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SUMMARY  

 

Caroverine, an N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor antagonist together with antioxidant activity, has 

been shown to protect the inner ear from excitotoxicity and to be effective in the 

treatment of tinnitus, sudden hearing loss and speech discrimination disorders in 

presbyacusis. The clinical applications of most glutamate receptor antagonists are 

limited by the severe side effects when administrated systemically. Local 

application of caroverine directly onto the round window membrane (RWM) could 

be a more effective means and avoid side/adverse effect. For clinical application, 

basic information about the rate of drug diffusion across the RWM, systemic 

caroverine absorption, and elimination of drug from the inner ear is necessary. The 

first part of the thesis focused on the pharmacokinetics of caroverine in the 

perilymph, cerebrospinal fluid (CSF) and plasma after systemic and local 

applications at different dosages in guinea pigs. High-performance liquid 

chromatography was used to determine the drug concentrations. Our results show 

much higher caroverine concentrations in the perilymph with lower concentrations 

in CSF and plasma following local applications, as compared with systemic 

administration. Auditory brainstem responses (ABR) were measured to evaluate the 

changes in auditory function following local applications. The effects on hearing 

were transient and fully reversible 24 h after RWM applications. The findings 

suggest that local application of caroverine onto the RWM for the treatment of inner 
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ear diseases might be both safe and more efficacious while avoiding high blood and 

CSF caroverine levels seen with systemic administration. 

 

The second and third parts of the thesis used the above RWM application model to 

test the protective and therapeutic effects of caroverine on noise-induced hearing 

loss in the guinea pig. The destruction of the afferent dendrite in the cochlea after 

noise exposure has been proved to be due to the excitotoxicity of excessive 

glutamate. Consequently, the production of reactive oxygen species plays an 

important role in cochlear damage. Caroverine was applied onto the RWM 

immediately prior to, 1 h or 24 h after noise exposure. The animals were exposed to 

1/3 octave band noise centered at 6.3 kHz (110 dB, sound pressure level, SPL) for 1 

h and the ABR was measured before and at regular time intervals after noise 

exposure. Our results show that caroverine can significantly protect the auditory 

function against noise trauma when applied immediately prior to noise exposure. 

The hearing was significantly rescued by caroverine when administrated 1 h, but 

not 24 h, after noise trauma. The two parts of the thesis demonstrated that 

caroverine could significantly protect and rescue the auditory function against noise 

trauma when applied prior to or 1 h after noise exposure. Thus, pharmacological 

protection of the cochlea against noise is possible and may be of great clinical 

potential. 
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ABBREVIATIONS 

 

ABR         auditory brainstem response 

AMPA     α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

CSF         cerebrospinal fluid 

dB            decibel 

HD           high dose 

HPLC      high-performance liquid chromatography 

IHC         inner hair cell 

IV            intravenous  

LD           low dose 

NIHL       noise-induced hearing loss 

NMDA    N-methyl-D-aspartate 

OHC        outer hair cell 

PTS          permanent threshold shift  

ROS         reactive oxygen species   

RWM       round window membrane 

         SPL          sound pressure level 
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INTRODUCTION 

 

Mammalian auditory anatomy   

 
The mammalian auditory system consists of the outer, middle and inner ear with the 

auditory nerve and the central auditory pathway (Fig. 1). The outer ear is composed 

of the auricle and the external auditory canal. The middle ear includes the tympanic 

membrane, the ossicles with the associated muscles, tendons, ligaments, and the 

Eustachian tube. The three ossicles are the malleus, incus and stapes. The tensor 

tympani is attached to the malleus and is innervated by the trigeminal cranial nerve. 

The stapedium muscle is attached to the stapes, and is innervated by the facial 

cranial nerve.  

 
Fig.1. The structure of the human ear. The auditory system includes outer ear, 
middle ear, inner ear, auditory nerve and central auditory pathway. The hearing 
organ is in the inner ear and called cochlea. The round window is the only opening 
covered with membrane which separates the scala tympani from the round window 
niche. Modified from Alec N. Salt, Washington University, 2003. 
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Fig. 2. The structure of the cochlea. Reissner’s membrane and the basilar membrane 
separate the cochlea into three compartments. The scala tympani and scala vestibuli 
are filled with the perilymph which is similar to the extracellular solution with high 
sodium and low potassium. The scala media is filled with endolymph which is 
similar to intracellular solution with high potassium and low sodium. The organ of 
Corti is situated on the basilar membrane and osseous spiral lamina. Modified from 
Alec N. Salt, Washington University, 2003. 
 

The inner ear is deeply embedded in the temporal bone and includes the hearing and 

vestibular organs. On the outside the hearing organ resembles a snail shell and is 

called the cochlea. The middle ear and inner ear communicate via two openings in 

the temporal bone, the oval and round windows. The innermost middle ear ossicle, 

the stapes, is inserted in the oval window, and a flexible membrane covers the 

round window. On the inside, the cochlea is divided into three compartments, scala 

vestibuli, scala media, and scala tympani (Fig. 2). The scala media is separated from 

the scala vestibuli above by Reissner’s membrane and from the scala tympani 

below by the basilar membrane. On the innermost aspect, the basilar membrane 

goes from the spiral lamina in the modiolus to the outermost spiral ligament and 
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stria vascularis. In the apical part of the cochlea the two outer scalae, the scala 

vestibuli and scala tympani, are joined together via the helicotrema and are filled by 

the perilymph. The scala media, the compartment between the scala vestibuli and 

tympani, is filled by endolymph.  

 

The organ of Corti is situated in the scala media on the basilar membrane and 

osseous spiral lamina. In human the basilar membrane is approximately 0.12 mm 

wide at the base and increases to approximately 0.5 mm at the apex. The major 

components of the organ of Corti are one row of inner hair cells (IHCs), three rows 

of outer hair cells (OHCs), supporting cells (Deiters, Hensen, Claudius), tectorial 

membrane, and the reticular lamina-cuticular plate complex (Fig. 3). Supporting 

cells provide structural and metabolic support for the organ of Corti. Inner and outer 

hair cells are important in transduction of acoustic energy into neural energy. There 

are approximately 3,500 IHCs and 12,000 OHCs in each cochlea in human 

(Ulehlova et al., 1987). A sensory bundle containing three rows of stereocilia, 

which on the IHC form a shallow U-shape and on the OHC a W- or V-shape 

crowns the apical surfaces of both types of hair cells. The OHC stereocilia are 

firmly attached to the underside of the tectorial membrane, while the IHC 

stereocilia are either freestanding or only delicately attached to the membrane (Lim, 

1980). The tight junctions with the reticular lamina seal the apices of the hair cells. 

The basilar membrane is permeable to ions, and consequently the bodies of the hair 

cells are surrounded by the perilymph. In contrast, the apical faces of hair cells with 

their stereocilia and the entire reticular lamina are bathed by the endolymph. The 
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IHCs are the primary sensory cells that transit information to the brain, while the 

function of the OHC is perceived as that of a cochlear amplifier that refines the 

sensitivity and frequency selectivity of the mechanical vibrations of the cochlea. 

The positive feedback force provided by OHCs cancels the viscous and dissipative 

forces exerted by the surrounding fluid and other cells, and leads to a 100-fold 

increase in the sensitivity of the cochlea by enhancing resonance responses along 

the partition (Robles and Ruggero, 2001).   

 

 

 
Fig. 3. The structure of the Organ of Corti. The Organ of Corti consists of one row 
of inner hair cells, three row of outer hair cells, supporting cells, tectorial 
membrane, and basilar membrane. There are stereocilia on the top of hair cells. 
Modified from Atlantic coast ear specialists, PC, 2003. 
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The hair cells of the cochlea are innervated by both afferent and efferent neurons. 

The afferent neurons carry sensory information from the hair cells to the central 

nervous system. About 90-95 % of the afferent nerves come from the IHCs. Each 

IHC receives about 20 fibers, whereas each of the afferents to the OHCs innervates 

about 10 OHCs at the base and 50 at the apex of the cochlea (Spoendlin, 1972). The 

efferent neurons descend from the superior olivary complex in the brainstem to the 

cochlea. Unmyelinated efferents originate from the lateral superior olivary nucleus, 

descend mostly ipsilaterally, and terminate on the afferent dendrites of the IHCs 

(Warr and Guinan, 1979). Myelinated fibers from the medial superior olive go 

mostly contralaterally toward the basal part of the OHCs.     

 

Blood-labyrinthine barrier  

 
The two inner ear fluids, the endolymph and perilymph (Fig. 4), are essential to 

both hearing and equilibration. The sensory cells are bathed with endolymph at their 

apical ciliated surfaces and with perilymph at their basal synaptic ones. The two 

fluids differ dramatically in composition: the endolymph is a positively polarized 

solution of potassium salts that is similar to intracellular fluid, whereas the 

perilymph has a chemical composition resembling that of a plasma ultrafiltrate 

(Sterkers et al., 1988).  

 

Three different theories of the production and turnover of endolymph are proposed: 

the longitudinal, radial, and dynamic theories. According to the longitudinal theory, 

endolymph is produced by the secretory epithelia of the cochlea and the vestibule 
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and is reabsorbed in the endolymphatic sac (Guild, 1977). The radial theory 

suggests that endolymph is produced and reabsorbed locally (Naftalin and Harrison, 

1958; Lawrence et al., 1961). That is, endolymph is secreted by the stria vascularis 

and the Reissner’s membrane acts as a filter through which fluids and electrolytes 

pass from endolymph to perilymph. The dynamic theory incorporates both the 

longitudinal and the radial theories (Lundquist, 1976). Longitudinal flow is 

considered important for the transport and reabsorption of cellular debris and high 

molecular waste products via the endolymphatic sac, while radial flow is believed 

important for ion exchange to maintain the characteristic electrochemical 

composition of endolymph as well as the endocochlear electric potential.  

 

 

 

Fig. 4. The inner ear fluid compartments. The endolymph is proposed to be 
produced by the secretory epithelia of the cochlea and vestibule and resbsorbed in 
the endolymphatic sac, or be secreted and reabsorbed by the stria vascularis, 
separately or in combination. The perilymph is thought to come from CSF and/or 
blood vessels. Modified from Alec N. Salt, Washington University, 2003. 
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The perilymph seems to have three potential origins, alone or in combination 

(Medina and Drescher, 1981; Manzo et al., 1990; Thalmann et al., 1992). One 

source is the cerebrospinal fluid (CSF), which reaches and mixes with the 

perilymph of the scala tympani via the cochlear aqueduct. The cochlear aqueduct 

maintains its relatively patency in lower-order mammals, whereas in human it has a 

more rudimentary structure. The second origin of the perilymph is the CSF that 

enters the cochlea through perivascular spaces and vestibulocochlear nerve sheaths 

at the distal end of the internal auditory canal. The third and probably the major 

source is from the blood vessels that supply the inner ear itself. It is suggested that 

the origin of scala tympani perilymph is different from that of scala vestibuli 

perilymph (Sterkers et al., 1988).   Following intravenous administration of the 

radioactive-labeled hydrophilic molecules mannitol and sucrose in animals, these 

molecules appeared faster and reached higher concentration in the scala vestibuli 

than in the scala tympani or CSF. However, another study showed that no 

significant differences in the average concentrations of seven-selected biochemical 

substances within the perilymph following cochlear aqueduct occlusion (Scheibe 

and Haupt, 1985). The question of whether the cochlear aqueduct provides a 

physiological biochemical communication between the CSF and perilymph in 

human is still under debate and remains controversial. Consequently, any study 

designed to assess pharmacokinetics profiles of chemicals in the inner ear fluids 

should also include similar profiles of the CSF.  
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Permeability of round window membrane  

 
The round window membrane (RWM) is located in medial wall of the middle ear, 

within the round window niche (Fig. 5). The round window niche, which is 

posteroinferior to the promontory, has a triangular shape and is bound medially by 

the RWM (Goycoolea et al., 1990). There are commonly folds of middle ear 

mucosa, which is termed false round window membrane, at the entrance of the 

niche. The RWM separates the niche from the scala tympani and its outer surface is 

directly inferiorly. The cochlear aqueduct, which connects the perilymphatic space 

with the cerebrospinal space, is located close to the posterior part of the RWM. The 

oval window is directly superior to the RWM.  

 

 

 
Fig. 5. The round window membrane (RWM). T
window niche and separates the niche from the scala
 

 

 

 Round window membrane 
 

he RWM bounds the round 
 tympani.  
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The RWM is thicker at the edges and has a slight convexity towards the scala 

tympani (Carpenter et al., 1989). The average thickness in human is 70 µm and 

does not change with age. The membrane consists of three layers: an outer 

epithelium, a middle connective tissue, and an inner epithelium (Fig. 6) (Goycoolea 

2001). The outer epithelium consists of a single layer of cells continuous with the 

mucous membrane lining the middle ear. The middle connective tissue contains 

fibroblasts, collagen, elastic fibers, and blood and lymph vessels. It is the 

dominating part of the RWM and is thought to be in conjunction with the 

mucoperiosteum of the otic capsule. The inner epithelial cells are squamous and 

consist of several layers of thin cells, which are continuous with the mesothelial 

cells of the scala tympani. The extracellular spaces are large and no basal lamina 

separates this layer from the middle fibrous layer.     

 

 

 
Fig. 6. Schematic drawing of the round window membrane. The RWM consists an 
outer single-layer epithelium, a middle connective tissue, and an inner stratified 
squamous epithelium.  
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The function of the RWM is presumed to release mechanical energy and/or conduct 

sound to the scala tympani (Scarpa A, 1962). Based on experimental studies and 

anatomical observations, the RWM may also act as a barrier to ototoxic substances 

in the middle ear and participate in the secretion and absorption of substances 

(Richardson et al., 1971; Miriszlai et al., 1978). Animal experiments show that the 

RWM behaves like a semipermeable membrane. Many substances with both low 

and high molecular weights have been demonstrated to penetrate through the RWM 

when placed in the round window niche (Goycoolea and Lundman, 1997; 

Goycoolea 2001).  These substances include sodium ions, antibiotics, antiseptics, 

arachidonic acid metabolites, local anesthetics, toxins and albumin. Tracer studies 

using cationic ferritin, horseradish peroxidase, 1 µm latex sphere and neomycin 

gold spheres have shown the permeability of the RWM to these substances when 

applied in the middle ear side in chinchillas, guinea pigs, cats, Mongolian gerbils, 

and rhesus monkeys. The permeability of the RWM can be influenced by the 

factors such as size, configuration, concentration, liposolubility and electrical 

charge of the substance, and the thickness and the condition of the RWM 

(Goycoolea et al., 1988). The substances placed on the RWM may traverse through 

the cytoplasm as pinocytotic vesicles or through different channels in between cells 

in the epithelium. In the connective tissue layer, cells can phagocytize the substance 

and traverse towards perilymph and/or penetrate blood or lymph vessels in this 

layer (Goycoolea and Lundman, 1997). Theoretically, after the substance reaches 

the perilymph it would go towards the CSF through the cochlear aqueduct, up to the 

scala tymphi, or find way to the endolymph.  
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Local RWM application for the treatment of inner ear disorders 

 

Clinically, there is increasing interest in the local delivery of drugs directly into the 

inner ear across the intact RWM. The main advantage of the local method is that the 

drug will bypass the blood-labyrinth barrier and directly enter the inner ear, 

resulting in higher inner ear concentration and reduced systemic absorption and 

toxicity. In cases of Ménière's disease, the instillation of gentamicin or streptomycin 

solutions into the middle ear has been widely used as a method of suppressing 

vestibular function in the affected ear (Blackley 1997). This approach avoids the 

risk of damaging the non-affected ear, as would occur with systemic treatments. 

Experimental studies are developing uses for a wide variety of agents, including 

steroids, local anesthetics, antioxidants, glutamate receptor antagonists, 

neurotrophins and vectors for gene therapy, delivered on or through the RWM, as 

treatments for various inner ear disorders (Coles et al., 1992; Kopke et al., 1996; 

Blackley 1997; Seidman 1998; Stover et al., 1999; Yage et al., 1999). Furthermore, 

several specific delivery systems have been developed for more controlled local 

applications, including round window microcatheter (Durect Inc., Cupertino, CA; 

IntraEar, Inc., Denver, CO), the MicroWick inserted through a tympanic membrane 

vent tube into the round window niche (Silverstein, 1999), and a bone-anchored, 

totally implantable drug delivery system (TI-DDS) composed of a micropump, a 

drug reservoir and a septum port (Lehner et al., 1997).   
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However, most drug application protocols are empirically based because of the 

unknown pharmacokinetics of the drugs in the inner ear. The amount and 

distribution of applied substances within the inner ear is poorly understood due to 

the considerable technical difficulties in making such measurements.  As a result, 

the consequences of changes in delivery method, applied drug concentration, or 

even small alterations in treatment protocols have been difficult to predict. For 

instance, gentamicin has been applied onto the RWM by single or repeated 

intratympanic injection, by application onto the gelfoam placed on the RWM, by 

applying onto a wick, or by continuous delivery via implanted catheters. The 

therapeutic results varied significantly among these approaches (Plontke et al., 

2002). The variation among different groups may be attributable to both different 

dosing regimens and application methods, although a correlation of outcome to both 

dosage and application method has yet to be established. The variability in results 

and the lack of uniformity in treatment protocols make it important to investigate 

the distribution and elimination of the drugs in the cochlea fluid spaces and the 

influence of different methods of application.   

 

Neurotransmission in the cochlea 

 

Afferent system 

 
The mechanical stimulation results in the release of neurotransmitter from the inner 

hair cells to afferent nerve (Fig. 4). There is abundant evidence that glutamate is the 

most likely neurotransmitter at the synapse between the IHC and its afferent neuron 
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(Klinke, 1986; Altschuler et al., 1989; Eybalin and Pujol, 1989; Felix and 

Ehrenberger, 1990; Eybalin, 1993; Puel, 1995; Ruel et al., 1999; Glowatzki and 

Fuchs, 2002). Electrophysiological studies showed that glutamate and aspartate 

increased the spontaneous firing in the primary auditory neurons when applied to 

the scala tympani (Bobbin, 1979). By using microiontophoretic technique, 

glutamate was demonstrated to increase the afferent neuron firing rates when 

applied in the vicinity of the synapse (Ehrenberger and Felix, 1991). The glutamate-

induced activity was blocked by glutamate competitive and non-competitive 

antagonists (Cousillas et al., 1988; Ehrenberger and Felix, 1991; Devau et al., 

1993). Immunohistochemical studies have demonstrated that a selective 

immunoreactive staining for glutamate in the IHCs as well as spiral ganglion 

neurons (Altschuler et al., 1989; Usami et al., 1995).  

 

There are two main classes of glutamate receptors in the cochlea: the ion channel 

linked (ionotropic) receptors responsible for the rapid neuronal excitation, and the 

metabotropic receptors coupled via G-proteins to intracellular messengers to 

mediate relatively slow glutamate responses. The ionotropic glutamate receptors are 

predominately located post-synaptically (Petralia and Wenthold 1995) and are 

divided into N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and kainate receptors (Fig. 7) (Ryan et al., 1991; 

Niedzielski and Wenthold, 1995; Usami et al., 1995; Matsubara et al., 1996). 

AMPA receptor is also found to locate pre-synaptically on the hair cells, probably 

providing a negative feedback to the response of neurotransmitter release  
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Fig. 7. The afferent neurotransmission. It is generally accepted that glutamate is the 
major neurotransmitter between the inner hair cell and its afferent neuron. There are 
three types of ionotropic glutamate receptors on the neurons: AMPA, NMDA and 
kainate receptors. Physiologically, the sound is transmitted from outer ear, middle 
ear to the inner ear and stimulates the inner hair cells. Under stimulation, the inner 
hair cells will release glutamate to the synapse and the glutamate will bind to its 
receptors and cause the influx of ions into the neurons. The influx the ions will 
depolarize the neuron and initiate action potential. This signal will be transmitted 
via the auditory nerve to the brain and perceived as sound. 
 

