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Summary

In this thesis, robust adaptive control is investigated for uncertain nonlinear sys-

tems. The main purpose of the thesis is to develop adaptive control strategies

for several classes of general nonlinear systems in strict-feedback form with uncer-

tainties including unknown parameters, unknown nonlinear systems functions, un-

known disturbances, and unknown time delays. Systematic controller designs are

presented using backstepping methodology, neural network parametrization and

robust adaptive control. The results in the thesis are derived based on rigorous

Lyapunov stability analysis. The control performance of the closed-loop systems is

explicitly analyzed.

The traditional backstepping design is cancellation-based as the coupling term

remaining in each design step will be cancelled in the next step. In this thesis, the

coupling term in each step is decoupled by elegantly using the Young’s inequality

rather than leaving to it to be cancelled in the next step, which is referred to

as the decoupled backstepping method. In this method, the virtual control in

each step is only designed to stabilize the corresponding subsystems rather than

previous subsystems and the stability result of each step obtained by seeking the

boundedness of the state rather than cancelling the coupling term so that the

residual set of each state can be determined individually. Two classes of nonlinear

systems in strict-feedback form are considered as illustrative examples to show the

design method. It is also applied throughout the thesis for practical controller

design.

For nonlinear systems with unknown time delays, the main difficulty lies in the
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terms with unknown time delays. In this thesis, by using appropriate Lyapunov-

Krasovskii functional candidate, the uncertainties from unknown time delays are

compensated for such that the design of the stabilizing control law is free from

unknown time delays. In this way, the iterative backstepping design procedure can

be carried out directly. Controller singularities are effectively avoided by employing

practical robust control. It is first applied to a type of nonlinear strict-feedback sys-

tems with unknown time delay using neural networks approximation. Two different

NN control schemes are developed and semi-global uniform ultimate boundedness

of the closed-loop signals is achieved. It is then extended to a kind of nonlinear

time-delay systems in parametric-strict-feedback form and global uniform ultimate

boundedness of the closed-loop signals is obtained. In the latter design, a novel

continuous function is introduced to construct differentiable control functions.

When there is no a priori knowledge on the signs of virtual control coefficients or

high-frequency gain, adaptive control of such systems becomes much more diffi-

cult. In this thesis, controller design incorporated by the Nussbaum-type gains is

presented for a class of perturbed strict-feedback nonlinear systems and a class of

nonlinear time-delay systems with unknown virtual control coefficients/functions.

The behavior of this class of control laws can be interpreted as the controller tries

to sweep through all possible control gains and stops when a stabilizing gain is

found. To cope with uncertainties and achieve global boundedness, an exponential

term has to be incorporated into the stability analysis. Thus, novel technical lem-

mas are introduced. The proof of the key technical lemmas are given for different

Nussbaum functions being chosen.
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Chapter 1

Introduction

Recent years have witnessed great progress in adaptive control of nonlinear systems

due to great demands from industrial applications. In this thesis, robust adaptive

control of uncertain nonlinear systems has been investigated. The main purpose

of the thesis is to develop adaptive control strategies for several types of general

nonlinear systems with uncertainties from unknown systems functions, unknown

time delays, unknown control directions. Using backstepping technique, an itera-

tive controller design procedure is presented for these uncertain nonlinear systems

in strict-feedback form.

The traditional backstepping design is cancellation-based as the coupling term

remaining in each design step will be cancelled in the next step. In this thesis, the

coupling term in each step is decoupled by elegantly using the Young’s inequality

rather than leaving to it to be cancelled in the next step, which is referred to

as the decoupled backstepping method. In this method, the virtual control in

each step is only designed to stabilize the corresponding subsystems rather than

previous subsystems and the stability result of each step obtained by seeking the

boundedness of the state rather than cancelling the coupling term so that the

residual set of each state can be determined individually. Two classes of nonlinear

systems in strict-feedback form are considered as illustrative examples to show the

design method. It is also applied throughout the thesis for practical controller

design.
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For nonlinear systems with unknown time delays, the main difficulty lies in the

terms with unknown time delays. In this thesis, by using appropriate Lyapunov-

Krasovskii functionals candidate, the uncertainties from unknown time delays are

compensated for such that the design of the stabilizing control law is free from

unknown time delays. In this way, the iterative backstepping design procedure can

be carried out directly. Controller singularities are effectively avoided by employing

practical robust control. It is first applied to a kind of nonlinear strict-feedback

systems with unknown time delay using neural networks (NNs) approximation.

Two different NN control schemes are developed and semi-global uniform ultimate

boundedness of the closed-loop signals is achieved. It is then extended to a type of

nonlinear time-delay systems in parametric-strict-feedback form and global uniform

ultimate boundedness of the closed-loop signals is obtained. In the latter design, a

novel continuous function is introduced to construct differentiable control functions.

When there is no a priori knowledge on the signs of virtual control coefficients or

high-frequency gain, adaptive control of such systems becomes much more difficult.

In this thesis, controller design incorporated by Nussbaum-type gains is presented

for a class of perturbed strict-feedback nonlinear systems and a class of nonlinear

time-delay systems with unknown virtual control coefficients/functions. The be-

havior of this class of control laws can be interpreted as the controller tries to sweep

through all possible control gains and stops when a stabilizing gain is found. To

cope with uncertainties and achieve global boundedness, an exponential term has

to be incorporated in the stability analysis. Thus, novel technical lemmas are intro-

duced. The proof of the key technical lemmas are shown to be function-dependent

and much involved. Two different Nussbaum functions are chosen with distinct

proofs being given.

The rest of the chapter is organized as follows. In section 1.1, the background of

(i) backstepping design and neural network control, (ii) universal adaptive control

using Nussbaum functions, (iii) stabilization of time-delay systems is briefly re-

viewed. The main topics and objectives of the thesis are discussed in Section 1.2.

The organization of the thesis is summarized in Section 1.3 with a description of

the purposes, contents, and methodologies used in each chapter.

2



1.1 Background and Motivation

1.1 Background and Motivation

1.1.1 Backstepping Design and Neural Network Control

Adaptive control plays an important role due to its ability to compensate for para-

metric uncertainties. In order to obtain global stability, some restrictions have

to be made to nonlinearities such as matching conditions [1], extended matching

conditions [2], or growth conditions [3][4]. To overcome these restrictions, a recur-

sive design procedure called adaptive backstepping design was developed in [5] for

a class of nonlinear systems transformable to a parametric-pure-feedback form or

a parametric-strict-feedback form. The overall system’s stability was guaranteed

via Lyapunov stability analysis, by which it was shown that the stability result

was local for the systems in the former form and global in the latter form. The

technique of “adding an integrator” was first initiated in [6][7][8][9], and further

developed in [10][11][12][13]. The advantage of adaptive backstepping design is

that not only global stability and asymptotic stability can be achieved, but also

the transient performance can be explicitly analyzed and guaranteed. However, the

backstepping design in [5] requires multiple estimates of the same parameters. This

overparametrization problem was then removed in [14] by introducing the concept

of tuning function. Several extensions of adaptive backstepping design have been

reported for nonlinear systems with triangular structures [15], for a class of large-

scale systems transformable to the decentralized strict-feedback form [16], and for a

class of nonholonomic systems [17]. For systems with unknown nonlinearities which

cannot be represented in linear-in-parameter form, robust modifications were con-

sidered, including σ-modification in [18], nonlinear damping technique [19][20] and

smooth projection algorithm [21]. Robust adaptive design was proposed in [22] for

the systems’ uncertainties satisfying an input-to-state stability property. For un-

certain systems in a strict-feedback form and with disturbances, a robust adaptive

backstepping scheme was presented in [23][24][25][26](to name just a few).

For nonlinear, imperfectly or partially known, and complicated systems, NNs offer

some of the most effective control techniques. There are various approaches that

are being proposed in the literature. The paper [27] gives a good survey for earlier

achievements. Recent developments can be seen in [28][29][30][31][32] [33][34][35]

3



1.1 Background and Motivation

[36][37][38][39] [40][18][41] [42]. Since the pioneering works [43][44][45] on control-

ling nonlinear dynamical systems using NNs, there have been tremendous interests

in the study of adaptive neural control of uncertain nonlinear systems with un-

known nonlinearities, and a great deal of progress has been made both in theory

and practical applications.

The idea of employing NN in nonlinear system identification and control was mo-

tivated by the distinguished features of NN, including a highly parallel structure,

learning ability, nonlinear function approximation, fault tolerance, and efficient

analog VLSI implementation for real-time applications (see [46] and the references

therein). In most of the NN control approaches, neural networks are used as func-

tion approximators. The unknown nonlinearities are parametrized by linearly or

nonlinearly parameterized NNs, such as radial basis functions (RBF) neural net-

works and multilayer neural networks (MNNs). It is notable that when apply-

ing NNs in closed-loop feedback systems, even a static NN becomes a dynami-

cal one and it might take on some new and unexpected behaviors [47]. In the

earlier NN control schemes, optimization techniques were mainly used to derive

parameter adaptation laws. The neural control design was mostly demonstrated

through simulation or by particaular experimental examples. The disadvantage

of optimization-based neurocotrollers is that it is generally difficult to derive ana-

lytical results for stability analysis and performance evaluation of the closed-loop

system. To overcome these problems, some elegant adaptive NN control approaches

have been proposed for uncertain nonlinear systems [44][45][48][49][50] [51][29][31]

[52][53][54][55][56] [57]. Specifically, Sanner and Slotine [45] have done in-depth

treatment in the approximation of Gaussian radial basis function (RBF) networks

and the stability theory to adaptive control using sliding mode control design. Lewis

at al. [51] developed multilayer NN-based control methods and successfully applied

them to robotic control for achieving stable adaptive NN systems. The features of

adaptive neural control include: (i) it is based on the Lyapunov stability theory;

(ii) the stability and performance of the closed-loop control system can be readily

determined; (iii) the NN weights are tuned on-line, using a Lyapunov synthesis

method, rather than optimization techniques. It has been found that adaptive

neural control is particularly suitable for controlling highly uncertain, nonlinear,

and complex systems (see [47][58] and the references therein).

4



1.1 Background and Motivation

By combing adaptive neural network design with backstepping methodology, some

new results have begun to emerge for solving certain classes of complicated nonlin-

ear systems. However, there are still several fundamental problems about stability,

robustness, and other issues yet to be further investigated.

1.1.2 Adaptive Control Using Nussbaum Functions

Adaptive control plays an important role due to its ability to compensate for para-

metric uncertainties. It is characterized by a combination of identification or es-

timation mechanisms of the plant parameters together with a feedback controller.

For a survey see [4] and [59]. An area of non-identifier-based adaptive control was

initiated in [60][61][62][63], etc., in which the adaptation strategy did not invoke

any identification or estimation mechanism of the unknown parameters. The adap-

tive controllers involving a switching strategy in the feedback were proposed. The

switching strategy was mainly tuned by system information from states or output.

The system under consideration were either minimum phase or, more generally,

only stabilizable and observable. No assumptions were made on the upper bound

of the high-frequency gain nor even on the sign of the high-frequency gain. The

switching strategies could be constructed with the introduction of Nussbaum func-

tions [62] and several control algorithm was developed based on the Nussbaum

function in [63][60][64][61] [65][66][67][68]. Most results are developed for linear

systems, among which, the results in [63] were for single-input-single-output linear

systems with relative degree ρ = 2, the results in [60][64][61][67] were for single-

input-single-output linear systems with any relative degree, the results in [65] for

multi-input-multi-output linear systems with relative degree ρ = 2, the results in

[66] for multi-input-multi-output linear systems with any relative degree. Later

control algorithms based on Nussbaum functions were proposed for first-order non-

linear systems in [69], for nonlinearly perturbed linear systems with relative degree

one or two in [70][68][71][72] to counteract the lack of a priori knowledge of the

high-frequency gain. An alternative method called correction vector approach was

proposed in [73] and has been extended to design adaptive control of first-order non-

linear systems with unknown high-frequency gain in [74][75]. A nonlinear robust

control scheme has been proposed in [76], which can identify online the unknown

5



1.1 Background and Motivation

high-frequency gain and can guarantee global stability of the closed-loop system.

Among these works, the systems have to be restricted as second-order (vector)

systems [69], [74] and [75], or the unmatched nonlinearities in [70][68][71][72] and

the additive nonlinearities in [74] have to satisfy the global Lipschitz or sectoricity

condition. In addition, the adaptive control law formulated in [74] and [75] are

discontinuous.

As stated in Section 1.1.1, global adaptive control of nonlinear systems without any

restrictions on the growth rate of nonlinearities or matching conditions has been

intensively investigated in [77][78][19][79]. However, the proposed design proce-

dure was carried out based on the assumption of the knowledge of high-frequency

gain sign, which is quite restrictive for the general case. The results were first

obtained for output feedback adaptive control of nonlinear systems with unknown

high-frequency gain (or alternatively called “virtual control coefficients” or “control

directions”) in [80] with restrictions in the growth rates of nonlinear terms. The

growth restrictions condition on system nonlinearities was later removed in [81],

in which, however, a so-called augmented parameter vector has to be introduced,

which would double the number of parameters to be updated. Another global

adaptive output-feedback control scheme was developed in [82], which did not re-

quire a priori knowledge of the high-frequency gain sign at the price of making any

restrictions on the growth rate of the system nonlinearities, and only the minimal

number of parameters needed to be updated. For nonlinear systems in parametric-

strict-feedback form, the technique of Nussbaum function gain was incorporated

into the adaptive backstepping design in [83]. The robust control scheme was first

developed in [76] for a class of nonlinear systems without a priori knowledge of

control directions. However, the design scheme could be applied to second-order

(vector) systems at most. In addition, both the bounds of the uncertainties and the

bounds of their partial derivatives need to be known. The robust tracking control

for more general classes of uncertain nonlinear systems was proposed in [84] and

later a flat-zone modification for the scheme was introduced in [85].

While the earlier works such as [15][18][86] assumed the virtual control coefficients

to be 1, adaptive control has been extended to parametric strict-feedback systems

with unknown constant virtual control coefficients but with known signs (either

6



1.1 Background and Motivation

positive or negative) [19] based on the cancellation backstepping design as stated

in [87] by seeking the cancellation of the coupling terms related to zizi+1 in the next

step of Lyapunov design. With the aid of neural network parametrization, adaptive

control schemes have been further extended to certain classes of strict-feedback in

which virtual control coefficients are unknown functions of states with known signs

[88][51]. For the system ẋ = f(x) + g(x)u, the unknown virtual control function

g(x) causess great design difficulty in adaptive control. Based on feedback lineariza-

tion, certainty equivalent control u = [−f̂(x)+v]/ĝ(x) is usually taken, where f̂(x)

and ĝ(x) are estimates of f(x) and g(x), and measures have to be taken to avoid

controller singularity when ĝ(x) = 0. To avoid this problem, integral Lyapunov

functions have been developed in [88], and semi-globally stable adaptive controllers

are developed, which do not require the estimate of the unknown function g(x).

Although the system’s virtual control coefficients are assumed to be unknown non-

linear functions of states, their signs are assumed to be known as strictly either

positive or negative. Under this assumption, stable neural network controllers have

been constructed in [51] by augmenting a robustifying portion, and in [89],[90] by

estimating the derivation of the control Lyapunov function.

1.1.3 Stabilization of Time-Delay Systems

Time-delay systems are also called systems with aftereffect or dead-time, hereditary

systems, etc. Time delays are important phenomena in industrial processes, eco-

nomical and biological systems. The monographs [91][92] give quite a lot good ex-

amples. In addition, actuators, sensors, field networks that are involved in feedback

loops usually introduce delays. Thus, time delays are strongly involved in challeng-

ing areas of communication and information technologies [93]. For instance, they

appear as transportation and communication lags and also arise as feedback delays

in control loops. As time delays have a major influence on the stability of such dy-

namical systems, it is important to include them in the mathematical description.

There have been a great number of papers and monographs devoted to this field

of active research [94][95][96]. For survey papers see [97][98][99].

The existence of time delays may make the stabilization problem become more

7
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difficult. Useful tools such as linear matrix inequalities (LMIs) is hard to apply

to nonlinear systems with time delays. Lyapunov design has been proven to be

an effective tool in controller design for nonlinear systems. However, one major

difficulty lies in the control of time-delayed nonlinear systems is that the delays are

usually not perfectly known. A feasible approach is the preliminary compensation

of delays such that the control techniques developed for systems without delays

can be applied. The delay can be partially compensated through prediction, or, in

some cases, can be exactly cancelled. The delay is compensated through prediction

in [100][101] such that classical tools of differential geometry can be applied. In

some works, the compensation is avoided with extensions of differential geometry

being applied. The disturbances decoupling is concerned in [102], while the classi-

cal input-output linearization technique is extended in [103][104]. A necessary and

sufficient condition for which delay systems do not admit state internal dynamics

is given in [105]. For sliding mode control for delay systems, the results can be

found in [106][107][108]. The unknown time delays are the main issue to be dealt

with for the extension of backstepping design to such kinds of systems. A stabiliz-

ing controller design based on the Lyapunov-Krasovskii functionals is presented in

[109] for a class of nonlinear time-delay systems with a so-called “triangular struc-

ture”. However, few attempts have been made towards the systems with unknown

parameters or unknown nonlinear functions.

1.2 Objectives of the Thesis

The objective of the thesis is to develop adaptive controllers for general uncertain

nonlinear systems with uncertainties from unknown parameters, unknown nonlin-

earity, unknown control directions and unknown time delays.

For nonlinear systems with various uncertainties, ultimately uniformly bounded

stability is often the best result achievable. The first objective is to develop a de-

coupling backstepping method, which is different from the traditional cancellation-

based backstepping design. The intermediate control in each intermediate step is

designed to guarantee the boundedness of the corresponding state of each subsys-

tems. The decoupling backstepping design is useful for the development of smooth

8



1.3 Organization of the Thesis

switching scheme in the later design.

The second objective is to utilize backstepping technique for a class of nonlinear

systems with unknown time delays. Adaptive control is developed for systems in

parametric-strict-feedback form and NN parametrization is used for systems with

nonlinear unknown systems function. To avoid singularity problems, integral Lya-

punov functions are used and practical backstepping control is introduced. As the

practical controller design is applied, the compact set, over which the NNs approx-

imation is carried out, shall be re-constructed with its feasibility to be guaranteed.

To satisfy the differentiability of the intermediate control functions in the back-

stepping design, certain smooth functions are introduced to tackle the problem.

The third objective is to develop a global stabilizing control for systems with un-

known control direction. Nussbaum-type gain is used to construct the controller

and exponential term is introduced to achieve global boundedness.

1.3 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 gives the mathematical preliminaries which is utilized throughout the

thesis. It contains basic definitions in Lyapunov stability analysis, and useful sta-

bility results used throughout the thesis, introduction of universal adaptive control

and various Nussbaum functions, and the stability result related to Nussbaum

functions.

In Chapter 3, the concept of decoupled backstepping design is introduced as a

general tool for control systems design where the coupling terms are decoupled by

elegantly using Young’s inequality, and it is first applied to a class of parametric-

strict-feedback nonlinear systems with unknown disturbances which satisfies trian-

gular bounded conditions. The design example with NN approximation is given

later using the design method.

In Chapter 4, adaptive neural control is presented for a class of strict-feedback

9
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nonlinear systems with unknown time delays using a Lyapunov-Krasovskii func-

tional to compensate for the unknown time delays and integral Lyapunov function

to tackle the singular problems. In addition, a direct NN control using quadratic

Lyapunov functions is proposed for the same problem.

In Chapter 5, an adaptive control is proposed for a class of parameter-strict-

feedback nonlinear systems with unknown time delays. Differentiable control func-

tions are presented.

Chapter 6, concerns with robust adaptive control for a class of perturbed strict-

feedback nonlinear systems with both completely unknown control coefficients and

parametric uncertainties. The proposed design method does not require the a

priori knowledge of the signs of the unknown control coefficients. Another design

example for systems with unknown control coefficients is given for nonlinear time-

delay systems.

Chapter 7 concludes the contributions of the thesis and makes recommendation on

the future research works.

10



Chapter 2

Mathematical Preliminaries

2.1 Introduction

Stability analysis is the one of the fundamental topics being discussed in the con-

trol engineering. Among the various analysis methodologies, Lyapunov stability

theory plays a critial role in both design and analysis of the controlled systems. It

is well known that the analysis of properties of the closed-loop signals is based on

properties of the solution to the differential equation of the system. For nonlinear

systems, it is generally very difficult to find a analytic solution and becomes almost

impossible for uncertain systems. The only general way of pursuing stability anal-

ysis and control design for uncertain systems is the Lyapunov direct method which

determines stability without explicitly solving the differential equations. Therefore,

the Lyapunov direct method provides a mathematical foundation for analysis and

can be used as the means of designing robust control, which is chosen as the main

approach taken in this thesis.

In this chapter, some basic definitions of Lyapunov stability are presented followed

by several useful technical lemmas related to the stability analysis and invoked

throughout the thesis. To tackle the unknown high-frequency gain (or unknown

control directions, unknown virtual control coefficients), universal adaptive control

is carried out using Nussbaum functions. The basic idea of universal adaptive

control is presented. Nussbaum functions are introduced with detailed analysis

11



2.2 Lyapunov Stability Analysis

of their properties. In addition, several useful technical lemmas related to the

stability analysis for systems using Nussbaum functions to construct control law

are developed.

2.2 Lyapunov Stability Analysis

The definitions for stability, uniform stability, asymptotic stability, uniformly asymp-

totic stability, uniform boundedness, uniform ultimate boundedness are given as

follows [110].

Definition 1 The equilibrium point x = 0 is said to be Lyapunov stable (LS) (or,

in short, stable), at time t0 if, for each ε > 0, there exists a constant δ(t0, ε) > 0

such that

‖x(t0)‖ < δ(t0, ε) =⇒ ‖x(t)‖ ≤ ε, ∀t ≥ t0.

It is said to be uniformly Lyapunov stable (ULS) or, in short, uniformly stable (US)

over [t0,∞) if, for each ε > 0, the constant δ(t0, ε) = δ(ε) > 0 can be chosen as

independent of initial time t0.

Definition 2 The equilibrium point x = 0 is said to be attractive at time t0 if, for

some δ > 0 and each ε > 0, there exists a finite time interval T (t0, δ, ε) such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ ≤ ε, ∀t ≥ t0 + T (t0, δ, ε).

It is said to be uniformly attractive (UA) over [t0,∞) if for all ε satisfying 0 < ε < δ,

the finite time interval T (t0, δ, ε) = T (δ, ε) is independent of initial time t0.

Definition 3 The equilibrium point x = 0 is asymptotically stable (AS) at time t0

if it is Lyapunov stable at time t0 and if it is attractive, or equivalently, there exists

δ > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ → ε as t → ∞.

it is uniformly asymptotically stable (UAS) over [t0,∞) if it is uniformly Lyapunov

stable over [t0,∞), and if x = 0 is uniformly attractive.
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2.2 Lyapunov Stability Analysis

Definition 4 The equilibrium point x = 0 at time t0 is exponentially attractive

(EA) if, for some δ > 0, there exist constants α(δ) > 0 and β > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ ≤ α(δ) exp[−β(t − t0)].

It is said to be exponentially stable (ES) if, for some δ > 0, there exist constants

α > 0 and β > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ ≤ α exp[−β(t − t0)].

Definition 5 A solution x : R+ → Rn, x(t0) = x0, is said to be uniformly bounded

(UB) if, for some δ > 0, there is a positive constant d(δ) < ∞, possibly dependent

on δ (or x0) but not on t0, such that, for all t ≥ t0,

‖x(t0)‖ < δ =⇒ ‖x(t)‖ ≤ d(δ).

Definition 6 A solution x : R+ → Rn, x(t0) = x0, is said to be uniformly ulti-

mately bounded (UUB) with respect to a set W ⊂ Rn containing the origin if there

is a nonnegative constant T (x0,W ) < ∞, possibly dependent on x0 and W but not

on t0, such that ‖x(t0)‖ < δ implies x(t) ∈ W for all t ≥ t0 + T (x0,W ).

The set W , called residue set, is usually characterized by a hyper-ball W = B(0, ε)

centered at the origin and of radius ε. If ε is chosen such that ε ≥ d(δ), UUB

stability reduces to UB stability. Although not explicitly stated in the definition,

UUB stability is used mainly for the case that ε is small, which presents a better

stability result than UB stability.

If both d(δ) and W can be made arbitrarily small, UB and UUB approach uniform

asymptotic stability in the limit. In some literature, UB and UUB approach is

called practical stability.

The UUB stability is less restrictive than UAS or ES, but, as will be shown later,

it can be made arbitrarily close to UAS in many cases through making the set W
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2.2 Lyapunov Stability Analysis

small enough as a result of a properly designed robust control. Also, UUB stability

provides a measure on convergence speed by offering the time interval T (x0,W ). In

fact, the UUB stability is often the best result achievable in controlling uncertain

systems.

The following lemmas are useful for the stability analysis throughout the thesis

and are presented here for easy references.

Lemma 2.2.1 Let V (t) be continuously differentiable function defined on [0, +∞)

with V (t) ≥ 0, ∀t ∈ R+ and finite V (0), and c1, c2 > 0 be real constants. If the

following inequality holds

V̇ (t) ≤ −c1x
2(t) + c2y

2(t) (2.1)

and y(t) ∈ L2, we can conclude that x(t) ∈ L2. [87]

Proof: Integrating (2.1) over [0, t], we have

V (t) − V (0) ≤ −
∫ t

0
c1x

2(τ)dτ +
∫ t

0
c2y

2(τ)dτ

i.e.

0 ≤ V (t) +
∫ t

0
c1x

2(τ)dτ ≤ V (0) +
∫ t

0
c2y

2(τ)dτ

Since V (0) is finite and y(t) ∈ L2, i.e.,
∫ t
0 c2y

2(τ)dτ is finite, we can conclude that

V (t) is bounded and
∫ t
0 c1x

2(τ)dτ is finite, i.e. x(t) ∈ L2. ♦

Lemma 2.2.2 Let V (t) be continuously differentiable function defined on [0, +∞)

with V (t) ≥ 0, ∀t ∈ R+ and finite V (0), ρ(t) be a real-valued function, and c1, c2 > 0

be real constants. If the following inequality holds

V̇ (t) ≤ −c1V (t) + c2ρ(t) (2.2)

and ρ(t) ∈ L∞, we can conclude that V (t) is bounded.

Proof: Upon multiplying both sides of (2.2) by ec1t, it becomes

d

dt
(V (t)ec1t) ≤ c2ρ(t)ec1t (2.3)
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2.2 Lyapunov Stability Analysis

Integrating (2.3) over [0, t] yields

V (t) ≤ V (0)e−c1t + c2

∫ t

0
e−c1(t−τ)ρ(τ)dτ (2.4)

Note the following inequality

c2

∫ t

0
e−c1(t−τ)ρ(τ)dτ ≤ c2e

−c1t
∫ t

0
|ρ(τ)|ec1τdτ

≤ c2e
−c1t sup

τ∈[0,t]
[|ρ(τ)|]

∫ t

0
ec1τdτ ≤ c2

c1

sup
τ∈[0,t]

[|ρ(τ)|] (2.5)

Since ρ(t) ∈ L∞, i.e. ρ(t) is finite, we know from (2.5) that c2

∫ t
0 e−c1(t−τ)ρ(τ)dτ is

bounded. Let c0 be the upper bound of c2

∫ t
0 e−c1(t−τ)ρ(τ)dτ , (2.4) becomes

V (t) ≤ c0 + V (0)e−c1t ≤ c0 + V (0) (2.6)

Since V (0) is finite, we can readily conclude that V (t) is bounded. In addition, from

(2.6), we can conclude that given any µ > µ∗ with µ∗ = c0, there exists T such that

for any t > T , we have V (t) ≤ µ, while T can be calculated by c0 + V (0)e−c1T = µ

with T = − 1
c1

ln
(

µ−c0
V (0)

)
. ♦

Lemma 2.2.3 Let V (t) be continuously differentiable function defined on [0, +∞)

with V (t) ≥ 0, ∀t ∈ R+ and finite V (0), ρ(t) be a real-valued function, and c1, c2 > 0

be real constants. If the following inequality holds

V̇ (t) ≤ −c1x
2(t) + c2x(t)ρ(t) (2.7)

and ρ(t) ∈ L2, we can conclude that V (t) is bounded and x(t) ∈ L2.

Proof: Applying Young’s inequality to (2.7), we have

V̇ (t) ≤ −c1x
2(t) + c2

[ 1

4k1

x2(t) + k1ρ
2(t)

]
(2.8)

where positive constant k1 is a sufficiently large such that c∗1
�
= c1 − c2

4k1
> 0. Then,

(2.8) becomes

V̇ (t) ≤ −c∗1x
2(t) + c2k1ρ

2(t) (2.9)

Invoking Lemma 2.2.1, we can conclude that V (t) is bounded and
∫ t
0 x2(τ)dτ is

finite, i.e., x(t) ∈ L2. ♦
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Lemma 2.2.4 Let V (t) be positive definite function with finite V (0), ρ(·) be real-

valued function and and c1, c2 > 0 be real constants. If the following inequality

holds

V̇ (t) ≤ −c1x
2(t) + c2ρ(y(t)) (2.10)

and ρ(y) ∈ L1, then we can conclude that x(t) ∈ L2.

Proof: Integrating (2.10) over [0, t] yields

V (t) − V (0) ≤ −
∫ t

0
c1x

2(τ)dτ +
∫ t

0
c2ρ(y(τ))dτ

i.e.

V (t) +
∫ t

0
c1x

2(τ)dτ ≤ V (0) +
∫ t

0
c2ρ(y(τ))dτ

Since ρ(y) ∈ L1, i.e.
∫ t
0 c2ρ(y(τ))dτ is bounded, we can conclude that V (t) is

bounded and x(t) is square integrable. ♦

The following lemma is crucial for deriving uniformly ultimately bounded stability

of closed-loop systems and gives an explicit and quantified analysis for the ini-

tial condition, transient performance and the final convergence of the closed-loop

signals, and the relationship among them.

Lemma 2.2.5 Let V (t) ≥ 0 be smooth functions defined on [0, +∞), ∀t ∈ R+ and

V (0) is finite. Suppose V (t) takes the following form

V (t) =
1

2
eT (t)Qe(t) +

1

2
W̃ T (t)Γ−1W̃ (t) (2.11)

where e(t) = x(t) − xd(t) is tracking error and W̃ (t) = Ŵ (t) − W ∗ is parameter

estimation error with x(t) ∈ Rn, xd(t) ∈ Ωd ⊂ Rn, Ŵ (t) ∈ Rm, W ∗ ∈ Rm being

constant vector, Q = QT > 0 ∈ Rn×n, and Γ = ΓT > 0 ∈ Rm×m.

If the following inequality holds

V̇ (t) ≤ −c1V (t) + c2, c1 > 0, c2 > 0 (2.12)

for the system initiated from the following compact sets defined by

Ω0 =
{
x(0), xd(0), Ŵ (0)

∣∣∣ x(0), Ŵ (0) finite, xd(0) ∈ Ωd

}
(2.13)

we can conclude that
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(i) the states in the closed-loop system will remain in the compact set defined by

Ω =
{
x(t), Ŵ (t)

∣∣∣ ‖x(t)‖ ≤ ce max + max
τ∈[0,t]

{‖xd(τ)‖},

‖Ŵ‖ ≤ cW̃ max + max{‖W ∗‖}
}

(ii) the closed-loop states will eventually converge to the compact sets defined by

Ωs =
{
x(t), Ŵ (t)

∣∣∣ lim
t→∞ ‖e(t)‖ = µ∗

e, lim
t→∞ ‖W̃‖ = µ∗

W̃

}

where constants

ce max =

√√√√2V (0) + 2c2/c1

λQ min

, cW̃ max =

√
2V (0) + 2c2/c1

λΓ min

(2.14)

µ∗
e =

√
2c2

c1λQ min

, µ∗
W̃

=

√
2c2

c1λΓmin

(2.15)

with λQ min = minτ∈[0,t] λmin(Q(τ)), and λΓmin = minτ∈[0,t] λmin(Γ
−1(τ)).

Proof: Multiplies (2.12) by ec1t yields

d

dt
(V (t)ec1t) ≤ λ1e

c1t (2.16)

Integrating (2.16) over [0, t] leads to

0 ≤ V (t) ≤ [V (0) − c2/c1]e
−c1t + c2/c1 (2.17)

where V (0) = 1
2
eT (0)Qe(0) + 1

2
W̃ T (0)Γ−1W̃ (0).

(i) Uniform Boundedness (UB):

From (2.17), we have

0 ≤ V (t) ≤ [V (0) − c2/c1]e
−c1t + c2/c1 ≤ V (0) + c2/c1 (2.18)

From (2.11), we have

1

2
λQ min‖e(t)‖2 ≤ 1

2
λmin(Q(t))‖e(t)‖2 ≤ 1

2
eT (t)Q(t)e(t) ≤ V (t) (2.19)

1

2
λΓ min‖W̃ (t)‖2 ≤ 1

2
λmin(Γ

−1(t))‖W̃ (t)‖2 ≤ 1

2
W̃ T (t)Γ−1(t)W̃ (t) ≤ V (t) (2.20)
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then, by combining with equation (2.18), we have

‖e(t)‖ ≤ ce max, ‖W̃ (t)‖ ≤ cW̃ max

where ce max and cW̃ max are given in (2.14). Since e(t) = x(t) − xd(t) and W̃ (t) =

Ŵ (t) − W ∗, we have

‖x(t)‖ − ‖xd(t)‖ ≤ ‖x(t) − xd(t)‖ ≤ cemax

‖Ŵ (t)‖ − ‖W ∗‖ ≤ ‖Ŵ (t) − W ∗‖ ≤ cW̃max

i.e.,

‖x(t)‖ ≤ cemax + ‖xd(t)‖ ≤ cemax + max
τ∈[0,t]

{‖xd(τ)‖}

‖Ŵ (t)‖ ≤ cW̃max + ‖W ∗‖ (2.21)

(ii) Uniform Ultimate Boundedness (UUB):

From (2.17), (2.19) and (2.20), we have

‖e(t)‖ ≤
√√√√2[V (0) − c2/c1]e−c1t + 2c2/c1

λQ min

(2.22)

‖W̃ (t)‖ ≤
√

2[V (0) − c2/c1]e−c1t + 2c2/c1

λΓmin

(2.23)

If it so happens that V (0) = c2/c1, then ‖e(t)‖ ≤ µ∗
e, ∀t ≥ 0. If V (0) �= c2/c1, from

(2.22), we can conclude that given any µe > µ∗
e, there exists Te, such that for any

t > Te, we have ‖e(t)‖ ≤ µe. Specifically, given any µe,

µe =

√√√√2[V (0) − c2/c1]e−c1T + 2c2/c1

λQ min

then

Te = Te(µe, V (0)) = − 1

c1

ln
(µ2

eλQ min − 2c2/c1

2[V (0) − c2/c1]

)
and

lim
t→∞ ‖e(t)‖ = µ∗

e

♦

Remark 2.2.1 Ω is related to Ω0 while Ωs is not.

The relationship among the three compacts is illustrated in Fig. 2.1.
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sΩ

Ω
0Ω

Figure 2.1: Relationship among compact Sets Ω, Ω0 and Ωs.

2.3 Universal Adaptive Control

To illustrate the idea, consider the following linear time-invariant scalar system

⎧⎨
⎩ ẋ(t) = ax(t) + bu(t), x(0) = x0

y(t) = cx(t)
(2.24)

where a, b, c, x0 ∈ R are unknown and the only structural assumption is cb �= 0,

i.e., the system is controllable and observable.

If the feedback control law u(t) = −ky(t) is chosen, the closed-loop system has the

form

ẋ(t) = (a − kcb)x(t), x(0) = x0 (2.25)

If a/|cb| < |k| and sgn(k) = sgn(cb), then (2.25) is exponentially stable. However,

a, b, c are not known and thus the problem is to find adaptively an appropriate k

so that the motion of the feedback system tends to zero.

Choose the following time-varying feedback law

u(t) = −k(t)y(t) (2.26)
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where k(t) need to be adjusted so that it gets large enough to ensure stability but

also remains bounded, which can be achieved by the following adaptive law

k̇(t) = y2(t), k(0) ∈ R (2.27)

The nonlinear closed-loop system (2.24), (2.26), (2.27), i.e.,

ẋ(t) = [a − k(t)cb]x(t), k(t) = c2
∫ t

0
x2(s)dx + k(0) (2.28)

which has at least a solution on a small interval [0, ω), and the non-trivial solution

x(t) = e
∫ t

0
[a−k(s)cb]dsx(0), x(0) > 0

is monotonically increasing as long as a−k(t)cb > 0. Hence k(t) ≥ t(cx(0))2 +k(0)

increases as well. Therefore, there exists a t∗ ≥ 0 such that a − k(t∗)cb = 0

and (2.28) yields a − k(t)cb < 0 for all t > t∗. Hence the solution x(t) decays

exponentially for t > t∗ and limt→∞ k(t) = k∞ ∈ R exists. This is a special

example for the following concept of universal adaptive control.

Suppose Σ denotes a certain class of linear time-invariant systems of the form

Σ :

⎧⎨
⎩ ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)
(2.29)

where (A,B,C,D) ∈ Rn×n × Rn×m × Rm×n × Rm×m are unknown, m is usually

fixed, the state dimension n is an arbitrary and unknown number. The aim is to

design a single adaptive output feedback mechanism u(t) = F(y(·)|[0,t]) which is

a universal stabilizer for the class Σ, i.e. if u(t) = F(y(·)|[0,t]) is applied to any

system (2.29) belong to Σ, then the output y(t) of the closed-loop system tends to

zero as t → ∞ and the internal variables are bounded.

The adaptive stabilizers are of the following simple form: A “tuning”parameter

k(t), generated by an adaptation law

k̇(t) = g(y(t)), k(0) = k0, (2.30)

where g : Rm → R is continuous and locally Lipschitz, is implemented into the

feedback law via

u(t) = F (k(t))y(t), (2.31)

where F : R → Rm×m is piecewise continuous and locally Lipschitz.

20



2.3 Universal Adaptive Control

Definition 7 A controller, consisting of the adaptive law (2.30) and the feedback

rule (2.31), is called a universal adaptive stabilizer for the class of systems Σ, if

for arbitrary initial condition x0 ∈ Rn and any system (2.29) belonging to Σ, the

closed-loop system (2.29)-(2.31) has a solution the properties

(i) there exists a unique solution (x(·), k(·)) : [0,∞) → Rn+1,

(ii) x(·), y(·), u(·), k(·) are bounded,

(iii) limt→∞ y(t) = 0,

(iv) limt→∞ k(t) = k∞ ∈ R exists.

The concept of adaptive tracking is similar. Suppose a class Yref of reference

signals is given. It is desired that the error between the output y(t) of (2.29) and

the reference signal yref(t)

e(t) := y(t) − yref(t)

is forced, via a simple adaptive feedback mechanism, either to zero or towards a

ball around zero of arbitrary small prespecified radius λ > 0. The latter is called

λ-tracking. To achieve asymptotic tracking, an internal model⎧⎨
⎩ ξ̇(t) = A∗ξ(t) + B∗v(t), ξ(0) = ξ0

u(t) = C∗ξ(t) + D∗v(t)
(2.32)

where (A∗, B∗, C∗, D∗) ∈ Rn′×n′ ×Rn′×m×Rm×n′ ×Rm×m, is implemented in series

interconnection with a universal adaptive stabilizer. The precompensator resp.

internal model (2.32) contains the dynamics of the reference signals. An internal

model is not necessary if λ-tracking is desired.

Definition 8 A controller, consisting of an adaptation law (2.30), a feedback law

(2.31), and an internal model (2.32) is called a universal adaptive tracking con-

troller for the class of systems Σ and reference signals Yref , if for every yref(·) ∈ Yref ,

x0 ∈ Rn, ξ0 ∈ Rn′
, and every system (2.29) belongs to Σ, the closed-loop system

(2.29)-(2.32) satisfies

(i) there exists a unique solution (x(·), ξ(·), k(·)) : [0,∞) → Rn+n′+1,
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(ii) the variables x(t), y(t), u(t), ξ(t) grow no faster than yref(t),

(iii) limt→∞[y(t) − yref(t)] = 0,

(iv) limt→∞ k(t) = k∞ ∈ R exists.

2.4 Nussbaum Functions and Related Stability Results

2.4.1 Nussbaum Functions

Any continuous function N(s) : R → R is a function of Nussbaum type if it has

the following properties

lim
s→+∞ sup

∫ s

s0

N(ζ)dζ = +∞, (2.33)

lim
s→+∞ inf

∫ s

s0

N(ζ)dζ = −∞ (2.34)

with s0 ≤ s. For example, the continuous functions ζ2 cos(ζ), ζ2 sin(ζ), and

eζ2
cos(π

2
ζ) are functions of Nussbaum type [111].

Lemma 2.4.1 The function N(ζ) = eζ2
cos(π

2
ζ) satisfies the conditions (2.33) and

(2.34). [62]

Proof: Define

NI(s1, s2) =
∫ s2

s1

N(ζ)dζ

with s1 ≤ s2. Using integral inequality (b − a)mf1 ≤ ∫ b
a f(x)dx ≤ (b − a)mf2 with

mf1 = infa≤x≤b f(x) and mf2 = supa≤x≤b f(x), and noting that | cos(π
2
ζ)| ≤ 1, we

have

|NI(s1, s2)| ≤ (s2 − s1) sup
ζ∈[s1,s2]

|N(ζ)| = (s2 − s1)e
s2
2 (2.35)

It is clear that N(ζ) is positive on interval (4m−1, 4m+1) and negative on interval

(4m + 1, 4m + 3) with m an integer. To show that N(ζ) satisfies the conditions

(2.33) and (2.34), it suffices to prove that limm→+∞ NI(s0, 4m + 1) = +∞ and

limm→+∞ NI(s0, 4m + 3) = −∞.
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Let us first observe the interval [s0, 4m − 1] (assuming that 4m − 1 ≥ |s0|) and

accordingly

NI(s0, 4m − 1) =
∫ 4m−1

s0

N(ζ)dζ

Applying (2.35), we have

|NI(s0, 4m − 1)| ≤ (4m − 1 − s0)e
(4m−1)2 (2.36)

Next, let us observe the interval [4m − 1, 4m + 1]. Noting that N(ζ) ≥ 0, ∀ζ ∈
[4m − 1, 4m + 1], we have the following inequality

NI(4m − 1, 4m + 1) ≥
∫ 4m+ε1

4m−ε1
N(ζ)dζ

with ε1 ∈ (0, 1). Using the integral inequality, we have

NI(4m − 1, 4m + 1) ≥ 2ε1 cos(
π

2
ε1)e

(4m−ε1)2 (2.37)

It is known that if |f1(x)| ≤ a1 and f2(x) ≥ a2, then f1(x)+f2(x) ≥ a2 −a1. Using

this property, from (2.36) and (2.37), we have

NI(s0, 4m + 1) = NI(s0, 4m − 1) + NI(4m − 1, 4m + 1)

≥ e(4m−1)2
[
2ε1 cos(

π

2
ε1)e

[2(4m−1)(1−ε1)+(1−ε1)2]

−(4m − 1 − s0)
]

(2.38)

Note that the following property holds for b0, b1, b2 > 0

lim
x→+∞ b0e

x2

(eb1x − b2x + b3) = +∞, ∀x ∈ R (2.39)

Applying (2.39) by noting (1 − ε1) ∈ (0, 1), from (2.38), we have

lim
m→+∞NI(s0, 4m + 1) = +∞

In what follows, we would like to show that limm→+∞ NI(s0, 4m + 3) = −∞. To

this end, let us first observe the interval [s0, 4m+1]. Similarly, applying (2.35), we

obtain

|NI(s0, 4m + 1)| ≤ (4m + 1 − s0)e
(4m+1)2 (2.40)
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Then, let us observe the next immediate interval [4m + 1, 4m + 3]. Noting that

N(ζ) ≤ 0, ∀ζ ∈ [4m + 1, 4m + 3], we have the following inequality

NI(4m + 1, 4m + 3) ≤
∫ 4m+2+ε2

4m+2−ε2
N(ζ)dζ

≤ −2ε2 cos(
π

2
ε2)e

(4m+2−ε2)2 (2.41)

with ε2 ∈ (0, 1).

It is also known that if |f1(x)| ≤ a1 and f2(x) ≤ a2, then f1(x) + f2(x) ≤ a2 + a1.

Accordingly, from (2.40) and (2.41), we have

NI(s0, 4m + 3) ≤ −e(4m+1)2
[
2ε2 cos(

π

2
ε2)e

[2(4m+1)(1−ε2)+(1−ε2)2] − (4m + 1 − s0)
]

(2.42)

Applying (2.39) by noting that (1 − ε2) ∈ (0, 1), from (2.42), we have

lim
m→+∞ NI(s0, 4m + 3) = −∞

which ends the proof. ♦

Lemma 2.4.2 The function N(ζ) = ζ2 cos(ζ) satisfies the conditions (2.33) and

(2.34).

