1 Ras association
(RalGDS/AF-6) domain
family 1

1.47 ± 0.13 2.40 ± 0.11 -1.12 ± 0.10 -1.04 ± 0.13 AW049415

94290_at Akt1s1 AKT1 substrate 1
(proline-rich)

1.59 ± 0.08 2.78 ± 0.12 1.36 ± 0.11 -1.12 ± 0.12 AW124346

98434_at Arhgef7 Rho guanine nucleotide
exchange factor (GEF7)

1.93 ± 0.09 2.45 ± 0.08 1.10 ± 0.18 -1.20 ± 0.14 U96634

96592_at Pik3r1 phosphatidylinositol 3-
kinase, regulatory
subunit, polypeptide 1
(p85 alpha)

1.67 ± 0.15 2.25 ± 0.17 -2.29 ± 0.13 -1.96 ± 0.20 U50413

100057_at 2510027N19Rik RIKEN cDNA
2510027N19 gene

2.18 ± 0.13 2.60 ± 0.09 1.78 ± 0.16 1.08 ± 0.15 AI838320

98766_at Sh3bp5 SH3-domain binding
protein 5 (BTK-
associated)

1.53 ± 0.08 2.72 ± 0.19 -1.61 ± 0.10 -1.37 ± 0.11 AB016835

100024_at Shrm shroom -1.26 ± 0.07 -1.66 ± 0.07 2.17 ± 0.35 2.77 ± 0.18 AI641895

96572_at Azi2 5-azacytidine induced
gene 2

2.19 ± 0.19 2.03 ± 0.10 1.24 ± 0.27 -1.41 ± 0.12 AW047232

94006_at Azi2 5-azacytidine induced
gene 2

3.29 ± 0.28 2.49 ± 0.15 -1.19 ± 0.13 -1.21 ± 0.11 AB007141
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103328_at Tank TRAF family member-
associated Nf-kappa B
activator

2.65 ± 0.11 2.42 ± 0.10 1.66 ± 0.13 1.29 ± 0.14 U59864

103653_at Mras muscle and microspikes
RAS

1.93 ± 0.14 2.24 ± 0.11 -1.01 ± 0.10 -1.24 ± 0.10 AB004879

92376_at Rit1 Ras-like without CAAX
1

1.28 ± 0.07 1.70 ± 0.08 2.16 ± 0.34 -1.07 ± 0.11 U71205

103224_at Rab33a RAB33A, member of
RAS oncogene family

1.04 ± 0.06 -1.27 ± 0.07 -2.04 ± 0.09 -2.33 ± 0.11 D83277

101866_at Arfrp1 ADP-ribosylation factor
related protein 1

2.02 ± 0.15 2.91 ± 0.15 1.10 ± 0.15 -1.06 ± 0.13 AW060486

102083_at Rit2 Ras-like without CAAX
2

-2.65 ± 0.12 -1.22 ± 0.11 -1.09 ± 0.11 -1.22 ± 0.15 AF084463

93730_at Syn1 synapsin I 2.19 ± 0.07 2.18 ± 0.06 1.35 ± 0.11 1.06 ± 0.18 AF085809

Table 10.17.  Calcium binding
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

100569_at Anxa2 annexin A2 1.45 ± 0.09 1.80 ± 0.08 4.56 ± 0.25 2.84 ± 0.43 M14044

92539_at S100a10 S100 calcium binding protein
A10 (calpactin)

-1.80 ± 0.10 -1.23 ± 0.06 4.77 ± 0.55 2.54 ± 0.22 M16465

98600_at S100a11 S100 calcium binding protein
A11 (calizzarin)

-3.12 ± 0.08 -3.10 ± 0.06 5.31 ± 0.85 8.03 ± 0.50 U41341

100959_at S100a13 S100 calcium binding protein
A13

-3.02 ± 0.08 -3.37 ± 0.13 -1.23 ± 0.12 1.52 ± 0.11 X99921

100960_g_at S100a13 S100 calcium binding protein
A13

-1.44 ± 0.11 -2.27 ± 0.07 -1.08 ± 0.10 1.42 ± 0.10 X99921

162428_i_at S100a14 S100 calcium binding protein
A14

-3.78 ± 0.06 -3.92 ± 0.06 -1.46 ± 0.10 -1.28 ± 0.12 AV293396

94886_at Canx calnexin -3.08 ± 0.08 -3.06 ± 0.06 -1.14 ± 0.15 -1.16 ± 0.11 L18888

102197_at Nucb2 nucleobindin 2 2.32 ± 0.18 1.90 ± 0.15 -1.04 ± 0.11 -1.78 ± 0.11 AJ222586

Table 10.18.  DNA and RNA
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

161756_at 4833420N02Rik RIKEN cDNA 4833420N02
gene

1.88 ± 0.14 2.28 ± 0.18 -1.37 ± 0.14 1.00 ± 0.13 AV298145

100903_at Adprtl2 ADP-ribosyltransferase
(NAD+, poly(ADP-ribose)
polymerase)-like 2

2.02 ± 0.07 1.68 ± 0.07 1.25 ± 0.11 1.10 ± 0.13 AJ007780

95879_at Asf1a ASF1 anti-silencing function
1 homolog A (S. cerevisiae)

1.57 ± 0.09 -2.11 ± 0.08 1.03 ± 0.10 1.03 ± 0.12 C79052

96775_at Cbx1 chromobox homolog 1
(Drosophila HP1 beta)

4.97 ± 0.10 1.47 ± 0.13 -1.36 ± 0.14 1.16 ± 0.12 X56690

94506_at Cpsf5 cleavage and polyadenylation
specific factor 5

2.43 ± 0.13 1.79 ± 0.07 1.23 ± 0.11 1.14 ± 0.16 AI853113
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160751_i_at Crnkl1 Crn, crooked neck-like 1
(Drosophila)

2.62 ± 0.08 1.87 ± 0.12 -1.03 ± 0.11 -1.10 ± 0.14 AA216808

102853_at Cspg6 chondroitin sulfate
proteoglycan 6

2.02 ± 0.07 2.09 ± 0.13 -1.02 ± 0.12 -1.19 ± 0.10 Y15128

99544_at Dguok deoxyguanosine kinase 2.10 ± 0.07 2.44 ± 0.12 1.29 ± 0.16 -1.08 ± 0.17 AA980916

103891_i_at Ell2 elongation factor RNA
polymerase II 2

1.69 ± 0.14 1.72 ± 0.16 3.50 ± 0.41 1.49 ± 0.15 AI197161

103036_at G22p1 thyroid autoantigen 2.30 ± 0.15 1.78 ± 0.08 1.46 ± 0.11 1.47 ± 0.11 M38700

100371_at Hnrpa1 heterogeneous nuclear
ribonucleoprotein A1

1.51 ± 0.18 2.02 ± 0.11 -1.08 ± 0.13 -1.20 ± 0.13 U65316

97759_at Kcnma1 potassium large conductance
calcium-activated channel,
subfamily M, alpha member
1

-1.13 ± 0.07 -2.82 ± 0.06 -1.44 ± 0.10 -1.45 ± 0.11 U09383

97907_at Lsm7 LSM7 homolog, U6 small
nuclear RNA associated (S.
cerevisiae)

2.07 ± 0.09 1.73 ± 0.07 1.53 ± 0.11 -1.12 ± 0.17 AW049564

93356_at Mcm7 minichromosome
maintenance deficient 7 (S.
cerevisiae)

1.97 ± 0.09 2.59 ± 0.08 1.14 ± 0.10 1.22 ± 0.15 D26091

94376_s_at Mre11a meiotic recombination 11
homolog A (S. cerevisiae)

3.09 ± 0.21 3.00 ± 0.23 1.52 ± 0.13 -1.18 ± 0.11 U60318

102819_at Nap1l2 nucleosome assembly protein
1-like 2

2.20 ± 0.07 2.57 ± 0.11 1.24 ± 0.17 -1.33 ± 0.10 X92352

92893_at Nfia nuclear factor I/A 2.60 ± 0.13 1.14 ± 0.08 -1.15 ± 0.10 1.92 ± 0.17 D90173

101930_at Nfix nuclear factor I/X 2.32 ± 0.07 1.55 ± 0.08 -1.39 ± 0.11 1.00 ± 0.15 Y07688

93830_at Nono non-POU-domain-containing,
octamer binding protein

2.24 ± 0.07 1.82 ± 0.09 -1.06 ± 0.10 -1.14 ± 0.13 AI851199

93831_at Nono non-POU-domain-containing,
octamer binding protein

2.66 ± 0.10 2.71 ± 0.14 -1.10 ± 0.12 -1.05 ± 0.11 AI316087

95712_at Orc6l origin recognition complex,
subunit 6-like (S. cerevisiae)

2.02 ± 0.11 2.51 ± 0.09 1.16 ± 0.13 -1.07 ± 0.12 AW045261

104690_at Polm polymerase (DNA directed),
mu

-2.12 ± 0.10 -1.75 ± 0.06 -1.26 ± 0.10 -1.14 ± 0.10 AI462166

95549_at Prim2 DNA primase, p58 subunit 2.23 ± 0.22 1.59 ± 0.10 1.23 ± 0.12 1.15 ± 0.13 D13545

96103_f_at Rad23b RAD23b homolog (S.
cerevisiae)

1.87 ± 0.09 2.85 ± 0.18 1.77 ± 0.22 -1.24 ± 0.10 X92411

160466_at Rae1 RAE1 RNA export 1
homolog (S. pombe)

1.56 ± 0.07 2.30 ± 0.07 1.56 ± 0.13 -1.10 ± 0.14 AI048716

97254_at Rbm8 RNA binding motif protein 8 2.47 ± 0.10 2.57 ± 0.06 1.60 ± 0.12 -1.16 ± 0.13 AA690061

160192_at Rbmxrt RNA binding motif protein,
X chromosome retrogene

2.43 ± 0.07 2.10 ± 0.06 1.20 ± 0.14 -1.14 ± 0.13 AF031568

160072_at Rfc3 replication factor C (activator
1) 3

2.21 ± 0.12 2.11 ± 0.08 1.10 ± 0.10 1.08 ± 0.17 AV026570

103418_at Rfc4 replication factor C (activator
1) 4

3.54 ± 0.17 2.36 ± 0.10 1.34 ± 0.11 1.21 ± 0.26 AW122092

92196_f_at Sf3a2 splicing factor 3a, subunit 2 -2.77 ± 0.06 -1.44 ± 0.06 -1.08 ± 0.12 -1.11 ± 0.11 X83733
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97808_at Sf3b1 splicing factor 3b, subunit 1 2.91 ± 0.07 2.16 ± 0.11 1.23 ± 0.11 -1.13 ± 0.10 AI844532

103822_at Sfrs16 splicing factor,
arginine/serine-rich 16
(suppressor-of-white-apricot
homolog, Drosophila)

1.20 ± 0.16 2.03 ± 0.11 1.28 ± 0.18 -1.01 ± 0.12 AF042799

95791_s_at Sfrs2 splicing factor,
arginine/serine-rich 2 (SC-
35)

2.26 ± 0.07 2.13 ± 0.12 1.13 ± 0.12 -1.18 ± 0.10 U14648

160869_at Sirt3 sirtuin 3 (silent mating type
information regulation 2,
homolog) 3 (S. cerevisiae)

1.87 ± 0.22 2.31 ± 0.10 1.10 ± 0.10 -1.38 ± 0.10 AI849490

93701_at Smarca5 SWI/SNF related, matrix
associated, actin dependent
regulator of chromatin,
subfamily a, member 5

2.05 ± 0.28 2.22 ± 0.13 1.31 ± 0.12 1.22 ± 0.14 AA982124

102062_at Smarcc1 SWI/SNF related, matrix
associated, actin dependent
regulator of chromatin,
subfamily c, member 1

2.65 ± 0.11 1.31 ± 0.12 -1.04 ± 0.12 -1.23 ± 0.13 U85614

94034_at Smfn small fragment nuclease 1.56 ± 0.19 1.50 ± 0.11 2.00 ± 0.16 -1.03 ± 0.11 AI839882

103302_r_at Sox3 SRY-box containing gene 3 -3.45 ± 0.07 -2.25 ± 0.06 -1.12 ± 0.11 1.29 ± 0.11 AA866668

100957_at Ssbp1 single-stranded DNA binding
protein 1

1.83 ± 0.10 1.45 ± 0.07 2.01 ± 0.10 1.34 ± 0.13 AA881160

101356_at Tk2 thymidine kinase 2,
mitochondrial

1.63 ± 0.09 2.13 ± 0.09 -1.08 ± 0.11 -1.47 ± 0.10 AI843384

99578_at Top2a topoisomerase (DNA) II
alpha

2.15 ± 0.07 1.56 ± 0.08 1.01 ± 0.12 1.82 ± 0.10 U01915

Table 10.19.  Protein modification
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

160110_at 1300010
O06Rik

RIKEN cDNA
1300010O06 gene

1.15 ± 0.08 2.28 ± 0.09 1.16 ± 0.14 -1.15 ± 0.10 AW124007

103582_r_a
t

6130401J
04Rik

RIKEN cDNA
6130401J04 gene

2.15 ± 0.33 -1.48 ± 0.11 -1.23 ± 0.16 -1.17 ± 0.12 AI845633

103907_at Nedd4l neural precursor cell
expressed,
developmentally
down-regulated
gene 4-like

2.29 ± 0.07 2.73 ± 0.06 1.05 ± 0.16 -1.24 ± 0.10 AW108492

161021_at Pak3 p21 (CDKN1A)-
activated kinase 3

1.98 ± 0.13 1.14 ± 0.07 -1.20 ± 0.13 -1.80 ± 0.11 U39738

161270_i_a
t

Prkwnk1 protein kinase,
lysine deficient 1

1.22 ± 0.13 -5.24 ± 0.07 1.55 ± 0.14 -1.07 ± 0.25 AV319920

93311_at Clk3 CDC-like kinase 3 1.98 ± 0.07 2.25 ± 0.11 1.23 ± 0.16 -1.11 ± 0.12 AF033565

101937_s_a
t

Clk4 CDC like kinase 4 1.03 ± 0.08 2.58 ± 0.12 1.15 ± 0.11 -1.11 ± 0.16 AF005423

92383_at Dyrk1a dual-specificity
tyrosine-(Y)-
phosphorylation
regulated kinase 1a

1.01 ± 0.17 2.91 ± 0.24 -1.03 ± 0.10 -1.23 ± 0.12 U58497
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97096_at Prkar2a protein kinase,
cAMP dependent
regulatory, type II
alpha

3.58 ± 0.17 3.63 ± 0.09 -2.13 ± 0.23 -1.76 ± 0.23 J02935

102063_at Pdpk1 3-phosphoinositide
dependent protein
kinase-1

2.91 ± 0.28 1.55 ± 0.19 -1.02 ± 0.10 -1.23 ± 0.14 AF079535

104097_at Bub1 budding uninhibited
by benzimidazoles 1
homolog (S.
cerevisiae)

2.11 ± 0.13 2.01 ± 0.19 1.00 ± 0.14 1.85 ± 0.13 AF002823

101834_at Mapk3 mitogen activated
protein kinase 3

1.97 ± 0.09 2.13 ± 0.27 -1.78 ± 0.12 1.04 ± 0.20 Z14249

98771_at Ephb2 Eph receptor B2 2.86 ± 0.08 2.67 ± 0.13 -2.00 ± 0.17 -1.42 ± 0.17 L25890

95298_at Epha3 Eph receptor A3 2.43 ± 0.15 2.23 ± 0.15 -1.43 ± 0.10 -1.31 ± 0.21 M68513

161119_at Epha5 Eph receptor A5 2.28 ± 0.15 1.60 ± 0.07 -1.23 ± 0.11 -1.23 ± 0.12 AI854630

98446_s_at Ephb4 Eph receptor B4 2.48 ± 0.09 3.16 ± 0.09 1.53 ± 0.11 -1.11 ± 0.12 U06834

