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Summary

In this thesis, robust adaptive control is investigated for uncertain nonlinear sys-
tems. The main purpose of the thesis is to develop adaptive control strategies
for several classes of general nonlinear systems in strict-feedback form with uncer-
tainties including unknown parameters, unknown nonlinear systems functions, un-
known disturbances, and unknown time delays. Systematic controller designs are
presented using backstepping methodology, neural network parametrization and
robust adaptive control. The results in the thesis are derived based on rigorous
Lyapunov stability analysis. The control performance of the closed-loop systems is

explicitly analyzed.

The traditional backstepping design is cancellation-based as the coupling term
remaining in each design step will be cancelled in the next step. In this thesis, the
coupling term in each step is decoupled by elegantly using the Young’s inequality
rather than leaving to it to be cancelled in the next step, which is referred to
as the decoupled backstepping method. In this method, the virtual control in
each step is only designed to stabilize the corresponding subsystems rather than
previous subsystems and the stability result of each step obtained by seeking the
boundedness of the state rather than cancelling the coupling term so that the
residual set of each state can be determined individually. Two classes of nonlinear
systems in strict-feedback form are considered as illustrative examples to show the
design method. It is also applied throughout the thesis for practical controller

design.

For nonlinear systems with unknown time delays, the main difficulty lies in the
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terms with unknown time delays. In this thesis, by using appropriate Lyapunov-
Krasovskii functional candidate, the uncertainties from unknown time delays are
compensated for such that the design of the stabilizing control law is free from
unknown time delays. In this way, the iterative backstepping design procedure can
be carried out directly. Controller singularities are effectively avoided by employing
practical robust control. It is first applied to a type of nonlinear strict-feedback sys-
tems with unknown time delay using neural networks approximation. Two different
NN control schemes are developed and semi-global uniform ultimate boundedness
of the closed-loop signals is achieved. It is then extended to a kind of nonlinear
time-delay systems in parametric-strict-feedback form and global uniform ultimate
boundedness of the closed-loop signals is obtained. In the latter design, a novel

continuous function is introduced to construct differentiable control functions.

When there is no a priori knowledge on the signs of virtual control coefficients or
high-frequency gain, adaptive control of such systems becomes much more diffi-
cult. In this thesis, controller design incorporated by the Nussbaum-type gains is
presented for a class of perturbed strict-feedback nonlinear systems and a class of
nonlinear time-delay systems with unknown virtual control coefficients/functions.
The behavior of this class of control laws can be interpreted as the controller tries
to sweep through all possible control gains and stops when a stabilizing gain is
found. To cope with uncertainties and achieve global boundedness, an exponential
term has to be incorporated into the stability analysis. Thus, novel technical lem-
mas are introduced. The proof of the key technical lemmas are given for different

Nussbaum functions being chosen.
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Chapter 1

Introduction

Recent years have witnessed great progress in adaptive control of nonlinear systems
due to great demands from industrial applications. In this thesis, robust adaptive
control of uncertain nonlinear systems has been investigated. The main purpose
of the thesis is to develop adaptive control strategies for several types of general
nonlinear systems with uncertainties from unknown systems functions, unknown
time delays, unknown control directions. Using backstepping technique, an itera-
tive controller design procedure is presented for these uncertain nonlinear systems

in strict-feedback form.

The traditional backstepping design is cancellation-based as the coupling term
remaining in each design step will be cancelled in the next step. In this thesis, the
coupling term in each step is decoupled by elegantly using the Young’s inequality
rather than leaving to it to be cancelled in the next step, which is referred to
as the decoupled backstepping method. In this method, the virtual control in
each step is only designed to stabilize the corresponding subsystems rather than
previous subsystems and the stability result of each step obtained by seeking the
boundedness of the state rather than cancelling the coupling term so that the
residual set of each state can be determined individually. Two classes of nonlinear
systems in strict-feedback form are considered as illustrative examples to show the
design method. It is also applied throughout the thesis for practical controller

design.



For nonlinear systems with unknown time delays, the main difficulty lies in the
terms with unknown time delays. In this thesis, by using appropriate Lyapunov-
Krasovskii functionals candidate, the uncertainties from unknown time delays are
compensated for such that the design of the stabilizing control law is free from
unknown time delays. In this way, the iterative backstepping design procedure can
be carried out directly. Controller singularities are effectively avoided by employing
practical robust control. It is first applied to a kind of nonlinear strict-feedback
systems with unknown time delay using neural networks (NNs) approximation.
Two different NN control schemes are developed and semi-global uniform ultimate
boundedness of the closed-loop signals is achieved. It is then extended to a type of
nonlinear time-delay systems in parametric-strict-feedback form and global uniform
ultimate boundedness of the closed-loop signals is obtained. In the latter design, a

novel continuous function is introduced to construct differentiable control functions.

When there is no a priori knowledge on the signs of virtual control coefficients or
high-frequency gain, adaptive control of such systems becomes much more difficult.
In this thesis, controller design incorporated by Nussbaum-type gains is presented
for a class of perturbed strict-feedback nonlinear systems and a class of nonlinear
time-delay systems with unknown virtual control coefficients/functions. The be-
havior of this class of control laws can be interpreted as the controller tries to sweep
through all possible control gains and stops when a stabilizing gain is found. To
cope with uncertainties and achieve global boundedness, an exponential term has
to be incorporated in the stability analysis. Thus, novel technical lemmas are intro-
duced. The proof of the key technical lemmas are shown to be function-dependent
and much involved. Two different Nussbaum functions are chosen with distinct

proofs being given.

The rest of the chapter is organized as follows. In section 1.1, the background of
(i) backstepping design and neural network control, (ii) universal adaptive control
using Nussbaum functions, (iii) stabilization of time-delay systems is briefly re-
viewed. The main topics and objectives of the thesis are discussed in Section 1.2.
The organization of the thesis is summarized in Section 1.3 with a description of

the purposes, contents, and methodologies used in each chapter.



1.1 Background and Motivation

1.1 Background and Motivation

1.1.1 Backstepping Design and Neural Network Control

Adaptive control plays an important role due to its ability to compensate for para-
metric uncertainties. In order to obtain global stability, some restrictions have
to be made to nonlinearities such as matching conditions [1], extended matching
conditions [2], or growth conditions [3][4]. To overcome these restrictions, a recur-
sive design procedure called adaptive backstepping design was developed in [5] for
a class of nonlinear systems transformable to a parametric-pure-feedback form or
a parametric-strict-feedback form. The overall system’s stability was guaranteed
via Lyapunov stability analysis, by which it was shown that the stability result
was local for the systems in the former form and global in the latter form. The
technique of “adding an integrator” was first initiated in [6][7][8][9], and further
developed in [10][11][12][13]. The advantage of adaptive backstepping design is
that not only global stability and asymptotic stability can be achieved, but also
the transient performance can be explicitly analyzed and guaranteed. However, the
backstepping design in [5] requires multiple estimates of the same parameters. This
overparametrization problem was then removed in [14] by introducing the concept
of tuning function. Several extensions of adaptive backstepping design have been
reported for nonlinear systems with triangular structures [15], for a class of large-
scale systems transformable to the decentralized strict-feedback form [16], and for a
class of nonholonomic systems [17]. For systems with unknown nonlinearities which
cannot be represented in linear-in-parameter form, robust modifications were con-
sidered, including o-modification in [18], nonlinear damping technique [19][20] and
smooth projection algorithm [21]. Robust adaptive design was proposed in [22] for
the systems’ uncertainties satisfying an input-to-state stability property. For un-
certain systems in a strict-feedback form and with disturbances, a robust adaptive

backstepping scheme was presented in [23][24][25][26](to name just a few).

For nonlinear, imperfectly or partially known, and complicated systems, NNs offer
some of the most effective control techniques. There are various approaches that
are being proposed in the literature. The paper [27] gives a good survey for earlier
achievements. Recent developments can be seen in [28][29][30][31][32] [33][34][35]



1.1 Background and Motivation

[36][37][38][39] [40][18][41] [42]. Since the pioneering works [43][44][45] on control-
ling nonlinear dynamical systems using NNs, there have been tremendous interests
in the study of adaptive neural control of uncertain nonlinear systems with un-
known nonlinearities, and a great deal of progress has been made both in theory

and practical applications.

The idea of employing NN in nonlinear system identification and control was mo-
tivated by the distinguished features of NN, including a highly parallel structure,
learning ability, nonlinear function approximation, fault tolerance, and efficient
analog VLSI implementation for real-time applications (see [46] and the references
therein). In most of the NN control approaches, neural networks are used as func-
tion approximators. The unknown nonlinearities are parametrized by linearly or
nonlinearly parameterized NNs, such as radial basis functions (RBF) neural net-
works and multilayer neural networks (MNNs). It is notable that when apply-
ing NNs in closed-loop feedback systems, even a static NN becomes a dynami-
cal one and it might take on some new and unexpected behaviors [47]. In the
earlier NN control schemes, optimization techniques were mainly used to derive
parameter adaptation laws. The neural control design was mostly demonstrated
through simulation or by particaular experimental examples. The disadvantage
of optimization-based neurocotrollers is that it is generally difficult to derive ana-
lytical results for stability analysis and performance evaluation of the closed-loop
system. To overcome these problems, some elegant adaptive NN control approaches
have been proposed for uncertain nonlinear systems [44][45][48][49][50] [51]][29][31]
[52][53][54][55][56] [57]. Specifically, Sanner and Slotine [45] have done in-depth
treatment in the approximation of Gaussian radial basis function (RBF) networks
and the stability theory to adaptive control using sliding mode control design. Lewis
at al. [51] developed multilayer NN-based control methods and successfully applied
them to robotic control for achieving stable adaptive NN systems. The features of
adaptive neural control include: (i) it is based on the Lyapunov stability theory;
(ii) the stability and performance of the closed-loop control system can be readily
determined; (iii) the NN weights are tuned on-line, using a Lyapunov synthesis
method, rather than optimization techniques. It has been found that adaptive
neural control is particularly suitable for controlling highly uncertain, nonlinear,

and complex systems (see [47][58] and the references therein).

4



1.1 Background and Motivation

By combing adaptive neural network design with backstepping methodology, some
new results have begun to emerge for solving certain classes of complicated nonlin-
ear systems. However, there are still several fundamental problems about stability,

robustness, and other issues yet to be further investigated.

1.1.2 Adaptive Control Using Nussbaum Functions

Adaptive control plays an important role due to its ability to compensate for para-
metric uncertainties. It is characterized by a combination of identification or es-
timation mechanisms of the plant parameters together with a feedback controller.
For a survey see [4] and [59]. An area of non-identifier-based adaptive control was
initiated in [60][61][62][63], etc., in which the adaptation strategy did not invoke
any identification or estimation mechanism of the unknown parameters. The adap-
tive controllers involving a switching strategy in the feedback were proposed. The
switching strategy was mainly tuned by system information from states or output.
The system under consideration were either minimum phase or, more generally,
only stabilizable and observable. No assumptions were made on the upper bound
of the high-frequency gain nor even on the sign of the high-frequency gain. The
switching strategies could be constructed with the introduction of Nussbaum func-
tions [62] and several control algorithm was developed based on the Nussbaum
function in [63][60][64][61] [65][66][67][68]. Most results are developed for linear
systems, among which, the results in [63] were for single-input-single-output linear
systems with relative degree p = 2, the results in [60][64][61][67] were for single-
input-single-output linear systems with any relative degree, the results in [65] for
multi-input-multi-output linear systems with relative degree p = 2, the results in
[66] for multi-input-multi-output linear systems with any relative degree. Later
control algorithms based on Nussbaum functions were proposed for first-order non-
linear systems in [69], for nonlinearly perturbed linear systems with relative degree
one or two in [70][68][71][72] to counteract the lack of a priori knowledge of the
high-frequency gain. An alternative method called correction vector approach was
proposed in [73] and has been extended to design adaptive control of first-order non-
linear systems with unknown high-frequency gain in [74][75]. A nonlinear robust

control scheme has been proposed in [76], which can identify online the unknown
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high-frequency gain and can guarantee global stability of the closed-loop system.
Among these works, the systems have to be restricted as second-order (vector)
systems [69], [74] and [75], or the unmatched nonlinearities in [70][68][71][72] and
the additive nonlinearities in [74] have to satisfy the global Lipschitz or sectoricity
condition. In addition, the adaptive control law formulated in [74] and [75] are

discontinuous.

As stated in Section 1.1.1, global adaptive control of nonlinear systems without any
restrictions on the growth rate of nonlinearities or matching conditions has been
intensively investigated in [77][78][19][79]. However, the proposed design proce-
dure was carried out based on the assumption of the knowledge of high-frequency
gain sign, which is quite restrictive for the general case. The results were first
obtained for output feedback adaptive control of nonlinear systems with unknown
high-frequency gain (or alternatively called “virtual control coefficients” or “control
directions”) in [80] with restrictions in the growth rates of nonlinear terms. The
growth restrictions condition on system nonlinearities was later removed in [81],
in which, however, a so-called augmented parameter vector has to be introduced,
which would double the number of parameters to be updated. Another global
adaptive output-feedback control scheme was developed in [82], which did not re-
quire a priori knowledge of the high-frequency gain sign at the price of making any
restrictions on the growth rate of the system nonlinearities, and only the minimal
number of parameters needed to be updated. For nonlinear systems in parametric-
strict-feedback form, the technique of Nussbaum function gain was incorporated
into the adaptive backstepping design in [83]. The robust control scheme was first
developed in [76] for a class of nonlinear systems without a priori knowledge of
control directions. However, the design scheme could be applied to second-order
(vector) systems at most. In addition, both the bounds of the uncertainties and the
bounds of their partial derivatives need to be known. The robust tracking control
for more general classes of uncertain nonlinear systems was proposed in [84] and

later a flat-zone modification for the scheme was introduced in [85].

While the earlier works such as [15][18][86] assumed the virtual control coefficients
to be 1, adaptive control has been extended to parametric strict-feedback systems

with unknown constant virtual control coefficients but with known signs (either
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positive or negative) [19] based on the cancellation backstepping design as stated
in [87] by seeking the cancellation of the coupling terms related to z;z; 11 in the next
step of Lyapunov design. With the aid of neural network parametrization, adaptive
control schemes have been further extended to certain classes of strict-feedback in
which virtual control coefficients are unknown functions of states with known signs
[88][51]. For the system & = f(z) + g(z)u, the unknown virtual control function
g(x) causess great design difficulty in adaptive control. Based on feedback lineariza-
tion, certainty equivalent control u = [— f(z)+v]/§(z) is usually taken, where f(z)
and g(z) are estimates of f(z) and g(x), and measures have to be taken to avoid
controller singularity when g(z) = 0. To avoid this problem, integral Lyapunov
functions have been developed in [88], and semi-globally stable adaptive controllers
are developed, which do not require the estimate of the unknown function g(x).
Although the system’s virtual control coefficients are assumed to be unknown non-
linear functions of states, their signs are assumed to be known as strictly either
positive or negative. Under this assumption, stable neural network controllers have
been constructed in [51] by augmenting a robustifying portion, and in [89],[90] by

estimating the derivation of the control Lyapunov function.

1.1.3 Stabilization of Time-Delay Systems

Time-delay systems are also called systems with aftereffect or dead-time, hereditary
systems, etc. Time delays are important phenomena in industrial processes, eco-
nomical and biological systems. The monographs [91][92] give quite a lot good ex-
amples. In addition, actuators, sensors, field networks that are involved in feedback
loops usually introduce delays. Thus, time delays are strongly involved in challeng-
ing areas of communication and information technologies [93]. For instance, they
appear as transportation and communication lags and also arise as feedback delays
in control loops. As time delays have a major influence on the stability of such dy-
namical systems, it is important to include them in the mathematical description.
There have been a great number of papers and monographs devoted to this field
of active research [94][95][96]. For survey papers see [97][98][99].

The existence of time delays may make the stabilization problem become more
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difficult. Useful tools such as linear matrix inequalities (LMIs) is hard to apply
to nonlinear systems with time delays. Lyapunov design has been proven to be
an effective tool in controller design for nonlinear systems. However, one major
difficulty lies in the control of time-delayed nonlinear systems is that the delays are
usually not perfectly known. A feasible approach is the preliminary compensation
of delays such that the control techniques developed for systems without delays
can be applied. The delay can be partially compensated through prediction, or, in
some cases, can be exactly cancelled. The delay is compensated through prediction
in [100][101] such that classical tools of differential geometry can be applied. In
some works, the compensation is avoided with extensions of differential geometry
being applied. The disturbances decoupling is concerned in [102], while the classi-
cal input-output linearization technique is extended in [103][104]. A necessary and
sufficient condition for which delay systems do not admit state internal dynamics
is given in [105]. For sliding mode control for delay systems, the results can be
found in [106][107][108]. The unknown time delays are the main issue to be dealt
with for the extension of backstepping design to such kinds of systems. A stabiliz-
ing controller design based on the Lyapunov-Krasovskii functionals is presented in
[109] for a class of nonlinear time-delay systems with a so-called “triangular struc-
ture”. However, few attempts have been made towards the systems with unknown

parameters or unknown nonlinear functions.

1.2 Objectives of the Thesis

The objective of the thesis is to develop adaptive controllers for general uncertain
nonlinear systems with uncertainties from unknown parameters, unknown nonlin-

earity, unknown control directions and unknown time delays.

For nonlinear systems with various uncertainties, ultimately uniformly bounded
stability is often the best result achievable. The first objective is to develop a de-
coupling backstepping method, which is different from the traditional cancellation-
based backstepping design. The intermediate control in each intermediate step is
designed to guarantee the boundedness of the corresponding state of each subsys-

tems. The decoupling backstepping design is useful for the development of smooth
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switching scheme in the later design.

The second objective is to utilize backstepping technique for a class of nonlinear
systems with unknown time delays. Adaptive control is developed for systems in
parametric-strict-feedback form and NN parametrization is used for systems with
nonlinear unknown systems function. To avoid singularity problems, integral Lya-
punov functions are used and practical backstepping control is introduced. As the
practical controller design is applied, the compact set, over which the NNs approx-
imation is carried out, shall be re-constructed with its feasibility to be guaranteed.
To satisfy the differentiability of the intermediate control functions in the back-

stepping design, certain smooth functions are introduced to tackle the problem.

The third objective is to develop a global stabilizing control for systems with un-
known control direction. Nussbaum-type gain is used to construct the controller

and exponential term is introduced to achieve global boundedness.

1.3 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 gives the mathematical preliminaries which is utilized throughout the
thesis. It contains basic definitions in Lyapunov stability analysis, and useful sta-
bility results used throughout the thesis, introduction of universal adaptive control
and various Nussbaum functions, and the stability result related to Nussbaum

functions.

In Chapter 3, the concept of decoupled backstepping design is introduced as a
general tool for control systems design where the coupling terms are decoupled by
elegantly using Young’s inequality, and it is first applied to a class of parametric-
strict-feedback nonlinear systems with unknown disturbances which satisfies trian-
gular bounded conditions. The design example with NN approximation is given

later using the design method.

In Chapter 4, adaptive neural control is presented for a class of strict-feedback
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nonlinear systems with unknown time delays using a Lyapunov-Krasovskii func-
tional to compensate for the unknown time delays and integral Lyapunov function
to tackle the singular problems. In addition, a direct NN control using quadratic

Lyapunov functions is proposed for the same problem.

In Chapter 5, an adaptive control is proposed for a class of parameter-strict-
feedback nonlinear systems with unknown time delays. Differentiable control func-

tions are presented.

Chapter 6, concerns with robust adaptive control for a class of perturbed strict-
feedback nonlinear systems with both completely unknown control coefficients and
parametric uncertainties. The proposed design method does not require the a
priori knowledge of the signs of the unknown control coefficients. Another design
example for systems with unknown control coefficients is given for nonlinear time-

delay systems.

Chapter 7 concludes the contributions of the thesis and makes recommendation on

the future research works.

10



Chapter 2

Mathematical Preliminaries

2.1 Introduction

Stability analysis is the one of the fundamental topics being discussed in the con-
trol engineering. Among the various analysis methodologies, Lyapunov stability
theory plays a critial role in both design and analysis of the controlled systems. It
is well known that the analysis of properties of the closed-loop signals is based on
properties of the solution to the differential equation of the system. For nonlinear
systems, it is generally very difficult to find a analytic solution and becomes almost
impossible for uncertain systems. The only general way of pursuing stability anal-
ysis and control design for uncertain systems is the Lyapunov direct method which
determines stability without explicitly solving the differential equations. Therefore,
the Lyapunov direct method provides a mathematical foundation for analysis and
can be used as the means of designing robust control, which is chosen as the main

approach taken in this thesis.

In this chapter, some basic definitions of Lyapunov stability are presented followed
by several useful technical lemmas related to the stability analysis and invoked
throughout the thesis. To tackle the unknown high-frequency gain (or unknown
control directions, unknown virtual control coefficients), universal adaptive control
is carried out using Nussbaum functions. The basic idea of universal adaptive

control is presented. Nussbaum functions are introduced with detailed analysis

11



2.2 Lyapunov Stability Analysis

of their properties. In addition, several useful technical lemmas related to the
stability analysis for systems using Nussbaum functions to construct control law

are developed.

2.2 Lyapunov Stability Analysis

The definitions for stability, uniform stability, asymptotic stability, uniformly asymp-
totic stability, uniform boundedness, uniform ultimate boundedness are given as
follows [110].

Definition 1 The equilibrium point x = 0 is said to be Lyapunov stable (LS) (or,
in short, stable), at time tqy if, for each € > 0, there exists a constant d(to,€) > 0
such that

lx(to)]| < 0(to,€) = ||z (t)]| <€, Vt=>t.

It is said to be uniformly Lyapunov stable (ULS) or, in short, uniformly stable (US)
over [tog,00) if, for each € > 0, the constant 6(tg,€) = 0(e) > 0 can be chosen as

independent of initial time ty.

Definition 2 The equilibrium point x = 0 is said to be attractive at time ty if, for

some § > 0 and each € > 0, there ezists a finite time interval T'(to, 9, €) such that
[z(to)| <6 = [lz(t)]| <€, VE=to+T(to,06).

It is said to be uniformly attractive (UA) over [tg, 00) if for all € satisfying 0 < e < ¢,
the finite time interval T'(to, d,€) = T(0,€) is independent of initial time t.

Definition 3 The equilibrium point © = 0 is asymptotically stable (AS) at time t,
iof it s Lyapunov stable at time tg and if it is attractive, or equivalently, there exists
0 > 0 such that

lz(to)|l < 6 = ||z(t)|| — € as t — 0.

it is uniformly asymptotically stable (UAS) over [to, 00) if it is uniformly Lyapunov

stable over [ty, 00), and if x = 0 is uniformly attractive.
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2.2 Lyapunov Stability Analysis

Definition 4 The equilibrium point x = 0 at time ty is exponentially attractive
(EA) if, for some 6 > 0, there exist constants a(d) > 0 and 3 > 0 such that

[2(to)|| < & == [lz()]] < a(d) exp[=H(t — Lo)].

It is said to be exponentially stable (ES) if, for some 6 > 0, there exist constants
a >0 and B > 0 such that

z(to)ll <6 = [lz()]| < cvexp[=p5(t —t0)].

Definition 5 A solution x : Rt — R", x(to) = xo, is said to be uniformly bounded
(UB) if, for some 6 > 0, there is a positive constant d(§) < 0o, possibly dependent
on d (or xy) but not on ty, such that, for all t > to,

[z(to)ll <0 = [lz(®)]] < d(9).

Definition 6 A solution x : RT™ — R", x(ty) = xg, is said to be uniformly ulti-
mately bounded (UUB) with respect to a set W C R™ containing the origin if there
is a nonnegative constant T(xg, W) < 00, possibly dependent on xy and W but not
on to, such that ||x(to)|| < implies x(t) € W for all t > to + T'(xo, W).

The set W, called residue set, is usually characterized by a hyper-ball W = B(0, ¢)
centered at the origin and of radius e. If € is chosen such that ¢ > d(6), UUB
stability reduces to UB stability. Although not explicitly stated in the definition,
UUB stability is used mainly for the case that e is small, which presents a better
stability result than UB stability.

If both d(§) and W can be made arbitrarily small, UB and UUB approach uniform
asymptotic stability in the limit. In some literature, UB and UUB approach is
called practical stability.

The UUB stability is less restrictive than UAS or ES, but, as will be shown later,

it can be made arbitrarily close to UAS in many cases through making the set W
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2.2 Lyapunov Stability Analysis

small enough as a result of a properly designed robust control. Also, UUB stability
provides a measure on convergence speed by offering the time interval T'(xo, W). In
fact, the UUB stability is often the best result achievable in controlling uncertain

systems.

The following lemmas are useful for the stability analysis throughout the thesis

and are presented here for easy references.

Lemma 2.2.1 Let V(t) be continuously differentiable function defined on [0, +00)
with V(t) > 0, Yt € RT and finite V(0), and c1,c2 > 0 be real constants. If the
following inequality holds

V(t) < —c122(t) + ey () (2.1)

and y(t) € Lo, we can conclude that x(t) € Ly. [87]

Proof: Integrating (2.1) over [0,t], we have

Vi) -V < - [ Cenr?(r)dr + / e (r)dr

1.e.

0<V(t)+ /Ot ez (r)dr < V(0) + /Ot co?(r)dr

Since V/(0) is finite and y(t) € Lo, i.e., [i coy?(7)d is finite, we can conclude that
V(t) is bounded and [j c;22(7)dr is finite, i.e. z(t) € Ly. ¢

Lemma 2.2.2 Let V(t) be continuously differentiable function defined on [0, +00)
with V(t) > 0,Vt € Rt and finite V(0), p(t) be a real-valued function, and c1,co > 0
be real constants. If the following inequality holds

V(t) < —a V(1) + cap(t) (2.2)
and p(t) € Lo, we can conclude that V (t) is bounded.

Proof: Upon multiplying both sides of (2.2) by e“!, it becomes

d

L) < expft)en 23)
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2.2 Lyapunov Stability Analysis

Integrating (2.3) over [0, ¢] yields
t
V() SVO)e ™ 4oy [ e 0 p(r)dr (2.4)
0
Note the following inequality

t ¢
02/0 e_cl(t_T)p(T)dT < CQe_Clt/O lp(T)|etdT

t c
< e swp [lp(r)] [ e7dr <2 swp [lp(r)]  (25)
T€[0,t] 0 C1 1€[0,t]

Since p(t) € Ly, i.e. p(t) is finite, we know from (2.5) that c, [J e~ =) p(7)dr is
bounded. Let ¢y be the upper bound of ¢, [y e~ p(7)dr, (2.4) becomes

V(t) <co+ V(0)e ™ < ¢+ V(0) (2.6)

Since V'(0) is finite, we can readily conclude that V' (¢) is bounded. In addition, from
(2.6), we can conclude that given any p > p* with p* = ¢, there exists 7" such that
for any ¢ > T, we have V (t) < u, while T' can be calculated by ¢y + V(0)e™T =

with 7= —L1n (4720). &

Lemma 2.2.3 Let V(t) be continuously differentiable function defined on [0, +00)
with V (t) > 0,Vt € RT and finite V(0), p(t) be a real-valued function, and ¢y, c2 > 0
be real constants. If the following inequality holds

V(t) < —c12?(t) + cox(t)p(t) (2.7)
and p(t) € L, we can conclude that V (t) is bounded and x(t) € Ly.
Proof: Applying Young’s inequality to (2.7), we have

V() < —c122(t) + e [;]ﬁﬁ(t) + k1p?(1)] (2.8)

where positive constant k; is a sufficiently large such that cj 2 c1 — 37 > 0. Then,
(2.8) becomes

V(t) < —ca2(t) + cak1p?(t) (2.9)

Invoking Lemma 2.2.1, we can conclude that V/(t) is bounded and [} 2%(7)dr is
finite, i.e., z(t) € Lo. &
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2.2 Lyapunov Stability Analysis

Lemma 2.2.4 Let V(t) be positive definite function with finite V(0), p(-) be real-
valued function and and cy,cy > 0 be real constants. If the following inequality
holds

V(t) < —az?(t) + cap(y(t)) (2.10)

and p(y) € L', then we can conclude that x(t) € Ly.

Proof: Integrating (2.10) over [0,t] yields

Vi) - V(o) < - | Lo (r)dr + /0 eaply(r))dr

0
1e.
t t
Vt)+ [ c(r)dr <VO) + [ eply(r)dr
Since p(y) € L', ie. [5cap(y(7))dr is bounded, we can conclude that V(t) is
bounded and z(t) is square integrable. {

The following lemma is crucial for deriving uniformly ultimately bounded stability
of closed-loop systems and gives an explicit and quantified analysis for the ini-
tial condition, transient performance and the final convergence of the closed-loop

signals, and the relationship among them.

Lemma 2.2.5 Let V(t) > 0 be smooth functions defined on [0, +00), Vt € R™ and
V(0) is finite. Suppose V (t) takes the following form

V(t) = ;eT(t)Qe(t) + ;WT(t)F_lﬁ/(t) (2.11)

where e(t) = x(t) — x4(t) is tracking error and W (t) = W(t) — W* is parameter
estimation error with x(t) € R", x4(t) € Qq C R", W(t) € R™, W* € R™ being
constant vector, @ = QT >0¢€ RV, and T =TT > (0 € R™™.

If the following inequality holds
V(t) < —ciV(t) 4+ ¢y 1 >0,¢0 >0 (2.12)
for the system initiated from the following compact sets defined by
Q) = {2(0),24(0), W(0) | 2(0), W (0) finite, 4(0) € 2y (2.13)

we can conclude that
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2.2 Lyapunov Stability Analysis

(i) the states in the closed-loop system will remain in the compact set defined by

Q = {2, W) | =) < cemaerTrg%fg]{de(T)H},

W] < €45 e + maxc{ [ W[ }}

(i) the closed-loop states will eventually converge to the compact sets defined by
Q= {a(t), W(t) | lim e)]| =z, lim W] = gz, }

where constants

2V (0 2 2V (0 2
Cemax — J ( ) + 62/01, CW max = \/ ( ) ™ CQ/CI (214)
)\Qmin )\Fmin
202 2C2
- ot = 2.15
He C1AQ min H C1AT min (219

with >\Q min — minTE[O,t} Amin(Q(T)); and )‘F min — minTE[O,t} >\min<r_1(7—))-
Proof: Multiplies (2.12) by e“* yields

d

V(D) < ne (2.16)

Integrating (2.16) over [0, t] leads to

0<V(#) <[V(0) —cafer]e ™ + en/en (2.17)
where V(0) = Le7(0)Qe(0) + LW (0)T W (0).
(i) Uniform Boundedness (UB):

From (2.17), we have
0< V() <[V(0) = cafer]e™ + e/ < V(0) + cafey (2.18)

From (2.11), we have

gl e < Dhaan( QN < Ze (DR < V(1) (2.19)
A win O < D T O < SHTOT (0 (1) < V(1) (2:20)
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2.2 Lyapunov Stability Analysis

then, by combining with equation (2.18), we have

le®)Il < cemax, WO < i max

where Cemax and ¢y, .. are given in (2.14). Since e(t) = z(t) — 24(t) and W (t) =
W (t) — W*, we have

lz@I = llza@®)] < [l2(t) = za(®)]] < Cemax
W1 = 1W< IV (@) = W<

ie.,
|z < Cemax + [2a(B)]| < Coma + max {lza(r)]}

WO < i + W7 (2.21)

(ii) Uniform Ultimate Boundedness (UUB):

From (2.17), (2.19) and (2.20), we have

el < J e QQL + 2l (2:22)
I < 2O el 2o (223)

If it so happens that V(0) = co/cq, then |le(t)|| < pf, ¥t > 0. If V(0) # c2/cq, from
(2.22), we can conclude that given any p. > u’, there exists 7, such that for any
t > T,, we have |le(t)|| < pe. Specifically, given any .,

e J 2V (0) — co/er]eT + 23/

)\Qmin
then
T = T, V(0)) = — - 1 (Medamn = 2ea/c1)
e = telke a1\ 2V (0) — cafed]
and
lim [le(t)]| = 2
&

Remark 2.2.1 Q is related to Qy while €25 is not.

The relationship among the three compacts is illustrated in Fig. 2.1.
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2.3 Universal Adaptive Control

Figure 2.1: Relationship among compact Sets €2, 2y and €.

2.3 Universal Adaptive Control

To illustrate the idea, consider the following linear time-invariant scalar system

{jt(t) = ax(t) +bu(t), =(0) ==

2.24
y(t) = cx(t) 22

where a, b, c, g € R are unknown and the only structural assumption is cb # 0,

i.e., the system is controllable and observable.

If the feedback control law u(t) = —ky(t) is chosen, the closed-loop system has the
form

z(t) = (a — keb)z(t), x(0) = xg (2.25)

If a/|cb| < |k| and sgn(k) = sgn(cb), then (2.25) is exponentially stable. However,
a, b, c are not known and thus the problem is to find adaptively an appropriate k

so that the motion of the feedback system tends to zero.

Choose the following time-varying feedback law

u(t) = —k(t)y(t) (2.26)
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where k(t) need to be adjusted so that it gets large enough to ensure stability but

also remains bounded, which can be achieved by the following adaptive law
k(t) =42(t), k(0)eR (2.27)
The nonlinear closed-loop system (2.24), (2.26), (2.27), i.e.,
(1) = [a— k(t)cblz(t), k(t) = & /Ot 22(s)dx + k(0) (2.28)

which has at least a solution on a small interval [0, w), and the non-trivial solution

(t) = el BFOBs 1 (0)  2(0) > 0
is monotonically increasing as long as a — k(t)cb > 0. Hence k(t) > t(cz(0))*+ k(0)
increases as well. Therefore, there exists a t* > 0 such that a — k(t*)cb = 0
and (2.28) yields a — k(t)cb < 0 for all ¢ > ¢*. Hence the solution z(t) decays
exponentially for ¢ > ¢* and lim; .. k(t) = ko € R exists. This is a special

example for the following concept of universal adaptive control.

Suppose X denotes a certain class of linear time-invariant systems of the form

. { i(t) = Ax(t)+ Bu(t), z(0)=m,

(2.29)
y(t) = Cx(t)+ Du(t)

where (A, B,C,D) € R™" x R™™ x R™™ x R™*™ are unknown, m is usually
fixed, the state dimension n is an arbitrary and unknown number. The aim is to
design a single adaptive output feedback mechanism wu(t) = F(y(-)|p,g) which is
a universal stabilizer for the class 3, i.e. if u(t) = F(y(-)|py) is applied to any
system (2.29) belong to 3, then the output y(¢) of the closed-loop system tends to

zero as t — oo and the internal variables are bounded.

The adaptive stabilizers are of the following simple form: A “tuning’parameter

k(t), generated by an adaptation law

k(1) = g(y(t), k(0) = ko, (2.30)

where g : R™ — R is continuous and locally Lipschitz, is implemented into the

feedback law via
u(t) = F(k(t))y(t), (2.31)

where F': R — R™*™ is piecewise continuous and locally Lipschitz.
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Definition 7 A controller, consisting of the adaptive law (2.30) and the feedback
rule (2.81), is called a universal adaptive stabilizer for the class of systems %, if
for arbitrary initial condition xy € R™ and any system (2.29) belonging to ¥, the
closed-loop system (2.29)-(2.31) has a solution the properties

(i) there exists a unique solution (z(-),k(+)) : [0,00) — R,
(i) 2(),5(),u(), k() are bounded
(#13) limy_o y(t) =0,

() lim o k(t) = koo € R exists.

The concept of adaptive tracking is similar. Suppose a class )V, of reference
signals is given. It is desired that the error between the output y(¢) of (2.29) and

the reference signal y,ef(t)
e(t) == y(t) — Yres(t)
is forced, via a simple adaptive feedback mechanism, either to zero or towards a

ball around zero of arbitrary small prespecified radius A > 0. The latter is called

M-tracking. To achieve asymptotic tracking, an internal model

{é(t) = A%(t) + Br(t), £0) =5

(2.32)
u(t) = C*¢(t) + D*o(t)

where (A*, B*,C*, D*) € R"*" x R"*™ x R™™ x R™*™ is implemented in series
interconnection with a universal adaptive stabilizer. The precompensator resp.
internal model (2.32) contains the dynamics of the reference signals. An internal

model is not necessary if A\-tracking is desired.

Definition 8 A controller, consisting of an adaptation law (2.30), a feedback law
(2.31), and an internal model (2.32) is called a universal adaptive tracking con-
troller for the class of systems X2 and reference signals Viet, if for every Yret () € Vret,
g € R, & € R™, and every system (2.29) belongs to X, the closed-loop system
(2.29)-(2.32) satisfies

(i) there exists a unique solution (z(-),&(+), k(-)) : [0, 00) — R+
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(i) the variables x(t),y(t), u(t),&(t) grow no faster than y(t),
(iii) Time—oo[y(t) — yret ()] = 0,

(1) lim o k(t) = koo € R exists.

2.4 Nussbaum Functions and Related Stability Results

2.4.1 Nussbaum Functions

Any continuous function N(s) : R — R is a function of Nussbaum type if it has

the following properties

S

ligl sup [ N(¢)d¢ = o0, (2.33)
s——+00 S0
lim_inf [~ N(Q)d¢ = ~o0 (2.34)

S0

with sy < s. For example, the continuous functions ¢?cos(¢), ¢?sin(¢), and

e’ cos(5¢) are functions of Nussbaum type [111].

Lemma 2.4.1 The function N(¢) = e cos(5() satisfies the conditions (2.33) and
(2.34). [62]

Proof: Define
N1(317$2) :/ N(C)dC

51
with s; < s,. Using integral inequality (b — a)ms < [° f(z)dx < (b — a)myy with
myy = infu<o<p f(2) and myy = sup,<,<, f(7), and noting that |cos(5¢)| < 1, we
have

INi(s1,52)| < (s2—s1) sup [N(C)] = (s2— s1)e (2.35)

C€E[s1,s2]
It is clear that N(() is positive on interval (4m —1,4m+1) and negative on interval
(4m + 1,4m + 3) with m an integer. To show that N(() satisfies the conditions
(2.33) and (2.34), it suffices to prove that lim,, 1o Ny(so,4m + 1) = +oo and

limy,— 400 N1 (S0, 4m + 3) = —o0.
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Let us first observe the interval [sg,4m — 1] (assuming that 4m — 1 > |sg|) and

accordingly o
Ni(so,dm—1) = [ 7 N(Q)dg

S0

Applying (2.35), we have
|Ni(so,4m — 1)| < (4m — 1 — sq)e ™=V’ (2.36)

Next, let us observe the interval [4m — 1,4m + 1]. Noting that N(¢) > 0, V¢ €

[4m — 1,4m + 1], we have the following inequality
4dm—+e€
Ni(dm —1,4m +1) > N(Q)d¢

dm—eq

with €; € (0,1). Using the integral inequality, we have
Ni(dm —1,4m + 1) > 2¢ cos(gel)e(4m_€1)2 (2.37)

It is known that if | fi(z)] < a; and fo(z) > ag, then fi(z)+ fo(x) > as —ay. Using
this property, from (2.36) and (2.37), we have

Ni(sg,4m +1) = Ni(sg,4m — 1)+ Ny(4dm — 1,4m + 1)
2 m _ e )2
—(4m — 1 = so)] (2.38)
Note that the following property holds for by, by, by > 0

lim bpe ("% — byx + bg) = +00, V& € R (2.39)

T——+400

Applying (2.39) by noting (1 — ¢) € (0,1), from (2.38), we have

lirJrrl Ni(so,dm +1) = 400
In what follows, we would like to show that lim,, ... Ny(sg,4m + 3) = —oo. To
this end, let us first observe the interval [sg, 4m + 1]. Similarly, applying (2.35), we

obtain
|N; (50, 4m + 1)] < (4m + 1 — so)em D’ (2.40)

23



2.4 Nussbaum Functions and Related Stability Results

Then, let us observe the next immediate interval [4m + 1,4m + 3]. Noting that
N(¢) <0,V¢ € [dm + 1,4m + 3], we have the following inequality

4m~+2+€2
Ny(dm +1,4m +3) < / N(¢)d¢
4

m—+2—eo
< =26 (:08.(%62)6(47””’62)2 (2.41)

with e; € (0,1).

It is also known that if |fi(z)| < a; and fo(z) < ag, then fi(z) + fo(z) < as + ay.
Accordingly, from (2.40) and (2.41), we have

Ni(so, 4m + 3) < —el4m+1)? [262 COS(gﬁz)6[2(4m+1)(1762)+(1762)2] —(4m+1- 30)}
(2.42)
Applying (2.39) by noting that (1 —e3) € (0, 1), from (2.42), we have
lim Ny(sg,4m +3) = —o0

m—-+00

which ends the proof. {

Lemma 2.4.2 The function N(¢) = (?cos(¢) satisfies the conditions (2.33) and
(2.3]).

Proof: Consider the following integration
[ v©dc = [ ¢ eos(ra
Integrating by parts, we have
[ N@ac = ¢sin©)f] +2cos(Q)f] ~2sim()]]
= s%sin(s) + 2scos(s) — 2sin(s) — s2sin(sg)

—2s0 cos(sg) + 2sin(sp) (2.43)

Taking the limit as s — 400, from (2.43), we have

s

lim [ N()d¢ = lim s*{sin(s)+

s—+00 Jg §—+00

2 1
CO:(S) + 2 { — 2sin(s) — sz sin(sg)

—250 cos(sg) + 2 sin(so)} }

= lim [s?sin(s)]

S$——+00
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from which it is known that as s — +00, sin(s) changes it sign an infinite number
of times, further, lim,_ . sup[s®sin(s)] = +o0, and lim,_. |, inf[s?sin(s)] = —oo.
Therefore, we can conclude that N(¢) = (%cos(() satisfies the conditions (2.33)
and (2.34). &

Functions sin(z) or cos(z) are referred as “transcendental functions”, whose sign
changes an infinite number of times as their arguments x increases in magnitude
and tends to infinity. [4], p.363) Transcendental functions play an essential role in
constructing Nussbaum functions, whose choices are not unique. The conditions
(2.33) and (2.34) are the key features of the Nussbaum functions, beside which,
some choices of Nusshaum functions, e.g., e cos(5¢), ¢*cos(C), etc., also satisfy

the following conditions

1 s

lim sup— [ N({)d¢ = +o0 (2.44)
s§——+00 S Jso
1 s

lim inf- | N({)d¢ = —o0 (2.45)
$—+00 S Jsp

Corollary 1 The function N(¢) = e cos(5C) satisfies the conditions (2.44) and
(2.45).

