ADVANCED SIMILARITY QUERIES AND THEIR APPLICATION
IN DATA MINING

Xia Chenyi

NATIONAL UNIVERSITY OF SINGAPORE
2005

https://core.ac.uk/display/48629098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ADVANCED SIMILARITY QUERIES AND THEIR APPLICATION
IN DATA MINING

Xia Chenyi
(Bachelor of Engineering)
(Shanghai Jiaotong University, China)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPY
DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE
2005

Summary

This thesis studies advanced similarity queries and their application in knowledge dis-
covering and data mining. The similarity queries are important in various database
systems such as multimedia, biological, scientific and geographic databases. In these
databases, data are usually represented by d-dimensional feature vectors. The similar-
ity of two data points is measured by the distance between two feature vectors. In this
thesis, two variants of similarity queries - the k-Nearest Neighbor join (kNN join) and
the Reverse k-Nearest Neighbor query (RKNN query) have been closely investigated and
efficient algorithms for their processing are proposed. Furthermore, as one illustration of
the importance of such queries, a novel data mining tool - BORDER which is built upon
the KNN join and utilizes a property of the reverse k-nearest neighbor is proposed.

The kNN join combines each point of one dataset with its KNNs in the other dataset.
It facilitates data mining tasks such as clustering and classification and is able to pro-
vide more meaningful query results than just the range similarity join. In this thesis,
an efficient KNN join algorithm, Gorder (th&-orderingkNN join method) is proposed.
Gorderis a block nested loop join method which achieves its efficiency by sorting data
into theG-orderthat enables effective join pruning, data blocks scheduling and distance
computation filtering and reduction. It utilizest&o-tier partitioning strategyto opti-
mize 1/0 and CPU time separately and reduces distance computational cost by pruning

redundant computation based the distance of fewer dimensions. It does not require an

index for the source datasets and is efficient and scalable with regard to both the dimen-
sionality and the size of the input datasets. Experimental studies on both synthetic and
real-world datasets are conducted and presented. The experimental results demonstrate
the efficiency and the scalability of the proposed method, and confirm the superiority of
the proposed method to the previous solutions.

The Reverse k-Nearest Neighbor (RKNN) query aims to find all points in a dataset
that have the given query point as one of their k-nearest neighbors. Previous solutions are
very expensive when data points are in high dimensional spaces or the valisdaige.

In this thesis, an innovativestimation-basedpproach called ERKNN (the estimation-
based RkNN search) is designed. ERKNN retrieves RkNN candidates basedarathe
kNN-distance estimatiomethods and verifies the candidates using the effi@ggte-

gated range queryTwo local kNN-distance estimation methods, the PDE method and
the kDE method, are provided and both work effectively on uniform as well as skewed
datasets. By employing the effective estimation-based filtering strategy and the efficient
refinement procedure, ERKNN outperforms previous methods significantly and answers
RKNN queries in high-dimensional data spaces and of large valuegficiently and
effectively.

To the end, we show how the kNN join and RkNN query can be utilized for data min-
ing. We introduce a novel data mining tool - BORDER (a BOundaRy points DEtectoR)
for effective boundary point detection. Boundary points are data points that are located
at the margin of densely distributed data (e.g. a cluster). The knowledge of boundary
points can help in data mining tasks such as data preparation for clustering and classifica-
tion. BORDER employs the state-of-the-art KNN join technique Gorder and makes use
of a property of the RKNN. Experimental study demonstrates BORDER detects bound-
ary points effectively and can be used to improve the performance of clustering and

classification analysis considerately.

In summary, the contributions of thesis is that we have successfully provided efficient
solutions to two types of advanced similarity queries - the kNN join and the RKNN query
and illustrated their application in data mining with a novel data mining tool - BORDER.
We hope that ongoing research in similarity query processing will continue to improve

the query performance and put forward more abundant data mining tools for users.

Vi

Acknowledgements

"In every end, there is a beginning. In every beginning, there is an end. In the middle,
there is a whole mess of stuff.” This describes accurately my PhD candidature time, a
very precious and memorable period of my life, in which there is an end and there is a
beginning, in which there are happiness and joyfulness and also depression and sadness,
in which the most precious and wonderful person in my life | was given, in which the
most important and joyous transformation of my life happened, during which | have met
people of various types and learned different knowledge from them, and during which
the thesis has been worked on and is finally materialized. | am thankful to the One who
gives me this epoch of life and all who have shared this period of life with me and helped
me in all kinds of ways.

First, I would like to express my thanks to my supervisor, Professor Ooi Beng Chin
and Dr. Lee Mong Li and Professor Wynne Hsu. | am thankful to their extraordinary
patience on me, their guidance and all kinds of supports which they have given me gen-
erously. | also want to thank the professors | have worked with, Professor Lu Hongjun,
Dr. Anthony Tung and Dr. David Hsu, who gave me lots of help ranging from refining
ideas to drafting and finalizing the papers.

To my beloved parents and sister, together with my best friend, who are always trust-
ing me and having confidence in me, always caring me and missing me, and always

encouraging me and supporting me, I am longing to give them a tight and warm embrace

vii

to express my unspeakable gratitude toward them.

Finally, I would like to thank all my colleagues of database and bioinformatics labo-
ratories for their help and friendship. We have not only worked together but also shared
our leisure time together. And | hope our friendship endures in our lives.

This thesis contains three pieces of the work that | have done as a PhD candidate and
have been accepted by VLDB 2004, CIKM 2005 and TKDE respectively. | dedicate the
thesis to the period of life when the thesis has been worked on, as a memorization of the

end and the beginning.

Contents

Summary
Acknowledgements
1 Introduction
1.1 Similarity Queries
1.1.1 DataRepresentation
1.1.2 Similarity
1.1.3 RangeQuery
1.1.4 KNNQuery e
1.1.5 Range SimilarityJoin.
1.1.6 kNN Similarity Join
1.1.7 RKNNQuery e
1.1.8 Classification of the Similarity Queries
1.2 Motivation
1.2.1 Motivation of the Study of the kNN Join.
1.2.2 Motivation of the study of the RkNN Query
1.2.3 Motivationof BORDER
1.3 Contributions
1.4 Organization.

Vi

2 Related Work 20

2.1 IndexTechniques 20

2.2 Basic Similarity QuerieswithIndex 23
221 TheR-tree 23
2.2.2 Algorithms forthe RangeQuery 25
2.2.3 Algorithms forthe KNNQuery 27

2.3 Algorithms for the Range Similarity Join. 31
2.3.1 Index-based Similarity Range Join Algorithms 32
2.3.2 Hash-based Similarity Range Join Algorithms 37
2.3.3 Sort-based Similarity Range Join Algorithms 39

2.4 Algorithms for kNN Similarity Join 41
2.4.1 Incremental Semi-distanceJoin 42
242 MuxkNNJoin 42

2.5 Algorithmsforthe RkKNNQuery 43
2.5.1 Pre-computation RKNN Search Algorithm 44
2.5.2 Space Pruning RKNN Search algorithms 45

2.6 Summary ... e e e e e 49

3 Gorder: An Efficient Method for KNN Join Processing 50

3.1 Introduction 50

3.2 Propertiesofthe kNN Join 52

3.3 Gorder. 54
3.31 G-ordering e 55
3.3.2 Scheduled Block Nested Loop Join 60
3.3.3 Distance Computation, 65
3.34 AnalysisofGorder 68

3.4

Performance Evaluation. 70

3.4.1 Study of ParametersofGorder 71
3.42 Effectofk 75
3.4.3 EffectofBufferSize L. 78
3.4.4 Evaluation Using SyntheticDatasets 80
3.5 Summary ... e 85

ERKNN: Efficient Reverse k-Nearest Neighbors Retrieval with Local KNN-

Distance Estimation 86

4.1 Introduction 86

4.2 Propertiesofthe RKNNQuery 88

4.3 Estimation-Based RkNN Search 91
4.3.1 Local kNN-Distance Estimation Methods 92
4.3.2 TheAlgorithm 96
4.3.3 Accuracy Analysis 103
434 CostAnalysis 108

4.4 Performance Study 110
4.4.1 Study of KNN-Distance Estimation 112
442 StudyoftheRecall 113
443 StudyonRealDataset 115
4.4.4 Study on SyntheticDatasets 118

45 SUMMAIY o e e e e e 121

BORDER: A Data Mining Tool for Efficient Boundary Point Detection 122

5.1 Introduction 122
5.2 Preliminary Study 125
5.3 BORDER s 128

531 KNNJoin 129

Xi

532 RKNNCounter 130
533 SortingandOutputo 130
534 CostAnalysis 130
54 PerformanceStudy 132
5.4.1 OnHyper-sphereDatasets 134
5.4.2 On Arbitrary-shaped Clustered Datasets 139
5.4.3 On Mixed Clustered Dataset 139
5.4.4 On the Labelled Dataset for Classification 141
55 Conclusion 142
Conclusion 144
6.1 Thesis Contributions, 144
6.2 Future Works 146
6.2.1 MicroarrayData 146
6.2.2 SequentialData 146

6.2.3 StreamData. 147

List of Figures

1.1
1.2
13

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

An example of mono-chromatic RkKNN query. 8
An illustration of resource allocation with quota limit. 13
Apreliminary study. 16
AnR-treeExample 22
AQueryExample 25
AnRSJJoinExample L 31
Multipage Index (MuX) o 35
Replicationof GESS. o 40
lllustration of SAA algorithm. 46
lllustration of SRAA algorithm. 47
lllustration of half-plane pruning. 48
lllustration of G-ordering., 56
lllustration of the active dimension of the G-orderdata 59
lllustration of MinDistand MaxDist. 62
Effect of grid granularity (Coreldataset) 72
Effect of sub-block size (Coreldataset) 74
Effect of buffer size for R data (Corel dataset) 76
Effect ofk (Coreldataset) 77
Effect of buffer size (Coreldataset) 79

Xii

Xiii

3.9 Effect of dimensionality (100k clustered dataset) 81
3.10 Effect of data size (16-dimensional clustered datasets) 82
3.11 Effect of relative size of datasets (16-dimensional clustered datasets).. . 83
4.1 Query aggregation and illustration of pruning. 100

4.2 lllustration of using triangular inequality property to reduce distance
computation. L 101
4.3 Points within the shade area are falsemisses. 104

4.4 Density distribution of estimation errors of Zipf dataset (dim&8,15,

K=8) o o 105

4.5 lllustration of estimation error distribution after global adjustment. . . . 107
4.6 Expected aggregatedrange. 108
4.7 Comparison of kNN-distance Estimation Methods 111
4.8 Studyofrecallof ERKNN. 114
4.9 Effectofk (Coreldataset) 116
4.10 Number of distance computation on Coreldataset 117
4.11 Effect of buffer size on Coreldataset 118
4.12 Effect of Data Dimensionality (Clustered Dataset, 100K) 119
4.13 Effect of Data Size (Clustered Dataset, Dim=16) 120
5.1 Preliminary Studies. 126
5.2 KkNNgraphvs. RkNNgraph 127
53 Overviewof BORDER 128
5.4 Data distribution of Dataset IV on each dimension. 133
5.5 Study on hyper-spheredatasets.. 135
5.6 Incremental output of detected boundary points of dataset 1. 137

5.7 Studyonotherdatasets. 138

5.8 Study on mixed clustered datasets. 140

Chapter 1

Introduction

Similarity queries are important operations for databases and have received much at-
tention in the past decades. They have numerous applications in various areas such as
Multimedia Information System [36, 47, 96], Geographical Information Systems [92,
97, 98, 48], Computational Biology research [64, 63], String and Time-Series Analysis
applications [110, 51, 104, 132], Medical Information Systems [80], CAD/CAM appli-
cations, Picture Archive and Communication Systems (PACS) [39, 94] and data mining
tasks such as clustering and outlier detection [52, 117, 130, 55, 22, 23, 75].

A similarity query operates on a dataset containing a collection of objects (e.g., im-
ages, documents and medical profiles). Each object in the dataset is represented by a
multi-dimensional feature vector extracted by feature extraction algorithms [50]. For ex-
ample, the features of an image can be the color histograms describing the distribution
of colors in the image [46]. The similarity or dissimilarity between two objects is deter-
mined by a distance metric, e.g., Euclidean distance. There are five types of similarity
queries: the range query, the k-nearest neighbor (kNN) query, the range similarity join,
the KNN similarity join and the reverse k-nearest neighbor (RKNN) query. According
to their computation complexities, they can be categorized into two groupsbatiie
similarity querywhich includes the range query and the kNN query, ancatheanced

similarity querywhich includes the range similarity join, KNN similarity join and the

RKNN query.

In this thesis, we examine the problem of two advanced similarity queries - the KNN
similarity join and the RKNN query. Two novel algorithms - Gorder for efficient KNN
join and ERKNN for approximate RkNN search are proposed.

Moreover, we conduct an initial exploration of utilizing the kNN similarity join and
RKNN query for the data mining tasks. An interesting data mining tool - BORDER has
been devised. BORDER is built on top of the KNN join algorithm Gorder utilizing the
property of the reverse k-nearest neighbor. It can find boundary points efficiently and
effectively.

In the following sections, we first define the similarity queries and then present the
motivations of our study. At last, we give a summarization of the contribution of the

study and present the outline of the thesis.

1.1 Similarity Queries

In this section, the basic concepts of the similarity queries are introduced. We first
present formally the concepts datasetand thesimilarity and then the definitions of

the range query, the k-nearest neighbor (kNN) query, the range similarity join, the kNN
similarity join and the reverse k-nearest neighbor (RKNN) query and categorize them

according to their search complexity.

1.1.1 Data Representation

In similarity search applications, objects are feature-transformed into vectors with fixed
length. Therefore, a dataset is a set of feature vectors (or pointg)tiraensional data
spaceD, whered is the length of the feature vector and the data sgacgé R?. Each

data pointp in a dataset is in the form

P =<T1,...,Tq>.

Definition 1.1.1 (Dataset}) A dataset S is a set oV points in a d-dimensional data

space D,

S ={p1, ., pn}
pi€D,i=1,.,N,DCR

N is number of objects in the dataset or the cardinality of the dataset.

1.1.2 Similarity

Similarity is measured by the distance between the feature vectors of two objects ac-
cording to the given distance metric. The distance metric is application-dependant -
one may choose different ways of measuring distance that are appropriate for different

applications. The distance metric always satisfies the following conditions:
e Given two data pointg andq (p # q), Dist(p,q) > 0;
e Given any poinp, Dist(p,p) = 0;
e Given two data pointg andq, Dist(p,q) = Dist(q,p).

The commonly-used distance metrics are:

e L, metric:

. 1/p
Disty,(p,q) = (Zle |p.x; — q-:@l”) , 1< p< oo

Particularly, L, is called the Manhattan distance. It is also known as city block
distance, boxcar distance, or absolute value distance. The distance between two
data points are the sum of the absolute differences between coordinates of a pair

of objects. Queries using Manhattan metric are rhomboid shaped.

DiStManhattan(py Q) = Z?:l |pxz - qmz|

L4 is the Euclidean distance, which is the most widely applied distance metric. It
is the straight line distance between two points. Queries using Euclidean distance

are hyper-spheres.
. d) 1/2
DZStEuclidean(pa Q) - <Zi:1 |pr’Z - qxz| >
L is called the maximum metric. Queries using maximum metric are hypercubes.
Distmazimum (D,) = mazx(|p.x; — qa;]), 1 <i<d
e WeightedL, metric:
) d 1/p
Distyeightedr, (P, q) = (Zizl w; - |p.x; — q:cilp) , 1<p< oo

wherew; is the weight assigned to dimensianWeightedL, metric is a gener-
alized L, distance. There are weighted Manhattan distance, weighted Euclidean

distance and weighted maximum distance correspondingly.

In the rest of the thesis, we use the most commonly used metric - Euclidean distance
for demonstration purposes. The proposed methods can be extended to other distance

metrics straightforwardly.

1.1.3 Range Query

A range query specifies a query rangi the predicate clause and asks questions like
"What are the set of objects whose distance (dissimilarity) to the given query object are

within r ?”

Definition 1.1.2 (Range Query) Given a dataseb, a query object, a positive real
and a distance metri®ist(), the range query, denoted @singe(q, r, S), retrieves all

objectsp in S such thatDist(p, q) < r.
Range(qa r, S) - {p € S‘DlSt(p, q) S 7”}

There is a special range query called the window query. The window query specifies
a rectangular region which is parallel to the axis in data space and selects all data points
inside of the hyper-rectangle. The window query can be regarded as a range query using
the weighted maximum metric, where the weighisrepresent the inverse of the side

lengths of the window.

1.1.4 kNN Query

The kNN query specifies a rank parametdn the predicate clause and asks questions

like "What are thet objects that are closest to or most similar to the given query object?”

Definition 1.1.3 (k-Nearest Neighbor Query) Given a datasetS, query objecty, a
positive integerk and a distance metridist(), k-nearest neighbor query, denoted as

kNN (q,S), retrieves thé: closest objects tg in R.

kNN(q,S)={ACSNpe A, p €S — A Dist(p,q) < Dist(p',q) N|A| =k}

1.1.5 Range Similarity Join

The range similarity join (range join in short) is the set-oriented range query. The range
join has a set of query objects (the query set R) and retrieves objects which are within
ranger from the dataset S for each point in query set R. The result of a range join is a set

of object pairg(p, q) such thatDist(p, q) < r, wherep is from data set S angis from

guery set R, . Query set R and the data set S can be the same dataset. In this case, the

range join is called the self range join.

Definition 1.1.4 (Range Join)Given one data set S and one query set R, areaid
a distance metricdDist(), the KNN join, denoted aR <, S, returns pairs of points
(p,q) such thatq is from the outer query set R andfrom the inner data set S, and

Dist(p,q) <.

R, S ={(p,q)lg € R,p € S, Dist(p,q) <}

1.1.6 kNN Similarity Join

The k-nearest neighbor similarity join (KNN join in short) is the set-oriented kNN query
and combines each point of the query (outer) set R with its k-nearest neighbors from the
inner data set S defined firstly in [18]. When R is equal to S, the kNN join is called the
self kNN join[20].

Definition 1.1.5 (kNN Join) Given one point dataset S and one query dataset R, an
integer k and a distance metridist(), the KNN join, denoted aB x;yy S, returns
pairs of points(p, ¢) such thaty is from the outer query set R apdrom the inner data

set S, ang is one of the k-nearest neighborsqof

Rxyny S ={(p,q)lg € RAp € SApekNN(q, S)

1.1.7 RKNN Query

The Reverse k-Nearest Neighbors (RKNN) query retrieves all objects in a d&ttsst

have the given query pointas one of thei nearest neighbors. The RkNN problem
was first introduced in [78] and was also known as the influence set problem. The RKNN
guery has the mono-chromatic case and the bi-chromatic case.

In the mono-chromatic case, there is only one input dataset - the point déitaset

Figure 1.1: An example of mono-chromatic RKNN query.

Definition 1.1.6 (Mono-chromatic Reverse k-Nearest Neighbor Queryliven a dataset
S, query objeci, a positive integek and a distance metridist(), mono-chromatic
reversek-nearest neighbor query, denoted B8N N (q, S), retrieves all object® in S
such thatDist(p,q) < Dist(p,q'), forV ¢ € ENN(p,S), wherekNN(p, S) are the

k-nearest neighbors of point p in dataset S.
RENN(q,S) = {plp € SDist(p,q) < Dist(p,q'),Y Nq' € kNN(p,S)}.

In the bi-chromatic case, the RKNN query has two input datasets - the point dataset
S and the query datasét (also calledsite dataset in [115]). The query datadetis

different from the point datasét The query point is from the site dataset R.

Definition 1.1.7 (Bi-chromatic Reverse k-Nearest Neighbor Query)Given a point

datasetS, a query dataseR, a query objecty € R, a positive integek and a distance
metric Dist(), bi-chromatic reversé-nearest neighbor query, denoted8N N (q, R, 5),
retrieves all object® in S such thatDist(p,q) < Dist(p,q'), forV ¢ € kNN(p, R),

wherek N N (p, R) are the k-nearest neighbors of point p in dataset R.

RENN(q, R, S) = {plp € SDist(p,q) < Dist(p,q'),YANq¢ € kNN(p, R)}.

Figure 1.1 illustrates an example of the mono-chromatic RKNN query. Let dataset
S = {p1,ps,...,ps}, P2 be the query point anél=2. Sincep, is one of the 2-nearest

neighbors of, ps andpy, R2N N (ps, S) = {p1, p3, P4 }-

1.1.8 Classification of the Similarity Queries

Both the range query and the KNN query are classified as the basic similarity query
because of their comparatively low query cost. The naive solution to the range query
(the sequential scan method) scans the dataset S sequentially, computes the distance of
each object to the query object and then outputs the objesiish thatDist(p, q) < r.

The naive solution to the kNN query maintains a sorted array of /siwestore the k-
nearest neighbor candidates. Similarly, it scans the dataset S sequentially. When it finds
an objectp that is closer to the query objegtthan the current k-th nearest neighbor
candidate, it insertg into the sorted array and removes the current k-th nearest neighbor
from the candidates set. So both query is upper bounded(By) and can be solved

in O(N) time by scanning the point dataset S sequentidilys the cardinality of point
dataset S. By utilizing the index techniques which will be introduced in Chapter 2, the
complexity of both queries can be reducedx@ogN) [16].

The range join and the KNN join are much more expensive than their single query
counterparts. Naive approach to answer a range join or a kNN join performs the range
query or the KNN query for each point in the query set R. This invole¢)M is the
cardinality of R) times scanning of the dataset S, which introduces tremendous distance
computation and disk accesses. The query complexity of both the range join and the
kNN join is upper-bounded by th@ (N M), whereN is the cardinality of S and/ is
the cardinality of R. For the self range join or the self kNN join, their query complexity

is upper-bounded by th@(N?), whereN is the cardinality of S. Therefore, both queries

10

are categorized as the advanced similarity query.

Although the RKNN query only has one query point, it is also categorized as the
advanced similarity query because of its high computation complexity. Note that the k-
nearest-neighbor relation is not symmetric, that ig,if one ofg’s k-nearest neighbors,

q is not necessary to be one @ k-nearest neighbors. Therefore, the RKNN query is
much more complex than the kNN query. The naive solution for RKNN search has to
first compute the k-nearest neighbors for each ppimt the dataset S (for the mono-
chromatic RkNN query) or R (for the bi-chromatic RKNN query). Then pointghose
distance from the query poirdist(p, ¢) is equal or less than the distance betwgen

and its k-th nearest neighbor can be determinegisaeverse k-nearest neighbors. The
complexity of the first step is equal to the kNN join, so the complexity is upper-bounded

by O(N?) for mono-chromatic case ar@(N 1) for the bi-chromatic case. The second

step is a sequential scan of the dataset S. Therefore, it is also categorized as the advanced

similarity query.

1.2 Motivation

In the section, we describe the interesting applications of the KNN join, the RKNN query
and a specially property of the number of a point’s reverse k-nearest neighbors, which

motivated our research.

1.2.1 Motivation of the Study of the kNN Join

The kNN-join, with its set-oriented nature, can be used to efficiently support many im-
portant data mining tasks which have wide applications. In particular, it is identified that
many standard algorithms in almost all stages of knowledge discovery process can be

accelerated by including the kNN join as a primitive operation. For examples,

11

e Outlier analysis. Outlier analysis is to find out data objects that do not comply
with the general behavior or model of the data [52]. It has important applica-
tions such as the fraud detection (detecting malicious use of credit card or mobile
phone), customized marketing (identifying the spending behavior of customers
with extremely low or extremely high incomes) or medical analysis (finding un-
usual responses to various medical treatments) [52]. In the first step of LOF [23](a
density-based outlier detection method), the k-nearest neighbors for every point in
the input dataset are materialized. This can be achieved by a single self KNN-join

of the dataset.

e Data Classification. Data classification predicts the new data objects’ categorical
labels according to the model built according to a set of objects with known cate-
gorical labels (the training set). The knowledge of the new objects’ category can
be used for making intelligent business decisions. For example, it can be used to
analyze the bank loan applicants to identify the loan is either safe or risky. It also
can be used in the medical expert system to diagnose the patients. The k-nearest
neighbor classifier is one of the simplest but effective classification methods which
identifies the new object’s category by examining that object’s k-nearest neighbors
in the training set. The unknown sample is assigned the most common class among
its k-nearest neighbors. Given a set of unlabelled objects (the testing set), the kNN
join can be used to classify them efficiently by joining the testing set with the

training set.

e Data Clustering. Clustering is the process of grouping a set of physical or ab-
stract objects into classes of similar objects so that important data distribution
patterns and interesting correlations among data attributes can be identified [52].
It is also known as thensupervised learningnd has wide applications such as

pattern recognition, image processing, market or customer analysis and biological

12

research. The kNN join can be used in many clustering algorithms to accelerate

the process.

In each iteration of the well-known k-means clustering process [54], the nearest
cluster centroid is computed for each data point. A data point is assigned to the
its new nearest cluster if the previously assigned cluster centroid is different from

the currently computed one. A kNN join with= 1 between the data points and

the cluster centroids can thus be applied to find all the nearest centroid for all data

points in one operation.

In the hierarchical clustering method called Chameleon [72], a KNN-graph (a
graph linking each point of a dataset to its k-nearest neighbors) is constructed
before the partitioning algorithm is applied to generate clusters. The KNN-join can

also be used to generate the KNN-graph.

Compared to the traditional point-at-a-time approach that computes the k-nearest
neighbors for all data points one by one, the set oriented KNN join can accelerate the
computation dramatically [19].

However, after the KNN join has been proposed recently in [20], to the best of our
knowledge, the MuX kNN join [20, 19] is the only algorithm that has been specifically
designed for the kNN-join. The MuX kNN join algorithm is an index-based join algo-
rithm and MuX [21] is essentially an R-tree based method. Therefore, it suffers as an
R-tree based join algorithm. First, like the R-tree, its performance is expected to degen-
erate with the increase of data dimensionality. Second, the memory overhead of the MuX
index structure is high for large high-dimensional data due to the space requirement of
high-dimensional minimum bounding boxes. Both constraints restrict the scalability of
the MuX kNN-join method in terms of dimensionality and data size.

As a consequence, new algorithms for efficient support of the KNN join in high-

dimensional spaces are highly desired. In this thesis, we design Gorder (the G-ordering

13

D o
o O 5 o
® o
000 ,
@ 9@,
[..g.... o)
) E

e 2: 0q o
Iy

Figure 1.2: An illustration of resource allocation with quota limit.

kNN join) which is based on the block nested loop join and exploits optimization tech-
niques such as sorting, data blocks scheduling, distance computation filtering and reduc-

tion to improve the query efficiency.

1.2.2 Motivation of the study of the RKNN Query

The RkNN query has received much attention in the recent years because of its important
applications in profile-based marketing, information retrieval, decision support systems,
document repositories and management of mobile devices [78, 115, 125, 114, 76]. For

examples,

e Decision support. The knowledge of the reverse k-nearest neighbors enables a
decision maker to arrive at the best trade-off decisions. For example, when two
banks are to be merged, many branches have to be closed and services have to be
redistributed. The decision as to which branches to close and how to reallocate the
services requires the knowledge of the existing customers who view the branch
among their topt preferred branches. For any two branches, if there is a big
overlap between two such sets of customers, one of the branches can possibly be

closed without sacrificing the quality of service to the customers.