161964_r_a
t

Prkcz protein kinase C,
zeta

-2.07 ± 0.12 -3.14 ± 0.08 -1.38 ± 0.12 -1.10 ± 0.12 AV367375

97925_at Csnk1e casein kinase 1,
epsilon

2.88 ± 0.09 2.56 ± 0.14 1.04 ± 0.28 -1.57 ± 0.18 AB028241

98087_at Tbk1 TANK-binding
kinase 1

1.93 ± 0.27 2.61 ± 0.10 1.54 ± 0.12 1.09 ± 0.13 AW048562

97393_at Vrk1 vaccinia related
kinase 1

2.28 ± 0.12 2.00 ± 0.20 1.31 ± 0.17 1.02 ± 0.13 AF080253

92659_at Rapgef4 Rap guanine
nucleotide exchange
factor (GEF) 4

1.61 ± 0.20 1.07 ± 0.19 -1.71 ± 0.11 -2.50 ± 0.13 AF115480

93285_at Dusp6 dual specificity
phosphatase 6

-2.06 ± 0.07 -1.83 ± 0.06 1.49 ± 0.10 -1.36 ± 0.11 AI845584

100908_at Ptpra protein tyrosine
phosphatase,
receptor type, A

1.44 ± 0.16 1.93 ± 0.06 -1.16 ± 0.10 -1.29 ± 0.14 M36033

160760_at Ptprk protein tyrosine
phosphatase,
receptor type, K

1.55 ± 0.07 1.23 ± 0.06 -2.20 ± 0.09 -1.44 ± 0.11 L10106

92303_at Ptprr protein tyrosine
phosphatase,
receptor type, R

2.58 ± 0.07 2.11 ± 0.07 -1.35 ± 0.10 -1.41 ± 0.10 D31898

104422_at Ptprn protein tyrosine
phosphatase,
receptor type, N

-1.22 ± 0.07 1.12 ± 0.07 2.90 ± 0.15 -1.05 ± 0.11 U11812

93219_at Acp1 acid phosphatase 1,
soluble

1.94 ± 0.12 3.74 ± 0.13 1.13 ± 0.19 -1.10 ± 0.12 Y17343

94980_at Dusp11 dual specificity
phosphatase 11
(RNA/RNP
complex 1-
interacting)

1.11 ± 0.15 2.08 ± 0.07 1.30 ± 0.11 1.13 ± 0.12 AI006319

92380_r_at Ptprz1 protein tyrosine
phosphatase,
receptor type Z,
polypeptide 1

1.45 ± 0.17 -3.42 ± 0.07 -1.81 ± 0.12 1.26 ± 0.12 AJ133130

93985_at Tiparp TCDD-inducible
poly(ADP-ribose)
polymerase

1.42 ± 0.17 2.21 ± 0.08 -1.15 ± 0.10 -2.00 ± 0.11 AW120868

104238_at Art5 ADP-
ribosyltransferase 5

-2.02 ± 0.08 -2.43 ± 0.07 -1.20 ± 0.10 1.09 ± 0.11 U60881



XXX

161492_i_a
t

Mgat1 mannoside
acetylglucosaminylt
ransferase 1

-2.72 ± 0.07 -3.21 ± 0.06 -1.02 ± 0.13 -1.03 ± 0.11 AV089873

100684_at Prkcsh protein kinase C
substrate 80K-H

1.09 ± 0.08 2.04 ± 0.07 1.30 ± 0.15 1.10 ± 0.14 U92794

102047_at Nmt1 N-
myristoyltransferase
1

2.84 ± 0.12 3.45 ± 0.11 2.46 ± 0.20 1.23 ± 0.15 AF043326

161682_f_a
t

Gpaa1 GPI anchor
attachment protein 1

-3.57 ± 0.07 -2.88 ± 0.07 -1.90 ± 0.13 -1.08 ± 0.15 AV161234
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Table 10.20.  Cytoskeleton
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

162379_r_at Vim vimentin -8.34 ± 0.07 -7.48 ± 0.08 -1.49 ± 0.10 -1.01 ± 0.12 AV245272

93100_at Acta2 actin, alpha 2, smooth
muscle, aorta

-2.11 ± 0.07 -4.06 ± 0.08 1.68 ± 0.37 3.89 ± 0.49 X13297

95705_s_at Actb actin, beta, cytoplasmic -10.94 ± 0.06 -6.82 ± 0.05 1.45 ± 0.22 -1.67 ± 0.26 J04181

96573_at Actg actin, gamma,
cytoplasmic

2.40 ± 0.06 2.17 ± 0.06 -1.10 ± 0.10 -1.13 ± 0.11 M21495

102108_f_at Myh9 myosin heavy chain IX 1.69 ± 0.31 1.30 ± 0.07 3.20 ± 0.24 1.82 ± 0.16 AI505453

100923_at Myo10 myosin X 1.31 ± 0.07 1.03 ± 0.08 1.48 ± 0.14 2.09 ± 0.13 AJ249706

96426_at Tmsb4x thymosin, beta 4, X
chromosome

2.12 ± 0.07 1.75 ± 0.06 -1.04 ± 0.11 -1.19 ± 0.12 U38967

93541_at Tagln transgelin -1.63 ± 0.09 -2.06 ± 0.07 2.53 ± 0.49 4.16 ± 0.53 Z68618

100398_at Kif3a kinesin family member
3A

2.05 ± 0.08 1.69 ± 0.11 1.13 ± 0.14 1.06 ± 0.13 D12645

161003_at Kif3b kinesin family member
3B

1.58 ± 0.09 2.19 ± 0.09 -3.12 ± 0.11 -1.51 ± 0.22 D26077

94835_f_at Tubb2 tubulin, beta 2 2.03 ± 0.06 2.31 ± 0.08 1.03 ± 0.10 -1.37 ± 0.11 M28739

94789_r_at Tubb5 tubulin, beta 5 2.20 ± 0.06 2.71 ± 0.07 1.03 ± 0.13 -1.28 ± 0.13 X04663

98759_f_at Tuba2 tubulin, alpha 2 2.16 ± 0.09 2.48 ± 0.06 1.08 ± 0.12 -1.19 ± 0.13 M28727

160462_f_at Tubb3 tubulin, beta 3 1.64 ± 0.07 2.04 ± 0.07 -1.03 ± 0.10 -1.29 ± 0.11 AW050256

101419_at Tubb4 tubulin, beta 4 -2.16 ± 0.06 -1.56 ± 0.06 -1.17 ± 0.12 -1.70 ± 0.10 M28730

99924_at Tubg1 tubulin, gamma 1 2.00 ± 0.12 2.48 ± 0.17 1.09 ± 0.11 -1.04 ± 0.14 AW121845

100342_i_at Tuba1 tubulin, alpha 1 2.54 ± 0.09 2.84 ± 0.08 1.03 ± 0.11 -1.21 ± 0.12 M28729

101543_f_at Tuba6 tubulin, alpha 6 2.41 ± 0.06 3.07 ± 0.06 1.06 ± 0.12 -1.19 ± 0.14 M13441

102742_g_at Mapt microtubule-associated
protein tau

3.07 ± 0.07 2.10 ± 0.06 -1.16 ± 0.12 -1.51 ± 0.11 M18775

99541_at Kif11 kinesin family member
11

2.01 ± 0.13 1.08 ± 0.07 -1.10 ± 0.11 1.41 ± 0.14 AJ223293

101929_at 6720463E02Rik RIKEN cDNA
6720463E02 gene

-2.25 ± 0.06 2.00 ± 0.06 1.28 ± 0.10 -1.50 ± 0.11 AI836322

97276_at Ckap1 cytoskeleton-associated
protein 1

1.98 ± 0.10 1.81 ± 0.13 1.27 ± 0.18 -1.36 ± 0.14 AI853425

160461_f_at 2310057H16Rik RIKEN cDNA
2310057H16 gene

-1.07 ± 0.12 1.43 ± 0.06 2.94 ± 0.26 2.18 ± 0.13 AW215736

97909_at Stmn1 stathmin 1 2.11 ± 0.08 2.21 ± 0.06 -1.15 ± 0.10 -1.29 ± 0.12 AI838080

Table 10.21.  Cell adhesion
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

104407_at Alcam activated leukocyte cell
adhesion molecule

2.94 ± 0.09 -1.22 ± 0.07 -1.25 ± 0.15 -1.18 ± 0.14 L25274

98140_at Cdh1 cadherin 1 -2.68 ± 0.07 -2.72 ± 0.09 -1.25 ± 0.10 -1.16 ± 0.13 X60961

104743_at Cdh13 cadherin 13 1.93 ± 0.18 1.29 ± 0.10 -1.74 ± 0.10 -2.45 ± 0.10 AB022100

95898_at Cdh4 cadherin 4 2.30 ± 0.08 1.55 ± 0.07 -1.12 ± 0.10 -1.03 ± 0.11 X69966

101701_at Cdh8 cadherin 8 1.98 ± 0.16 1.13 ± 0.09 -2.37 ± 0.10 -1.42 ± 0.14 X95600
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94305_at Col1a1 procollagen, type I, alpha 1 -1.71 ± 0.38 -8.55 ± 0.07 -1.14 ± 0.22 1.38 ± 0.22 U03419

161156_r_at Col1a2 procollagen, type I, alpha 2 -2.53 ± 0.11 -2.69 ± 0.06 -1.37 ± 0.11 -1.23 ± 0.11 AV230631

101093_at Col4a1 procollagen, type IV, alpha 1 -1.66 ± 0.07 -2.24 ± 0.07 1.18 ± 0.10 1.21 ± 0.16 M15832

92567_at Col5a2 procollagen, type V, alpha 2 1.02 ± 0.16 -1.40 ± 0.08 2.05 ± 0.33 2.12 ± 0.38 L02918

102070_at Col9a3 procollagen, type IX, alpha 3 -2.19 ± 0.08 -1.67 ± 0.07 1.04 ± 0.11 1.26 ± 0.13 AW212495

93529_at D8Wsu49e DNA segment, Chr 8, Wayne
State University 49, expressed

-1.57 ± 0.07 -2.08 ± 0.07 -1.44 ± 0.10 -1.19 ± 0.10 AW125219

160649_at Gp1bb glycoprotein Ib, beta
polypeptide

-1.09 ± 0.09 -1.04 ± 0.09 -2.14 ± 0.10 -1.84 ± 0.11 AB001419

95511_at Itga6 integrin alpha 6 1.63 ± 0.12 1.43 ± 0.11 2.19 ± 0.13 1.77 ± 0.15 X69902

92366_at Lama2 laminin, alpha 2 2.42 ± 0.13 1.62 ± 0.20 1.40 ± 0.12 -1.22 ± 0.15 U12147

99669_at Lgals1 lectin, galactose binding,
soluble 1

-1.06 ± 0.07 -1.03 ± 0.06 4.01 ± 0.36 5.89 ± 0.72 X15986

161708_f_at Mpdz multiple PDZ domain protein -1.01 ± 0.39 -3.97 ± 0.16 1.48 ± 0.14 1.29 ± 0.17 AV244715

96582_at Ncam2 neural cell adhesion molecule
2

2.05 ± 0.21 1.79 ± 0.11 -1.79 ± 0.10 -1.07 ± 0.18 AF001287

160469_at Thbs1 thrombospondin 1 -2.17 ± 0.07 -3.20 ± 0.06 2.16 ± 0.39 2.91 ± 0.31 M62470

92558_at Vcam1 vascular cell adhesion
molecule 1

1.04 ± 0.08 -1.25 ± 0.08 1.37 ± 0.11 1.97 ± 0.13 M84487

94963_at Vcl vinculin -1.10 ± 0.09 1.25 ± 0.11 2.07 ± 0.14 1.92 ± 0.26 AI462105

Table 10.22.  Energy
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

97525_at Gyk glycerol kinase 1.78 ± 0.19 2.49 ± 0.11 1.89 ± 0.22 1.01 ± 0.13 U48403

94367_at AA407809 expressed sequence
AA407809

1.59 ± 0.08 2.13 ± 0.07 1.09 ± 0.11 -1.21 ± 0.10 AI850362

102783_at 2310009E04Rik RIKEN cDNA
2310009E04 gene

-2.81 ± 0.10 -2.72 ± 0.10 -1.25 ± 0.12 1.05 ± 0.10 AI131744

93268_at Glo1 glyoxalase 1 -1.80 ± 0.06 -2.28 ± 0.06 1.09 ± 0.11 1.15 ± 0.11 AI852001

93007_at Npy1r neuropeptide Y receptor
Y1

1.92 ± 0.10 1.15 ± 0.15 -4.01 ± 0.15 -2.59 ± 0.14 Z18280

104148_at H6pd hexose-6-phosphate
dehydrogenase (glucose
1-dehydrogenase)

-2.07 ± 0.08 -2.00 ± 0.06 1.05 ± 0.11 -1.13 ± 0.11 AA939571

98984_f_at Gpd2 glycerol phosphate
dehydrogenase 2,
mitochondrial

3.92 ± 0.22 2.12 ± 0.14 1.19 ± 0.12 -1.54 ± 0.10 D50430

160921_at Acas2l acetyl-Coenzyme A
synthetase 2 (AMP
forming)-like

-2.16 ± 0.07 -2.19 ± 0.06 -1.23 ± 0.10 1.61 ± 0.21 AW125884

92800_i_at Atp5c1 ATP synthase, H+
transporting,
mitochondrial F1
complex, gamma
polypeptide 1

2.50 ± 0.12 1.66 ± 0.10 1.01 ± 0.10 -1.07 ± 0.15 AI836694

100573_f_at Gpi1 glucose phosphate
isomerase 1

1.93 ± 0.07 2.49 ± 0.13 3.13 ± 0.16 1.28 ± 0.21 M14220

161889_f_at Aldo1 aldolase 1, A isoform -2.51 ± 0.06 -1.28 ± 0.06 1.71 ± 0.10 1.06 ± 0.17 AV102160



XXXIII

160546_at Aldo3 aldolase 3, C isoform 1.22 ± 0.06 -1.40 ± 0.07 -2.71 ± 0.10 1.25 ± 0.21 AW121134

162032_f_at Pkm2 pyruvate kinase, muscle -2.69 ± 0.07 -2.86 ± 0.07 1.15 ± 0.14 -1.02 ± 0.16 AV368209

93271_s_at Gnas GNAS (guanine
nucleotide binding
protein, alpha
stimulating) complex
locus /// GNAS (guanine
nucleotide binding
protein, alpha
stimulating) complex
locus

2.25 ± 0.09 2.57 ± 0.06 -1.03 ± 0.14 -1.22 ± 0.13 AF107848

Table 10.23.  Other biological processes
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

98037_at 1110003H18Rik RIKEN cDNA 1110003H18
gene

2.13 ± 0.07 1.51 ± 0.06 1.34 ± 0.10 1.03 ± 0.15 AW122782

99658_f_at 1110025H10Rik RIKEN cDNA 1110025H10
gene

-1.46 ± 0.14 -2.99 ± 0.07 -1.08 ± 0.12 -1.14 ± 0.10 AW047907

160590_r_at 1810030M08Rik RIKEN cDNA 1810030M08
gene

1.64 ± 0.07 2.05 ± 0.08 1.02 ± 0.13 -1.11 ± 0.10 AI853323

160595_at 2310042P20Rik RIKEN cDNA 2310042P20
gene

2.08 ± 0.08 1.73 ± 0.21 1.10 ± 0.10 -1.34 ± 0.12 AI842450

96096_f_at 2610207I16Rik RIKEN cDNA 2610207I16
gene

1.11 ± 0.08 1.03 ± 0.08 1.27 ± 0.13 2.03 ± 0.23 AI648018

100032_at Aaas achalasia, adrenocortical
insufficiency, alacrimia

2.98 ± 0.14 1.42 ± 0.13 1.22 ± 0.10 1.17 ± 0.11 X60136

99559_at Aldh3a2 aldehyde dehydrogenase
family 3, subfamily A2

1.76 ± 0.07 2.30 ± 0.14 1.39 ± 0.19 -1.14 ± 0.16 U14390

161401_f_at Aldh3a2 aldehyde dehydrogenase
family 3, subfamily A2

2.17 ± 0.17 1.39 ± 0.14 1.24 ± 0.12 -1.10 ± 0.12 AV276715

101447_at Apc adenomatosis polyposis coli 1.77 ± 0.07 2.72 ± 0.08 -1.49 ± 0.10 -1.29 ± 0.11 M88127