Outline of the proof:
Following the same procedure in proof of Lemma 2.4.1, to prove (2.44) and (2.45),

it suffices to prove that lim,, . ﬁ]\h(so, dm + 1) = +o0 and

lim,, 4 oo WlJr?,NI(S(“ dm + 3) = —oc.
The following property holds for x € R, x + ag # 0, by, by, by > 0

boe® (M — box + b
lim 20¢” (€ 20 by (2.46)
T—+00 T+ ag

which can be easily proven by applying the L'Hopital’s Rule [112] as

 bpe®” (€M — box + by) 5 [b0€x2(€blx — ot b3)}
lim = lim

A AT T

:+OO

Using the property (2.46), from (2.38), we have

ml—l>r—l&/-loo P 1NI(30,4m +1) = 400
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and from (2.42), we have

m1—1>1—ir-loo ym—y 3N1(50,4m+ 3) = —o0

¢

Corollary 2 The function N(¢) = (?cos(C) satisfies the conditions (2.44) and
(2.45).

Proof: It directly follows from the equation after (2.43) and is omitted. <

Definition 9 Suppose N(C) is a Nussbaum function which satisfies (2.44) and

(2.45). A Nussbaum function is called scaling-invariant if, for arbitrary o, 3 > 0,

7O {aN(C) if N(Q) 20
BN(Q) if N() <0

1s a Nussbaum function as well.

Example 1 [111] The following functions are Nussbaum function:

Ni(€) = Ceosy/[¢], (ER
Ny(() = InCcos+/In(, ¢(>1
¢ if n?<[¢|<(n+1)? n even
{ —C¢ if n* <K< (n+1)% n odd
¢ if 0<|C] <
NyQ) = ¢ if 7, <|C| < Thy1, n oeven
—¢ if 7, <|C| < Twy1, m oodd
with 1o > 1, 71 =72, CER

, CER
(2.47)

Of course, the cosine in the above examples can be replace by sine, and similar

modifications.

Logemann and Owens (1988) have proved that N(¢) = e cos(5() is scaling-
invariant. This property is important if the nominal system is subjected to certain
nonlinear perturbations and/or for some universal controllers of multivariable sys-

tems.
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2.4 Nussbaum Functions and Related Stability Results

It is easy to see that N1((¢), N3(C), N4(C) are in fact Nussbaum functions, whereas
to prove the properties (2.44) and (2.45) for N5(¢) is more subtle and a proof
is given below. The function N5(() has the property that the periods where
the sign is kept constant compared to the increase of the gain is larger than for

N1(¢), this will become important for relative degree two systems. Note also that
limg o0 g6 N3(C) = 0.

Lemma 2.4.3 [111] The function

N(C) = [Go,00] = R,( lnCcos\/lnig
1s a Nussbaum function for every (o > 1.

Proof: See [111].

2.4.2 Stability Results

In this section, the Nussbaum functions are chosen to satisfy both the conditions

(2.33), (2.34) and (2.44) and (2.45).

Lemma 2.4.4 [70] Let V(-) and ((-) be smooth functions defined on [0,t;) with
V(t) > 0 and ((t) monotone increasing, Vt € [0,t¢), and N(C) be smooth Nussbaum
function. If the following inequality holds

V(t) <co+ /Ot(goN(() +1)Cdr, Vte [0,2f) (2.48)

where gy 15 a nonzero constant and co represents some suitable constant related to
the control parameters, then V(t), ¢(t) and [I(goN(¢) + 1)Cdr must be bounded on

0,2).

Proof: Seeking a contradiction, suppose that monotone increasing function ¢(t)
is unbounded, i.e., ((t) — 400 as t — ty. Dividing (2.48) by ((¢) yields

V() o . g0 [O® <) — ¢(0)
0< 7y ST T i /c(o) NG + 5 (2.49)

Taking the limit as ¢ — t¢, hence ((t) — +o0, from (2.49), we have

V(1) : go [
0 Jim cy < Jim G [ N Ec) +1
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2.4 Nussbaum Functions and Related Stability Results

which, if go > 0, contradicts (2.45) or, if gy < 0, contradicts (2.44). Therefore, ((-)
is bounded. Hence, ! goN(¢){dr is also bounded. From (2.48), it follows that V()
is bounded. <

Lemma 2.4.5 [83] Let V(-) and ((-) be smooth functions defined on [0,t;) with
V(t)>0,Vte|0,tr), and N(-) be an even smooth Nussbaum-type function. If the
following inequality holds

¢ :

Vt) <o+ [ (goN(Q)+Didr, VEe[0.ty) (2.50)
where go is a nonzero constant and cq represents some suitable constant, then V (t),
C(t) and [3(goN () + 1){’0[7 must be bounded on [0,1y).

Proof: We first show that ((¢) is bounded on [0,tf) by seeking a contradiction.
Suppose that ((t) is unbounded and two cases should be considered: (i) ((¢) has
no upper bound, and (ii) ¢(¢) has no lower bound, Vt € [0, ).

Case (i): ((t) has no upper bound. In this case, there must exist a monotone
increasing sequence {t;}, 7 = 1,2, - -, such that {w; = {(¢;)} is monotone increasing

with wy = ((t1) > 0, lim; 1 t; = ty, and lim; | w; = +00.

Dividing (2.50) by w; = ((t;) > 0 yields

V(tz) Co 1 ¢(te)
= ) e Lo

= A, /w" N(¢(r)d¢(r) + (1 - @> (2.51)

wi Wi J¢(0) W;

(90N (¢(7)) + 1)d(7)

On taking the limit as ¢ — +o0, hence t; — t;, w; — +00, from (2.51), we have

0< tim L <14 jim —/wi N(¢(r)d¢(7) (2.52)
<o)

=it ¢t = T w

which, if gy > 0, contradicts (2.45) or, if gy < 0, contradicts (2.44). Therefore, ((t)
is upper bounded on [0, ¢y).

Case (i1): ((t) has no lower bound. There must exist a monotone increasing se-
quence {t;}, i = 1,2,---, such that {w;, = —((¢;)} is monotone increasing with

Wy > O? hm7,—>+oo EZ - tf, and hml_H_OO gl = 400.
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2.4 Nussbaum Functions and Related Stability Results

Dividing (2.50) by w; = —((t;) > 0 yields

g V) 1 /C‘C“i)(goN@(T))+1)d[_g(7)] (2.53)

=) T =) —C(t) Jeo
Noting that N(-) is an even function, i.e., N(¢) = N(—(), and letting x(¢) = —((t),

(2.53) becomes

IN

o< Vit il ! A“glgﬂvux7»4—wdx@»

—((t;) - —((t;) Je)

= 2o P v - (1-42) esy

w; W J¢(0) W

On taking the limit as ¢ — +o00, hence t; — tf, w; — +00, from (2.54), we have

Vi, w;
0< tim LB o g gy %0 / o Nx()ix(7)
¢
which, if go > 0, contradicts (2.44) or, if gy < 0, contradicts (2.45). Therefore, ((t)
is lower bounded on [0, ).

We thus conclude the boundedness of ((¢) on [0,t¢). As an immediate result, V' (¢)
and [} goN(¢)Cdr are also bounded on [0, /). <

Lemma 2.4.6 Let V(-) and ((-) be smooth functions defined on [0,t) with V() >
0, Vt € [0,tf), and N(C) be an even smooth Nussbaum-type function. If the follow-
ing inequality holds:

V(t) <co+e /Ot go(x(T))N(C)éeC”dT + et /Ot Ce'"dr, Vi€ [0,%f) (2.55)

where constant ¢, > 0, go(x(t)) is a time-varying parameter which takes values in
the unknown closed intervals I := [~ ,1"] with 0 ¢ I, and cy represents some suit-
able constant, then V (t), C(t) and [ go(z(7))N(C)Cdr must be bounded on [0,ty).

Proof: See Appendix 7.2 or [113][114].

Remark 2.4.1 Note that N(-) is an even function. In fact, the stability results in
Lemma 2.4.5 and 2.4.6 still holds if N(-) is an odd function, which can be easily

proven by following the same procedure.
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2.4 Nussbaum Functions and Related Stability Results

Lemma 2.4.7 Let V(-) and ((-) be smooth functions defined on [0,t) with V() >
0, Vt € [0,t7), and smooth Nussbaum-type function N(C) = ¢?cos(C). If the fol-

lowing inequality holds:
t . t
V(t) <co+ e_clt/ goN (¢)Ce“Tdr + e_clt/ Ce“7dr, Vte|0,tf) (2.56)
0 0

where constant ¢y > 0, gy 1S a nonzero constant, and co represents some suitable
constant, then V (t), C(t) and [§ goN(¢)Cdr must be bounded on [0,t5).

Proof: See Appendix 7.2.

2.4.3 An Illustration Example

For illustration purpose, let us consider the first-order system
iifl = q1u -+ 0?¢1<£L‘1) + Al(t, x’1>

where ¢; is a unknown nonzero constant, §7 is unknown constant vector, (1)
is known smooth function, and the unknown disturbance satisfies: |A(t,z1)] <

p1¢1(x1) with p; unknown constant and ¢(z;) known smooth function.

Consider the Lyapunov function candidate
Ly 1., Tp—1(4 L1 2
Vi(t) = Tt 5(91 —01) Ty (61 — 01) + 31 (P1 —p1)

Its time derivative is

Vi = myin+ (B — 0750y + 7 by — 1)y

z[gru + 0T (@) + Ay, 21)] + (6 — Hl)TF(;llél + 79,1 (P — )Py
w1[gru + 071 (21)] + pra (1) 1]

(01— 00)T5 01 + 735" (51 — Py (2.57)

IN

The control law is chosen as

u = N(Cl) [k’lflfl + é?@/}l + ]51@51 tanh(xlqjl )] (258)

€1
$1¢1

él = ]ﬁx% + é?l/)lxl +]§1(Z)1l’1 tanh( .
1

) (2.59)
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2.4 Nussbaum Functions and Related Stability Results

Substituting (2.58) and (2.59) into (2.57)
Vi < N (GG + 071 (21)z1 + proda ()]
+(01 — 91)TF9_1151 + 7,1 (Pr — p1)Py
Adding and subtracting ¢; on the right hand side of (2.60), we have
Vi < —kizi +aiN(G)G+ G

. R x
— (61 — 01) 11 — (P1 — p1)¢r1xy tanh( 101

€1

)

T1¢1 )}

€1

+(é1 - 91)TF9__1_1él + ’Yp_11 (h1 — p1)py

+p1 [¢1|$1| — ¢1q tanh(

Choosing the parameter adaptation laws as
0, = Ty [wlxl — 091(é1 — 9?)}
b L1071 R
D1 = Vp1 [¢1$1 tanh(?) —op(pr — p?)}

where og1, 0,1, 69, p§ are constants.

(2.60)

(2.61)

(2.62)

(2.63)

Substituting (2.62) and (2.63) into (2.61) and noting the following inequalities

T
€

|z| — x tanh(—) < 0.2785¢, € >0

—0g1(6h — 61)" (6, — 67) < —5001”91 —61)” + 5061”91 — 67|

1 1

—0p1(P1 — Pl)T(ﬁ1 —p)) < —§Up1(151 —p1)?+ = »1(p1 —p))?

2

we have

. . . 1 A 1 .
Vi < —kzi+aN(G)G+ G- 5091”91 — 61| — 5%1(191 —m)?

1 1
+0.2785p1€1 + 5091”91 — 9?"2 + §O-p1(p1 - p?)2
< —aVi4c+ glN(gl)él + <1

where

c1 = min < 2k, N — Op17Ypl
’)‘min(n;lly o

1 1
Cy = 0.2785]9161 —+ 50’91”01 — 9?”2 -+ iapl(pl — p?)Q

31

(2.64)



2.4 Nussbaum Functions and Related Stability Results

Multiplying (2.64) by e“*, we obtain

d . )
(467 < eae + N (GGt + Ge! (2.65)

Integrating (2.65) over [0, ¢] yields

t . t .
0<Vi(t) <2 4 14(0) + et /0 GN(C) e Tdr + et /0 éeaTdr

C1
For simulation purpose, we consider the following first-order uncertain nonlinear
system

@1 =u+0.127 + 0.6e™ sin’ ¢

Accordingly, g1 = 1, 6, = 0.1, ¥(21) = 22, and A; = 0.6 sin’¢, i.e., p; = 0.6,
¢1(£L’1) = e,

The simulation results are shown in the following figures. When N(¢) = e¢* cos(5(),
the figures are plotted by solid lines. When N(¢) = ¢? cos(5(), the figures are plot-
ted by dashed lines. The closed-loop signals 1, u, (1, N1((1), and the norms of the

parameter estimations are plotted in Fig. 2.2-2.6.

1.4

1.2

0.8

0.6 !

0.4

0.2

Time (sec)

Figure 2.2: State z(t).
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Figure 2.3: Control input u(t).
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Figure 2.4: Variable (;(t).
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Figure 2.5: Nussbaum function N(¢).
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Figure 2.6: Norm of parameter estimates 6;(“—") and fy(“ -7).
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Chapter 3

Decoupled Backstepping Design

3.1 Introduction

The traditional backstepping design is composed of n steps of iterative design for
nth-order systems. Based on a coordinate transformation, a virtual control law
is designed in each intermediate step for the corresponding subsystem, while the
actual control u(t) is designed in the final step. Specifically, there will be a coupling
term z;z;11 based on the new z-coordinate remaining in the Lyapunov function of
Step 4, which shall be and only can be dealt with/cancelled in Step i+ 1. Therefore,
the corresponding Lyapunov function V;;;(¢) of Step ¢ + 1 shall be constructed to
include V;(t) — the Lyapunov function of Step i. Apparently, V;(¢) must contain the
summation of all the previous ones from Vi (t) to V;_1(t). Usually, the boundedness
of all the signals in the closed-loop can be guaranteed and the states in z-coordinate
can be confined in a compact residual set, which is given for the norm of vector z(t)
rather than each individual z;(¢) fori = 1,- - -, n. For convenience of differentiation,

it is referred to as the cancellation backstepping design method.

Another class of backstepping design appeared in [83][115], where the stability
result was proven iteratively by showing the stability of individual state z; in z-
coordinate of each subsystem backwards through the analysis of the integral of,
rather than the pure negativeness of, the differentiation of the Lyapunov function

candidate. The coupling term z;z; ;1 in each step is decoupled by elegantly using the
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3.1 Introduction

Young’s inequality rather than leaving to it to be cancelled in the next step. Thus,
it is referred to as the decoupled backstepping method. The design method was
originally used to handle the completely unknown virtual control coefficients and
high-frequency gain, through the aid of Nussbaum functions and time integration,
where the standard backstepping design could not solve the problem. In addition,

the two design methods are also different in the following aspects:

(i) the Lyapunov function V(t) of Step ¢ is constructed independently from
Vi_1(t) of Step i — 1 as the coupling term z;_;z; of Step i — 1 is decoupled
using Young’s inequality and the exact cancellation of this term in Step i is

no longer necessary;

(ii) the virtual control «; is only designed to stabilize the ith subsystems rather

than the subsystems from the 1st to the ¢th in z coordinate;

(iii) the stability result of Step ¢ — 1 is obtained by seeking the boundedness of
z; rather than cancelling the coupling term z; _;2; so that the residual set of

each state in z coordinate can be determined individually.

(iv) the cancellation backstepping design utilize the state interconnections, while

the decoupled backstepping design tries to decouple the interconnections.

The decoupled backstepping design offers another control system design tool in
handling a large class of nonlinear systems. The main contributions of the Chapter

are

(i) the explicit introduction of the decoupled backstepping as a general tool for

control system design, and

(ii) control system design for two classes of strict-feedback systems to show the

concept clearly.

It is proved that the proposed systematic design method is able to guarantee global
uniformly ultimately boundedness of all the signals in the closed-loop system in
Section 3.2 and global uniformly ultimately boundedness of all the signals in the

closed-loop system in Section 3.3, and the tracking error is proven to converge to a
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3.2 Adaptive Decoupled Backstepping Design

small neighborhood of the origin. In addition, the residual set of each state based
on new coordinate in the closed-loop can be determined respectively. Simulation

results are provided to show the effectiveness of the proposed approach.

The rest of the Chapter is organized as follows. The decoupled adaptive backstep-
ping design and the decoupled NN backstepping design are presented in Section 3.2
and Section 3.3 respectively, with detailed problem formulation, controller design,

simulation studies and conclusion in each embedded subsections.

3.2 Adaptive Decoupled Backstepping Design

3.2.1 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear systems

T = guu+0E () + fo(x) + At ),

where T; = [x1, 2, -+, 2;]7 € R, x = [x1,79, -+, 2,|T € R", u € R, y € R are the
state variables, system input and output respectively, g; are unknown constants,
0; € R™ are unknown constant vectors, F;(-) € R™ are known smooth function
vectors, f;(+) are known smooth functions, and A; are unknown Lipschitz contin-
uous functions, ¢ = 1,---,n. The control objective is to design an adaptive con-
troller for system (3.1) such that the output y(¢) follows a desired reference signal
ya(t), while all signals in the closed-loop system are globally uniformly ultimately
bounded (GUUB). Define the desired trajectory vector Zaq+1) = [Ya; Ya; - - - ,yc(;)]T

(i)

¢t =1,---,n — 1, which is the combination of y; up to its ith time derivative y,;’.

Y

We have the following assumptions for unknown constants, unknown disturbances

and reference signals.

Assumption 3.2.1 The signs of g; are known and assumed to be positive without

loss of generality.
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3.2 Adaptive Decoupled Backstepping Design

Assumption 3.2.2 There exist unknown positive constants p;, 1 < 1 < n, such
that ¥(t,z) € Ry x R™, |Ai(t,x)| < pidi(Z;), where ¢; is a known nonnegative

smooth function.

Remark 3.2.1 Assumption 3.2.2 implies that in this thesis we only consider such
class of uncertainties A; that have a triangular bound in terms of x for the ease of
controller design. Similar assumptions to Assumption 3.2.2 have been used in [86,
116, 21]. As p; is not unique, we make a similar assumption that p; is the smallest
value among all the values satisfying the triangular condition. In this thesis, we do
not need the exact expression of N;(t,x) = ¢;(Z;)p; as investigated in [19], where
it showed that the existence of disturbance terms ¢;(z;)p; might drive the system
states escape to infinity in finite time, even in case that A; is an exponentially

decaying disturbance.

Assumption 3.2.3 The desired trajectory vectors Tq; € R, i = 1,---,n — 1 are

continuous, bounded and available.
The following lemma is used in the controller in solving the problem of chattering

86, 116].

Lemma 3.2.1 The following inequality holds for any e > 0 andn € R

0 < |n| — ntanh (77> < ke

€
where k is a constant that satisfies k = e~ Y je. k= 0.2785.
Lemma 3.2.2 Let V(-) and f(-) be continuous functions defined on [0, 00) with
V(t) >0, Vt € [0,00) and V(0) being bounded. If the following inequality holds
V(t) < —c1V(t) + o+ f(t), constants ci,cy >0 (3.2)
and f(t) is bounded, then V (t) is also bounded.

Proof: Multiplying (3.2) by e, it becomes

d

G (VOe) < et et (33)
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3.2 Adaptive Decoupled Backstepping Design

Integrating (3.3) over [0, t], we have
t
V() S V(0) - Zlet+ 2 et [ f(r)ar
C1 0

C1

From the following inequality

t t
e’clt/ e f(r)dr < e sup [f(T)]/ edr
0 0

C1 r€f0,t]
1
< — sup [f(7)]
C1 €0,
we have
C2, _ot Co 1
V(t) < [V(0) = —=]e”" + — + — sup [f(7)]
C1 €1 C1reoy

Therefore, if f(t) is bounded, i.e., sup, ¢ 4[f(7)] is finite and V(0) is bounded, we
can conclude that V(¢) is bounded. {

3.2.2 Adaptive Controller Design

In this section, the adaptive Lyapunov controller design is proposed for system

(3.1) and the stability results of the closed-loop system are presented.

The design procedure contains n steps. At step ¢, an intermediate control func-
tion «;(t) shall be developed using an appropriate Lyapunov function V;(t), i =
1,--+,n — 1. The control law wu(t) is designed in the last step to stabilize the
whole closed-loop system using the Lyapunov function V,,(¢). Different from the
backstepping design investigated intensively in the literature, where the Lyapunov
function of i step, i.e., V;(t) is partially composed of the Lyapunov function of the
previous step, i.e., V;_1(¢) for i = 2, -+ n. In this paper, the Lyapunov function of
each step is decoupled in the sense that it does not contain the Lyapunov function

of the previous step.

The design of both the control laws and the adaptive laws are based on the following

change of coordinates: z1 = o1 —yq, 2i = ; — Q1,1 = 2, -+, n.
Step 1: Let us firstly consider the equation in (3.1) when i =1, i.e.,
i1 = g1z + 0] Fi(z1) + fi(z1) + Av(t, 2)
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3.2 Adaptive Decoupled Backstepping Design

From the definition for new states z; and zo, i.e. 23 = 1 — yg and 2z, = x5 — g,
we have
21 = gl(ZQ + Oél) + Q{Fl(xl) + fl(l’l) -+ Al(t, I) — yd (34)

1

521, whose time derivative along
g1

Consider the scalar smooth function be V,, =
(3.4) is
V., =212+ 2o + — " (9 Fi+ fi + A1 — ga)]

Since the inequality 2129 < ﬁz% + k122, Vk; > 0 holds, noting Assumption 3.2.2,

we have
. 1 P1
Vi, < ——224kiz2+zfon +— (9 F1+f1—yd)]+—|21|¢1
4k, qn g1
A1
= 1k Zl +k122 +Zl(a1+0a1Fa 1)+pa1’21|¢a1 (35)
1

where p, 1 is an unknown constant, 6,1 is an unknown constant vector, ¢, ;(-) is a

known function, and F,(-) is a known function vector defined as

oF 1
Da1 1= ]27 Qa,l e [ ] Rn1+1
9 g G

¢a,1 = (blu Fa,l = [Fl 7f1 - yd]T S Rn1+17

Remark 3.2.2 The introduction of p,1 and 0,1 is to avoid possible singularity

problems. We estimate gil rather than g, to avoid the possibility of g1 = 0.

Consider the following Lyapunov function candidate as

1 1~ ~
‘/1 = 72% —|— 592:11—‘0_1190171 _|_

-2
P,
201 !

29

where T'g; =TF, >0, A1 >0, () = (A) — (), and 0, and p, are the estimates of

041 and p, 1 respectively.

Choose the following intermediate control law and parameter adaptation law as

1 a,
1] = —Cl21 — —F—21 — Qa 1Fa1 pa 1¢a1tanh( 1¢ 1) (36)
4]{71 ’ €1
éa,l = Fel(Fa,lzl - U@léa,l) (3-7)
~ z a A~
Bus = i [2160n tann (220 — g5, (3.5)
1
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3.2 Adaptive Decoupled Backstepping Design

The time derivative of V; along (3.5) and (3.6)-(3.8) is
v, < —c127 + k125 + Paal|z1]¢a1 — 2161 tanh( .
1

~ A~ AT A
—0p1Pa,1Pa,1 — 0—919%19(1,1

Applying Lemma 3.2.1 and noting the following inequalities
1 1

~ A ~2 2
—0p1Pa,1Pa,1 < _5 plpa,l + io-plpa,l

A 1 ~ 1
—0919219(1,1 < _5001|’0a,1|l2 + 5091||9a,1H2

we have
: 2 s 1 1 o2
Vi < —C12] + k122 - iaplpa,l - 5091H0a,1H
1 1
+§ Doy + 5061”9@,1”2 + 0.2785€1pa,1
< —MVi+ 1tk
where
. 091
A1 :=min < 2¢;, , ————
1 { Op17p1 /\maX(F6_11>}
1 1
1= 50901 + 500ll6a1[” + 0.2785€1p0,
Multiplying (3.10) by e, it becomes
d
pr (Vl(t)e’\lt) < preMt ¢ k‘le)‘ltz%

Integrating (3.11) over [0, ], we have

_n

V() < [1h(0) - 2

At

Z1¢a,1

t
Je Mt B g e [ e (r)ar
0

(3.9)

(3.10)

(3.11)

(3.12)

In (3.12), if there is no extra term e~ [ kjeM722(7)dr within the inequality, we

~

can conclude that Vi(t), 21, Pa1, 0a1 are all GUUB. Noting the following inequality

¢ ¢
e_Alt/ kzle’\”zg(T)dT < e gup [Z%(T)]/ kieMTdr
0 ] 0

T€[0,t

(=% sup ()1 - )

(3.13)
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we have
V() < [ (0) — Ee e 8L 4 T sup [3(r)] (3.19)
1 1 1 7€[0,¢]
Therefore, if z5 can be regulated as bounded, we can obtain the boundedness of
the term e~ M? [J keM722(7)dr. From (3.14), we can then claim that V;(t), 21, fa1,

~

0,1 are GUUB.

Remark 3.2.3 Note that the Young’s inequality is used to decouple the coupling
term z1zy, which is traditionally left to be dealt with/cancelled in the next step. If
the coupling term is left intact and the intermediate control law is constructed as

21%,1)

A A
ay = —c121 — 0,1 Fa1 — Paji@a,1 tanh( .
1

then we obtain

Vi <—-MW+ p1+ 2122

Similar derivation yields
V pl —A1it pl -1t t AT
(1) < Vi(0) — —]e ™ + —= +e M2y (T)zo(T)dT (3.15)
At At 0
From (3.15), we known that it is impossible to obtain the GUUB of Vi(t), 21, Pa1,

and éa,l even if zo can be requlated as bounded. In other words, we can only obtain
this property by assuming that z12o can be guaranteed to be bounded in the next
step, which is actually hard to achieve. In the standard backstepping design, z1zo
will be cancelled in the next step, while another coupling term zoz3 will appear and
be dealt with later, till the final step. The cancellation-based iterative backstepping
design utilize the states interconnection, while the decoupled backstepping design

tries to decouple the interconnection.
Step 2: Since z9 = x5 — a1, the time derivative of z; is given by
Zy = T9—
= (273 + 92TF2(:Z’2) + fz(ﬂ_?Q) + Ag(t, .T}) — (jél (316)

Again, by viewing x3(t) as a virtual control, we may design a control input ay for
(3.16). Since z3(t) = x3(t) — aa(t), we have

22 = 92(23 + OZQ) + QgFQ(jQ) + fg([f'g) + AQ(t, CL’) — dl
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3.2 Adaptive Decoupled Backstepping Design

Since o is a function of x4, yq4, ¥q and 6,1, &y can be expressed as

. Oy | N day . N Oay > Oan g | ooy -
(6% = —X xXr a, ~~ DPa
' dr, 0Z 42 d2 ({99@,1 ' OPa,1 Pa

0
= 8&(91‘%2+0 Fi+ fi+A)+w

where 5 5
a1 . aq &
! Tgo + —= ! 0

4 aO{l p
— a,l a~
axd2 89%1 apa,l ol

~

w1 =
then we have

2y = g2+ o) 4+ 05 Fo(Zo) + fo(Z2) + Ao(t, 2)
Oa
— (1 + OTF 4 fi + Ag) — w0y

axl
= 92{234‘0424- . — (03 F> + fo+ Ay
8061 T Ox aq 8061 8061
g2 Jo et e A N 1
gl@ 13:2 9 Yoz, 8:1;1 8x1 ! 8:61 ! wl):| (3 7)

Consider the scalar smooth function V,, = EZQ, whose time derivative along (3.17)

is

V., = 2323+2 [a2+g (65 F2+f2+A2—glg o —01 Fy ‘32 — gzi gz Al—wl)}
Since zp23 < 4k 25 + k922, Vky > 0 and from Assumption 3.2.2, we have
V., < . 25 4 ka2 + 2 [042 +— (9TF2 + fo+ Ay — %@
4k g 9o 1
OTR, gxi g‘;‘i - gjiAl — )]
< 422 25+ kazi + 22(0n + 005 Fu) + |22|pt o0a2 (3.18)

where p,o and 6,2 are unknown constant vectors, ¢,2(-) and Fj, () are known

function vectors defined as

pa2 - []27 pl] ERZ
g2 go
8061 2
¢a,2 = [¢27 | |¢1] €ER )
0,5 := [ﬁ 91 ﬁ i T c pmatnat2
’ 92 92 92 92
day Jday day
Fooi=[F), ——a9,——FF — € Rrtnat?
)2 [ 2 6x1x2 Oz 17f2 O 1f1 wl]
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3.2 Adaptive Decoupled Backstepping Design

Consider the following Lyapunov function candidate
1 -15 Lop s
Vo = 292 9 F92 0(1,2 + §pa72rp2 Da,2

Choose the following intermediate control law and parameter adaptation law as

1 a
g — —Co29 — —— 29 — 9(1 2Fa 2 — ﬁzzq)a 2 tanh1(22¢ 72) (319)
4]{72 ’ ’ ’ ’ €2
éa,Q = Faz(Fa,zzz - 092éa,2) (3-20)
~ Z a A~
pa,2 = FpQ [ZQCI),LQ tanhl( 2? ’2) — Upzp&g} (321)
2
where
Y day 2x2
D, o = diag{¢,, ‘8—‘¢1} €eER
T1
tanh; (v) := [tanh(v;), tanh(vy), - - -, tanh(v,)]", v = [v1,ve, -, va]"
Remark 3.2.4 The introduction of notation ®,9 and ®,,;, 7 = 3,---,n in the next

steps is for the ease of applying Lemma 3.2.1 in its vector version. An alternative

is to define pao and ¢ respectively as

P2 P Oa
pa,? = max{_Qa g_l ) ¢a,2 ¢2 + | -
2

g2

g

then pqo s a unknown scalar constant and ¢q2 s a known scalar function and

Lemma 3.2.1 can be applied directly.
The time derivative of V5 along (3.18) and (3.19)-(3.21) is

2¢2a ,2 )]

—0pPgbaz — 09201 5042 (3.22)

Vo < —co22 4 ko2l + il 22| da2 — 22Pa2 tanh (

To complete the squares and noting Lemma 3.2.1, we obtain

1

5‘7102“15(1,2”2 - 5@2“@1,2”2

1 1
+501)2”]9(1,2”2 + 5062”0@,2”2 + 0.2785€3p5 2

Vg < —02222 + k2z§ -

< =X Vo+po+ k22§
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3.2 Adaptive Decoupled Backstepping Design

where
ps 2 - ]2 + ]ﬁ
g2 92
. Op2 062
Ao 1= min { 2¢o, P —
{ )\max(rp21) /\maX(F021) }

1 1
p2 = 5%2”%,2“2 + 50492“9«1,2”2 +0.2785¢5p; 2

Similarly, if z3 can be regulated as bounded, we can conclude that z, is bounded,

and so is z;.

Remark 3.2.5 Since the coupling term z1zo in Step 1 has been decoupled by ﬁzQ
and k23 so that it does not need to be cancelled in Step 2. The Lyapunov function
candidate Vo(t) in Step 2 is constructed independently rather than adding into the
previous Vi(t). Accordingly, the intermediate control of this step does not need to

cancel the coupling term.

Step 1 (3 < i < n —1): Similar procedures are taken for each steps when i =

3,---,n—1as in Steps 1 and 2.

The time derivative of z;(t) is given by

4= gi(zip + aq) + 0] F(Z) + fi(Z) + Ai(t,2) — dyy (3.23)
Since «;_1 is a function of Z;_1, Ty, éa,l, é(hg, s éa’i_l, &;_1 can be expressed as
=l 00[2‘_1 8ai_1 . =l 60[1 12 Gozz 1
Q1 = Z 317]+ — ZTai + Z Qa] +Z A A A
=1 Ox; Ldi j=1 aea,j OPa,;j
= 0oy |
= Z ) € + wi—1
j=1 9Tj
where )
Oa; 1 ooy ! 0o 5
Wi = i— ljdz‘f“ Az 1 7]+Z aAz 1°
xd’b j=1 Qa,‘] a,j

then (3.23) becomes

4= gi(zi + ) + 0 Fi(z) + fi(T) + At @)
oy

— 83} (g]x]+1+9 F +f]+A) -1
j=1 J
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3.2 Adaptive Decoupled Backstepping Design

= gi{zi—i-l +a; + i{ezTFz + fi+ Ay
gi

1180./11

Oz,

(gjmjr + 0] Fj+ fi + A)) — wi_l}} (3.24)
j=1

1

Consider the scalar smooth function V,, = E’Z?’ whose time derivative along (3.24)

is

Vz :ZiZi+1+Zi{Oéz [QTF +fit A Z 9337]+1+¢9 Fi+fi+A5)— wz‘ﬂ”

8:6]
Since z;zj41 < —z + kizZq, VEk; > 0 and from Assumptlon 3.2.2, we have
i — 4kf 1+ g; i

i—1

(90@
_Z 0z 1(gjx]+1+9 Fy+ fi+4y) - wi—l]}
j=1 9%j
1
S Pt kil + 2o+ 0L F ) + |zl pe da (3.25)

where p,; and 6,; are unknown constant vectors, ¢,;(-) and F,;(-) are known

function vectors defined as

[pz gle ]TGRZ'

Pai =g ~g; Dot
80@ 1 3% 1 3% 1
Qba,i = [¢z;| ’(,bz 1, | ’9251 2y "y | |¢1] ;
9T i i .
eayi [ ) g 17 g 1022 1] € R™
i 9i 9i
Oay;_ day;_ Jay;_ Jay;_
Foi= [FiTa —ina -2 i,{l?_LIi—la -2 1:;27 T
’ Ox;_4 0x;_y 0x;_s 0x;_s
da_y da; L = 0oy T g : .
—— T2, — y Ji i — w1 € R n; = i+ 2
0y 2 Oy B fim JX:I Ox; fy = win] " ;nj—l— !

Similarly, we consider the following Lyapunov function candidate

V=V, eTF 0,
z+2az 01 +2

together with the following adaptive intermediate control law

pa zrpz pa 7

1 N ’L a, 7
Qi = —CiZi = %~ 9371- pal<bmtanh1( ¢ ) (3.26)
éa,i = PGi(Fa,iZi - Uez‘éa,i) (3-27)
ﬁa,i = Fpi [Ziq)a,i tanhl(zigba’i) — O-piﬁa,i] (328)

i
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3.2 Adaptive Decoupled Backstepping Design

where
Oy

. aOéZ‘_ 8ozi_
(I)a,i = dlag{¢m ’(995—-_1|¢i71’ ’(%—‘_;Wifm T, ’(9711‘(]51}

The time derivative of V; along (3.25) and (3.26)-(3.28) is
Vi < -+ kil +pa [|Zz"¢a,i — 2 Pa, taﬂhl(%ea’i)}

_o-piﬁiiﬁaﬂ - 001'95,@-9@,2
To complete the squares and noting Lemma 3.2.1

. 1 . 1 B
Vi < -zl + izl — 5 pillBaill> — §Uez'||9a,z'||2
1 1
+§UpiHPa,iH2 + 50(%"9%@' 2+ 0.2785¢;ps i

—\iVi + pi + izl (3.29)

IN

where

i
Ds,i = Z Pai,j
j=1

Opi 095 }

Amax(T5:) " Amax(Tgi')

1 1
pi = +§Upi||pa,i||2 + 50-91'”0(1,2'”2 + 0.2785€;ps i

A; = min {2@,

Similarly, if z;,; can be regulated as bounded, we can conclude that z; is also

bounded.

Step n: This is the final step, since the actual control u appears in the derivative

of z, as given by

Since ¢,_1 can be expressed as

—1
3 aO‘n—l
Qp_1 = Z a X + wp—1
j=1 97
where . .
n— n—
80471,1 aOénfl A 8(1”,1 ~
Wn-1 = OT dn + Z A a.j Z Op. . L
n j=1 a,j j=1 YPa,j
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3.2 Adaptive Decoupled Backstepping Design

then (3.30) becomes

b = gaut 0L F(2) + fulz) + An(t,2)
n— 1aan 1

- Ox (g]x]+1—|—0 F +f]+A) n—1
j=1 J

= gn{u—i— 07 F + o+ A,
In

1
- aan 1
_j <z, ——(95%541 +9 Fy+ fi +4j) - anl}} (3.31)
Consider the scalar smooth function V,, = 2; 22, whose time derivative along
(3.31) is
1% {u+ = [QTF +fat A, nzlaa"l( O F+ £+ Ap) —wna| }
2 — An U n X Wn—
n g = ] axj g] ]+1 J 1
Noting Assumption 3.2.2, we have
Vzn < zp(u+ QZnFa,n) + |Zn|p?;n¢a7n (3.32)

where p,, and 6,, are unknown constant vectors, ¢,,(-) and Fy,(-) are known

function vectors defined as

[pl gﬂflpT ]T c R"

Pan = ) a,n—1
9n  Gn
80377, 1 aan 1 805n—1 '
¢a,n = [¢na| |¢n 1, | |¢n 2, "7 | o |¢1]T € R;
T
0 gt G )
ea,n = [ y g 17 J 10271 1] € R™
9n  Gn gn
0@ -1 (’9@ 1 804 -1 8a 1
Fan = FT7_ . Tny — . o 7_7nxn—7_ = FT ) )
7 [ " axn—l 81’n_1 et amn 2 ' axn—2 n?
Ooy_1 o1 804n 1 T _
- Ta, — F y Jn — Wn— € Rnna
0y 2 ory ! Jn = Z 1

Ny = Z n; +2n
j=1
Similarly, we consider the following Lyapunov function candidate

~ 1. L
Vo=V, + QQEnFQT}ea,n + SPanl ynDan

48



3.2 Adaptive Decoupled Backstepping Design

and the following adaptive control law

U= —CpnZp — égnFan — ﬁan)am tanhl(zn(ba’n) (3.33)
b b €n
éa,n = F@n(Fa,nzn - O-Gnéa,n) (334)
ﬁam =Tpn[2nPan tanhl(zn¢a’n) — OpnPan) (3.35)
where 5 5 5
. Op—1 Q1 Q1
CI)an::d ny | |Pn—1 |5 |Pn—2, """
, iag{¢ |8:1:n_1 |fr—1 |337n—2 o | e [
The time derivative of V,, along(3.32) and (3.33)-(3.35) is
3 2 T Zn¢a,n
Vn S _Cizn + pa n [‘Zn‘¢a,n - an)a,n tanhl( )}
b en
_O'pnﬁz;nﬁa,n - Uanéz;néa,n (336)
To complete the squares and noting Lemma 3.2.1
. 1 B 1 ~
Vn S _anz - §o'anpa,nH2 - 509n‘|9a,n”2
1 1
+§ pn||pa,n||2 + 50-071”‘9(1,71“2 + 02785€nps,n
where
Psn = Zps,n,j
j=1
A\, 1= min {ZCn, Opn Oon }

Amax(Tpn)” Amax(Tg,)

1 1
pn = 50mlPanll® + 500n0an]l® + 0-2785¢0ps.n

Theorem 3.2.1 shows the stability and control performance of the closed-loop adap-

tive systems.

Theorem 3.2.1 Consider the closed-loop system consisting of the plant (3.1) un-
der Assumptions 8.2.1-3.2.3. If we apply the controller (3.33) with parameters
updating law (3.34) and (3.835), we can guarantee the following properties under

bounded initial conditions
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3.2 Adaptive Decoupled Backstepping Design

(i) z(t), é,w-, Dais @ =1,---,n, and x(t) are globally uniformly ultimately bounded;

(i1) Given any uf > u;, there exists T' such that, for allt > T, z;(t) will remain
i a compact set defined by

in::{zieR“zﬂguj}, i=1,---,n

which can be made as small as desired by an appropriate choice of the design

parameters.

Proof: Consider the following Lyapunov function candidate
1~ ~ 1
Vo=V, + 500000 0an + 5PanL pBon (3.37)

~ ~

where V, = %%nzg, and (-) = (-) — (+). From the previous derivation, we have

V(1) < =\ Vi () + pn (3.38)
it follows that
ogvuwgwmm—iyaw+§:gnmx*ﬂ+iz (3.39)
where the constant
Va0) = 52200 + 500, O3 00 (0) + SO0, 50 (0) (340

Considering (3.37), we know that

_ 2V, (1)
10anll* < 77%5 (3.41)
_ 2V, (t)
[Pamll® < = (3.42)
)‘min(rpr})
1
Vo = gzi < Va(t) (3.43)

According to Lemma 2.2.5 in Chapter 2, we know from (3.39) that V,,(t), 2, 04
and p, , are GUUB. Thus, V;(t), 2, éw and p,; are also global uniformly ultimately
bounded for i =1,---,n— 1. Since z; = x1 — yq and y, is bounded, z; is bounded.
For x5 = z5 + a4, since «a; is function of bounded signals x1, Zgpo, ém, él, oy 1s

thus bounded, which in turn leads to the boundedness of x5. Following the same
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3.2 Adaptive Decoupled Backstepping Design

way, we can prove one by one that all o;_y and z;, © = 3,---,n are bounded.
|7 remain bounded. If we let
tn = \/2GnpPn/An, then from (3.43), we know that given any u’ > p,, there exists T’
such that z, < u', Vt > T. Similarly, from(3.29), we know that given any pf > p;,
there exists T" such that z; < uf, V& > T, where p; = +/2¢;p;/\; and p; = pi+ki,ul2+1.
Therefore, we can readily conclude that there do exist a compact set €2, such that
z; € Q,,, Yt > T. This completes the proof.

Therefore, the states of the system z = [z, -, 2,

Remark 3.2.6 Note that (), can be made arbitrarily small, which means that z;(t)

can stay arbitrarily close to zero.

Remark 3.2.7 Different from the traditional backstepping design, the Lyapunov
function candidate of the overall system V,,(t) is not the sum of all previous V(t),
i=1,---,n—1. As a result, the residual set of each state z;(t), i = 1,---,n can

be determined individually in an iterative way.

3.2.3 Simulation Studies

To illustrate the proposed adaptive control algorithms, we consider the following

second-order plant

-jjl = (179 + 9133% + .f1316_0’5m1 + Al(t, iL’)
Ty = gou+ w3+ As(t, 1)

y = I

where © = [x1, 25]7, 6, is unknown parameter, A;(¢,x) and Ay(t,x) are unknown
disturbances. In our simulation, we assume that g1 = ¢go = 1, 6, = 0.1, A (t,2) =
0.6sin 29 and As(t, 2) = 0.5(x? + 22) sin®¢. The initial condition [z1(0), 72(0)]7 =
[0,0]7. The upper bounds of A; and Ay are |A(t,z)| < p1¢1(z1) and |Ay(t, )| <
pada(x), where p; = 0.6, ¢1(z1) = 1.0, po = 0.5, ¢o(x) = 2% + x3. The control
objective is to track the desired reference signal y; = 0.5[sin(¢) +sin(0.5¢)]. For the
design of adaptive controller, let z; = x1—yq4, 29 = x9—aq, and éaJ, Da1; éa’g, Da,2 be
01 1 O = [&, 0 LT

197 _n
] 7pa,1 g2 927 g2

the estimates of unknown parameters 6,; = [gl o -
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3.2 Adaptive Decoupled Backstepping Design

Pa2 = [, 2] the proposed controller is

g2’ g2
lgba 1
o = —C121 — 21 — 9a 1Fou1 — Pa1¢a tanh(——=)
4]{?1 €1
éaﬂ =T (Fo121 — o104 1)
A Zl¢a 1 A
Pag = Vp1[210a,1 tanh(——= ; ) = Op1Pa,1]
1
U = —Ca29 — éa’QFa’Q — ]322(13%2 tanhl(z2¢a’2)
bl 62
éa,Q = FOQ(Fa,QZ2 - 092éa,2)
% Z ¢a, A
Paz = Vp2l22®a tanh; (= . %) — OpaPas
2
where
%,1 = ¢1($1) Fa,l = [bel - yd]T;
Doy oy 8 oy
¢a,2 = [¢27| |¢1] ) Fa,2 = [—8—x1$ ) 1;f2 —f1 - w1]T

The following controller design parameters are adopted in the simulation: I'y; =
d1ag{15}, Yp1 = 10, F@Q = d1ag{30}, Fpg = d1ag{50}, Og1 = Op1 = Og2 = Op2 =
005, Cl = Cy = 20, ]{?1 = 10, €1 = € = 0.05.