14

¢ Profile-based Marketing. The RKNN query helps a company to have insights into
the attractiveness of the products/services offered, and thus enable the tailored
marketing. For example, a telecommunication company may offer many types
of package targeting different groups of consumers. The knowledge that which
customers will find the package the most suitable plan can assist the marketing de-
partment in recommending the most appropriate package tailored to the customers.
These customers form the influence set of the package and can be determined by
an RkNN query based on the the distance between the profiles of the customers

and the feature vector representing the new package.

e Resource Allocation with Quota Limit. Consider Figure 1.2. Suppose each un-
filled circle’o’ denotes a resource with a quota limit of 3. In other words, each
resource can serve at most 3 filled poitswhich denote clients. If we wish to
determine which recourse should be assigned to sgrwee may do so by look-
ing for the nearest resourcesgfe.g. the 3 nearest resources A, B, C. However,
checking for quota limit, we realize that none of the A,B, nor C, can seive-
cause they each have 3 nearest neighbors that they are serving already. Instead,
issuing a reverse 3-nearest neighbor query on the resource points, immediately we
know D, E will considerq as one of their 3-nearest neighbors. Hence, we can

assign either D or E to serve

e Risk profiling in medical system [61]. It is often necessary to know the risk profile
of each patient in order to recommend a most effective care strategy for the pa-
tient. One way to determining the risk profile of a patient is to classify the patient
into a risk group according to the characteristics of the patient and the features

characterizing different risk groups using the RkNN query.

15

A number of methods have been developed for the efficient processing of RKNN
gueries. They can be divided into two categoripse-computatiorandspace pruning
Pre-computationrmethods [78, 125] pre-compute the nearest neighbors of each point
in the datasets and store the pre-computed information in hierarchical structures. This
approach cannot answer an RKNN query unless the corresponding k-nearest neighbor
information is available.Space pruningnethods such as [112, 116, 114] utilize the
geometry properties of RNN to find a small number of data points as candidates and
then verify them with NN queries or range queries. However, these methods are all very
expensive when data dimensionality is high or when the valisdarge. Designing ef-
ficient search algorithm for the RKNN query in high-dimensional spaces is challenging
and interesting. In this thesis, we overcome the difficulty of the RkNN query with es-
timation techniques. The ERKNN - an estimation-based RKNN search algorithm is put

forward.

1.2.3 Motivation of BORDER

Data mining, also known as knowledge discovery in database, is the process of finding
new and potentially useful knowledge from data. Advancements in information tech-
nologies have led to the continual collection and rapid accumulation of data in reposito-
ries. Turning such data into useful information and knowledge is desired. Consequently,
numerous data mining technologies, including data cleaning and preparation techniques,
data classification, association rules analysis, data clustering, and outlier analysis [52],
have been proposed in the recent years.

In this thesis, we propose a novel data mining tool - BORDER for effective boundary
point detection which is based on the finding that data points that have much fewer
reverse k-nearest neighbors tend to locate at the margin of densely distributed data. As

illustrated in Figure 1.3 (a), there is a 2-dimensional dataset with quadrangle-shaped

oot
: 3 i r"‘.;.
o8t = : i
o7l 7 5
e 4
osf
;
s
I'I..
5
.'\
I 1 fo g I

(b)
Figure 1.3: A preliminary study.

17

clusters. In Figure 1.3 (b), we plot the points whose reverse 50-nearest neighbors are
fewer than 30 points. The plot shows that those points having fewer reverse k-nearest
neighbors clearly define the boundaries of the clusters.

Boundary points are potentially useful in data mining applications since first, they
represent a subset of population that are at the verge of the densely-distributed region
and possibly straddle two or more classes. For example, this set of points may denote
a subset of population that should have developed certain diseases, but somehow they
do not. Special attention is certainly warranted for this set of people since they may
reveal some interesting characteristics of the disease. Secondly, the knowledge of these
points is also useful for data mining tasks such as classification and clustering [67]
since these points are most likely to be mis-classified and mis-clustered. Removing such
points before the classification or clustering analysis could improve the classification or
clustering results.

Motivated by the usefulness of boundary points in data mining and the interesting
observation of the relationship between the location of a point and its number of reverse
k-nearest neighbors, we design BORDER, a data mining tool which finds the boundary

points efficiently and effectively.

1.3 Contributions

The major contributions of this dissertation are three-fold:

1. A novel kNN-join algorithm, calledsorder (or the G-ordering KNN join method),
is proposed to answer the kNN join operation efficien@garderis a block nested
loop join method which achieves its efficiency by sorting data based on an ordering
that enables effective join pruning, data blocks scheduling and distance computa-

tion filtering and reduction. It utilizes @vo-tier partitioning strategyo optimize

18

I/0 and CPU time separately and reduces distance computational cost by pruning
redundant computation based the distance of fewer dimensions. It does not require
an index for the source datasets and is efficient and scalable with regard to both
the dimensionality and the size of the input datasets. Experimental studies on both
synthetic and real-world data sets are conducted and presented. The experimental
results demonstrate the efficiency and the scalability of the proposed method, and

confirm the superiority of the proposed method to the previous solutions.

2. An innovative estimation-basedpproach called ERKNN (the estimation-based
RKNN search) is designed to handle RKNN queries in high-dimensional data spaces
and for large values of. ERKNN retrieves RKNN candidates based onltual
kNN-distance estimatioikNN-distance is the distance from a data point to its k-th
nearest neighbor) and verifies the candidates using an effexgmegated range
qguery Two local kNN-distance estimation methods, the PDE method and the
kDE method, are provided, which work effectively on both uniform and skewed
datasets. Employing the effective estimation-based filtering strategy and the ef-
ficient refinement procedure, ERKNN outperforms previous methods by a signif-
icant margin. Extensive experiments on various datasets proves that ERKNN re-

trieves the reverser k-nearest neighbors efficiently and accurately.

3. A novel data mining tool, BORDER (a BOundaRy points DEtectoR) is proposed
to detect boundary points. Boundary points are data points that are located at
the margin of densely distributed data (e.g. a cluster). The knowledge of bound-
ary points can help in data mining tasks such as data preparation for clustering and
classification. BORDER detects boundary points according to the finding that data
points that are located at the margin of densely distributed data tend to have much
fewer reverse k-nearest neighbors. It transforms the expensive set-oriented RKNN

query into the kNN join by utilizing theeversal-shibetween the k-nearest neigh-

19

bor and the reverse k-nearest neighbor and employs the state-of-the-art KNN join
technique - Gorder. Experimental study shows that BORDER finds the boundary
points effectively. Moreover, the performance of the clustering and classification

analysis can be improved considerably by removing the boundary points in ad-

vance.

1.4 Organization

The rest of the thesis is arranged as follows:

e Chapter 2 presents a survey of related work of similarity queries with particular

focus on the kNN join and the RKNN query.

e Chapter 3 investigates the kNN join. Gorder, an efficient kNN join processing
algorithm that exploits sorting, data page scheduling and distance computation

filtering and reduction to reduce both I/0 and CPU costs is proposed.

¢ In Chapter 4, we study the problem of the RKNN query . An innovagsténation-
basedsolution -ERKNN (the estimation-based RKNN search) which can efficiently
handle RkNN queries in high-dimensional data spaces and for large valueés of

provided.

e Chapter 5 presents BORDER - a data mining tool for boundary points detection.
We propose a novel method BORDER (a BOundaRy points DEtectoR) which em-
ploys the state-of-the-art KNN join technique and makes use of the property of the

RKNN.

e Chapter 6 concludes the thesis with a summary of our contributions and a discus-

sion of the future research.

Chapter 2
Related Work

In order to process similarity queries efficiently, numerous indexing techniques and
search algorithms have been proposed in the recent decades. In this chapter, we first
introduce the indexing techniques and algorithms for the basic similarity search with
index, and then review algorithms for the advanced similarity queries, i.e., the range

join, the kNN join and the RkKNN query.
2.1 Index Techniques

Database Index is a mechanism to locate and access data within a database [1, 107,
91]. Given a dataset for similarity search, we build an index upon the feature vectors
(which are keys) of the input dataset first and then apply the similarity search algorithms.
Utilizing the index structures, the search algorithms can effectively locate data which are
highly likely to be the answers, prune away those that are surely not answers, and retrieve
data points that meet the query condition more efficiently. Numerous index structures
have been proposed. They can be classified into three classes: data partitioning methods,

space partitioning methods, and data transformation methods.

e Data partitioning methods: data partitioning methods group (or cluster) nearby
(similar) data points together and organize them in multi-layered hierarchical struc-

tures. The R-tree family [49, 10, 111, 12], the A-tree [109]), the MuX index [21],

20

21

the SS-tree [121], the M-tree [131, 29], and the SR-tree [73] all belong to this

category.

e Space partitioning methods: Space partitioning structures partition the data space
iteratively along predefined lines regardless of the distribution of data. Space par-
titioning methods include the multi-dimensional hashing [83, 34, 85, 43, 86], grid-
files [57, 95, 40, 120, 56, 14], kdB-trees [8, 9], hB-tree [89] etc.

e Data transformation methods: Data transformation methods transform the original
d-dimensional data into single attribute values (or codes) and then index them with
the one dimensional index structures such as B-trees [99] or simply stored them
in a flat file. Such methods include the pyramid tree [11], iminmax [100, 127,
101], iDistance [129, 128], the space filling curves [102, 35, 66, 93], and the VA-
file [119, 118].

Compared with the space partitioning methods, data partitioning methods are more
adaptive to the data distribution and work more efficiently on real life and skewed dis-
tributed datasets. However, in high-dimensional space, data partitioning structures are
seriously affected by theurse of dimensionalitjl1] problem and a similarity search
based on an index could perform even worse than a simple search which scans the dataset
sequentially (called theequential scan The data transformation methods are usually
the most effective index methods for data of very high dimensionality.

Recently a number of dimensionality reduction techniques - the discrete fourier trans-
form (DFT) [5], the discrete wavelet transform (DWT) [82, 106, 122], the principal com-
ponent analysis (PCA) [53, 77, 71, 26] (also known as the single value decomposition)
have been proposed. Dimensionality reduction technigues reduce data dimensionality by
condensing the important information into a smaller number features. Some improved

indexing methods [30, 68] utilize dimensionality reduction techniques so that they are

22

Rl
i R3.p12 VVVVVVVVV pl. r:ii,7,i;r,,7,,7,iiiiiiiiiif.ﬁ7778?1‘
o ('R6 1 pi3e A
e P e
R R ePML ~ pls
N - 3
Pl L8 % P20
| P9 |
3 R8 P8 ®p10 1

(a) Point Position

- ~< Root
R1 R2
R4 R6| R7| R8 = Internal

R3 R4

oo] feloel | bole[o] | ol] el | [oulm o] < o

(b) Tree Structure

Figure 2.1: An R-tree Example

less affected by the problem of tleerse of dimensionalitagnd more scalable to high-
dimensional spaces.
The comprehensive surveys of the multidimensional index structures can be found

in [42, 16, 13, 126].

23
2.2 Basic Similarity Queries with Index

2.2.1 The R-tree

In the following discussions, we use the R-tree to illustrate the similarity search algo-
rithms with index. We first give a detailed description of the R-tree [49].

Figure 2.1 illustrates an R-tree example. The R-tree belongs to data partitioning
methods. As most of the other index structures, it is designed primarily for secondary
storage and each tree node in the hierarchical tree corresponds to a page of the secondary
storage. Nodes at the lowest level are calledidiaé nodesor data nodes Nodes at all
other layers of the tree are called tthesctory node®r internal nodes The only node at
the highest level of the tree is called tioot of the tree. An R-tree iBeight-balanced
i.e., the lengths of the paths from the root to all data nodes are identical. The length of a
path between the root and a data page is called the tree height.

Each entrye contained in the internal nodes are of the form(&kct, pointer).
pointer points to a node underneath. The node is calledctiilel nodeof e. Rect is
a minimal bounding rectangle (MBR) that bounds the data objects in the subtree rooted
at the child note pointed byointer. The data points (or feature vectors) are stored in
the data nodes of the R-tree.

The number of entries stored in every internal node of the R-tree has a lower bound
m and upper bound/ (except the root which has no lower bound! is called the
fanout of the tree. It is the maximal number of entries can be stored in an internal node

and can be derived from the predefined page size of the R-tree and the size of an entry.

_ page size of the R-tree
~ size ofanentry

24

m is defined to ensure efficient storage utilization.

m << —

The R-tree allows inserting and deleting data points dynamically. When a new data
point is inserted into the tree, the insertion algorithm first routes the new data from the
root node to a leaf node by picking a child node that needs least enlargement of the MBR
to enclose the new data point. If the insertion causes overflow (i.e., the number of entries
in a node is greater than its capacity), the node will be split. To remove a data point, the
deletion algorithm traverses the tree to locate the leaf node containing the point and then
removes it from the node and shrinks the MBR. The deletion of a data point may cause
underflow (i.e., the number of entries stored in a node is smaller than the lower bound).
In this case, the node will be removed and all data points inside will be reinserted into
the tree.

The R-tree works effectively for data spaces of relatively small number of dimen-
sions. But its performance degrades rapidly when the number of data dimensions in-
creases. Variants methods have been proposed to improve the R-tree. The R*-tree [10]
employs thdorced reinsertpolicy and a sophisticated node-splitting policy to improve
the storage utilization of the R-tree and minimize the combination of overlap between
bounding rectangles and their total area. TRietree [111] uses clipping to prevent
overlap between bounding rectangle at the same tree level to overcome the problems as-
sociated with overlapping regions in the R-tree. The X-tree [12] introducesujern-
odewhich are of larger page size into the R*-tree. The A-tree [109] (Approximation
tree) replaces minimum bounding rectangles (MBRS) in the internal nodes with virtual
bounding rectangles (VBRs) which represents MBRs approximately and compactly and
thereby, increases the fanout of the tree and reduces the tree height.

Since the R-tree is the most fundamental hierarchical index structure, most similarity

25

Figure 2.2: A Query Example

guery algorithms are developed upon it and they can be migrated to other hierarchical

index structures straightforwardly.

2.2.2 Algorithms for the Range Query

Search algorithms for the range query utilizing the R-tree traverses the tree in a branch-
and-bound manner. It starts from the root of the tree. Upon visiting an internal node
of the R-tree, the search algorithm calculates the MinDist (Definition 3.3.3) between
each entry inside and the query point and applies the following Pruning Strategy 2.2.1 to

decide whether the child node pointed by this entry should be visited.

Pruning Strategy 2.2.1 If MinDist(R, q) > r, then nodek can be pruned from search

because it cannot contain any pointsuch thatDist(p, q) < r.

MinDist(R, q) is the minimum distance between the minimum bounding rectangle

of nodeR and the query poinj (see Figure 2.2 as an illustration).

Definition 2.2.1 (MinDist between MBR and point) The minimum distance between

the minimum bounding rectangle of nodeand a pointg(zy, xs, ..., x4), denoted as

26

MinDist(R, q), is defined as follows:

2

MinDist(R,q) = Z 0 otherwise
=1
q.x; —ub; if ub; < q.x;
wherelb; is the lower bound of the minimum bounding rectangle at dimensaom ub;

is the upper bound of the minimum bounding rectangle at dimerision

Upon visiting a data node, the search algorithm calculates the distances between the
data pointy and the query point. Data points such th&tt(p, ¢) < r are output as the
results of the range query.

Different range query algorithms traverse the tree nodes in different sequences. The
depth-first algorithm always visits the unpruned child node first and the breadth-first al-
gorithm always visits the qualified sibling node first. The depth-first algorithm is imple-
mented in a recursive way and the breadth-first algorithm is implemented in an iterative
way.

Figure 2.2 gives a range query example, wheiethe query point and is the query
radius. The depth-first range search algorithm visits the tree nodes in the following
sequence:

tree root— R; — R3; — Ry — Rj;

The breadth-first range search algorithm visits the tree nodes in the following sequence:
tree root— Ry — Ry — R3; — R;

NodesR, and R are discarded by applying Pruning Strategy 2.2.1, which saves both
I/0 and CPU costs.

27

2.2.3 Algorithms for the kNN Query

The kNN query is more complex than the range query because the query range is un-
known first. The KNN search algorithms maintain an array of kittestore the k-nearest
neighbor candidates (the kNN candidate array). The distance éflihmeearest neighbor
candidate to the query poidtin(q) (called the KNN-distance @f) is used for pruning

tree nodes. The following pruning strategy is adopted by the KNN query algorithms.

Pruning Strategy 2.2.2 If MinDist(R,q) > dnni(q), node R can be pruned from
search because it cannot contain any poiptfhat are closer to the query point than

the current k-nearest neighbor candidates.

The pruning distancénny(q) = Dist(ck, q), where{cy, ..., ¢, } are the k-nearest neigh-
bor candidates sorted in ascending order accordingly to their distances to the query point.
dnng(q) is co at the beginning of the search and converges during the search.

There are three types kNN search algorithms: the depth-first method, the best-first
method and the incremental method [108, 58, 59].

Depth-first KNN Search Algorithm

The depth-first search algorithm [108] accesses a tree node in the following way:

¢ If the node is an internal node, the depth-first search algorithm first sorts the en-
tries inside of the node according to their minimum distances to the query point.
Then, starting from the first entry with the minimum MinDist, the algorithm calls
recursively the depth-first search algorithm for the child node pointed by the entry

if the entry cannot be pruned by Pruning Strategy 2.2.2.

¢ If the node is a leaf node, it computes the distance between each data point and
the query point and inserted data poiptsuch thatDist(p, ¢) < dnn(q) into the

kNN candidate array.

28

Visit Node | dnni(q) | Candidate Set
Tree root 00 0

R1 o @

R Dist(q, p2) {p3, p2}

Ry Dist(q, p2) {ps, p2}

Rs Dist(q, pr) {ps, p7}

Table 2.1: The procedure of the depth-first 2-nearest neighbor search.

Given a kNN query (k=2) in Figure 2.2 whegeas the query point, the search algo-

rithm visits the tree nodes in the following sequence:

Tree Root— R; — R3 — Ry — Rs.

NodesR, and g are pruned from search apdandpg are found as the 2-nearest neigh-

bor of ¢. Table 2.1 summarizes the procedure of the depth-first search.

Best-first KNN Search Algorithm

The best-first approach [58] uses a priority queue to maintain the nodes that shall be
visited. Entries in the priority queue are sorted in ascending order according to their
MinDist to the query point. In the initial, only the tree root is in the priority queue.
The search algorithm always dequeues the first entry in the priority queue and processes

according to the node type:

e If a node is an internal node, for each entry inside, the algorithm computes its
MinDist to the query point and inserts it into the priority queue if its MinDist is

smaller thaninn(q).

e If a node is a leaf node, for each data in the node, the search algorithm calculates
its distance from the query point. If the distance is smaller tham.(q), the data

point is inserted into the kNN candidate array.

29

Visit Node | dnn(q) Priority Queue | Candidate Set
Tree root 00 {R,, Ry} 0

Ry 00 {Rs, R3, Ry} 0

Ry 00 {Rs, R3, R¢, R4} 0

Rs Dist(q,p7) | {Rs, R, Ra} {ps, pr}

Table 2.2: The procedure of the best-first 2-nearest neighbor search.

The process is stopped whénn(q) is smaller than the MinDist of the first entry in
the priority queue or the priority queue is empty.

For the 2NN query in Figure 2.2, the nodes will be visited in the following sequence:

tree root— R; — Ry — Rs.

The algorithm stops after visitings; and outpups andp; as results becauséin Dist(Rs, q)

is greater thann(q) = Dist(q, p7). NodesRs, Rs, R4 Which are remained in the pri-

ority queue are neglected. Compared with the depth-first method, the best-first approach
is more efficient because it accesses fewer tree nodes. In this example, the depth-first
approach accesses 5 nodes in total, while the best-first approach accesses only 4 nodes.

Table 2.2 summarizes the procedure of the best-first KNN search.

Incremental KNN Search Algorithm

The incremental k-nearest neighbor search [59] is very similar to the best-first approach
and also employs a priority queue to maintain the nodes that shall be visited. However,
the incremental search algorithm stores both the tree nodes and the data points in the
priority queue and therefore, need not maintain a separate KNN candidate array.

The priority queue is initialized with the tree root. Items in the queue is sorted in
ascending order according to their distance or MinDist to the query point. At each itera-

tion, the incremental KNN search algorithm dequeues the first entry from the queue and

30

Entry Dequeued Priority Queue Output

root {Ry, Ry}

Ry {Ry, R3, Ry}

Rs {Rs, R3, R¢, R4}

Rs {PB;P% Rs, Rg, py, R4}

Ds {p7, Rs, Re,p9, R4} | ps as the 1st nearest neighbor
7 {R3, R, py, R4} pr as the 2nd nearest neighbor
R3 {p3,R6,P27P97R4,p1}

D3 {Rs, 2, po, Ra,p1} ps as the 3rd nearest neighbor

Table 2.3: The procedure of an incremental k-nearest neighbor search.

checks its type.
¢ If the item is a data point, it is reported as a next nearest neighbor.

e If the item is an internal node, for each entry inside, the algorithm computes its

MinDist to the query point and inserts it into the priority queue.

e If the item is a leaf node, for each data point inside, the algorithm computes its

distance to the query point and inserts it into the priority queue.

The algorithm stops when there dr@oints being reported as k-nearest neighbors.
Given the 2NN query in Figure 2.2, the incremental search algorithm traverses the
following nodes:

tree root— Rl — R2 — R5.

Table 2.3 summarizes the search procedure of the incremental 2NN query in Figure 2.2.
The incremental approach accesses the same number of tree nodes as the best-first

approach in the same sequence. Both are proved to be optimized in terms of the number

of node accesses [16]. An advantage of the incremental approach over the best-first

approach is that after thenearest neighbors are found, thie+ 1)th nearest neighbor

can be produced immediately without reinvoking the query algorithm and processing

the query from scratch by utilizing the information in the priority queue. As shown in

31

root root
R1 R2 R3 R4 S1 S2 S3 S4
(a) Index of Dataset R (b) Index of Dataset S
MinDist
R3
R1 [T X r
S4 G
<
S2 Y/
'4
R4
R2
S1

(c) The Planar Presentation
Figure 2.3: An RSJ Join Example

Table 2.3, after finding the 2-nearest neighborg,dhe incremental algorithm can find

the third nearest neighbpg quickly.

2.3 Algorithms for the Range Similarity Join

The range similarity join has been well-studied and a large number of techniques have
been proposed for it. They can be broadly classified into three categories: the index-
based algorithms, the hash-based algorithms and the sort-based algorithms.

Note that some join algorithms which we will introduce in the following sections are

designed originally for the spatial join They can be applied to the range similarity join

1The spatial join computes the pairs of the spatial objects that intersect with each other.

32

by treating the data poingsas hypercubes centeredieand of length-, wherer is the

query radius for the range join.

2.3.1 Index-based Similarity Range Join Algorithms

In the first category, the join algorithms utilize hierarchical index structures pre-constructed
upon the datasets. The R-tree Spatial Join (RSJ) [24], the breadth-first R-tree join [62],
the incremental distance join [59] and the MuX range-join [21] all belong to this cate-
gory.

These methods first build the hierarchical indexes upon the input datasets R and S and
then traverse the indexes of R and S synchronously to form joining node pairs according

to the following pruning strategy.

Pruning Strategy 2.3.1 Given a range similarity joinR <, S, if MinDist between a
node (page) ofR R, and a node (page) of S; MinDist(R;,S;) > r, node pair
(R;,S;) can be excluded from being examined because they cannot contain any point

pairs (¢, p,) such that areDist(q,,, pm) < r.

MinDist(R;,S;) is the minimum distance between the MBRs of the nalgand

S; (see Figure 2.3 for illustration).

Definition 2.3.1 (MinDist between two MBRs) The minimum distance between two
minimum bounding rectangles of nofteand S, denoted as\/inDist(R, S), is defined

as follows:

2

R.Ib; — S.lb; if S.b; < R.lb;
MinDist(R,S) = Z 0 otherwise

=1

S.Ab; — R.Ib; if R.1b; < S.lb;

where R.1b; (S.1b;) is the lower bound of the minimum bounding rectangld?($) at

33

dimension and R.ub; (or S.ub;) is the upper bound of the minimum bounding rectangle

of R(S) at dimension.

For example, given two datasefsand S in Figure 2.3 and the radiusillustrated
at the right side of Figure 2.3 (c), the nodes pairs to be joined togethe€izare),),
(R2,52), (R2,53), (Rs, S2), (B3, S3), and(Ry, S3).

R-tree Spatial Join

The R-tree Spatial Join (RSJ)[24] is the simplest index-based join method which tra-
verses the indexes in the depth-first manner. The R-trees are built on the input datasets R
and S beforehand. The RSJ algorithm starts from the root nodes of R and S and traverses
the indexes of R and S synchronously. For each internal node(ggirS;) being under
consideration, the algorithm calculates the minimum distance between all pairs of the
child nodes ofRz; and S; and forms the pairs having distances equal to or smaller than

r. For each unpruned child node pairs, the RSJ algorithm is called recursively so that it
traverses the R-treetepth-firstly If R, and.S; are leaf nodes, it calculates the distance
between all pairs of points inside, and.S; and point pairs such thad®ist(g,, p.,) < r

are output as join results.

Breadth-First R-tree Join

The breadth-first R-tree join (BFRJ) [62] is an improvement of RSJ which traverses
the R-trees in the breadth-first manner. BFRJ computes join pairs one level at a time and
creates amtermediate join indexJI) which are node pairs to be joined at the next lower
level at each level. Based on 1JIs, the BFRJ algorithm applies the following optimization
strategies to speed up the join processing: i)drgering optimizatiorthat orders the
nodes by the space-filling curve (e.g. the Z-order [102]) to minimize page faults during

join computation at the next level; i) tHmiffer managemermptimization that schedules

34

the buffer paging so that the nodes to be processed in the near future are more likely hit
in the memory. These optimizations makes BFRJ more efficient than RSJ in terms of the

I/O cost.

Incremental Distance Join

The incremental distance join (IDJ) [59] works in the similar way of the incremental k-
nearest neighbor algorithm [58]. It traverses the indexes of R and S synchronously from
the tree roots and employs a priority queue to maintain dairs:), wheree; ande,

can be either a tree node or a data point. The priority queue is initialized with the pair of
the tree roots of R and S. Items in the queue is sorted in ascending order according to the
MinDist or distance between them. At each iteration, IDJ dequeues the first entry from

the queue and processes it according to the typesafide,.
e If both e; ande, are points, this pair is reported as a join result.

e If one of e; ande, is a point and the other is leaf nodes, the algorithm computes
the distance between the point to all points in the leaf nodes and inserts the point

pairs into the priority queue.

e If both ¢; ande, are leaf nodes, for each point én, the algorithm computes its

distance to all points ia, and inserts the point pairs into the priority queue.

e If one of e; ande, is an internal node and the other is a point, the algorithm
computes the minimum distance between the point to all entries in the internal

nodes and inserts the pairs into the priority queue.

e If both e; ande, are node (either internal node or leaf node) and one of them is an
internal node, for each item i, the algorithm computes its minimum distance to

all items ine; and inserts the pairs into the priority queue.

35

page
hosting directory page > directory
x| v A\
<JE
accommodated / v
directory bucket >| | | |
hosting datapage —» page page
directory directory
K| v R\ K| v 1

accommodated data I I | l | | | | | | | |
\J

bucket
e]] L L]

Figure 2.4: Multipage Index (MuX)

The process is stopped whens smaller than the MinDist or distance of the first

entry in the priority queue or the priority queue is empty.

MuX Range Join

The MuX range join is based on tihultipage indexXMuX) [21, 20]. MuX is motivated

by the observation that the fine-grained index with small node (page) size benefits the
CPU performance, whereas index with large node (page) size has better 1/0O performance,
especially for data in high-dimensional spaces. MuX solves this confliction between the
optimization of the CPU cost and the optimization of the I/O cost by with a two-tiered
structure.