(Matsubara et al., 1996). AMPA receptors are activated at low-to-moderate sound 

stimulus, whereas NMDA receptors are activated by high-intensity sounds (Felix 

and Ehrenberger, 1991; Puel et al., 1991).  The role of NMDA receptors remains 

controversial. For instance, iontophoretic application of NMDA induced excitation 

of the primary auditory nerve fibers (Felix and Ehrenberger, 1990), but no effect of 

NMDA has been found on isolated primary auditory nerve soma or in intact 
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preparation (Ruel et al., 1999, 2000). In isolated primary auditory nerve soma, 

AMPA induced a fast onset and rapidly desensitized inward current, while kainate 

initiated only a nondesensitizing, steady-state current (Nakagawa et al., 1991; Ruel 

et al., 1999). Recently, GYKI 53784 has been demonstrated to be one of the most 

selective antagonists for AMPA receptors (Bleakman et al., 1996). Perfusion of 10 

µM GYKI 53784 significantly reduced the spontaneous discharge rate of the 

auditory nerve fiber. The activity of the fiber was completely abolished by 50 µM 

GYKI 53784, suggesting that AMPA receptors, not kainate or NMDA receptors, 

predominately mediate the fast excitatory transmission at the IHC-afferent nerve 

synapse (Ruel et al., 1999, 2000).  

      

Supporting cells take up excessive glutamate released from the presynaptic body in 

a Na+-dependent manner through the glutamate transporter (GLAST) (Gulley et al., 

1979; Eybalin and Pujol, 1983; Li et al., 1994; Furness and Lehre, 1997; Rebillard 

et al., 2003). GLAST is enriched in those membrane domains that face the synaptic 

region. Glutamate is converted to glutamine by glutamine synthetase and 

transferred to hair cells by unknown mechanisms. In the hair cells the glutamine is 

converted to glutamate by phosphate-activated glutaminase and glutamate is then 

accumulated in vesicles and ready for a new round of exocytosis.   

 

 Efferent system 

 
According to the site of origin in the brain stem, the efferent supply to the cochlea is 

divided into the lateral efferent and the medial efferent innervations. The lateral 
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efferent system coming from the lateral superior olive modulates the activity of the 

auditory nerve dendrites located beneath the IHCs. Biochemical, pharmacological 

and immunochemical experiments have demonstrated that the lateral efferent 

system may use acetylcholine (ACh), gamma aminobutyric acid (GABA), 

dopamine and several neuropeptides such as enkephalin and calcitonin gene-related 

peptide (CGRP) as neurotransmitters (Eybalin, 1993). ACh is thought to be one 

important efferent neurotransmitter since Schuknecht et al. (1959) reported that the 

deefferented cochlea showed negative stain for acetylcholinesterase in contrast to 

the intact cochlea. ACh increases the spontaneous and glutamate-mediated firing 

activity in the afferent fibers, whereas GABA reduces glutamate-induced 

depolarization and has little effect on spontaneous activity (Felix and Ehrenberger, 

1992). Dopamine, another efferent neurotransmitter, reduces the cochlear potentials 

only at the highest intensities of sound stimulation (d'Aldin et al., 1995; Ruel et al., 

2001).      

 

The medial efferent system, originating from medial nuclei of the superior olivary 

complex, modulates the activity of the OHC. There are numerous reports indicating 

that ACh is the main neurotransmitter in the medial efferent system, while the two 

other neuroactive substances, GABA and CGRP, may play some role (Puel, 1995). 

When the medial olivery complex bundle was stimulated, ACh increased in the 

cochlea (Norris and Guth, 1974). Kujawa et al. (1992) showed that ACh, when 

applied directly in the cochlea, decreased the amplitude of the DPOAEs, and this 

can be prevented by inhibitors of ACh such as curare and strychnine. Furthermore, 
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it has been revealed that ACh is the neurotransmitter mainly in the basal turns 

(Eybalin and Pujol, 1987), whereas GABA may be involved in the apical part 

(Eybalin et al., 1988). There are two major ACh receptors represented on the OHCs. 

Muscarinic receptors are preferentially activated by muscarine that mediates 

depolarization and facilitation of the afferent firing. Nicotinic receptors, with α9 

and α10 units as its main component, are excited by nicotine and mediate 

hyperpolarization and suppression of afferent firing (Elgoyhen et al., 1994; 

Glowatzki et al., 1995; Vetter et al., 1995; Elgoyhen et al., 2001; Weisstaub et al., 

2002). ACh induces an outward K+ current by binding to the nicotinic receptors, 

resulting in OHC hyperpolarization (Housley and Ashmore, 1991) and, 

subsequently an increase in the CM (Bobbin and Konishi, 1971). Apart from the 

activation of K+ current, nicotinic receptors are supposed to be involved in the 

modulation of cell motility. In the isolated OHCs, inositol 1,4,5-trisphosphate 

induced motile responses (Schacht and Zenner, 1987).  

 

Transduction of sound 

 
Sound of different frequencies is transferred from the outer ear canal to the 

tympanic membrane. The pressure in the middle ear is increased from the tympanic 

membrane with its larger area to the oval window with its smaller area. The 

vibration of the stapes on the oval window produces a pressure difference in the 

scala tympani and scala vestibuli. The sound wave will displace the basilar 

membrane. The displacement pattern of the basilar membrane is a traveling wave. 

Because the basilar membrane is stiffer at the base than in the apex and the stiffness 
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component is distributed continuously, the traveling wave always progress from 

base to apex. The principal mechanical basis for cochlear frequency analysis was 

first demonstrated by Georg von Békésy (1960) by using cadaver cochleae from 

human, for which he was awarded the 1961 Nobel Prize for Physiology or 

Medicine. The peak or maximum amplitude of basilar membrane displacement 

varies as a function of stimulus frequency. Traveling waves produced by high-

frequency sounds have maximum displacement near the base of the cochlea, 

whereas the waves to low-frequency sounds have the maximum toward the apical 

region. Traveling wave to high-frequency sounds does not reach the apical region of 

the cochlea, but wave to low-frequency sounds can travel the entire length of the 

basilar membrane. The mechanism for the sharply tuned peak in the mechanical 

traveling wave involves activity of the OHCs that enhances the motion of the 

basilar membrane at frequencies near the best frequency of the particular cochlear 

location. Factors contributing to the enhancement, also called the cochlear 

amplifier, may include the motility of OHCs and the mechanical properties of the 

stereocilia and tectorial membrane.    

 

The movement of the basilar membrane causes a shearing motion between the 

stereocilia and the tectorial membrane. The tip of the stereocilia contains the 

cationic channel (Denk et al., 1995). The resulting deflection or sliding of the 

stereocilia alters the opening probability of mechanically sensitive ion channels. 

The flow of potassium ions into the sensory cell is modulated by the opening and 

closing of ion channels of the stereocilia. Stereocilia displacement in one direction 
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makes cation-selective channels near the tips of the stereocilia open, and the 

endolyphatic potassium ions enter the hair cells and produce depolarization. The 

resulting intracellular depolarization leads to the activation of voltage-sensitive 

calcium channels. The calcium inflow releases the neurotransmitter into 

postsynaptic terminals and causes the activation of the afferent nerve fibers. The 

mechanical sense is then transmitted to the central nervous system (Avraham, 

1997). Deflection of stereocilia in the other direction decreases the open probability 

of the ion channel and leads to hyperpolarization (Flock, 1965; Hudspeth, 1983). 

 

Auditory brainstem response 

 
The auditory brainstem response (ABR) is by far the most widely used of the 

various auditory evoked potentials in both the clinic and experimental study. The 

pioneering work of Berger (1929) revealed that it was possible to record the 

electrical activity of the brain (electroencephalogram, EEG) from the electrodes 

placed on the human scalp. A change in EEG occurs when a stimulus is presented. 

Davis et al. (1939) first described the auditory evoked potential obtained from alert 

and sleeping human beings. They found small but consistent changes in raw EEG 

tracings when a repeatable auditory stimulus was introduced. Later, Clark et al. 

(1958, 1961) made great contributions to extract tiny evoked potential responses 

from noise background by developing the principle of algebraic summation of 

bioelectric events. It was Jewett and his colleagues (1970, 1971) that defined the 

ABR waves and identified the origin of the far-field scalp-recorded ABR. 

Generally, the ABR has five characteristic waves, wave I-V (Fig. 8). It was revealed 
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that wave I was the activity from the eighth nerve; wave II from the cochlear 

nucleus; wave III from the superior olivary complex; wave IV from the nucleus of 

the lateral lemniscus; and wave V from the inferior colliculus. Since then, the ABR 

has become a useful tool for the audiologist, otologist, and the neurologist.   

 

 

 
Fig. 8. A typical ABR waveform of the guinea pig. Wave I is the activity from the 
eighth nerve which innervates the cochlea; wave II  from the cochlear nucleus; 
wave III from the superior olivary complex; wave IV from the nucleus of the lateral 
lemniscus and inferior colliculus.    
 

 

Practically, the ABR is obtained from two electrodes placed on the skull surface 

with the use of acoustic stimuli. The click stimuli are most commonly used for 

generating the ABR waves, while tone bursts are also used for various applications. 

The reason for using transient stimuli like clicks is that many neurons must be made 

to fire at essentially the same time (synchronously) in order to elicit a measurable 

action potential. With the characteristics of abrupt onsets, short durations and broad 

spectra, clicks activate a large number of hair cells along the basal part of the 

cochlea, where the speed of the traveling wave is very fast. This, in turn, causes 
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essentially simultaneous firing of the auditory nerve fibers associated with these 

basal turn hair cells. The time domain of the ABR recording is within 10 ms after 

acoustic stimulation. The rise time of the stimuli is important to the ABR wave and 

should be 2 ms or less. The stimulus repetition rates are between 10 to 20 per 

second. Bipolar electrodes are used for ABR recording, with positive electrode on 

the vertex and negative behind the ear. The filter and amplifier play critical roles for 

a well-defined ABR wave. The filter is commonly 0.1-3.0 kHz. The amplifier 

produces the amplification to 100,000 times. The final stage for obtaining an ABR 

waveform is the averaging of the response, which improves the signal to noise ratio. 

The resultant waveform consisting of a series of waves can then be analyzed for 

latency and amplitude. Latency is the amount of time that has elapsed since the 

stimulus was presented. Latency is a more sensitive measurement than amplitude 

and is used in most clinical and experimental studies to determine the place of the 

hearing loss. The shift of latencies of early and late waves in parallel would be 

consistent with mainly a cochlear effect whereas prolongation of later waves 

relative to wave I would be indicative of contributions from central pathways in 

addition to the cochlea. 

 

The ABR has been widely used for the evaluation and diagnosis of the peripheral 

auditory system and related pathology, for the integrity of the acoustic nerve and 

caudal levels of the brainstem pathway (Hecox and Jacobson, 1984). In particular, 

the ABR is used to estimate the hearing for infants and patients who cannot be 

tested using routine behavioral audiologic procedures.    
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Noise-induced hearing loss 

 
Studies on the pathology of the noise-induced damage to the cochlea started more 

than one century ago (Toynbee, 1860). Habermann (1890) first demonstrated that 

noise destroys the nerves and the hair cells in human inner ears by light microscopy. 

Since then, intensive studies have been performed on animal ears as well as human 

temporal bones by the introductions of surface-specimen technique, scanning 

electron microscope, transmission electron microscope, etc. Intense sound 

stimulation results in various structural changes leading to functional auditory 

damage. The organ of Corti is the weakest and most susceptible to damage, while 

the inner ear impairment is by far the main cause of hearing loss. The pattern and 

the time course of damage within the cochlea are two important factors. Intense 

noise may cause impairments to the stereocilia, hair cell soma and afferent dendrites 

(Spoendlin, 1971; Robertson, 1983). The classical pattern of hair cell degeneration 

starts with OHCs from the first row, then the IHCs and subsequently OHCs from 

the second and third rows. Fredelius et al. exposed guinea pigs to intense 

continuous noise and examined histologic and ultrastructural changes in maximal 

injury area and the surrounding border zones within the cochlea from 5 min to 4 

weeks following noise exposure (Fredelius, et al., 1988; Fredelius, 1988). Within 

the first 5 min to 4 h post noise exposure, the earliest changes in the maximal 

damage area included deformation of the stereociliary bundle and swelling of the 

afferent dendrites below the IHCs. During the ensuing hours, swelling and 

distortion occurred in the OHCs, IHCs, pillar cells, and phalangeal cells. Complete 

degeneration of OHCs, IHCs, and pillar cells were observed at day-5 after exposure 
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and continued over time. The recovery of the afferent dendritic swelling was 

observed by 24 h after noise exposure. This was confirmed by later studies such as 

Peul et al. 1998. But surprisingly, the spiral ganglion neuron degeneration was still 

seen under light microscopy at the week-4 post exposure. In fact, the swelling and 

distortion of the organ of Corti, as was seen earlier, was also seen at week-4 point, 

suggesting active processes of both degeneration and repair. In the findings of 

Hamernik and Henderson, a considerable time delay on the order of 5 days to 

several weeks was observed before hair cell loss peaked and then stabilized 

following exposure to impulse noise (Hamernik and Henderson, 1974; Henderson 

and Hamernik, 1986). The mechanism by which this ongoing degeneration occurs 

weeks after the initial insult is not fully elucidated, but has important implications 

in terms of potential rescue therapy.   

 

Noise is a pervasive and increasing hazard in the environment. Davis et al. (1935) 

found that a minimum sound pressure level of 95 decibels (dB) was necessary to 

induce auditory damage. Decibels describe the logarithmic ratio of the intensity of a 

given sound to that of a sound which is just perceptible to a person with normal 

hearing. Thus, a doubling of sound intensity will result in an increase of 3 dB. 

Humans can hear sounds with frequencies over the range 20 Hz to 20 kHz. Because 

of the shape of the external ear canal and other factors, the human’s sensitivity to 

sound is greatest between 1 and 5 kHz (May, 2000). Damage within the cochlea 

tends to occur initially and to the greatest degree in the portion that detects sound in 

the 3-4 kHz range. For workers exposed to potentially harmful noise levels, this 
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progresses steadily over the initial decade of exposure and then tends to plateau. 

Typically, the next affected area is in the 6 kHz region followed by the 8 kHz and 

the 2 kHz regions where losses are more slowly progressive (Taylor et al., 1965).  

Most workers will have a relatively symmetrical, bilateral sensorineural hearing 

deficit. In theory, this damage reflects both the intensity of the noise and the length 

of exposure in a fashion that is predictable. In reality, the degree of hearing loss is 

usually not linear with respect to exposure. However, after years of exposure to 

harmful noise, a great number of workers will reach the American Occupational 

Safety and Health Administration’s definition of material impairment of hearing, 

which is an average threshold shift of ≥ 25 dB at 1, 2, and 3 kHz (May, 2000). 

Many affected people actually experience losses considerably beyond 25 dB and 

may have problems ranging from tinnitus to difficulty in detecting and recognizing 

sounds, in comprehending speech and localizing sound sources. 

 

The auditory functional impairment can be divided into four classifications: (1) 

temporary threshold shift (TTS) (also referred as auditory fatigue) may occur after 

only a few minutes of exposure to intense noise and is reversible after a period of 

time away from the noise; (2) asymptotic threshold shift is the threshold shift that 

reaches asymptotic level after continuous noise exposure (hours to days) and can 

return to pre-exposure level after the end of the exposure; (3) compound threshold 

shift is one kind of threshold shift with both temporary and permanent components 

and does not return to normal level; (4) permanent threshold shift (PTS) is a stable 

threshold shift after the temporary component disappears.  
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Around 10% of the population suffers from hearing disorders. Noise trauma is one 

of the most common reasons of hearing disorders. It is important to understand the 

mechanisms that are involved in the hearing impairments for early detection and 

intervention of hearing loss. The susceptibility to noise trauma is related to several 

factors, such as species differences, age, pigmentation, anesthesia, and body 

temperature. Two main mechanisms have been proposed for noise-induced hearing 

loss (NIHL), the rapid onset of mechanical damage and the gradual onset metabolic 

disturbance (Saunders et al., 1985; Borg et al., 1995). The mechanical impairment 

occurs mostly during intense noise exposure, which depends on the frequency, 

intensity and the duration of exposure, while the metabolic damage may be the 

result of enzyme alteration and ion concentration changes inside the cells after noise 

stimulation.  

 

Excitotoxicity and oxidative stress in NIHL 

 

The term excitotoxicity was first described by Olney (1978), referring to a process 

of neuronal death caused by excessive or prolonged activation of receptors for the 

excitatory amino acid neurotransmitter glutamate. Excitotoxicity plays an important 

role in many central nervous system (CNS) diseases, such as CNS ischemia, and 

CNS trauma (Doble, 1999). Under these pathological conditions, glutamate is 

excessively released to the synapse and binds to its receptors on neuronal cells (Fig. 

9). The process of excitotoxicity is characterized by two main elements: 

depolarization of neurons with Na+ influx and the entry of extracellular Ca2+ into 
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neuronal cells. Depolarization is primarily initiated by activation of AMPA 

receptors and subsequently the voltage-dependent Na+ channels. The entry of Na+ 

is followed by a passive entry of Cl- and water, resulting in an increase in cellular 

volume and acute neuronal swelling. This osmotic component is potentially 

reversible if the stimulus is removed (Choi, 1987). If the stimulus remains, the 

continuous depolarization will release the magnesium blockage of the NMDA 

receptor, leading to the opening of the NMDA receptor. The elevated extracellular 

glutamate causes the influx of Ca2+ into neuronal cells through the opened NMDA 

receptors. Intracellular Ca2+ will also rise due to impaired activity of the membrane 

Na+/Ca2+ exchanger (Koch and Barish, 1994). The increased intracellular free Ca2+ 

will stimulate the activity of numerous enzymes and trigger other calcium-

dependent protein-protein interactions that are ultimately deleterious to cell 

homeostasis, and thus will lead to neuronal death (Doble, 1999).  

 

The oxidative stress is referred to the imbalance between cellular production of free 

radicals and the ability of cells to efficiently defend against them (Simonian and 

Coyle, 1996). A free radical is any chemical species that contains one or more 

unpaired electrons, which make it more reactive because they tend to cause other 

molecules to donate their electrons (Halliwell and Gutteridge, 1989). The most 

common cellular free radicals are hydroxyl radical (OH.), superoxide radical (O2
-.), 

and nitric oxide (NO.) (Simonian and Coyle, 1996). Other molecules, such as 

hydrogen peroxide (H2O2) and peroxynitrate (ONOO), are not free radicals, but can  
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Fig. 9. The excitotoxicity and/or oxidative stress are involved in the 
pathophysiology of certain inner ear disorders, such noise-induced hearing loss, 
sudden hearing loss, and neural presbycusis. Pathological stimulations will cause 
the over-release of glutamate and/or over-production of ROS. Glutamate may 
increase ROS production, and on the other hand, ROS may induce glutamate 
release, suggesting they may have bi-direction relationship. 
 

 

lead to their generation through various chemical reactions. Free radicals and 

related molecules are often classified together as reactive oxygen species (ROS) to 

signify their ability to promote oxidative changes within the cell (Simonian and 

Coyle, 1996). Cells normally employ a number of defense mechanisms against 

damage induced by free radicals (Evans, 1993; Simonian and Coyle, 1996). 

Problems occur when production of ROS exceeds their elimination by the natural 

antioxidant defence system, or when the later is damaged (Fig. 9). The increasing 

ROS production will deplete cellular antioxidant defenses and cause various 
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radical-mediated damage to lipid, proteins and DNA, leading to cellular damage 

and subsequently cell death (Doble, 1999).  

 
 
The relationship between excitotoxicity and oxidative stress has not been well 

established. In the central nervous system, it has been proposed that excitatory 

amino acid (mainly glutamate) and ROS may cooperate in the pathogenesis of 

neuronal damage (Bose et al., 1992). Excitatory events can stimulate ROS, and 

ROS may lead to glutamate release, suggesting a bi-direction relationship 

(Pellegrini-Giampeitro et al., 1990). Following transient ischemia, the cerebral 

levels of excitatory amino acid and free radicals were both increased (Delbarre et 

al., 1991). During excitotoxicity, the increased intracellular calcium can activate 

calcium-dependent enzymes, such as phospholipase A2, nitric oxide synthase, and 

xanthine oxidase, leading to the generation of ROS (Doble, 1999). Exposure of 

mitochondria to high concentration of ambient calcium results in a surge of free 

radical production (Dykens, 1994). On the other hand, the ROS scavengers, such as 

D-mannitol and indomethacin, can reduce ischemia induced excitatory amino acid 

production. Furthermore, the incubation of hippocampal slices with systems leading 

to free radical formation resulted in an increase of the release of endogenous 

glutamate and aspartate (Pellegrini-Giampeitro et al., 1990).   