Proof: Consider the following integration

∫ s

s0

N(ζ)dζ =
∫ s

s0

ζ2 cos(ζ)dζ

Integrating by parts, we have

∫ s

s0

N(ζ)dζ = ζ2 sin(ζ)
∣∣∣s
s0

+ 2ζ cos(ζ)
∣∣∣s
s0

− 2 sin(ζ)
∣∣∣s
s0

= s2 sin(s) + 2s cos(s) − 2 sin(s) − s2
0 sin(s0)

−2s0 cos(s0) + 2 sin(s0) (2.43)

Taking the limit as s → +∞, from (2.43), we have

lim
s→+∞

∫ s

s0

N(ζ)dζ = lim
s→+∞ s2

{
sin(s) +

2 cos(s)

s
+

1

s2

[
− 2 sin(s) − s2

0 sin(s0)

−2s0 cos(s0) + 2 sin(s0)
]}

= lim
s→+∞[s2 sin(s)]
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from which it is known that as s → +∞, sin(s) changes it sign an infinite number

of times, further, lims→+∞ sup[s2 sin(s)] = +∞, and lims→+∞ inf[s2 sin(s)] = −∞.

Therefore, we can conclude that N(ζ) = ζ2 cos(ζ) satisfies the conditions (2.33)

and (2.34). ♦

Functions sin(x) or cos(x) are referred as “transcendental functions”, whose sign

changes an infinite number of times as their arguments x increases in magnitude

and tends to infinity. [4], p.363) Transcendental functions play an essential role in

constructing Nussbaum functions, whose choices are not unique. The conditions

(2.33) and (2.34) are the key features of the Nussbaum functions, beside which,

some choices of Nussbaum functions, e.g., eζ2
cos(π

2
ζ), ζ2 cos(ζ), etc., also satisfy

the following conditions

lim
s→+∞ sup

1

s

∫ s

s0

N(ζ)dζ = +∞ (2.44)

lim
s→+∞ inf

1

s

∫ s

s0

N(ζ)dζ = −∞ (2.45)

Corollary 1 The function N(ζ) = eζ2
cos(π

2
ζ) satisfies the conditions (2.44) and

(2.45).

Outline of the proof:

Following the same procedure in proof of Lemma 2.4.1, to prove (2.44) and (2.45),

it suffices to prove that limm→+∞ 1
4m+1

NI(s0, 4m + 1) = +∞ and

limm→+∞ 1
4m+3

NI(s0, 4m + 3) = −∞.

The following property holds for x ∈ R, x + a0 �= 0, b0, b1, b2 > 0

lim
x→+∞

b0e
x2

(eb1x − b2x + b3)

x + a0

= +∞ (2.46)

which can be easily proven by applying the L’Hopital’s Rule [112] as

lim
x→+∞

b0e
x2

(eb1x − b2x + b3)

x + a0

= lim
x→+∞

∂
∂x

[
b0e

x2
(eb1x − b2x + b3)

]
∂
∂x

(x + a0)
= +∞

Using the property (2.46), from (2.38), we have

lim
m→+∞

1

4m + 1
NI(s0, 4m + 1) = +∞
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and from (2.42), we have

lim
m→+∞

1

4m + 3
NI(s0, 4m + 3) = −∞

♦

Corollary 2 The function N(ζ) = ζ2 cos(ζ) satisfies the conditions (2.44) and

(2.45).

Proof: It directly follows from the equation after (2.43) and is omitted. ♦

Definition 9 Suppose N(ζ) is a Nussbaum function which satisfies (2.44) and

(2.45). A Nussbaum function is called scaling-invariant if, for arbitrary α, β > 0,

Ñ(ζ) :=

⎧⎨
⎩ αN(ζ) if N(ζ) ≥ 0

βN(ζ) if N(ζ) < 0

is a Nussbaum function as well.

Example 1 [111] The following functions are Nussbaum function:

N1(ζ) = ζ cos
√
|ζ|, ζ ∈ R

N2(ζ) = ln ζ cos
√

ln ζ, ζ > 1

N3(ζ) =

⎧⎨
⎩ ζ if n2 ≤ |ζ| < (n + 1)2, n even

−ζ if n2 ≤ |ζ| < (n + 1)2, n odd
, ζ ∈ R

N4(ζ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ if 0 ≤ |ζ| < τ0

ζ if τn ≤ |ζ| < τn+1, n even

−ζ if τn ≤ |ζ| < τn+1, n odd

with τ0 > 1, τn+1 := τ 2
n, ζ ∈ R

(2.47)

Of course, the cosine in the above examples can be replace by sine, and similar

modifications.

Logemann and Owens (1988) have proved that N(ζ) = eζ2
cos(π

2
ζ) is scaling-

invariant. This property is important if the nominal system is subjected to certain

nonlinear perturbations and/or for some universal controllers of multivariable sys-

tems.
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It is easy to see that N1(ζ), N3(ζ), N4(ζ) are in fact Nussbaum functions, whereas

to prove the properties (2.44) and (2.45) for N2(ζ) is more subtle and a proof

is given below. The function N2(ζ) has the property that the periods where

the sign is kept constant compared to the increase of the gain is larger than for

N1(ζ), this will become important for relative degree two systems. Note also that

limζ→∞ d
dζ

N3(ζ) = 0.

Lemma 2.4.3 [111] The function

N(ζ) : [ζ0,∞] → R, ζ 
→ ln ζ cos
√

ln ζ

is a Nussbaum function for every ζ0 > 1.

Proof: See [111].

2.4.2 Stability Results

In this section, the Nussbaum functions are chosen to satisfy both the conditions

(2.33), (2.34) and (2.44) and (2.45).

Lemma 2.4.4 [70] Let V (·) and ζ(·) be smooth functions defined on [0, tf ) with

V (t) ≥ 0 and ζ(t) monotone increasing, ∀t ∈ [0, tf ), and N(ζ) be smooth Nussbaum

function. If the following inequality holds

V (t) ≤ c0 +
∫ t

0
(g0N(ζ) + 1)ζ̇dτ, ∀t ∈ [0, tf ) (2.48)

where g0 is a nonzero constant and c0 represents some suitable constant related to

the control parameters, then V (t), ζ(t) and
∫ t
0(g0N(ζ) + 1)ζ̇dτ must be bounded on

[0, tf ).

Proof: Seeking a contradiction, suppose that monotone increasing function ζ(t)

is unbounded, i.e., ζ(t) → +∞ as t → tf . Dividing (2.48) by ζ(t) yields

0 ≤ V (t)

ζ(t)
≤ c0

ζ(t)
+

g0

ζ(t)

∫ ζ(t)

ζ(0)
N(ζ(τ))dζ(τ) +

ζ(t) − ζ(0)

ζ(t)
(2.49)

Taking the limit as t → tf , hence ζ(t) → +∞, from (2.49), we have

0 ≤ lim
t→tf

V (t)

ζ(t)
≤ lim

ζ(t)→+∞
g0

ζ(t)

∫ ζ(t)

ζ(0)
N(ζ(τ))dζ(τ) + 1
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which, if g0 > 0, contradicts (2.45) or, if g0 < 0, contradicts (2.44). Therefore, ζ(·)
is bounded. Hence,

∫ t
0 g0N(ζ)ζ̇dτ is also bounded. From (2.48), it follows that V (·)

is bounded. ♦

Lemma 2.4.5 [83] Let V (·) and ζ(·) be smooth functions defined on [0, tf ) with

V (t) ≥ 0, ∀t ∈ [0, tf ), and N(·) be an even smooth Nussbaum-type function. If the

following inequality holds

V (t) ≤ c0 +
∫ t

0
(g0N(ζ) + 1)ζ̇dτ, ∀t ∈ [0, tf ) (2.50)

where g0 is a nonzero constant and c0 represents some suitable constant, then V (t),

ζ(t) and
∫ t
0(g0N(ζ) + 1)ζ̇dτ must be bounded on [0, tf ).

Proof: We first show that ζ(t) is bounded on [0, tf ) by seeking a contradiction.

Suppose that ζ(t) is unbounded and two cases should be considered: (i) ζ(t) has

no upper bound, and (ii) ζ(t) has no lower bound, ∀t ∈ [0, tf ).

Case (i): ζ(t) has no upper bound. In this case, there must exist a monotone

increasing sequence {ti}, i = 1, 2, · · ·, such that {ωi = ζ(ti)} is monotone increasing

with ω1 = ζ(t1) > 0, limi→+∞ ti = tf , and limi→+∞ ωi = +∞.

Dividing (2.50) by ωi = ζ(ti) > 0 yields

0 ≤ V (ti)

ζ(ti)
≤ c0

ζ(ti)
+

1

ζ(ti)

∫ ζ(ti)

ζ(0)
(g0N(ζ(τ)) + 1)dζ(τ)

=
c0

ωi

+
g0

ωi

∫ ωi

ζ(0)
N(ζ(τ)dζ(τ) +

(
1 − ζ(0)

ωi

)
(2.51)

On taking the limit as i → +∞, hence ti → tf , ωi → +∞, from (2.51), we have

0 ≤ lim
i→+∞

V (ti)

ζ(ti)
≤ 1 + lim

i→+∞
g0

ωi

∫ ωi

ζ(0)
N(ζ(τ)dζ(τ) (2.52)

which, if g0 > 0, contradicts (2.45) or, if g0 < 0, contradicts (2.44). Therefore, ζ(t)

is upper bounded on [0, tf ).

Case (ii): ζ(t) has no lower bound. There must exist a monotone increasing se-

quence {ti}, i = 1, 2, · · ·, such that {ωi = −ζ(ti)} is monotone increasing with

ω1 > 0, limi→+∞ ti = tf , and limi→+∞ ωi = +∞.
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Dividing (2.50) by ωi = −ζ(ti) > 0 yields

0 ≤ V (ti)

−ζ(ti)
≤ c0

−ζ(ti)
− 1

−ζ(ti)

∫ −ζ(ti)

ζ(0)
(g0N(ζ(τ)) + 1)d[−ζ(τ)] (2.53)

Noting that N(·) is an even function, i.e., N(ζ) = N(−ζ), and letting χ(t) = −ζ(t),

(2.53) becomes

0 ≤ V (ti)

−ζ(ti)
≤ c0

−ζ(ti)
− 1

−ζ(ti)

∫ −ζ(ti)

ζ(0)
(g0N(χ(τ)) + 1)dχ(τ)

=
c0

ωi

− g0

ωi

∫ ωi

ζ(0)
N(χ(τ))dχ(τ) −

(
1 − ζ(0)

ωi

)
(2.54)

On taking the limit as i → +∞, hence ti → tf , ωi → +∞, from (2.54), we have

0 ≤ lim
i→+∞

V (ti)

−ζ(ti)
≤ −1 − lim

i→+∞
g0

ωi

∫ ωi

ζ(0)
N(χ(τ))dχ(τ)

which, if g0 > 0, contradicts (2.44) or, if g0 < 0, contradicts (2.45). Therefore, ζ(t)

is lower bounded on [0, tf ).

We thus conclude the boundedness of ζ(t) on [0, tf ). As an immediate result, V (t)

and
∫ t
0 g0N(ζ)ζ̇dτ are also bounded on [0, tf ). ♦

Lemma 2.4.6 Let V (·) and ζ(·) be smooth functions defined on [0, tf ) with V (t) ≥
0, ∀t ∈ [0, tf ), and N(ζ) be an even smooth Nussbaum-type function. If the follow-

ing inequality holds:

V (t) ≤ c0 + e−c1t
∫ t

0
g0(x(τ))N(ζ)ζ̇ec1τdτ + e−c1t

∫ t

0
ζ̇ec1τdτ, ∀t ∈ [0, tf ) (2.55)

where constant c1 > 0, g0(x(t)) is a time-varying parameter which takes values in

the unknown closed intervals I := [l−, l+] with 0 /∈ I, and c0 represents some suit-

able constant, then V (t), ζ(t) and
∫ t
0 g0(x(τ))N(ζ)ζ̇dτ must be bounded on [0, tf ).

Proof: See Appendix 7.2 or [113][114].

Remark 2.4.1 Note that N(·) is an even function. In fact, the stability results in

Lemma 2.4.5 and 2.4.6 still holds if N(·) is an odd function, which can be easily

proven by following the same procedure.
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Lemma 2.4.7 Let V (·) and ζ(·) be smooth functions defined on [0, tf ) with V (t) ≥
0, ∀t ∈ [0, tf ), and smooth Nussbaum-type function N(ζ) = ζ2 cos(ζ). If the fol-

lowing inequality holds:

V (t) ≤ c0 + e−c1t
∫ t

0
g0N(ζ)ζ̇ec1τdτ + e−c1t

∫ t

0
ζ̇ec1τdτ, ∀t ∈ [0, tf ) (2.56)

where constant c1 > 0, g0 is a nonzero constant, and c0 represents some suitable

constant, then V (t), ζ(t) and
∫ t
0 g0N(ζ)ζ̇dτ must be bounded on [0, tf ).

Proof: See Appendix 7.2.

2.4.3 An Illustration Example

For illustration purpose, let us consider the first-order system

ẋ1 = g1u + θT
1 ψ1(x1) + ∆1(t, x1)

where g1 is a unknown nonzero constant, θT
1 is unknown constant vector, ψ(x1)

is known smooth function, and the unknown disturbance satisfies: |∆(t, x1)| ≤
p1φ1(x1) with p1 unknown constant and φ(x1) known smooth function.

Consider the Lyapunov function candidate

V1(t) =
1

2
x2

1 +
1

2
(θ̂1 − θ1)

T Γ−1
θ1 (θ̂1 − θ1) +

1

2
γ−1

p1 (p̂1 − p1)
2

Its time derivative is

V̇1 = x1ẋ1 + (θ̂1 − θ1)
T Γ−1

θ1
˙̂
θ1 + γ−1

p1 (p̂1 − p1) ˙̂p1

= x1[g1u + θT
1 ψ1(x1) + ∆1(t, x1)] + (θ̂1 − θ1)

T Γ−1
θ1

˙̂
θ1 + γ−1

p1 (p̂1 − p1) ˙̂p1

≤ x1[g1u + θT
1 ψ1(x1)] + p1φ1(x1)|x1|

+(θ̂1 − θ1)
T Γ−1

θ1
˙̂
θ1 + γ−1

p1 (p̂1 − p1) ˙̂p1 (2.57)

The control law is chosen as

u = N(ζ1)
[
k1x1 + θ̂T

1 ψ1 + p̂1φ1 tanh(
x1φ1

ε1

)
]

(2.58)

ζ̇1 = k1x
2
1 + θ̂T

1 ψ1x1 + p̂1φ1x1 tanh(
x1φ1

ε1

) (2.59)
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Substituting (2.58) and (2.59) into (2.57)

V̇1 ≤ g1N(ζ1)ζ̇1 + θT
1 ψ1(x1)x1 + p1φ1(x1)|x1|

+(θ̂1 − θ1)
T Γ−1

θ1
˙̂
θ1 + γ−1

p1 (p̂1 − p1) ˙̂p1 (2.60)

Adding and subtracting ζ̇1 on the right hand side of (2.60), we have

V̇1 ≤ −k1x
2
1 + g1N(ζ1)ζ̇1 + ζ̇1

−(θ̂1 − θ1)
T ψ1x1 − (p̂1 − p1)φ1x1 tanh(

x1φ1

ε1

)

+p1

[
φ1|x1| − φ1x1 tanh(

x1φ1

ε1

)
]

+(θ̂1 − θ1)
T Γ−1

θ1
˙̂
θ1 + γ−1

p1 (p̂1 − p1) ˙̂p1 (2.61)

Choosing the parameter adaptation laws as

˙̂
θ1 = Γθ1

[
ψ1x1 − σθ1(θ̂1 − θ0

1)
]

(2.62)

˙̂p1 = γp1

[
φ1x1 tanh(

x1φ1

ε1

) − σp1(p̂1 − p0
1)
]

(2.63)

where σθ1, σp1, θ0
1, p0

1 are constants.

Substituting (2.62) and (2.63) into (2.61) and noting the following inequalities

|x| − x tanh(
x

ε
) ≤ 0.2785ε, ε > 0

−σθ1(θ̂1 − θ1)
T (θ̂1 − θ0

1) ≤ −1

2
σθ1‖θ̂1 − θ1‖2 +

1

2
σθ1‖θ1 − θ0

1‖2

−σp1(p̂1 − p1)
T (p̂1 − p0

1) ≤ −1

2
σp1(p̂1 − p1)

2 +
1

2
σp1(p1 − p0

1)
2

we have

V̇1 ≤ −k1x
2
1 + g1N(ζ1)ζ̇1 + ζ̇1 − 1

2
σθ1‖θ̂1 − θ1‖2 − 1

2
σp1(p̂1 − p1)

2

+0.2785p1ε1 +
1

2
σθ1‖θ1 − θ0

1‖2 +
1

2
σp1(p1 − p0

1)
2

≤ −c1V1 + c2 + g1N(ζ1)ζ̇1 + ζ̇1 (2.64)

where

c1 = min

{
2k1,

σθ1

λmin(Γ
−1
θ1 )

, σp1γp1

}

c2 = 0.2785p1ε1 +
1

2
σθ1‖θ1 − θ0

1‖2 +
1

2
σp1(p1 − p0

1)
2
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Multiplying (2.64) by ec1t, we obtain

d

dt
(V1e

c1t) ≤ c2e
c1t + g1N(ζ1)ζ̇1e

c1t + ζ̇1e
c1t (2.65)

Integrating (2.65) over [0, t] yields

0 ≤ V1(t) ≤ c2

c1

+ V1(0) + e−c1t
∫ t

0
g1N(ζ1)ζ̇1e

c1τdτ + e−c1t
∫ t

0
ζ̇1e

c1τdτ

For simulation purpose, we consider the following first-order uncertain nonlinear

system

ẋ1 = u + 0.1x2
1 + 0.6ex1 sin3 t

Accordingly, g1 = 1, θ1 = 0.1, ψ(x1) = x2
1, and ∆1 = 0.6ex1 sin3 t, i.e., p1 = 0.6,

φ1(x1) = ex1 .

The simulation results are shown in the following figures. When N(ζ) = eζ2
cos(π

2
ζ),

the figures are plotted by solid lines. When N(ζ) = ζ2 cos(π
2
ζ), the figures are plot-

ted by dashed lines. The closed-loop signals x1, u, ζ1, N1(ζ1), and the norms of the

parameter estimations are plotted in Fig. 2.2-2.6.
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Figure 2.2: State x1(t).
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Figure 2.3: Control input u(t).
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Figure 2.4: Variable ζ1(t).
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Figure 2.5: Nussbaum function N1(ζ1).
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Figure 2.6: Norm of parameter estimates θ̂1(“−”) and p̂1(“- -”).
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Chapter 3

Decoupled Backstepping Design

3.1 Introduction

The traditional backstepping design is composed of n steps of iterative design for

nth-order systems. Based on a coordinate transformation, a virtual control law

is designed in each intermediate step for the corresponding subsystem, while the

actual control u(t) is designed in the final step. Specifically, there will be a coupling

term zizi+1 based on the new z-coordinate remaining in the Lyapunov function of

Step i, which shall be and only can be dealt with/cancelled in Step i+1. Therefore,

the corresponding Lyapunov function Vi+1(t) of Step i + 1 shall be constructed to

include Vi(t) – the Lyapunov function of Step i. Apparently, Vi(t) must contain the

summation of all the previous ones from V1(t) to Vi−1(t). Usually, the boundedness

of all the signals in the closed-loop can be guaranteed and the states in z-coordinate

can be confined in a compact residual set, which is given for the norm of vector z(t)

rather than each individual zi(t) for i = 1, · · · , n. For convenience of differentiation,

it is referred to as the cancellation backstepping design method.

Another class of backstepping design appeared in [83][115], where the stability

result was proven iteratively by showing the stability of individual state zi in z-

coordinate of each subsystem backwards through the analysis of the integral of,

rather than the pure negativeness of, the differentiation of the Lyapunov function

candidate. The coupling term zizi+1 in each step is decoupled by elegantly using the
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3.1 Introduction

Young’s inequality rather than leaving to it to be cancelled in the next step. Thus,

it is referred to as the decoupled backstepping method. The design method was

originally used to handle the completely unknown virtual control coefficients and

high-frequency gain, through the aid of Nussbaum functions and time integration,

where the standard backstepping design could not solve the problem. In addition,

the two design methods are also different in the following aspects:

(i) the Lyapunov function Vi(t) of Step i is constructed independently from

Vi−1(t) of Step i − 1 as the coupling term zi−1zi of Step i − 1 is decoupled

using Young’s inequality and the exact cancellation of this term in Step i is

no longer necessary;

(ii) the virtual control αi is only designed to stabilize the ith subsystems rather

than the subsystems from the 1st to the ith in z coordinate;

(iii) the stability result of Step i − 1 is obtained by seeking the boundedness of

zi rather than cancelling the coupling term zi−1zi so that the residual set of

each state in z coordinate can be determined individually.

(iv) the cancellation backstepping design utilize the state interconnections, while

the decoupled backstepping design tries to decouple the interconnections.

The decoupled backstepping design offers another control system design tool in

handling a large class of nonlinear systems. The main contributions of the Chapter

are

(i) the explicit introduction of the decoupled backstepping as a general tool for

control system design, and

(ii) control system design for two classes of strict-feedback systems to show the

concept clearly.

It is proved that the proposed systematic design method is able to guarantee global

uniformly ultimately boundedness of all the signals in the closed-loop system in

Section 3.2 and global uniformly ultimately boundedness of all the signals in the

closed-loop system in Section 3.3, and the tracking error is proven to converge to a
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3.2 Adaptive Decoupled Backstepping Design

small neighborhood of the origin. In addition, the residual set of each state based

on new coordinate in the closed-loop can be determined respectively. Simulation

results are provided to show the effectiveness of the proposed approach.

The rest of the Chapter is organized as follows. The decoupled adaptive backstep-

ping design and the decoupled NN backstepping design are presented in Section 3.2

and Section 3.3 respectively, with detailed problem formulation, controller design,

simulation studies and conclusion in each embedded subsections.

3.2 Adaptive Decoupled Backstepping Design

3.2.1 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear systems

ẋi = gixi+1 + θT
i Fi(x̄i) + fi(x̄i) + ∆i(t, x), 1 ≤ i ≤ n − 1

ẋn = gnu + θT
n Fn(x) + fn(x) + ∆n(t, x),

y = x1 (3.1)

where x̄i = [x1, x2, · · · , xi]
T ∈ Ri, x = [x1, x2, · · · , xn]T ∈ Rn, u ∈ R, y ∈ R are the

state variables, system input and output respectively, gi are unknown constants,

θi ∈ Rni are unknown constant vectors, Fi(·) ∈ Rni are known smooth function

vectors, fi(·) are known smooth functions, and ∆i are unknown Lipschitz contin-

uous functions, i = 1, · · · , n. The control objective is to design an adaptive con-

troller for system (3.1) such that the output y(t) follows a desired reference signal

yd(t), while all signals in the closed-loop system are globally uniformly ultimately

bounded (GUUB). Define the desired trajectory vector x̄d(i+1) = [yd, ẏd, · · · , y(i)
d ]T ,

i = 1, · · · , n − 1, which is the combination of yd up to its ith time derivative y
(i)
d .

We have the following assumptions for unknown constants, unknown disturbances

and reference signals.

Assumption 3.2.1 The signs of gi are known and assumed to be positive without

loss of generality.
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3.2 Adaptive Decoupled Backstepping Design

Assumption 3.2.2 There exist unknown positive constants pi, 1 ≤ i ≤ n, such

that ∀(t, x) ∈ R+ × Rn, |∆i(t, x)| ≤ piφi(x̄i), where φi is a known nonnegative

smooth function.

Remark 3.2.1 Assumption 3.2.2 implies that in this thesis we only consider such

class of uncertainties ∆i that have a triangular bound in terms of x for the ease of

controller design. Similar assumptions to Assumption 3.2.2 have been used in [86,

116, 21]. As pi is not unique, we make a similar assumption that pi is the smallest

value among all the values satisfying the triangular condition. In this thesis, we do

not need the exact expression of ∆i(t, x) = φi(x̄i)pi as investigated in [19], where

it showed that the existence of disturbance terms φi(x̄i)pi might drive the system

states escape to infinity in finite time, even in case that ∆i is an exponentially

decaying disturbance.

Assumption 3.2.3 The desired trajectory vectors x̄di ∈ Ri, i = 1, · · · , n − 1 are

continuous, bounded and available.

The following lemma is used in the controller in solving the problem of chattering

[86, 116].

Lemma 3.2.1 The following inequality holds for any ε > 0 and η ∈ R

0 ≤ |η| − η tanh
(

η

ε

)
≤ kε

where k is a constant that satisfies k = e−(k+1), i.e., k = 0.2785.

Lemma 3.2.2 Let V (·) and f(·) be continuous functions defined on [0,∞) with

V (t) ≥ 0, ∀t ∈ [0,∞) and V (0) being bounded. If the following inequality holds

V̇ (t) ≤ −c1V (t) + c2 + f(t), constants c1, c2 > 0 (3.2)

and f(t) is bounded, then V (t) is also bounded.

Proof: Multiplying (3.2) by ec1t, it becomes

d

dt

(
V (t)ec1t

)
≤ c2e

c1t + ec1tf(t) (3.3)
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3.2 Adaptive Decoupled Backstepping Design

Integrating (3.3) over [0, t], we have

V (t) ≤ [V (0) − c2

c1

]e−c1t +
c2

c1

+ e−c1t
∫ t

0
ec1τf(τ)dτ

From the following inequality

e−c1t
∫ t

0
ec1τf(τ)dτ ≤ e−c1t sup

τ∈[0,t]

[f(τ)]
∫ t

0
ec1τdτ

(
=

1

c1

sup
τ∈[0,t]

[f(τ)](1 − e−c1t)
)

≤ 1

c1

sup
τ∈[0,t]

[f(τ)]

we have

V (t) ≤ [V (0) − c2

c1

]e−c1t +
c2

c1

+
1

c1

sup
τ∈[0,t]

[f(τ)]

Therefore, if f(t) is bounded, i.e., supτ∈[0,t][f(τ)] is finite and V (0) is bounded, we

can conclude that V (t) is bounded. ♦

3.2.2 Adaptive Controller Design

In this section, the adaptive Lyapunov controller design is proposed for system

(3.1) and the stability results of the closed-loop system are presented.

The design procedure contains n steps. At step i, an intermediate control func-

tion αi(t) shall be developed using an appropriate Lyapunov function Vi(t), i =

1, · · · , n − 1. The control law u(t) is designed in the last step to stabilize the

whole closed-loop system using the Lyapunov function Vn(t). Different from the

backstepping design investigated intensively in the literature, where the Lyapunov

function of i step, i.e., Vi(t) is partially composed of the Lyapunov function of the

previous step, i.e., Vi−1(t) for i = 2, · · · , n. In this paper, the Lyapunov function of

each step is decoupled in the sense that it does not contain the Lyapunov function

of the previous step.

The design of both the control laws and the adaptive laws are based on the following

change of coordinates: z1 = x1 − yd, zi = xi − αi−1, i = 2, · · · , n.

Step 1: Let us firstly consider the equation in (3.1) when i = 1, i.e.,

ẋ1 = g1x2 + θT
1 F1(x1) + f1(x1) + ∆1(t, x)
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3.2 Adaptive Decoupled Backstepping Design

From the definition for new states z1 and z2, i.e. z1 = x1 − yd and z2 = x2 − α1,

we have

ż1 = g1(z2 + α1) + θT
1 F1(x1) + f1(x1) + ∆1(t, x) − ẏd (3.4)

Consider the scalar smooth function be Vz1 = 1
2g1

z2
1 , whose time derivative along

(3.4) is

V̇z1 = z1z2 + z1[α1 +
1

g1

(θT
1 F1 + f1 + ∆1 − ẏd)]

Since the inequality z1z2 ≤ 1
4k1

z2
1 + k1z

2
2 , ∀k1 > 0 holds, noting Assumption 3.2.2,

we have

V̇z1 ≤ 1

4k1

z2
1 + k1z

2
2 + z1[α1 +

1

g1

(θT
1 F1 + f1 − ẏd)] +

p1

g1

|z1|φ1

�
=

1

4k1

z2
1 + k1z

2
2 + z1(α1 + θT

a,1Fa,1) + pa,1|z1|φa,1 (3.5)

where pa,1 is an unknown constant, θa,1 is an unknown constant vector, φa,1(·) is a

known function, and Fa,1(·) is a known function vector defined as

pa,1 :=
p1

g1

, θa,1 := [
θT
1

g1

,
1

g1

]T ∈ Rn1+1,

φa,1 := φ1, Fa,1 := [F T
1 , f1 − ẏd]

T ∈ Rn1+1,

Remark 3.2.2 The introduction of pa,1 and θa,1 is to avoid possible singularity

problems. We estimate 1
g1

rather than g1 to avoid the possibility of ĝ1 = 0.

Consider the following Lyapunov function candidate as

V1 =
1

2g1

z2
1 +

1

2
θ̃T

a,1Γ
−1
θ1 θ̃a,1 +

1

2γp1

p̃2
a,1

where Γθ1 = ΓT
θ1 > 0, λp1 > 0, (̃·) = (̂·) − (·), and θ̂a,1 and p̂a,1 are the estimates of

θa,1 and pa,1 respectively.

Choose the following intermediate control law and parameter adaptation law as

α1 = −c1z1 − 1

4k1

z1 − θ̂T
a,1Fa,1 − p̂a,1φa,1 tanh(

z1φa,1

ε1

) (3.6)

˙̂
θa,1 = Γθ1(Fa,1z1 − σθ1θ̂a,1) (3.7)

˙̂pa,1 = γp1

[
z1φa,1 tanh(

z1φa,1

ε1

) − σp1p̂a,1

]
(3.8)
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3.2 Adaptive Decoupled Backstepping Design

The time derivative of V1 along (3.5) and (3.6)-(3.8) is

V̇1 ≤ −c1z
2
1 + k1z

2
2 + pa,1[|z1|φa,1 − z1φa,1 tanh(

z1φa,1

ε1

)]

−σp1p̃a,1p̂a,1 − σθ1θ̃
T
a,1θ̂a,1 (3.9)

Applying Lemma 3.2.1 and noting the following inequalities

−σp1p̃a,1p̂a,1 ≤ −1

2
σp1p̃

2
a,1 +

1

2
σp1p

2
a,1

−σθ1θ̃
T
a,1θ̂a,1 ≤ −1

2
σθ1‖θ̃a,1‖2 +

1

2
σθ1‖θa,1‖2

we have

V̇1 ≤ −c1z
2
1 + k1z

2
2 −

1

2
σp1p̃

2
a,1 −

1

2
σθ1‖θ̃a,1‖2

+
1

2
σp1p

2
a,1 +

1

2
σθ1‖θa,1‖2 + 0.2785ε1pa,1

≤ −λ1V1 + ρ1 + k1z
2
2 (3.10)

where

λ1 := min
{
2ci, σp1γp1,

σθ1

λmax(Γ
−1
θ1 )

}

ρ1 :=
1

2
σp1p

2
a,1 +

1

2
σθ1‖θa,1‖2 + 0.2785ε1pa,1

Multiplying (3.10) by eλ1t, it becomes

d

dt

(
V1(t)e

λ1t
)

≤ ρ1e
λ1t + k1e

λ1tz2
2 (3.11)

Integrating (3.11) over [0, t], we have

V1(t) ≤ [V1(0) − ρ1

λ1

]e−λ1t +
ρ1

λ1

+ e−λ1t
∫ t

0
k1e

λ1τz2
2(τ)dτ (3.12)

In (3.12), if there is no extra term e−λ1t
∫ t
0 k1e

λ1τz2
2(τ)dτ within the inequality, we

can conclude that V1(t), z1, p̂a,1, θ̂a,1 are all GUUB. Noting the following inequality

e−λ1t
∫ t

0
k1e

λ1τz2
2(τ)dτ ≤ e−λ1t sup

τ∈[0,t]

[z2
2(τ)]

∫ t

0
k1e

λ1τdτ

(
=

k1

λ1

sup
τ∈[0,t]

[z2
2(τ)](1 − e−λ1t)

)

≤ k1

λ1

sup
τ∈[0,t]

[z2
2(τ)] (3.13)
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we have

V1(t) ≤ [V1(0) − ρ1

λ1

]e−λ1t +
ρ1

λ1

+
k1

λ1

sup
τ∈[0,t]

[z2
2(τ)] (3.14)

Therefore, if z2 can be regulated as bounded, we can obtain the boundedness of

the term e−λ1t
∫ t
0 k1e

λ1τz2
2(τ)dτ . From (3.14), we can then claim that V1(t), z1, p̂a,1,

θ̂a,1 are GUUB.

Remark 3.2.3 Note that the Young’s inequality is used to decouple the coupling

term z1z2, which is traditionally left to be dealt with/cancelled in the next step. If

the coupling term is left intact and the intermediate control law is constructed as

α1 = −c1z1 − θ̂T
a,1Fa,1 − p̂a,1φa,1 tanh(

z1φa,1

ε1

)

then we obtain

V̇1 ≤ −λ1V1 + ρ1 + z1z2

Similar derivation yields

V1(t) ≤ [V1(0) − ρ1

λ1

]e−λ1t +
ρ1

λ1

+ e−λ1t
∫ t

0
eλ1τz1(τ)z2(τ)dτ (3.15)

From (3.15), we known that it is impossible to obtain the GUUB of V1(t), z1, p̂a,1,

and θ̂a,1 even if z2 can be regulated as bounded. In other words, we can only obtain

this property by assuming that z1z2 can be guaranteed to be bounded in the next

step, which is actually hard to achieve. In the standard backstepping design, z1z2

will be cancelled in the next step, while another coupling term z2z3 will appear and

be dealt with later, till the final step. The cancellation-based iterative backstepping

design utilize the states interconnection, while the decoupled backstepping design

tries to decouple the interconnection.

Step 2: Since z2 = x2 − α1, the time derivative of z2 is given by

ż2 = ẋ2 − α̇1

= g2x3 + θT
2 F2(x̄2) + f2(x̄2) + ∆2(t, x) − α̇1 (3.16)

Again, by viewing x3(t) as a virtual control, we may design a control input α2 for

(3.16). Since z3(t) = x3(t) − α2(t), we have

ż2 = g2(z3 + α2) + θT
2 F2(x̄2) + f2(x̄2) + ∆2(t, x) − α̇1
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Since α1 is a function of x1, yd, ẏd and θ̂a,1, α̇1 can be expressed as

α̇1 =
∂α1

∂x1

ẋ1 +
∂α1

∂x̄d2

˙̄xd2 +
∂α1

∂θ̂a,1

˙̂
θa,1 +

∂α1

∂p̂a,1

˙̂pa,1

=
∂α1

∂x1

(g1x2 + θT
1 F1 + f1 + ∆1) + ω1

where

ω1 =
∂α1

∂x̄d2

˙̄xd2 +
∂α1

∂θ̂a,1

˙̂
θa,1 +

∂α1

∂p̂a,1

˙̂pa,1

then we have

ż2 = g2(z3 + α2) + θT
2 F2(x̄2) + f2(x̄2) + ∆2(t, x)

−∂α1

∂x1

(g1x2 + θT
1 F1 + f1 + ∆2) − ω1

= g2

[
z3 + α2 +

1

g2

(θT
2 F2 + f2 + ∆2

−g1
∂α1

∂x1

x2 − θT
1 F1

∂α1

∂x1

− ∂α1

∂x1

f1 − ∂α1

∂x1

∆1 − ω1)
]

(3.17)

Consider the scalar smooth function Vz2 = 1
2g2

z2
2 , whose time derivative along (3.17)

is

V̇z2 = z2z3+z2

[
α2+

1

g2

(θT
2 F2+f2+∆2−g1

∂α1

∂x1

x2−θT
1 F1

∂α1

∂x1

− ∂α1

∂x1

f1− ∂α1

∂x1

∆1−ω1)
]

Since z2z3 ≤ 1
4k2

z2
2 + k2z

2
3 , ∀k2 > 0 and from Assumption 3.2.2, we have

V̇z2 ≤ 1

4k2

z2
2 + k2z

2
3 + z2

[
α2 +

1

g2

(θT
2 F2 + f2 + ∆2 − g1

∂α1

∂x1

x2

−θT
1 F1

∂α1

∂x1

− ∂α1

∂x1

f1 − ∂α1

∂x1

∆1 − ω1)
]

≤ 1

4k2

z2
2 + k2z

2
3 + z2(α2 + θT

a,2Fa,2) + |z2|pT
a,2φa,2 (3.18)

where pa,2 and θa,2 are unknown constant vectors, φa,2(·) and Fa,2(·) are known

function vectors defined as

pa,2 := [
p2

g2

,
p1

g2

]T ∈ R2,

φa,2 := [φ2, |∂α1

∂x1

|φ1]
T ∈ R2,

θa,2 := [
θT
2

g2

,
g1

g2

,
θT
1

g2

,
1

g2

]T ∈ Rn1+n2+2

Fa,2 := [F T
2 ,−∂α1

∂x1

x2,−∂α1

∂x1

F T
1 , f2 − ∂α1

∂x1

f1 − ω1]
T ∈ Rn1+n2+2
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Consider the following Lyapunov function candidate

V2 =
1

2g2

z2
2 +

1

2
θ̃T

a,2Γ
−1
θ2 θ̃a,2 +

1

2
p̃T

a,2Γ
−1
p2 p̃a,2

Choose the following intermediate control law and parameter adaptation law as

α2 = −c2z2 − 1

4k2

z2 − θ̂T
a,2Fa,2 − p̂T

a,2Φa,2 tanh1(
z2φa,2

ε2

) (3.19)

˙̂
θa,2 = Γθ2(Fa,2z2 − σθ2θ̂a,2) (3.20)

˙̂pa,2 = Γp2[z2Φa,2 tanh1(
z2φa,2

ε2

) − σp2p̂a,2] (3.21)

where

Φa,2 := diag{φ2, |∂α1

∂x1

|φ1} ∈ R2×2

tanh1(v) := [tanh(v1), tanh(v2), · · · , tanh(vn)]T , v = [v1, v2, · · · , vn]T

Remark 3.2.4 The introduction of notation Φa,2 and Φa,i, i = 3, · · · , n in the next

steps is for the ease of applying Lemma 3.2.1 in its vector version. An alternative

is to define pa,2 and φa,2 respectively as

pa,2 := max{p2

g2

,
p1

g2

}, φa,2 := φ2 + |∂α1

∂x1

|φ1

then pa,2 is a unknown scalar constant and φa,2 is a known scalar function and

Lemma 3.2.1 can be applied directly.

The time derivative of V2 along (3.18) and (3.19)-(3.21) is

V̇2 ≤ −c2z
2
2 + k2z

2
3 + pT

a,2[|z2|φa,2 − z2Φa,2 tanh1(
z2φa,2

ε2

)]

−σp2p̃
T
a,2p̂a,2 − σθ2θ̃

T
a,2θ̂a,2 (3.22)

To complete the squares and noting Lemma 3.2.1, we obtain

V̇2 ≤ −c2z
2
2 + k2z

2
3 −

1

2
σp2‖p̃a,2‖2 − 1

2
σθ2‖θ̃a,2‖2

+
1

2
σp2‖pa,2‖2 +

1

2
σθ2‖θa,2‖2 + 0.2785ε2ps,2

≤ −λ2V2 + ρ2 + k2z
2
3
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where

ps,2 :=
p2

g2

+
p1

g2

λ2 := min
{
2c2,

σp2

λmax(Γ
−1
p2 )

,
σθ2

λmax(Γ
−1
θ2 )

}

ρ2 :=
1

2
σp2‖pa,2‖2 +

1

2
σθ2‖θa,2‖2 + 0.2785ε2ps,2

Similarly, if z3 can be regulated as bounded, we can conclude that z2 is bounded,

and so is z1.

Remark 3.2.5 Since the coupling term z1z2 in Step 1 has been decoupled by 1
4k1

z2
1

and k1z
2
2 so that it does not need to be cancelled in Step 2. The Lyapunov function

candidate V2(t) in Step 2 is constructed independently rather than adding into the

previous V1(t). Accordingly, the intermediate control of this step does not need to

cancel the coupling term.

Step i (3 ≤ i ≤ n − 1): Similar procedures are taken for each steps when i =

3, · · · , n − 1 as in Steps 1 and 2.

The time derivative of zi(t) is given by

żi = gi(zi+1 + αi) + θT
i Fi(x̄i) + fi(x̄i) + ∆i(t, x) − α̇i−1 (3.23)

Since αi−1 is a function of x̄i−1, x̄di, θ̂a,1, θ̂a,2, ..., θ̂a,i−1, α̇i−1 can be expressed as

α̇i−1 =
i−1∑
j=1

∂αi−1

∂xj

ẋj +
∂αi−1

x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂θ̂a,j

˙̂
θa,j +

i−1∑
j=1

∂αi−1

∂p̂a,j

˙̂pa,j

=
i−1∑
j=1

∂αi−1

∂xj

ẋj + ωi−1

where

ωi−1 =
∂αi−1

x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂θ̂a,j

˙̂
θa,j +

i−1∑
j=1

∂αi−1

∂p̂a,j

˙̂pa,j

then (3.23) becomes

żi = gi(zi+1 + αi) + θT
i Fi(x̄i) + fi(x̄i) + ∆i(t, x)

−
i−1∑
j=1

∂αi−1

∂xj

(gjxj+1 + θT
j Fj + fj + ∆j) − ωi−1
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= gi

{
zi+1 + αi +

1

gi

[
θT

i Fi + fi + ∆i

−
i−1∑
j=1

∂αi−1

∂xj

(gjxj+1 + θT
j Fj + fj + ∆j) − ωi−1

]}
(3.24)

Consider the scalar smooth function Vzi
= 1

2gi
z2

i , whose time derivative along (3.24)

is

V̇zi
= zizi+1+zi

{
αi +

1

gi

[
θT

i Fi+fi +∆i−
i−1∑
j=1

∂αi−1

∂xj

(gjxj+1+θT
j Fj +fj +∆j)−ωi−1

]}

Since zizi+1 ≤ 1
4ki

z2
i + kiz

2
i+1, ∀ki > 0 and from Assumption 3.2.2, we have

V̇zi
≤ 1

4ki

z2
i + kiz

2
i+1 + zi

{
αi +

1

gi

[
θT

i Fi + fi + ∆i

−
i−1∑
j=1

∂αi−1

∂xj

(gjxj+1 + θT
j Fj + fj + ∆j) − ωi−1

]}

≤ 1

4ki

z2
i + kiz

2
i+1 + zi(αi + θT

a,iFa,i) + |zi|pT
a,iφa,2 (3.25)

where pa,i and θa,i are unknown constant vectors, φa,i(·) and Fa,i(·) are known

function vectors defined as

pa,i := [
pi

gi

,
gi−1

gi

pT
a,i−1]

T ∈ Ri

φa,i := [φi, |∂αi−1

∂xi−1

|φi−1, |∂αi−1

∂xi−2

|φi−2, · · · , |∂αi−1

∂x1

|φ1] ∈ Ri;

θa,i := [
θT

i

gi

,
gi−1

gi

,
gi−1

gi

θT
a,i−1]

T ∈ Rn̄i

Fa,i := [F T
i , −∂αi−1

∂xi−1

xi, −∂αi−1

∂xi−1

F T
i−1,−

∂αi−1

∂xi−2

xi−1, −∂αi−1

∂xi−2

F T
i−2, · · · ,

−∂αi−1

∂x1

x2, −∂αi−1

∂x1

F T
1 , fi −

i−1∑
j=1

∂αi−1

∂xj

fj − ωi−1]
T ∈ Rn̄i , n̄i =

i∑
j=1

nj + 2i

Similarly, we consider the following Lyapunov function candidate

Vi = Vzi
+

1

2
θ̃T

a,iΓ
−1
θi θ̃a,i +

1

2
p̃T

a,iΓ
−1
pi p̃a,i

together with the following adaptive intermediate control law

αi = −cizi − 1

4ki

zi − θ̂T
a,iFa,i − p̂T

a,iΦa,i tanh1(
ziφa,i

εi

) (3.26)

˙̂
θa,i = Γθi(Fa,izi − σθiθ̂a,i) (3.27)

˙̂pa,i = Γpi[ziΦa,i tanh1(
ziφa,i

εi

) − σpip̂a,i] (3.28)
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where

Φa,i = diag{φi, |∂αi−1

∂xi−1

|φi−1, |∂αi−1

∂xi−2

|φi−2, · · · , |∂αi−1

∂x1

|φ1}

The time derivative of Vi along (3.25) and (3.26)-(3.28) is

V̇i ≤ −ciz
2
i + kiz

2
i+1 + pT

a,i

[
|zi|φa,i − ziΦa,i tanh1(

ziφa,i

εi

)
]

−σpip̃
T
a,ip̂a,2 − σθiθ̃

T
a,iθ̂a,2

To complete the squares and noting Lemma 3.2.1

V̇i ≤ −ciz
2
i + kiz

2
i+1 −

1

2
σpi‖p̃a,i‖2 − 1

2
σθi‖θ̃a,i‖2

+
1

2
σpi‖pa,i‖2 +

1

2
σθi‖θa,i‖2 + 0.2785εips,i

≤ −λiVi + ρi + kiz
2
i+1 (3.29)

where

ps,i :=
i∑

j=1

pa,i,j

λi := min
{
2ci,

σpi

λmax(Γ
−1
pi )

,
σθi

λmax(Γ
−1
θi )

}

ρi := +
1

2
σpi‖pa,i‖2 +

1

2
σθi‖θa,i‖2 + 0.2785εips,i

Similarly, if zi+1 can be regulated as bounded, we can conclude that zi is also

bounded.