95144_at Arpc1a actin related protein 2/3
complex, subunit 1A

1.73 ± 0.06 2.17 ± 0.06 1.06 ± 0.15 -1.16 ± 0.14 AB024984

95133_at Asns asparagine synthetase 1.74 ± 0.07 3.13 ± 0.13 1.11 ± 0.24 -1.50 ± 0.17 U38940

96951_at Atp6v1d ATPase, H+ transporting, V1
subunit D

2.14 ± 0.14 1.65 ± 0.08 1.17 ± 0.10 -1.09 ± 0.13 AI839795

100996_at AU041707 expressed sequence
AU041707

2.53 ± 0.32 2.70 ± 0.23 -1.53 ± 0.17 -1.42 ± 0.16 AF015811

95469_at Btd biotinidase -2.16 ± 0.09 -1.68 ± 0.09 -1.17 ± 0.10 -1.05 ± 0.10 AA734444

92642_at Car2 carbonic anhydrase 2 -1.12 ± 0.11 1.27 ± 0.10 2.42 ± 0.11 1.31 ± 0.16 M25944

94241_at Coasy Coenzyme A synthase 1.42 ± 0.09 2.02 ± 0.07 1.58 ± 0.19 -1.07 ± 0.13 AI837229

98535_at Comt catechol-O-methyltransferase 2.23 ± 0.11 1.39 ± 0.07 1.13 ± 0.11 -1.06 ± 0.12 AF076156

98505_i_at Cpox coproporphyrinogen oxidase 2.03 ± 0.12 2.51 ± 0.16 1.32 ± 0.17 -1.13 ± 0.12 D16333

103492_at Cpxm1 carboxypeptidase X 1 (M14
family)

1.16 ± 0.35 3.05 ± 0.22 3.44 ± 0.21 1.38 ± 0.18 AF077738

97724_at Cry2 cryptochrome 2 (photolyase-
like)

1.85 ± 0.26 3.47 ± 0.09 -1.75 ± 0.17 -1.29 ± 0.22 AB003433



XXXIV

95620_at Dhrs7 dehydrogenase/reductase
(SDR family) member 7

1.60 ± 0.09 2.16 ± 0.09 1.70 ± 0.10 1.52 ± 0.13 AW120882

103550_at Ednrb endothelin receptor type B 1.63 ± 0.09 -3.50 ± 0.07 -1.62 ± 0.10 1.98 ± 0.17 U32329

103342_at Eed embryonic ectoderm
development

2.05 ± 0.13 1.76 ± 0.08 1.41 ± 0.12 1.19 ± 0.14 U78103

98121_at Fnta farnesyltransferase, CAAX
box, alpha

1.60 ± 0.07 2.00 ± 0.06 1.20 ± 0.14 -1.03 ± 0.13 D49744

93750_at Gsn gelsolin -1.66 ± 0.12 1.05 ± 0.10 1.83 ± 0.27 2.21 ± 0.26 J04953

160101_at Hmox1 heme oxygenase (decycling)
1

1.11 ± 0.14 2.34 ± 0.11 5.39 ± 0.82 2.23 ± 0.49 X56824

162460_f_at Igbp1 immunoglobulin (CD79A)
binding protein 1

-1.08 ± 0.10 -2.40 ± 0.13 1.08 ± 0.13 1.42 ± 0.16 AV048486

101102_at Igbp1 immunoglobulin (CD79A)
binding protein 1

2.10 ± 0.08 2.55 ± 0.07 1.06 ± 0.12 1.57 ± 0.21 AJ223156

93795_at Itpa inosine triphosphatase
(nucleoside triphosphate
pyrophosphatase)

2.11 ± 0.10 1.63 ± 0.08 1.25 ± 0.13 -1.04 ± 0.12 AW124626

93374_at Jph3 junctophilin 3 -2.50 ± 0.08 -2.63 ± 0.06 -1.46 ± 0.12 -1.41 ± 0.11 AI836349

161796_r_at Kcnq1 potassium voltage-gated
channel, subfamily Q,
member 1

-2.37 ± 0.07 -4.41 ± 0.07 -1.56 ± 0.10 -1.19 ± 0.12 AV367240

103630_at Lars leucyl-tRNA synthetase 1.85 ± 0.06 2.97 ± 0.08 1.42 ± 0.29 -1.30 ± 0.14 AI844089

103377_at Lrp2 low density lipoprotein
receptor-related protein 2

-1.72 ± 0.14 -2.24 ± 0.11 2.00 ± 0.13 1.60 ± 0.43 AW259788

99632_at Mad2l1 MAD2 (mitotic arrest
deficient, homolog)-like 1
(yeast)

2.11 ± 0.09 1.35 ± 0.10 1.17 ± 0.10 1.31 ± 0.11 U83902

160637_at Mocs2 molybdenum cofactor
synthesis 2

2.18 ± 0.09 1.51 ± 0.07 1.33 ± 0.12 -1.04 ± 0.11 AW060325

96082_at Mrpl30 mitochondrial ribosomal
protein L30

2.23 ± 0.27 2.33 ± 0.12 1.27 ± 0.12 -1.04 ± 0.10 AI850644

100046_at Mthfd2 methylenetetrahydrofolate
dehydrogenase (NAD+
dependent),
methenyltetrahydrofolate
cyclohydrolase

1.95 ± 0.06 2.55 ± 0.07 -1.05 ± 0.24 -1.88 ± 0.15 J04627

160463_at Myd116 myeloid differentiation
primary response gene 116

1.93 ± 0.09 4.30 ± 0.09 2.71 ± 0.47 1.12 ± 0.15 X51829

161000_i_at Nusap1 nucleolar and spindle
associated protein 1

1.52 ± 0.16 -1.35 ± 0.08 -1.36 ± 0.12 1.82 ± 0.13 AA275196

104139_at P4ha1 procollagen-proline, 2-
oxoglutarate 4-dioxygenase
(proline 4-hydroxylase),
alpha 1 polypeptide

1.42 ± 0.12 1.95 ± 0.09 2.04 ± 0.20 1.19 ± 0.11 U16162

98021_at Paf53 RNA polymerase I
associated factor

1.90 ± 0.12 2.36 ± 0.11 1.57 ± 0.14 -1.11 ± 0.11 D14336
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160788_at Pes1 pescadillo homolog 1,
containing BRCT domain
(zebrafish)

1.87 ± 0.07 2.73 ± 0.11 1.41 ± 0.12 -1.07 ± 0.14 AI846045

94491_at Pex13 peroxisomal biogenesis
factor 13

1.61 ± 0.11 2.54 ± 0.10 -1.09 ± 0.10 -1.23 ± 0.11 AW123194

95074_at Pex19 peroxisome biogenesis factor
19

-1.57 ± 0.10 -2.16 ± 0.07 -1.31 ± 0.10 -1.03 ± 0.14 AW125309

96295_at Psat1 phosphoserine
aminotransferase 1

1.63 ± 0.08 2.47 ± 0.08 1.30 ± 0.16 1.33 ± 0.15 AW122030

93542_at Pter phosphotriesterase related 1.33 ± 0.15 1.02 ± 0.12 1.56 ± 0.11 3.54 ± 0.51 U28016

160314_at Pyp pyrophosphatase 2.11 ± 0.07 2.33 ± 0.06 1.38 ± 0.15 -1.33 ± 0.14 AI839803

162317_r_at Rps12 ribosomal protein S12 -5.09 ± 0.18 1.30 ± 0.19 1.13 ± 0.22 -1.23 ± 0.16 AV064697

93899_at Rps6kb1 ribosomal protein S6 kinase,
polypeptide 1

1.93 ± 0.16 2.05 ± 0.11 -1.25 ± 0.13 -1.21 ± 0.11 AJ000654

100732_at Rps8 ribosomal protein S8 1.46 ± 0.06 1.97 ± 0.07 1.33 ± 0.12 -1.07 ± 0.14 X73829

102769_f_at Sc5d sterol-C5-desaturase (fungal
ERG3, delta-5-desaturase)
homolog (S. cerevisae)

1.87 ± 0.10 -1.14 ± 0.10 -2.09 ± 0.11 -2.05 ± 0.13 AB016248

95049_at Snrpd2 small nuclear
ribonucleoprotein D2

3.17 ± 0.12 2.52 ± 0.18 1.21 ± 0.12 -1.10 ± 0.19 AI837853

101061_at Ssr2 signal sequence receptor,
beta

1.92 ± 0.07 2.01 ± 0.10 1.45 ± 0.10 1.00 ± 0.14 AI845293

95436_at Sst somatostatin 1.35 ± 0.11 1.64 ± 0.08 -1.19 ± 0.19 -4.06 ± 0.10 X51468

94564_at Sult4a1 sulfotransferase family 4A,
member 1

1.40 ± 0.13 3.05 ± 0.07 -2.26 ± 0.16 -2.37 ± 0.19 AF059257

93413_at Terf2 telomeric repeat binding
factor 2

2.95 ± 0.17 1.97 ± 0.10 1.05 ± 0.16 -1.09 ± 0.18 AF003000

160533_r_at Tnp1 transition protein 1 2.19 ± 0.17 1.51 ± 0.14 -1.22 ± 0.12 -1.14 ± 0.12 X12521

94381_at Umpk uridine monophosphate
kinase

1.43 ± 0.08 2.15 ± 0.16 1.37 ± 0.13 -1.31 ± 0.10 L31783

99126_at Xist inactive X specific
transcripts

2.68 ± 0.07 -1.31 ± 0.11 1.39 ± 0.11 1.17 ± 0.22 L04961

101890_f_at Zrf2 zuotin related factor 2 2.23 ± 0.08 2.81 ± 0.13 1.57 ± 0.25 -1.16 ± 0.16 U53208

Table 10.24.  Unknown biological processes
Time points (h) GenbankProbe id Symbol Gene Title