Figure 2.4 illustrates the MuX index. Same as the R-tree, MuX is a height-balanced
hierarchical structure and uses minimum bounding rectangles as the bounding objects in
the internal nodes. Each node of the MuX is calledhbsting page In each hosting
page, a hash-table-liked secondary structure is maintained for the purpose of the opti-

mization of the CPU cost. The secondary structure consists of a flat directory (called the

36

page directory and theaccommodated bucketShe page directory consists of an array
of MBRs and pointers. Each pointer points to an accommodated bucket. If the host-
ing page is a directory page, the accommodated buckets are dattetbry bucketand
store entries of the forrRect, pointer). Rect is an MBR andvointer points to a child
hosting page. If the hosting page is a data node, the accommodated buckets are called
data bucketsThe data buckets contains feature vectors of the objects. The hosting pages
are usually of large size in order to optimize 1/0 cost. The accommodated buckets are
tuned to partition the data finely in order to optimize the CPU cost. By this way, MuX
achieves optimized 1/0 cost and CPU cost at the same time.

The MuX range join is very similarity to the RSJ algorithm. It starts from the roots
of the MuX indexes built on R and S in advance and traverses the indexes synchronously
in the depth-first manner. For each pair of hosting padgssS;) being under consider-
ation, the MuX range join algorithm examines each pair of the accommodated buckets
inside and forms the accommodated buckets pairs that should be examined according to
Pruning Strategy 2.3.1. Then for each generated accommodated buckéts, paliy the
algorithm calculates the minimum distance between all pairs of the entries insigle of
andr; and forms the hosting page pairs that have MinDist equal to or smaller tlar
each generated hosting page pairs, the MuX range join is called recursivglyanflS;
are leaf hosting pages, the algorithm first generates accommodated buckets; pgirs
such thatVMinDist(r;, s;) < r, wherer; (s;) is accommodated bucket inside Bf (5;).
Then for each unpruned accommodated buckets pair, it calculates the distance between
all pairs of points inside; ands;. Point pairs such thabist(q,, p,,) < r are output as

join results, wherg, (p,,,) is a point inside of; (s;).

37

2.3.2 Hash-based Similarity Range Join Algorithms

The second category of techniques are the hash-based algorithms which partition the
data space into buckets which can be fit in allocated memory and perform the join on
pairs of joinable buckets to produce results.

The hash-based methods have the advantage over the index-based methods that in-
dexes are not necessary to be built on the input datasets in advance. The major drawback
of such techniques is that they may replicate a data item into multiple buckets and the
data replication rates usually are high in high-dimensional spaces, which makes such
methods very expensive in terms of both CPU cost and I/O cost when data dimension-
ality is high. Typical hash-based similarity range join algorithms are the partition-based
spatial merge join [105], the spatial hash join [88] and ¢HalB-tree range join [70].

The spatial merge join [105] and the spatial hash join [88] are proposed originally for

the spatial join.

Partition-Based Spatial Merge Join

The partition-based spatial merge join (PBSM) [105] algorithm divides the space into a
set of cells by applying a regular grid to it. Each partition (bucket) is a set of tiles and
the partitions are disjoined. The PBSM algorithm first decomposes ddtasgd the
partitions and then inserts each object of datasetto every bucket which intersects

with that object. The number of partitions depends on the size of the inputs datasets and
the size of the available memory. If the partition does not fit in the available memory,

it is subdivided in a repartition process. In a second step, the PBSM algorithm loads
each partition into main memory and joins them using a computational geometry based

plane-sweeping algorithm.

38

Spatial Hash Join

The spatial hash join (SHJ) [88] provides a general two-step framework for the spatial
hash joins. The first step of SHJ patrtitions the input datasets into buckets using partition
functions which comprises two components - a sdiufket extentehich describes the
buckets and amassignment functiowhich assigns data item to buckets. The partition
functions for the two datasets may different. A data item may be mapped into multiple
buckets. The algorithm assumes after the data partitioning step, data in each bucket can
be fit in memory. The second step then joins inner and outer buckets to obtain results
with either nested-loop join (that is, for each point in in buckekpft scans the bucket

of S and outputs pairs intersecting with each other) or the indexed nested loop join (that
is, it constructs an R-tree on tttedata in the memory first and then for each poinkin

performs an intersection query on the R-tree).

The e-kdB-tree Range Join

The e-kdB-tree range join [70] partitions the data space on one selected dimension into
stripes of the width (e is equal to the range join radiu3. Thus, the join operation is
restricted to the subsequent stripes. The algorithm assumes that the database cache is
large enough to hold all the data points of two subsequent stripes so that it is possible to
join two stripes in a single pass. When joining two stripes of data, it constructs a main
memory data structure called thekdB-tree for each stripe. ThekdB-tree structure
partitions the data in memory into stripes of widthiccording to the other dimensions

until a defined node capacity is reached. Again, only adjacent partitions are needed to
be joined together. The-kdB-tree [70] is particularly suited for the self range join.

However, this method is not scalable to large dataset according to the study in [17].

39

2.3.3 Sort-based Similarity Range Join Algorithms

The third category is the sort-based techniques. The ORE algorithm [103], Multi-dimensional
Spatial Join (MSJ) [81], GESS [31], and the Epsilon Grid Order (EGO)[17] all belong

to this category. ORE and MSJ are original proposed for the spatial join.

ORE Join

The ORE algorithm [103] is based on the Z-curves [102]. For each input dataset, the
algorithm imposes a binary recursive partitioning of the data space until a specified gran-
ularity is reached and obtains a set of hypercubes. Each hypercube has its corresponding
Z-value (a bit string). ORE sorts the hypercubes into the nondecreasing order with re-
gard to their Z-values and after that, merges the hypercubes intersecting with each other
in main memory utilizing two main-memory stacks StaRRkand StackS. Making use

of the property of Z-curves, it detects the intersection by checking if the Z-values of two
hypercubes have a prefix-suffix relationship. A deficiency of ORE is that it allows to de-
compose the spatial objects into several pieces which leads to substantial data replication
especially in high-dimensional spaces and this increases both space and CPU overhead
for sorting and joining. In addition, replication causes duplicates in the result set and

ORE has not dealt with this problem.

MSJ Join

MSJ imposes a dynamic hierarchical decomposition of the space into level files. It scans

each input dataset and place each ppint, z», ..., z;) in a level filel,

= mi b(Doait 7")
= min = i — =, T; —
1<i<d nevr 2 * 2

40

subspace 01 | subspace 11

oP

subspace 01 subspace 10

Figure 2.5: Replication of GESS.

wherencb(by, by) denotes the number of most significant common bits in bit sequences
of by andb,. Each point is then assigned to a Hilbert value based on the level file to
which it belongs. MSJ sort the level files into nondecreasing order of Hilbert [66] values
and perform a multi-way merge of all level files. Deficiency of this method is that in
high-dimensional spaces a high fraction of the input data will be in level O [16]. Points
in level 0 need to be joined with the other dataset entirely in a nested-loop manner, so it

is very expensive for high-dimensional data [32].

Generic External Space Sweep Join

The Generic External Space Sweep (GESS) [31] has three steps. In the first step, each
point (vector) of the input dataseiss transformed into a hyper-cube centered and of
lengthr, wherer is the query range radius. The hypercubes are then passed to the repli-
cation algorithm which generates codes (Z-values or Hilbert values) that represent the
subspaces of each hypercube. In order to avoid the problem of MSJ in high-dimensional
spaces, GESS allows replication at this step. A hypercube can be split and assigned to
different subspaces. As illustrated in Figure 2.5, the hypercube is split into 4 parts and
assigned to 4 subspaces. The second step of GESS is similar to the ORE algorithm. It

sorts the hypercubes into nondecreasing order based on their Z-values or Hilbert values

41

and merges the hypercubes intersecting with each other in main memory utilizing two
main-memory stacks StadR and StackS. In the last step, GESS removes duplicates

which are caused by the replication from the result set using a method called Refer-
ence Point Method (RPM). GESS improves both ORE and MSJ and is more scalable to

high-dimensional data.

The Epsilon Grid Order Join

The epsilon grid order join (EGO) [17] was proposed for the self range join, that is,
the inner and outer datasets of the range join are same. It applies an equidistance grid
with cell lengthe = r over the data space and sorts the data points integhkigon grid

order [17] according to the grid cells where they are located. It divides the sorted data
points into thel/O units and loads them with a sophisticated I/O scheduling strategy
which is made up of two scheduling modes - the gallop mode and crab-step mode. For
two I/O units (each corresponding to an ordered data sequence) in memory, EGO joins
them following the divide and conquer paradigm. The algorithm selects one sequence
and divides it into two subsequences of approximately same length recursively until
the minimum sequence capacig/reached or the pair of sequence does not join (their
distance exceeds. For two subsequences with less thmmimum sequence capacity

data points, EGO computes the distances between each point pair and reports the point
pairs whose distances are smaller thanThe EGO works very efficient for massive

datasets.

2.4 Algorithms for KNN Similarity Join

There are not many works on the KNN join operation. We introduce the incremental

semi-distance join algorithm [59] and the MuX kNN join [18, 20, 19] algorithm in this

42

section.

2.4.1 Incremental Semi-distance Join

The incremental semi-distance join [59] is proposed for the semi-distance join which
is essentially same to the kNN join. It is an R-tree based solution and almost same as
the incremental distance join algorithm for the range similarity join that we described

in Section 2.3.1. The only difference is the termination condition. The incremental
semi-distance join algorithm maintains a counter for each point in dakagetd record

the number of pairs which have been already output and whose first elementtis
terminates when the counters for all points in datdsetaches:. The shortcoming

of this method is the size of the priority queue could be very large if the KNN join is
performed on a large dataset and thelue is big. In addition, because the R-tree is not
scalable to datasets in high-dimensional spaces, the incremental semi-distance join also

works only efficiently in low-dimensional spaces.

2.4.2 Mux kNN Join

The MuX kNN join [18, 20, 19] is the most up-to-date method specifically designed
for the kNN join in high-dimensional spaces. The algorithm works on the MuX in-
dexes pre-constructed on the datagetand.S and iterates over th& hosting pages. In
each iteration, it loads aR hosting page PR (which has not been processed) into the
memory and joins it with the hosting pages®fPS such that\/inDist(PR, PS) <
pruning distanc@’R). The pruning distance aPR is the maximal kNN-distance of
points in PR. It joins the hosting pag® R in memory with the hosting pagesS with

the highesguality first. The quality of a hosting pagesS Q(PS) is computed as the

43

following:

Q(PS) = max {

BRePR

pruning distanc@3 R)
MinDist(PS, BR)

whereBR is a bucket in hosting pageéR. The pruning distance dB R is the maximal
pruning distance of points iBR.

When joining two hosting pag€ R and P.S, it employs a priority queue to sort the
bucket pair§ BR, B.S) according to theiguality Q(BR, B.S) which is computed as the

following:
_pruning distanceB R)
QIBER, BS) = MinDist(BS, BR)

whereBR (BS) is a bucket in hosting pageR (P5S).
Bucket pairs suchth&}(BR, BS) < 1 are pruned. For each joinable péi# R, BS),
for each poin in BR, the algorithm computes its distance to each pgimt BS. If
Dist(p, q) is smaller than the pruning distancezof distance betweep and its current
kth nearest neighbor candidatas inserted as one ¢fs k-nearest neighbor candidate.
Though the MuX index has much better performance than the R-tree in high-dimensional
spaces, its performance is still expected to degenerate with the increase of data dimen-
sionality. In addition, the memory overhead of the MuX index structure is high for
large high-dimensional data due to the space requirement of high-dimensional minimum
bounding boxes. Both constraints restrict the scalability of the MuX kNN-join method

in terms of dimensionality and data size.

2.5 Algorithms for the RKNN Query

Algorithms for the RKNN query can be classified into two categoriesptéeomputation
methods and thepace pruningnethods. Most of them have been proposed initially for

the RNN query (i.e., RKNN query when= 1).

44

2.5.1 Pre-computation RKNN Search Algorithm

The pre-computatiormethods [78, 125] pre-compute and store the nearest neighbor in-
formation of each point in the dataset in advance. The RNN-tree[78] and the Rdnn-tree
[125] provided two index-based solutions for the RNN query.

The RNN-tree[78] is virtually a R-tree storing the MBRs (minimal bounding rectan-
gle) of the hyper-sphereg,(dnn) centered ap and of radiusinn. dnn is the distance
betweerp and its nearest neighbor (NN-distance).

The Rdnn-tree [125] modifies the structure of the R-tree slightly. It augments the leaf
entries of R*-tree withinn and the internal entries withvax_dnn respectively. Théeaf
nodes of the Rdnn-tree contain the data points and their NN-distance. Eacla eftry

the leaf node is of the form

(p, dnn(p)),

wherep is the data point andnn(p) is the NN-distance gp.

In theinternal nodes of the Rdnn-tree, each entng of the form

(ptr, max_dnn, mbr).

ptr points to a child-node (sub-nodéy’; mbr is the minimum bounding rectangle
(MBR) of N’; max_dnn is the maximaldnn of all data points in the subtree rooted
atN'.

max_dnn = Maz*dnn(p;) (2.1)

wherep, ..., p,, are all points withinV’.
With the nearest neighbor information stored RNN-tree or the Rdnn-tree, the RKNN
guery is transformed into th@oint enclosure querf78] which checks if a query point

falls within the circle f, dnn). Pointsp that have; within that circle are reported as the

45

answers to the RNN query. The Rdnn-tree is more efficient than the RNN-tree for both
static and dynamic data sets[125].

The RNN-tree and the Rdnn-tree can also be used to support the RKNN query. We
only need to pre-compute the k-nearest neighbor information of the whole dataset, store
the information in these data structures and apply the same point enclosure search.

The drawback ofpre-computatiormethods is that they cannot answer an RKNN
guery unless the corresponding k-nearest neighbor information is available. Since the
values ofk may vary greatly in many applications, storing the k-nearest neighbor infor-
mation for all possible values @fis expensive and sometimes infeasible, and maintain-
ing such a large amount of k-nearest neighbor information in the presence of frequent

updates is even more costly.

2.5.2 Space Pruning RkNN Search algorithms

Space pruningnethods [112, 116, 114], include SAA [114], SRAA [115], SFT [112]
and TPL [116], utilize the geometry properties of RNN to first retrieve a small number of
data points as candidates and then verify them with NN queries or range queries. These
approaches are useful in dynamic environments since they do not require pre-computed

nearest neighbor information.

SAA Algorithm

SAA [114] makes use of thbounded outpuproperty, e.g. for an RNN query in the
2-dimensional space, a query pointas at most 6 RNNs [113]. Thus, SAA divides the
data space into six equal regions by straight lines that intersect at the query; psint
illustrated in Figure 2.6. SAA retrieves the nearest neighbogsoeach region as RNN
candidates and then verified them with NN queries.

SAA is useful in two-dimensional space and has been adopted to answer the re-

46

p40 \\\ /// p2
\\ // p3
N a
p5 // \\ b pl
° p6 // \\\

Figure 2.6: lllustration of SAA algorithm.

verse nearest neighbor query for moving objects [76]. However, it is costly for high-
dimensional data because the bounding number increases exponentially with respect to
data dimensionality[113]. It is also expensive for the RKNN queries. The number of re-
verse k-nearest neighbors of a point in two-dimensional space is bounded Ht 16].

Therefore, wherk is big, a large number of candidates need to be retrieved and verified.

SRAA Algorithm

[115] investigates the bi-chromatic RNN problem and proposes SRAA. The bi-chromatic
RNN query has two input datasets - thiee dataset where the query points are located
and thepoint dataset where the answers of the RNN query are found. The main idea
of SRAA is to calculate the Voronoi celf, of the query site with respect to othsites

in the site dataset and then retrieve objects withipfrom the point dataset as answers
(see Figure 2.7 for illustration). To speed up the query processing, SRAA employs an
approximate-and-refine procedure which computes the approximate Voronoi cell first
and then refines the RNN candidates which are retrieved according to the approximate
Voronoi cell.

The method is not scalable to largevalues because computation of the k-degree

a7

Figure 2.7: lllustration of SRAA algorithm.

Voronoi cell is expensive. It is not scalable to high-dimensional data either because

computation of Voronoi cell in high-dimensional spaces is very complex.

SFT Algorithm

SFT [112] is based on the assumption that the reverse k-nearest neighbors are close to
the query point and are expected to be among the K-nearest neighbomsltére K is

a value bigger than. It retrievesK nearest points tg as candidates and then verifies

the candidates with boolean range queries. The boolean range query is basically a range
guery that does not retrieve the answer points but only counts the number of points
within the query range and stops whenever therekapeints being found within the

guery range. Since there are multiple candidates and each candidate should be evaluated
by the boolean range query, SFT uses a batch boolean range query which traverses the
R-tree once in order to reduce the I/O cost. However, as we illustrated in Figure 1.1,
the correlation between RKNN and KNN is not strong and a reverse k-nearest neighbor
of query pointg can lie far from the;. Hence,K should be set to be sufficiently big in

order to reducdalse missegpoints that are RKNN but missed from the found answer

set), which makes SFT expensive for RKNN queries of largalues.

48

Figure 2.8: lllustration of half-plane pruning.

TPL Algorithm

The most recent work TPL [116] makes use of tadf-planespruning strategy, that is,

if we divide the data space into two half-planes by the perpendicular bisector bejween
and an arbitrary data poipt any point in the half plane of cannot be a reverse nearest
neighbor ofg. For example, in Figure 2.8, the points lying within the half-plane left to
the line perpendicular to ling;g will not contains any reverse nearest neighborg, so
node R, can be pruned safely. Similarly, the points lying within the half-plane right to
the line perpendicular to lingq will not contains any reverse nearest neighborg afid

the un-shaded area &f can also be pruned away. The shaded area is calledsithial
areaand points lying there are retrieved as candidates and then refined with a refinement
procedure.

TPL traverse the R-tree to retrieve nearest neighbors incrementally (in the same way
as the incremental k-nearest neighbor search algorithm) as RKNN candidates and uses
the candidates to prune tree nodes usingtinealgorithm according to thkealf-planes
pruning strategy. The node is pruned when it is entirely timmed by the half-planes pro-

duced byg and multiple candidates. Therefore the pruning procedure renders expensive

49

computation cost. The candidate retrieval procedure stops when all nodes of R-tree are
either pruned or visited. The retrieved candidates are then verified by an 1/0 optimized
refinement algorithm using range queries.

For the RKNN query, th&-trim algorithm is used to prune R-tree nodes based on
the extendedhalf-planesstrategy. TPL is the most efficient and effectgace pruning
method for RKNN queries in low-dimensional spaces and of small valuestidwever,
its performance degrades rapidly with the increase of data dimensionality.ahbe

major reason is thk-trim algorithm that TPL used to prune a node has the complexity

nC . . .
() -d, wheren, is the number of RKNN candidates.(> k), andd is the number
k

of dimensionality. Moreover, the number of node to be trimmed also increases linearly
with data dimensionality. As a result, the trimming cost becomes prohibitive when

large or data dimensionality is high.

2.6 Summary

In this chapter, we reviewed the indexing techniques and search algorithms being pro-
posed to efficient similarity query processing. The review shows that intensive research
has been conducted on the basic similarity queries and the range join. However, studies
on the kNN join and the RKNN query are not sufficient. More studies are required to

improve their query performances.

Ne
k
complexity ofO(d) [44].

2k-trim calls () timesclipping algorithm in the worst case [116] and thiépping algorithm has

Chapter 3

Gorder: An Efficient Method for kNN
Join Processing

3.1 Introduction

The kNN join is a wildly-recognized important and expensive primitive operation of
high-dimensional databases. The operation combines each point of one dataset with its
k-nearest neighbors in another dataset. With its set-a-time nature, the kNN join can
be used to efficiently support various applications where multidimensional data is in-
volved and in particular, many data mining tasks such as the density-based outlier de-
tection (LOF) [23], the k-means clustering [54] and the hierarchical clustering method
(Chameleon) [72].

Most existing work focuses on the other similarity join - the range joins [17, 105,
87, 70, 81, 21]. However, there is an increasing need to study the kNN join in view of
the observation that the parametaf the range join can not be easily estimated in most
cases. A oversized or undersizetesults in either a much larger or smaller answer set,
hence affecting the meaningful of the result. On the contrary, the kNN similarity join
returns a predefined number of answers and the parametetefinitely much easier to
determine than thein most cases.

To the best of our knowledge, the MuX kNN join algorithm [20, 19] is the only up-

50

51

to-date method specifically designed for the KNN join in high-dimensional space. Since
MuX [21] is essentially an R-tree based method, like the R-tree, its performance is ex-
pected to degenerate with the increase of data dimensionality. Second, the MuX index
should be built in advance before the join operation. Third, the memory overhead of the
MuX index structure is high for large high-dimensional data due to the space require-

ment of high-dimensional minimum bounding boxes. All these constraints restrict the

scalability of the MuX kNN join method in terms of dimensionality and data size.

In this chapter, we present a novel algoriti@order (or the G-ordering kNN join
method). Gorder is a block nested loop join method which achieves its efficiency by
sorting data points based on an ordering that enables effective join pruning, data blocks
scheduling and distance computation filtering and reduction. It first sorts input datasets
into theG-order (an order based on grid), so that the the dataset can be partitioned into
blocks that are amenable for efficient scheduling for join processing. Then, it applies the
scheduled block nested loop jdamfind the k-nearest neighbors for each block of R data
points.

Gorder is efficient due to the following factors:

1. Itinherits the strength of the block nested loop join in being able to reduce random

reads.

2. It prunes away unpromising data blocks from probing to save both 1/O and simi-

larity computation costs by exploiting the property of the G-ordered data.
3. It utilizes atwo-tier partitioning strategyo optimize 1/0 and CPU time separately.

4. It reduces distance computational cost by pruning redundant computation based

the distance of fewer dimensions.

The remainder of the chapter is organized as follows.

52

Section 3.2 investigates the properties of the KNN-join problem.

Section 3.3 presents the algorithm Gorder, including its data scheduling and dis-
tance computation pruning and reduction techniques to optimize the both 1/0 and

CPU time. A cost analysis is also given.

Section 3.4 describes a performance study and presents the experimental results.

Section 3.5 concludes this chapter with a summarization.

3.2 Properties of the KNN Join

The kNN join has the following properties:

e Itis asymmetric, that is,
Rxnny S < S Xevn R.

The reason is that the k-nearest neighbor relationship is asymmetric. If a point
p is one ofg’s k-nearest neighborg, is not necessary to be one @gf k-nearest

neighbors.

e The cardinality of the answer set of a the KNN join is predictable, since a the KNN

join returns k-nearest neighbors for each point of R.
e The distance from each point in R to its nearest neighbors is unknown apriori.

Property 2 makes the kNN join more useful than another similarity join — the range
join in situations where a good rangecannot be determined easily. The range join
returns pairs of points from two datasets with their similarity distance not exceeding a
given value. One of the difficulties to use the range join in real application is that the

distribution of data points are often unknown and pre-defining an appropriate similarity

53

distance threshold between points is rather difficult, if notimpossible. As such the results
of the range join are somehow unpredictable and applications are subject to run on trial-
and-error basis. The kNN join overcomes this difficulty by employing the rank predicate
as the selection condition. The cardinality of the query result of the kNN join is always
N - k, whereN is the cardinality of the query (outer) dataset R. The kNN join has the

following advantages over the range join:

e The kNN join returns a predefined number of answers, that is, the size of its answer

set is controllable.

e The parametet of the KNN join is much easier to determine than the paraneter

of the range join.

Therefore, the kNN join is a more practical operation than the range join in many situa-
tions.

Property 3 inherits the difficulty of the k-nearest neighbor query and makes the kNN
join more complex than the range join. Given the k-nearest neighbor query, in order
to filter unnecessary distance computation and page (node) access, the search algorithms
based on an index such as the R-tree [49] (the RKV [60, 108] and the HS [108]) schedule
the loading of data page by computing MinDist and choosing to traverse the node with
the minimum MinDist first. MinDist is also compared with the pruning distance (the
distance between the query point andkitls nearest neighbor candidate) to prune away
nodes with MinDist greater than the pruning distance. The page scheduling and pruning
strategies are very important for the KNN query processing and affect the query efficiency
significantly. In the same way, they affect the efficiency of the kNN join processing
substantially. It is important to consider the data schedule and the pruning strategy when
we design the kNN join algorithm.

There are two starting points as the devising of the kNN join algorithm based on

exiting KNN query methods.

54

¢ indexed-based multiple kNN query (index nested loop join)
e block sequential search (block nested loop join).

Both have its strength and weakness. The index-based multiple KNN query is op-
timized for the CPU cost, however, introduces tremendous I/O time because of large
number of random accesses[20]. In addition, it is widely recognized that most high-
dimensional indexes do not scale up well, and in fact, many perform worse than sequen-
tial scan when the dimensionality is high. kNN join further escalates the complexity and
search cost of a high-dimensional index.

On the contrary, the block sequential search is optimized for 1/O time. However,
without any distance computation pruning, the CPU cost is enormous since the number
of distance computation ig| - |.S|.

Gorder therefore is developed based on the block nested loop join with the sorting,
data scheduling, and distance computation filtering and reduction technologies to achieve
good the KNN join performance. For ease of discussion, in the following, the data space

in our discussion is a unit hypercufie.1].

3.3 Gorder

Gorder kNN join is a simple yet efficient KNN join algorithm based on an ordering
according to grid — th&-ordering It is a block nested loop method which achieves its
efficiency by exploiting sorting, data scheduling and distance computation reduction. As
shown in Algorithm 1, it consists two phases. In the first phase (line 1), it sorts the input
datasets? and S based on th&-ordering In the second phase (line 2), it performs the
scheduled block nested loop jain the G-ordered data and outputs the join results. The

algorithm is described in detail in this section.

55

Algorithm 1 GorderkNN(R, S)
Input:
R andS are two data sets.
Description:
1: G_OrderingR andSs;
2: Join Grid_OrderedData(R, S);

3.3.1 G-ordering

In relational databases, sorting is used not only to arrange the tuples according to an or-
der, but to group tuples with the same value on the joining attribute together to facilitate
processing based on partitions. Similarly in Gorder, an ordering based on grid called
the G-orderingis designed to group nearby data points together, so that iacied-
uled block nested loop joiphase the G-ordered data can be partitioned into blocks and
scheduled for join.

As illustrated in Figure 3.1, the G-ordering has two steps — the PCA (principal com-

ponent analysis) transformation and taed Order sorting.

PCA Transformation

The first step of G-ordering performs the principal component analysis [69] on the input
datasets R and S together and transforms the original data into the principal component
space.

The principal component analysis (PCA) is a mathematical procedure that transforms
a number of (possibly) correlated variables into a (smaller) number of uncorrelated vari-
ables called principal components. The principal components are defined as a set of
variables (features) that define a projection that encapsulates the maximum amount of
variation in a dataset and are orthogonal (and therefore uncorrelated) to the previous
principal component of the same dataset. The first principal component accounts for as

much of the variability in the data as possible, and each succeeding component accounts

dimension 2
123456 7

principal .
component 2 @4 o0
&a*‘

b % principal
.3‘. component 1

1 2 3 4 5 6 7 Segment

dimension 1 ID

(c) Grid Order

Figure 3.1: lllustration of G-ordering.

56

57

for as much of the remaining variability as possible. PCA captures the variance in the
dataset and determines the directions along which the data exhibit high variance. After
PCA processing, most of the information in the original space is condensed into the first
few dimensions along which the variances in the data distribution are the largest.