Step n: This is the final step, since the actual control u appears in the derivative

of zn as given by

żn = gnu + θT
n Fn(x) + fn(x) + ∆n(t, x) − α̇n−1 (3.30)

Since α̇n−1 can be expressed as

α̇n−1 =
n−1∑
j=1

∂αn−1

∂xj

ẋj + ωn−1

where

ωn−1 =
∂αn−1

∂x̄n

˙̄xdn +
n−1∑
j=1

∂αn−1

∂θ̂a,j

˙̂
θa,j +

n−1∑
j=1

∂αn−1

∂p̂a,j

˙̂pa,j

47
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then (3.30) becomes

żn = gnu + θT
n Fn(x) + fn(x) + ∆n(t, x)

−
n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + θT
j Fj + fj + ∆j) − ωn−1

= gn

{
u +

1

gn

[
θT

n Fn + fn + ∆n

−
n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + θT
j Fj + fj + ∆j) − ωn−1

]}
(3.31)

Consider the scalar smooth function Vzn = 1
2gn

z2
n, whose time derivative along

(3.31) is

V̇zn = zn

{
u +

1

gn

[
θT

n Fn + fn + ∆n −
n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + θT
j Fj + fj + ∆j) − ωn−1

]}

Noting Assumption 3.2.2, we have

V̇zn ≤ zn(u + θT
a,nFa,n) + |zn|pT

a,nφa,n (3.32)

where pa,n and θa,n are unknown constant vectors, φa,n(·) and Fa,n(·) are known

function vectors defined as

pa,n := [
pn

gn

,
gn−1

gn

pT
a,n−1]

T ∈ Rn

φa,n := [φn, |∂αn−1

∂xn−1

|φn−1, |∂αn−1

∂xn−2

|φn−2, · · · , |∂αn−1

∂x1

|φ1]
T ∈ Ri;

θa,n := [
θT

n

gn

,
gn−1

gn

,
gn−1

gn

θT
a,n−1]

T ∈ Rn̄n

Fa,n := [F T
n , −∂αn−1

∂xn−1

xn, −∂αn−1

∂xn−1

F T
n−1, −∂αn−1

∂xn−2

xn−1, −∂αn−1

∂xn−2

F T
n−2, · · · ,

−∂αn−1

∂x1

x2, −∂αn−1

∂x1

F T
1 , fn −

n−1∑
j=1

∂αn−1

∂xj

fj − ωn−1]
T ∈ Rn̄n ,

n̄n =
n∑

j=1

nj + 2n

Similarly, we consider the following Lyapunov function candidate

Vn = Vzn +
1

2
θ̃T

a,nΓ−1
θn θ̃a,n +

1

2
p̃T

a,nΓ−1
pn p̃a,n
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and the following adaptive control law

u = −cnzn − θ̂T
a,nFa,n − p̂T

a,nΦa,n tanh1(
znφa,n

εn

) (3.33)

˙̂
θa,n = Γθn(Fa,nzn − σθnθ̂a,n) (3.34)

˙̂pa,n = Γpn[znΦa,n tanh1(
znφa,n

εn

) − σpnp̂a,n] (3.35)

where

Φa,n := diag{φn, |∂αn−1

∂xn−1

|φn−1, |∂αn−1

∂xn−2

|φn−2, · · · , |∂αn−1

∂x1

|φ1}

The time derivative of Vn along(3.32) and (3.33)-(3.35) is

V̇n ≤ −ciz
2
n + pT

a,n

[
|zn|φa,n − znΦa,n tanh1(

znφa,n

εn

)
]

−σpnp̃
T
a,np̂a,n − σθnθ̃

T
a,nθ̂a,n (3.36)

To complete the squares and noting Lemma 3.2.1

V̇n ≤ −cnz
2
n − 1

2
σpn‖p̃a,n‖2 − 1

2
σθn‖θ̃a,n‖2

+
1

2
σpn‖pa,n‖2 +

1

2
σθn‖θa,n‖2 + 0.2785εnps,n

≤ −λnVn + ρn

where

ps,n :=
n∑

j=1

ps,n,j

λn := min
{
2cn,

σpn

λmax(Γ−1
pn )

,
σθn

λmax(Γ
−1
θn )

}

ρn :=
1

2
σpn‖pa,n‖2 +

1

2
σθn‖θa,n‖2 + 0.2785εnps,n

Theorem 3.2.1 shows the stability and control performance of the closed-loop adap-

tive systems.

Theorem 3.2.1 Consider the closed-loop system consisting of the plant (3.1) un-

der Assumptions 3.2.1-3.2.3. If we apply the controller (3.33) with parameters

updating law (3.34) and (3.35), we can guarantee the following properties under

bounded initial conditions
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(i) zi(t), θ̂a,i, p̂a,i, i = 1, · · · , n, and x(t) are globally uniformly ultimately bounded;

(ii) Given any µ∗
i > µi, there exists T such that, for all t ≥ T , zi(t) will remain

in a compact set defined by

Ωzi
:=

{
zi ∈ R

∣∣∣ |zi| ≤ µ∗
i

}
, i = 1, · · · , n

which can be made as small as desired by an appropriate choice of the design

parameters.

Proof: Consider the following Lyapunov function candidate

Vn = Vzn +
1

2
θ̃T

a,nΓ−1
θi θ̃a,n +

1

2
p̃T

a,nΓ−1
pn p̃a,n (3.37)

where Vzn = 1
2gn

z2
n, and (̃·) = (̂·) − (·). From the previous derivation, we have

V̇n(t) ≤ −λnVn(t) + ρn (3.38)

it follows that

0 ≤ Vn(t) ≤ [Vn(0) − ρn

λn

]e−λnt +
ρn

λn

≤ Vn(0)e−λnt +
ρn

λn

(3.39)

where the constant

Vn(0) =
1

2gn

z2
n(0) +

1

2
θ̃T

a,n(0)Γ−1
θn θ̃a,n(0) +

1

2
p̃T

a,n(0)Γ−1
pn p̃a,n(0) (3.40)

Considering (3.37), we know that

‖θ̃a,n‖2 ≤ 2Vn(t)

λmin(Γ
−1
θn )

(3.41)

‖p̃a,n‖2 ≤ 2Vn(t)

λmin(Γ−1
pn )

(3.42)

Vzn =
1

2gn

z2
n ≤ Vn(t) (3.43)

According to Lemma 2.2.5 in Chapter 2, we know from (3.39) that Vn(t), zn, θ̂a,n

and p̂a,n are GUUB. Thus, Vi(t), zi, θ̂a,i and p̂a,i are also global uniformly ultimately

bounded for i = 1, · · · , n− 1. Since z1 = x1 − yd and yd is bounded, x1 is bounded.

For x2 = z2 + α1, since α1 is function of bounded signals x1, x̄d2, θ̂10, θ̂1, α1 is

thus bounded, which in turn leads to the boundedness of x2. Following the same
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way, we can prove one by one that all αi−1 and xi, i = 3, · · · , n are bounded.

Therefore, the states of the system x = [x1, · · · , xn]T remain bounded. If we let

µn =
√

2gnρn/λn, then from (3.43), we know that given any µ∗
n > µn, there exists T

such that zn ≤ µ∗
n, ∀t ≥ T . Similarly, from(3.29), we know that given any µ∗

i > µi,

there exists T such that zi ≤ µ∗
i , ∀t ≥ T , where µi =

√
2giρ̄i/λi and ρ̄i = ρi+kiµ

2
i+1.

Therefore, we can readily conclude that there do exist a compact set Ωzi
such that

zi ∈ Ωzi
, ∀t ≥ T . This completes the proof. ♦

Remark 3.2.6 Note that Ωz can be made arbitrarily small, which means that zi(t)

can stay arbitrarily close to zero.

Remark 3.2.7 Different from the traditional backstepping design, the Lyapunov

function candidate of the overall system Vn(t) is not the sum of all previous Vi(t),

i = 1, · · · , n − 1. As a result, the residual set of each state zi(t), i = 1, · · · , n can

be determined individually in an iterative way.

3.2.3 Simulation Studies

To illustrate the proposed adaptive control algorithms, we consider the following

second-order plant

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = g1x2 + θ1x
2
1 + x1e

−0.5x1 + ∆1(t, x)

ẋ2 = g2u + x1x
2
2 + ∆2(t, x)

y = x1

where x = [x1, x2]
T , θ1 is unknown parameter, ∆1(t, x) and ∆2(t, x) are unknown

disturbances. In our simulation, we assume that g1 = g2 = 1, θ1 = 0.1, ∆1(t, x) =

0.6 sin x2 and ∆2(t, x) = 0.5(x2
1 + x2

2) sin3 t. The initial condition [x1(0), x2(0)]T =

[0, 0]T . The upper bounds of ∆1 and ∆2 are |∆1(t, x)| ≤ p1φ1(x1) and |∆2(t, x)| ≤
p2φ2(x), where p1 = 0.6, φ1(x1) = 1.0, p2 = 0.5, φ2(x) = x2

1 + x2
2. The control

objective is to track the desired reference signal yd = 0.5[sin(t)+sin(0.5t)]. For the

design of adaptive controller, let z1 = x1−yd, z2 = x2−α1, and θ̂a,1, p̂a,1, θ̂a,2, p̂a,2 be

the estimates of unknown parameters θa,1 = [ θ1

g1
, 1

g1
]T , pa,1 = p1

g1
, θa,2 = [g1

g2
, θ1

g2
, 1

g2
]T ,
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pa,2 = [p2

g2
, p1

g2
]T , the proposed controller is

α1 = −c1z1 − 1

4k1

z1 − θ̂a,1Fa,1 − p̂a,1φa,1 tanh(
z1φa,1

ε1

)

˙̂
θa,1 = Γθ1(Fa,1z1 − σθ1θ̂a,1)

˙̂pa,1 = γp1[z1φa,1 tanh(
z1φa,1

ε1

) − σp1p̂a,1]

u = −c2z2 − θ̂a,2Fa,2 − p̂T
a,2Φa,2 tanh1(

z2φa,2

ε2

)

˙̂
θa,2 = Γθ2(Fa,2z2 − σθ2θ̂a,2)

˙̂pa,2 = γp2[z2Φa,2 tanh1(
z2φa,2

ε2

) − σp2p̂a,2]

where

φa,1 = φ1(x1), Fa,1 = [F1, f1 − yd]
T ,

φa,2 = [φ2, |∂α1

∂x1

|φ1]
T , Fa,2 = [−∂α1

∂x1

x2,−∂α1

∂x1

F1, f2 − ∂α1

∂x1

f1 − ω1]
T

The following controller design parameters are adopted in the simulation: Γθ1 =

diag{1.5}, γp1 = 1.0, Γθ2 = diag{3.0}, Γp2 = diag{5.0}, σθ1 = σp1 = σθ2 = σp2 =

0.05, c1 = c2 = 2.0, k1 = 1.0, ε1 = ε2 = 0.05.

From Fig. 3.1, it was seen that satisfactory transient tracking performance was

obtained after 10 seconds of adaptation periods. Fig. 3.2 shows that the system

state is bounded. Figs. 3.3 and 3.4 show the boundedness of the control input and

the estimates of the parameters in the control loop.

3.2.4 Conclusion

In this Section, adaptive decoupled backstepping has been presented as a gen-

eral tool for control system design, and it has been successfully applied to a class

of parametric-strict-feedback nonlinear systems with unknown disturbances which

satisfies triangular bounded conditions. It has been proved that the proposed sys-

tematic design method is able to guarantee global uniformly ultimately bounded-

ness of all the signals in the closed-loop system and the tracking error is proven to

converge to a small neighborhood of the origin. In addition, the residual set of each

state based on new coordinate in the closed-loop can be determined respectively.
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Simulation results have been provided to show the effectiveness of the proposed

approach.

3.3 Adaptive Neural Network Design

3.3.1 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems

ẋi(t) = gixi+1(t) + fi(x̄i(t)), 1 ≤ i ≤ n − 1

ẋn(t) = gnu(t) + fn(x(t)),

y(t) = x1(t) (3.44)

where x̄i = [x1, x2, · · · , xi]
T , x = [x1, x2, · · · , xn]T ∈ Rn, u ∈ R, y ∈ R are the

state variables, system input and output respectively, fi(·) are unknown smooth

functions, and gi are unknown constants, i = 1, · · · , n. The control objective is to

design an adaptive controller for system (3.44) such that the output y(t) follows

a desired reference signal yd(t), while all signals in the closed-loop system are

bounded. Define the desired trajectory x̄d(i+1) = [yd, ẏd, · · · , y(i)
d ]T , i = 1, · · · , n,

which is a vector of yd up to its ith time derivative y
(i)
d . We have the following

assumptions for the system functions and reference signals.

Assumption 3.3.1 The signs of gi are known, and there exist constants gmax ≥
gmin > 0 such that gmin ≤ |gi| ≤ gmax.

Assumption 3.3.2 The desired trajectory vectors x̄di, i = 2, ..., n are continuous

and available, and x̄di ∈ Ωdi ⊂ Ri with Ωdi known compact sets.

3.3.2 Neural Network Control

In this section, the adaptive NN controller design is proposed for system (3.44) and

the stability results of the closed-loop system are presented.

53



3.3 Adaptive Neural Network Design

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

Figure 3.1: Responses of output y(t)(“−”), and reference yd(“- -”)

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

Figure 3.2: Responses of State x2
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Figure 3.3: Variations of control input u(t)
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Figure 3.4: Variations of parameter estimates: ‖θ̂a,1‖2(“−”), p̂a,1(“- -”),

‖θ̂a,2‖2(“· · ·”), ‖p̂a,2‖2(“-·”).
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The design procedure contains n steps. At step i, an intermediate control func-

tion αi(t) shall be developed using an appropriate Lyapunov function Vi(t), i =

1, · · · , n − 1. The control law u(t) is designed in the last step to stabilized the

whole closed-loop system using the Lyapunov function Vn(t). Different from the

backstepping design investigated intensively in the literature, where the Lyapunov

function of i step, i.e., Vi(t) is partially composed of the Lyapunov function of the

previous step, i.e., Vi−1(t) for i = 2, · · · , n. In this section, the Lyapunov function of

each step is decoupled in the sense that it does not contain the Lyapunov function

of the previous step.

The design of both the control laws and the adaptive laws are based on the following

change of coordinates: z1 = x1 − yd, zi = xi − αi−1, i = 2, · · · , n.

Step 1: Let us firstly consider the equation in (3.44) when i = 1, i.e.,

ẋ1 = g1x2 + f1(x1)

From the definition for new states z1 and z2, i.e. z1 = x1 − yd and z2 = x2 − α1,

we have

ż1 = g1(z2 + α1) + f1(x1) − ẏd (3.45)

Consider the scalar smooth function be Vz1 = 1
2g1

z2
1 , whose time derivative along

(3.45) is

V̇z1 = z1z2 + z1[α1 +
1

g1

(f1(x1) − ẏd)] (3.46)

Since g1 is a unknown constant and f1(x1) is an unknown smooth function, Let

Q1(Z1) = 1
g1

(f1(x1) − ẏd) denote the unknown function with Z1 = [x1, yd, ẏd]
T ∈

ΩZ1 ⊂ R3 and x̄d2 ∈ Ωd2}. A RBF neural network is employed to approximate

Q1(Z1), i.e.,

Q1(Z1) = W ∗T

1 S(Z1) + ε(Z1) (3.47)

where ε1(Z1) is the approximation error and W ∗
1 is the ideal weight. As W ∗

1 is

unknown, we shall use its estimate Ŵ1 instead, which forms the intermediate control

α1 as

α1 = −c1z1 − Ŵ T
1 S(Z1) (3.48)

with constant c1 > 0.
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Remark 3.3.1 The introduction of Q1(Z1) is to avoid possible singularity problems

by estimating Q1(Z1) as a whole rather than g1 to avoid the possibility of ĝ1 = 0.

Consider the following Lyapunov function candidate as

V1 =
1

2g1

z2
1 +

1

2
(Ŵ1 − W ∗

1 )T Γ−1
1 (Ŵ1 − W ∗

1 )

where matrix Γ1 = ΓT
1 > 0.

Noting the inequality z1z2 ≤ 1
4k1

z2
1 + k1z

2
2 , ∀k1 > 0, the time derivative of V1 along

(3.46), (3.47) and (3.48) is

V̇1 ≤ 1

4k1

z2
1 + k1z

2
2 − c1z

2
1 − Ŵ T

1 S(Z1)z1 + W ∗T

1 S(Z1)z1 + ε(Z1)z1

+(Ŵ1 − W ∗
1 )T Γ−1

1
˙̂

W 1 (3.49)

Letting c1 = c10 + c11 with c∗10
�
= c10 − 1

4k1
and noting that −c11z

2
1 + ε(Z1)z1 ≤

−c11z
2
1 + ε∗z1

|z1| ≤ ε∗
2

z1

4c11
, (3.49) becomes

V̇1 ≤ −c∗10z
2
1 − (Ŵ1 − W ∗

1 )T S(Z1)z1 + (Ŵ1 − W ∗
1 )T Γ−1

1
˙̂

W 1 +
ε∗

2

z1

4c11

+ k1z
2
2 (3.50)

The following practical adaptive law is given for on-line tuning the NN weights

˙̂
W 1 = Γ1[S(Z1)z1 − σ1Ŵ1] (3.51)

where σ1 is a small constant and is to introduce the σ−modification for the closed-

loop system.

Substituting (3.51) into (3.50) yields

V̇1 ≤ −c∗10z
2
1 − σ1(Ŵ1 − W ∗

1 )T Ŵ1 +
ε∗

2

z1

4c11

+ k1z
2
2 (3.52)

Noting the following inequalities

−σ1(Ŵ1 − W ∗
1 )T Ŵ1 ≤ −1

2
σ1‖Ŵ1 − W ∗

1 ‖2 +
1

2
σ1‖W ∗

1 ‖2

equation (3.52) becomes

V̇1 ≤ −c∗10z
2
1 −

1

2
σ1‖Ŵ1 − W ∗

1 ‖2 +
1

2
σ1‖W ∗

1 ‖2 +
ε∗

2

z1

4c11

+ k1z
2
2

≤ −λ1V1 + ρ1 + k1z
2
2 (3.53)
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3.3 Adaptive Neural Network Design

where

λ1 := min
{
2gminc

∗
10,

σ1

λmax(Γ
−1
1 )

}

ρ1 :=
1

2
σ1‖W ∗

1 ‖2 +
ε∗

2

z1

4c11

Multiplying (3.53) by eλ1t, it becomes

d

dt

(
V1(t)e

λ1t
)

≤ ρ1e
λ1t + k1e

λ1tz2
2 (3.54)

Integrating (3.54) over [0, t], we have

V1(t) ≤ [V1(0) − ρ1

λ1

]e−λ1t +
ρ1

λ1

+ e−λ1t
∫ t

0
k1e

λ1τz2
2(τ)dτ (3.55)

In (3.55), if there is no extra term e−λ1t
∫ t
0 k1e

λ1τz2
2(τ)dτ within the inequality, we

can conclude that V1(t), z1, p̂a,1, θ̂a,1 are all GUUB. Noting the following inequality

e−λ1t
∫ t

0
k1e

λ1τz2
2(τ)dτ ≤ e−λ1t sup

τ∈[0,t]
[z2

2(τ)]
∫ t

0
k1e

λ1τdτ

(
=

k1

λ1

sup
τ∈[0,t]

[z2
2(τ)](1 − e−λ1t)

)

≤ k1

λ1

sup
τ∈[0,t]

[z2
2(τ)] (3.56)

we have

V1(t) ≤ [V1(0) − ρ1

λ1

]e−λ1t +
ρ1

λ1

+
k1

λ1

sup
τ∈[0,t]

[z2
2(τ)] (3.57)

Therefore, if z2 can be regulated as bounded, we can obtain the boundedness of

the term e−λ1t
∫ t
0 k1e

λ1τz2
2(τ)dτ . From (3.57), we can then claim that V1(t), z1, p̂a,1,

θ̂a,1 are SGUUB.

Step 2: Since z2 = x2 − α1, the time derivative of z2 is given by

ż2 = ẋ2 − α̇1

= g2x3 + f2(x̄2) − α̇1 (3.58)

Again, by viewing x3(t) as a virtual control, we may design a control input α2 for

(3.58). Since z3(t) = x3(t) − α2(t), we have

ż2 = g2(z3 + α2) + f2(x̄2) − α̇1

58



3.3 Adaptive Neural Network Design

Since α1 is a function of x1, yd, ẏd and Ŵ1, α̇1 can be expressed as

α̇1 =
∂α1

∂x1

ẋ1 +
∂α1

∂x̄d2

˙̄xd2 +
∂α1

∂Ŵ1

˙̂
W 1

=
∂α1

∂x1

(g1x2 + f1) + ω1

where

ω1 =
∂α1

∂x̄d2

˙̄xd2 +
∂α1

∂Ŵ1

˙̂
W 1

then we have

ż2 = g2(z3 + α2) + f2(x̄2) − ∂α1

∂x1

(g1x2 + f1) − ω1

= g2

[
z3 + α2 +

1

g2

(f2 − g1
∂α1

∂x1

x2 − ∂α1

∂x1

f1 − ω1)
]

(3.59)

Consider the scalar smooth function Vz2 = 1
2g2

z2
2 . Noting that z2z3 ≤ 1

4k2
z2
2 + k2z

2
3 ,

∀k2 > 0, the time derivative of Vz2 along (3.59) is

V̇z2 ≤ 1

4k2

z2
2 + k2z

2
3 + z2

[
α2 +

1

g2

(f2 − g1
∂α1

∂x1

x2 − ∂α1

∂x1

f1 − ω1)
]

= z2z3 + z2

[
α2 + Q2(Z2)

]
(3.60)

where

Q2(Z2) =
1

g2

(f2 − g1
∂α1

∂x1

x2 − ∂α1

∂x1

f1 − ω1)

with Z2 = [x̄2, α1, ∂α1/∂x1, ω1]
T ∈ ΩZ2 ⊂ R5.

Consider the following Lyapunov function candidate

V2 =
1

2g2

z2
2 +

1

2
(Ŵ2 − W ∗

2 )T Γ−1
2 (Ŵ2 − W ∗

2 )

with matrix Γ2 = ΓT
2 > 0.

Choose the following adaptive intermediate control law as

α2 = −c2z2 − Ŵ T
2 S(Z2) (3.61)

˙̂
W 2 = Γ2[S(Z2)z2 − σ2Ŵ2] (3.62)

where constant c2 = c20 + c21 with c20, c21 > 0 and c∗20 = c20 − 1
4k2

, and σ2 is a small

constant and is to introduce the σ−modification for the closed-loop system.
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Noting the following inequalities

−c21z
2
2 + ε(Z2)z2 ≤ −c21z

2
2 + ε∗z2

|z2| ≤ ε∗
2

z2

4c21

−σ2(Ŵ2 − W ∗
2 )T Ŵ2 ≤ −1

2
σ2‖Ŵ2 − W ∗

2 ‖2 +
1

2
σ2‖W ∗

2 ‖2

we obtain

V̇2 ≤ −c∗20z
2
2 −

1

2
σ2‖Ŵ2 − W ∗

2 ‖2 +
1

2
σ2‖W ∗

2 ‖2 +
ε∗

2

z2

4c21

+ k2z
2
3

≤ −λ2V2 + ρ2 + k2z
2
3

where

λ2 := min
{
2gminc

∗
20,

σ2

λmax(Γ
−1
2 )

}

ρ2 :=
1

2
σ2‖W ∗

2 ‖2 +
ε∗

2

z2

4c21

Similarly, if z3 can be regulated as bounded, we can conclude that z2 is bounded,

and so is z1.

Step i (3 ≤ i ≤ n − 1): Similar procedures are taken for each steps when i =

3, · · · , n − 1 as in Steps 1 and 2.

The time derivative of zi(t) is given by

żi = gi(zi+1 + αi) + fi(x̄i) − α̇i−1 (3.63)

Since αi−1 is a function of x̄i−1, x̄di, Ŵ1, Ŵ2, ..., Ŵi−1, α̇i−1 can be expressed as

α̇i−1 =
i−1∑
j=1

∂αi−1

∂xj

ẋj +
∂αi−1

x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂Ŵj

˙̂
W j

=
i−1∑
j=1

∂αi−1

∂xj

ẋj + ωi−1

where

ωi−1 =
∂αi−1

x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂Ŵj

˙̂
W j

then (3.63) becomes

żi = gi(zi+1 + αi) + fi(x̄i) + ∆i(t, x) −
i−1∑
j=1

∂αi−1

∂xj

(gjxj+1 + fj) − ωi−1

= gi

{
zi+1 + αi +

1

gi

[
fi −

i−1∑
j=1

∂αi−1

∂xj

(gjxj+1 + fj) − ωi−1

]}
(3.64)
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Consider the scalar smooth function Vzi
= 1

2gi
z2

i . Noting that zizi+1 ≤ 1
4ki

z2
i +kiz

2
i+1,

∀ki > 0, the time derivative of Vzi
along (3.64) is

V̇zi
≤ 1

4ki

z2
i + kiz

2
i+1 + zi

{
αi +

1

gi

[
fi −

i−1∑
j=1

∂αi−1

∂xj

(gjxj+1 + fj) − ωi−1

]}

=
1

4ki

z2
i + kiz

2
i+1 + zi[αi + Qi(Zi)] (3.65)

where Zi = [x̄i, αi−1,
∂αi−1

∂x1
, ∂αi−1

∂x2
, ..., ∂αi−1

∂xi−1
, ωi−1] ∈ ΩZi

⊂ R2i+1

Consider the following Lyapunov function candidate

Vi =
1

2gi

z2
i +

1

2
(Ŵi − W ∗

i )T Γ−1
i (Ŵi − W ∗

i ) (3.66)

with matrix Γi = ΓT
i > 0.

Choose the following adaptive intermediate control law as

αi = −cizi − Ŵ T
i S(Zi) (3.67)

˙̂
W i = Γi[S(Zi)zi − σiŴi] (3.68)

where constant ci = ci0 + ci1 with ci0, ci1 > 0 and c∗i0 = ci0 − 1
4ki

, and σi is a small

constant and is to introduce the σ−modification for the closed-loop system.

Noting the following inequalities

−ci1z
2
i + ε(Zi)zi ≤ −ci1z

2
i + ε∗zi

|zi| ≤ ε∗
2

zi

4ci1

−σi(Ŵi − W ∗
i )T Ŵi ≤ −1

2
σi‖Ŵi − W ∗

i ‖2 +
1

2
σi‖W ∗

i ‖2

we obtain

V̇i ≤ −c∗i0z
2
i −

1

2
σi‖Ŵi − W ∗

i ‖2 +
1

2
σi‖W ∗

i ‖2 +
ε∗

2

zi

4ci1

+ kiz
2
i+1

≤ −λiVi + ρi + kiz
2
i+1

where

λi := min
{
2gminc

∗
i0,

σi

λmax(Γ
−1
i )

}

ρi :=
1

2
σi‖W ∗

i ‖2 +
ε∗

2

zi

4ci1
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Similarly, if zi+1 can be regulated as bounded, we can conclude that zi is also

bounded.

Step n: This is the final step, since the actual control u appears in the derivative

of zn as given by

żn = gnu + fn(x) − α̇n−1 (3.69)

Since α̇n−1 can be expressed as

α̇n−1 =
n−1∑
j=1

∂αn−1

∂xj

ẋj + ωn−1

where

ωn−1 =
∂αn−1

∂x̄n

˙̄xdn +
n−1∑
j=1

∂αn−1

∂Ŵj

˙̂
W j

then (3.69) becomes

żn = gnu + fn(x) −
n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + fj) − ωn−1

= gn

{
u +

1

gn

[
fn −

n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + fj) − ωn−1

]}
(3.70)

Consider the scalar smooth function Vzn = 1
2gn

z2
n, whose time derivative along

(3.70) is

V̇zn = zn

{
u +

1

gn

[
fn −

n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + fj) − ωn−1

]}

= zn[u + Qn(Zn)] (3.71)

where

Qn(Zn) =
1

gn

[
fn −

n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + fj) − ωn−1

]

with Zn = [x, αn−1,
∂αn−1

∂x1
, ∂αn−1

∂x2
, ..., ∂αn−1

∂xn−1
, ωn−1] ∈ ΩZn ⊂ R2n+1.

Similarly, we consider the following Lyapunov function candidate

Vn =
1

2gi

z2
n +

1

2
(Ŵn − W ∗

n)T Γ−1
n (Ŵn − W ∗

n) (3.72)

with matrix Γn = ΓT
n > 0.
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Choose the following adaptive intermediate control law as

αn = −cnzn − Ŵ T
n S(Zn) (3.73)

˙̂
W i = Γi[S(Zi)zi − σiŴi] (3.74)

where constant cn = cn0 + cn1 with cn0, ci1 > 0, and σi is a small constant and is to

introduce the σ−modification for the closed-loop system.

Noting the following inequalities

−cn1z
2
n + ε(Zn)zn ≤ −cn1z

2
n + ε∗zn

|zn| ≤ ε∗
2

zn

4cn1

−σn(Ŵn − W ∗
n)T Ŵn ≤ −1

2
σn‖Ŵn − W ∗

n‖2 +
1

2
σn‖W ∗

n‖2

we obtain

V̇n ≤ −cn0z
2
n − 1

2
σn‖Ŵn − W ∗

n‖2 +
1

2
σn‖W ∗

n‖2 +
ε∗

2

zn

4cn1

≤ −λnVn + ρn (3.75)

where

λn := min
{
2gmincn0,

σn

λmax(Γ−1
n )

}

ρn :=
1

2
σn‖W ∗

n‖2 +
ε∗

2

zn

4cn1

Theorem 3.3.1 shows the stability of control performance of the closed-loop adaptive

systems.

Theorem 3.3.1 Consider the closed-loop system consisting of the plant (3.44) un-

der Assumptions 3.3.1 and 3.3.2. If we apply the controller (3.73) with NN weights

updating law (3.74), we can guarantee the following properties under bounded initial

conditions

(i) zi, Ŵi, i = 1, · · · , n, and x(t) are semi-globally uniformly ultimately bounded

and the vector Z = [ZT
1 , ..., ZT

n ]T remains in a compact set ΩZ specified as

ΩZ =
{
Z|

n∑
i=1

z2
i ≤ 2gmaxC0,

n∑
i=1

‖W̃i‖2 ≤ 2C0

λmin(Γ
−1
i )

,

x̄di ∈ Ωdi, i = 2, ..., n
}

(3.76)
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where C0 > 0 is a constant whose size depends on the initial conditions (as

will be defined later in the proof); and

(ii) the closed-loop signal z = [z1, ..., zn]T ∈ Rn will eventually converge to a

compact set defined by

ΩS := {z
∣∣∣ ‖z‖2 ≤ µ} (3.77)

with µ > 0 is a constant related to the design parameters and will be defined

later in the proof, and ΩS can be made as small as desired by an appropriate

choice of the design parameters.

Proof: Consider the following Lyapunov function candidate

V (t) =
n∑

i=1

1

2gi

z2
i +

1

2
(Ŵi − W ∗

i )T Γ−1
i (Ŵi − W ∗

i ) (3.78)

From the previous derivation, we have

V̇n(t) ≤ −λnVn(t) + ρn (3.79)

it follows that

0 ≤ Vn(t) ≤ [Vn(0) − ρn

λn

]e−λnt +
ρn

λn

≤ Vn(0) + ρ̄n (3.80)

with constants ρ̄n = ρn/λn and Vn(0) = 1
2gn

z2
n(0)+ 1

2
W̃ T

n (0)Γ−1
n W̃a(0). From (3.72),

we have z2
n ≤ 2gmaxVn(t), and ‖W̃n‖2 ≤ 2Vn(t)/λmin(Γ

−1
n ).

In Step n − 1, we have obtained

V̇n−1(t) ≤ −λn−1Vn−1(t) + ρn−1 + kn−1z
2
n (3.81)

As z2
n ≤ 2gmaxVn(t) and Vn(t) ≤ Vn(0) + ρ̄n, we have

V̇n−1(t) ≤ −λn−1Vn−1(t) + ρn−1 + 2kn−1gmax(Vn(0) + ρ̄n) (3.82)

Letting ρ̄n−1 = [ρn−1 + 2kn−1gmax(Vn(0) + ρ̄n)]/λn−1, from (3.82), we have

Vn−1(t) ≤ [Vn−1(0) − ρ̄n−1]e
−λn−1t + ρ̄n−1 ≤ Vn−1(0) + ρ̄n−1 (3.83)

Noting (3.66), it follows

z2
n−1 ≤ 2gmaxVn−1(t) ≤ 2gmax(Vn−1(0) + ρ̄n−1)
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Similarly, we can conclude that for i = 1, · · · , n

z2
i ≤ 2gmax(Vi(0) + ρ̄i), ‖W̃i‖2 ≤ 2(Vi(0) + ρ̄i)

λmin(Γ
−1
i )

with ρ̄i = [ρi + 2kigmax(Vi+1(0) + ρ̄i+1)]/λi.

Considering (3.78), we know that

V (t) ≤ C0 (3.84)

with C0 =
∑n

i=1 Vi(0)+ ρ̄i, from which we can conclude that zi and Ŵi are bounded,

i = 1, · · · , n. Since z1 = x1−yd and yd is bounded, x1 is bounded. For x2 = z2 +α1,

since α1 is function of bounded signals z1, Z1, Ŵ1, α1 is thus bounded, which in

turn leads to the boundedness of x2. Following the same way, we can prove one by

one that all αi−1 and xi, i = 3, ..., n are bounded. Therefore, the systems’ states

xi, i = 1, ..., n are bounded.

Considering (3.78), we know that

n∑
i=1

z2
i ≤ 2gmaxV (t),

n∑
i=1

‖W̃i‖2 ≤ 2V (t)

λmin(Γ
−1
1 , ..., Γ−1

n )
(3.85)

From (3.84) and (3.85), we readily have the compact set ΩZ defined in (3.76) over

which the NN approximation is carried out.

In addition, from (3.80) and (3.83), we have that limt→∞ ‖z‖2 = 2gmax
∑n

i=1 ρ̄i. Let

µ = 2gmax
∑n

i=1 ρ̄i. We can conclude that the vector z will eventually converge to

the compact set ΩS defined in (3.77). This completes the proof. ♦

3.3.3 Conclusion

In this section, decoupled adaptive neural network backstepping control has been

presented as a general tool for control system design, and it has been successfully

applied to a class of strict-feedback nonlinear systems with unknown system func-

tions. It has been proved that the proposed systematic design method is able to

guarantee semi-globally uniformly ultimately boundedness of all the signals in the

closed-loop system and the tracking error is proven to converge to a small neigh-

borhood of the origin. In addition, the residual set of each state based on new

coordinate in the closed-loop can be determined respectively.
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Chapter 4

Adaptive NN Control of

Nonlinear Systems with Unknown

Time Delays

4.1 Introduction

Adaptive control has proven its great capability in compensating for linearly pa-

rameterized uncertainties. To obtain global stability, some restrictions have to be

made to system nonlinearities such as matching conditions [1], extended matching

conditions [2], or growth conditions [3]. To overcome these restrictions, a recursive

design procedure called adaptive backstepping design was developed in [5]. The

overparametrization problem was then removed in [14] by introducing the concept

of tuning function. Several adaptive approaches for nonlinear systems with trian-

gular structures have been proposed in [15][117]. Robust adaptive backstepping

control has been studied for certain class of nonlinear systems whose uncertain-

ties are not only from parametric ones but also from unknown nonlinear functions

[15][86][24] and among others.

For system ẋ = f(x) + g(x)u, the unknown function g(x) causes great design dif-

ficulty in adaptive control. Based on feedback linearization, certainty equivalent

control u = [−f̂(x) + v]/ĝ(x) is usually taken, where f̂(x) and ĝ(x) are estimates
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of f(x) and g(x), and measures have to be taken to avoid controller singularity

when ĝ(x) = 0. Although the system’s virtual control coefficients are assumed to

be unknown nonlinear functions of states, their signs are assumed to be known as

strictly either positive or negative. Under this assumption, stable neural network

controllers have been constructed in [51][118][119][31] and in [89][90] by estimating

the derivation of the control Lyapunov function. To avoid the singularity problem,

integral Lyapunov functions have been developed in [120][88], and semi-globally

stable adaptive controllers are developed, which do not require the estimate of the

unknown function g(x). However, the controller design becomes quite complicated

due to the introduction of the integral Lyapunov functions especially combined with

backstepping design. In [121], a novel stable neural network control scheme was de-

veloped based on the simple quadratic Lyapunov function under mild assumptions

on the system functions, by which the singularity problem was effectively avoided.

Practically, systems with time delays are frequently encountered (e.g., process con-

trol). Time-delayed linear systems have been intensively investigated as summa-

rized in [122][92]. The existence of time delays may degrade the control perfor-

mance and make the stabilization problem become more difficult. However, the

useful tools such as linear matrix inequalities (LMIs) is hard to apply to nonlinear

systems with time delays. Lyapunov design has been proven to be an effective tool

in controller design for nonlinear systems. One major difficulty lies in the con-

trol of time-delayed nonlinear systems is that the delays are usually not perfectly

known. One way to ensure stability robustness with respect to this uncertainty

is to employ stability criteria valid for any nonnegative value of the delays, i.e.,

delay-independent results. A class of quadratic Lyapunov-Krasovskii functionals

originated in [123] has been used early as checking criteria for time-delay systems’

stability. The unknown time delays are the main issue to be dealt with for the

extension of backstepping design to such kinds of systems. A stabilizing controller

design based on the Lyapunov-Krasovskii functionals is presented in [109] for a

class of nonlinear time-delay systems with a so-called “triangular structure”. How-

ever, few attempts have been made towards the systems with unknown parameters

or unknown nonlinear functions.

Motivated by previous works on the nonlinear systems with both unknown time
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delays and uncertainties from unknown nonlinear functions, we present in this

chapter the practical adaptive controllers for a class of unknown nonlinear systems

in a strict-feedback form with unknown time delays. Using appropriate Lyapunov-

Krasovskii functionals in the Lyapunov function candidate, the uncertainties from

unknown time delays are removed such that the design of the stabilizing control

law is free from these uncertainties. In this way, the iterative backstepping design

procedure can be carried out directly. Practical stability is introduced to solve the

singularity problem [114][124][125] due to the appearance of 1/zi or 1/z2
i in the

controller and the tracking error can be made to confine in a compact domain of

attraction. Neural networks is utilized as an function approximator to tackle the

uncertainties from unknown nonlinear functions and its feasibility of approximation

is guaranteed in novelly defined compact sets. Time-varying control gains rather

than fixed gains are chosen to guarantee the boundedness of all the signals in

closed-loop system. Semi-globally uniformly ultimately boundedness (SGUUB) of

the signals in the closed-loop system is obtained and the output of the systems is

proven to converge to a small neighborhood of the desired trajectory.

To the best of our knowledge, there is little work dealing with such a kind of

systems in the literature at present stage. The proposed method expands the class

of nonlinear systems that can be handled using adaptive backstepping techniques.

The main contributions of the chapter are:

(i) the use of integral or quadratic Lyapunov functions to avoid controller sin-

gularity problem commonly encountered in feedback linearization control;

(ii) the combination of Lyapunov-Krasovskii functional and the Young’s inequal-

ity in eliminating the unknown time delay τi in the upper bounding function of

the Lyapunov functional derivative, which makes neural network parametriza-

tion with known inputs possible;

(iii) the introduction of practical robust control to avoid possible singularity prob-

lem due to the appearance of 1/zi or 1/z2
i in the controller, by which it is

guaranteed that the tracking error will be confined in a compact domain of

attraction;
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4.2 Adaptive Neural Network Control

(iv) the use of neural networks as function approximators with its feasibility being

guaranteed over the practical compact sets for the first time in the literature;

(vi) the choice of the time-varying control gains instead of fixed gains to guarantee

the boundedness of all the signals in closed-loop systems.

The rest of the chapter is organized as follows.

In Section 4.2, the neural network control for a class of nonlinear time-delay sys-

tem in strict-feedback form is presented. The problem formulation and prelimi-

naries is given in Section 4.2.1. Section 4.2.2 gives a brief introduction of linearly

parametrized neural networks. A robust adaptive controller design and its stability

analysis are presented in Section 4.2.3. A simulation example is given in Section

4.2.4 followed by Section 4.2.5, which concludes this section.

In Section 4.3, the problem studied in Section 4.2 is revisited with quadratic Lya-

punov function being used rather than the integral Lyapunov function chosen in

Section 4.2. The problem is formulated in Section 4.3.1 followed by the controller

design for first-order system, the controller design for nth-order system and the

conclusion in Sections 4.3.2, 4.3.3 and 4.3.4 respectively.

4.2 Adaptive Neural Network Control

4.2.1 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems⎧⎨
⎩ ẋi(t) = gi(x̄i(t))xi+1(t) + fi(x̄i(t)) + hi(x̄i(t − τi)), 1 ≤ i ≤ n − 1

ẋn(t) = gn(x(t))u + fn(x(t)) + hn(x(t − τn))
(4.1)

where x̄i = [x1, x2, ..., xi]
T , x = [x1, x2, ..., xn]T ∈ Rn and u ∈ R are the state

variables and system input respectively, gi(·), fi(·) and hi(·) are unknown smooth

functions, and τi are unknown time delays of the states, i = 1, ..., n. The control

objective is to design an adaptive controller for system (4.1) such that the state

x1(t) follows a desired reference signal yd(t), while all signals in the closed-loop

system are bounded. Define the desired trajectory x̄d(i+1) = [yd, ẏd, ..., y
(i)
d ]T , i =
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4.2 Adaptive Neural Network Control

1, ..., n − 1, which is a vector of yd up to its ith time derivative y
(i)
d . We have the

following assumptions for the system’s signals, unknown functions and reference

signals.

Assumption 4.2.1 The system states x(t) and their partial time derivatives, ˙̄xn−1(t),

are all available for feedback.

Remark 4.2.1 Note that the requirement for ˙̄xn−1(t) is a constraint but realistic

for many physical systems as we are not requiring ẋn which is directly influenced

by the control.

Assumption 4.2.2 The signs of gi(x̄i) are known, and there exist constants gi0

and known smooth functions ḡi(x̄i) such that gi0 ≤ |gi(x̄i)| ≤ ḡi(x̄i) < ∞, ∀x̄i ∈ Ri.

Remark 4.2.2 Assumption 4.2.2 implies that smooth functions gi(x̄i) are strictly

either positive or negative. In the following, we only consider the case when gi0 ≤
gi(x̄i) ≤ ḡi(x̄i), ∀x̄i ∈ Ri. Assumption 4.2.2 is reasonable because gi(x̄i) being away

from zero are controllable conditions of system (4.1), which is made in most of

control schemes [19]. For a given practical system, the upper bounds of gi(x̄i) are

not difficult to determine by choosing ḡi(x̄i) large enough. It should be emphasized

that the low bounds gi0 are only required for analytical purposes, their true values

are not necessarily known.

Assumption 4.2.3 The desired trajectory vectors x̄di, i = 2, ..., n are continuous

and available, and x̄di ∈ Ωdi ⊂ Ri with Ωdi known compact sets.

Assumption 4.2.4 The unknown smooth functions hi(x̄i(t)) satisfy the following

inequality |hi(x̄i(t))| ≤ ∑i
j=1 |xj(t)|�ij(x̄i(t)) where �ij(·) are known smooth func-

tions.

Assumption 4.2.5 The size of the unknown time delays is bounded by a known

constant, i.e., τi ≤ τmax, i = 1, ..., n.
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4.2 Adaptive Neural Network Control

Remark 4.2.3 There are many physical processes which are governed by nonlinear

differential equations of the form (4.1). Examples are recycled reactors, recycled

storage tanks and cold rolling mills [92]. In general, most of the recycling processes

inherit delays in their state equations.

4.2.2 Linearly Parametrized Neural Networks

A function approximator shall be used to approximate the unknown nonlinear

functions. There are two basic types of artificial neural networks, (i) linearly

parametrized neural networks (LPNNs) and (ii) multilayer neural networks (MNNs).