4.5 7.5 24 48

96264_at 0610008
N23Rik

RIKEN cDNA
0610008N23 gene

1.62 ± 0.07 2.91 ± 0.09 1.09 ± 0.14 -1.16 ±0.14 AW061235

95677_at 0610009
C03Rik

RIKEN cDNA
0610009C03 gene

1.87 ± 0.08 2.80 ± 0.09 1.51 ± 0.22 -1.22 ±0.17 AA881621

160267_at 0610009
E20Rik

RIKEN cDNA
0610009E20 gene

-2.12 ± 0.07 -2.48 ± 0.07 1.05 ± 0.13 1.06 ±0.12 AI845987

96079_at 0610010
K06Rik

RIKEN cDNA
0610010K06 gene

1.52 ± 0.08 2.67 ± 0.10 1.01 ± 0.18 -1.43 ±0.14 AI853881

95634_at 0610010
K14Rik

RIKEN cDNA
0610010K14 gene

2.21 ± 0.11 2.12 ± 0.11 1.10 ± 0.11 -1.01 ±0.16 AI848107



XXXVI

95636_at 0610010
K14Rik

RIKEN cDNA
0610010K14 gene

2.37 ± 0.09 2.15 ± 0.09 -1.04 ± 0.10 1.03 ±0.24 AW123628

97242_at 0610010
O12Rik

RIKEN cDNA
0610010O12 gene

1.32 ± 0.07 2.06 ± 0.16 1.36 ± 0.14 -1.01 ±0.13 AI849011

95045_at 0610012
D09Rik

RIKEN cDNA
0610012D09 gene

2.05 ± 0.10 1.72 ± 0.09 -1.05 ± 0.12 -1.19 ±0.14 AI844469

97012_f_at 0610033
H09Rik

RIKEN cDNA
0610033H09 gene

3.00 ± 0.23 2.44 ± 0.27 1.73 ± 0.14 1.08 ±0.18 AI838702

99143_at 0610039
N19Rik

RIKEN cDNA
0610039N19 gene

2.19 ± 0.08 2.01 ± 0.07 1.52 ± 0.12 1.16 ±0.11 AA614914

98615_at 0610041
E09Rik

RIKEN cDNA
0610041E09 gene

2.28 ± 0.13 1.35 ± 0.07 1.41 ± 0.10 1.05 ±0.11 AW049570

104400_at 0610042
I15Rik

RIKEN cDNA
0610042I15 gene

2.11 ± 0.10 2.97 ± 0.10 -1.80 ± 0.21 -1.98 ±0.17 AF076956

95458_s_at 1110001
C20Rik

RIKEN cDNA
1110001C20 gene

2.45 ± 0.07 1.27 ± 0.08 -1.10 ± 0.15 -1.06 ±0.10 AW121960

93805_at 1110003
H09Rik

RIKEN cDNA
1110003H09 gene

2.22 ± 0.12 1.54 ± 0.10 1.23 ± 0.10 -1.03 ±0.12 AW121164

94340_at 1110004
L07Rik

RIKEN cDNA
1110004L07 gene

1.57 ± 0.06 2.14 ± 0.11 1.58 ± 0.35 -1.52 ±0.12 AW124224

95732_at 1110005
L13Rik

RIKEN cDNA
1110005L13 gene

3.23 ± 0.12 2.17 ± 0.09 1.20 ± 0.10 -1.11 ±0.16 AW047746

103439_at 1110007
H17Rik

RIKEN cDNA
1110007H17 gene

-2.64 ± 0.07 -1.23 ± 0.10 -1.64 ± 0.11 -1.39 ±0.10 AW045417

97305_at 1110017
C15Rik

RIKEN cDNA
1110017C15 gene

2.34 ± 0.16 2.46 ± 0.07 1.47 ± 0.12 -1.08 ±0.14 AW123267

95592_at 1110019
N10Rik

RIKEN cDNA
1110019N10 gene

2.75 ± 0.07 2.64 ± 0.07 1.34 ± 0.22 -1.29 ±0.17 AW046785

103773_at 1110020
K19Rik

RIKEN cDNA
1110020K19 gene

1.66 ± 0.09 3.01 ± 0.46 1.06 ± 0.15 -1.30 ±0.13 AW047874

104314_r_a
t

1110032
A03Rik

RIKEN cDNA
1110032A03 gene

3.12 ± 0.95 4.51 ± 0.25 -1.08 ± 0.16 -1.03 ±0.19 AI851206

96604_at 1110032
N12Rik

RIKEN cDNA
1110032N12 gene

1.89 ± 0.19 2.23 ± 0.11 1.57 ± 0.17 -1.23 ±0.12 AW125827

94233_at 1110038
F14Rik

RIKEN cDNA
1110038F14 gene

1.95 ± 0.08 2.02 ± 0.09 1.69 ± 0.20 1.15 ±0.11 AW048642

160619_at 1110063
F24Rik

RIKEN cDNA
1110063F24 gene

1.40 ± 0.08 2.17 ± 0.07 1.25 ± 0.20 -1.22 ±0.12 AI843727

160184_at 1200007
D18Rik

RIKEN cDNA
1200007D18 gene

-2.35 ± 0.06 -1.09 ± 0.06 -1.12 ± 0.11 -1.28 ±0.14 AA815795

97401_at 1300006
C06Rik

RIKEN cDNA
1300006C06 gene

2.05 ± 0.07 2.57 ± 0.11 1.10 ± 0.11 -1.22 ±0.12 AW124244

93301_at 1300007
B12Rik

RIKEN cDNA
1300007B12 gene

2.08 ± 0.11 2.24 ± 0.11 1.04 ± 0.14 -1.47 ±0.12 AW124624



XXXVII

98049_at 1300018
I05Rik

RIKEN cDNA
1300018I05 gene

1.44 ± 0.13 2.00 ± 0.06 1.22 ± 0.14 -1.04 ±0.12 AI853458

96732_at 1500001
L20Rik

RIKEN cDNA
1500001L20 gene

-2.18 ± 0.07 -2.28 ± 0.07 1.01 ± 0.14 -1.04 ±0.17 AI851081

160723_at 1500001
M20Rik

RIKEN cDNA
1500001M20 gene

1.84 ± 0.11 2.08 ± 0.12 1.06 ± 0.11 -1.20 ±0.15 AW124848

95568_at 1500011
J06Rik

RIKEN cDNA
1500011J06 gene

2.90 ± 0.11 1.97 ± 0.12 1.18 ± 0.13 -1.07 ±0.12 AI853412

103885_at 1500019
O16Rik

RIKEN cDNA
1500019O16 gene

1.93 ± 0.07 2.53 ± 0.12 1.07 ± 0.10 1.07 ±0.13 AW049156

98891_at 1600012
H06Rik

RIKEN cDNA
1600012H06 gene

1.75 ± 0.13 2.19 ± 0.27 1.04 ± 0.10 -1.16 ±0.11 AW011716

160975_at 1700024
K14Rik

RIKEN cDNA
1700024K14 gene

-1.56 ± 0.11 -2.19 ± 0.11 1.32 ± 0.18 1.34 ±0.22 AI504338

101568_at 1700024
N20Rik

RIKEN cDNA
1700024N20 gene

1.76 ± 0.08 2.78 ± 0.12 1.38 ± 0.15 1.01 ±0.15 AW227620

161004_at 1700097
N02Rik

RIKEN cDNA
1700097N02 gene

-2.14 ± 0.12 -3.37 ± 0.06 -1.03 ± 0.11 -1.01 ±0.10 AA250414

161109_at 1810013
L24Rik

RIKEN cDNA
1810013L24 gene

2.06 ± 0.18 1.27 ± 0.09 1.10 ± 0.11 -1.10 ±0.13 AV335391

96743_at 1810035
L17Rik

RIKEN cDNA
1810035L17 gene

2.02 ± 0.07 1.41 ± 0.06 1.76 ± 0.10 1.09 ±0.16 AA958560

98958_at 1810057
B09Rik

RIKEN cDNA
1810057B09 gene

2.15 ± 0.12 -1.62 ± 0.07 -1.34 ± 0.10 -1.21 ±0.11 AA759910

95699_f_at 2010009
J04Rik

RIKEN cDNA
2010009J04 gene

1.92 ± 0.07 2.08 ± 0.06 1.31 ± 0.14 -1.03 ±0.15 AI848094

96686_i_at 2010100
O12Rik

RIKEN cDNA
2010100O12 gene

2.08 ± 0.12 1.68 ± 0.07 1.26 ± 0.10 -1.01 ±0.16 AI853864

104620_at 2010300
G19Rik

RIKEN cDNA
2010300G19 gene

2.07 ± 0.07 1.92 ± 0.08 -1.03 ± 0.15 -1.73 ±0.10 AW123402

99187_f_at 2010315
L10Rik

RIKEN cDNA
2010315L10 gene

2.45 ± 0.15 2.73 ± 0.08 1.98 ± 0.22 -1.03 ±0.21 AI835662

96761_at 2210409
B01Rik

RIKEN cDNA
2210409B01 gene

-2.18 ± 0.10 -2.30 ± 0.07 -1.09 ± 0.11 -1.13 ±0.10 AF109906

103076_at 2210412
K09Rik

RIKEN cDNA
2210412K09 gene

2.08 ± 0.11 -1.02 ± 0.08 1.09 ± 0.12 1.24 ±0.10 AW046093

95075_at 2310006
I24Rik

RIKEN cDNA
2310006I24 gene

2.17 ± 0.10 2.02 ± 0.08 -1.01 ± 0.11 -1.30 ±0.10 AW229141

103874_r_a
t

2310015
N07Rik

RIKEN cDNA
2310015N07 gene

2.78 ± 0.31 1.21 ± 0.22 1.41 ± 0.18 -1.02 ±0.15 AA684456

98942_r_at 2310032
D16Rik

RIKEN cDNA
2310032D16 gene

-2.99 ± 0.10 -4.97 ± 0.06 1.03 ± 0.19 1.14 ±0.30 AW125284

104218_s_a
t

2310032
M22Rik

RIKEN cDNA
2310032M22 gene

2.77 ± 0.13 1.28 ± 0.11 -1.31 ± 0.10 1.14 ±0.12 AI507524



XXXVIII

92703_at 2310032
M22Rik

RIKEN cDNA
2310032M22 gene

3.33 ± 0.15 1.95 ± 0.08 -1.05 ± 0.14 -1.37 ±0.13 AI325791

160475_at 2310034
L04Rik

RIKEN cDNA
2310034L04 gene

2.42 ± 0.07 2.94 ± 0.15 1.25 ± 0.24 -1.28 ±0.10 AI839116

94978_at 2310037
I24Rik

RIKEN cDNA
2310037I24 gene

1.85 ± 0.13 2.34 ± 0.06 1.41 ± 0.18 -1.14 ±0.11 AI839775

104117_at 2310040
A13Rik

RIKEN cDNA
2310040A13 gene

1.93 ± 0.16 1.74 ± 0.09 -1.11 ± 0.12 1.23 ±0.13 AI836641

101404_at 2310061
I09Rik

RIKEN cDNA
2310061I09 gene

2.73 ± 0.15 2.13 ± 0.12 1.50 ± 0.15 -1.21 ±0.14 AI853654

95103_at 2310065
K24Rik

RIKEN cDNA
2310065K24 gene

2.38 ± 0.12 2.36 ± 0.11 1.22 ± 0.17 -1.24 ±0.15 AI839824

104100_at 2310075
E07Rik

RIKEN cDNA
2310075E07 gene

-3.46 ± 0.10 -2.52 ± 0.07 1.31 ± 0.14 1.65 ±0.11 AI845915

95449_at 2310075
G12Rik

RIKEN cDNA
2310075G12 gene

-3.12 ± 0.11 -1.83 ± 0.06 -1.10 ± 0.11 1.16 ±0.12 AW049793

95501_at 2410001
C21Rik

RIKEN cDNA
2410001C21 gene

1.61 ± 0.08 2.21 ± 0.07 1.02 ± 0.11 -1.21 ±0.12 AW122970

93138_at 2410012
H22Rik

RIKEN cDNA
2410012H22 gene

1.09 ± 0.08 1.49 ± 0.10 2.20 ± 0.13 1.26 ±0.16 AI853219

98039_at 2410015
M20Rik

RIKEN cDNA
2410015M20 gene

2.37 ± 0.15 1.90 ± 0.13 1.08 ± 0.10 1.08 ±0.12 AI853819

104641_f_a
t

2410018
L13Rik

RIKEN cDNA
2410018L13 gene

1.31 ± 0.06 2.45 ± 0.09 -1.30 ± 0.19 -1.98 ±0.14 AI643393

98344_f_at 2410018
L13Rik

RIKEN cDNA
2410018L13 gene

2.06 ± 0.11 2.09 ± 0.13 -1.01 ± 0.11 -2.14 ±0.11 AI850438

161906_f_a
t

2410022
L05Rik

RIKEN cDNA
2410022L05 gene

-3.11 ± 0.09 -3.26 ± 0.06 -1.28 ± 0.10 -1.61 ±0.12 AV113045

101047_at 2410026
K10Rik

RIKEN cDNA
2410026K10 gene

-2.47 ± 0.07 -1.09 ± 0.06 1.22 ± 0.17 -1.26 ±0.12 AW123697

95138_at 2510001
I10Rik

RIKEN cDNA
2510001I10 gene

1.16 ± 0.07 2.21 ± 0.11 1.68 ± 0.12 1.24 ±0.11 AI836568

98528_at 2510006
D16Rik

RIKEN cDNA
2510006D16 gene

1.79 ± 0.08 2.33 ± 0.07 1.24 ± 0.21 -1.27 ±0.15 AI854901

97864_at 2510049
I19Rik

RIKEN cDNA
2510049I19 gene

3.66 ± 0.36 2.42 ± 0.13 1.15 ± 0.17 1.26 ±0.17 AW258842

98134_at 2610101
N10Rik

RIKEN cDNA
2610101N10 gene

1.35 ± 0.07 2.00 ± 0.10 1.17 ± 0.17 -1.07 ±0.10 AW048639

162057_f_a
t

2610103
J23Rik

RIKEN cDNA
2610103J23 gene

2.19 ± 0.19 1.65 ± 0.06 1.05 ± 0.12 1.07 ±0.13 AV269118

93802_at 2610103
J23Rik

RIKEN cDNA
2610103J23 gene

5.92 ± 0.55 3.46 ± 0.62 1.56 ± 0.19 1.12 ±0.21 AA815890

160177_at 2610203
K23Rik

RIKEN cDNA
2610203K23 gene

2.10 ± 0.07 2.29 ± 0.09 1.59 ± 0.19 -1.01 ±0.14 AW123805



XXXIX

95058_f_at 2610205
H19Rik

RIKEN cDNA
2610205H19 gene

2.54 ± 0.08 1.41 ± 0.10 1.20 ± 0.10 -1.02 ±0.13 AW121984

98973_at 2610318
G08Rik

RIKEN cDNA
2610318G08 gene

3.15 ± 0.22 4.09 ± 0.35 1.39 ± 0.18 1.10 ±0.11 AA982595

96688_at 2610318
G18Rik

RIKEN cDNA
2610318G18 gene

2.01 ± 0.14 1.31 ± 0.07 -1.15 ± 0.12 -1.10 ±0.10 AI845463

101524_at 2610510
D13Rik

RIKEN cDNA
2610510D13 gene

2.35 ± 0.21 1.55 ± 0.07 -1.20 ± 0.10 -1.16 ±0.11 AI851595

160223_at 2610511
O17Rik

RIKEN cDNA
2610511O17 gene

2.24 ± 0.19 2.10 ± 0.13 1.45 ± 0.11 -1.06 ±0.14 AW047172

92268_at 2700007
P21Rik

RIKEN cDNA
2700007P21 gene

2.60 ± 0.10 4.08 ± 0.22 1.49 ± 0.21 1.06 ±0.14 AI854851

100306_at 2700007
P21Rik

RIKEN cDNA
2700007P21 gene

2.70 ± 0.22 6.66 ± 0.34 1.29 ± 0.18 -1.13 ±0.15 AI510297

93768_f_at 2700059
D21Rik

RIKEN cDNA
2700059D21 gene

2.42 ± 0.08 2.33 ± 0.13 1.01 ± 0.12 -1.28 ±0.11 AW124052

104470_at 2700066
J21Rik

RIKEN cDNA
2700066J21 gene

2.61 ± 0.67 4.61 ± 0.13 1.77 ± 0.22 1.20 ±0.18 AI957346

160752_at 2810002
D13Rik

RIKEN cDNA
2810002D13 gene

-4.05 ± 0.17 -1.20 ± 0.14 -1.13 ± 0.10 1.00 ±0.13 AA667021

104089_at 2810026
P18Rik

RIKEN cDNA
2810026P18 gene

3.53 ± 0.23 5.50 ± 0.23 1.35 ± 0.11 1.05 ±0.10 AW045664

99466_at 2810031
J10Rik

RIKEN cDNA
2810031J10 gene

1.29 ± 0.15 2.27 ± 0.10 -1.49 ± 0.15 -1.38 ±0.16 AI845653

95150_at 2810052
M02Rik

RIKEN cDNA
2810052M02 gene

1.58 ± 0.14 2.45 ± 0.15 1.16 ± 0.10 -1.11 ±0.13 AI852196

95451_at 2810405
J04Rik

RIKEN cDNA
2810405J04 gene

1.45 ± 0.07 2.21 ± 0.09 1.12 ± 0.16 -1.27 ±0.13 AA855382

160278_at 2810428
I15Rik

RIKEN cDNA
2810428I15 gene

1.24 ± 0.11 2.88 ± 0.09 2.15 ± 0.33 -1.29 ±0.14 AI854550

103071_at 2810429
C13Rik

RIKEN cDNA
2810429C13 gene

3.33 ± 0.10 2.52 ± 0.09 1.22 ± 0.11 1.35 ±0.13 AI843655

99185_at 2810443
J12Rik

RIKEN cDNA
2810443J12 gene

2.49 ± 0.08 2.08 ± 0.09 1.26 ± 0.11 -1.25 ±0.11 AW047026

103664_r_a
t

2810452
K22Rik

RIKEN cDNA
2810452K22 gene

2.12 ± 0.09 1.39 ± 0.09 1.13 ± 0.11 -1.29 ±0.11 AA959648

92840_at 3110079
L04Rik

RIKEN cDNA
3110079L04 gene

4.91 ± 0.58 6.87 ± 0.17 1.54 ± 0.32 1.04 ±0.12 AA683712

101998_at 4833420
G17Rik

RIKEN cDNA
4833420G17 gene

2.28 ± 0.07 2.10 ± 0.14 1.02 ± 0.11 1.19 ±0.11 AW125086

104356_at 4921516
M08Rik

RIKEN cDNA
4921516M08 gene

3.39 ± 0.22 1.75 ± 0.25 1.10 ± 0.13 1.13 ±0.11 AI465543

97798_at 4930504
E06Rik

RIKEN cDNA
4930504E06 gene

1.31 ± 0.08 2.55 ± 0.22 1.45 ± 0.23 -1.01 ±0.12 AW121496



XL

104485_at 4930527
D15Rik

RIKEN cDNA
4930527D15 gene

1.57 ± 0.50 2.82 ± 0.14 1.21 ± 0.11 1.07 ±0.14 AI552398

104640_f_a
t

4930553
M18Rik

RIKEN cDNA
4930553M18 gene

2.20 ± 0.09 2.91 ± 0.20 1.34 ± 0.12 -1.13 ±0.11 AI464596

104639_i_a
t

4930553
M18Rik

RIKEN cDNA
4930553M18 gene

3.05 ± 0.35 5.24 ± 0.18 1.13 ± 0.24 1.12 ±0.28 AI464596

95123_at 4930566
A11Rik

RIKEN cDNA
4930566A11 gene

2.16 ± 0.08 1.85 ± 0.08 -1.24 ± 0.17 -1.37 ±0.12 AI844003

104243_r_a
t

4930578
F06Rik