From Fig. 3.1, it was seen that satisfactory transient tracking performance was
obtained after 10 seconds of adaptation periods. Fig. 3.2 shows that the system
state is bounded. Figs. 3.3 and 3.4 show the boundedness of the control input and

the estimates of the parameters in the control loop.

3.2.4 Conclusion

In this Section, adaptive decoupled backstepping has been presented as a gen-
eral tool for control system design, and it has been successfully applied to a class
of parametric-strict-feedback nonlinear systems with unknown disturbances which
satisfies triangular bounded conditions. It has been proved that the proposed sys-
tematic design method is able to guarantee global uniformly ultimately bounded-
ness of all the signals in the closed-loop system and the tracking error is proven to
converge to a small neighborhood of the origin. In addition, the residual set of each

state based on new coordinate in the closed-loop can be determined respectively.
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3.3 Adaptive Neural Network Design

Simulation results have been provided to show the effectiveness of the proposed

approach.

3.3 Adaptive Neural Network Design

3.3.1 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems

In(t) = gnult) + fu(z(t)),
y(t) = x1(t) (3.44)

where Z; = |11, 29, -, 2]T, ¥ = [x1, 29, -+, 2,)7 € R", u € R, y € R are the
state variables, system input and output respectively, f;(-) are unknown smooth
functions, and ¢; are unknown constants, ¢ = 1,---,n. The control objective is to
design an adaptive controller for system (3.44) such that the output y(t) follows
a desired reference signal y4(t), while all signals in the closed-loop system are
bounded. Define the desired trajectory ZTgit1) = [Ya,¥d:- - ,yc(li)]T, i=1,---,n,
which is a vector of y; up to its ith time derivative yéi). We have the following

assumptions for the system functions and reference signals.

Assumption 3.3.1 The signs of g; are known, and there exist constants Gmax >

Gmin > 0 such that gmin < ¢i] < gmax-

Assumption 3.3.2 The desired trajectory vectors Ty, 1 = 2,...,n are continuous

and available, and T4 € Qg C R* with Qg known compact sets.

3.3.2 Neural Network Control

In this section, the adaptive NN controller design is proposed for system (3.44) and

the stability results of the closed-loop system are presented.
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Figure 3.1: Responses of output y(t)(“—"), and reference y4(“- -”)

1.2

0.8

0.6 i

0.4

0.2 h

-0.8 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time (sec)
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Figure 3.4:
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3.3 Adaptive Neural Network Design

The design procedure contains n steps. At step ¢, an intermediate control func-
tion «;(t) shall be developed using an appropriate Lyapunov function V;(t), i =
1,--+,n — 1. The control law w(t) is designed in the last step to stabilized the
whole closed-loop system using the Lyapunov function V,,(¢). Different from the
backstepping design investigated intensively in the literature, where the Lyapunov
function of i step, i.e., V;(t) is partially composed of the Lyapunov function of the
previous step, i.e., V;_1(t) for i = 2, -- -, n. In this section, the Lyapunov function of
each step is decoupled in the sense that it does not contain the Lyapunov function

of the previous step.

The design of both the control laws and the adaptive laws are based on the following

change of coordinates: z1 = o1 —yq, 2i = ; — Q1,1 = 2, -+, n.
Step 1: Let us firstly consider the equation in (3.44) when i = 1, i.e.,
1 = 12 + fi(xr)

From the definition for new states z; and zo, i.e. 2y = 21 — yqg and 2o = x5 — g,

we have
Z = g1(za + o) + fi(z1) — Ya (3.45)
Consider the scalar smooth function be V,, = izf, whose time derivative along
(3.45) is
Vo = s+ il + (o) — )] (3.46)

Since ¢ is a unknown constant and fi(x;) is an unknown smooth function, Let
Q1(Z,) = gil(fl(atl) — 1J4) denote the unknown function with Z; = [z1, ya, ya]? €
Qz C R and Ty € Q). A RBF neural network is employed to approximate
Q:1(2y), ie.,

Qu(Z) = W' S(Zy) + e(Zy) (3.47)

where €(Z;) is the approximation error and W is the ideal weight. As W} is
unknown, we shall use its estimate W; instead, which forms the intermediate control
Q1 as

] = —C121 — WlTS(Zl) (348)

with constant ¢; > 0.
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3.3 Adaptive Neural Network Design

Remark 3.3.1 The introduction of Q1(Z1) is to avoid possible singularity problems
by estimating Q1(Z1) as a whole rather than g, to avoid the possibility of g1 = 0.

Consider the following Lyapunov function candidate as
1 .
Vi= 29 (Wl WHTTH (W — W)
1

where matrix 'y = T'T > 0.

Noting the inequality 212, < 4k 22 + k123, Vky > 0, the time derivative of V; along
(3.46), (3.47) and (3.48) is

. 1 ~
‘/1 S EZ% + k:lzg — 012% — WITS(Zl)Zl + WI*TS<Z1)21 + €(Z1)21
1
+(Wy — W)W, (3.49)

Letting ¢; = ¢ + cn with ¢, 2 C1o — and noting that —ci12? + €(Z1)z <

1
4k

—c127 + €5 -, (3.49) becomes
. 6*2
Vi < —clot — (WL = WHTS(Z) 2 + (WL — WHTTT'W + 4;1 + k123 (3.50)
11

The following practical adaptive law is given for on-line tuning the NN weights
Wl = Fl[S(Zl)Zl — 01W1] (351)

where o0y is a small constant and is to introduce the o —modification for the closed-

loop system.

Substituting (3.51) into (3.50) yields

«2

oy gy 22 (3.52)

‘./1 S —CTOZ% — 0'1(W1 — W )TW +
deyy

Noting the following inequalities
7 * T 1 T * 1 *
—o (W = Wi)"Wh < —5olW = I” + Soulim I

equation (3.52) becomes

«2

Vi o7 — 01||W1 Wi + 01||W*||2 Zl +k12§

IN

IN

—/\1‘/1 + P1 + k?122 (353)
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3.3 Adaptive Neural Network Design

where
. 01
A ': 2 min 1 ) N =1
1 min { IminCqg )\max(rfl) }
*2
p wmﬁ%
1 1 o,

Multiplying (3.53) by e, it becomes

d
a(vl(t)e’\lt) < preMt 4 kpeMtzd (3.54)

Integrating (3.54) over [0, t], we have

V1<t) < [Vl(O) g\)i] 7/\1t 101 —Alt/ k e/\lT 2 (355)

In (3.55), if there is no extra term e~ f(f kieM722(7)dr within the inequality, we

can conclude that Vi(t), 21, Pa1, HACLJ are all GUUB. Noting the following inequality

t
e_’\lt/ kreMT22(T)dr < e sup [22(r / kieMTdr
0

T€[0,¢]

(=5 sup [0 — )

)\l T€[0,t]
< — sup [z5(7)] (3.56)
A T€[0,t]
we have
P1y it , P1 kq
Vi(t) < [Vi(0) — S=]e™™ 4+ = 4 — sup [23(7)] (3.57)
A Al AL ey

Therefore, if z5 can be regulated as bounded, we can obtain the boundedness of
the term e~ [I kyeM722(7)dr. From (3.57), we can then claim that V;(t), 21, fa1,
0.1 are SGUUB.

Step 2: Since zo = 19 — ayp, the time derivative of 25 is given by
22 - .i'g - dl
= G273+ fo(T2) — (3.58)

Again, by viewing x3(t) as a virtual control, we may design a control input «s for
(3.58). Since z3(t) = z3(t) — aa(t), we have

Zo = gol23 + 0) + fo(T2) — 4
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3.3 Adaptive Neural Network Design

Since aq is a function of x1, y4, ¥4 and W7, &y can be expressed as

. 6&1 . 0@1 . aal
= R —— _
o 92, T+ D% = Ta2 + o 4% 1

= (g1$2+f1)+w1

where 5 5
Oy - ay 4
—W
a1_:112 Far 8W1 !

w1 =

then we have

. ~ 0
Zo = go(z3+ o) + fo(Z2) — a;“l(glxz + f1) — w1

Ooy day )}

= 9[23—1‘0424‘ (f2 91—2——f1—w1

3.59
% oo (3.59)

Consider the scalar smooth function V., = 5 -23. Noting that 2223 < 51-23 + k223,
Vky > 0, the time derivative of V,, along (3.59) is

. 1 Oay doy
Ve, < 4]@22 + k23 + 2 [az + (fz 9171962 - 8—1f1 - Wl)}
= 23+ 2 [062 + Qz(Zzﬂ
(3.60)
where 5 5
1 (0%} (0%}
Zy) = —(fo—qgr1=—x9 — —
Q2(Z>) 92(f2 g1 o T2 B ——f1 —w1)
with ZQ = [ig,al,aal/&cl,wl]T c QZ2 C R5.
Consider the following Lyapunov function candidate
1 1, .- .
V= o (W = W5)TT3 (0, — W5)
g2 2
with matrix ['y = T'? > 0.
Choose the following adaptive intermediate control law as
Qg = —C9229 — WQTS(ZQ> (361)
WQ == FQ[S(ZQ)ZQ — O'QWQ] (362)

where constant cy = co9 + c21 With g9, co1 > 0 and ¢35y = o0 — and o is a small

1
ma
constant and is to introduce the c—modification for the closed-loop system.
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3.3 Adaptive Neural Network Design

Noting the following inequalities

*2

€
—co125 + €(Za) 2y < —cor25 + €, 172] < 4022
21

. . 1 I
—0oa(Wo — W5)'W, < —§U2||W2 - WiII? + §U2||W2 12

we obtain
1 1 e
Vo < =3z — 20a||Wo — WP + oWy || + =2 + ky23
2 2 4021
< =N Va+ po + ko2s
where

. % 02
)\2 = min {29min020a )\(Fl)}
max \+ 2

%2

1 €
= = * |2 22
pr = 5ol W5 P+ 52

Similarly, if z3 can be regulated as bounded, we can conclude that z, is bounded,

and so is z;.

Step i (3 < i < n — 1): Similar procedures are taken for each steps when ¢ =

3,---,n—1as in Steps 1 and 2.

The time derivative of z;(¢) is given by

% = 9i(zig1 + aq) + fi( @) — iy (3.63)
Since «;_1 is a function of Z;_1, Z4;, Wl, Wg, o Wi,l, @;_1 can be expressed as
i—1 i—1 .
: 0 i—1 . 8041-, . 8ai, A
Qi = Y g 133]’ —— &g + —AIWJ'
=1 9%j Ldi j=1 j
§ a&iflx' 4w
= j i—1
= 0z !
where -
8041',1 . - 6051;1 A
Wi—1 = —Ig; + ——W,;
! Tdi ]; 8WJ !
then (3.63) becomes
. _ L Oy
G o= 9t ai) + @) + At x) = Y (95250 + f) —wina
j=1 J
1 k. 806171
= gi{zi_,_l + a; + g— [fz - Z W(gjxjﬂ + fg) - wi—l]} (364)
i j=1 J
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3.3 Adaptive Neural Network Design

Consider the scalar smooth function V,, = 2i

z?. Noting that z;2;,1 < 4k 22 +kizt g,
Vk; > 0, the time derivative of V., along (3.64) is

y 1 1 =l ooy -1
T 4kt i1 T2 {a + g; {f 32:21 o, (9T + fj) — wi 1”
1 2 2
A G T R + zilai + Qi(Z;)] (3.65)
where Z; = [93,, A1, 83;2117 83;21, e gzz:i,wi_l] S sz. C R¥+!

Consider the following Lyapunov function candidate

1 .
V—gz + = (W WHIT (W, — W) (3.66)

with matrix I'; = T'7 > 0.

Choose the following adaptive intermediate control law as

W, = TiS(Z)z — oiW] (3.68)

where constant ¢; = c¢;o + ¢;1 with ¢, ¢;1 > 0 and ¢}y, = ¢ — and o; is a small

4k ’
constant and is to introduce the c—modification for the closed-loop system.

Noting the following inequalities

%2

€
_cl-l,Z? + E(Zi)Zi S —cilzf -+ 6;|Zi’ S ﬁ
i1

. A 1 - 1
—0i(W; = W)TW; < —50illWi — W7 |1? + §Uz‘||m*H2

we obtain
2
Vi < —cjpri — UzHW Wi |1? + ozHW*HQ Zl +’€Zz+1
< _)\i‘/i+pi+kizi+1
where
. " 0;
/\i = Imin {29mincl‘07 m}
*2
; W* 2 ZZ
piim 5ol WP 4+ 2
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3.3 Adaptive Neural Network Design

Similarly, if z;,; can be regulated as bounded, we can conclude that z; is also
bounded.

Step n: This is the final step, since the actual control u appears in the derivative
of z, as given by
Zn = gott + () — dq (3.69)

Since &,,_1 can be expressed as

-1
5 aOénfl
(e 7] Tj+ Wp1
jz::l (9a:j /
where 1
O0ty_1 - = Oy 5
Wp—1 = — dn T Z = J
i o oW
then (3.69) becomes
) n—1 aan—l
G o= gaut ful@) = D ——(gimjn + fj) —wn
o 0z
1 n-l 0an_1
= gufut —[fa =2 S Gmi + £) — wna]} (3.70)
dn j=1 8x]~
Consider the scalar smooth function V, = ﬁzi, whose time derivative along
(3.70) is
. 1 nl a()én,1
Ve, = Zn{u + o [fn - jz::l ij(gjxj—&-l + fi) — wn—l}}
= zplu+ Qn(Z,)] (3.71)
where .
1 L Doy,
Qu(Zn) = —|fu = X2 52 (052501 + f5) =
Gn =1 9T;
with Z, = [1, a_y, %52t 2t Gl 1] € Qg C R¥HL

Similarly, we consider the following Lyapunov function candidate

1 1, . .
V, = 2—gz3 + §(Wn —WHTT YW, — W) (3.72)

with matrix I',, = T'Z > 0.
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3.3 Adaptive Neural Network Design

Choose the following adaptive intermediate control law as

Oy = —Cozn — WES(Zy) (3.73)

where constant ¢, = ¢,0 + ¢,1 With ¢,, ¢;1 > 0, and o; is a small constant and is to

introduce the o —modification for the closed-loop system.

Noting the following inequalities

%2

€
—em 22+ e(Zn)2n < —cm 2+ € |zn] < 4;"1
n

A N 1 “ 1
_Un(Wn - W;)Twn < _§UnHWn - W:H2 + EanHWﬁkHz

we obtain

%2

1 A 1 €

2 Hr ”7* 2 ”r* 2 z
—Ln - aYn n - avn —
CnoZn 26 H nH 26 H nH 4,

Va

IA

IN

where

)\n ‘= min {29m1n0n07 L)}

1 €
n = =0 |[WHI? + 2
= 5alWIE + 12
Theorem 3.3.1 shows the stability of control performance of the closed-loop adaptive

systems.

Theorem 3.3.1 Consider the closed-loop system consisting of the plant (3.44) un-
der Assumptions 3.3.1 and 3.3.2. If we apply the controller (3.73) with NN weights
updating law (3.74), we can guarantee the following properties under bounded initial

conditions

(i) z, Wi, i=1,---,n, and x(t) are semi-globally uniformly ultimately bounded

and the vector Z = [ZF', ..., ZT|T remains in a compact set Qz specified as

n n 5 20
QZ = {Z‘ ZZZQ S 2gmaxCO7Z HVVZHQ S 70_17
=1 =1 )\min(ri )
ZTgi € Qgiyi = 2, ,n} (376)
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3.3 Adaptive Neural Network Design

where Cy > 0 is a constant whose size depends on the initial conditions (as
will be defined later in the proof); and

(ii) the closed-loop signal z = [z1,...,2,)7 € R™ will eventually converge to a

compact set defined by
Qs = {2 | 12l° < i} (3.77)

with i > 0 is a constant related to the design parameters and will be defined
later in the proof, and Qs can be made as small as desired by an appropriate

choice of the design parameters.

Proof: Consider the following Lyapunov function candidate
"1 1, .- .
Vi)=Y 2—22 + 5 (Wi = W (W, — W) (3.78)
i=1 “9i
From the previous derivation, we have

it follows that

i—“]e—m + i—" <V (0) + fn (3.80)

with constants p, = p,/\, and V,(0) = 2,%"2,21(0) + W (0)T, W, (0). From (3.72),
we have 22 < 20max Vo (1), and [[W, ]2 < 2V, (£)/Amin (T1).

0 < Vu(t) < [Vi(0) —

In Step n — 1, we have obtained
Vi1 (t) < =M1 Vo1 (8) + pry + k122 (3.81)
As 22 < 2gma Vi (t) and V,(t) < V,,(0) + p,, we have
Voot (8) < =Xt Vit (8) + ot + 2kn—1Gmax(Va(0) + o) (3.82)
Letting pn—1 = [Pn-1 + 2kn—19max(V5(0) + pn)]/An—1, from (3.82), we have
Vi1 () < [Vae1(0) = poa]e ™+ poy < Vit (0) + p (3.83)
Noting (3.66), it follows
Zn-1 < 29maVa1 () < 20max(Vae1(0) + pn-1)
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3.3 Adaptive Neural Network Design

Similarly, we can conclude that for i =1,---,n
g < 2040) + )
2 < 20max(Vi(0 i Wi 2 <
with p; = [pi + 2kigmax(Vi+1(0) + pit1)]/ i
Considering (3.78), we know that
V(t) < Co (3.84)

with Cyp = Y7, V;(0) + p;, from which we can conclude that z; and W; are bounded,
1=1,---,n. Since z; = x1 —y4 and y, is bounded, x; is bounded. For x5 = 25+,
since ay is function of bounded signals zy, 71, Wl, aq is thus bounded, which in
turn leads to the boundedness of x5. Following the same way, we can prove one by
one that all o;_1 and x;, © = 3,...,n are bounded. Therefore, the systems’ states

x;, © = 1,...,n are bounded.

Considering (3.78), we know that

2V (1)
min(Ffl, ceny F71>

n

> 2 < 2V (), LI < 5 (3:85)
=1 =1

From (3.84) and (3.85), we readily have the compact set Q5 defined in (3.76) over

which the NN approximation is carried out.

In addition, from (3.80) and (3.83), we have that lim; ... ||2||* = 20max 21y pi- Let
= 2Qmax 21 Pi- We can conclude that the vector z will eventually converge to
the compact set Qg defined in (3.77). This completes the proof.

3.3.3 Conclusion

In this section, decoupled adaptive neural network backstepping control has been
presented as a general tool for control system design, and it has been successfully
applied to a class of strict-feedback nonlinear systems with unknown system func-
tions. It has been proved that the proposed systematic design method is able to
guarantee semi-globally uniformly ultimately boundedness of all the signals in the
closed-loop system and the tracking error is proven to converge to a small neigh-
borhood of the origin. In addition, the residual set of each state based on new

coordinate in the closed-loop can be determined respectively.
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Chapter 4

Adaptive NN Control of
Nonlinear Systems with Unknown

Time Delays

4.1 Introduction

Adaptive control has proven its great capability in compensating for linearly pa-
rameterized uncertainties. To obtain global stability, some restrictions have to be
made to system nonlinearities such as matching conditions [1], extended matching
conditions [2], or growth conditions [3]. To overcome these restrictions, a recursive
design procedure called adaptive backstepping design was developed in [5]. The
overparametrization problem was then removed in [14] by introducing the concept
of tuning function. Several adaptive approaches for nonlinear systems with trian-
gular structures have been proposed in [15][117]. Robust adaptive backstepping
control has been studied for certain class of nonlinear systems whose uncertain-
ties are not only from parametric ones but also from unknown nonlinear functions
[15][86][24] and among others.

For system & = f(x) + g(z)u, the unknown function g(z) causes great design dif-
ficulty in adaptive control. Based on feedback linearization, certainty equivalent

control u = [—f(z) + v]/g(z) is usually taken, where f(z) and j(z) are estimates
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4.1 Introduction

of f(z) and g(x), and measures have to be taken to avoid controller singularity
when g(x) = 0. Although the system’s virtual control coefficients are assumed to
be unknown nonlinear functions of states, their signs are assumed to be known as
strictly either positive or negative. Under this assumption, stable neural network
controllers have been constructed in [51][118][119][31] and in [89][90] by estimating
the derivation of the control Lyapunov function. To avoid the singularity problem,
integral Lyapunov functions have been developed in [120][88], and semi-globally
stable adaptive controllers are developed, which do not require the estimate of the
unknown function g(x). However, the controller design becomes quite complicated
due to the introduction of the integral Lyapunov functions especially combined with
backstepping design. In [121], a novel stable neural network control scheme was de-
veloped based on the simple quadratic Lyapunov function under mild assumptions

on the system functions, by which the singularity problem was effectively avoided.

Practically, systems with time delays are frequently encountered (e.g., process con-
trol). Time-delayed linear systems have been intensively investigated as summa-
rized in [122][92]. The existence of time delays may degrade the control perfor-
mance and make the stabilization problem become more difficult. However, the
useful tools such as linear matrix inequalities (LMIs) is hard to apply to nonlinear
systems with time delays. Lyapunov design has been proven to be an effective tool
in controller design for nonlinear systems. One major difficulty lies in the con-
trol of time-delayed nonlinear systems is that the delays are usually not perfectly
known. One way to ensure stability robustness with respect to this uncertainty
is to employ stability criteria valid for any nonnegative value of the delays, i.e.,
delay-independent results. A class of quadratic Lyapunov-Krasovskii functionals
originated in [123] has been used early as checking criteria for time-delay systems’
stability. The unknown time delays are the main issue to be dealt with for the
extension of backstepping design to such kinds of systems. A stabilizing controller
design based on the Lyapunov-Krasovskii functionals is presented in [109] for a
class of nonlinear time-delay systems with a so-called “triangular structure”. How-
ever, few attempts have been made towards the systems with unknown parameters

or unknown nonlinear functions.

Motivated by previous works on the nonlinear systems with both unknown time
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4.1 Introduction

delays and uncertainties from unknown nonlinear functions, we present in this
chapter the practical adaptive controllers for a class of unknown nonlinear systems
in a strict-feedback form with unknown time delays. Using appropriate Lyapunov-
Krasovskii functionals in the Lyapunov function candidate, the uncertainties from
unknown time delays are removed such that the design of the stabilizing control
law is free from these uncertainties. In this way, the iterative backstepping design
procedure can be carried out directly. Practical stability is introduced to solve the
singularity problem [114][124][125] due to the appearance of 1/z; or 1/z? in the
controller and the tracking error can be made to confine in a compact domain of
attraction. Neural networks is utilized as an function approximator to tackle the
uncertainties from unknown nonlinear functions and its feasibility of approximation
is guaranteed in novelly defined compact sets. Time-varying control gains rather
than fixed gains are chosen to guarantee the boundedness of all the signals in
closed-loop system. Semi-globally uniformly ultimately boundedness (SGUUB) of
the signals in the closed-loop system is obtained and the output of the systems is

proven to converge to a small neighborhood of the desired trajectory.

To the best of our knowledge, there is little work dealing with such a kind of
systems in the literature at present stage. The proposed method expands the class
of nonlinear systems that can be handled using adaptive backstepping techniques.

The main contributions of the chapter are:

(i) the use of integral or quadratic Lyapunov functions to avoid controller sin-

gularity problem commonly encountered in feedback linearization control;

(ii) the combination of Lyapunov-Krasovskii functional and the Young’s inequal-
ity in eliminating the unknown time delay 7; in the upper bounding function of
the Lyapunov functional derivative, which makes neural network parametriza-

tion with known inputs possible;

(iii) the introduction of practical robust control to avoid possible singularity prob-
lem due to the appearance of 1/z; or 1/z2 in the controller, by which it is
guaranteed that the tracking error will be confined in a compact domain of

attraction;

68



4.2 Adaptive Neural Network Control

(iv) the use of neural networks as function approximators with its feasibility being

guaranteed over the practical compact sets for the first time in the literature;

(vi) the choice of the time-varying control gains instead of fixed gains to guarantee

the boundedness of all the signals in closed-loop systems.

The rest of the chapter is organized as follows.

In Section 4.2, the neural network control for a class of nonlinear time-delay sys-
tem in strict-feedback form is presented. The problem formulation and prelimi-
naries is given in Section 4.2.1. Section 4.2.2 gives a brief introduction of linearly
parametrized neural networks. A robust adaptive controller design and its stability
analysis are presented in Section 4.2.3. A simulation example is given in Section
4.2.4 followed by Section 4.2.5, which concludes this section.

In Section 4.3, the problem studied in Section 4.2 is revisited with quadratic Lya-
punov function being used rather than the integral Lyapunov function chosen in
Section 4.2. The problem is formulated in Section 4.3.1 followed by the controller
design for first-order system, the controller design for nth-order system and the

conclusion in Sections 4.3.2, 4.3.3 and 4.3.4 respectively.

4.2 Adaptive Neural Network Control

4.2.1 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems

{ 0) = 5 O)ina) 4 H(@0) + Ao =) 1S i<n-1
T (t) = gn(@(t))u+ fu(z(t)) + hal2(t — 7))
where T; = [x1,Zo,...,7;]7, ¥ = [x1,29,....,2,]7 € R" and u € R are the state

variables and system input respectively, ¢;(-), fi(-) and h;(-) are unknown smooth
functions, and 7; are unknown time delays of the states, ¢ = 1,...,n. The control
objective is to design an adaptive controller for system (4.1) such that the state
x1(t) follows a desired reference signal y,(t), while all signals in the closed-loop

system are bounded. Define the desired trajectory Za;i1) = [Ya, Va, ...,yc(li)]T, i =
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4.2 Adaptive Neural Network Control

1,...,n — 1, which is a vector of y4 up to its ith time derivative yg). We have the
following assumptions for the system’s signals, unknown functions and reference

signals.

Assumption 4.2.1 The system states x(t) and their partial time derivatives, T, _1(t),

are all available for feedback.

Remark 4.2.1 Note that the requirement for T, _1(t) is a constraint but realistic
for many physical systems as we are not requiring x,, which is directly influenced

by the control.

Assumption 4.2.2 The signs of g;(Z;) are known, and there exist constants gy

and known smooth functions g;(Z;) such that g < |g:(%;)| < g:(7;) < 00, VZ; € R'.

Remark 4.2.2 Assumption 4.2.2 implies that smooth functions g;(Z;) are strictly
either positive or negative. In the following, we only consider the case when g;o <
9:(%;) < g:i(7;), VT; € R'. Assumption 4.2.2 is reasonable because g;(T;) being away
from zero are controllable conditions of system (4.1), which is made in most of
control schemes [19]. For a given practical system, the upper bounds of g;(Z;) are
not difficult to determine by choosing g;(x;) large enough. It should be emphasized
that the low bounds g;o are only required for analytical purposes, their true values

are not necessarily known.

Assumption 4.2.3 The desired trajectory vectors Ty, 1 = 2,...,n are continuous

and available, and T4 € Qg C R* with Qg known compact sets.
Assumption 4.2.4 The unknown smooth functions h;(z;(t)) satisfy the following

inequality |h;(z;(t))] < X5y |;(t)]0s;(Zi(t)) where g;;(-) are known smooth func-

tions.

Assumption 4.2.5 The size of the unknown time delays is bounded by a known

constant, 1.e., T; < Tmax, ¢ = 1, ..., n.
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4.2 Adaptive Neural Network Control

Remark 4.2.3 There are many physical processes which are governed by nonlinear
differential equations of the form (4.1). Exzamples are recycled reactors, recycled
storage tanks and cold rolling mills [92]. In general, most of the recycling processes

inherit delays in their state equations.

4.2.2 Linearly Parametrized Neural Networks

A function approximator shall be used to approximate the unknown nonlinear
functions. There are two basic types of artificial neural networks, (i) linearly
parametrized neural networks (LPNNs) and (ii) multilayer neural networks (MNNs).
In control engineering, the Radial Basis Function (RBF) neural network (NN) as a
kind of LPNNs is usually used as a tool for modeling nonlinear functions because of
its nice approximation properties. The RBF NN can be considered as a two-layer
network in which the hidden layer performs a fixed nonlinear transformation with
no adjustable parameters, i.e., the input space is mapped into a new space. The
output layer then combines the outputs in the latter space linearly. Therefore, it
belongs to a class of linearly parameterized networks. In this section, the following
RBF NN [46] is used to approximate the continuous function hA(Z) : R? — R,

hon(Z) = WTS(2) (4.2)

where the input vector Z € Qy C RY, weight vector W = [wy,ws, -, w]T € R,
the NN node number [ > 1; and S(Z) = [s1(Z), -, s(2)]", with s;(Z) being
chosen as the commonly used Gaussian functions, which have the form

—(Z — )" (Z — ;)

2 )
Us

i=1,2--,1

si(Z) = exp

where p; = [, fiz, -+ - ,uiq]T is the center of the receptive field and 7; is the width
of the Gaussian function. Universal approximation results in [45, 126] indicate that,
if [ is chosen sufficiently large, W7S(Z) can approximate any continuous function,
h(Z), to any desired accuracy over a compact set {1 C R? to arbitrary accuracy
in the form of

WZ)=WTS(Z)+e(Z), VZ €Qy C R (4.3)

where W* is the ideal constant weight vector, and €(Z) is the approximation error

which is bounded over a compact set, i.e., [e(Z)| < €, VZ € Qz where € > 0 is an
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4.2 Adaptive Neural Network Control

unknown constant. The ideal weight vector W* is an “artificial” quantity required
for analytical purposes. W* is defined as the value of W that minimizes ¢(Z;) for
all Z € Qy C RY, e,

W* .= arg min { sup |h(Z) — W'S(2)|}.

WeRL " zeQy,

The stability results obtained in NN control literature are semi-global in the sense
that, as long as the input variables Z of the NNs remain within some pre-fixed
compact set, 0y C R?, where the compact set {27 can be made as large as desired,
there exists controller(s) with sufficiently large number of NN nodes such that all

the signals in the closed-loop remain bounded.

It should be noted that RBF neural networks can be replaced by any linearly
parameterized networks without any technical difficulty such as fuzzy systems,

polynomial, splines and wavelet networks.

4.2.3 Adaptive NN Controller Design

In this section, adaptive neural control is proposed for system (4.1) and the stability
results of the closed-loop system are presented. The backstepping design procedure
contains n steps. The design of adaptive control laws is based on the following
change of coordinates: z; = ©1 — yq, 2; = T; — q;_1, © = 2,...,n, where q;(t) is an
intermediate control which shall be developed for the corresponding i-th subsystem
based on an appropriate Lyapunov function V;(¢). The control law wu(¢) is designed
in the last step to stabilize the whole closed-loop system based on the overall

Lyapunov function V,,, which is the sum of the previous V;(t), i =1,....,n — 1.

Define ;' (z;) = %, where 7;(Z;) : R — R, is a smooth weighting function to
be defined later. For notation g *(x), g~*(x) indicates ﬁ, and the subscript (%),
g/

2
denotes the multiplication operation, then (gz-;l)Q = Based on the definition of

7

new coordinates z;, 1 = 1,-- -, n, the following integral scalar function will be used
in the controller design [52, 88|

‘/Zi = / iO'g;yl(fifl,U—i-Oéi,l)dO', 1= 1, e, (44)
0
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4.2 Adaptive Neural Network Control

The choice of weighting function v;(-) is a key step in the controller design. The
resulting controller is not unique and the control performance also varies with
the different choice of ~;(-). The apparent and convenient choices for v;(-) are
1 and g;(z;) for general nonlinear systems. Detailed explanation will be given
based on weighing function ~;(Z;) = g;(Z;) in the following, while a remark will be
given directly addressing the controller design, relevant stability and performance

analysis for v;(Z;) = 1 without derivation for conciseness.

By choosing v;(Z;) = 3:(%;), we have g;.'(z;) = gg; From Assumption 4.2.2, we

know that g;;'(Z;) are bounded by known functions as 1 < g;;'(z;) < %. Clearly,

V., are positive definite functions, 7 =1, ..., n.

In this Section, the following inequalities play an important role, i = 1,...,n
(Wi = W)W, = WP) < Sonll iV~ Wi = Soull Wy = W (45)

(t) (4.6)

and the following even function p;(-) : R — R is introduced for the purpose of the

1
EZ(Zz)Zz<t) S 56*1, + =z
practical controller design in Section 4.2.3:

1 > ¢
pi(z) = el z e, Vx € R. (4.7)
0, |z|] <ecy,

Step 1: Let us first consider the equation in (4.1) when i = 1, i.e.,

21(t) = g1(1(t))22(t) + fi(z1(t)) + ha(21(t — 1))

From the definition for new states z; and zp, i.e. 2y = 21 — yg and 2o = x5 — g,

we have

21(t) = g1(v1(t)) (22(t) + a1 (t)) + fi(@1(t)) + ha(21(t — 71)) — Ya(t) (4.8)

According to (4.4), consider the following scalar smooth function
21
Valt) = [ ogil o +ya)do

By variable change o = 0z, we may rewrite V., as Vi, = 27 [} 091, (021 + ya)do.
Noting that 1 < gfj(@zl +va) < G1(021 + ya)/g10, we have

2
VA
A<y, <

2 gio

2
AL

1
/0 01 (021 + ya)df (4.9)
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The time derivative of V, is

V() = 2109 020+ [ a0
Noting (4.8) and integration by parts, we have
Va(t) = 21 (@1()) |91 (01(8) (22(t) + ar (1)) + fi(aa(t)
+ha(za(t—71)) = 9a(t)| + 9a(t) | 095 (@ + ya) ;l - /Oz1 91, (o + ya)do|

= z(t) [ﬁl(xl(t))zz(t) + gi(21(t))ar (t) + g1, (21(t)) fr(21(2))
+91 (@1 ()P (21 (t = 71)) — alt) /01 9y (021 + Z/d)de]

Applying Assumption 4.2.4, we have

Va®) < 2@ 0)0) +a@d)ent) + g5 a0 fi(ea (1)
~ia [ 92 (621 + ya) )
Ha®)lgs @ 0) 1t = ) len (@t =) (4.10)

By using Young’s Inequality, (4.10) becomes

Va(t) < 21 () (g1 (21 (1)) 22(t) + Gu (@1 () on (t) + g1 (21(2)) fr(z1(F))

i [ 9021+ ya)db) + S o (1 ()

3l =)o (¢~ m) (1.11)

In standard iterative backstepping design, «v(t) is usually designed to stabilize the
z1-subsystem except for the coupling term §; 2129 to be dealt with in the next step.
In doing so under the assumption of known functions, one more difficulty exists in
the new problem setting. Although p;1(-) is a known function, it cannot be utilized

in designing «(t) as x1(t — 1) is undetermined because of unknown time delay .

Intuitively, approximation methods such as neural networks can be used to ap-
proximate the unknown functions. The unknown functions g;(-) and fi(-) can be
dealt with in this way without any problem. However, due to the existence of the
unknown time delay 7, functions of x;(t — 1) are hard to be approximated using
neural networks since the input z;(¢ — 71) is undetermined because of the uncer-

tain 7. To overcome the design difficulties from the unknown time delay 77, the
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4.2 Adaptive Neural Network Control

following Lyapunov-Krasovskii functional is considered

Vo (t) = /ttn Uy (21 (r))dr

where Uj(+) is a positive definite function chosen as

Ui(a(1)) = 33065 (o (1)

The time derivative of Vi, () is
Vi, (t) = Ur(a1 (1) = Ur (21(t — 7)) (4.12)

which can be used to cancel the time-delay term on the right hand side of (4.11)
and thus eliminate the design difficulty from the unknown time delay 7 without

introducing any uncertainties to the system. Accordingly, we obtain

Vo) + Vi () < z1(0)[ga(21(0)2(t) + gi(21 () an(t) + gis' (@1(8)) fi(za (1))

i [ 602+ g+ 52Ol e (0)

+ zi(t)on (21(t))] (4.13)

1
221 (t)
Comparing (4.13) with (4.11), it is found that the difficulty from the unknown time
delay 71 has been eliminated by introducing the Lyapunov-Krasovskii functional
Vi, (t). By differentiating Vi, (¢) with respect to time, the unknown time delay
term Uy (z1(t — 1)) = 523(t — 7)o}, (z1(t — 71)) appeared in (4.12) can be used for
exact cancellation on the right hand side of (4.11). The remaining term U;(x1(t))
from Vi, () is a known function of known variables, which does not introduce any

uncertainties to the system. Therefore, the design of intermediate control ay(t) is

free from unknown time delay 7 at present stage.

For conciseness of notation, we will omit the time variables ¢ and t — 77 after time-
delay terms have been eliminated. Under the assumption of exact knowledge, the

certainty equivalent control is

* 1 . P
a; = 91(931)[ ki(t)zr — Q1(21)] (4.14)

where

_ . 1 1 _ 1
Q1(Z1) = gi) (1) fu(a1) — yd/o 91, (021 + ya)db + 521(9171)2 + 2—2195%931(171)
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4.2 Adaptive Neural Network Control

with 77 = [ml,yd,g)d]T S QZl C R? and QZl = {Zl,fdg‘zl € R zgp € QdQ}.
It is apparent that controller singularity may occur. In addition, it is certain
that af is not an admissible control, since af is not well-defined when z; = 0 as

lim,, 922 = 0, lim,, 02?0} (71) # 0 and L’Hopital’s rule [112] is not applicable

x%@i(ml)

5 Therefore, care must be taken to guarantee

to obtain the limit lim,, .o

the boundedness of the controller.

It is noted that point z; = 0 is not only an isolated point in €2z, but also the
case that the system reaches the origin at this point. From a practical point of
view, once the system reaches its origin, no control action should be taken for less

power consumption. For ease of discussion, let us define sets )., C {2z and QY

as follows
Q. ={= | |a] <} (4.15)
Q) =0z — Q. (4.16)
where ¢,, is a constant that can be chosen arbitrarily small and “—” in (4.16) is

used to denote the complement of set B in set A as A— B := {z|r € Aand = ¢ B}.

Accordingly, the following practical control law is proposed

of — p1(2’1)
! G1(x1)

—ka(t)21 — Qu(2))] (4.17)
where p;(+) is defined in (4.7).

Since f(-) and g¢(-) are unknown smooth functions, the desired practical control
af in (4.17) cannot be implemented in practice. Neural networks can be used
to approximate the unknown function @;(Z;). Note that control action is only
activated when z; € QY , which means unknown function Q1(Z;) is approximated
by neural networks over the set Qf . According to the main result stated in [127],
any real-valued continuous function can be arbitrarily closely approximated by a
network of RBF type over a compact set. The compactness of set Q%l is a must to

guarantee the feasibility of neural networks approximation.

0

>,» Which is useful to re-

The following lemma shows the compactness of set €2

construct the compact domain of neural network approximation.

Lemma 4.2.1 Set QY is a compact set.
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4.2 Adaptive Neural Network Control

Proof:  First, we show that QY is a closed set. From(4.16) and applying De
Morgan’s laws, we have

Qy =05 uQ (4.18)

s
where QY% and Qf denote the complements of QY and Q, respectively. Since
Qyz, is a compact set, i.e., it is closed and bounded ([128], Theorem 1.6), QF is an
open set. In addition, €., is also an open set from its definition. From (4.18), we
know that Q%Cl is an open set, which means that its complement QOZI is a closed set.
Second, from (4.16), we know that QY C Q. Since a closed subset of a compact

set is compact ([128], Remark 1.30) , we can conclude that Q% is a compact set.

¢

Based on Lemma 4.2.1, it is known that ¢)1(Z;) is continuous and well-defined over
compact set Q%l and can be approximated by neural networks to arbitrary any

accuracy as follows
QI(ZI) = Wl*TS<Zl) + 61(Z1>

where €;(Z;) is the approximation error. As the ideal weight Wy is unknown, we

shall use its estimate W, instead, which forms the intermediate control a; as

o () = LB T s(2)] (4.19)

Note that @)1(Z;) contains unknown functions as well as known ones and is ap-
proximated by NN as a whole. In doing so, although we may have lost some useful
information of the system by lumping the known terms into unknown terms, the
possibly controller singularity problem is effectively avoided. The scheme also ap-
plies to the following steps. To demonstrate the power of approximation-based

control law, we would like to present the following arguments.

Remark 4.2.4 In Section 4.2, we are to present an adaptive neural network con-
troller that is well-defined and guarantee the boundedness of all the signals in the
closed-loop. In fact, in order to achieve the convergence of tracking error to zero,
the desired controller o in (4.14) is not well-defined when z; = 0, under the as-
sumption of exact knowledge by following the standard derivation. Alternatively,
we have to relax our control objective to a small ball of origin rather than the ori-

gin. It is really a pity for the powerful model-based control. However, we find that
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4.2 Adaptive Neural Network Control

problem can be elegantly solved by using approrimation-based controller design over

redefined compact sets although only SGUUB can be guaranteed.

Remark 4.2.5 It is noted that the tracking problem is discussed throughout the
section. If the regulation problem is discussed, the change of coordinates will be
21 =T, 2 = T — _q, © = 2,---,n, in which the slight difference from tracking

problems lies in the definition of z1. In this case, (4.13) becomes

V() + Vir (1) < Zl(t){gl(lfl(t))@(t)+§1(171(75))041(75)+91_71(5E1(t))f1(371(t))
1 1

320l @) + Sa(0)eh (1)} (4:20)

Comparing (4.20) with (4.13), it is found that the term ix%gﬁl(wl) actually be-
comes %xlgfl(xl). This is due to the cancellation of z; and x1 to each other. In

this case, the desired intermediate control cy(t) can be chosen as

* 1 2
o) = |~ k()2 (1) — QuUZi(1) = 51 (D (1))

where

Q1(Z1) = gy, (z1(1) fu(za (1)) + %Zl ()lgry (21(t))]”

Note that (i) no controller singularity problem will occur; and (i1) useful sys-

tem information is utilized as much as possible as well-defined and known term
1
2
rated into Q1(Z1) as unknown function. However, in the rest of steps of the iterative

x1(t) 03, (21 (t)) is used for constructing the control o rather than being incorpo-

backstepping design for regulation problem, similar controller singularity problems
from possibly singular terms will still occur. This is because that the cancellation
of z; to x; will no longer be possible since z; # x; for i = 2,---.n. The controller
singularity problem can only be solved using the techniques stated before for the rest

of steps.
For uniformity of notation, we define sets €., C €z and QOZZ,, i =2,..,nas

Qe,. =12 | |la] <c} (4.21)
QY = Qz — Qe (4.22)

Note that the control objective is to show that certain compact set 25 is domain of

attraction in the sense that for all bounded initial conditions, there exists {2g such
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that all closed-loop signals will eventually converge to Qg. i.e., all Z;(t) starting

from within QY will enter into Qg and will stay within Qg thereafter.