The PCA transformation takes two steps. Let the dataset be regardedy as &
matrix wherelV is the cardinality of the dataset ards the dimensionality of data. In the
first step, the mean and covariance matrix of the dataset are first calculated todyetithe
eigenmatrix[30]. Each row of the eigenmatrix is an eigenvector and each eigenvector
has its corresponding eigenvalue. The eigenmatrix is sorted according to the eigenvalues
of the eigenvectors. The first principal component is the eigenvector with the largest
eigenvalue and the second principal component corresponds to the eigenvector with the
second largest eigenvalue and so on. In the second step, data points are transformed into
a new space by multiplying the feature vector of each point with the eigenmatrix.

Figure 3.1 (a) - (b) illustrates the transformation of the data from the original data

space to the principal component data space.

Grid Order

The secondary step of G-ordering sorts R and S into@hd Order. The Grid Order
applies a grid onto the data space and partitions it iht@ctangular cells, wherkis
the number of segments per dimension of the grid. Figure 3.1 (c) is an illustration of a
two-dimensional space partitioned by a 7x7 grid. Cell length of the grid can be equal or
variable. In the following discussions, the cells are assumed to be of same %efugth
the simplicity of presentation, while the methods can be easily generalized to the grid
with variable cell length.

Theidentification vectoof cell is defined as @&dimensional vectar = < sy, ..., sq >,

wheres; is the segment number to which the cell belongs onithe&imension. Based

58

on the identification vector of the cell, the cells can be ordered lexicographically as il-
lustrated in Figure 3.1.

TheGrid Order is defined as below.

Definition 3.3.1 (Grid order <,) Given a grid which partitions thé-dimensional data
space intd“ rectangular cells, pointg,, <, p, if and onlyv,, < v, wherev,, (v,,) is
the cell surrounding poing,,,.

vm < Uy if and only if a dimensiort exists thaty,,.s; < v,.s; andv,,.s; = v,.s;,

forVvj < k.

Essentially, the grid order is to sort the data points according to the cell surrounding the
point, so after the second phase of G-ordering, points within the same cell are grouped

together.

Properties of the G-ordered Data

The G-ordered data exhibit two interesting properties:

1. Suppose there are two pointsandq in the dataset in the originakdimensional
space. Lepy(qr) denote the projection of the poipt(¢) on the firstt dimensions
after G-ordering. Because the first few dimensions are most impodtantyy., g)

can be very near to the actual distance betweandq [27].

2. Given a block of G-ordered data B containingpointsp,,...p.,, abounding box
which covers all points in that block can be calculated by examining the first point

p1 and last poinp,,, of the ordered data.

Before thebounding boxs computed, thective dimensiorjl7] of the G-ordered

data is first calculated.

59

R S

<3 2 1 o> <1 0 3 o>

2 <3 2 1 1> |[<1 0 3 o>

§ <3 2 2 0> <1 0 3 1>

S <3 2 2 o> <1 0 3 2>

§ < 3 2 2 2> <1 0 3 3>
Zg < 3 2 2 3>
o) <3 2 3 0>
° <3 2 3 1>
<3 2 3 2>
<3 2 3 3>

~

active dimension

Figure 3.2: lllustration of the active dimension of the G-order data

Definition 3.3.2 (Active Dimension of the G-order Data)Let v, (v,,) be the identifi-
cation vector of the cell surrounding (p,.), dimensiony is theactive dimensiorof the

G-ordered data B, if

(1) v1.5a < Vm-Sa
(2) 1185 =vp.s; Vji<a.
Literally, « is the first dimension that,.s; < v,,.s; (1 < j < d). Figure 3.2 illustrates
an example of the active dimension for two G-ordered datasets R and S. The active
dimension is 3 and 4 for dataset R and S respectively.
The bounding box of3 is represented by the low-left point E< ey, ...,e;, > and

high-right point T =< ¢4, ..., t4 >.

. (Vl.sk—1)~% if 1<k<a
k:

0 if k>«

60

I/m.Sk'% if 1<k<a
it =

1 if k>«

The properties of the G-ordered data are used effectively in Gorder for join schedul-
ing and distance computation reduction. Property 1 implicates that the partial distance of
the first k dimensions between two points can approximate the real distance effectively
and Property 2 will be used to measure the similarity of two blocks of G-ordered data

and schedule the data for joining.

3.3.2 Scheduled Block Nested Loop Join

In the second phase of Gorder, G-ordered data of R and S are examined for joining. The
join stage of Gorder is characterized by two properties. First, Gorder employwdhe
tier partitioning strategyto optimize the 1/0 time and CPU time separately. Secondarily,

it schedules the data for joining in order to optimize the kNN processing.

Two-tier partitioning

The first-tier partitioning is optimized for I/O time. Gorder partitions the G-ordered
input datasets into blocks consisting of several physical pages. Suppose we allocate
andn, buffer pages for the data éf and.S respectively, we partitio® and.S into blocks

of the allocated buffer sizes. The blocks®fare loaded into memory sequentially and
iteratively one block at a time and ttteblocks are loaded into memory in the sequence
scheduled based on their similarity to the block of R data in buffer. The similarity of two
blocks of G-ordered data of R and S is measured by the distance betwedyothaiing
boxes This loading of multiple pages at a time is efficient in terms of I/O time as it
significantly reduces seek overhead.

In addition, in order to optimize the kNN processing, it schedulesthi®cks so that

61

the S blocks that are most likely to yiekdnearest neighbors can be loaded into memory
and joined withk data in buffer early.

The large block size reduces disk seek time, however, as a side effect, it may intro-
duce additional CPU cost due to redundant pair-wise checking of tuples for the kNN join.
To overcome such a problem, here the second-tier partitioning in memory is introduced.
Thesecond-tier partitioningsegments the R and S data in memory into blocks of much
smaller size (the sub-blocks). The optimized size of the sub-blogk is— 5 - k£ data
points according to our experiment results. Again, similarity of two blocks data of R and
S is used to schedule the join sequence and filter distance computation between blocks

of data.

Similarity of G-ordered Data

The similarity of two blocks of G-ordered data is measured by the minimum distance
(MinDist) between theibounding boxesAs presented in Section 3.3.1, theunding
boxof a block of G-ordered data can be computed by examining the first and last points

of the G-ordered data.

Definition 3.3.3 (MinDist of G-ordered Data) The minimum distance of two blocks
of G-ordered dataB, and B,, denoted as MinDist§,, B,) is defined as the minimum

distance between their bounding boxes.

U

MinDist(B,,B,) = > _d;
k=1

dk = maa:(bk — Uk, O) (31)
by = max(B,.ex, Bs.ex); ux = min(B,.ty, By, ty)

For blocks with same MinDist, they are sorted by the MaxDist.

62

bounding box

N
m
.
3o =5
[o o
o y /4
D
S \ MinDy&t _
e MaxDist
S
- 3
o > 2
1
0 1 2 3 0 dimensioin 3
dimension 1

Figure 3.3: lllustration of MinDist and MaxDist.

Definition 3.3.4 (MaxDist of G-ordered Data) The maximum distance of two blocks
of G-ordered dataB, and B,, denoted as MaxDisK,, B,) is defined as the maximum

distance between their bounding boxes.

d
MazxDist(B,, Bs) = Z(uk — bi)?

k=1

by = min(B,.ex, Bs.e); u, = max(B,.ty, By, ty)

Pruning Strategy

A direct observation is that MinDist is a lower bound to the distance of any two points

from blocks of R and S respectively. The following corollary follows this observation

directly.

Corollary 3.3.1 For pointp, in block B, and pointp, in block B, MinDist(B,, Bs) is

63

Algorithm 2 Join Grid_OrderedData(®, S)
Input:
R andS are two G-ordered data sets that have been partitioned into blocks.

Description:

1: for eachblock B, € R do

2. ReadBlock@,);

3: SortBlocksf, B,);

4. for each B, € NotPrunedf, B,) do
5: ReadBlockB,);
6
7

MemoryJoin(,, B,);
OutputkNN(B,);

a lower bound to the distance betweerandp,, that is,

Vp. € By, ps € By, MinDist(B,, Bs) < dist(p,, ps)

Based on Corollary 3.3.1, we have the following pruning strategies:

1. If MinDist(B,, Bs) > pruning distance ofp, B, does not contain any points
belonging to the k-nearest neighbors of the pgineind therefore the distance
computation betweep and points inB, can be filtered. Pruning distance of a
pointp is the distance betweenand itsk-th nearest neighbor candidate. Initially,

itis oo.

2. If MinDist(B,, Bs) > pruning distance of3,, B, does not contain any points
belonging to the k-nearest neighbors of any point&inand hence the join aB,
and B, can be pruned away. The pruning distance of an R block is the maximum

pruning distance of the R points inside.

Join Algorithm

Algorithm 2 outlines the scheduled block nested loop join algorithm of Gorder. It loads

blocks of R into memory sequentially (lines 1-2). For tiigblock in memoryB,, S

64

Algorithm 3 MemoryJoin@,, B,)
Input:
B, and B, are two blocks fromR and S respectively.

Description:

1: Divide B,, B, into sub-blocks;

2: for each sub-bloclB,. € B, do

3. SortBlocksBs, B));

4: for each sub-blocB! € NotPruned@;, B,) do

5 for each poinp, € B/ do

6: if MinDist(B,., B;) < PrunDistp,) then

7.

8

for each poinp, € B. do
ComputeDistgs, p,,da);

blocks are sorted in the increasing order of their distancB,tfline 3). Note that this
sorting does not require any disk accesses because there are only a small number of
blocks and the bounding box for each block of S can be kept in in memory. At the same
time, blocks withMinDist(B,, Bs) greater than the pruning distance®f are pruned
(pruning strategy 2). That is, only the remaining blocks are loaded into memory one by
one (lines 4-5). With each pair a® and S block, we join them in memory by calling
function MemoryJoin (line 6). After all unpruned blocks are processed with,, the

kNN candidate sets for points i, are output as the join results (line 7).

The memory join algorithm is shown in Algorithm 3. Boftiblock andS-block are
divided into sub-blocks (line 1). For ea¢hsub-blockB!, the S sub-blocks are arranged
according to their distance 18.. Pruning strategy 2 is again used to pruning th®seb-
blocks with MinDist(B.., B.) greater than the pruning distancef)f. Those unpruned
sub-blocks participate the join witR sub-blocks one by one (lines 4-5). To jaihand
S sub-blockB,; and B!, each data poing, in B] is compared withB.. For each poinp,
in B.., we examine whether MinDisH_,, B.) is greater than the pruning distanceppf If
true, by pruning strategy 1. cannot contain any points that are k-nearest neighbors of
p, and so theB. can be skipped (lines 6-7). Otherwise, funct@omputeDist is called

for p, and each data poipt in B, (line 8). FunctionComputeDist, as described in the

65

following subsection, inserts thoge with dist(p,, ps) sSmaller than the pruning distance
of p, into the kNN candidate set @f. d.? is the distance between the bounding boxes
of B, and B, on thea-th dimension’, wherea = min(B..«, B..) and B..a. and B..«

are active dimension aB/, B’ respectively.

3.3.3 Distance Computation

Distance computation reduction is important for optimization of CPU time because of
the complexity of the distance metric and the high-dimensional data.
The bounding boxes of the G-ordered data has some special properties which can be

utilized for distance computation reduction.

Property 3.3.1 The edge of the bounding box of a block G-ordered datxtends the
full domain from 0 to 1 on dimensigin(; > B.a), whereB.« is the active dimension of

B.

This property is directly observable from the computatiomofinding box There-
fore, when we compute the similarity of two blocks of G-ordered data, we only need to
take the firsiv dimensions into account, whenemin(B;.«, Bs.a) and B;.« (Bs.«) is
the active dimensio®; (B,). As a result, the computation of MinDist and MaxDist are

reduced to:

Mszst(Bl, Bg) = MinDist(Bl,oé, 8270[)
MaxDist(By, By) = MaxDist(By o, Baa) +d —

B o (B2,) is the projection ofB; (B2) on the firsto dimensions.

The next important property of tHeounding boxs as follows:

1Refer to Equation 3.1 in Definition 3.3.3.

66

Property 3.3.2 The projection of the bounding box of a block of G-ordered data B con-
tainingm pointsps,...p,, on the firstB.a — 1 dimensions is corresponding to a grid cell

in the firstB.a — 1 dimensions.

The reason is, according to the definition®fd Order, p; <,...<; pm & 11 <.o.< Vpy,y
wherev,, is the cell surrounding point,. Based on the definition @lctive dimension
1.5 = Up.S; (Vj < B.a), sowe have,.s; = ... = v,.s; (Vj < B.a).

This property indicates that the projection of all points in a block of G-ordered data
B on the firstB.a — 1 dimensions are within one grid cell in the filBta. — 1 dimensions.
Hence, for any pointg andq from B; and B, respectivelyMinDist(By o—1, B2.a—1)
can be used to approximate the distance between the projectijparafq on the first
a — 1 dimensions when the grid is of fine granularity. The approximated distance is the
low bound of the real distance. That is,

MinDist(By.q-1, Bao—1) = dist(pa—1,qa—1)- Pa—1 (qa—1) 1S the projection op
(¢) on the firsto — 1 dimensions.

Based on the above two properties, we now are able to define the pruning strategy

based on the approximate distance as formalized by the following corollary.

Corollary 3.3.2 For any pointp and ¢ from the G-ordered block®, and B, respec-
tively, if MinDist(B,q-1, Bs,a-1) + dist(prary, ¢iary) (@ < k < d) is greater than

the pruning distance g, ¢ cannot be a k-nearest neighbor candidateppfvhere«
=min(B,.a, B,.a)) andpy; ;1 (¢4:,5;) is the projection op (¢) on the dimensions fromto

7.

Algorithm 4 outlines the algorithm in reducing distance computation. It calculates

MinDist(B, -1, Bs,a—1) from MinDist(B,, B;) first (line 1). Then, it accumulates
the distance betweemandq from dimensiona, wherea=min(B,.«a, Bs.a) (lines 2-

5). Whenevempdist is greater than the pruning distancepfq cannot be one of the

67

Algorithm 4 ComputeDist (p, q, d2,)
Input:
p, q are two data points frons, and B, respectivelyd?, is the distance between the
bounding boxes of3, and B, on thea-th dimensior?
Description:
1: pdist := MinDist(B,, B,) — da*;
2: for k:=atod do

2.

3. pdist :=pdist+(p.zx — q.xx)%;

4: if pdist > pruning distance of then

5: Pruneg;

6: pdist := pdist — (MinDist(B,, B,) — do?);
7: for k:=1toa-1 do

8: pdist :=pdist+(p.z;, — q.71)%;

9: if pdist > pruning distance gf then

10: Pruneg;
11: Insertq into the kNN candidate set of

k-nearest neighbors gfand can be pruned away (lines 4-5).ql€annot be pruned by
the approximation distance, we remove the approximation factor (line 6) and calculate
their real distance (lines 7-10). dfst(p, q) is smaller than the pruning distanceofq
is inserted into the KNN candidate setyof

According to the algorithm of Gorder, Gorder produces the kNN join results cor-
rectly. Firstly, the MinDist of two blocks of G-ordered data is the low bound to the
distance of any two points from these two blocks respectively (Corollary 3.3.1). Sec-
ondly, Gorder only skips the S blocks (sub-blocks) whose MinDist from the R block
(sub-blocks) is greater than the pruning distance of R block (sub-blocks). Finally, the
reduced distance computation only prunes away S data points that are not one of the k-
nearest neighbors of a R point (Corollary 3.3.2). Hence, for all blocks of R data, Gorder

finds the correct k-nearest neighbors.

68

3.3.4 Analysis of Gorder

The 1/0 and CPU cost of Gorder is analyzed in the following. Suppose the number of
R (S) data pages &, (IV,). In the G-ordering phase, the PCA transformation needs to
perform the sequential scan of R and S twice. The cagtis + N,). Suppose that there

are B buffer pages available in memory, the sorting step of the G-ordering requires

N, N
2Nr (’VZOQB_lg-‘ + 1) + 2N5 (’71093_15—‘ + 1)

page accesses using the external merge sort algorithm [107].
In the scheduled block nested loop jgimase, suppose we allocatg buffer pages

to R data and, buffer pages to S data. The 1/O cost is

N,
Nr—i__'Ns"Yl
n

T

where~; is the selectivity of the S blocks. Consequently, the total I/O cost in terms of

the number of page accesses is:

Q(NT+N5)++NT+]X_:N571

+2N, ([logB_1%1 + 1) + 2N, (HogB_l%w + 1)
The major CPU cost of Gorder is the distance computation irstheduled block
nested loop joirphase. The number of distance computation is:

PT'PS.,YQ

where P, (P;) is the number of points of R (S), is the selectivity of distance com-
putation. The PCA processing of G-ordering perforfis + P,) - d> multiply [45].

However, the multiply and comparison operations incurred in the G-ordering phase are

69

comparatively much less significant.
We estimate the selectivity ratig and, using the Minkowski Sum model proposed

in [15] and [21] which has been shown to be effective in high-dimensional data.

vi(> (I)) Visk 62

{11 2162{0 -d— 1}}

€ (3.3)

(3.4)

whereI'(z + 1) = 2T'(z), T(1) =1, T(1/2) =+/7.
Following the analysis in [15], we simplify Equation 3.2 by approximating the

bounding boxewith the hypercube. Therefore,

v = < \ / \ / -) V::}l)hére (3 ' 5)
l

whereM,. (M,)is the number of points in the block of R (S) data. When we replace

M, and M, with the number of points in the block of data R and S §,), we gety;.

af Pr. ./ Ps
Nn= () ‘/jsczl)htl?re (3 ' 6)

where,

n, - page size a n, - page size
size of data vector ® " size of data vector

br =

70

Parameter Default Setting

page size 8192Byte

number of nearest neighbots) (10

buffer size 8% of total size of Rand S
maximum buffer size for R 20% of buffer size

number of points in sub-block 30

number of segments per dimension| 100

Table 3.1: Default parameter values.

n, andng are the number of buffer pages allocateditdata andS data.
When we replacé/, and M, with the number of points in the sub-block of data R
(p))and S §.), we getys,.

w3 | (5 ps) VL @)

3.4 Performance Evaluation

We conducted extensive experimental study to evaluate the performance of Gorder and
present the results in this section. In the study, we used both synthetic cluster datasets
and real life datasets. The synthetic cluster datasets were generated using the method
described in [68]. The real life datasets are the Corel dataset from UCI KDD data repos-
itory [3] which contains 32 dimensional feature vectors of around 60K images.

We compared Gorder with MuX and simple block nested loop join (NLJ). The MuX
join [21, 20] is the current state-of-art method for the kNN join processing, which has
been shown to be optimized for both CPU and 1/O time and that it outperforms the join
algorithm based on the R-tree (RSJ) significantly.

The experiments were conducted on a Pentium 4 2.6GHz PC running WinXP. The

buffer allocated for all methods is around 8% of the datasets of R and S. Extra memory

71

was allocated to MuX for storing the internal nodes. The number of nearest neighbor (
is 10 by default. The default settings of Gorder are summarized in Table 4.2.
Performance is presented in terms of the elapsed time (which includes 1/O and CPU
time), the 1/0 time and the distance computation selectivity. The elapsed time and I/O
time of Gorder includes the time for both G-ordering and joining phases. Time of MuX
does not include the index building time. Distance computation selectivity is calculated

by the following equation:

number of point distance computations

|| - [5]

3.4.1 Study of Parameters of Gorder

In this set of experiments, we study the performance of Gorder using the real life KDD
dataset.

The first set of experiments evaluates the effect of various parameters on the per-
formance of Gorder. With the expectation that the real life dataset is usually skewed,
we implemented the GorderH for comparison purposes. GorderH applies a grid with
variable cell length onto the data space during the G-ordering phase. We compute an
equi-width histogram for each dimension in the PCA transformation stage and partition
each dimension into segments with equal number of points inside. We performed the
self the KNN join on the datasets. The measured time for GorderH includes the time for

histogram processing.

Effect of grid granularity We first evaluate the effect of the granularity of the grid
by varying the number of segments per dimension of the grid from 8 to 256. Figure 3.4
presents the results of on the Corel dataset. From the results, we observe that when

we increase the number of segments from 8 to 32, the performance of Gorder improves

72

250 ‘
—e— Gorder
1 ¢ - GorderH
200
o
3]
@
o 150
=
|_
e}
$ 100
[oX
©
w
50 1
o L L L L L
50 100 150 200 250
Number of Segments Per Dimension
(a) Elapsed Time
2 ‘
—e— Gorder
¢ - GorderH
15¢ 1
)
(]
2
()
£ 1
|_
Q
0.5¢ i
i i
WIQ—E;\@/@‘\E
O L L L L L
50 100 150 200 250
Number of Segments Per Dimension
(b) I/O Time
—e— Gorder
¢ - GorderH
1t i
0.8} 1

Selectivity
o
_o

o
~

o
)

50 100 150 200 250
Number of Segments Per Dimension

(c) Distance Computation Selectivity

Figure 3.4: Effect of grid granularity (Corel dataset)

73

noticeably with a speed-up factor of 0.88. The speed-up factor of GorderH is 0.12.
The reason is that with finer granularity grid, theunding boxbounds the data points
more tightly. Hence, the MinDist low bound becomes more accurate and more effec-
tive in pruning. An interesting observation is that when we further increase the number
of segments per dimension, Gorder (which uses the equi-length grid) becomes as effi-
cient as and even better than the GorderH (which uses the variable length grid based on
histogram). This indicates the fine-granularity grid makes Gorder adaptive to the data
distribution and eliminates the need to maintain the histogram.

Comparing the I/O time with the total elapsed time, we notice that the I/O time is
much less significant than the CPU time (less than 1% of the total response time), which
confirms the benefit of using the block accessing and that the kNN join is CPU critical

due to the large number and the complexity of the distance computations.

Effect of sub-block size

Figure 3.5 summarizes the effect of the size of the sub-block on the kNN join pro-
cessing. In this experiment, the size of the sub-block is varied from 15 to 960 and we
conducted the experiment on the Corel dataset. As can be observed, the selectivity of
distance computation degrades when the number of points in the sub-block grows. The
volume of the sub-block increases when there are more points in it, and consequently, its
pruning ability become ineffective. This is consistent with the cost analysis. However,
on the other hand, smaller sub-blocks do not necessarily lead to better elapsed time. We
observed that when the size of the sub-block increases from 15 to 30, the performance of
Gorder in terms of the elapsed time improves around 10% despite the slight degeneration
of the distance computation selectivity. The reason is that the decrease of sub-block size
increases the number of sub-blocks and therefore, introduces more MinDist computa-
tions. So there is a trade-off between the MinDist computation and the point distance

computation. The results indicate that the best setting of the size of sub-block is around

250 ‘
—a— Gorder
¢ GorderH
200+ 1
o
& 3
o 150f 1
S
|_
ke]
@ 100t 1
Q.
«©
w
501 1
o L L L L
0 200 400 600 800 1000
Number of Points in Sub-block
(a) Elapsed Time
2 ‘
—a— Gorder
¢ - GorderH
1.5¢ 1
)
[
2
(0]
£ 1 1
|_
Q
0.5¢ i
M
o
O L L L L
0 200 400 600 800 1000
Number of Points in Sub-block
(b) I/O Time
—a— Gorder
¢ GorderH
1 L 4
0.8t 1
2>
=
g 0.6F 1
[
n
0'4@%@/@/@?/#8 f
0.2 1

Figure 3.5: Effect of sub-block size (Corel dataset)

o L L L L
0 200 400 600 800 1000
Number of Points in Sub-block

(c) Distance Computation Selectivity

74

75

30, thatis3 - k.

Effect of buffer size for R data Next we study the effect of buffer size allocated to

R data and present our study in Figure 3.6. We fixed the buffer size at around 10% of
input data set and decreased the number of buffer pages for R from around 85% of buffer
to around 16% of buffer. Figure 3.6 shows that as we reduce the buffer size for R, the
I/0O time increases quickly with the drop of the number of R buffer pages because the
reduction in R buffer size causes the loading time of the S blocks to increase. However,
the overall performance of Gorder with regard to the elapsed time has not been influenced
a lot. The reason is when R buffer size shrinks, more S data can be loaded in buffer and
hence, the R data in memory are more likely to join with the S data that yield real k-
nearest neighbors first. Therefore the selectivity is improved and the increase of the 1/0

time is absorbed by the decrease of CPU time.

3.4.2 Effectofk

We now study the effect of and compare the performance of Gorder with MuX and
NLJ. Figure 3.7 presents the results on the Corel dataset when we varied the number of
nearest neighborsform 5 to 50.

From the results, we observe that with the increase of number of nearest neighbors,
the elapsed time of Gorder increases moderately. Comparatively, MuX is more affected
by the increase of and even becomes worse than NLJ. The gap of the elapsed time
between MuX and Gorder widens while the valuekahcreases. On average, Gorder
outperforms MuX with the speed-up factor of around 2 with regard to the elapsed time.
In terms of distance computation selectivity, selectivity of Gorder keeps lower than the
selectivity of MuX. Note that the speed-up of the elapsed time is more significant than the
improvement of selectivity. This is due to the distance computation reduction technique

Gorder employs. Gorder uses a subset of dimensions for block similarity computation

76

250 ;
—e— Gorder
¢ - GorderH
200¢ 1
o
3]
2
GE) 150 1
[o 5 %\E\g
he] I &
8 1001 1
[oX
]
w
50t 1
o L L L L
80 60 40 20
Buffer size for R Data (%)
(a) Elapsed Time
2 :
—e— Gorder
¢ GorderH
15¢ 1

I/0 Time (Sec)
(=Y

o
[
‘

‘

L

80 60 40 20

Buffer size for R Data (%)
(b) I/O Time
—e— Gorder
¢ - GorderH
1 L 4
0.8f 1
b
S
3 0.6r 1
(5]
n
0.4r 1
B g g9
0.2} v o]
o L L L L
80 60 40 20

Buffer size for R Data (%)

(c) Distance Computation Selectivity

Figure 3.6: Effect of buffer size for R data (Corel dataset)

50

50

1000 ‘
—a— MuX
¢ Gorder
8001 - o -NLJ]
o
(0]
@
600
[0}
£ T
|_
e]
2 400
Q.
«
w
200t ¢
o o
o 9
O L L L L
10 20 30 40
k
(a) Elapsed Time
1 :
—&— MuX
- Gorder
0.8} -o-NLJ |
)
$ 06t 1
(0]
£
|_
o 0.4
0.2
O L L L L
10 20 30 40
k
(b) I/O Time
1.2+ —&=— MuX |]
¢ Gorder
-© -NLJ
1¢- - -6 —— - — - [G- - - q
> 0.8} 1
=
g
2 0.6f i
n
1
0_4[;/{3’/45/9/2/_%
¢ © ’
0.2 1
o L L L L
10 20 30 40
k

(c) Distance Computation Selectivity

50

Figure 3.7: Effect ok (Corel dataset)

e

78

and the block similarity is also used to reduce point distance computation; hence the
speed-up in terms of elapsed time is even better than the reduction of selectivity. Fig-
ure 3.7(b) presents the I/O time incurred by different methods. Memory allocation of
NLJ is the same as Gorder. That is, around 20% for R data and 80% for S data. Gorder
outperforms MuX due to its one time accessing one block of data so that the expensive
disk seeking time is saved. The I/O cost of Gorder is similar to the 1/0 cost of NLJ
because Gorder filters out S blocks that will not yield kKNNs with the pruning strategy
but it also has more disk seek time because the S blocks are not loaded into memory
sequentially.

The reason that the cost of MuX increases significantly mainly because of the signif-

icant increase of the distance computation between the internal nodes and buckets.