RIKEN cDNA
4930578F06 gene

2.80 ± 0.20 1.28 ± 0.15 1.40 ± 0.12 -1.05 ±0.14 AI835622

160279_at 4930588
M11Rik

RIKEN cDNA
4930588M11 gene

1.92 ± 0.07 2.67 ± 0.12 1.66 ± 0.19 -1.10 ±0.17 AW123632

99988_at 4933427
L07Rik

RIKEN cDNA
4933427L07 gene

1.07 ± 0.07 2.00 ± 0.13 1.31 ± 0.14 -1.02 ±0.11 AW122115

101001_at 5031439
A09Rik

RIKEN cDNA
5031439A09 gene

-1.16 ± 0.08 -1.19 ± 0.07 1.83 ± 0.11 2.03 ±0.26 AI647612

95140_at 5230400
G24Rik

RIKEN cDNA
5230400G24 gene

1.86 ± 0.12 2.15 ± 0.07 -1.08 ± 0.13 -1.17 ±0.12 AI842068

97357_at 5430401
D19Rik

RIKEN cDNA
5430401D19 gene

1.43 ± 0.07 -1.07 ± 0.06 -2.23 ± 0.11 -1.59 ±0.13 AI426400

100587_f_a
t

5730403
B10Rik

RIKEN cDNA
5730403B10 gene

2.99 ± 0.43 1.91 ± 0.08 1.08 ± 0.10 1.01 ±0.12 AI843959

92992_i_at 5730497
N03Rik

RIKEN cDNA
5730497N03 gene

4.26 ± 0.39 3.11 ± 0.32 -1.20 ± 0.12 1.12 ±0.15 AI324972

160119_at 5730592
L21Rik

RIKEN cDNA
5730592L21 gene

1.00 ± 0.07 2.04 ± 0.11 1.18 ± 0.15 -1.18 ±0.11 AI845538

93579_at 5830427
H10Rik

RIKEN cDNA
5830427H10 gene

1.84 ± 0.07 1.98 ± 0.15 1.26 ± 0.16 -1.10 ±0.14 AW121613

104059_at 5830451
P18Rik

RIKEN cDNA
5830451P18 gene

2.26 ± 0.15 2.33 ± 0.09 1.05 ± 0.12 -1.27 ±0.11 AI851751

102964_at 6230400
O18Rik

RIKEN cDNA
6230400O18 gene

1.83 ± 0.17 2.88 ± 0.10 1.43 ± 0.18 -1.40 ±0.12 AW122326

94415_at 6230421
P05Rik

RIKEN cDNA
6230421P05 gene

2.82 ± 0.13 2.26 ± 0.15 1.58 ± 0.20 -1.03 ±0.14 AA710439

161114_i_a
t

6330509
M23Rik

RIKEN cDNA
6330509M23 gene

2.15 ± 0.23 1.78 ± 0.17 -1.15 ± 0.11 -1.74 ±0.10 AV330064

94426_at 6330575
P11Rik

RIKEN cDNA
6330575P11 gene

2.72 ± 0.11 2.86 ± 0.08 -1.04 ± 0.26 -2.08 ±0.18 AI851052

96833_at 8430423
A01Rik

RIKEN cDNA
8430423A01 gene

1.30 ± 0.08 2.39 ± 0.12 1.07 ± 0.11 -1.27 ±0.16 AW048468

96539_at 9330147
J08Rik

RIKEN cDNA
9330147J08 gene

-1.66 ± 0.07 -2.40 ± 0.07 -1.56 ± 0.11 -1.12 ±0.10 AW212071

94895_at 9430020
E02Rik

RIKEN cDNA
9430020E02 gene

2.66 ± 0.10 1.58 ± 0.07 1.06 ± 0.12 -1.05 ±0.17 AW122948



XLI

104444_at 9430098
E02Rik

RIKEN cDNA
9430098E02 gene

2.01 ± 0.11 1.72 ± 0.10 1.05 ± 0.10 -1.50 ±0.15 AA689927

161104_at 9430099
J10Rik

RIKEN cDNA
9430099J10 gene

3.82 ± 0.25 1.91 ± 0.22 1.10 ± 0.17 1.79 ±0.13 AI846811

104486_at A2m alpha-2-
macroglobulin

-1.04 ± 0.15 -1.72 ± 0.09 -1.14 ± 0.14 2.69 ±0.44 AI850558

97118_at A630007
B06Rik

RIKEN cDNA
A630007B06 gene

1.53 ± 0.08 2.29 ± 0.16 1.23 ± 0.20 -1.14 ±0.12 AI159700

103303_at A730019
I05Rik

RIKEN cDNA
A730019I05 gene

-1.32 ± 0.09 -2.62 ± 0.08 1.27 ± 0.20 1.50 ±0.29 AA798246

103688_at A830006
N08Rik

RIKEN cDNA
A830006N08 gene

-1.27 ± 0.17 1.10 ± 0.12 -1.51 ± 0.10 -2.27 ±0.10 AW122834

94663_at AA4071
51

expressed
sequence
AA407151

-2.46 ± 0.08 -2.56 ± 0.07 -1.37 ± 0.12 1.00 ±0.12 AA407151

160713_at AA4079
30

expressed
sequence
AA407930

2.08 ± 0.07 3.61 ± 0.21 2.74 ± 0.52 1.01 ±0.15 AI841579

161376_f_a
t

AA4079
30

expressed
sequence
AA407930

2.12 ± 0.25 1.79 ± 0.20 1.07 ± 0.16 -1.40 ±0.15 AV243059

97918_at AA5367
43

expressed
sequence
AA536743

2.48 ± 0.13 1.59 ± 0.09 1.26 ± 0.14 1.40 ±0.13 AA623587

94486_at AA9597
42

expressed
sequence
AA959742

1.47 ± 0.06 2.27 ± 0.09 1.56 ± 0.18 -1.09 ±0.16 AW125178

94359_at AA9605
58

expressed
sequence
AA960558

-2.01 ± 0.06 -1.74 ± 0.06 -1.24 ± 0.12 -1.39 ±0.10 AI849556

101006_at Acat2 acetyl-Coenzyme
A acetyltransferase
2

1.10 ± 0.07 -2.20 ± 0.06 -3.50 ± 0.09 -2.90 ±0.10 M35797

104578_f_a
t

Actn1 actinin, alpha 1 -1.01 ± 0.08 1.26 ± 0.06 2.13 ± 0.11 1.70 ±0.17 AI195392

99949_at AI22578
2

expressed
sequence
AI225782

1.19 ± 0.07 2.03 ± 0.06 1.14 ± 0.15 -1.29 ±0.10 AW060324

93472_at AI41333
1

expressed
sequence
AI413331

-2.05 ± 0.07 -1.97 ± 0.07 1.03 ± 0.11 1.02 ±0.10 AA796989

160297_at AI41363
1

expressed
sequence
AI413631

2.17 ± 0.11 1.52 ± 0.12 1.83 ± 0.11 1.12 ±0.15 AW121431

95503_at AI83956
2

expressed
sequence
AI839562

2.13 ± 0.07 1.65 ± 0.06 -1.01 ± 0.11 -1.41 ±0.12 U95498

93168_at AI85262
9

expressed
sequence
AI852629

2.65 ± 0.58 -1.94 ± 0.20 -1.63 ± 0.11 -1.25 ±0.14 AI852629

97369_g_at Akap1 A kinase (PRKA)
anchor protein 1

1.30 ± 0.16 2.20 ± 0.15 -1.31 ± 0.11 -1.26 ±0.10 U95145

95001_at Akap8 A kinase (PRKA)
anchor protein 8

-1.02 ± 0.09 2.10 ± 0.29 1.26 ± 0.14 -1.12 ±0.11 AB028920

101947_at Akap8l A kinase (PRKA)
anchor protein 8-
like

1.09 ± 0.11 2.69 ± 0.10 1.56 ± 0.21 1.13 ±0.13 AB028921
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93464_at Akap9 A kinase (PRKA)
anchor protein
(yotiao) 9

1.54 ± 0.08 -3.17 ± 0.07 -1.27 ± 0.10 -1.35 ±0.14 AI561567

103790_at Alg3 asparagine-linked
glycosylation 3
homolog (yeast,
alpha-1,3-
mannosyltransferas
e)

-2.13 ± 0.07 -1.88 ± 0.06 1.03 ± 0.14 -1.13 ±0.11 AI846632

95590_at Alg5 asparagine-linked
glycosylation 5
homolog (yeast,
dolichyl-phosphate
beta-
glucosyltransferase
)

1.32 ± 0.08 2.59 ± 0.19 1.48 ± 0.11 -1.06 ±0.18 AA615951

98477_s_at Ank3 ankyrin 3,
epithelial

2.03 ± 0.13 1.85 ± 0.13 -1.26 ± 0.10 -1.61 ±0.11 L40632

93627_at Ankrd28 ankyrin repeat
domain 28

2.05 ± 0.13 1.95 ± 0.14 1.50 ± 0.15 -1.16 ±0.13 AI852287

102815_at Anxa11 annexin A11 -6.37 ± 0.18 -6.68 ± 0.13 1.41 ± 0.16 1.85 ±0.11 U65986

101393_at Anxa3 annexin A3 -1.81 ± 0.18 -2.57 ± 0.24 12.33 ± 3.14 9.26 ±0.80 AJ001633

96529_at Ap1gbp1 AP1 gamma
subunit binding
protein 1

2.77 ± 0.22 1.93 ± 0.13 -1.29 ± 0.12 -1.10 ±0.13 AW122059

93794_at Appbp1 amyloid beta
precursor protein
binding protein 1

3.45 ± 0.16 1.85 ± 0.13 1.13 ± 0.13 -1.21 ±0.14 AI846393

102677_at Arhgdig Rho GDP
dissociation
inhibitor (GDI)
gamma

-1.21 ± 0.07 -1.02 ± 0.07 -1.75 ± 0.10 -2.56 ±0.10 U73198

98490_at Arl10c ADP-ribosylation
factor-like 10C

-1.53 ± 0.07 2.23 ± 0.09 -1.19 ± 0.11 -1.07 ±0.16 AA822412

95136_at Arl6ip4 ADP-ribosylation
factor-like 6
interacting protein
4

2.46 ± 0.21 1.96 ± 0.14 1.53 ± 0.17 -1.07 ±0.13 AW049185

93288_at Arpc2 actin related
protein 2/3
complex, subunit 2

2.26 ± 0.10 1.86 ± 0.09 1.04 ± 0.10 -1.22 ±0.12 AI835883

97259_at Arpp19 cAMP-regulated
phosphoprotein 19

2.17 ± 0.18 2.12 ± 0.10 1.05 ± 0.10 -1.12 ±0.11 AJ005983

102980_at AW5365
94

expressed
sequence
AW536594

2.03 ± 0.09 2.62 ± 0.08 1.78 ± 0.35 -1.30 ±0.10 AI849119

104005_at B4galt2 UDP-
Gal:betaGlcNAc
beta 1,4-
galactosyltransfera
se, polypeptide 2

-1.02 ± 0.07 2.35 ± 0.10 -1.75 ± 0.17 -1.88 ±0.14 AB019541

95156_g_at B830022
L21Rik

RIKEN cDNA
B830022L21 gene

1.92 ± 0.08 2.49 ± 0.20 -1.04 ± 0.19 -1.87 ±0.17 AI853875

93900_at Bat2 HLA-B associated
transcript 2

1.42 ± 0.21 3.01 ± 0.12 -1.67 ± 0.13 -1.69 ±0.18 AW050268

101582_at BC0032
62

cDNA sequence
BC003262

1.54 ± 0.10 2.18 ± 0.07 1.34 ± 0.15 -1.34 ±0.13 AI853259

103930_at BC0040
22

cDNA sequence
BC004022

2.20 ± 0.08 1.71 ± 0.07 1.41 ± 0.10 -1.08 ±0.11 AI413179

97554_at BC0056
24

cDNA sequence
BC005624

2.04 ± 0.14 2.16 ± 0.07 1.37 ± 0.13 -1.01 ±0.15 AI838889

104037_at BC0161
98

cDNA sequence
BC016198

1.77 ± 0.17 2.46 ± 0.48 1.24 ± 0.12 -1.24 ±0.13 AI834891
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98 BC016198

93004_r_at BC0182
42

cDNA sequence
BC018242

-2.04 ± 0.07 -1.65 ± 0.06 -1.57 ± 0.10 -1.21 ±0.10 AI842887

96560_at BC0297
19

cDNA sequence
BC029719

-1.46 ± 0.16 -2.48 ± 0.07 -1.17 ± 0.10 1.26 ±0.11 AA648027

94823_at BC0298
92

cDNA sequence
BC029892

2.12 ± 0.07 2.01 ± 0.09 1.16 ± 0.11 -1.04 ±0.16 AI835315

104366_at BC0390
93

cDNA sequence
BC039093

-1.33 ± 0.11 -2.12 ± 0.07 -1.31 ± 0.10 1.02 ±0.10 AW047831

97490_at Bcl7b B-cell
CLL/lymphoma
7B

1.68 ± 0.17 2.08 ± 0.11 1.25 ± 0.10 -1.24 ±0.13 AJ011145

98052_at Bet1l blocked early in
transport 1
homolog (S.
cerevisiae)-like

2.09 ± 0.08 2.30 ± 0.07 1.15 ± 0.10 -1.03 ±0.12 AF003999

101961_at Bub3 budding
uninhibited by
benzimidazoles 3
homolog (S.
cerevisiae)

2.13 ± 0.08 2.16 ± 0.10 1.05 ± 0.14 1.00 ±0.13 U67327

103695_f_a
t

C330007
P06Rik

RIKEN cDNA
C330007P06 gene

2.17 ± 0.20 1.58 ± 0.07 1.24 ± 0.10 1.16 ±0.12 AW047329

103908_at C330016
H24Rik

RIKEN cDNA
C330016H24 gene

1.12 ± 0.08 2.43 ± 0.08 1.10 ± 0.13 -1.45 ±0.11 AW121857

100410_at C330027
G06Rik

RIKEN cDNA
C330027G06 gene

3.24 ± 0.31 1.82 ± 0.15 1.14 ± 0.15 -1.04 ±0.16 AW122781

98948_at C77032 EST C77032 2.18 ± 0.11 2.43 ± 0.11 2.04 ± 0.17 -1.01 ±0.11 AI785289

104157_at C78212 expressed
sequence C78212

2.21 ± 0.17 1.46 ± 0.17 1.19 ± 0.11 -1.33 ±0.14 AW125643

101596_at C78859 expressed
sequence C78859

1.27 ± 0.17 1.08 ± 0.16 1.88 ± 0.16 -1.37 ±0.14 C78859

94990_at C78915 expressed
sequence C78915

1.26 ± 0.08 2.11 ± 0.07 1.20 ± 0.10 -1.22 ±0.14 AI854725

93741_at C87860 expressed
sequence C87860

1.63 ± 0.09 2.15 ± 0.07 1.36 ± 0.14 -1.11 ±0.11 AA693066

104529_at Caml calcium
modulating ligand

2.41 ± 0.08 2.65 ± 0.10 1.27 ± 0.16 -1.40 ±0.11 U21960

97930_f_at Cd151 CD151 antigen 1.01 ± 0.07 1.43 ± 0.10 2.80 ± 0.14 1.84 ±0.31 AF033620

160493_at Cd63 Cd63 antigen -1.66 ± 0.07 -1.50 ± 0.06 2.33 ± 0.10 1.99 ±0.29 D16432

103016_s_a
t

Cd68 CD68 antigen -1.39 ± 0.11 1.01 ± 0.09 3.10 ± 0.23 2.79 ±0.51 X68273

94084_at Cdc26 cell division cycle
26

2.14 ± 0.07 2.24 ± 0.09 1.33 ± 0.10 -1.04 ±0.13 AI842888

160623_at Cdkl2 cyclin-dependent
kinase-like 2
(CDC2-related
kinase)

1.22 ± 0.09 1.34 ± 0.09 -1.44 ± 0.12 -2.15 ±0.11 AI847045

102804_at Ceacam2 CEA-related cell
adhesion molecule
2

-2.82 ± 0.07 -2.94 ± 0.06 -1.36 ± 0.10 -1.29 ±0.11 X67279

99486_at Cenpb centromere
autoantigen B

1.42 ± 0.09 2.13 ± 0.07 1.10 ± 0.15 -1.06 ±0.13 X55038

162251_f_a
t

Centg2 centaurin, gamma
2

-1.51 ± 0.08 -3.15 ± 0.09 -1.38 ± 0.10 -1.22 ±0.12 AV335015

92841_f_at Chgb chromogranin B 2.24 ± 0.07 1.55 ± 0.08 -1.27 ± 0.10 -1.38 ±0.12 X51429

160330_at Chordc1 cysteine and
histidine-rich
domain (CHORD)-
containing, zinc-
binding protein 1

1.66 ± 0.07 3.00 ± 0.07 1.56 ± 0.20 -1.24 ±0.10 AW122453
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binding protein 1

94030_at Commd2 COMM domain
containing 2

2.42 ± 0.09 2.19 ± 0.09 1.27 ± 0.12 -1.23 ±0.14 AI853431

96881_at Commd6 COMM domain
containing 6

2.36 ± 0.12 1.89 ± 0.10 1.51 ± 0.13 -1.08 ±0.14 AW049394

104302_f_a
t

Commd9 COMM domain
containing 9

2.99 ± 0.12 2.17 ± 0.21 1.30 ± 0.12 1.02 ±0.11 AI851085

101976_at Cops4 COP9 (constitutive
photomorphogenic
) homolog, subunit
4 (Arabidopsis
thaliana)

2.30 ± 0.07 2.46 ± 0.07 1.34 ± 0.13 -1.05 ±0.13 AF071314

101580_at Cox7b cytochrome c
oxidase subunit
VIIb

2.38 ± 0.08 1.16 ± 0.06 1.05 ± 0.10 1.00 ±0.12 AI851220

97352_f_at Coxvib2 cytochrome c
oxidase subunit
VIb, testes-specific

-1.93 ± 0.08 -3.61 ± 0.08 1.00 ± 0.27 2.66 ±0.11 AW123567

103334_at Crcp calcitonin gene-
related peptide-
receptor
component protein

1.99 ± 0.11 1.98 ± 0.10 1.09 ± 0.17 -1.63 ±0.11 AF028242

161942_f_a
t

Cwf19l1 CWF19-like 1, cell
cycle control (S.
pombe)

1.99 ± 0.74 2.12 ± 0.18 -1.38 ± 0.11 1.23 ±0.15 AV337197

96526_at D030029
J20Rik

9 days embryo
whole body cDNA,
RIKEN full-length
enriched library,
clone:D030029J20
product:unknown
EST, full insert
sequence

