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Summary  
 

Objectives: The objectives of this research were to compare the 

demineralization inhibition properties of the continuum of fluoride releasing tooth 

colored restorative materials. The effects of aging on the caries inhibition properties of 

the materials were also assessed. 

 

Methods: Materials evaluated included a giomer (Reactmer, Shofu [RM]); a 

conventional glass ionomer (Fuji II, GC [FJ]); a resin modified glass ionomer (Fuji II 

LC, GC [FL]) and a compomer (Dyract AP, Dentsply [DY]). A non-fluoride releasing 

composite (Spectrum TPH, Dentsply  [SP]) was used for comparison. Class V 

preparations on buccal and palatal/lingual were made at the CEJ of 75 freshly extracted 

molar teeth. The teeth were randomly divided into 5 groups of 15 and restored with the 

various materials. The occlusal half of each restoration was in enamel, while the 

gingival half was in dentin. The restored teeth were sectioned into two halves, half 

stored for 2 weeks, and the other half for 6 months in distilled water at 37°C. All 

restorations were subjected to artificial caries challenge (18 hours demineralization 

[pH 5.0] followed by 6 hours of remineralization [pH 7.0]) for 3 days. Sections of 

130±20 µm were examined with PLM, and outer lesion depth [OLD] and wall area 

[WA] lesion/inhibition measurements made using image analysis software. All data 

were subjected to statistical analyses.  

 

Results: At 2 weeks, OLD ranged from 54.55 to 65.86 and 124.68 to 145.97 

µm in enamel and dentin respectively. WA (positive values  (+) indicates wall 

inhibition, (-) negative values indicates wall lesion) ranged from -2356.13 to 1398.20 

and -3011.73 to 5095.80 µm2 in enamel and dentin respectively. At 6 months, OLD 
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ranged from 43.40 to 59.53 and 112.99 to 166.27 µm in enamel and dentin 

respectively. WA ranged from -1604.53 to 1975.23 and -3444.27 to 2653.87µm2 in 

enamel and dentin respectively. Results of ANOVA/Scheffe’s post-hoc test (p<0.05) 

were as follows: At 2 weeks, enamel OLD – no significant difference between 

materials; Dentin OLD – SP & DY > FJ, FL & RM; Enamel WA inhibition – FJ, FL & 

RM > DY & SP; and Dentin WA inhibition – FJ > FL > RM > DY > SP. At 6 months, 

enamel OLD – FJ, RM, DY, SP > FL; Dentin OLD – SP > FJ, FL, RM, DY; Enamel 

WA inhibition – FJ > FL, RM > DY > SP; and Dentin WA inhibition – FJ > FL, RM > 

DY > SP.  

 

Significance: The present study showed that dentin is more susceptible to 

demineralization than the enamel at regions away from restorations. The 

demineralization inhibition effect of giomers, conventional and resin-modified glass 

ionomer cements appear to be more evident at the margins of restorations. The 

demineralization inhibition effects of materials were time and tissue dependent. At 

both time intervals, FJ & RM had similar enamel and dentin OLD. At both time 

intervals, enamel and dentin WA inhibition by glass ionomers and giomer was 

significantly greater than the compomer and composite. 
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 1 INTRODUCTION 

Recurrent Caries or secondary caries has been one of the major reasons for failure of a 

dental restoration (Kidd, Toffenetti & Mjör, 1992; Mjör, 1985). It is by definition 

found at the tooth-restoration interface and is, in general, the result of microleakage 

(Arends, Dijkman & Dijkman, 1995). Microleakage is defined as the clinically 

undetectable passage of bacteria and fluids between cavity walls and restorative 

materials (Mjör & Toffenetti, 2000). The loss of marginal integrity between the 

aforementioned provides potential pathways for reinfection, as cariogenic bacteria can 

easily penetrate into the underlying dentin through these defects (Brännström & 

Nordenvall, 1978). These micro-organisms are responsible for the demineralization of 

adjacent dentin and/or enamel via a chemical process presumed to be similar to those 

in primary caries (Arends, Dijkman & Dijkman, 1995). As the marginal seal of tooth-

colored restoratives to tooth tissues is still not perfect (Sjodin, Ursitalo & Van Dijken, 

1996; Yap, Lim & Neo, 1995), antibacterial properties are desirable.  

 

During the last decade, more emphasis has been placed on the desirable properties of 

having fluoride in a soluble form, as it can dissolve in saliva and/or plaque fluid and 

slowly supply low concentrations of ambient fluoride, which promotes the 

demineralization and remineralization kinetics at the tooth surface during the carious 

process (Clarkson, 1991). Furthermore, the low incidence of caries around silicate 

restorations containing fluoride (Halse & Hals, 1976) has led to the incorporation of 

fluoride into various dental restorative materials including sealants, composite resins, 

amalgam, cements and even core build-up materials (Ewoldsen & Herwig, 1998; 

Hickel & others, 1998; Mount, 1994). The mechanisms and cariostatic effects of both 

systemic and topical fluoride have been well documented (ten Cate & van Loveren, 
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1999). Fluoride release has been postulated to have anticariogenic potential by 

protecting both surrounding tooth structure and adjacent teeth against caries and 

demineralization (Forss & Seppa, 1990; Friedl & others, 1997). Hence, a slow release 

of fluoride from a restoration is desirable because of the potential of secondary caries 

inhibition (Arends, Ruben & Dijkman, 1990; Diaz-Arnold & others, 1995; Forsten, 

1990; 1994). However, a therapeutic dose of fluoride release necessary for “curing” 

carious lesions and for anticariogenic effects has not been documented and may vary 

depending on different factors (Mjör & Toffenetti, 2000). The content of fluoride in 

the restorative materials should, however, be as high as possible without adverse 

effects on physico-mechanical properties and the release should be as great as possible 

without causing undue degradation of the filling (Yap & others, 2002). The properties 

of GIC’s to take up and release fluoride have been widely substantiated (Creanor & 

others, 1994; Nagamine & others, 1997; Tam, Chan & Yim, 1997; Wandera, 1998). 

Fluoride ions penetrating dentin produced mineralization of the dentin and reduced 

demineralization (Damen, Buijs & ten Cate, 1998). Therefore, dentin penetrated by 

fluoride ions offers resistance against secondary caries attack (Itota & others, 2001). 

 

Glass ionomer cements were introduced to the dental profession in the early 1970’s 

(Wilson & Kent, 1972). Their favorable adhesive and fluoride-releasing properties 

have led to their widespread use as luting, lining and restorative materials (Sidhu & 

Watson, 1995). Disadvantages of these cements, however, include sensitivity to 

moisture, low initial mechanical properties and inferior translucency compared to 

composite resins. Hybrid materials combining the technologies of glass ionomers and 

resin composite were subsequently developed to help overcome the problems of 

conventional glass ionomer cements (GIC) and at the same time maintain their clinical 
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advantages. Examples of these hybrid materials include resin-modified glass ionomer 

cements and compomers (polyacid-modified resin composites). Recently a new 

category of hybrid aesthetic restorative material was presented to the dental profession. 

Known as giomers, they employ the use of pre-reacted glass ionomer (PRG) 

technology to form a stable phase of glass ionomer in the restorative. Unlike 

compomers, the fluoro-alumino silicate glass is reacted with polyacrylic acid prior to 

inclusion into the urethane resin. The manufacturer’s claims include fluoride release, 

fluoride recharge, biocompatibility, smooth surface finish, excellent aesthetics and 

clinical stability. Like compomers, giomers are light polymerized and require the use 

of bonding systems for adhesion to tooth structure. Although the enamel and/or dentin 

caries-inhibiting effects of these fluoride-releasing materials had been widely reported, 

no literature is available regarding the caries-inhibiting effect of giomers. 

 

Objectives of this study are: 

1. To evaluate and compare the caries inhibition of the continuum of tooth-

colored restorative materials. 

2. To determine the effects of aging on the caries inhibition properties of these 

materials. 
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2 LITERATURE REVIEW 
   

2.1 The Structure of Enamel and Dentin 

2.1.1 Normal Structure 
 
Enamel is a semi-translucent grey or bluish-white secretory product of cells derived 

from the stratified epithelium of the oral cavity and is the most densely calcified tissue 

in the human body. Except at the unworn biting edges of the incisors, its color is 

modified by that of the underlying dentin, producing the characteristic yellowish-white 

appearance of the crown. In its adult state, enamel has a specific gravity of 

approximately 3.0, denoting a tissue very high in mineral and low in nitrogen content 

(Stack & Fernhead, 1965). It is birefringent; its average refractive index is high (1.62) 

and the microscopic appearance of the tissue is dependent upon the refractive index 

and degree of penetration of the mounting medium. 

The inorganic content of enamel consists of a crystalline calcium phosphate known as 

hydroxyapatite, which is also found in bone, calcified cartilage, dentin, and cementum. 

Enamel has a rigid highly organized structure consisting of innumerable microscopic 

crystals of the mineral hydroxyapatite arranged in larger structural units, known as 

prisms or rods. In the permanent teeth, the rods are approximately 4-7 µm in width 

(Mortimer, 1970). The enamel rods, when viewed in cross section with an electron 

microscope, appear as a group of keyhole-shaped structures, approximately 6-8 µm in 

diameter with the enlarged portion of the keyhole called the head and the narrow 

portion called the tail (Boyde, 1997).  

However, since the keyhole analogy does not adequately account for some of the 

variations in the structural arrangement of enamel components or coordinate with the 

pattern of secretion by Tomes’ process, this terminology has been largely dropped. 
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Inside the head of the rod, the long axis of the crystals, called the c-axis, is parallel to 

the enamel rod. Submicroscopic amounts of organic matrix are present between 

crystals along the c-axis (Boyde, 1997). At the periphery of the rod, the crystals 

assume an angle to the more central crystals (Meckel, Griebstein & Neal, 1965). The 

crystals are hexagonal in shape, with slightly flattened ends; this theoretic description 

is based on X-ray diffraction studies. The smallest space unit of the hydroxyapatite 

crystal is called the unit cell, containing 10 calcium ions, 6 phosphate ions, and 2 

hydroxyl ions. Each of the millions of crystals in each rod has three axes, a- and b-axis  

representing the longest and the shortest cross-sections of the basal face respectively, 

and c-axis that parallels the long axis (Boyde, 1997).  

 

 

Figure 2-1. Theoretical 3D illustration of a hydroxyapatite crystal. 

 

Three calcium ions form an equilateral triangle lying parallel to the a-b plane centered 

on this column. Immediately peripheral to each calcium atom is a phosphate grouping. 

Successive calcium triangles are rotated 180° with respect to each other, in accord with 

the screw axis symmetry. The c-axis is comprised by a crystallographic symmetry 

element known as a screw axis, where hydroxyl ions are arranged at distances of one-

fourth and three-fourths the height of the axis  (Figure 2-1) (Boyde, 1997). The apatite 
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structure permits considerable variation in its structure because other atoms can replace 

each one of these atoms; calcium ions can be replaced by strontium ions, hydroxyl ions 

can be substituted by fluoride ions, and a phosphate group can be replaced by a 

carbonate ion (Elliott, 1969). Ionic exchange is continual throughout life when a great 

number of random hydroxyl groupings are replaced with fluoride, the crystal is termed 

as fluoroapatite. 

The inter-rod region is an area surrounding each rod in which the crystals are oriented 

in a different direction from those making up the rod. Condensations of the organic 

matter are found at the rod junctions. Submicroscopic spaces occur in the inter-rod 

area through which fluids can diffuse (Frank, 1966). 

Dentin in the other hand is yellowish in color. This is due to the ease of the light 

passing readily through thin, highly mineralized enamel and reflecting the underlying 

dentin. It is the hard tissue portion of the pulp-dentin complex and forms the bulk of 

the tooth. Its inorganic component consists mainly of hydroxyapatite, and the organic 

phase is type I collagen with fractional inclusions of glycosaminoglycans, 

proteoglycans, phosphoproteins, glycoproteins, and other plasma proteins. About 56% 

of the mineral phase is within the collagen. The inorganic phase makes dentin slightly 

harder than bone and softer than enamel. Its elastic quality provides flexibility to 

prevent fracture of the overlying brittle enamel. 

Dentin is characterized by the presence of a multitude of closely packed dentinal 

tubules that transverse its entire thickness and contain the cytoplasmic extensions of 

the odontoblasts. Dentinal tubules are small, canal-like spaces within the dentin filled 

with tissue fluid and occupied by odontoblast processes. They follow an S-shaped path 

from the outer surface of the dentin to the perimeter of the pulp in a coronal dentin. 
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This S-shaped curvature is less pronounced in root dentin and is least pronounced in 

the cervical third of the root beneath incisal edges and cusps, where they may run an 

almost straight course. These primary curvatures move towards the center of the pulp. 

Dentinal tubules make the dentin permeable, providing a pathway for the invasion of 

caries.  

In the human teeth, three types of dentin can be recognized. Primary dentin forms most 

of the tooth and outlines the pulp chamber of the fully formed tooth. Its outer layer 

(mantle dentin) is formed by newly differentiated odontoblasts and has loosely packed 

coarse collagen fibrils. The secondary dentin represents the continuing, but much 

slower deposition of dentin by the odontoblasts after root formation has been 

completed. Tertiary dentin is also known as reactive, reparative or irregular secondary 

dentin, it is produced in reaction to noxious stimuli, such as caries or restorative dental 

procedures.  

2.1.2 Macroscopic Changes of Enamel and Dentin 
 
At the time of eruption, many of the apatite crystals are not fully mineralized (Crabb, 

1976). Once the tooth is exposed to saliva, considerable uptake of ions occurs in the 

crystals making up the outer 10 to 100 µm layer of the enamel rods. This physiologic 

mineralization process (post-eruptive maturation) permits the mineral-deficient crystals 

to add calcium, phosphorus, fluoride, and other ions from the saliva, resulting in an 

enamel surface layer that is more mature and more resistant to dental caries.  

The physico-chemical integrity of the dental enamel in the oral environment is entirely 

dependent on the composition and chemical behavior of the surrounding fluids. The 

two main factors governing the stability of the enamel apatites in saliva are the pH and 

the concentrations of calcium, phosphate and fluoride in solution. 
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Hydroxyapatite is very permissive in incorporating foreign ions in the crystalline 

lattice. These may be either positively charged sodium, potassium, zinc or strontium 

ions or negatively charged fluoride or carbonate ions. The concentration of these 

impurities in the tissue is influenced by their presence during its formation. These 

mineral modifications may have either a positive or a negative effect on the solubility; 

carbonate incorporation makes the apatite more soluble, while fluoride incorporation 

makes it less soluble. 

The solubility of the apatite mineral depends highly on the pH of the environment. In 

an acidic environment (low pH), the concentration of ions in the liquid phase 

surrounding the crystallites necessary to maintain saturation is higher than at high pH. 

The local pH is therefore the driving force for dissolution and precipitation of 

hydroxyapatite. Apart from the physico-chemical considerations other regulatory 

mechanisms exist in saliva. The saliva bathing the teeth is normally supersaturated 

with respect to the calcium and phosphate of enamel (Suddick, Hyde & Reller, 1980). 

The concentration of calcium and phosphate ions in the saliva bathing the tooth at the 

plaque-tooth interface is extremely important, since these are the same elements of the 

hydroxyapatite crystal.  

However, after eating foods or drinks containing fermentable carbohydrates, acids are 

formed in plaque leading to a fall in pH called Stephan curve (Stephan, 1940). 

If allowed, a microbial biofilm will be formed in the plaque-tooth interface, especially 

in surfaces with irregularities such as occlusal fissures, or in the gingival and proximal 

niches, that will result in bacterial deposits. All bacterial deposits irrespective of their 

age of maturation are metabolically active. These metabolic activities will result in pH 

fluctuations that if extended for overtime, such fluctuations will result in mineral loss 

(Fejerskov, 1997). 
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When the pH is lowered, the level of supersaturation drops, the concentration of ions 

needed for saturation rises, at pH around 5.6, the tissues starts to dissolve to maintain 

saturation (McCann, 1968; Tenvuo & Lagerlof F, 1994). As a result, the phosphate and 

hydroxyl ions released will take up protons (H+) thus slowing down or reversing the 

fall in pH. 

Consumption of foods or drinks containing fermentable carbohydrates also increases 

salivary flow; the increased buffering power of saliva, and the washing out of 

remaining sugars and acids from plaque, also contribute to the pH-rising phase of the 

Stephan curve.  

During the recovery phase the plaque gradually becomes supersaturated with 

hydroxyapatite, and mineral may reprecipitate (ten Cate, Jongebloed & Arends, 1981). 

Ideally, this occurs at the sites ‘damaged’ during the demineralization. If the frequency 

of carbohydrate consumption is too high, the redeposition of mineral is far from 

completed and there is cumulative loss of enamel substance. Then a carious lesion will 

be formed, which is often the ‘forerunner’ of the caries cavity. A carious lesion is 

characterized by subsurface loss of mineral at the intact surface layer. 