3.4.3 Effect of Buffer Size

In dealing with large datasets, the kNN join algorithm must be efficient in utilizing the
limited buffer space. In this experiment, we study the behavior of the join methods with
respect to buffer sizes.

The study is performed on the Corel dataset and we reduced the buffer size from
around 600 pages (30% of the dataset size) to around 200 pages (10% of the dataset
size). The buffer size for R was kept at 50 pages. In Figure 3.8, we compare the perfor-
mance of Gorder and MuX. The result shows that buffer size does not affect the overall
performance the kNN join much because the major cost of the kNN join is the CPU cost.
The speed-up factor of Gorder over MuX and NLJ keeps steadfastly at around 1.8 and 4
respectively.

We also observe that the reduction in buffer space does not lead to the degeneration of
the I/0 performance of Gorder. The reason is that the reduction in buffer size reduces the

volume of the bounding box and consequently, improves the effectiveness of the filtering

79

800 ‘
—=— MuX
7001 ¢ - Gorder |
- © -NLJ
—~ 6001 i
[8)
v - - G- — — — — — — — — — — — o -—-—-—--4
£ 500t]
[0}
S
= 400} 1
ie]
@
a 30Fs———8fF——— 4
<
Y 200}]
100¢ o o)
0 ‘ ‘ ‘
600 500 400 300 200
Number of Buffer Pages
(a) Elapsed Time
1 T
—&— MuX
¢ Gorder
0.8¢ -e-NLJ |
)
& 0.67]
Q
E |
o 04 y
= = |
-]
0.2} gt o
0 ‘ ‘ ‘
600 500 400 300 200
Number of Buffer Pages
(b) I/O Time
—&— MuX
77777777777777777 ¢ Gorder
1 “ - © -NLJ
0.8r i
>
=
8 06f |
[
n
0.45 5 - !
0.2¢ o o ’
0 ‘ ‘ ‘
600 500 400 300 200

Number of Buffer Pages

(c) Distance Computation Selectivity

Figure 3.8: Effect of buffer size (Corel dataset)

80

of S blocks. Therefore, more S blocks are filtered from being loaded into memory.

Hence, the 1/0 time of Gorder reduces instead.

3.4.4 Evaluation Using Synthetic Datasets

We study the scalability of Gorder on the synthetic datasets of various sizes and dimen-
sions. Since real life data set are often clustered and correlated, we utilized method

in [68] to generate clustered datasets containing 10 clusters.

Effect of Dimensionality

In this experiment, we evaluate the effect of data dimensionality on the join performance
by varying the number of dimensions from 8 to 64. Figure 4.12 presents the results on
the 100K clustered datasets. We observe that the efficiency of MuX is more affected by
the increasing dimensionality. The reason is that MuX, like the R-tree, its performance
degenerates with the increase of data dimensionality. The performance gain of Gorder
over MuX widens as the dimensionality grows. Figure 4.12(c) shows that the distance
computation selectivity of both MuX and Gorder degenerates with the increase of the
number of dimensions. However, Gorder employs the distance computation reduction
technique to alleviate the increase of distance computation cost for high dimensional
data. Therefore, the deterioration of the elapsed time of Gorder with the increasing
dimensionality is moderate. So Gorder is more scalable to high-dimensional data than

MuX.

Effect of Size of Dataset

In the second experiment, we study the performance behavior with varying size of
datasets. We performed the self KNN join of the clustered data in the 16-dimensional

space and varied the dataset size from 10,000 to 500,000 objects. The results are sum-

81

1500 — : ‘
e —&—MuX
e ¢ Gorder
» - -NLJ
—_ /
8 ’
a 1000} - 1
(0]
£
|_
o
(]
[%2]
& 500} ¥
w
g O
O L <> L L L L L
10 20 30 40 50 60

Number of Dimensions

(a) Elapsed Time

5 ‘ ‘
—&— MuX
- Gorder
4r -6 -NLJ f
)
B 3f 1
Q
=
|_
o2 ’
(S e L ! !

10 20 30 40 50 60
Number of Dimensions

(b) I/O Time
—8— MuX
e e e e e] ¢ Gorder
i ° ° -©-NLJ
0.8f]
2
=
g 0.6f |
(]
n
0.4r |
0.2r]
[}‘5/43/’{]
[M L L)) ‘
10 20 30 40 50 60

Number of Dimensions

(c) Distance Computation Selectivity

Figure 3.9: Effect of dimensionality (100k clustered dataset)

10000 ‘
) —&— MuX
/ ¢ - Gorder
8000}) e -NLJ I
@ /
o 6000t K |
= /
3 /
@ 4000t , |
Q. / |
© /
L /
/
2000+ /
D/
08 Q © ‘
100 200 300 400 500
Number of Points(K)
(a) Elapsed Time
5 T
—&— MuX
¢ Gorder
ar -e-NLJ ||
o
Q B s]
g g e
|_
o?
1 L
o X
100 200 300 400 500
Number of Points(K)
(b) I/O Time
—&— MuX
o - e ¢ Gorder
1¢- ~ — -0 o o o NLJ
0.8 i
>
=
8 06f |
[
n
0.4} |
0.2f i
e L S
0 °oe ¢ © 9
100 200 300 400 500

Number of Points(K)

(c) Distance Computation Selectivity

Figure 3.10: Effect of data size (16-dimensional clustered datasets)

82

Elapsed Time (Sec)

Figure 3.11: Effect of relative size of datasets (16-dimensional clustered datasets).

10000 ‘
—=— MuX
¢ Gorder
8000+ 6 -NLJ
6000+ 7
/® -
4000f P
- @ g .
2000+ 7
- 6/
o~ |
- 5 | o
100 200 300 400 500
Size of S Dataset (K)
(a) Elapsed Time
5 T
—&— MuX
- Gorder
ar - -NLJ
o
& 3}
Q
=
o 2| |
1r o o K
o -7
_—e--—" 77
b ‘ ‘
100 200 300 400 500
Size of S Dataset (K)
(b) I/O Time
—&— MuX
—e - e ¢ Gorder
1¢- - o —O— o o NLJ
0.8
>
=
g 0.6
[
n
0.4}
0.2{ |
W 2\8
o
0 : ‘ ‘ ‘
100 200 300 400 500

Size of S Dataset (K)

(c) Distance Computation Selectivity

83

84

marized in Figure 3.10. From the result, Gorder is noted to be the most efficient method

for datasets of various sizes. With the increase of dataset size, the elapsed time of MuX
grows faster than Gorder. The speed-up factor of Gorder over MuX ranges from 1.2

to 2.8. Note that even for small datasets where the distance computation selectivity of
Gorder is similar to MuX, the elapsed time of Gorder is still much lower than MuX due

to the use of distance computation reduction technique.

From Figure 3.10 (c), we observe that the distance computation selectivity of Gorder
improves slightly when the number of data points grows. The reason is that the increase
of the number of data points makes the clusters denser and reduces the distance between
a point and its k-nearest neighbors. Therefore, more points can be filtered from distance
computation. The study demonstrates that Gorder is scalable to large size of data and

has even better performance than MuX for large datsets.

Effect of Relative Size of Dataset

In the last set of experiments, we joined two datasets of different sizes and studied the
effect of the relative sizes on the performance of the join algorithms. To study such an
effect, we fixed the size of R at 100K points and varied the size of S from 10K to 1,000K
so that the relative size of R:S is changed from 10:1 to 1:5. Figure 3.11 shows the results.

Both the elapsed time and I/O time of Gorder increase moderately with the increase
in S data size. The cost of MuX goes up comparatively faster, which leads to the wider
performance gap between Gorder and MuX as S dataset size increases. Furthermore,
note that even at S size of 10K and 50k, where the selectivity of MuX is better than
Gorder, Gorder is still much faster. With regard to the elapsed time, the average speed-
up factor of Gorder over MuX is 1.3, which confirms the scalability of Gorder with

respect to the data size again.

85

3.5 Summary

This chapter investigates the kNN join problem. The k-nearest neighbor (KNN) similar-
ity join is an operation that combines each point of one data set with its KNNs in the
other dataset, and it can be used to facilitate data mining tasks such as clustering, clas-
sification and outlier detection. It is also capable of providing more meaningful query
results than just the range similarity join. We prop@&erder, an efficient KNN join
processing algorithm that exploits sorting, data page scheduling and distance computa-
tion filtering and reduction to reduce both I/O and CPU costs. We prove that Gorder is
efficient and scalable with regard to both data dimensionality and size with the intensive
performance study on both synthetic cluster and real life datasets. The comparative study

also confirms that Gorder outperforms existing methods by a significant margin.

Chapter 4

ERKNN: Efficient Reverse k-Nearest
Neighbors Retrieval with Local
kNN-Distance Estimation

4.1 Introduction

The reverse k-Nearest Neighbors (RKNN) query aims to find points in a dataset that have
the given query point as one of their k-nearest neighbors (kNN). It has many applica-
tions in profile-based marketing, information retrieval, decision support and data mining
systems and has received considerable attention in the recent years[78, 115, 125, 114,
76, 79]. The RkNN query is much more complex than the traditional one point simi-
larity queries such as the kNN query and the range query because the reverse k-nearest
neighbors are not necessary to localize to the neighborhood of the query point.

The naive solution for the RKNN search is very expensive. A number of methods
have been proposed to process the RKNN query efficiently[78, 125, 112, 116, 114]. They
can be divided into two categoriepre-computationmethods[78, 125] anspace prun-

ing methods [112, 116, 114]:

e Pre-computatiormethods (the RNN tree [78] and the Rdnn-tree [78, 125]) pre-

compute the nearest neighbors of each point in the datasets and store the pre-

86

87

computed information in hierarchical structures. This approach cannot answer an

RKNN query unless the corresponding k-nearest neighbor information is available.

e Space pruningnethods (SFT [112], TPL [116] and SAA [114]) utilize the geome-
try properties of RNN to find a small number of data points as candidates and then

verify them with KNN queries or range queries.

A shortcoming ofpre-computatiormethods is that they cannot answer an RKNN
guery unless the corresponding k-nearest neighbor information is available. Since the
values oft of RKNN queries may vary greatly in many applications, storing the k-nearest
neighbor information for all possible values/ofs expensive and sometimes infeasible,
and maintaining such a large amount of k-nearest neighbor information in the presence
of frequent updates is even more costBpace pruningnethods can answer an RKNN
guery without the priori knowledge of the k-nearest neighbor information. However,
all these methods become very expensive when data dimensionality is high or when the
valuek is large.

Our work, motivated by the deficiencies of previous methods, aims to design a
search algorithm which works efficiently for the RKNN query in the high-dimensional
spaces and need not store k-nearest neighbor information for all possible valtes of
We overcome the difficulty of the RkNN query with the estimation techniques. The
ERKNN - an estimation-based RkNN search algorithm is proposed. ERKNN employs
the filter-and-refine framework. It retrieves RKNN candidates based on the estimated
kNN-distance (kNN-distance is the distance from a data point tbtitshearest neigh-
bor). This estimation-based filter has the advantage that its computation cost is much
lower than the filtering strategies employed by space pruning methods, which improves
the RKNN query speed by orders of magnitude. We provide two local KNN-distance esti-
mation methods - the PDE method and the kDE method, which enable ERKNN to answer

an RKNN query even the corresponding kNN-distance information is unavailable. Ex-

88

Symbol | Definition
d data dimensionality

korC | aninteger, number of nearest neighbors

pandg | data point and query point
Dist(p, q) | distance between pointsandg

dnni(p) | KNN-distance - distance betwegrand itskth-nearest neighbor
ednng(p) | estimated kNN-distance
dnny-(p) | KNN-distance - distance betwegrand itsKth-nearest neighbg

=

Table 4.1: Symbols and definitions.

tensive experiments on both synthetic and real-world datasets demonstrate that ERKNN
finds RKNN efficiently and effectively and is scalable with respect to data dimensionality,
the value ofk, and data size.

The remainder of the chapter is organized as follows.
e Section 4.2 investigates the RKNN problem and presents its interesting properties.

e Section 4.3 introduces the local kNN-distance estimation methods, describes the
algorithm of ERKNN and provides an accuracy and cost analysis of the ERKNN

algorithm.

e Section 4.4 presents the extensive performance study on both synthetic and real life
datasets which compares the query performance of the ERKNN with other RKNN

query algorithms.
e Section 4.5 concludes this chapter with a summarization.

Table 4.1 gives a summarization of the symbols being used frequently in this chapter.

4.2 Properties of the RKNN Query

The RKNN query has the following properties:

89

1. The points in the answer set of an RKNN query are not necessary to localize to the

query point’s neighborhood.

2. If we know apriori thekNN-distancethe distance between a point and its k-th
nearest neighbor) of each point in the dataset, the RKNN query can be transformed

into a point enclosure query [78].
3. The monotonicity property: ik < K, RtkNN(q, R) C RKNN(q, R).

The first property is unique to the RKNN query and makes the RKNN query more

difficult than otherone pointsimilarity queries - the range query and the kNN query.
The example in Figure 1.1 illustrates this behavior. kebe the query point and=2.
We observen, is one of the 2-nearest neighborsgef ps, andps. Hence,ps’s reverse
2-nearest neighbors ape, ps, andp,. Note thatp, is an R2NN ofp, although it is far
from the query poinp,. In contrastp; andp, are not answers of the R2NN query;af
although they are close 8.

This property has serious impact on the design of the RkKNN search algorithm. In
order to retrieve all the correct answers, algorithms that zoom in to the query point and
iteratively expand the search region to look for promising answers cannot be terminated
until the k-nearest neighbors of all the points in the dataset are evaluated. Therefore, the
complexity of the RKNN query is upper-bounded ®yN?), whereN is the cardinality
of the input dataset.

However, as stated in Property 2, if we know tkidN-distanceof each point in
advance, the RKNN query can be simplified to a point enclosure query [78] (also known
as the point containment query). The point enclosure query checks the distance between
the query poinyy and data points in the dataset and retrieves data pasoth that the
distance betweepn andgq, Dist(p, q) is less than or equal t@s kNN-distancgdenoted

asdnni(p)). The reason is iDist(q,p) < dnng(p), theng is one ofp’s k-nearest

90

neighbors. Thereforg, is one of the reversk-nearest neighbors @f By this way, the
searching speed of the RKNN query is improved significantly and an RKNN query can be
answered in at mogP(/N) time. Thepre-computatiormethods work according to this
mechanism. An obvious shortcoming is that for each possildue, the corresponding
kNN-distancenformation of each point in the dataset should be calculated in advanced
and stored for the RKNN query.

The estimation-based RKNN search algorithm (ERKNN) makes use of this property
of the RkNN query as well but overcomes the shortcoming of the pre-computation meth-
ods by utilizing thdocal estimation methods estimate th&NN-distancef data points
in the dataset. It uses the point enclosure query to retrieve RkNN candidates according to
the estimated kNN-distance in the filter step of ERKNN. Thus, it is able to give approx-
imate answers to an RKNN query when the corresponding kNN-distance information is
unknown.

Property 3 - the monotonicity property is obvious for the kNN query but not so
apparent for the RKNN query because of Property 1 - the non-locality property. We
prove it as the following:

Proof: For any data point in the the answer set @tk N N(q, R), we have

Dist(q,p) < dnny(p).

whereDist(q, p) is distance betweemandg, anddnny(p) is pointp’ KNN-distance
Sincek < K, we have

dnng(p) < dnng(p).

wherednnk (p) is pointp’ KNN-distance
So,

Dist(q,p) < dnng(p).

91

Algorithm 5 ERKNN(T’, ¢, k)
Input:
T is the index treeq is the query pointk is an integer.
Output:
RKNN answers.
Description:
1: A= 0; /* Ais the RKNN candidate set*/
2: Filter (T, q, k, A);
3: Refinemen(T, ¢, k, A);

Thereforep is an answer to the quefy X' N N(q, R) too.
Thus, we have

RENN(q,R) € RKNN(q, R)

4.3 Estimation-Based RkKNN Search

The ERKNN algorithm employs the filter-and-refine framework. Algorithm 5 outlines
the algorithm. The first stefpilter retrieves a set of poingswhose distance to the query
point ¢ is equal to or greater thais estimated kNN-distance as RkKNN candidates. The
second steRefinementerifies the candidates with tlaggregated range query

The novelty of ERKNN lies in its efficient candidate retrieval based onldbel
kNN-distance estimatiowhich accurately approximates each point’'s KNN-distance. It
answers RKNN queries of arbitrady efficiently without requiring the corresponding
kNN-distancanformation. This estimation-based filter outperforms the filter methods
used by methods significantly especially when data dimensionality is high anlig.
In addition, the refinement step of ERKNN employs the aggregated range query to effi-
ciently reduce the CPU and I/O cost and makes ERKNN more efficient.

In the following subsections, we first introduce tloeal KNN-distance estimation

methods, then give the details of each procedure and provide an analysis of the ERKNN

92

algorithm.

4.3.1 Local kNN-Distance Estimation Methods

Previous studies on the KNN-distance estimation [15] employgtbbal uniform as-
sumption that is, the data are uniformly distributed over the whole data space. We call
these approaches tiggobal KNN-distance estimatiohe KNN-distance computed by
theglobal kNN-distance estimatiasitheaverageof the KNN-distance of all the points in

the dataset. However, the local density of each point in a dataset varies considerately and
so does the kNN-distance of each point. RKNN candidate retrieval that is based on the
average kNN-distance tends to produce a large number of false misses (data points that
are answers but missed) and false hits (data points that are not answers but retrieved),
which decreases the recall of the correct RKNN answers and as well as increases the
refinement cost.

In this work, we introduce the idea of thecal KNN-distance estimatiowhich is
based on the nonparametric density estimation [41]. The nonparametric density estima-
tion estimates a point’s local density function by a small number of neighboring samples
around the point. The resulting local density function gives a much better approxima-
tion of the data distribution compared to the global uniform assumption. Hence, the
local KNN-distance estimatiapproximates the kNN-distance of each point much more
accurately than the global approach.

We develop twdocal kNN-distance estimatiomethods - the PDE method and the
kDE method. The PDE method is based on the parzen density estimator with uniform
kernel [41], which is a most commonly-used non-parametric density estimator. The KDE
method, as an alternative to the PDE method, is based on the interesting finding which
is deduced from the kNN density estimator [41]. Our experiment study show that these

methods produce similar estimation results, work effectively on both synthetic and real

93

life datasets and outperform the global approach significantly.

The PDE method

The PDE method is based on the parzen density estimator with uniform kernel [41]. Let
L(p) be a small sphere region centeregatThe Parzen Density Estimator counts the

number of points falling in’(p) and estimates the local probability density function at

A

p, X(p) as follows:

%(p) = X (4.1)

whereN is the cardinality of dataset, is the number of points withiii(p) andV’ is the

volume of L(p). L(p) is ad-dimensional hyper-sphere of radius= dnny(p), SO

B B Vrd . rd B Vrd - dnng,(p)?
V= Var(p) = L(d/2+1) T(d/2+1) (4.2)

where

[(z+1)=2l(z), (1) =1, T'(1/2) = /7.
Combining Equation 4.1 and 4.2, we have

o k/N-T(d/2+1)

(4.3)

Applying the uniform kernel assuming that the data density is uniform @gddNN
vicinity to NN vicinity (£ andXC are two integers - the number of data pointdip),

the hyper-sphere region centereghagk # K), we obtain

kN -T(d/2+1) K/N-T(d/2+1)

X(p) = V- dnng(p)? - \/ﬁ-dnnlc(p)d

(4.4)

94

Hence we have

d k
dnny(p) = dnny(p) - “E (4.5)
Thus, we have the PDE method which estimates kNN-distanpaising the following
equation:
k
d =d A = 4.6
ednng(p) = dnnjc(p) i (4.6)

whereednn(p) is the estimated KNN-distance @ndd is data dimensionalitylnn x-(p)
is the CNN-distance (the distance betweeand itsXCth nearest neighbor). It works as
a base of estimation and is pre-computed in advance. FdNhedistanceof different
values ofk, the saméCNN-distance is used for estimation.
Note that although the PDE method employs the uniform kernel, the uniform as-
sumption is applied only in the local region of a pojmt that is, the hyper-sphere
(p, kdist) which is centered gt and of radiusidist = max(dnny(p), dnny(p)). Since
the CNN-distance of each poiptcaptures the local density of a pojptthe PDE method

estimates a point’s kNN-distance much more accurately than the global approach does.

The kDE method

The KDE method is based on an interesting finding which is deduced from the kNN
density estimator [41, 74, that is, the ratio of (k+1)NN-distance to the kNN-distance

is as follows [41, 74]:

dnny.q 1
>4 —
dnne - kd

1Refer [41] for the detail of deduction

Thus, we have,

95

dnng = dnng - (14 25)

dnngio = dnngyq - (1 + m>

~ 1 1

So for any two integers; andk; (k1 # k»),

if ki <ky dnng, =dnng, - [1200 1+ 5)

Zf k1> ko dnnkQ = =1

i=k; i-d
dnng,

1

Therefore, we have the kDE method which estimates kNN-distance using Equation 4.2:

ednng(p) =

dnnye(p) - [1+) ifk>K

dnny (p) if k=K 4.7)
LD ST itk < K
R (k)

\

whereednn,,(p) is the estimated KNN-distance pandd is data dimensionality/nn g (p)

is the CNN-distance op.

Discussions

The KNN-distance estimated by the PDE or the KDE methods is an approximation of the

real KNN-distance, so the candidate set retrieved by the filter procedure of ERKNN may

contain false hits and miss true answers due to the estimation error. The false hits will

be removed with the refinement procedure of ERKNN. The problem of false misses will

be discussed in Section 4.3.3.

96

For RKNN queries of different values, ERKNN uses the sami&\N-distance as
the basic for estimation. It is observed that whiers far from /C, the approximation
becomes less accurate. This problem can be alleviated by a muligpheersion of
ERKNN. That is, we store severBINN-distances C;NN-distance JCoNN-distance,...
KC,.NN-distance) and estimate a point’s kKNN-distance according tdCthNN-distance
such thatl; is closest tadk. ERKNN with multipleCs is a straightforward extension of
the singlelC case, so we will focus on the singtéversion ERKNN here.

The data dimensionality can be evaluated by either teenbeddedlimensionality
or theintrinsic dimensionality [123]. Theembeddedlimensionality is the length of
the feature vector of data and thitrinsic dimensionality is the number of tredfective
features of data. Studies in query cost analysis and pattern recognition show that cost
estimation and data analysis based on intrinsic dimensionality are more accurate. This
is same for théocal kNN-distance estimaticeccording to our experimental study. The
PDE and kDE methods estimate the kNN-distance more accurately whantriheic
dimensionality is used in Equation 4.6 and 4.7. Approaches for intrinsic dimensionality

computation are in [123].

4.3.2 The Algorithm

We now present the filter and refinement procedures of ERKNN. We use the Rdnn-
tree [125] data structure for the search.

Data Structure: The Rdnn-tree is basically an R-tree that is augmented with the
nearest neighbatistancegNN-distance). We store the data points andiiNN-distance
in the leaf nodes of the Rdnn-tree. Each leaf node entrgis the form g, dnny-(p)),
wherep is the data point andnn-(p) is the CNN-distance op.

Each entrye in theinternal nodes of the Rdnn-tree has the forpar{ MaxzDnny,

mbr). ptr points to a sub-nod&’”’; mbr is the minimum bounding rectangle (MBR) of

97

Algorithm 6 Filter(T', q, k,.A)
Input:
T is the Rdnn-treeg is the query pointk is an integer,A is the set of RKNN
candidates.
Description:
1: Initialize queue? with root of T';
2: while @ is not emptydo
3: Dequeue a nod® from Q;
if N is an internal nodéhen
for each sub-nodeV’ of N do
if MinDist(N',q) < Maz_ED(N') then
InsertN’ to Q;
else
for each pointp in N do
10: if Dist(p,q) < ednni(p) then
11: Insertp into A,

© N

N'; MaxDnny is the maximalkCNN-distance of all data points in the subtree rooted at
N'.
MaxDnng = Maz;™,dnng(p;) (4.8)

wherep, ..., p,, are all points withinN’. We use the algorithm described in [125] to
build the Rdnn-tree witkCNN-distance, except that the NN queries are replaced by the

JCNN queries. The tree can also be constructed using the bulk approach proposed in [84].

Filter Procedure

In the filtering step, ERKNN retrieves a set of poiptevhose estimated kNN-distance
is equal to or greater than distance frgnto the query poiny. The estimated KNN-
distancesdnny(p) is computed with either the PDE or the kDE method. This estimation-
based filter has the advantage that its computation cost is much lower than the filtering
strategies employed by space pruning methods [115, 116, 112].

During the tree traversal, we apply the followipguning strategy

If MinDist(N,q) > Max_ED(N), tree nodeN can be pruned from traversal,

98

whereMinDist(N, q) is the minimum distance between the query pgiahd the MBR

of N andMax_ED(N) is computed as follows:

e The PDE method is employed for kNN-distance estimation:

Mazx_ED(N) = MaxDnng - { % (4.9)

e The kDE method is employed for kKNN-distance estimation:

MaxDnny - Hi:]lc(l +-4) ifk>K

Maz_ED(N) = MazDnny k=K (4.10)

MaxDnny) :
ifk <K
OK (1)
\

SinceMax Dnnyx = Max dnn (p;), according to the computation 8f ax_ED(N),
Mazx_ED(N) =Max!™ ednng(p;), whereednny(p;) is the estimated KNN-distance of
p; andp; is a pointinN. Therefore, a nod® such thatV/inDist(N,q) > Max_ED(N)
can be pruned from traversal.

Algorithm 6 presents the candidate retrieval procedure that traverses the Rdnn-tree
in a breadth-first manner. It utilizes a queido store tree nodes that shall be visitéd.
contains the root of the Rdnn-tree initially. Whileis not empty, the algorithm dequeues

a nodeN from () and processes it according to the node type:

e If N is aninternal node (line 4-7): for each sub-nod€’ represented by an
entry e in N, it calculatesMinDist from the query poinfy to N’, computes
Mazx_ED(N') and insertsV’ such thatMinDist(N',q) < Max_ED(N’) into

Q to be visited later.

99

Algorithm 7 Refinement(, q, k, A)

Input:
T is the Rdnn-treeg is the query pointk is an integer,A is the set of RKNN
candidates.

Description:

1: Initiate range queries;

. Refineiin_memory(®, A);

: Range QueriedT, k, R, R,, A);

: Output pointg; in A;

A WDN

e If N is anleaf node (line 8-11): for each pointin N, it computes the distance
betweernp and the query point, estimates the kNN-distanceénd inserts points

such thatDist(p, q) < ednni(p)) into the candidate sed.

The algorithm stops whe® is empty, that is, all the tree nodes have been either
visited or pruned. All the data poinissuch thatDist(p, q) < ednng(p) are retrieved

and stored in the candidate sét

Refinement Procedure

The candidate sefl contains false hits due to the over-estimation of a ppBkNN-
distance. A refinement step is needed to remove the false hits.

A pointp is a reverse k-nearest neighborof and only if there aréess thark points
p’ such thatDist(p', p) < Dist(p,q) [112, 116]. According to this property, the refine-
ment procedure removes candidates with a set of range queries. These range queries
have the candidate points as the query points and the distances between the candidate
points and the query point of the RKNN quergs query ranges. Candidates that have at
leastk points within their corresponding query ranges shall be removed #tom

Algorithm 7 shows the four steps in the refinement procedure.
Step 1: Initialization of queries: for each point; in A, a range queni;(p;, ;) IS
initialized and inserted into the query set wherep; is the query pointy; is the query

range and; = Dist(p;, q).

100

N1

Figure 4.1: Query aggregation and illustration of pruning.