In the following steps, «; is designed for i-th subsystem, i = 2,---,n and u(t) is
designed for n-th subsystem, and the unknown functions Q;(%;), i = 2,...,n will

be approximated by neural networks as
Qi(Z) = W;TS(Z) + €(Zi), VZi€ QY (4.23)
Consider the Lyapunov function candidate Vi (t) as
Vi(t) = Vo, () + Vi, (1) + %(Wl(t) — W (WA (t) — W) (4.24)
Its time derivative along (4.13), (4.19) and (4.23) for z, € QY is
Vi < =kt + gien)ziz — (Wi = W) S(Z1)z1 + zie,
+ (W — W, (4.25)
The following practical adaptive law is given for on-line tuning the NN weights
W1 = p(=0)Th[S(Z0)21 — o1 (W — W) (4.26)

where o0y is a small constant and is to introduce the o —modification for the closed-

loop system.

Substituting (4.26) into (4.25) and using (4.5) and (4.6), we have
. 1 ~
‘/1 S —kl(t)Z% — 50'1||W1 - W1*||2 + gl(l’l)ZlZQ + (427)

where
2

1 1
ey = oW - WP? + 5

For z; € QY , noting (4.9) and choosing

t

[1+ /01 091(021 + ya)df + Zi% %I%(T)Qfl(xl(T))dT] (4.28)

t—Tmax

1

ki(t
)=

with 0 < €19 < 2, we have
. 1 g1o0 1 1
s Loty L Laca o
1= £10 1 0 2 e iem 2 1(7)ory (z1(7))dr

1 A . 3
—501HW1 — WP + giz1) 2122 + & (4.29)
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Since [t — 71, t] C [t — Tmax, t], we have the inequality

t 1 t 1
| i@ @@dr< [ alr)eh@n)dr
—T1 —Tmax
Accordingly, (4.29) becomes
1 1 -
Vi < gi(e)nzs — 20V, — — Vi, — —o|[Wh = WP+ (4.30)
€10 €10 2

where the coupling term g (x1)z122 will be handled in the next step.

Remark 4.2.6 Applying Young’s inequality, we known that gy(z1)z122 < %Z% +

3Gi(x1)23. The choice for ey is to guarantee that —(2~ — $)2% < 0 so that the

€10

undesired destabilizing term 521 can be suppressed.
Step 2: Since z5 = x5 — a, the time derivative of z, is given by

) = @(t) — an(t)
= G2(Z2(t))x3(t) + fo(@2(t)) + ha(Za(t — 72)) — () (4.31)

Again, by viewing x3(t) as a virtual control, we may design a control input ay for
(4.31). Since z3(t) = x3(t) — aa(t), we have

Za(t) = g2(T2(1)) (23(t) + a2(t)) + f2(Z2(t)) + ha(T2(t — 72)) — du(t)

Consider the following scalar function

22
V., (t) = /0 ag;vl(ml,a + ay)do

Its time derivative is given by

. aV, v, aV,
‘/z — z2 22
2 822 Z + 3x1 1 + 8041
_ N =2 3927 (1,0 4+ aq) .
= 220y, (T2)%2 + /0 O’[ o I

D95, (21,0 + o)
+
8041

& do (4.32)

Noting that

ag571 (xla 022 + al)

do
8$1

/zz O_ag;'yl(xla o+ al)
0

1
i‘ldO' = Z%l‘l/ 0
8.171 0

2 gyt (1,0 4+ ay) . ) 1
/ o 92, (1 1)a1d0 =0 {2292_71(@) — 22/ g;vl(xl, 0zo + a1)db
0 day 0
day Jdag . day »
Vg — —— = T _— W
oy 9z, T+ wy, wi 9m Tao + oW, 1

80



4.2 Adaptive Neural Network Control

and using (4.31), (4.32) becomes

Va(t) = 2(8)[g2(22(1)) (25(1) + s (t))
03 (T2(8)) o (Z2(1)) + g, (T2(8) ha(Fa(t — 7))

0 0 1
+x122 / 0 gQ’y xl, Z9 + al)de — Gy / gQ—’Yl(:L,l7 92:2 + al)dﬁ}
81'1 0

Noting Assumption 4.2.4, we have

Va(t) = 2(0)[52(@2(0))(2(1) + as(t)) + g5, (22(8)) fo(@2(1)) + ;Zz(lt)(gz_yl)2

0 1,020 + « [t
+2129(t / 0 927( 189512 1>d9—a1/0 gzvl(x1,922+oz1)d0}
1 2
52 2}t — 72) 05 (Ta(t — 72)) (4.33)

Consider the following Lyapunov function candidate Va(t) as
1, . .
Va(t) = VA(t) + Ve (1) + Vi, (8) + 5 (Wa () = W5) T (Wa(t) — W5)
where

Velt) = | i Un(Z(r))dr

with Us(-) being a positive definite function which is defined by
_ L& a2 e
Ua(Zo(t)) = 2 lej(t)QQj(x2(t))
j:
Its time derivative along (4.30) and (4.33) for z, € QY is

Vy < G2(T2) 2225 + 29 [91(951)21 + G2(T2) a2 + Qz(Z2)} + (W2 — W;)TF51W2

1 1 A 1 1
—I0y -V — oW = WEIP 4 o [ = WP 4 e (434)
€10 €10 2 2 2

where (QQ2(Z3(t)) is used to denote all the terms related to the unknown functions
92, (+) and fo(-), which is defined by

2

Qo(Zo(t) = g3 (2a0)) falia(®) + —2a(t)(g3)? + s S 22(0) 6, (E2(1)

2 222(t> =1

1 9ot 0 1
+:t122(t)/0 ks <x10’x22+a1)d0—o}1/0 g5 (21,02 + )b
1
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with Zg(t) = [ig,il,al,ﬁal/ﬁxl,wl]T S ng C RG.

Similarly, we have the following intermediate adaptive neural network control law

o= P )al) - ka0a - WIS 439
W = pa(22)T[S(Zs) 22 — 0o (Wa — WO)] (4.36)

where o5 is a small constant and is to introduce the o —modification for the closed-

loop system.

Substituting (4.35) and (4.36) into (4.34), and using (4.5) and (4.6), we have

() < BaE)2)nt) — (i) — )70~ goalis — WP

2
1 1 A
_@‘/;1 — —Vu, — zo|[Wh = WP+ c1 + e
€10 2

€10
where

2

1 . 1,
Co = §O'Q||W2 — VVQOH2 + 5632

For z, € Y, noting (4.9) and choosing

1 1 Jo 335 3(7)03;(Z2(7))dr
k:t:—l/Q‘ 0 df + 02 2=t 170
2( ) 820{ + 0 92(.T1, 22+Oél) -+ Z%(t) }
with 0 < 99 < 2, we have
: _ 920 1 1 2 12
Va(t) < Ga(Za(t))2a(t)23(t) — ==V, — — Vi, — S09||Wa — W]
€20 €20 2
1 1 A
IOy Y~ oy | Wh = W e e
€10 €10 2

where the coupling term go(Zo(t))22(t)z3(t) will be handled in the next step.

Step i (2 <1i <n—1): Similar procedures are taken for i = 2,...,n — 1 as in Step
1.

The dynamics of z;-subsystem is given by
zi(t) = gi(Zi () [zir1 (t) + s ()] + fi(Zi(t)) + hi(@i(t — 73)) — i (2)
Consider the following scalar function

Vo () = /0 i 095y (Zio1,0 + a;i_1)do (4.37)
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The time derivative of V,(¢) is given by

Va(t) = a®)[g:(@i(0) (i (t) + eit) + g3 (2:(0)) fi(@:(1))

(T, 02 + ayq)

-m;uﬁ»m@@—n»+@4aw4y&m ”

0%y

1
_dz’—l/o g;y1<ji—lyezi + vi—1)d0)

Noting Assumption 4.2.4, we have

Va(t) = zi()[g:(@()) (zia (1) + 0alt) + g3 (2:(0)) fila(1)) + %Zi(t) 97 (@:(1)))”

. 10 1 Ti_ ,92,’ + oy
+ZT;-12; / 0 Jiy ( ala_j 1>
i—1

. vy 1 _
—Q_1 /0 gi’Yl (xi—ly 92’2 + ai_l)dQ] + 5 Zl [L’?(t — Tl)gfj(x,(t — Tz)) (438)
J:

do

Consider the following Lyapunov function candidate V;(t) as

Vi(t) = Via () + Ve, (8) + Vi () + %(Wz(t) — W Wi(t) — W)

(2

where
Vi) = [ Uiai(r))dsr (4.39)

with U;(-) being a positive definite function which is defined by

ch )03 (i(t))
In Step 7 — 1, for z; € Q%j, j=1,...,1—1, it has been obtained that

. 1 1 o
Vit < gic1(Ti1)zic 2z + Z gjOsz - ;VUJ- - §Uj||Wj - VV;H2 + ¢;) (4.40)

= €50 30

where
2

1 * 1 *
Cj = 50’2““/] — WJOHQ + 5623_

For z; € QY , j = 1,...,4, the time derivative of V;(t) along (4.38) and (4.40) is

Vi < Gi(Ti)ziziv1 + 2 [Gim1 (Zic1) zim1 + i(Ti) oy + Qi(Z;)] + (Wz — Wi*)Tri_lWi

il g 1 1 ,
F2 (= 20V = Vg oW = WP ) (4.41)
j=1 £j0 £jo
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where
—1(~ - 1 —1\2 1 : 20 2 (=
Qi(Z;) = Jin (73) fi(z3) + 521'(91-7 )”+ 5 ij(t)é)ij(afi(t))
zi(1) j=1
agz»y Iz 1,92’1—1—&1 1)
+7; 1zz/ 0 9%, do

_di—l/() g@l(fi—l,e%‘ + a_1)db

: Oai—1 O Jai 1
with Z;(t) = [T, i1, i1, B B By

wi—1] € QY C R¥, where

i—1 i—1

Jday_q a1 . a1
Qg = —Ti w1, w1 = —Tg + W
i—1 ]221 ij J 1, Wi—1 al'di di jzzl 8W i

Similarly, we have the following intermediate control law

o = g @ [ — Gi1(Tio1) 2o — ki(t) 2z — WES(Z))] (4.42)
Wi = pie)TilS(Z)z — os(W; — W] (4.43)

kl(t) = ;[1 + /01 991-(:172-_1, 021 + Oéi_l)de
i —zx )@}, (7)) dr] (4.44)

Zi t—Tmax

with 0 < g;9 < 2. Substituting (4.42)-(4.44) into (4.41), and using (4.5), (4.6) and
(4.9), we have

. - : gjo 1 1 i *
Vi < gi(@)zizign + Y, (— ivzj- - ;VUj - §0j||Wj - W; 12+ ¢;)
j=1 Jo Jo

where the coupling term g;(z;)z;z;+1 will be handled in the next step.

Step n: This is the final step, since the actual control v appears in the dynamics

of z,-subsystem as given by

20 = gn(2()u+ ful2(t) + ha(2(t = 7)) = dna ()

Consider the following scalar function

Vo®) = [ 00} @t 0+ 0ma)do
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Its time derivative is given by

Vo) = 2a()]Gn(@@)ut) + got (2(0) fal(t)) + gt (2(0)hn (2(t — 7))
it [ o O 00

do
ajnfl
1
_dn—l /0 gyj’;(i‘n—la ‘gzn + O‘n—l)dg}

Noting Assumption 4.2.4, we have
Vo) = 2a()[ga(2(0)ult) + gy (2(1) ful (1)) + ;Zn(t)[giﬁ(x(t))]Q
Faz(t) [ Y

1
Gt [ G (@no1. 020 + o)l

39;71 (i‘n—la ezn + CVn—l)

do
ai'nfl

n

+§;ﬁ@—m&mw—m» (4.45)

Consider the following Lyapunov function candidate V,, as

Va(t) = Var (1) + V2, () + Vi, (8) + %(Wn(t) — W) T (Walt) = W)

where
Vi) = | i U, (2(7))dr

with U,(-) being a positive definite function which is defined by
Un(a(t)) = 5 D ai(t) o (a(t))
j=1

In Step n — 1, for z; € Q%w t=1,...,n — 1, it has been obtained that

1

n—1
) < 1 .
anl S §n71<i‘n71)2n712n + E : <_ g]O ‘/Zj - c VUj - §Uj"WJ' - I;HQ +Cj) (446)
70

=1 &jo
For z; € QY , i = 1,...,n, the time derivative of V,,(¢) along (4.45) and (4.46) is
Vn S Zn[gn—l(fn—l)zn—l + gn(x)u + Qn(Zn)] + (Wn - W;)Tr’rzlw”l
n—1 . 1 1 R
3 (= 20V, = Vi, — Syl = WP+ ) (4.47)
j=1

€50 50
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where
1 _ 1 n
Q(Z0) = Gl + 520l + s Y a0 (a(0)
n j=1
. 1877n—79n+ n—
+fn_1zn/ 0 Gy (T 10+ D g
0 0% p_1
1
_dn—l/() g;;(jn—lagzn_}_an—l)d&
: Oon—1 Oan_1 8an 1 0 3n
with Z,(t) = [z, Zn_1, a1, ot Tt o Wi 1] € Qy C R, where
n—1 8an,1
Op_1 = ——Tj + w1
jz::l 8xj J
3ozn_1 . n-! 3(In_1 2
Wp_1 = —— Tgn + — W
' axdn 4 ; 0Wj !
We construct the following adaptive neural control law
n\Zn _ _ T
u(t) = ]; ((x)> [ = Gn1(Tn1)2n1 — kn(t) 20 — WES(Z,)] (4.48)
W, = pn(zn)Fi[S(Zn) o (W — W) (4.49)
kat) = - 1+/ 0G0 (Tn1, 02 + n_1)d0
n0
L o) (4.50)
22 t—Tmax 2 21 J " ’

with 0 < g,,9 < 2. Substituting (4.48)-(4.50) into (4.47), and using (4.5), (4.6) and
(4.9), we have

1

n g0 1 o N
V) S 3= 20Vs = Ve = 5l Wy = Wi ) (45D
J:

where

1 1 .
= — W* WO 2 et

The following theorem shows the stability of the closed-loop adaptive system.
Theorem 4.2.1 Consider the closed-loop system consisting of the plant (4.1) un-

der Assumptions 4.2.1-4.2.5, the controller (4.48) and the NN weight updating law
(4.49). For bounded initial conditions, the following properties hold:
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(i) all signals in the closed-loop system remain semi-globally uniformly ultimately
bounded and the vector Z = [ZI ..., ZT|T remains in a compact set QY =

QY U...UQY specified as

= LR 2C
OY ={Z|3 22 <20, 3 |IWi|* < ———,
i=1 i=1 )\mm(Fi )
Tai € Qiyi=2,...,n,2 & Qe i =1,...,n} (4.52)

where Cy > 0 is a constant whose size depends on the initial conditions (as

will be defined later in the proof);

(ii) the closed-loop signal z(t) = [z1,...,2,)T € R™ will eventually converge to a
compact set defined by

Qs = {z]l|2]* < u} (4.53)

where p > 0 1s a constant related to the design parameters and will be defined

later in the proof, and $2s can be made as small as desired by an appropriate

choice of the design parameters.

Proof: Consider the following Lyapunov function candidate

n 1 - 5
Valt) = 30 [Va () + Vi (t) + 5 W/ T W (4.54)

i=1
where V., (t) and Vy,(t) are defined in (4.37) and (4.39) respectively, and () =

(1) — (+). The following three cases are considered.

Case 1): z € Q.. 1 =1,..,n. In this case, the controls oy = 0,7 =1,...,n -1,
u = 0 and Wi =0,7=1,...,n. Since z; = x1 —yg and y4 is bounded, x; is bounded.
For i = 2,...,n, x; is bounded as z; = z; + a;_1 and a;_; = 0. In addition, Wz is
kept unchanged in a bounded value, i = 1, ...,n. Observing the definition for V,, ()
and Vy,(t) and noting that g;,(-), 0;;(-) are smooth functions, we know that for
bounded z;, z and W;, V., (t) and Vi, (t) are bounded, i.e., there exists a finite Cg
such that

Vo(t) < Cp (4.55)

Case 2): z; € QY ,i=1,...,n. From (4.51), we have V() < —C1V,(t) + Cy where
Cy=>",¢ and

Oy = minf 910 gno 1 1 ! o )
2 = Ty ey Ty T g ey Ty B INE RS —
€10 €no €10 €no )\max(rl ) /\maX(Fnl)
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Let p = Cy/CY, it follows that

0 < Vo(t) < [Va(0) = ple™ M 4 p <V, (0) + p (4.56)
where constant
V) = ([ 005 @ 0.0+ s (0))do
ST (0T (0)]

with g;;"(Z;-1(0), 0 + a;-1(0)) = g1, (o) for i = 1.

Case 3): Some z; € QY and some z; € chj. In this case, the corresponding o
or u and the adaptation law for Wl will be invoked for z; € QDZZ, while a; = 0 or
u =0 and Vi/j = 0 for z; € X, . Let us define Vi(t) =>:(Ve, + Vi, + %I/T/iTFi_ll/T/i)
and V;(t) = >;(Vz, + Vuy, + %VV]TI‘J_lVV]) For z; € chj, we obtain that V()
is bounded, i.e., V;(t) < C; with C; being finite, and z; € QY , we have that
Vi(t) < =C{Vi(t) + C3, e,

Vi(t) < [Vi(0) — prle™ 1 + pr < Vi(0) + pr (4.57)

where p; = CL/CT with Cf = ¥, ¢; and C! = mini{gio/ci0, 1/€i0, i /Amax (T 1) }.
Therefore, it can be obtained that

Va(t) = Vi(t) + V() < Vi(0) + pr + Cy (4.58)
Thus, from (4.55), (4.56) and (4.58) for Cases 1), 2) and 3), we can conclude that
Va(t) < Co (4.59)

where Cy = max{Cp, V,,(0)+p, Vi(0)+ p;+C,}. From (4.59), we know that V,,(t),
z; and Wi, 1t = 1,...,n, are bounded. Since z; = x; — yg and y4 is bounded, z is
bounded. For x5 = 25 + a1, since ay is function of bounded signals z;, 71, Wl,
aq is thus bounded, which in turn leads to the boundedness of x5. Following the
same way, we can prove one by one that all o;_; and x;, « = 3,...,n are bounded.

Therefore, the systems’ states x;, ¢ = 1, ...,n are bounded.

Considering (4.54) and the property for V., (¢) that

1, 22t
—z; <V, (t) < —/ 09;(Zi—1,02 + ai—1)db
2 gdio /0
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we know that

C2Valt)

ol ) (4.60)

22 220 Valt) S 2t Z IWilJ? <
i=1 i=1 A
From (4.59) and (4.60), we readily have the compact set Q% defined in (4.52) over

which the NN approximation is carried out with its feasibility being guaranteed.

In addition, in Case 1), as z; € Q.. , i = 1,..n, we know that [|z[|* = 22 <

i=1 %
2. In Case 2), from (4.56) and (4.60), we have that lim, . [|2]* = 2p. In

Case 3), from (4.57) and (4.60), we have that lim, .. >; 27 = 2p; and ;27 <
j ¢2,- Therefore as t — oo, we can conclude that |[2[|* < u where

p = max{2p,2p;, 31 2 }, i.e., the vector z will eventually converge to the com-

pact set Qg defined in (4.53). This completes the proof. {

Remark 4.2.7 Note that the choices of v;(Z;) are not unique. By choosing v;(Z;) =

1, we have g, (T;) = ﬁ [52] and V., = [§" do,i=1,....,n. By Mean

Value Theorem, V., can be rewritten as V,, = — . As € (0,1). From
v o gz(xz 1,As 2+ 1

Assumption 4.2.2, 0 < gio < ¢;(Z;), we know that 0 <V, ’\s z?. The adaptive

zz_g

gi (:)3 -1, 0"‘1’047, 1)
Ang

control laws are given by

Q; = 5((8[ — Gi-1(Tim1)zi1 — ki(t)zi — W['S(Z;)
21 ; 1 JQ@] (x”L)]
#= Bl @) k)

~WiS(Za) = 54 35 ()]

22y “—J=1 JQnJ
Wi = pi(2)Ti[S(Z:)zi — 03(W; — WO)]
1 1 rt
WO = liehe 3 [ 5T

€i0 Z@ t—Tmax

where 0 < g, < 2. For bounded initial conditions, all closed-loop signals remain
bounded and the tracking error converges to a small neighborhood around zero by

appropriately choosing design parameters.

Remark 4.2.8 Note that the size of the compact set QY is characterized by Cp,
which depends on system initial conditions z;(0) and W;(0) as well as the design

parameters o;, Ty, W2 and €y, i = 1,...,n. For the compact set Qg to which the
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closed-loop signals eventually converge, its size only depends on the design parame-
ters. Therefore, it can be seen that large initial errors z(0) and W;(0), i =1,...,n
may lead to a large transient tracking error during the initial period of adaptation,

but will not affect the final convergence of the closed-loop signals.

Remark 4.2.9 Since the function approximation property (4.3) of neural networks
1s only guaranteed within a compact set, the stability result proposed is semi-global in
the following sense: Given any bounded initial compact set such that z(0), W;(0) €
Qp, the proposed NN controller with sufficiently large number of nodes guarantees
that all the closed-loop signals will stay within the compact set, i.e., QY in the
section, if the compact set Q%., over which the neural network approzimation is
constructed, satisfies that Q% C QY . and eventually all the closed-loop signals will
converge to the steady state compact set, i.e., Qg in the section. The relationships
amonyg the sets are as: Q,Qg C QY C QY% . It is apparent that the larger the
compact set QY. over which the NN controller is built upon, the more relazed the

wniatial compact set Q2 is.

4.2.4 Simulation Studies

To illustrate the proposed adaptive neural control algorithms, we consider the
following second-order plant
i(t) = [1+23@)]wa(t) + 21 (t)e 05 ® 4 222t — 1)

{ io(t) = [3+4 cos(wy(t)xa(t))|ult) + z1(t)x3(t) + 0.225(t — 72) sin(za(t — 7))
with the output y; = z;, the initial condition [z(0),z2(0)]" = [0,0]*, and the
time delays 71 = 2sec, 79 = 2sec. The unknown virtual control coefficients are
g1(r1) = 1+ 22, go(To) = 3 + cos(x122). The time delay terms are: hy(z;) = 222,
ho(z2) = 0.225 sin(zs), which means that 011 (z1) = 2|z1], 012(z) = 021(z) =0, and
092(x) = 0.2. The control objective is to track the desired reference signal y; =
0.5[sin(t) +sin(0.5¢)]. For the design of adaptive neural controller, let z; = 21 — yq,
zy = x9 — . For simplicity, simulation is carried out based on Remark 4.2.7 for

the case 7;(z;) = 1 as follows

| —kOz@) - WS(Z) - sgait)el, ze Q)
Oél(t) =
0, z1 € Q)

Czy

90



4.2 Adaptive Neural Network Control

u(t) = —21(t) = ka(t)2a(t) — WY S(Zo) — ﬁ(t)x%g%% 2 €00
O’ 29 € Q

Wi = DS(Z)5(t) — (Wi = WO, i =1,2

where 7y = [21,Y4, V4", Zo = [x1, 79, 1, %, g;“ﬁ‘}lwl]T, and k;(t), i = 1,2 can be
calculated by

by x2(1) 02, (Z; (T))dT
%{1 + AS + 0 2 Z]:l Z‘%((t;QZ]( ( )) :|7 ZZ E QSZ

O, z2; € chi

ki(t) =

The following controller design parameters are adopted in the simulation:
Fl = d1ag{4}, FQ = dlag{B}, 01 = 09 = 01, WO = WQO = 001, €10 = €20 = 1,
As =0.5,and c,, = c,, = 1.0e7".

In practice, the selection of the centers and widths of RBF has a great influence on
the performance of the designed controller. According to [45], Gaussian RBF NNs
arranged on a regular lattice on R™ can uniformly approximate sufficiently smooth
functions on closed, bounded subsets. Accordingly, in the following simulation
studies, the centers and widths are chosen on a regular lattice in the respective
compact sets. Specifically, neural networks W{'S;(Z;) contains 27 nodes (i.e., l; =
27) with centers (I = 1,---,1;) evenly spaced in [—1,+1] x [—1,+1] x [—1,+1],
and widths n? = 2(l = 1,---,13). Neural networks W S5(Z,) contains 243 nodes
(i.e., lo = 243) with centers 1 (I =1, -+, 1) evenly spaced in [—1,+1] x [=1,+1] x
[—1,+1] x [-1,4+1] x [-1,+1], and widths n? = 3(l = 1,---,l3). The initial weights
are set as W (0) = 0.0, W(0) = 0.0.

From the theorems, we know that the integral term in control gain k; is used to
provide robustness against the uncertainties from the unknown time delays. To
illustrate this point, simulations are conducted with and without this term. Fig.
4.1 shows that the output actually blows up in a short time (less than 6 sec) without
the integral term, while satisfactory transient performance is obtained in Fig. 4.2
once the integral term was added in k; and good tracking performance is achieved
after 10 seconds learning periods. Figs. 4.3 and 4.4 show the boundedness of the
control input and the NN weights with the integral term in the control loop.

We would like to point out that the choice of c¢,, for control gain k; plays an

important role in achieving the desired performance. Through extensive simulation
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study, it was found that larger c,, causes chattering in control signals as shown in
Fig. 4.5 and poor control performance as shown in Fig. 4.6, smaller c,, leads to
smoother control signals as seen from Fig. 4.7 and better tracking performance
as can be seen from Fig. 4.8. Note that in all the simulations, it was found
that the weights of the neural networks are bounded, they are omitted here for
clarity. Actually, c,, can be chosen arbitrarily small but equals zero, then the
control signals generated are almost continuous, and the control performance is

much more improved.

Remark 4.2.10 As stated in [88], the integrals in control gain (4.44) might not
be solved analytically for some functions g;(Z;), and may make the controller im-
plementation difficult. This problem can be dealt with by suitably choosing the
design functions g;(Z;). Since the choices of §;(Z;) are only required to be larger
than g;(z;), the designer has the freedom to find suitable g;(Z;) such that the inte-
grals are analytically solvable. As an alternative scheme, one can also use on-line
numerical approzimation to calculated the integral, which however requires more

computational power in practical applications.

4.2.5 Conclusion

An adaptive neural-based control has been addressed for a class of strict-feedback
nonlinear systems with unknown time delays. The unknown time delays has been
compensated for through the use of appropriate Lyapunov-Krasovskii functionals.
As a result, the iterative backstepping design can be carried out. In addition, the
controller is free from singularity problem by using the integral Lyapunov function
and practical robust neural network control. The proposed systematic backstepping
design method has been proven to be able to guarantee semi-global uniformly
ultimately boundedness of closed-loop signals and the output of the system has

been proven to converge to an arbitrarily small neighborhood of the origin.
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Figure 4.1: Output y(¢)(“—") and reference yu(“- -”) without integral term.
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Figure 4.2: Output y(¢)(“—") and reference yy(“- -”) with integral term.
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Figure 4.3: Control input u(t) with integral term.
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Figure 4.4: ||[Wy(“=") and ||W5||(“ -”) with integral term.
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Figure 4.5: y(t)(“—") and yu(“- -”) with ¢,, = 0.01.
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Figure 4.6: Control input u(t) with ¢,, = 0.01.
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Figure 4.7: y(t)(“=") and y4(“- -”) with ¢,, = 1.0e7'.
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1
10 15 20 25 30 35 40 45 50
Time (sec)

Figure 4.8: Control input u(t) with c,, = 1.0e™1°.
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4.3 Direct Neural Network Control

4.3.1 Problem Formulation

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems

{ #i() = gi@()zia(t) + L@0) + (@il = 7)), T<isn—1 o
n(t) = gn(z(t))u+ fu(z(t) + hn(2(t — 70))
where T; = [x1,Zo,...,2;]7, ¥ = [x1,29,....,2,]7 € R" and u € R are the state

variables and system input respectively, g;(+), fi(-) and h;(-) are unknown smooth
functions, and 7; are unknown time delays of the states, ¢ = 1,...,n. The control
objective is to design an adaptive controller for system (4.61) such that the state

x1(t) follows a desired reference signal y,(t), while all signals in the closed-loop
system are bounded. Define the desired trajectory Za;i1) = [Ya, Y, ...,yc(li)]T, 1=

1,...,n — 1, which is a vector of y; up to its ith time derivative yc(;).

We have the following assumptions for the system’s signals, unknown functions and

reference signals.

Al). The system states x(t) and part of their time derivatives, Z,_1(t), are all

available for feedback.

A2). The signs of g; are known, and there exist constants gmax > gmin > 0 such
that gmin < |¢i| < gmax. There exist constants g;q > 0 such that |§;(-)| < gia,
Vz; € R

A3). The desired trajectory vectors Zg;, ¢ = 2,...,n are continuous and available,

and Ty € Q4 C R with Qg known compact sets.

A4). The unknown smooth functions h;(z;(t)) satisfy the following inequality
|hi(Z: ()| < Sh_y |2;(t)]0ij(2:(t)) where g;;(-) are known smooth functions.

A5). The size of the unknown time delays is bounded by a known constant, i.e.,

Ti < Tmax, © = 1, ..., 1.

The Assumption A1) implies that unknown constants g; are strictly either positive

or negative. Without losing generality, we shall only consider the case when g; >
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0. It should be emphasized that the bounds g, and gma, are only required for
analytical purposes, their true values are not necessarily known since they are not
used for controller design. Note that the requirement for ¥, ;(t) is a constraint
but realistic for many physical systems as we are not requiring &,, which is directly

influenced by the control.

There are many physical processes which are governed by nonlinear differential
equations of the form (4.61). Examples are recycled reactors, recycled storage
tanks and cold rolling mills [92]. In general, most of the recycling processes inherit

delays in their state equations.

The even function p;(-,) : R X R — R is introduced for the purpose of practical

controller design later.

17 > ar
pi(T, coi) = ol = ¢ , Yz € R. (4.62)
0, |z|<cau

4.3.2 Direct NN Control for First-order System

To illustrate the design methodology clearly, we first consider the tracking problem

of a first-order system

21(t) = gi(x1(t))u(t) + fi(z1(t)) + ha(z1(t — 71)) (4.63)

where u(t) is the control input. Define the tracking error z; = x; — y4, we have

21(t) = gi(z1(t)u(t) + fi(@1(t)) + ha(21(t — 71)) — 9a(t) (4.64)

Based on feedback linearization, the certainty equivalent control is usually taken

the form u(t) = ﬁ[—fl(wl) +(t)]. In the case that ¢g;(-) and fi(-) are unknown,

their estimates ¢; and fl shall be used instead to construct the controller and
singularity problem may occur when g;(z1) = 0. To avoid the singularity problem,
1(z1)

we shall estimate the unknown term, e.g., ooy 35 2 whole rather than estimate

the function g;(-) and f;(-) individually.

Another design difficulty comes from the unknown time-delay 7, which can be

compensated for by introducing the Lyapunov-Krasovskii functional in the form of

Volt) = | L U(t)dr (4.65)

—T1
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with U(-) > 0 being a properly chosen function. The time derivative of Vi (¢) is
Vu(t) = U(x(t)) = U(a(t — )

among which the term U(z(t — 7)) can be used to compensate for the unknown
time-delay terms related to 7, while the remaining term U (z(t)) does not introduce

any uncertainties to the system.

1

oren) 22(t) and Lyapunov-Krasovskii

Consider the scalar smooth function V,, =

functional Vi, as

Vi (1) = — /t Uy (21(8))dr (4.66)

2gmin t—71

with Uy(z1(t)) = 321(t)o1(x1(¢)) > 0. Accordingly, we have

"/Z1 (t) + VUl (t) - - 2 Z% +

Ul(ﬂfl(t — 7'1))

ngin 2gmin

1 1
29min 29min

Up(x1(t — 7))

Noting Assumption A4), we have

, : 1 . (1) 5
Val®) + Vi) < a@{ult) + Sl 0) = 5]} - 5525240
1
+gl($1)|zl(t)||$1(t—7'1)|01(t—7'1)
1
+29minU1(l'1(t))— gminUl({L'l(t—Tl)) (467)

The terms z(t) and |x1(t — 71)|01(z1(t — 71)), which are entangled in their present
form, shall be separated such that the terms with unknown time delay can be dealt

with separately. Using Young’s inequality, (4.67) becomes

V() + Vi (1) < zl<t>{u<t>+gl(zl)m(xl(t))—yd<t>+§z1<t>]}— in) 2

Lo
+mfﬂ1(t 1)o7 (21(t — 1))
@ (0) - 5o et~ gt -n) (@69

As gi(1(t)) > gumin, it follows that 5 —af(t — m1)ef(a1(t — m)) < 5—ai(t —

71)03(z1(t—m71)). In addition, from Assumption A2), we have —9219(23‘” (lx)% < |9219(f (lm)l‘;% <
1 1
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S4d_»2 Thus, (4.68) becomes

Va) 4 Vin (1) < 1 (Ou(t) + Q(Z1(0)] + 500 (469)
where
1 . 1 1 9/ 9
QUAWD) = S ThlE(®) = iult) + 5] + 5ot Da ()

with Z; = [l’l,yd,yd]T S QZl C R? and QZl = {Zl,i‘d2|21 €ER xyp € ng}.

From (4.69), it is found that the controller design is free from unknown time-delay
71 at present stage. For notation conciseness, we will omit the time variables ¢t and

after time-delay terms have been eliminated.

Since f1(-) and g;(-) are unknown smooth function, neural networks shall be used
to approximate the function @;(Z;). According to the main result stated in [127],
any real-valued continuous function can be arbitrarily closely approximated by a
network of RBF type over a compact set. However, it is apparent that Q1(Z;)
is not continuous over the compact set {2z, as it is not well-defined at z;(¢) = 0.
Therefore, we shall re-construct the compact set over which the neural network
approximation is feasible and valid. To this end, let us define sets (2., C €z and

QY as follows

Q. = {= | |a] <} (4.70)
QY =Qy —Q (4.71)

Czq

From Lemma 4.2.1, we know that QY is a compact set, over which function Q;(Z;)
is continuous and well-defined and can be approximated by neural networks to an

arbitrary accuracy as follows
Q1(Z) =W;TS(Z)) + e1(2)) (4.72)

where €;(Z;) is the approximation error. Note that as the ideal weight W} is

unknown, we shall use its estimate W1 instead in the later controller design.

As can be seen from the previous discussion, the control effort will be activated

only in the compact set Q%l so that we would like to relax our control objective to
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boundedness of states around the origin rather than the asymptotic convergence

to origin. Accordingly, the following practical adaptive control is proposed

T{(t) = pi(z1, ¢z, [=ka ()2 — WS(21))] (4.73)
W1 = pi(z1, ¢:)T1[S(Z1) 21 — o0 (Wy — WD) (4.74)

where p;(-,-) is defined in (4.62), matrix I'; = T7 > 0, oy is a small constant
to introduce the o-modification for the closed-loop system, and ki (t) > 0 will be

specified later.
The following theorem gives the stability analysis of the proposed controller design.
Theorem 4.3.1 Consider the closed-loop systems consisting of the first-order plant

(4.63), the controller (4.73), if the gain ki(t) = kio + ki1 + ki2(t) is chosen with

A
constants ki, = k1o — 52+ >0, k3 > 0, and

20min
€ t 1
kio(t) = ZL%O - —z} (7)o} (z1(7))dT (4.75)

with constant 19 > 0, and the NN weights are updated by (4.74), then for bounded
initial conditions x1(0) and W1 (0), all signals in the closed-loop systems are SGUUB,
and the vector Zy remains in a compact set Qozl specified by

- 2C
Z% < 2gmax0017 ||W1“2 < ol

0y, =12 s
B { o = (1)

Zfdg € ng, Z1 ¢ chl } (476)

whose size, Co1 > 0, can be adjusted by appropriately choosing the design parame-

ters.

Proof: Consider the Lyapunov function candidate V;(t) as

Vi(t) = Vo, () + Vi (1) + %(Wl(t) — WH)TTH (WA(t) — W) (4.77)

Its time derivative along (4.69) is

Vi(t) < 2 (O)[ult) + Q1(Z: (1)) + 2gld 24 (Wi — WHTTW, (4.78)

Gmin

Substituting (4.72), (4.73) and (4.74) into (4.78) yields

2 )Z% - plk’12(t)2‘% - plk‘nzf +e(Z1)z

2 min

(1 =)Wy S(Z1)z1 — proy(Wy — WH)T (W, — WD) (4.79)

V1(t) < —(pikio —
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Now, the stability analysis will be carried out in the following two Regions: (i)

21 € Q%N and (11) z21 € Q

Czq
Region (i) z € QY : In this region, p(z1,¢.,) = 1, eq. (4.79) becomes

g1d
2gmin

—o (Wi — WHT (W — WD) (4.80)

%(t) é —(klg — )Z% — klg(t)Z% — kllzf + G(Zl)Zl

Noting the following inequalities

%2

€
—knzi + z6(Z1) < —kn2t + |21]€;, < 2
4k

. - 1 A 1
—o (W = W) (W — W) < —501||W1 — WP + §Ul||W1* - WP

and substituting (4.75) into (4.80), we have

) t 1 1 .
Vi< -kt —aw [ Salne(r)dr - Sou W - WP +ea (481)

t—Tmax

W2
with ¢ = Joq[|[W; — WP||2 + :,;11. Since [t — 71,t] C [t — Tmax, t], we have the

inequality

[ R@edemrs [ Sa@de )

—T1 2 t—Tmax

Accordingly, (4.81) becomes

. 1 ~
Vi(t) — 2k Gmin Vz, (1) — €10Gmin Vi, (t) — §U1||W1 — WHI? + ca

<
< —aVi(t) 4+ ca (4.82)

where constant ¢; > 0 is defined by

. % 01
C; = Inin 2k109min7 €109min; m
max 1

Let py := ¢ /¢, it follows that

0 < VA(t) < p1 + [Vi(0) — pr]e™" < p1 + V4(0) (4.83)

Region (i) 21 € Q.. : In this region, 21| < c,, i.e., 21 is already bounded, and

p1 = 0, hence Wl = 0. Since z; = x1 — yq and y, is bounded, z; is bounded. In
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addition, the adaptation for W, has stopped and Wy is kept unchanged in bounded

value. Therefore, there exists a finite C'g; such that

Vi(t) < Cp (4.84)

From (4.83) and (4.84) for Region (i) and Region (ii), we can conclude that

Vi(t) < Co (4.85)
where Cy = max{Cp1,p1 + V1(0)}. From (4.85), we know that V;(¢) is bounded,
hence z1, x1, Wl are bounded.

In addition, from (4.77), we have

2V4(¢)
/\min<rfl)

From (4.85) and (4.86), we readily have the compact set QY specified in (4.76), over

2} < 20maVi(1), WA < (4.86)

which the NN approximation is carried out with its feasibility being guaranteed.

&

Now we are ready to extend the above design methodology to higher-order system

using backstepping design.

4.3.3 Direct NN Control for Nth-Order System

In this section, adaptive neural control is proposed for system (4.61) and the sta-
bility results of the closed-loop system are presented. The backstepping design
procedure contains n steps. The design of adaptive control laws is based on the
following change of coordinates: z; = 1 — yg, 2 = T; — q;_1, 1 = 2,...,n, Where
a;(t) is an intermediate control functions designed for the corresponding i-th sub-
system based on an appropriate Lyapunov function V;(t). The control law u(t) is
designed in the last step to stabilized the whole closed-loop system based on the
overall Lyapunov function V,,, which is partially composed of the sum of the pre-
vious V(t), 1 = 1,...,n — 1. Note that the controller design based on such compact
sets Y will render a; not differentiable at points || = c¢.,. This problem can be

easily fixed by simply setting the differentiation at these points to be any finite
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value, say 0, and then every signal in the closed-loop system can be shown to be
bounded. Theoretically speaking, by doing so, there is no much loss either as these
points are isolated with finite energy and can be ignored. For ease and clarity of
presentation, we assume that all the control functions are differentiable throughout

this Section.

For uniformity of notation, throughout this section, define estimation errors W; =

W, — W, compact sets Q. and QY. as

chi = {Zz‘
QOZz = QZA

7

|2i < ez}
- Q.

where constants c,, > 0, W, € Rl are the estimates of ideal NN weights W* €

7

R' and the following integral Lyapunov functions V,,(t), the Lyapunov-Krasovskii

functionals Vi, (¢), and the Lyapunov function candidates V;(t) as

V.(t) = Zgixi)z? (4.87)

Vinlt) = 291“ | viaor (4.89)

Vilt) = Valt)+ Vialt) + g W (0T i), (4.80)
where positive functions Uy (#:(t)) = iy 22(8) g4 (#:(8)).

In the following steps, the unknown functions @Q;(Z;), i = 2,...,n, which will be

defined later, will be approximated by neural networks as

Qi(Z) = W;TS(Z) + €(Z;),VZ; € O, (4.90)

*

€;. are the upper bounds of the NN approximation errors, i.e., |e;(Z;)| < €} with

Z; being the corresponding inputs to be defined later,

Step 1: Let us firstly consider the z;-subsystem as z; = 21 — yg and 29 = 29 —

4(t) = g1(@1(1))[2(t) + ()] + fr(21 (1) + ha(za(t = 7)) —ga(t)  (491)

Consider the Lyapunov function candidate in (4.89). Following the same procedure

as in Section 4.3.2 by applying Assumption A4) and Young’s inequality, we obtain

“/1 S 21 [061 + Ql(Zl)] + ﬂZ% + z129 + (Wl — Wf)TFfllf[/l (492)

2 min
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Applying Young’s inequality again for 229, i.e., 2120 < 327 + 122, (4.92) becomes

V< (G2t D)at o+ of + aon + Q)]+ 00 = WD (4.09)
where
() = i) = du+ gl + g —atel@)
The following practical adaptive control is proposed
a1 = pi(z1, ) [~k ()2 — WES(Z)] (4.94)
Wl = p1(21, ¢, )T1[S(Z1) 21 — Ul(Wl - W10)] (4.95)

Substituting (4.94) and (4.95) into (4.93) yields

. 1 1 N "

Vo< k() = 50 = 512t 52 maelZ) — o (W — W) (= W)
Letting ki(t) = kio + k11 + ki2(t) with constant kig, k11 > 0 such that kj, =
kl() — 231‘% — % > 0 and

€10 t 1 2 2
kia(t) = 2/, 5371(7)@1(931(7))6177 €10 >0 (4.96)
1 —Tmax
For z; € Q) , substituting (4.90), (4.94), (4.95), and (4.96) into (4.93) yields
. 1 A 1
‘G(t) S _2kikogmin‘/;1 (t) - é‘1()gmin‘/U1 - 50-1||W1 - VVI*H2 + Ca + 523
1
< —aVi() +ea+ 53 (4.97)
where constants ¢; and ¢, are defined as
. % 01
¢1 = min § 2k7Gmins £10Ymin, m (4.98)
e e Lol s (4.99)
U ! Ak, '

From (4.97), we know that if 25 can be regulated as bounded, the boundedness of

Vi(t), z1, x1 and W, can be obtained as can be seen from Theorem 4.3.1.
The regulation of 2z, will be left to the next step.