 

In the auditory system, significant glutamate efflux from the IHCs has been 

demonstrated under stimulus conditions in both in vitro and in vivo studies [Bledsoe 

et al., 1980; Jäger et al., 1998, 2000]. Bledsoe et al. (1980) showed greater 
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glutamate efflux from stitch skins compared to non-stitch skins containing the 

lateral-line organ in Xenopus laevis. In an in vitro isolated temporal bone 

preparation, Jäger et al. (1998) demonstrated noise stimulus induced the increases in 

the levels of glutamate and aspartate. Furthermore, they found significant increase 

of glutamate and aspartate in the scala tympani of guinea pig cochlea by using in 

vivo microdialysis before and during noise exposure. As in other parts of the 

nervous system, the excessive glutamate in the cochlea after noise stimulation will 

have excitotoxicity to the afferent neurons, leading to the acute neuronal swelling 

and later on neuronal cell death. Indeed, application of glutamate agonists has been 

shown to induce destruction of primary auditory dendrites and to alter cochlear 

function in a fashion similar to that observed after acoustic trauma [Spoendlin, 

1971; Robertson, 1983; Pujol et al., 1985; Puel et al., 1994; Duan and Canlon, 

1996].  

 

There is accumulating evidence that increased ROS production and their ototoxicity 

are involved in the NIHL (Kopke et al., 1999). Direct evidences are derived from 

the findings that: (1) O2
-. radicals emerge in the stria vascularis after noise exposure 

(Yamane et al., 1995); (2) OH. significantly increases in the cochlea early following 

intense sound stimulus (Ohlemiller et al., 1999); (3) ROS affected the morphology 

of isolated OHCs or damaged cochlear function following perilymphatic space 

infusion (Cleric et al., 1995; Cleric and Yang, 1996). Indirect evidences are found 

by the findings: (1) the activity of some antioxidant enzymes increases during 

conditioning noise exposure which reduces NIHL (Jacono et al., 1998); (2) the 
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endogenous antioxidant, glutathione, is upregulated in the lateral wall following 

noise exposure (Yamasoba et al., 1998a), and in contrast, the reduction of 

glutathione increases NIHL (Yamasoba et al., 1998b); (3) a variety of antioxidants, 

such as superoxide dismutase-polythylene glycol and allopurinol, can attenuate 

NIHL (Seidman et al., 1993).  

   

Protection of auditory function with glutamate receptor antagonist and 

antioxidant 

 
Glutamate mediated toxicity plays a crucial role in NIHL. There are several sites to 

attenuate the glutamate-induced excitotoxicity. One site is to reduce the glutamate 

synthesis and release from the pre-synapse or to increase its uptake by glutamate 

transporters. Another site is to antagonize the excessive glutamate at receptor level 

with glutamate receptor antagonists. Finally, drugs could be used to offset the 

intracellular and extracellular neurotoxic events set in motion by receptor 

overstimulation. All these approaches have met with certain success in vitro, but 

many of the drugs used have unacceptable clinical side-effects (Choi, 1988). 

Glutamate receptor antagonists have been widely investigated for the 

neuroprotection against excitotoxicity in both in vitro and in vivo studies. Pingle et 

al. (1997) showed that CNQX, a non-NMDA receptor antagonist, and MK-801, an 

NMDA receptor antagonist, when applied pre-insult or immediately post-insult, 

were able to prevent neuronal death of CA1 pyramidal cells in vitro caused by 

either hypoxia or ischemia. The neuroprotective effect of MK-801 was 

demonstrated in vivo in the rat middle cerebral artery occlusion model of focal 

 30



ischemia (Gill et al., 1991). Solberg et al. (1997) demonstrated that MK-801 

significantly reduced photoreceptor-cell loss in retinal laser injury.  

 

The protective role of glutamate receptor antagonist has also been investigated in 

the auditory system. Janssen (1992) showed that the broad-spectrum antagonist 

kynurenic acid or MK-801 could prevent high-frequency hearing loss caused by 

glutamate. In another study, the AMPA/kainate receptor antagonist DNQX was 

found to prevent most of both AMPA-induced and ischemia-induced dendritic 

swelling, while the combination of DNQX and D-AP5, an NMDA receptor 

antagonist, resulted in a nearly complete protection of all the dendrite (Puel et al., 

1994). MK-801 or kynuretic acid has been demonstrated to prevent noise-induced 

dendritic damage beneath the IHCs (Puel et al., 1998; Duan et al., 2000). Chen et al. 

(2001) found MK-801 significantly reduced the permanent compound action 

potential threshold shifts induced by noise trauma in rat.  

 

Since ROS are important causative factors in the NIHL, a variety of antioxidants 

have been shown to effectively attenuate hearing loss after noise exposure. Seidman 

et al. (1993) found that superoxide dismutase-polyethylene glycol, a scavenger of 

ROS, and allopurinol, a blocker of ROS production and potential scavenger of 

ROS, could attenuate noise-induced threshold shift. The animals treated with 

lazaroids, lipid peroxidation inhibitors and ROS scavengers, showed less noise-

induced cochlear action potential threshold shifts and cochlear microphonic when 

compared to non-drug treated noise-exposed subjects (Quirk et al., 1994). The 
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cochlear function was significantly protected from noise with the antioxidant 

mannitol and the iron chelator deferoxamine mesylate (Yamasoba et al., 1999). 

Ohinata et al. (2000) showed that the cellular antioxidant glutathione could 

significantly limit the noise-induced cochlear damage.   

 

Caroverine is a glutamate receptor antagonist and antioxidant   

 
Caroverine (Spasmium®, Phafag AG), 1-(2-diethylaminoethyl)-3-(p-methoxy 

benzyl)-1,2-dihydro-2-quinoxalin-2-on-hydrochloride (Fig. 10), is chemically 

derived from isoquinoline, the basic structure of papaverin. It is clinically available 

in some countries as a spasmolytic drug based on its unspecific Ca2+-channel 

blocking activity for more than 40 years (Hornykiewicz et al., 1963). 

Microiontophoretic experiments in guinea pigs have demonstrated that caroverine 

exhibits competitive AMPA antagonism, and at higher concentrations, non-

competitive NMDA antagonism in the cochlear afferents (Ehrenberger and Felix, 

1992). Recently, Udilova and his colleagues (2003) found strong antioxidant 

    

 

 

 

 
 
Fig. 10. Chemical structure of caroverine- 
hydrochloride. It is a  quinoxaline derivative.                     
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activity of caroverine based on both its partial prevention and highly active 

scavenging on OH. radical, which is by far the most potent and dangerous oxygen 

metabolite (Udilova et al., 2003). As a glutamate receptor antagonist together with 

antioxidant activity, caroverine has a variety of beneficial results in the treatment of 

tinnitus, sudden hearing loss and other neurotoxic effects in the inner ear 

(Ehrenberger, 2002). In a study on sixty patients suffering from tinnitus with a 

probable cochlear origin, a dose of 160 mg caroverine in physiological saline 

solution was infused to patients at the rate of 2-3 ml/min (Denk et al., 1997).  Both 

a subjective rating of the tinnitus on a five-point scale (0 = no tinnitus; 1 = slight; 2 

= moderate; 3 = severe; 4 = tormenting tinnitus) and a psychoacoustic measurement 

of tinnitus as tinnitus matching were carried out for the evaluation of tinnitus 

before, immediately after and 1 week after treatment. 63.3% of the patients 

responded positively to the single infusion of caroverine. The beneficial effect of 

the caroverine therapy was still present after 1 week in 43.3% of the patients (Denk 

et al., 1997).   

 

Since both excitotoxicity and oxidative stress play important roles in NIHL, and 

their relation is not well elucidated, a drug, such as caroverine, with both 

antiglutamatergic and antioxidant activities seems promising for the protection and 

treatment against NIHL. Although the safety of caroverine has been documented 

(Koppi et al., 1987; Saletu et al., 1995), the potential adverse effects of glutamate 

receptor antagonist should be considered when applied systemically (Muir and 
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Lees, 1995). In addition, the therapeutic effect of systemic caroverine may not be 

ideal at non-toxic doses because of its limited ability to penetrate the blood-

labyrinth barrier. Therefore, local application of caroverine onto the gelfoam placed 

on the RWM might be an alternative to achieve therapeutic concentration in the 

inner ear and avoid systemic side effects. For clinical application, the choice of 

caroverine should be based on its pharmacokinetic behavior in the inner ear fluids. 

Basic information about the rate of drug diffusion across the RWM, systemic 

caroverine absorption, and elimination of drug from the inner ear is necessary. The 

drug concentration in the perilymph after systemic administration at the dose used 

in clinic would be of interest because we might assume it to be the therapeutic drug 

level in the inner ear.  
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Aims of the study 

 

1. Study the pharmacokinetics of caroverine in the preilymph, CSF and plasma 

following systemic and local RWM applications in the guinea pig at regular time 

intervals. The RWM application might bypass the blood-labyrinth barrier to achieve 

higher inner ear drug concentration and avoid systemic disturbance. The 

concentrations of caroverine in the perilymph, CSF and plasma will be determined 

by high performance liquid chromatography method. The RWM administrations 

with two different doses, one low dose and another high dose, will be compared 

with the systemic application. The peak caroverine concentration and the 

elimination of the drugs in the three compartments will be monitored. The 

differences in the concentration of these three compartments will be compared. The 

caroverine concentration in the perilymph following systemic application at the 

dose used in clinic might be assumed as effective therapeutic caroverine 

concentration in the perilymph. 

 

2. Study the effect of caroverine on auditory function following local RWM 

applications in the guinea pig. As an NMDA and AMPA receptor antagonist, 

caroverine might block the neurotransmitter glutamate’s physiological function and 

decrease the hearing sensitivity. The auditory brainstem response will be measured 

following the RWM applications at regular time intervals. The extent of the 

auditory functional effect will be known from the ABR threshold shift. The 
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important issue is that whether the auditory effect is reversible and in what time 

course. This will also dermine the limination of RWM application. 

 

3. Study the protective role of caroverine in the NIHL following local RWM 

applications in the guinea pig model. With the antiglutamatic and antioxidant 

activities, caroverine might be able to to protect the cochlea against excitotoxicity 

and oxdative stress produced by noise trauma. The RWM applications with one low 

dose of caroverine and another high dose and saline as control will be performed 

before noise exposure. The ABR will be measured following noise exposure at 

regular time intervals to monitor the recovery of the hearing. The protective effect 

of caroverine against noise trauma will be determined by the comparison of hearing 

recovery between caroverine groups and control group. The low and high dose 

group will also be compared to show whether the protective effect is dose-

dependent.  

 

4. Study the therapeutic role and time window of caroverine in the NIHL following 

local RWM application in the guinea pig model. The time course of metabolic 

damages, such as excitotoxicity and oxidative stress, in the noise-induced hearing 

loss following noise exposure is not well known. Caroverine might interfere with 

this kind of impairmet whenever it continues. The caroverine will be applied to the 

RWM at 1 h or 24 h after noise exposure. The ABR will be measured at regular 

time interval following the recovery period of the cochlea. 
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MATERIALS AND METHODS 
 

Pharmacokinetics study 

 
Animals 

 
Albino guinea pigs of either sex (300 -- 400 g) were used in this study. The care for 

and use of the animals were approved by the Ethical Committees at the National 

University of Singapore and the Karolinska Institutet in Stockholm. Totally 45 

animals were randomly assigned to 3 groups: 1 group for intravenous injection (IV) 

and 2 groups for local applications onto the RWM with a low dose (LD) and the 

other high dose (HD) as shown in the table 1. The animals were anesthetized by 

intramuscular injection with a mixture of ketamine (40 mg/kg) and xylazine (4 

mg/kg).   

 

Table 1. Totally 45 guinea pigs were devided into three groups: IV, LD and HD 
groups with 15 animals in each group. The plasma, CSF and perilymph samples 
were collected at 5 time courses with 3 animals at each time course.         
                                                                                                               
                                                                                                  

         IV  group LD group HD group 
Time 

course 
Animal 
number 

Time 
course 

Animal 
number 

Time 
course 

Animal 
number 

10 min 3 10 min 3 10 min 3 
30 min 3 30 min 3 30 min 3 
60 min 3 60 min 3 60 min 3 
180 min 3 180 min 3 180 min 3 
360 min 3 360 min 3 360 min 3 
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Systemic and local caroverine applications  

 
Intravenous injection was administered via the right femoral vein with the dose of 4 

mg/kg body weight at the concentration of 1.6 mg/ml in physiological saline. For 

local applications, two doses were used: 15 µl of 1.6 mg/ml (LD) and 12.8 mg/ml 

(HD) of caroverine in physiological saline. Under an operating microscope, the 

right temporal bulla was opened through a post-auricular incision to expose the 

round window under aseptic conditions. The RWM was examined under 

microscopy to make sure that the RWM was clean and intact before drug 

administration (Fig. 11A). The round window membrane was seldom damaged by 

the surgery. We discarded the animals when we found the round window membrane 

was not intact. A small piece of gelfoam was placed on the RWM. Fifteen 

microliters of caroverine at the concentrations of either 1.6 or 12.8 mg/ml were 

dropped on the gelfoam (Fig. 11B). The hole of the temporal bulla was then closed 

using dental cement (Fuji Ι, Japan) and the skin sutured. 
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g. 11. A. The round window after cleaning the fluid and mucosa from the round 
ndow membrane. B. One piece of gelfoam was place onto the round window 
mbrane and 15 µl of physiological saline or caroverine solution was dropped 
to the gelfoam. 

F, plasma and perilymph sampling 

F, plasma and perilymph were sampled at 10, 30, 60, 180 and 360 min after 

stemic or local caroverine administrations. Three animals were included at each 

e point (15 animals in each group, total of 45 animals). 

F sampling. The animals were anesthetized with the mixture of ketamine and 

lazine as above, and in addition, local anesthesia with xylocaine was given.  An 

ision was made through the skin and muscle of the dorsal neck to expose the 

chnoid. Twenty microliters of CSF were collected from the subarachnoid space 

the foramen magnum with a 1-ml syringe connected to a 29-gauge needle.  
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Plasma sampling. After CSF sampling, a 3-ml blood sample was collected by heart 

puncture through the thoracic cavity using a 5-ml syringe. The plasma was obtained 

by centrifugation of the blood sample at 3,000 rpm for 5 min. 

 

Perilymph sampling. In order to avoid CSF contamination, the animals were deeply 

anesthetized with the mixture of ketamine and xylazine, the perilymph was then 

collected after decapitation (Fig. 12). The bulla was removed from the skull base 

and opened to expose the middle ear. After removing the remaining gelfoam, the 

RWM and middle ear cavity were rinsed 4 times with 30% methanol within 2 min 

under an operating microscopy. To make sure that there was no contamination of 

the perilymph by the residual caroverine in the middle ear cavity, the last wash was 

collected for detection of caroverine using high-performance liquid chromatography 

(HPLC), and only perilymph samples with no detectable caroverine in the last wash 

were used for analysis. Six to 10 µl of perilymph were collected through the RWM 

with a glass-capillary after complete removal of the solution in the middle ear 

cavity. In the ears of the animals given the drug systemically, the samples were 

obtained in the same way without local RWM rinsing. All of the samples were 

stored at –20°C for HPLC analysis within 1 week. 

 

Fig. 12. The procedure of the perilymph sample collection. 
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HPLC analysis 

 
The concentration analysis was performed on a Hewlett Packard (HP) 1050 HPLC 

system equipped with chemstation and HP 1100 UV detector set at 230 nm. A 

guard column (4.6 × 12.5 mm, 5 µm, HP) was connected to the HPLC column 

(Hypersil BDS C18, 5 µm, 150 × 4.6 mm). Drug concentrations with samples were 

determined from calibration curves obtained by plotting the chromatographic peak 

area ratio of caroverine/internal standardization described below. Peak areas were 

computed from the HP HPLC system software chemstation. 

 

The mobile phase for caroverine in the perilymph and CSF was 34% of acetonitrile 

and 66% of the mixture of 0.02 mol KH2PHO4 and 1.5 ml of diethylamine in 1 liter 

of deionized water adjusted to pH 5.7 with 1 N HCl. For caroverine in plasma, the 

mobile phase was 30% of acetonitrile and 70% of the mixture of 0.02 mol 

KH2PHO4 and 1.5 ml of diethylamine in 1 liter of deionized water adjusted to pH 

5.9 with 1 N HCl. The flow rate was 1 ml/min. Standard stock solutions of 

caroverine-hydrochloride and flunitrazepam (internal standard; both 1 mg/ml) were 

prepared in 100% methanol and stored at 4°C for not more than 2 weeks. 

Calibration samples were prepared at different concentrations by diluting the stock 

solution with normal saline. At least 5 caroverine calibrators in 20 µl saline, 20 µl 

of control CSF samples or 10 µl of control perilymph samples (diluted to 20 µl with 

normal saline) were mixed with 10 µl of flunitrazepam of appropriate 

concentrations. The mixture was vortexed and directly injected into the HPLC 

system. Different calibration curves had to be used because of the wide range of 
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caroverine concentrations in the perilymph (calibration range: from 10 ng/ml to 9.6 

µg/ml). Linear calibration curves were obtained. For caroverine in plasma, 

calibration samples were prepared in 100 µl of control plasma samples. Two 

hundred microliters of acetonitrile and 20 µl of flunitrazepam of appropriate 

concentrations were added to 20 µl of caroverine hydrochloride calibrators 

(calibration range: 10--960 ng/ml) and 100 µl of control plasma samples. The 

mixture was centrifuged to precipitate plasma proteins. After centrifugation, the 

supernatant was evaporated with a stream of nitrogen air and the residue was 

reconstituted in 40 µl of mobile phase for injection. The retention times of 

caroverine and flunitrazepam were 13.1 and 18.0 min, respectively, in plasma, and 

8.6 and 11.9 min, respectively, in the perilymph and CSF. The interday coefficient 

of variation ranged from 4.6 to 16.1%. Some figures of the wave forms were 

illustrated in Fig. 13. 

 

Using the above conditions, the limit of quantification was 10 ng/ml. This HPLC 

method for analysis of caroverine in the perilymph, CSF and plasma is reproducible 

and sensitive. No interference from endogenous substances or the anesthetic agents 

was encountered. 
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Fig. 13. Some examples of the HPLC figures. In the Run 1, 40 µl of control CSF 
from untreated guinea pig and 10 µl of physiological saline did not produce any 
peak between minute-6 and minute-14. In Run 2, 3 and 4, 10µl of internal standard 
solution at 300 ng/ml were added and produced a peak at minute-11.9 with similar 
area. In Run 2 and 3, 40 µl of caroverine in control CSF from untreated guinea pig 
at the concentration of 20 ng/ml or 160 ng/ml were added and peaks with different 
areas appeared at minute-8.6. In the Run 4, the CSF sample from the guinea pig 
with intravenous caroverine treatment produced a peak at minute-8.6 and the area 
of the peak could be measured.   
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Auditory functional effect following local RWM applications 

 
Animals and local RWM applications 

 
For the animals with local caroverine applications, ABR measurements were 

performed 1 day before, and 30 min, 3, 6 and 24 h after application. Fifteen animals 

were randomly assigned to 3 groups: LD and HD local groups and a control group. 

Each group included 5 animals. The animals were anesthetized as above. In the 

control group, 15 µl of normal saline was applied onto the RWM with the gelfoam. 

In the LD and HD local groups, the caroverine administrations were the same as in 

the pharmacokinetic study.  

 

ABR measurements 

 
ABR measurements were performed in a soundproof booth as described previously 

(Duan et al., 2000). Responses were recorded with subcutaneous stainless 

electrodes as the potential difference between an electrode on the vertex and an 

electrode behind the ear, the same side hind leg serving as the earth (Fig. 14). The 

body temperature of the animals was maintained at 38°C by using an isothermal 

heating pad. Stimulus intensity was calibrated with a ¼-inch condenser microphone 

(Bruël & Kjær Instruments, Marlborough, Mass., USA, model 4135) and all of the 

sound pressure levels (SPL) were expressed in decibels relative to 20 µPa. The 

stimulus signal was generated through Tucker-Davis Technologies (Gainesville, 

Fla., USA) equipment controlled by a computer and delivered by an earphone 

(Telephonics TDH 39, Farmingdale, N.Y., USA). The stimuli were delivered  
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Fig . 14. ABR responses were recorded with subcutaneous stainless electrodes as 
the potential difference between an electrode on the vertex and an electrode behind 
the ear, the same side hind leg serving as the earth. The stimuli were delivered 
through a closed acoustic system with one end connected to the earphone and the 
other end sealed into the external auditory meatus. 
 

through a closed acoustic system with one end connected to the earphone and the 

other end sealed into the external auditory meatus. The evoked response was 

amplified 100,000 times and averaged 2048 sweeps in real time by a digital signal 

processor (DSP32C) with a time domain artifact rejection. The initial intensity of 

the stimulus was 110 dB peak SPL and was then decreased in 10-dB steps until the 

threshold was approached and then in 5-dB steps until the ABR disappeared. The 

threshold was defined as the lowest intensity at which a visible ABR wave III was 

seen in two averaged runs since the wave III was the largest wave in guinea pigs. 