Typically, in vitro demineralization of the crystals occurs in two stages: (1) dissolution 

of the cores of the individual apatite crystals, and (2) subsequent dissolution of the 

remaining “shell” of crystal. The destruction of the crystal begins with the formation of 

etch pits, small indentations in the centre of the terminal ends of the apatite crystals, 

which progressively deepens as the dissolution continues down the centre of the 

crystal. The preferential dissolution of the crystal core is demonstrated by in vitro 

experiments in which the cores are completely dissolved in a few minutes by dilute 

lactic acid, whereas dissolution of the remaining shell requires several hours (Moreno 

& Zharadnik, 1974). 
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The earliest macroscopic evidence of enamel caries is known as the white spot lesion. 

It is best seen on dried, extracted teeth where the lesion appears as a small, opaque, 

white area. The color of the lesion distinguishes it from the adjacent sound enamel. 

Sometimes this lesion may appear brown in color due to exogenous material absorbed 

in its porosities. 

Root Caries on the other hand, are soft irregularly shaped lesions either totally 

confined to the root surface or involving the undermining of enamel at the CEJ, but 

clinically indicating that the lesion initiated on the root surface (Katz, 1984) 

Dentin or root caries occurs only after the surfaces are exposed in the oral environment 

(Wefel, 1994). The Lactobacillus, Mutans Streptococci, and some subspecies of 

Actinomyces are regarded to be important in the pathogenesis of root caries (Van 

Houte & others, 1990; Zambon & Kasprzak, 1995). Also involved in root caries 

formation are proteolytic organisms that can hydrolyze collagen matrix and a number 

of additional species which affect the formation of a complex microbial ecology 

necessary for the development of root surface caries (Zambon & Kasprzak, 1995). This 

creates the so-called microbial biofilm. The presence of a microbial biofilm does not 

necessarily result in caries lesion, but it is a necessary factor (Nyvad & Others, 1997) 

Mineral dissolution is induced by various organic acids produced from fermentation of 

carbohydrates in the plaque, thus adhering to the teeth, and going further with 

subsequent proteolytic breakdown of the collagen matrix (Clarkson & others, 1986; 

Wefel, 1994). 

The carious process at the root can be described as a dynamic process, alternating 

episodes of demineralization and remineralization on a daily basis (Becker, 1966; 
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Biesbrock & others, 1998; Koulourides, 1982). In fact, root caries is a result of the 

disturbance of the balance between demineralization and remineralization when the 

frequency and/or relative amount of organic acid produced by the plaque bacteria is 

large (Featherstone, 1994) and the net loss in mineral determines whether a decay is 

progressing or not (Wefel, 1994).   

Critical pH for root is known to be as high as about 6.5 (Wefel, 1994). Root surfaces 

appear to be more soluble than enamel, with only half the mineral content of enamel 

and substantially smaller crystal size (Wefel, 1994), which would explain the initial 

caries development in root surfaces which is about 2.5 times faster than in enamel 

(Ogaard & others, 1988a).  

After demineralization, denaturation and enzymatic degradation of the organic matrix, 

the final step in the destructive phase of root caries process occurs with the breakdown 

of the major portion of the collagen matrix (Clarkson & others, 1986; Frank, 1990; 

Wefel, 1994). 

Most of the root caries initiate at or near the Cemento-Enamel Junction (CEJ), where 

plaque retention is more likely to happen (Axelsson, 2000). It is usually seen as a 

shallow, softened area, often discolored, and characterized by destruction of cementum 

with penetration to the underlying dentin. Furthermore, advanced lesions may cause 

pulpal involvement (Axelsson, 2000; Zambon & Kasprzak, 1995). 

2.1.3 Macrostructural Changes of Enamel and Dentin 
 

The outer layer of the enamel has a higher organic content than deeper layers. The 

mineral component of the outer surface of enamel is rarely exposed in the mouth since 

a layer of organic material always covers it. A thin surface cuticle lying immediately 
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upon the enamel surface has been described (Meckel, 1965).  When this organic layer 

thickens to become 1 µm in thickness, it is usually referred to as pellicle (Silverstone, 

1978). Beneath the pellicle, a dendritic network of organic material extends into the 

superficial enamel structure. In addition to these organic membranes, exogenous 

organic material derived from salivary mucopolysaccharides penetrates up to 10µm 

into the defects in the surface enamel (Silverstone & Johnson, 1971; Silverstone, 

1977). The presence of surface and subsurface organic integuments may play a 

significant role in the initiation and progress of the carious lesion by controlling the 

diffusion of ions into, and out of the enamel. 

Organic matrix allows the transport of mineral salts, thereby acting as the diffusion 

medium for acid entry during enamel demineralization (Travis & Glimcher, 1964). It 

was shown in earlier studies that demineralization occurred before histological change 

could be demonstrated in the organic matrix (Darling, 1956). The time at which 

organic change in the matrix became histologically identifiable was only a short time 

before cavitation of the lesion occurred. Electron microscopic studies on the organic 

component of carious enamel have revealed less dense and frequently missing fibrillar 

network of organic matrix from the prisms and interprismatic areas (Johnson, 1962; 

Johnson, 1967b). Apparent increase in organic material in carious areas has been 

documented in several studies (Bhussry, 1958; Hardwick & Manley, 1952; Stack, 

1954). The additional organic material is amorphous in appearance and may be of 

bacterial, or mixed salivary and bacterial origin. The outer layer of carious enamel has 

a higher organic content than deeper layers (Johnson, 1967b; Meckel, 1965). Another 

change in early enamel caries is the accentuation of the incremental striae of Retzius 

(Mortimer & Tranter, 1971). Gaps occurred between the prisms, which were thought to 

be the result of demineralization. 
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Ultrastructurally, the observed features in carious enamel include: (a) scattered 

destruction of individual apatite crystals both within the enamel prisms and at their 

borders. The progressive dissolution of the crystals results in broadening of the 

intercrystalline spaces (Johnson, 1967a). Larger crystals at the periphery of the enamel 

prisms were observed. This has been interpreted as evidence for some recrystallization 

taking place during carious process; (b) High resolution electron microscopy clearly 

shows that carious dissolution starts in the centre of one end of the crystal and 

develops anisotropically along the c-axis (Johnson, 1962; Johnson, 1967a); (c) 

Differences in size distribution and density of crystals in the different zones of the 

lesion. 

The chemical changes associated with the caries include: (a) lower mineral density; (b) 

lower Ca/P ratio; (c) decrease in magnesium concentration; (d) decrease in carbonate 

concentration; (e) increase in HPO4
2- content, and (f) increase in relative fluoride 

concentration (LeGeros, 1991). 

2.2 Relation between Polarized Light Microscopy and Carious 
Tooth Structure 
 

The polarized light microscope (PLM) has been used to evaluate mineralized samples 

for over 150 years (Schmidt & Keil, 1971). PLM has proved to be a valuable technique 

in the evaluation of carious lesions (Silverstone, 1968; Wefel & Harless, 1987). 

Basically, PLM is a combination of a conventional light microscope with the addition 

of a polarizer between the light source and condenser lens; a rotating stage which 

facilitates the position and orientation of the specimen; an analyzer located opposite 

the specimen relative to the polarizer; and a ¼ wavelength or quartz tint that changes 

background from black to magenta, to determine the boundaries of the lesions and 
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distinguish the edge of the section from the usual black background (Olympus, 1997) 

(Figure 2-2). 

 

 

Figure 2-2. PLM configuration. 

 

The combination of dense oriented, crystalline mineral, interspersed by tiny water-

filled pores makes enamel suitable for study with the PLM. The optical characteristics 

of hydroxyapatite cause light to travel at two different velocities and directions, which 

is known as birefringence, and is indirectly measured by PLM. During the caries 

process, the inter-crystalline spaces become considerably larger when mineral is 

dissolved and the tightly-packed arrangement of the HAP crystals is disrupted 

(Silverstone, 1973), resulting in birefringence alterations.  

When an anisotropic, uniaxial crystal is oriented at 45o to the plane of the polarized 

light, the crystal splits the light into two beams, the ordinary ray with refractive index 

(no) and an extraordinary ray (ne). The birefringence or difference between ne and no 

has both quantity and sign. If ne is greater than no, the sign is positive, and if ne is less 

than no, the sign is negative. In sound enamel, which is predominantly hydroxyapatite 

crystals, the sign of birefringence is negative with respect to prism length. The small 

 16



volume of organic material exhibits a tiny amount of positive birefringence, but has 

been shown to be insignificant and can be disregarded (Theuns, Arends & Groeneveld, 

1980). 

During carious dissolution, there is an increase in the total volume of microspaces in 

enamel. These spaces give rise to the form birefringence. Form birefringence is 

produced when the spaces in the tissue contain a medium having a refractive index 

(RI) different from that of the enamel crystals (RI=1.62). In other words, intrinsic 

birefringence is produced by the crystals in tooth hard tissues, while form 

birefringence is produced by the spaces between crystals containing a medium having 

a different refractive index. Thus, enamel will show a negative intrinsic birefringence 

due to its orientated crystal component and positive form birefringence due to the 

intercrystal spaces. The observed birefringence is the total of these two. When enamel 

is examined in longitudinal ground section with the PLM, the image formed depends 

on both the refractive index of the mounting medium and its degree of penetration into 

the tissue. The greater the difference between the refractive index of the mounting 

medium and the enamel, the more positive form birefringence will be produced. 

Likewise, as the internal pore volume increases, the amount of form birefringence will 

also increase (Silverstone, 1968; Silverstone & others, 1981).  

The observed colors of a thin section of enamel viewed with polarized light are 

produced by inserting a 1/4 lambda color tint into the light path. The specimen will 

change color as the stage is rotated every 90o. The two quadrants in which sound 

enamel is blue-green in color are said to be negative while the opposite quadrants are 

positive (Silverstone, 1968; Silverstone & others, 1981). The negative birefringent 

sound enamel becomes positively birefringent due to the increased form birefringence 

after demineralization.  
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Figure 2-3. Histological zones in enamel lesion. 

The enamel lesion has been divided into four distinguished zones based upon its 

histological appearance when longitudinal ground sections are examined with the 

PLM. Two zones – the translucent zone and the body of the lesion, represent areas of 

demineralization; while the dark zone and the surface zone represent areas of 

remineralization within the lesion of the enamel (Silverstone, 1973, 1983). 

2.2.1 The Translucent Zone 
 

The translucent zone of enamel caries is not seen in all lesions, but when present it lies 

at the advancing front of the lesion and is the first recognizable alteration from normal. 

This zone is only seen when a longitudinal ground section is examined in quinoline, 

which has the same refractive index as that of enamel, since it is more porous than 

sound enamel.  

 

2.2.2 The Dark Zone 
 

The dark zone lies superficial to the translucent zone and is the second zone of 

alteration from sound enamel. In fact, it is more porous than the translucent zone, 

having a pore volume of 2-4%. In this zone the pores vary in sizes, large and small. 
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Quinoline being a large molecule cannot penetrate the small pores that remained filled 

with air, giving a dark appearance.  

 

2.2.3 Body of the Lesion 
 

The body of the lesion comprises the largest proportion of carious enamel in the small 

lesion. It lies superficial to the dark zone and deep to the relatively unaffected surface 

layer of the lesion. The body of the lesion is positively birefringent and has a minimum 

pore volume of 5% at its periphery, increasing to 25% or more in the central portion. 

The water molecules enter the pores in the tissue, and since the refractive index of 

water is different to that of enamel, the area appears dark.  

 

2.2.4 The Surface Zone 
 

The small lesion remains covered by a surface layer, which appears relatively 

unaffected by the acid attack. The surface zone appears to be relatively unaffected 

when compared with adjacent healthy enamel. However, it is negatively birefringent, 

has a pore volume of approximately 1 and 5% and is between 10 and 50 times more 

porous than sound enamel. 

  

2.3 Recurrent Caries (Secondary Caries) 
 

The ability of a restorative material to resist a secondary caries attack and 

microleakage at its margins will, to a great extent, determine whether a restoration will 

succeed or fail. Causes of restoration failure can be classified in two ways: a) new 

disease, which includes the development of secondary caries, primary caries, pulpal 
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problems, periodontal disease; b) abrasion and technical failures, which includes 

fractures, marginal breakdowns, defective contours, overhanging margins, failures in 

cavity preparation, and poor anatomical appearance (Kidd, Toffenetti & Mjör, 1992). 

 

Caries is a multifactorial disease resulting from the interplay of three principal factors 

for over time: the host (primarily the saliva factors and teeth resistance), cariogenic 

(acidogenic and aciduric) bacteria within dental plaque, and the substrate (fermentable 

dietary carbohydrates) (Van Houte, 1994). For caries to occur, conditions within each 

of these factors must be favorable (Newbrun & Ernest, 1989). Principally, 

modification in any component of this triad can alter the development of caries 

(Kleinberg, 1979; Van Houte, 1994).  

Secondary caries is the same as primary caries; the difference is established because 

secondary caries is located at the margin of a restoration (Mjör & Toffenetti, 2000). As 

it is well known, the term primary caries is used to describe the carious process in the 

tooth before or without any restoration placement.  

The Federation Dentaire Internationale in 1962 defined secondary caries as a 

“positively diagnosed carious lesion which occurs at the margins of an existing 

restoration”. The lesion usually consists of two carious regions: an outer lesion formed 

in the enamel or cementum of the tooth surface, similar in histology to a primary 

lesion, that can be used by trapped plaque in the restoration’s margin; and a wall 

lesion, which is narrower defect in the enamel or dentin along the cavity wall 

restoration interface (Hals & Kvinnsland, 1974; Kidd, Toffenetti & Mjör, 1992). 

Secondary caries is by far the most frequent reason for replacement of restorations 

(Kidd, Toffenetti & Mjör, 1992; Mjör, 1985). It is by definition found at the tooth-

restoration interface and is in general, the result of microleakage (Arends, Dijkman & 
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Dijkman, 1995). However, conflicting data regarding microleakage has been widely 

reported. Mjör & Toffenetti (2000) define the term “Leakage” as the act of letting fluid 

in or out accidentally and “Micro” refers to something small or minute. Therefore, 

microleakage means minute amounts of fluid passing in or out.  

Moreover, Dérand, Birkhead & Edwardsson (1991) suggest that if there is no 

microleakage, there will be no wall lesion. Özer (1997) explains that the size of the gap 

between the tooth and the restoration has no influence on the initiation of caries, unless 

the gap exceeds 250µm, and then only if the gaps are not accessible to physical forces, 

including oral hygiene measures to clean the defects. The author considered that 

plaque accumulation on the surface at the site of development of secondary caries was 

the decisive factor and that such accumulation is most often associated with gingival 

overhangs on Class II amalgam restorations.  

Secondary caries has been shown to diminish at a rate similar to that of primary caries, 

mainly as a result of topical fluoride available in the oral environment (Eriksen & 

others, 1996). However, the concentration of fluoride required to prevent caries has not 

been determined and may vary depending on different factors (Mjör & Toffenetti, 

2000; Yap & others, 2002).  

The outer lesion of secondary caries on the root surface is considered to develop in the 

same way as primary caries, but differentiation between marginal staining and caries is 

difficult (Tyas & Wassenaar, 1991). Root surface caries starts off as a subsurface 

lesion and when demineralization progresses, the surface become dark yellow or 

brown and soft, depending on extrinsic factors. 

 

2.3.1 Recurrent Caries Adjacent to Glass Ionomer based      
Restorations 
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A number of similar studies have used in vitro methods to produce artificial caries 

lesions in an attempt to define the role of demineralization and remineralization effects 

of tooth structures adjacent to restorative materials. They incorporated the use of 

acidified gels (Attar & Onen, 2002; Dionysopoulos & others, 1998; Dunne & others, 

1996; Hicks & Flaitz, 2000; Millar, Abiden & Nicholson, 1998; Tam, Chan & Yim, 

1997), buffered solutions (Donly & Grandgenett, 1998; Heilman & others, 1997), and 

incubation with natural plaque (Gilmour, Edmunds & Newcombe, 1997; Hsu & others, 

1998; Itota & others, 2001; Nagamine & others, 1997; Torii & others, 2001). These in 

vitro studies have shown the ability to mimic the demineralization and remineralization 

process of the tooth structure around restorations and determine if the restorative 

material will decrease demineralization in tooth structure (Donly, 1994; Erickson & 

Glasspoole, 1995; Featherstone, 1996; Wefel, Heilman & Jordan, 1995). Most 

demineralization studies conducted in vitro / in vivo have predominantly agreed that 

glass ionomers adjacent to restoration margins, offers protection against 

demineralization substances produced when an acid attack challenge occurs.  