1.60 ± 0.07 2.12 ± 0.17 1.03 ± 0.16 -1.14 ±0.11 AW228840

160803_at D0H8S2
298E

DNA segment,
Human S2298E

1.84 ± 0.27 1.73 ± 0.09 2.28 ± 0.11 -1.32 ±0.12 D88447

92649_at D0HXS9
928E

DNA segment,
human DXS9928E

1.71 ± 0.07 2.01 ± 0.08 1.54 ± 0.13 -1.12 ±0.15 Y18505

94526_at D10Ertd
214e

DNA segment, Chr
10, ERATO Doi
214, expressed

2.13 ± 0.11 2.05 ± 0.07 1.07 ± 0.11 -1.39 ±0.15 AI848453

104087_at D10Ertd
641e

DNA segment, Chr
10, ERATO Doi
641, expressed

1.38 ± 0.11 2.00 ± 0.14 1.00 ± 0.12 -1.33 ±0.14 AI840598

99087_at D10Ertd
749e

DNA segment, Chr
10, ERATO Doi
749, expressed

1.98 ± 0.07 2.35 ± 0.07 1.50 ± 0.14 -1.33 ±0.12 AW060179

160455_s_a
t

D10Ertd
749e

DNA segment, Chr
10, ERATO Doi
749, expressed

2.03 ± 0.08 2.57 ± 0.07 1.57 ± 0.16 -1.32 ±0.12 AW123786

101960_at D10Wsu
52e

DNA segment, Chr
10, Wayne State
University 52,
expressed

2.16 ± 0.07 2.14 ± 0.08 1.28 ± 0.12 -1.06 ±0.12 AI842208

96189_at D11Ertd
416e

DNA segment, Chr
11, ERATO Doi
416, expressed

2.10 ± 0.15 1.06 ± 0.15 1.36 ± 0.10 1.21 ±0.12 AW046184

160772_i_a
t

D11Ertd
730e

DNA segment, Chr
11, ERATO Doi
730, expressed

1.92 ± 0.11 2.69 ± 0.09 1.41 ± 0.21 1.00 ±0.16 AW214428
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98635_at D11Moh
35

DNA segment, Chr
11, KL Mohlke 35

1.59 ± 0.09 2.23 ± 0.13 1.05 ± 0.18 -1.44 ±0.10 AI854629

95480_at D11Wsu
68e

DNA segment, Chr
11, Wayne State
University 68,
expressed

1.78 ± 0.17 2.01 ± 0.15 -1.05 ± 0.10 1.07 ±0.14 AI847163

160587_at D12Ertd
604e

DNA segment, Chr
12, ERATO Doi
604, expressed

2.11 ± 0.28 1.74 ± 0.08 1.18 ± 0.18 -1.48 ±0.15 AW050018

160957_at D12Ertd
7e

DNA segment, Chr
12, ERATO Doi 7,
expressed

2.13 ± 0.24 2.02 ± 0.14 1.16 ± 0.18 -1.24 ±0.14 AI156978

94451_at D13Wsu
123e

DNA segment, Chr
13, Wayne State
University 123,
expressed

1.75 ± 0.08 2.33 ± 0.10 1.16 ± 0.10 -1.13 ±0.10 AI787627

160964_at D16Bwg
1494e

DNA segment, Chr
16, Brigham &
Women's Genetics
1494 expressed

-2.19 ± 0.07 -1.92 ± 0.07 -1.09 ± 0.10 -1.15 ±0.11 AI838494

95431_at D16Wsu
109e

DNA segment, Chr
16, Wayne State
University 109,
expressed

2.88 ± 0.08 2.08 ± 0.06 1.03 ± 0.10 -1.25 ±0.11 AA623426

95432_f_at D16Wsu
109e

DNA segment, Chr
16, Wayne State
University 109,
expressed

3.00 ± 0.07 2.78 ± 0.10 -1.04 ± 0.11 -1.57 ±0.10 AI844034

160310_at D19Bwg
1357e

DNA segment, Chr
19, Brigham &
Women's Genetics
1357 expressed

1.99 ± 0.07 2.31 ± 0.13 1.34 ± 0.11 -1.34 ±0.11 AW046771

95679_at D19Ertd
144e

DNA segment, Chr
19, ERATO Doi
144, expressed

1.48 ± 0.07 2.14 ± 0.10 1.23 ± 0.20 -1.33 ±0.15 AI835912

160685_at D5Ertd3
63e

DNA segment, Chr
5, ERATO Doi
363, expressed

1.49 ± 0.08 2.00 ± 0.07 -1.21 ± 0.15 -1.10 ±0.15 AI153037

104116_at D5Ertd5
93e

DNA segment, Chr
5, ERATO Doi
593, expressed

2.26 ± 0.21 2.47 ± 0.27 2.83 ± 0.46 -1.48 ±0.13 AW124049

104717_at D5Ertd6
89e

DNA segment, Chr
5, ERATO Doi
689, expressed

1.79 ± 0.09 2.01 ± 0.10 -1.04 ± 0.15 -1.22 ±0.13 AI848330

104418_at D6Ertd3
65e

DNA segment, Chr
6, ERATO Doi
365, expressed

2.47 ± 0.09 1.54 ± 0.11 -1.20 ± 0.10 -1.24 ±0.12 AA796868

103861_s_a
t

D7Wsu1
28e

DNA segment, Chr
7, Wayne State
University 128,
expressed

1.62 ± 0.07 3.86 ± 0.10 1.88 ± 0.13 -1.14 ±0.11 AA388099

103862_r_a
t

D7Wsu1
28e

DNA segment, Chr
7, Wayne State
University 128,
expressed

1.96 ± 0.08 3.01 ± 0.11 1.51 ± 0.11 -1.05 ±0.10 AA388099

97863_at D8Ertd3
54e

DNA segment, Chr
8, ERATO Doi
354, expressed

-1.15 ± 0.07 -1.23 ± 0.06 2.16 ± 0.19 1.20 ±0.24 AW125274

96125_at Daxx Fas death domain-
associated protein

2.09 ± 0.07 2.60 ± 0.08 -1.21 ± 0.20 -1.24 ±0.12 AF110520

96636_at Dctn5 dynactin 5 1.80 ± 0.06 2.11 ± 0.07 1.04 ± 0.13 -1.12 ±0.12 AI852649
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103460_at Ddit4 DNA-damage-
inducible transcript
4

2.36 ± 0.11 3.79 ± 0.19 1.11 ± 0.17 -1.03 ±0.19 AI849939

100037_at Ddx18 DEAD (Asp-Glu-
Ala-Asp) box
polypeptide 18

1.82 ± 0.23 2.98 ± 0.16 1.01 ± 0.12 -1.12 ±0.21 AW213225

160492_at Ddx18 DEAD (Asp-Glu-
Ala-Asp) box
polypeptide 18

2.11 ± 0.08 2.51 ± 0.12 1.56 ± 0.20 -1.01 ±0.11 AI648005

99096_at Ddx24 DEAD (Asp-Glu-
Ala-Asp) box
polypeptide 24

1.82 ± 0.10 3.05 ± 0.07 1.35 ± 0.16 -1.30 ±0.13 U46690

101542_f_a
t

Ddx3x DEAD/H (Asp-
Glu-Ala-Asp/His)
box polypeptide 3,
X-linked

2.87 ± 0.20 1.18 ± 0.06 1.16 ± 0.15 -1.05 ±0.14 L25126

92226_at Ddx50 DEAD (Asp-Glu-
Ala-Asp) box
polypeptide 50

1.80 ± 0.07 2.12 ± 0.10 1.38 ± 0.21 -1.09 ±0.13 AA866971

95688_at Degs degenerative
spermatocyte
homolog
(Drosophila)

2.08 ± 0.09 2.05 ± 0.07 1.44 ± 0.11 -1.07 ±0.12 Y08460

160892_at Dlgh3 discs, large
homolog 3
(Drosophila)

1.14 ± 0.15 2.14 ± 0.16 -1.32 ± 0.11 -1.53 ±0.10 D87117

101975_at Dlk1 delta-like 1
homolog
(Drosophila)

-1.87 ± 0.10 -2.55 ± 0.06 -1.35 ± 0.12 1.27 ±0.11 Z12171

97220_at Dscr2 Down syndrome
critical region
homolog 2
(human)

2.18 ± 0.10 1.98 ± 0.08 1.43 ± 0.15 -1.19 ±0.15 AW122732

94492_at Dstn destrin 2.16 ± 0.06 1.57 ± 0.07 1.04 ± 0.12 -1.27 ±0.14 AB025406

96814_r_at DXImx4
6e

DNA segment, Chr
X, Immunex 46,
expressed

1.22 ± 0.20 2.17 ± 0.29 -1.23 ± 0.11 1.20 ±0.11 AI852973

99366_at E030024
M05Rik

RIKEN cDNA
E030024M05 gene

-1.32 ± 0.13 1.01 ± 0.10 3.48 ± 0.21 3.24 ±0.34 AI553536

103708_at Eif1a eukaryotic
translation
initiation factor 1A

1.66 ± 0.07 1.99 ± 0.09 1.11 ± 0.13 -1.36 ±0.11 AI132207

98141_at Eif5b eukaryotic
translation
initiation factor 5B

3.76 ± 0.11 1.78 ± 0.13 1.52 ± 0.14 -1.30 ±0.11 AA647048

92317_at Elavl2 ELAV (embryonic
lethal, abnormal
vision,
Drosophila)-like 2
(Hu antigen B)

2.11 ± 0.13 -1.03 ± 0.07 -1.30 ± 0.11 -1.27 ±0.12 U29088

92361_at Elavl4 ELAV (embryonic
lethal, abnormal
vision,
Drosophila)-like 4
(Hu antigen D)

2.16 ± 0.11 1.09 ± 0.09 -1.35 ± 0.11 -1.45 ±0.13 D31953

100051_at Epb7.2 erythrocyte protein
band 7.2

-1.98 ± 0.06 -2.35 ± 0.08 -1.24 ± 0.13 1.25 ±0.14 U17297

103263_at Epc1 enhancer of
polycomb homolog
1 (Drosophila)

1.89 ± 0.07 2.50 ± 0.07 -1.05 ± 0.14 -1.22 ±0.13 AF079765

104006_at Eps15 epidermal growth
factor receptor
pathway substrate
15

1.78 ± 0.09 3.26 ± 0.38 1.02 ± 0.10 1.16 ±0.11 L21768
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103859_at Eral1 Era (G-protein)-
like 1 (E. coli)

1.09 ± 0.15 2.76 ± 0.10 -1.01 ± 0.15 1.13 ±0.14 AA863768

98525_f_at Erdr1 erythroid
differentiation
regulator 1

1.64 ± 0.12 3.02 ± 0.07 1.51 ± 0.24 -1.12 ±0.18 AJ007909

96031_r_at Fbxl5 F-box and leucine-
rich repeat protein
5

1.89 ± 0.14 1.25 ± 0.11 1.07 ± 0.12 1.21 ±0.11 AW259411

160424_f_a
t

Fdps farnesyl
diphosphate
synthetase

-1.19 ± 0.06 -1.34 ± 0.06 -3.84 ± 0.10 -4.54 ±0.10 AI846851

99098_at Fdps farnesyl
diphosphate
synthetase

1.22 ± 0.06 1.21 ± 0.06 -4.21 ± 0.10 -4.63 ±0.09 AW045533

96569_at Fignl1 fidgetin-like 1 -2.61 ± 0.07 -3.11 ± 0.06 -1.17 ± 0.10 1.13 ±0.11 AA266298

160648_at Fignl1 fidgetin-like 1 -2.00 ± 0.07 -2.25 ± 0.07 -1.04 ± 0.10 1.61 ±0.10 AI047076

93309_at Fin14 fibroblast growth
factor inducible 14

2.53 ± 0.07 2.01 ± 0.06 1.42 ± 0.17 -1.13 ±0.16 U42386

104600_at Fip1l1 FIP1 like 1 (S.
cerevisiae)

2.51 ± 0.12 2.68 ± 0.13 1.45 ± 0.11 1.28 ±0.11 AI841692

93443_at Fndc1 fibronectin type III
domain containing
1

-3.37 ± 0.11 -1.90 ± 0.09 -1.38 ± 0.10 1.08 ±0.16 AW212271

98817_at Fst follistatin 1.30 ± 0.10 -1.19 ± 0.06 -2.06 ± 0.11 -2.20 ±0.11 Z29532

95756_at Ftsj3 FtsJ homolog 3 (E.
coli)

2.38 ± 0.12 1.92 ± 0.14 1.75 ± 0.10 -1.03 ±0.11 AI839681

98075_at G431001
I09Rik

RIKEN cDNA
G431001I09 gene

2.34 ± 0.07 2.08 ± 0.06 1.23 ± 0.11 1.05 ±0.12 AW121683

93011_at Gabarapl
1

gamma-
aminobutyric acid
(GABA(A))
receptor-associated
protein-like 1

1.66 ± 0.08 2.62 ± 0.06 1.71 ± 0.27 -1.18 ±0.12 AW123904

98531_g_at Gas5 growth arrest
specific 5

2.25 ± 0.07 3.20 ± 0.08 2.08 ± 0.20 1.30 ±0.14 AI849615

92783_at Gh growth hormone -1.67 ± 0.08 -2.37 ± 0.09 -1.07 ± 0.12 -1.17 ±0.10 X02891

100592_at Ghitm growth hormone
inducible
transmembrane
protein

1.18 ± 0.06 2.52 ± 0.09 1.73 ± 0.12 1.09 ±0.12 AI929971

96943_at Gps1 G protein pathway
suppressor 1

2.47 ± 0.06 2.40 ± 0.09 1.27 ± 0.11 -1.21 ±0.13 AW125234

99160_s_at Grina glutamate receptor,
ionotropic, N-
methyl D-asparate-
associated protein
1 (glutamate
binding)

-1.03 ± 0.09 2.13 ± 0.07 -1.28 ± 0.12 -1.35 ±0.17 AW227647

96085_at Gsta4 glutathione S-
transferase, alpha 4

1.17 ± 0.10 1.03 ± 0.08 5.07 ± 0.12 4.56 ±1.18 L06047

160225_at Gtf2b general
transcription factor
IIB

2.75 ± 0.11 3.31 ± 0.13 1.50 ± 0.31 1.04 ±0.16 AI840450

104402_at Gtf3c4 general
transcription factor
IIIC, polypeptide 4

1.89 ± 0.23 2.66 ± 0.10 1.39 ± 0.17 -1.22 ±0.15 AA030469

160172_at Gtl2 GTL2, imprinted
maternally
expressed
untranslated
mRNA

1.24 ± 0.07 2.80 ± 0.23 1.96 ± 0.25 -1.13 ±0.10 Y13832



XLVIII

mRNA

160176_at Hirip5 histone cell cycle
regulation
defective
interacting protein
5

2.30 ± 0.07 2.29 ± 0.09 1.63 ± 0.11 -1.20 ±0.21 AJ132616

94805_f_at Hist1h2a
c

histone 1, H2ac 4.05 ± 0.10 3.04 ± 0.10 1.03 ± 0.14 1.03 ±0.21 M33988

94832_at Hnrph2 heterogeneous
nuclear
ribonucleoprotein
H2

1.05 ± 0.11 -2.07 ± 0.07 1.01 ± 0.13 1.01 ±0.11 U58105

160316_at Hnrpu heterogeneous
nuclear
ribonucleoprotein
U

-2.45 ± 0.07 -1.72 ± 0.07 1.50 ± 0.20 -1.32 ±0.12 AA981581

98090_at Hrb2 HIV-1 Rev binding
protein 2

4.04 ± 0.21 3.24 ± 0.24 1.75 ± 0.11 -1.10 ±0.13 AW210014

99109_at Ier2 immediate early
response 2

1.77 ± 0.08 3.53 ± 0.07 1.72 ± 0.14 1.24 ±0.18 M59821

94384_at Ier3 immediate early
response 3

4.75 ± 0.30 7.40 ± 0.48 7.33 ± 0.22 1.29 ±0.28 X67644

102152_f_a
t

Igh-
VS107

immunoglobulin
heavy chain (S107
family)