In control engineering, the Radial Basis Function (RBF) neural network (NN) as a

kind of LPNNs is usually used as a tool for modeling nonlinear functions because of

its nice approximation properties. The RBF NN can be considered as a two-layer

network in which the hidden layer performs a fixed nonlinear transformation with

no adjustable parameters, i.e., the input space is mapped into a new space. The

output layer then combines the outputs in the latter space linearly. Therefore, it

belongs to a class of linearly parameterized networks. In this section, the following

RBF NN [46] is used to approximate the continuous function h(Z) : Rq → R,

hnn(Z) = W T S(Z) (4.2)

where the input vector Z ∈ ΩZ ⊂ Rq, weight vector W = [w1, w2, · · · , wl]
T ∈ Rl,

the NN node number l > 1; and S(Z) = [s1(Z), · · · , sl(Z)]T , with si(Z) being

chosen as the commonly used Gaussian functions, which have the form

si(Z) = exp

[−(Z − µi)
T (Z − µi)

η2
i

]
, i = 1, 2, · · · , l

where µi = [µi1, µi2, · · · , µiq]
T is the center of the receptive field and ηi is the width

of the Gaussian function. Universal approximation results in [45, 126] indicate that,

if l is chosen sufficiently large, W T S(Z) can approximate any continuous function,

h(Z), to any desired accuracy over a compact set ΩZ ⊂ Rq to arbitrary accuracy

in the form of

h(Z) = W ∗T S(Z) + ε(Z), ∀Z ∈ ΩZ ⊂ Rq (4.3)

where W ∗ is the ideal constant weight vector, and ε(Z) is the approximation error

which is bounded over a compact set, i.e., |ε(Z)| ≤ ε∗, ∀Z ∈ ΩZ where ε∗ > 0 is an
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4.2 Adaptive Neural Network Control

unknown constant. The ideal weight vector W ∗ is an “artificial” quantity required

for analytical purposes. W ∗ is defined as the value of W that minimizes ε(Z1) for

all Z ∈ ΩZ ⊂ Rq, i.e.,

W ∗ := arg min
W∈Rl

{ sup
Z∈ΩZ

|h(Z) − W T S(Z)|}.

The stability results obtained in NN control literature are semi-global in the sense

that, as long as the input variables Z of the NNs remain within some pre-fixed

compact set, ΩZ ⊂ Rq, where the compact set ΩZ can be made as large as desired,

there exists controller(s) with sufficiently large number of NN nodes such that all

the signals in the closed-loop remain bounded.

It should be noted that RBF neural networks can be replaced by any linearly

parameterized networks without any technical difficulty such as fuzzy systems,

polynomial, splines and wavelet networks.

4.2.3 Adaptive NN Controller Design

In this section, adaptive neural control is proposed for system (4.1) and the stability

results of the closed-loop system are presented. The backstepping design procedure

contains n steps. The design of adaptive control laws is based on the following

change of coordinates: z1 = x1 − yd, zi = xi − αi−1, i = 2, ..., n, where αi(t) is an

intermediate control which shall be developed for the corresponding i-th subsystem

based on an appropriate Lyapunov function Vi(t). The control law u(t) is designed

in the last step to stabilize the whole closed-loop system based on the overall

Lyapunov function Vn, which is the sum of the previous Vi(t), i = 1, ..., n − 1.

Define g−1
iγ (x̄i) = γi(x̄i)

gi(x̄i)
, where γi(x̄i) : Ri → R+ is a smooth weighting function to

be defined later. For notation g−1
γ (x), g−1(x) indicates 1

g(x)
, and the subscript (∗)γ

denotes the multiplication operation, then (g−1
iγ )2 =

γ2
i

g2
i
. Based on the definition of

new coordinates zi, i = 1, · · · , n, the following integral scalar function will be used

in the controller design [52, 88]

Vzi
=
∫ zi

0
σg−1

iγ (x̄i−1, σ + αi−1)dσ, i = 1, · · · , n (4.4)
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4.2 Adaptive Neural Network Control

The choice of weighting function γi(·) is a key step in the controller design. The

resulting controller is not unique and the control performance also varies with

the different choice of γi(·). The apparent and convenient choices for γi(·) are

1 and ḡi(x̄i) for general nonlinear systems. Detailed explanation will be given

based on weighing function γi(x̄i) = ḡi(x̄i) in the following, while a remark will be

given directly addressing the controller design, relevant stability and performance

analysis for γi(x̄i) = 1 without derivation for conciseness.

By choosing γi(x̄i) = ḡi(x̄i), we have g−1
iγ (x̄i) = ḡi(x̄i)

gi(x̄i)
. From Assumption 4.2.2, we

know that g−1
iγ (x̄i) are bounded by known functions as 1 < g−1

iγ (x̄i) ≤ ḡi(x̄i)
gi0

. Clearly,

Vzi
are positive definite functions, i = 1, ..., n.

In this Section, the following inequalities play an important role, i = 1, ..., n

σi(Ŵi − W ∗
i )T (Ŵi − W 0

i ) ≤ 1

2
σi‖Ŵi − W ∗

i ‖2 − 1

2
σi‖W ∗

i − W 0
i ‖2 (4.5)

εi(Zi)zi(t) ≤ 1

2
ε∗

2

zi
+

1

2
z2

i (t) (4.6)

and the following even function pi(·) : R → R is introduced for the purpose of the

practical controller design in Section 4.2.3:

pi(x) =

⎧⎨
⎩ 1, |x| ≥ czi

0, |x| < czi

∀x ∈ R. (4.7)

Step 1: Let us first consider the equation in (4.1) when i = 1, i.e.,

ẋ1(t) = g1(x1(t))x2(t) + f1(x1(t)) + h1(x1(t − τ1))

From the definition for new states z1 and z2, i.e. z1 = x1 − yd and z2 = x2 − α1,

we have

ż1(t) = g1(x1(t))(z2(t) + α1(t)) + f1(x1(t)) + h1(x1(t − τ1)) − ẏd(t) (4.8)

According to (4.4), consider the following scalar smooth function

Vz1(t) =
∫ z1

0
σg−1

1γ (σ + yd)dσ

By variable change σ = θz1, we may rewrite Vz1 as Vz1 = z2
1

∫ 1
0 θg−1

1γ (θz1 + yd)dθ.

Noting that 1 ≤ g−1
1γ (θz1 + yd) ≤ ḡ1(θz1 + yd)/g10, we have

z2
1

2
≤ Vz1 ≤

z2
1

g10

∫ 1

0
θḡ1(θz1 + yd)dθ (4.9)
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The time derivative of Vz1 is

V̇z1(t) = z1(t)g
−1
1γ (x1(t))ż1(t) +

∫ z1

0
σ

∂g−1
1γ (σ + yd)

∂yd

ẏddσ

Noting (4.8) and integration by parts, we have

V̇z1(t) = z1(t)g
−1
1γ (x1(t))

[
g1(x1(t))(z2(t) + α1(t)) + f1(x1(t))

+h1(x1(t − τ1)) − ẏd(t)
]
+ ẏd(t)

[
σg−1

1γ (σ + yd)
∣∣∣z1

0
−
∫ z1

0
g−1
1γ (σ + yd)dσ

]
= z1(t)

[
ḡ1(x1(t))z2(t) + ḡ1(x1(t))α1(t) + g−1

1γ (x1(t))f1(x1(t))

+g−1
1γ (x1(t))h1(x1(t − τ1)) − ẏd(t)

∫ 1

0
g−1
1γ (θz1 + yd)dθ

]

Applying Assumption 4.2.4, we have

V̇z1(t) ≤ z1(t)[ḡ1(x1(t))z2(t) + ḡ1(x1(t))α1(t) + g−1
1γ (x1(t))f1(x1(t))

−ẏd

∫ 1

0
g−1
1γ (θz1 + yd)dθ]

+|z1(t)|g−1
1γ (x1(t))|x1(t − τ1)|�11(x1(t − τ1)) (4.10)

By using Young’s Inequality, (4.10) becomes

V̇z1(t) ≤ z1(t)[ḡ1(x1(t))z2(t) + ḡ1(x1(t))α1(t) + g−1
1γ (x1(t))f1(x1(t))

−ẏd

∫ 1

0
g−1
1γ (θz1 + yd)dθ] +

1

2
z2
1(t)[g

−1
1γ (x1(t))]

2

+
1

2
x2

1(t − τ1)�
2
11(x1(t − τ1)) (4.11)

In standard iterative backstepping design, α1(t) is usually designed to stabilize the

z1-subsystem except for the coupling term ḡ1z1z2 to be dealt with in the next step.

In doing so under the assumption of known functions, one more difficulty exists in

the new problem setting. Although �11(·) is a known function, it cannot be utilized

in designing α1(t) as x1(t− τ1) is undetermined because of unknown time delay τ1.

Intuitively, approximation methods such as neural networks can be used to ap-

proximate the unknown functions. The unknown functions g1(·) and f1(·) can be

dealt with in this way without any problem. However, due to the existence of the

unknown time delay τ1, functions of x1(t − τ1) are hard to be approximated using

neural networks since the input x1(t − τ1) is undetermined because of the uncer-

tain τ1. To overcome the design difficulties from the unknown time delay τ1, the
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following Lyapunov-Krasovskii functional is considered

VU1(t) =
∫ t

t−τ1
U1(x1(τ))dτ

where U1(·) is a positive definite function chosen as

U1(x1(t)) =
1

2
x2

1(t)�
2
11(x1(t))

The time derivative of VU1(t) is

V̇U1(t) = U1(x1(t)) − U1(x1(t − τ1)) (4.12)

which can be used to cancel the time-delay term on the right hand side of (4.11)

and thus eliminate the design difficulty from the unknown time delay τ1 without

introducing any uncertainties to the system. Accordingly, we obtain

V̇z1(t) + V̇U1(t) ≤ z1(t)[ḡ1(x1(t))z2(t) + ḡ1(x1(t))α1(t) + g−1
1γ (x1(t))f1(x1(t))

−ẏd

∫ 1

0
g−1
1γ (θz1 + yd)dθ +

1

2
z1(t)[g

−1
1γ (x1(t))]

2

+
1

2z1(t)
x2

1(t)�
2
11(x1(t))] (4.13)

Comparing (4.13) with (4.11), it is found that the difficulty from the unknown time

delay τ1 has been eliminated by introducing the Lyapunov-Krasovskii functional

VU1(t). By differentiating VU1(t) with respect to time, the unknown time delay

term U1(x1(t− τ1)) = 1
2
x2

1(t− τ1)�
2
11(x1(t− τ1)) appeared in (4.12) can be used for

exact cancellation on the right hand side of (4.11). The remaining term U1(x1(t))

from V̇U1(t) is a known function of known variables, which does not introduce any

uncertainties to the system. Therefore, the design of intermediate control α1(t) is

free from unknown time delay τ1 at present stage.

For conciseness of notation, we will omit the time variables t and t− τ1 after time-

delay terms have been eliminated. Under the assumption of exact knowledge, the

certainty equivalent control is

α∗
1 =

1

ḡ1(x1)
[−k1(t)z1 − Q1(Z1)] (4.14)

where

Q1(Z1) = g−1
1γ (x1)f1(x1) − ẏd

∫ 1

0
g−1
1γ (θz1 + yd)dθ +

1

2
z1(g

−1
1γ )2 +

1

2z1

x2
1�

2
11(x1)
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with Z1 = [x1, yd, ẏd]
T ∈ ΩZ1 ⊂ R3 and ΩZ1 := {z1, x̄d2|z1 ∈ R, x̄d2 ∈ Ωd2}.

It is apparent that controller singularity may occur. In addition, it is certain

that α∗
1 is not an admissible control, since α∗

1 is not well-defined when z1 = 0 as

limz1→0 2z1 = 0, limz1→0 x2
1�

2
11(x1) �= 0 and L’Hopital’s rule [112] is not applicable

to obtain the limit limz1→0
x2
1�2

11(x1)

2z1
. Therefore, care must be taken to guarantee

the boundedness of the controller.

It is noted that point z1 = 0 is not only an isolated point in ΩZ1 , but also the

case that the system reaches the origin at this point. From a practical point of

view, once the system reaches its origin, no control action should be taken for less

power consumption. For ease of discussion, let us define sets Ωcz1
⊂ ΩZ1 and Ω0

Z1

as follows

Ωcz1
:= {z1

∣∣∣ |z1| < cz1} (4.15)

Ω0
Z1

:= ΩZ1 − Ωcz1
(4.16)

where cz1 is a constant that can be chosen arbitrarily small and “−” in (4.16) is

used to denote the complement of set B in set A as A−B := {x|x ∈ A and x /∈ B}.

Accordingly, the following practical control law is proposed

α∗
1 =

p1(z1)

ḡ1(x1)
[−k1(t)z1 − Q1(Z1)] (4.17)

where pi(·) is defined in (4.7).

Since f(·) and g(·) are unknown smooth functions, the desired practical control

α∗
1 in (4.17) cannot be implemented in practice. Neural networks can be used

to approximate the unknown function Q1(Z1). Note that control action is only

activated when z1 ∈ Ω0
Z1

, which means unknown function Q1(Z1) is approximated

by neural networks over the set Ω0
Z1

. According to the main result stated in [127],

any real-valued continuous function can be arbitrarily closely approximated by a

network of RBF type over a compact set. The compactness of set Ω0
Z1

is a must to

guarantee the feasibility of neural networks approximation.

The following lemma shows the compactness of set Ω0
z1

, which is useful to re-

construct the compact domain of neural network approximation.

Lemma 4.2.1 Set Ω0
Z1

is a compact set.
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Proof: First, we show that Ω0
Z1

is a closed set. From(4.16) and applying De

Morgan’s laws, we have

Ω0c
Z1

= Ωc
Z1

∪ Ωcz1
(4.18)

where Ω0c
Z1

and Ωc
Z1

denote the complements of Ω0
Z1

and ΩZ1 respectively. Since

ΩZ1 is a compact set, i.e., it is closed and bounded ([128], Theorem 1.6), Ωc
Z1

is an

open set. In addition, Ωcz1
is also an open set from its definition. From (4.18), we

know that Ω0c
Z1

is an open set, which means that its complement Ω0
Z1

is a closed set.

Second, from (4.16), we know that Ω0
Z1

⊂ ΩZ1 . Since a closed subset of a compact

set is compact ([128], Remark 1.30) , we can conclude that Ω0
Z1

is a compact set.

♦

Based on Lemma 4.2.1, it is known that Q1(Z1) is continuous and well-defined over

compact set Ω0
Z1

and can be approximated by neural networks to arbitrary any

accuracy as follows

Q1(Z1) = W ∗
1

T S(Z1) + ε1(Z1)

where ε1(Z1) is the approximation error. As the ideal weight W ∗
1 is unknown, we

shall use its estimate Ŵ1 instead, which forms the intermediate control α1 as

α1(t) =
p1(z1)

ḡ1(x1)
[−k1(t)z1 − Ŵ T

1 S(Z1)] (4.19)

Note that Q1(Z1) contains unknown functions as well as known ones and is ap-

proximated by NN as a whole. In doing so, although we may have lost some useful

information of the system by lumping the known terms into unknown terms, the

possibly controller singularity problem is effectively avoided. The scheme also ap-

plies to the following steps. To demonstrate the power of approximation-based

control law, we would like to present the following arguments.

Remark 4.2.4 In Section 4.2, we are to present an adaptive neural network con-

troller that is well-defined and guarantee the boundedness of all the signals in the

closed-loop. In fact, in order to achieve the convergence of tracking error to zero,

the desired controller α∗
1 in (4.14) is not well-defined when z1 = 0, under the as-

sumption of exact knowledge by following the standard derivation. Alternatively,

we have to relax our control objective to a small ball of origin rather than the ori-

gin. It is really a pity for the powerful model-based control. However, we find that

77



4.2 Adaptive Neural Network Control

problem can be elegantly solved by using approximation-based controller design over

redefined compact sets although only SGUUB can be guaranteed.

Remark 4.2.5 It is noted that the tracking problem is discussed throughout the

section. If the regulation problem is discussed, the change of coordinates will be

z1 = x1, zi = xi − αi−1, i = 2, · · · , n, in which the slight difference from tracking

problems lies in the definition of z1. In this case, (4.13) becomes

V̇z1(t) + V̇U1(t) ≤ z1(t)
{
ḡ1(x1(t))z2(t) + ḡ1(x1(t))α1(t) + g−1

1γ (x1(t))f1(x1(t))

+
1

2
z1(t)[g

−1
1γ (x1(t))]

2 +
1

2
x1(t)�

2
11(x1(t))

}
(4.20)

Comparing (4.20) with (4.13), it is found that the term 1
2z1

x2
1�

2
11(x1) actually be-

comes 1
2
x1�

2
11(x1). This is due to the cancellation of z1 and x1 to each other. In

this case, the desired intermediate control α1(t) can be chosen as

α∗
1(t) =

1

ḡ1(x1)

[
− k1(t)z1(t) − Q1(Z1(t)) − 1

2
x1(t)�

2
11(x1(t))

]

where

Q1(Z1) = g−1
1γ (x1(t))f1(x1(t)) +

1

2
z1(t)[g

−1
1γ (x1(t))]

2

Note that (i) no controller singularity problem will occur; and (ii) useful sys-

tem information is utilized as much as possible as well-defined and known term
1
2
x1(t)�

2
11(x1(t)) is used for constructing the control α∗

1 rather than being incorpo-

rated into Q1(Z1) as unknown function. However, in the rest of steps of the iterative

backstepping design for regulation problem, similar controller singularity problems

from possibly singular terms will still occur. This is because that the cancellation

of zi to xi will no longer be possible since zi �= xi for i = 2, · · · , n. The controller

singularity problem can only be solved using the techniques stated before for the rest

of steps.

For uniformity of notation, we define sets Ωczi
⊂ ΩZi

and Ω0
Zi

, i = 2, ..., n as

Ωczi
:= {zi

∣∣∣ |zi| < czi
} (4.21)

Ω0
Zi

:= ΩZi
− Ωczi

(4.22)

Note that the control objective is to show that certain compact set ΩS is domain of

attraction in the sense that for all bounded initial conditions, there exists ΩS such
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that all closed-loop signals will eventually converge to ΩS. i.e., all Zi(t) starting

from within Ω0
Zi

will enter into ΩS and will stay within ΩS thereafter.

In the following steps, αi is designed for i-th subsystem, i = 2, · · · , n and u(t) is

designed for n-th subsystem, and the unknown functions Qi(Zi), i = 2, ..., n will

be approximated by neural networks as

Qi(Zi) = W ∗
i

T S(Zi) + εi(Zi), ∀Zi ∈ Ω0
Zi

(4.23)

Consider the Lyapunov function candidate V1(t) as

V1(t) = Vz1(t) + VU1(t) +
1

2
(Ŵ1(t) − W ∗

1 )T Γ−1
1 (Ŵ1(t) − W ∗

1 ) (4.24)

Its time derivative along (4.13), (4.19) and (4.23) for z1 ∈ Ω0
Z1

is

V̇1 ≤ −k1(t)z
2
1 + ḡ1(x1)z1z2 − (Ŵ1 − W ∗

1 )T S(Z1)z1 + z1εz1

+(Ŵ1 − W ∗
1 )T Γ−1

1
˙̂

W 1 (4.25)

The following practical adaptive law is given for on-line tuning the NN weights

˙̂
W 1 = p1(z1)Γ1[S(Z1)z1 − σ1(Ŵ1 − W 0

1 )] (4.26)

where σ1 is a small constant and is to introduce the σ−modification for the closed-

loop system.

Substituting (4.26) into (4.25) and using (4.5) and (4.6), we have

V̇1 ≤ −k1(t)z
2
1 −

1

2
σ1‖Ŵ1 − W ∗

1 ‖2 + ḡ1(x1)z1z2 + c1 (4.27)

where

c1 :=
1

2
σ1‖W ∗

1 − W 0
1 ‖2 +

1

2
ε∗

2

z1

For z1 ∈ Ω0
Z1

, noting (4.9) and choosing

k1(t) =
1

ε10

[1 +
∫ 1

0
θḡ1(θz1 + yd)dθ +

1

z2
1

∫ t

t−τmax

1

2
x2

1(τ)�2
11(x1(τ))dτ ] (4.28)

with 0 < ε10 ≤ 2, we have

V̇1 ≤ − 1

ε10

z2
1 −

g10

ε10

Vz1 −
1

ε10

∫ t

t−τ1

1

2
x2

1(τ)�2
11(x1(τ))dτ

−1

2
σ1‖Ŵ1 − W ∗

1 ‖2 + ḡ1(x1)z1z2 + c1 (4.29)
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Since [t − τ1, t] ⊂ [t − τmax, t], we have the inequality∫ t

t−τ1

1

2
x2

1(τ)�2
11(x1(τ))dτ ≤

∫ t

t−τmax

1

2
x2

1(τ)�2
11(x1(τ))dτ

Accordingly, (4.29) becomes

V̇1 ≤ ḡ1(x1)z1z2 − g10

ε10

Vz1 −
1

ε10

VU1 −
1

2
σ1‖Ŵ1 − W ∗

1 ‖2 + c1 (4.30)

where the coupling term ḡ1(x1)z1z2 will be handled in the next step.

Remark 4.2.6 Applying Young’s inequality, we known that ḡ1(x1)z1z2 ≤ 1
2
z2
1 +

1
2
ḡ2
1(x1)z

2
2. The choice for ε10 is to guarantee that −( 1

ε10
− 1

2
)z2

1 ≤ 0 so that the

undesired destabilizing term 1
2
z2
1 can be suppressed.

Step 2: Since z2 = x2 − α1, the time derivative of z2 is given by

ż2(t) = ẋ2(t) − α̇1(t)

= g2(x̄2(t))x3(t) + f2(x̄2(t)) + h2(x̄2(t − τ2)) − α̇1(t) (4.31)

Again, by viewing x3(t) as a virtual control, we may design a control input α2 for

(4.31). Since z3(t) = x3(t) − α2(t), we have

ż2(t) = g2(x̄2(t))(z3(t) + α2(t)) + f2(x̄2(t)) + h2(x̄2(t − τ2)) − α̇1(t)

Consider the following scalar function

Vz2(t) =
∫ z2

0
σg−1

2γ (x1, σ + α1)dσ

Its time derivative is given by

V̇z2 =
∂Vz2

∂z2

ż2 +
∂Vz2

∂x1

ẋ1 +
∂Vz2

∂α1

α̇1

= z2g
−1
2γ (x̄2)ż2 +

∫ z2

0
σ
[∂g−1

2γ (x1, σ + α1)

∂x1

ẋ1

+
∂g−1

2γ (x1, σ + α1)

∂α1

α̇1

]
dσ (4.32)

Noting that∫ z2

0
σ

∂g−1
2γ (x1, σ + α1)

∂x1

ẋ1dσ = z2
2 ẋ1

∫ 1

0
θ
∂g−1

2γ (x1, θz2 + α1)

∂x1

dθ

∫ z2

0
σ

∂g−1
2γ (x1, σ + α1)

∂α1

α̇1dσ = α̇1

[
z2g

−1
2γ (x̄2) − z2

∫ 1

0
g−1
2γ (x1, θz2 + α1)dθ

]

α̇1 =
∂α1

∂x1

ẋ1 + ω1, ω1 =
∂α1

∂x̄d2

˙̄xd2 +
∂α1

∂Ŵ1

˙̂
W 1
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and using (4.31), (4.32) becomes

V̇z2(t) = z2(t)
[
ḡ2(x̄2(t))(z3(t) + α2(t))

+g−1
2γ (x̄2(t))f2(x̄2(t)) + g−1

2γ (x̄2(t))h2(x̄2(t − τ2))

+ẋ1z2(t)
∫ 1

0
θ
∂g−1

2γ (x1, θz2 + α1)

∂x1

dθ − α̇1

∫ 1

0
g−1
2γ (x1, θz2 + α1)dθ

]

Noting Assumption 4.2.4, we have

V̇z2(t) = z2(t)
[
ḡ2(x̄2(t))(z3(t) + α2(t)) + g−1

2γ (x̄2(t))f2(x̄2(t)) +
1

2
z2(t)(g

−1
2γ )2

+ẋ1z2(t)
∫ 1

0
θ
∂g−1

2γ (x1, θz2 + α1)

∂x1

dθ − α̇1

∫ 1

0
g−1
2γ (x1, θz2 + α1)dθ

]

+
1

2

2∑
j=1

x2
j(t − τ2)�

2
2j(x̄2(t − τ2)) (4.33)

Consider the following Lyapunov function candidate V2(t) as

V2(t) = V1(t) + Vz2(t) + VU2(t) +
1

2
(Ŵ2(t) − W ∗

2 )T Γ−1
2 (Ŵ2(t) − W ∗

2 )

where

VU2(t) =
∫ t

t−τ2
U2(x̄2(τ))dτ

with U2(·) being a positive definite function which is defined by

U2(x̄2(t)) =
1

2

2∑
j=1

x2
j(t)�

2
2j(x̄2(t))

Its time derivative along (4.30) and (4.33) for z2 ∈ Ω0
Z2

is

V̇2 ≤ ḡ2(x̄2)z2z3 + z2

[
ḡ1(x1)z1 + ḡ2(x̄2)α2 + Q2(Z2)

]
+ (Ŵ2 − W ∗

2 )T Γ−1
2

˙̂
W 2

−g10

ε10

Vz1 −
1

ε10

VU1 −
1

2
σ1‖Ŵ1 − W ∗

1 ‖2 +
1

2
σ1‖W ∗

1 − W 0
1 ‖2 +

1

2
ε2
z1

(4.34)

where Q2(Z2(t)) is used to denote all the terms related to the unknown functions

g−1
2γ (·) and f2(·), which is defined by

Q2(Z2(t)) = g−1
2γ (x̄2(t))f2(x̄2(t)) +

1

2
z2(t)(g

−1
2γ )2 +

1

2z2(t)

2∑
j=1

x2
j(t)�

2
2j(x̄2(t))

+ẋ1z2(t)
∫ 1

0
θ
∂g−1

2γ (x1, θz2 + α1)

∂x1

dθ − α̇1

∫ 1

0
g−1
2γ (x1, θz2 + α1)dθ
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with Z2(t) = [x̄2, ẋ1, α1, ∂α1/∂x1, ω1]
T ∈ Ω0

z2
⊂ R6.

Similarly, we have the following intermediate adaptive neural network control law

α2 =
p2(z2)

ḡ2(x̄2)
[−ḡ1(x1)z1(t) − k2(t)z2 − Ŵ T

2 S(Z2)] (4.35)

˙̂
W 2 = p2(z2)Γ2[S(Z2)z2 − σ2(Ŵ2 − W 0

2 )] (4.36)

where σ2 is a small constant and is to introduce the σ−modification for the closed-

loop system.

Substituting (4.35) and (4.36) into (4.34), and using (4.5) and (4.6), we have

V̇2(t) ≤ ḡ2(x̄2(t))z2(t)z3(t) − (k2(t) − 1

2
)z2

2(t) −
1

2
σ2‖Ŵ2 − W ∗

2 ‖2

−g10

ε10

Vz1 −
1

ε10

VU1 −
1

2
σ1‖Ŵ1 − W ∗

1 ‖2 + c1 + c2

where

c2 :=
1

2
σ2‖W ∗

2 − W 0
2 ‖2 +

1

2
ε∗

2

z2

For z2 ∈ Ω0
Z2

, noting (4.9) and choosing

k2(t) =
1

ε20

[
1 +

∫ 1

0
θḡ2(x1, θz2 + α1)dθ +

∫ t
0

1
2

∑2
j=1 x2

j(τ)�2
2j(x̄2(τ))dτ

z2
2(t)

]

with 0 < ε20 ≤ 2, we have

V̇2(t) ≤ ḡ2(x̄2(t))z2(t)z3(t) − g20

ε20

Vz2 −
1

ε20

VU2 −
1

2
σ2‖Ŵ2 − W ∗

2 ‖2

−g10

ε10

Vz1 −
1

ε10

VU1 −
1

2
σ1‖Ŵ1 − W ∗

1 ‖2 + c1 + c2

where the coupling term ḡ2(x̄2(t))z2(t)z3(t) will be handled in the next step.

Step i (2 ≤ i ≤ n − 1): Similar procedures are taken for i = 2, ..., n − 1 as in Step

1.

The dynamics of zi-subsystem is given by

żi(t) = gi(x̄i(t))[zi+1(t) + αi(t)] + fi(x̄i(t)) + hi(x̄i(t − τi)) − α̇i−1(t)

Consider the following scalar function

Vzi
(t) =

∫ zi

0
σg−1

iγ (x̄i−1, σ + αi−1)dσ (4.37)
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The time derivative of Vzi
(t) is given by

V̇zi
(t) = zi(t)[ḡi(x̄i(t))(zi+1(t) + αi(t)) + g−1

iγ (x̄i(t))fi(x̄i(t))

+g−1
iγ (x̄i(t))hi(x̄i(t − τi)) + ˙̄xi−1zi(t)

∫ 1

0
θ
∂g−1

iγ (x̄i−1, θzi + αi−1)

∂x̄i−1

dθ

−α̇i−1

∫ 1

0
g−1

iγ (x̄i−1, θzi + αi−1)dθ]

Noting Assumption 4.2.4, we have

V̇zi
(t) = zi(t)[ḡi(x̄i(t))(zi+1(t) + αi(t)) + g−1

iγ (x̄i(t))fi(x̄i(t)) +
1

2
zi(t)[g

−1
iγ (x̄i(t))]

2

+ ˙̄xi−1zi(t)
∫ 1

0
θ
∂g−1

iγ (x̄i−1, θzi + αi−1)

∂x̄i−1

dθ

−α̇i−1

∫ 1

0
g−1

iγ (x̄i−1, θzi + αi−1)dθ] +
1

2

i∑
j=1

x2
j(t − τi)�

2
ij(x̄i(t − τi)) (4.38)

Consider the following Lyapunov function candidate Vi(t) as

Vi(t) = Vi−1(t) + Vzi
(t) + VUi

(t) +
1

2
(Ŵi(t) − W ∗

i )T Γ−1
i (Ŵi(t) − W ∗

i )

where

VUi
(t) =

∫ t

t−τi

Ui(x̄i(τ))dsτ (4.39)

with Ui(·) being a positive definite function which is defined by

Ui(x̄i(t)) =
1

2

i∑
j=1

x2
j(t)�

2
ij(x̄i(t))

In Step i − 1, for zj ∈ Ω0
Zj

, j = 1, ..., i − 1, it has been obtained that

V̇i−1 ≤ ḡi−1(x̄i−1)zi−1zi +
i−1∑
j=1

( − gj0

εj0

Vzj
− 1

εj0

VUj
− 1

2
σj‖Ŵj − W ∗

j ‖2 + cj) (4.40)

where

cj :=
1

2
σ2‖W ∗

j − W 0
j ‖2 +

1

2
ε∗

2

zj

For zj ∈ Ω0
Zj

, j = 1, ..., i, the time derivative of Vi(t) along (4.38) and (4.40) is

V̇i ≤ ḡi(x̄i)zizi+1 + zi [ḡi−1(x̄i−1)zi−1 + ḡi(x̄i)αi + Qi(Zi)] + (Ŵi − W ∗
i )T Γ−1

i
˙̂

W i

+
i−1∑
j=1

( − gj0

εj0

Vzj
− 1

εj0

VUj
− 1

2
σj‖Ŵj − W ∗

j ‖2 + cj) (4.41)
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where

Qi(Zi) = g−1
iγ (x̄i)fi(x̄i) +

1

2
zi(g

−1
iγ )2 +

1

2zi(t)

i∑
j=1

x2
j(t)�

2
ij(x̄i(t))

+ ˙̄xi−1zi

∫ 1

0
θ
∂g−1

iγ (x̄i−1, θzi + αi−1)

∂x̄i−1

dθ

−α̇i−1

∫ 1

0
g−1

iγ (x̄i−1, θzi + αi−1)dθ

with Zi(t) = [x̄i, ˙̄xi−1, αi−1,
∂αi−1

∂x1
, ∂αi−1

∂x2
, ..., ∂αi−1

∂xi−1
, ωi−1] ∈ Ω0

Zi
⊂ R3i, where

α̇i−1 =
i−1∑
j=1

∂αi−1

∂xj

ẋj + ωi−1, ωi−1 =
∂αi−1

∂x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂Ŵj

˙̂
W j

Similarly, we have the following intermediate control law

αi =
pi(zi)

ḡi(x̄i)
[ − ḡi−1(x̄i−1)zi−1 − ki(t)zi − Ŵ T

i S(Zi)] (4.42)

˙̂
W i = pi(zi)Γi[S(Zi)zi − σi(Ŵi − W 0

i )] (4.43)

ki(t) =
1

εi0

[1 +
∫ 1

0
θḡi(x̄i−1, θzi + αi−1)dθ

+
1

z2
i

∫ t

t−τmax

1

2

i∑
j=1

x2
j(τ)�2

ij(x̄i(τ))dτ ] (4.44)

with 0 < εi0 ≤ 2. Substituting (4.42)-(4.44) into (4.41), and using (4.5), (4.6) and

(4.9), we have

V̇i ≤ ḡi(x̄i)zizi+1 +
i∑

j=1

( − gj0

εj0

Vzj
− 1

εj0

VUj
− 1

2
σj‖Ŵj − W ∗

j ‖2 + cj)

where the coupling term ḡi(x̄i)zizi+1 will be handled in the next step.

Step n: This is the final step, since the actual control u appears in the dynamics

of zn-subsystem as given by

żn = gn(x(t))u + fn(x(t)) + hn(x(t − τn)) − α̇n−1(t)

Consider the following scalar function

Vzn(t) =
∫ zn

0
σg−1

nγ (x̄n−1, σ + αn−1)dσ
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Its time derivative is given by

V̇zn(t) = zn(t)
[
ḡn(x(t))u(t) + g−1

nγ (x(t))fn(x(t)) + g−1
nγ (x(t))hn(x(t − τn))

+ ˙̄xn−1zn(t)
∫ 1

0
θ
∂g−1

nγ (x̄n−1, θzn + αn−1)

∂x̄n−1

dθ

−α̇n−1

∫ 1

0
g−1

nγ (x̄n−1, θzn + αn−1)dθ
]

Noting Assumption 4.2.4, we have

V̇zn(t) = zn(t)[ḡn(x(t))u(t) + g−1
nγ (x(t))fn(x(t)) +

1

2
zn(t)[g−1

nγ (x(t))]2

+ ˙̄xn−1zn(t)
∫ 1

0
θ
∂g−1

nγ (x̄n−1, θzn + αn−1)

∂x̄n−1

dθ

−α̇n−1

∫ 1

0
g−1

nγ (x̄n−1, θzn + αn−1)dθ]

+
1

2

n∑
j=1

x2
j(t − τn)�2

nj(x(t − τn)) (4.45)

Consider the following Lyapunov function candidate Vn as

Vn(t) = Vn−1(t) + Vzn(t) + VUn(t) +
1

2
(Ŵn(t) − W ∗

n)T Γ−1
n (Ŵn(t) − W ∗

n)

where

VUn(t) =
∫ t

t−τn

Un(x(τ))dτ

with Un(·) being a positive definite function which is defined by

Un(x(t)) =
1

2

n∑
j=1

x2
j(t)�

2
nj(x(t))

In Step n − 1, for zi ∈ Ω0
Zi

, i = 1, ..., n − 1, it has been obtained that

V̇n−1 ≤ ḡn−1(x̄n−1)zn−1zn +
n−1∑
j=1

(− gj0

εj0

Vzj
− 1

εj0

VUj
− 1

2
σj‖Ŵj −W ∗

j ‖2 + cj) (4.46)

For zi ∈ Ω0
Zi

, i = 1, ..., n, the time derivative of Vn(t) along (4.45) and (4.46) is

V̇n ≤ zn[ḡn−1(x̄n−1)zn−1 + ḡn(x)u + Qn(Zn)] + (Ŵn − W ∗
n)T Γ−1

n
˙̂

W n

+
n−1∑
j=1

( − gj0

εj0

Vzj
− 1

εj0

VUj
− 1

2
σj‖Ŵj − W ∗

j ‖2 + cj) (4.47)
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where

Qn(Zn) = g−1
nγ (x)fn(x) +

1

2
zn(g−1

nγ )2 +
1

2zn(t)

n∑
j=1

x2
j(t)�

2
nj(x(t))

+ ˙̄xn−1zn

∫ 1

0
θ
∂g−1

nγ (x̄n−1, θzn + αn−1)

∂x̄n−1

dθ

−α̇n−1

∫ 1

0
g−1

nγ (x̄n−1, θzn + αn−1)dθ

with Zn(t) = [x, ˙̄xn−1, αn−1,
∂αn−1

∂x1
, ∂αn−1

∂x2
, ..., ∂αn−1

∂xn−1
, ωn−1] ∈ Ω0

Zn
⊂ R3n, where

α̇n−1 =
n−1∑
j=1

∂αn−1

∂xj

ẋj + ωn−1

ωn−1 =
∂αn−1

∂x̄dn

˙̄xdn +
n−1∑
j=1

∂αn−1

∂Ŵj

˙̂
W j

We construct the following adaptive neural control law

u(t) =
pn(zn)

ḡn(x)
[ − ḡn−1(x̄n−1)zn−1 − kn(t)zn − Ŵ T

n S(Zn)] (4.48)

˙̂
W n = pn(zn)Γi[S(Zn)zn − σi(Ŵn − W 0

n)] (4.49)

kn(t) =
1

εn0

[1 +
∫ 1

0
θḡn(x̄n−1, θzn + αn−1)dθ

+
1

z2
n

∫ t

t−τmax

1

2

n∑
j=1

x2
j(τ)�2

nj(x(τ))dτ ] (4.50)

with 0 < εn0 ≤ 2. Substituting (4.48)-(4.50) into (4.47), and using (4.5), (4.6) and

(4.9), we have

V̇n(t) ≤
n∑

j=1

( − gj0

εj0

Vzj
− 1

εj0

VUj
− 1

2
σj‖Ŵj − W ∗

j ‖2 + cj) (4.51)

where

cn :=
1

2
σ2‖W ∗

n − W 0
n‖2 +

1

2
ε∗

2

zn

The following theorem shows the stability of the closed-loop adaptive system.

Theorem 4.2.1 Consider the closed-loop system consisting of the plant (4.1) un-

der Assumptions 4.2.1-4.2.5, the controller (4.48) and the NN weight updating law

(4.49). For bounded initial conditions, the following properties hold:
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(i) all signals in the closed-loop system remain semi-globally uniformly ultimately

bounded and the vector Z = [ZT
1 , ..., ZT

n ]T remains in a compact set Ω0
Z :=

Ω0
Z1

∪ ... ∪ Ω0
Zn

specified as

Ω0
Z = {Z|

n∑
i=1

z2
i ≤ 2C0,

n∑
i=1

‖W̃i‖2 ≤ 2C0

λmin(Γ
−1
i )

,

x̄di ∈ Ωdi, i = 2, ..., n, zi /∈ Ωczi
, i = 1, ..., n} (4.52)

where C0 > 0 is a constant whose size depends on the initial conditions (as

will be defined later in the proof);

(ii) the closed-loop signal z(t) = [z1, ..., zn]T ∈ Rn will eventually converge to a

compact set defined by

ΩS := {z|‖z‖2 ≤ µ} (4.53)

where µ > 0 is a constant related to the design parameters and will be defined

later in the proof, and ΩS can be made as small as desired by an appropriate

choice of the design parameters.

Proof: Consider the following Lyapunov function candidate

Vn(t) =
n∑

i=1

[Vzi
(t) + VUi

(t) +
1

2
W̃ T

i Γ−1
i W̃i] (4.54)

where Vzi
(t) and VUi

(t) are defined in (4.37) and (4.39) respectively, and (̃·) =

(̂·) − (·). The following three cases are considered.

Case 1): zi ∈ Ωczi
, i = 1, ..., n. In this case, the controls αi = 0, i = 1, ..., n − 1,

u = 0 and
˙̂

W i = 0, i = 1, ..., n. Since z1 = x1−yd and yd is bounded, x1 is bounded.

For i = 2, ..., n, xi is bounded as xi = zi + αi−1 and αi−1 = 0. In addition, Ŵi is

kept unchanged in a bounded value, i = 1, ..., n. Observing the definition for Vzi
(t)

and VUi
(t) and noting that giγ(·), �ij(·) are smooth functions, we know that for

bounded xi, zi and Ŵi, Vzi
(t) and VUi

(t) are bounded, i.e., there exists a finite CB

such that

Vn(t) ≤ CB (4.55)

Case 2): zi ∈ Ω0
Zi

, i = 1, ..., n. From (4.51), we have V̇n(t) ≤ −C1Vn(t) + C2 where

C1 =
∑n

i=1 ci and

C2 = min{g10

ε10

, ...,
gn0

εn0

,
1

ε10

, ...,
1

εn0

,
σ1

λmax(Γ
−1
1 )

, ...,
σn

λmax(Γ−1
n )

}
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Let ρ = C2/C1, it follows that

0 ≤ Vn(t) ≤ [Vn(0) − ρ]e−C1t + ρ ≤ Vn(0) + ρ (4.56)

where constant

Vn(0) =
n∑

i=1

[
∫ zi(0)

0
σg−1

iγ (x̄i−1(0), σ + αi−1(0))dσ

+
1

2
W̃ T

i (0)Γ−1
i W̃i(0)]

with g−1
iγ (x̄i−1(0), σ + αi−1(0)) = g−1

1γ (σ) for i = 1.

Case 3): Some zi ∈ Ω0
Zi

and some zj ∈ Ωczj
. In this case, the corresponding αi

or u and the adaptation law for Ŵi will be invoked for zi ∈ Ω0
Zi

while αj = 0 or

u = 0 and
˙̂

W j = 0 for zj ∈ Ωczj
. Let us define VI(t) =

∑
i(Vzi

+ VUi
+ 1

2
W̃ T

i Γ−1
i W̃i)

and VJ(t) =
∑

j(Vzj
+ VUj

+ 1
2
W̃ T

j Γ−1
j W̃j). For zj ∈ Ωczj

, we obtain that VJ(t)

is bounded, i.e., VJ(t) ≤ CJ with CJ being finite, and zi ∈ Ω0
Zi

, we have that

V̇I(t) ≤ −CI
1VI(t) + CI

2 , i.e.,

VI(t) ≤ [VI(0) − ρI ]e
−CI

1 t + ρI ≤ VI(0) + ρI (4.57)

where ρI = CI
2/C

I
1 with CI

1 =
∑

i ci and CI
2 = mini{gi0/εi0, 1/εi0, σi/λmax(Γ

−1
i )}.

Therefore, it can be obtained that

Vn(t) = VI(t) + VJ(t) ≤ VI(0) + ρI + CJ (4.58)

Thus, from (4.55), (4.56) and (4.58) for Cases 1), 2) and 3), we can conclude that

Vn(t) ≤ C0 (4.59)

where C0 = max{CB, Vn(0)+ρ, VI(0)+ρI +CJ}. From (4.59), we know that Vn(t),

zi and Ŵi, i = 1, ..., n, are bounded. Since z1 = x1 − yd and yd is bounded, x1 is

bounded. For x2 = z2 + α1, since α1 is function of bounded signals z1, Z1, Ŵ1,

α1 is thus bounded, which in turn leads to the boundedness of x2. Following the

same way, we can prove one by one that all αi−1 and xi, i = 3, ..., n are bounded.

Therefore, the systems’ states xi, i = 1, ..., n are bounded.

Considering (4.54) and the property for Vzi
(t) that

1

2
z2

i ≤ Vzi
(t) ≤ z2

i

gi0

∫ 1

0
θḡi(x̄i−1, θzi + αi−1)dθ
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we know that

n∑
i=1

z2
i ≤ 2

n∑
i=1

Vzi
(t) ≤ 2Vn(t),

n∑
i=1

‖W̃i‖2 ≤ 2Vn(t)

λmin(Γ
−1
i )

(4.60)

From (4.59) and (4.60), we readily have the compact set Ω0
Z defined in (4.52) over

which the NN approximation is carried out with its feasibility being guaranteed.