Previously, Attar & Onen (2002) showed that conventional glass ionomer provide 

significantly higher protection against caries attack and non-fluoride releasing 

composite resin restoration provided the least. Dionysopoulos & others (1998) 

performed a similar study including silver-reinforced glass ionomers and fluoride 

containing and non-fluoride amalgams. Similar conclusions that glass ionomer 

materials provided higher protection against caries attack, and high copper amalgam 

restoration provided the least were reported. Non-fluoridated composite resin also 

provided the least protection of the tooth colored restorative materials. 
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Similar to this study, Dunne & others (1996) observed a typical zone of inhibition at 

the cavity wall and concluded that both RM-GICs and GICs inhibited caries in vitro 

without significant differences.  

Hicks & Flaitz (2000) compared the lesion initiation and progression effects of one 

RM-GIC and one resin composite. They shared that RM-GICs had lesser values of 

surface lesions and less frequency of cavosurface wall lesions than resin composites. 

Concurrently, they described wall lesions adjacent to resin composite restorations as 

more defined wedge-shaped structures within the cavosurface enamel and with 

RMGIC as an ill-defined, wedge-shaped portion of the body of the lesion projecting 

toward the cavity wall.  

The authors firstly concluded that RM-GIC restorations reduce susceptibility of 

unrestored adjacent enamel surfaces and cavosurfaces to a constant cariogenic 

challenge. And secondly, that the caries resistance imparted to the surface enamel and 

cavosurface is most likely due to the fluoride release from the RM-GIC material.  

Tam, Chan & Yim (1997) studied the fluoride release/uptake of the materials to resist 

artificial caries challenges. In addition, they studied the effect of using intermediary 

dentin bonding agent components on the development of surface and wall carious 

lesions adjacent to RM-GICs. Their consistent results showed higher fluoride 

release/uptake of the glass ionomer cements without primer/adhesive materials, as well 

as less surface depth in the body of the enamel/dentin caries. Evidently, they observed 

the presence of narrow zones of non-carious dentin between the restoration and the 

body of dentin decay extended directly to the restoration interface. Concurrently, they 

also observed that the resin composite was the only one to show the development of 

wall lesions along the dentin/restoration interface below the body of dentin decay. The 

mean depths of the dentin lesions for all groups were higher than the maximum 
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recorded depths for enamel lesions. Their conclusion was that both conventional and 

resin- modified glass ionomer restorations imparted resistance to dentin against the 

development of recurrent wall lesions in vitro. This effect was also attributed to 

fluoride release and uptake.  

Gilmour, Edmunds & Newcombe (1997) assessed the effectiveness of a conventional 

GIC compared with a fluoride releasing composite restoration. Their results showed a 

20% reduction in enamel and a 24% reduction in dentin outer lesion depths, when 

compared with those adjacent to composite restorations.  

Nagamine & others (1997) evaluated the caries inhibitory effect of three RM-GICs, 

one GIC and a composite resin. They found that depth of the outer lesion and the 

thickness of the acid resistant layer showed no significant differences between the 

GICs and the RM-GICs and confirmed significant differences of GICs and RM-GICs 

materials in comparison with the resin composite. Whereas, the composite resin 

restoration did not result in demineralization inhibition of the enamel and dentin 

lesions. In fact, the lesion extends along the cavity wall but no deeper that the part of 

the lesion away from the restoration. However, they suggest that the fluoride 

concentration taken in the dentin may be related to the migration of fluoride ions rather 

than the amount of fluoride released from GICs, since they were able to detect fluoride 

ions released from the GICs in the cavity wall. Torii & others (2001) estimated the 

effects of materials on the inhibition of artificial secondary caries around restorations 

and concluded that RM-GICs presented a particularly strong effect, compared with 

compomers and fluoride releasing resin composites. 

It has been proposed by several authors that demineralization not only depends on the 

material used, fluoride ions penetrating the hard dental tissues also plays a major role 

upon demineralization and remineralization challenge (Itota & others, 2001; Nagamine 
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& others, 1997; Skartveit & others, 1990; Tam, Chan & Yim, 1997; Torii & others, 

2001; Wandera, 1998). Several in vitro studies have shown the uptake of fluoride ions 

from GICs into adjacent cavity walls (Nagamine & others, 1997; Skartveit & others, 

1990) as well as the release of other ions which may complement the effects of the 

fluoride such as calcium, sodium, aluminum and strontium. 

2.3.2 Recurrent Caries Adjacent to Resin based Restorations 

On the other hand, most of demineralization studies conducted in vitro have 

predominantly agreed that compomer and resin composite materials adjacent to 

restoration margins had shown development of wall lesions adjacent to restorations 

instead of inhibition. However, controversial results regarding caries inhibition 

between in vivo and in vitro studies including resin-based restoratives have been 

reported. 

2.3.2.1 Recurrent Caries Adjacent to Compomer Restorations 

Millar, Abiden & Nicholson (1998) compared the in vitro caries inhibition of two 

compomers with one conventional glass ionomer and observed no significant 

differences in enamel surface lesion depths between GICs and compomers. The 

compomers showed wall lesions while the GIC showed wall inhibition areas. The 

authors concluded that compomer restorations offer an alternative to existing 

restorative materials but lack the benefits of caries inhibition similar to that for 

conventional GICs.  

Donly & Grandgenett (1998) evaluated the dentin demineralization inhibition of two 

compomers in comparison with a RM-GIC and composite resin and showed that the 

RM-GIC and compomers had significantly less demineralization adjacent to 

restoration margins than the composite resin. They reported that seventy percent of 

glass ionomer cement restorations demonstrated inhibition zones adjacent to dentin, 

 25



while no dentin inhibition zones were demonstrated with the compomer restorations. 

Itota & others (2001) evaluated the effect of adhesives on the inhibition of secondary 

caries around compomer restorations in vitro. In their discussion they suggest that the 

type of adhesive used with compomers might play a major role in fluoride release. The 

authors finally concluded that applying an adhesive without Bis-GMA resin to 

compomer restoration will not have a suppressive effect on the fluoride release and 

therefore might be beneficial for inhibiting secondary caries in vitro. 

Considering clinical implications, Meyer, Cattani-Lorente & Dupuis (1998) suggested 

in their study that compomers could not simply be used as substitutes for composite 

resins in clinical applications, since the overall in vitro behavior of the compomers 

tested were considered somewhat inferior to that of the composite resin. In a 5-year 

clinical study using USPHS criteria, Van Dijken (1999) reported no significant 

differences between compomers and resin-modified glass ionomers with reference to 

recurrent caries incidence.  

Folwaczny & others (2001) also evaluated the 5-year clinical performance also using 

USPHS criteria of resin-modified glass ionomer and compomer restorations in non-

carious cervical lesions of adults. The authors reported that a high and almost overall 

failure rate was seen for both restorative materials. However, although not significant, 

a considerable number of Dyract-restorations were dislodged whereas none of the Fuji 

II LC restorations were lost within the study period. 

2.3.2.2 Recurrent Caries Adjacent to Composite Restorations 
 
Arends, Ruben & Dijkman (1990) reported that the presence of the fluoride releasing 

composite resins reduced the lesion depth measured after an acid attack by about 35%. 

However, there is little evidence to suggest that a composite resin inclusive of fluoride 

provides caries inhibition, since several limitations were shown in the study. In order 
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to establish an accurate comparison, the authors fail to include a well-known caries 

inhibition material as a control group such as glass ionomers. In my personal point of 

view, when the effect of a restorative material shows shallower lesion than other 

material, it is inappropriate to infer that a better achievement has been obtained, since 

it still shows lesion rather than inhibition. In the other hand, when the results 

dramatically change from lesion to inhibition, one can speculate that the material may 

satisfactorily improve its efficacy in a clinical situation. Tam, Chan & Yim (1997) 

reported that for the resin composite, the body of dentin decay extended directly  to the 

restoration interface, thus showing wall lesions instead of inhibition. 

2.4 Cariostatic Mechanism of Fluoride 
 

Extensive evidence shows that fluoride has a major effect at low concentrations on the 

demineralization and remineralization of dental tissues and, at relatively high 

concentrations, on acid production of cariogenic bacteria. However, it has also been 

shown that inappropriate fluoride concentrations and/or exposure periods could be 

physiologically harmful, as systemic administration of fluoride runs the risk of causing 

fluorosis. 

During the last decades, more emphasis has been placed on the desirable properties of 

having fluoride in a soluble form, as it can dissolve in saliva and/or plaque fluid and 

slowly supply low concentrations of ambient fluoride which promotes the 

demineralization and remineralization kinetics at the tooth surface during the caries 

process (Clarkson, 1991). Hence, a slow release of fluoride from a restoration is 

desirable because of the potential to secondary caries inhibition (Arends, Ruben & 

Dijkman, 1990; Diaz-Arnold & others, 1995; Forsten, 1990; 1994). Fluoride release 

has been postulated to have anticariogenic potential by protecting both surrounding 
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tooth structure and adjacent teeth against caries and demineralization (Forss & Seppa, 

1990; Friedl & others, 1997). It also enhances remineralization of early demineralized 

lesions of enamel, and increase enamel resistance to subsequent acid attacks.  

The mechanism of fluoride starts when fluoride is released through an ion exchange 

mechanism or through diffusion of fluoride through the dental material. 

In enamel, fluoride ions binds calcium (Ca2) and phosphate (PO4) dissolving, as a 

result of the acid penetration into the tissue and the resulting acid dissolution of the 

apatite, during a period of acid challenge (Larsen, 1974). This reprecipitation prevents 

the mineral constituents of the enamel to be leached away into the plaque and saliva 

(ten Cate & van Loveren, 1999). As a matter of fact, Koulourides (Koulourides, 1982) 

showed that enamel placed in a solution with the addition of fluoride increases the rate 

of mineral deposition.  

In dentin, the smaller crystallites dissolve faster when placed in an undersaturated 

solution. The collagen fraction is the matrix onto which the apatite crystallites were 

precipitated during dentinogenesis (ten Cate & van Loveren, 1999). During 

demineralization, the apatite fraction is the first to be dissolved, only exposing the 

collagen after its dissolution; the collagen serves as a diffusion barrier slowing down 

demineralization (Kleter & others, 1994; Klont & ten Cate, 1990; Klont, Damen & ten 

Cate, 1991). 

2.4.1 Fluoride as an Inhibitor of Demineralization 
 
It has been widely accepted that fluoride, when taken up in the apatite lattice in the 

form of fluorhydroxyapatite, reduces the solubility of the crystal and improves its 

crystallinity (DePaola, 1991). An increase of the fluoride concentration in the outer 

enamel was supposed to impart a lifetime of caries resistance which is the aim of many 
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studies (ten Cate & van Loveren, 1999). The application of fluoride for cariostatic 

purposes has to a large extent been based on the above theory (ten Cate & van 

Loveren, 1999).  

On the other hand, a small amount of aqueous fluoride in saliva and dental plaque was 

demonstrated to reduce the rate of mineral loss dramatically (ten Cate & van Loveren, 

1999). The amount of mineral loss during demineralization was found to be a function 

of both pH and fluoride concentration (ten Cate & Duijsters, 1983a; b). Since the 

dissolved fluoride in the oral environment could be rinsed away, this mechanism 

implies the necessity of a continued supply of fluoride, so that caries prevention can be 

maintained at any time with reasonable results (ten Cate & van Loveren, 1999; Wefel, 

1990).   

The above-mentioned roles of incorporated and aqueous fluorides in inhibiting 

demineralization could be illustrated by the following reaction (ten Cate & van 

Loveren, 1999): 

Ca10(PO4)6(OH)F↔10Ca2+ + 6PO4
3-  + OH- + F- 

It is apparent that if the solid material has a low solubility due to incorporated fluoride, 

less calcium, phosphate, hydroxyl and fluoride are required to prevent the dissolution. 

It is, however, equally clear that high concentration of any of the ions, including 

fluoride, in the aqueous phase inhibits dissolution as well (Margolis & Moreno, 1992; 

Wefel, 1994).   

In considering the reaction above, it can be concluded that the incorporated and 

aqueous fluoride work in concert in preventing demineralization (Margolis & Moreno, 

1992; Wefel, 1994). In addition, during the demineralization and remineralization 

episodes, the incorporated fluoride could be released into plaque and saliva, while 
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aqueous fluoride could be incorporated into crystalline lattice and replace carbonate, 

resulting in a mineral with lower solubility (ten Cate & van Loveren, 1999).  

 

In the past decades a lot of attention has been given to the relative importance of firmly 

versus loosely bound fluoride in caries prevention. Firmly bound fluoride refers to 

fluoride incorporated in the crystalline lattice of hydroxyapatite, whereas loosely 

bound or labile fluoride pertains to fluoride adsorbed to apatite and to fluoride leaching 

from relatively soluble fluoride-containing deposits. The latter includes calcium 

fluoride, whereas firmly bound fluoride concerns fluorhydroxyapatite. In the early 

days of development of caries preventive products and treatment strategies, the adage 

was that the formation of calcium fluoride should be prevented because its formation 

would draw away calcium from enamel and, because calcium fluoride was thought to 

dissolve quickly, this calcium would leach away from the oral cavity and thus be lost 

from the dental tissue. Moreover, the prevailing thinking at the time was that fluoride 

should be deposited in a stable form in the dental tissues, which would, as a result of 

this, be safeguarded against caries for life. 

Findings on the effects of low concentrations of fluoride on demineralization and 

remineralization, however, initiated discussions on the effects of fluoride in solution or 

released from calcium fluoride (like) deposits versus fluorapatite in inhibiting enamel 

demineralization.  

A very elegant experiment in this category was the in situ study described by Ogaard 

& others  (1988a). They placed shark enamel (consisting of fluorapatite) on Hawley 

retainers in subjects participating in their intraoral research program and studied the 

enamel demineralization, post-in vivo, by microradiography. The enamel specimens 

were covered with orthodontic bands to create a space for plaque formation. Besides 
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the experimental group with shark enamel, a group with human enamel specimens was 

investigated. After 4 weeks in situ caries lesions were formed not only in human 

enamel but also, although less severely, in shark enamel. This observation indicated 

that structurally bound fluoride was not very effective in inhibiting enamel 

demineralization. Additional information was obtained from a third group of subjects 

who rinsed their mouth daily with a 0.2% sodium fluoride rinse. In their case caries 

was inhibited to a significantly greater extent in the shark enamel group. In this direct 

comparison ambient fluoride showed a greater caries preventive effect than firmly 

bound fluoride. Consequently, fluoridation of enamel, with the aim of producing high 

levels of incorporated fluoride, is not a sufficient method of inhibiting tooth decay. 

Calcium fluoride, as a fluoride reservoir on the tooth surface, only forms during 

treatments with high-concentration fluoride solution. Fluoride topical applications, in 

particular when acidified, result in the formation of globular deposits of calcium 

fluoride (like) materials. These globules do not dissolve as quickly as expected on the 

basis of their solubility (Rølla & Ogaard, 1986). This is attributed to the presence of a 

phosphate- and protein- rich surface covering these globules (Rykke & others, 1989; 

Saxegaard, Lagerlof & Rølla, 1988). The dissolution of the fluoride from the globules 

is pH dependant, presumably because the phosphate ions on the surface are released 

when protonated at low pH. By this mechanism fluoride is dissolved from the globules 

at the time fluoride is most needed (i.e., at a low pH). Various studies have shown that 

calcium fluoride is found in demineralized, porous tissue, more so than on sound 

enamel. Also the amount of fluoride that can be mobilized is decreased during an acid 

challenge, whereas at the same time the fluoride firmly bound in the lattice is 

increased. The acid cycle thus contributes to the conversion of loosely to firmly bound 
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fluoride, and consequently the reduction of the source of fluoride that can be 

mobilized. 

 

2.4.2 Effect of Fluoride in Remineralization 
 
The effect of fluoride on remineralization has received considerable attention during 

the past decades (ten Cate & van Loveren, 1999). A small amount of fluoride in the 

oral fluid (saliva, plaque) has been found to strongly promote remineralization of 

dentine and enamel, resulting in a shift from a net negative balance leading to caries to 

a positive balance where the tissue can be further mineralized, remineralized, or 

hypermineralized (Featherstone, 1994). The hyper-mineralization of dentine, 

evidenced by multiple radiodense bands within the lesion after the use of topical 

fluoride agents, was found in vitro and in situ, implying the mineral content and acid 

resistant exceeding that of sound dentine (Inaba & others, 1996; ten Cate & van 

Duinen, 1995). A dose response between the fluoride concentration and 

remineralization has been shown (ten Cate, Buijs & Damen, 1995). In situ studies also 

have demonstrated that fluoride treatments could shift the balance in a demineralizing 

environment to a condition of remineralization, not only for enamel but also for 

dentine (Kashani & others, 1998; Stephen, Damato & Strang, 1992; Sullivan & others, 

1997; Wefel & Jensen, 1992). 