Threshold was measured at 4 frequencies: 20, 16, 12.5 and 8 kHz. The latency and 

amplitude of wave Ι at 90 dB of each frequency were recorded. One-way repeated 
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measures analysis of variance (ANOVA) was used to determine if there was a 

significant effect of caroverine treatment on the mean values of thresholds, latencies 

and amplitudes, followed by Tukey test for significance versus the control group at 

specific frequencies.   

 

Protection of auditory function against noise trauma with local caroverine 

administration 

 

Animals and local RWM administrations 

 
Eighteen pigmented guinea pigs of either sex (300 -- 400 g) were randomly divided 

into 3 groups: low dose (LD) and high dose (HD) caroverine groups and a control 

group, with 6 animals in each group. The animals were anesthetized with the 

mixture of ketamin and xylazine as above and the surgical procedures of RWM 

applications were the same as above. The control group received 15 µl of 

physiological saline with gelfoam, the LD group 15 µl of 1.6 mg/ml of caroverine 

in physiological saline with gelfoam, and the HD group 15 µl of 12.8 mg/ml of 

caroverine in physiological saline with gelfoam. The hole of the temporal bulla was 

then closed using dental cement (Fuji Ι, Japan) and the skin sutured.  

 

Noise exposure 

 

Ten min after the RWM administrations of physiological saline or caroverine, the 

anesthetized animals were transferred to a sound proof booth to expose to one-third-

 46



octave band noise centered at 6.3 kHz (110 dB SPL) for 1 hour. The sound proof 

booth was equipped with a speaker horn (model 2328, James B. Lancing Sound Inc. 

Los Angeles. CA, USA) mounted in the ceiling. The free field noise exposure was 

generated with software from Brüel & Kjær (Pulse) and delivered by a sound 

generator (Brüel & Kjær LAN Interface Module type 7533, Input/Output Module 

type 3109) connected to an amplifier (Brüel & Kjær type 2716). A small paper box 

with the same height as the guinea pig’s ear was placed in the cage. The noise 

intensity (110 dB SPL) was measured prior to exposure using a ½ inch microphone 

(Brüel & Kjær type 4190) and a preamplifier (Brüel & Kjær type 2669C) on the 

paper box at the level of the animal’s experimental ear. The microphone was placed 

on the position where the experimental ear would be and then started to generate the 

sound. The sound level could be read from the computer and the sound level could 

be adjusted from the program to reach 110 dB. Then the box was removed and 

replaced by the guinea pig with its experimental ear at the same level of the box. 

The contralateral ear was also exposed to the noise. But the sound intensity was not 

exactly the same as that of the experimental ear because the sound level varied with 

different positions. 

 

ABR measurements and cochlea examinations 

 
The ABR thresholds were obtained 1 day before, and 1.5 h (20 min after noise 

exposure), 3, 6, 24 h, 3 days and 1 week after RWM applications. ABR 

measurement was performed under the same condition and procedure as above. 

Thresholds were measured at 5 frequencies: 20, 16, 12.5, 8 and 4 kHz. After the 
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terminal ABR measurement, the animal was decapitated after giving an overdose of 

pentobarbital and the bulla was removed from the skull and opened to examine the 

middle ear and the round window under microscopy. Then the cochlea was put into 

4% paraformaldehyde in phosphate-buffered saline (pH 7.4), and a small hole was 

made into the cochlear apex in order to examine if there was any damage, which 

could not be observed under the operating microscope. A plastic pipette was used to 

perfuse the cochlea with 4% paraformaldehyde gently from the opening in the 

cochlear apex so that any small hole on the round window membrane could be 

found under microscope.  No obvious sign of inflammation was found in the middle 

ear or round window. One-way repeated measures analysis of variance (ANOVA) 

was used to test if there was a significant effect of caroverine treatment on the mean 

values of thresholds, followed by Tukey test for significance versus the control 

group at specific frequencies.   

 

Therapeutic effect and time window on noise trauma with local RWM 

caroverine application 

 
Animals and noise exposure  

 
Pigmented guinea pigs of either sex (300 -- 400 g) were used. The animals were 

anesthetized with the mixture of ketamine and xylazine as above. The anesthetized 

animals were exposed to one-third octave band noise centered at 6.3 kHz (110 dB 

SPL) for 1 h in a sound proof booth, as described above.  
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Local caroverine or physiological saline applications 

 
Twenty-four animals were randomly divided into 4 groups (6 animals in each 

group): 1 control and 1 caroverine group in which local RWM applications were 

performed 1 h after the end of noise exposure, and another 1 control and 1 

caroverine group in which local administrations happened 24 h after noise 

exposure. Fifteen microlitres of either physiological saline as control or 12.8 mg/ml 

of caroverine solution were applied locally onto the RWM with gelfoam. The 

surgical procedure of local RWM application was the same as in pharmacokinetics 

study. 

 

ABR measurements and cochlea examinations 

 
The ABR thresholds were obtained 1 day before noise exposure, and at 0.5, 24 h, 3 

days and 1 week after normal saline or caroverine RWM applications. The ABR 

measurement of anesthetized animal was performed in a sound proof booth as 

described above. The thresholds were measured at five frequencies: 20, 16, 12.5, 8 

and 4 kHz. After the terminal ABR measurement, the animal was decapitated after 

giving an overdose of pentobarbital and the bulla was removed from the skull and 

opened to examine the middle ear and the round window under microscopy as 

mentioned above for inflammation. No obvious sign of inflammation was found in 

the middle ear or round window. The differences in mean values of threshold shifts 

between caroverine group and control group were tested for significance (p<0.05) 

by Student’s two-tailed t-test. 
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RESULTS 

Pharmacokinetics of caroverine 

 
The mean caroverine concentrations ± SD in µg/ml in the perilymph, CSF and 

plasma following systemic and local RWM applications are shown as a function of 

time in Tables 2-4 and Fig.15-17. Local administrations resulted in dramatically 

higher level of perilymph caroverine concentration than that seen after intravenous 

injection (Fig. 15). The perilymph peak values were obtained at 30 min after 

caroverine applications in all three groups and then decreased with time. Peak 

perilymph concentration was 4.3 µg/ml in the LD group, and 18.8 µg/ml in the HD 

group. They were 0.27% and 0.15% respectively of the administered 

concentrations, which were 1.6 mg/ml and 12.8 mg/ml. Caroverine became 

undetectable at 6 h in the LD group, while the concentration still remained at 1.9 

µg/ml at 6 h in the HD group. In the IV group, perilymph caroverine reached its 

peak value of 0.24 µg/ml at 30 min and became undetectable at 3 h after 

administration. 

Table 2. The concentrations (mean ± SD, µg/ml) of caroverine in the perilymph, 
CSF, and plasma following high dose (15 µl of 12.8 mg/ml) RWM administrations. 
In the perilymph, the caroverine reached it highest concentration at 18.78 µg/ml at 
30 min following application and decreased with time. It still remained at 
1.93µg/ml at 6 h after application. In the CSF, caroverine was undetectable at 10 
min and 6 h and remained at very low level between 30 min and 3 h. In the plasma, 
caroverine concentration was around 0.03-0.06 µg/ml during the 6 h after RWM 
application. 
 

Mins Perilymph CSF Plasma 
10 5.240 ±2.500 0 0.063 ±0.016 
30 18.780 ±0.266 0.025 ±0.012 0.055 ±0.019 
60 12.567 ±1.838 0.012 ±0.002 0.053 ±0.002 
180 4.591 ±1.151 0.014 ±0.001 0.048 ±0.017 
360 1.932 ±0.777 0 0.034 ±0.014 

 50



Table 3. The concentrations (mean ± SD, µg/ml) of caroverine in the perilymph, 
CSF, and plasma following low dose (15 µl of 1.6 mg/ml) RWM administrations. In 
the perilymph, the caroverine reached it highest concentration at 4.26 µg/ml at 30 
min following application and decreased with time and became undetectable at 6 h 
after application. In the CSF, caroverine was undetectable at 10 min and 6 h and 
remained at very low level between 30 min and 3 h. In the plasma, caroverine 
concentration was around 0.02-0.06 µg/ml during the first 3 h after RWM 
application and was undetectable at 6 h. 

 
Mins Perilymph CSF Plasma 

10 3.745 ±2.057 0 0.056 ±0.004 
30 4.263 ±0.288 0.013 ±0.001 0.044 ±0.021 
60 1.110 ±0.382 0.013 ±0.001 0.034 ±0.019 
180 0.971 ±0.272 0.019 ±0.018 0.027 ±0.013 
360 0 0 0 

 
 
 
 
 

Table 4. The concentrations (mean ± SD, µg/ml) of caroverine in the perilymph, 
CSF, and plasma following intravenous injection (4 mg/kg body weight at the 
concentration of 1.6 mg/ml). In the perilymph, the caroverine reached it highest 
concentration at 0.23 µg/ml at 30 min following application became undetectable at 
3 h. In the CSF, remained at very low level and became undetectable at 3 h. In the 
plasma, caroverine concentration reached peak value of 0.75 µg/ml at 10 min and 
decreased with time. At 6 h the caroverine concentration in the plasma was still 
0.09 µg/ml. 

 
Mins Perilymph CSF Plasma 

10 0.186 ±0.009 0.149 ±0.004 0.750 ±0.137 
30 0.239 ±0.051 0.107 ±0.027 0.417 ±0.081 
60 0.163 ±0.016 0.069 ±0.026 0.216 ±0.023 
180 0 0 0.144 ±0.034 
360 0 0 0.094 ±0.051 
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Fig. 15. The pharmacokinetic curves of caroverine in the perilymph after 
intravenous injection or RWM administrations. The caroverine concentration 
reached peak value at 30 min after application and decreased with time. The 
caroverine peak concentration in the HD group is dramatically higher than that in 
the IV group. At 6 h, caroverine became undetectable in the IV or LD group and 
still remained at high level in the HD group. 
 

 

Fig. 16. The pharmacokinetic curves of caroverine in the CSF after intravenous 
injection or RWM administrations. The CSF caroverine concentration reached peak 
value at 10 min after systemic application and decreased with time. While in the 
local groups caroverine remained at much lower level compared with IV group. 
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Fig. 17. The pharmacokinetic curves of caroverine in the plasma after intravenous 
injection or RWM administrations. The caroverine concentration reached peak 
value at 10 min after IV administration and decreased around 4 times during 1 h 
and remained at relatively stable high level. In both local groups, caroverine 
remained at low level in the plasma. 
 

As shown in Fig. 16, caroverine in the CSF was detected in both local groups at 30 

min after applications and remained at very low levels (ranging from 0.012-0.025 

µg/ml) until it became undetectable at 6 h. In the IV group, CSF caroverine reached 

a much higher peak concentration (0.149 µg/ml) 10 min after administration and 

then decreased with time. There was no statistically significant difference (p = 0.39) 

in caroverine concentrations between the perilymph and CSF following IV 

administration. However, the concentration in the perilymph seemed to be relatively 

higher than in CSF.  

 

The concentration of caroverine in plasma (Fig. 17) reached a peak value 10 min 

after both local and IV administrations of caroverine, and then decreased with time. 

However, caroverine was still detectable 6 h after IV administration. In both LD 

and HD groups, the concentrations were much lower than those in the IV group, 
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and became undetectable at 6 h in the LD group. The peak value of caroverine in 

the plasma in the IV group was around 11 times higher than that in the HD group. 

  

The effect of local applications on auditory function 

 
The effect of local applications on auditory function was evaluated by the 

measurements of ABR threshold, amplitude and latency. ABR thresholds at 4 

different frequencies (20, 16, 12.5 and 8 kHz) are shown in Fig. 18. At 20 kHz, the 

threshold shifts at 30 min following RWM application were 8, 27 and 56 dB in the 

control, LD and HD groups, respectively. Comparing ABR threshold values post  

treatment with the pre-treatment values at 20 kHz, both LD and HD groups 

exhibited significantly impaired thresholds at 30 min, 3 and 6 h after application (p 

= 0.009, 0.001, 0.006; and p = 0.001, 0.001, 0.002, respectively). Comparison of 

ABR threshold shifts at 20 kHz in the LD and HD groups with the control group 

showed statistically significant differences at 30 min and 3 h (p = 0.014 and 0.002 

for LD group; p = 0.0003 and 0.003 for HD group). The threshold shift was smaller 

at 16 and 12.5 kHz and the least at 8 kHz. All the thresholds recovered partially at 3 

and 6 h and had completely returned to normal level 24 h after caroverine 

applications. 
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Fig. 18. ABR threshold (dB SPL) with time at 20, 16, 12.5 and 8 kHz. ABR 
threshold was affected most at 20 kHz and decreased with frequencies. At 8 kHz 
the ABR threshold was almost unaffect. The ABR threshold shifted most at 30 min 
and recovered partially at 3 and 6 h and returned to normal level at 24 h, with more 
effect on the HD group compared with LD group. In the control, there was only 
very slightly change in the ABR threshold. 
 
 *: p<0.05: statistically significant threshold shift compared with the control group.    
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Fig. 19. Wave Ι amplitude (µV) at 90 dB with time at 20, 16, 12.5 and 8 kHz. The 
amplitude was decreased most at 20 kHz with less effect on lower frequencies. At 
The wave I amplitude was decreased most at 30 min and recovered partially at 3 
and 6 h and returned to normal level at 24 h. 
 
*: p<0.05: statistically significant amplitude decrease compared with the control 
group.        
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Fig. 20. Wave Ι latency (msec) at 90 dB with time at 20, 16, 12.5 and 8 kHz. The 
latencies were prolongated most at 20 kHz in the HD group, and there was little 
change at 16, 12 and 4 kHz in the LD and control group. The latency was affected 
most at 30 min and recovered partially at 3 and 6 h and returned to normal level at 
24 h. 
 
*: p<0.05: statistically significant latency prolongation compared with the control 
group. 
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Fig. 21. Perilymph caroverine mean concentrations and thresholds at 20 kHz with 
time following high dose local application. At 30 min following application, the 
perilymph caroverine concentration reached peak value, and the ABR thresholds 
were shift most. At 3 and 6 h, the caroverine concentration in the perilymph 
decreased and the ABR threshold recovered partially.  
 

The wave Ι of the ABR response comes from the activity of the eighth nerve, which 

innervates the cochlea region. To further explore the cochlea functional effects of 

local caroverine applications, the amplitude and latency of wave Ι were analyzed at 

90 dB at all 4 frequencies (Fig. 19, 20). A statistically significant decrease in the 

wave Ι amplitude appeared at 20 kHz at 30 min in both the LD and HD groups 

compared to the control group (p = 0.0004, and p = 0.026, respectively). The wave Ι 

amplitude in the LD group showed less reduction than in the HD group. The 

amplitude partially recovered at 3 and 6 h and had returned to normal levels at 24 h 

following application. 
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The wave Ι latencies in the HD group were more severely changed than those in the 

LD group at all 4 frequencies (Fig. 20). When compared with the control group, 

significant latency prolongations were observed at 20 and 12.5 kHz at 30 min in the 

HD group (p = 0.007, and p = 0.030, respectively). The latencies in all 3 groups 

recovered partially at 3 and 6 h and recovered at 24 h after application. 

 

The guinea pig’s behaviors were observed when it woke up throughout the 

experiment. Vestibular disorders, such as imbalance, locomotor hyperactivity, 

ataxia and stereotypic head-movement were not seen. 

 

Protective effect on NIHL 

 
The protection of auditory function with caroverine was tested in the LD, HD, and 

control groups with RWM applications immediately prior to noise. The pre-

exposure thresholds were shown in Fig. 22. The thresholds were around 20-30 dB at 

20, 16, 12.5 and 4 kHz, and 35 dB at 8 kHz. There was no significant difference 

between control group, LD group and HD group. ABR threshold shifts, determined 

by the comparison of the post-exposure thresholds at regular time points with the 

pre-exposure thresholds, are plotted in Fig. 23. All 3 groups showed threshold shifts 

ranging from 50 to 70 dB across frequencies at 1.5, 3 and 6 h after noise exposure, 

irrespective of whether this was from control or caroverine treatment groups. At 24 

h after noise exposure, the control group showed a recovery of around 20 dB at all 

frequencies tested. For the caroverine groups, however, the recovery was much 

more pronounced. At 24 h following caroverine application, the HD group showed 
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a 40-50 dB threshold recovery at 20, 16, 12.5 and 4 kHz, and about 30 dB recovery 

at 8 kHz.  The threshold recovery was significantly larger than in the control group  

at all tested frequencies (p<0.05). In the LD group, the recovery was smaller than 

that in the HD group, but was still significant compared to the control group at 24 h 

after caroverine administration at the 2 highest frequencies (a 20-35 dB recovery at 

20 and 16 kHz; p = 0.0001, and p = 0.002, respectively). 
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Fig. 22. Pre-exposure ABR threshold across frequencies tested. There was no 
significant difference among control group and LD and HD groups. 
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Fig. 23. ABR threshold shifts (mean ± SD) with time following noise exposure 
(Physiological saline or caroverine were applied onto the RWM 10 min before 
noise).  At the first 6 h following noise exposure, there was no significant difference 
between control group and experimental groups. At 1, 3 and 7 days, the caroverine 
group had significant ABR threshold recovery compared with control group. The 
recovery in the HD group was more pronounced than LD group, with high 
frequencies better than low frequencies.  
 
 
*: p<0.05: statistically significant threshold shift compared with the control group.   
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Further recovery of threshold was monitored at 3 days and 1 week following RWM 

applications. In all 3 groups, threshold recovered around 5 dB at 3 days compared 

to that at 24 h and also nearly 5 dB at 1 week compared to that at 3 days. Significant 

difference in threshold shifts were still present at 20, 12.5, 16 and 8 kHz in the HD 

group compared to the control group at 3 days and 1 week after caroverine 

application, and at 4 kHz at 3 days. In the LD group, threshold shifts of significant 

difference compared with the control group were observed at 20, 16, 8 and 4 kHz at 

3 days, and at 20 and 16 kHz at 1 week after RWM application. 

 

The guinea pig’s behaviors were observed in the first 6 h of experiment and once 

every following day after it woke up from the sedative condition. Vestibular 

disorders, such as imbalance, locomotor hyperactivity, ataxia and stereotypic head-

movement were not seen. 

 
 

Therapeutic effect on NIHL and time window 

 
The therapeutic effect was tested by ABR measurement on the groups with RWM 

application either 1 h or 24 h after noise exposure. The effect of caroverine applied 

1 h after noise is illustrated in Fig. 24. Half an hour after RWM applications (1.5 h 

after noise exposure), both control and caroverine groups showed 60-70 dB 

threshold shifts at 8-20 kHz and nearly 45 dB threshold shift at 4 kHz.  The 

threshold shifts in the control group remained at 35-45 dB at 20, 16, 12.5 and 4 kHz 

and at 50 dB at 8 kHz, 24 h after RWM saline application. However, in the 

caroverine group the threshold shifts decreased to 15-20 dB at 20, 16, 12.5 and 4 
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kHz and to 35 dB at 8 kHz, 24 h after caroverine application. The threshold shifts in 

the caroverine group were significantly smaller at all tested frequencies when 

compared to those of the control group at 24 h, 3 days and one week after RWM 

administrations. 

 

The effect of caroverine applied 24 h after noise is illustrated in Fig. 25. The 

threshold shifts in the control group at 0.5 h after RWM application (24.5 h after 

noise exposure) were 25-40 dB at all tested frequencies. However, in the caroverine 

group, the threshold shifts were 50-60 dB at 20, 16, 12.5 and 8 kHz and 25 dB at 4 

kHz. The control groups had better ABR thresholds because the hearing had 

partially recovered at 24.5 h after noise exposure. While in the caroverine group, 

caroverine would increase the ABR threshold itself and thus resulted in around 30 

dB higher threshold shift than in the control group. Twenty-four hours after RWM 

application (48 h after noise exposure), both control and caroverine groups showed 

15-25 dB threshold shifts at 20, 16, 12.5 and 4 kHz and 40 dB at 8 kHz. No 

significant difference in threshold shift was found between the control and 

caroverine groups at 24 h, 3 days and 1 week after RWM application.  

 

The guinea pig’s behaviors were observed in the first 6 h following RWM 

applications and once every following day after it woke up from the sedative 

condition. Vestibular disorders, such as imbalance, locomotor hyperactivity, ataxia 

and stereotypic head-movement were not seen. 
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Fig. 24. ABR threshold shifts (mean ± SD) with time following RWM 
physiological saline or caroverine applications (1 h after noise exposure). At 0.5 h 
after RWM application, there was no significant difference in threshold shift 
between caroverine group and control g roup. At 1, 3 and 7 days after RWM 
administration, the recovery of ABR threshold in the caroverine group was of 
significant difference compared with control group across tested frequencies. 
 