In addition, in Case 1), as zi ∈ Ωczi
, i = 1, ...n, we know that ‖z‖2 =

∑n
i=1 z2

i ≤∑n
i=1 c2

zi
. In Case 2), from (4.56) and (4.60), we have that limt→∞ ‖z‖2 = 2ρ. In

Case 3), from (4.57) and (4.60), we have that limt→∞
∑

i z
2
i = 2ρI and

∑
j z2

j ≤∑
j c2

zj
. Therefore as t → ∞, we can conclude that ‖z‖2 ≤ µ where

µ = max{2ρ, 2ρI ,
∑n

i=1 c2
zi
}, i.e., the vector z will eventually converge to the com-

pact set ΩS defined in (4.53). This completes the proof. ♦

Remark 4.2.7 Note that the choices of γi(x̄i) are not unique. By choosing γi(x̄i) =

1, we have g−1
iγ (x̄i) = 1

gi(x̄i)
[52] and Vzi

=
∫ zi
0

σ
gi(x̄i−1,σ+αi−1)

dσ, i = 1, ..., n. By Mean

Value Theorem, Vzi
can be rewritten as Vzi

=
λsz2

i

gi(x̄i−1,λszi+αi−1)
, λs ∈ (0, 1). From

Assumption 4.2.2, 0 ≤ gi0 ≤ gi(x̄i), we know that 0 < Vzi
≤ λs

g10
z2

i . The adaptive

control laws are given by

αi = pi(zi)
ḡi(x̄i)

[ − ḡi−1(x̄i−1)zi−1 − ki(t)zi − Ŵ T
i S(Zi)

− 1
2zi

∑i
j=1 x2

j�
2
ij(x̄i)]

u = pn(zn)
ḡn(x)

[ − ḡn−1(x̄n−1)zn−1 − kn(t)zn

−Ŵ T
n S(Zn) − 1

2zn

∑n
j=1 x2

j�
2
nj(x)]

˙̂
W i = pi(zi)Γi[S(Zi)zi − σi(Ŵi − W 0

i )]

ki(t) =
1

εi0

[1 + λs +
1

z2
i

∫ t

t−τmax

1

2

i∑
j=1

x2
j(τ)�2

ij(x̄i(τ))dτ ]

where 0 < εi0 ≤ 2. For bounded initial conditions, all closed-loop signals remain

bounded and the tracking error converges to a small neighborhood around zero by

appropriately choosing design parameters.

Remark 4.2.8 Note that the size of the compact set Ω0
Z is characterized by C0,

which depends on system initial conditions xi(0) and Ŵi(0) as well as the design

parameters σi, Γi, W 0
i and εi0, i = 1, ..., n. For the compact set ΩS to which the
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closed-loop signals eventually converge, its size only depends on the design parame-

ters. Therefore, it can be seen that large initial errors zi(0) and W̃i(0), i = 1, ..., n

may lead to a large transient tracking error during the initial period of adaptation,

but will not affect the final convergence of the closed-loop signals.

Remark 4.2.9 Since the function approximation property (4.3) of neural networks

is only guaranteed within a compact set, the stability result proposed is semi-global in

the following sense: Given any bounded initial compact set such that zi(0), W̃i(0) ∈
ΩI , the proposed NN controller with sufficiently large number of nodes guarantees

that all the closed-loop signals will stay within the compact set, i.e., Ω0
Z in the

section, if the compact set Ω0
Zc, over which the neural network approximation is

constructed, satisfies that Ω0
Z ⊆ Ω0

Zc, and eventually all the closed-loop signals will

converge to the steady state compact set, i.e., ΩS in the section. The relationships

among the sets are as: ΩI , ΩS ⊆ Ω0
Z ⊆ Ω0

Zc. It is apparent that the larger the

compact set Ω0
Zc over which the NN controller is built upon, the more relaxed the

initial compact set ΩI is.

4.2.4 Simulation Studies

To illustrate the proposed adaptive neural control algorithms, we consider the

following second-order plant⎧⎨
⎩ ẋ1(t) = [1 + x2

1(t)]x2(t) + x1(t)e
−0.5x1(t) + 2x2

1(t − τ1)

ẋ2(t) = [3 + cos(x1(t)x2(t))]u(t) + x1(t)x
2
2(t) + 0.2x2(t − τ2) sin(x2(t − τ2))

with the output y1 = x1, the initial condition [x1(0), x2(0)]T = [0, 0]T , and the

time delays τ1 = 2sec, τ2 = 2sec. The unknown virtual control coefficients are

g1(x1) = 1 + x2
1, g2(x̄2) = 3 + cos(x1x2). The time delay terms are: h1(x1) = 2x2

1,

h2(x2) = 0.2x2 sin(x2), which means that �11(x1) = 2|x1|, �12(x) = �21(x) = 0, and

�22(x) = 0.2. The control objective is to track the desired reference signal yd =

0.5[sin(t)+ sin(0.5t)]. For the design of adaptive neural controller, let z1 = x1 − yd,

z2 = x2 − α1. For simplicity, simulation is carried out based on Remark 4.2.7 for

the case γi(x̄i) = 1 as follows

α1(t) =

⎧⎨
⎩ −k1(t)z1(t) − Ŵ T

1 S(Z1) − 1
2z1(t)

x2
1(t)�

2
11, z1 ∈ Ω0

z1

0, z1 ∈ Ωcz1
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u(t) =

⎧⎨
⎩ −z1(t) − k2(t)z2(t) − Ŵ T

2 S(Z2) − 1
2z2(t)

x2
2�

2
22, z2 ∈ Ω0

z2

0, z2 ∈ Ωcz2

˙̂
W i = Γi[S(Zi)zi(t) − σi(Ŵi − W 0

i )], i = 1, 2

where Z1 = [x1, yd, ẏd]
T , Z2 = [x1, x2, α1,

∂α1

∂x1
, ∂α1

∂Ŵ1

˙̂
W 1]

T , and ki(t), i = 1, 2 can be

calculated by

ki(t) =

⎧⎪⎨
⎪⎩

1
εi0

[
1 + λs +

∫ t

0
1
2

∑i

j=1
x2

j (τ)�2
ij(x̄i(τ))dτ

z2
i (t)

]
, zi ∈ Ω0

zi

0, zi ∈ Ωczi

The following controller design parameters are adopted in the simulation:

Γ1 = diag{4}, Γ2 = diag{3}, σ1 = σ2 = 0.1, W 0
1 = W 0

2 = 0.01, ε10 = ε20 = 1,

λs = 0.5, and cz1 = cz2 = 1.0e−7.

In practice, the selection of the centers and widths of RBF has a great influence on

the performance of the designed controller. According to [45], Gaussian RBF NNs

arranged on a regular lattice on Rn can uniformly approximate sufficiently smooth

functions on closed, bounded subsets. Accordingly, in the following simulation

studies, the centers and widths are chosen on a regular lattice in the respective

compact sets. Specifically, neural networks Ŵ T
1 S1(Z1) contains 27 nodes (i.e., l1 =

27) with centers µl(l = 1, · · · , l1) evenly spaced in [−1, +1] × [−1, +1] × [−1, +1],

and widths η2
l = 2(l = 1, · · · , l1). Neural networks Ŵ T

2 S2(Z2) contains 243 nodes

(i.e., l2 = 243) with centers µl(l = 1, · · · , l2) evenly spaced in [−1, +1]× [−1, +1]×
[−1, +1]× [−1, +1]× [−1, +1], and widths η2

l = 3(l = 1, · · · , l2). The initial weights

are set as Ŵ1(0) = 0.0, Ŵ2(0) = 0.0.

From the theorems, we know that the integral term in control gain ki is used to

provide robustness against the uncertainties from the unknown time delays. To

illustrate this point, simulations are conducted with and without this term. Fig.

4.1 shows that the output actually blows up in a short time (less than 6 sec) without

the integral term, while satisfactory transient performance is obtained in Fig. 4.2

once the integral term was added in ki and good tracking performance is achieved

after 10 seconds learning periods. Figs. 4.3 and 4.4 show the boundedness of the

control input and the NN weights with the integral term in the control loop.

We would like to point out that the choice of czi
for control gain ki plays an

important role in achieving the desired performance. Through extensive simulation
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study, it was found that larger czi
causes chattering in control signals as shown in

Fig. 4.5 and poor control performance as shown in Fig. 4.6, smaller czi
leads to

smoother control signals as seen from Fig. 4.7 and better tracking performance

as can be seen from Fig. 4.8. Note that in all the simulations, it was found

that the weights of the neural networks are bounded, they are omitted here for

clarity. Actually, czi
can be chosen arbitrarily small but equals zero, then the

control signals generated are almost continuous, and the control performance is

much more improved.

Remark 4.2.10 As stated in [88], the integrals in control gain (4.44) might not

be solved analytically for some functions ḡi(x̄i), and may make the controller im-

plementation difficult. This problem can be dealt with by suitably choosing the

design functions ḡi(x̄i). Since the choices of ḡi(x̄i) are only required to be larger

than gi(x̄i), the designer has the freedom to find suitable ḡi(x̄i) such that the inte-

grals are analytically solvable. As an alternative scheme, one can also use on-line

numerical approximation to calculated the integral, which however requires more

computational power in practical applications.

4.2.5 Conclusion

An adaptive neural-based control has been addressed for a class of strict-feedback

nonlinear systems with unknown time delays. The unknown time delays has been

compensated for through the use of appropriate Lyapunov-Krasovskii functionals.

As a result, the iterative backstepping design can be carried out. In addition, the

controller is free from singularity problem by using the integral Lyapunov function

and practical robust neural network control. The proposed systematic backstepping

design method has been proven to be able to guarantee semi-global uniformly

ultimately boundedness of closed-loop signals and the output of the system has

been proven to converge to an arbitrarily small neighborhood of the origin.
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Figure 4.1: Output y(t)(“−”) and reference yd(“- -”) without integral term.
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Figure 4.2: Output y(t)(“−”) and reference yd(“- -”) with integral term.
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Figure 4.3: Control input u(t) with integral term.
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Figure 4.4: ‖Ŵ1‖(“−”) and ‖Ŵ2‖(“- -”) with integral term.
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Figure 4.5: y(t)(“−”) and yd(“- -”) with czi
= 0.01.
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Figure 4.6: Control input u(t) with czi
= 0.01.
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Figure 4.7: y(t)(“−”) and yd(“- -”) with czi
= 1.0e−10.
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Figure 4.8: Control input u(t) with czi
= 1.0e−10.
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4.3 Direct Neural Network Control

4.3.1 Problem Formulation

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems⎧⎨
⎩ ẋi(t) = gi(x̄i(t))xi+1(t) + fi(x̄i(t)) + hi(x̄i(t − τi)), 1 ≤ i ≤ n − 1

ẋn(t) = gn(x(t))u + fn(x(t)) + hn(x(t − τn))
(4.61)

where x̄i = [x1, x2, ..., xi]
T , x = [x1, x2, ..., xn]T ∈ Rn and u ∈ R are the state

variables and system input respectively, gi(·), fi(·) and hi(·) are unknown smooth

functions, and τi are unknown time delays of the states, i = 1, ..., n. The control

objective is to design an adaptive controller for system (4.61) such that the state

x1(t) follows a desired reference signal yd(t), while all signals in the closed-loop

system are bounded. Define the desired trajectory x̄d(i+1) = [yd, ẏd, ..., y
(i)
d ]T , i =

1, ..., n − 1, which is a vector of yd up to its ith time derivative y
(i)
d .

We have the following assumptions for the system’s signals, unknown functions and

reference signals.

A1). The system states x(t) and part of their time derivatives, ˙̄xn−1(t), are all

available for feedback.

A2). The signs of gi are known, and there exist constants gmax ≥ gmin > 0 such

that gmin ≤ |gi| ≤ gmax. There exist constants gid > 0 such that |ġi(·)| ≤ gid,

∀x̄i ∈ Ri.

A3). The desired trajectory vectors x̄di, i = 2, ..., n are continuous and available,

and x̄di ∈ Ωdi ⊂ Ri with Ωdi known compact sets.

A4). The unknown smooth functions hi(x̄i(t)) satisfy the following inequality

|hi(x̄i(t))| ≤ ∑i
j=1 |xj(t)|�ij(x̄i(t)) where �ij(·) are known smooth functions.

A5). The size of the unknown time delays is bounded by a known constant, i.e.,

τi ≤ τmax, i = 1, ..., n.

The Assumption A1) implies that unknown constants gi are strictly either positive

or negative. Without losing generality, we shall only consider the case when gi >
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0. It should be emphasized that the bounds gmin and gmax are only required for

analytical purposes, their true values are not necessarily known since they are not

used for controller design. Note that the requirement for ˙̄xn−1(t) is a constraint

but realistic for many physical systems as we are not requiring ẋn which is directly

influenced by the control.

There are many physical processes which are governed by nonlinear differential

equations of the form (4.61). Examples are recycled reactors, recycled storage

tanks and cold rolling mills [92]. In general, most of the recycling processes inherit

delays in their state equations.

The even function pi(·, ·) : R × R → R is introduced for the purpose of practical

controller design later.

pi(x, cai) =

⎧⎨
⎩ 1, |x| ≥ cai

0, |x| < cai

, ∀x ∈ R. (4.62)

4.3.2 Direct NN Control for First-order System

To illustrate the design methodology clearly, we first consider the tracking problem

of a first-order system

ẋ1(t) = g1(x1(t))u(t) + f1(x1(t)) + h1(x1(t − τ1)) (4.63)

where u(t) is the control input. Define the tracking error z1 = x1 − yd, we have

ż1(t) = g1(x1(t))u(t) + f1(x1(t)) + h1(x1(t − τ1)) − ẏd(t) (4.64)

Based on feedback linearization, the certainty equivalent control is usually taken

the form u(t) = 1
g1(x1)

[−f1(x1)+v(t)]. In the case that g1(·) and f1(·) are unknown,

their estimates ĝ1 and f̂1 shall be used instead to construct the controller and

singularity problem may occur when ĝ1(x1) = 0. To avoid the singularity problem,

we shall estimate the unknown term, e.g., f1(x1)
g1(x1)

as a whole rather than estimate

the function g1(·) and f1(·) individually.

Another design difficulty comes from the unknown time-delay τ1, which can be

compensated for by introducing the Lyapunov-Krasovskii functional in the form of

VU(t) =
∫ t

t−τ1
U(x(t))dτ (4.65)
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with U(·) ≥ 0 being a properly chosen function. The time derivative of VU(t) is

V̇U(t) = U(x(t)) − U(x(t − τ1))

among which the term U(x(t − τ1)) can be used to compensate for the unknown

time-delay terms related to τ1, while the remaining term U(x(t)) does not introduce

any uncertainties to the system.

Consider the scalar smooth function Vz1 = 1
2g1(x1)

z2
1(t) and Lyapunov-Krasovskii

functional VU1 as

VU1(t) =
1

2gmin

∫ t

t−τ1
U1(x1(t))dτ (4.66)

with U1(x1(t)) = 1
2
x2

1(t)�1(x1(t)) ≥ 0. Accordingly, we have

V̇z1(t) + V̇U1(t) =
z1(t)ż1(t)

g1(x1)
− ġ1(x1)

2g2
1(x1)

z2
1 +

1

2gmin

U1(x1(t)) − 1

2gmin

U1(x1(t − τ1))

= z1(t)
{
u(t) +

1

g1(x1)
[f1(x1(t)) + h1(x1(t − τ1)) − ẏd(t)]

}

− ġ1(x1)

2g2
1(x1)

z2
1(t) +

1

2gmin

U1(x1(t)) − 1

2gmin

U1(x1(t − τ1))

Noting Assumption A4), we have

V̇z1(t) + V̇U1(t) ≤ z1(t)
{
u(t) +

1

g1(x1)
[f1(x1(t)) − ẏd(t)]

}
− ġ1(x1)

2g2
1(x1)

z2
1(t)

+
1

g1(x1)
|z1(t)||x1(t − τ1)|�1(t − τ1)

+
1

2gmin

U1(x1(t)) − 1

2gmin

U1(x1(t − τ1)) (4.67)

The terms z1(t) and |x1(t− τ1)|�1(x1(t− τ1)), which are entangled in their present

form, shall be separated such that the terms with unknown time delay can be dealt

with separately. Using Young’s inequality, (4.67) becomes

V̇z1(t) + V̇U1(t) ≤ z1(t)
{
u(t) +

1

g1(x1)
[f1(x1(t)) − ẏd(t) +

1

2
z1(t)]

}
− ġ1(x1)

2g2
1(x1)

z2
1(t)

+
1

2g1(x1(t))
x2

1(t − τ1)�
2
1(x1(t − τ1))

+
1

2gmin

x2
1(t)�

2
1(x1(t)) − 1

2gmin

x2
1(t − τ1)�

2
1(x1(t − τ1)) (4.68)

As g1(x1(t)) ≥ gmin, it follows that 1
2g1

x2
1(t − τ1)�

2
1(x1(t − τ1)) ≤ 1

2gmin
x2

1(t −
τ1)�

2
1(x1(t−τ1)). In addition, from Assumption A2), we have − ġ1(x1)z2

1

2g2
1(x1)

≤ |ġ1(x1)|z2
1

2g2
1(x1)

≤
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g1d

2gmin
z2
1 . Thus, (4.68) becomes

V̇z1(t) + V̇U1(t) ≤ z1(t)[u(t) + Q1(Z1(t))] +
g1d

2gmin

z2
1 (4.69)

where

Q1(Z1(t)) =
1

g1(x1)
[f1(x1(t)) − ẏd(t) +

1

2
z1(t)] +

1

2gminz1(t)
x2

1(t)�
2
1(x1(t))

with Z1 = [x1, yd, ẏd]
T ∈ ΩZ1 ⊂ R3 and ΩZ1 := {z1, x̄d2|z1 ∈ R, x̄d2 ∈ Ωd2}.

From (4.69), it is found that the controller design is free from unknown time-delay

τ1 at present stage. For notation conciseness, we will omit the time variables t and

after time-delay terms have been eliminated.

Since f1(·) and g1(·) are unknown smooth function, neural networks shall be used

to approximate the function Q1(Z1). According to the main result stated in [127],

any real-valued continuous function can be arbitrarily closely approximated by a

network of RBF type over a compact set. However, it is apparent that Q1(Z1)

is not continuous over the compact set ΩZ1 as it is not well-defined at z1(t) = 0.

Therefore, we shall re-construct the compact set over which the neural network

approximation is feasible and valid. To this end, let us define sets Ωcz1
⊂ ΩZ1 and

Ω0
Z1

as follows

Ωcz1
:= {z1

∣∣∣ |z1| < cz1} (4.70)

Ω0
Z1

:= ΩZ1 − Ωcz1
(4.71)

From Lemma 4.2.1, we know that Ω0
Z1

is a compact set, over which function Q1(Z1)

is continuous and well-defined and can be approximated by neural networks to an

arbitrary accuracy as follows

Q1(Z1) = W ∗
1

T S(Z1) + ε1(Z1) (4.72)

where ε1(Z1) is the approximation error. Note that as the ideal weight W ∗
1 is

unknown, we shall use its estimate Ŵ1 instead in the later controller design.

As can be seen from the previous discussion, the control effort will be activated

only in the compact set Ω0
Z1

so that we would like to relax our control objective to
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boundedness of states around the origin rather than the asymptotic convergence

to origin. Accordingly, the following practical adaptive control is proposed

u(t) = p1(z1, cz1)[−k1(t)z1 − Ŵ T
1 S(Z1)] (4.73)

˙̂
W 1 = p1(z1, cz1)Γ1[S(Z1)z1 − σ1(Ŵ1 − W 0

1 )] (4.74)

where p1(·, ·) is defined in (4.62), matrix Γ1 = ΓT
1 > 0, σ1 is a small constant

to introduce the σ-modification for the closed-loop system, and k1(t) > 0 will be

specified later.

The following theorem gives the stability analysis of the proposed controller design.

Theorem 4.3.1 Consider the closed-loop systems consisting of the first-order plant

(4.63), the controller (4.73), if the gain k1(t) = k10 + k11 + k12(t) is chosen with

constants k∗
10

�
= k10 − g1d

2gmin
> 0, k11 > 0, and

k12(t) =
ε10

z2
1

∫ t

t−τmax

1

2
x2

1(τ)�2
1(x1(τ))dτ (4.75)

with constant ε10 > 0, and the NN weights are updated by (4.74), then for bounded

initial conditions x1(0) and Ŵ1(0), all signals in the closed-loop systems are SGUUB,

and the vector Z1 remains in a compact set Ω0
Z1

specified by

Ω0
Z1

=

{
Z1

∣∣∣∣∣z2
1 ≤ 2gmaxC01, ‖Ŵ1‖2 ≤ 2C01

λmin(Γ
−1
1 )

, x̄d2 ∈ Ωd2, z1 /∈ Ωcz1

}
(4.76)

whose size, C01 > 0, can be adjusted by appropriately choosing the design parame-

ters.

Proof: Consider the Lyapunov function candidate V1(t) as

V1(t) = Vz1(t) + VU1(t) +
1

2
(Ŵ1(t) − W ∗

1 )T Γ−1
1 (Ŵ1(t) − W ∗

1 ) (4.77)

Its time derivative along (4.69) is

V̇1(t) ≤ z1(t)[u(t) + Q1(Z1(t))] +
g1d

2gmin

z2
1 + (Ŵ1 − W ∗

1 )T Γ−1
1

˙̂
W 1 (4.78)

Substituting (4.72), (4.73) and (4.74) into (4.78) yields

V̇1(t) ≤ −(p1k10 − g1d

2gmin

)z2
1 − p1k12(t)z

2
1 − p1k11z

2
1 + ε(Z1)z1

+(1 − p1)W
∗T

1 S(Z1)z1 − p1σ1(Ŵ1 − W ∗
1 )T (Ŵ1 − W 0

1 ) (4.79)
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Now, the stability analysis will be carried out in the following two Regions: (i)

z1 ∈ Ω0
Z1

, and (ii) z1 ∈ Ωcz1
.

Region (i) z1 ∈ Ω0
Z1

: In this region, p1(z1, cz1) = 1, eq. (4.79) becomes

V̇1(t) ≤ −(k10 − g1d

2gmin

)z2
1 − k12(t)z

2
1 − k11z

2
1 + ε(Z1)z1

−σ1(Ŵ1 − W ∗
1 )T (Ŵ1 − W 0

1 ) (4.80)

Noting the following inequalities

−k11z
2
1 + z1ε1(Z1) ≤ −k11z

2
1 + |z1|ε∗z1

≤ ε∗
2

z1

4k11

−σ1(Ŵ1 − W ∗
1 )T (Ŵ1 − W 0

1 ) ≤ −1

2
σ1‖Ŵ1 − W ∗

1 ‖2 +
1

2
σ1‖W ∗

1 − W 0
1 ‖2

and substituting (4.75) into (4.80), we have

V̇1 ≤ −k∗
10z

2
1 − ε10

∫ t

t−τmax

1

2
x2

1(τ)�2
1(x1(τ))dτ − 1

2
σ1‖Ŵ1 − W ∗

1 ‖2 + cε1 (4.81)

with cε1 := 1
2
σ1‖W ∗

1 − W 0
1 ‖2 +

ε∗
2

z1

4k11
. Since [t − τ1, t] ⊂ [t − τmax, t], we have the

inequality ∫ t

t−τ1

1

2
x2

1(τ)�2
1(x1(τ))dτ ≤

∫ t

t−τmax

1

2
x2

1(τ)�2
1(x1(τ))dτ

Accordingly, (4.81) becomes

V̇1(t) ≤ −2k∗
10gminVz1(t) − ε10gminVU1(t) −

1

2
σ1‖Ŵ1 − W ∗

1 ‖2 + cε1

≤ −c1V1(t) + cε1 (4.82)

where constant c1 > 0 is defined by

c1 := min

{
2k∗

10gmin, ε10gmin,
σ1

λmax(Γ
−1
1 )

}

Let ρ1 := cε1/c1, it follows that

0 ≤ V1(t) ≤ ρ1 + [V1(0) − ρ1]e
−c1t ≤ ρ1 + V1(0) (4.83)

Region (ii) z1 ∈ Ωcz1
: In this region, |z1| < cz1 , i.e., z1 is already bounded, and

p1 = 0, hence
˙̂

W 1 = 0. Since z1 = x1 − yd and yd is bounded, x1 is bounded. In
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addition, the adaptation for Ŵ1 has stopped and Ŵ1 is kept unchanged in bounded

value. Therefore, there exists a finite CB1 such that

V1(t) ≤ CB1 (4.84)

From (4.83) and (4.84) for Region (i) and Region (ii), we can conclude that

V1(t) ≤ C01 (4.85)

where C0 = max{CB1, ρ1 + V1(0)}. From (4.85), we know that V1(t) is bounded,

hence z1, x1, Ŵ1 are bounded.

In addition, from (4.77), we have

z2
1 ≤ 2gmaxV1(t), ‖W̃1‖2 ≤ 2V1(t)

λmin(Γ
−1
1 )

(4.86)

From (4.85) and (4.86), we readily have the compact set Ω0
Z1

specified in (4.76), over

which the NN approximation is carried out with its feasibility being guaranteed.

♦

Now we are ready to extend the above design methodology to higher-order system

using backstepping design.

4.3.3 Direct NN Control for Nth-Order System

In this section, adaptive neural control is proposed for system (4.61) and the sta-

bility results of the closed-loop system are presented. The backstepping design

procedure contains n steps. The design of adaptive control laws is based on the

following change of coordinates: z1 = x1 − yd, zi = xi − αi−1, i = 2, ..., n, where

αi(t) is an intermediate control functions designed for the corresponding i-th sub-

system based on an appropriate Lyapunov function Vi(t). The control law u(t) is

designed in the last step to stabilized the whole closed-loop system based on the

overall Lyapunov function Vn, which is partially composed of the sum of the pre-

vious Vi(t), i = 1, ..., n− 1. Note that the controller design based on such compact

sets Ω0
Zi

will render αi not differentiable at points |zi| = czi
. This problem can be

easily fixed by simply setting the differentiation at these points to be any finite
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value, say 0, and then every signal in the closed-loop system can be shown to be

bounded. Theoretically speaking, by doing so, there is no much loss either as these

points are isolated with finite energy and can be ignored. For ease and clarity of

presentation, we assume that all the control functions are differentiable throughout

this Section.

For uniformity of notation, throughout this section, define estimation errors W̃i =

Ŵi − W ∗
i , compact sets Ωczi

and Ω0
Zi

as

Ωczi
:= {zi

∣∣∣ |zi| < czi
}

Ω0
Zi

:= ΩZi
− Ωczi

where constants czi
> 0, Ŵi ∈ Rli are the estimates of ideal NN weights W ∗

i ∈
Rli , and the following integral Lyapunov functions Vzi

(t), the Lyapunov-Krasovskii

functionals VUi
(t), and the Lyapunov function candidates Vi(t) as

Vzi
(t) =

1

2gi(x̄i)
z2

i (4.87)

VUi
(t) =

1

2gmin

∫ t

t−τi

Ui(x̄i(τ))dτ (4.88)

Vi(t) = Vzi
(t) + VUi

(t) +
1

2
W̃ T

i (t)Γ−1
i W̃i(t), (4.89)

where positive functions Ui(x̄i(t)) =
∑i

j=1 x2
j(t)�

2
ij(x̄i(t)).

In the following steps, the unknown functions Qi(Zi), i = 2, ..., n, which will be

defined later, will be approximated by neural networks as

Qi(Zi) = W ∗
i

T S(Zi) + εi(Zi),∀Zi ∈ Ω0
Zi

(4.90)

ε∗zi
are the upper bounds of the NN approximation errors, i.e., |εi(Zi)| ≤ ε∗zi

with

Zi being the corresponding inputs to be defined later,

Step 1: Let us firstly consider the z1-subsystem as z1 = x1 − yd and z2 = x2 − α1

ż1(t) = g1(x1(t))[z2(t) + α1(t)] + f1(x1(t)) + h1(x1(t − τ1)) − ẏd(t) (4.91)

Consider the Lyapunov function candidate in (4.89). Following the same procedure

as in Section 4.3.2 by applying Assumption A4) and Young’s inequality, we obtain

V̇1 ≤ z1[α1 + Q1(Z1)] +
g1d

2gmin

z2
1 + z1z2 + (Ŵ1 − W ∗

1 )T Γ−1
1

˙̂
W 1 (4.92)
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Applying Young’s inequality again for z1z2, i.e., z1z2 ≤ 1
2
z2
1 + 1

2
z2
2 , (4.92) becomes

V̇1 ≤ (
g1d

2gmin

+
1

2
)z2

1 +
1

2
z2
2 + z1[α1 + Q1(Z1)] + (Ŵ1 − W ∗

1 )T Γ−1
1

˙̂
W 1 (4.93)

where

Q1(Z1) =
1

g1(x1)
[f1(x1) − ẏd +

1

2
z1] +

1

2gminz1

x2
1�

2
1(x1)

The following practical adaptive control is proposed

α1 = p1(z1, cz1)[−k1(t)z1 − Ŵ T
1 S(Z1)] (4.94)

˙̂
W 1 = p1(z1, cz1)Γ1[S(Z1)z1 − σ1(Ŵ1 − W 0

1 )] (4.95)

Substituting (4.94) and (4.95) into (4.93) yields

V̇1 ≤ −[k1(t) − g1d

2gmin

− 1

2
]z2

1 +
1

2
z2
2 + z1ε(Z1) − σ1(Ŵ1 − W ∗

1 )T (Ŵ1 − W 0
1 )

Letting k1(t) = k10 + k11 + k12(t) with constant k10, k11 > 0 such that k∗
10

�
=

k10 − g1d

2gmin
− 1

2
> 0 and

k12(t) =
ε10

z2
1

∫ t

t−τmax

1

2
x2

1(τ)�2
1(x1(τ))dτ, ε10 > 0 (4.96)

For z1 ∈ Ω0
Z1

, substituting (4.90), (4.94), (4.95), and (4.96) into (4.93) yields

V̇1(t) ≤ −2k∗
10gminVz1(t) − ε10gminVU1 −

1

2
σ1‖Ŵ1 − W ∗

1 ‖2 + cε1 +
1

2
z2
2

≤ −c1V1(t) + cε1 +
1

2
z2
2 (4.97)

where constants c1 and cε1 are defined as

c1 := min

{
2k∗

10gmin, ε10gmin,
σ1

λmax(Γ
−1
1 )

}
(4.98)

cε1 :=
1

2
σ1‖W ∗

1 − W 0
1 ‖2 +

ε∗
2

z1

4k11

(4.99)

From (4.97), we know that if z2 can be regulated as bounded, the boundedness of

V1(t), z1, x1 and Ŵ1 can be obtained as can be seen from Theorem 4.3.1.

The regulation of z2 will be left to the next step.

Step i (2 ≤ i ≤ n−1): Similar procedures are taken for i = 2, · · · , n−1 as in Step

1.
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The dynamics of zi-subsystem is given by

żi(t) = gi(x̄i(t))[zi+1(t) + αi(t)] + fi(x̄i(t)) + hi(x̄i(t − τi)) − α̇i−1(t)

Consider the Lyapunov function candidate Vi(t) in (4.89). The time derivative of

Vi(t) is

V̇i(t) = zi(t)
{
zi+1(t) + αi(t) +

1

gi(x̄i(t))
[fi(x̄i(t)) + hi(x̄i(t − τi)) − α̇i−1(t)]

}

− ġi(x̄i(t))

2g2
i (x̄i(t))

z2
i (t) +

1

2gmin

Ui(x̄i(t)) − 1

2gmin

Ui(x̄i(t − τi))

+(Ŵi(t) − W ∗
i )T Γ−1

i
˙̂

W i(t) (4.100)

Using Young’s inequality and noting Assumption A4), we have

V̇i(t) ≤ −[
ġi(x̄i)

2g2
i (x̄i)

− 1

2
]z2

i (t) +
1

2
z2

i+1(t)

+zi(t)
{
αi(t) +

1

gi(x̄i(t))
[fi(x̄i(t)) − α̇i−1(t) +

1

2
zi(t)]

}

+
1

2gi(x̄i(t))

i∑
j=1

x2
j(t − τi)�

2
ij(x̄i(t − τi))

+
1

2gmin

i∑
j=1

x2
j(t)�

2
ij(x̄i(t)) − 1

2gmin

i∑
j=1

x2
j(t − τi)�

2
ij(x̄i(t − τi))

+(Ŵi − W ∗
i )T Γ−1

i
˙̂

W i (4.101)

As gi(x̄i(t)) ≥ gmin, it follows that

1

2gi(x̄i(t))

i∑
j=1

x2
j(t − τi)�

2
ij(x̄i(t − τi)) − 1

2gmin

i∑
j=1

x2
j(t − τi)�

2
ij(x̄i(t − τi)) ≤ 0

Thus, (4.101) becomes

V̇i ≤ −[
ġi(x̄i)

2g2
i (x̄i)

− 1

2
]z2

i (t) +
1

2
z2

i+1(t) + zi[αi + Qi(Zi)]

+(Ŵi − W ∗
i )T Γ−1

i
˙̂

W i (4.102)

where

Qi(Zi) =
1

gi(x̄i)
[fi(x̄i) − α̇i−1 +

1

2
zi] +

1

2gminzi

i∑
j=1

x2
j(t)�

2
ij(x̄i(t))
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with Zi(t) = [x̄i, ˙̄xi−1, αi−1,
∂αi−1

∂x1
, ∂αi−1

∂x2
, ..., ∂αi−1

∂xi−1
, ωi−1] ∈ Ω0

Zi
⊂ R3i, where

α̇i−1 =
i−1∑
j=1

∂αi−1

∂xj

ẋj + ωi−1, ωi−1 =
∂αi−1

∂x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂Ŵj

˙̂
W j

Similarly, we have the following intermediate control law

αi = qi(zi, czi
)[−ki(t)zi − Ŵ T

i S(Zi)] (4.103)

˙̂
W i = qi(zi, czi

)Γi[S(Zi)zi − σi(Ŵi − W 0
i )] (4.104)

ki(t) = ki0 + ki1 + ki2(t), ki0, ki1 > 0, k∗
i0

�
= ki0 − gid

2gmin

− 1

2
> 0 (4.105)

ki2(t) =
εi0

z2
i

∫ t

t−τmax

1

2

i∑
j=1

x2
j(τ)�2

ij(x̄i(τ))dτ, εi0 > 0 (4.106)

For zi ∈ Ω0
Zi

, substituting (4.103)-(4.106) into (4.102), and using (4.90), we have

V̇i(t) ≤ −2k∗
i0gminVzi

(t) − εi0gminVUi
(t) − 1

2
σi‖Ŵi − W ∗

i ‖2 + cεi +
1

2
z2

i+1

≤ −ciVi(t) + cεi +
1

2
z2

i+1 (4.107)

where

ci := min

{
2k∗

i0gmin, εi0gmin,
σi

λmax(Γ
−1
i )

}
(4.108)

cεi :=
1

2
σi‖W ∗

i − W 0
i ‖2 +

ε∗
2

zi

4ki1

(4.109)

The effect of zi+1 will be handled in the next step.

Step n: This is the final step, since the actual control u appears in the dynamics

of zn-subsystem as given by

żn = gn(x(t))u + fn(x(t)) + hn(x(t − τn)) − α̇n−1(t)

Consider the Lyapunov function candidate Vn(t) given in (4.89). The time deriva-

tive of Vn(t) is

V̇n(t) = zn(t)
{
u(t) +

1

gn(x(t))
[fn(x(t)) + hn(x(t − τn)) − α̇n−1(t)]

}

− ġn(x(t))

2g2
n(xn(t))

z2
n(t) +

1

2gmin

Un(x(t)) − 1

2gmin

Un(x(t − τn))

+(Ŵn(t) − W ∗
n)T Γ−1

n
˙̂

W n(t)
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Using Young’s inequality and noting Assumption A4), we have

V̇n(t) ≤ − ġn(x)

2g2
n(x)

z2
n(t) + zn(t)

{
u(t) +

1

gn(x(t))
[fn(x(t)) − α̇n−1(t) +

1

2
zn(t)]

}

+
1

2gn(x(t))

n∑
j=1

x2
j(t − τn)�2

nj(x(t − τn))

+
1

2gmin

n∑
j=1

x2
j(t)�

2
nj(x(t)) − 1

2gmin

n∑
j=1

x2
j(t − τn)�2

nj(x(t − τn))

+(Ŵn − W ∗
n)T Γ−1

n
˙̂

W n (4.110)

As gn(x(t)) ≥ gmin, it follows that

1

2gn(x(t))

n∑
j=1

x2
j(t − τn)�2

nj(x(t − τn)) − 1

2gmin

n∑
j=1

x2
j(t − τn)�2

nj(x(t − τn)) ≤ 0

Thus, (4.110) becomes

V̇n ≤ − ġn(x)

2g2
n(x)

z2
n(t) + zn[αn + Qn(Zn)] + (Ŵn − W ∗

n)T Γ−1
n

˙̂
W n (4.111)

where

Qn(Zn) =
1

gn(x)
[fn(x) − α̇n−1 +

1

2
zn] +

1

2gminzn

n∑
j=1

x2
j(t)�

2
nj(x(t))

with Zn(t) = [x, ˙̄xn−1, αn−1,
∂αn−1

∂x1
, ∂αn−1

∂x2
, ..., ∂αn−1

∂xn−1
, ωn−1] ∈ Ω0

Zn
⊂ R3n, where

α̇n−1 =
n−1∑
j=1

∂αn−1

∂xj

ẋj + ωn−1, ωn−1 =
∂αn−1

∂x̄dn

˙̄xdn +
n−1∑
j=1

∂αn−1

∂Ŵj

˙̂
W j

Similarly, we have the following intermediate control law

u = qn(zn, czn)[−kn(t)zn − Ŵ T
n S(Zn)] (4.112)

˙̂
W n = qn(zn, czn)Γi[S(Zn)zn − σi(Ŵn − W 0

n)] (4.113)

kn(t) = kn0 + kn1 + kn2(t), kn0, kn1 > 0, k∗
n0

�
= kn0 − gnd

2gmin

> 0 (4.114)

kn2(t) =
εn0

z2
n

∫ t

t−τmax

1

2

n∑
j=1

x2
j(τ)�2

nj(x(τ))dτ, εn0 > 0 (4.115)

For zn ∈ Ω0
Zn

, substituting (4.112)-(4.115) into (4.111), and using (4.90), we have

V̇n(t) ≤ −2k∗
i0gminVzn(t) − εn0gminVUn(t) − 1

2
σn‖Ŵn − W ∗

n‖2 + cεn

≤ −cnVn(t) + cεn (4.116)
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where

cn := min

{
2k∗

n0gmin, εn0gmin,
σn

λmax(Γ−1
n )

}
(4.117)

cεn :=
1

2
σn‖W ∗

n − W 0
n‖2 +

ε∗
2

zn

4kn1

(4.118)

The following theorem shows the stability of the closed-loop adaptive system.

Theorem 4.3.2 Consider the closed-loop system consisting of the plant (4.61) un-

der Assumptions A1)-A5), the controller (4.112) and the NN weight updating law

(4.113). For bounded initial conditions, the following properties hold:

(i) all signals in the closed-loop system remain semi-globally uniformly ultimately

bounded and the vector Z = [ZT
1 , ..., ZT

n ]T remains in a compact set Ω0
Z :=

Ω0
Z1

∪ ... ∪ Ω0
Zn

specified as

Ω0
Z =

{
Z|

n∑
i=1

z2
i ≤ 2gmaxC0,

n∑
i=1

‖W̃i‖2 ≤ 2C0

λmin(Γ
−1
i )

, x̄di ∈ Ωdi, i = 2, ..., n,

zi /∈ Ωczi
, i = 1, ..., n

}
(4.119)

where C0 > 0 is a constant whose size depends on the initial conditions (as

will be defined later in the proof);

(ii) the closed-loop signal z(t) = [z1, ..., zn]T ∈ Rn will eventually converge to a

compact set defined by

ΩS := {z
∣∣∣ ‖z‖2 ≤ µ} (4.120)

with µ > 0 is a constant related to the design parameters and will be defined

later in the proof, and ΩS can be made as small as desired by an appropriate

choice of the design parameters.

Proof: Consider the following Lyapunov function candidate

V (t) =
n∑

i=1

[Vzi
(t) + VUi

(t) +
1

2
W̃ T

i Γ−1
i W̃i] (4.121)

where Vzi
(t) and VUi

(t) are defined in (4.87) and (4.88) respectively, and (̃·) =

(̂·) − (·). The following three cases are considered.
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Case 1): zi ∈ Ωczi
, i = 1, ..., n. In this case, the controls αi = 0, i = 1, ..., n − 1,

u = 0 and
˙̂

W i = 0, i = 1, ..., n. Since z1 = x1−yd and yd is bounded, x1 is bounded.

For i = 2, ..., n, xi is bounded as xi = zi + αi−1 and αi−1 = 0. In addition, Ŵi

is kept unchanged in a bounded value, i = 1, ..., n. Observing the definition for

Vzi
(t) and VUi

(t) and noting that gi(·), �ij(·) are smooth functions, we know that

for bounded xi, zi and Ŵi, Vzi
(t) and VUi

(t) are bounded, i.e., there exists a finite

CB such that

V (t) ≤ CB (4.122)

Case 2): zi ∈ Ω0
Zi

, i = 1, ..., n. From (4.116), we have V̇n(t) ≤ −cnVn(t)+ cεn where

cn and cεn are define in (4.117) and (4.118) respectively. Let ρn = cεn/cn, it follows

that

0 ≤ Vn(t) ≤ [Vn(0) − ρn]e−cnt + ρn ≤ Vn(0) + ρn (4.123)

where constant Vn(0) = 1
2gn(x(0))

z2
n(0) + 1

2
W̃ T

n (0)Γ−1
n W̃n(0)]. From (4.89), we have

z2
n ≤ 2gmaxVn(t), and ‖W̃n‖2 ≤ 2Vn(t)/λmin(Γ

−1
n ).

In Step n − 1, we have obtained

V̇n−1(t) ≤ −cn−1Vn−1(t) + cε,n−1 +
1

2
z2

n (4.124)

As z2
n ≤ 2gmaxVn(t) and Vn(t) ≤ Vn(0) + ρn, we have

V̇n−1(t) ≤ −cn−1Vn−1(t) + cε,n−1 + gmax(Vn(0) + ρn) (4.125)

Letting ρn−1 = [cε,n−1 + gmax(Vn(0) + ρn)]/cn−1, from (4.125), we have

Vn−1(t) ≤ [Vn−1(0) − ρn−1]e
−cn−1t + ρn−1 ≤ Vn−1(0) + ρn−1 (4.126)

Noting (4.89), it follows

z2
n−1 ≤ 2gmaxVn−1(t) ≤ 2gmax(Vn−1(0) + ρn−1)

Similarly, we can conclude that for i = 1, · · · , n

z2
i ≤ 2gmax(Vi(0) + ρi), ‖W̃i‖2 ≤ 2(Vi(0) + ρi)

λmin(Γ
−1
i )

with ρi = [cεi + gmax(Vi−1(0) + ρi−1)].
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Case 3): Some zi ∈ Ω0
Zi

and some zj ∈ Ωczj
. In this case, the corresponding αi

or u and the adaptation law for Ŵi will be invoked for zi ∈ Ω0
Zi

while αj = 0 or

u = 0 and
˙̂

W j = 0 for zj ∈ Ωczj
. Let us define VI(t) =

∑
i(Vzi

+ VUi
+ 1

2
W̃ T

i Γ−1
i W̃i)

and VJ(t) =
∑

j(Vzj
+ VUj

+ 1
2
W̃ T

j Γ−1
j W̃j). For zj ∈ Ωczj

, we know that VJ(t) is

bounded, i.e., VJ(t) ≤ CJ with CJ being finite, and for zi ∈ Ω0
Zi

, we obtain that

V̇i(t) ≤ −cI
i Vi(t) + cI

ε,i + 1
2
z2

i+1. Let us define ρI
i = [cI

ε,i + 1
2
max{z2

i+1}]/cI
i , we have

Vi(t) ≤ [Vi(0) − ρI
i ]e

−cI
i t + ρI

i ≤ Vi(0) + ρI
i (4.127)

Thus, VI ≤ VI(0) + ρI with VI(0) =
∑

i Vi(0) and ρI =
∑

i ρ
I
i . Therefore, it can be

obtained that

V (t) = VI(t) + VJ(t) ≤ VI(0) + ρI + CJ (4.128)

Thus, from Cases 1), 2) and 3), we can conclude that

V (t) ≤ C0 (4.129)

where C0 = max{CB,
∑n

i=1(Vi(0)+ρi), VI(0)+ρI +CJ}. From (4.129), we know that

Vi(t), zi and Ŵi, i = 1, ..., n, are bounded. Since z1 = x1−yd and yd is bounded, x1

is bounded. For x2 = z2 + α1, since α1 is function of bounded signals z1, Z1, Ŵ1,

α1 is thus bounded, which in turn leads to the boundedness of x2. Following the

same way, we can prove one by one that all αi−1 and xi, i = 3, ..., n are bounded.

Therefore, the systems’ states xi, i = 1, ..., n are bounded.

Considering (4.121), we know that

n∑
i=1

z2
i ≤ 2gmaxV (t),

n∑
i=1

‖W̃i‖2 ≤ 2V (t)

λmin(Γ
−1
1 , ..., Γ−1

n )
(4.130)

From (4.129) and (4.130), we readily have the compact set Ω0
Z defined in (4.119)

over which the NN approximation is carried out with its feasibility being guaran-

teed.