Not only the aqueous fluoride, but also the incorporated fluoride account for the 

enhanced remineralization. The incorporation of fluoride into crystal with a resultant 

fluorohydroxyapatite of lower solubility than hydroxyapatite leads to a larger degree of 

supersaturation at a given calcium and phosphate level in saliva or plaque fluid. This 

thermodynamic driving force for precipitation determines the rate at which minerals 

precipitate (Wefel, 1994). 
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The natural repair of early lesions is also described as lesion remineralization and for 

many decades has become one of the cornerstones of the fluoride treatment strategy. It 

was first described by Head in 1909 when the author observed that the teeth become 

harder when placed in saliva and attributed this to saliva properties or carbon dioxide. 

The chemistry, including the mechanism of enamel remineralization, was studied in 

detail by many investigators. Silverstone (Silverstone, 1983) did histomorphometric 

analyses of lesions after remineralization and concluded that the crystallites in the 

inner zone of the lesion (at the advancing lesion front) and in the surface layer had 

dimensions greater than the crystallites of sound enamel. This was the result of 

remineralization and indicated that these zones in the lesion apparently were favorable 

for remineralization and indicated that these zones in the lesion apparently were 

favorable for remineralization. Ten Cate & others (1982; 1983a; b; 1994; 1995) 

investigated mineral deposition from saliva-like remineralizing solutions on etched 

enamel and enamel lesions. They concluded that mineral is deposited as calcium 

hydroxyapatite, that the deposition is crystalline, and that remineralization was the 

result of regrowth of crystallites affected by the caries process.  In addition, it was 

reported that the relative orientation of the crystallites in remineralized tissue was not 

as perfect as in sound enamel. Whereas in sound enamel crystallites are arranged in a 

parallel orientation, in remineralized lesions many crystallites were also seen in a 

random orientation. One of the consequences of this is that the mineral density after 

remineralization could never regain the value. 

The mechanism of fluoride-enhancement of remineralization is as follows: fluoride can 

be incorporated in the crystal lattice of calcium hydroxyapatite. The resultant 

fluorohydroxyapatite has a lower solubility than hydroxyapatite. The result of this is 

that, at given calcium and phosphate level in saliva or plaque fluid, the degree of 
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supersaturation to fluorohydroxyapatite is larger than hydroxyapatite (ten Cate & van 

Loveren, 1999). This thermodynamic driving force for precipitation determines the 

rate at which minerals precipitate. The provision is obviously that the nucleus for 

precipitation, such as crystals already present or organic material that allows epitaxic 

growth, is present and the mineral ions needed for precipitation are available. In the 

case of an enamel lesion with narrow transport channels, diffusion of mineral ions is 

the rate-limiting step of enamel remineralization. In particular, with fluoride present, 

mineralization in the surface layer draws away mineral ions from the lesion pores and 

this affects the diffusion gradient. This is another explanation of why complete 

remineralization is difficult to achieve (ten Cate & Duijsters, 1982; ten Cate & van 

Loveren, 1999).  

Many of the mechanistic studies have been made in simplified in vitro models, in 

which some of the complicating factors from saliva are excluded. One of these, 

salivary proteins forming salivary pellicle, need to be considered in this respect 

because for some of these proteins, crystallization-inhibiting properties have been 

reported. If these proteins bind to the crystallites in the outer regions of the lesion, this 

prevents the described surface blocking effect as a result of remineralization (ten Cate, 

1994). 

A similar mechanism of remineralization in enamel can occur in dentin. Supporting 

evidence of the mineralization properties of the dentinal tissue is the formation of 

secondary and tertiary dentin. However, these are processes of mineralization that are 

driven by the odontoblast cells that lay down the organic matrix, which is then filled in 

with apatite crystallites. In sclerotic dentin, a purely physicochemical crystallization 

takes place. In the advancing front of dentin caries the deposition of calcium phosphate 

crystals in the tubules has been reported. This contributes to the underlying tissue 
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becoming less accessible for invading bacteria, acids, and other metabolites. Thus, 

although the initial dentinal tissue is porous due to the tubular structure, this character 

is changed at a time when porosity is detrimental rather than advantageous (ten Cate, 

Damen & Buijs, 1998; ten Cate & van Loveren, 1999). Research on dentin has proved 

that it is not able to withstand the oral challenge. For that reason the tooth crown is 

covered with enamel. Nyvad, (Nyvad, 1993) concluded that the fluoride in conjunction 

with improved oral hygiene was able to convert active lesions to arrested lesions, and 

advises that an initial remineralization of the root surfaces affected offers a better 

starting point for a restorative treatment if such is requested for aesthetic reasons. 

 

2.4.3 Effect of Fluoride on Tooth Morphology and the solubility of 
Tooth Structure 
 
Fluoride uptake in tooth, in the loosely-bound form (calcium fluoride) and the firmly-

bound form (apatitic fluoride), has been regarded as a marker of tooth resistance to 

caries (Caslavska, Moreno & Brudevold, 1975; DePaola, 1991).  

The fluoride uptake into the apatite lattice as apatitic fluorides, resulting in a less 

soluble mineral than the original enamel apatite through the compositional and 

crystallographic alternations, has drawn considerable attention of dental researchers for 

many years (Caslavska, Moreno & Brudevold, 1975; DePaola, 1991; ten Cate, 1997).  

The finding that caries-like lesions were developed when enamel was exposed to a 

liquid unsaturated with respect to hydroxyapatite and supersaturated with respect to 

fluorapatite (Larsen & Fejerskov, 1977) has indicated that the formation of fluorapatite 

could increase the caries resistance substantially.  

The enamel resistance to lesion formation was found to be positively related with the 

firmly-bound fluoride content, while the loosely-bound fluoride was essentially absent 

(Takagi, Liao & Chow, 2000). In the experiment, the loosely-bound fluoride was 
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removed from the teeth after topical fluoride treatment. The mineral loss after a 5-day 

pH cycling process was reduced by 55% due to the formation of firmly-bound fluoride. 

When dicalcium phosphate dihydrate (DCPD) was adopted to increase the firmly-

bound fluoride formation, the mineral loss was reduced by 77% (Takagi, Liao & 

Chow, 2000). It was demonstrated that a more acid-resistant surface of tooth hard 

tissues could result from the incorporation of firmly-bound fluoride (Driessens & 

others, 1980). In view of the long-lasting presence of firmly-bound fluoride in the 

tooth structures, firmly-bound fluoride was supposed to impart a long-term cariostatic 

effect (Takagi, Liao & Chow, 2000). 

In addition to reducing solubility of tooth, during acid attacks the dissolved apatitic 

fluoride can also cause de novo prevention of demineralization, as evidenced by in 

vitro (Hoppenbrouwers & others, 1988; LeGeros & others, 1983) and in vivo (Ogaard 

& others, 1988a) studies. Apatitic fluoride, which could be released during the initial 

dissolution of mineral, may also serve as a reservoir of fluoride for the inhibition of 

acid production (Birkeland & Charlton, 1976; Harper & Loesche, 1986; Pearce, 

Hancock & Gallagher, 1984), especially under low pH conditions (White & Nancollas, 

1990). 

The cariostatic effect of loosely-bound fluoride was acknowledged later and has been 

well established in these several decades (Arends & others, 1983; Borsboom, vd Mei 

& Arends, 1985; Margolis, Moreno & Murphy, 1986).  

When tooth hard tissues were exposed to high concentration fluoride application,  

CaF2-like globules were formed on the surface and in intercrystal regions (Arends, 

Reintsema & Dijkman, 1988; Tsuda & others, 1993). In the oral environment, loosely-

bound fluoride is easily dissolved and fluoride is released into the plaque and saliva, 

resulting in an slightly elevated and beneficial fluoride levels which may account for a 
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shift of the mineral uptake and loss pattern to favor overall remineralization (ten Cate, 

1997; Wefel, 1990). In addition, calcium fluoride deposits may enhance root surface 

resistance by acting as a diffusion barrier (Caslavska, Moreno & Brudevold, 1975; 

DePaola, 1991; ten Cate, 1997). During demineralization, the released loosely-bound 

fluoride could also be incorporated into tooth crystal, to form apatitic fluoride (Wefel, 

1990).   

Although the loosely-bound fluoride could be washed away, resulting in the 

exponential decrease of fluoride levels in saliva and plaque after a topical fluoride 

application (ten Cate, 1997), the finding that loosely-bound fluoride tends to be 

released at the time it is most needed, namely during a cariogenic challenge, has stirred 

greater interest in the role of loosely-bound fluoride (ten Cate & van Loveren, 1999). 

In addition, CaF2 was found to be less soluble and stay within the tooth surface for a 

long time in in vivo conditions (Caslavska & others, 1991; Lagerlof & others, 1988; 

ten Cate, 1997). The presence of CaF2-like deposits in tooth may therefore act as a 

reservoir for fluoride to be mobilized into the underlying tooth surface (Wefel, 1990).  

 

The effects on the solubility of enamel are well documented and have been, for many 

years, the cornerstone for the prevention of dental caries. Nevertheless, the previously 

mentioned experiment involving fluorapatite-containing shark enamel (Ogaard & 

others, 1988b) raised doubts regarding the importance of the fluoride-induced 

decreased solubility in terms of the overall effect of fluoride in caries prevention. This 

prompted experiments in which not fluoride in the apatite crystals, but fluoride in the 

ambient solution during a period of acid challenge, was investigated. Larsen (Larsen, 

1974) showed that the presence of fluoride, more specifically a condition of 
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supersaturation with respect to fluorapatite, is crucial for the formation of a surface 

layer during enamel demineralization.  

The mechanism of fluoride is twofold. Firstly, it binds calcium and phosphate 

dissolving, as a result of the acid penetration into the tissue and the resulting acid 

dissolution of the apatite. This reprecipitation prevents the mineral constituents of the 

enamel to be leached away into the plaque and saliva. Also, by this reprecipitation the 

pores of the tissue are narrowed, which, in turn, affects the diffusion of acid into the 

tissue and the efflux of dissolving ions. Ten Cate and Duijsters (1983a), performed a 

series of studies to investigate the fluoride in solution (between 0 and 10 ppm) in the 

pH range relevant for the occurrence of caries (pH 4 to 5). They showed that the 

amount of mineral loss during demineralization is a function of both pH and fluoride 

concentration. In particular, at the lower pH values studied the concentration of 

fluoride is an important determinant for the rate of mineral dissolution. The authors 

commented that the largest inhibition occurs at the fluoride concentration where the 

solution is supersaturated with respect to calcium fluoride and hypothesize that the 

different morphology of a calcium fluoride deposit in the lesion pores may result in a 

more effective inhibitor than the fluorapatite growing onto existing hydroxyapatite 

crystallites.  

With the specimens from the study on pH and fluoride effects on demineralization 

subsequent analyses were performed to assess the mineral density profiles in the 

lesion. Microradiographic assessment of the lesions showed that the surface layer was 

a function of the fluoride concentration in the solution and that also the lesion depth 

was affected by fluoride, as was the overall mineral loss (ten Cate & Duijsters, 1983a). 
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There are many similarities in the structure of enamel and dentin from which it could 

be speculated that the effects of fluoride on demineralization of the two tissues should 

be similar; however, there are also many dissimilarities. These include the presence of 

a large proportion (about 35%) of organic matrix, which is composed mainly of 

collagen, and some structural aspects of apatite crystallites. Dentin contains about 5 

vol% by weight of carbonate, which is double the amount for enamel and gives rise to 

a higher solubility (Featherstone, 1994).  

The solubility is also influenced by the size of the crystallites, which are considerable 

smaller in the case of dentin than enamel. Smaller crystallites dissolve faster when 

placed in an undersaturated solution. The collagen fraction is the matrix onto which the 

apatite crystallites were precipitated during dentinogenesis. During demineralization, 

the apatite fraction is the first to be dissolved, only exposing the collagen after its 

dissolution. The collagen, while still present in the dentin, serves as a diffusion barrier 

slowing down demineralization, but it is also subject to denaturation, enzymatic 

degradation, and solubilization (Kleter & others, 1994; Klont & ten Cate, 1990; Klont, 

Damen & ten Cate, 1991). Once the matrix is removed it no longer can nucleate new 

apatitic crystals. Regarding the demineralization of dentin it should be remembered 

that not only is the solubility larger but also the amount of apatite in the sound tissue is 

small in comparison to enamel. At double the demineralization rate and half of the 

mineral content of sound dentin, this leads more rapidly to a condition of irreparable 

damage (i.e., no remineralization) of this substrate. Various experiments have shown 

that dentin demineralization is also partly inhibited by fluoride (ten Cate, Damen & 

Buijs, 1998) when it is supplied during short-term treatments or when continually 

present. Featherstone (Featherstone, 1994; 1999) reported a dose response between the 

fluoride concentration in the dentifrice and demineralization.  
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2.5 Fluoride Containing Tooth-Colored Restorative Materials 

2.5.1 Conventional Glass Ionomers 
 
The glass-ionomer cement has been used in dentistry for more than 3 decades and is 

now well established as a material with an important role in clinical dentistry. Wilson 

and Kent first reported its unique characteristics in 1972. The original glass-ionomer 

cement was far from an ideal material with poor setting characteristics, the clinical 

consequences of which extended beyond limited working time and delayed hardening, 

and rendered the cement, before it fully hardens, vulnerable to the effects of both 

moisture and desiccation. Therefore, glass ionomer cements has undergone continuous 

development, improvement and diversification. Glass ionomers are widely used in 

dentistry because of a variety of beneficial properties such as, chemical diffusion-

based adhesion to enamel and dentin, fluoride release, biocompatibility with tooth 

structure, simple application, aesthetic appearance, acceptable abrasion resistance and 

capacity to be retained on unsupported enamel or non-undercut cavities (Mount, 1994). 

Conventional glass ionomer cement is based on an acid-base reaction derived from 

aqueous polymeric acids, such as poly acrylic acid homo polymer or acrylic/ itaconic/ 

maleic copolymers. The glass component is usually fluoro-alumino-silicate (Wilson & 

Kent, 1972) which is the “base” part of the reaction. The fluoride is released by the 

glass material for overtime (de Araujo & others, 1996). In the first 2 weeks there is a 

very high fluoride release, then it dissipates to a level of around 10% of the original 

level in 3-4 weeks, and remains at this level for 1 year or more (Berg, 1998).  

Amounts of fluoride release in deionized water have been found to range between 

almost 100ppm to less than 10ppm at 28 days in some conventional GICs (Arends & 

Ruben, 1988; de Araujo & others, 1996). However, they can be “recharged” in the 
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presence of ambient fluoride, which can replenish the fluoride in the material (Forsten, 

1991). GICs are the only dental materials with a true chemical bond to tooth structure 

(Hse & Wei, 1997). Bonding to hydroxyapatite occurs by the standard diffusion based 

adhesion system in as much, the polyalkenoic acid will soften the surface of the tooth 

structure and the chains will diffuse into the surface of the tooth, displacing calcium 

and phosphate ions. Both calcium ions and phosphate ions are displaced equally to 

maintain electrical neutrality. Then, displaced ions combine with the surface of the 

tissue and form an intermediate layer of new material (interdiffusion zone), which is 

firmly attached to tooth (Akinmade & Nicholson, 1995). It’s also suggested to have 

some degree of bonding to collagen of the dentin, through either hydrogen bonding or 

metallic ion bridging between the carboxyl groups of the polyacid and the collagen 

molecules (Akinmade, 1994). 

The introduction of high powder-to-liquid ratio glass ionomer materials, improved the 

compressive and flexural strengths, from 190 to 250 MPa and 30 to 45 MPa, 

respectively, it also provides a “condensable” feel, and this allows to be used in 

posterior teeth. 

GICs also can be used as bases in conjunction with resin composites, and the 

“sandwich” or “laminate” technique (Li & Others, 1996; Davidson, Abdalla & De Gee, 

1993). However, bond strength to the resin composite is limited by the low cohesive 

strength of the GICs (Li & Others, 1996), and this make the cements unsuitable for use 

in high-stress sites, such as Class I and Class II restorations.  

Other indicated clinical applications are: Repair of defective restoration margins, 

restoration of root surfaces for overdentures, temporary restorations, lining/base under 

composite and amalgam, pit and fissure sealants, bonding of orthodontic brackets, 

bonding agent for composites, core build-up.  
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Some general contraindications are in stress-bearing areas such as large class II and IV 

cavities in permanent teeth, replacement of lost cusps and also in those large aesthetic 

areas such as class IV cavities.  

Some examples of GICs are: Fuji II™ /-Caps™ (GC Corp), Glasionomer Fx™ (Shofu), 

Ketac – Molar Aplicap™ / – Molar Quick Aplicap™ /– Fil Plus Aplicap™ (3M ESPE). 

2.5.2 Resin-modified Glass Ionomers 
 
In recent years, developments in the field of glass ionomer cements have led to the 

introduction of hybrid versions of the material which can be light cured. They were 

introduced to help overcome the problems of moisture sensitivity and low early 

mechanical strengths associated with the conventional glass ionomer cements and at 

the same time maintain their clinical advantages. In these materials the fundamental 

acid-base curing reaction is supplemented by a second curing process, which is 

initiated by light. In their simplest form they are glass ionomer cements with the 

addition of small quantities of resin components (13 wt % resin to 87 wt % glass 

ionomer liquid) such as hydroxyethyl methacrylate (HEMA) or Bis-GMA. Some of the 

water component of the conventional glass ionomer cement is replaced by water  / 

HEMA mixture (Wilson, 1990). In addition, there are traces of photoinitiators as well. 