 
*: p<0.05: statistically significant threshold shift compared with the control group.  
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Fig. 25. ABR threshold shifts (mean ± SD) with time following RWM 
physiological saline or caroverine applications (24 h after noise exposure). At 0.5 h 
after RWM application, caroverine group had around 15-30 dB more threshold shift 
at 20, 16, 12 and 8 kHz compared with control group. This might be due to the 
recovery of hearing in the control group at 24 h after noise exposure and caroverine 
affected ABR in the experimental group. At 1, 3 and 7 days, there was no 
significant difference in ABR threshold shifts between caroverine group and control 
group. 
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DISCUSSION 

 

Pharmacokinetics of caroverine in the inner ear and its effects on the auditory 

function following local RWM and systemic applications 

 

There is growing interest in inner ear medication by local routes instead of systemic 

application, in order to achieve therapeutic drug levels in the inner ear while 

avoiding undesirable systemic side effects. Caroverine, as a glutamate receptor 

antagonist and an antioxidant in combination with calcium channel blocking 

activity, is a spasmolytic drug and also clinically used for the treatment of tinnitus, 

sudden hearing loss, speech discrimination disorders and other neurotoxic effects, 

such as ischemia/reperfusion, hypoglycemia, anoxia, hypoxia, shock and dementia 

(Denk et al., 1997; Saletu et al., 1996; Ehrenberger, 2002). However, the risk of 

inducing unwanted side effects appears in most glutamate receptor antagonists if 

given in large enough doses. Low doses are associated with altered sensory 

perception, dysphoria, hypertension, nystagmus and disorientation, with progression 

to agitation, paranoia, hallucinations, severe motor retardation and ultimately 

catatonia at higher doses (Muir and Lees, 1995). These potentially detrimental 

adverse effects obviously limit their clinical use for treatment of inner ear diseases 

by systemic administration. Thus, it is important to find alternative ways for the 

drug administration. 
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Delivery of agents into the inner ear via the RWM is being increasingly used 

clinically. For instance, this approach has been utilized for the delivery of steroids 

and gentamicin to the inner ear in the treatment of autoimmune diseases, 

sensorineural hearing loss, tinnitus and Ménière’s disease (Silverstein et al., 1996, 

1999; Blackley, 1997; Parnes et al., 1999; Hoffer et al., 2001; Schoendorf et al., 

2001). Practically, this can be done by insertion of a microcatheter system or a 

MicroWick directly onto the RWM, or by using an implantable drug delivery 

system, which results in a more controlled application of the drugs (Lehner et al., 

1997; Silverstein, 1999; Schoendorf et al., 2001). An alternative method is to instill 

the drugs via the tympanic membrane directly into the middle ear using gelfoam on 

the RWM as a form of continuous-release vehicle, which allows for prolonged drug 

perfusion of the labyrinth. This method is a relatively simple and effective 

procedure that has been used in both experimental and clinical studies (Silverstein 

et al., 1996, 1999). The disadvantages of the method are that it is only one single 

dose application and can not apply the drug repeatedly.  

 

The present study showed that by local applications of caroverine onto the RWM 

with gelfoam, the perilymph concentrations quickly reached high peak values at 30 

min, followed by a relatively fast decrease over time. The perilymph peak values in 

the LD and HD RWM groups were almost 20 and 80 times higher than the peak 

value reached in the IV group. As expected, the high dose produced higher 

perilymph levels than the low dose, which suggests that the absorption of 

caroverine through the RWM is a dose-dependent process. The perilymph 
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caroverine concentration fell more slowly in the animals given the drug directly 

onto the RWM than in those animals given a much higher dose systemically. In the 

perilymph, caroverine might be removed not only by passive diffusion to 

endolymph or to the CSF through the cochlear aqueduct, but also by active 

elimination such as blood flow and lymphatic flow (Hibi et al., 2001). It is possible 

that the elimination of caroverine is faster than what was shown in the two local 

groups. The maintenance of caroverine concentration in the perilymph in local 

groups is most likely due to the continuous absorption of caroverine from the 

gelfoam through the RWM. It is well known that the RWM is permeable to various 

drugs and substances placed in the round window niche area. These include 

antibiotics, antiseptics, arachidonic acid metabolites, local anesthetics, toxins and 

albumin (Goycoolea and Lundman, 1997), showing that not only small molecules 

but also macromolecules can pass through the RWM. Caroverine is a low-

molecular-weight substance (molecular weight of caroverine hydrochloride = 420) 

and should pass through the RWM quite freely. The concentrations of caroverine in 

the perilymph after local applications were considerably higher than those found 

following systemic application. These results clearly illustrated the permeability of 

the RWM to caroverine. Consequently, high concentrations of caroverine can be 

attained in the perilymph by application of a small amount of the drug on the 

RWM. 
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After systemic administration, the concentrations of caroverine in the plasma were 

consistently higher than those in the CSF and perilymph. This can be attributed to 

the existences of both blood-brain and blood-labyrinth barriers. The perilymph 

concentrations seemed to be higher than CSF concentrations, but the difference was 

not statistically significant. This may reflect the differences between the blood-brain 

barrier and blood-labyrinth barrier, or the properties of the communication between 

the CSF and perilymph through the cochlear aqueduct. Another important 

observation, although not entirely unexpected, was that local caroverine 

applications resulted in much lower drug concentrations in the plasma and CSF as 

compared to systemic administration. For example, the plasma and CSF caroverine 

peak values in the IV group were about 12 and 6 times the peak values in the HD 

group, respectively. A less systemic adverse effect may be expected with the lower 

caroverine concentrations in plasma and CSF. This is in part related to the dose. 

The total volume of the perilymph is only around 15.9 mm³ in the guinea pig 

cochlea (Shinomori et al., 2001). Therein lies the major advantage of the RWM 

administration, which is the ability to achieve a high local drug concentration 

without high blood and CSF levels. 

 

The ideal concentration of caroverine in the perilymph for the treatment of inner ear 

diseases, such as tinnitus, remains unknown. In this study, the intravenous dose 

used in guinea pigs was the same as that used clinically in the treatment of tinnitus. 

Assuming similar pharmacokinetics in guinea pigs and humans, one may presume 

the therapeutic concentration of caroverine to be around 0.2--0.3 µg/ml in the 
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perilymph, which was the peak caroverine concentration in the perilymph after 

systemic administration in the present study. The two dosages for RWM 

applications were chosen somewhat arbitrarily. However, the main purpose of the 

study was not to establish a therapeutic window but to relate the auditory effects to 

caroverine concentrations in the perilymph. The effects on hearing threshold were 

tested by measuring the ABR to sound stimuli following local caroverine 

applications. The perilymph caroverine concentration is expected to be higher in the 

basal, high frequency region of the cochlea, being closer to the RWM. Indeed, the 

maximum changes in the ABR threshold, latency and amplitude occurred at 20 kHz 

at 30 min after applications in both local administration groups, and the changes 

were all statistically significant. The ABR was less affected at the frequencies of 16, 

12.5 and 8 kHz, most likely due to the lower caroverine concentrations at positions 

further from the RWM. The ABR thresholds recovered partially at 3 and 6 h and 

were completely back to normal levels 24 h after administration. The two local 

dosages caused transient, but reversible hearing dysfunction. The hearing 

dysfunction may be due to the reason that caroverine binds to both NMDA and 

AMPA receptors, thus blocking the activity of the neurotransmitter glutamate and 

consequently the transduction of the sound. As the transient dysfunction is dose 

related, one would expect it to be negligible at the assumed therapeutic 

concentration, which is much lower than the perilymph concentration after RWM 

application in the study. The slight hearing impairment seen in the control group 

was most likely due to the weight of gelfoam and saline on the RWM, surgical 

stress and possibly an altered ionic balance as sodium and chloride ions will enter 
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the perilymph when saline is applied on the RWM (Molinari, 1972; Colletti et al., 

1986; Hisashi et al., 1999). 

 

By combining the pharmacokinetic observations with the changes seen in the ABR 

thresholds in the HD group, it is clearly demonstrated that the ABR effect was 

related to the concentration of caroverine in the perilymph. Fig. 21 manifests both 

the perilymph caroverine concentrations and the ABR thresholds (at 20 kHz) as 

functions of time following a high dose RWM administration. At 30 min, when 

perilymph caroverine reached its peak value, the ABR threshold shift was also the 

greatest. At 3 and 6 h, when the perilymph caroverine concentration decreased 

markedly, the ABR threshold accordingly recovered partially. 

 

Further studies are necessary to find out the ideal dose and administration paradigm. 

The study of the effect following local applications of caroverine on the RWM in 

the treatment of excitotoxicity-related inner ear diseases, such as noise-induced 

hearing loss, can be carried out on the animal models. This information will be 

useful for the establishment and formulation of the local application method in the 

clinic in the future. 

 

Protection of auditory function against noise trauma 

 
This part of study demonstrated that local caroverine administrations directly onto 

the RWM immediately prior to noise exposure produced significant protection of 

auditory function against noise. The protective effect was dose-dependent, with 
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greater effect in the HD group than in the LD group. The significant protection, as 

measured by using the ABR threshold, was found at 24 h, 3 days and 1 week after 

noise exposure at all tested frequencies (4-20 kHz). These results support the notion 

that pharmacological protection of cochlear function has a promising potential for 

the prevention of noise-induced hearing impairment.   

 

Glutamate receptor antagonists, such as MK-801 and kynurenic acid, have been 

shown to be effective in the protection of neuronal dendrite damage beneath the 

IHCs against noise trauma and consequently to preserve hearing (Puel et al., 1998; 

Duan et al., 2000; Chen et al., 2001). During noise exposure, it appears that AMPA 

receptors are activated by low-to-moderate stimulus intensities, whereas NMDA 

receptors are activated by high-intensity sounds (Felix and Ehrenberger, 1991). In 

our experiments, noise exposure at 110 dB SPL would have activated both NMDA 

and AMPA receptors. Our results suggest that the NMDA and AMPA receptors on 

the afferent dendrites are being blocked by their antagonist caroverine, thus the 

glutamate excitotoxicity due to noise exposure is limited and the cochlear functional 

damage is prevented.  

 

Another possible explanation to the protection of auditory function against noise 

trauma may be based on the antioxidant activity of caroverine. Glutamatergic 

neurotoxicity is partially caused by the overproduction of ROS and following 

membrane damage by lipid peroxidation (Azbill et al., 1997; Simonian and Coyle, 

1996). The accumulating evidences show that ROS play an important role in NIHL. 
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Ohlemiller et al. (1999) demonstrated that ROS increased nearly 4-folds in the 

cochlea during the first 1-2 h after intense noise exposure and did not decrease over 

that time. ROS were shown to affect the isolated OHC morphology or impair 

cochlear function after perilymphatic space infusion (Cleric et al., 1995; Cleric and 

Yang, 1996). A variety of antioxidants such as superoxide dismutase-polythylene 

glycol and allopurinol could protect cochlear damage when applied prior to noise 

exposure (Seidman et al., 1993). Caroverine is a strong antioxidant as demonstrated 

recently by Udilova et al. (2003). They found that the antioxidant activity of 

caroverine was not only the potent removal of OH.-radicals but also the ability to 

interfere into OH.-radical generation and thus to inhibit the establishment of 

oxidative stress. Consequently, it is reasonable to expect caroverine to prevent ROS 

toxicity to the cochlea after noise exposure.   

 

The protection of cochlea from noise trauma might also due to the calcium channel 

blocking activity of caroverine. Four types of voltage-activated calcium channels 

have been identified in various cell membranes: N, T, P and L type calcium 

channels (Spedding and Paoletti, 1992; McCleskey, 1994). The L-type channel 

(slow inactivation and susceptibility to the dihydropyridine class of blockers, such 

as nimodipine) has been demonstrated to be present in the mammalian inner ear 

tissues with molecular biological studies (Green et al., 1996; Kollmar et al. 1997 a, 

b). It has been found that the L-type channel is the only channel type present in the 

chick cochlear hair cells (Zidanic and Fuchs 1995), however, the presence of at 

least of one other type (possibly N-type) in addition to L-type channels has been 
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suggested (Prigioni at al., 1992; Su et al., 1995). The calcium channels have been 

shown to play important roles in controlling neurotransmitter release from the hair 

cells which are important in regulating excitation of the auditory nerve fibers 

(Robertson and Johnstone 1979; Issa and Hudspeth 1994; Tucker and Fettiplace 

1995; Zidanic and Fuchs 1995; Kollmar et al. 1997a, b; Martinez-Dunst and Fuchs 

1997). In addition, voltage-gated calcium channels can regulate the conductance of 

the basolateral wall of the hair cells mainly through the action of calcium-activated 

potassium channels (Issa and Hudspeth 1994; Art and Fettiplace 1995; Dulon et al. 

1998) and may also contribute to the regulation of other calcium-dependent aspects 

of hair cell fuction, including adaptation and slow contractile processes (Zenner et 

al. 1985; Ulfendahl 1987; Assad and Corey 1992). In the guinea pig, it has been 

demonstrated that L-type calcium channels are involved in the various aspects of 

cochlear response to sound and in the transmitter release from the IHCs (Bobbin et 

al., 1990; Zhang et al., 1999). Intense noise exposure might disturb the hair cell 

metabolism, especially the calcium-regulatory processes. The altered calcium 

concentration in the inner hair cells might increase the neurotransmitter release and 

induce excitotoxicity. Thus, calcium antagonists would be able to protect the 

cochlea from noise trauma. In fact, certain calcium channel blockers, such as 

diltiazem, have been shown to protect the inner and outer hair cells from intense 

noise exposure in the guinea pig (Mann et al., 1987; Maurer et al., 1999; Heinrich et 

al., 1999). However, some other studies showed that calcium channel blockers, for 

instance, nimodipine and diltiazem, could not provide any benefit effect against 

noise trauma in the gerbil, mouse or human (Maurer et al., 1995; Boettcher, 1996; 
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Ison et al., 1997; Boettcher et al., 1998). This may be due to the different dosing 

protocols or different expression of calcium channels in the cochleae in different 

species. Caroverine has unspecific calcium channel blocking activity 

(Hornykeiwicz, et al., 1963). The protective effect of caroverine against noise 

trauma might partly be contributed to its blocking of calcium channels in the hair 

cells, preventing calcium influx into the hair cells. This might prevent the damage 

of excessive calcium to the hair cells and also reduced the over-release of excitatory 

neurotransmitter from inner hair cells and thus decreased the excitotoxicity. 

 

Our previous study demonstrated that caroverine readily penetrated the RWM in the 

guinea pig (Chen et al., 2003). Caroverine concentration in the perilymph reached 

its peak value at 30 min after both low and high dose local applications with 

gelfoam. In the LD group, caroverine became undetectable in the perilymph within 

6 h, while in the HD group caroverine still remained at a high level at 6 h after 

RWM application. The effect on hearing was mainly seen at the higher frequencies 

(i.e., closer to the round window). At 30 min there was a 56 dB threshold shift at 20 

kHz, which recovered partially at 3 and 6 h. Thresholds became normal at 24 h. The 

present study shows that caroverine can effectively protect the cochlear function 

against noise trauma when applied immediately prior to noise exposure. Within the 

first 6 h after RWM applications, there was no significant difference in threshold 

shift between the LD or HD group and control group. This is most likely due to 

high concentration of caroverine in the perilymph binding to the glutamate 

receptors, thus blocking the effect of the neurotransmitter (glutamate) and the sound 

 75



transduction. However, at 24 h after caroverine application, there was a significant 

decrease in noise-induced threshold shifts. In addition, the HD group, with a higher 

caroverine concentration in the perilymph, as shown previously (Chen et al., 2003), 

maintained greater protective effect as compared to the LD group. The protection 

was still manifest 1 week after caroverine application.  

 

The frequency effect observed in this study is of particular interest. The protective 

effect is of the most significance at 20 kHz. This could be attributed to the higher 

concentration of caroverine in the basal, high frequency region of the cochlea, being 

closer to the RWM. After noise exposure, there was a more severe threshold 

elevation at 8 kHz, which is compatible to the well-known phenomenon of ‘half-

octave shift’ in a damage cochlea (Davis et al., 1950; Greenwood, 1993). According 

to the half-octave shift, the most vulnerable frequency is around 9 kHz when 

exposed to 6.3 kHz band noise.  

 

However, the auditory threshold did not recover completely to normal level even at 

1 week after caroverine application in the HD group. There were still 10-15 dB 

threshold shifts at 20, 16, 12.5 and 4 kHz, and 30 dB at 8 kHz. Glutamate receptor 

antagonists other than caroverine, including NMDA or AMPA receptor antagonists, 

only partially protect the cochlear function against auditory impairment (Liu and 

Fechter, 1995; Puel et al., 1998; Duan et al., 2000). This may be partially due to the 

incomplete reestablishment of the hair cell neural synaptic contacts. That glutamate 

receptor antagonists do not completely protect against NIHL reflects the fact that 
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other mechanisms are also involved. Two main mechanisms are proposed to be 

involved in NIHL: mechanical damage, which is permanent and irreversible, and 

metabolic alterations.  Damage to the OHC is thought to be especially important for 

NIHL based on the histological studies using surface preparation (Ryan and Dallos, 

1975; Stebbins et al., 1979; Hamernik et al., 1989). Glutamate receptors are 

demonstrated to be present mainly on the spiral ganglion cell and sparely on the 

IHCs and be absent on the OHCs, although glutamate receptor expressions are 

transiently presented on the OHCs in the developing ear (Safieddine and Bybalin, 

1992; Niedzielski and Wenthold, 1995; Usami et al., 1995; Matsubara et al., 1996).  

 

The cellular and molecular mechanisms underlying hearing loss are not well 

known. The impairment of the inner ear after noise trauma may involve glutamate-

mediated excitotoxicity, oxidative stress, apoptosis of hair cells and auditory 

neurons (Aarnisalo, et al., 2000; Hu et al., 2000; Hu et al., 2002; Nicotera, et al., 

2003; Wang at al., 2002; Wang et al., 2003), unregulated calpain proteolysis 

(Stracher, 1999; Shulman, 1998; Lefebvre et al., 2002), and the decrease of the 

microcirculation of the cochlea (Quirk and Seidman, 1995; Seidman, 1999). 

Different agents have been applied to interfere these pathways for the protection of 

cochlea against noise trauma. Wang et al. demonstrated that the anti-apoptosis agent 

riluzole could prevent the noise-induced permanent hearing loss when perfused into 

the cochlea via an osmotic minipump in the guinea pig (Wang et al., 2002). The 

calpain inhibitor leupeptin has been shown to significantly protect the cochlea from 

noise trauma (Salvi et al., 1998; Wang et al., 1999). Lamm and Arnold found that 
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the blood flow promoting drugs, such as hydroxyethyl starch, pentoxifylline and 

ginkgo biloba, could compensate cochlear ischemia and reduce noise-induced 

hearing loss (Lamm and Arnold, 2000). Neurotrophins, including nerve growth 

factor (NGF), brain-derived nerve growth factor (BDNF), neurotrophin-3 (NT-3) 

and glial cell line-derived neurotrophic factor (GDNF), are known to play a role in 

the survival of injured auditory neurons (Altschuler et al., 1999; Ylikoski et al., 

1998; Staecker et al., 1996). The protective effects of the neurotrophins against 

noise trauma have been widely studied. Numerous reports have shown that 

neurotrophins, such as NT-3, BDNF, GDNF and NGF, could protect the auditory 

neurons and hair cells from noise trauma (Keithley et al., 1998; Duan et al., 2000; 

Shoji et al., 2000 a, b). Since these agents protect the cochlea from noise-induced 

hearing loss by different mechanisms, it might be more promising to combine 

caroverine with these agents to protect the cochlea from noise trauma. 

 

In conclusion, the result of this part of study demonstrates that caroverine can 

significantly protect the cochlea from noise trauma when applied onto the RWM 

immediately prior to noise exposure. The protective effect of caroverine, an NMDA 

and AMPA receptor antagonist together with antioxidant and calcium channel 

blocking activities, against noise trauma supports the notion that the excessive 

release of glutamate from the IHCs and the consequent excessive ROS production 

plays an important role in the pathophysiology of NIHL. Thus, pharmacological 

protection of the cochlea against noise is possible and may be of great clinical 

potential. 
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Therapeutic effect and time window on noise trauma 

 

This part of study shows that local RWM administration of caroverine 1 h after 

noise exposure significantly reduces the damage caused to cochlear function after 

noise trauma. The significant therapeutic effect was found at 1 day after noise 

exposure and was still present at 1 week during the functional recovery. In contrast, 

treatment with caroverine 24 h after noise exposure failed to achieve any functional 

protection during the same time period.  