In addition, in Case 1), as zi ∈ Ωczi
, i = 1, ...n, we know that ‖z‖2 =

∑n
i=1 z2

i ≤∑n
i=1 c2

zi
. In Case 2), from (4.123) and (4.126), we have that limt→∞ ‖z‖2 =

2gmax
∑n

i=1 ρi. In Case 3), from (4.127) and (4.130), we have that limt→∞
∑

i z
2
i =

2gmaxρI and
∑

j z2
j ≤ ∑

j c2
zj

. Therefore as t → ∞, we can conclude that ‖z‖2 ≤ µ

where µ = max{2gmax
∑n

i=1 ρi, 2gmaxρI ,
∑n

i=1 c2
zi
}, i.e., the vector z will eventually

converge to the compact set ΩS defined in (4.120). This completes the proof. ♦
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The practical decoupled backstepping design procedure is illustrated in Fig. 4.9.

Remark 4.3.1 Note that the proposed design requires the information of ˙̄xn−1(t).

In fact, the requirement could be removed and similar yet much more involved design

can be developed as can be shown in Step i.

In Step i, α̇i−1 can be expressed as

α̇i−1 =
i−1∑
j=1

∂αi−1

∂xj

ẋj + ωi−1, ωi−1 =
∂αi−1

∂x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂Ŵj

˙̂
W j

=
i−1∑
j=1

∂αi−1

∂xj

[gj(x̄j(t))xj+1(t) + fj(x̄j(t)) + hj(x̄j(t − τj))] + ωi−1

Consider the quadratic function Vzi
(t) given in (4.87). Its time derivative is

V̇zi
(t) ≤ −[

ġi(x̄i)

2g2
i (x̄i)

− 1

2
]z2

i (t) +
1

2
z2

i+1(t)

+zi(t)
{
αi(t) +

1

gi(x̄i(t))
[fi(x̄i(t)) +

1

2
zi(t)

i−1∑
j=1

(
∂αi−1

∂xj

)2 +
1

2
zi(t)]

}

+
1

2gi(x̄i(t))

i∑
j=1

x2
j(t − τi)�

2
ij(x̄i(t − τi))

+
1

2gi(x̄i(t))

i−1∑
j=1

j∑
k=1

x2
k(t − τj)�

2
jk(x̄j(t − τj))

+(Ŵi − W ∗
i )T Γ−1

i
˙̂

W i

The Lyapunov-Krasovskii functional VUi
(t) is given as

VUi
(t) =

1

2gmin

i∑
j=1

∫ t

t−τj

Uj(x̄j(τ))dτ (4.131)

with positive function Uj(x̄j(t)) =
∑j

k=1 x2
k(t)�

2
jk(x̄j(t)). Considering the Lyapunov

function candidate Vi(t) given in (4.89), we can obtain (4.102) with

Qi(Zi) =
1

gi(x̄i)
[fi(x̄i) +

1

2
zi(t)

i−1∑
j=1

(
∂αi−1

∂xj

)2 +
1

2
zi] +

1

2gminzi

i∑
j=1

j∑
k=1

x2
k(t)�

2
jk(x̄j(t))

with Zi(t) = [x̄i,
∂αi−1

∂x1
, ∂αi−1

∂x2
, ..., ∂αi−1

∂xi−1
, ωi−1] ∈ Ω0

Zi
⊂ R2i. It can be seen that re-

quirement of ˙̄xi−1 has been removed and hence the number of the NN input Zi(t)

has been dramatically reduced from (3i − 1) to 2i.
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Figure 4.9: Practical decoupled backstepping design procedure.
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4.3.4 Conclusion

Practical adaptive neural control has been addressed for a class of nonlinear sys-

tems with unknown time delays in strict-feedback form. The unknown time delays

has been compensated for through the use of appropriate Lyapunov-Krasovskii

functionals. Controller singularity problems have been solved by employing practi-

cal neural network control based on decoupled backstepping design. The proposed

design has been proven to be able to guarantee semi-globally uniformly ultimate

boundedness of all the signals in the closed-loop system and the tracking error is

proven to converge to a small neighborhood of the origin. In addition, the residual

set of each states in the closed-loop systems has been determined respectively.
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Chapter 5

Robust Adaptive Control of

Nonlinear Systems with Unknown

Time Delays

5.1 Introduction

Motivated by previous works on the nonlinear systems with both unknown time

delays and uncertainties from unknown parameters and nonlinear functions, we

present in this chapter a practical robust adaptive controller for a class of un-

known nonlinear systems in a parametric-strict-feedback form [129]. Using appro-

priate Lyapunov-Krasovskii functionals in the Lyapunov function candidate, the

uncertainties from unknown time delays are removed such that the design of the

stabilizing control law is free from these uncertainties. In this way, the iterative

backstepping design procedure can be carried out directly. In addition, controller

singularities are effectively avoided by employing practical robust control. Time-

varying control gains rather than fixed gains are chosen to guarantee the bound-

edness of all the signals in closed-loop system. The global uniformly ultimately

boundedness (GUUB) of the signals in the closed-loop system is achieved and the

output of the systems is proven to converge to a small neighborhood of the desired

trajectory.
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5.1 Introduction

To the best of our knowledge, there is little work dealing with such a kind of

systems in the literature at present stage. The proposed method expands the class

of nonlinear systems that can be handled using adaptive control techniques. The

main contributions of the chapter lie in:

(i) the first employment of robust adaptive backstepping controller design to

a class of unknown nonlinear time-delay systems in strict-feedback form, in

which the unknown time delays are compensated for by using appropriate

Lyaponov-Krasovskii functionals,

(ii) the introduction of differentiable practical control in solving the controller

singularity problem, which can be carried out in backstepping design and

guarantee that the tracking error will be confined in a compact domain of

attraction,

(iii) the elegant re-grouping of unknown parameters, by which the controller sin-

gularity problem is effectively avoided, and the lumping of unknown param-

eter vectors as scalars, by which the number of parameters being estimated

is dramatically reduced and the order and complexity of the controller are

greatly reduced, and

(iv) the choice of time-varying control gains instead of fixed gains to guarantee

the boundedness of all the signals in closed-loop systems.

The rest of the chapter is organized as follows.

The problem formulation and preliminaries are given in Section 5.2. A robust

adaptive controller design is illustrated for a first-order system in Section 5.3. The

design scheme is extended to a general nth-order system with its stability proof in

Section 5.4. A simulation example is given in Section 5.5 followed by Section 5.6,

which concludes the work.
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5.2 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems

ẋi(t) = gixi+1(t) + fi(x̄i(t)) + hi(x̄i(t − τi)), 1 ≤ i ≤ n − 1

ẋn(t) = gnu(t) + fn(x(t)) + hn(x(t − τn)),

y(t) = x1(t) (5.1)

where x̄i = [x1, x2, · · · , xi]
T , x = [x1, x2, · · · , xn]T ∈ Rn, u ∈ R, y ∈ R are the

state variables, system input and output respectively, fi(·) and hi(·) are unknown

smooth functions, gi are unknown constants, and τi are unknown time delays of

the states, i = 1, · · · , n. The control objective is to design an adaptive controller

for system (5.1) such that the output y(t) follows a desired reference signal yd(t),

while all signals in the closed-loop system are bounded. Define the desired trajec-

tory x̄d(i+1) = [yd, ẏd, · · · , y(i)
d ]T , i = 1, · · · , n, which is a vector of yd up to its ith

time derivative y
(i)
d . We have the following assumptions for the system functions,

unknown time delays and reference signals.

Assumption 5.2.1 The signs of gi are known, and there exist constants gmax ≥
gmin > 0 such that gmin ≤ |gi| ≤ gmax.

The above assumption implies that unknown constants gi are either strictly positive

or strictly negative. Without losing generality, we shall only consider the case when

gi > 0. It should be emphasized that the bounds gmin and gmax are only required

for analytical purposes, their true values are not necessarily known since they are

not used for controller design.

Assumption 5.2.2 The unknown functions fi(·) and hi(·) can be expressed as

fi(x̄i(t)) = θT
fiFi(x̄i(t)) + δfi(x̄i(t))

hi(x̄i(t)) = θT
hiHi(x̄i(t)) + δhi(x̄i(t))

where Fi(·), Hi(·) are known smooth function vectors, θfi ∈ Rni, θhi ∈ Rmi are

unknown constant parameter vectors, ni, mi are positive integers, δfi(·), δhi(·) are
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unknown smooth functions, which satisfy the so-called triangular bounds conditions

|δfi(x̄i(t))| ≤ cfiφi(x̄i(t))

|δhi(x̄i(t))| ≤ chiψi(x̄i(t))

where cfi, chi are constant parameters, which are not necessarily known, and φi(·),
ψi(·) are known nonnegative smooth functions.

Assumption 5.2.2 is rather weak as only a rough form of fi(·) and hi(·) need to be

known.

Assumption 5.2.3 The size of the unknown time delays is bounded by a known

constants, i.e., τi ≤ τmax, i = 1, · · · , n.

There are many physical processes which are governed by nonlinear differential

equations of the form (5.1). Examples are recycled reactors, recycled storage tanks

and cold rolling mills [130]. In general, most of the recycling processes inherit

delays in their state equations. Compared with the systems in [109], the system

we consider in this section is more general in the sense that the uncertainty is due

to both parametric uncertainty and unknown nonlinear functions. These unknown

functions might come from inaccurate modeling or modeling reduction.

To make the problem formulation precisely, the system is presented again as follows

ẋi(t) = gixi+1(t) + θT
fiFi(x̄i(t)) + δfi(x̄i(t)) + θT

hiHi(x̄i(t − τi)) + δhi(x̄i(t − τi)),

1 ≤ i ≤ n − 1

ẋn(t) = gnu(t) + θT
fnFn(x(t)) + δfn(x(t)) + θT

hnHn(x(t − τn)) + δhn(x(t − τn)),

y(t) = x1(t) (5.2)

Assumption 5.2.4 The desired trajectory vectors x̄di ∈ Ωdi ⊂ Ri, i = 2, · · · , n are

continuous and available with Ωdi known compact set.

The following lemma is used in the controller in solving the problem of chattering.

Lemma 5.2.1 The following inequality holds for any ε1 > 0 and for any η ∈ R

0 ≤ |η| − η tanh
(

η

ε1

)
≤ kε1

where k is a constant that satisfies k = e−(k+1), i.e., k = 0.2785.
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5.3 Robust Design for First-order Systems

The following two functions are introduced for the purpose of the practical con-

troller design in the next section, and differentiable backstepping design in Section

5.4.

F1). Even function pi(·) : R → R

pi(x) =

⎧⎨
⎩ 1, |x| ≥ λai

0, |x| < λai

, ∀x ∈ R. (5.3)

F2). Even function qi(x) : R → R

qi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, |x| ≥ λai + λbi

cqi

∫ x
λai

[(λbi

2
)2 − (σ − λai − λbi

2
)2]n−idσ, λai < x < λai + λbi

cqi

∫−λai
x [(λbi

2
)2 − (σ + λai + λbi

2
)2]n−idσ, −(λai + λbi) < x < −λai

0, |x| ≤ λai

(5.4)

where cqi = [2(n−i)+1]!

λ
2(n−i)+1
bi

[(n−i)!]2
, λai, λbi > 0 and integer i ∈ R+, is (n−i)th differentiable,

i.e., qi(x) ∈ Cn−i and bounded by 1.

5.3 Robust Design for First-order Systems

To illustrate the design methodology clearly, let us consider the tracking problem

of a first-order system first

ẋ1(t) = g1u(t)+θT
f1F1(x1(t))+δf1(x1(t))+θT

h1H1(x1(t−τ1))+δh1(x1(t−τ1)) (5.5)

with u(t) being the control input. Define z1 = x1 − yd, we have

ż1(t) = g1u(t) + θT
f1F1(x1(t)) + δf1(x1(t))

+θT
h1H1(x1(t − τ1)) + δh1(x1(t − τ1)) − ẏd(t) (5.6)

Consider the scalar function Vz1(t) = 1
2g1

z2
1(t), whose time derivative along (5.6) is

V̇z1(t) = z1(t)
{
u(t) +

1

g1

[
θT

f1F1(x1(t)) + δf1(x1(t))

+θT
h1H1(x1(t − τ1)) + δh1(x1(t − τ1)) − ẏd(t)

]}
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5.3 Robust Design for First-order Systems

Since δf1(·) and δh1(·) are partially known according to Assumption 5.2.2, we have

V̇z1(t) ≤ z1(t)u(t) +
1

g1

[
z1(t)θ

T
f1F1(x1(t))

+|z1(t)|cf1φ1(x1(t)) + z1(t)θ
T
h1H1(x1(t − τ1))

+|z1(t)|ch1ψ1(x1(t − τ1)) − z1(t)ẏd(t)
]

(5.7)

Remark 5.3.1 It can be seen from (5.7) that the design difficulties come from two

system uncertainties: unknown parameters and unknown time delay τ1. Although

H1(·) and ψ1(·) are known, they are functions of delayed state x1(t − τ1), which is

undetermined due to the unknown time delay τ1. Thus, functions H1(x1(t−τ1)) and

ψ1(x1(t−τ1)) cannot be used in the controller design. In addition, the unknown time

delay τ1 and unknown parameters θT
h1 and ch1 are entangled together in a nonlinear

fashion, which makes the problem even more complex to solve. Therefore, we have

to convert these related terms into such a form that the uncertainties from τ1, θT
h1

and ch1 can be dealt with separately.

Using Young’s Inequality [131], we have

V̇z1(t) ≤ z1(t)u(t) +
1

g1

[
z1(t)θ

T
f1F1(x1(t)) + |z1(t)|cf1φ1(x1(t))

+
1

2
z2
1(t)θ

T
h1θh1 +

1

2
HT

1 (x1(t − τ1))H1(x1(t − τ1))

+
1

2
z2
1(t)c

2
h1 +

1

2
ψ2

1(x1(t − τ1)) − z1(t)ẏd(t)
]

(5.8)

where θh1 and H1(x1(t− τ1)), and ch1 and ψ1(x1(t− τ1)) are separated respectively.

In fact, parameter vector θh1 and function vector H1(x1(t−τ1)) have been lumped as

scalars by applying Young’s Inequality, for which they can be dealt with separately

as detailed later.

To overcome the design difficulties from the unknown time delay τ1, the following

Lyapunov-Krasovskii functional can be considered

VU1(t) =
1

2g1

∫ t

t−τ1
U1(x1(τ))dτ (5.9)

where U1(·) is a positive definite function chosen as

U1(x1(t)) = HT
1 (x1(t))H1(x1(t)) + ψ2

1(x1(t)) (5.10)
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5.3 Robust Design for First-order Systems

The time derivative of VU1(t) is

V̇U1(t) =
1

2g1

[
U1(x1(t)) − U1(x1(t − τ1))

]

=
1

2g1

[
HT

1 (x1)H1(x1) + ψ2
1(x1) − HT

1 (x1(t − τ1))H1(x1(t − τ1))

−ψ2
1(x1(t − τ1))

]

which can be used to cancel the time-delay terms on the right hand side of (5.8)

and thus eliminate the design difficulty from the unknown time delay τ1 without

introducing any uncertainties to the system. For notation conciseness, we will

omit the time variable after time-delay terms have been eliminated. Accordingly,

we obtain

V̇z1 + V̇U1 ≤ z1u +
1

g1

[
z1θ

T
f1F1(x1) + |z1|cf1φ1(x1)

+
1

2
z2
1θ

T
h1θh1 +

1

2
HT

1 (x1)H1(x1) +
1

2
z2
1c

2
h1 +

1

2
ψ2

1(x1) − z1ẏd

]
�
= z1(u + θT

1 Fθ1) + θ10|z1|φ10 (5.11)

where θ10 is an unknown constant, θ1 is an unknown constant vector, φ10(·) is a

known function, and Fθ1(·) is a known function vector defined below

θ10 :=
cf1

g1

, θ1 := [
θT

f1

g1

,
θT

h1θh1 + c2
h1

g1

,
1

g1

]T ∈ Rn1+2,

φ10 := φ1, Fθ1 =
[
F T

1 ,
1

2
z1,

1

2z1

(HT
1 H1 + ψ2

1) − ẏd

]T ∈ Rn1+2

Note that the design of u(t) is free from unknown time delay τ1 at present stage.

To stabilize z1(t), the following desired certainty equivalent control [59] under the

assumption of exact knowledge could be proposed as

u∗ = −k1z1 − θT
1 Fθ1 − β1(z1) (5.12)

where k1 > 0 and β1(z1) = sgn(z1)θ10φ10.

Remark 5.3.2 The introduction of θ1 has two advantages. Firstly, we only need to

estimate 1
g1

rather than g1 such that the possible controller singularity due to ĝ1 = 0

is avoided. Secondly, after applying Young’s inequality, unknown constant vector

θh1 ∈ Rm1 is lumped as a scalar θT
h1θh1. By doing so, the number of parameters being
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5.3 Robust Design for First-order Systems

estimated is dramatically reduced, which greatly reduces the order and complexity

of the controller.

However, controller singularity may occur since the proposed desired control (5.12)

is not well-defined at z1 = 0. Therefore, care must be taken to guarantee the

boundedness of the control. It is noted that the controller singularity takes place

at the point z1 = 0, where the control objective is supposed to be achieved. From a

practical point of view, once the system reaches its origin, no control action should

be taken for less power consumption. As z1 = 0 is hard to detect owing to the

existence of measurement noises, it is more practical to relax our control objective

of convergence to a bounded region rather than the origin. Next, let us show that

certain bounded region is a domain of attraction in the sense that all z1 will enter

into this region and will stay within thereafter. In the case that the parameters

are unknown, we propose the practical robust adaptive control law to guarantee

the systems stability as detailed in Lemma 5.3.1.

Lemma 5.3.1 For the first-order system (5.5), if the practical robust control law

is chosen as

u = p1(z1)
[
−k1(t)z1 − θ̂T

1 Fθ1 − β1(z1, θ̂10)
]

(5.13)

β1(z1, θ̂10) = sgn(z1)θ̂10φ10 (5.14)

where p1(·) is defined in (5.3), θ̂10 and θ̂1 are the estimates of θ10 and θ1 respectively,

k1(t) ≥ k∗ > 0 with k∗ being any positive constant, and the parameters are updated

by

˙̂
θ10 = p1(z1)γ1|z1|φ10 (5.15)

˙̂
θ1 = p1(z1)Γ1Fθ1z1 (5.16)

with γ1 > 0 and Γ1 = ΓT
1 > 0, then for bounded initial conditions x1(0), θ̂10(0) and

θ̂1(0), all signals in the closed-loop system are bounded, and the tracking error z1(t)

will finally stay in a compact set defined by Ωz1 = {z1 ∈ R | |z1| ≤ λa1}.

Proof: To show Ωz1 to be a domain of attraction, we first find a Lyapunov function

candidate V1(t) > 0 such that V̇1(t) ≤ 0, ∀z1 /∈ Ωz1 . For |z1| ≥ λa1, let us consider
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5.4 Robust Design for Nth-order Systems

the following Lyapunov function candidate

V1(t) = Vz1(t) + VU1(t) +
1

2
γ−1

1 θ̃2
10(t) +

1

2
θ̃T
1 (t)Γ−1

1 θ̃1(t)

where (̃·) = (̂·) − (·). The time derivative of V1(t) along (5.11) is

V̇1(t) ≤ z1(u + θT
1 Fθ1) + θ10|z1|φ10 + γ−1

1 θ̃10
˙̂
θ10 + θ̃T

1 Γ−1
1

˙̂
θ1 (5.17)

Substituting (5.13), (5.14), (5.15) and (5.16) into (5.17), we obtain V̇1 ≤ −k1(t)z
2
1 ≤

−k∗z2
1 ≤ 0. Hence, V1(t) is a Lyapunov function and z1(t), x1(t), θ̂10(t), θ̂1(t) are

bounded. In addition, z1 is square integrable since
∫ t
0 k∗z2

1(τ)dτ ≤ V1(0) and u(t)

is bounded due to the boundedness of x1, θ̂10 and θ̂1. Thus, ż1 is bounded. From

Barbalat’s Lemma, we know that limt→∞ z1(t) = 0. Note that the control effort

is only activated when |z1| ≥ λa1, we can conclude that for t → ∞, |z1(t)| ≤ λa1.

For |z1| < λa1, since z1 = x1 − xd,
˙̂
θ10 = 0 and

˙̂
θ1 = 0, x1 is bounded, θ̂10 and θ̂1

are kept unchanged in bounded values. We can readily conclude that the tracking

error |z1(t)| ≤ λa1 while all the other closed-loop signals are bounded. ♦

The key point of the proposed design lies in two aspects. Firstly, the Lyapunov-

Krasovskii functional is utilized such that the design difficulties from unknown

time delay has been removed. Secondly, the practical robust control scheme has

employed to avoid possible controller singularity. It is well known in [132][133] that

the above discontinuous control scheme should be avoided as it will cause chatter-

ing phenomena and excite high-frequency unmodeled dynamics. Furthermore, we

would like to extend the methodology described in this section from first-order

systems to more general nth-order systems. To achieve this objective, the iterative

backstepping design can be used, which requires the differentiation of the control u

and the control component β1 at each step. Therefore, appropriate smooth control

functions shall be used, and at the same time the controller should guarantee the

boundedness of all the signals in the closed-loop and z1 will still stay in certain

domain of attraction.

5.4 Robust Design for Nth-order Systems

In this section, the adaptive design will be extended to nth-order systems (5.2) and

the stability results of the closed-loop system are presented.
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5.4 Robust Design for Nth-order Systems

Note that the extension requires the smoothness of control functions to certain

degree, which is not straightforward but very much involved. In the recursive

backstepping design, the computation of the control function αi(t) in each step

requires that of α̇i−1(t), α̈i−2(t), ..., α
(i−1)
1 (t). As a result, αi(t) need to be at least

(n − i)th differentiable. On the other hand, the unknown time delay terms of all

the previous subsystems will appear in Step i, which have to be compensated for

one by one. In the following controller design, function qi(·) is utilized to construct

the differentiable control function. For ease of notation, the following compact sets

are defined

ΩZi
:= {zi ∈ R | |zi| ≤ λai}

Ω0I
Zi

:= {zi ∈ R | λai < |zi| < λai + λbi}
Ω0O

Zi
:= {zi ∈ R | |zi| ≥ λai + λbi}

The backstepping design procedure contains n steps. At each step, an intermediate

control function αi(t) shall be developed using an appropriate Lyapunov function

Vi(t). The design of both the control laws and the adaptive laws are based on the

following change of coordinates: z1 = x1 − yd, zi = xi − αi−1, i = 2, · · · , n.

Step 1: Let us firstly consider the z1-subsystem as

ż1(t) = g1(z2(t) + α1(t)) + θT
f1F1(x1(t)) + δf1(x1(t))

+θT
h1H1(x1(t − τ1)) + δh1(x1(t − τ1)) − ẏd(t) (5.18)

The time derivative of the scalar function Vz1(t) = 1
2g1

z2
1(t) along (5.18) is

V̇z1(t) = z1(t)z2(t) + z1(t)
{
α1(t) +

1

g1

[
θT

f1F1(x1(t)) + δf1(x1(t))

+θT
h1H1(x1(t − τ1)) + δh1(x1(t − τ1)) − ẏd(t)

]}

Following the same procedure as in section 5.3 by choosing VU1 in (5.9) and applying

Assumption 5.2.2 and Young’s inequality, we obtain

V̇z1 + V̇U1 ≤ z1z2 + z1(α1 + θT
1 Fθ1) + θ10|z1|φ10 (5.19)

As stated in section 5.3, the control objective now is to show that z1 will converge to

certain domain of attraction rather than the origin. At the same time, the control

functions shall be smooth or at least differentiable to certain degree.
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5.4 Robust Design for Nth-order Systems

Let us consider the following smooth adaptive scheme

α1 = q1(z1)
[
−k1(t)z1 − θ̂T

1 Fθ1 − β1

]
(5.20)

k1(t) = k10 +
1

z2
1

∫ t

t−τmax

U1(x1(τ))dτ (5.21)

β1 = θ̂10ξ1 (5.22)

ξ1 = φ10 tanh
(z1φ10

ε1

)
(5.23)

˙̂
θ10 = q1(z1)γ1(z1ξ1 − σ10θ̂10) (5.24)

˙̂
θ1 = q1(z1)Γ1(Fθ1z1 − σ1θ̂1) (5.25)

where k10 > 0 is a design constant, ε1 > 0 is a small constant, σ10, σ1 > 0 are small

constants to introduce the σ−modification for the closed-loop system.

Consider the following Lyapunov function candidate

V1(t) = Vz1(t) + VU1(t) +
1

2
γ−1

1 θ̃2
10(t) +

1

2
θ̃T
1 (t)Γ−1

1 θ̃1(t) (5.26)

Let us first show the time derivative of V1(t) along (5.20)-(5.25) for z1 ∈ Ω0O
Z1

. As

q1(z1) = 1 as z1 ∈ Ω0O
Z1

, we have

V̇1(t) ≤ −k10z
2
1 −

∫ t

t−τmax

U1(x1(τ))dτ + z1z2 + θ10

[
|z1|φ10 − z1φ10 tanh

(z1φ10

ε1

)]
−σ10θ̃10θ̂10 − σ1θ̃

T
1 θ̂1

Using the inequalities

−1

4
k10z

2
1 + z1z2 ≤ 1

k10

z2
2

−σ10θ̃10θ̂10 ≤ −1

2
σ10θ̃

2
10 +

1

2
σ10θ

2
10 (5.27)

−σ1θ̃
T
1 θ̂1 ≤ −1

2
σ1‖θ̃1‖2 +

1

2
σ1‖θ1‖2 (5.28)

and applying Lemma 5.2.1, we have

V̇1(t) ≤ −3

4
k10z

2
1 −

∫ t

t−τmax

U1(x1(τ))dτ +
1

k10

z2
2 −

1

2
σ10θ̃

2
10 −

1

2
σ1‖θ̃1‖2 + λ1 (5.29)

where constant λ1 > 0 is defined by

λ1 :=
1

2
σ10θ

2
10 +

1

2
σ1‖θ1‖2 + 0.2785ε1θ10
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5.4 Robust Design for Nth-order Systems

Since τ1 ≤ τmax according to Assumption 5.2.3, the following inequality holds

∫ t

t−τ1
U1(x1(τ))dτ ≤

∫ t

t−τmax

U1(x1(τ))dτ

Accordingly, (5.29) becomes

V̇1(t) ≤ −3

2
gmink10Vz1 − 2gminVU1 −

1

2
σ10θ̃

2
10 −

1

2
σ1‖θ̃1‖2 + λ1 +

1

k10

z2
2

≤ −c1V1(t) + λ1 +
1

k10

z2
2 (5.30)

where constant c1 > 0 is defined by

c1 := min
{3

2
gmink10, 2gmin, σ10γ1,

σ1

λmax(Γ
−1
1 )

}

Remark 5.4.1 For z1 ∈ Ω0O
Z1

, if there is no extra term z2
2 within the inequality

(5.30), we can conclude that V1(t) is bounded, and thus z1, θ̂10 and θ̂1 are bounded.

However, it may not be the case due to the presence of the extra term z2
2. It is

found that if z2 can be regulated as bounded, say, |z2| ≤ z2 max with z2 max being

finite, we have

V̇1(t) ≤ −c1V1(t) + λ̄1

with λ̄1 = λ1+ 1
k10

z2
2max. The stability analysis for this case will be conducted later.

Next, let us consider z1 ∈ Ω0I
Z1

, i.e., λa1 < |z1| < λa1 + λb1. As z1 is bounded,

x1 = z1 + yd is also bounded. Considering the smooth positive functions Vz1(t) and

VU1(t), we know that Vz1(t) and VU1(t) are bounded. Let us define positive function

Vθ1(t) := 1
2
θ̃T
1 (t)Γ−1

1 θ̃1(t). Its time derivation along (5.25) is

V̇θ1(t) = q1(z1)θ̃
T
1 (Fθ1z1 − σ1θ̂1) (5.31)

Applying the inequalities

q1(z1)θ̃
T
1 Fθ1z1 ≤ 1

2kθ1

q1(z1)‖θ̃1‖2 +
kθ1

2
q1(z1)F

T
θ1Fθ1z

2
1 , kθ1 > 0

−q1(z1)σ1θ̃
T
1 θ̂1 ≤ −1

2
q1(z1)σ1‖θ̃1‖2 +

1

2
q1(z1)σ1‖θ1‖2

eq. (5.31) becomes

V̇θ1(t) ≤ −1

2
q1(z1)(σ1 − 1

kθ1

)‖θ̃1‖2 +
1

2
q1(z1)(σ1‖θ1‖2 + kθ1F

T
θ1Fθ1z

2
1)
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For z1 ∈ Ω0I
Z1

, we know that q1(z1) ∈ (0, 1), and Fθ1 is smooth and bounded.

Choosing kθ1 such that σ∗
1 := σ1 − 1

kθ1
> 0, and letting λθ1 := sup

z1∈Ω
0I
Z1

{σ1‖θ1‖2 +

kθ1F
T
θ1Fθ1z

2
1}, we have

V̇θ1(t) ≤ −1

2
q1(z1)σ

∗
1‖θ̃1‖2 +

1

2
q1(z1)λθ1

≤ −q1(z1)
σ∗

1

λmax(Γ
−1
1 )

Vθ1(t) +
1

2
q1(z1)λθ1 (5.32)

Letting cq
θ1 := q1(z1)

σ∗
1

λmax(Γ−1
1 )

, λq
θ1 := 1

2
q1(z1)λθ1, and

ρq
θ1 := λq

θ1/c
q
θ1 =

1

2
λθ1λmax(Γ

−1
1 )/σ∗

1

it follows from (5.32) that

0 ≤ Vθ1(t) ≤ [Vθ1(0) − ρq
θ1]e

−cq
θ1

t + ρq
θ1 ≤ Vθ1(0) + ρq

θ1

from which, we can conclude that Vθ1(t) is bounded, and hence θ̃1 is bounded.

Similarly, it can be shown that θ̃10 is bounded as well. Consider the Lyapunov

function candidate V1(t) defined in (5.26). As it has been already shown that

Vz1(t), VU1(t), θ̃10 and θ̃1 are bounded, we can conclude that V1(t) is bounded for

z1 ∈ Ω0I
Z1

.

For z1 ∈ ΩZ1 , i.e., |z1| ≤ λa1 is bounded, we know that q1(z1) = 0,
˙̂
θ10 = 0 and

˙̂
θ1 = 0. Hence, x1 = z1 + yd is bounded, and θ̂10 and θ̂1 are kept unchanged

in bounded values. As Vz1(t) and VU1(t) are smooth functions, we know that for

bounded x1 and z1, Vz1(t) and VU1(t) are bounded, and V1(t) is bounded.

Remark 5.4.2 Note that the boundedness of the closed-loop signals as x1, z1, θ̂10,

θ̂1 for z1 ∈ Ω0O
Z1

and z1 ∈ ΩZ1 is independent of the signal z2.

Remark 5.4.3 Note that both the intermediate control function (5.20) and the

updating laws (5.24), (5.25) are differentiable, which makes it possible to carry out

the backstepping design in the next steps.

The regulation of z2 will be shown in the next steps.
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Step 2: Since z2 = x2 − α1 and z3 = x3 − α2, the time derivative of z2 is given by

ż2(t) = g2(z3(t) + α2(t)) + θT
f2F2(x̄2(t)) + δf2(x̄2(t))

+θT
h2H2(x̄2(t − τ2)) + δh2(x̄2(t − τ2)) − α̇1(t) (5.33)

By viewing x3(t) as a virtual control, we may design a control input α2(t) for (5.33).

Since α1(t) is a function of x1(t), yd, ẏd, θ̂10 and θ̂1, α̇1(t) can be expressed as

α̇1(t) =
∂α1

∂x1

ẋ1 +
∂α1

∂x̄d2

˙̄xd2 +
∂α1

∂θ̂10

˙̂
θ10 +

∂α1

∂θ̂1

˙̂
θ1

=
∂α1

∂x1

[
g1x2(t) + θT

f1F1(x1(t)) + δf1(x1(t)) + θT
h1H1(x1(t − τ1))

+δh1(x1(t − τ1))
]
+ ω1(t) (5.34)

where

ω1(t) =
∂α1

∂x̄d2

˙̄xd2 +
∂α1

∂θ̂10

˙̂
θ10 +

∂α1

∂θ̂1

˙̂
θ1

Similarly, let us consider scalar function Vz2(t) = 1
2g2

z2
2(t). By applying Assumption

5.2.2 and Using Young’s Inequality, its time derivative along (5.33) and (5.34) is

given by

V̇z2 ≤ z2z3 + z2α2 +
1

g2

{
z2θ

T
f2F2(x̄2) + |z2|cf2φ2(x̄2) +

1

2
z2
2θ

T
h2θh2

+
1

2
HT

2 (x̄2(t − τ2))H2(x̄2(t − τ2)) +
1

2
z2
2c

2
h2 +

1

2
ψ2

2(x̄2(t − τ2))

−g1z2
∂α1

∂x1

x2 − z2
∂α1

∂x1

θT
f1F1(x1) + |z2||∂α1

∂x1

|cf1φ1(x1)

+
1

2
z2
2(

∂α1

∂x1

)2θT
h1θh1 +

1

2
HT

1 (x1(t − τ1))H1(x1(t − τ1))

+
1

2
z2
2(

∂α1

∂x1

)2c2
h1 +

1

2
ψ2

1(x1(t − τ1)) − z2ω1

}

Note that due to the differentiating of α1(t), both the unknown time delay τ1

from the first subsystem and τ2 from the current subsystem have appeared. The

Lyapunov-Krasovskii functional used earlier to compensate for τ1 shall be utilized

repeatedly in this step to construct the following functional

VU2(t) =
1

2g2

[ ∫ t

t−τ1
U1(x1(τ))dτ +

∫ t

t−τ2
U2(x̄2(τ))dτ

]

where U2(·) is a positive definite function defined by

U2(x̄2(t)) = HT
2 (x̄2(t))H2(x̄2(t)) + ψ2

2(x̄2(t))
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and U1(·) is defined in (5.10), we have

V̇z2 + V̇U2 ≤ z2z3 + z2α2 +
1

g2

{
z2θ

T
f2F2(x̄2) + |z2|cf2φ2(x̄2) +

1

2
z2
2θ

T
h2θh2

+
1

2
HT

2 (x̄2)H2(x̄2) +
1

2
z2
2c

2
h2 +

1

2
ψ2

2(x̄2)

−g1z2
∂α1

∂x1

x2 − z2
∂α1

∂x1

θT
f1F1(x1) + |z2||∂α1

∂x1

|cf1φ1(x1)

+
1

2
z2
2(

∂α1

∂x1

)2θT
h1θh1 +

1

2
HT

1 (x1)H1(x1) +
1

2
z2
2(

∂α1

∂x1

)2c2
h1 +

1

2
ψ2

1(x1)

−z2ω1

}
�
= z2z3 + z2(α2 + θT

2 Fθ2) + θ20|z2|φ20 (5.35)

where θ20 is an unknown constant, θ2 is an unknown constant vector, φ20(·) is a

known function, and Fθ2(·) is a known function vector defined below

θ20 := max{cf1, cf2},

θ2 := [
θT

f2

g2

,
θT

h2θh2 + c2
h2

g2

,
g1

g2

,
θT

f1

g2

,
θT

h1θh1 + c2
h1

g2

,
1

g2

]T ∈ Rn1+n2+4,

φ20 := φ2 + |∂α1

∂x1

|φ1,

Fθ2 :=
[
F T

2 ,
1

2
z2, −∂α1

∂x1

x2, −∂α1

∂x1

F1,
1

2
z2(

∂α1

∂x1

)2,
1

2z2

2∑
j=1

(HT
j Hj + ψ2

j ) − ω1

]T
∈ Rn1+n2+4

Similarly, the following robust adaptive intermediate control law is proposed

α2 = q2(z2)[−k2(t)z2 − θ̂T
2 Fθ2 − β2] (5.36)

k2(t) = k20 +
1

z2
2

∫ t

t−τmax

[U1(x1(τ)) + U2(x̄2(τ))]dτ (5.37)

β2 = θ̂20ξ2 (5.38)

ξ2 = φ20 tanh
(z2φ20

ε2

)
(5.39)

where k20 > 0 is a design constant, ε2 > 0 is a small constant.

The adaptive laws are given for online tuning the unknown parameters

˙̂
θ20 = q2(z2)γ2(z2ξ2 − σ20θ̂20) (5.40)

˙̂
θ2 = q2(z2)Γ2(Fθ2z2 − σ2θ̂2) (5.41)
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where γ2 > 0, Γ2 = Γ−1
2 > 0, and σ20, σ2 > 0 are small constants to introduce the

σ−modification for the closed-loop system.

Consider the following Lyapunov function candidate

V2(t) = Vz2(t) + VU2(t) +
1

2
γ−1

2 θ̃2
20(t) +

1

2
θ̃T
2 (t)Γ−1

2 θ̃2(t)

For z2 ∈ Ω0O
Z2

, the control effort α2 is invoked, and the time derivative of V2(t) along

(5.35) and (5.36)-(5.41) is

V̇2(t) ≤ −c2V2(t) + λ2 +
1

k20

z2
3

where

c2 := min
{3

2
gmink20, 2gmin, σ20γ2,

σ2

λmax(Γ
−1
2 )

}

λ2 :=
1

2
σ20θ

2
20 +

1

2
σ2‖θ2‖2 + 0.2785ε2θ20

For z2 ∈ Ω0I
Z1

, the following two cases are considered: (i) if z1 ∈ Ω0I
Z1

or z1 ∈ ΩZ1 ,

i.e., |z1| ≤ λa1 + λb1, V1(t) and V2(t) are bounded, hence, z1, z2, θ̂10, θ̂1, θ̂20 and

θ̂2 are bounded; (ii) if z1 ∈ Ω0O
Z1

, i.e., |z1| ≥ λa1 + λb1, we know from Remark 5.4.1

that V̇1(t) ≤ −c1V1(t) + λ̄1 with λ̄1 = λ1 + 1
k10

(λa2 + λb2)
2, for which the stability

analysis will be conducted later.

For z2 ∈ ΩZ1 , the analysis is similar as for z2 ∈ Ω0I
Z1

. The effect of z3 will be dealt

with in the next step.

Step i (3 ≤ i ≤ n − 1): Similar procedures are taken for each steps when i =

3, · · · , n − 1 as in Steps 1 and 2.

The time derivative of zi(t) is given by

żi(t) = gi[zi+1(t) + αi(t)] + θT
fiFi(x̄i(t)) + δfi(x̄i(t))

+θT
hiHi(x̄i(t − τi)) + δhi(x̄i(t − τi)) − α̇i−1(t) (5.42)

Since αi−1(t) is a function of x̄i−1, x̄di, θ̂10, · · · , θ̂i−1,0, θ̂1, · · · , θ̂i−1, α̇i−1(t) can be

expressed as

α̇i−1(t) =
i−1∑
j=1

∂αi−1

∂xj

ẋj +
∂αi−1

∂x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂θ̂j0

˙̂
θj0 +

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj

=
i−1∑
j=1

∂αi−1

∂xj

ẋj + ωi−1
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where

ωi−1 =
∂αi−1

∂x̄di

˙̄xdi +
i−1∑
j=1

(
∂αi−1

∂θ̂j0

˙̂
θj0 +

∂αi−1

∂θ̂j

˙̂
θj

)

then (5.42) becomes

żi(t) = gi[zi+1(t) + αi(t)] + θT
fiFi(x̄i(t)) + δfi(x̄i(t))

+θT
hiHi(x̄i(t − τi)) + δhi(x̄i(t − τi))

−
i−1∑
j=1

∂αi−1

∂xj

[
gjxj+1 + θT

fjFj(x̄j) + δfj(x̄j)

+θT
hjHj(x̄j(t − τj)) + δhj(x̄j(t − τj))

]
− ωi−1(t)

Consider the scalar functions Vzi
(t) = 1

2gi
z2

i (t). By applying Assumption 5.2.2 and

using Young’s Inequality, its time derivative is

V̇zi
≤ zizi+1 + ziαi +

1

gi

{
ziθ

T
fiFi(x̄i) + |zi|cfiφi(x̄i) +

1

2
z2

i θ
T
hiθhi

+
1

2
HT

i (x̄i(t − τi))Hi(x̄i(t − τi)) +
1

2
z2

i c
2
hi +

1

2
ψ2

i (x̄i(t − τi))

+
i−1∑
j=1

[
− zi

∂αi−1

∂xj

gjxj+1 − zi
∂αi−1

∂xj

θT
fjFj(x̄j) + |zi||∂αi−1

∂xj

|cfjφj(x̄j)

+
1

2
z2

i (
∂αi−1

∂xj

)2θT
hjθhj +

1

2
HT

j (x̄j(t − τj))Hj(x̄j(t − τj))

+
1

2
z2

i (
∂αi−1

∂xj

)2c2
hj +

1

2
ψ2

j (x̄j(t − τj))
]
− ziωi−1

}

Considering the following Lyapunov-Krasovskii functional

VUi
(t) =

1

2gi

i∑
j=1

∫ t

t−τi

Ui(x̄i(τ))dτ

where U1(·), · · · , Ui−1(·) are defined in the previous steps and Ui(·) is a positive

definite function defined by

Ui(x̄i(t)) = HT
i (x̄i(t))Hi(x̄i(t)) + ψ2

i (x̄i(t))

we have

V̇zi
+ V̇Ui

≤ zizi+1 + ziαi +
1

gi

{
ziθ

T
fiFi(x̄i) + |zi|cfiφi(x̄i) +

1

2
z2

i θ
T
hiθhi

+
1

2
HT

i (x̄i)Hi(x̄i) +
1

2
z2

i c
2
hi +

1

2
ψ2

i (x̄i)
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+
i−1∑
j=1

[
− zi

∂αi−1

∂xj

gjxj+1 − zi
∂αi−1

∂xj

θT
fjFj(x̄j) + |zi||∂αi−1

∂xj

|cfjφj(x̄j)

+
1

2
z2

i (
∂αi−1

∂xj

)2θT
hjθhj +

1

2
HT

j (x̄j)Hj(x̄j) +
1

2
z2

i (
∂αi−1

∂xj

)2c2
hj +

1

2
ψ2

j (x̄j)
]

−ziωi−1

}
�
= zizi+1 + zi(αi + θT

i Fθi) + θi0|zi|φi0 (5.43)

where θi0 is an unknown constant, θi is an unknown constant vector, φi0(·) is a

known function, and Fθi(·) is a known function vector defined below

θi0 := max{cf1, · · · , cfi},

θi :=
[θT

fi

gi

,
θT

hiθhi + c2
hi

gi

,
gi−1

gi

,
gi−1

gi

θT
i−1

]T ∈ Rn̄i ,

φi0 := φi +
i−1∑
j=1

|∂αi−1

∂xj

|φj,

Fθi := [F T
i ,

1

2
zi, −∂αi−1

∂xi−1

xi, −∂αi−1

∂xi−1

F T
i−1,

1

2
zi(

∂αi−1

∂xi−1

)2,

−∂αi−1

∂xi−2

xi−1, −∂αi−1

∂xi−2

F T
i−2,

1

2
zi(

∂αi−1

∂xi−2

)2, · · · ,

−∂αi−1

∂x1

x2, −∂αi−1

∂x1

F T
1 ,

1

2
zi(

∂αi−1

∂x1

)2,

1

2zi

i∑
j=1

HT
j Hj + ψ2

j − ωi−1]
T ∈ Rn̄i , n̄i =

i∑
j=1

nj + 2i

Similarly, the following robust adaptive intermediate control law is proposed

αi = qi(zi)
[
−ki(t)zi − θ̂T

i Fθi − βi

]
(5.44)

ki(t) = ki0 +
1

z2
i

i∑
j=1

∫ t

t−τmax

Uj(x̄j(τ))dτ (5.45)

βi = θ̂i0ξi (5.46)

ξi = φi0 tanh
(ziφi0

εi

)
(5.47)

where ki0 > 0 is a design constant and εi > 0 is a small constant.

The adaptive laws are given for online tuning the unknown parameters

˙̂
θi0 = qi(zi)γi(ziξi − σi0θ̂i0) (5.48)

˙̂
θi = qi(zi)Γi(Fθizi − σiθ̂i) (5.49)
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where γi > 0, Γi = Γ−1
i > 0, and σi0, σi > 0 are small constants to introduce the

σ−modification for the closed-loop system.