Step i (2 <i<n-—1): Similar procedures are taken for i = 2,---,n—1 as in Step
1.
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The dynamics of z;-subsystem is given by

%4i(t) = gi(@:()) 21 (t) + ()] + fi(Z: (1)) + ha(@i(t — 7)) — i (F)

Consider the Lyapunov function candidate V;(¢) in (4.89). The time derivative of
Vi(t) is

Vi(t) = Zz‘(t){zz‘+1(t)+04i(t)+g ;

i (Z3(1))
i (1) LS BN
291( (t))ZZ (t) * 2gminUZ( l(t)) 2gminUZ( l(t Z))
+(Wi(t) — WHTT7 W4 (t) (4.100)

Using Young’s inequality and noting Assumption A4), we have

1 ) )
+ — g xi(t— 1) (Ti(t — 7
292'(%(75))]:1 it )i (il )
J 9 )
- t—T; t —
2gmln j=1 x sz ) 29min ]Zl x]( TZ)QZJ <ml( TZ))
+(W; — W:)Tr;lw‘ i (4.101)

As g;(Z;(t)) > gmin, it follows that

i

Zx 7)o (Tt — 7)) — S ad(t— 1) 0% (3t — 7)) <0

29@ z 2gm1n] 1

Thus, (4.101) becomes

9i(x:) 1., 1

v, < _[293(3?“1-) - 5]% (t) + §Z?+1(t) + zila; + Qi(Z;)]
+(W, = W) T, (4.102)
where
1 B - 1 : ~
Qi(Z;) = W[ﬁ(%) — Q1+ 521] + Sy ]Z::l-f'??(t)é)?g(xz(t))
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: N P Oo—1 Oy Oai—1 0 34
with Z;(t) = [z, Ti—1, a1, Tors et e ,wi—1] € Qy C R”, where
) 20y Oa_q - 20
A1 = —x; + Wi—1 Wi—1 = —(w——Tg; + — W,
ox; 7 ’ 0T gi 5, !
j=1 7 di j=1 Wj

Similarly, we have the following intermediate control law

a; = qi(zi, ¢ [—ki(t)z — WTES(Z,)] (4.103)
Wi = qi(zi, c:)Ti[S(Zi)z — o(W; — WO)] (4.104)
: 1
kit) = kio + kit + kia(t), Kio, kir > 0,k = kio — 2§—d' —5>0 (4.105)
. t
kio(t) = 22 = Zx )03 (Ti(7))dr, >0 (4.106)

Zi t—Tmax

For z; € QY , substituting (4.103)-(4.106) into (4.102), and using (4.90), we have

y * 1 T * 1
Vi(t) < — 2k Gmin V2, (t) — €i0Gmin Vi, (t) — EUiHWz‘ - W ||2 + Cei + 521'2+1

1
< —qVi(t) +cq + 222+1 (4.107)
where
. % g;
C; ‘= min 2kiogmin> €i09min m (4108)
1 op2 L
= —o;[|[WF AR 4.1
Cei QUZHW - W7IF + 4k‘ (4.109)

The effect of z; ;1 will be handled in the next step.

Step n: This is the final step, since the actual control u appears in the dynamics

of z,-subsystem as given by

I = gn(2())u+ ful2(t) + ho(2(t = 7)) = A ()

Consider the Lyapunov function candidate V,,(t) given in (4.89). The time deriva-
tive of V,,(t) is

T U O)  halalt = 70) = G (1))

(ZB(t)) n(t) + LUn(x(t)) B QQiin

Up(x(t — 7))

2 min

+(Wa(t) — W) T, (1)
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Using Young’s inequality and noting Assumption A4), we have

) gn(T) 1 . 1
Valt) £ =5 5agal +a®{ut) + s fa(@®) = daa(®) + 0]}
1 o VR (el — 7
a0 2~ T el = )
+2g1min j:1 sz'(t)@zzj ((t) — 2o jil x?(t — Tn)gij (z(t — 7))
0T, WL (4.110)

As g, (x(t)) > Gmin, it follows that

Z.T t=m Qn]( (t n ZSL’ t— 1Ty gn]( (t n>>§0

2971( 29mm i

Thus, (4.110) becomes

Vi< = 2200 t) o+ QuZ) + (W - I, ()
Gn\ T
where
Qu(Z0) = ——[Fule) = s + 2] + s—— 3 a(B)e, (2(1))
n\4n) — n\L) — Qp_— —Zn x4 (x
gn() P T T Qg O
with Z,(t) = [z, Tp_1, On_1, aggll, 83;21,. ,gz" L wyo1] € QY C R*, where
n—1 n—1 .
. 8an 1. aa/n—l; ao4n—1 T
Oy = Ti+ Wno1, Wpnol = ——Tdn + — W,
1 ]z:l a[[‘] J 1 1 ) . d ]z:l 8{/[/] J

Similarly, we have the following intermediate control law

U= Gn(zn, ) [—kn(t) 20 — WLS(Z,)] (4.112)

W = go(zns ¢ Ti[S(Z0) 2n — 03(Wi — WO)] (4.113)

ko (£) = ko + kit + k() knos k1 > 0, k% 2 ko — Z"‘f >0 (4.114)

b =70 [ IS 22 (e(r)dr, 0> 0 (4.115)
22 Jt—tmax 2

For z, € QY | substituting (4.112)-(4.115) into (4.111), and using (4.90), we have

IN

: * 1 7 *
Vn<t) _Qkiogmin‘/zn (t> - gnogminVUn (t) - io_nHWn - Wn ||2 + Cen

CnVa(t) + Cen (4.116)

IN
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where
. " On
Cp = 1IN anogmin, En0Y9min; m (4117)
1 et
en +— 50n W* Wo 2 Zn 4.118
o= 3ullW — WRIP + (@.115)

The following theorem shows the stability of the closed-loop adaptive system.

Theorem 4.3.2 Consider the closed-loop system consisting of the plant (4.61) un-
der Assumptions A1)-A5), the controller (4.112) and the NN weight updating law
(4.118). For bounded initial conditions, the following properties hold:

(i) all signals in the closed-loop system remain semi-globally uniformly ultimately
bounded and the vector Z = [ZT,...,ZX1T remains in a compact set Y =

QY U...UQY specified as

- LA 2C,
Q% = {le:zi2 < 20maxCo, Z HWiH2 < —071’ Tgi € Quini=2,...1
i=1 i=1 Amin (I57)
Zi¢chi77;:1,...7n} (4119>

where Cy > 0 is a constant whose size depends on the initial conditions (as
will be defined later in the proof);

(ii) the closed-loop signal z(t) = [z1, ..., 2,)T € R™ will eventually converge to a
compact set defined by
Q5= {= | |2 < u} (4.120)

with p > 0 is a constant related to the design parameters and will be defined
later in the proof, and Qg can be made as small as desired by an appropriate

choice of the design parameters.

Proof: Consider the following Lyapunov function candidate

n 1 -~ _
= > [V.,(t) + Vi, (t) + §WiTF;1WZ-] (4.121)

=1

where V., (t) and Vy,(t) are defined in (4.87) and (4.88) respectively, and (-) =

(f) — (). The following three cases are considered.
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Case 1): z; € Q.. 1 =1,..,n. In this case, the controls oy = 0,7 =1,...,n -1,
u = 0 and Wz =0,7=1,...,n. Since z; = x1 —yg and y, is bounded, x; is bounded.
For ¢« = 2,....n, x; is bounded as x; = z; + o;_1 and «o;_; = 0. In addition, VT/Z
is kept unchanged in a bounded value, ¢ = 1,...,n. Observing the definition for
V.,(t) and Vi, (t) and noting that g;(-), 0;;(-) are smooth functions, we know that
for bounded x;, z; and W;, V., (t) and Vi, (t) are bounded, i.e., there exists a finite
C'p such that

V(t) < Cp (4.122)

Case 2): z; € QY ;i =1,...,n. From (4.116), we have V() < —¢,Vio(t) + e where
¢n and ¢, are define in (4.117) and (4.118) respectively. Let p, = cen/cn, it follows
that

0 < Vo(t) < [Va(0) — pule™ + pn < Vo(0) + pr (4.123)

))ZYQL(O) + %WT(O)Fngn(O)]. From (4.89), we have

1
2gn (z(0

where constant V,,(0) = .
22 < 20max Vo (1), and | W, |2 < 2V, (£)/Amin (T ).

In Step n — 1, we have obtained
Vn_l(t) < —cp1Vo1(t) + cen1 + %Zi (4.124)
As 22 < 20max Vi (t) and V,,(t) < V,(0) + p,,, we have
Vn—l(t) < —Cn1Va—1(t) + cen1 + Gmax(Va(0) + pn) (4.125)
Letting pn—1 = [Cen—1 + gmax(Va(0) + pn)]/cn—1, from (4.125), we have
Vi1 (t) < [Vae1(0) = pa]e™ 1 + proy < Vis1(0) + prs (4.126)
Noting (4.89), it follows
%1 < 20max Vo 1(t) < 20max (Va-1(0) + pn—1)
Similarly, we can conclude that for i =1,---,n
27 < 20max(Vi(0) + pi),  |Will* <

with Pi = [Cei + gmax(‘/;—l(o) + pi—l)]-
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Case 3): Some z € QY and some z; € chj. In this case, the corresponding «;
or u and the adaptation law for W; will be invoked for z € QY while a; = 0 or
u =0 and Wj =0 for z; € Q.. Let us define Vi(t) = 35(Vz, + Vi, + IWEITT'W))
and V;(t) = >,;(Va, + Vi, + %I/T/JTFJ_WT/J) For z; € Q. , we know that V;(¢) is
bounded, i.e., V;(t) < C; with C; being finite, and for z; € QY , we obtain that
Vi(t) < —clVi(t) + ¢l + 322,1. Let us define p! = [cf; + £ max{z?_,}]/c!, we have

Vi(t) < [Vi(0) — pile " + p! < Vi(0) + pf (4.127)

Thus, Vi < V7(0) + p; with V7(0) = 32, Vi(0) and p; = 3; p!. Therefore, it can be
obtained that
V(t) = Vi(t) + Vi(t) < Vi(0) + pr + C; (4.128)

Thus, from Cases 1), 2) and 3), we can conclude that
V(t) < Cy (4.129)

where Cy = max{Cp, >1 1 (Vi(0)+p;), Vi(0)+pr+C;}. From (4.129), we know that
Vi(t), z; and Wi, 1 =1,...,n, are bounded. Since z; = x1 —yg and y4 is bounded, 1
is bounded. For x5 = 25 4+ a4, since «; is function of bounded signals z;, 71, Wl,
a1 is thus bounded, which in turn leads to the boundedness of x5. Following the
same way, we can prove one by one that all a;_; and z;, i = 3,...,n are bounded.

Therefore, the systems’ states z;, 7« = 1, ..., n are bounded.
Considering (4.121), we know that

2V (t)
min<F1_17 ceey Ffl)

n

D2 < 2maV (1), DIV < 5 (4.130)
=1 i=1

From (4.129) and (4.130), we readily have the compact set Q% defined in (4.119)
over which the NN approximation is carried out with its feasibility being guaran-
teed.

n 2

In addition, in Case 1), as z; € Q. , i = 1,...n, we know that [|z||> = Xi_, 27 <
¢z, In Case 2), from (4.123) and (4.126), we have that lim, . [|2[]* =

20max >oiq pi- In Case 3), from (4.127) and (4.130), we have that lim; .o, >; 27 =
29maxpr and 3; 25 < 33; 2. Therefore as t — oo, we can conclude that [|z]|* <
where p = max{2¢max Yor1 Pi» 29maxPIs doreq Ci}a i.e., the vector z will eventually

converge to the compact set g defined in (4.120). This completes the proof. <
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The practical decoupled backstepping design procedure is illustrated in Fig. 4.9.

Remark 4.3.1 Note that the proposed design requires the information of T,_1(t).
In fact, the requirement could be removed and similar yet much more involved design

can be developed as can be shown in Step 1.

In Step i, ¢,;_1 can be expressed as

Lt 8041 1. aOéi,1 . =l 8061;1 A
di_ = T;+ Wi—1, Wi—1 = —Xq; + — W,
1 Jzz:l 891:]- j 1 1 a$di d ; (91/[/3 j
oy _ _ _
= 2 L95@0)ia () + f(@(0) + Dy (25 = 7)) + win
j=1 j

Consider the quadratic function V., (t) given in (4.87). Its time derivative is

~r - 2120+ 320

—i—zi(t){ai(t) +

V() <

—~

1 =t 8041‘_1 1

@ (0) + 50 X (5, " + 50}

1
9:(Z(t))

Z:IZ']Z t—1) QZ] it —1))

291 zi(t

. A
+291(:E1(t)) Z Z it ij(xy(t 7))

7=1k=1

F (W, — WHTT W,

The Lyapunov-Krasovskii functional Vi, (t) is given as

Vi) = 53 [ Uy (4.131)

2gmin j=1 t—Tj

with positive function U;(T;(t)) = Y_, 27 (t)0%,(7;(t)). Considering the Lyapunov
function candidate V;(t) given in (4.89), we can obtain (4.102) with

1 o1 O, 1
Qi(Z;) = M[fz(xz) + 521(t>JZI( Bz, )+ 5 29m1nzz ]Zugzlxk ij z;(t))

with Z;(t) = (7, 83;11, 83;21,. ,gz?:,wi,l] € Q) C R*. It can be seen that re-

quirement of T;_y has been removed and hence the number of the NN input Z;(t)

has been dramatically reduced from (3i — 1) to 2i.
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Step 1

Step 2

Step i

Step n-1

Stepn

ViS-oV+A+Z

Y

VIS—Q\/I+21+Z§
vzg’czvz'*'iz'*'zsz

J

V;,V, bounded

V,<—cV, + 4 +2Z

V-\S’C\V\*'/ll'*'zfﬂ

V, bounded
V, SV, + 4, +2

V, <V, +4 +7]

i+

l

V,<-cV+ 4 +2

7 1 2
Vs Sy Vot s+ 2

V, bounded
V, <—C\, + 4, + 2

7 2
Vir $=Co Vo + AH +2z

Y Y
. ) V, bounded
V<V, +4+2, V, <oy A+ 2
2= 2
V, 50, +4, V-0,

V, bounded

Y

V, bounded
V,<—cV,+4,+2

l

Vi, ...V, , bounded
ViS-eVi+4 +2

V,,....,V; bounded

l

!

Vi,....V,_, bounded
V‘H S=C Vo + A+ Zrz\

V,,...,V,, bounded

Y

Y

v,....V,,_, bounded
V. < 7Cn—1vn—1 + Z‘m + Zﬁ

n-1=

V, <GV, +4,

V,,...,V,_, bounded
V, <-cV, +4,

V,,...,V, bounded

Figure 4.9: Practical decoupled backstepping design procedure.
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4.3.4 Conclusion

Practical adaptive neural control has been addressed for a class of nonlinear sys-
tems with unknown time delays in strict-feedback form. The unknown time delays
has been compensated for through the use of appropriate Lyapunov-Krasovskii
functionals. Controller singularity problems have been solved by employing practi-
cal neural network control based on decoupled backstepping design. The proposed
design has been proven to be able to guarantee semi-globally uniformly ultimate
boundedness of all the signals in the closed-loop system and the tracking error is
proven to converge to a small neighborhood of the origin. In addition, the residual

set of each states in the closed-loop systems has been determined respectively.
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Chapter 5

Robust Adaptive Control of
Nonlinear Systems with Unknown

Time Delays

5.1 Introduction

Motivated by previous works on the nonlinear systems with both unknown time
delays and uncertainties from unknown parameters and nonlinear functions, we
present in this chapter a practical robust adaptive controller for a class of un-
known nonlinear systems in a parametric-strict-feedback form [129]. Using appro-
priate Lyapunov-Krasovskii functionals in the Lyapunov function candidate, the
uncertainties from unknown time delays are removed such that the design of the
stabilizing control law is free from these uncertainties. In this way, the iterative
backstepping design procedure can be carried out directly. In addition, controller
singularities are effectively avoided by employing practical robust control. Time-
varying control gains rather than fixed gains are chosen to guarantee the bound-
edness of all the signals in closed-loop system. The global uniformly ultimately
boundedness (GUUB) of the signals in the closed-loop system is achieved and the
output of the systems is proven to converge to a small neighborhood of the desired

trajectory.
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5.1 Introduction

To the best of our knowledge, there is little work dealing with such a kind of

systems in the literature at present stage. The proposed method expands the class

of nonlinear systems that can be handled using adaptive control techniques. The

main contributions of the chapter lie in:

(i)

(iii)

(iv)

the first employment of robust adaptive backstepping controller design to
a class of unknown nonlinear time-delay systems in strict-feedback form, in
which the unknown time delays are compensated for by using appropriate

Lyaponov-Krasovskii functionals,

the introduction of differentiable practical control in solving the controller
singularity problem, which can be carried out in backstepping design and
guarantee that the tracking error will be confined in a compact domain of

attraction,

the elegant re-grouping of unknown parameters, by which the controller sin-
gularity problem is effectively avoided, and the lumping of unknown param-
eter vectors as scalars, by which the number of parameters being estimated
is dramatically reduced and the order and complexity of the controller are

greatly reduced, and

the choice of time-varying control gains instead of fixed gains to guarantee

the boundedness of all the signals in closed-loop systems.

The rest of the chapter is organized as follows.

The problem formulation and preliminaries are given in Section 5.2. A robust

adaptive controller design is illustrated for a first-order system in Section 5.3. The

design scheme is extended to a general nth-order system with its stability proof in

Section 5.4. A simulation example is given in Section 5.5 followed by Section 5.6,

which concludes the work.
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5.2 Problem Formulation and Preliminaries

5.2 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems

In(t) = gnu(t) + fu(z(t)) + hn(2(t — 7)),
y(t) = x1(t) (5.1)

where Z; = |11, 29, -, 2]7, ¥ = [x1,29, -+, 2,)7 € R", u € R, y € R are the
state variables, system input and output respectively, f;(-) and h;(-) are unknown
smooth functions, g; are unknown constants, and 7; are unknown time delays of
the states, ¢« = 1,---,n. The control objective is to design an adaptive controller
for system (5.1) such that the output y(¢) follows a desired reference signal y4(t),
while all signals in the closed-loop system are bounded. Define the desired trajec-
tory Tggit1) = [Yay Gas - 51"

time derivative y((f). We have the following assumptions for the system functions,

, 1 =1,---,n, which is a vector of y; up to its ith
unknown time delays and reference signals.

Assumption 5.2.1 The signs of g; are known, and there exist constants Gmayx >

Gmin > 0 such that gmin < |9i] < gmax-

The above assumption implies that unknown constants g; are either strictly positive
or strictly negative. Without losing generality, we shall only consider the case when
g; > 0. It should be emphasized that the bounds g, and gmax are only required
for analytical purposes, their true values are not necessarily known since they are

not used for controller design.

Assumption 5.2.2 The unknown functions f;(-) and h;(-) can be expressed as

[i@i(t)) = OLFi(:(t)) + 65(7:(1))
hi(Z:(t)) = 05 H;(T:(t)) 4 0ns(T:(1))

where F;(-), H;(-) are known smooth function vectors, 8y € R"™, 0, € R™ are

unknown constant parameter vectors, n;, m; are positive integers, 6;(-), Oni(-) are
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5.2 Problem Formulation and Preliminaries

unknown smooth functions, which satisfy the so-called triangular bounds conditions

0£i(Z: ()] < crii(zi(t))
10i(Z5(8))] < cniths(Za(t))
where cg;, cp; are constant parameters, which are not necessarily known, and ¢;(-),

¥i(+) are known nonnegative smooth functions.

Assumption 5.2.2 is rather weak as only a rough form of f;(-) and h;(-) need to be

known.

Assumption 5.2.3 The size of the unknown time delays is bounded by a known

constants, i.e., T, < Tmax, ¢ = 1, -+, n.

There are many physical processes which are governed by nonlinear differential
equations of the form (5.1). Examples are recycled reactors, recycled storage tanks
and cold rolling mills [130]. In general, most of the recycling processes inherit
delays in their state equations. Compared with the systems in [109], the system
we consider in this section is more general in the sense that the uncertainty is due
to both parametric uncertainty and unknown nonlinear functions. These unknown

functions might come from inaccurate modeling or modeling reduction.

To make the problem formulation precisely, the system is presented again as follows

Zi(t) = giwipa (t) + 05 F(T:(1) + 05:(i(1)) + O Hi(Zi(t — 7)) + Ona(@:(t — 7)),

1<:1<n—-1
Ealt) = guu(t) + 05, Fu(2(t)) + Spue(t)) + 05 Ho((t = 7)) + Sun(a(t — 7).
y(t) = m(t) (5.2)

Assumption 5.2.4 The desired trajectory vectors Tq; € Qg C RY, i =2,---,n are

continuous and available with Qg; known compact set.

The following lemma is used in the controller in solving the problem of chattering.

Lemma 5.2.1 The following inequality holds for any e, > 0 and for anyn € R
0 < |n| — ntanh (Q> < ke
€1

where k is a constant that satisfies k = e~ D je. k= 0.2785.
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5.3 Robust Design for First-order Systems

The following two functions are introduced for the purpose of the practical con-
troller design in the next section, and differentiable backstepping design in Section
5.4.

F1). Even function p;(:): R — R

1 > Nai
pi(z) = { el = , Vx € R. (5.3)

F2). Even function ¢;(z) : R — R

1, |z| > Aai + Api
Gi(z) = Cqi fAm[(Tb — (60— i — Tb 2] idq, Aai < T < Agi + Api
Cqi f [( )2 — (0 + Xai + 7") ["tdo, —(Aai + i) < T < —Aai
0, lz| < A
(5.4)
where ¢,; = W Aais Api > 0 and integer i € RT, is (n—i)th differentiable,

i.e., ¢;(x) € C" " and bounded by 1.

5.3 Robust Design for First-order Systems

To illustrate the design methodology clearly, let us consider the tracking problem

of a first-order system first
l'l(t) = 91U(t)+9?1F1(£L’1<t)>+5f1(l’1<t))+9}7;1H1(1E1(t—7'1))+5h1(.’1§1(t-’7’1)) (55)

with u(t) being the control input. Define z; = z1 — y4, we have

a(t) = guu(t) + 05 Fi(2a(t) + 0p (2a(2))
08 Hi (w1 (t — 71)) + Opa(21(t — 71)) — al(?) (5.6)

Consider the scalar function V., (¢) = ﬁzf(t), whose time derivative along (5.6) is

Va) = 2@{u®) + - [FhFn0) +5n(n )

O Hy (21t = 71)) + O (21(t — 1)) — Z)d(t)”
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5.3 Robust Design for First-order Systems

Since 071 (+) and &y (+) are partially known according to Assumption 5.2.2, we have

Va) < au®) + - [4(OFFi)
+z1(t)eprr (x1(2)) + 21(8)05, Hy (21 (t — 7))
a1 () enator (@1 (t = 70)) = 21 (t)ia(t)] (5.7)

Remark 5.3.1 [t can be seen from (5.7) that the design difficulties come from two
system uncertainties: unknown parameters and unknown time delay 7. Although
Hi () and ¥1(+) are known, they are functions of delayed state x1(t — 11), which is
undetermined due to the unknown time delay 7. Thus, functions Hy(x1(t—71)) and
1 (z1(t—m71)) cannot be used in the controller design. In addition, the unknown time
delay Ty and unknown parameters 01, and cp, are entangled together in a nonlinear
fashion, which makes the problem even more complex to solve. Therefore, we have
to convert these related terms into such a form that the uncertainties from 7y, 07,

and cpy can be dealt with separately.

Using Young’s Inequality [131], we have

Va(t) < zl(t)u(t)+i[zl(t)9?1F1(:v1(t))+Izl(t)|0f1¢1(x1(t))

1 1
+§Z%(t)6£19h1 + §H1T<I1(t — 71>>H1($1(t — 7'1))

A+ S0l - ) - 2 (D5a(0)] 5.9

where 6,1 and Hy(x1(t — 7)), and ¢5; and 91 (21 (t — 1)) are separated respectively.
In fact, parameter vector 6, and function vector Hy(z1(t—71)) have been lumped as
scalars by applying Young’s Inequality, for which they can be dealt with separately

as detailed later.

To overcome the design difficulties from the unknown time delay 7;, the following

Lyapunov-Krasovskii functional can be considered

Vir (1) = 2%}1 / i Us(a1(7))dr (5.9)

where U;(+) is a positive definite function chosen as

Ur(z:1(t)) = H (21(t)) Hy (21 (t)) + 07 (21(t)) (5.10)
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5.3 Robust Design for First-order Systems

The time derivative of Vi, () is

Vi) = 5[0 @) = Uitar(t = )]
- QLQI {HlT(wl)Hlml) +i(n1) = H (21(t = 70)) Hi (21 (t — 1))

—y} (@t — )]

which can be used to cancel the time-delay terms on the right hand side of (5.8)
and thus eliminate the design difficulty from the unknown time delay m without
introducing any uncertainties to the system. For notation conciseness, we will
omit the time variable after time-delay terms have been eliminated. Accordingly,

we obtain

. . 1
Vit Vo < st 21071 Fi (1) + |21lendi (1)
1

1 1 1 1 i
+§239£19h1 + §H1T($1)H1(l’1) + §Z%Ci1 + 51#%(1’1) - Zlyd]
A
= z1(u+ 67 Fp) + brolz1]d10 (5.11)

where 61 is an unknown constant, #; is an unknown constant vector, ¢1o(+) is a

known function, and Fy;(+) is a known function vector defined below

T T )
010 = m, 01 = [%’ my l]T c Rn1+2’
g1 g1 g1 91
Qo= 1, o= {Fl , 521, 5 (Hy Hy +97) —yd} €R
2 221

Note that the design of u(t) is free from unknown time delay 7; at present stage.
To stabilize z;(t), the following desired certainty equivalent control [59] under the

assumption of exact knowledge could be proposed as

uw = —k121 — G?Fgl — ﬁ1<21) (512)
where k1 > 0 and Bl(zl) = sgn(z1)910¢10.
Remark 5.3.2 The introduction of 01 has two advantages. Firstly, we only need to
estimate g% rather than g, such that the possible controller singularity due to g = 0

is avoided. Secondly, after applying Young’s inequality, unknown constant vector

On1 € R™ is lumped as a scalar 01,0,1. By doing so, the number of parameters being
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5.3 Robust Design for First-order Systems

estimated is dramatically reduced, which greatly reduces the order and complexity

of the controller.

However, controller singularity may occur since the proposed desired control (5.12)
is not well-defined at z; = 0. Therefore, care must be taken to guarantee the
boundedness of the control. It is noted that the controller singularity takes place
at the point z; = 0, where the control objective is supposed to be achieved. From a
practical point of view, once the system reaches its origin, no control action should
be taken for less power consumption. As z; = 0 is hard to detect owing to the
existence of measurement noises, it is more practical to relax our control objective
of convergence to a bounded region rather than the origin. Next, let us show that
certain bounded region is a domain of attraction in the sense that all z; will enter
into this region and will stay within thereafter. In the case that the parameters
are unknown, we propose the practical robust adaptive control law to guarantee

the systems stability as detailed in Lemma 5.3.1.

Lemma 5.3.1 For the first-order system (5.5), if the practical robust control law

18 chosen as

u = pl(Zl) [—kl(t)zl — éi{Fgl — 61 (Zl, élO)} (513)
B (21, élo) = Sgn(zl)élo¢10 (5.14)

where pi(+) is defined in (5.3), 010 and 0, are the estimates of 619 and 0, respectively,
ki(t) > k* > 0 with k* being any positive constant, and the parameters are updated
by

~

00 = p1(21)71121|¢10 (5~15)
él = pl(zl)FlFelzl (5-16)

with v > 0 and Ty =TT > 0, then for bounded initial conditions x1(0), 619(0) and
él(O), all signals in the closed-loop system are bounded, and the tracking error z1(t)

will finally stay in a compact set defined by Q,, = {z1 € R | |z1] < Aa1}.

Proof: To show €2,, to be a domain of attraction, we first find a Lyapunov function
candidate V;(t) > 0 such that V;(t) <0, Yz, ¢ Q... For |z] > A1, let us consider
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5.4 Robust Design for Nth-order Systems

the following Lyapunov function candidate

1 - 1~ -
Vi(8) = Vo, (8) + Vi (8) + 571 1 000(8) + 561 (0T 61 (1)

where (-) = (-) — (-). The time derivative of Vi(t) along (5.11) is
Vi(t) < 21(u+ 0 For) + 10| 21| d10 + 91 010010 + 01 1704 (5.17)

Substituting (5.13), (5.14), (5.15) and (5.16) into (5.17), we obtain V; < —k, ()22 <
—k*22 < 0. Hence, V4(t) is a Lyapunov function and z;(t), z(t), 010(t), 0(t) are
bounded. In addition, z; is square integrable since [ k*z2(7)dr < V1(0) and u(t)
is bounded due to the boundedness of 1, 910 and él. Thus, z; is bounded. From
Barbalat’s Lemma, we know that lim; . 21(¢) = 0. Note that the control effort
is only activated when |z1| > A1, we can conclude that for t — oo, |21(t)| < Aa1.
For |z1| < A1, since z; = x1 — 2y, ém = 0 and él = 0, z; is bounded, éw and él
are kept unchanged in bounded values. We can readily conclude that the tracking

error |z1(t)| < A41 while all the other closed-loop signals are bounded. <

The key point of the proposed design lies in two aspects. Firstly, the Lyapunov-
Krasovskii functional is utilized such that the design difficulties from unknown
time delay has been removed. Secondly, the practical robust control scheme has
employed to avoid possible controller singularity. It is well known in [132][133] that
the above discontinuous control scheme should be avoided as it will cause chatter-
ing phenomena and excite high-frequency unmodeled dynamics. Furthermore, we
would like to extend the methodology described in this section from first-order
systems to more general nth-order systems. To achieve this objective, the iterative
backstepping design can be used, which requires the differentiation of the control u
and the control component (3; at each step. Therefore, appropriate smooth control
functions shall be used, and at the same time the controller should guarantee the
boundedness of all the signals in the closed-loop and z; will still stay in certain

domain of attraction.

5.4 Robust Design for Nth-order Systems

In this section, the adaptive design will be extended to nth-order systems (5.2) and

the stability results of the closed-loop system are presented.
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5.4 Robust Design for Nth-order Systems

Note that the extension requires the smoothness of control functions to certain
degree, which is not straightforward but very much involved. In the recursive
backstepping design, the computation of the control function «;(t) in each step
requires that of &;_(t), q&;_2(t), ..., agi_l)(t). As a result, a;(t) need to be at least
(n — 7)th differentiable. On the other hand, the unknown time delay terms of all
the previous subsystems will appear in Step ¢, which have to be compensated for
one by one. In the following controller design, function ¢;(-) is utilized to construct

the differentiable control function. For ease of notation, the following compact sets

are defined
Qz, = {z e R[]z < Aai}
OY = {2z €R| M <z < Aai + M}
0P = {z€R||z| > dai + A}

The backstepping design procedure contains n steps. At each step, an intermediate
control function «;(t) shall be developed using an appropriate Lyapunov function
Vi(t). The design of both the control laws and the adaptive laws are based on the

following change of coordinates: 2z = x1 —yq, zi = T; — ;1,1 =2,-- -, n.
Step 1: Let us firstly consider the z;-subsystem as

alt) = gilz(t) +ai(t) + 05 Fi(zi(t) + 651 (21 (1))
+0£1H1(.T1(t—7'1)) +(5h1($1(t—7'1)) —y'd(t) (518)

The time derivative of the scalar function V,, (¢) = ﬁzf(t) along (5.18) is

Vi) = z(t)=) + Zl(t){al(t) + i[ﬂlﬂ(m(t)) + dy1(21(t))
O HL(a(t = 7)) + a1 (¢ = 7)) = dul)]

Following the same procedure as in section 5.3 by choosing Vi, in (5.9) and applying

Assumption 5.2.2 and Young’s inequality, we obtain
‘./21 + VUl S Z1%2 + 2’1(0(1 + QTFgl) + 910|21|¢10 (519)

As stated in section 5.3, the control objective now is to show that z; will converge to
certain domain of attraction rather than the origin. At the same time, the control

functions shall be smooth or at least differentiable to certain degree.
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5.4 Robust Design for Nth-order Systems

Let us consider the following smooth adaptive scheme

o = q(z) {—/ﬁ(t)zl - élTFm - 51}

1/t
ki(t) = k’10+? A Ur(z1(7))dr
1 —Tmax
B = 618
z
S ¢1otanh( 1¢10)
€1

~

00 = 6_11(2’1)71(2’151—010910)
é1 = Q1(Z1)F1(F0121—01é1)

where kg > 0 is a design constant, ¢; > 0 is a small constant, oy, 01 > 0 are small

constants to introduce the o —modification for the closed-loop system.

Consider the following Lyapunov function candidate

1 - 1~ 8
Vi) = Va,(8) + Vi (1) + 597 05(0) + 507 (1701 (1)

(5.26)

Let us first show the time derivative of V;(t) along (5.20)-(5.25) for z; € Q5. As

q1(21) = 1 as z; € QY2 we have

. t
Vi(t) < —kyo2t — /t Uy(x1(7))dT + 2129 + 910{|21|¢10 — 21010 tanh (

—Tmax

SN o
—010610010 — 0191 01

Using the inequalities

1 1
_ikmzf + Z1%9 S kilozg

- A 1 ~ 1
—0o10010010 < —50109%0 + 5010930

o A 1 = 1
—0101 61 < —san[|1]* + S0 |61
2 2
and applying Lemma 5.2.1, we have

. 3 1

21010

o)

(5.27)

(5.28)

¢ 1 . 1 .
Vilt) < — kot - /t_ Ur(@a(7)dr + =23 = 50100 — Soullfa ]2+ M (5.29)

kip 2 2
where constant A; > 0 is defined by

1 1
A\ = 5010930 + 501\\91H2 + 0.2785¢1 61
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5.4 Robust Design for Nth-order Systems

Since 7 < Tmax according to Assumption 5.2.3, the following inequality holds
t

/tin Uy(xy(7))dr < Us(21(7))dr

t—Tmax

Accordingly, (5.29) becomes

. 3 1 1
Vilt) < —=9gmink10Vz — 20min Vi, — —0109%0 01H91H2 + A+
2 2 ky 0
1
< —aVi(t) + A+ (5.30)
klo
where constant ¢; > 0 is defined by
. (3 o1
C = mln{§gmink510a 20min; 01071, m}

Remark 5.4.1 For z; € Q%?, if there is mo extra term z3 within the inequality
(5.30), we can conclude that Vi (t) is bounded, and thus z, 0,0 and 0, are bounded.
However, it may not be the case due to the presence of the extra term z3. It is
found that if zo can be regulated as bounded, say, |zs| < Zomax With Zomax being
finite, we have

Vi(t) < —aVal(t) + M

with A\, = A\ —l— z2 max- Lhe stability analysis for this case will be conducted later.

Next, let us consider z; € Q L de, Aa < |z < Aar + M. As 2z is bounded,
x1 = 21+ yq is also bounded. Considering the smooth positive functions V,, (¢) and
Vi, (t), we know that V,, (¢) and Vi, () are bounded. Let us define positive function
Voi(t) := 207 ()I710,(t). Tts time derivation along (5.25) is

Vor(t) = q1(20)07 (Fpr 21 — 010)) (5.31)
Applying the inequalities
¢ (21)0F Fpy 2y < 21191611(21)||9~1||2 + ]?Q1(Z1)F£F91Z%, kg1 > 0
~0()n bl < —Sa(AlGI? + Sae o)
eq. (5.31) becomes
2

. 1 1 ~ 1
Vi (t) < —§Q1(21)(01 - l€—91)||91||2 + —q1(z21)(01]|01 | + ko1 Fgy F127)
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5.4 Robust Design for Nth-order Systems

For z; € Q%’l, we know that ¢i(z;1) € (0,1), and Fjy; is smooth and bounded.
Choosing kg; such that o} := oy — k—zl > 0, and letting \g; := supzleg(;,1 {o1]|01])* +
ko1 F Fp122}, we have

: 1 10 112 1

Vor(t) < —5611(21)01”91” + §q1(z1))\91

1
< _Q1(Zl))\0;r1)%1(t) + 5ql(zl)Am (5.32)
max 1

*

Letting ¢§, := q1(21) i gy = %Ch(zl))\m, and

q . q q 1 -1 *
it follows from (5.32) that
0 < Voi(t) < [Var(0) - Pgl]e_cglt + Pgl < Vn(0) + pgl

from which, we can conclude that Vp(¢) is bounded, and hence 51 is bounded.
Similarly, it can be shown that 010 is bounded as well. Consider the Lyapunov
function candidate V;(t) defined in (5.26). As it has been already shown that
V.. (t), Vi, (t), 619 and 6, are bounded, we can conclude that V;(t) is bounded for

0

For z; € Qg,, i.e., |z1] < Aa1 is bounded, we know that ¢(21) = 0, élg =0 and
él = 0. Hence, r1 = 2z + yg4 is bounded, and élO and él are kept unchanged
in bounded values. As V., (t) and Vy, (t) are smooth functions, we know that for
bounded z; and 2, V., (¢) and Vi, (t) are bounded, and V; () is bounded.

Remark 5.4.2 Note that the boundedness of the closed-loop signals as x1, z1, éw,

91 for z; € Q%? and z € Qz, is independent of the signal z,.

Remark 5.4.3 Note that both the intermediate control function (5.20) and the
updating laws (5.24), (5.25) are differentiable, which makes it possible to carry out
the backstepping design in the next steps.

The regulation of zy will be shown in the next steps.
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5.4 Robust Design for Nth-order Systems

Step 2: Since z5 = x9 — a1 and 23 = x3 — an, the time derivative of z, is given by

L(t) = gazs(t) + aa(t) + 07, Fa(Ta(t)) + 652(Ta(t))
08, Hy (o (t — 72)) + Opa(To(t — 7)) — (1) (5.33)

By viewing x3(t) as a virtual control, we may design a control input as(t) for (5.33).

Since a4 (t) is a function of x1(t), ya, Y4, 010 and él, &y (t) can be expressed as

. 80&1 . 80[1 z 8041 6@1 ~
t) = — —10 -
al( ) axl :El a L2 a2 N 8910 10 891

— N [91172(t) + 9?1F1(:E1(t)) + 641 (21(2)) + 05 Hy (21 (t — 7))

+on (21 (t = 71))] + wi(t) (5.34)

where
oy . daq Oday
ade 8910 891

Similarly, let us consider scalar function V,, (t) = ﬁz%(t) By applying Assumption

5.2.2 and Using Young’s Inequality, its time derivative along (5.33) and (5.34) is
given by

. 1
Vi, < 2223+ 2000+ 9{229?2]72@2) + |22|cp22(Z2) + Z29h29h2
2

1
—Z3Ch, + 51/13(3_32(75 —T3))

+1HT(3§2(1§ — 7)) Ho(Zo(t — 72)) + 5

2

0 0 0
—9122%1'2— 280419 1 Fi(eg) + |22\|£|Cf1¢1($1)
0 1
-4 <a“1>ehlem+2ﬂ< 1(t = 7)) Ha(aa (¢ = )
1 Oa
4B ek + Ui - 1) — o |

Note that due to the differentiating of a;(t), both the unknown time delay 7
from the first subsystem and 75 from the current subsystem have appeared. The
Lyapunov-Krasovskii functional used earlier to compensate for 7, shall be utilized
repeatedly in this step to construct the following functional

2i92 / i Uy (1 (7)) dr + t; Uy(@o(7))dr

where Us(-) is a positive definite function defined by

Us(Z(t)) = Hy (Zo(t)) Ha(Zo(t)) + 03(Zo(t))
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and U () is defined in (5.10), we have

. . 1 1
Vi + Vi, < 2023 + 2000 + 9—{229?21?2(52) + |22|crapa(T2) + 222‘9;2%2
2
1 1 1
+§H2T(52)H2(532) + 5230;212 + *@bg(fz)
day 804 o
— G122y — 19f1Fl(5151) |22||71|Cf1¢1(931)
o0xy 8
Oa Ja
+2 2(3 —)200 O + H (z1)Hy(21) + 222(81,1)2 Gy + ¢1($1)
—Zgwl}
é 2923 + 22(042 -+ 92TF92) + 020‘22‘¢20 (535)

where 0y is an unknown constant, , is an unknown constant vector, ¢g(-) is a

known function, and Fy(+) is a known function vector defined below

Oy = max{cp,cp},
[ — [Q_Jg 9h29h2 + Ch? 91 ‘gfl 9h19h1 + Chl 1 ]T e Rritnatd
g2’ 92 T g g2 g ’
Oa
P20 = a2+ |—1|¢17
1 (9041 8@1 1 8@1 1 2 T
Fpo = |Fl 2, ———1xy, ——F, HH;
02 [ 2 2227 ax1$27 axl (a 1) 222] 1( +¢) :|
c Rn1+n2+4

Similarly, the following robust adaptive intermediate control law is proposed

@y = qa(2)[—ka(t)zs — 05 Fyo — ] (5.36)

k’g(t) == kQO + ; [Ul(.l’l(’r)) + Ug(i’g(’r))]d’r (537)
9 Jt—Tmax

By = by (5.38)

£, = ootanh (22220) (5.39)

where kog > 0 is a design constant, €5 > 0 is a small constant.