     

In the previous study (Chen et al., 2003), high concentration of caroverine was 

detected in the perilymph during the first 6 h following RWM application with the 

same protocol and dose as in the present study, and the effects on ABR threshold 

were related to the concentration of caroverine in the perilymph. In the present 

results, there was no significant decrease in threshold shifts in the caroverine group 

compared with control group at 0.5 h after RWM application (1.5 h after noise 

exposure). The hearing loss in the control group was caused mainly by noise and 

partially by surgery which was demonstrated in the previous study (Chen et al., 

2003), while the threshold shifts in caroverine group might be induced by the 

blockage of neurotransmitter glutamate receptors with high concentration of 

caroverine, and by noise and surgical operation. 

Interestingly, significant improvement of auditory function was found at 24 h, 3 

days and 1 week after caroverine application. 
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The time at which the treatment is begun is a critical issue. In the central nervous 

system, glutamate is released early after traumatic injury, and early treatment is 

necessary (McIntosh, 1994). In animal models of cerebral ischemia, NMDA 

receptor antagonists were effective against ischemia injury only when administered 

before or shortly after the ischemia insult (Meldrum, 1990). Talampanel, AMPA 

receptor antagonist, is shown to significantly attenuate neuronal damage when 

administrated 30 min, but not 3 h, after traumatic brain injury in rats (Belayev et al., 

2001). However, the AMPA/kainate receptor antagonist NBQX is effective in 

reducing damage in rats subjected to global ischemia even administered several 

hours after the ischemic insult (Sheardown et al., 1990; Li and Buchan, 1993). 

During high-level noise exposure, significant increase of glutamate was detected in 

the guinea pig’s cochlea by using microdialysis (Jäger et al., 2001). But the duration 

of increased glutamate level in the cochlea following noise exposure remains 

unknown. In the present study, early treatment with caroverine at 1 h after noise 

trauma led to significant reduction of auditory functional impairment. However, 

when caroverine treatment began 24 h after noise trauma, the protective effect on 

hearing was lost. Our results may imply that excessive glutamate is still present in 

the cochlea and damages the hearing even 1 h after noise exposure.      

      

It has been demonstrated that AMPA/kainate receptors are activated by low-to-

moderate intensity sound, while NMDA receptors are activated by high-intensity 

stimulus (Felix and Ehrenberger, 1991). In this study, noise at 110 dB SPL would 

have activated both NMDA and AMPA/kainate receptors. It is suggested that 
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NMDA-receptor activation under excessive glutamate is mainly responsible for the 

initial disturbance of neuronal ion homeostasis, while AMPA/kainate receptors 

contribute to the development of neuronal damage at a stage when NMDA 

receptors begin to play a less prominent role (Prehn et al., 1995). Moreover, the 

molecular study on the expression of AMPA receptor subunits (GluR1, GluR2, 

GluR3, and GluR4) suggested that when GluR2 is coexpressed with one or more of 

the other subunits, the AMPA receptor has very low permeability to Ca2+. But 

when GluR2 is absent, the AMPA receptor has substantial Ca2+ permeability 

(Meguro et al, 1992; Belayev et al, 2001). The observation of a relative loss of 

mRNA for GluR2 in postischemic CA1 zone implicated a potential mechanism of 

an increase in Ca2+ permeability of AMPA receptors (Pellegrini-Giampietro et al, 

1992). The increased Ca2+-permeable AMPA receptor might account for the 

susceptibility of postischemic neuron and the ability of delayed AMPA receptor 

antagonist for prevention of Ca2+ influx (Andine et al, 1992). It was suggested that 

the ischemia-induced damage in the cochlea was via the activation of excitotoxicity 

which occurred in the NIHL as well (Pujol et al., 1993). When applied 1 h after 

noise exposure, caroverine, an NMDA and AMPA receptor antagonist, would block 

both the two receptors and thus limit the excitotoxicity and preserve hearing.  

 

The mechanism by which caroverine could attenuate auditory impairment when 

applied 1 h, but not 24 h, after noise exposure is not fully elucidated. One possible 

explanation might be that the auditory functional impairment was caused by both 

metabolic and mechanic damages due to noise trauma. The process of metabolic 
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change might still continue at 1 h after noise exposure via glutamate release and the 

excessive glutamate could not be eliminated at this time period, and the 

consequently increased ROS production might damage the cochlea. It was 

demonstrated that ROS concentration increased almost 4-folds in guinea pigs’ 

cochlea during the first 1-2 h after intense noise exposure and did not decrease over 

that time (Ohlemiller et al., 1999). The production of ROS plays an important role 

in NIHL as discussed previously. However, the metabolic process might have 

ceased at 24 h after noise trauma. If so, caroverine will be able to block both 

NMDA and AMPA receptors, and its potent antioxidant activity makes it possible 

to inhibit the establishment of oxidative stress and to scavenge toxic ROS, thus 

leading to the rescue of the hearing.  

 

The explanation for no significant improvement of cochlear function following 

caroverine administration 24 h after noise might also be suggested by studies on the 

expression of NMDA receptor after noise trauma. Indeed, in situ hybridization 

experiments revealed the expression of mRNA coding for NR1 subunit of NMDA 

in the spiral ganglion neurons increased 24 h after excitotoxic insult (Puel et al., 

1995). This enhanced expression decreased slightly 2 days after exposure and 

returned to normal value at 3 days (Puel et al., 1995). In another study, chronic 

application of NMDA receptor antagonist during functional recovery after 

excitotoxicity delayed the regrowth of neurites and the restoration of hearing (Felix 

and Ehrenberger, 1991). These findings suggest that glutamate plays a neurotrophic 

role via activation of NMDA receptors in the post-traumatic cochlea. When 
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caroverine was applied 1 h after noise, its beneficial effect exceeded harmful effect 

on cochlear function, so the hearing was significantly preserved. But when the drug 

was applied 24 h after noise, its beneficial effect decreased and the hearing recovery 

was retarded.  

 

In summary, this part of study demonstrated that acute treatment with caroverine is 

beneficial in limiting the auditory functional impairment after noise trauma. But the 

therapeutic window is narrow. 

 

CONCLUSIONS 

  

The present studies demonstrated that the RWM is permeable to caroverine, an 

NMDA and AMPA receptor antagonist together with antioxidant activity. Local 

application of caroverine with gelfoam directly onto the RWM is both safe and 

more effective. Administration of caroverine onto the RWM immediately prior to 

noise exposure can significantly protect the auditory function against noise. 

Caroverine can significantly rescue the hearing when applied 1 h, but not 24 h, onto 

the RWM after noise exposure. These results support the notion that the excessive 

release of glutamate from the inner hair cells and the consequent production of ROS 

play important roles in the pathophysiology of noise-induced hearing loss. Thus, 

pharmacological protection of the cochlea against noise is possible and may be of 

clinical potential. 
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FUTURE PERSPECTIVES 

 
At present no drug has been approved for the local administration to the round 

window membrane for otoprotection or treatment of the inner ear diseases in 

human. For transfer of this RWM application therapeutic strategy into controlled 

clinical trials it is necessary to undergo preclinical studies to establish dose-effect 

relationships for both therapeutic and toxic effects (Spandow et al., 1988; Shirwany 

et al., 1998). Direct study of inner ear pharmacokinetic profiles following RWM 

application is not possible in human because human inner ear fluids can not be 

safely sampled without damage of the ear. The alternative is to predict drug levels 

in the inner ear in human from the results obtained in the animal experiments. 

Experimental animal study on the perilymph drug concentration after RWM 

application is important for the advancement of this therapeutic strategy. One 

important issue is that drugs applied locally onto the RWM are not equally 

distributed throughout the inner ear, which has been demonstrated by other studies 

(Stover et al., 1999; Salt and Ma, 2001) as well as our findings. The distribution 

along the length of the cochlea is dominated by the rate of diffusion of the drug 

with faster for small molecules and slower for large moleculars relative to the rate 

of clearance of the drug from the scala. Technically, it would not be possible to 

achieve a uniform drug distribution along the perilymphatic spaces using the RWM 

application approach. Therefore, drugs with different molecular sizes might not be 

equally distributed along the inner ear space even if they have the same average 

perilymph drug concentration. Thus every drug will have its own dose-effect 

relationship when applied onto the RWM. Since the RWM administration has the 
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advantages of high drug concentration in the perilymph with little systemic 

distribution, a wide range of drugs, especially those with severe systemic side 

effects when administrated systemically, can be applied onto the RWM to study the 

permeability of RWM to these drugs and dose-effect relationship in the animal. We 

would also apply these drugs to the RWM of animal models with certain inner ear 

disorders to study the therapeutic effect of the drugs. For example, corticosteroids 

have been used for the treatment of idiopathic sudden sensorineural hearing loss, 

immune related hearing loss by systemic applications (IV or oral) based on its anti-

inflammatory effect (McCabe, 1979; Moskowitz et al., 1984). But the side effects 

associated with prolonged high-dose courses of systemic corticosteroids can be 

devastating and even fatal. Alternatively, cortixosteroids might be applied to the 

RWM locally in the animal model. Its penetration through the RWM and safety and 

efficacy can be tested on the animal. 

 

It has been proposed that glutamate-induced excitotoxicity and oxidative stress are 

involved not only in noise-induced hearing loss, but also in other inner ear 

disorders, such as anoxia (Pujol et al., 1992; Puel et al., 1994), age-related hearing 

loss (Pujol et al., 1990; Seidman, 2000; Seidman et al., 2000). With both 

antiglutamatergic and antioxidant activities, caroverine might be tested for its 

protection and treatment of anoxia and age-related hearing loss in the animal model. 

Relatively, little is known about the neurontransmission in human inner ear because 

of the difficulty in the access of the human specimen. Recently, Nordang et al. 

(2000) for the first time identified L-glutamate, NMDAR2B and the enzyme 
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glutamine synthetase immunomorphologically in the sections from heathly human 

inner ears. They found that glutamate, NR2B and glutamine synthetase were 

distributed in synaptic regions in a similar way as desribed in many other animal 

species (Bobbin, 1979; Eybalin and Altschuler, 1990; Eybalin 1993). It may be 

assumed that glutamate also acts as neurotransmitter in the human cochlea. The 

understanding of glutamate receptors in the human cochlea is a prerequisite for the 

pharmacotherapy of the inner ear disorders related to overstimulation of the afferent 

terminals. Since caroverine has been demonstrated to protect the cochlea from 

noise-induced overstimulation of the cochlear afferent nerve, it is reasonable that 

caroverine might be used for the clinical trial treatment of excitotoxicity-related 

inner ear disorders, such as noise-induced hearing loss and tinnitus.   
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Abstract
Caroverine, an N-methyl-D-aspartate and ·-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid receptor an-
tagonist, has been shown to protect the inner ear from
excitotoxicity and to be effective in the treatment of coch-
lear synaptic tinnitus. Local administration of caroverine
on the round window membrane (RWM) could be a more
effective means of administration to avoid systemic side/
adverse effects. The present study investigates the phar-
macokinetics of caroverine in the perilymph, cerebrospi-
nal fluid (CSF) and plasma following intravenous and
local applications at different dosages. High-perfor-
mance liquid chromatography was used to determine
the drug concentrations. Our results show much higher
caroverine concentrations in the perilymph with lower
concentrations in CSF and plasma following local appli-
cations compared with systemic administration. Audito-
ry brainstem responses were measured to evaluate the

changes in auditory function. The effects on hearing
were transient and fully reversible 24 h after local caro-
verine applications. The findings suggest that local appli-
cation of caroverine on the RWM for the treatment of
excitotoxicity-related inner ear diseases, such as tinnitus
and noise-induced hearing loss, might be both safe and
more efficacious while avoiding high blood and CSF
caroverine levels seen with systemic administration.

Copyright © 2003 S. Karger AG, Basel

Introduction

Glutamate has been shown to be the most likely neuro-
transmitter at the synapses between the inner hair cells
and afferent neurons in the mammalian cochlea [Alt-
schuler et al., 1989; Eybalin and Pujol, 1989; Felix and
Ehrenberger, 1990; Eybalin, 1993; Puel, 1995; Ruel et al.,
1999; Glowatzki and Fuchs, 2002]. Using immunocyto-
chemistry and in situ hybridization, 3 types of postsynap-
tic glutamate receptors have been identified: ·-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
kainate and N-methyl-D-aspartate (NMDA) [Ryan et al.,
1991; Usami et al., 1995; Matsubara et al., 1996; Nied-
zielski and Wenthold, 1995]. Under pathological condi-



50 Audiol Neurootol 2003;8:49–56 Chen/Duan/Lee/Ruan/Ulfendahl

tions, such as noise trauma and ischemia, excessive gluta-
mate is released and causes cellular damage through the
process described as excitotoxicity in the mammalian
cochlea [Pujol et al., 1993]. A variety of inner ear disor-
ders, such as noise-induced hearing losses, sudden hearing
loss, presbycusis and cochlear synaptic tinnitus, could be
linked to the excitotoxic effect of glutamate [Puel, 1995].
Glutamate receptor antagonists have been shown to pro-
tect the inner ear from excitotoxicity [Pujol et al., 1993;
Duan et al., 2000, 2002] and thus may be a promising
therapeutic modality for a variety of inner ear diseases
[Ehrenberger and Felix, 1995]. Unfortunately, most of the
glutamate receptor antagonists have intolerable neuropsy-
chiatric adverse effects and cannot be administered sys-
temically [Lipton and Rosenberg, 1994; Bullock, 1995;
Muir and Lees, 1995].

Caroverine (Spasmium®, Phafag AG), a quinoxaline
derivative, is clinically available in some countries as a
spasmolytic drug. Microiontophoretic experiments in
guinea pigs have demonstrated that caroverine acts as a
specific, but reversible antagonist of NMDA and AMPA
receptors in the cochlear afferents [Ehrenberger and Felix,
1992]. Caroverine is a promising drug as a glutamate
receptor antagonist. In a study on 60 patients suffering
from tinnitus with a probable cochlear origin, 63.3% of
the patients responded positively to a single infusion of
caroverine. The beneficial effect of the caroverine therapy
was still present after 1 week in 43.3% of the patients
[Denk et al., 1997]. Although its safety has been docu-
mented [Koppi et al., 1987; Saletu et al., 1995], the poten-
tial adverse effects of glutamate receptor antagonists
should be considered when applied systemically. In addi-
tion, the therapeutic effect of systemic caroverine may not
be ideal at nontoxic doses because of its limited ability to
penetrate the blood-labyrinth barrier. Thus, local applica-
tion of caroverine onto the round window membrane
(RWM) might be an alternative since the drug may enter
the inner ear directly, resulting in higher perilymph con-
centrations and reduced systemic absorption and toxicity.
For clinical application, basic information about the rate
of drug diffusion across the RWM, systemic caroverine
absorption and elimination of drug from the inner ear is
necessary. The present study was designed to investigate
the pharmacokinetics of caroverine in the perilymph,
cerebrospinal fluid (CSF) and plasma after systemic and
local applications at different dosages. Auditory brain-
stem response (ABR) measurements were performed to
evaluate the effects on auditory function after local appli-
cations.

Materials and Methods

Albino guinea pigs of either sex (300–400 g) were used. The care
for and use of the animals in this study were approved by the Ethical
Committees at the National University of Singapore and the Karo-
linska Institutet in Stockholm. The animals were anesthetized by
intramuscular injection with a mixture of ketamine (40 mg/kg) and
xylazine (4 mg/kg). For a pharmacokinetic study, the animals were
randomly assigned to 3 groups: 1 group for intravenous injection (IV)
and 2 groups for local applications onto the RWM with a low dose
(LD) and the other a high dose (HD). Intravenous injection was
administered through the femoral vein with the dose of 4 mg/kg body
weight at the concentration of 1.6 mg/ml in normal saline. For local
applications, two doses were used: 15 Ìl of 1.6 mg/ml (LD) and
12.8 mg/ml (HD) of caroverine in normal saline. Under an operating
microscope, the right temporal bulla was opened through a postauri-
cular incision to expose the round window, and a small piece of gel-
foam was placed on the RWM. Fifteen microliters of caroverine at
the concentrations of either 1.6 or 12.8 mg/ml were dropped onto the
gelfoam. The hole of the temporal bulla was then closed using dental
cement (Fuji I, Japan). CSF, plasma and perilymph were sampled at
10, 30, 60, 180 and 360 min after administration. Three animals
were used at each time point (total of 45 animals).

CSF, Plasma and Perilymph Sampling
CSF Sampling. The animals were anesthetized with ketamine

and xylazine, and in addition, local anesthesia with xylocaine was
given. An incision was made through the skin and muscle of the dor-
sal neck. Twenty microliters of CSF were collected from the sub-
arachnoid space at the foramen magnum with a 1-ml syringe con-
nected to a 29-gauge needle.

Plasma Sampling. After CSF sampling, a 3-ml blood sample was
collected by heart puncture through the thoracic cavity using a 5-ml
syringe. The plasma was obtained by centrifugation of the blood sam-
ple at 3,000 rpm for 5 min.

Perilymph Sampling. In order to avoid CSF contamination, the
animals were deeply anesthetized with ketamine and xylazine, the
perilymph was then collected after decapitation. The bulla was
removed from the skull base and opened to expose the middle ear.
The remaining gelfoam was removed, and the RWM and middle ear
cavity were rinsed 4 times with 30% methanol within 2 min. To
make sure there was no contamination of perilymph by the residual
caroverine in the middle ear cavity, the last wash was collected for
detection of caroverine using high-performance liquid chromatogra-
phy (HPLC), and only perilymph samples with no detectable caro-
verine in the last wash were used for analysis. Six to 10 Ìl of peri-
lymph were collected through the RWM with a glass capillary after
complete removal of the solution in the middle ear cavity. In the ears
of the animals given the drug systemically, the samples were obtained
in the same way without local RWM rinsing. All of the samples were
stored at –20°C for HPLC analysis within 1 week.

HPLC Analysis
The concentration analysis was performed on a Hewlett Packard

(HP) 1050 HPLC system equipped with chemstation and HP 1100
UV detector set at 230 nm. A guard column (4.6 ! 12.5 mm, 5 Ìm,
HP) was connected to the HPLC column (Hypersil BDS C18, 5 Ìm,
150 ! 4.6 mm). Drug concentrations with samples were determined
from calibration curves obtained by plotting the chromatographic
peak area ratio of caroverine/internal standardization described



Caroverine in the Inner Ear of Guinea Pigs Audiol Neurootol 2003;8:49–56 51

below. Peak areas were computed from the HP HPLC system soft-
ware chemstation.

The mobile phase for caroverine in the perilymph and CSF was
34% of acetonitrile and 66% of the mixture of 0.02 mol KH2PHO4
and 1.5 ml of diethylamine in 1 liter of deionized water adjusted to
pH 5.7 with 1 N HCl. For caroverine in plasma, the mobile phase was
30% of acetonitrile and 70% of the mixture of 0.02 mol KH2PHO4
and 1.5 ml of diethylamine in 1 liter of deionized water adjusted to
pH 5.9 with 1 N HCl. The flow rate was 1 ml/min. Standard stock
solutions of caroverine-hydrochloride and flunitrazepam (internal
standard; both 1 mg/ml) were prepared in 100% methanol and stored
at 4 °C for not more than 2 weeks. Calibration samples were prepared
at different concentrations by diluting the stock solution with normal
saline. At least 5 caroverine calibrators in 20 Ìl saline, 20 Ìl of con-
trol CSF samples or 10 Ìl of control perilymph samples (diluted to
20 Ìl with normal saline) were mixed with 10 Ìl of flunitrazepam of
appropriate concentrations. The mixture was vortexed and directly
injected into the HPLC system. Different calibration curves had to
be used because of the wide range of concentrations in the perilymph
(calibration range: from 10 ng/ml to 9.6 Ìg/ml). Linear calibration
curves were obtained. For caroverine in plasma, calibration samples
were prepared in 100 Ìl of control plasma samples. Two hundred
microliters of acetonitrile and 20 Ìl of flunitrazepam of appropriate
concentrations were added to 20 Ìl of caroverine hydrochloride cali-
brators (calibration range: 10–960 ng/ml) and 100 Ìl of control plas-
ma samples. The mixture was centrifuged to precipitate plasma pro-
teins. After centrifugation, the supernatant was evaporated with a
stream of nitrogen air and the residue was reconstituted in 40 Ìl of
mobile phase for injection. The retention times of caroverine and
flunitrazepam were 13.1 and 18.0 min, respectively, in plasma, and
8.6 and 11.9 min, respectively, in the perilymph and CSF. The inter-
day coefficient of variation ranged from 4.6 to 16.1%.