-3.88 ± 0.07 -3.28 ± 0.08 -1.36 ± 0.10 -1.12 ±0.10 M16724

160397_at Ik IK cytokine 2.04 ± 0.08 1.35 ± 0.09 1.24 ± 0.10 1.05 ±0.10 AI790328

162006_r_a
t

Immt inner membrane
protein,
mitochondrial

-1.34 ± 0.07 -3.01 ± 0.07 -1.32 ± 0.10 -1.07 ±0.10 AV334115

161407_i_a
t

Inpp1 inositol
polyphosphate-1-
phosphatase

-1.88 ± 0.06 -2.01 ± 0.08 1.17 ± 0.11 -1.09 ±0.12 AV312395

104735_at Kctd12 potassium channel
tetramerisation
domain containing
12

2.01 ± 0.14 -1.14 ± 0.06 -1.38 ± 0.09 -1.30 ±0.10 AI842065

102644_at Kdt1 kidney cell line
derived transcript 1

1.34 ± 0.11 2.07 ± 0.13 2.65 ± 0.24 2.43 ±0.10 U13371

100571_at Laptm4b lysosomal-
associated protein
transmembrane 4B

-1.32 ± 0.07 -1.08 ± 0.07 2.34 ± 0.22 1.80 ±0.38 AW123934

103523_at Leng8 leukocyte receptor
cluster (LRC)
member 8

-5.32 ± 0.11 -1.12 ± 0.13 1.43 ± 0.24 1.10 ±0.10 AI851703

98059_s_at Lmna lamin A 1.26 ± 0.07 2.82 ± 0.19 3.54 ± 0.18 1.34 ±0.18 D49733

101214_f_a
t

LOC144
33

similar to
glyceraldehyde-3-
phosphate
dehydrogenase

2.78 ± 0.07 3.07 ± 0.11 1.51 ± 0.17 -1.07 ±0.16 M32599

161392_f_a
t

Lrpb7 leucine rich
protein, B7 gene

-1.69 ± 0.12 -2.23 ± 0.06 -1.40 ± 0.10 1.00 ±0.11 AV257486

92564_at Lrrfip1 leucine rich repeat
(in FLII)
interacting protein
1

2.84 ± 0.35 1.22 ± 0.26 3.92 ± 0.30 2.37 ±0.22 AI891475

98440_at Ltb4dh leukotriene B4 12-
hydroxydehydroge
nase

1.13 ± 0.22 1.33 ± 0.16 10.74 ± 1.04 6.95 ±1.90 AA596710

104368_at Mapre3 microtubule-
associated protein,
RP/EB family,
member 3

-3.10 ± 0.07 -1.84 ± 0.08 -1.17 ± 0.12 1.05 ±0.15 U51204



XLIX

103553_at Mcm10 minichromosome
maintenance
deficient 10 (S.
cerevisiae)

2.11 ± 0.29 1.85 ± 0.23 1.29 ± 0.12 -1.17 ±0.13 AA867646

95417_at Mgat2 mannoside
acetylglucosaminyl
transferase 2

2.17 ± 0.07 1.58 ± 0.12 1.25 ± 0.10 -1.14 ±0.11 AI117848

96258_at Mgst3 microsomal
glutathione S-
transferase 3

-2.19 ± 0.07 1.51 ± 0.07 -1.27 ± 0.10 -1.83 ±0.11 AI843448

104752_at Mmrp19 monocyte
macrophage 19

1.76 ± 0.08 2.29 ± 0.08 1.13 ± 0.13 1.12 ±0.17 AB028863

103468_at Mns1 meiosis-specific
nuclear structural
protein 1

1.85 ± 0.23 1.12 ± 0.15 1.04 ± 0.17 2.06 ±0.13 D14849

96151_at Mocos molybdenum
cofactor sulfurase

2.25 ± 0.28 2.16 ± 0.29 3.26 ± 0.13 1.08 ±0.13 AA839813

97803_at Mpp1 membrane protein,
palmitoylated

-1.56 ± 0.07 -2.07 ± 0.08 -1.03 ± 0.10 1.04 ±0.11 U38196

100886_f_a
t

Mrpl45 mitochondrial
ribosomal protein
L45

2.27 ± 0.10 2.62 ± 0.10 1.04 ± 0.11 1.04 ±0.12 AI841415

96861_at Mrpl50 mitochondrial
ribosomal protein
L50

1.59 ± 0.19 2.31 ± 0.10 -1.30 ± 0.13 1.00 ±0.15 AI852376

160621_at Mrps22 mitochondrial
ribosomal protein
S22

1.88 ± 0.13 2.08 ± 0.08 1.69 ± 0.15 -1.28 ±0.11 AI852322

92826_at Mrps33 mitochondrial
ribosomal protein
S33

2.08 ± 0.13 -1.02 ± 0.06 -1.16 ± 0.10 -1.28 ±0.11 Y17852

95730_at Mrps34 mitochondrial
ribosomal protein
S34

1.04 ± 0.17 2.57 ± 0.20 1.96 ± 0.17 -1.13 ±0.18 AI840884

104186_at Msl2 male-specific
lethal-2 homolog
(Drosophila)

2.07 ± 0.09 1.67 ± 0.12 1.18 ± 0.10 -1.05 ±0.12 AA739263

160308_at Msn moesin -2.05 ± 0.07 -1.19 ± 0.08 5.12 ± 0.35 2.80 ±0.61 AI839417

103044_g_a
t

Mtcp1 mature T-cell
proliferation 1

-2.25 ± 0.10 -1.64 ± 0.06 -1.17 ± 0.10 -1.11 ±0.11 Z35294

103264_at Mtmr1 myotubularin
related protein 1

1.23 ± 0.08 1.21 ± 0.08 -2.22 ± 0.10 -1.03 ±0.21 AF073997

96285_at Myadm myeloid-associated
differentiation
marker

-2.24 ± 0.10 -3.54 ± 0.07 -1.10 ± 0.12 1.03 ±0.10 AJ001616

104147_at Nans N-
acetylneuraminic
acid synthase
(sialic acid
synthase)

1.94 ± 0.09 2.73 ± 0.13 -1.20 ± 0.10 -1.20 ±0.12 AW122052

103791_at Narg1 NMDA receptor-
regulated gene 1

1.77 ± 0.19 1.99 ± 0.08 1.12 ± 0.12 1.02 ±0.11 AW048763

93246_at Narg1 NMDA receptor-
regulated gene 1

2.02 ± 0.12 1.10 ± 0.06 1.21 ± 0.18 -1.08 ±0.11 AW260482

160398_at Nol7 nucleolar protein 7 2.48 ± 0.10 1.34 ± 0.07 1.66 ± 0.12 1.22 ±0.12 AW124661

101634_at Npm1 nucleophosmin 1 2.49 ± 0.07 1.92 ± 0.07 1.17 ± 0.10 1.01 ±0.14 M33212

93673_at Nrtn neurturin -1.84 ± 0.08 -2.51 ± 0.09 -1.02 ± 0.11 -1.05 ±0.16 U78109



L

103868_at Nufip1 nuclear fragile X
mental retardation
protein interacting
protein

1.51 ± 0.19 2.85 ± 0.32 1.61 ± 0.17 -1.42 ±0.17 AA681274

101366_f_a
t

Nvl nuclear VCP-like 3.47 ± 0.26 2.60 ± 0.20 1.26 ± 0.11 -1.26 ±0.11 AA250299

93600_at Obrgrp leptin receptor
gene-related
protein

2.16 ± 0.12 1.47 ± 0.06 -1.25 ± 0.11 1.01 ±0.13 AJ011565

100626_at Odf2 outer dense fiber of
sperm tails 2

1.64 ± 0.19 3.04 ± 0.31 1.08 ± 0.10 -1.16 ±0.16 AF034105

92500_at Odz3 odd Oz/ten-m
homolog 3
(Drosophila)

2.01 ± 0.12 -1.26 ± 0.07 -1.47 ± 0.10 -1.13 ±0.12 AB025412

97581_at Odz4 odd Oz/ten-m
homolog 4
(Drosophila)

-1.85 ± 0.08 -2.41 ± 0.07 -1.32 ± 0.11 1.08 ±0.11 AF059485

99549_at Ogn osteoglycin 1.03 ± 0.31 -6.87 ± 0.19 1.62 ± 0.49 4.77 ±0.64 D31951

103388_at P42pop Myb protein
P42POP

-3.59 ± 0.06 -3.12 ± 0.07 -1.25 ± 0.13 -1.10 ±0.12 AW047050

100720_at Pabpc1 poly A binding
protein,
cytoplasmic 1

2.02 ± 0.12 2.02 ± 0.06 1.01 ± 0.11 1.01 ±0.16 X65553

94461_at Pbef1 pre-B-cell colony-
enhancing factor 1

2.32 ± 0.14 2.06 ± 0.12 -1.11 ± 0.12 -1.10 ±0.11 AI852144

160899_at Pcp4 Purkinje cell
protein 4

2.04 ± 0.07 1.34 ± 0.06 -1.39 ± 0.11 -1.23 ±0.12 X17320

98056_at Phlda3 pleckstrin
homology-like
domain, family A,
member 3

-2.49 ± 0.07 1.20 ± 0.11 2.67 ± 0.13 1.38 ±0.15 AI846214

99926_at Pigr polymeric
immunoglobulin
receptor

-4.91 ± 0.11 -3.78 ± 0.06 -1.42 ± 0.09 -1.11 ±0.10 AB001489

94445_at Pls3 plastin 3 (T-
isoform)

2.46 ± 0.09 1.59 ± 0.08 1.91 ± 0.15 1.17 ±0.10 AW125273

96136_at Pmscl2 polymyositis/sclero
derma autoantigen
2

1.89 ± 0.23 3.27 ± 0.24 1.73 ± 0.29 -1.08 ±0.12 AI553452

104378_at Pon2 paraoxonase 2 -1.01 ± 0.19 -1.02 ± 0.09 1.68 ± 0.20 2.12 ±0.15 L48514

97979_at Ppp1r7 protein
phosphatase 1,
regulatory
(inhibitor) subunit
7

2.15 ± 0.09 2.41 ± 0.10 1.30 ± 0.12 -1.13 ±0.11 AI849126

95631_at Ppp4c protein
phosphatase 4,
catalytic subunit

1.52 ± 0.10 3.06 ± 0.09 1.11 ± 0.11 1.02 ±0.11 AF088911

93010_at Pqbp1 polyglutamine
binding protein 1

2.16 ± 0.18 2.37 ± 0.09 1.02 ± 0.10 -1.49 ±0.10 AJ250406

97496_f_at Prkcdbp protein kinase C,
delta binding
protein

1.17 ± 0.23 1.23 ± 0.18 5.96 ± 0.65 3.36 ±0.17 AW048944

160197_at Pycrl pyrroline-5-
carboxylate
reductase-like

1.37 ± 0.12 2.50 ± 0.10 1.59 ± 0.17 -1.09 ±0.10 AW060487

161006_at R75096 expressed
sequence R75096

-2.93 ± 0.10 -3.07 ± 0.07 -1.36 ± 0.10 -1.38 ±0.11 AI853978

101381_at Rabep1 rabaptin, RAB
GTPase binding
effector protein 1

1.97 ± 0.25 2.73 ± 0.08 1.06 ± 0.15 -1.47 ±0.10 D86066



LI

102724_at Rabep1 rabaptin, RAB
GTPase binding
effector protein 1

5.36 ± 0.50 3.28 ± 0.26 -1.14 ± 0.10 -1.43 ±0.10 AI608324

95077_at Rabggtb RAB
geranylgeranyl
transferase, b
subunit

2.60 ± 0.09 3.77 ± 0.07 1.51 ± 0.26 -1.04 ±0.10 U12922

103840_at Rad17 RAD17 homolog
(S. pombe)

2.37 ± 0.15 1.68 ± 0.09 1.49 ± 0.10 -1.08 ±0.12 AJ011923

96154_at Renbp renin binding
protein

-2.12 ± 0.14 -1.31 ± 0.09 1.32 ± 0.14 1.28 ±0.12 AA600645

93020_at Rex3 reduced expression
3

2.21 ± 0.15 1.77 ± 0.06 1.12 ± 0.12 -1.56 ±0.10 AF051347

96653_at Rnaset2 ribonuclease T2 1.22 ± 0.07 -1.03 ± 0.07 2.15 ± 0.13 1.54 ±0.24 AI851762

98915_at Rnf149 ring finger protein
149

1.00 ± 0.11 1.48 ± 0.11 2.22 ± 0.23 1.05 ±0.11 AI849082

161814_f_a
t

Rnf19 ring finger protein
(C3HC4 type) 19

4.51 ± 0.12 2.67 ± 0.18 -1.03 ± 0.10 -1.48 ±0.10 AV355427

102131_f_a
t

Rnf20 ring finger protein
20

-3.05 ± 0.08 -2.93 ± 0.06 1.01 ± 0.13 1.08 ±0.13 AU014874

93518_at Rnps1 ribonucleic acid
binding protein S1

1.49 ± 0.07 2.04 ± 0.09 -1.01 ± 0.19 -1.35 ±0.10 X70067

97838_at Rnu22 RNA, U22 small
nucleolar

3.38 ± 0.13 4.31 ± 0.22 2.16 ± 0.19 1.14 ±0.12 AA684508

160514_at Rp9h retinitis
pigmentosa 9
homolog (human)

1.92 ± 0.07 2.12 ± 0.10 -1.02 ± 0.10 -1.26 ±0.12 D78255

100213_f_a
t

Rpl41 ribosomal protein
L41

2.34 ± 0.06 2.85 ± 0.08 1.03 ± 0.12 -1.13 ±0.14 U93862

98564_f_at Rps26 ribosomal protein
S26

2.28 ± 0.07 2.09 ± 0.10 1.07 ± 0.10 -1.10 ±0.15 U67770

92981_at Scg2 secretogranin II 2.41 ± 0.09 1.29 ± 0.07 1.47 ± 0.19 -1.77 ±0.11 X68837

95986_at Scospon
din

subcommissural
organ spondin

-1.97 ± 0.11 -2.17 ± 0.08 -1.59 ± 0.10 -1.04 ±0.10 C79529

95104_at Sdc2 syndecan 2 -2.08 ± 0.07 -2.34 ± 0.07 1.22 ± 0.11 1.33 ±0.12 U00674

95664_at Sec14l1 SEC14-like 1 (S.
cerevisiae)

2.21 ± 0.08 3.43 ± 0.09 -1.43 ± 0.11 -1.44 ±0.13 AW048159

103871_at Sec23ip Sec23 interacting
protein

2.02 ± 0.12 2.37 ± 0.16 1.36 ± 0.17 -1.04 ±0.13 AW123729

162420_r_a
t

Selk selenoprotein K -1.36 ± 0.07 -2.05 ± 0.07 1.29 ± 0.10 -1.34 ±0.12 AV290470

98905_at Septin7 septin 7 2.51 ± 0.06 2.60 ± 0.11 1.02 ± 0.13 -1.06 ±0.13 AJ223782

96060_at Serpinb6
a

serine (or cysteine)
proteinase
inhibitor, clade B,
member 6a

-1.34 ± 0.08 1.02 ± 0.06 2.29 ± 0.18 1.42 ±0.15 U25844

99494_at Serpini1 serine (or cysteine)
proteinase
inhibitor, clade I,
member 1

2.08 ± 0.07 1.84 ± 0.07 -1.55 ± 0.15 -1.22 ±0.15 AJ001700

101861_at Sgce sarcoglycan,
epsilon

1.87 ± 0.08 2.10 ± 0.13 1.20 ± 0.10 1.13 ±0.10 AF031919

93806_at Sh3bgrl SH3-binding
domain glutamic
acid-rich protein
like

2.43 ± 0.09 1.72 ± 0.11 -1.19 ± 0.11 1.01 ±0.12 AI848671

104216_at Shoc2 soc-2 (suppressor
of clear) homolog
(C. elegans)

1.63 ± 0.25 2.50 ± 0.18 -1.51 ± 0.10 -1.17 ±0.16 AF068921



LII

98800_at Slc23a3 solute carrier
family 23
(nucleobase
transporters),
member 3

-2.48 ± 0.12 -2.94 ± 0.08 -1.25 ± 0.10 -1.36 ±0.10 U25739

104200_at Slc5a6 solute carrier
family 5 (sodium-
dependent vitamin
transporter),
member 6

-2.48 ± 0.07 -2.76 ± 0.08 -1.30 ± 0.13 -1.24 ±0.12 AW048729

98553_at Slmap sarcolemma
associated protein

1.79 ± 0.08 2.02 ± 0.18 1.82 ± 0.19 -1.22 ±0.13 AW124175

98991_at Smarcad
1

SWI/SNF-related,
matrix-associated
actin-dependent
regulator of
chromatin,
subfamily a,
containing
DEAD/H box 1`