Step 2: A fast refinement in memory: the range queries are first evaluated among the
candidates. That is, for each range quéry it checks how many candidate points are
within R;’s query range. Candidajg that has at least points within its query ranges is
removed fromA.

Step 3: Range queries: it performs the range queries on the Rdnn-tree and removes data
points that has at leastpoints in their query ranges from the candidate set.

Step 4: Points remains itd are output as RKNNSs.

Steps 1-2 and 4 are straightforward. Step 3 dominates the cost incurred in the re-
finement procedure. In order to reduce both 1/0O and CPU cost, we appbgtre-
gation strategyin this step. The basic idea is to first compute aggregated range
query R,(p., r,) before carrying out the individual range queries. The query range of
R,, which is centered gb, and of radius-,, covers the search ranges of & in &.

Figure 4.1 gives an example. There are three candigaies andp;. The dashed cir-
cles are their query ranges. The solid circle is the aggregated éyefiyhe computation
guery sphere oR, is corresponding to theinimum enclosing bafiroblems [38] whose

complexity is lower bounded bg(|.A

), where| - | is the cardinality of a set.

We design the followingruning strategie®ased on the aggregated quéty.

101

Figure 4.2: lllustration of using triangular inequality property to reduce distance compu-
tation.

e Node pruning For a nodeN, if MinDist(N,p,) > r,, N is surely out of the
query range of anyz; in & and can be cut off safelye(g. NV, in Figure 4.1). If
MinDist(N, p,) < r,, We then check whethé¥ intersects with at least one range
queryR; in R. If N intersects with none of then can also be pruned awag.g.

N> in Figure 4.1).

e Point pruning For a data poinp, if Dist(p,p.) > 74, p is surely out of the query

range of anyR; in . (e.g.p in Figure 4.1).

e Query pruning When a nodeV is being visited, ifMinDist(N,p;) > r;, all the
entries in/NV are surely out of the query range Bf. Thus, R; is markedignored
while N is being visited €.g, when /N5 in Figure 4.1 is being visitedy,; and R,

are to be ignored).

e Distance computation prunind@ hetriangular inequality propertycan be used to
prune distance computations When the similarity is measured by metric distance.
For any poinfp within the aggregated search regign, r,), before computing the
distance betweemand each unpruned candidate pointsve check first whether

| Dist(pq,p) — Dist(pa,pi) |> 73 If | Dist(pa,p) — Dist(pa, pi) |> 74, p iS OUL-

102

Algorithm 8 RangeQueries(, k, ®, R,, A)
Input:
T is the Rdnn-treek is an integerk is a set of range query;, is the aggregated
query of k.
Description:
1: Initialize ¢;=0 for each queng; in R;
2: Initialize priority queue?) with root of T’
3: while @ is not empty andrt is not emptydo

4: Dequeue a nod& from Q;

5. Apply query pruning

6: if N is an internal nodéhen

7: for each sub-nodeV’ of N do

8: Apply node pruning

9: Insert N’ into Q if it cannot be pruned;
10: else
11 for eachpointp in N do
12: if p cannot be pruned byoint pruningthen
13: for eachnot ignoredR; in ® do
14: if Dist(p,p;) < r; then
15: Increase; by 1,
16: if ¢; = k then
17: RemoveR; from R andp, from A;

side of query region of?; because of thé&riangular inequality property There-
fore, distance computation betwegnandp can be pruned. Figure 4.2 illus-

trates an example. Distance computation betwgesndp can be saved because

| Dist(pa, p) — Dist(pa, pa) |> 74

The above pruning strategies show that with the aggregated @tiery pointp or
a nodeN can be pruned away with a single distance computatio®sf (p, p,) or
MinDist(N, p,) instead of checking its distance to each query ppjntThis saves a
large amount of distance computation and reduces the CPU cost.

Algorithm 8 describes the procedure Rar@@eeries.c; counts the number of points
within query range of?;. () is a priority queue and sorts nodes in ascending order of

their MinDist to p,. Initially, () contains the tree root. When the first queue item

2Note thatDist(p,, p;) andDist(p,, p) are already known and need not to be calculated again.

103

N is dequeued, the query pruning strategy is applied to mark the queries such that

MinDist(N,p;) > r; asignored (line 5). NodeN is then processed according to its

type:

e If N is aninternalnode (line 6-9): for each sub-nod€ represented by an entry
e in N, it applies thenode pruningstrategies. Nodé/’ that cannot be pruned are

inserted into the priority queu@ and shall be visited later.

e If N is anleaf node (line 10-17): for each poiptin N, it first applies thepoint
pruningstrategy. Ifp is not pruned, it checks whethgiis within the query range
of eachnot ignoredquery R;. If true, ¢; is increased by 1. Whenever there &re
points inside of query range @t;, p; is identified as a false hit and removed from

A and range query; is also removed frork.

The procedure stops when eith@ris empty ork is empty, implying that all the
tree nodes that intersect with at least one range ghgmy i have been searched or the

RKNN query has an empty answer seiy, the R2NN ofps in Figure 1.1 is empty).

4.3.3 Accuracy Analysis

With the refinement procedure, the precision of the answer set produced by ERKNN is
100%. However, ERKNN may miss some correct answers due to the estimation error.

We study theecall of the RKNN answer set retrieved by ERKNN in this section.

Lower Bound of the Recall

Definition 4.3.1 Let A be the RKNN answer set retrieved by ERKNN Qrizk the com-

plete answer set of the RkKNN query, teeallof A is denoted aRA:%, where| - | is

the cardinality of a set.

104

Figure 4.3: Points within the shade area are false misses.

Theorem 4.3.1 The recall of the answer set retrieved by ERKNN is lower-bounded by

I,° f(x)dz, wheref (z) is the probability distribution of the estimation errors.

Proof: For a pointp in the complete answer s@f p is falsely missed when both the
following conditions are true: (19dnny(p)< dnng(p); (2) ednni(p) < Dist(p,q) (see

Figure 4.3 as an illustration). Létr{-} be the probability of an event.

| Q] -Pr{ednni(p) < Dist(p,q) N ednny(p) < dnny(p)}

Ra=1
| Q]

=1 — Pr{ednny(p) < Dist(p,q) N ednni(p) < dnng(p)}

SincePr {ednn(p) < Dist(p,q) N ednni(p) < dnng(p)} < Pr{ednng(p) < dnni(p)},

R4 >1— Pr{ednng(p) < dnng(p)}

=1 — Pr{ednny(p) — dnng(p) < 0}

Leterr(p) be the estimation error,

err(p) = ednny(p) — dnng(p).

105

Estimation Error
80t ——Normal
—=— Logistic
\ | — Extreme value
> 60y Y | —=—t location-scale ||
O 407
201

~0.02 0 002 004

Figure 4.4: Density distribution of estimation errors of Zipf dataset (dim=815, £=8)

Let f(z) be the probability distribution ofrr(p).

Ru>1— Pr{err(p) <0}

- /_: @)z = /Ooo F(a)dz

Hence, we have Theorem 4.3.1. [|

The probability distribution function of the estimation erydr:) can be modelled by
sampling the estimation errors. Our study on various datasets shows that the estimation
errors can be well fitted with the Student’distribution. Figure 4.4 shows an example.
We let = 15 and estimate 8NN-distance using the kDE method on an 8-dimensional
Zipf dataset. We plot the frequency of estimation errors with gray dots in the graph and
fit it with various distributions. It shows thelocation-scale distribution fits the density
distribution of estimation errors best. The probability distribution function of estimation

errorsf(x) can be modelled as follows [2]:

106

T— _(V-gl)
_) v+ ()
f(x)_\/ﬁf(g) ”] (4.12)

1 is the location parameter (i.e., the mean of estimation ersag;the scale parameter;

v is degrees of freedom. In this example-0.000437092¢7=0.00455945;=4.07209.

Improvement of the Recall

The above study shows that the false misses are introduced by the under-estimation of
the KNN-distance. Therefore, we can improve the recall by simply introducing a positive
adjustment to the estimated kNN-distance. Here, we present two approachesathe
adjustment and thglobal adjustment. Letdnn;’(p) be p's estimated kNN-distance

after adjustment.

¢ |ocal adjustment: Let be a real number angd> 1.

ednny’ (p) = ednng(p) - € (4.12)

¢ is called the local adjustment factor.

e globaladjustment: Lef be a real number andl > 0.

ednny’(p) = ednng(p) + A (4.13)

A is called the global adjustment factor.

ednny(p) in both Equation 4.12 and 4.13 shall be substituted with either Equation 4.6
or 4.7. ERKNN then retrieves a set of poiptsuch thatDist(p, ¢) < ednn;'(p) in the
filtering phase and then apply the same refinement algorithm to verify the candidates.

These adjustments reducs {err(p) < 0} and hence increases the recall. At the

same time, the adjustment makes the filtering step of ERKNN retrieve more data points

107

Figure 4.5: Illustration of estimation error distribution after global adjustment.

as candidates which may increase the refinement cost. However, the in-memory refine-
ment procedure filters a number of candidates effectively, so its impact on the overall
performance is not significant.

The adjustment of the local method is proportional to the local density of each point.
Therefore, local adjustment is more effective than the global adjustment especially for
the skewed datasets and real life datasets. The global adjustment has its own advan-
tage as well. Since the distribution of the estimation error after global adjustment only
moves along the x-axis (See Figure 4.5 for illustration). The lower bound of the recall
after the global adjustment can be predicted immediately according to the distribution of

estimation error before the global adjustment.

Theorem 4.3.2 The recall oA after global adjustment is lower bounded b, f(z)dx,
where) is the global adjustment factad is a set of data points retrieved by ERKNN ac-
cording to the estimated kNN-distance wilglobal adjustmentf(z) is the probability

distribution function of estimation error before the global adjustment.

Proof: Leterr'(p) = ednng(p, \) — dnng(p). Aserr’(p) = err(p) +A, proba-

bility distribution function oferr’(p), f'(z) = f(x — \) (see Figure 4.5). According to

108

Figure 4.6: Expected aggregated range.

Theorem 4.3.1R 4 > [J° f'(z)dx = [f(x)dx. Therefore, we prove Theorem 4.3.2.
u

Moreover, given a required lower bound of recgliwe can calculate the global ad-
justment facton\ by solving equatiorfj’j f(z)dz = r. Using the example in Figure 4.4,
assume that the required recall is 90%. By checking the table of upper critical values
of Student’st distribution, we find the upper critical point of 10% accumulated prob-
ability is 1.53 when degrees of freedom) (of Student’st distribution is 4 [2]. Then,
A = 1.530 — 1=0.0074130505.

4.3.4 Cost Analysis

The filter step of ERKNN executes the point enclosure query and accesses the R-tree
nodes containing data poiptsuch thatDist(p, ¢) < ednny(p). Let E, be the expected
estimated distance of data points in a dataset. The filter step of the ERKNN is expected
to access the R-tree nodessuch thatMin Dist(nr, q) < E, and its query cost is equal
to the query cost of the range query of query radiiis

The refinement step of ERKNN executes the aggregated range query and accesses the

R-tree nodesr such thatMinDist(nr, q) is smaller than the aggregated query radius

109

rq. SO the cost of the refinement step of the ERKNN is equal to the expected cost of the
range query of query radius,, . As illustrated in Figure 4.6, the expected aggregated
range

E,, =2-E,.

a

According to the Minkowski Sum model proposed in [15] and [21], the number of

node accesses of a range query of query radius

_ N - d 1 af Cers ' Vi d—1
A(T)_Ceffz I .<(1_Ceff)' N) 'F(%Jrl).r (444

=0

whereC,;; is effective data page capacity, that is, the average number of entries per

node.

Therefore the total number of node accesses of ERKNN

Aui = Agp, + Ag,, (4.15)

d k
N d 1 d Cff d—1
Ap = . (1 —) , ‘ . - -E' (4.16)
Cerr 2 ! < Cery N L (5 +1)

d k /—a=i
Ag, = N > ! ~(<1— !)~d eff) = d_ldl (2-E,)%! (4.17)

Cerr =\ Cers

The expected estimated distange is close to the average kNN-distance of the

dataset.

N T
whereI'(z + 1) = 2'(z), T'(1) =1, I'(1/2) = /7.

B ~ </l<-1“(d/2+1) 1

110
The number of distance computation of the filter step is:

AE . Ceff.

The number of distance computation of the refinement step is:
AE'ra ' Ceff) Ecnum'

WherekFE,

Cnum

is the expected number of reverse k-nearest neighbor candidates.

E

Cnum

is equal to the expected number of points within the hyper-sphere of radius

E,.
> N -7 Ed
Cnum ~ F(d/Q + 1)

Therefore, the expected total number of distance computation is:

N -Vrd. Ed

Ap T(d/2+1)

T

Cesr + Ag,, - Cegy -

4.4 Performance Study

In this section, we present the results of our experiments to evaluate ERKNN. We use
both synthetic and real life datasets. The synthetic datasets are of different distributions
- uniform distributed, Zipf distributed and clustered. The synthetic cluster datasets were
generated using the method described in [68]. The real life datasets are the Corel dataset
from UCI KDD data repository [3] which contains 32 dimensional feature vectors of
around 60K images.

We compare ERKNN with TPL [116] and SFT [112]. We exclude SAA because its
performance is significantly worse than SFT and TPL [116]. For both the R-tree (used
by SFT and TPL) and the Rdnn-tree (used by ERKNN), the node size is 8192 bytes.

Mean Square Error

Mean Square Error

111

x10° x 10

15} _3
s
—&— PDE-id i o PDE-i
S o PDE-id
1 ——PDE S o kDE-id ||
~edh z —6— PDE-ed
¢ KDE-ed o o KDE-ed
—o— GEM §
s
0.5 1

20 25 30

(a) Uniform Dataset (dim=8) (b) Clustered Dataset (dim=64)
x 10 x10™

~
.

~
.

N
T
N
T

S
— | i — |
—e— PDE-id o —e—PDE-id
3l @ kDE-id || ggi = kDE-id ||
—— PDE-ed 3 —— PDE-ed
& kDE-ed = ¢ kDE-ed
] 8 i
>

(c) Zipf Dataset (dim=8) (d) Corel Dataset (dim=32)

Figure 4.7: Comparison of KNN-distance Estimation Methods

By default, SFT retrieves - k£ nearest neighbors as candidates in its filtering phase and
JCNN-distance used by ERKNN is 15NN-distance. The experiments are conducted on a
Pentium 4 2.6GHz PC running WinXP. We measure the performance in terms of CPU
time, number of node accesses and the total cost which includes both CPU time and 1/0
overhead by charging each node access 20ms [28]. The results are the average of 200

RKNN queries. The query points are randomly picked from the datasets.

112

Dataset | Uniform | Zipf | Corel | Clustered
Embedded 8 8 32 64
Intrinsic 7.2 5.74| 6.48 14.451

Table 4.2: Dimensionality of datasets.

4.4.1 Study of KNN-Distance Estimation

The first set of experiments study the proposed local KNN-distance estimation methods
- the PDE method and the kDE method. We estimate the KNN-distance of k=1,2,..., 30
and evaluate the estimation accuracy by the mean square error (MSE).

p
N (ednny(pi) — dnng (p;)?
N

MSE =

(4.18)

whereN is the number of data points in the dataset.

Figure 4.7 shows the results on the uniform, Zipf, clustered and real life Corel
datasets. PDE-ido¢ kDE-id) indicates PDEdr kDE) method using théntrinsic di-
mensionality PDE-ed ¢r kDE-ed) is the PDEdr kDE) method using thembedded
dimensionality GEM is a global estimation method that calculates the average kNN-

distance using the method proposed in [15].

a/k-T'(d/2+1 1

whereN is the cardinality of the dataset.
[(x+1)=2l(z), T(1)=1, I'(1/2) = /7.

We observe that the PDE method and the KDE method have similar accuracies on
all the datasets. Estimations using the intrinsic dimensionality are better than the es-
timations using the embedded dimensionality. The superiority of PDE-id and kDE-id

over PDE-ed and kDE-ed is very clear on the Zipf dataset, the Corel dataset and the

113

clustered dataset where the intrinsic dimensionality is much lower than the embedded
dimensionality (see Table 4.2). As for the uniform dataset, its intrinsic dimensionality
and embedded dimensionality are similar, so there is not much difference between the
estimations using the intrinsic dimensionality and the embedded dimensionality.

The local estimation methods are much more accurate than the global estimation
method. Graphs (a) and (b) in Figure 4.7 demonstrate that the MSE of GEM is much
greater than the MSE of PDE and kDE on the Uniform and the clustered datasets. On
the uniform dataset, the local estimations are on average 37 times better than GEM.
On the Corel and the Zipf datasets, the local estimations outperform GEM even more
significantly® On the Zipf dataset, the MSE of GEM using the intrinsic dimensionality
is 351 times of the MSE of the local methods averagely. On the Corel dataset, the MSE
of GEM with the intrinsic dimensionality is 5310 times of the MSE of local methods
averagely. On the 64-dimensional clustered dataset, the MSE of GEM with the intrinsic
dimensionality is around 40,000 times of the MSE of local methods averagely. GEM
using the embedded dimensionality is even worse. Its MSE is 1530 and 1,210,000 higher
than the MSE of the local methods on the Zipf and the Corel datasets respectively.

The study demonstrates that local estimations outperform the global approach signif-
icantly and yield more accurate approximation of the KNN-distance of each point on both
uniformly distributed datasets and real and skewed datasets. The study also confirms that
the intrinsic dimensionality captures the effective data dimensionality and leads to better

estimations.

4.4.2 Study of the Recall

Next, we evaluate the recall of the answer set retrieved by ERKNN. We query RKNN

k = 10 and use the PDE method to estimate local kNN-distance. We first evaluate the

3We do not plot the MSE of GEM on the clustered, Zipf and Corel datasets in the graphs because they
are too big.

114

0.05

0.045r

0.04f

o
o
@
a

0.03f

0.025r

Recall

0.02r

otal Query Cost (Sec)

© 0.015}

0.2] 0.01-
—— Lower bound
—=— Real recall

0.005F

1 1.01 1.02 1.03 1.04 1.05 1.06 1 1.01 1.02 1.03 104 105 1.06

Local Adjustment Local Adjustment
(a) Recall (local adjustment) (b) Query Cost (local adjustment)
1,
g 0.061
0.8 2 0.05
Q
)
| @ 0.04f 223 1
= 0.6 3 203
o > 18.2
s § 0.03f b, 192
0.47 o 123 '
g 0.02f 09
(o]
[
02 0.01}
—>— Lower bound '
—&— Real recall
O L L L T T 0
0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0 25 5 75 10 125 15
Global Adjustment Global Adjustment x 1072
(c) Recall (global adjustment) (d) Query Cost (global adjustment)

Figure 4.8: Study of recall of ERKNN

local adjustment. Figure 4.8 (a) and (b) present the results on the 100K 8-dimensional
Zipf datasets. Figure 4.8(a) exhibits the average recall when we vary the local adjustment
factor & from 1 to 1.06. As expected, the actual recall is always higher than the lower
bound. As¢ increases, the recall approaches 1 and the lower bound becomes tighter.
Figure 4.8(b) shows the influence of the local adjustment on the performance of ERKNN
in terms of the total query cost. The real number on top of the bars indicate the num-

ber of RKNN candidates retrieved. Both the cost of ERKNN and the number of RKNN

115

candidates increase moderately with the increage of

We evaluate the effect of global adjustment on various datasets. Figure 4.8 (c) and (d)
show the results of the study on the 8-dimensional Zipf dataset. The global adjustment
factor \ is varied from 0 to 0.015. Our study finds that the global adjustment has the
similar influence on the recall and performance of ERKNN as the local adjustment on the
uniform data but works more effectively on the skewed Zipf dataset. On the Zipf dataset,
when ERKNN with local adjustment reaches 100% recall, only 15 RkNN candidates are
retrieved. While ERKNN with global adjustment needs to retrieve 22 candidates. The
reason is the local adjustment is more adaptive to the data density distribution.

The experiment shows that the recall of ERKNN can be adjusted effectively and the

adjustments affect the performance of ERKNN moderately.

4.4.3 Study on Real Dataset

We now compare the performance of ERKNN with SFT and TPL on real datasets with
varying values of;. Figure 4.9 presents the results on the Corel datasets when we vary
k from 1 to 30. Note that the lines of ERKNN have a breakal5 because when
k = K the RKNN queries are answered using the point enclosure query directly. The
reasons that SFT is more efficient than TPL in our experiments, which is contrary to
the experiment results in [116], are two-fold. First, SFT retrieves énly points as
candidates in our experiments, while SFT retriel&sd - k£ points as candidates in the
experiments in [116]. Second, we use an optimized SFT with batch execution of the
boolean range queries [112]. The batch execution of boolean range queries reduces 1/0O
cost and speeds up the query performance considerably [112].

This study shows that ERKNN outperforms both TPL and SFT significantly. The
speed-up factor in terms of the total query time is 50.5 whenl and 2024.45 wheh

is 3. The average speed-up of ERKNN over SFT is more than 20. TPL is expensive when

CPU Time (Sec)
-
o

10 ¢

Total Query Cost (Sec)

=)

[N N w w
Ul o ul a1
T T T

=
o
T

—a—ERKNN| |

[$)]
T

1

3 5k 10

& SFT
/ -e-TPL
®
1
!
!
o 000 00
0009
000 °
0
%
5 10 15 20 25 30
k
(a) CPU Time
I Filter
oF [JRefine|]

OERkNN SFTTPL ERKNNSFTTPL ERKNNSFT ERKNN SFT ERKNN SFT ERKNN SFT

20 30

(c) Total Query Time

Recall

Number of Node Accesses
S
o
o
o

| o 000 000000 o000 0d

=

—=—ERKNN
o SFT
- -TPL

W

%4
& -0

1.2r

5 10 15 20 25 30
k
(b) Number of Node Accesses

—=—ERKNN
o SFT

B o 5 g Beg—e88E8—8—5-—8-8—85 8%

[00000 60600000 00 004

5 10 15 20 25 30
k
(d) Recall

Figure 4.9: Effect ok (Corel dataset)

116

k is large mainly because thetrim algorithm used by TPL to prune an R-tree node

/n’C
requirestodq) timesclippings[116], wheren.. is the number of RKNN candidates.

k

ERKNN is more efficient than SFT because its low CPU cost for candidates retrieval

and refinement. During the filtering phase, ERKNN performs the point enclosure query,

while SFT performs the KNN query. KNN query is more expensive due to the addi-

tional CPU cost to sort and insert the kNN candidates. It is considerable especially

whenk is large. The refinement procedure of ERKNN is also more efficient because

117

x 10°

25 ‘ ‘ : ‘
—a— Multiple boolean range query|
¢ -~ With aggregation strategy

1.5¢

<><>
0.5¢ 0007
O<>
0009°
060000000000 00

0
0 5 10 15 20 25 30
k

Number of Distance Computations

Figure 4.10: Number of distance computation on Corel dataset

ERKNN retrieves much fewer candidates than SFT andatiggegation strategyem-
ployed by ERKNN prunes a large number of distance computations, thus reducing the
CPU cost greatly. Experiment results on the Corel dataset show thaggregation
strategyprunes around 75% distance computations on average (see Figure 4.10).

We observe that ERKNN incurs more node accesses than SFT. This is because ERKNN
accesses more nodes during the filtering phase (ERKNN accesses 1863.95 nodes for
the Corel dataset while SFT accesses 1319.65 nodes on average). The reason is that
ERKNN may access more tree nodes to retrieve some potential RKNNs which are far
from the query point according to the estimated KNN-distance. Further, the lowest recall
of ERKNN is 97.12% on the Corel dataset. The lowest recall of SFT is 79.6%.

The study also shows that for the RKNN query, 1/0 cost is no longer the dominant
cost. For SFT and ERKNN, both methods execute a set of range queries simultaneously
and traverse the index tree only once in the refinement procedure. CPU cost is more
expensive because there are multiple candidates to be verified. On Corel data, the average
I/O overhead of ERKNN and SFT is 0.069 sec (3342.26 node accesses) and 0.055 sec

(2763.46 nodes accesses) respectively, while the CPU cost is 0.19 sec and 4.68 sec. CPU

118

Total Query Cost (Sec)

1000 s000
_— —o— ERKMM
b — O —— o —O—— O — — = — — O — — 0 - - BFT
1':“:' T $ &O00 --=——TPL
—0o— EREMM §
-e-pe- BFT <L s000
- - TPL =
10 2 4000
=]
z
..... PR PP SN g3|:n:n:|-
L i bbbl LR S
1 o o-——o——t-——a—— g __2;-__4_
=0
—
q o O O O O u a 1000 1
D'] 1 1 1 1 1 1 1 D 1 1 1 1 1 1 1
10 50 100 200 400 1000 1500 2000 10 &0 100 200 400 1000 1500 2000
Buffer Size Buffer Size
(a) Total Query Time (b) Number of Disk Accesses

Figure 4.11: Effect of buffer size on Corel dataset

cost of TPL is expensive mainly because of its expensive pruning method in the filter
procedure.

Figure 4.11 presents the study of the effect of buffer size on the RKNN query. The
buffer size is improved from 10 pages to 2000 pages. The querp. As we expected,
the number of page accesses decreases when the buffer size is increased. However, the

total query time does not change much since the CPU cost is the major cost of the RKNN

query.

4.4.4 Study on Synthetic Datasets

In this section, we study ERKNN, SFT and TPL on synthetic clustered datasets of various
sizes and dimensions. On all these datasets, we adjust ERKNN with a local adjustment

factor 1.06 so that the recall of ERKNN is almost 1.

CPU Time (Sec)

119

——o— ‘ ‘ ; : 3000 ‘ ‘
-7 —&— ERKNN —&— ERKNN
121 o SFT || o500l o SFT
-o -TPL 2 -o-TPL
7]
5 | ;
g 2000
<
3
S 1500
0 Z
10" 5
¢ @)
o 2 10007 ,
IS /
=} /
< 500t /
/
10 %= : : : : : o : : : : :
10 20 30 40 50 60 10 20 30 40 50 60
Number of Dimensions Number of Dimensions
(a) CPU Time (b) Number of Node Accesses
10 T . . . ; ;
I Filter —=— ERKNN
[JRefine 12} o SFT
~ 8]
8 A
\LC)/ 1 %‘* e hd
(0]
g 6 -
= =08
2 o
9] [vd L
0.6
g 4
T
E 0.4r
2,
0.2
219
0 13 145 176 ol ‘ ‘ ‘ ‘ ‘
ERKNN SFT ERKNN SFT ERKNN SFT _ ERKNN SFT
6 T o4 10 20 30 40 50 60
Number of Dimensions Number of Dimensions
(c) Total Query Time (d) Recall

Figure 4.12: Effect of Data Dimensionality (Clustered Dataset, 100K)

Effect of Dimensionality

First, we evaluate the effect of data dimensionality on the RKNN query by varying the
number of dimensions from 8 to 64k is equal to 10. We conduct the study on the
clustered datasets. Figure 4.12 presents the results.