Consider the following Lyapunov function candidate

Vi(t) = Vzi
(t) + VUi

(t) +
1

2
γ−1

i θ̃2
i0(t) +

1

2
θ̃T

i (t)Γ−1
i θ̃i(t)

For zi ∈ Ω0O
Zi

, the control effort αi is invoked and the time derivative of Vi(t) along

(5.43) and (5.44)-(5.49) is

V̇i(t) ≤ −ciVi(t) + λi +
1

ki0

z2
i+1 (5.50)

where

ci := min
{3

2
gminki0, 2gmin, σi0γi,

σi

λmax(Γ
−1
i )

}

λi :=
1

2
σi0θ

2
i0 +

1

2
σi‖θi‖2 + 0.2785εiθi0

If zi+1 can be regulated as bounded, say, |zi+1| ≤ zi+1,max with zi+1,max being finite,

from (5.50), we have that V̇i(t) ≤ −ciVi(t) + λ̄i with λ̄i = λi + 1
ki0

z2
i+1,max. The

stability analysis for this case will be shown later and the effect of zi+1 will be

handled in the next steps.

For zi ∈ Ω0I
Zi

or zi ∈ ΩZi
, similarly as in Step 2, the following two cases are

considered: (i) if zi−1 ∈ Ω0I
Zi−1

or zi−1 ∈ ΩZi−1
, and (ii) if zi−1 ∈ Ω0O

Zi−1
.

Step n: This is the final step, since the actual control u appears in the derivative

of zn(t) as given in

żn(t) = gnu(t) + θT
fnFn(x(t)) + δfn(x(t))

+θT
hnHn(x(t − τn)) + δhn(x(t − τn)) − α̇n−1(t) (5.51)

Since αn−1(t) is a function of x̄n−1, x̄dn, θ̂10, · · · , θ̂n−1,0, θ̂1, · · · , θ̂n−1, α̇n−1(t) can be

expressed as

α̇n−1(t) =
n−1∑
j=1

∂αn−1

∂xj

ẋj +
∂αn−1

∂x̄dn

˙̄xdn +
n−1∑
j=1

(
∂αn−1

∂θ̂j0

˙̂
θj0 +

∂αn−1

∂θ̂j

˙̂
θj

)

=
n−1∑
j=1

∂αn−1

∂xj

ẋj + ωn−1(t)
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where

ωn−1(t) =
∂αn−1

∂x̄dn

˙̄xdn +
n−1∑
j=1

(
∂αn−1

∂θ̂j0

˙̂
θj0 +

∂αn−1

∂θ̂j

˙̂
θj

)

then (5.51) becomes

żn(t) = gnu(t) + θT
fnFn(x(t)) + δfn(x(t)) + θT

hnHn(x(t − τn)) + δhn(x(t − τn))

−
n−1∑
j=1

∂αn−1

∂xj

[
gjxj+1 + θT

fjFj(x̄j) + δfj(x̄j)

+θT
hjHj(x̄j(t − τj)) + δhj(x̄j(t − τj))

]
− ωn−1(t)

Consider the scalar functions Vzn(t) = 1
2gn

z2
n(t). By applying Assumption 5.2.2 and

using Young’s Inequality, its time derivative is

V̇zi
(t) ≤ znu(t) +

1

gn

{
znθ

T
fnFn(x) + |zn|cfnφn(x) +

1

2
z2

nθT
hnθhn

+
1

2
HT

n (x(t − τn))Hn(x(t − τn)) +
1

2
z2

nc
2
hn +

1

2
ψ2

n(x(t − τn))

+
n−1∑
j=1

[
− zn

∂αn−1

∂xj

gjxj+1 − zn
∂αn−1

∂xj

θT
fjFj(x̄j) + |zn||∂αn−1

∂xj

|cfjφj(x̄j)

+
1

2
z2

n(
∂αn−1

∂xj

)2θT
hjθhj +

1

2
HT

j (x̄j(t − τj))Hj(x̄j(t − τj))

+
1

2
z2

n(
∂αn−1

∂xj

)2c2
hj +

1

2
ψ2

j (x̄j(t − τj))
]
− znωn−1

}

Consider the Lyapunov-Krasovskii functional

VUn(t) =
1

2gn

n∑
j=1

∫ t

t−τn

Un(x(τ))dτ

where U1(·), · · · , Un−1(·) are defined before and Un(·) is a positive definite function

defined by

Un(x(t)) = HT
n (x(t))Hn(x(t)) + ψ2

n(x(t))

we have

V̇zn + V̇Un ≤ znu(t) +
1

gn

{
znθ

T
fnFn(x) + |zn|cfnφn(x) +

1

2
z2

nθT
hnθhn

+
1

2
HT

n (x)Hn(x) +
1

2
z2

nc2
hn +

1

2
ψ2

n(x)

+
n−1∑
j=1

[
− zn

∂αn−1

∂xj

gjxj+1 − zn
∂αn−1

∂xj

θT
fjFj(x̄j)
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+|zn||∂αn−1

∂xj

|cfjφj(x̄j) +
1

2
z2

n(
∂αn−1

∂xj

)2θT
hjθhj +

1

2
HT

j (x̄j)Hj(x̄j)

+
1

2
z2

n(
∂αn−1

∂xj

)2c2
hj +

1

2
ψ2

j (x̄j)
]
− znωn−1

}
�
= zn(u + θT

n Fθn) + θn0|zn|φn0 (5.52)

where θn0 is an unknown constant, θn is an unknown constant vector, φn0(·) is a

unknown parameter vector, and Fθn(·) is a known function vector defined below

θn0 := max{cf1, · · · , cfn},

θn =
[θT

fn

gn

,
θT

hnθhn + c2
hn

gn

,
gn−1

gn

,
gn−1

gn

θT
n−1

]T ∈ Rn̄n ,

φn0 := φn +
n−1∑
j=1

|∂αn−1

∂xj

|φj,

Fθn = [F T
n ,

1

2
zn, −∂αn−1

∂xn−1

xn, −∂αn−1

∂xn−1

F T
n−1,

1

2
zn(

∂αn−1

∂xn−1

)2,

−∂αn−1

∂xn−2

xn−1, −∂αn−1

∂xn−2

F T
n−2,

1

2
zn(

∂αn−1

∂xn−2

)2, · · · ,

−∂αn−1

∂x1

x2, −∂αn−1

∂x1

F T
1 ,

1

2
zn(

∂αn−1

∂x1

)2,

1

2zn

n∑
j=1

HT
j Hj + ψ2

j − ωn−1]
T ∈ Rn̄n , n̄n =

n∑
j=1

nj + 2n

Similarly, the following robust adaptive control law is proposed

u = qn(zn)[−kn(t)zn − θ̂T
n Fθn − βn] (5.53)

kn(t) = kn0 +
1

z2
n

n∑
j=1

∫ t

t−τmax

Uj(x̄j(τ))dτ (5.54)

βn = θ̂n0ξn (5.55)

ξn = φn0 tanh
(znφn0

εn

)
(5.56)

where kn0 > 0 is a design constant and εn > 0 is a small constant.

The adaptive laws are given for online tuning the unknown parameters

˙̂
θn0 = qn(zn)γn(znξn − σn0θ̂n0) (5.57)

˙̂
θn = qn(zn)Γn(Fθnzn − σnθ̂n) (5.58)

where γn > 0, Γn = Γ−1
n > 0, and σn0, σn > 0 are small constants to introduce the

σ−modification for the closed-loop system.
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Consider the following Lyapunov function candidate

Vn(t) = Vzn(t) + VUn(t) +
1

2
γ−1

n θ̃2
n0(t) +

1

2
θ̃T

n (t)Γ−1
n θ̃n(t)

For zn ∈ Ω0O
Zn

, the final control u(t) is invoked and the time derivative of V (t) along

(5.52) and (5.53)-(5.58) is

V̇n(t) ≤ −cnVn(t) + λn (5.59)

where

cn := min
{
2gminkn0, 2gmin, σn0γn,

σn

λmax(Γ−1
n )

}

λn :=
1

2
σn0θ

2
n0 +

1

2
σn‖θn‖2 + 0.2785εnθn0

It is known from (5.59) that Vn(t) is bounded, hence zn, θ̂n0 and θ̂n are bounded.

For zn ∈ Ω0I
Zn

or zn ∈ ΩZn , two cases are considered: (i) if zn−1 ∈ Ω0I
Zn−1

or

zn−1 ∈ ΩZn−1 , and (ii) zn−1 ∈ Ω0O
Zn−1

.

Theorem 5.4.1 shows the stability and control performance of the closed-loop adap-

tive system.

Theorem 5.4.1 Consider the closed-loop system consisting of the plant (5.2) un-

der Assumptions 5.2.1-5.2.4. If we apply the controller (5.53)-(5.56) with param-

eters updating law (5.57) and (5.58), we can guarantee the following properties

under bounded initial conditions

(i) zi, θ̂i0, θ̂i and xi, i = 1, · · · , n, are globally uniformly ultimately bounded;

(ii) the signal z(t) = [z1, · · · , zn]T ∈ Rn will eventually converge to the compact

set defined by

Ωz :=
{

z
∣∣∣ ‖z‖ ≤ µ

}
with µ = max{√2gmaxρ,

√∑n
j=1(λai + λbi)2} and the compact set Ωz can be

made as small as desired by an appropriate choice of the design parameters.

Proof: Consider the following Lyapunov function candidate

V (t) =
n∑

i=1

[
Vzi

(t) + VUi
(t) +

1

2
γ−1

i θ̃2
i0(t) +

1

2
θ̃T

i (t)Γ−1
i θ̃i(t)

]
(5.60)
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5.4 Robust Design for Nth-order Systems

where Vzi
(t), VUi

(t), i = 1, · · · , n are defined as before, and (̃·) = (̂·) − (·). The

following three cases are considered.

Case 1): zi ∈ Ω0O
Zi

, i = 1, ..., n.

From the previous derivation, we have the following inequality for zi ∈ Ω0O
Zi

, i =

1, ..., n

V̇ (t) ≤ −cV (t) + λ

where c := min{c1, · · · , cn} and λ :=
∑n

i=1 λi. Let ρ := λ/c, it follows that

0 ≤ V (t) ≤ [V (0) − ρ]e−ct + ρ ≤ V (0) + ρ (5.61)

where the constant

V (0) =
n∑

i=1

[ 1

2gi

z2
i (0) +

1

2
γ−1

i θ̃2
i0(0) +

1

2
θ̃T

i (0)Γ−1
i θ̃i(0)

]

Considering (5.60), we know that

n∑
i=1

z2
i ≤ 2gmax[V (0) + ρ] (5.62)

n∑
i=1

θ̃2
i0 ≤ 2 max{γi}[V (0) + ρ],

n∑
i=1

‖θ̃i‖2 ≤ 2[V (0) + ρ]

λmin{Γ−1
i } (5.63)

It can be seen from (5.61), (5.62) and (5.63) that V (t) is bounded, hence zi, θ̂i0

and θ̂i are uniformly bounded for zi ∈ Ω0O
Zi

, i = 1, ..., n.

In addition, from (5.60) and (5.61), we have

‖z‖ ≤
√

2gmax[(V (0) − ρ)e−ct + ρ]

i.e., limt→∞ ‖z‖ =
√

2gmaxρ. Since the above analysis is carried out for |zi| ≥
λai+λbi, i = 1, ..., n, we have that limt→∞ ‖z‖ = max{√2gmaxρ,

√∑n
j=1(λai + λbi)2}.

Case 2): zi ∈ Ω0I
Zi

or zi ∈ ΩZi
, i = 1, ..., n.

In this case, Vn(t) is bounded, hence zi, xi, θ̂i0 and θ̂i, i = 1, ..., n are all bounded.

In addition, ‖z‖ ≤
√∑n

j=1(λai + λbi)2.

Case 3): Some zi’s are satisfying zi ∈ Ω0O
Zi

, while some zj’s are satisfying zj ∈ Ω0I
Zj

or zj ∈ ΩZj
.

137



5.4 Robust Design for Nth-order Systems

For zi ∈ Ω0O
Zi

, the control effort αi will render V̇i ≤ −ciVi + λi + 1
ki0

z2
i+1. If zi+1

is bounded, the boundedness of zi can be guaranteed. Otherwise, the control

effort αi+1 will be invoked, which yields V̇i+1 ≤ −ci+1Vi+1 + λi+1 + z2
i+2. Similarly,

regulation of zi+2 will be left to the next steps till the final step where zn will be

regulated as bounded. Therefore, those zi’s will be regulated as bounded finally.

For those zj ∈ Ω0I
Zj

or zj ∈ ΩZj
, their boundedness has already obtained.

Therefore, we can conclude from Cases 1), 2) and 3) that all the closed-loop signals

are GUUB and there does exist a compact set Ωz such that z will eventually

converge to. This completes the proof. ♦

Remark 5.4.4 Theorem 5.4.1 shows that the system tracking error converges to

a domain of attraction defined by compact set Ωz rather than the origin. This is

due to the introduction of the practical control, the smooth βi control component

and the σ-modification for the parameter adaptation. Even though the size of the

compact set is unknown due to the unknown parameters gmin, gmax, θi0 and θi,

i = 1, ..., n, it is possible to make it as small as possible by appropriately choosing

the design parameters. However, parameters such as λai or λbi cannot be made

zero to void possibly control singularity and computational singularity. Therefore,

in practical applications, the design parameters should be adjusted carefully for

achieving suitable transient performance and control action.

Remark 5.4.5 The unknown parameters have been rearranged into a newly defined

vector in each step of the iterative backstepping design. By doing so, on one hand,

unknown vectors θhi, i = 1, · · · , n have been lumped as scalars, which reduces the

number of parameters to be estimated in each step and finally reduces the order of

the controller dramatically. On the other hand, we only need to estimate 1
gi

rather

than gi such that possible controller singularities due to ĝi = 0 have been avoided.

Remark 5.4.6 Note that the integration in computing ki(t) is conducted in the

time interval [t − τmax, t]. If the integration is conducted alternatively in [0, t],

the stability result still hold. However, the integral result will progressively tend

to a large value as the time increases, which as a result may lead to instability
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of the overall system. To avoid this, the integration shall be conducted in a more

conservative time interval, i.e., [t − τmax, t].

5.5 Simulation Studies

To illustrate the proposed robust adaptive control algorithms, we consider the

following second-order plant

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1(t) = g1x2(t) + θf1x
2
1(t) + δf1(x1(t))

ẋ2(t) = g1u(t) + θh2x2(t − τ2) + δh2(x(t − τ2))

y(t) = x1(t)

where g1, g2 are unknown virtual control coefficients, θf1, θh2 are unknown pa-

rameters, and δf1(·), δh2(·) are unknown functions. For simulation purpose, we

assume that g1 = 2, g2 = 1, θf1 = 0.1, θh2 = 0.2, and let δf1 = 0.6 sin(x1),

δh2 = 0.5(x2
1+x2

2) sin(x2). The bounds on δf1(·) and δh2(·) are |δf1(x1)| ≤ cf1φ1(x1),

|δh2(x)| ≤ ch2ψ2(x), where cf1 = 0.6, φ1(x1) = 1, ch2 = 0.5, ψ2(x) = x2
1 + x2

2. The

unknown time delays are τ1 = 0, τ2 = 3sec. The control objective is to track the

desired reference signal yd(t) = 0.5[sin(t) + sin(0.5t)]. For the design of robust

adaptive controller, let z1 = x1 − yd, z2 = x2 − α1 and θ̂1, θ̂2 be the estimates of

unknown parameter vectors θ1 = [
θf1

g1
, 1

g1
]T , θ2 = [

θ2
h2+c2h2

g2
, g1

g2
,

θf1

g2
, 1

g2
]T respectively,

we have

α1(t) = q1(z1)[−k1(t)z1 − θ̂T
1 Fθ1 − β1]

u(t) = q2(z2)[−k2(t)z2 − θ̂T
2 Fθ2 − β2]

βi = θ̂i0ξi, ξi = φi0 tanh(
ziφi0

εi

)

˙̂
θi0 = qi(zi)γi(ziξi − σi0θ̂i0),

˙̂
θi = qi(zi)Γi(Fθizi − σiθ̂i), i = 1, 2

where ki(t) is calculated by

ki(t) = ki0 +
1

z2
i

i∑
j=1

∫ t

t−τjmax

Uj(x̄j(τ))dτ, ki0 > 0

The following design parameters are adopted in the simulation: [x1(0), x2(0)]T =

[0.1, 0.1]T , γ1 = γ2 = 1, Γ1 = Γ2 = diag{1}, σ10 = σ20 = σ1 = σ2 = 0.05,
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5.6 Conclusion

θ0
10 = θ0

20 = 0, θ0
1 = θ0

2 = 0, k10 = k20 = 0.8, ε1 = ε2 = 0.1, and λa1 = λa2 = 1.0e−3,

λb1 = λb2 = 1.0e−5.

From Fig. 5.1, it was seen that satisfactory transient tracking performance was

obtained after 10 seconds of adaptation periods. Figs. 5.2 and 5.3 show the bound-

edness of the control input and the estimates of the parameters in the control loop.

Among the design parameters, the choices of czi
are critical for achieving good

control performance. Through extensive simulation study, it was found that czi

should not be chosen as too small. From analytical point of view, it is found

that the known functions Fθi which are used for on-line parameters tuning contain

possibly singular terms. The robust design is then carried out to make sure those

terms to be bounded. Although czi
can be chosen arbitrarily small theoretically,

it is not the case in real implementation due to the limited actuator tolerance and

computational capacity.

5.6 Conclusion

A robust adaptive control has been addressed for a class of parametric-strict-

feedback nonlinear systems with varying unknown time delays. The uncertainty

from unknown time delays has been compensated through the use of appropriate

Lyapunov-Krasovskii functionals. The controller has been made to be free from

singularity problem by employing practical robust control and regrouping unknown

parameters. Backstepping design has been carried out for a class of nonlinear sys-

tems in strict feedback form by using differentiable approximation. The proposed

systematic backstepping design method has been proved to be able to guarantee

global uniformly ultimately boundedness of closed-loop signals. In addition, the

output of the system has been proven to converge to an arbitrarily small neighbor-

hood of the origin. Simulation results have been provided to show the effectiveness

of the proposed approach.
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Figure 5.1: Output y(t)(“−”), and reference yd(“- -”).
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Figure 5.2: Control input u(t).
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Figure 5.3: Parameter estimates: θ̂10(“−”), θ̂20(“- -”), ‖θ̂1‖2(“· · ·”), ‖θ̂2‖2(“-·”).
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Chapter 6

Robust Adaptive Control Using

Nussbaum Functions

6.1 Introduction

Recently, robust adaptive control has been studied for a class of strict-feedback

systems by combining robust backstepping design with robust control strategy

[15][134][22][23] [135][24][18][136][21], which guaranteed global uniform ultimate

boundedness in the presence of parametric uncertainties or unknown functions.

While the earlier works such as [15, 86, 18] assumed the virtual control coefficients

to be 1, adaptive control has been extended to parametric strict-feedback systems

with unknown constant virtual control coefficients but with known signs (either

positive or negative) [19] based on the cancellation backstepping design as stated

in [87] by seeking for a cancellation of the coupling terms related to zizi+1 in the

next step of Lyapunov design. With the aid of neural network parametrization,

adaptive control schemes have been further extended to certain classes of strict-

feedback in which virtual control coefficients are unknown functions of states with

known signs [88][51]. For system ẋ = f(x) + g(x)u, the unknown virtual control

function g(x) causes great design difficulty in adaptive control. Based on feedback

linearization, certainty equivalent control u = [−f̂(x) + v]/ĝ(x) is usually taken,

where f̂(x) and ĝ(x) are estimates of f(x) and g(x), and measures have to be taken
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6.1 Introduction

to avoid controller singularity when ĝ(x) = 0. To avoid this problem, integral Lya-

punov functions have been developed in [88], and semi-globally stable adaptive

controllers are developed, which do not require the estimate of the unknown func-

tion g(x). Although the system’s virtual control coefficients are assumed to be

unknown nonlinear functions of states, their signs are assumed to be known as

strictly either positive or negative. Under this assumption, stable neural network

controllers have been constructed in [51] by augmenting a robustifying portion, and

in [89, 90] by estimating the derivation of the control Lyapunov function.

When there is no a priori knowledge about the signs of virtual control coefficients,

adaptive control of such systems becomes much more difficult. The first solution

was given in [62] for a class of first-order linear systems, where the Nussbaum-type

gain was originally proposed. When the high-frequency control gains and their signs

are unknown, gains of Nussbaum type [62] have been effectively used in controller

design in solving the difficulty of unknown control directions [69, 70] in which the

arguments of the constructed Nussbaum functions are required to be monotone

increasing. This method was then generalized to higher-order linear systems in

[64]. For nonlinear systems, some results have also been reported in the literature.

Without the requirement for monotone increasing arguments for the Nussbaum

functions, the same technique has extended to higher order systems for constant

virtual control coefficients [83, 115] using decoupled backstepping formally stated

in [87] without seeking for the cancellation of the coupling terms related to zizi+1

but to decouple zi and zi+1 using Young’s inequality and seek for the boundedness

of zi+1 next. Under the assumption that the virtual control coefficients are time-

varying, with unknown signs and bounded in finite intervals, it has also been used

to construct robust adaptive control for a class of nonlinear systems with bounded

disturbances by introducing exponentially decaying terms to handle the bounded

disturbances [137]. The behavior of this class of control laws can be interpreted as

the controller tries to sweep all possible control gains and stops when a stabilizing

gain is found.

Thus far, few results are available for the robust adaptive control of system with

unknown virtual control coefficients (VCC) and bounded disturbance. In [113],

a class of time-varying uncertain nonlinear systems was studied with completely
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unknown time-varying virtual control coefficients, uncertain time-varying parame-

ters and unknown time-varying bounded disturbances. Due to the presence of the

exponential term in the stability analysis, the proof has to be function dependent

and the general properties of the Nussbaum functions are difficult to be utilized.

Though a much neater proof was provided for N(ζ) = exp(ζ2) cos(π
2
ζ) in [113], it

is not the case for N(ζ) = ζ2 cos(ζ) as chosen in this chapter. The proof cannot

be straightforwardly extended and the specific properties of this function need to

be exploited fully in the derivation throughout the proof. Due to the different

problem formulation and methodology used (e.g., projection algorithm has to be

utilized for on-line tuning of the time-varying unknown parameters in [113]), the

proposed design in this chapter is much more tighter and the controller is composed

of smooth functions, which is a must in backstepping design.

For robust control of nonlinear systems with time delays [122, 92], the existence of

time delays may degrade the control performance and make the stabilization prob-

lem become more difficult. By using appropriate Lyapunov-Krasovskii functionals

[123], uncertainties from unknown time delays can be compensated for. In [129],

we studied a class of nonlinear time-delay systems, in which the virtual control

coefficients are unknown constants with known sign and the system uncertainties

are linearly parametrized with unknown constant parameters and known nonlin-

ear functions. Practical stability was introduced to solve the singularity problem

due to the appearance of 1/zi or 1/z2
i in the controller and the tracking error can

be made to confine in a compact domain of attraction. When the virtual control

coefficients are unknown nonlinear functions of states, the problem becomes even

more complicated. Although the system’s virtual control coefficients are assumed

to be unknown nonlinear functions of states, their signs are assumed to be known

as strictly either positive or negative. Under the same assumption, stable neural

network controllers have also been constructed in [124] by compensating for the

unknown time-delay terms completely under the assumption that signals ˙̄xn−1 are

available for feedback and more strict assumption on the time delay terms.

Motivated by previous works on both systems with time-delay and unknown virtual

control coefficient (VCC), two adaptive neural controllers without the requirements

for ˙̄xn−1 are presented for a class of strict-feedback nonlinear systems with unknown
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time delays, and unknown nonlinear functions with unknown signs. For clarity, the

first controller is developed based on distinct definitions of two separate compact

sets Ωczi
⊂ ΩZi

and Ω0
Zi

= ΩZi
− Ωczi

⊂ ΩZi
where “–” denotes the complement

operation. However, the controller has a “technical problem” – the intermediate

controls are not differentiable at isolated points |zi| = czi
. To solve this problem,

one practical way is to simply set the differentiation at these points to be any finite

value, say 0, and then every signal in the closed-loop system can be shown to be

bounded. By modifying the first controller such that the intermediate controls are

differentiable, we have the second controller for the class of systems in the section

– which is mathematically rigorous. To the best of our knowledge, there is little

work dealing with such a kind of systems in the literature at present stage, except

for some preliminary results presented in [138][124]. The main contributions of the

chapter lie in:

(i) the introduction of a new technical lemma, which plays a fundamental role

in solving the proposed problem;

(ii) the controller does not require the a priori knowledge of the signs of the

unknown control coefficients,

(iii) the use of the Nussbaum-type functions in solving the problem of the com-

pletely unknown control direction;

(iv) the novel introduction of smooth functions in making the intermediate control

laws continuous and differentiable to certain desired order in solving the dif-

ferentiability problems at some isolated points incurred by the first practical

control; and

(v) the proposed design method expands the class of nonlinear systems for which

robust adaptive control approaches have been studied through the introduc-

tion of exponential decaying terms in stability analysis.

The rest of the chapter is organized as follows.

The problem formulation and preliminaries for a class of perturbed strict-feedback
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systems are given in Section 6.2.1. A robust adaptive control scheme using Nuss-

baum functions is presented in Section 6.2.2. A simulation example is given in

Section 6.2.3, and followed by Section 6.2.4 which concludes the work.

The problem formulation and preliminaries are given in Section 6.3.1. An adaptive

neural controller design for first-order systems is presented in Section 6.3.2. The

scheme is extended to nth-order systems in Section 6.3.3. A simulation example is

given in Section 6.3.4, and followed by Section 6.3.5 which concludes the work.

6.2 Robust Adaptive Control for Perturbed Nonlinear Sys-

tems

6.2.1 Problem Formulation and Preliminaries

Consider a class single-input-single-output (SISO) nonlinear systems in the pres-

ence of time-varying disturbances in the perturbed strict-feedback form

ẋi = gixi+1 + θT
i ψi(x̄i) + ∆i(t, x), i = 1, ..., n − 1

ẋn = gnu + θT
n ψn(x) + ∆n(t, x)

(6.1)

where x = [x1, ..., xn]T ∈ Rn, x̄i = [x1, ..., xi]
T , i = 1, ..., n− 1 are the state vectors,

u ∈ R is the control, θi ∈ Rpi , i = 1, ..., n are the unknown constant parameter

vectors, pi’s are positive integers, ψi(x̄i), i = 1, ..., n are known nonlinear functions

which are continuous and satisfy ψi(0) = 0, unknown constants gi, i = 1, ..., n − 1

are referred to as virtual control coefficients [19], gn is referred to as the high-

frequency gain, and ∆i’s are unknown Lipschitz continuous functions. The control

objective is to construct a robust adaptive nonlinear control law so that the state x1

of system (6.1) is driven to a small neighborhood of the origin, while keep internal

Lagrange stability.

In system (6.1), the unknown nonlinear functions ∆i(t, x) could be due to many

factors [86], such as measurement noise, modeling errors, external time-varying

disturbances, modeling simplifications or changes due to time variations. The oc-

currence of virtual control coefficients gi’s is also quite common in practice. The

examples range from electric motors and robotic manipulators to flight dynamics
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[19].

Assumption 6.2.1 There exist unknown positive constants p∗i , 1 ≤ i ≤ n, such

that ∀(t, x) ∈ R+ × Rn, |∆i(t, x)| ≤ p∗i φi(x1, · · · , xi), where φi is a known nonneg-

ative smooth function.

Remark 6.2.1 Though the terms θT
i ψ(x̄i) can be absorbed into ∆i(t, x), i = 1, ..., n,

for a reduced order controller, the disadvantage is that the residue error will be large

as can be seen from the definitions of µ∗, ρi, and ci2 later. In addition, for better

control performance, knowledge of the system should be fully exploited.

The technical Lemma 2.4.7 introduced in Chapter 2 is critical in solving the robust

control problem in this chapter and and is rewritten here for easy reference.

Lemma 6.2.1 Let V (·) and ζ(·) be smooth functions defined on [0, tf ) with V (t) ≥
0, ∀t ∈ [0, tf ), and smooth Nussbaum-type function N(ζ) = ζ2 cos(ζ). If the fol-

lowing inequality holds:

0 ≤ V (t) ≤ c0 + e−c1t
∫ t

0
g0N(ζ)ζ̇ec1τdτ + e−c1t

∫ t

0
ζ̇ec1τdτ, ∀t ∈ [0, tf ) (6.2)

where constant c1 > 0, g0 is a nonzero constant, and c0 represents some suitable

constant, then V (t), ζ(t) and
∫ t
0 g0N(ζ)ζ̇dτ must be bounded on [0, tf ).

Though the proof is not trivial even for finite tf already, it is the case that tf → ∞
is of interest. This can be easily extended due to Proposition 1 below. Consider

ẋ(t) ∈ F (x(t)), x(0) = x0 (6.3)

where z 
→ F (z) ⊂ RN is upper semicontinuous on Rn with non-empty convex and

compact values. It is well known that the initial-value problem has a solution and

that every solution can be maximally extended.

Proposition 1 [70] If x : [0, tf ) → RN is a bounded maximal solution of (6.3),

then tf = ∞.
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Remark 6.2.2 As can be seen from Appendix 7.2, the proof of Lemma 6.2.1 is

very much involved and indeed a contribution by itself. In addition, we would like

to point out that N(·) is not necessarily an even function, which is only made

for the convenience of proof. If N(·) is chosen as an odd function, e.g., N(ζ) =

ζ2 sin(ζ), the lemma can be easily proven by following the same procedure. From

our understanding, we can make a conjecture that Lemma 6.2.1 is true for all

the Nussbaum functions. We hope that interested reader can prove the lemma for

general Nussbaum functions.

6.2.2 Robust Adaptive Control and Main Results

In this section, the robust adaptive control design procedure for nonlinear system

(6.1) is presented. The design of both the control law and the adaptive laws is

based on a change of coordinates

z1 = x1

z2 = x2 − α1(x1, θ̂a,1, b̂1, ζ1)
...

zi = xi − αi−1(x1, · · · , xi−1, θ̂a,1, · · · , θ̂a,i−1, b̂1, · · · , b̂i−1, ζi−1)
...

zn = xn − αn−1(x1, · · · , xn−1, θ̂a,1, · · · , θ̂a,n−1, b̂1, · · · , b̂n−1, ζn−1)

where the functions αi, i = 1, · · · , n − 1 are referred to as intermediate control

functions which will be designed using backstepping technique, b̂i is the parameter

estimate for b∗i which is the grouped unknown bound for p∗i , θ̂a,i represents the

estimate of unknown parameter θ∗a,i which is an augmented parameter and consists

of gj, j = 1, · · · , i − 1 and θj, j = 1, · · · , i as will be clarified later, and ζi is the

argument of the Nussbaum function. At each intermediate step i, we design the

following intermediate control function αi using an appropriate Lyapunov function

Vi, and give the updating laws
˙̂
bi,

˙̂
θa,i and ζ̇i. At the nth step, the actual control u

appears and the design is completed. For clarity and conciseness, the intermediate

variables including the control functions and adaptive laws, i = 1, ..., n − 1, are

defined

ηi = kizi + θ̂T
a,iψa,i + b̂iφ̄i tanh

(ziφ̄i

εi

)
(6.4)
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αi = N(ζi)ηi (6.5)

ζ̇i = ziηi (6.6)

˙̂
θa,i = Γi

[
ziψa,i − σθi

(θ̂a,i − θ0
a,i)
]

(6.7)

˙̂
bi = γi

[
ziφ̄i tanh

(ziφ̄i

εi

)
− σbi

(b̂i − b0
i )
]

(6.8)

where the variables including ψa,i and φ̄i will be defined later, Γi = ΓT
i > 0, γi > 0,

θ̂a,i and b̂i are the parameter estimates of θ∗a,i and b∗i , constant ki > 1
4
, εi is a small

positive constant and σθi
, σbi

, θ0
a,i, and b0

i are positive design constants.

Step 1: To start, let us study the following subsystem of (6.1):

ẋ1 = g1x2 + θT
1 ψ1(x1) + ∆1(t, x) (6.9)

where x2 is taken for a virtual control input. To design a stabilizing adaptive

control law for system (6.9), consider a Lyapunov function candidate V0(x1) = 1
2
z2
1 .

In light of Assumption 6.2.1, the time derivative of V0 along the solutions of (6.9)

satisfies

V̇0 = z1(g1x2 + θT
1 ψ1(x1) + ∆1(t, x)) ≤ z1(g1x2 + θT

1 ψ1) + b∗1|z1|φ̄1 (6.10)

where b∗1 = p∗1, φ̄1 = φ1. For notation consistence, let θ∗a,1 = θ1, ψa,1 = ψ1. Consider

the Lyapunov function candidate

V1 = V0 +
1

2
(θ̂a,1 − θ∗a,1)

T Γ−1
1 (θ̂a,1 − θ∗a,1) +

1

2γ1

(b̂1 − b∗1)
2

The time derivative of V1 along (6.10) is

V̇1 ≤ z1(g1x2 + θ∗Ta,1ψa,1) + b∗1|x1|φ̄1 + (θ̂a,1 − θ∗a,1)
T Γ−1

1
˙̂
θa,1 +

1

γ1

(b̂1 − b∗1)
˙̂
b1 (6.11)

Since x2 = z2 + α1, substituting (6.4)-(6.6) with i = 1 into (6.11) yields

V̇1 ≤ g1z1z2 + g1N(ζ1)ζ̇1 + z1θ
∗T
a,1ψa,1 + b∗1|x1|φ̄1 +(θ̂a,1 − θ∗a,1)

T Γ−1
1

˙̂
θa,1 +

1

γ1

(b̂1 − b∗1)
˙̂
b1

(6.12)

Adding and subtracting ζ̇1 on the right hand side of (6.12), and noting (6.7) and

(6.8), we have

V̇1 ≤ −k1z
2
1 + g1z1z2 + g1N(ζ1)ζ̇1 + ζ̇1 + b∗1|x1|φ̄1 − b∗1x1φ̄1 tanh

(x1φ̄1

ε1

)
−σθ1(θ̂a,1 − θ∗a,1)

T (θ̂a,1 − θ0
a,1) − σb1(b̂1 − b∗1)(b̂1 − b0

1) (6.13)
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By completing the squares

−σθ1(θ̂a,1 − θ∗a,1)
T (θ̂a,1 − θ0

a,1) ≤ −1

2
σθ1‖θ̂a,1 − θ∗a,1‖2 +

1

2
σθ1‖θ∗a,1 − θ0

a,1‖2

−σb1(b̂1 − b∗1)(b̂1 − b0
1) ≤ −1

2
σb1(b̂1 − b∗1)

2 +
1

2
σb1(b

∗
1 − b0

1)
2

and using the following nice property with regard to function tanh(·) [86]

0 ≤ |x| − x tanh(
x

ε
) ≤ 0.2785ε, for ε > 0, x ∈ R

equation (6.13) can be further written as

V̇1 ≤ −k1z
2
1 + g1z1z2 + g1N(ζ1)ζ̇1 + ζ̇1 − 1

2
σθ1‖θ̂a,1 − θ∗a,1‖2 − 1

2
σb1(b̂1 − b∗1)

2

+b∗10.2785ε1 +
1

2
σθ1‖θ∗a,1 − θ0

a,1‖2 +
1

2
σb1(b

∗
1 − b0

1)
2

≤ −k10z
2
1 −

1

2
σθ1‖θ̂a,1 − θ∗a,1‖2 − 1

2
σb1(b̂1 − b∗1)

2 + g1N(ζ1)ζ̇1 + ζ̇1

+b∗10.2785ε1 +
1

2
σθ1‖θ∗a,1 − θ0

a,1‖2 +
1

2
σb1(b

∗
1 − b0

1)
2 + g2

1z
2
2

≤ −c11V1 + c12 + g1N(ζ1)ζ̇1 + ζ̇1 + g2
1z

2
2 (6.14)

where the constants k10 = k1 − 1
4

> 0, c11 > 0 and c12 > 0 are defined as

c11 : = min{2k10,
σθ1

λmin(Γ
−1
1 )

, σb1γ1}

c12 : = b∗10.2785ε1 +
1

2
σθ1‖θ∗a,1 − θ0

a,1‖2 +
1

2
σb1(b

∗
1 − b0

1)
2

Let ρ1 := c12
c11

. Multiplying (6.14) by ec11t leads to

d

dt
(V1e

c11t) ≤ c12e
c11t + g1N(ζ1)ζ̇1e

c11t + ζ̇1e
c11t + g2

1z
2
2e

c11t (6.15)

Integrating (6.15) over [0, t], we have

0 ≤ V1(t) ≤ ρ1 + V1(0) + e−c11t
∫ t

0
g1N(ζ1)ζ̇1e

c11τdτ + e−c11t
∫ t

0
ζ̇1e

c11τdτ

+
∫ t

0
g2
1z

2
2e

−c11(t−τ)dτ (6.16)

Remark 6.2.3 If there was no uncertain term ∆1 as in [81][83], where the uncer-

tainty is from unknown parameters only, adaptive control can be used to solve the

problem elegantly and the asymptotic stability can be guaranteed. However, it is
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not the case here due to the presence of the uncertainty terms ∆1 in system (6.1).

For illustration, integrating (6.14) over [0, t] leads to

V1(t) ≤ V1(0) + c12t +
∫ t

0
(g1N(ζ1) + 1)ζ̇1dτ +

∫ t

0
g2
1z

2
2dτ

from which, no conclusion on the boundedness of V1(t) or ζ1(t) can be drawn by

applying Lemma 1 in [83] due to the extra term c12t. The problem can be successfully

solved by multiplying the exponential term ec11t to both sides of (6.14) as in this

chapter. From (6.16), the stability results can be drawn by invoking Lemma 6.2.1

if
∫ t
0 g2

1z
2
2e

−c11(t−τ)dτ is upper bounded.

Remark 6.2.4 In equation (6.16), if there is no extra term
∫ t
0 g2

1z
2
2e

−c11(t−τ)dτ

within the inequality, we can conclude that V1(t), ζ1 and z1, θ̂a,1, b̂1 are all bounded

on [0, tf ) according to Lemma 6.2.1. Thus, from Proposition 1, tf = ∞, and we

claim that z1, θ̂a,1, b̂1 are globally uniformly ultimately bounded. Due to the presence

of term
∫ t
0 g2

1z
2
2e

−c11(t−τ)dτ in (6.16), Lemma 6.2.1 cannot be applied directly. By

noting that

e−c11t
∫ t

0
g2
1z

2
2e

c11τdτ ≤ e−c11tg2
1 sup

τ∈[0,t]
z2
2

∫ t

0
ec11τdτ ≤ g2

1 supτ∈[0,t] z
2
2

c11

we know that if z2 can be regulated as bounded, the boundedness of
∫ t
0 g2

1z
2
2e

−c11(t−τ)dτ

is obvious. Then, according to Lemma 6.2.1, the boundedness of z1(t) can be guar-

anteed. The effect of
∫ t
0 g2

1z
2
2e

−c11(t−τ)dτ will be dealt with at the following steps.

Step i (2 ≤ i ≤ n − 1): In view of Assumption 6.2.1, we have

zi

(
∆i(t, x) −

i−1∑
j=1

∂αi−1

∂xj

∆j(t, x)
)
≤ |zi|

(
p∗i φi +

i−1∑
j=1

p∗j |
∂αi−1

∂xj

|φj

)
≤ b∗i |zi|φ̄i(x̄i)

where b∗i = max{p∗1, · · · , p∗i }, φ̄i(x̄i) ≥ φi +
∑i−1

j=1 |∂αi−1

∂xj
|φj is a smooth positive

function. A simple example is φ̄i = φi +
∑i−1

j=1

(
1
4
(∂αi−1

∂xj
)2 + 1

)
φj. The derivative of

1
2
z2

i is

ziżi = zi

[
gixi+1 + θT

i ψi + ∆i −
i−1∑
j=1

∂αi−1

∂xj

(gjxj+1 + θT
j ψj + ∆j)

−
i−1∑
j=1

∂αi−1

∂θ̂a,j

˙̂
θa,j −

i−1∑
j=1

∂αi−1

∂b̂j

˙̂
bj − ∂αi−1

∂ζi−1

ζ̇i−1

]
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≤ zi

(
gixi+1 −

i−1∑
j=1

∂αi−1

∂xj

gjxj+1 + θT
i ψi −

i−1∑
j=1

∂αi−1

∂xj

θT
j ψj + βi

)
+ b∗i |zi|φ̄i

≤ zi(gixi+1 + θ∗Ta,iψa,i) + b∗i |zi|φ̄i

where

βi = −
i−1∑
j=1

∂αi−1

∂θ̂a,j

˙̂
θa,j −

i−1∑
j=1

∂αi−1

∂b̂j

˙̂
bj − ∂αi−1

∂ζi−1

ζ̇i−1

θ∗a,i = [1, g1, · · · , gi−1, θ
T
i , θT

1 , · · · , θT
i−1]

T

ψa,i = [βi,−∂αi−1

∂x1

x2, · · · ,−∂αi−1

∂xi−1

xi, ψ
T
i ,−∂αi−1

∂x1

ψT
1 , · · · ,−∂αi−1

∂xi−1

ψT
i−1]

T

Consider the Lyapunov function candidate

Vi =
1

2
z2

i +
1

2
(θ̂a,i − θ∗a,i)

T Γ−1
i (θ̂a,i − θ∗a,i) +

1

2γi

(b̂i − b∗i )
2

Selecting αi and parameters adaptation laws as in (6.5)-(6.8), we can similarly

obtain

V̇i ≤ zi(gixi+1 + θ∗Ta,iψa,i) + b∗i |zi|φ̄i + (θ̂a,i − θ∗a,i)
T Γ−1

i
˙̂
θa,i +

1

γi

(b̂i − b∗i )
˙̂
bi

≤ −ki0z
2
i + giN(ζi)ζ̇i + ζ̇i − 1

2
σθi

‖θ̂a,i − θ∗a,i‖2 − 1

2
σbi

(b̂i − b∗i )
2

+b∗i 0.2785εi +
1

2
σθi

‖θ∗a,i − θ0
a,i‖2 +

1

2
σbi

(b∗i − b0
i )

2 + g2
i z

2
i+1

0 ≤ Vi(t) ≤ ρi + Vi(0) + e−ci1t
∫ t

0
giN(ζi)ζ̇ie

ci1τdτ + e−ci1t
∫ t

0
ζ̇ie

ci1τdτ

+
∫ t

0
g2

i z
2
i+1e

−ci1(t−τ)dτ

where ρi := ci2

ci1
, the constants ki0 = ki − 1

4
> 0, ci1 > 0 and ci2 > 0 are defined as

ci1 : = min{2ki0,
σθi

λmin(Γ
−1
i )

, σbi
γi} (6.17)

ci2 : = b∗i 0.2785εi +
1

2
σθi

‖θ∗a,i − θ0
a,i‖2 +

1

2
σbi

(b∗i − b0
i )

2 (6.18)

Remark 6.2.5 Similarly, if zi+1 can be regulated as bounded, and therefore∫ t
0 g2

i z
2
i+1e

−ci1(t−τ)dτ is bounded at the following steps, then according to Lemma

6.2.1, the boundedness of zi(t) can be guaranteed.
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Step n: In this final step, the actual control u appears. Similarly, we have

znżn ≤ zn

[
gnu + θT

n ψn −
n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + θT
j ψj)

−
n−1∑
j=1

∂αn−1

∂θ̂a,j

˙̂
θa,j −

n−1∑
j=1

∂αn−1

∂b̂j

˙̂
bj − ∂αn−1

∂ζn−1

ζ̇n−1

]
+ b∗n|zn|φ̄n

= zn

[
gnu + θT

n ψn −
n−1∑
j=1

∂αn−1

∂xj

(gjxj+1 + θT
j ψj) + βn

]
+ b∗n|zn|φ̄n

≤ zn(gnu + θ∗Ta,nψa,n) + b∗n|zn|φ̄n

where

βn = −
n−1∑
j=1

∂αn−1

∂θ̂a,j

˙̂
θa,j −

n−1∑
j=1

∂αn−1

∂b̂j

˙̂
bj − ∂αn−1

∂ζn−1

ζ̇n−1

b∗n = max{p∗1, · · · , p∗n}

φ̄n(x̄n) = φn +
n−1∑
j=1

|∂αn−1

∂xj

|φj

θ∗a,n = [1, g1, · · · , gn−1, θ
T
n , θT

1 , · · · , θT
n−1]

T

ψa,n = [βn,−∂αn−1

∂x1

x2, · · · ,−∂αn−1

∂xn−1

xn, ψ
T
n ,−∂αn−1

∂x1

ψT
1 , · · · ,−∂αn−1

∂xn−1

ψT
n−1]

T

For clarity, the final control law and parameter adaptation laws are given explicitly:

ηn = knzn + θ̂T
a,nψa,n + b̂nφ̄n tanh

(znφ̄n

εn

)
(6.19)

u = N(ζn)ηn (6.20)

ζ̇n = znηn (6.21)

˙̂
θa,n = Γn

[
ψazn − σθn(θ̂a,n − θ0

a,n)
]

(6.22)

˙̂
bn = γn

[
znφ̄n tanh

(znφ̄n

εn

)
− σbn(b̂n − b0

n)
]

(6.23)

where constant kn > 0 (different from ki > 1
4

in the intermediate steps) and εn is a

small positive constant, Γn = ΓT
n > 0, γn, σθn , σbn , θ0

a,n and b0
n are positive design

constants.