1.85 ± 0.14 2.23 ± 0.09 1.03 ± 0.13 -1.17 ±0.13 X69942

100887_at Smc6l1 SMC6 structural
maintenance of
chromosomes 6-
like 1 (yeast)

2.16 ± 0.09 1.71 ± 0.11 -1.24 ± 0.10 1.14 ±0.12 AI838562

96712_at Smoc1 SPARC related
modular calcium
binding 1

-2.49 ± 0.07 -2.45 ± 0.07 1.01 ± 0.16 2.07 ±0.41 AI848508

93273_at Snca synuclein, alpha 1.50 ± 0.06 1.01 ± 0.06 -2.81 ± 0.10 -2.98 ±0.09 AF044672

100510_at Sncb synuclein, beta -2.38 ± 0.07 -2.75 ± 0.06 -1.46 ± 0.13 -1.37 ±0.10 AI839708

94313_at Snrp1c U1 small nuclear
ribonucleoprotein
1C

2.45 ± 0.07 2.04 ± 0.10 1.54 ± 0.12 1.01 ±0.12 X96767

100101_at Snrpa small nuclear
ribonucleoprotein
polypeptide A

1.73 ± 0.08 2.11 ± 0.07 1.28 ± 0.16 -1.15 ±0.11 L15447

93832_at Spag7 sperm associated
antigen 7

1.23 ± 0.07 2.04 ± 0.07 1.14 ± 0.11 -1.04 ±0.11 AI854541

97160_at Sparc secreted acidic
cysteine rich
glycoprotein

1.28 ± 0.07 -1.84 ± 0.10 3.00 ± 0.17 3.64 ±0.59 X04017

160319_at Sparcl1 SPARC-like 1
(mast9, hevin)

1.05 ± 0.07 -1.21 ± 0.06 -2.20 ± 0.10 -1.37 ±0.10 U66166

94387_at Spata5 spermatogenesis
associated 5

1.94 ± 0.11 2.87 ± 0.19 1.36 ± 0.26 -1.47 ±0.19 AF016544

98428_at Spg4 spastic paraplegia
4 homolog
(human)

1.49 ± 0.08 2.20 ± 0.08 -1.34 ± 0.10 -1.37 ±0.10 AJ246002

161054_at Spock1 sparc/osteonectin,
cwcv and kazal-
like domains
proteoglycan 1

-2.65 ± 0.07 -1.49 ± 0.06 -1.70 ± 0.10 -2.85 ±0.10 X92864

101995_at Sqstm1 sequestosome 1 3.11 ± 0.06 5.59 ± 0.09 3.58 ± 0.34 1.17 ±0.27 U40930

92579_at Ssb Sjogren syndrome
antigen B

2.21 ± 0.15 1.07 ± 0.07 1.05 ± 0.12 -1.06 ±0.10 L00993

96724_r_at Ssx2ip synovial sarcoma,
X breakpoint 2
interacting protein

2.55 ± 0.24 2.07 ± 0.07 -1.03 ± 0.10 1.07 ±0.11 AW122911

97310_at St13 suppression of
tumorigenicity 13

1.59 ± 0.09 2.54 ± 0.06 1.39 ± 0.14 1.14 ±0.10 AW124318



LIII

103286_at Stam2 signal transducing
adaptor molecule
(SH3 domain and
ITAM motif) 2

1.65 ± 0.41 2.41 ± 0.23 -1.05 ± 0.12 1.00 ±0.12 AB012611

93366_r_at Sugt1 SGT1, suppressor
of G2 allele of
SKP1 (S.
cerevisiae)

2.17 ± 0.11 1.64 ± 0.15 1.15 ± 0.12 1.05 ±0.11 AI838149

93365_s_at Sugt1 SGT1, suppressor
of G2 allele of
SKP1 (S.
cerevisiae)

2.96 ± 0.19 2.44 ± 0.19 1.20 ± 0.12 1.04 ±0.13 AI838149

94368_at Supv3l1 suppressor of var1,
3-like 1 (S.
cerevisiae)

2.43 ± 0.11 2.56 ± 0.19 1.58 ± 0.17 -1.02 ±0.12 AW049139

101031_at Surf1 surfeit gene 1 1.76 ± 0.10 2.28 ± 0.10 1.85 ± 0.25 -1.10 ±0.14 M14689

104283_at Tbc1d15 TBC1 domain
family, member 15

3.18 ± 0.11 3.82 ± 0.22 1.98 ± 0.14 1.39 ±0.12 AI037493

95101_at Tde2 tumor
differentially
expressed 2

2.29 ± 0.09 1.14 ± 0.08 1.15 ± 0.10 -1.07 ±0.10 AI834772

101551_s_a
t

Tes testis derived
transcript

1.35 ± 0.08 1.51 ± 0.08 -1.40 ± 0.22 -2.31 ±0.10 X78989

99144_s_at Tgoln1 trans-golgi
network protein

1.74 ± 0.18 3.11 ± 0.10 1.25 ± 0.16 1.14 ±0.20 D50031

99057_at Thy1 thymus cell antigen
1, theta

-2.55 ± 0.07 -1.59 ± 0.06 1.50 ± 0.22 -1.29 ±0.11 M12379

160678_at Tm4sf12 transmembrane 4
superfamily
member 12

1.13 ± 0.11 -2.02 ± 0.08 1.05 ± 0.14 2.26 ±0.21 AA871166

95120_at Tm4sf13 transmembrane 4
superfamily
member 13

2.33 ± 0.08 1.19 ± 0.09 -1.28 ± 0.10 -1.33 ±0.11 AI837621

92437_at Tm7sf2 transmembrane 7
superfamily
member 2

-1.29 ± 0.11 -1.09 ± 0.07 -4.50 ± 0.10 -2.69 ±0.10 AW047445

95383_at Tm7sf2 transmembrane 7
superfamily
member 2

-1.11 ± 0.07 -1.28 ± 0.06 -1.71 ± 0.10 -2.18 ±0.10 AI415418

160472_r_a
t

Tmeff1 transmembrane
protein with EGF-
like and two
follistatin-like
domains 1

1.24 ± 0.08 -2.59 ± 0.07 -1.67 ± 0.11 -1.15 ±0.10 AI837838

100039_at Tmem4 transmembrane
protein 4

2.86 ± 0.24 2.93 ± 0.13 1.34 ± 0.10 1.25 ±0.17 AW125880

92942_at Trim21 tripartite motif
protein 21

-1.99 ± 0.09 -2.24 ± 0.07 -1.32 ± 0.12 1.18 ±0.17 AA138192

101372_at Trip13 thyroid hormone
receptor interactor
13

2.42 ± 0.29 1.99 ± 0.25 2.20 ± 0.35 -1.30 ±0.13 AI852645

96921_at Ttc1 tetratricopeptide
repeat domain 1

1.62 ± 0.12 2.88 ± 0.20 1.76 ± 0.16 1.04 ±0.10 AW060765

97900_at Txndc9 thioredoxin
domain containing
9

2.28 ± 0.07 1.92 ± 0.09 1.15 ± 0.15 -1.17 ±0.13 AI845714

102817_at U2af1-
rs1

U2 small nuclear
ribonucleoprotein
auxiliary factor
(U2AF) 1, related
sequence 1

2.07 ± 0.08 1.97 ± 0.08 1.36 ± 0.24 -1.13 ±0.11 S69507

100717_at U90926 cDNA sequence
U90926

-2.99 ± 0.07 -3.01 ± 0.06 -1.38 ± 0.10 1.02 ±0.10 U90926



LIV

U90926

97285_f_at Ubxd1 UBX domain
containing 1

2.25 ± 0.22 2.23 ± 0.07 1.07 ± 0.11 -1.01 ±0.14 AW120609

100091_at Ugalt2 UDP-galactose
translocator 2

2.10 ± 0.11 1.86 ± 0.06 1.26 ± 0.15 -1.28 ±0.14 D87990

102317_at Vamp4 vesicle-associated
membrane protein
4

-1.34 ± 0.07 -2.07 ± 0.07 -1.18 ± 0.10 -1.29 ±0.10 AF061516

160079_i_a
t

Wac WW domain
containing adaptor
with coiled-coil

2.37 ± 0.07 1.92 ± 0.09 -1.02 ± 0.10 -1.24 ±0.10 AI845773

100523_r_a
t

Wbp5 WW domain
binding protein 5

2.20 ± 0.14 1.14 ± 0.08 1.24 ± 0.14 1.03 ±0.13 U92454

100522_s_a
t

Wbp5 WW domain
binding protein 5

2.31 ± 0.11 1.58 ± 0.07 1.07 ± 0.15 1.03 ±0.11 U92454

160130_at Wdr26 WD repeat domain
26

2.40 ± 0.09 1.86 ± 0.09 1.43 ± 0.12 -1.15 ±0.12 AA795284

100348_at X83313 EST X83313 -
80.41

± 0.03 -
25.86

± 0.04 1.37 ± 0.18 -1.98 ±0.77 AW214136

96018_r_at Zdhhc5 zinc finger, DHHC
domain containing
5

1.02 ± 0.09 -2.21 ± 0.06 -1.02 ± 0.10 -1.15 ±0.10 AI853561

104582_g_a
t

Zdhhc6 zinc finger, DHHC
domain containing
6

2.23 ± 0.09 2.32 ± 0.18 1.32 ± 0.10 1.01 ±0.12 AI845438

95533_at Zfp106 zinc finger protein
106

-1.11 ± 0.07 -2.61 ± 0.07 -1.82 ± 0.12 1.18 ±0.14 AW048037

99001_at Zfp292 zinc finger protein
292

2.40 ± 0.11 1.11 ± 0.11 -1.11 ± 0.13 -1.15 ±0.10 AF017806

100897_f_a
t

Zfp297 zinc finger protein
297

-2.37 ± 0.11 -1.31 ± 0.11 1.20 ± 0.16 1.11 ±0.17 AF100956

104437_at Zfp30 zinc finger protein
30

2.42 ± 0.16 1.51 ± 0.08 1.21 ± 0.14 -1.21 ±0.15 Z30174

93324_at Zfp36l1 zinc finger protein
36, C3H type-like
1

1.27 ± 0.11 -1.39 ± 0.07 1.28 ± 0.10 2.24 ±0.14 M58566

98277_at Zfpn1a4 zinc finger protein,
subfamily 1A, 4
(Eos)

-2.06 ± 0.09 -1.47 ± 0.08 -1.18 ± 0.10 -1.16 ±0.10 AB017615

103753_at Zzz3 zinc finger, ZZ
domain containing
3

3.06 ± 0.10 2.43 ± 0.18 1.29 ± 0.15 1.05 ±0.11 AI159572

101217_at --- -
11.95

± 0.15 -3.15 ± 0.11 -1.30 ± 0.10 1.06 ±0.12 D18865

161737_at --- -5.94 ± 0.08 -2.93 ± 0.17 1.13 ± 0.12 -1.05 ±0.13 AV312560

101863_at --- -5.45 ± 0.18 -1.42 ± 0.22 -1.18 ± 0.13 1.00 ±0.16 C78246

103709_at --- -5.41 ± 0.12 -3.78 ± 0.07 -1.27 ± 0.10 1.24 ±0.18 AA763466

95891_at Hypothetical
LOC328660
(LOC328660),
mRNA

-3.83 ± 0.10 -2.60 ± 0.09 -1.48 ± 0.10 1.10 ±0.13 AI591977

102094_f_a
t

--- -2.78 ± 0.06 -2.83 ± 0.06 -1.10 ± 0.11 1.25 ±0.15 AI841270

161535_at --- -2.76 ± 0.07 -3.37 ± 0.06 -1.31 ± 0.11 -1.23 ±0.11 AV234882

161124_at --- -2.49 ± 0.07 -2.88 ± 0.07 -1.33 ± 0.10 -1.06 ±0.10 AV237354

161196_r_a
t

--- -2.42 ± 0.08 -2.50 ± 0.06 -1.35 ± 0.12 1.19 ±0.15 AV254135

102348_at --- -2.41 ± 0.07 -4.37 ± 0.06 1.66 ± 0.25 1.17 ±0.19 AI551087

101685_f_a
t

--- -2.32 ± 0.07 -2.60 ± 0.06 -1.34 ± 0.10 -1.36 ±0.12 AI463421

162311_f_a
t

--- -2.22 ± 0.07 -3.54 ± 0.08 -1.11 ± 0.10 -1.20 ±0.10 AV050648



LV

92778_i_at --- -2.09 ± 0.10 -1.91 ± 0.07 -1.16 ± 0.11 -1.04 ±0.10 Z22552

161615_f_a
t

--- -1.99 ± 0.07 -2.36 ± 0.08 -1.22 ± 0.10 -1.07 ±0.10 AV352346

162496_r_a
t

--- -1.87 ± 0.07 -2.31 ± 0.08 -1.74 ± 0.10 -1.07 ±0.12 AV153195

162292_r_a
t

--- -1.54 ± 0.11 -2.52 ± 0.07 1.01 ± 0.11 -1.12 ±0.10 AV377060

104363_at Similar to
corneodesmosin
precursor; S
protein;
differentiated
keratinocyte S
protein precursor
(LOC195357),
mRNA

-1.54 ± 0.09 -2.29 ± 0.13 1.42 ± 0.10 1.24 ±0.13 AA763213

102091_f_a
t

--- -1.25 ± 0.14 -2.35 ± 0.10 1.03 ± 0.10 -1.14 ±0.13 AA407599

161528_r_a
t

--- -1.14 ± 0.11 -3.51 ± 0.11 -1.99 ± 0.10 -1.06 ±0.14 AV227261

101216_at --- 1.15 ± 0.11 -2.21 ± 0.08 -1.09 ± 0.11 -1.63 ±0.13 R75193

92269_r_at Peg10 mRNA for
paternally
expressed 10,
complete cds

1.33 ± 0.19 -1.80 ± 0.14 2.19 ± 0.22 1.84 ±0.12 AI836610

96215_f_at CDNA clone
MGC:67258
IMAGE:6413648,
complete cds

1.37 ± 0.12 2.27 ± 0.08 1.58 ± 0.16 -1.05 ±0.13 AI153421

103467_g_a
t

4 days neonate
male adipose
cDNA, RIKEN
full-length
enriched library,
clone:B430101C18
product:HYPOTH
ETICAL 19.9
KDA PROTEIN
homolog [Homo
sapiens], full insert
sequence

1.69 ± 0.10 2.11 ± 0.07 1.08 ± 0.16 -1.40 ±0.14 AA790056

101179_at --- 2.00 ± 0.07 1.83 ± 0.08 -1.20 ± 0.14 -1.16 ±0.13 D50494

103710_at Transcribed
sequence with
weak similarity to
protein
ref:NP_115973.1
(H.sapiens) zinc
finger protein 347;
zinc finger 1111
[Homo sapiens]

2.19 ± 0.11 1.27 ± 0.08 -1.05 ± 0.10 -1.02 ±0.10 AI037032

96579_at Transcribed
sequences

2.20 ± 0.21 1.86 ± 0.19 1.13 ± 0.13 1.13 ±0.13 AA267568

98129_at M.musculus
mRNA for testis-
specific thymosin
beta-10

2.35 ± 0.10 2.65 ± 0.12 -1.06 ± 0.11 -1.24 ±0.14 AI852553

101732_at --- 2.36 ± 0.20 2.10 ± 0.14 -1.13 ± 0.11 -1.12 ±0.11 M12039



LVI

95685_at Adult male testis
cDNA, RIKEN
full-length
enriched library,
clone:1700092M07
product:unknown
EST, full insert
sequence

2.55 ± 0.08 3.74 ± 0.11 1.22 ± 0.18 -1.30 ±0.13 AI849678

161083_at Transcribed
sequence with
strong similarity to
protein
ref:NP_057365.1
(H.sapiens)
STE20-like kinase;
STE2-like kinase
[Homo sapiens]

2.58 ± 0.09 1.97 ± 0.09 -1.03 ± 0.10 -1.40 ±0.10 AW121616

100379_f_a
t

--- 2.80 ± 0.11 1.75 ± 0.11 1.91 ± 0.14 -1.12 ±0.10 AI837905

96316_at  Transcribed
sequences

3.01 ± 0.23 1.82 ± 0.15 -1.08 ± 0.12 1.21 ±0.15 AI839289