The setting reaction is said to be a dual mechanism. Hence, the acid-base reaction of 

true glass ionomer cements is supplemented by a polymerization reaction in these 

materials.  The set material has two inter-penetrating matrices, i.e. the ionic matrix 

from the acid-base reaction and the polymerization from the free acid radical reaction 

(Wilson, 1990). The GIC component offers fluoride release, while the resin component 

offers strength and better esthetics than conventional GICs (Uno, Finger & Fritz, 1996; 

Berg, 1998). RM-GICs have a dual cure system, they are self-cured and also 
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photocured, because the glass can be silanized to allow an adherence of the glass 

within the resin matrix and also because of the addition of the photoinitiator.  

The major disadvantages of RMGICs are the handling properties, because the material 

must be mixed, due to the reaction of GIC and the self-cured resin elements. Hence, 

these components must be separated. Therefore these materials are in both hand-mixed 

and capsulated versions. 

RM-GICs possess higher measured bond strength than conventional GICs (Xie & 

Others, 2000). Their recent study showed that RMGICs were at least 200% higher in 

flexural strength and generally more than 60% higher in diametral tensile strength. 

A true resin-modified glass ionomer cement material is therefore a two-part system 

which is characterized by an acid-base reaction critical to its cure, a diffusion-based 

adhesion between the tooth and the cement, and lastly, continuing fluoride release. 

Some examples of RM-GICs are: Fuji II LC™, Fuji IX GP™ (GC Corp., Tokyo, 

Japan), Vitrebond™, Vitremer™  (3M), Photac-Fil Quick™/-Aplicap™ (3M ESPE). 

 

2.5.3 Prereacted Glass Ionomer-Composites (Giomers) 
 
Pre-reacted Glass Ionomer – Composites (PRG-C) are also known as Giomers.  

These new generation of hybrid material are an anhydrous resin-based restorative that 

uses pre-reacted glass ionomer technology (Roberts & others, 1999). In the chemical 

composition, the material incorporates fillers that are produced from the complete or 

partial reaction of ion-leachable glasses with polyalkenoic acids. Basically, the fluoro-

alumino silicate glass is reacted with polyacrylic acid prior to inclusion into the 

urethane resin (Yap & others, 2002). In the fully pre-reacted type (F-PRG), the 

remaining soft, siliceous hydrogel is freeze-dried, ball-mined, and silanized to form 

PRG fillers. Unreacted FASG particles, silica particles, and fumed silica are included 
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to optimize the physical properties of this material. Since PRG fillers are already pre-

reacted, acidic monomers are not necessary for in situ acid-base reactions. A 

hydrophilic monomer, hydroxyethyl methacrylate (HEMA), is included with urethane 

dimethacrylate to produce a resin matrix that is conductive to water uptake and ion 

exchange. It is postulated that this PRG phase promotes sustained fluoride release via 

ligand exchanges within the ion-rich hydrogel, without disrupting the integrity of the 

filler-matrix interface that was speculated to occur in fluoride releasing resin-based 

materials such as compomers (Roberts & others, 1999; Tay & others, 2001a). 

The manufacturer reports biocompatibility, fluoride release, fluoride recharge, clinical 

stability, smooth surface finish and excellent esthetics. Giomers are required to use a 

bonding system for adhesion to tooth structure. When using Reactmer™, the 

manufacturer bonding agent suggested is Reactmer Bond™, a glass ionomer based, tri-

curable, all-in-one, filled adhesive that combines etching, priming and bonding. It 

consists of two components, which must be hand-mixed prior to application. It is left 

for 20 seconds on the tooth surface, air thinned and subsequently light-polymerized for 

20 seconds prior to the placement of Reactmer. Manufacturer indications include 

restorations for root-caries, non-carious cervical lesions and class V cavities in 

permanent teeth and all classes of deciduous teeth. In addition to conventional FASG 

fillers, Reactmer Bond utilizes a novel filler material known as fully pre-reacted glass 

polyalkenoate fillers (F-PRG) to enhance the sustained fluoride releasing and 

recharging potential of the material. These fillers are formed by the complete reaction 

of FASG glass with polyalkenoic acids in the presence of water to form a wet siliceous 

hydrogel. Upon freeze-drying, the dissicated ‘xerogel’ is further milled and silane-

treated to form F-PRG fillers of a specific size range. It was proposed that of the use of 
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F-PRG fillers promotes rapid fluoride release through a ligand exchange within the 

pre-reacted hydrogel (Tay & others, 2001b). 

There’s still little data regarding the physical properties of these materials in the 

literature. However, a recent study compared the shear bond strength of a PRG-C 

(Reactmer Bond/Reactmer Paste) and a Compomer (Clicker/F2000) (Miyazaki & 

others, 2001).  They found mainly cohesive failure in the bonding agent with no 

significant difference between both materials. A recent TEM study (Tay & others, 

2001b), evaluated the existence of the GI phase on different fluoride release materials 

and concluded that the variable extent of the GI phase is determined by differences in 

the resin composition of the restoratives. However, as the initial in vitro trials of new 

or experimental materials do not always reveal their full limitations or assets, clinical 

data is essential to prove the success of these materials. 

Some examples of PRG-Cs are: Reactmer™ used in combination of Reactmer Bond™ 

(Shofu) and Beautifil™ used in combination with FL-Bond™ (Shofu). 

 

2.5.4 Polyacid Modified Composites (Compomers) 
 
Polyacid-Modified Composites (PAM-C) are also known as Compomers, these 

materials are essentially resin composites, the main difference is that the resin 

monomers are modified to contain acidic functional groups, capable of participating in 

an acid/base glass ionomer reaction after the polymerization of the resin molecule has 

taken place (Berg, 1998). 

The photo-initiated polymerization is the only setting reaction in PAM-C, (Meyer & 

others, 1998) although a limited acid-base reaction takes place upon water absorption. 

This reaction results in a fluoride release, but not involved in the hardening process of 

the material (McCabe, 1998). Compomers does not have inherent adhesion to tooth 

 45



structure, it is essential to use a bonding agent, although it has been demonstrated that 

this significantly decreases the fluoride release (Castro, Gray, Buikema, 1994; 

McKnight-Hanes & Whitford, 1992). Meyer & Others (1998) have shown that the 

diffusibility differs significantly among RMGICs, PAM-C, and Resin Composites. The 

authors suggested that different formulations of bonding agents exhibit different 

permeabilities. A recent study suggests that the bonding agent acts like a barrier 

impeding the diffusion of compomers such as water and fluoride into and out of the 

PAM-C respectively (Vercruysse, De Maeyer & Verbeeck, 2001). Moreover, Itota & 

others (2001) suggested that the type of adhesive used with compomers might play a 

major role in fluoride release. The authors finally concluded that applying an adhesive 

without Bis-GMA resin to compomer restoration will not have a suppressive effect on 

the fluoride release and may help to overcome the problem of fluoride release. 

However, it should not be expected that compomers would provide properties similar 

as that of glass ionomers (Mount, 2002). Therefore it is suggested that the compomers 

be used carefully, with an understanding of their limitations, in as much as they show 

all the inherent problems associated with composite resins.  

Some examples of PAM-Cs are: Dyract™/-AP™, Dyract Flow™, (Dentsply), Hytac 

(3M ESPE), Compoglass F™/-Flow™ (Ivoclar Vivadent), F2000™ (3M). 

 

2.5.5 Fluoride Releasing Composites/Resins 
 
Traditionally, composite resin materials are manufactured with four major 

components: organic polymer matrix, inorganic filler particles, coupling agent and the 

initiator-accelerator system. The organic polymer matrix in most composites is an 

aromatic or urethane diacrylate oligomer. The inorganic filler particles may consist of 
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several inorganic materials such as quartz, glass and/or colloidal silica. The coupling 

agent is a silane, which contains functional groups that can hydrolyze and react with 

the inorganic filler. Initiator-accelerator systems allow self-curing, light curing and 

dual curing. 

The two most common oligomers used in composite resin materials are Bis-GMA (2,2-

bis[4(2-hydroxy-3 methacryloyloxy-propyloxy)-phenyl] propane and urethane 

dimethacrylate (UDMA). 

Dental composites can be classified by the particle size, shape, and distribution of 

filler. Early composite resins contained large spherical particles (20 to 30 µm), 

followed by large irregularly shaped particles, microfine particles (0.04 to 0.2 µm), 

fine particles (0.4 to 3 µm), and finally blends  (microhybrids) containing mostly fine 

particles with some microfine particles. Based on the type of filler particles, 

composites are classified as microhybrid and microfilled products. 

Microhybrid composites contains irregularly shaped glass or quartz of fairly uniform 

diameter plus microfine filler (5% to 15%) and may contain filler 60% by volume and 

72% to 80% by weight. Microfilled CR may contain 40% to 70% filler by volume and 

approximately 77% to 84% by weight. 

  Traditional composites were initially non-fluoride releasing restorative materials. In 

recent years, composite resins have been formulated to release fluoride (Arends & 

Ruben, 1988; Strother & others, 1998; Swift, 1989; Young & others, 1996). Cariostatic 

effect in dental substrates by fluoride uptake of fluoride releasing composites have 

been shown in several previous studies (Arends, Ruben & Dijkman, 1990; Jensen, 

Wefel & Hammesfahr, 1991; Zimmerman, Rawls & Querens, 1984). However, 

fluoride is released in lesser amounts than glass ionomers (Fortin & Vargas, 2000) and 

the fluoridated composite resins did not consistently create inhibition zones in adjacent 
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dentin. The presence of a smear layer and the pH seemed to have an affect on the 

presence of an inhibition zone (Segura, Donly & Quackenbush, 2000). 

A bonding agent to achieve bond strength is required. A mechanical interlocking is 

achieved by flowing the water-tolerant primer into the surface of the dentin where it 

penetrates the spaces in the networked structure of the collagen, created by acid etch 

(Berg, 1998). 

Hybrids are suitable for anterior and posterior restorations due to the polishability of 

the microfiller size and durability of larger particle size. This property gives the most 

esthetically desirable material. Mechanical properties of hybrid composites such as 

compressive, flexural and tensile strengths are excellent. 

The major disadvantages of resin composites other than the low fluoride release, 

includes shrinkage due to polymerization, which is higher in flowable composites due 

to the filler content, and perhaps can be lowered when using lower intensity lights. 

However, shrinkage of the material will compromise the marginal integrity forming 

gaps, which we can assume these gaps to have some leakage and the latter, resulting in 

secondary caries formation depending upon the population of origin (Tyas & others, 

2000). Another disadvantage is that composite resins are less susceptible to fluoride 

recharge due to the complexity of the resin-based matrix. Some examples of fluoride 

releasing composites were: FluorEver™ (MacroChem Corp), Heliomolar Radiopaque™ 

(Vivadent Inc). 
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3  METHODS AND MATERIALS  

3.1 Materials Selection 
 

The materials evaluated in this study represent the entire continuum of direct aesthetic 

restorative materials currently available to the dental practitioner and are summarized 

in Tables 3-1 and 3-2. They included a conventional glass ionomer cement (Fuji II 

Caps [FJ]), a resin-modified glass ionomer cement (Fuji II LC [FL]), a giomer 

(Reactmer [RM]), a compomer (Dyract AP [DY]), and a non-fluoride releasing 

composite resin (Spectrum TPH [SP]) control group. 

 

3.2 Sample Preparation and Restorative Material Placement 
 

Seventy-five freshly extracted human third molars were randomly divided into 5 

groups of 30 teeth. The teeth were free from caries, structural defects and extraction 

flaws (assessed under a stereomicroscope [Olympus SZ40, Tokyo, Japan] at 10x 

magnification). Immediately following extraction, the teeth were placed in 10% 

formaline-saline solution for 10 minutes, cleaned and stored in distilled water at 4°C. 

Buccal and palatal/lingual class V cavities (2mm deep, 4mm long [mesio-distal] and 

3mm wide [occlusal-gingival]) were carefully prepared at the cemento enamel junction 

(half above and half below the CEJ) of each tooth by a single operator. The cavities 

were prepared by means of a high-speed hand-piece with a #330 carbide bur and 

#1311 diamond bur (Shofu, Kyoto, Japan) under water spray. Standardization of the 

cavities was ensured by measurement with a digital caliper (Fowler Ultra-cal Mark III, 

Sylvac, Sweden). Conditioners, coating and priming materials were thoroughly mixed 

prior to use as indicated in the manufacturer’s instructions. One hundred and fifty 

cavities were restored with a one-increment procedure following manufacturer’s 
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instructions (Table 3-3) with the aid of transparent cervical matrices (Hawe-Neos 

Dental 721; Gentilino, Switzerland). Materials were placed in subsequent order within 

a 5-day interval starting with FJ, FL, RM, DY and SP. Date of placement for each 

material was recorded and strictly followed up. Placement protocols for the different 

materials are summarized in Table 3-3. Cervical matrices were replaced after every 15 

restorations. All restorations were grossly finished 10 minutes after placement using a 

high-speed hand-piece and eight flute tungsten carbide burs (Robot Carbide SH134; 

Shofu, Kyoto, Japan) under water spray. Finishing burs were replaced after every 15 

restorations. FJ and FL restorations were covered with a layer of unfilled resin 

(FujiCoat) and light-cured for 15 seconds after gross finishing. The restored teeth were 

then stored in distilled water at 37°C for 1 week and finished/polished with 10 strokes 

of coarse, medium, fine and extra-fine Sof-lex discs (3M Dental Products, St. Paul, 

MN 55144, USA), at 10,000 rpm. Special care was taken to ensure that no overhangs 

were present at the margin of the restorations on both enamel and dentin substrates. 

After treatment with Sof-lex discs, the restored teeth were returned to distilled water at 

37°C for an additional week.  

The crowns of the restored teeth were separated from the roots and bisected mesio-

distally using a diamond impregnated disc with an alloy grinder motor (DEMCO, 

Dental Maintenance Co., Inc. Bonsall, California, U.S.A). This resulted in one hundred 

and fifty samples corresponding to the five groups of materials (n=30).  

The tooth fragments were coated with two layers of acid-resistant nail varnish (Max 

Factor, Procter and Gamble, Surrey, UK), except for a zone approximately 1mm wide 

around the restorations. The restorations in each group were then randomly divided 

into 2 groups of 75. The first group was subjected to artificial caries challenge (pH 

cycling), while the remaining half was stored in distilled water at 37°C for an 
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additional five months and two weeks more (total of six months after placement) 

before pH cycling. The pH cycling protocol will be described in detail in section 3.3. 

3.3 Artificial Caries Challenge 
 
Each group of specimen restorations (n=15), was exposed to a 3-day cyclic treatment 

regime which produced artificial recurrent caries around restorations. Specimens were 

immersed in demineralizing & remineralizing solutions. The demineralizing solution 

used contained acetic acid buffer with 2.2 mM calcium (CaCl2), 2.2 mM phosphate 

(NaH2 PO4), 0.05 M acetic acid. The remineralizing solution used contained 1.5 mM 

of calcium, 0.9 mM of phosphate, 0.15 M KCl (Damato, Strang & others, 1988). The 

pH of the demineralizing solution was adjusted to 5.0 using KOH (Konishi, Fried & 

others, 1999) and the pH of the remineralizing solution was carefully adjusted to 7.0 

using KOH (Hsu, Jordan & others, 2000). Each group of specimens were immersed in 

demineralizing solution for 18 hours at 37°C, removed, washed with distilled water for 

5 minutes and immersed in remineralizing solution within another vial for 6 hours at 

37°C. All solutions were constantly stirred at 132 RPM with a Data Plate Hot Plate / 

Stirrer [Model 735, Barnstead|Thermolyne, Dubuque, Iowa, USA] (Hsu & others, 

2000). The pH cycling process started with demineralizing solution. Solutions were 

renewed after each cycle.  

3.4 Lesion Measurement and Data Collection 
 
Longitudinal sections of 130±20µm in thickness were obtained with a Silverstone-

Taylor hard-tissue microtome (Series 1000 Deluxe, Sci Fab, Colorado, USA) with a 

diamond-wafering blade of 7.6cm diameter and 0.15mm thickness (Series 15 LC 

Diamond, Buehler, Illinois, USA). The enamel/dentin margins were photographed in 

an imbibition media of distilled water with a digital color video camera (Sony 

 60



ExwaveHAD SSC-DC58AP, Sony Co.,Tokyo, Japan) attached to a polarized light 

microscope (Olympus BX51, Tokyo, Japan). Photomicrographs were traced with an 

image analysis software (Microimage v4.0; Olympus Optical Co. Europa GMBH, 

Hamburg, Germany) and outer lesion depths [OLD] / wall area [WA] lesion or 

inhibition were measured according to Hsu & others (1998). We determined the 

average depth of each outer lesion by measuring a lesion area of 200µm in length and 

dividing it by 200. The wall lesion area or inhibition area was defined by a 100µm area 

adjacent to the restoration and three peripheral lines: (1) the vertical line representing 

the cavity wall or the tooth restoration interface; (2) the inner border of the 

demineralization area curving up, axially, to meet the cavity wall; and (3) the 

imaginary line following the horizontal portion of the inner border of the 

demineralization area and extending straight to the cavity wall at 90° (Figure 3-1) 

(Hsu, Donly & others, 1998). The same protocol was followed for restorations that 

were aged for 6 months. 