Using the above conditions, the limit of quantification was
10 ng/ml. This HPLC method for analysis of caroverine in the peri-
lymph, CSF and plasma is reproducible and sensitive. No interfer-
ence from endogenous substances or the anesthetic agents was
encountered.

ABR Measurements
For the animals with local applications of caroverine, ABR mea-

surements were performed before and at 30 min, 3 h, 6 h and 24 h
after the application. Three groups were studied: LD and HD groups
and a control group. Each group included 5 animals. In the control
group, 15 Ìl of normal saline was applied with the gelfoam onto the
RWM. In the LD and HD local groups, the caroverine administra-
tions were the same as in the pharmacokinetic study. The animals
were anesthetized as above. ABR measurements were performed in a
sound-proof booth as described previously [Duan et al., 2000].
Responses were recorded with subcutaneous stainless electrodes as
the potential difference between an electrode on the vertex and an
electrode on the mastoid, while the leg served as ground. The body
temperature of the animals was maintained at 38 °C by using an
isothermic heating pad. Stimulus intensity was calibrated with a ¼-
inch condenser microphone (Bruël & Kjær Instruments, Marlbor-
ough, Mass., USA, model 4135) and all of the sound pressure levels
were expressed in decibels relative to 20 ÌPa. The stimulus signal was
generated through Tucker-Davis Technologies (Gainesville, Fla.,
USA) equipment controlled by a computer and delivered by an ear-
phone (Telephonics TDH 39, Farmingdale, N.Y., USA). The stimuli
were delivered through a closed acoustic system sealed into the exter-

nal auditory meatus. The evoked response was amplified 100,000
times and averaged 2048 sweeps in real time by a digital signal pro-
cessor (DSP32C) with a time domain artifact rejection. The initial
intensity of the stimulus was 90 dB peak sound pressure level and
was then decreased in 10-dB steps until the threshold was ap-
proached and then in 5-dB steps until the ABR disappeared. Thresh-
old was defined as the lowest intensity at which a visible ABR wave
III was seen in two averaged runs since the wave III was the largest
wave in guinea pigs. Threshold was measured at 4 frequencies: 20,
16, 12.5 and 8 kHz. The latency and amplitude of wave I at 90 dB of
each frequency were recorded. The differences in mean values of
thresholds, latencies and amplitudes between pre- and posttreatment
measurements and between different groups were tested for signifi-
cance (p ! 0.05) by Student’s two-tailed t test.

Results

Pharmacokinetics of Caroverine
Local administrations resulted in dramatically higher

levels of perilymph caroverine concentration than that
seen after intravenous injection (fig. 1). The perilymph
peak values were obtained at 30 min after application in
all 3 groups and then decreased with time. Peak peri-
lymph concentration was 4.3 Ìg/ml in the LD group and
18.8 Ìg/ml in the HD group. They were 0.27 and 0.15%,
respectively, of the administered concentrations, which
were 1.6 and 12.8 mg/ml. Caroverine became undetect-
able at 6 h in the LD group, while the concentration still
remained at 1.9 Ìg/ml at 6 h in the HD group. Perilymph
caroverine could not be detected in the IV group at 3 h
after administration.

As shown in figure 2, caroverine in the CSF was
detected in both local administration groups at 30 min
after application and remained at very low levels until it
became undetectable at 6 h. In the IV group, CSF carover-
ine reached a much higher peak concentration 10 min
after administration and then decreased with time. There
was no statistically significant difference (p = 0.39) in
caroverine concentrations between the perilymph and
CSF following IV administration. However, the concen-
tration in the perilymph seemed to be relatively higher
than in the CSF.

The concentration of caroverine in plasma (fig. 3)
reached a peak value 10 min after both local and intrave-
nous administration of caroverine and then decreased
with time. However, caroverine was still detectable 6 h
after intravenous administration. In both LD and HD
groups, the concentrations were much lower than those in
the IV group and became undetectable at 6 h in the LD
group.
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Fig. 1. The pharmacokinetic curves of caroverine in the perilymph
after intravenous injection or RWM administrations.

Fig. 2. The pharmacokinetic curves of caroverine in CSF after intra-
venous injection or RWM administrations. 

Fig. 3. The pharmacokinetic curves of caroverine in plasma after
intravenous injection or RWM administrations. 

Auditory Brainstem Responses
ABR thresholds at 4 different frequencies (20, 16, 12.5

and 8 kHz) are shown in figure 4. At 20 kHz, the threshold
shifts at 30 min following RWM application were 8, 27
and 56 dB in the control, LD and HD groups, respective-
ly. When comparing ABR threshold values after treat-
ment with the pretreatment values at 20 kHz, both LD
and HD groups exhibited significantly impaired thresh-
olds at 30 min, 3 and 6 h after application (p = 0.009,
0.001, 0.006 and p = 0.001, 0.001, 0.002, respectively).
Comparison of ABR threshold shifts at 20 kHz in the LD
and HD groups with the control group showed statistical-
ly significant differences at 30 min and 3 h (p = 0.014 and

0.002 for LD; p = 0.0003 and 0.003 for HD). The thresh-
old shift was smaller at 16 and 12.5 kHz and the least at
8 kHz. All the thresholds recovered partially at 3 and 6 h
and had completely returned to the normal level 24 h after
caroverine application.

Wave I of the ABR response is dominated by the coch-
lear region. To further explore the functional effects, the
amplitude and latency of wave I were analyzed at 90 dB at
all 4 frequencies (fig. 5, 6). A statistically significant de-
crease in the wave I amplitude appeared at 20 kHz at
30 min in both the LD and HD groups compared to the
control group (p = 0.0004 and p = 0.026, respectively).
The wave I amplitude in the LD group showed less reduc-
tion than in the HD group. The amplitude partially recov-
ered at 3 and 6 h and had returned to normal levels at 24 h
following application.

The wave I latencies in the HD group were more
severely changed than those in the LD group at all 4 fre-
quencies. When compared with the control group, signifi-
cant latency prolongations were observed at 20 and
12.5 kHz at 30 min in the HD group (p = 0.007 and p =
0.03, respectively). The latencies in all 3 groups recovered
partially at 3 and 6 h and recovered at 24 h after applica-
tion.

Discussion

There is growing interest in inner ear medication by
local routes instead of systemic application, in order to
achieve therapeutic levels in the inner ear while avoiding
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Fig. 4. ABR threshold (dB SPL) with time at
20, 16, 12.5 and 8 kHz. * p ! 0.05: statistical-
ly significant threshold shift compared with
the control group.

Fig. 5. Wave I amplitude (ÌV) at 90 dB with
time at 20, 16, 12.5 and 8 kHz. * p ! 0.05:
statistically significant amplitude decrease
compared with the control group.
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Fig. 6. Wave I latency (ms) at 90 dB with
time at 20, 16, 12.5 and 8 kHz. * p ! 0.05:
statistically significant latency prolongation
compared with the control group.

undesirable systemic side effects. Caroverine, as a gluta-
mate receptor antagonist, is clinically used for the treat-
ment of tinnitus [Denk et al., 1997]. However, the risk of
inducing unwanted side effects appears in most glutamate
receptor antagonists if given in large enough doses. Low
doses are associated with altered sensory perception, dys-
phoria, hypertension, nystagmus and disorientation, with
progression to agitation, paranoia, hallucinations, severe
motor retardation and ultimately catatonia at higher
doses [Ehrenberger and Felix, 1992]. These potentially
detrimental adverse effects obviously limit their clinical
use for treatment of inner ear diseases by systemic admin-
istration. Thus it is important to find alternative ways to
apply the drug.

Delivery of agents into the inner ear via the RWM is
being increasingly used clinically. For example, this ap-
proach has been utilized for the delivery of steroids and
gentamicin to the inner ear in the treatment of autoim-
mune diseases, sensorineural hearing loss, tinnitus and
Ménière’s disease [Silverstein et al., 1996, 1999; Blackley,
1997; Parnes et al., 1999; Hoffer et al., 2001; Schoendorf
et al., 2001]. Practically, this is done by insertion of a
microcatheter system directly onto the RWM, which
results in a more controlled application of the drugs
[Schoendorf et al., 2001]. An alternative method is to
instill the drugs via the tympanic membrane directly into

the middle ear using gelfoam on the RWM as a form of
continuous-release vehicle which allows for prolonged
drug perfusion of the labyrinth. This method is a relative-
ly simple and effective procedure that has been used in
both experimental and clinical studies [Silverstein et al.,
1996, 1999].

The present study shows that after local applications of
caroverine onto the RWM with gelfoam, the perilymph
concentrations quickly reach high peak values at 30 min,
followed by a relatively fast decrease over time. The peri-
lymph peak values in the LD and HD RWM groups were
almost 20 and 80 times higher than the peak value
reached in the IV group. As expected, the high dose pro-
duced higher perilymph levels than the low dose, which
suggests that the absorption of caroverine through the
RWM is a dose-dependent process. The perilymph caro-
verine concentration fell more slowly in the animals given
the drug directly onto the RWM than in those animals
given a much higher dose systemically. In the perilymph,
caroverine might be removed not only by passive diffu-
sion, but also by active elimination such as blood flow and
lymphatic flow [Hibi et al., 2001]. It is possible that the
elimination of caroverine is faster than what is shown in
our results. The maintenance of the concentration of
caroverine in the perilymph is most likely due to the con-
tinuous absorption from the gelfoam through the RWM.
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It is well known that the RWM is permeable to various
drugs and substances placed in the niche area. These
include antibiotics, antiseptics, arachidonic acid metabo-
lites, local anesthetics, toxins and albumin [Goycoolea
and Lundman, 1997], showing that not only small mole-
cules but also macromolecules can pass through the
RWM. Caroverine is a low-molecular-weight substance
(molecular weight of caroverine hydrochloride = 420) and
should pass through the RWM quite freely. The concen-
trations of caroverine in the perilymph after local applica-
tions were considerably higher than those found following
systemic application. The results clearly show the perme-
ability of the RWM to caroverine. Consequently, high
concentrations of caroverine can be attained in the peri-
lymph by application of a small amount of the drug on the
RWM.

After systemic administration, the concentrations of
caroverine in plasma were consistently higher than in
CSF and perilymph. This can be attributed to the exis-
tences of both blood-brain and blood-labyrinth barriers.
The perilymph levels seemed to be higher than CSF con-
centrations, but the results were not statistically signifi-
cant. This may reflect the differences between the blood-
brain barrier and blood-labyrinth barrier, or the proper-
ties of the communication between CSF and perilymph
through the cochlear aqueduct. Another important obser-
vation, although not entirely unexpected, was that the
local caroverine applications resulted in much lower drug
concentrations in plasma and CSF as compared to sys-
temic administration. For example, the plasma and CSF
caroverine peak values in the IV group were about 12 and
6 times the peak values in the HD group, respectively. A
less systemic adverse effect may be expected with the low-
er caroverine concentrations in plasma and CSF. This is
in part related to the dose. The total volume of perilymph
is only around 15.9 mm³ [Shinomori et al., 2001]. Therein
lies the major advantage of the RWM administration,
which is the ability to achieve a high local drug concentra-
tion without high blood and CSF levels.

The ideal concentration of caroverine in the perilymph
for the treatment of inner ear diseases, such as cochlear
synaptic tinnitus, remains unknown. In this study, the
intravenous dose used in guinea pigs is the same as that
used clinically in the treatment of tinnitus. Assuming sim-
ilar pharmacokinetics in guinea pigs and humans, one
may presume the therapeutic concentration of caroverine
to be around 0.2–0.3 Ìg/ml in the perilymph. The two
dosages for RWM application were chosen somewhat
arbitrarily. The main purpose of the study was not to
establish a therapeutic window but to relate the auditory

Fig. 7. Perilymph caroverine mean concentrations and thresholds at
20 kHz with time after high-dose local application.

effects to caroverine concentrations in the perilymph. The
effects of caroverine on hearing thresholds were tested by
measuring the ABR to sound stimuli. The perilymph
caroverine concentration is expected to be higher in the
basal, high-frequency region of the cochlea, being close to
the RWM. Indeed, the maximum changes in hearing
threshold, latency and amplitude occurred at 20 kHz at
30 min after application in both local administration
groups, and the changes were all statistically significant.
The ABR was less affected at the frequencies of 16, 12.5
and 8 kHz, most likely due to the lower caroverine concen-
trations at positions further from the RWM. The ABR
thresholds improved partially at 3 and 6 h and were com-
pletely back to normal levels 24 h after administration.
The two local dosages caused transient, but reversible
hearing dysfunction. As the transient dysfunction is dose
related, one would expect it to be negligible at the assumed
therapeutic concentration which is much lower than the
perilymph concentration after RWM application in the
study. The slight hearing impairment seen in the control
group was most likely due to the weight of gelfoam and
saline on the RWM, surgical stress and possibly an altered
ionic balance as sodium and chloride ions will enter the
perilymph when saline is applied on the RWM [Molinari,
1972; Colletti et al., 1986; Hisashi et al., 1999].

By combining the pharmacokinetic observations with
the changes seen in hearing thresholds in the HD group, it
is clearly demonstrated that the ABR effects were related
to the concentration of caroverine in the perilymph. Fig-
ure 7 shows both the caroverine perilymph concentra-
tions and the ABR threshold (at 20 kHz) as functions of
time following a higher-dose RWM administration. At
30 min, when perilymph caroverine reached its peak val-
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ue, the ABR threshold shift was also greatest. At 3 and 6 h,
when the perilymph caroverine concentration decreased
markedly, the hearing threshold recovered partially.

Further studies are necessary to find out the ideal dose
and administration paradigm. The study of the effect fol-
lowing local application of caroverine on the RWM in the
treatment of excitotoxicity-related inner ear diseases,
such as noise-induced hearing loss, can be carried out on
the animal models. This information will be useful for the
establishment and formulation of the local application
method in the clinic in the future.
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Intense sound stimulation may result in excessive glutamate release from the inner hair cells, resulting in binding to the post-

synaptic glutamate receptors and leading to neuronal degeneration and functional impairment. In this study we investigated

the therapeutic effect and time window of caroverine, an N-methyl-D-aspartate and a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor antagonist, on noise-induced hearing loss. Guinea pigs were exposed to one-third octave

band noise centered at 6.3 kHz (110 dB sound pressure limit) for 1 h. One or 24 h after noise exposure, caroverine was

applied to the round window membrane. Auditory brainstem responses were recorded at regular time intervals. It was shown

that caroverine could significantly decrease hearing impairment after noise trauma when applied 1 but not 24 h after noise

exposure. Key words: auditory function, glutamate receptor antagonist, inner ear, noise-induced hearing loss, round window

membrane

INTRODUCTION

Intense noise stimulation can cause temporary or

permanent functional hearing impairment. This func-

tional impairment may be due to mechanical damage

of the tissue and/or single cells and/or to metabolic

disturbances affecting the cellular physiology (1). It

has been demonstrated that one of the main acute

effects of high level noise is injury to the dendrites of

the primary auditory neurons below the inner hair

cells (IHCs) (2, 3). This dendrite damage is mainly due

to excessive release of neurotransmitter from the

IHCs, which is excitotoxic to the primary auditory

neurons (4, 5). Glutamate is the most likely neuro-

transmitter candidate (6, 7, 25). Three types of

ionotropic glutamate receptor have been identified at

the post-synaptic nerve endings beneath the IHCs: N-

methyl-D-aspartate (NMDA), a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) and kai-

nate (8�/11).

A promising approach to prevent glutamate-trig-

gered excitotoxic injury to the afferent neurons would

be to block the glutamate receptors (12). Indeed,

glutamate receptor antagonists, such as MK-801 and

kynurenic acid, have been shown to be effective in the

prevention of dendrite damage and the protection of

auditory function when applied prior to or during

noise exposure (5, 13, 14). An important issue is

whether glutamate receptor antagonists are also able

to reduce hearing damage when administered after

noise exposure.
Caroverine (Spasmium†; Phafag AG), a quinoxa-

line derivative, has been shown to act as an NMDA

and AMPA receptor antagonist on the neurotransmis-

sion of IHCs in guinea pigs (15, 16). In a previous

study, caroverine was demonstrated to significantly

protect auditory function when applied prior to noise

exposure (Chen et al., unpublished observation). The

aim of this study was to investigate the therapeutic
effect and time window of caroverine on noise-induced

hearing loss. We administered caroverine locally to the

round window membrane (RWM) 1 or 24 h after noise

exposure. The auditory brainstem response (ABR)

was measured at regular time intervals after RWM

application in order to evaluate auditory function.

MATERIAL AND METHODS

Animals and noise exposure

Twenty-four pigmented guinea pigs of either sex (300�/

400 g) were used in this study. The care and use of the
animals were approved by Karolinska Institutet and

the local Ethical Committee in Stockholm. The

animals were anesthetized by means of i.m. injection

with a mixture of ketamine (40 mg/kg) and xylazine (4

mg/kg). The anesthetized animals were exposed to

one-third octave band noise centered at 6.3 kHz [110

dB sound pressure limit (SPL)] for 1 h in a soundproof

booth. The soundproof booth was equipped with a
speaker horn (Model 2328; James B. Lancing Sound

Inc., Los Angeles, CA) mounted in the ceiling. The

free-field noise exposure was generated using Pulse

software (Brüel & Kjær) and delivered by a sound

generator (Brüel & Kjær LAN Interface Module type

7533 and Input/Output Module type 3109) connected

to an amplifier (Brüel & Kjær type 2716). The noise

intensity (110 dB SPL; reference: 20 mPa) was mea-
sured prior to exposure using a 0.5-inch microphone

(Brüel & Kjær type 4190) and a preamplifier (Brüel &

Kjær type 2669C) at the approximate level of the

animal’s ear.
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Local caroverine or physiological saline application

Twenty-four guinea pigs were randomly divided into

four equal groups: one control and one caroverine
group in which local applications were performed 1 h

after the end of noise exposure, and control and

caroverine groups in which local administration oc-

curred 24 h after noise exposure. Under an operating

microscope, the right temporal bulla was opened via a

post-auricular incision to expose the round window. A

small piece of Gelfoam was placed on the RWM.

Fifteen ml of either physiological saline or 12.8 mg/ml
caroverine solution was applied to the Gelfoam. The

hole in the temporal bulla was then closed using dental

cement (Fuji I, Japan) and the skin sutured.

ABR measurements

ABR thresholds were obtained 1 day before noise

exposure and at regular time intervals (0.5 and 24 h, 3

days and 1 week) following normal saline or carover-

ine application. The animals were anesthetized as

above. ABR measurements were performed in a
soundproof booth as described previously (13). Re-

sponses were recorded with subcutaneous stainless

electrodes as the potential difference between an

electrode on the vertex and an electrode behind the

ear, with the hind leg serving as the earth. Stimulus

intensity was calibrated with a 0.25-inch condenser

microphone (Model 4135; Brüel & Kjær). The SPL

was expressed as the peak SPL with reference to 20

mPa. The stimulus signals were generated using

Tucker-Davis Technologies (Gainesville, FL) equip-

ment controlled by a computer and delivered by a

Telephonics TDH 39 earphone (Farmingdale, NY).

The stimuli were delivered through a closed acoustic

system sealed into the external auditory meatus. The

evoked response was amplified 100,000 times and 2048

sweeps were averaged in real time by a digital signal

processor (DSP32C) with time-domain artifact rejec-

tion. The initial intensity of the stimulus was 100 dB

peak SPL; this was then decreased in 10-dB steps until

the threshold was approached, and then in 5-dB steps

until the ABR disappeared. The threshold was defined

as the lowest intensity at which a visible ABR wave was

seen in two averaged runs and measured at 5

Fig. 1. ABR threshold shifts
(mean9/SD) for each tested fre-
quency as a function of time follow-
ing physiological saline or caroverine
application (1 h after noise expo-
sure). * p B/0.05 compared with con-
trol group.
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frequencies: 20, 16, 12.5, 8 and 4 kHz. The differences

in mean values of threshold shifts between different
groups were tested for significance (p B/0.05) using

Student’s two-tailed t-test.