The adaptive laws are given for online tuning the unknown parameters

B0 = qa(22)72(22E0 — 0a00a0) (5.40)
02 = qo(z)To(Foozz — 0205) (5.41)
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5.4 Robust Design for Nth-order Systems

where v5 > 0, I's =15 s 0, and 099,02 > 0 are small constants to introduce the

o—modification for the closed-loop system.
Consider the following Lyapunov function candidate
1 - 1- _
Va(t) = Vau(0) + Vir (1) + 57 3(0) + 588 ()75 Bo(t)

For z, € Q%‘;, the control effort a is invoked, and the time derivative of V,(t) along
(5.35) and (5.36)-(5.41) is

. 1
Va(t) < —coVo(t) + Ao + —23

oo ™
where
. (3 02
Co = mln{§gminkzo, 29min, 02072, m}
1 1
Ny 1= 5(720650 + 50—2”62”2 + 0.2785¢€050

For 2, € 0%, the following two cases are considered: (i) if 21 € QY. or z; € Qy,,
e, |z1] < A1 + A1, Vi(t) and Vi(t) are bounded, hence, 21, 2o, ém, él, égo and
05 are bounded: (ii) if z; € Q%‘f, ie., |z1] > Aa1 + Ap1, we know from Remark 5.4.1
that Vi(t) < —e1Vi(t) + A with Ay = Ay + 7= (a2 + Ai2)?, for which the stability

analysis will be conducted later.

For z5 € Qy,, the analysis is similar as for 2o € QOZIl . The effect of z3 will be dealt

with in the next step.

Step i (3 < i < n — 1): Similar procedures are taken for each steps when ¢ =

3,---,n—1as in Steps 1 and 2.

The time derivative of z;(t) is given by

4(t) = gilzin(t) + ai()] + 05, Fy(7:(1)) + 05(2i(1))

FO Hi(Ti(t — 72)) + 00 (T3(t — 7)) — (1) (5.42)
Since «;_1(t) is a function of Z;_1, T, 910, e 7éi—1,0; él, e ,éi_l, é;—1(t) can be
expressed as
i—1 i—1 i —1 i
. — Oo_q . Jaj_q . — Oo_1 5 — Oa;_1 ;
Ckifl(t) = Xxi + ffdi + TQ‘O + —Ae
jz::l axj ! axdi Jz::l aejo ! ; 0 j !
Zf aozi*l:i: 4w
= j i—1
P ’
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5.4 Robust Design for Nth-order Systems

where -
Wi—1 = %i’dl —+ Z (%éjo —+ aa—i_léj>
then (5.42) becomes
4(t) = gilzin(t) + ai(t)] + 05, F(Z:(t)) + 07i(T:(1))
+0TH-(’-(t — 7)) + 0 (Ti(t — 7))
8041, _ _
- Z [gjijrl + 07 F5(T5) + 055(5)
+9 H;( g(t 7)) + Oy (%5(8 = 7)) | —wia (8)

Consider the scalar functions V,,(t) = 2; 22(t). By applying Assumption 5.2.2 and

using Young’s Inequality, its time derivative is
: 1 1 5.7
V., < zizig+ 2o+ {229 Fi(Z:) + |zileridi(Z:) + 5% Onithi
gi

g HE @t = m) H@ult — ) + 3226 + S0 (@(t — m)

i—1 aai_ aOéZ

P2 =y, it sy SO ) 2/ 202 —erso(2)
1 aai_ 1 _ _

+§Z@-2( ale)%gj@hj + §Hf(xj(t — 7)) Hj(z;(t — 75))
1 8@1-_1 1

+§Zi2( o) ) iﬂ + wa(x](t—Tj))] ZiW; 1}

Considering the following Lyapunov-Krasovskii functional

Vir (1) / (3
29@] 1 t—7;

where Uj(+),---,U;_1(+) are defined in the previous steps and U;(+) is a positive
definite function defined by

Ui(z:(t)) = H] (Z:(8)) Hy(Z:(t)) + 7 (Z(1))
we have

) ) 1 1
Vo +Vu, < zizign + ziog + g{Zﬂ}Fze(%) + |zl crigi(Ti) + 3 270}.0n;

1 1
+§HiT(fi)Hi(fi) + 221 i+ w (z:)
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5.4 Robust Design for Nth-order Systems

= Oa_q Oa_q
P [ ay,, et - ag, OhEGE 2+ 15120 eg6,(2,)
1 5,00 1.9, Lor, - 1 a%122
32 gV a5 H (@) Hy(25) + 52275 =) + S0z
_Zz'wil}
é Zizi+1+Zi(ai+9?F0i>+ei0|Zi|¢i0 (543)

where 6 is an unknown constant, 6; is an unknown constant vector, ¢;(-) is a

known function, and Fy;(-) is a known function vector defined below

0,0 := max{cs1, -, cp},

0L 0.0, + 2, g;_ i T _
91' = |:£7 hiZh T Chl’ J 17 J 16;'1;1:| S Rma

gi Gi Gi Gi

aaz 1
= ¢i + Z| ~[6;,
1 a 71— a 71— 1 a 11—

F [F;'Tﬂ Gzt “ 1FT17 ( o 1)27

8@1_1 80@ 1 T 1 8041 1\2
- i—1, F ; y T
(93:172 tint 8131 2 - ( axz 2 )
0ozi_1 8042 1 T 1 3041_1 2
- F Z; )
8:61 T2 Or, 172 4 0x; )

—ZHTH +1p — W;— 1] GRT_”, ﬁZ:ZnJ—l—Qz

22 i3

Similarly, the following robust adaptive intermediate control law is proposed

a = (=) [—k»(t)zi—éTng—ﬁi] (5.44)

ki(t) = kio+ QZ/ 7))dr (5.45)
“ j=1 Tmax

Bi = Ok (5.46)

& = ¢i0tanh(2i5i0) (5.47)

where k;p > 0 is a design constant and ¢; > 0 is a small constant.

The adaptive laws are given for online tuning the unknown parameters

bio = ai(2)i(2& — aiobio) (5.48)

0; = q(z)li(Fypizi — 0:6;) (5.49)
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5.4 Robust Design for Nth-order Systems

where v; > 0, I'; =I'; LIS 0, and 09, 0; > 0 are small constants to introduce the

o—modification for the closed-loop system.

Consider the following Lyapunov function candidate

1 ~ 1~ -
Vilt) = Vai(t) + Vi (8) + 535 '60(8) + 507 (OT716:(1)

For z; € Q%?, the control effort «; is invoked and the time derivative of V;(¢) along
(5.43) and (5.44)-(5.49) is

. 1
Vi(t) < —c;Vi(t) + A\ + k:_OZiQ—&-l (5.50)
where
. (3 of}
C; = min {igminki(]y 2Gmin, 00V, m}
1 2

1
i = 502'09@-0 + §Uz’||9z'||2 + 0.2785€;0;0

If z;41 can be regulated as bounded, say, |zi+1]| < Zit+1max With 241 max being finite,
from (5.50), we have that Vi(t) < —¢;Vi(t) + A with A\, = A\ + kfi)z§+l,max. The

stability analysis for this case will be shown later and the effect of z;,; will be

handled in the next steps.

For z; € Q%IZ, or z; € Qg similarly as in Step 2, the following two cases are

considered: (i) if z;_; € Q%’H or z;_ 1 € Qy ., and (ii) if z;_; € QOZ?,y

i—17

Step m: This is the final step, since the actual control u appears in the derivative

of z,(t) as given in

Got) = gau(t) + 05, Fn(2(t) + dpa(@(t))

+0L Hy(2(t — 7)) + O (z(t — 7)) — Q1 (1) (5.51)
Since «y,_1(t) is a function of Z,,_1, Tan, é107 . ,én_m, él, . ,én_l, é,—1(t) can be
expressed as
"1 da, a1 . n-l <8a 1 a1 & )
() = Vg4 =g, + — 0+ ——0;
1) jzl ox; 0 O%gn ;1 00, " 90,
n—1
ao51171 .
= ——— @ + wy—1(1)
jzzzl ax]’ J
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5.4 Robust Design for Nth-order Systems

where

then (5.51) becomes

Zn(t) = gnu(t) + Q?n w(z(t)) + 5fn(]}(t)) + anHn(I(t — 7)) + O (2(t — 7))
o =1 ag;; 1 {gjxﬂﬂ + QfJF'(jj) +07(7;)

HOh H (25t — 7)) + O (25t = 75))| — wna (8)

Consider the scalar functions V, (t) = izi(t) By applying Assumption 5.2.2 and

using Young’s Inequality, its time derivative is
. 1 1
Vlt) < mult) + A w0 Fu(e) + |zulesnt(e) + 5220000

+1HT<x(t_Tn))Hn(x(t ))+1 Con w< (t = 7))

2" 2 Fn
n! 0oy, o, 00,1
F3 [y, e = ey SO Ll T e (3)
1 (904”,1 1 _ _
522( o, )2%%‘+§H]-T($j(t—Tj))Hj(ij(t—Tj))
1 2 (90471,1 92 9 1 9
3 gy + U@ )] = s

Consider the Lyapunov-Krasovskii functional

where Uy (+), -+, Un,—1(-) are defined before and U, (-) is a positive definite function
defined by
Un((t)) = H, (x(t)) Ha(x(1)) + 5 (2(1))

we have

. . 1 1
V. + T, < znu<t)+g—{zne§nzrn<x)+|zn|cfn¢n<x) 220800

n

1 1
5 Hy (0)Hu(@) + 52560, + w (2)
s aanfl aan 1
+jZ::1 [_Zna—%g]x]-i-l oz, 9 Fy(z5)
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5.4 Robust Design for Nth-order Systems

da, 1 -
+|Zn|| D \ijqb](l’])—i-zzn( ale)QHTth—i—ZH (z )Hj(xj>
Otn_1.9 o 2 }
+2zn( axj ) + ¢< ):| ZnWn—1
A T

where 0,9 is an unknown constant, 6,, is an unknown constant vector, ¢,o(+) is a

unknown parameter vector, and Fy,(-) is a known function vector defined below

Ono := max{cs1, -+, Crm},
oL 0T 9, - . T _
0, = [ﬂ hnUhn + Chn 9 1 g 10T_1} e Rn",
gn dn gn gn
aan 1
= ¢n + Z [ 165,
1 aOé —1 Ox 1 1 Oa 1
Fyn = Er, - ny " ny "R 5 = 2
0 [ ne 2Z ’ Gxn 1x ’ al’n 1 n-b (Gxn 1) ’
(90471,1 80én 1 ~T 1 (9ozn 12
- n—1, —F s o y T
axanx ! 81.71 2 e <axn 2)
aan,l 80471,1 T 1 aOén,1 2
- - F acn )
8:61 2 (9371 L 22 ( (9371 )
1 ~ n
5 2 HiHj+ ¢ —wna]” € R™, =3 m;+2n
n =1 —

Similarly, the following robust adaptive control law is proposed

U = qulz)[—knlt ()zn—éTan—ﬁn] (5.53)

ko(t) = ”°+_Z/t ))dr (5.54)
“n =17t Tmax

Ba = Onon (5.55)

& = ¢notanh(2"i”0> (5.56)

where k,o > 0 is a design constant and €, > 0 is a small constant.

The adaptive laws are given for online tuning the unknown parameters

énO == Qn(zn)’)/n(znén - anoénO) (557)
en = Qn(zn)rn(Fann - Unén> (558)

where v, >0, ', =T' 1'> 0, and 0,9, 0, > 0 are small constants to introduce the

o—modification for the closed-loop system.
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5.4 Robust Design for Nth-order Systems

Consider the following Lyapunov function candidate

1 - 1~ _
Valt) = Ve (1) + Vi () + 57 Bo(0) + 5800, 16,(1)

For 2, € Q% the final control u(t) is invoked and the time derivative of V(¢) along
(5.52) and (5.53)-(5.58) is

V(1) < = Vi () + A (5.59)
where

a.
n = i 2 minkn 72 min; Un| n74n
c mln{ g 05 20min, Tno’Y /\maX(F_l)}
1

1
>\n = QO-HOGTQLO + EUTLHQTLHQ + 02785€n6n0
It is known from (5.59) that V,,(¢) is bounded, hence z,, 0,0 and 0,, are bounded.

0 . N - 0
For z, € Qj or z, € Qg two cases are considered: (i) if z,_, € Qj  or

Zn-1 € Qanu and (11) Zn—1 € Q%?H'

Theorem 5.4.1 shows the stability and control performance of the closed-loop adap-

tive system.

Theorem 5.4.1 Consider the closed-loop system consisting of the plant (5.2) un-
der Assumptions 5.2.1-5.2.4. If we apply the controller (5.53)-(5.56) with param-
eters updating law (5.57) and (5.58), we can guarantee the following properties

under bounded initial conditions

(i) zi, éio, 6; and xi, 1 =1,---.n, are globally uniformly ultimately bounded;

(ii) the signal z(t) = [21,++,2,]7 € R™ will eventually converge to the compact
set defined by
Q.= { 2| llell <}
with 1 = max{\/2¢maxp; \/2?21()\@ + \i)?} and the compact set Q, can be

made as small as desired by an appropriate choice of the design parameters.

Proof: Consider the following Lyapunov function candidate

V() = 3 [Val0) + Vi) + 537000 + S O] (5.60)
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5.4 Robust Design for Nth-order Systems

where V., (t), Vi, (t), i = 1,---,n are defined as before, and () = (A) — (+). The

following three cases are considered.
Case 1): z; € Q%?, i=1,..,n.

From the previous derivation, we have the following inequality for z; € Q%?, 1=

1,...,n
V(t) < —cV () + A
where ¢ := min{cy,---,¢,} and X := 3" | A Let p:= \/c, it follows that
0<V(E#) <[V(0)—ple+p<V(0)+p (5.61)
where the constant
VIO0) = 3 [5520) + 507 B (0) + 5 O 0,(0)

Considering (5.60), we know that
Z 2 < 20max[V(0) + 9] (5.62)

> < maxla)V0) + o LI < T e

It can be seen from (5.61), (5.62) and (5.63) that V(¢) is bounded, hence z;, 6y

and 0; are uniformly bounded for z; € Q%?, 1=1,...n

In addition, from (5.60) and (5.61), we have

12 < \/20mas[(V(0) = p)e=<t + p]

e, limy . [|2]] = v20maxp- Since the above analysis is carried out for |z;| >
AaitAvi, t = 1,...,m, we have that lim;_,, ||z]| = max{\/2¢maxp, \/Z (Aai + Api)?}

Case 2): z; € Q%IZ_ orz € Qz,i=1,..,n.

In this case, V,,(t) is bounded, hence z;, x;, éio and éi, 1 =1,...,n are all bounded.

In addition, ||z]| < \/Z (Aai + i )%

Case 3): Some z;’s are satisfying z; € Q%?, while some z;’s are satisfying z; € Q%Ij

or z; € Qz,.
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5.4 Robust Design for Nth-order Systems

For z;, € Q%?, the control effort «; will render VZ < —Vi+ N+ k_];()zlz+1' If 214
is bounded, the boundedness of z; can be guaranteed. Otherwise, the control
effort ;11 will be invoked, which yields Vi+1 < —cit1Vigr + A1 + ZZ-2+2. Similarly,
regulation of z;,o will be left to the next steps till the final step where z, will be
regulated as bounded. Therefore, those z;’s will be regulated as bounded finally.

For those z; € Q%@ or z; € §1z;, their boundedness has already obtained.

Therefore, we can conclude from Cases 1), 2) and 3) that all the closed-loop signals
are GUUB and there does exist a compact set ), such that z will eventually

converge to. This completes the proof. {

Remark 5.4.4 Theorem 5.4.1 shows that the system tracking error converges to
a domain of attraction defined by compact set §2, rather than the origin. This is
due to the introduction of the practical control, the smooth [3; control component
and the o-modification for the parameter adaptation. FEven though the size of the
compact set is unknown due to the unknown parameters Gmin, Gmax, B0 and 0;,
1 =1,...,n, it 1s possible to make it as small as possible by appropriately choosing
the design parameters. However, parameters such as Ay or X\y; cannot be made
zero to void possibly control singularity and computational singularity. Therefore,
in practical applications, the design parameters should be adjusted carefully for

achieving suitable transient performance and control action.

Remark 5.4.5 The unknown parameters have been rearranged into a newly defined
vector in each step of the iterative backstepping design. By doing so, on one hand,
unknown vectors Op;, 1 = 1,---,n have been lumped as scalars, which reduces the
number of parameters to be estimated in each step and finally reduces the order of
the controller dramatically. On the other hand, we only need to estimate é rather

than g; such that possible controller singularities due to g; = 0 have been avoided.

Remark 5.4.6 Note that the integration in computing k;(t) is conducted in the
time interval [t — Tmax,t]. If the integration is conducted alternatively in [0,1],
the stability result still hold. However, the integral result will progressively tend

to a large value as the time increases, which as a result may lead to instability
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5.5 Simulation Studies

of the overall system. To avoid this, the integration shall be conducted in a more

conservative time interval, i.e., [t — Tyax, t].

5.5 Simulation Studies

To illustrate the proposed robust adaptive control algorithms, we consider the

following second-order plant

@1(t) = qiaa(t) + 0pat(t) + dp (i (t))
To(t) = gru(t) + Onowa(t — 7o) + Opa(z(t — 72))
y(t) = ()

where g1, g» are unknown virtual control coefficients, 01, 052 are unknown pa-
rameters, and 071(-), dpo(-) are unknown functions. For simulation purpose, we
assume that ¢y = 2, g0 = 1, 053 = 0.1, 0ps = 0.2, and let d;y = 0.6sin(xy),
Ona = 0.5(x?+23) sin(xs). The bounds on d7;(+) and dpa(-) are |01 (x1)| < cp101(21),
0na2 ()] < cpatba(x), where ¢py = 0.6, ¢1(x1) = 1, cpo = 0.5, ¢a(z) = 23 + 23. The
unknown time delays are 7, = 0, 75 = 3sec. The control objective is to track the
desired reference signal y,(t) = 0.5[sin(t) + sin(0.5¢)]. For the design of robust
adaptive controller, let z; = 1 — yq, 20 = 2 — a7 and él, ég be the estimates of
unknown parameter vectors ¢, = [%, gil]T, 0y = [%g%i?, n, %, g%]T respectively,
we have

a1(t) = qi(z1)[—k1(t)z1 — élTFel — ]
u(t) = q2(2)[—ka(t) 22 — 03 Foo — (]
By = 0i&i, & = dio tanh(Ziéi%

€
éiO = qz'(Zz')%(szz' - Uioéio)a éz = %(Z'i)Fi(FeiZz - Uiéz')7 1=1,2

where k;(t) is calculated by

1 &t
k() =ko+ 53 [ Upas()dr, k>0

1 g=1

The following design parameters are adopted in the simulation: [x1(0), z5(0)]7 =
[O.].,O.].]T, Y1 = Y2 = ]_, Fl = FQ = dlag{l}, 010 — 099 — 01 = 09 = 005,
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5.6 Conclusion

9?0 = 980 =0, 9? = 98 =0, kio = koo = 0.8, ¢4 = e = 0.1, and )‘a1 = )\aQ = 1.06_3,
)\b1 = )\b2 = 1.0e7°.

From Fig. 5.1, it was seen that satisfactory transient tracking performance was
obtained after 10 seconds of adaptation periods. Figs. 5.2 and 5.3 show the bound-

edness of the control input and the estimates of the parameters in the control loop.

Among the design parameters, the choices of c,, are critical for achieving good
control performance. Through extensive simulation study, it was found that c,,
should not be chosen as too small. From analytical point of view, it is found
that the known functions Fy; which are used for on-line parameters tuning contain
possibly singular terms. The robust design is then carried out to make sure those
terms to be bounded. Although c,, can be chosen arbitrarily small theoretically,
it is not the case in real implementation due to the limited actuator tolerance and

computational capacity.

5.6 Conclusion

A robust adaptive control has been addressed for a class of parametric-strict-
feedback nonlinear systems with varying unknown time delays. The uncertainty
from unknown time delays has been compensated through the use of appropriate
Lyapunov-Krasovskii functionals. The controller has been made to be free from
singularity problem by employing practical robust control and regrouping unknown
parameters. Backstepping design has been carried out for a class of nonlinear sys-
tems in strict feedback form by using differentiable approximation. The proposed
systematic backstepping design method has been proved to be able to guarantee
global uniformly ultimately boundedness of closed-loop signals. In addition, the
output of the system has been proven to converge to an arbitrarily small neighbor-
hood of the origin. Simulation results have been provided to show the effectiveness

of the proposed approach.
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Figure 5.2: Control input u(t).
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Chapter 6

Robust Adaptive Control Using

Nussbaum Functions

6.1 Introduction

Recently, robust adaptive control has been studied for a class of strict-feedback
systems by combining robust backstepping design with robust control strategy
[15][134][22][23] [135][24][18][136][21], which guaranteed global uniform ultimate
boundedness in the presence of parametric uncertainties or unknown functions.
While the earlier works such as [15, 86, 18] assumed the virtual control coefficients
to be 1, adaptive control has been extended to parametric strict-feedback systems
with unknown constant virtual control coefficients but with known signs (either
positive or negative) [19] based on the cancellation backstepping design as stated
in [87] by seeking for a cancellation of the coupling terms related to z;z;4; in the
next step of Lyapunov design. With the aid of neural network parametrization,
adaptive control schemes have been further extended to certain classes of strict-
feedback in which virtual control coefficients are unknown functions of states with
known signs [88][51]. For system & = f(z) + g(x)u, the unknown virtual control
function g(z) causes great design difficulty in adaptive control. Based on feedback
linearization, certainty equivalent control u = [—f(z) + v]/§(x) is usually taken,

where f(z) and §(z) are estimates of f(z) and g(z), and measures have to be taken
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6.1 Introduction

to avoid controller singularity when g(x) = 0. To avoid this problem, integral Lya-
punov functions have been developed in [88], and semi-globally stable adaptive
controllers are developed, which do not require the estimate of the unknown func-
tion g(z). Although the system’s virtual control coefficients are assumed to be
unknown nonlinear functions of states, their signs are assumed to be known as
strictly either positive or negative. Under this assumption, stable neural network
controllers have been constructed in [51] by augmenting a robustifying portion, and

in [89, 90] by estimating the derivation of the control Lyapunov function.

When there is no a priori knowledge about the signs of virtual control coefficients,
adaptive control of such systems becomes much more difficult. The first solution
was given in [62] for a class of first-order linear systems, where the Nussbaum-type
gain was originally proposed. When the high-frequency control gains and their signs
are unknown, gains of Nussbaum type [62] have been effectively used in controller
design in solving the difficulty of unknown control directions [69, 70] in which the
arguments of the constructed Nussbaum functions are required to be monotone
increasing. This method was then generalized to higher-order linear systems in
[64]. For nonlinear systems, some results have also been reported in the literature.
Without the requirement for monotone increasing arguments for the Nussbaum
functions, the same technique has extended to higher order systems for constant
virtual control coefficients [83, 115] using decoupled backstepping formally stated
in [87] without seeking for the cancellation of the coupling terms related to z;z; 41
but to decouple z; and z;.1 using Young’s inequality and seek for the boundedness
of z;41 next. Under the assumption that the virtual control coefficients are time-
varying, with unknown signs and bounded in finite intervals, it has also been used
to construct robust adaptive control for a class of nonlinear systems with bounded
disturbances by introducing exponentially decaying terms to handle the bounded
disturbances [137]. The behavior of this class of control laws can be interpreted as
the controller tries to sweep all possible control gains and stops when a stabilizing

gain is found.

Thus far, few results are available for the robust adaptive control of system with
unknown virtual control coefficients (VCC) and bounded disturbance. In [113],

a class of time-varying uncertain nonlinear systems was studied with completely
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unknown time-varying virtual control coefficients, uncertain time-varying parame-
ters and unknown time-varying bounded disturbances. Due to the presence of the
exponential term in the stability analysis, the proof has to be function dependent
and the general properties of the Nussbaum functions are difficult to be utilized.
Though a much neater proof was provided for N(¢) = exp(¢?) cos(5¢) in [113], it
is not the case for N(¢) = ¢*cos(C) as chosen in this chapter. The proof cannot
be straightforwardly extended and the specific properties of this function need to
be exploited fully in the derivation throughout the proof. Due to the different
problem formulation and methodology used (e.g., projection algorithm has to be
utilized for on-line tuning of the time-varying unknown parameters in [113]), the
proposed design in this chapter is much more tighter and the controller is composed

of smooth functions, which is a must in backstepping design.

For robust control of nonlinear systems with time delays [122, 92], the existence of
time delays may degrade the control performance and make the stabilization prob-
lem become more difficult. By using appropriate Lyapunov-Krasovskii functionals
[123], uncertainties from unknown time delays can be compensated for. In [129],
we studied a class of nonlinear time-delay systems, in which the virtual control
coefficients are unknown constants with known sign and the system uncertainties
are linearly parametrized with unknown constant parameters and known nonlin-
ear functions. Practical stability was introduced to solve the singularity problem
due to the appearance of 1/z; or 1/2? in the controller and the tracking error can
be made to confine in a compact domain of attraction. When the virtual control
coefficients are unknown nonlinear functions of states, the problem becomes even
more complicated. Although the system’s virtual control coefficients are assumed
to be unknown nonlinear functions of states, their signs are assumed to be known
as strictly either positive or negative. Under the same assumption, stable neural
network controllers have also been constructed in [124] by compensating for the
unknown time-delay terms completely under the assumption that signals Z,_; are

available for feedback and more strict assumption on the time delay terms.

Motivated by previous works on both systems with time-delay and unknown virtual
control coefficient (VCC), two adaptive neural controllers without the requirements

for z,,_; are presented for a class of strict-feedback nonlinear systems with unknown
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time delays, and unknown nonlinear functions with unknown signs. For clarity, the
first controller is developed based on distinct definitions of two separate compact
sets (2., C €z and QY = Qg — Q.. C Qg where “7 denotes the complement
operation. However, the controller has a “technical problem” — the intermediate
controls are not differentiable at isolated points |z;| = ¢,,. To solve this problem,
one practical way is to simply set the differentiation at these points to be any finite
value, say 0, and then every signal in the closed-loop system can be shown to be
bounded. By modifying the first controller such that the intermediate controls are
differentiable, we have the second controller for the class of systems in the section
— which is mathematically rigorous. To the best of our knowledge, there is little
work dealing with such a kind of systems in the literature at present stage, except
for some preliminary results presented in [138][124]. The main contributions of the

chapter lie in:

(i) the introduction of a new technical lemma, which plays a fundamental role

in solving the proposed problem;

(ii) the controller does not require the a priori knowledge of the signs of the

unknown control coefficients,

(iii) the use of the Nussbaum-type functions in solving the problem of the com-

pletely unknown control direction;

(iv) the novel introduction of smooth functions in making the intermediate control
laws continuous and differentiable to certain desired order in solving the dif-
ferentiability problems at some isolated points incurred by the first practical

control; and

(v) the proposed design method expands the class of nonlinear systems for which
robust adaptive control approaches have been studied through the introduc-

tion of exponential decaying terms in stability analysis.

The rest of the chapter is organized as follows.

The problem formulation and preliminaries for a class of perturbed strict-feedback
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systems are given in Section 6.2.1. A robust adaptive control scheme using Nuss-
baum functions is presented in Section 6.2.2. A simulation example is given in
Section 6.2.3, and followed by Section 6.2.4 which concludes the work.

The problem formulation and preliminaries are given in Section 6.3.1. An adaptive
neural controller design for first-order systems is presented in Section 6.3.2. The
scheme is extended to nth-order systems in Section 6.3.3. A simulation example is

given in Section 6.3.4, and followed by Section 6.3.5 which concludes the work.

6.2 Robust Adaptive Control for Perturbed Nonlinear Sys-

tems

6.2.1 Problem Formulation and Preliminaries

Consider a class single-input-single-output (SISO) nonlinear systems in the pres-

ence of time-varying disturbances in the perturbed strict-feedback form

T = giIi+1+9;‘F¢i(fi)+Ai(tax)a i=1.,n-1

Br = guut 60Gn(x) + An(t,2) o)

where z = [z1, ..., z,]7 € R", T; = [x1,...,73]T, i =1,...,n — 1 are the state vectors,
u € R is the control, 6, € RPi, i = 1,...,n are the unknown constant parameter
vectors, p;’s are positive integers, 1;(Z;), ¢ = 1, ...,n are known nonlinear functions
which are continuous and satisfy 1;(0) = 0, unknown constants g;, 1 = 1,....,n — 1
are referred to as virtual control coefficients [19], g, is referred to as the high-
frequency gain, and A;’s are unknown Lipschitz continuous functions. The control
objective is to construct a robust adaptive nonlinear control law so that the state
of system (6.1) is driven to a small neighborhood of the origin, while keep internal

Lagrange stability.

In system (6.1), the unknown nonlinear functions A,(¢, x) could be due to many
factors [86], such as measurement noise, modeling errors, external time-varying
disturbances, modeling simplifications or changes due to time variations. The oc-
currence of virtual control coefficients g;’s is also quite common in practice. The

examples range from electric motors and robotic manipulators to flight dynamics
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[19].

Assumption 6.2.1 There exist unknown positive constants pf, 1 <1 < n, such
that V(t,z) € Ry x R™, |Ai(t,x)| < pioi(zy,---,x;), where ¢; is a known nonneg-

ative smooth function.

Remark 6.2.1 Though the terms 074(%;) can be absorbed into A;(t,z),i=1,...,n,
for a reduced order controller, the disadvantage is that the residue error will be large
as can be seen from the definitions of p*, p;, and cp later. In addition, for better

control performance, knowledge of the system should be fully exploited.

The technical Lemma 2.4.7 introduced in Chapter 2 is critical in solving the robust

control problem in this chapter and and is rewritten here for easy reference.

Lemma 6.2.1 Let V(-) and ((-) be smooth functions defined on [0,ty) with V (t) >
0, Vt € [0,t7), and smooth Nussbaum-type function N(C) = ¢*cos(C). If the fol-

lowing inequality holds:
t . t .
0< V() <o+ et / GoN(C)CeTdr + et / Ceordr, Wte[0,t;) (6.2)
0 0

where constant ¢; > 0, gy s a nonzero constant, and cy represents some suitable
constant, then V(t), ((t) and [; goN (O)Cdr must be bounded on 0,2f).

Though the proof is not trivial even for finite ¢ already, it is the case that t; — oo

is of interest. This can be easily extended due to Proposition 1 below. Consider
i(t) € F(x(t), z(0)=2" (6.3)

where z — F(2) C RY is upper semicontinuous on R" with non-empty convex and
compact values. It is well known that the initial-value problem has a solution and

that every solution can be maximally extended.

Proposition 1 [70] If z : [0,t;) — R" is a bounded mazimal solution of (6.3),
then ty = oo.
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Remark 6.2.2 As can be seen from Appendiz 7.2, the proof of Lemma 6.2.1 is
very much involved and indeed a contribution by itself. In addition, we would like
to point out that N(-) is not necessarily an even function, which is only made
for the convenience of proof. If N(-) is chosen as an odd function, e.g., N(() =
¢*sin(C), the lemma can be easily proven by following the same procedure. From
our understanding, we can make a conjecture that Lemma 6.2.1 is true for all
the Nussbaum functions. We hope that interested reader can prove the lemma for

general Nussbaum functions.

6.2.2 Robust Adaptive Control and Main Results

In this section, the robust adaptive control design procedure for nonlinear system
(6.1) is presented. The design of both the control law and the adaptive laws is

based on a change of coordinates

zZ1 = I
= Ty — ay(x, Oa,1, b1, 1)
Zp = 371‘—Olz‘—1($1,"',xi—l,ea,h"',Qa,i—l,bla"',bi—17C¢—1)
Zn = In_Oén—l(xh"'7xn—17‘9a,17"'79a,n—17b17'"7bn—17Cn—1)
where the functions «;,7 = 1,---,n — 1 are referred to as intermediate control

functions which will be designed using backstepping technique, b; is the parameter
estimate for b which is the grouped unknown bound for p, éa,i represents the
estimate of unknown parameter ¢ ; which is an augmented parameter and consists
of gj,j =1,---,i—1and 0;,7 = 1,---,i as will be clarified later, and (; is the
argument of the Nussbaum function. At each intermediate step 7, we design the
following intermediate control function «; using an appropriate Lyapunov function
V;, and give the updating laws I;i, QAM and Q At the nth step, the actual control u
appears and the design is completed. For clarity and conciseness, the intermediate

variables including the control functions and adaptive laws, ¢ = 1,...,n — 1, are
defined

Zj’) (6.4)

n = kizi+ éiiwa,i + bii tanh (
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a; = N(G)n; (6.5)
Cz = ZiMli (6.6)

bai = Tilzithai = 00,(00s = 03,)] (6.7)
; m

bi = v [zlqﬁl tanh( - ) — abi(f),- — bg)} (6.8)

where the variables including ), ; and gz_ﬁl will be defined later, I'; = FZ >0, >0,
éaﬂ- and I;Z are the parameter estimates of ¢; ; and 0], constant k; > i, €; 1s a small

positive constant and oy,, 0, 6° ., and b) are positive design constants.

(lZ’

Step 1: To start, let us study the following subsystem of (6.1):
Ztl = 172 + Q?wl(xl) + Al(t, x) (69)

where x5 is taken for a virtual control input. To design a stabilizing adaptive

control law for system (6.9), consider a Lyapunov function candidate Vy(z;) = 527
In light of Assumption 6.2.1, the time derivative of 1 along the solutions of (6.9)

satisfies
‘7(] = 21(91[E2 + 9{2#1(1’1) + A1<t, l‘)) S 21(911'2 + 9{'(#1) —+ bT|Zl|qg1 (610)

where bt = p*, ¢, = ¢;. For notation consistence, let §* 1 =06, Ya1 = 1. Consider
the Lyapunov function candidate

1 4 A . 1 - .

Vi=Vo+ 5(0an = 0;) T (Oar — 0; 1) + 5— (b1 = by)?

2 ’ ’ 2’71

The time derivative of V; along (6.10) is
Vi < 21(g12 + 05 00) + bilzi|@1 + Doy — 051) T Wy + — . (b1 — )by (6.11)
1

Since x9 = 25 + a1, substituting (6.4)-(6.6) with i = 1 into (6.11) yields

Vi <gizize+ N (GG + 210, a1 + b} |11 + (0, —0; )Ty 19a 1+ — " (b1 b})by
(6.12)
Adding and subtracting ¢; on the right hand side of (6.12), and noting (6.7) and
(6.8), we have
. . . _ _ €T h
Vi < —kizf +giziz + giN(G)G + G+ bl ér — biai ¢y tanh ( jbl)
1

~00, (Bay = 051)" (Ba = 60,1) — o0, (b = b]) (b1 — ) (6.13)
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By completing the squares

- N 1 N 1
_‘791(8a,1 - QZ,1>T(9a,1 - 92,1) < _556‘1”9&1 - 92,1”2 + 5‘791”92,1 - 92,1”2

. . 1 “ 1
o (by = )b — 1) < =50, (b — 1) + S0, (0] — B9)°

and using the following nice property with regard to function tanh(-) [86]
z
€

0 < |z| — ztanh(—) < 0.2785¢, for ¢ >0,z € R

equation (6.13) can be further written as

. . : 1 A 1 -
Vi <~k +gzz+aNGQ)G+ G- 50101 — Oall” — 500 (01— b))

1 1
+070.2785¢1 + S0, 165, — 604>+ iabl(b“{ —bY)?

1 A 1 - . .
< —k‘mZ% - 5091”9@,1 - 9271”2 - 501;1(51 - bT)Z + glN(Cl)Cl + G
1 1
+070.2785€1 + 500,105 — Oal” + 00, (07 = 00)° + 9723
< —enVi+ o+ aN(G)G + G+ gtz (6.14)

where the constants kg = k1 — i > 0, ¢;1 > 0 and ¢13 > 0 are defined as

06,

cin o= min{2kyg, =, on M1}
)‘min(rl 1)
1 1
Cig : = bi02785€1 + 50’91H9271 — 6271”2 + 50'1)1 (bi< — b(l))Z
Let py := ¢2. Multiplying (6.14) by et leads to
d . .
(Viet) < cppe™ + gy N (G)Ce™ + (et + g2 23 e (6.15)

% =
Integrating (6.15) over [0, ¢], we have

t . t .
0<Vi(t) < pr+Vi(0) + efc“t/o giN(G)Ge™ T dr + e*c“t/o Gedr

¢
+ [ gZRle~nlt=")qr (6.16)
0

Remark 6.2.3 If there was no uncertain term Ay as in [81][83], where the uncer-
tainty is from unknown parameters only, adaptive control can be used to solve the

problem elegantly and the asymptotic stability can be guaranteed. However, it is
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not the case here due to the presence of the uncertainty terms Ay in system (6.1).

For illustration, integrating (6.14) over [0,t] leads to

Vilt) < Vi(0) + ot + [ (@N(G) + Drdr + [ gieddr

from which, no conclusion on the boundedness of Vi(t) or (i1(t) can be drawn by
applying Lemma 1 in [83] due to the extra term ciat. The problem can be successfully
solved by multiplying the exponential term €' to both sides of (6.14) as in this
chapter. From (6.16), the stability results can be drawn by invoking Lemma 6.2.1
if o g?z2e~nU=T)dr is upper bounded.

Remark 6.2.4 In equation (6.16), if there is no extra term [ g?ze (=7 dr
within the inequality, we can conclude that Vi(t), ¢y and zl,é&l,l;l are all bounded
on [0,tf) according to Lemma 6.2.1. Thus, from Proposition 1, ty = oo, and we
claim that 21, éa 1, by are globally uniformly ultimately bounded. Due to the presence
of term [} g?z2e~1(=")dr in (6.16), Lemma 6.2.1 cannot be applied directly. By
noting that

2 2
91 SUPr¢[0,4] %2

t t
e_c“t/ G 2edr < e gl sup 22/ eMrdr <
0 0 C11

T€[0,t]

we know that if 2, can be regulated as bounded, the boundedness of [y giz2e~c1(=")dr
is obvious. Then, according to Lemma 6.2.1, the boundedness of z1(t) can be guar-
anteed. The effect of [i g?z2e~“1(=)dr will be dealt with at the following steps.

Step i (2 <i<mn—1): In view of Assumption 6.2.1, we have

i—1 i—1
aai_l * * aai—l * T
(it a) = 3275 S ) < rzz-|(pi¢z-+jzlpj| or %) < Bilzld(@)
where b = max{p:, -, pi}, ¢(T;) > qﬁl ] ao‘l 1\(;5] is a smooth positive
function. A simple example is ¢; = ¢; + =} ( 4(60“ 1) + 1)¢] The derivative of
%zf 1s
1—1 8
22, = % |:glxl+1 + ‘9 i + A — Z gjx]Jrl + 9 wﬂ + A, )
Zj
L 9oy =t 8041 A Oay;_
- A : a,j Z = 1bj ac 1Cz }
i=1 004, =1 0b; i



6.2 Robust Adaptive Control for Perturbed Nonlinear Systems

: 8@1'_ = da QG *
< z (gixiJrl — Z a—lgjijrl + 0] — Z p 19T'¢] + ﬁz) AR
j=1 9%j j=1 9%j

< 2T + 9231/1“) + b} |zi] &

where
! 80[‘_1 ~ ! 80[‘_1 A ooy 1
g, = -3 2y, oy Gy G
= 00, le ob; ' 9Gia
0:,1 = [17gla"'7gi 170?70?7”'703—1]
B 3%_ Oy 3% 1,7 o1 o op
%,1 - [527 8 T 9 8$z L Mﬂ xl 1> ) axi—l ifl]

Consider the Lyapunov function candidate
1 2 L - «* \Tp—1/p *
Vi= 5% + 5(9@ —0,,) Ty (0o — 0, ;) +

Selecting «; and parameters adaptation laws as in (6.5)-(6.8), we can similarly

obtain

“/i S Zi(gil’zq_l + 02{¢a7¢> + bz(|ZZ|QZ_51 + ( tg* )TF 1‘9[” + — (b — b*)b

)

1 .
~kiz? + giN(G)G + & — 00 0 — 0311 — 5%(5@' —b;)?

IN

1 >
5%(51 - b?)2 + gi22i2+1

t . t,
0<Vi(t) < pi+Vi(0)+ e_c“t/ giN(G) e dr + e_c“t/ GeTdr
0 0

+b70.2785¢;

- 0a,i’|2 +

where p; 1= i’—f, the constants k;o = k; — i > 0, ¢;; > 0 and ¢;o > 0 are defined as

: 0y,
Ci1:. = mm{?kw, ﬁ(}.—l)’abi%} (617)

7

1
ai eg,iHQ + 0o, (b — b?)2 (6.18)

Cio . = b:0278561 9

Remark 6.2.5 Similarly, if z;11 can be requlated as bounded, and therefore
ft 9722 e —enlt=")dr s bounded at the following steps, then according to Lemma

6.2.1, the boundedness of z;(t) can be guaranteed.
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Step n: In this final step, the actual control u appears. Similarly, we have

. oL
Znin < Zn[gnqu@Ziﬂn - Z l(gjx]Jrl +9 1/&)
j=1 O
nl o 12 ja 1801 14 Oa 1
= ;- ~— o1 | + b2l 60
j=1 3007]- ! ]z:l ab a agn 1 }
n—1 a 1

= Zu|gnt+ 00 — D (g + 0] ) + Ba] + )zl 6

= 0%
< Za(gnte + O tan) + bl |2n| 0
where
"1 da,, 1 » 1 oy, 1+ Oty -
671 - - A—nea,' - Z 7} b; — - (n—l
j=1 80&]‘ ! j=1 8b] ! aCn—l

b:b = max{p’{, e ap;kz}

Oy, —
ul(Tn) = wzr - 1|¢J

0, = [17917'..79n—179n’9f7... QT ]

a,n y Yn—1
o ao‘nfl 80511 1 ao‘n I aOénfl T 1T
¢a,n - [ﬁna_ 2,y T n,¢ 19777y n—l]
8x1 &cn 1 33'1 (%En,l

For clarity, the final control law and parameter adaptation laws are given explicitly:

M = knzn + 00, tan + by tanh ( ’f") (6.19)
(o = Zaln (6.21)
bun = Dulthazn — 9, (B — 0 ) (6.22)

where constant k,, > 0 (different from k; > i in the intermediate steps) and €, is a
small positive constant, T',, = T2 > 0, v,,, 74, 00, , ngn and b2 are positive design

constants.

Consider the Lyapunov function candidate

1 1 )
Vn - §Zn + 2<9an - Qz,n)TF’rjl(gav” - 027”) +

1

—ZA) _b* 2
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Similarly, we have
) ) ) ) 1 . . 2 1 N 2
Vi < —knzp + guN(G)Cn + G — §U9n|‘9a,n - eam,H - §O_bn (bn —b},)

1 1
+07,0.2785¢ + 500,167 5, = Oaall® + 500, (87, = B0)°

t . t .
0< Vn(t) < pnt Vn(()) + eicnlt/ gnN(Cn)CnecandT + 67%11‘// Cre™Tdr
0 0

where p,, := EL?, the constants ¢,; > 0 and ¢,;2 > 0 are defined as

O'gn
Amin (I 1)
1 1
Cnr = b,0.2785¢, + Sou, 165, — 0o 1> + 5obn(b;; —10)?