 
 

Figure 3-1. Lesion measurement and data collection. 
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OLD was determined by measuring a lesion area of 200µm in length and dividing it by 200. WA 
inhibition/lesion was computed based on a 100µm area adjacent to the restoration margins. Three major 
patterns of demineralization along cavity walls evaluated with polarized light microscopy in both 
enamel and dentin. Three types of lesions along the cavity wall can be categorized based on three 
different directions that the inner border of demineralization may take toward the cavity wall (DEF line). 
If the inner border of demineralization curved upward (ABC line), the effect was an “inhibition” 
represented by the BCDE area with a positive value (+). If the inner border of the demineralization 
extended straight to the cavity wall at 90° (ABE line), the lesion exhibited “no effect”. If the inner 
border of demineralization curved downward (ABF line), the effect was a “lesion” represented by the 
BEF triangular area with a negative value (-). 

 

3.5 Statistical Analysis 
 
All data were subjected to statistical analysis at a significance level of 0.05. Paired 

Samples T-Test was used to compare OLD & WA values between tooth tissues and 

aging periods. One-way ANOVA and Scheffe’s post-hoc tests were performed to 

compare mean OLD and WA values between materials. Non-parametric Kruskall-

Wallis test and Mann Whitney U tests were used to compare wall lesion patterns 

between tissues and materials. 
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Table 3-1. Technical profiles and manufacturers of the materials evaluated. 
 
Material Manufacturer Chemical Composition Color Lot no. 

Powder: Liquid: 
Fuji II 

Capsule 
GC Corp. Tokyo, 

Japan FASG 
 PAA 

PAA 
TA 

 Water 

Shade A2 0007186 

Powder: Liquid: 

Fuji II LC 
Capsule 

GC Corp. Tokyo, 
Japan FASG 

 Pigments 

PAA 
 Water 
HEMA 

CQ 

Shade A2 9912202 

Resin: Fillers: 

Reactmer 
Paste 

Shofu Inc., Kyoto, 
Japan 

FASG 
UDMA 
HEMA 

Photo Initiator 

F-PRG, Silica, 
Aerosil silica, 
Glass fillers 

Shade A2 100102 

Resin: Fillers: 
Dyract AP 

Dentsply-De Trey, 
Konstanz, 
Germany 

UDMA 
TCB 

Strontium-fluoro- 
Silicate glass 

Shade A2 0003001521 

Resin: Fillers: 
Spectrum 

TPH 
 

Dentsply-De Trey, 
Konstanz, 
Germany 

BisGMA-
adduct Bis-

EMA 
TEGDMA 

Bariumaluminum-
Borosilicate, 

Silica 

Shade A2 0006000747 

CQ: Camphorquinone                                                                           HEMA: Hydroxyetylmetacrylate  
Bis-EMA: Ethoxylated bisphenol-A-glycidil-methacrylate                 TA : Tartaric Acid 
BisGMA: Bisphenol-A-glycidyl-metacrylate                                       PAA: Poly Acrylic Acid 
BisGMA -adduct: Adduct of 2,2-Bis[4-2-hydroxy-3-methacry           TEGDMA: triethylene glycol dimethacrylate 
loyloxpropoxy)-phenyl]propane with hexamethylene diisocyanate     TCB: Reaction product butane tetracarboxylic acid and HEMA 
FASG: Fluoroaluminosilicate-glass                                                      UDMA: Urethane dimethacrylate 
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Table 3-2. Technical profiles and manufacturers of the bonding/coating agents. 
 

Material Manufacturer Chemical 
Composition Lot no. 

GC Cavity 
Conditioner 

GC Corp. Tokyo, 
Japan 

20% PAA 
3% Aluminum 

Chloride Hexahydrate 
0006301 

GC Fuji Coat LC GC Corp. Tokyo, 
Japan Methyl metacrylate 9911021 

F-PRG  
FASG  

NI 
Water 

Acetone 

Reactmer Bond 
A 
 

& 
 

B 

Shofu Inc., Kyoto, 
Japan 4-AET  

4-AETA 
HEMA 
UDMA 

Photo Initiator 

0901 

Conditioner 36 Dentsply-De Trey, 
Konstanz, Germany Phosphoric Acid 36% 9904000621 

Prime & Bond 
NT 

 

Dentsply-De Trey, 
Konstanz, Germany 

PENTA 

PENTA 
UDMA  
Nano F  
Acetone 
*Resins 

0001000767 

4-AET: 4-Acryloxyethyltrimellitic acid                                   NI: New Initiators 
4-AETA: 4-Acryloxyethyltrimellitate anhydride                     PENTA: phosphonated penta-acrylate ester 
FASG: Fluoroaluminosilicate-glass                                          PAA: Poly Acrylic Acid 
F-PRG: Full reaction type pre-reacted glass-ionomer filler     *Resins: Resin R5-62-1, T-resin, D-resin 
HEMA: Hydroxyetylmetacrylate                                             UDMA: Urethane dimethacrylate 
Nano F: Nano-filler initiators 
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Table 3-3. Tooth restoration procedure. 
 

Fuji II 
Material 1 

Fuji II LC 
Material 2 

Reactmer 
Material 3 

Dyract AP 
Material 4 

Spectrum TPH
Material 5 

GC Cavity 
Conditioner 
(10 seconds) 

↓ 
Rinse (5 seconds) 

& 
Dry (3 seconds) 

↓ 
Fuji II Caps 

↓ 
ST (4 minutes) 

↓ 
Gross finishing   

w/ Tungsten 
carbide 8 fluted 

bur 
↓ 

GC Fuji Coat 
↓  

Light Cure 15 
seconds 

↓ 
Stored 1 week in 
distilled water** 

↓ 
Finish/Polish 
(w/Sof-lex*) 

↓ 
Stored 1 week in 
distilled water** 

GC Cavity 
Conditioner 
(10 seconds) 

↓ 
Rinse (5 seconds) 
& Dry (3 seconds) 

↓ 
Fuji II LC Caps 

↓ 
Light Cure 20 

seconds 
↓ 

Gross finishing w/ 
Tungsten carbide 8 

fluted bur 
↓ 

GC Fuji Coat  
↓  

Light Cure 15 
seconds 

↓ 
Stored 1 week in 
distilled water** 

↓ 
Finish/Polish 
(w/Sof-lex*) 

↓ 
Stored 1 week in 
distilled water** 

Reactmer Bond  
(20 seconds) 

↓ 
Dry 3 seconds 

↓ 
Light Cure 20 

seconds 
↓ 

Reactmer Paste 
↓ 

Light Cure 30 
seconds 

↓ 
Gross finishing w/ 
Tungsten carbide 8 

fluted bur 
↓ 

Stored 1 week in 
distilled water** 

↓ 
Finish/Polish 
(w/Sof-lex*) 

↓ 
Stored 1 week in 
distilled water** 

Conditioner 36 
(20 seconds) 

↓ 
Rinse (20 seconds) 

& 
Dry (3 seconds) 

↓ 
Prime & Bond NT 

(20 seconds) 
↓ 

Dry 5 seconds 
↓ 

Light Cure 10 
seconds 

↓ 
Dyract AP 

↓ 
Light Cure 40 

seconds 
↓ 

Gross finishing w/ 
Tungsten carbide 8 

fluted bur 
↓ 

Stored 1 week in 
distilled water** 

↓ 
Finish/Polish 
(w/Sof-lex*) 

↓ 
Stored 1 week in 
distilled water** 

Conditioner 36 
(20 seconds) 

↓ 
Rinse (20 seconds) 

& 
Dry (3 seconds) 

↓ 
Prime & Bond NT 

(20 seconds) 
↓ 

Dry 5 seconds 
↓ 

Light Cure 10 
seconds 

↓ 
Spectrum TPH 

↓ 
Light Cure 20 

seconds 
↓ 

Gross finishing w/ 
Tungsten carbide 8 

fluted bur 
↓ 

Stored 1 week in 
distilled water** 

↓ 
Finish/Polish 
(w/Sof-lex*) 

↓ 
Stored 1 week in 
distilled water** 

*3M Dental Products, St. Paul, MN 55144, ** 10 ml with distilled water at 37°C, changed every 24 hours. 
Above instructions were obtained from manufacturer booklets. ST=Setting Time. 
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4 RESULTS 

The means and standard deviations of the outer lesion depths and wall lesion/inhibition 

areas (positive values indicates wall inhibition, negative values indicates wall lesion) 

in enamel and dentin are summarized in Tables 4-1 and 4-2. The statistical comparison 

of means of outer lesion depth and wall inhibition area between tissues and materials 

are summarized in Tables 4-3 and 4-4. Frequencies of wall lesion/inhibition patterns 

are reflected in Tables 4-5 and 4-6. The comparisons of wall area patterns are 

summarized in Tables 4-7 and 4-8. Time comparison of outer lesion depth in µm and 

wall inhibition in µm2 between tissues and materials are summarized in Table 4-9. 

Time comparison of frequencies of wall area patterns are summarized in Table 4-10. 

4.1 Histological Features of Demineralization Lesions 

In the present study, three major types of demineralization patterns were 

observed. They have been previously described by Hsu & Others (1998) and are 

summarized in Figure 3-1. Figures 4-1a to h and 4-2a to h show typical 

photomicrographs of enamel and dentin lesions associated with the various materials. 

Ideally for outer lesions, the acidic artificial caries solution will penetrate freely 

and evenly into tooth structure, dissolve the basic tooth structure crystal units of 

hydroxyapatite (HAP) and leave a demineralized area with a rectangular shape on the 

outer tooth surface away from the cavity wall. It is believed that the stronger the acid 

attack, the deeper the outer lesion and thus the greater the lesion depth. In the same 

way, the greater the concentration of cariostatic fluoride ions released from adjacent 

restorative materials, the shallower the outer lesion and the smaller the outer lesion 

depth. An interesting observation was that enamel outer lesions were non-erosive 
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compared with dentin outer lesions, which were frequently erosive in nature (Figures 

4-1a with Figures 4-1b). 

If no microleakage is presented adjacent to the cavity wall, the demineralized 

area along the cavity wall should follow the same pattern as the outer surface. If this 

happens to be the case, we assigned this type of lesion an outer lesion with wall 

inhibition area. The latter occurred in the majority of cases in enamel/dentin adjacent 

to glass ionomer restorations. Figure 4-1a demonstrates the typical histological 

photomicrograph of enamel outer lesion with inhibition area. The inner border of 

demineralization area extends upward, vertically, toward the junction of the restoration 

and enamel/dentin on the tooth surface, forming a rectangular outline of lesion area.  

In the presence of microleakage, the microspace allows the acid attack to take 

place in the gap between the cavity wall and restoration. Therefore, the 

demineralization area along the cavity wall extends downward axially along the 

microspace to meet the cavity wall. This type of lesion was defined as a wall lesion. 

Figures 4-1g and h shows the typical histological photomicrograph of enamel/dentin 

wall lesion with outer lesion respectively. Dyract and Spectrum TPH restorations 

demonstrated this type of lesion in most of their specimens.  

With the presence of fluoride ions in the tooth/restoration interface released by 

the restorative material, an inhibitory effect of the demineralization process can be 

noticed along the cavity wall. Figures 4-1a to d and 4-2a to d shows the typical 

photomicrographs of enamel/dentin outer lesion with wall inhibition area, where the 

inner border of the demineralization area extends horizontally from the distal and 

middle portions of the lesion and then curves up to meet the tooth restoration interface. 

The enamel wall inhibition area was noted to be smaller than those in dentin lesions 

(Figures 4-1a and c with Figures 4-1b and d; and Figures 4-2a and c with Figures 4-2b 
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and d). All of FJ and FL and 90% of RM restorations demonstrated this feature (Tables 

4-5 and 4-6). In addition, the typical erosive demineralization photomicrographs in 

dentin are illustrated in Figures 4-1b, d, f and h and 4-2b, d, f and h. 

Due to their different organic and inorganic constituents and structure, the 

enamel and dentin usually show different manifestations of demineralization under the 

same environmental conditions, such as concentration of fluoride in solution and pH. 

Figure 4-1f shows a typical result of the dentin outer demineralization area with wall 

lesion or inhibition. The depth of the demineralization area along the cavity wall is no 

more than that on the dentin outer surface. This type of lesion was defined as the “no 

effect” lesion. In this type of lesion, it is possible to presume that a balance between 

the cariostatic agent (fluoride) in the ambience and the tooth structure took place.  

The existence of microleakage may result in the enhanced demineralization of 

the cavity wall. Figures 4-1e, g and h and 4-2e to h illustrate the typical 

photomicrographs of a enamel/dentin outer lesion with a wall lesion. The wall lesion 

area was defined in our study by three peripheral lines as previously mentioned in 

Chapter 3. Specimens restored with SP and FJ showed 100% enamel/dentin wall lesion 

and inhibition respectively at both 2 weeks and 6 months. Specimens restored with FL 

and RM showed a mixture of wall inhibitions and  “no effects” at 2 weeks, while at 6 

months FL and RM showed a 100% enamel/dentin wall inhibition. Specimens restored 

with DY showed a mixture of enamel and dentin wall lesion/inhibition and “no effect” 

at 2 weeks and 6 months. 
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4.2 Outer Lesion 

4.2.1 Material Effect 

For the various materials, OLD ranged from 54.55 to 65.86 µm and 124.68 to 

145.97 µm in enamel and dentin respectively at 2 weeks, while at 6 months OLD 

ranged from 54.06 to 59.53 µm and 112.99 to 166.27 µm in enamel and dentin 

respectively. Comparison of means between tissues revealed that the dentin had 

significantly greater outer lesion depth for all materials compared to enamel (p<0.05) 

(Tables 4-3 and 4-4). At 2 weeks no significant difference in enamel OLD was 

observed. At 6 weeks significant difference in enamel OLD was observed as follows: 

FJ, RM, SP > FL. Significant difference in dentin OLD was observed at 2 weeks and 6 

months. At both time intervals SP > FJ, FL and RM. 

4.2.2 Aging Effect 

The six-month aging process produced a variable effect on demineralization of 

all groups (Table 4-9). On the enamel outer surfaces, FL had shallower lesions after 

aging. Aging had no significant effect on the enamel surfaces for FJ, RM, DY and SP. 

On the dentin outer surfaces, the FL, RM and DY had shallower lesions and the SP 

group had deeper lesions after aging. The FJ group exhibited no significant changes in 

OLD after aging. 

4.3 Wall Area 

Demineralization (lesion), inhibition or no effect can take place at the wall area. Tooth 

sample sections in the SP group never had wall inhibition areas; while the FJ, FL and 

RM never revealed wall lesions. The DY group showed a mixture of all three types of 
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lesions using our experimental conditions. In this study, WA increase in the wall lesion 

area and the wall inhibition area were observed with aging. 

Regarding the WA material effect, positive values ( + ) indicates inhibition, 

while ( - ) negative values indicates lesion. In enamel WA ranged from –2356.13 to 

1398.20 µm2 and –3011.73 to 5095.80 µm2 in enamel and dentin respectively at 2 

weeks, while at 6 months WA ranged from –1604.53 to 1915.23 µm2 and –3444.27 to 

2653.87 µm2 in enamel and dentin respectively. Comparison of means between tissues 

revealed that for all materials the dentin had significantly greater WA inhibition than 

enamel (p<0.05). However for SP, greater WA inhibition occurred in enamel than 

dentin (Tables 4-3 and 4-4). At 2 weeks significant difference in enamel WA inhibition 

was observed as follows: FJ, FL, RM > DY, SP, while in dentin WA inhibition was 

observed as follows: FJ > FL > RM > DY > SP. At 6 months significant difference in 

WA inhibition was equally observed in both tissues as follows: FJ > FL, RM > DY > 

SP. 

4.3.1 Wall Inhibition Areas 

The results of the present study revealed that in enamel, FJ, DY and SP had greater 

inhibition effect after aging, while FL and RM had no significant differences. In 

dentin, FJ and FL had smaller inhibition areas after aging, while RM, DY and SP had 

no significant differences (Table 4-9). 

4.3.2 Wall Lesion Area 

As previously mentioned in Section 4.3, FJ, FL and RM never showed a wall lesion. 