RESULTS

The effects of caroverine applied 1 h after noise

exposure are illustrated in Fig. 1. Half an hour after

the RWM applications (1.5 h after noise exposure),

both control and caroverine groups showed 60�/70 dB

threshold shifts at 8�/20 kHz and :/45 dB threshold

shifts at 4 kHz. The threshold shifts in the control

group remained at 35�/45 dB at 20, 16, 12.5 and 4 kHz
and at 50 dB at 8 kHz, 24 h after RWM application.

However, in the caroverine group the threshold shifts

decreased to 15�/20 dB at 20, 16, 12.5 and 4 kHz and

to 35 dB at 8 kHz, 24 h after caroverine application.

The threshold shifts in the caroverine group were

significantly smaller at all tested frequencies when

compared to those in the control group at 24 h, 3 days

and 1 week after RWM applications.

The effects of caroverine applied 24 h after noise

exposure are illustrated in Fig. 2. The threshold shifts
in the control group at 0.5 h after RWM application

(24.5 h after noise exposure) were 25�/40 dB at all

frequencies. In the caroverine group, the threshold

shifts were 50�/60 dB at 20, 16, 12.5 and 8 kHz and 25

dB at 4 kHz. Twenty-four h after RWM application

(48 h after noise exposure), both control and carover-

ine groups show 15�/25 dB threshold shifts at 20, 16,

12.5 and 4 kHz and 40 dB threshold shifts at 8 kHz.
No significant difference in threshold shift was found

between the control and caroverine groups at 24 h, 3

days and 1 week after RWM application.

DISCUSSION

This study shows that local administration of caro-

verine 1 h after noise exposure significantly reduces

the damage caused to cochlear function after noise

trauma. In contrast, treatment with caroverine 24 h

after noise exposure failed to achieve any functional

protection during the same time period.

Fig. 2. ABR threshold shifts
(mean9/SD) for each tested fre-
quency as a function of time follow-
ing physiological saline or caroverine
application (24 h after noise expo-
sure).
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In a previous study (17), a high concentration of

caroverine was detected in the perilymph during the

first 6 h following RWM application using the same

protocol and dose as in the present study, and the

ABR effects were related to the concentration of

caroverine in the perilymph. The present results

showed no significant decrease in threshold shifts in

the caroverine group compared with the control group

at 0.5 h after RWM application (1.5 h after noise

exposure). This may be due to the high concentration

of caroverine in the perilymph, leading to caroverine

binding to the glutamate receptors, and thus blocking

the effect of the neurotransmitter (glutamate). Inter-

estingly, a significant improvement in auditory func-

tion was found at 24 h, 3 days and 1 week after

caroverine application.

It appears that non-NMDA receptors are activated

by low-to-moderate intensity sound, whereas NMDA

receptors are activated by high-intensity stimuli (18).

In our experiment, stimulation with 110 dB SPL noise

would have activated both NMDA and non-NMDA

receptors. It has been suggested that NMDA receptor

activation in the presence of excessive glutamate is

mainly responsible for the initial disturbance of

neuronal ion homeostasis, whilst AMPA/kainate re-

ceptors contribute to the development of neuronal

damage at a stage when NMDA receptors begin to

play a less prominent role (19). Excitotoxic injury to

the cochlea may occur during noise trauma, ischemia

or other types of energy failure (20). In animal models

of cerebral ischemia, NMDA receptor antagonists

seem to be effective against ischemic injury only

when administered before or shortly after the ischemic

insult (21). However, the AMPA/kainate receptor

antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo-

(F)-quinoxaline is effective in reducing damage in

rats subjected to global ischemia even when adminis-

tered several hours after the ischemic insult (22, 23).

Talampanel, another AMPA receptor antagonist, has

been shown to significantly attenuate neuronal da-

mage when administered 30 min, but not 3 h, after

brain trauma in rats (24). The mechanism by which

caroverine can attenuate auditory impairment when

applied 1 but not 24 h after noise exposure is not fully

known. One possible explanation may be that the

auditory functional impairment was caused by both

metabolic and mechanical damage due to noise

trauma. The process of metabolic change may still

be in progress 1 h after noise exposure via glutamate

release; the excess glutamate may not have been

eliminated at this time, but the metabolic process

may have ceased 24 h after noise trauma.

In conclusion, this study demonstrates that acute

treatment with caroverine is beneficial in noise-in-

duced hearing loss. However, the therapeutic window

is narrow.
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Abstract 
 

Glutamate is the most likely neurotransmitter at the synapse between the inner hair 
cell and its afferent neuron in the peripheral auditory system. Intense noise exposure 
may result in excessive glutamate release, binding to the post-synaptic receptors 
and leading to neuronal degeneration and hearing impairment. The present study 
investigated the protective effect of caroverine, an antagonist of two glutamate 
receptors, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid, on noise-induced hearing loss. Two different doses of 
caroverine were applied onto the round window membrane with gelfoam, followed 
by one-third-octave band noise centered at 6.3 kHz (110 dB SPL) for 1 h. Auditory 
brainstem responses were measured at regular time intervals afterwards. Caroverine 
was found to offer significant protection of the cochlear function against noise-
induced hearing loss.     

 
 

Key words:  
 

Caroverine; Glutamate receptor antagonist; Protection; Noise-induced hearing loss; 
Auditory brainstem response; Guinea pig 
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Introduction  
 

There is abundant evidence that glutamate is the excitatory neurotransmitter in the 
peripheral auditory system (Klinke and Oertel, 1977; Klinke, 1986; Altschuler et 
al., 1989; Eybalin, 1993; Puel, 1995; Glowatzki and Fuchs, 2002). Three types of 
ionotropic glutamate receptors have been shown to be present at the post-synaptic 
nerve endings beneath the inner hair cells: α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) 
(Ryan et al., 1991; Niedzielski and Wenthold, 1995; Usami et al., 1995; Matsubara 
et al., 1996). Excessive or prolonged activation of glutamate receptors can lead to 
neuronal cell death and contribute to a wide spectrum of neurologic disorders. The 
process is characterized by two main elements: depolarization of neurons with Na+ 
influx and the entry of extracellular Ca2+ into neuronal cells. Depolarization is 
primarily initiated by activation of AMPA receptors and subsequently the voltage-
dependent Na+ channels. The entry of Na+ is followed by a passive entry of Cl- and 
water, resulting in an increase in cellular volume and acute neuronal swelling. This 
osmotic component is potentially reversible if the stimulus is removed (Choi, 1987). 
If the stimulus remains, the continuous depolarization will release the magnesium 
blockage of the NMDA receptor, leading to the opening of the NMDA receptor. 
The elevated extracellular glutamate causes the influx of Ca2+ into neuronal cells 
through the opened NMDA receptors. Intracellular Ca2+ will also rise due to 
impaired activity of the membrane Na+/Ca2+ exchanger (Koch and Barish, 1994). 
The increased intracellular free Ca2+ will stimulate the activity of numerous 
enzymes and trigger other calcium-dependent protein-protein interactions that are 
ultimately deleterious to cell homeostasis, and thus will lead to neuronal death 
(Doble, 1999).  

 
It has been suggested that acoustic overstimulation results in excessive release of 
glutamate from the inner hair cells, which, by binding to the post-synaptic 
receptors, causes cellular destruction and neuronal degeneration, thus leading to 
noise-induced hearing loss (Saunders and Rhyne, 1970; Spoendlin, 1971; Zivin and 
Choi, 1991, Puel et al., 1994; Shero et al., 1998; Duan et al., 2002). Indeed, 
application of glutamate agonists has been shown to induce destruction of primary 
auditory dendrites and to alter cochlear function in a fashion similar to that 
observed after acoustic trauma (Spoendlin, 1971; Robertson, 1983; Pujol et al., 
1985; Duan and Canlon, 1996). Moreover, significant glutamate efflux has recently 
been demonstrated in the cochlea under intense noise stimulation both in vitro and 
in vivo (Bledsoe et al., 1980; Jäger et al., 1998, 2000). Thus, it should be expected 
that a glutamate receptor antagonist would protect cochlear function against noise 
trauma if the dendritic damage is caused by an excessive release of glutamate from 
inner hair cells.  

 
Caroverine (Spasmium®, Phafag AG), a quinoxaline-derivative, clinically available 
as a spasmolytic drug, has been demonstrated to act as a specific, but reversible 
antagonist of NMDA and AMPA receptors in the cochlear afferents in guinea pigs 
(Ehrenberger and Felix, 1992; Oestreicher et al., 2002). Clinically, it has been 
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shown to be effective in the treatment of cochlear synaptic tinnitus (Denk et al., 
1997). Unfortunately, most glutamate receptor antagonists have intolerable 
neuropsychiatric effects and thus cannot be administered systemically (Lipton and 
Rosenberg, 1994; Bullock, 1995; Muir and Lees, 1995). In a previous study, local 
administration of caroverine onto the round window membrane (RWM) was found 
to significantly increase the perilymph caroverine concentration compared to that 
following systemic application (Chen et al., 2003). The present study used this local 
application method to test whether caroverine could decrease the noise-induced 
hearing loss in the guinea pig, and furthermore, to test the hypothesis that excessive 
glutamate is released from the inner hair cells to the synapse leading to hearing 
impairment following noise exposure.  

 
 

Materials and Methods  
 

Animals and local RWM administration 
 

Pigmented guinea pigs of either sex (300 - 400 g) were used. The animals were 
anesthetized with a mixture of ketamine (40 mg/kg) and xylazine (4 mg/kg) through 
intramuscular injection and additional anesthesia was added when necessary. Under 
an operating microscope, the right temporal bulla was opened through a post-
auricular incision to expose the round window under aseptic conditions. The RWM 
was examined under microscopy to make sure that the RWM was clean and intact 
before drug administration. The round window membrane was seldom damaged by 
the surgery. We discarded the animals when we found the round window membrane 
was not intact. A small piece of gelfoam was placed on the RWM. Fifteen 
microlitres of either physiological saline or caroverine at two different 
concentrations were dropped onto the gelfoam. Eighteen animals were randomly 
divided into 3 groups with 6 animals in each group. The control group received 15 
µl of physiological saline, the low dose group (LD) received 15 µl of 1.6 mg/ml of 
caroverine in normal saline, and the high dose group (HD) 15 µl of 12.8 mg/ml of 
caroverine in normal saline. The hole of the temporal bulla was then closed using 
dental cement (Fuji Ι, Japan) and the skin sutured. After the terminal ABR 
measurement, the animal was decapitated after giving an overdose of pentobarbital 
and the bulla was removed from the skull and opened to examine the middle ear and 
the round window under microscopy. Then the cochlea was put into 4% 
paraformaldehyde in phosphate-buffered saline (pH 7.4), and a small hole was 
made into the cochlear apex in order to examine if there was any damage, which 
could not be observed under the operating microscope. A plastic pipette was used to 
perfuse the cochlea with 4% paraformaldehyde gently from the opening in the 
cochlear apex so that any small hole on the round window membrane could be 
found under microscope.  No obvious sign of inflammation was found in the middle 
ear or round window. The care for and use of the animals were approved by the 
Ethical Committee at the Karolinska Institutet in Stockholm. 
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Noise exposure  
 
Ten minutes after the administration of either physiological saline or caroverine, the 
anesthetized animals were transferred to a sound proof booth and were exposed to 
one-third octave band noise centered at 6.3 kHz (110 dB SPL) for 1 h. Normally 
one administration of anesthesia will last for more than one hour in the guinea pig. 
So it is not necessary to give additional anesthesia for the one-hour noise exposure. 
The sound proof booth was equipped with a speaker horn (model 2328, James B. 
Lancing Sound Inc, Los Angeles, CA) mounted in the ceiling. The free field noise 
exposure was generated with software from Brüel & Kjær (Pulse) and delivered by 
a sound generator (Brüel & Kjær LAN Interface Module type 7533, Input/Output 
Module type 3109) connected to an amplifier (Brüel & Kjær type 2716). The noise 
intensity (110 dB) was measured prior to exposures using a ½ inch microphone 
(Brüel & Kjær type 4190) and a preamplifier (Brüel & Kjær type 2669C) at the 
approximate level of the animal’s ear.  
 
 
ABR measurements  
 
ABR thresholds were obtained 1 day before noise exposure and at 1.5 h (20 min 
after noise exposure), 3, 6, 24 h, 3 days and 1 week after local RWM applications. 
ABR measurements were performed in a sound proof booth as described previously 
(Duan et al., 2000). The animals were anesthetized as above before every ABR 
measurement and the body temperature was maintained at 38°C by using an 
isothermic heating pad. Responses were recorded with subcutaneous stainless 
electrodes as the potential difference between an electrode on the vertex and an 
electrode on the mastoid, while the leg served as ground. Stimulus intensity was 
calibrated with a ¼ inch condenser microphone (Brüel & Kjær Instruments, 
Marlborough, Mass., USA, model 4135) and all sound pressure levels were 
expressed in dB relative to 20 µPa. The stimulus signal was generated using 
Tucker-Davis Technologies (Gainesville, Fla., USA) equipment consisting of an 
array processor card (AP) with DSP32 signal processor, 16 bit AD/DA converter, 
anti-aliasing filters and program controllable attenuators which was controlled by a 
personal computer. The stimulus was a sine wave with 1 ms rise/fall time, the 
duration was 4 ms, and the repetition rate was 20 per second. The duration of the 
ABR window was 10 ms. The stimuli were delivered by an earphone (Telephonics 
TDH 39, Farmingdale, N.Y., USA) through a closed acoustic system sealed into the 
external auditory meatus. The evoked response was amplified 100,000 times and 
2,048 sweeps were averaged in real time by a digital signal processor (DSP32C) 
with a time-domain artificial rejection. The initial intensity of the stimulus was 100 
dB peak SPL and was then decreased in 10-dB steps until the threshold was 
approached, and then in 5-dB steps until the ABR disappeared. Threshold was 
defined as the lowest intensity at which a visible ABR wave III was seen in 2 
averaged runs. Threshold was measured at 5 frequencies: 20, 16, 12.5, 8 and 4 kHz.  
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Statistics 
 
One-way repeated measures analysis of variance (ANOVA) was used to determine 
if there was a significant effect of caroverine treatment, followed by Tukey test for 
significance versus the control group at specific frequencies.  
 
 
Results 
 
The pre-exposure thresholds are shown in Fig. 1. The thresholds were around 20-30 
dB at 20, 16, 12.5 and 4 kHz, and 35 dB at 8 kHz. There was no significant 
difference between control group, LD group and HD group. ABR threshold shifts, 
determined by the comparison of the post-exposure thresholds at different time 
points with the pre-exposure thresholds, are plotted in Fig. 2. All three groups 
showed threshold shifts ranging from 50 to 70 dB across frequencies at 1.5, 3 and 6 
h after RWM applications, irrespective of whether it was from control or caroverine 
treatment group. At 24 h after local application, the control group showed a 
recovery of around 20 dB at all tested frequencies. For the caroverine groups, 
however, the recovery was much more pronounced. At 24 h the HD group showed a 
40-50 dB threshold recovery at 20, 16, 12.5 and 4 kHz, and about 30 dB recovery at 
8 kHz.  And the threshold recovery was significantly larger than that for the control 
group at all 5 frequencies (p<0.05). In the LD group, the recovery was smaller but 
was still significant compared to the control group at 24 h at the two highest 
frequencies (a 20-35 dB recovery at 20 and 16 kHz; p = 0.0004, and p = 0.007, 
respectively).  
 
 
Further recovery of auditory function was monitored at 3 days and 1 week after 
local applications. In all the three groups, the threshold recovered around 5 dB at 3 
days compared to that at 24 h and also about 5 dB at 1 week compared to that at 3 
days. However, the difference in threshold among 24 h, 3 days or 1 week is not 
significant in each group.  When compared to the control group, the HD group 
showed significant difference in threshold shifts at all 5 frequencies at 3 days after 
noise exposure, and at 20 and 12.5 kHz at 1 week. In the LD group, threshold shifts 
of significant difference compared with that in the control group were observed at 
20, 16, 8 and 4 kHz at 3 days, and at 20 kHz at 1 week. 
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Fig. 1. Pre-exposure ABR threshold across frequencies tested. 
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Fig. 2. ABR threshold shifts (mean ± SD) for each tested frequency with time 
        following normal saline or caroverine applications. LD = Low dose group (15 
        µl of 1.6 mg/ml of caroverine). HD = High dose group (15 µl of 12.8 mg/ml of 
        caroverine). 
      
       *: p<0.05: statistically significant difference compared with the control group.    
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Discussion 
 
 
The present study demonstrates that local caroverine administration directly onto 
the RWM produced significant protection of cochlear function against noise trauma. 
The effect was dose-dependent, with greater protective effect in the HD group than 
in the LD group. Significant protection, as measured using ABR threshold shift, 
was found at all tested frequencies (4-20 kHz) at 24 h and 3 days and at some 
frequencies even at 1 week. These results support the notion that pharmacological 
protection of auditory function has a promising potential for the prevention of 
noise-induced hearing impairment.   
 
There is accumulating evidence that noise exposure causes excessive release of 
glutamate from the inner hair cells to the synapse, leading to neuronal degeneration 
and auditory functional impairment (Spoendlin, 1971; Pujol et al., 1985, 1992; Puel 
et al., 1994 Jäger et al., 1998, 2000). Thus, glutamate receptor antagonists will 
block the receptors and might have protective effects against noise. Indeed, 
glutamate receptor antagonists, such as MK-801 and kynurenic acid, have been 
shown to be effective in the protection of neuronal dendrite damage against noise 
trauma and consequently preserve hearing (Puel et al., 1998; Duan et al., 2000; 
Chen et al., 2001; Ohinata et al., 2003). During noise exposure, it appears that non-
NMDA receptors are activated by low-to-moderate stimulus intensities, whereas 
NMDA receptors are activated by high-intensity sounds (Felix and Ehrenberger, 
1991). In our experiments, noise exposure at 110 dB SPL would have activated both 
NMDA and non-NMDA receptors. As an NMDA and AMPA receptor antagonist, 
caroverine would block the two receptors when administrated onto the RWM, and 
thus prevent the excitotoxicity and preserve hearing.  
 
The present study demonstrates that caroverine can effectively protect the auditory 
function against noise trauma when applied immediately prior to noise exposure. 
Within the first 6 h after RWM application, there was no significant difference in 
threshold shift between the LD or HD group and control group. This is most likely 
caused by high concentration of caroverine in the perilymph, which binds to the 
glutamate receptors and thus blocks the effect of the neurotransmitter (glutamate) 
and the sound transduction. In a previous study, it was shown that caroverine 
readily permeated the RWM in the guinea pig when applied locally onto the RWM 
(Chen et al., 2003). Caroverine concentration in the perilymph reached its peak 
value at 30 min after both low and high dose local applications and then decreased 
with time. Peak perilymph concentration was 4.3 µg/ml in the LD group, and 18.8 
µg/ml in the HD group. Caroverine became undetectable at 6 h in the LD group, 
while the concentration still remained at 1.9 µg/ml at 6 h in the HD group. In the 
control group, the effect of surgery on the ABR was small and completely 
disappeared at 24 h after operation. In the caroverine groups, the effect on hearing 
was mainly seen at the higher frequencies (i.e., closer to the round window). At 30 
min after caroverine application there was a 56 dB threshold shift at 20 kHz and 
only 6 dB threshold shift at 8 kHz in the HD group, which recovered partially at 3 
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and 6 h. Thresholds became normal at 24 h. In the present study, it is difficult to 
determine how much of the ABR threshold shift in the first 24 h after noise 
exposure is a noise affect and how much a drug affect. However, it is certain that 
the threshold shift is partially caused by caroverine based on the previous study. 
This might imply the mechanism of protective effect of carvorine against noise. 
High concentration of caroverine in the cochlear fluid will block the glutamate 
receptors, which might prevent the cochlear damage caused by excessive glutamate 
after noise exposure. Of course, this is in the cost of decreased physiological 
neurotransmission in the cochlea. However, without this kind of block to 
neurotransmitter, the metabolic damage via over-release of glutamate by noise will 
continue and consequently cause hearing loss, which can be clearly seen in control 
noise exposure group. The protective effect was found at 24 h after noise exposure 
because the effect of caroverine on ABR threshold was completely eliminated at 24 
h after local application, which was demonstrated in the previous study. The 
protection was still manifest at some frequencies 1 week after noise exposure. 
 
In conclusion, the results of this study demonstrate that caroverine can significantly 
protect the cochlea from noise trauma. The protective effect of caroverine, an 
NMDA and AMPA receptor antagonist, against noise trauma supports the notion 
that the excessive release of glutamate from the inner hair cells plays an important 
role in the pathophysiology of noise-induced hearing loss. Thus, pharmacological 
protection of the cochlea against noise is possible and may be of great clinical 
potential. 
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