Cp1 = min{2k,, , Ob,, Yt

~

Using Lemma 6.2.1, we can conclude that ¢, (t) and V,,(¢), hence z,(t), Gun(t), bon(t)
are bounded on [0,tf). From the boundedness of 2, (), the boundedness of the extra
term [5 g2 z2e 117 dr at Step (n — 1) is readily obtained. Applying Lemma
6.2.1 backward (n — 1) times, it can be seen from the above design procedures that

~

Vi(t), 2i(t), Bai(t), basi(t), and hence ;(t) are bounded on [0, ;).

Theorem 6.2.1 For the perturbed strict-feedback nonlinear system (6.1) with com-
pletely unknown control coefficients g;, under Assumption 6.2.1, if we apply the
controller (6.19)-(6.21) with the parameters updating laws (6.22) and (6.23), the

solutions of the resulting closed-loop adaptive system are globally uniformly ulti-

mately bounded. Furthermore, given any p > p* = \/Zznzl 2(p; + ¢;), there exists
T such that, for allt > T, we have ||z(t)|| < p, where z(t) := [z1,- -+, z,]* € R",
pi = Z%f, i=1,---,n, constants ¢;; > 0 and ¢; > 0 are defined by (6.17) and (6.18)
respectively, and c¢; is the upper bound of f(f(gzN(Q)Q + ¢+ gfzfﬂ)e*‘f“(t”)dﬂ
1=1,---.n—1 and ¢, is the upper bound of fg(gnN(Cn)én + (e e N dr . The
compact set Q, = {z € R"|||z(t)|| < pu} can be made as small as desired by appro-
priately choosing the design constants. Furthermore, the output y(t) satisfies the

following property:

ly(t)] < \2Vi(0)e=ent 4+ 2(py + 1), W > 0. (6.24)
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Proof: The proof can be easily completed by following the above design procedures
from Step 1 to Step n. According to Proposition 1, if the solution of the closed-
loop system is bounded, then t; = oco. Therefore, we can obtain the globally
uniformly ultimately boundedness of all the signals in the closed-loop system. Since
x1(t) = z(t), from the definition of V; and (6.16), the property (6.24) can be
readily obtained. Thus, by appropriately choosing the design constants, we can
achieve the regulation of the state z;(t) to any prescribed accuracy while keeping

the boundedness of all the signals and states of the close-loop system.

Corollary 3 Under the conditions of Theorem 6.2.1, if function v; in system (6.1)
and ¢; in Assumption 6.2.1 vanish at the origin, then we can find an adaptive
controller of the form (6.20)-(6.21) with oy, = 0y, = 0,i = 1,---,n such that all

the solutions of the closed-loop system satisfy lim; . ||z(t)|| = 0.

Proof: Following the same design procedure, in the present case, we have

Vi < —kioz2 + NG+ G+, i=1,---,n—1 (6.25)
Vi < —ka22 4 guN(G)Gn + o (6.26)

From (6.26) and using Lemma 6.2.1, it follows that (,(¢) and V,,(¢), hence z,(t),
éam(t), ba.n(t) are globally uniformly ultimately bounded. Moreover, z,(t) is square
integrable. Noting (6.25), and applying Lemma 6.2.1 backward (n—1) times, it can
be obtained that V;(t), z(t), 0q.:(t), ba:(t), and hence z;(t) are globally uniformly
ultimately bounded. In addition, since i;, 1 < ¢ < n are bounded, functions z;(t)
are uniformly continuous. Hence, a direct application of Barbalat’s lemma gives

that lim; . [|z(2)| = 0. &

6.2.3 Simulation Studies
To illustrate the proposed robust adaptive control algorithms, we consider the
regulation of the second-order system

jjl = (g122 + 91%% + Al(t, SL’)
Ztg = gau + Az(t,x)

y = I
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where * = [z1,72]", g1,92 are unknown control coefficients, 6; is an unknown
parameter, and Aq(t,z), Ay(t,z) are unknown disturbances. For simulation pur-
pose, we assume that 6; = 0.1,g;1 = 1,92 = 1 and let Ay(t,z) = 0.6sin(xy),
Ao(t,z) = 0.5(2? + 22) sin®t. The bounds on A; and A, are |A(z,t)] < pigi(z1),
[Aa(,1)] < p3(a), where pi = 0.6, ps = 0.5, ¢1(21) = 1, and ¢o(z) = a3 + 2.
bt = pi, b5 = max{p},pi}. For the design of robust adaptive controller, let éml,
042, b1, by be the estimates of unknown parameters 0r1 =01, 05, =[1,91,07], b7,

b, and z; = 71, 23 = T2 — a7, we have

ng51 = ¢
o = NG) (klzl T éilwa,l(fﬂl) + by (1) tanh[%l(ml)D
B =t oo

u = N(&) (kQZQ + 952@%2 + byy tanh [ZZ@D

€2

where N(¢;) = exp(¢?) cos(5¢;),i = 1,2 are the Nussbaum functions, 1,1 = 7,

Va2 = [ 8%0;11 ot — aalb —%x g;”x%] , and (1, ¢ are computed using (6.6).

The adaptive laws are given by

éml = F1211/1a,1 - Flael (éa,l - 92,1)

9a,2 = F22’21%,2 — Iy0y, (é 2 92,2)

by = A1z tanh( ¢) A, (by — B0)

€1

—_ Z ~
by = Aozoths tanh(i’b) — Ao, (by — b))

€2

The following initial conditions and controller design parameters are adopted in
the simulation: z(0) = [1,0]7,0,1(0) = 0,0,2(0) = 0,b:(0) = 0,b,(0) = 0, and
by =k =1, 11 =19 =02, \y = Xy =01, 09y = 0p, = 0p, = 03, = 0.1,
€1 =€ = 0.05, 6, =6, =0, and b} = b = 0.1. Simulation results are shown
in Figures 6.1-6.4. Figure 6.1 shows that the system states converges to a small
neighborhood around zero. The boundedness of control input and the parameter
estimates are illustrated in Figures 6.2-6.3. Figure 6.4 shows the variations of

parameters (i, (o and Nussbaum gains respectively.
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Figure 6.1: States (x1(“—") and xo(“ 7).
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Figure 6.2: Control input w.

158



6.2 Robust Adaptive Control for Perturbed Nonlinear Systems

14

1.2+ B

0.8} g

0.6 b

0.4 B

0.2 b

Time (sec)
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6.2.4 Conclusion

In this section, a robust adaptive control approach for a class of perturbed uncer-
tain strict-feedback nonlinear systems with unknown control coefficients has been
presented. The design method does not require the a priori knowledge of the signs
of the unknown control coefficients due to the incorporation of Nussbaum gain in
the controller design. It has been proved that the proposed robust adaptive scheme
can guarantee the global uniform ultimate boundedness of the closed-loop system

signals.

6.3 NN Control of Time-Delay Systems with Unknown VCC

6.3.1 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems

() = gi(Ti(t))wipa(t) + filZi(t)) + he(Zi(t — 7)),

1=1,---n—1
. (6.27)
in(t) = gn(x(t)ut) + fu(z(t)) + halz(t — 7)),
y(t) = 1(t)
where T; = [z1, 2o, -+, 2;]T, o = [x1, 20, -+, 2,]T € R", u € R, y € R are the state

variables, system input and output respectively, g;(-) and f;(-), h;(:) are unknown
smooth functions, and 7; are unknown time delays of the states, : = 1,---,n. The
control objective is to design an adaptive controller for system (6.27) such that the

output y(t) follows a desired reference signal y4(t), while all signals in the closed-
loop system are bounded. Define the desired trajectory Zagy1) = [Ya, ¥a, - - ,yc(li)]T

i =1,---,n— 1, which is a vector of y4 up to its ¢th time derivative yc(li).

Y

Assumption 6.3.1 Functions g;(z;) and their signs are unknown, and there exist
constants g,y and known smooth functions g;(Z;) such that 0 < g0 < |g:(Z;)| <
gi(z;), Vz; € R".

Assumption 6.3.2 Known smooth functions g;(z;) take value in the unknown

closed intervals I; := [I;, 1] C [gi0, +00) with O & I.

Y
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Assumption 6.3.3 The desired trajectory vectors Tgq;, i = 2,---,n are continuous

and available, and T4 € Qg C R' with Qg known compact sets.

Remark 6.3.1 Assumption 6.5.1 implies that smooth functions g;(Z;) are strictly
either positive or negative, which is reasonable because g;(Z;) being away from zero is
the controllable condition of system (6.27), which is made in most control schemes
[19][139]. For a given practical system, the upper bounds of g;(Z;) are not difficult
to determine by choosing g;(Z;) large enough. It should be emphasized that the low
bounds gy, the lower and upper bounds of the closed intervals I; and I are only

required for analytical purposes, their true values are not necessarily known.

Accordingly, we define positive-definite functions 5;(z;) = 6:(Z;)/|g:(Z:)|, i =

1,--+,n. From Assumption 6.3.1, we know that (;(z;) are bounded by known
i (7. gi(Zi)

functions as 1 < f;(z;) < #7.

Assumption 6.3.4 The unknown smooth functions h;(Z;(t)) satisfy the inequality

|hi(Z:(1))] < 0i(Z(t)) where 0;(+) are known positive smooth functions.

This assumption is much more relaxed than |h;(7;(t))] < 35—y |2;(t)|0i;(2:(t)) as
has been made in [124].

Assumption 6.3.5 The unknown time delays are bounded by a known constant,

.6, T3 < Tmax, ¢ = 1,-+-,n.

Remark 6.3.2 There are many physical processes which are governed by nonlinear
differential equations of the form (6.27). Ezamples are recycled reactors, recycled
storage tanks and cold rolling mills [92]. In general, most of the recycling processes

inherit delays in their state equations.

The technical Lemma 2.4.6 introduced in Chapter 2 is critical in solving the robust

control problem in this chapter and and is rewritten here for easy reference.

Lemma 6.3.1 Let V(-) and ((-) be smooth functions defined on [0,ty) with V (t) >
0, Vt € [0,tf), and N(C) be an even smooth Nussbaum-type function. If the he
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following inequality holds:
t . t.
V() < ot e [ gola(m)NQGedr +e [ e, Ve [0,17) (6.29)
0 0

where constant ¢; > 0, go(x(t)) is a time-varying parameter which takes values in
the unknown closed intervals I := [~ 1] with 0 ¢ I, and ¢y represents some suit-

able constant, then V (), C(t) and [} go(z(7))N()Cdr must be bounded on [0,ty).
For clarity, the even Nussbaum function, N(¢) = e’ cos(5¢) is used in this section.

For the construction of differentiable control laws, two continuous functions are

introduced as follows.

F1). Even function ¢;(z) : R — R

17 ’.ﬁlﬁ" 2 )\ai + )\bi
( ) Cqi f)\m[(Tb ( az - Tb ]n ido-a /\az’ <z < >\ai + )\bi
qi\r) = ,
quf [( ) (O' + /\az 717) ]nildO', _()\ai + /\bz) <z < _Aai
07 |ZZ'| S )\ai
(6.29)
where ¢,; = %ﬁ(ﬂ)]z, Aais Api > 0 and integer i € RT, is (n—i)th differentiable,
b’L
i.e., ¢;(x) € C" " and bounded by 1.
F2). Even function x(-) : R — R
x? cosh(x)

is continuous, and monotonic, i.e., for any |z| > ¢, where ¢ is a positive constant,

k() > Kk(c).

6.3.2 Adaptive Control for First-order System

To illustrate the design methodology clearly, we first consider the tracking problem

of a first-order system

1(t) = gi(z1(t))u(t) + fi(z1(t)) + ha(z1(t — 7)) (6.31)

where u(t) is the control input. Define the tracking error z; = x; — y4, we have
4(t) = gu(x1(t))u(t) + fi(za(t)) + (@1 — 7)) — Ga(t) (6.32)
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Define g (z1) = g1(x1)/|g1(z1)], and a smooth scalar function

V,, (t) = /OZ1 of1(o + yq)do

By changing the variable o = 0z, we may rewrite Vi, as Vi, = 22 [y 631(021+yq)d0.
Noting that 1 < £81(02z1 + va) < 51(021 + ya)/g10, we have
2

oy, / 0,(021 + ya)do (6.33)
2 910

Its time derivative is

Vi (t) = 21(t) Bu a1 () 4a (t +/ Myjyd)ydda

Noting (6.32) and doing the integration by parts, we have

V) = 208 @) o)) + fi@ ) + ot =) - gult)]
) oo+ yli = [ 8o+ ya)do]
= OB OO + A1 (O) il (1)
B (a0 = 72)) = 4a(t) [ 5u(0zs + )]

Applying Assumption 6.3.4, we have

Vo) < z1(t) | Bila(0) gz (0)u(t) + Bi(xa () fi(xa(t))
—Ya(t) /01 Br(0z1 + yd)de} + [21(8)|B1(z1(t) o1 (21 (t — 71)) (6.34)

Remark 6.3.3 It can be seen from (6.34) that the design difficulties are mainly
from two uncertainties: unknown functions fi(-), p1(-) (due to unknown function
91(+) ) and unknown time delay T1. Although 01(+) is known, state x1(t — 1) should
not appear in the designed controller as it is undetermined due to known 1. In
addition, the unknown time delay 7 and the unknown function (31(x1(t)) are entan-
gled together in a nonlinear fashion, which makes the problem even more complex
to solve. Therefore, we have to convert these related terms into such a form that

the uncertainties from 7 and [y (x1(t)) can be dealt with separately.

By using Young’s Inequality, (6.34) becomes
Vo) < () |Balan(0)ga (2 (0)u(t) + Bi(x () fi(xa(t))
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—7a(t) /01 B1(0z1 + yd)de}

FyAORE) + S (- ) (6.35)

where 31 (z1(t)) and o;1(z1(t — 7)) are separated and can be dealt with one by one

as detailed later.

To overcome the design difficulties from the unknown time delay 7y, the following

Lyapunov-Krasovskii functional can be considered

1 ot
Vou(t) = 5 | Tilaw(n))dr, Ui(aa(t) = ZENG) (6.36)

.

The time derivative of Vi, () is

1

Vin (1) = 363(en) = 5h(aa (e — )

which can be used to cancel the time-delay term on the right hand side of (6.35)
and thus eliminate the design difficulty from the unknown time delay 7, without
introducing any uncertainties to the system. For notation conciseness, we will
omit the time variables ¢t and ¢t — 7 after time-delay terms have been eliminated.

Accordingly, we obtain
Vo, + Vi < 21812001 (21)u+ Qi (Z1)z (6.37)

where

Qu(2) = Bl i) ~ [} Br(Oz1+ wa)db + S (wn) + 5 dha) (6.39)

with Z; = [21,Ya, Ya|” € Qz, C R?, where Qy, is a compact set.

At present stage, suppose the Lyapunov function candidate is chosen as Vi(t) =
V., (t)+ Vi, (t). From (6.37), we know that we can design a stabilizing u(¢) which is

free from unknown time delay 7; under the assumption of known system functions.

Note that if Q1(Z;) is utilized to construct the controller, controller singularity

may occur since i 0?(x1) is not well-defined at z; = 0. Therefore, care must be
taken to guarantee the boundedness of the control. It is noted that the controller
singularity takes place at the point z; = 0, where the control objective is supposed

to be achieved. From a practical point of view, once the system reaches its origin,

164



6.3 NN Control of Time-Delay Systems with Unknown VCC

no control action should be taken for less power consumption. As z; = 0 is hard
to detect owing to the existence of measurement noise, it is more practical to relax

our control objective of convergence to a “ball” rather than the origin [129].

For ease of discussion, let us define sets )., C Qz and QY as follows

Qe., = {an,7a2lz] <, Te2 € Qa} (6.39)
0 = Qz -, (6.40)
where ¢, is a constant that can be chosen arbitrarily small and “—” in (6.40) is

used to denote the complement of set B in set A as follows

A-—B:={z|lreAandx ¢ B}
Lemma 6.3.2 Set QY is a compact set.

Proof: See Section 4.2.3 of Chapter 4. <

Under the assumption of known system functions, we have the practical robust

control law to guarantee the closed-loop stability as detailed in Lemma 6.3.3.

Lemma 6.3.3 For the first-order system (6.31), if the practical robust control law

1s chosen as

u(t) = { NG (D2 +Qu(Z)], =1 € QY (6.41)
0, 71 € Qe
Go= k()2 + Qu(Z)= (6.42)

where ki(t) > k* > 0 with k* being any positive constant, then for bounded initial

conditions, all the signals in the closed-loop system are globally uniformly ultimately
bounded.

Proof: We first show that all the closed-loop signals are GUUB for z; € Q%l.

Consider the following Lyapunov function candidate
Vi(t) = Ve, (t) + Vi, ()
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Its time derivative along (6.37) is

Vi(t) < 2181 (1) g1 (z1)u + Q1(Z1) 2 (6.43)
For z; € QY , substituting (6.41) into (6.43) yields
Vi(t) < Bi(1)gr(z)N (GG + Qi(Z1) (6.44)

Adding and subtracting k;(t)z? + Q1(Z1)z; on the right hand side of (6.44), we

have

Vi(t)

IN

ﬁ1($1)g1($1)N(C1)él +G -6+ Q1(Z1)=
< ki + ﬁ1($1)91(x1)N(C1)é1 + él (6.45)

Integrating (6.45) over [0,¢], V¢ € [0,tf), we have the following inequality
Vitt) + [ k=) < Vi(0)
+ [ BN G ) + 16 () (6.40)

Since [3 kiz2(7)dT > 0, we further have

Vi(t) < Vi) + [ 18 (0)gr( (MIN(G() + U ()dr

Applying Lemma 1 in [83], we can conclude that Vi(t), f{(Big1N(C1) + 1)Cidr,
and (;(t) are bounded. Since 32{(t) < V.,(t) < Vi(t), we know that z(t) are
bounded on [0,tf). According to Proposition 2 in [70], if the solution of the closed-
loop is bounded, then t; = +00. From (6.46), z(t) is square integrable and as
an immediate result, x;, u and 2; are also bounded on [0, 4+00]. Since 2, € L™,
and z; € L? N L*, by Barbalat’s lemma, lim,_ . 2z; = 0. Note that the above
results are obtained for z; € QY , therefore we can guarantee that Q. 1s domain

of attraction. <

Remark 6.3.4 For the first-order system, the definition of the compact set Q%l
in (6.40) and the corresponding practical control law u(t) in (6.41) can guarantee
the stability of the closed-loop system. To extend the above design methodology to

higher-order systems, modification has to be made since u(t) is not differentiable
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at |z1] = ¢,,. We will discuss this issue at a later stage when the problem is clearly

shown.

In the case that fi(-) and g¢;(-) are completely unknown, the proposed controller
(6.41) in Lemma 6.3.3 is not feasible due to the unknown function @1(Z;). On
the other hand, by employing the robust control in (6.41), control action is only
activated when z, € QY . Apparently, Q;(Z;) is continuous and well-defined over
compact set Q%l and can be approximated by neural networks to arbitrary any

accuracy as follows
Q1(Zi (1) = WiT'Si(Z)) + e1(Zh) (6.47)

where |e;(Z;)| < € is the approximation error, Wy € R" are unknown ideal
constant weights, and S;(Z;) € R" are the basis functions. Let us use its estimate

Wl instead to form the adaptive control

'LL(t) _ { N(Cl)[kl(t)zl + WlTsl(Zl>]7 z1 € 9%1 (648)
0, € QCZl
Wl = Fl[Sl(Zl)Zl — O'1W1] (650)

where matrix 'y = I‘T > 0, and small constant o; > 0 is to introduce the o-

modification for the closed-loop system.

Theorem 6.3.1 summarizes the stability result for the proposed adaptive scheme,

and shows that certain compact set is a domain of attraction.

Theorem 6.3.1 Consider the closed-loop systems consisting of the first-order plant
(6.31) and controller (6.48), (6.49), if gain ki(t) = kig + k11(t) with k1o > 0 being
a design constant, and ki1(t) is chosen as
1 1 1 1
ku(t) = —1 +/0 0902 +ya)db + = | SUr(ar(r))dr] (6.51)
1 1 Tmax
with constant e > 0, and the NN weights are updated by (6.50), then for bounded
initial conditions x1(0) and Wl(O), all signals in the closed-loop system are semi-
globally uniformly ultimately bounded, and the vector Z, remains in a compact set
QY defined by
Vi(t)

1 -
0% =17 <, = |WH)? € —5
b= {lal < m gl < =,

ZTgo € de}
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whose size, pp > 0, can be adjusted by appropriately choosing the design parameters.

Proof: The same as in the proof of Lemma 6.3.3, let us consider the following

Lyapunov function candidate

Vi(t) = Vay(6) + Viu (1) + W (T 17 1) (6.52)

where (+) = (A) — (+)*. The time derivative of Vi (t) along (6.37) is
Vi < z1B(e)gu(en)u + Qu(Zy)z + WITT W, (6.53)
For z; € QY , substituting (6.48) and (6.50) into (6.53), we have
Vi < Bi(@)gi(x)N ()G + Qu(Zn)z + W S1(Z)z — s Wy (6.54)

Adding and subtracting ky(t)22 + W S1(Z,)z on the right hand side of (6.54) and
noting (6.47), we have

Vi < Bi(x)g (@) NG+ G =&+ WESH(Z)2 + zie,, — W,

= —k()2 + Bi()gi(z)N ()G + G+ zies, — oW W, (6.55)
Noting k1 (t) = k1o + k11(t), (6.55) becomes
“/1 S —k‘n(t)Z% + 51@1)91(961)]\7((1)41 + <1 — klozf + 21621 — 0'1W1TW1 (656)

Using the inequalities

2 *2
Ezl < 621

<
= 4k T 4k
A 1 ~ 1
—o WiWy < —501||W1||2+§‘71||Wf“2

2
—kflozl + Z1€z1

and substituting (6.51) into (6.56), we have

. 1 rt 1
Vv, < 1 +/ 01021 + yq dQ} — —/t —U(xy1(7))dr

€1

_5‘71”W1H + 51(351)91(351)]\7((1)61 + ¢+ ca

where
e 1 9
g = 2L —o||W5 6.57
Cel 4k10+201” 7l (6.57)
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Since 71 < Tmax according to Assumption 6.3.5, inequality f;n Up(z1(1))dr <
J{.  Ui(z:i(7))dr holds. From (6.33) and (6.36), we have

) < =200, = i, — oWl + Bl (@) NG + i+
< —aVi(t) + ca + Bule)gi (@) N Q) + G (6.58)

where positive constant ¢, is defined by

. (g0 1 01
=min{20 = T 6.59
Cl min { 51 ) El 9 )\min(rl_l) } ( )

Letting p; := ¢¢;/c; and multiplying (6.58) by e, it becomes

d

ﬁ(Vl(t)@qt) < cae™ + Bi(21)g1(21) N () Ge™ + G (6.60)

Integrating (6.60) over [0, t], we have

Vilt) < pr+ [Vi(0) = prle ! + e /Ot (1@ g1 (2N (&) + 1)er7{rdr
< O e (B (@)N(G) +1)eadr (6.61)

Applying Lemma 6.3.1, we can conclude that Vi(t), [{(Big1N((1) 4 1)¢idr, and
¢ (t), hence 2 (t), Wy are SGUUB on [0,t;). According to Proposition 2 in [70],
if the solution of the closed-loop system is bounded, then ¢y = +o00. Let cg be
the upper bound of [{|(81(z1)g1(z1)N(¢1) + 1)¢i|dr, then we have the following

inequalities
ot [ Grian(e)N(G) + e r
< [ Gie0n@ING) + Dl
< [ (Beae)NG) + Déldr < e
Thus, equation (6.61) becomes
Vi(t) < (p1+ cg) + Vi(0)e= ! (6.62)
where constant

Vi(0) = /0 7O B0 + ya(0))do + %VVF (0)TT117,(0)
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It follows from (6.33), (6.52) and (6.62) that

%zf(t) <V (t) < Vi(t) < (p1+ o) +V1(0)
Vi(t)

1 -~
—_ |/|/ 2 —_—
2” 1” )\min(rfl)

IN

By letting puy = \/2(P1 + cp1) + 2V1(0), we know that |z| < py. We can readily
conclude that there do exist a compact set QY such that Z; € Q) , Vt > 0. &

Remark 6.3.5 If system uncertainties are in the linear-in-the-parameter form as
in [83], adaptive control can be used to solve the problem elegantly and the asymp-
totic stability can be guaranteed by applying Lemma 1 in [83]. In this section, the
unknown functions are approzimated by RBF NN, which has an intrinsic approxi-
mation error, therefore Lemma 1 in [83] is no longer applicable. To show the point

clearly, the time derivative of Vi(t) is re-written as follows

Vi(t) < —aVi(t) + ca + Bi(z1)gi(z1) N (GG + G (6.63)

Integrating (6.63) over [0,t], we have

Vi(t) S Vi(0) +cat + [ (Bule)on(e)N(G) + Dadr (6.64)

From (6.64), we cannot draw any conclusion for the boundedness of Vi(t) or (i(t)
by applying Lemma 1 in [83] due to the extra term cat. From the definition of ¢y in
(6.57), we know that ca is a function of NN approzimation error €5 and 5o+ ||W7||.
Even though we can remove the latter by setting o1 as zero, the former effect from
NN approzimation error € cannot be eliminated. The problem is successfully solved
by multiplying the exponential term e to both sides of (6.63) as did in the proof of
Theorem 6.5.1. Consequently, the stability results can be drawn by invoking Lemma
6.5.1.

Remark 6.3.6 Although the system has been proven to converge into a compact
set which is actually unknown due to unknown g, €, W, co, and Vi(0), it is

possible to adjust the size by appropriately choosing design parameters o and I'y.
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Remark 6.3.7 The computation of the second integral of ki1(t) in (6.51) should
be conducted in the time interval [t — Tmax, t]. If the integration is conducted alter-
natively in [0,t], the stability result may seem to hold. However, the integral result
will progressively tend to a large value as the time increases, which may saturate the
actuator and destroy the closed-loop stability. To avoid this, a rather conservative
time interval [t — Tyax, t| should be chosen for conducting the integration. The same

conservative measure will be taken in the later recursive backstepping design.

Remark 6.3.8 Though it is known that the stability of time-delay systems depends
on the size of the time delay, it is not necessarily true for general nonlinear systems

as is illustrated by the following example. Consider the linear time-delay system
z(t) = —bx(t — 1)

with b > 0, 7 > 0. It has been proven that the linear time delay system is stable if

1

T < 3, and the system is unstable if T is too large. However, for the forced linear

time delay system given by
(t) = —=bx(t — 1) + u(t)
with b > 0, 7 > 0, subject to the sliding mode control
u(t) = —sgn(z(t))[b|x(t — 7)| +¢€], by >0b
we have the resulting nonlinear time delay closed-loop system
&(t) + bx(t — 1) + sgn(z(t))[br|x(t — 7)| + €] =0 (6.65)

For the nonlinear time delay system (6.65), consider the Lyapunov function can-
didate V (t) = 32°(t), we have

V(t) = —ba(t)a(t —7) = bila(t)l[a(t —7)| - elx(?)

< —elz(t)] <0

Apparently, the nonlinear time delay system (6.65) is stable for arbitrary . This

also verifies the rich dynamic behaviors of nonlinear systems.

We have developed a practical adaptive neural control for first-order system (6.31).

Now we are ready to extend the above design methodology to higher-order systems.
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6.3.3 Practical Adaptive Backstepping Design

In this section, the adaptive design will be extended to nth-order systems (6.27)

and the stability results of the closed-loop system are presented.

Note that the extension is not straightforward as in the classical cases of backstep-
ping design for nonlinear systems in strict feedback form without time delays. In
the proposed recursive backstepping design, the computation of «;(t) requires the
computation of a;_1(t). As a result, the unknown time-delay terms of all the previ-
ous subsystems will appear in Step ¢, which have to be compensated for one by one.
Though the idea of Lyapunov-Krasovskii functional Vi, () shall be used to handle
the unknown time delays terms as in Section 6.3.2, different from the classical
cases, the Lyapunov function candidate V;(t) is much more involved, in which the
following terms [ Ui(zy(7))dr, ..., [i_,.  Ui1(Zi-1(7))d7, and [ Uy(z;(7))dr
appeared 7 times, twice and once respectively rather than a simple summation of
the previous ones. The derivations are very troublesome in order to see the choices
of the above functionals clearly, and cannot be further simplified because of the

nature of the problem.

The backstepping design procedure contains n steps. At each step, an intermediate
control function «;(t) shall be developed using an appropriate Lyapunov function
Vi(t). The design of both the control laws and the adaptive laws are based on
the following change of coordinates: z; = x1 — yq, 2 = x; — 1, © = 2,---,n.
Note that the controller design based on such compact sets QY will render a; not
differentiable at points |z;| = ¢,,. This appears to be a “technical problem” as the
differentiation of «; is not defined at these isolated points. To solve this problem,
one practical way is to simply set the differentiation at these points to be any finite
value, say 0, and then every signal in the closed-loop system can be shown to be
bounded. Theoretically speaking, by doing so, there is no much loss either as these
points are isolated and can be ignored. For ease and clarity of presentation, we

assume that all the control functions are differentiable throughout this section.

For uniformity of notation, throughout this section, define estimation errors W; =
W; — W, compact sets Q.. and QY as

Qe., = {zi;%ain l|zi] < czs Tairr € Qi }
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0 —
QZZ_ = Qg _Q%
with constants c,, > 0, and positive constants c¢;, c;, p; as
¢; = min g 1 oi
P = Bt Bt R ——
€ & Amin(ri )
2
€r
L Zi * |2
Cei = — + JZ”W I
4k
I CEZ
pi = —
Ci

where W, € Rl are the estimates of ideal NN weights W* € Rli| gy are the
lower bounds of |g;(Z;)|, constants 0 < &; < 4, small constants o; > 0, matrices
I; = I'7 > 0, constants kjy > 0, €;. are the upper bounds of the NN approx-
imation errors, i.e., |€(Z;)| < € with Z; being the corresponding inputs to be
defined later, and the following integral Lyapunov functions V,,(¢), the Lyapunov-
Krasovskii functionals Vi, (¢) with the positive scalar functions U,(+), and the Lya-

punov function candidates V;(t) as

V., (t) = /0  6B1(0 + ya)do (6.66)
‘/Zi (t) = /OZZ Uﬁi(lfi_l, o+ Ofi_l)dO',Z' = 2, e, (667)
Vo, (t) = ; tt (z(T dT+Z/ Ndr, i=1,---,n (6.68)
Vit) = Vo (t) + Vi (t) + EVVZ‘T(t)F "Wit),i=1,---,n (6.69)

where positive functions U;(z;(t)) = 02(Z:(t)).

The adaptive neural control laws are as follows, for i =1,---,n
7 7 7 WTS 9 7 S QO.
o Q@+ WES(Z)), e, 610
0, Zi € chi
where k;(t) = kio + ki1 (t), ki (t) is chosen as
1 1
k’zl(t) = 5_ [1 + /0 9@‘(@—17 QZZ + ai_l)dH
1 t 1 ~ i—1 -
L1 . (iUi(a;i(T)) + J; U;(z;(7)))dr] (6.73)
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6.3 NN Control of Time-Delay Systems with Unknown VCC

and S;(Z;) € RY are the basis functions with Z; being the input vectors defined in
(6.88) and (6.95) later.

Note that when i = n, «,, is actually the control input u(t).

Step 1: Let us firstly consider the equation in (6.27) when ¢ = 1, i.e.,

21 (t) = g1(w1(t))w2(t) + fi(21(t)) + ha(zi(t — 71)) (6.74)

From the definition for new states z; and 2o, i.e. 21 = 21 — yq and z5 = x9 — a7,

we have

4(t) = g1(2:1 (1) (2a(t) + () + fi(z1(8) + (a1 (t = 7)) = gat)  (6.75)

Consider V,, (t) in (6.66). Its time derivative along (6.75) is

Va(t) = 21(8) [ Bulaa(£)gn (w1(£) 2a(t) + Bu (@ (£))gr (1 (8)) e (1)
+P1(@1 (1)) fr(21(2)) + Bi(21(8))ha (21 (t — 71))
1
~3alt) | 51021 + ya)dd] (6.76)
Following the same procedure as in Section 6.3.2 by choosing V, in (6.68) and
applying Assumption 6.3.4 and Young’s inequality, we obtain
Vi 4+ Vi, < 21B1(21)g1(21) 22 + 2181 (1) g1 (1) + Q1(Z1) = (6.77)
where Q1(7;) is defined in (6.38).
As stated in Section 6.3.2, the control objective now is to show that z; converges
to certain domain of attraction rather than the origin. To this end, let us show the
derivative of Lyapunov function candidate is non-positive when z; € Q%l. Consider

the Lyapunov function candidate Vi (t) given in (6.69). Its time derivative along
(6.77) is

Vi(t) = 2181 (21)g1(21) 20 + 2181 (x1) g1 (21 + Q1(Z1)z + W TT'W,

Choose the practical adaptive neural intermediate control law and NN weights
updating law as given in (6.70)-(6.72) with kq1(¢) given in (6.73). Now, using the

same procedure as in Section 6.3.2, it can be shown that

: 1t 1 1 -
W) < 1 +/ 09:(021 + ya)d0] - E/t U (m)dr = oA
+51 (1)g1(z1)2122 + B1 ($1)91($1)N(Cl)¢1 + él + Ca (6.78)
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6.3 NN Control of Time-Delay Systems with Unknown VCC

Noting that 81912122 < 27 + 679723, (6.78) becomes

. 2 1
Vi) < —21- 6—1+/0 051 (021 + ya)do)|

€1 4

I 1 I =
—— U dr — o1 |WA|)?

S A 1(21(7))dr 201|| 1l

+B%(21) g7 (1) 25 + Bi(21)g1(21)N (GG + G+ ca (6.79)

Remark 6.3.9 In the cancellation based backstepping design, the coupling term
Brg1z129 s left as it is and it will be cancelled in the next step by augmenting
the Lyapunv candidate. In decoupled backstepping design, we will not seeking the
cancellation of the coupling term (31912122, but seeking the boundedness of zo in the
next step. According to Lemma 6.5.1, if we could prove that zo is bounded, then the
stability of z1 is apparent and easy. This fundamental change makes control system
design for this problem solvable [87].

Since 0 < g1 < 4, we have

: gio 1 L s
iit) < —=V, — —Vy, — = W
1() > P Ui 201H 1”

+B3(x1) g2 (1) 25 + Bi(z1)g1(z1) N () + G+ ca
< —aVi(t) + ca + Bi(z1)gi(x1) N ()G + G+ Bi(w1) g7 (21)23 (6.80)

Multiplying (6.80) by e, it becomes

d

%(Vl(t)eclt) < cae™ + Bi(x1)gi(z1)N(G)Ge™

G 4 B (1) g7 (1) e (6.81)
Integrating (6.81) over [0, ¢], we have
Vit) < pr+ (0= ple e | (B @) () N(G) + 1)) ndr
et /t Bi(z1)gi(z1)z5e"dr
0
< Vi + e [ ((Bula)g(@)NG) + 1))

t
e /0 B3 (1) g7 (v1)z5e T dr (6.82)
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Remark 6.3.10 In (6.82), if there is no extra term e~ [3 32g222e7 dr within the
inequality, we can conclude that Vi (t), (i, W4, are all bounded on 0,t5) according
to Lemma 6.3.1. According to Proposition 2 in [70], t; = +o0 and we can claim
that z,, W are SGUUB. Remark 2.3 in [115] also explains the problem. Due to the
presence of extra term e~ [§ 32g222edT in (6.82), Lemma 6.3.1 cannot be ap-
plied directly. It was supposed in [83] that if zo can be regqulated such that it is square
integrable, the regulation of z; can be achieved. However, the situation is different
in this section. Owing to the introduction of exponential term in Lemma 6.5.1, the

requirement for square integrability can be further relazed to boundedness.

Noting Assumption 6.3.2, we have the following inequality [115]

¢
- 2 - 22
Clt/ Bigizze Tdr = e Clt/o gy z5etTdr

t 1
§ e—cltlii- sup [Z%(T)]/ €T dr S _li*‘z sup [Z%(T)] (6.83)
0

T€[0,t] (&1 T€[0,t]
Thus if 25 can be regulated as bounded, then from (6.83) we can readily conclude

the boundedness of the extra term et [I 32¢?22e7dr.
The effect of e~ [5 32g222¢7d7 will be dealt with in the following steps.

Step i (2 <1 < n —1): Similar procedures are taken recursively for each step of
1=2,---,n—1.

The time derivative of z;(t) is given by

Zi(t) = gi(Ti(t))[2i01(t) + qi(®)] + fi(@i(t)) + hi(Ti(t — 73)) — i (t)  (6.84)
Consider V,,(t) given in (6.67). Its time derivative is

V.(@t) = B ZZ""@_ 21 i-1+t

— zzﬂlzvlzl—i—/ ANl -

06i(Zi—1,0 + 041'71)
0oy

+a; 1

}da (6.85)

Noting (6.84) and
/Zi =T 8ﬁz(l‘z 170-+O~/z 1 / aﬁz xz 1,02,—}-0@ 1)
o ZiLi_q 9
0

€T;_
i1 33:1 1 8951 1

do = az 1[2161 - Zz/ Bz xz 17621 +az l)de}

do
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equation (6.85) becomes

Vai(t)

where

= 2(8) [ Bi(@i(£) g (2 (1)) (241 (1) + (1)) + Bil@: (1) fil@i (1)

@Ot - ) + ()il [ 02D E A1)y

—Q_q /01 Bi(Ti—1, 02 + aifl)d(ﬂ

Ti-1 = [jjly T, ,iiz‘fﬂT
= [g1(@1)x2 + fi(z1) + ha(z1(t — 7)),
92(T2)x3 + foT2) + ha(To(t — 72)), - -,

Gi—1(Zi—1)x; + fim1(Zia) + hima (T (t — Tz‘—l))]T

Since a;_1 is a function of x;_1, (;_1, Zgi, Wi,..., Wi_1, &;_1 can be expressed as

where

: — Oy .
Fi-1 = jzla—x]% + wi1(t)

i— 180-/1 1 B ) )

- 221 d; [%( DT+ f3(Z5) + hyi(z,(t — Tj))} + w1 (t)
j
aai—l' aaz 1- y 30@_1 A
i—1(t) = =——— 4 bl v 7
wi-1(?) (‘3@‘—1C 0T gi Oz, = oW, J

Note that the computation of ¢;_;, which is required by the recursive backstep-

ping design, and the appearance of ;_; make the unknown time delays of all the

previous subsystems appear, which should all be compensated for in this step. In

other words, Lyapunov-Krasovskii functionals (6.68) shall be utilized to compen-

sate for not only the unknown time delay 7;, but also 7;,_1, ..., 71. This difficulty or

complexity was avoided by assuming that x;_; is available for feedback control in

124].

Applying Assumption 6.3.4 and using Young’s Inequality, we have

V(1) =

zi(t )[@'(fi( NGi(Zi(t)) (zip1(t) + ai(t)) + Bi(T:(1)) fi(Zi(2))

aﬁz xz 17‘921 + QG 1)
+2z;(t / 0 9T

o
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do

0Bi(%i—1,02 + ci1) , 9T (1, 0Bi(Ti1, 02 + iq)
/ 0 8%_1 d‘ﬂ /0 0 8@_1
2 1

+§zz< D8 (@ (0) + et — 7

)

_ aaz 1

_Zi/ Bi(Zi1, 0% +Oéz‘—1)d9{
0

< O (9i(Tj)mj1 + f5(75)) +wi_1(t)]

i—

%[Zzzf(/olﬁi(@_l,ezi+ai_1)d9)2(a§‘;;1) + 202 (z;(t — 7)) (6.86)

J=1

where fi1 = [g1(z1)z2 + fi(21), -+, gioa (Tima) s + fioa (Zio1)]"

Considering the Lyapunov-Krasovskii functional Vi, (¢) as given in (6.68), we have
Voo + Vi, < 2i8:(%:) 9:(Ta) 21 + 28i(30) 9i(T3) v + 2:Qi(Z:) (6.87)

where

QUZ) = B+ JaBE) + 50 ()

2z;
1
+Zz i— 1/ aﬁz xl 1’921_‘_0% 1)d9
81’2 1
1 / 98@ Tio1,0z + 1) d@ / 0(‘9@ Ti_1,0z + o 1)d9
2 3@ 1 axz 1
it Oy
+ {_ 1(-9]( )xj+1+fj x] / 61 Ti— 17921+az 1)d0
j=1 O
1 0a;_1\2 _ LT
+§ ( 0 (/0 Bi(Ti—1,02 + a;—1)d0) —i—Z—in(:L’j)}
1
—wz‘—l/ Bi(Ti—1, 0z + a;—1)dO
0
_ Oa;_1 Oy a1 0;
7, = Sy, —— e T Q0. i+1 ‘
(%4, i1, IR R e ]€Q. CR (6.88)

For the adaptive neural intermediate control law given in (6.70)-(6.72) with k;; (¢)
being given in (6.73), consider Lyapunov function candidate V;(t) given in (6.69).
Its time derivative along (6.70)-(6.72) and (6.87) is

Vz(t) < —¢Vi(t) + cai + @(@)%(@)N(Q)Q + G+ B7(%:) 97 (%) 274 (6.89)

Multiplying (6.89) by e, it becomes

d

E(Vi(t)ecﬂ) < cie + Bi(T0)gi(T)N(G)Ge™ + Ge + B2(T:) g7 (1) 224, €7 (6.90)
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Integrating (6.90) over [0, t], we have

Vi(t) < pi+[Vi(0) — pile "t + 7t /Ot(ﬁi(fi)gi(fi)]v((i) + 1)e Gdr
+o /ot 07 ()97 () 27y €47 dr
pi +Vi(0) + e_cit/o (B:(%:)g:(Z:)N () + 1) Gdr

t
+e /0 07 () g7 () 22, €T dr (6.91)

IN

Remark 6.3.11 Similarly as discussed in Remark 6.3.10, if z;+1 can be requlated

as bounded, we can readily guarantee the boundedness of the extra term e=%* [§ 32g222 e dr
in (6.91). Then applying Lemma 6.3.1, the boundedness of Vi(t), zi(t), (i(t) and

Wi(t) can be readily obtained.

The effect of e~ [5 29222, %" dr will be dealt with in the next step.