For DY and SP no significant differences in dentin WA lesion were observed between 

time intervals. Significant difference in enamel WA lesion was however observed in 

DY, which shown less lesion patterns after aging (Table 4-10). 
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Table 4-1. Means of outer lesion depths (OLD) and wall lesion/inhibition area (WA) 
of the various materials at 2 weeks. 

OLD -  µm(SD) WA - µm2(SD) Material Enamel Dentin Enamel Dentin 
 Fuji II 54.99(6.83) 128.81(15.36) 1398.20(505.20) 5095.80(1574.64)
 Fuji II LC 54.55(10.66) 124.68(10.20) 1283.73(636.43) 2903.33(598.19)
 Reactmer 56.04(12.96) 129.02(15.50) 689.53(460.24) 1691.53(1128.13)
 Dyract 58.30(12.53) 134.35(18.32) -1399.33(1508.89) -327.20(549.50)
 Spectrum TPH 65.86(16.87) 145.97(14.67) -2356.13(968.46) -3011.73(566.84)
Standard Deviation in parentheses. For WA, positive values (+) indicates wall inhibition, negative 
values (-) indicates wall lesion.  

 

 
Table 4-2. Means of outer lesion depths (OLD) and wall lesion/inhibition areas (WA) 

of the various materials at 6 months. 

OLD -  µm(SD) WA - µm2(SD) Material Enamel Dentin Enamel Dentin 
 Fuji II 58.16(10.05) 128.29(14.76) 1915.23(415.96) 2653.87(353.62) 
 Fuji II LC 43.40(8.90) 112.99(10.02) 984.36(288.86) 1941.60(256.08) 
 Reactmer 59.53(14.18) 118.33(8.64) 875.07(145.72) 1787.07(478.12) 
 Dyract AP 54.06(12.19) 120.26(10.52) -558.68(536.53) -357.47(896.09) 
 Spectrum TPH 58.45(11.49) 166.27(20.46) -1604.53(338.43) -3444.27(837.47) 
Standard Deviation in parentheses. For WA, positive values (+) indicates wall inhibition, negative 
values (-) indicates wall lesion.  

 

 
Table 4-3. Comparison of means (OLD & WA) between tissues and materials at 2 

weeks. 

Variable OLD - µm WA Inhibition - µm2

FJ, FL, RM, DY Dentin > Enamel  Dentin > Enamel Materials* SP Dentin > Enamel Enamel > Dentin 
Enamel NS FJ, FL, RM > DY, SP Tissues** Dentin SP > FJ, FL, RM FJ > FL > RM > DY > SP 

Results of Paired Samples T-Test*, and one-way ANOVA/post-hoc Scheffe’s tests ** (p<0.05). > 
Indicates significantly greater OLD lesion depths and significantly greater WA inhibition. NS indicates 
no statistical significance between materials. FJ= Fuji II; FL= Fuji II LC; RM= Reactmer; DY= Dyract 
AP; SP=Spectrum TPH. 
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Table 4-4. Comparison of means (OLD & WA) between tissues and materials at 6 
months. 

Variable OLD - µm WA Inhibition - µm2

FJ, FL, RM, DY Dentin > Enamel  Dentin > Enamel Materials* SP Dentin > Enamel Enamel > Dentin 
Enamel FJ, RM, SP > FL FJ > FL, RM > DY > SP Tissues** Dentin SP > FJ, FL, RM, DY FJ > FL, RM > DY > SP 

Results of Paired Samples T-Test*, and one-way ANOVA/post-hoc Scheffe’s tests ** (p<0.05). > 
Indicates significantly greater OLD lesion depths and significantly greater WA inhibition. NS indicates 
no statistical significance between materials. FJ= Fuji II; FL= Fuji II LC; RM= Reactmer; DY= Dyract 
AP; SP=Spectrum TPH. 

 

Table 4-5. Frequency of wall lesion/inhibition patterns at 2 weeks. 

Frequencies Tissue Material Inhibition No Effect Lesion Total 

Fuji II 15 0 0 15 
Fuji II LC 13 2 0 15 
Reactmer 12 3 0 15 
Dyract 0 5 10 15 
Spectrum TPH 0 0 15 15 

Enamel 

Total 40 10 25 75 
Fuji II 15 0 0 15 
Fuji II LC 15 0 0 15 
Reactmer 12 3 0 15 
Dyract 1 9 5 15 
Spectrum TPH 0 0 15 15 

Dentin 

Total 43 12 20 75 
Results of descriptive statistics – crosstabs. 

 

Table 4-6. Frequency of wall lesion/inhibition patterns at 6 months. 

Frequencies Tissue Material Inhibition No Effect Lesion Total 

Fuji II 15 0 0 15 
Fuji II LC 15 0 0 15 
Reactmer 15 0 0 15 
Dyract AP 3 0 12 15 
Spectrum TPH 0 0 15 15 

Enamel 

Total 48 0 27 75 
Fuji II 15 0 0 15 
Fuji II LC 15 0 0 15 
Reactmer 15 0 0 15 
Dyract AP 5 2 8 15 
Spectrum TPH 0 0 15 15 

Dentin 

Total 50 2 23 75 
Results of descriptive statistics - crosstabs. 

 73



Table 4-7. Comparison of wall area patterns at 
2 weeks. 

Variable WA Patterns 
Materials All Dentin > Enamel 

Enamel SP, DY > FJ, FL, RM 
Tissues 

Dentin SP > DY > FJ, FL, RM 

Results of Kruskall Wallis and Mann Whitney U tests 
(p<0.05). > Indicates significantly higher frequency of 
wall lesions. FJ= Fuji II; FL= Fuji II LC; RM= Reactmer; 
DY= Dyract AP; SP=Spectrum TPH. 

 
Table 4-8. Comparison of wall area patterns at 

6 months. 

Variable WA Patterns 
Materials All Dentin > Enamel 

Enamel SP, DY > FJ, FL, RM 
Tissues 

Dentin SP > DY > FJ, FL, RM 

Results of Kruskall Wallis and Mann Whitney U tests 
(p<0.05). > Indicates significantly higher frequency of 
wall lesions. FJ= Fuji II; FL= Fuji II LC; RM= Reactmer; 
DY= Dyract AP; SP=Spectrum TPH. 

 
Table 4-9. Time comparisons of OLD and WA inhibition between tissues and 

materials. 

OLD - µm WA Inhibition - µm2
Material Enamel Dentin Enamel Dentin 

Fuji II NS NS 6M > 2W 2W > 6M 
Fuji II LC 2W > 6M 2W > 6M NS 2W > 6M 
Reactmer NS 2W > 6M NS NS 
Dyract AP NS 2W > 6M 6M > 2W NS 
Spectrum TPH NS 6M > 2W 6M > 2W NS 

Results of Paired Samples T-Test (p<0.05), > Indicates significantly greater OLD mean lesion depths 
and significantly greater WA inhibition. NS indicates no statistical significance between materials. 
2W=2 Weeks and 6M= 6 Months. 
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Table 4-10. Frequency Comparison of wall area 
patterns between time intervals. 

WA Patterns Material Enamel Dentin 
Fuji II - - 
Fuji II LC - - 
Reactmer - - 
Dyract AP 2W > 6M NS 
Spectrum TPH NS NS 

Results of Paired Samples T-Test (p<0.05), > Indicates 
significantly higher frequency of WA lesion patterns. NS 
indicates no statistical significance between time intervals. 
2W=2 Weeks and 6M= 6 Months. [ - ] indicates no frequency 
of wall area patterns were obtained. 
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Figure 4-1. PLM pictures of materials at 2 weeks at 40x of: a) Fuji II and Fuji II LC in 
enamel, b) Fuji II and Fuji II LC in dentin, c) Reactmer in enamel, d) Reactmer in 
dentin, e) Dyract in enamel, f) Dyract in dentin, g) Spectrum TPH resin in enamel, h) 
Spectrum TPH resin in dentin. Restoration margin pictures at 100x are shown in 
circles. Note the presence of wall inhibition areas (I), no effect lesions ( NE ) and  wall 
lesions areas (L). 
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Figure 4-2. PLM pictures of materials at 6 months at 40x of: a) Fuji II and Fuji II LC 
in enamel, b) Fuji II and Fuji II LC in dentin, c) Reactmer in enamel, d) Reactmer in 
dentin, e) Dyract in enamel, f) Dyract in dentin, g) Spectrum TPH resin in enamel, h) 
Spectrum TPH resin in dentin. Restoration margin pictures at 100x are shown in 
circles. Note the presence of wall inhibition areas (I) and wall lesions areas (L). 
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5 DISCUSSION 
 
The aim of this study was to compare the ability of the continuum of direct tooth-

colored restoratives to prevent recurrent caries formation. The wall lesions along the 

cavity wall and the outer lesions away from the restoration interface were measured 

and compared among different materials at two time periods. The outer lesion 

represents a primary attack to the surface of the tooth. This demineralization is similar 

to the primary caries formation. In the presence of microleakage, demineralization is 

similar to the secondary caries formation and occurs along the interface between the 

cavity wall and the restoration interface. 

In this experiment, the outer lesion is formed by a primary acid attack from the 

artificial caries media bathing the tooth surface. It is also influenced by the presence of 

cariostatic agents released to the media by the restorative material. On the other hand, 

the demineralization of the wall lesion is due to the primary acid attack from the 

artificial caries media and the secondary acid attack by microleakage. In fact, the wall 

lesion is influenced by the presence of cariostatic agents and the degree of 

microleakage in addition to primary acid attack. If there is higher presence of 

cariostatic agents in the media, it is possible to reduce or eliminate caries by inhibition 

of demineralization. The higher the concentration of these agents usually results in 

greater inhibitory effect on demineralization, thus, resulting in shallower lesions. This 

phenomenon occurs in both the outer lesion and the wall lesion.  The presence of 

microleakage along the cavity wall will allow the penetration of acid into the 

restoration interface and enhance the demineralization along the cavity wall. If there is 

no microleakage there will be no wall lesion (Dérand, Birkhed & others, 1991). 

Therefore, the presence of microleakage is necessary for wall lesion formation.  
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The primary acid attack in addition to the secondary acid attack produced by the 

microleakage extends and causes the demineralization going downward along the 

cavity wall. This will result in greater demineralization, different from that of the outer 

lesion, which only receives the primary acid attack. In this study this additional 

demineralized area is defined as the wall area lesion, different from the lesion on what 

is known as wall resulting from the primary acid attack only. The presence of fluoride 

near the cavity wall may have an inhibitory effect on the secondary acid attack similar 

to that shown on the primary acid attack. Therefore, a higher concentration of fluoride 

will result in a smaller demineralized area along the cavity wall. The variance between 

the shallower lesion and that caused by the primary acid attack only in this study will 

be defined as inhibition area. 

As it will be discussed further below, the presence and local concentration of 

cariostatic agents would mainly depend on three conditions: the ability of the tooth 

structure to act as a reservoir, the materials and the bonding agents used and the aging 

process (Hsu & others 1998).  

The degree of microleakage and the cariostatic agents released on the bathing 

media might compensate each other and play an important role in lesions on the cavity 

wall. For the outer lesions, which of course have no direct contact with restorative 

materials, only the topical concentrations of the cariostatic agents in the bathing media 

are essential (Dijkman & Arends, 1992). In this case the cariostatic agent in the 

restorations is fluoride (Attar & Önen, 2002; Dionysopoulos, Kotsanos & others, 

1998a; Dunne, Goolnik & others, 1996; Gilmour, Edmunds & others, 1997; Hicks & 

Flaitz, 2000; Nagamine, Itota & others, 1997; Torii, Itota & others, 2001), which at the 

same time is the major controlled variable in this study. 
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The ability of a restorative material to release fluoride and the ability of adjacent 

tooth structure to act as a reservoir are both important aspects regarding the cariostatic 

effect of fluoride. From the continuum of direct tooth-colored restorative materials 

releasing fluoride, the ranking of fluoride release from the highest to the lowest of the 

materials used in this study is the following: Fuji II > Fuji II LC > Reactmer > Dyract 

AP (Yap, Tham & others, 2002). The composite resin Spectrum TPH (SP) group has 

no fluoride release and therefore was used as our control group for comparison. 

The ability of tooth structure to take up fluoride, firm or loosely bound, is 

associated with the surface area of crystallites, porosities, hydration, etc. (Weatherell, 

Robinson & others, 1983).  Compared with dentin structure, enamel has less porosity, 

larger crystallites and less hydration due to more inorganic and less organic 

components. Therefore, the dentin substrate may take up more cariostatic agents than 

enamel; which in this case is fluoride. Previously, studies reported that dentin 

accumulate more fluoride, more rapidly than enamel (Tveit & Hals, 1980; Tveit & 

Lindh, 1980; Weatherell & others, 1983). Healthy enamel takes up little fluoride 

compared with demineralized or carious enamel (Weatherell & others, 1983). Also, it 

has been indicated that the demineralization process results in an enhanced ability to 

absorb the fluoride. However, dentin have been shown to be more vulnerable to acid 

attack than enamel (Marshall, Staninec & others, 1989; Phankosol, Ettinger & others, 

1985). Therefore, at lower pH the dentin structure is demineralized before enamel 

structure and the available fluoride will be absorbed more rapidly into dentin than 

enamel. This phenomenon may explain why the lesion/inhibition effect of fluoride on 

demineralization was usually greater on the dentin surface than enamel, especially if 

the local concentration of fluoride was low. 
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5.1 Model Assessment  
 

A variety of in vitro methods have been developed to produce artificial caries 

lesions for use in demineralization and remineralization studies. These include the use 

of acidified gels (Attar & Önen, 2002; Damato, Strang & others, 1988; Dunne & 

others, 1996; Hicks & Flaitz, 2000; Ingram & Silverstone, 1981; Millar, Abiden & 

others, 1998), buffered solutions (Damato & others, 1988; Donly & Ingram, 1997; 

Donly & Grandgenett, 1998; Forss & Seppa, 1990; Heilman, Jordan & others, 1997; 

Hsu, Jordan & others, 2000; Kerber & Donly, 1993), exposure to acid vapor 

(Weatherell & others, 1983), and incubation with natural plaque (Gilmour & others, 

1997; Hsu, Donly & others, 1998; Nagamine & others, 1997; Torii & others, 2001) to 

demineralize tooth structure around restorations and determine if the restoration 

material will decrease demineralization in tooth structure. However, if a dental 

material is to be tested for its fluoride efficacy, the pH-cycling model provides a good 

tool to do this (Featherstone, 1994; Staninec, Giles & others, 1988). Besides, the 

chemical buffer models are preferred over the acidified gel model as less time is 

required for lesion formation and the system is easier to prepare. 

 In vitro demineralization / remineralization using a pH-cycling model have been 

employed to examine any cariostatic effect imparted by fluoride containing restorative 

materials. This model simultaneously measures the net result of the inhibition of 

demineralization and the enhancement of remineralization. Samples are immersed in 

demineralizing and remineralizing solutions for several hours and the procedure is then 

“cycled” for several days. Acid attack in tooth structures, results in the dissolution of 

the HAP crystals and the subsequent exposure of the collagen matrix in dentin. It is 

important to have well characterized solutions with known calcium, phosphate and 

fluoride concentrations, as well as carefully adjusted pH. Either lactic acid or acetic 
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acid or both should be used (Featherstone & Rodgers, 1981). Citric or hydrochloric 

acids are not relevant to the caries process, as they do not diffuse into the subsurface in 

the same way as the weak organic acids (Featherstone, 1996). Calcium and phosphate 

should be present in the solution, as well as some surface dissolution inhibitor to 

mimic the salivary pellicle (White, 1987).  

It is well accepted that the bacterial enzymes, as well as organic acids, play an 

important role in the development of caries. Acid attack primarily results in the 

dissolution of the HAP crystals and the subsequent exposure of the collagen matrix in 

dentin. In an in vitro chemical dissolution system, whether gel or buffered solution, 

there is less destruction of collagen matrix due to the absence of bacterial enzymes. 

The chemical dissolution system, therefore, simulates only the physico-chemical 

dissolution process involving the mineral component on the dentin surface.  

Without proteolytic enzymes, collagen would not be destroyed by an acid, but would 

be simply left unsupported and would collapse (Phankosol & others, 1985). However, 

when the collagen matrix is dissolved along with the HAP crystals it might be possible 

to result in an erosive surface. As discussed above, dentin has less HAP crystals than 

enamel due to the difference in organic structure. It may be the case that more collagen 

were exposed and dissolved in dentin than enamel, this could be the reason why our 

study often exhibited the erosive outer lesions on the dentin surface and the depth of 

the erosive part is proportional to that of the whole lesion in each group, while no 

erosive lesions were obtained in enamel surfaces. The measured outer lesion depth in 

dentin was only the half of the whole demineralized area. Therefore the actual outer 

lesion depth in enamel is less than that in the dentin as seen in Tables 4-1 and 4-2 in 

Chapter 4.  
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The method of lesion measurement in the present study is an adaptation of that of 

Hsu & others (1998). However, it is different from others both in outer lesion and wall 

lesions. The methodologies used in other studies for measuring outer lesions included 

measuring the length of the outer surface and the largest distance between the inner 

and outer border of the lesion (Attar & Önen, 2002), averaging 8 to 10 measurements 

at intervals of 0.2mm from the surface to the depth of the lesion (Dunne & others, 

1996), measuring the maximum depth  of a visible lesion from the surface (Gilmour & 

others, 1997; Millar & others, 1998; Tam, Chan & others, 1997), measuring the area in 

µm2 from the restoration margin to 100µm away from the margin (Donly & 

Grandgenett, 1998), measuring the mean surface lesion depth (Hicks & Flaitz, 2000), 

measuring the depth at 50µm away from the restoration (Nagamine & others, 1997) 

and measuring at 100µm away from the restoration (Itota, Nakabo & others, 2001; 

Torii & others, 2001) . 