We observe that ERKNN keeps being the most efficient method. The speed-up factor
of ERKNN over SFT increases from 11 to 17 when the number of dimensions increases

from 8 to 64. ERKNN outperforms TPL even more significantly. In 16-dimensional

—s—ERKNN

¢ SFT
) -o -TPL
10"
o
)
o
Q
E
'_
2D 0
% 10 4
o 0
3
100 260 300 400 500
Data Size (K)
(a) CPU Time
15
I Filter
[IRefine
o
[0}
@ ot
@
[e]
(@]
2
Q
>
(o
< 0.5¢
o
'_

OERKNN SFT ERKNN SFT ERKNN SFT ERKNN SFT ERKNN SFT
100 200 300 400 500
Data Size (K)

(c) Total Query Time

120

600 ‘ ‘ :
o —=—ERKNN
P o SFT
g 5007~ -e -TPL
7] -
(%]
Q
S 400t
<
3
< 300¢
kS]
8 200}
E
=}
0 L L L
100 200 300 400 500
Data Size (K)
(b) Number of Node Accesses
—=—ERKNN
10} o SFT
1 & & &
= 08f
O
[9)
& 0.6r
0.4
0.2
O L L L
100 200 300 400 500
Data Size (K)
(d) Recall

Figure 4.13: Effect of Data Size (Clustered Dataset, Dim=16)

spaces, TPL and SFT take 464.36 sec and 0.28 sec to answer an RkNN query respec-

tively. ERKNN takes only 0.021 sec. The study demonstrates that ERKNN is more

scalable to RKNN queries in high-dimensional spaces than TPL and SFT.

Effect of Data Size

We examine the RKNN query performance on datasets of varying sizes. We query RKNN

k = 10 on the clustered datasets and vary the dataset size from 100K to 500K objects.

121

Figure 4.13 shows the results. We observe that ERKNN outperforms SFT and TPL sig-
nificantly. In terms of elapse time, the average speed-up factor of ERKNN over SFT and
TPL is 16.9 and 60565.67 respectively. When we increase data size from 100K to 500K,
the speed-up factor of ERKNN over SFT increases from 12.5t0 21.6. So ERKNN is more

scalable to data size.

4.5 Summary

RKNN queries have important applications in many database systems. However, existing
methods are expensive and not scalable to RKNN queries in high-dimensional spaces or
of large values of. In this chapter, an innovativestimation-basedpproach -ERkNN

(the estimation-based RkNN search) which can efficiently handle RKNN queries in high-
dimensional data spaces and for large values isfproposed. ERKNN retrieves RKNN
candidates based on theral estimated kNN-distan@nd verifies the candidates using

an efficientaggregated range queryTwo local kNN-distance estimation methods, the
PDE method and the kDE method, are provided, which are proved to work effectively
on both uniform and skewed datasets. Employing the effective estimation-based filtering
strategy and the efficient refinement procedure, ERKNN outperforms previous methods
by a significant margin. Extensive experiments demonstrate that ERKNN is efficient,

scalable and outperforms pervious methods significantly.

Chapter 5

BORDER: A Data Mining Tool for
Efficient Boundary Point Detection

5.1 Introduction

Advancements in information technologies have led to the continual collection and rapid
accumulation of data in repositories. Knowledge discovery in databases is a non-trivial
process of identifying valid, interesting and potentially valuable patterns in data [37].
Given the urgent need for efficient and effective analysis tools to discover informa-
tion from these data, many techniques have been developed for knowledge discovery
in databases to identify valid, interesting and potentially valuable patterns from the data.
Such techniques include data classification and mining association rule, cluster and out-
lier analysis [52] as well as data cleaning and data preparation techniques to enhance the
validity of the data by removing anomalies and artifacts.

In this chapter, we present a novel data mining tool - BORDER for effective bound-
ary point detection. Boundary points are data points that are located at the margin of
densely distributed data such as a cluster. Boundary points are useful in data mining
applications because they represent a subset of population that possibly straddles two
or more classes. For example, this set of points may denote a subset of population that

should have developed certain diseases, but somehow they do not. Special attention is

122

123

certainly warranted for this set of people since they may reveal some interesting char-
acteristics of the disease. The knowledge of these points is also useful for data mining
tasks such as classification [67] since these points can be potentially mis-classified.

Intuitively, boundary points can be defined as follows:

Definition 5.1.1 A boundary poinp is an object that satisfies the following conditions
i) It is within a dense regiofR;

ii) 3regionR’ nearp, Density(R’) > Density(R) or Density(R") < Density(R).

Note thatboundary pointsare different from outliers [4, 23, 6] or its statistical
counterpart - the change-point [90, 25, 7]. While outliers are located in the sparsely-
populated areakoundary point®ccurs at the margin of dense regions.

We develop a method called BORDER (a BOundaRy points DEtectoR) that utilizes
the special property of the revergenearest neighbor (RKNN) [78], and employs the
state-of-the-art database technique - the Gorder kNN join [124] to find boundary points
in a dataset.

As illustrated in Figure 1.3 in Chapter 1, the points whose reverse 50-nearest neigh-
bors are less than 30 clearly define the the boundaries of the clusters in the dataset. Uti-
lizing this property of the reverse k-nearest neighbor in data mining tasks will require the
execution of a RKNN query for each point in the dataset (the set-oriented RKNN query).
However, this is very expensive and the complexity will®eV?) since the complexity
of a single RKNN query i®)(N?) time using sequential scan for non-indexed data [116],
whereN is the cardinality of the dataset. In the case where the data is indexed by some
hierarchical index structure [16], the complexity can be reduce&d f6* - logN'). How-
ever, the performance of these index structures is often worse than sequential scan in
high-dimensional spaces.

Instead of running multiple RKNN queries, the proposed approach utilizes Gorder

kNN join [124] (or the G-ordering kNN join method) to find the reverse k-nearest neigh-

124

bors of a set of data points. BORDER processes a dataset in three steps. First, it executes
Gorder kNN join to find the k-nearest neighbors for each point in the dataset. Second, it
counts theaumber of reverse k-nearest neighb{fR&NN number) for each point accord-

ing to the kNN-file produced in the first step. Third, it sorts the data points according

to their RKNN number and the boundary points whose RKNN number is smaller than a
user predefined threshold can be output incrementally. Experimental studies show that
the proposed BORDER method is able to detect boundary points effectively and effi-
ciently. Moreover, it helps the density-based clustering method DBScan [33] to find
out the correct clusters and improves the classification accuracy for various classifiers.
Note that BORDER is based on the observation that boundary points tend to have fewer
reverse k-nearest neighbors. This assumption is usually true when the dataset contains
well-clustered data. However, this assumption may not hold for datasets which are not
well-clustered and the boundary is not so clear, in which case, BORDER may fail to find
the correct boundary points.

The remainder of the chapter is organized as follows.

e Section 5.2 presents the preliminary study of the relationship between the location

of a point and the number of its reverse k-nearest neighbors.

e Section 5.3 describes BORDER algorithm in detail and analyzes the cost of BOR-
DER.

e Section 5.4 presents the results of our performance study.

e Finally, Section 5.5 concludes this chapter with a summary.

125

5.2 Preliminary Study

The reverse k-nearest neighbors (RkNN) of an ohjeae points that look upomas one

of their k-nearest neighbors. A property of reverse k-nearest neighbor is that it examines
the neighborhood of an object with the view of the entire dataset instead of the object
itself. Hence, it can capture the distribution property of the underlying data and allow
the identification of boundary points that lie between two or more distributions.

Figure 1.3 in Chapter 1 shows the results of one of our preliminary studies. Given
a 2-dimensional dataset as shown in Figure 1.3(a), we plot the points whose reverse 50-
nearest neighbors answer set contain less than 30 points. Figure 1.3(b) shows that the
boundaries of the clusters are clearly defined by those points having fewer number of
RKNN.

We also carry out another preliminary study to find out the relationship between
the location of a poinp and the number of its RKNN in high-dimensional spaces. In
order to determine the boundary of a densely distributed region, we use hyper-sphere
datasets$ which contain the dense regions of the shape of the high-dimensional spheres.
The boundary points of spherical regions are always located at the area farthest from the
center of the sphere and so can be easily determined by calculating the distances between
the data points and the centers of the hyper-spheres they belong to.

Figure 5.1 summarizes the results of the experiments on the hyper-sphere datasets of
different distributions. We compute the number of reverse k-nearest neighbors of each
point in the dataset and the distance of each point to the center of the cluster that the point
belongs to. Then we sort the data points according to the distance of each point to the
center of the cluster that the point belongs to and plot the distance to cluster center and
the number of reverse k-nearest neighbors of each point as in Figure 5.1. Each vertical

line in the graphs in Figure 5.1 corresponds to one data point. The height of the lines in

1The generation of hyper-sphere data is given in the experiment section.

Distance to center

RkMM nurnber

Distance to center

RkMM nurnber

Distance to center

REMNM number

0.08
0.06
0.04

(a) Uniform Distribution (Dimension = 8, Data Size = 6000)

0.25
0.2
0.15
0.1

(b) Normal Distribution (Dimension = 8, Data Size = 6000)

0.o8
0.08
0.04

100
80
B0
40
20

(c) Zipf Distribution (Dimension = 8, Data Size = 6000)

Figure 5.1: Preliminary Studies.

126

127

p3 p3
(a) kNN graph (b) RKNN graph

Figure 5.2: KNN graph vs. RKNN graph

the upper sub-graphs represents the distance to cluster center and the height of the lines
in the lower sub-graphs is corresponding to the number of reverse k-nearest neighbors
of each point. This study indicates that the number of RKNN decreases as the distance
of a point from the center increases. The result confirms that for well-clustered datasets
in high-dimensional spaces, the boundary points which lie at the margin of the clusters
tend to have fewer reverse k-nearest neighbors.

Utilizing this property of RKNN to detect boundary points will require the execution
of a RKNN query for each point in the dataset (the set-oriented RkNN query). However,
this is very expensive and the complexity will b8 N3) using sequential scan for non-
indexed data 0O(N? - logN) for indexed data, wher® is the cardinality of the dataset.
BORDER overcomes this difficult by transforming the set-oriented RKNN query into the
set-oriented kNN query (i.e., the KNN join) by utilizing theversal-shigoetween the k-
nearest neighbor and the reverse k-nearest neighbor, thap;i$s ibne ofp;’s k-nearest

neighbors, thep, is one ofp,’s reverse k-nearest neighbors.

Lemma 5.2.1 The reverse k-nearest neighbors of all points in datdsean be derived
from the k-nearest neighbors of all pointsfh By reversing all pairgp;, p;) produced
by the self-kNN join of?, we obtain the complete set of pairs;(p;) that p; is p;'s

reversek-nearest neighbor.

128

Input
Dataset Processing Procedure of BORDER
Gorder RKNN Sorting &
—> | kNN |Z==> | Number |[E==){ Incremental | | = >
Join Counting output

Figure 5.3: Overview of BORDER

Figure 5.2 illustrates the kNN and RKNN relationship with an egigé Figure 5.2(a) is

the KNN graph and each edgg; denotes a kNN pain, p,) such that; is p;'s KNN.
Figure 5.2(b) is the RKNN graph and each egge€ denotes a RKNN pain, p;) such
thatp, is p;'s RKNN. Given the kNN of all points in a dataset, we can derive the RKNN
of each point by simply reversing the direction of the edges in the KNN graph. Hence,

we have the lemma.

5.3 BORDER

Figure 5.3 gives an overview of BORDER. It comprises of three main steps:

1. A KNN-join operation with Gorder to find the k-nearest neighbors for each point

in the dataset.

2. An RKNN counter to obtain each point's RKNN number (the cardinality of each

point's RKNN answer set).

3. Points are sorted according to their RKNN number. Points that its RKNN number is

smaller than a user defined threshold are output incrementally as boundary points.

In the following sections, we will give the details of each step.

129

Algorithm 9 GorderSelf KNN(R)
Input:
R is input dataset.
Description:
1: G_OrderingR;
2: Join.Grid_OrderedData(R, R);
3: Output kNN pairs into the KNN-file;

Algorithm 10 RkNN_Counter®, kNN-file)
Input:
R: the input dataset; kNN-file: a file records k-nearest neighbors of each points in
R.
Description:
1: for eachpointp € R do
2: Read its k-nearest neighbdtd/ N (p, R) from KNN-file;
3: for eachpointp; € kNN(p, R) do
4 increasernum,, by 1,

5.3.1 kNN Join

Based on above discussion, the first step of BORDER performs a self kNN join of the
input dataserk to compute all the k-nearest neighbors pairgoft makes use of the up-
to-date KNN join algorithm - Gorder, which is an optimized block nested loop join with
efficient data scheduling and distance computation filtering and outperforms previous
works significantly.

Algorithm 9 presents Gorder self KNN join algorithm which regards the input dataset
R as both the query dataset and the point dataset.

In Line 1 of algorithm 9, datase® is sorted into the G-order as we introduced in
Chapter 3. Line 2 calls the scheduled block nested loop join (see Section 3.3.2 for the
detail of the algorithm). It takes datadeis both the query dataset and the point dataset.
At the end, the k-nearest neighbors of all pointgtiare found and saved in the kNN-file

(Line 3).

130

Algorithm 11 Sortand OutputR, kinreshoid)
Input:
R: the input dataset;
Description:
1: Sort points in R in ascending order according to their RKNN number;
2: for Pointsp; in Rdo
3 if rnum,, < Etpreshoia then
4: Outputp;;

5.3.2 RkNN Counter

In this step, BORDER counts the number of reverse k-nearest neighbors (RKNN number)
for each poinfp (denoted agnum,) utilizing the KNN information saved in the KNN-

file. According to the reversal-ship between kNN and RKNN which we have discussed
in Lemma 5.2.1, the number of each point’s k-nearest neighbor can be obtained by a
scanning of the kNN-file and for each poimtin the kNN set of a poinp, increasing
rnum,, by 1.

Algorithm 10 depicts the count procedure.

5.3.3 Sorting and Output

Data points then can be sorted according to their RKNN number so that they can be
output incrementally. We l6t;;,,.s1.14 D€ @ user defined threshold which is tunable. For
all pointp, if its RKNN numbernum, < kuresnoia, they are output as detected boundary

points. Algorithm 11 shows the details.

5.3.4 Cost Analysis

Next, we analyze the 1/0 and CPU cost of BORDER.

The major cost of BORDER lies in the kNN join procedure. The number of I/O

131

reading incurred during the KNN join procedure in terms of the number of page is [124]:

3N, + 2N, ([logp-13F] +1) +]X—:'Nr'%

whereN, is the total number of R data pages,is the allocated buffer pages for query
data, andB is the total buffer pages available in memory.

Since the kNN-file is written on the disk and scanned during the step of RkNN
counter. There are additional,,,, pages I/O writing andV,,,,, I/O reading, wherévy,,,,
is the size of the KNN-file.

Hence, the total number of pages of I/O reading is:

N, N,

And the total number of pages of I/0O writing 16.,,,,.
The major CPU cost of BORDER is the distance computation in the kNN join phase.
The number of distance computations is:

P2"72

T

whereP, is the number of objects in the datasetjs the selectivity of distance compu-
tation.

The selectivity ratioy; and~, are estimated as following [124]:

= < \/pfq \/E) ‘/S[Zi)hére (5 . 1)

where,p, andp, are the numbers of points in the query buffer of sizebuffer pages

and in the point buffer of size, buffer pages.

132

n, - page size _ n,-page size
size of data vector Pp = size of data vector

| b, | P
Y2 = ((| = \ p) V::;l)hire (52)

Wherep,, andp;, are the numbers of points in the sub-block of the query buffer and the

Pq =

point buffer.
Vil (e) = L.gd*l (5.3)
e T ()
JE-T(d/2+1) 1
o= Ty L 5.

[(x+1)=2l(z), T(1)=1, I'(1/2) =7

5.4 Performance Study

We conducted extensive experimental study to evaluate the performance of BORDER
and present the results in this section. We implemented BORDER in C++ and studied its

effectiveness as follows:

1. Dataset I. A set of high-dimensional hyper-sphere datasets with various data dis-

tributions and sizes.

These hyper-sphere datasets are used to demonstrate the ability of BORDER in
detecting boundary points in high-dimensional spaces. The hyper-sphere datasets

are generated as follows: Given the distribution, the number and the centers and

e

1]

133

l}bll
il
l'||.|'.1||" ﬂh,”u” \hﬂl|{|1w|l.l;|\"1 ‘hl'lﬂr

TN | FI
”i.p “ni i ‘ Jl||| ’l. |!|. It |\1

'|1 g
iy !'l' |f |
i M Wi |||*.|r|| ﬂﬂh‘.ﬂ'l .F u'l JuI “i

T 1
LIk} 1

(a) Dimension 1

I|[|rl||

I Ikﬁn”ln' ’l.||!|. || \1’ l) "I'\ﬂ'ﬂlnl| g I!. i |I\1’

1F lr
|II II | III II
||' ' |f||ﬂ| h) | Hl ﬂri i {||:Hllil;| |‘I||I| w II||'I' I"‘h ﬂ| h) M ’ ‘hi il {lH .||;n|1| |||‘I||II 'Jlf

(d) Dimension 4 (e) Dimension 5

Figure 5.4: Data distribution of Dataset IV on each dimension.

the radii of the hyper-spheres, data points are generated according to the specified
distribution. Points that are within the defined hyper-spheres are inserted into the
dataset, whereas points that are outside of the hyper-spheres are discarded. To
show the location of the found boundary points, we capture and present the distri-
bution of the/(p,), wherep is a detected point,is the center of the hyper-sphere

which p belongs to, and(p, ¢) is the distance betweegnandc.

. Dataset Il. A set of 2-dimensional clustered dataset of arbitrary cluster shapes.

This set of datasets aims to exhibit the ability of BORDER to find out boundary
points located at the border afbitrary-shapedclustersvisually. We use the 2-

dimensional datasets so that we can plot the detected boundary points in a plane to

134

show the effectiveness of BORDER.

. Dataset IlI: A clustered dataset with mixed clusters.

In this dataset, the dense clusters mix with some less dense clusters. Traditional
density-based clustering method such as DBScan cannot identify the clusters prop-
erly in this type of datasets. We show that removing the boundary points will help
DBScan to find the clusters correctly. The removed boundary points can be in-
serted back into the identified clusters with a post-processing procedure by check-

ing their connectivity and density.

. Dataset IV. Labelled datasets for classification.

This synthetic dataset contains 7 classes with 5 attributes. The dataset is generated
as follows: We divide the first dimension into 7 segments. Each segment corre-
sponds to one class. We assign points within each segment to its corresponding
class and those points lying at the adjacent region of each segment to different
classes. Thus, the 7 classes do not have a distinct separable boundaries. Data
points are distributed randomly in the rest of the dimensions. Figure 5.4 shows the
data distribution of the dataset on each dimension. Note that in dimension 1, points
that are located at the boundary region of two adjacent classes belong to different
classes. We use this dataset to show that by removing the boundary points which

straddle two classes of difference density can improve the accuracy of classifiers.

5.4.1 On Hyper-sphere Datasets

We first study the effectiveness of BORDER on the hyper-sphere datasets of various dis-

tributions, different numbers of dimension and containing different number of clusters.

Figure 5.5 summarizes the experiment results. We incrementally output 300 points with

Distance to Center

135

35
80 : : : : :
A0f
70t 1
21
60 1
s0t g z A
2
g E:
S a0f 1 5
g = 15k
[
300 1
10F
20t 1
5 .
10t 1
0 L L L L = W i
0 005 01 015 02 025 03 035 0

I
0.05

L
0.1

1 I
0.15 02
Distance to Center

025

03 035

(a) Normal distribution, dimension=8, number ofb) Normal distribution, dimension=10, number of

clusters=1, radius=0.3
B0 T T T

a0

=
=1

Frequency
{1
o

T T T an

45

40

34

w
=

Freguency
[l
(53]

20
0F 1
14
al | 10
i
0 L L L L Il L 0
0 0.1 0z 03 0.4 05 0B 07

Distance to Center

clusters=5, radius=0.3

0

I
0.0a

I I
0.1 0.15
Distance to Center

0z 024

(c) zipf distribution, dimension=4, number of clus-(d) Zipf distribution, dimension=6, number of clus-

ters=2, radius=0.5
50

45

40

35

Freguency
) %)
(851 =

[5]
]

T T T B0

a0

40

30

Freguency

20

]

0.0s

1 1 1] 0
0.1 0.15 0.2 0.25
Distance to Center

ters=3, radius=0.2

0

L
0.0z

L
0.04

.
0.06
Distance to Center

L
0.08

01 012

(e) Uniform distribution, dimension=8, number of(f) Uniform distribution, dimension=12, number of

clusters=2, radius=0.3

clusters=2, radius=0.1

Figure 5.5: Study on hyper-sphere datasets.

136

Distribution | Cluster Number Size | Radius| Dimension| k | Processing Time (Seg)
Normal 1 6000, 0.3 8 50 6.547
Normal 5 6000, 0.3 10 50 4.313
Zipf 3 6000, 0.2 6 50 4.625
Zipf 2 6000, 0.5 4 50 2.89
Uniform 2 6000, 0.2 8 50 3.938
Uniform 2 6000| 0.1 12 50 5.875

Table 5.1: Hyper-sphere datasets and processing time.

Distribution | Dimension| Radius| Mean | Standard Deviation
Normal 8 0.3 | 0.2868 0.0141
Normal 10 0.3 | 0.2868 0.0133

Zipf 6 0.2 | 0.1955 0.0043
Zipf 4 0.5 0.49 0.0092
Uniform 8 0.2 | 0.1959 0.0037
Uniform 12 0.1 | 0.0981 0.0019

Table 5.2: Mean and standard deviation of the distance of detected boundary points to
the hyper-sphere center.

lowest RKNN number of as boundary points. For each graph, the x-axis is thep{soint
distance to the center of the hyper-sphere thiaglongs to {(p, ¢)) and the y-axis is the
frequency. We observe that for all datasétg, ¢) of the output points by BORDER is
equal or close to the radii of the hyper-spheres.

Table 5.2 summarizes the mean and standard deviation of the distance of detected
boundary points to the hyper-sphere center. Both the plotting and statistical information
of the output of BORDER indicate that these points are indeed the boundary points of the
hyper-spherical-shaped clusters. The properties and the processing time of BORDER on

the hyper-sphere datasets are presented in Table 5.1.

137

pal
oat .

07t T
06t
nst
D4t
03t

02r

D1 L 1 I. 1 1 1 .I 1 1
1 0 0.1 02 03 04 05 06 07 08 09

(b) Detected Boundary Point&{,,-¢sn01¢=30)
1 -

AT T 0oL |
0al T A S I Sy
. o . N S 08+ g e | G U
. o H : T n pr— . 0 H . N

0Bf T 06f T et 1
05t e . L . 05+ . :
04t ' R 04l ; .
03f > : . : nalk)
ar S o2t
0.1 L L L L L L L L L] o1 i L | . .) .,-.-‘))

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09

(c) Detected Boundary Pointsf, ¢ sno1a=33) (d) Detected Boundary Point&{,,-¢sn01a=35)

Figure 5.6: Incremental output of detected boundary points of dataset 1.

138

09 : : : : , , : - 03 : : : : , , , -
q 07k o 1

st - st i
041 B D4F 1
nafb] af i
02k ® 02k o]
01 @ | oib e
01 02z 03 04 05 06 07 08 19 1 01 02z 03 04 05 08 07 08 109 1

(b) Detected Boundary Points of Dataset 2

a) Dataset 2
() (lgghreshold:35)

o e |
osb - R . i
041 (: -
naf |
o2t . I
01 . . H
] ' L * ' L L L P
0 01 02 03 04 05 06 07 08 08 |

(d) Detected Boundary Points of Dataset 3
(kt%hreshold=38)

o9t i
nar oo .
] i Loa 1
osk . '.'. 4
] T 1
k. c ;]
0zt i
D‘I 1 1 1 1 L 1 1 1 01 1 L Il 1 1 1 1 il
01 02 03 04 05 06 07 08 08 1 01 02 03 04 05 06 07 08 03 1

(f) Detected Boundary Points of Dataset 4
e) Dataset 4
© (Kthreshola=35)

Figure 5.7: Study on other datasets.

139

Size | Dimension| k | Processing Time (Sec)
dataset 1 40000 2 50 9.985
dataset 2 10680 2 50 2.781
dataset 3 9050 2 50 2.562
dataset 4 12950 2 50 3.469

Table 5.3: Datasets (with clusters) and processing time.

5.4.2 On Arbitrary-shaped Clustered Datasets

Next, we study the effectiveness of BORDER on datasets containing arbitrary-shaped
dense regions. Although BORDER is also applicable to high-dimensional spaces, the
experiments are carried out on 2-dimensional cluster datasets in order to visualize the
results.

Figure 5.6 demonstrates the incremental output of BORDER executed on dataset
1. The thresholds are set as 30, 33 and 35. The graphs in Figure 5.6 shows that the
plotted points outline the boundaries of the clusters in dataset clearly. Note that with the
incremental output, we can stop whenever we are satisfied with the quality of detected
boundary points. Figure 5.7 shows the results of boundary point detection on datasets 2,
3, 4. ltis clear that BORDER can find the boundary points effectively. The processing
time of BORDER is summarized in Table 5.3.

5.4.3 On Mixed Clustered Dataset

In this set of experiments, we mix the dense clusters with less dense clusters and study
the ability of using BORDER for preprocessing data for clustering.

Figure 5.8 shows that it is difficult for DBScan [33] to identify the correct clusters in
this type of datasets. Figure 5.8 (b), (c) and (d) plot the clusters detected by DBScan with
different colors. We observe that if we set the density requirement of DBScan high, that

is, Eps=0.00967926, MinPts=10, points in the sparse cluster are all regarded as outliers

140

o9r

0gf

07r

06|

0sf

o4t

03f

0z2f

01 .
01 0z

I
03

I
0.4

I
045

!
06

!
o7

I
0s 0g

(b) Clusters detected by DBScan (high density re-

0ot
oal

o7l

05
DA
03l

gzt -

i

quirement, Eps=0.00967926, MinPts=10)

i) e ! R ! ! ! 1 1
0 01 02 03 04 05 0B 0OF 08 D9

1

quirement, Eps=0.0223533, MinPts=10)

D | .
1} 01 1}

RN
03

L
0.4

.I.'.. L -
05 06

(c) Clusters detected by DBScan (low density (a) Clusters detected by DBScan (low density re-

o
o7

s
og 09 1

quirement, Eps=0.0469042, MinPts=10)

1} 01 0z 03 04 05 0B 07 08 0%

(e) After boundary points are removed

i I i
0 0.1 0z

I
0.3

A
04

L
0.5

L
08

L
0.7

L
08

i
09 1

(f) Clusters detected by DBScan after boundary
points are removed(Eps=0.0469042, MinPts=10)

Figure 5.8: Study on mixed clustered datasets.

141

(Figure 5.8(b)). If we set the density requirement of DBScan low, that is, Eps=0.0223533
and MinPts=10 (Figure 5.8(c)) or Eps=0.0469042, MinPts=10 (Figure 5.8(d)), DBScan
returns clusters that mix dense and sparse regions.

Figure 5.8 (e) shows the dataset after we remove the boundary pbints.(ia =
40). Figure 5.8(f) shows the result of DBScan working on the dataset after the boundary
points are removed. DBScan with parameters Eps=0.0469042 and MinPts=10 can easily
identify the dense clusters as well as the sparse clusters correctly because they are now
well separated. The removed boundary points can be inserted into the clusters with a
post-processing procedure which examines the density of the points and their connectiv-

ity with the clusters.

5.4.4 Onthe Labelled Dataset for Classification

Finally, we conduct experiments on the labelled dataset for classification. We test various
classification methods provided by Weka [65] and compare the classification accuracy
before and after we remove the detected boundary points. The test accuracy is evaluated
by 10-fold cross validation. The results show that removing the boundary points reduces
the ratio of misclassified data points and improves the classification accuracy effectively.
Table 5.4 and Table 5.5 summarizes the results when we define different thresholds
for the RKNN number. When we set thg,,.....q 25 or 30, the average improvement
ratios in terms of incorrectly classified ratio are 20.03% and 43.51% respectively and the
average improvement ratios in terms of incorrectly classified instance are 22.07% and

46.60% respectively.