Step n. This is the final step, since the actual control u(t) appears in the derivative

of z,(t) as given in
Zn = gn(Tn ()t + fu(Tn(t)) + hn(Tn(t — 7)) = dn1 (1) (6.92)
Consider the scalar function V;, (¢) given in (6.67). Its time derivative is

V() = 2()[Ba(@()gn(@()u(t) + Bu(x(t) fula(t)
B () hn(z(t — 7)) + 2a(D)F_, /01 00001, 02n + an 1)

ajn—l

do

—Cy /01 Br(ZTpn-1,0z, + an,l)de]

Since «,,_1 is a function of Z,,_1, (u_1, Tan, Wi,..., Wy,_1, dy,—1 can be expressed as

n—1 80./”_1
Q1 = ) i+ wu(t)
jzl al'] J
n—1 80zn, B )
> oz 1 {g](x])xﬁl + £5(7) + hy(z,(t Tj))} + wn—1(t)
j=1 j
where

wy—1(t) = Lan_lC + La”_lfc + S aa”‘lw

T 00 T Ora " oW,
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Applying Assumption 6.3.4 and using Young’s Inequality, we have

Vo, (t) = za(t )[ﬁn( () gn (2 (8))u(t) + Bn(x(t)) fulz(t))
/ eﬁﬁn {En 1,92n+ozn 1)

3xn 1

do)|

1 _
/ eaﬁn Tp— laezn_'_an l)d(ﬂT/ eaﬁn(xnflyezn—i_anfl)
0

do
al'n,1 ai‘nfl

—zi(t)ﬁzw)) + 3@ alt )

1 n— 18 " -
~n [ a0 + )8 32 S (i) + 1)) (0]

j=1

1 n—1 1 - 3an_ 9 -
+§[;ZZ( | G102 + 1)) 5e) +28E0 )] (699)

where f,_1 = [g1(z1)z2 + fi(z1), -+, Gno1(Tne1)Tn + foo1 (Tno1)]”
Considering the Lyapunov-Krasovskii functional Vi, () given in (6.68), we have
Ve + Vi, < 20n(2) gn(2)u + 20Qn(Z) (6.94)

where

Qu(Z,) = Bula) ful) + y2ux) + 5 —03(x)

2z,
+ann 1/ Qaﬁn Tn= 1,92n+an 1)d9
amn—l
1, OB (Tn_1,02y + 1) 0B (Tn_1,02, + 1)
I o] / 9 df
+2Zn( ){/0 afn 1 895” 1
80-/71 1
Z{ g]( )x]+1+fj x] / 671 Tp—1,02, + 0tp 1)d8
j= J
1 80zn 1 B
2 ( 1 / ﬁn xn 1,0z, + ay,— 1)d(9} —i—;g?(xj)}
—Wn-1 / ﬁn(i'nfla 92n + anfl)de
0
aOén,1 804,1,1 aOén,1 2
Zn = o1, ——— e W] €Q R 6.95
[ZL',O[ 1, 8.771 ) 8332 ) ’8xn,1’w 1] € Zn C ( )

For the adaptive neural control law given in (6.70)-(6.72) with k() being given in

(6.73), consider the Lyapunov function candidate V,,(t). Its time derivative along

(6.70)-(6.72) and (6.94) is
V(1) < =caViu(t) + Cen + Bu(@)gi(x) N (C)Cn + Ca (6.96)

180



6.3 NN Control of Time-Delay Systems with Unknown VCC

Multiplying (6.96) by e“*, it becomes

d

%(Vn(ﬂecnt) < Cene®™ + ﬁn(x)gn(x)N(Cn)é’neC"t + Cnecnt (6.97)

Integrating (6.97) over [0, ], we have

Vi) < oo+ [Va(0) = pale ™ e [ (B (0)gn (@)N(G) + Deodr

< o V0 + e [ (BN (G) + 1)e s (6.98)

Using Lemma 6.3.1, we can conclude that V,(¢) and (,(t), hence z,(t), W, are
SGUUB on [0,tf). From the boundedness of z,(t), the boundedness of the extra
term e~-1t [T 32 g2 z2e-17dr at Step (n — 1) is readily obtained. Applying
Lemma 6.3.1 for (n — 1) times backwards, it can be seen from the above iterative
design procedures that V;(t), zi(t), W;(t) and hence z,(t) are SGUUB, i = 1,...,n—
1.

The following theorem shows the stability and control performance of the closed-

loop adaptive system.

Theorem 6.3.2 Consider the closed-loop system consisting of the plant (6.27) un-
der Assumptions 6.3.1-6.3.4, the adaptive neural control laws (6.70)-(6.73). We
can guarantee the following properties under bounded initial conditions (i) all sig-

nals in the closed-loop system remain semi-globally uniformly ultimately bounded;

(i) the vectors Z; remain in the compact set QY C R** i=1,....n, specified as

Q%i = {Zi |zi] < s, ||VT/Z||2 <

1 ~
- Tai € Qi
)‘min(F;1>7xd ! }

whose sizes, p; > 0, can be adjusted by appropriately choosing the design parame-

ters.

Proof: Consider the Lyapunov function candidate V,,(t) given in (6.69) with V,, (),
Vi, (t) being defined in (6.67) and (6.68). From the previous derivation, we have

Valt) < o+ Val0) + e [ (0,()ga(0)N () + Ve odr
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From the above iterative design procedures from Step 1 to Step n, we can conclude
Vi(t), (1), zi(t), Wi(t), i = 1,...,n, and hence z(t) are SGUUB.

Letting cg, be the upper bound of e~ [¥|3,9, N ((,) + 1|eC"TCndT and noting the
definition of V,,(t), we have

1
. 2V, (1)
2 2T\
HWn” — )\min(rgl)

In the rest of the steps from n — 1 to 1, we obtain

t .
Vi(t) < pi+Vi(0) + efcit/o (B:(%i)gi(T:) N (G) + 1)e“" G
t
—|—€_cit/ 63(fi)g?(fi)23+1€CdeT,i = 1, ey U — 1
0
Letting cg; be the upper bound of e~ [I'|8;9: N (G){;+ i+ 292 22| dr and noting
the definition of V;(¢), we have

1
SV < (+ eai) + Vi(0)
7 2V;(¢)
VVZ' 2
H H — )\min(ri_l)

where constant
zi(0) 1 ~ ~
Vi0) = [ 05(3i1(0), 0 + ai1(0))do + S (O)T; ' Wi(0)
0

with Bi(«fifl(())y o+ Oéi,1(0>> = /61(0' + yd<0)> for i = 1.

By letting p; = \/2(pz' + ¢g; + Vi(0)), we know that |z;| < p;. We can conclude that
there do exist compact sets QY such that Z; € QY , Vvt > 0. &

Remark 6.3.12 For the choice of ki1 (t) in (6.73), it is found that if c., is chosen
to be very small, ki (t) will take a very large value, which may saturate the control
actuator. To solve this problem, we would like to find an alternative for ki (t) such
that it provides smooth control input, and at the same time guarantees the stability

result. One such choice is

1 1
k’zl(t) = {—j_ []_ + A Hgi(ii_l, QZZ + Oéi_1>d9

C(IDSE(;;) /ttTmax (%UZ(.’EZ(T)) + ;; Uj(fj(T)))dT}
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Following the same derivation procedure and using the property of function k(.) in
(6.30), we can readily obtain 6.89 with ¢; being modified/changed to

. (Yo K(Czi) i

Although the bounded region may be enlarged by introducing the function k(-), there
are still design flexibility from ¢;, I'; and o;, which can help reduce the bounded
region. Note that such modifications together with the choice of function k(-) are

also not unique and worth further investigation.

Remark 6.3.13 Note that the choices of 5;(Z;) are not unique [88]. As an alter-
native, we can choose (3;(z;) = 1/|g:(Z;)|. In this case, the upper bound function of
|g:(Z4)|, i-e., gi(Z;) are not necessarily known. The smooth integral scalar function

becomes

‘/Zz:/Z T - d0'7 i=1,---,n
0 19i(Ziz1,0 + 1)

By Mean Value Theorem, V,, can be rewritten as
o2}

V., = ——
|gi(Ziz1, Aszi + 1)

, As €(0,1)

From Assumption 6.3.1, 0 < gio < |¢:(Z;)|, we know that V,,(t) is a positive definite
function and V,,(t) < ﬁzf For conciseness of presentation, we give the control
and adaptive laws directly without proof, as well as the stability results.

Theorem 6.3.3 For system (6.27), we choose the adaptive neural control laws
(6.70)-(6.72), where k;(t) = kio + ki1 (t) with constant ki > 0 and k;1(t) is chosen

as

i (1) = é[l Pt é ti %(%Ui(@m) + ilUj(fj<T>>)dT} (6.99)

with 0 < €9 < 4, As € (0,1). Then, under the bounded initial conditions, all
signals in the closed-loop system remain bounded and the tracking error converges

to a small neighborhood around zero by appropriately choosing design parameters.

Similar as the modification made to k;; in Remark 6.3.12, we can modify (6.99) to

1 cosh(z;
ki (t) = 8—{1 +As + T(ZQ)

—Tmax 2

/ l(%Ui(a:i(T))+§Uj(xj(¢)))dr] (6.100)
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for a relatively gentle control gain.

Though the non-differentiability of the intermediate controls can be solved in a
very practical way as discussed in the previous subsection. In fact, this problem
can also be solved theoretically by modifying the control laws such that they are
differentiable to certain desired order as will be discussed below. It should be
pointed out that the solution is not unique. For clarity, only one such a solution is

presented.

It can be seen that the computation of «;(t) requires that of ¢; 1(¢). This is also
the case for the computation of «;_1, - - -, and as, which requires to compute ¢;_»,

-+, and &y respectively. Therefore, we know that the computation of «a; shall
include that of agi_l),ay—m, -«+, and &;_1. This rule applies to the rest of the
steps till the last step n. We can conclude that «; need to be at least (n — i)th
differentiable. By using the property of (n-i)th order differentiable function ¢;(z;)
(6.29), the intermediate control, «; (6.70) can be easily modified to satisfy the

required (n — 7)th order differentiability as follows
ol = qi(z)N () [ki(t)z + WISi(Z)], i=1,---,n—1 (6.101)
where ¢;(z;) is defined in (6.29). It can be easily verified by actual differentiation.

The above modification not only guarantees the differentiability of the intermediate
controls, but also preserves the closed-loop stability of the practical control design

by noticing that of = «; Vz; € Q%i. The analysis is similar as in Section 5.4.

6.3.4 Simulation

To illustrate the proposed adaptive neural control algorithms, we consider the

following second-order time-delay system

1(t) = gi(x1)wa(t) + fi(wr) + ha(z(t — 7))
ia(t) = go(@)ult) + fo@) + ha(z(t — 7))
n(t) = =)

where gi(z1) = 1+ i, go(x) = 3 + cos(z122), fi(z1) = @1 (t)e 2O, fola) =
z1(t)x3(t), hi(z1) = 223, and hy(x) = 0.2z5sin(xy). Apparently, by choosing
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01(r1) = 222 and go(x) = 0.2|23|, Assumption 6.3.4 satisfies. Choose the initial
condition [z1(0), z2(0)]T = [0,0]7, the time delay 7, = 75 = 2sec., and the desired
reference signal y; = 0.5[sin(¢) + sin(0.5¢)]. For the design of neural adaptive
controller, let z; = x1 — y4, 20 = 22 — 1. For simplicity, simulation is carried out
based on Theorem 6.3.3 for the case (3;(Z;) = 1/|g:(Z;)|. The intermediate control
a; and control u(t) are given by (6.101) and (6.70) respectively with k;;(¢) being

chosen in (6.100) as follows

a1(t) = qu(20)N(G) [k ()21 + WS (Z0)],
u(t) = N (Co)[ka(t)22 + WQTSQ(ZZ)] 20| > ¢,
0,

otherwise
G = hi(t)=] + W2Si(Z)z, i=1,2
Wz' = 14[Si(Zi)zi — Uz(VVi WD), i=1,2
where N(¢;) = et cos(5¢i), i = 1,2 are the Nussbaum functions, Z; = [z1, ya, va)t,
Zy = |11, 29, 01, %,wl]T, and k;(t) = ki + ki1(t) with constant k;o > 0 and k;; ()

being chosen as

it (1) = é[l ot % /:m %(%Ui(fi(T)) + ; U (3,(7)) )]

The following design parameters are adopted in the simulation: I'y = diag|0.2],
[y = diagl0.4], o0y = 05 = 0.5, WP = WD = 0.01, &y = 4, & = 4, Ay = 0.5, and

Coy = Cpy = 1.0e77.

In practice, the selection of the centers and widths of RBF has a great influence on
the performance of the designed controller. According to [45], Gaussian RBF NNs
arranged on a regular lattice on R™ can uniformly approximate sufficiently smooth
functions on closed, bounded subsets. Accordingly, in the following simulation
studies, the centers and widths are chosen on a regular lattice in the respective
compact sets. Specifically, neural networks W7 S1(Z;) contains 27 nodes (i.e., l; =
27) with centers py(l = 1,---,11) evenly spaced in [—1,+1] x [—1,+1] x [-1,+1],
and widths 72 = 1(l = 1,---,13). Neural networks W'S;(Z,) contains 243 nodes
(i.e., lo = 243) with centers y;(I = 1, -, 1) evenly spaced in [—1, +1] x [-1.5, +1] x
[—1.5,+1] x [=5, +5] X [—5, +5], and widths 3 = 8(l = 1,-- -, l3). The initial weight
estimates are assumed to me 0, i.e., W;(0) = 0.0 and WW5(0) = 0.0.
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Fig. 6.5 shows that good tracking performance is achieved after 10 seconds learning
periods. Fig. 6.6 shows that the state x5 in the closed-loop is also bounded. Figs.
6.7 and 6.8 show the boundedness of the control input and the NN weights in the

control loop.

6.3.5 Conclusion

An adaptive neural-based control has been addressed for a class of parametric-
strict-feedback nonlinear systems with unknown time delays. The proposed design
method does not require a priori knowledge of the signs of the unknown virtual
control coefficients. The unknown time delays have been compensated for by using
appropriate Lyapunov-Krasovskii functionals. The proposed systematic backstep-
ping design method has been proved to be able to guarantee semi-global uniformly
ultimately boundedness of all the signals. In addition, the output of the system
has been proven to converge to a small neighborhood of the origin. Simulation has

been conducted to show the effectiveness of the proposed approach.
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Figure 6.6: Trajectory of state xo(t).
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis, robust adaptive control has been investigated for uncertain nonlinear
systems. The main purpose of the thesis is to develop adaptive control strategies
for several classes of general nonlinear systems in strict-feedback form with uncer-
tainties including unknown parameters, unknown nonlinear systems functions, un-
known disturbances, and unknown time delays. Systematic controller designs have
been presented using backstepping methodology, neural network parametrization
and robust adaptive control. The results in the thesis have been derived based on
rigorous Lyapunov stability analysis. The control performance of the closed-loop

systems has been explicitly analyzed.

The traditional backstepping design is cancellation-based as the coupling term re-
maining in each design step will be cancelled in the next step. In this thesis, the
coupling term in each step has been decoupled by elegantly using the Young’s in-
equality rather than leaving to it to be cancelled in the next step, which was referred
to as the decoupled backstepping method. In this method, the virtual control in
each step has been only designed to stabilize the corresponding subsystems rather
than previous subsystems and the stability result of each step obtained by seeking

the boundedness of the state rather than cancelling the coupling term so that the
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residual set of each state can be determined individually. Two classes of nonlin-
ear systems in strict-feedback form have been considered as illustration examples
to show the design method. It has been also applied throughout the thesis for

practical controller design.

For nonlinear system with unknown time delays, the main difficulty lies in the
terms with unknown time delays. In this thesis, by using appropriate Lyapunov-
Krasovskii functionals in the Lyapunov function candidate, the uncertainties from
unknown time delays have been compensated for such that the design of the sta-
bilizing control law was free from unknown time delays. In this way, the iterative
backstepping design procedure can be carried out directly. Controller singularities
have been effectively avoided by employing practical robust control. It has been
first applied to a kind of nonlinear strict-feedback systems with unknown time-
delay using neural networks approximation. Two different NN control schemes
have been developed and semi-globally uniformly ultimately boundedness of the
closed-loop signals is achieved. It has been then extended to a kind of nonlinear
time-delay systems in parametric-strict-feedback form and globally uniformly ulti-
mately boundedness of the closed-loop signals has obtained. In the latter design,
a novel continuous function has been introduced to construct differentiable control

functions.

When there is no a priori knowledge on the signs of virtual control coefficients or
high-frequency gain, adaptive control of such systems becomes much more difficult.
In this thesis, controller design incorporated by Nussbaum-type gains has been
presented for a class of perturbed strict-feedback nonlinear systems and a class of
nonlinear time-delay systems with unknown virtual control coefficients/functions.
To cope with uncertainties and achieve global boundedness, an exponential term
has been incorporated into the stability analysis and novel technical lemmas have
been introduced. The proof of the key technical lemmas was given for different

Nussbaum functions being chosen.

In summary, Chapter 2 has given the basic definition and useful results related
to stability, while the decoupled backstepping design introduced in Chapter 3 is
the fundamental design tool being utilized throughout the thesis. The following

three chapters have dealt with several kinds of nonlinear systems with unknown
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time delays. The virtual control coefficients of the systems under consideratin were
unknown functions of states in Chapter 4 and unknown constants in Chapter 5,
where their signs have been assumed known, while in Chapter 6, the virtual control
coefficients were unknown functions of states with unknown sign. Due to the differ-
ent problem formulation, the design methodology being utilized in these chapters
were different. Chapter 4 and Chapter 6 have used NNs as a function approxi-
mator to deal with the unknown nonlinearity while adaptive scheme was proposed
in Chapter 5 for unknown parametric uncertainties. As Chapter 6 considered the
case when the signs of the virtual control coefficients were unknown, adaptive and

adaptive neural control schemes using Nussbaum functions were proposed.

7.2 Further Research

In the following, some suggestions are made for further studies.

o Sliding Mode Control of Nonlinear Time-Delay Systems: Time-delay systems
are actually infinite-dimensional systems. The extension of sliding mode con-
trol strategy to infinite-dimensional systems [140] makes the application of
sliding mode control to time-delay systems possible. It has shown that for
systems with state delays, the idea are essentially the same as for finite-
dimensional systems, even if design and computations are much more com-
plicated. Due to the rich dynamic behaviors of nonlinear systems, the sliding
mode control of nonlinear time-delay systems is a promising and challenging

future research are.

e Systems with Input Delay: The presence of an input delay in the systems is
still an open problem [99]. Even matching additive disturbance is difficult to
be rejected. It is even more challenging when considering nonlinear case or

control input nonaffine case.

o Universal Adaptive Controller: The behavior of the universal adaptive con-
troller using Nussbaum-gain can be interpreted as the controller tries to sweep
all possible control gains and stops when a stabilizing gain is found, i.e., the

switching of the control gain will finally stop when the system has “found”
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the unknown control directions. To determine the settling time is well worth

being investigated for better control performance and computation efficiency.

Overparametrization Problem in Decoupled Backstepping Design: The pro-
posed decoupled backstepping design procedure has the disadvantage of over-
parameterization, which may reduce its practicality. Obviously, overparme-
terization increases controller’s dynamic order In addition, it may deteriorate
the parameter convergence and system robustness. Future research could be

done to remove this drawback.
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Appendix A

Proof of Lemma 2.4.6

Proof: Since go(x(t)) € [I7,17], let us define gmax = max{|l"|,|IT|} and gmin =
min{|/~|,|l*|} for convenience. We first show that ((¢) is bounded on [0,%;) by
seeking a contradiction. Suppose that ((t) is unbounded and two cases should be

considered: (i) ((¢) has no upper bound and (ii) {(¢) has no lower bound.

Case (i): ((t) has no upper bound on [0,t7). In this case, there must exist a
monotone increasing sequence {t;}, i = 1,2, -, such that {w; = ((¢;)} is monotone

increasing with wy = ((t1) > 0, lim; oo t; = ¢, and lim; o w; = +00.

For clarity, define

Ny(wi, wj) :/

wi

wj

go(@(M)N(C(r))e ¢ (7)
with an understanding that N,(w;,w;) = Ny(w(t;),w(t;)) = Ny(t;, t;) for notation

convenience, and w; < wj, T € [t tj].

Using integral inequality (b — a)mys < [°f(z)dx < (b — a)ymyy with my =
infocp<p f(2) and myy = sup,,<, f(z), and noting that go(2(f)) < gmax, 0 <
e~tt=7) < 1 for 7 € [0,t], we have

[Ng(@is 5)] < Gmax(ws = wi) sup IN(Q)] = gmax(w; — wi)e? (A1)

CE€Jwswj]

for the Nussbaum function N(¢) = e¢® cos(5(¢), which is positive for { € (4m —

1,4m + 1) and negative for ¢ € (4m + 1,4m + 3) with m an integer.

Let us first consider the case go(z) > 0. First, let us consider the interval [wo, wp,,] =
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[wo, 4m — 1], and the following expression

Ny (wo, Wi, ) = /

wo

Wmq

go(a(r))e 1t TN (((7))d((7)

Applying (A.1), we have
|Ng(w07 wm1)| S gmax<4m —-1- w0)6(4m_1)2 (AQ)

Next, let us observe variation in the interval [wy,,, wm,] = [4m — 1,4m + 1]. Noting
that N(¢) > 0, V(¢ € [wm,, Wm,|, we have the following inequality
dm+e
Nymsiom) 2 [ gula(r))e N (G(r)dC(r)
with ¢; € (0,1). Similarly using the integral inequality by noting that go(z(t)) >
Gmin, €T > emetltmo—tmi) for 7 € [t tm,], We have

Ng(wmuwmz) 2 2€1gmin6_61(tm2_tm1) inf N(C) = cb16(4m_€1)2 (Ag)

Ce[wml ’wmz}
where ¢y, = 2€1 gin cos(5e€1)e (tmy —tmy)

It is known that if | fi(z)] < ay and fo(z) > ag, then fi(z)+ fo(x) > as —ay. Using
this property, from (A.2) and (A.3), we obtain

Ng(w();wmg) > 6(4mfl)2{Cbl6[2(4mf1)(1761)+(17q)2} B gmax(4m 1 w())}

which can be further written as

1 N 6(4mfl)2
o ) =
Winy g(w(]?w 2) = 4m+ 1

{Cbl6[2(4m—1)(1—61)+(1—61)2] - gmax<4m 11— WO)} (A4)

The following property is useful for our derivation

- boe®” (% — by + bs)

= 0, by, b1,b9 >0 A5
2t oo LE—FCLO +OO, x‘i‘ao?'é s Y0, V1, V2 ( )

which can be easily proven by applying the L’Hopital’s Rule as

b06x2 (eblw _ b2x + b3) % [boer (eblx — b2$ + b3>>}

lim = lim 5 = fo0
A AT Eta)
Using property (A.5) and noting (1 —¢;) € (0,1), from (A.4), we have
1
lim Ny (wo, wm,) = +00 (A.6)

m—-+oo wmz
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We have shown that limm_,%oﬁi\fg(wo,élm + 1)= +o0, now we would like to

show that 1im,, 1 oo g5 Ny (wo, 4m + 3)= —o0.

To this end, let us first observe the interval [wg, wp,,|] = [wo,4m + 1]. Similarly,

applying (A.1), we can obtain
| Ny (w0, Wy )| < G (4 + 1 — wyp)e@m+1? (A.7)

Then, let us consider the next immediate interval [w,,,wmn,] = [4m + 1,4m + 3].

Noting that N(¢) < 0, V( € [winy, Ws), as for w € [wi,, wm,|, we have the following

inequality
Am—+2+€2 e (t )
Nyfmsms) < [ 77 go(a(r))e et IN () ()
< —gelmize)’ (A.8)

where ¢y, = 2€30min cos(Zea)eHfma~tma) and e, € (0, 1).

It is also known that if |fi(z)| < a; and fao(x) < ag, then fi(x) + fo(x) < as + a;.
Accordingly, from (A.7) and (A.8), we obtain

Ng(WOa wmg) < _e(4m+1)2{Cb26[2(4m+1)(1752)+(1752)2} _ gmax(4m +1— WO)}

which can be further written as

1 €(4m+1)2

NQ(WO’wmg) < - Am + 3 {cb2

p2(4m+1)(1—e2)(1-e2)?] _ Gmax(4m + 1 — wp)} (A.9)

Wmgs

Using property (A.5) and noting (1 — €2) € (0, 1), from (A.9), we have

1
lim Ny(wo, Wy ) = —00 (A.10)

m——+00 ng

Therefore, from (A.6) and (A.10), we can conclude that, go(x) > 0,

1
lim sup —N,(wp, w;) = +00 (A.11)
wj—+00 Wy
o1
wjliquoo inf JNg(wo,wj) = —00 (A.12)

J

In what follows, we would like to show that (A.11) and (A.12) also hold for go(z) <
0. Let us observe the following intervals [wy, 4m—1], [4m—1,4m+1] and, [wy, 4m-+1]
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and [4m + 1,4m + 3], respectively for go(z) < 0. In the intervals |[wy,4m — 1] and
[wo, 4m + 1], inequalities (A.2) and (A.7) remain. In the interval [4m — 1, 4m + 1],
noting that go(z) < 0 and N(¢) > 0, we can similarly obtain

Nyt < [ goa(r))e st N () (r)

m—ey

< —gyeltmme)’ (A.13)

Combining (A.2) and (A.13) yields

1 e(4m—1)2 m— —€ —e1)?
Wimgy Ng(wo’ ng) == dm +1 {Cb1€[2(4 D= +=a)T gmax(4m -1- WO)GA14)
Using the property (A.5) and noting (1 —¢;) € (0,1), from (A.14), we have
1
lim Ny(wo, Wiy ) = —00 (A.15)

m—-+00 Wi

In the interval [4m + 1,4m + 3], noting that go(z) < 0 and N(¢) < 0, we have

Nylmpms) 2 [ gola(r))em N (g(r))dc(r)

m-+2—eg
> gy edmtme)’ (A.16)

Combining the inequalities (A.7) and (A.16) on the intervals [wp,4m + 1] and
[4m + 1,4m + 3] respectively, we have
1 e(4m+1)2

N, (wo,wpn) >
wm3 g(WO,w 3) - 4m+3

[ el m D0 H1=aP) _ g (i 41— o) A17)

Similarly using the property (A.5) and noting (1 — ) € (0, 1), from (A.17), we
have
1
lim Ny(wo, W) = +00 (A.18)

m——+0oo Wi
From (A.15) and (A.18), we can also obtain (A.11) and (A.12). Therefore, we can
conclude that (A.11) and (A.12) hold no matter go(z(t)) > 0 or go(z(t)) < 0.

Dividing (2.55) by w; = ((t;) > 0 yields

V(ti) Co C(tz) - C(()) su e—c(ti=7)
0< C(t:) = C(t;) * C(ti) Ce[C(O)g(ti)l
1 ¢(t:) o(r MNe =) ¢ (-
0 /< o PEOINCD) d¢(r)
= Z—O + (1 - CLQ))
s [ e NEEe ) (A9
w; J¢(0)
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On taking the limit as ¢ — +o00, hence t; — tf, w; — 400, (A.19) becomes

. V(t) o1
< < - )
0= zlg-%o C(t;) — 1+ zlgi-%o wj NH(C(O)awz)

which takes a contradiction as can be seen from (A.12). Therefore, ((¢) is upper
bounded on [0, ).

Case (ii): ((t) has no lower bound on [0,t;).  There must exist a monotone
increasing sequence {t;}, i = 1,2, -, such that {w; = —((¢;)} with wy = ((¢;) > 0,

limi—>+oo L == tf, and hmz_,+oo w; = “+00.

Dividing (2.55) by w; = —((t;) > 0 yields
V(L) o 1)
0 _ =) gl
320 S @ ke © )

i Lo PN g()] (A20

Noting that N(-) is an even function, i.e., N(¢) = N(—(), and letting x(t) = —((t),
(A.20) becomes

V(L> o — 1 o) —c1(t;—7)
TR S e /<<o> ‘ dx(7)
1 =<
() /C(O) go(z(T))N (x(1))e~ & Ddx(7)
& _wi—¢(0) —e1(t,—7)

inf e

IN

w; T€[0,t;]

%1 . w; -
_;/C(O)QO(x(T>)N(X(T))e =) gy (r)

= 2 (1= e )N (e i)
w w W, J¢

W Wy (0)

Taking the limit as ¢ — +o0, hence t; — t5, w; — +00, we have

V(L) e .1
0< Zl}inoo —C(t) < —emaly Zlg_noo ENQ(C(O),QZ.)

which takes a contradiction as can be seen from (A.11). Therefore, ((t) is lower
bounded on [0, ).

Therefore, ((t) must be bounded on [0, ¢). In addition, V (¢) and [ go(2(7)) N (¢){dr
are bounded on [0,%f). ¢
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Appendix B

Proof of Lemma 2.4.7

Proof: We first show that ((¢) is bounded on [0,tf) by seeking a contradiction.
Suppose that ((¢) is unbounded and two cases should be considered: (i) ((¢) has

no upper bound and (ii) {(¢) has no lower bound.

Case (i): ((t) has no upper bound on [0,t7). In this case, there must exist a
monotone increasing sequence {t;}, i = 1,2, -, such that {w; = ((¢;)} is monotone
increasing with wy = ((t1) > 0, lim,; 4o t; = ¢, and lim;_, 4o w; = +00.

For clarity, define

w;

goN (¢(m))e = d¢(7) (B.1)

with an understanding that N, (w;,w;) = Ny(w(t;),w(t;)) = Ny(t;, t;) for notation

Ny(wi, w;) :/

wi

convenience, and w; < wj, T € [t;,t;]. Let (7'(z) denote the inverse function of
((z),ie., (¢ (x)) = 1 (¢(z)) = z (according to the definition of inverse function
). Noting N(¢) = ¢?cos((), (B.1) can be re-written as

Nywrwr) = [ qoN(¢(m)e=ts=<€COlag(r)

— ! goC% cos(()e [ti=¢1 Ol g¢ (B.2)

wi

Integration by parts, we have

Nylw) = [ gncteati=6 fin()

_ 90C2 sin(¢)e™ [t;—¢7H(Q)]

Wi

— [7 qusin(Q)d{¢teerl=< Ny (B.3)

wi
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Applying the following property for the derivative of inverse function

d¢'(¢(x)) 1

= B.4
dc(x) o
we have
d e lti—C— —ci|t;—C¢— —cilt; =6 dc_l C
AT = agemal Oy g el 1“)]dc(>)
_ 2§6—C1[tj—<‘1(4)] + Cl<2€_cl[tj_<_1((:)]d—7—
d¢
ie.,
d {<26—c1[tj—<*1(0}} — QCQ_Cl[tJ'_Cil(O}dC -+ 61C2€_Cl(tj_7)d7— (B5)

then (B.3) becomes

Ng(wi, wj) = g0C2 Sin((>efcl [t;—¢~ Q)]

= [ 20¢ sin(Qe = Ol

Wi

tj
—/ clgog2sin(g)e_cl(tj_7)d7' (B.6)
t.

(3

K3

Integration by parts for the term [;7 295 sin(¢)e~ =< Qlg¢ in (B.6), we have

“ 2go¢sin(Q)e T O = — 9y cos(¢)e <O
+ ’ 290 cos(C)d{Ce‘cl[tﬂ'_rl(O]} (B.7)
Applying (B.4), we have
d -1 -1 -1 dT
all —c1[t;—¢ Ol — p—erlt;—¢7H ()] —cit;—¢ O 2L
d¢ {Ce } =e + ci1Ce i (B.8)

then (B.7) becomes

I 2g0C Sin(g)e—CI[tj—Cl(C)}dC

wi

= — 2gOC Cos(C)e_Cl[tj_Cil(C)]

2 1 [ agycos(c)ea=< g

+ /tt] 2¢190C cos(()e~ =" dr (B.9)
Substituting (B.9)l into (B.6) yields
Ny(wiswj) = go¢? sin(g)e_cl[tj_cl(g)] : + 290C cos(()e_cl[tj—C’l(C)] :Z
- :j 29y cos(¢)e = Olgg — /tt] 2¢1goC cos(¢)e” B dr
I S, oo

7
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Similarly, integration by parts for the term [’ 2go COS(C)@‘Cl[tJ'_C_I(C)]dC in (B.10)

by noting that
e dT

d¢

4 el MO 2 ¢ emalti—

d¢

we have

/wj 290 COS(é-)efcl[tjfﬁfl(C)]dC _ 290 Sin(C)eicl[tjicil(O] wj

wi

tj
— | 2cigosin(Q)e B dr - (B.11)

ti

Substituting (B.11) into (B.10), we have

Ny(wiy5) = go¢2sin(¢)e 15 Ol - 9,¢ cos()e 1 l=¢ ]
—2go sin(¢)e i~ +/ 2¢1gosin(C)e b= dr

z

tj tj
—/ 2¢190¢ cos(C)e~ = dr — / c1g0C?sin(Q)e G~ dr  (B.12)
t t

T @

Let us first consider the term f;7 2¢;gosin(¢)e~ %~ dr on the right side of (B.12).
Using integral inequality (b — a)ms < [P f(x)dr < (b — a)myy with mp =
info<,<p f(z) and mypy = sup,<,<, f(2), and noting that 0 < e~=7) < 1 for

T € [ti, t;], we have
‘/ 2¢1g0 sin(¢ 1(tj_T)d7" < (t; — ti)2c190 (B.13)

Next, for the term fti] 2¢1goC cos(¢)e~ T dr | applying integral inequality simi-
larly by noting that 0 < e=“1®%~") < 1 for 7 € [t;,1;], we have

tj
’/ 2¢190C COS(C)e_Cl(tj_T)dT’ < (t; — 1;)2c19ow; (B.14)
t;

Then, let us consider the term ftt] c19o¢? sin(¢ )e‘cl (t;=7)dr. Using the property that
if f(z) < g(x), Vo € [a,b], then [° f(z)dx < [ g(z)dz and noting that

—w?eT < (1) sin(C(7))eT < wleT, VT € [t;, 1]
we have

tj tj
et [ exgoCsin(Q)endr < e ergou? [ et = gl — )

@ %
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and

tj 2
6701%/15 c190¢” sin(¢)e dr > —efcltjclgowgz'/t eTdr = —gowi[l — emtimt]

i

ie.,

< gouw?[l — e~ ts1)] (B.15)

t.
e 1l / ’ c190¢? sin(¢)e T dr
t;

NOtil’lg that (_1(%) = C_l(C(tz)) = tz and C_1<Wj) = C_l(C(t])) == tj, from (B13),
(B.14) and (B.15), we have the following two inequalities

Ny(wi,w;) < gow? sin(w;) + 2gow; cos(w;) — 2go sin w;
+gow]2-[1 — e_cl(tj_ti)] + (tj - ti)2clgowj + (tj - ti)ZClg(]

c1(tj—ti) c1(tj—ts)

—goe~ w? sin(w;) — 2goe” wj cos(w;)

+2goe ) gin (w;) (B.16)
and

g(wi,wj) > ggw? sin(w;) + 2gow; cos(w;) — 2go sin w;
—gow; [l — e 1G] — (15 — t;)2ergow; — (5 — t:)2¢190
Cl(tjfti)

—goe~ w? sin(w;) — 2g0e G w; cos(w;)

+2goe” ) gin(w;) (B.17)

Re-write (2.56) as

¢(t:) ¢(t:)
DS V() < ot [ TaNCEe ) + [ Te et Bag)
0 0
Using (B.16) by noting w; = ((¢;), we have

0<V(t) < co+ Ny(C(0),w;) + [wi — ¢(0)] sup e )

T€[0,t;
< cp 4 gow? sin(w;) + 2gow; cos(w;) [— 2]go sin w;
+gow; [1 — e~ + 21 gow; + 2ticigo + [wi — ¢(0)]
—goe 2 (0) sin(¢(0)) — 2goe ¢ (0) cos(C(0)) + 2goe Y sin(¢(0))
= W {go[sin(w,-) +1—e ]+ f(u;,)} (B.19)
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where
flwi) = co+ 2gow; cos(w;) — 2go sinw; + 2t;¢1gow; + 2t;c1g0 + [wi — ¢(0)]
—goe”"¢%(0) sin(¢(0)) — 2goe™*""¢(0) cos(¢(0))
+2goe” " sin(¢(0)) (B.20)
Taking the limit as ¢ — +o00, hence t; — t;, w; — 400, ffu“;) — +00, we have
0< hgrn Vi(t) < llJnra w?golsin(w;) + 1 — e~ 1] (B.21)

which, if gy > 0, draws a contradiction when [sin(w;) + 1 — e~ %] < 0, and if
go < 0, draws a contradictions when [sin(w;) + 1 — e~“%] > 0. Therefore, ((t) is

upper bounded on [0, ).

Case (ii): ((t) has no lower bound on [0,tf). There must exist a monotone in-
creasing sequence {t;}, ¢ = 1,2, -, such that {w; = —((¢;)} with w; = ((t;) > 0

Re-write (2.56) as
()
0SV(E) < - / g (¢(r))e D[ —((7)]
-/ W ) (5.2

Since N(-) is an even function, we have N({) = N(—(). Letting x(t) = —((1),
(B.22) becomes
0<V(E) <o [ N (@)t ax(r) - £ et (B.23)
¢(0) ¢(0)
Using (B.17) by noting w; = —((¢;), we further have
0S V(L) < o= Ny(C(0) ) = [ws = C(0)] inf e
7€|(0,t;

< o g sin(;) — 20 cos(i) + 200 sin(w;)
+gow; [1 — e b + 28,01 90wy + 28190 — |wy — C(0)]e
+goe 4 ¢?(0) sin(¢(0)) + 2goe5¢(0) cos(¢(0)) — 2goe =4 sin(¢(0))

- 2{90[—Sm( PER. _%L@;)} (B.24)
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where

flwi) = co—2gow; cos(w;) — 2go sin(w;) + 2t;¢190w; + 2t;¢190
—[w; = ¢(0)]e™ % + goe~ M ¢2(0) sin(¢(0)) + 2goe'4¢(0) cos(¢(0))

—2goe” i sin(¢(0)) (B.25)

Taking the limit as 7 — +o00, hence ¢; — ty, w; — +00, i((f?") — 400, we have
0< Z£+mOOV( ;) < Jim w; 2go[sin(w;) + 1 — e 4] (B.26)
which, if go > 0, draws a contradiction when [—sin(w;) + 1 — e %] < 0, and if
go < 0, draws a contradictions when [—sin(w;) + 1 — e~ %] > 0. Therefore, (t) is

lower bounded on [0, ).

Therefore, ¢(t) must be bounded on [0, ;). In addition, V() and [ go(z(7))N(¢)Cdr
are bounded on [0,%s).

217



Bibliography

Publication

1. S. S. Ge, T. H. Lee, G. Zhu, and F. Hong, “Variable structure control of a
distributed-parameter flexible beam,” Journal of Robotic Systems, vol. 18,
no. 1, pp. 17-27, 2001.

2. S.S. Ge, F. Hong, and T. H. Lee, “Adaptive neural control of nonlinear time-
delay systems with unknown virtual control coefficients,” IEFEFE Transactions
on Systems, Man, and Cybernetics, Part B, vol. 34, no. 1, pp. 499-516, 2004.

3. S.S. Ge, F. Hong, and T. H. Lee, “Adaptive neural network control of non-
linear systems with unknown time delays,” IEEE Transactions on Automatic
Control, vol. 48, no. 11, pp. 2004-2010, 2003.

4. S.S. Ge, T. H. Lee, F. Hong and C. H. Goh, “Energy-based robust controller
design for flexible spacecraft,” Journal of Control Theory and Applications,
2004.

5. S. S. Ge, F. Hong, and T. H. Lee, “Robust adaptive control of nonlinear
systems with unknown time delays,” Submitted to Automatica (Second Revi-
sion ), 2003.

6. S. S. Ge, F. Hong, T. H. Lee, and J. Wang, “Robust adaptive control for
a class of perturbed strict-feedback nonlinear systems,” Submitted to IEEE
Trans. Automat. Contr.(Second Revision), 2003.

7. F. Hong, S. S. Ge, and T. H. Lee, “Practical adaptive neural control of
nonlinear systems with unknown time delays,” Submitted to IEEE Trans.
Syst., Man, Cybern. B, 2003.

218



Bibliography

oo

10.

11.

12.

13.

14.

15.

16.

F. Hong, S. S. Ge, T. H. Lee, “Sliding mode control of nonlinear systems with
unknown time delays,” Submitted to IEEE Trans. Automat. Contr., 2003.

F. Hong, S. S. Ge, T. H. Lee, and C. H. Goh, “Energy based robust con-
troller design for flexible spacecraft,” in Proc. jth Asia-Pacific Conference
on Control € Measurement, (Guilin, China), pp. 53-57, July 9-12, 2000.

S. S. Ge, T. H. Lee, Fan Hong and C. H. Goh, “Non-model-based robust
controller design for flexible spacecraft,” in Proc. 39th IEEE Conference on
Decision and Control, (Sydney, Australia), vol. 4, pp. 3785-3790, Dec 12-15,
2000.

F. Hong, S. S. Ge, and T. H. Lee, “Adaptive robust control of a single link
flexible robot,” in Proc. IASTED International Symposium, Measurement
and Control, (Pittsburgh, PA), May 16-18, 2001.

S. S. Ge, T. H. Lee, and F. Hong, “Robust controller design with genetic
algorithm for flexible spacecraft,” in Proc. Congress on Fvolutionary Com-
putation, (Seoul, Korea), pp. 1033-1039, May 27-30, 2001.

S.S. Ge, T. H. Lee, and F. Hong, “Adaptive control of a distributed-parameter
flexible beam,” in Proc. 4th Asian Conference on Robotics and its Applica-
tions, (Singapore), pp. 363-368, June 6-8, 2001.

S. S. Ge, T. H. Lee, and F. Hong, “Variable structure maneuvering control

of a flexible spacecraft,” in Proc. American Control Conference, (Arlington,
VA), vol. 2, pp. 1599-1604, June 25-27, 2001.

S. S. Ge, F. Hong, and T. H. Lee, “Stable robust control of flexible structure
systems,” in Proc. 40th IEEE Conference on Decision and Control, (Orlando,
FL), vol. 4, pp. 3872-3877, Dec 4-7, 2001.

N. Jalili, M. Dadfarnia, F. Hong, and S. S. Ge, “Adaptive non model-based
piezoelectric control of flexible beams with translational base,” in Proc. Amer-
ican Control Conference, (Anchorage, AK), vol. 5, pp. 3802-3807, May 8-10,
2002.

219



Bibliography

17.

18.

19.

20.

S. S. Ge, F. Hong, T. H. Lee, and C. C. Hang, “Adaptive neural control of
nonlinear time-delay systems with unknown virtual control coefficients,” in
Proc. 41st IEEE Conference on Decision and Control, (Las Vegas, Nevada),
vol. 1, pp. 961-966, December 10-13, 2002.

S. S. Ge, F. Hong, and T. H. Lee, “Adaptive neural network control of non-

’

linear systems with unknown time delays,” in Proc. American Control Con-

ference, (Denver, Colorado), vol. 5, pp. 4524-4529, June 4-6, 2003.

F. Hong, S. S. Ge, and T. H. Lee, “Practical adaptive neural control of
nonlinear systems with unknown time delays” in Proc. American Control
Conference, (Boston, MA), June 30-July 2, 2004.

S. S. Ge, F. Hong, T. H. Lee, and J. Wang, “Robust adaptive control for
a class of perturbed strict-feedback nonlinear systems,” in Proc. American
Control Conference, (Boston, MA), June 30-July 2, 2004.

220