Different methodologies also were employed in quantifying wall lesions, such as 

measuring the length from the surface to the innermost extended portion towards the 

DEJ (Attar & Önen, 2002; Dionysopoulos, Kotsanos & others, 1998b), measuring 

from the “edge” of the visible lesion to the cavosurface/restoration margin (Millar & 

others, 1998), measuring the thickness of the “radio-opaque layer” adjacent to the 

gingival wall at a depth of 250µm under the surface of the restorative material (Itota & 

others, 2001; Torii & others, 2001) and measuring the thickness of the “acid-resistant 

layer” adjacent to the gingival wall at a depth of 300µm under the surface of the 

restorative material (Nagamine & others, 1997). 

Different methods of measurement will inevitably lead to different results just 

because the lesion formation is not uniform in the tooth structure, especially that along 

the cavity wall and the enamel surface. Regarding the outer lesions on enamel surface, 
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the inner border of the demineralization lesion is not straight and fluctuates according 

to the orientation of enamel rods. Thus, the measurement of area of the lesion is more 

accurate than that of length because of this fluctuating pattern. Regarding wall lesions, 

the proximal portion of the inner border of the lesion may curve in different degrees 

towards the cavity wall, depending upon the amount of the cariostatic agents and 

microleakage. In the same way the measurement of area is more accurate than that of 

length. We measured the “wall lesion” area defined by three peripheral lines, as 

mentioned in chapter 3, to rule out the effect of primary acid attack from the outer 

surface. This principle was also applied to the measurement of inhibition areas, as 

mentioned in chapter 3. Therefore, the exact influence from the cariostatic agent and 

microleakage can be more precisely expressed and compared with each other. In this 

way, the preventive effect of different restorative materials on recurrent caries can be 

revealed and quantified more accurately. 

In this study, several sections restored with glass ionomers groups, whether aged or 

not, demonstrated a subtle line between the inner and outer borders of the outer lesion 

in dentin surfaces. When mineral is released from the advancing front of 

demineralization, the various mineral phases may re-precipitate along the previously 

demineralized collagen matrix and result in remineralization of an area with decreased 

mineral content, where the crystals may be changed, enlarged, or elongated by this 

phenomenon (Phankosol & others, 1985). It is possible that different adjacent 

restorative materials could have different influence on remineralization. In future 

studies, it may be useful to use different imbibition media, such as quinoline or 

Thoulet’s solution with different refractive index than water, to compare the 

remineralized area between groups. This may reveal and evaluate more accurately the 

remineralization effect of different materials. 
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5.2 Material Effect 

 
Caries resistance and formation of the inhibition zone appears to be associated with the 

level of fluoride release from glass ionomer restorations (Dionysopoulos, Kotsanos & 

others, 1990; Donly, 1994; Swift, 1989). Featherstone (1994) emphasized that fluoride 

enhanced the remineralization of enamel caries and produced mineral at the surface 

that was more resistant to subsequent demineralization. However, previous studies 

indicated conflicting results regarding the amount of fluoride released from 

conventional and resin-modified glass ionomer cements. Diaz-Arnold & others (1995) 

observed that a conventional glass ionomer cement released greater amounts of 

fluoride than a resin-modified glass ionomer cement. Takanashi & others (1993) found 

no statistical significant differences in fluoride release between Fuji II and Fuji II LC. 

Forsten (1995) observed that fluoride levels released by a resin-modified  glass 

ionomer cement were higher or the same as that of the conventional glass ionomer 

cement. An explanation for the variations in results obtained may be the different 

methods used to determine fluoride release. Moreover, other factors such as material 

composition and release of other elements from the glass ionomer materials may be 

more significant and may have greater influence on artificial caries inhibition than 

fluoride release alone.  

Conventional glass ionomers releases the most fluoride amongst all direct tooth-

colored restoratives. Hence, they have major effects of caries inhibition on tooth 

structures compared with other direct restoratives. Secondary caries initiation and 

propagation were found to be significantly reduced when glass ionomer restorations 

were placed (Donly, Segura & others, 1999; Hicks & Flaitz, 2000; Retief, Bradley & 

others, 1984; Torii & others, 2001). As expected, the mean depths of dentin lesions for 
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all groups were deeper than the maximum recorded depth for the enamel lesions 

whether aged or non-aged groups, similar to those reported by Tam & others (1997). 

Reasons of this phenomenon were previously detailed in Section 5. 

No statistically significant difference among the depths of the enamel outer lesions for 

the five materials were found in the non-aged groups. These results are similar to those 

reported  by Skartveit & others (1991) who compared the depths at the middle points 

of the lesions and found no significant differences between groups studied. The same 

results were found by Dunne & others (1996) who concluded that there was no 

significant difference in depth of the outer lesion among fluoride containing and non-

fluoridated materials.  

Regarding the wall inhibition area, Fuji II produced a greater area compared with those 

produced by Fuji II LC. Because of differences in the formulations of these materials, 

a difference in their respective capacity to inhibit artificial caries may also exist. Tam 

& others (1997) concluded that all glass ionomers produced an “acid-resistant 

inhibition zone” at the cavity margin and the dimensions of this “zone” were material 

dependent. In the present study conventional and resin-modified glass ionomers and 

giomer restorations exhibited significantly more enamel and dentin wall inhibition 

areas than compomer and non-fluoride composite resin restorations. This is not 

surprising since conventional and resin-modified glass ionomers have been shown to 

inhibit in vitro demineralization adjacent to restoration margins (Attar & Önen, 2002; 

Gilmour & others, 1997; Hicks & Flaitz, 2000; Torii & others, 2001). Tam & others 

(1997) also observed the presence of narrow zones of non-carious dentin between the 

margin of the restoration and the body of dentin decay. In an ultrastructural study, Tay 

and others (2001) demonstrated that glass ionomer phases were readily observed in 

these materials while no evidence of glass ionomer phase were noted in the compomer 
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after 24 hrs of aging. Compomers behaved more like composite resin (Meyer, Cattani-

Lorente & others, 1998; Tay & others, 2001) showing more wall lesion patterns, while 

giomers behaved more like resin-modified glass ionomers (Tay & others, 2001) 

showing more wall inhibition patterns. Moreover, Xu and others (2000) reported that 

pre-reacted GIC powder incorporated into ceramic-whisker-containing experimental 

composites has a cumulative fluoride release of about 20% of the original GIC. Tay & 

others (2001) proposed that this decrease might be partially attributed to the presence 

of silane coupling in the pre-reacted fillers versus non-silanized glass particles in the 

original GIC. This may explain the smaller mean WA inhibition areas in giomers in 

comparison to those seen in glass ionomers. 

The enamel margins of composite restorations had wall-lesion incidence. This is not 

surprising, since it may be expected that enamel margin, which is a butt/etch margin 

finish, would have an incidence of wall lesions of approximately 4% (Gilmour, 

Edmunds & others, 1993). It would appear that the bond to the enamel was not 

effective. This may have been because of structural differences in cervical enamel, in 

particular, the thinness of enamel and the increased incidence of prismless enamel in 

this region (Gilmour & others, 1997; Mejare, Mejare & others, 1987). Another 

possible explanation of wall lesions adjacent to resin composite materials is because 

recent adhesive resin systems may not be sufficient to inhibit secondary caries (Pereira, 

Inokoshi & others, 1998). Similar findings reported previously that a superior marginal 

seal may not be sufficient to prevent recurrent wall lesions under plaque conditions 

where there is no material fluoride release (Tam & others, 1997).  

In the present study, Spectrum TPH had significantly greater dentin outer lesion depth 

than Fuji II, Fuji II LC and Reactmer. This finding is in agreement with that of 

Nagamine & others (1997), who evaluated the caries inhibitory effect of three RM-
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GICs, one GIC and a composite resin in dentin. They found no significant difference in 

OLD between the GICs and RM-GICs and significant differences with composite 

resin.  

Attar & Önen (2002), however, found significant differences in enamel and no 

significant differences in dentin OLD between a conventional glass ionomer and two 

compomers.  As with the present study deeper lesions were found in dentin than 

enamel. Findings of the present study also corroborated those of Torii & others (2001) 

who found no difference in dentin OLD compomers and non-fluoride releasing 

composite resins. Dyract generally lacked the inhibitory beneficial properties of glass 

ionomers resulting in a high frequency of wall lesions adjacent to restoration margins 

(Donly & Grandgenett, 1998; Millar & others, 1998; Torii & others, 2001). Itota & 

others (2001) previously evaluated the effect of adhesives on the inhibition of 

secondary caries around compomer restorations in vitro,  and indicated that the type of 

adhesive used with compomers might play a major role in fluoride release. They 

suggest that applying an adhesive without Bis-GMA resin to compomer restoration 

will not have a suppressive effect on the fluoride release and therefore might be 

beneficial for inhibiting secondary caries in vitro. However, much more work has to be 

done to improve the role of compomers on the continuum of direct tooth-colored 

restoratives. 

5.3 Aging Effect 
 
Most of the materials were reported to release a smaller amount of cariostatic agents 

after aging. In this study, we changed the distilled water and the de/remineralization 

solutions every other day as mentioned in Chapter 3. In the case of the outer lesion, the 

fluoride released into the media may be lost if not firmly absorbed or bound. The 

loosely bound fluoride may be lost during the media exchange through the six-months 
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aging period. In the case of the lesion along the cavity wall, the fluoride may diffuse 

into the cavity wall and may be retained due to the close contact with tooth structure. 

As early mentioned in chapter 4, the aging effect on the lesion along the cavity wall is 

both an increase in the wall lesion area and decrease in inhibition area due to the 

decrease in fluoride releasing ability of the materials as discussed before. 

It is well accepted that the fluoride-releasing ability of GICs decrease with aging. 

However, the rate of decrease in fluoride release is still being debated. As reviewed in 

section 5.2.1, different materials showed various results regarding the aging effect on 

the materials’ fluoride releasing ability. In the present study, the lesion depths on the 

outer surface of both enamel and dentin specimens restored with Fuji II showed no 

significant differences after aging, while specimens restored with Fuji II LC showed 

significantly deeper lesions for non-aged specimens (Table 4-9). Regarding the WA 

area inhibition, it may be the case that a perfect seal ability of Fuji II LC due to their 

enhanced characteristics in composition may lead to an increased protection to 

recurrent caries rather than the brittle Fuji II. Likewise, Crim (1993) showed perfect 

marginal adaptation of Fuji II LC after a six-month aging process. This implied that the 

good sealing ability of GIC may prevent the outlet of the released fluoride and help 

retain the accumulated fluoride to inhibit the demineralization of the cavity wall 

adjacent to GIC. An interesting observation is that enamel specimens restored with 

Fuji II showed greater wall inhibition at six months than 2 weeks, while in dentin Fuji 

II showed greater inhibition at 2 weeks than 6 months. However, no significant 

differences in wall inhibition were seen in enamel restored with Fuji II LC, while in 

dentin Fuji II LC showed greater wall inhibition at 2 weeks than 6 months. 

The wall inhibition areas or absence of wall lesion adjacent to GIC restorations have 

been observed in other studies (Attar & Önen, 2002; Dionysopoulos & others, 1998b; 
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Donly & Grandgenett, 1998; Dunne & others, 1996; Gilmour & others, 1997; Hicks & 

Flaitz, 2000; Hsu & others, 1998; Millar & others, 1998; Nagamine & others, 1997; 

Tam & others, 1997; Torii & others, 2001). 

Regarding the new pre-reacted glass ionomer composite material  (Reactmer), no 

significant differences were observed in enamel outer lesion, while in dentin the 

specimens showed deeper lesions at 2 weeks than 6 months. This phenomenon may 

suggest that Reactmer has a similar cariostatic effect compared with glass ionomers 

and confirmed that giomers behaved more like resin-modified glass ionomers than 

compomers. Likewise, no significant differences were seen in wall inhibition whether 

aged or non-aged in both enamel and dentin and no wall lesion were seen in specimens 

with giomer restorations. 

In summary, the cariostatic effect of the conventional and resin-modified glass 

ionomer (Fuji II LC), and the pre-reacted glass ionomer composite (Reactmer) is not 

degraded after the six-month aging process and even increases the inhibition area on 

the wall, as long as the marginal seal remains intact (Hsu & others, 1998). 

 
Theoretically, the fluoride released in the compomer group slowly increase with the 

aging process as well as the microleakage of the composite resins. However, it is well 

accepted that even with the increase in fluoride release, compomers does not exhibit 

inhibition areas (Attar & Önen, 2002; Tay and Others, 2001; Millar, Abiden & others, 

1998; Donly & Grandgenett, 1998). 

In the present study, the outer lesions of the Dyract group had no significant difference 

in enamel after aging, while in dentin the 2 weeks period showed deeper lesions than 6 

months. The outer lesions of the Spectrum TPH group had no significant difference in 

enamel after aging, while in dentin the 6 months period had deeper lesions than 2 

weeks. These different manifestations of aging effect may result from the different 
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microstructure of the enamel and dentin surface. As mentioned above, the enamel 

structure is more resistant to the acid attack and has smaller capacity to take up 

fluoride than dentin structure during acid attack (Retief & others, 1984; Tveit & Hals, 

1980; Weatherell & others, 1983). That may be the reason why the aging effect was 

observed on the dentin surface but not the enamel surface in both Dyract and Spectrum 

TPH groups. 

For the wall area along the cavity wall, no significant difference was seen in dentin, 

while less demineralization with the aging process were obtained in both Dyract and 

Spectrum TPH groups. This can be explained by temporarily balancing the effect on 

microleakage possibly due to the hygroscopic expansion and the hydrolytic 

degradation. However, this inhibitory effect in both materials did not result in 

inhibition areas as those obtained with glass ionomer and giomer materials. In fact, a 

true wall lesion remained after the aging process in most of the specimens restored 

with Dyract and Spectrum TPH groups. 

 Interestingly, Dyract showed an increased number of tooth sections with both 

wall lesions and inhibition areas after aging. Even in the same tooth sample, albeit not 

often seen, some sections may have inhibition areas but others have wall lesions or “no 

effect”. In addition to this complex situation, an insufficient bonding might enhance 

the diffusion of fluoride through the tooth-restoration interface while an intact bonding 

might hinder or diminish it.  
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6 CONCLUSION 
 
 

The present study investigated the effects of materials as well as the effect of 

aging on demineralization inhibition and found significant advantages in favour of the 

glass-ionomer materials and giomers. However, due to the extensive limitations of this 

in vitro study, it is difficult to extrapolate a definitive conclusion regarding the 

demineralization inhibition effects of giomers in the clinical situation. Therefore, 

clinical trials on demineralization inhibition effects using giomers as well as different 

methodologies, warrants further investigation. 

In summary, under the conditions of this in vitro study: 

1. Dentin is more susceptible to demineralization than the enamel.  

2. The threshold concentration of cariostatic effect on dentin surfaces is lower 

than that of enamel.  

3. Dentin outer surfaces might be more sensitive to the low concentration of 

preventive agents than enamel. 

4. At the margins of the restorations, the demineralization inhibition effects of all 

materials were significantly greater in dentin than in enamel with the exception 

of the composite material. 

5. The demineralization inhibition effect of giomers, conventional and resin-

modified glass ionomer cements appear to be more evident at the margins of 

restorations.  

6. The demineralization inhibition effect of materials was tissue and time 

dependent. 

7. At both time intervals, FJ & RM had similar enamel and dentin OLD. 
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8. At both time intervals, enamel and dentin WA inhibition by glass ionomers and 

giomer was significantly greater than the compomer and composite. 

In future, it may be worthwhile to study the fluoride reservoir capability of the 

giomers; the ability of the dental tissues to take up fluoride from the giomers and the 

distribution of fluoride in the surface in contact with the giomer restoration. Inferences 

of the above studies might prove giomers to be a more structural and cariostatic 

restorative material. Further, tests conducted on these materials for longer periods of 

storage in distilled water or artificial saliva (1 year, 5 years) would help in better 

understanding of the effects of aging on these materials. As the initial in vitro trials of 

new or experimental materials do not always reveal their full limitations or assets, 

clinical data is essential to prove the success of these materials. 
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