142

Before After (kinreshola=25) improvement

Classification Incorrectly| Incorrectly| Incorrectly| Incorrectly|| Incorrectly| Incorrectly
Method Classified | Classified | Classified | Classified || Classified | Classified

Ratio Instances | Ratio Instances | Ratio Instances
Decision Ta-| 3.20% 391 2.57% 306 19.69% 21.74%
ble
OneR 3.26% 398 2.21% 263 32.21% 33.92%
Nnge 3.25% 397 2.12% 252 34.77% 36.52%
Jrip 3.43% 418 2.36% 280 31.20% 33.01%
AdaBoost | 19.14% 2335 18.13% 2156 5.28% 7.67%
M1
MultiBoost | 19.14% 2335 18.13% 2156 5.28% 7.67%
AB
Raced Incre4 3.20% 391 2.53% 301 20.94% 23.02%
mental Logit
Boost
IB1 15.48% 1888 14.02% 1667 9.43% 11.71%
Naive Bayes 3.48% 425 2.57% 306 26.15% 28.00%
Simple
SMO 5.93% 723 5.02% 597 15.35% 17.43%
Average 7.95% 970.1 6.97% 828.4 20.03% 22.07%

Table 5.4: Comparison of classification accuracy,(s,..q=25).

5.5 Conclusion

In this chapter, we introduce a novel data mining tool - BORDER for effective bound-
ary point detection. The knowledge of boundary points can help in data mining tasks
such as data preparation for clustering and classification. BORDER detects boundary
points according to the finding that data points lying at the margin of densely distributed
data tend to have much fewer reverse k-nearest neighbors. It transforms the expensive
set-oriented RKNN query into the kNN join by utilizing theversal-shipbetween the
k-nearest neighbor relationship and the reverse k-nearest neighbor relationship and em-
ploys the state-of-the-art KNN join technique - Gorder. Experimental study demonstrates

that BORDER is able to detect boundary points effectively and efficiently. Moreover, by

143

Before After (kinreshoia=30) improvement

Classification Incorrectly| Incorrectly| Incorrectly| Incorrectly|| Incorrectly| Incorrectly
Method Classified | Classified | Classified | Classified || Classified | Classified

Ratio Instances | Ratio Instances | Ratio Instances
Decision Ta-| 3.20% 391 1.37% 158 57.19% 59.59%
ble
OneR 3.26% 398 1.34% 155 58.90% 61.06%
Nnge 3.25% 397 1.26% 145 61.23% 63.48%
Jrip 3.43% 418 1.40% 162 59.18% 61.24%
AdaBoost 19.14% 2335 16.90% 1950 11.70% 16.49%
M1
MultiBoost | 19.14% 2335 16.90% 1950 11.70% 16.49%
AB
Raced Incre4 3.20% 391 1.39% 160 56.56% 59.08%
mental Logit
Boost
IB1 15.48% 1888 12.44% 1435 19.64% 23.99%
Naive Bayes 3.48% 425 1.36% 157 60.92% 63.06%
Simple
SMO 5.93% 723 3.67% 423 38.11% 41.49%
Average 7.95% 970.1 5.80% 669.5 43.51% 46.60%

Table 5.5: Comparison of classification accuracy,(s,..¢=30).

applying it as part of data pre-processing step, we observe an improvement in the clus-
tering quality of DBScan [33], as well as an overall increase in classification accuracies

of various classifiers.

144

Chapter 6

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss future work on

the advanced similarity queries and their application in data mining.

6.1 Thesis Contributions

This thesis studied advanced similarity queries and their application in knowledge dis-
covering and data mining. Two advanced similarity queries - the k-Nearest Neighbor join
(KNN join) and the Reverse k-Nearest Neighbor query (RkNN query) have been studied
and efficient algorithms for their processing are proposed. Furthermore, we investigated
how to utilize these queries in data mining. A novel data mining tool - BORDER which
is built upon the KNN join and utilizes a property of the reverse k-nearest neighbor was

proposed. The contributions are detailed as follow:

e We designed an efficient algorithm Gorder (theorderingkNN join method) for
the kNN join. Gorder is a block nested loop join method which achieves its ef-
ficiency by sorting data into th&-order that enables effective join pruning, data
blocks scheduling and distance computation filtering and reduction. It utilizes a

two-tier partitioning strategyo optimize I/0 and CPU time separately and reduces

145

distance computational cost by pruning redundant computation based the distance
of fewer dimensions. It does not require an index for the source datasets and is ef-
ficient and scalable with regard to both the dimensionality and the size of the input

datasets. Experimental study shows that Gorder outperforms previous solutions

with great margin.

For the RKNN query, we proposed an innovative solution - ERKNN (the estimation-
based RKNN search). ERKNN retrieves RkNN candidates based tocti&NN-
distance estimatiomethods and verifies the candidates using the efficiggte-

gated range queryTwo local kNN-distance estimation methods, the PDE method
and the KDE method, are provided and both work effectively on uniform as well
as skewed datasets. By employing the effective estimation-based filtering strategy
and the efficient refinement procedure, ERKNN outperforms previous methods sig-
nificantly and answers RkNN queries in high-dimensional data spaces and of large

values off efficiently and effectively.

At last, we designed BORDER (a BOundaRy points DEtectoR) a novel data min-
ing tool for effective boundary point detection. BORDER detects boundary points
according to the finding that data points that are located at the margin of densely
distributed data tend to have much fewer reverse k-nearest neighbors. It transforms
the expensive set-oriented RKNN query into the kNN join by utilizingdwersal-

ship between the k-nearest neighbor relationship and the reverse k-nearest neigh-
bor relationship and employs the state-of-the-art kNN join technique - Gorder. Ex-
perimental study demonstrates BORDER detects boundary points effectively and
can be used to improve the performance of clustering and classification analysis

considerately.

146

6.2 Future Works

In this section, we suggest possible future research directions based on the work reported

in this thesis.

6.2.1 Microarray Data

Microarray data are gene expressions of thousands of genes produced by DNA microar-
ray analysis. Biologists have found that genes of similar function yield similar expres-
sion patterns in microarray data. Therefore, the computational analysis of microarray
data provides accurate means for extracting biological significance and using the data
to assign functions to genes. Currently microarray data are usually analyzed with the
basic similarity queries or data mining functions such as classification or clustering. A
property of microarray data is that they are of extremely high dimension (usually are of
more than thousands features), which creates much challenge to the query processing.
Our future works include: 1) Apply the RKNN query and BORDER to the microar-
ray data and study their outputs with biologists to find whether the RKNN query and
BORDER can be addition analysis tools. 2) Design efficient algorithms for advanced
similarity queries in extremely high-dimensional spaces. 3) Integrated kNN join into

currently-used data mining tools which involve set-oriented KNN search.

6.2.2 Sequential Data

Sequential data include genome or protein sequences, text and times series data. There
are many studies on the similarity search and data mining of sequential data. Examples
include frequent pattern discovery of genome sequences, classification and clustering of
protein sequences, pattern discovery and rule extraction in time series. The similarity

of sequential data is usually measured by edit distance, a distance metric which is much

147

more expensive than commdn distance metric.

Apart from applying the RKNN query and BORDER to the sequential data (partic-
ularly the genome and protein sequences) and analyze the results, we are interested in
designing efficient advanced similarity query algorithms involving expensive distance

metrics such as edit distance.

6.2.3 Stream Data

In applications such as network monitoring, telecommunications data management, web
personalization, manufacturing, sensor networks, data come in continuously in multiple,
rapid, time-varying, and unpredictaldreams Queries on stream data are usually time
sensitive and allow high-quality approximate answers. In the recent years, many propos-
als have been made to improve the traditional data management and query processing
technologies so that they can handle the infinite and continuous stream data efficiently.
Our future work is to design algorithms for the kNN join and the RKNN query which
could produce high-quality approximate answers efficiently for data streams.

In addition, we are also interested in being able to integrate the advance similarity

guery algorithms into existing data management systems cost effectively.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

www.georgetown.edu/uis/ia/dw/GLOSSARY0816.html.

Engineering Statistics Handbook http://www.itl.nist.gov/

div898/handbook/eda/section3/eda3664.htm.
http://kdd.ics.uci.edu/.

C. C. Aggarwal and P. S. Yu. Ouitlier detection for high dimensional datardo.
of SIGMOD 2001.

R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in se-
guence databases. Rroc. 4th Int. Conf. of Foundations of Data Organization

and Algo-rithmspages 69—-84" YEAR=1993, ADDRESS=San Diego, CA, USA.
V. Barnett and T. LewisOuitliers in Statistical DataJohn Wiley and Sons, 1994.

M. Basseville and 1.V. Nikiforov.Detection of abrupt changed® T R Prenstice

Hall, 1993.

D. A. Beckley, M. W. Evens, and V. K. Raman. An experiment with balanced and
unbalanced k-d trees for associative retrievalPtac. 9th International Confer-

ence on Computer Software and Applicatignsges 256—262. 1985.

148

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

149

D. A. Beckley, M. W. Evens, and V. K. Raman. Multikey retrieval from k-d
trees and quad trees. Rroc. 1985 ACM SIGMOD International Conference on
Management of Datgpages 291-301. 1985.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. TheeRe: An effi-
cient and robust access method for points and rectangl®so&n 1990 ACM SIG-

MOD International Conference on Management of Datages 322—-331. 1990.

S. Berchtold, C. Bhm, and H-P. Kriegel. The pyramid-technique: Towards break-
ing the curse of dimensionality. Faroc. 1998 ACM SIGMOD International Con-
ference on Management of Dafzages 142-153. 1998.

S. Berchtold, D.A. Keim, and H.P. Kriegel. The X-tree: An index structure for
high-dimensional data. IRroc. 22nd International Conference on Very Large

Data Basegpages 28-37. 1996.

E. Bertino. A survey of indexing techniques for object-oriented databases. In
Proc. Dagsthul Seminar on Query Processing in Object-Oriented, Complex-

Object and Nested Relational Databaspages 383—418. 1993.

H. Blanken, A. ljbema, P. Meek, and B. Akker. The generalized grid file: De-
scription and performance aspectsPioc. 6th International Conference on Data

Engineering pages 380-388. 1990.

C. Bohm. A cost model for query processing in high dimensional data spaces.

ACM TODS 25(2):129-178, 2000.

C. Bohm, S. Berchtold, and D.A. Keim. Searching in high dimensional spaces:
index structures for improving the performance of multimedia databas€s/

Computing Survey$83(3):322-373, 2001.

150

[17] C. Bohm, B. Braunmueller, F. Krebs, and H.-P. Kriegel. Epsilon grid order: An
algorithm for the similarity join on massive high-dimensional data.Ptac. of

ACM SIGMOD pages 379 — 388, 2001.

[18] C. Bohm and F. Krebs. High performance data mining using the nearest neighbor

join. In ICDM, pages 43-50, 2002.

[19] C. Bohm and F. Krebs. Supporting kdd applications by the k-nearest neighbor
join. In Proc. of DEXA pages 504-516, 2003.

[20] C. Bohm and F. Krebs. Thk-nearest neighbour join: Turbo charging the kdd
processKnowledge and Information Systeng$6):728—749, 2004.

[21] C. Bohm and H.-P. Kriegel. A cost model and index architecture for the similarity

join. In Proc. of ICDE pages 411-420, 2001.

[22] M. M. Breunig, H.-P. Kriegel, P. Kiger, and J. Sander. Data bubbles: quality
preserving performance boosting for hierarchical clusteri@8sMOD Record.

30(2):79-90, 2001.

[23] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identifying density-
based local outliers. IRroc. of SIGMOD pages 93-104, 2000.

[24] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins
using r-trees. IProc. of ACM SIGMODpages 237-246, 1993.

[25] B.E. Brodsky and B.S. DarkhovskyNonparametric methods in change-point

problems Kluwer Academic Publishers, 1993.

[26] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: a new approach
to indexing high dimensional spaces. Rroc. 26th International Conference on

Very Large Databasepages 89-100, 2000.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

151

K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: a new approach

to indexing high dimensional spaces.Rroc. of VLDB pages 89-100, 2000.

L. Chung, J. Gray, B. Worthington, and R. Hor®¥indows 2000 Disk 10 Perfor-

mance http://research.microsoft.com/ research/pubs/.

P. Ciaccia, M. Patella, and P. Zezula. M-trees: An efficient access method for
similarity search in metric space. Rroc. 23rd International Conference on Very

Large Data Basegages 426—435. 1997.

B. Cui, B. C. Ooi, J. Su, and K.-L. Tan. Contorting high dimensional data for
efficient main memory knn processing. Rroc. of ACM SIGMODpages 479—
490, 2003.

J.P. Dirtrich and B. Seeger. Gess: a scalable similarity-join algorithm for mining
large data sets in high dimensional spaces.Ptoc. of ACM SIGKDD pages
47-56, 2001.

J.-P. Dittrich and B. Seeger. Data redundancy and duplicate detection in spatial
join processing. IfProceedings of the 16th International Conference on Data En-

gineering pages 535-546, Washington, DC, USA, 2000. IEEE Computer Society.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noiseSIGKDD, pages

226-231, 1996.

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing —
A fast access method for dynamic filesCM Transactions on Database Systems

4(3):315-344, 1979,

C. Faloutsos. Gray-codes for partial match and range quéEEE Transactions

on Software Engineerind4(10):1381-1393, 1988.

152

[36] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber. Ef-
ficient and effective querying by image conteddurnal of Intelligent Information

Systems3(3):231-262, 1994.

[37] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyaldvances in Knowledge Dis-
covery and Data MiningAAAI Press, 1996.

[38] K. Fischer.Smallest enclosing ball of balls. Diploma thesis, Institute of Theoreti-

cal Computer ScienceTH Zurish, 2001.

[39] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and
video content: The QBIC systenEEE Computer28(9):23-32, 1995.

[40] M. Freeston. The BANG file: A new kind of grid file. IRroc. 1987 ACM SIG-
MOD International Conference on Management of Dgtages 260—269. 1987.

[41] K. Fukunaga.Introduction to Statistical Pattern Recognition (2nd editioAca-
demic Press, 1990.

[42] V. Gaede and O. tnther. Multidimensional access methodsCM Computing
Surveys30(2):170-231, 1998.

[43] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. InProc. 25th International Conference on Very Large Databapages

518-529, 1999.

[44] J. Goldstein, R. Ramakrishnan, U. Shaft, and J. B. Yu. Processing queries by
linear constraints. IfProc. of ACM SIGACT-SIGMOD-SIGARpages 257-267,
1997.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

153

G. H. Golub and C. F. Van LoanMatrix Computations The Johns Hopkins

University Press, 1989.

Y. Gong, H. C. Chua, and X. Guo. Image indexing and retrieval based on color

histograms. IProc. 2nd Multimedia Modeling Conferengeages 115-126. 1995.

V. Gudivada and R. Raghavan. Design and evaluation of algorithms for im-
age retrieval by spatial similarityACM Transactions on Information Systems

13(1):115-144, 1995.

O. Gunther. The design of the cell tree: An object-oriented index structure for
geometric databases. Rroc. 5th International Conference on Data Engineering

pages 598-605. 1989.

A. Guttman. R-trees: A dynamic index structure for spatial searchingprdno.
1984 ACM SIGMOD International Conference on Management of Dadges
47-57.1984.

I. Guyon and A. Elisseeff. An introduction to variable and feature seleciiou-

nal of Machine Learning ResearcB:1157-1182, 2003.

P.A.V. Hall and G.R. Dowling. Approximate string matchiri@omputing Surveys
12(4):381-402, 1980.

J. Han and M. KamberData Mining Concepts and Techniquellorgan Kauf-
mann Publishers, 2000.

A. Hanjalic, R.L. Lagendijk, and J.Biemond. Improving text retrieval for routing
problem using laten semantic indexing.Rroc. of the 17th Int. ACM SIGIR Conf.

on Research and Development in Information Retrigvatjes 282-291, 1994.

154

[54] J. Hartigan and M. Wong. A k-means clustering algorithmApplied Statistics,
28, pages 100-108, 1979.

[55] K. Hattori and Y. Torii. Effective algorithms for the nearest neighbor method in

the clustering problemPattern Recognition26(5), 1993.

[56] K. Hinrichs. Implementation of the grid file: Design concepts and experience.

BIT, 25:569-592, 1985.

[57] K. Hinrichs and J. Nievergelt. The grid file: A data structure designed to support
proximity queries on spatial objects. Rroc. International Workshop on Graph-

theoretic Concepts in Computer Scieppages 100-113. 1983.

[58] G. Hjaltason and H. Samet. Ranking in spatial databaseyrmposium on Large
Spatial Databasegpages 83-95, 1995.

[59] G. Hjaltason and H. Samet. Incremental distance join algorithm for spatial

databases. IRroc. of ACM SIGMODpages 237-258, 1998.

[60] G. Hjaltason and H. Samet. Distance browsing in spatial databAS#4. TODS
24(2):265-318, 1999.

[61] W. Hsu, M.-L. Lee, B. C. Ooi, P. K. Mohanty, K. L. Teo, and C. Xia. Advanced
database technologies in a diabetic healthcare systerroln of VLDB pages

1059-1062, 2002.

[62] Y. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins using r-trees: Breadth-

first traversal with global optimizations. FProc. of VLDB pages 396—-405, 1997.

[63] E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large biological
sequences. INLDB, pages 139-148, 2001.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

155

E. Hunt, M. P. Atkinson, and R. W. Irving. Database indexing for large dna and
protein sequence collectiondournal of VLDB 11(3):256 — 271, 2002.

Data Mining Software in Javanttp://www.cs.waikato.ac.nz/ml/weka/

H. V. Jagadish. Linear clustering of objects with multiple attributes.Pioc.
ACM SIGMOD International Conference on Management of Datges 332—
342, May 1990.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A reviehCM
Computing Survey81(3):264—-323, 19909.

H. Jin, B. C. Ooi, H. T. Shen, C. Yu, and A. Y. Zhou. An adaptive and efficient
dimensionality reduction algorithm for high-dimensional indexing. Phoc. of

ICDE, pages 87-98, 2003.
I. T. Jolliffe. Principal Component AnalysisSpringer-Verlag, 1986.

R. Agrawal K. Shim, R. Srikant. High-dimensional similarity joins. Rroc. of

ICDE, 1997.

K. V. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for sim-
ilarity searching in dynamic databases. Rroc. ACM SIGMOD Int. Conf. on
Management of Datgpages 166—176, 1998.

G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using

dynamic modelingComputey 32(8):68—75, 1999.

N. Katamaya and S. Satoh. The SR-tree: An index structure for high-dimensional
nearest neighbor queries. Rroc. 1997 ACM SIGMOD International Conference

on Management of Datd 997.

156

[74] N. Katayama and S. Satoh. Distinctiveness-sensitive nearest-neighbor search for
efficient similarity retrieval of multimedia information. IRroc. of ICDE pages

493-502, 2001.

[75] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in large

datasets. If°roc. of VLDB 1998.

[76] G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor queries in a mobile

environment. IrSpatio-Temporal Database Managemeuages 119-134, 1999.

[77] F. Korn, H. Jagadish, and C. Faloutsos. Effciently supporting ad hoc queries in
large datasets of time sequencesPtoc. ACM SIGMOD Int. Conf. on Manage-

ment of Datapages 289-300, 1997.

[78] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor

queries. InProc. of ACM SIGMODpages 201-212, 2000.

[79] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest neighbor aggre-

gates over data streams.RPnoc. of VLDB 2002.

[80] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest
neighbor search in medical image database®rd. 22nd International Confer-

ence on Very Large Data Basgmges 215-226. 1996.

[81] N. Koudas and K.C. Sevcik. High dimensional similarity joins: algorithms and

performance evaluatiohEEE TKDE 12(1):3-8, 2000.

[82] K.P.Chan and A.W-C Fu. Efficient time series matching by waveletsPrae.
15th Int. Conf. on Data Engineeringages 126-133, 1999.

[83] P. Larson. Dynamic hashin®IT, 13:184-201, 1978.

157

[84] K.-1.Lin, M. Nolen, and C. Yang. Applying bulk insertion techniques for dynamic
reverse nearest neighbor problemsIDEAS pages 290-297, 2003.

[85] W. Litwin. Linear hashing: A new tool for file and table addressingPtoc. 6th

International Conference on Very Large Data Bagesges 212-223. 1980.

[86] W. Litwin, N. A. Neimat, and D. A. Schneider. LH* — Linear hashing for dis-
tributed files. InProc. 1993 ACM SIGMOD International Conference on Man-

agement of Datgpages 327-336. 1993.

[87] M.-L. Lo and C. V. Ravishankar. Spatial joins using seeded trees2rdn. of
ACM SIGMOD 1994.

[88] M.-L. Lo and C.V. Ravishankar. Spatial hash-joins.Aroc. of ACM SIGMOD
pages 247-258, 1996.

[89] D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method
with good guaranteed performancdCM Transactions on Database Systems

15(4):625-658, 1990,

[90] L. Horvath M. C$rgd. Limit Theorems in Change-Point Analysi&/iley, 1997.

[91] Y. Manopopoulos, Y. Theodoridis, and V.J. Tsotfalvanced Database Indexing
Kluwer Academic, 2000.

[92] T. Matsuyama, L.V. Hao, and M. Nagao. A file organization for geographic infor-
mation systems based on spatial proximitgternational Journal on Computer

Vision, Graphics, and Image Processjra$(3):303—318, 1984.

[93] B. Moon, H.V. Jagadish, C. Faloutsos, and J.H. Saltz. Analysis of the clustering

properties of hilbert space-filling curv@&echnical Report, MarylandL996.

158

[94] W. Niblack, R. Barber W. Equitz, M. Flicker, E. Glasman, D. Petkovic, P. Yanker,
and C. Faloutsos. The QBIC project: Query images by content using color, texture
and shape. IiBtorage and Retrieval for Image and Video Databases, Volume

1908 pages 173-187. 1993.

[95] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable, sym-
metric multikey file structureACM Transactions on Database Systef(4):38—

71,1984.

[96] V. E. Ogle and M. Stonebraker. Chabot: Retrieval from a relational database of

images.|[EEE Computer28(9):40-48, 1995.

[97] B. C. Ooi. Efficient Query Processing in Geographical Information Systems

Springer-Verlag, 1990.

[98] B. C. Ooi, R. Sacks-Davis, and K. J. McDonell. Extending a dbms for geographic
applications. InProc. 5th International Conference on Data Engineeripgges

590-597. 1989.

[99] B. C. Ooi and K. L. Tan. B-trees: Bearing fruits of all kinds.Rroc. Australasian

Database Conferenc002.

[100] B. C. Ooi, K. L. Tan, C. Yu, and S. Bressan. Indexing the edge: a simple and
yet efficient approach to high-dimensional indexingPhoc. 18th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systeages 166—
174. 2000.

[101] B. C. Ooi, K. L. Tan, C. Yu, and S. Bressan. Transformation-based method for
indexing high dimensional dat@atent pending #200002639-3000.

159

[102] J. A. Orenstein. Spatial query processing in an object—oriented database system.
In Proc. 1986 ACM SIGMOD International Conference on Management of,Data
pages 326—336. 1986.

[103] J. A. Orenstein. An algorithm for computing the overlay of k-dimensional spaces.
In Proceedings of the Second International Symposium on Advances in Spatial

Databasespages 381-400, London, UK, 1991. Springer-Verlag.

[104] O. Owolabi and D.R. McGregor. Fast approximate string match8wftware —
Practice and Experien¢d 8:387-393, 1988.

[105] J.M. Patel and D.J. DeWitt. Partition based spatial-merge joirRréc. of ACM
SIGMOD pages 259-270, 1996.

[106] I. Popivanov and R. J. Miller. Similarity search over time series data using

wavelets. InProc. 17th Int. Conf. on Data Engineeringages 212-121, 2001.

[107] R. Ramakrishnan and J. Gehrk@atabase Management SystericGraw-Hill,
2000.

[108] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queri€sodnof
ACM SIGMOD pages 71-79, 1995.

[109] Y. Sakurai, M. Yoshikawa, and S. Uemura. The a-tree: An index structure for
high-dimensional spaces using relative approximatioRrat. 26th International

Conference on Very Large Data Baspages 516—-526. 2000.

[110] B. Salzberg and V. J. Tsotras. A comparison of access methods for time evolving

data. InTechnical Report NU-CCS-94-2llortheastern University, 1994.

160

[111] T. Sellis, N. Roussopoulos, and C. Faloutsos. Thetfiee: A dynamic index for
multi-dimensional objects. IRroc. 13th International Conference on Very Large

Data Basespages 507-518. 1987.

[112] A. Singh, H. Ferhatosmanoglu, and A. $S. Tosun. High dimensional reverse nearest

neighbor queries. IRroc. of CIKM pages 91-98, 2003.

[113] M. Smid. Closest point problems in computational geometryH&amdbook on

Computational Geometr§lsevier Science Publishing, 1997.

[114] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse nearest neighbor queries for
dynamic databases. FProc. of ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovergages 44-53, 2000.

[115] I. Stanoi, M. Riedewald, D. Agrawal, and A. El Abbadi. Discovery of influence
sets in frequently updated databasesPioc. of VLDB pages 99-108, 2001.

[116] Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary dimensionality.

In Proc. of VLDB pages 744755, 2004.

[117] A. K. H. Tung, J. Han, L. V.S. Lakshmanan, and R. T. Ng. Constraint-based

clustering in large databases.RPrnoc. of ICDE pages 405-419, 2001.

[118] R. Weber and S. Blott. An approximation-based data structure for similarity
search. InTechnical Report 24, ESPRIT project HERMES (no. 919p4&yes
194-205. 1997.

[119] R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spacesrat. 24th Interna-

tional Conference on Very Large Data Baspages 194—-205. 1998.

161

[120] K. Whang and R. Krishnamurthy. Multilevel grid files. Technical Report RC-
11516, IBM Thomas J. Watson Research Center, 1985.

[121] D.A. White and R. Jain. Similarity indexing with the SS-tree. Rroc. 12th

International Conference on Data Engineerjmages 516-523. 1996.

[122] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. A comparison of dft and dwt based
sim-ilarity search in time-series databasesPtac. 9th Int. Conf. on Information

and Knowledge Managemeiplages 488—-495, 2000.

[123] N. Wyse, R. Dubes, and A.K. Jain. A critical evaluation of intrinsic dimensionality

algorithms.Pattern Recognition in Practicpages 415-425, 1980.

[124] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An efficient method for knn join
processing. IiProc. of VLDB 2004.

[125] C. Yang and K.-1. Lin. An index structure for efficient reverse nearest neighbor

queries. InProc. of ICDE pages 485-492, 2001.

[126] C. Yu.High-Dimensional Indexing?hD thesis, Department of Computer Science,

National University of Singapore, 2001.

[127] C. Yu, S. Bressan, B. C. Ooi, and K. L. Tan. Query high-dimensional data in
single dimensional spac¥LDB Journa) 13(2):105-119, 2004.

[128] C. Yu, B. C. Ooi, and K. L. Tan. Transformation-based method for similarity
search.patent filed 2000.

[129] C. Yu, B. C. Ooi, K. L. Tan, and H. Jagadish. Indexing the distance: an efficient
method to knn processing. Proc. 27th International Conference on Very Large

Data Bases2001.

162

[130] M. Zait and H. Messatfa. A comparative study of clustering method$-:Gg€S

Journal, Special Issue on Data Miningages 149-159. 1997.

[131] P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approximate similarity retrieval

with m-trees.VLDB Journal 7(4):275-293, 1998.

[132] J. Zobel and P. Dart. Phonetic string matching: Lessons from information re-
trieval. InProc. 19th ACM-SIGIR International Conference on Research and De-

velopment in Information Retrieyglages 166—173, 1996.