Consider the Lyapunov function candidate

Vn =
1

2
z2

n +
1

2
(θ̂a,n − θ∗a,n)T Γ−1

n (θ̂a,n − θ∗a,n) +
1

2γn

(b̂n − b∗n)2
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Similarly, we have

V̇n ≤ −knz
2
n + gnN(ζn)ζ̇n + ζ̇n − 1

2
σθn‖θ̂a,n − θ∗a,n‖2 − 1

2
σbn(b̂n − b∗n)2

+b∗n0.2785εn +
1

2
σθn‖θ∗a,n − θ0

a,n‖2 +
1

2
σbn(b∗n − b0

n)2

0 ≤ Vn(t) ≤ ρn + Vn(0) + e−cn1t
∫ t

0
gnN(ζn)ζ̇ne

cn1τdτ + e−cn1t
∫ t

0
ζ̇ne

cn1τdτ

where ρn := cn2

cn1
, the constants cn1 > 0 and cn2 > 0 are defined as

cn1 := min{2kn,
σθn

λmin(Γ−1
n )

, σbnγn}

cn2 := b∗n0.2785εn +
1

2
σθn‖θ∗a,n − θ0

a,n‖2 +
1

2
σbn(b∗n − b0

n)2

Using Lemma 6.2.1, we can conclude that ζn(t) and Vn(t), hence zn(t), θ̂a,n(t), b̂a,n(t)

are bounded on [0, tf ). From the boundedness of zn(t), the boundedness of the extra

term
∫ t
0 g2

n−1z
2
ne−cn−1,1(t−τ)dτ at Step (n − 1) is readily obtained. Applying Lemma

6.2.1 backward (n−1) times, it can be seen from the above design procedures that

Vi(t), zi(t), θ̂a,i(t), b̂a,i(t), and hence xi(t) are bounded on [0, tf ).

Theorem 6.2.1 For the perturbed strict-feedback nonlinear system (6.1) with com-

pletely unknown control coefficients gi, under Assumption 6.2.1, if we apply the

controller (6.19)-(6.21) with the parameters updating laws (6.22) and (6.23), the

solutions of the resulting closed-loop adaptive system are globally uniformly ulti-

mately bounded. Furthermore, given any µ > µ∗ =
√∑n

i=1 2(ρi + ci), there exists

T such that, for all t ≥ T , we have ‖z(t)‖ ≤ µ, where z(t) := [z1, · · · , zn]T ∈ Rn,

ρi := ci2

ci1
, i = 1, · · · , n, constants ci1 > 0 and ci2 > 0 are defined by (6.17) and (6.18)

respectively, and ci is the upper bound of
∫ t
0(giN(ζi)ζ̇i + ζ̇i + g2

i z
2
i+1)e

−ci1(t−τ)dτ ,

i = 1, · · · , n − 1 and cn is the upper bound of
∫ t
0(gnN(ζn)ζ̇n + ζ̇n)e−cn1(t−τ)dτ . The

compact set Ωz = {z ∈ Rn|‖z(t)‖ ≤ µ} can be made as small as desired by appro-

priately choosing the design constants. Furthermore, the output y(t) satisfies the

following property:

|y(t)| ≤
√

2V1(0)e−c11t + 2(ρ1 + c1), ∀t ≥ 0. (6.24)
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Proof: The proof can be easily completed by following the above design procedures

from Step 1 to Step n. According to Proposition 1, if the solution of the closed-

loop system is bounded, then tf = ∞. Therefore, we can obtain the globally

uniformly ultimately boundedness of all the signals in the closed-loop system. Since

x1(t) = z1(t), from the definition of V1 and (6.16), the property (6.24) can be

readily obtained. Thus, by appropriately choosing the design constants, we can

achieve the regulation of the state x1(t) to any prescribed accuracy while keeping

the boundedness of all the signals and states of the close-loop system. ♦

Corollary 3 Under the conditions of Theorem 6.2.1, if function ψi in system (6.1)

and φi in Assumption 6.2.1 vanish at the origin, then we can find an adaptive

controller of the form (6.20)-(6.21) with σθi
= σbi

= 0, i = 1, · · · , n such that all

the solutions of the closed-loop system satisfy limt→∞ ‖x(t)‖ = 0.

Proof: Following the same design procedure, in the present case, we have

V̇i ≤ −ki0z
2
i + giN(ζi)ζ̇i + ζ̇i + g2

i z
2
i+1, i = 1, · · · , n − 1 (6.25)

V̇n ≤ −knz2
n + gnN(ζn)ζ̇n + ζ̇n (6.26)

From (6.26) and using Lemma 6.2.1, it follows that ζn(t) and Vn(t), hence zn(t),

θ̂a,n(t), b̂a,n(t) are globally uniformly ultimately bounded. Moreover, zn(t) is square

integrable. Noting (6.25), and applying Lemma 6.2.1 backward (n−1) times, it can

be obtained that Vi(t), zi(t), θ̂a,i(t), b̂a,i(t), and hence xi(t) are globally uniformly

ultimately bounded. In addition, since ẋi, 1 ≤ i ≤ n are bounded, functions xi(t)

are uniformly continuous. Hence, a direct application of Barbalat’s lemma gives

that limt→∞ ‖x(t)‖ = 0. ♦

6.2.3 Simulation Studies

To illustrate the proposed robust adaptive control algorithms, we consider the

regulation of the second-order system

ẋ1 = g1x2 + θ1x
2
1 + ∆1(t, x)

ẋ2 = g2u + ∆2(t, x)

y = x1
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where x = [x1, x2]
T , g1, g2 are unknown control coefficients, θ1 is an unknown

parameter, and ∆1(t, x), ∆2(t, x) are unknown disturbances. For simulation pur-

pose, we assume that θ1 = 0.1, g1 = 1, g2 = 1 and let ∆1(t, x) = 0.6 sin(x2),

∆2(t, x) = 0.5(x2
1 + x2

2) sin3 t. The bounds on ∆1 and ∆2 are |∆1(x, t)| ≤ p∗1φ1(x1),

|∆2(x, t)| ≤ p∗2φ2(x), where p∗1 = 0.6, p∗2 = 0.5, φ1(x1) = 1, and φ2(x) = x2
1 + x2

2.

b∗1 = p∗1, b∗2 = max{p∗1, p∗2}. For the design of robust adaptive controller, let θ̂a,1,

θ̂a,2, b̂1, b̂2 be the estimates of unknown parameters θ∗a,1 = θ1, θ∗a,2 = [1, g1, θ
T
1 ], b∗1,

b∗2, and z1 = x1, z2 = x2 − α1, we have

φ̄1 = φ1

α1 = N(ζ1)
(
k1z1 + θ̂T

a,1ψa,1(x1) + b̂1φ̄1(x1) tanh[
x1φ̄1(x1)

ε1

]
)

φ̄2 = φ2 + |∂α1

∂x1

|φ1

u = N(ζ2)
(
k2z2 + θ̂T

a,2ψa,2 + b̂2φ̄2 tanh
[z2φ̄2

ε2

])

where N(ζi) = exp(ζ2
i ) cos(π

2
ζi), i = 1, 2 are the Nussbaum functions, ψa,1 = x2

1,

ψa,2 = [− ∂α1

∂θ̂a,1

˙̂
θa,1 − ∂α1

∂b̂1

˙̂
b1,−∂α1

∂x1
x2,−∂α1

∂x1
x2

1]
T , and ζ1, ζ2 are computed using (6.6).

The adaptive laws are given by

˙̂
θa,1 = Γ1z1ψa,1 − Γ1σθ1(θ̂a,1 − θ0

a,1)

˙̂
θa,2 = Γ2z2ψa,2 − Γ2σθ2(θ̂a,2 − θ0

a,2)

˙̂
b1 = λ1z1φ̄1 tanh(

z1φ̄1

ε1

) − λ1σb1(b̂1 − b0
1)

˙̂
b2 = λ2z2φ̄2 tanh(

z2φ̄2

ε2

) − λ2σb2(b̂2 − b0
2)

The following initial conditions and controller design parameters are adopted in

the simulation: x(0) = [1, 0]T , θ̂a,1(0) = 0, θ̂a,2(0) = 0, b̂1(0) = 0, b̂2(0) = 0, and

k1 = k2 = 1, Γ1 = Γ2 = 0.2, λ1 = λ2 = 0.1, σθ1 = σθ2 = σb1 = σb1 = 0.1,

ε1 = ε2 = 0.05, θ0
a,1 = θ0

a,2 = 0, and b0
1 = b0

2 = 0.1. Simulation results are shown

in Figures 6.1-6.4. Figure 6.1 shows that the system states converges to a small

neighborhood around zero. The boundedness of control input and the parameter

estimates are illustrated in Figures 6.2-6.3. Figure 6.4 shows the variations of

parameters ζ1, ζ2 and Nussbaum gains respectively.
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Figure 6.1: States (x1(“−”) and x2(“· · ·”).
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Figure 6.2: Control input u.
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Figure 6.3: Estimation of parameters θ̂a,1(“−”), ‖θ̂a,2‖(“- -”), b̂1(“· · ·”), b̂2(“-·”).
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Figure 6.4: Updated variables ζ1(“−”) and “gain” N(ζ1)(“- -”); ζ2(“· · ·”) and
“gain” N(ζ2)(“-·”).
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6.2.4 Conclusion

In this section, a robust adaptive control approach for a class of perturbed uncer-

tain strict-feedback nonlinear systems with unknown control coefficients has been

presented. The design method does not require the a priori knowledge of the signs

of the unknown control coefficients due to the incorporation of Nussbaum gain in

the controller design. It has been proved that the proposed robust adaptive scheme

can guarantee the global uniform ultimate boundedness of the closed-loop system

signals.

6.3 NN Control of Time-Delay Systems with Unknown VCC

6.3.1 Problem Formulation and Preliminaries

Consider a class of single-input-single-output (SISO) nonlinear time-delay systems

ẋi(t) = gi(x̄i(t))xi+1(t) + fi(x̄i(t)) + hi(x̄i(t − τi)),

i = 1, · · · , n − 1

ẋn(t) = gn(x(t))u(t) + fn(x(t)) + hn(x(t − τn)),

y(t) = x1(t)

(6.27)

where x̄i = [x1, x2, · · · , xi]
T , x = [x1, x2, · · · , xn]T ∈ Rn, u ∈ R, y ∈ R are the state

variables, system input and output respectively, gi(·) and fi(·), hi(·) are unknown

smooth functions, and τi are unknown time delays of the states, i = 1, · · · , n. The

control objective is to design an adaptive controller for system (6.27) such that the

output y(t) follows a desired reference signal yd(t), while all signals in the closed-

loop system are bounded. Define the desired trajectory x̄d(i+1) = [yd, ẏd, · · · , y(i)
d ]T ,

i = 1, · · · , n − 1, which is a vector of yd up to its ith time derivative y
(i)
d .

Assumption 6.3.1 Functions gi(x̄i) and their signs are unknown, and there exist

constants gi0 and known smooth functions ḡi(x̄i) such that 0 < gi0 ≤ |gi(x̄i)| ≤
ḡi(x̄i), ∀x̄i ∈ Ri.

Assumption 6.3.2 Known smooth functions ḡi(x̄i) take value in the unknown

closed intervals Ii := [l−i , l+i ] ⊂ [gi0, +∞) with 0 /∈ Ii.
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Assumption 6.3.3 The desired trajectory vectors x̄di, i = 2, · · · , n are continuous

and available, and x̄di ∈ Ωdi ⊂ Ri with Ωdi known compact sets.

Remark 6.3.1 Assumption 6.3.1 implies that smooth functions gi(x̄i) are strictly

either positive or negative, which is reasonable because gi(x̄i) being away from zero is

the controllable condition of system (6.27), which is made in most control schemes

[19][139]. For a given practical system, the upper bounds of gi(x̄i) are not difficult

to determine by choosing ḡi(x̄i) large enough. It should be emphasized that the low

bounds gi0, the lower and upper bounds of the closed intervals l−i and l+i are only

required for analytical purposes, their true values are not necessarily known.

Accordingly, we define positive-definite functions βi(x̄i) = ḡi(x̄i)/|gi(x̄i)|, i =

1, · · · , n. From Assumption 6.3.1, we know that βi(x̄i) are bounded by known

functions as 1 < βi(x̄i) ≤ ḡi(x̄i)
gi0

.

Assumption 6.3.4 The unknown smooth functions hi(x̄i(t)) satisfy the inequality

|hi(x̄i(t))| ≤ �i(x̄i(t)) where �i(·) are known positive smooth functions.

This assumption is much more relaxed than |hi(x̄i(t))| ≤ ∑i
j=1 |xj(t)|�ij(x̄i(t)) as

has been made in [124].

Assumption 6.3.5 The unknown time delays are bounded by a known constant,

i.e., τi ≤ τmax, i = 1, · · · , n.

Remark 6.3.2 There are many physical processes which are governed by nonlinear

differential equations of the form (6.27). Examples are recycled reactors, recycled

storage tanks and cold rolling mills [92]. In general, most of the recycling processes

inherit delays in their state equations.

The technical Lemma 2.4.6 introduced in Chapter 2 is critical in solving the robust

control problem in this chapter and and is rewritten here for easy reference.

Lemma 6.3.1 Let V (·) and ζ(·) be smooth functions defined on [0, tf ) with V (t) ≥
0, ∀t ∈ [0, tf ), and N(ζ) be an even smooth Nussbaum-type function. If the he
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following inequality holds:

V (t) ≤ c0 + e−c1t
∫ t

0
g0(x(τ))N(ζ)ζ̇ec1τdτ + e−c1t

∫ t

0
ζ̇ec1τdτ, ∀t ∈ [0, tf ) (6.28)

where constant c1 > 0, g0(x(t)) is a time-varying parameter which takes values in

the unknown closed intervals I := [l−, l+] with 0 /∈ I, and c0 represents some suit-

able constant, then V (t), ζ(t) and
∫ t
0 g0(x(τ))N(ζ)ζ̇dτ must be bounded on [0, tf ).

For clarity, the even Nussbaum function, N(ζ) = eζ2
cos(π

2
ζ) is used in this section.

For the construction of differentiable control laws, two continuous functions are

introduced as follows.

F1). Even function qi(x) : R → R

qi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, |x| ≥ λai + λbi

cqi

∫ x
λai

[(λbi

2
)2 − (σ − λai − λbi

2
)2]n−idσ, λai < x < λai + λbi

cqi

∫−λai
x [(λbi

2
)2 − (σ + λai + λbi

2
)2]n−idσ, −(λai + λbi) < x < −λai

0, |x| ≤ λai

(6.29)

where cqi = [2(n−i)+1]!

λ
2(n−i)+1
bi

[(n−i)!]2
, λai, λbi > 0 and integer i ∈ R+, is (n−i)th differentiable,

i.e., qi(x) ∈ Cn−i and bounded by 1.

F2). Even function κ(·) : R → R

κ(x) =
x2 cosh(x)

1 + x2
, ∀x ∈ R (6.30)

is continuous, and monotonic, i.e., for any |x| ≥ c, where c is a positive constant,

κ(x) ≥ κ(c).

6.3.2 Adaptive Control for First-order System

To illustrate the design methodology clearly, we first consider the tracking problem

of a first-order system

ẋ1(t) = g1(x1(t))u(t) + f1(x1(t)) + h1(x1(t − τ1)) (6.31)

where u(t) is the control input. Define the tracking error z1 = x1 − yd, we have

ż1(t) = g1(x1(t))u(t) + f1(x1(t)) + h1(x1(t − τ1)) − ẏd(t) (6.32)
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Define β1(x1) = ḡ1(x1)/|g1(x1)|, and a smooth scalar function

Vz1(t) =
∫ z1

0
σβ1(σ + yd)dσ

By changing the variable σ = θz1, we may rewrite Vz1 as Vz1 = z2
1

∫ 1
0 θβ1(θz1+yd)dθ.

Noting that 1 ≤ β1(θz1 + yd) ≤ ḡ1(θz1 + yd)/g10, we have

z2
1

2
≤ Vz1 ≤

z2
1

g10

∫ 1

0
θḡ1(θz1 + yd)dθ (6.33)

Its time derivative is

V̇z1(t) = z1(t)β1(x1(t))ż1(t) +
∫ z1

0
σ

∂β1(σ + yd)

∂yd

ẏddσ

Noting (6.32) and doing the integration by parts, we have

V̇z1(t) = z1(t)β1(x1(t))
[
g1(x1(t))u(t) + f1(x1(t)) + h1(x1(t − τ1)) − ẏd(t)

]
+ẏd(t)

[
σβ1(σ + yd)|z1

0 −
∫ z1

0
β1(σ + yd)dσ

]
= z1(t)

[
β1(x1(t))g1(x1(t))u(t) + β1(x1(t))f1(x1(t))

+β1(x1(t))h1(x1(t − τ1)) − ẏd(t)
∫ 1

0
β1(θz1 + yd)dθ

]

Applying Assumption 6.3.4, we have

V̇z1(t) ≤ z1(t)
[
β1(x1(t))g1(x1(t))u(t) + β1(x1(t))f1(x1(t))

−ẏd(t)
∫ 1

0
β1(θz1 + yd)dθ

]
+ |z1(t)|β1(x1(t))�1(x1(t − τ1)) (6.34)

Remark 6.3.3 It can be seen from (6.34) that the design difficulties are mainly

from two uncertainties: unknown functions f1(·), β1(·) (due to unknown function

g1(·)) and unknown time delay τ1. Although �1(·) is known, state x1(t− τ1) should

not appear in the designed controller as it is undetermined due to known τ1. In

addition, the unknown time delay τ1 and the unknown function β1(x1(t)) are entan-

gled together in a nonlinear fashion, which makes the problem even more complex

to solve. Therefore, we have to convert these related terms into such a form that

the uncertainties from τ1 and β1(x1(t)) can be dealt with separately.

By using Young’s Inequality, (6.34) becomes

V̇z1(t) ≤ z1(t)
[
β1(x1(t))g1(x1(t))u(t) + β1(x1(t))f1(x1(t))
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−ẏd(t)
∫ 1

0
β1(θz1 + yd)dθ

]

+
1

2
z2
1(t)β

2
1(x1(t)) +

1

2
�2

1(x1(t − τ1)) (6.35)

where β1(x1(t)) and �1(x1(t− τ1)) are separated and can be dealt with one by one

as detailed later.

To overcome the design difficulties from the unknown time delay τ1, the following

Lyapunov-Krasovskii functional can be considered

VU1(t) =
1

2

∫ t

t−τ1
U1(x1(τ))dτ, U1(x1(t)) = �2

1(x1(t)) (6.36)

The time derivative of VU1(t) is

V̇U1(t) =
1

2
�2

1(x1) − 1

2
�2

1(x1(t − τ1))

which can be used to cancel the time-delay term on the right hand side of (6.35)

and thus eliminate the design difficulty from the unknown time delay τ1 without

introducing any uncertainties to the system. For notation conciseness, we will

omit the time variables t and t − τ1 after time-delay terms have been eliminated.

Accordingly, we obtain

V̇z1 + V̇U1 ≤ z1β1(x1)g1(x1)u + Q1(Z1)z1 (6.37)

where

Q1(Z1) = β1(x1)f1(x1) − ẏd

∫ 1

0
β1(θz1 + yd)dθ +

1

2
z1β

2
1(x1) +

1

2z1

�2
1(x1) (6.38)

with Z1 = [x1, yd, ẏd]
T ∈ ΩZ1 ⊂ R3, where ΩZ1 is a compact set.

At present stage, suppose the Lyapunov function candidate is chosen as V1(t) =

Vz1(t)+VU1(t). From (6.37), we know that we can design a stabilizing u(t) which is

free from unknown time delay τ1 under the assumption of known system functions.

Note that if Q1(Z1) is utilized to construct the controller, controller singularity

may occur since 1
2z1

�2
1(x1) is not well-defined at z1 = 0. Therefore, care must be

taken to guarantee the boundedness of the control. It is noted that the controller

singularity takes place at the point z1 = 0, where the control objective is supposed

to be achieved. From a practical point of view, once the system reaches its origin,
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no control action should be taken for less power consumption. As z1 = 0 is hard

to detect owing to the existence of measurement noise, it is more practical to relax

our control objective of convergence to a “ball” rather than the origin [129].

For ease of discussion, let us define sets Ωcz1
⊂ ΩZ1 and Ω0

Z1
as follows

Ωcz1
:= {z1, x̄d2 ||z1| < cz1 , x̄d2 ∈ Ωd2} (6.39)

Ω0
Z1

:= ΩZ1 − Ωcz1
(6.40)

where cz1 is a constant that can be chosen arbitrarily small and “−” in (6.40) is

used to denote the complement of set B in set A as follows

A − B := {x |x ∈ A and x /∈ B }

Lemma 6.3.2 Set Ω0
Z1

is a compact set.

Proof: See Section 4.2.3 of Chapter 4. ♦

Under the assumption of known system functions, we have the practical robust

control law to guarantee the closed-loop stability as detailed in Lemma 6.3.3.

Lemma 6.3.3 For the first-order system (6.31), if the practical robust control law

is chosen as

u(t) =

⎧⎨
⎩ N(ζ1)[k1(t)z1 + Q1(Z1)], z1 ∈ Ω0

Z1

0, z1 ∈ Ωcz1

(6.41)

ζ̇1 = k1(t)z
2
1 + Q1(Z1)z1 (6.42)

where k1(t) ≥ k∗ > 0 with k∗ being any positive constant, then for bounded initial

conditions, all the signals in the closed-loop system are globally uniformly ultimately

bounded.

Proof: We first show that all the closed-loop signals are GUUB for z1 ∈ Ω0
Z1

.

Consider the following Lyapunov function candidate

V1(t) = Vz1(t) + VU1(t)
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Its time derivative along (6.37) is

V̇1(t) ≤ z1β1(x1)g1(x1)u + Q1(Z1)z1 (6.43)

For z1 ∈ Ω0
Z1

, substituting (6.41) into (6.43) yields

V̇1(t) ≤ β1(x1)g1(x1)N(ζ1)ζ̇1 + Q1(Z1)z1 (6.44)

Adding and subtracting k1(t)z
2
1 + Q1(Z1)z1 on the right hand side of (6.44), we

have

V̇1(t) ≤ β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 − ζ̇1 + Q1(Z1)z1

≤ −k∗
1z

2
1 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 (6.45)

Integrating (6.45) over [0, t], ∀t ∈ [0, tf ), we have the following inequality

V1(t) +
∫ t

0
k∗

1z
2
1(τ)dτ ≤ V1(0)

+
∫ t

0
[β1(x1(τ))g1(x1(τ))N(ζ1(τ)) + 1]ζ̇1(τ)dτ (6.46)

Since
∫ t
0 k∗

1z
2
1(τ)dτ ≥ 0, we further have

V1(t) ≤ V1(0) +
∫ t

0
[β1(x1(τ))g1(x1(τ))N(ζ1(τ)) + 1]ζ̇1(τ)dτ

Applying Lemma 1 in [83], we can conclude that V1(t),
∫ t
0(β1g1N(ζ1) + 1)ζ̇1dτ ,

and ζ1(t) are bounded. Since 1
2
z2
1(t) ≤ Vz1(t) ≤ V1(t), we know that z1(t) are

bounded on [0, tf ). According to Proposition 2 in [70], if the solution of the closed-

loop is bounded, then tf = +∞. From (6.46), z1(t) is square integrable and as

an immediate result, x1, u and ż1 are also bounded on [0, +∞]. Since ż1 ∈ L∞,

and z1 ∈ L2 ∩ L∞, by Barbalat’s lemma, limt→+∞ z1 = 0. Note that the above

results are obtained for z1 ∈ Ω0
Z1

, therefore we can guarantee that Ωcz1
is domain

of attraction. ♦

Remark 6.3.4 For the first-order system, the definition of the compact set Ω0
Z1

in (6.40) and the corresponding practical control law u(t) in (6.41) can guarantee

the stability of the closed-loop system. To extend the above design methodology to

higher-order systems, modification has to be made since u(t) is not differentiable

166



6.3 NN Control of Time-Delay Systems with Unknown VCC

at |z1| = cz1. We will discuss this issue at a later stage when the problem is clearly

shown.

In the case that f1(·) and g1(·) are completely unknown, the proposed controller

(6.41) in Lemma 6.3.3 is not feasible due to the unknown function Q1(Z1). On

the other hand, by employing the robust control in (6.41), control action is only

activated when z1 ∈ Ω0
Z1

. Apparently, Q1(Z1) is continuous and well-defined over

compact set Ω0
Z1

and can be approximated by neural networks to arbitrary any

accuracy as follows

Q1(Z1(t)) = W ∗
1

T S1(Z1) + ε1(Z1) (6.47)

where |ε1(Z1)| ≤ ε∗z1
is the approximation error, W ∗

1 ∈ Rl1 are unknown ideal

constant weights, and S1(Z1) ∈ Rl1 are the basis functions. Let us use its estimate

Ŵ1 instead to form the adaptive control

u(t) =

⎧⎨
⎩ N(ζ1)[k1(t)z1 + Ŵ T

1 S1(Z1)], z1 ∈ Ω0
Z1

0, z1 ∈ Ωcz1

(6.48)

ζ̇1 = k1(t)z
2
1 + Ŵ T

1 S1(Z1)z1 (6.49)

˙̂
W 1 = Γ1[S1(Z1)z1 − σ1Ŵ1] (6.50)

where matrix Γ1 = ΓT
1 > 0, and small constant σ1 > 0 is to introduce the σ-

modification for the closed-loop system.

Theorem 6.3.1 summarizes the stability result for the proposed adaptive scheme,

and shows that certain compact set is a domain of attraction.

Theorem 6.3.1 Consider the closed-loop systems consisting of the first-order plant

(6.31) and controller (6.48), (6.49), if gain k1(t) = k10 + k11(t) with k10 > 0 being

a design constant, and k11(t) is chosen as

k11(t) =
1

ε1

[
1 +

∫ 1

0
θḡ1(θz1 + yd)dθ +

1

z2
1

∫ t

t−τmax

1

2
U1(x1(τ))dτ

]
(6.51)

with constant ε1 > 0, and the NN weights are updated by (6.50), then for bounded

initial conditions x1(0) and Ŵ1(0), all signals in the closed-loop system are semi-

globally uniformly ultimately bounded, and the vector Z1 remains in a compact set

Ω0
Z1

defined by

Ω0
Z1

=
{
Z1

∣∣∣|z1| ≤ µ1,
1

2
‖W̃1‖2 ≤ V1(t)

λmin(Γ
−1
1 )

, x̄d2 ∈ Ωd2

}
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whose size, µ1 > 0, can be adjusted by appropriately choosing the design parameters.

Proof: The same as in the proof of Lemma 6.3.3, let us consider the following

Lyapunov function candidate

V1(t) = Vz1(t) + VU1(t) +
1

2
W̃ T

1 (t)Γ−1
1 W̃1(t) (6.52)

where (̃·) = (̂·) − (·)∗. The time derivative of V1(t) along (6.37) is

V̇1 ≤ z1β1(x1)g1(x1)u + Q1(Z1)z1 + W̃ T
1 Γ−1

1
˙̂

W 1 (6.53)

For z1 ∈ Ω0
Z1

, substituting (6.48) and (6.50) into (6.53), we have

V̇1 ≤ β1(x1)g1(x1)N(ζ1)ζ̇1 + Q1(Z1)z1 + W̃ T
1 S1(Z1)z1 − σ1W̃

T
1 Ŵ1 (6.54)

Adding and subtracting k1(t)z
2
1 + Ŵ T

1 S1(Z1)z1 on the right hand side of (6.54) and

noting (6.47), we have

V̇1 ≤ β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 − ζ̇1 + Ŵ T
1 S1(Z1)z1 + z1εz1 − σ1W̃

T
1 Ŵ1

= −k1(t)z
2
1 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 + z1εz1 − σ1W̃

T
1 Ŵ1 (6.55)

Noting k1(t) = k10 + k11(t), (6.55) becomes

V̇1 ≤ −k11(t)z
2
1 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 − k10z

2
1 + z1εz1 − σ1W̃

T
1 Ŵ1 (6.56)

Using the inequalities

−k10z
2
1 + z1εz1 ≤ ε2

z1

4k10

≤ ε∗
2

z1

4k10

−σ1W̃
T
1 Ŵ1 ≤ −1

2
σ1‖W̃1‖2 +

1

2
σ1‖W ∗

1 ‖2

and substituting (6.51) into (6.56), we have

V̇1 ≤ −z2
1

ε1

[
1 +

∫ 1

0
θḡ1(θz1 + yd)dθ

]
− 1

ε1

∫ t

t−τmax

1

2
U1(x1(τ))dτ

−1

2
σ1‖W̃1‖2 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 + cε1

where

cε1 =
ε∗

2

z1

4k10

+
1

2
σ1‖W ∗

1 ‖2 (6.57)
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Since τ1 ≤ τmax according to Assumption 6.3.5, inequality
∫ t
t−τ1

U1(x1(τ))dτ ≤∫ t
t−τmax

U1(x1(τ))dτ holds. From (6.33) and (6.36), we have

V̇1(t) ≤ −g10

ε1

Vz1 −
1

ε1

VU1 −
1

2
σ1‖W̃1‖2 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 + cε1

≤ −c1V1(t) + cε1 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 (6.58)

where positive constant c1 is defined by

c1 := min
{g10

ε1

,
1

ε1

,
σ1

λmin(Γ
−1
1 )

}
(6.59)

Letting ρ1 := cε1/c1 and multiplying (6.58) by ec1t, it becomes

d

dt
(V1(t)e

c1t) ≤ cε1e
c1t + β1(x1)g1(x1)N(ζ1)ζ̇1e

c1t + ζ̇1e
c1t (6.60)

Integrating (6.60) over [0, t], we have

V1(t) ≤ ρ1 + [V1(0) − ρ1]e
−c1t + e−c1t

∫ t

0

(
β1(x1)g1(x1)N(ζ1) + 1

)
ec1τ ζ̇1dτ

≤ ρ1 + V1(0)e−c1t + e−c1t
∫ t

0

(
β1(x1)g1(x1)N(ζ1) + 1

)
ec1τ ζ̇1dτ (6.61)

Applying Lemma 6.3.1, we can conclude that V1(t),
∫ t
0(β1g1N(ζ1) + 1)ζ̇1dτ , and

ζ1(t), hence z1(t), Ŵ1 are SGUUB on [0, tf ). According to Proposition 2 in [70],

if the solution of the closed-loop system is bounded, then tf = +∞. Let cβ1 be

the upper bound of
∫ t
0 |(β1(x1)g1(x1)N(ζ1) + 1)ζ̇1|dτ , then we have the following

inequalities

e−c1t
∫ t

0
(β1(x1)g1(x1)N(ζ1) + 1)ec1τ ζ̇1dτ

≤
∫ t

0

∣∣∣(β1(x1)g1(x1)N(ζ1) + 1)ζ̇1

∣∣∣e−c1(t−τ)dτ

≤
∫ t

0

∣∣∣(β1(x1)g1(x1)N(ζ1) + 1)ζ̇1

∣∣∣dτ ≤ cβ1

Thus, equation (6.61) becomes

V1(t) ≤ (ρ1 + cβ1) + V1(0)e−c1t (6.62)

where constant

V1(0) =
∫ z1(0)

0
σβ1(σ + yd(0))dσ +

1

2
W̃ T

1 (0)Γ−1
1 W̃1(0)
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It follows from (6.33), (6.52) and (6.62) that

1

2
z2
1(t) ≤ Vz1(t) ≤ V1(t) ≤ (ρ1 + c0) + V1(0)

1

2
‖W̃1‖2 ≤ V1(t)

λmin(Γ
−1
1 )

By letting µ1 =
√

2(ρ1 + cβ1) + 2V1(0), we know that |z1| ≤ µ1. We can readily

conclude that there do exist a compact set Ω0
Z1

such that Z1 ∈ Ω0
Z1

, ∀t ≥ 0. ♦

Remark 6.3.5 If system uncertainties are in the linear-in-the-parameter form as

in [83], adaptive control can be used to solve the problem elegantly and the asymp-

totic stability can be guaranteed by applying Lemma 1 in [83]. In this section, the

unknown functions are approximated by RBF NN, which has an intrinsic approxi-

mation error, therefore Lemma 1 in [83] is no longer applicable. To show the point

clearly, the time derivative of V1(t) is re-written as follows

V̇1(t) ≤ −c1V1(t) + cε1 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 (6.63)

Integrating (6.63) over [0, t], we have

V1(t) ≤ V1(0) + cε1t +
∫ t

0
(β1(x1)g1(x1)N(ζ1) + 1)ζ̇1dτ (6.64)

From (6.64), we cannot draw any conclusion for the boundedness of V1(t) or ζ1(t)

by applying Lemma 1 in [83] due to the extra term cε1t. From the definition of cε1 in

(6.57), we know that cε1 is a function of NN approximation error ε∗z1
and 1

2
σ1‖W ∗

1 ‖2.

Even though we can remove the latter by setting σ1 as zero, the former effect from

NN approximation error ε∗z1
cannot be eliminated. The problem is successfully solved

by multiplying the exponential term ec1t to both sides of (6.63) as did in the proof of

Theorem 6.3.1. Consequently, the stability results can be drawn by invoking Lemma

6.3.1.

Remark 6.3.6 Although the system has been proven to converge into a compact

set which is actually unknown due to unknown g10, ε∗z1
, W ∗

1 , c0, and V1(0), it is

possible to adjust the size by appropriately choosing design parameters σ1 and Γ1.
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Remark 6.3.7 The computation of the second integral of k11(t) in (6.51) should

be conducted in the time interval [t − τmax, t]. If the integration is conducted alter-

natively in [0, t], the stability result may seem to hold. However, the integral result

will progressively tend to a large value as the time increases, which may saturate the

actuator and destroy the closed-loop stability. To avoid this, a rather conservative

time interval [t−τmax, t] should be chosen for conducting the integration. The same

conservative measure will be taken in the later recursive backstepping design.

Remark 6.3.8 Though it is known that the stability of time-delay systems depends

on the size of the time delay, it is not necessarily true for general nonlinear systems

as is illustrated by the following example. Consider the linear time-delay system

ẋ(t) = −bx(t − τ)

with b > 0, τ > 0. It has been proven that the linear time delay system is stable if

τ < 1
b
, and the system is unstable if τ is too large. However, for the forced linear

time delay system given by

ẋ(t) = −bx(t − τ) + u(t)

with b > 0, τ > 0, subject to the sliding mode control

u(t) = −sgn(x(t))[b1|x(t − τ)| + ε], b1 > b

we have the resulting nonlinear time delay closed-loop system

ẋ(t) + bx(t − τ) + sgn(x(t))[b1|x(t − τ)| + ε] = 0 (6.65)

For the nonlinear time delay system (6.65), consider the Lyapunov function can-

didate V (t) = 1
2
x2(t), we have

V̇ (t) = −bx(t)x(t − τ) − b1|x(t)||x(t − τ)| − ε|x(t)|
≤ −ε|x(t)| ≤ 0

Apparently, the nonlinear time delay system (6.65) is stable for arbitrary τ . This

also verifies the rich dynamic behaviors of nonlinear systems.

We have developed a practical adaptive neural control for first-order system (6.31).

Now we are ready to extend the above design methodology to higher-order systems.
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6.3.3 Practical Adaptive Backstepping Design

In this section, the adaptive design will be extended to nth-order systems (6.27)

and the stability results of the closed-loop system are presented.

Note that the extension is not straightforward as in the classical cases of backstep-

ping design for nonlinear systems in strict feedback form without time delays. In

the proposed recursive backstepping design, the computation of αi(t) requires the

computation of αi−1(t). As a result, the unknown time-delay terms of all the previ-

ous subsystems will appear in Step i, which have to be compensated for one by one.

Though the idea of Lyapunov-Krasovskii functional VUi
(t) shall be used to handle

the unknown time delays terms as in Section 6.3.2, different from the classical

cases, the Lyapunov function candidate Vi(t) is much more involved, in which the

following terms
∫ t
t−τ1

U1(x1(τ))dτ , ...,
∫ t
t−τi−1

Ui−1(x̄i−1(τ))dτ , and
∫ t
t−τi

Ui(x̄i(τ))dτ

appeared i times, twice and once respectively rather than a simple summation of

the previous ones. The derivations are very troublesome in order to see the choices

of the above functionals clearly, and cannot be further simplified because of the

nature of the problem.

The backstepping design procedure contains n steps. At each step, an intermediate

control function αi(t) shall be developed using an appropriate Lyapunov function

Vi(t). The design of both the control laws and the adaptive laws are based on

the following change of coordinates: z1 = x1 − yd, zi = xi − αi−1, i = 2, · · · , n.

Note that the controller design based on such compact sets Ω0
Zi

will render αi not

differentiable at points |zi| = czi
. This appears to be a “technical problem” as the

differentiation of αi is not defined at these isolated points. To solve this problem,

one practical way is to simply set the differentiation at these points to be any finite

value, say 0, and then every signal in the closed-loop system can be shown to be

bounded. Theoretically speaking, by doing so, there is no much loss either as these

points are isolated and can be ignored. For ease and clarity of presentation, we

assume that all the control functions are differentiable throughout this section.

For uniformity of notation, throughout this section, define estimation errors W̃i =

Ŵi − W ∗
i , compact sets Ωczi

and Ω0
Zi

as

Ωczi
:= {zi, x̄d,i+1 ||zi| < czi

, x̄d,i+1 ∈ Ωd,i+1}

172



6.3 NN Control of Time-Delay Systems with Unknown VCC

Ω0
Zi

:= ΩZi
− Ωczi

with constants czi
> 0, and positive constants ci, cεi, ρi as

ci := min

{
gi0

εi

,
1

εi

,
σi

λmin(Γ
−1
i )

}

cεi :=
ε∗

2

zi

4ki0

+
1

2
σi‖W ∗

i ‖2

ρi :=
cεi

ci

where Ŵi ∈ Rli are the estimates of ideal NN weights W ∗
i ∈ Rli , gi0 are the

lower bounds of |gi(x̄i)|, constants 0 < εi ≤ 4, small constants σi > 0, matrices

Γi = ΓT
i > 0, constants ki0 > 0, ε∗zi

are the upper bounds of the NN approx-

imation errors, i.e., |εi(Zi)| ≤ ε∗zi
with Zi being the corresponding inputs to be

defined later, and the following integral Lyapunov functions Vzi
(t), the Lyapunov-

Krasovskii functionals VUi
(t) with the positive scalar functions Ui(·), and the Lya-

punov function candidates Vi(t) as

Vz1(t) =
∫ z1

0
σβ1(σ + yd)dσ (6.66)

Vzi
(t) =

∫ zi

0
σβi(x̄i−1, σ + αi−1)dσ, i = 2, · · · , n (6.67)

VUi
(t) =

1

2

∫ t

t−τi

Ui(x̄i(τ))dτ +
i−1∑
j=1

∫ t

t−τj

Uj(x̄j(τ))dτ, i = 1, · · · , n (6.68)

Vi(t) = Vzi
(t) + VUi

(t) +
1

2
W̃ T

i (t)Γ−1
i W̃i(t), i = 1, · · · , n (6.69)

where positive functions Ui(x̄i(t)) = �2
i (x̄i(t)).

The adaptive neural control laws are as follows, for i = 1, · · · , n

αi =

⎧⎨
⎩ N(ζi)[ki(t)zi + Ŵ T

i Si(Zi)], zi ∈ Ω0
Zi

0, zi ∈ Ωczi

(6.70)

ζ̇i = ki(t)z
2
i + Ŵ T

i Si(Zi)zi (6.71)

˙̂
W i = Γi[Si(Zi)zi − σiŴi] (6.72)

where ki(t) = ki0 + ki1(t), ki1(t) is chosen as

ki1(t) =
1

εi

[
1 +

∫ 1

0
θḡi(x̄i−1, θzi + αi−1)dθ

+
1

z2
i

∫ t

t−τmax

(1

2
Ui(x̄i(τ)) +

i−1∑
j=1

Uj(x̄j(τ))
)
dτ
]

(6.73)
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and Si(Zi) ∈ Rli are the basis functions with Zi being the input vectors defined in

(6.88) and (6.95) later.

Note that when i = n, αn is actually the control input u(t).

Step 1: Let us firstly consider the equation in (6.27) when i = 1, i.e.,

ẋ1(t) = g1(x1(t))x2(t) + f1(x1(t)) + h1(x1(t − τ1)) (6.74)

From the definition for new states z1 and z2, i.e. z1 = x1 − yd and z2 = x2 − α1,

we have

ż1(t) = g1(x1(t))(z2(t) + α1(t)) + f1(x1(t)) + h1(x1(t − τ1)) − ẏd(t) (6.75)

Consider Vz1(t) in (6.66). Its time derivative along (6.75) is

V̇z1(t) = z1(t)
[
β1(x1(t))g1(x1(t))z2(t) + β1(x1(t))g1(x1(t))α1(t)

+β1(x1(t))f1(x1(t)) + β1(x1(t))h1(x1(t − τ1))

−ẏd(t)
∫ 1

0
β1(θz1 + yd)dθ

]
(6.76)

Following the same procedure as in Section 6.3.2 by choosing VU1 in (6.68) and

applying Assumption 6.3.4 and Young’s inequality, we obtain

V̇z1 + V̇U1 ≤ z1β1(x1)g1(x1)z2 + z1β1(x1)g1(x1)α1 + Q1(Z1)z1 (6.77)

where Q1(Z1) is defined in (6.38).

As stated in Section 6.3.2, the control objective now is to show that z1 converges

to certain domain of attraction rather than the origin. To this end, let us show the

derivative of Lyapunov function candidate is non-positive when z1 ∈ Ω0
Z1

. Consider

the Lyapunov function candidate V1(t) given in (6.69). Its time derivative along

(6.77) is

V̇1(t) = z1β1(x1)g1(x1)z2 + z1β1(x1)g1(x1)α1 + Q1(Z1)z1 + W̃ T
1 Γ−1

1 W̃1

Choose the practical adaptive neural intermediate control law and NN weights

updating law as given in (6.70)-(6.72) with k11(t) given in (6.73). Now, using the

same procedure as in Section 6.3.2, it can be shown that

V̇1(t) ≤ −z2
1

ε1

[
1 +

∫ 1

0
θḡ1(θz1 + yd)dθ

]
− 1

ε1

∫ t

t−τmax

1

2
U1(x1(τ))dτ − 1

2
σ1‖W̃1‖2

+β1(x1)g1(x1)z1z2 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 + cε1 (6.78)
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Noting that β1g1z1z2 ≤ 1
4
z2
1 + β2

1g
2
1z

2
2 , (6.78) becomes

V̇1(t) ≤ −z2
1

ε1

[
1 − ε1

4
+
∫ 1

0
θḡ1(θz1 + yd)dθ

]

− 1

ε1

∫ t

t−τmax

1

2
U1(x1(τ))dτ − 1

2
σ1‖W̃1‖2

+β2
1(x1)g

2
1(x1)z

2
2 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 + cε1 (6.79)

Remark 6.3.9 In the cancellation based backstepping design, the coupling term

β1g1z1z2 is left as it is and it will be cancelled in the next step by augmenting

the Lyapunv candidate. In decoupled backstepping design, we will not seeking the

cancellation of the coupling term β1g1z1z2, but seeking the boundedness of z2 in the

next step. According to Lemma 6.3.1, if we could prove that z2 is bounded, then the

stability of z1 is apparent and easy. This fundamental change makes control system

design for this problem solvable [87].

Since 0 < ε1 ≤ 4, we have

V̇1(t) ≤ −g10

ε1

Vz1 −
1

ε1

VU1 −
1

2
σ1‖W̃1‖2

+β2
1(x1)g

2
1(x1)z

2
2 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 + cε1

≤ −c1V1(t) + cε1 + β1(x1)g1(x1)N(ζ1)ζ̇1 + ζ̇1 + β2
1(x1)g

2
1(x1)z

2
2 (6.80)

Multiplying (6.80) by ec1t, it becomes

d

dt
(V1(t)e

c1t) ≤ cε1e
c1t + β1(x1)g1(x1)N(ζ1)ζ̇1e

c1t

+ζ̇1e
C11t + β2

1(x1)g
2
1(x1)z

2
2e

c1t (6.81)

Integrating (6.81) over [0, t], we have

V1(t) ≤ ρ1 + [V1(0) − ρ1]e
−c1t + e−c1t

∫ t

0

(
(β1(x1)g1(x1)N(ζ1) + 1

)
ec1τ )ζ̇1dτ

+e−c1t
∫ t

0
β2

1(x1)g
2
1(x1)z

2
2e

c1τdτ

≤ ρ1 + V1(0)e−c1t + e−c1t
∫ t

0

(
(β1(x1)g1(x1)N(ζ1) + 1

)
ec1τ )ζ̇1dτ

+e−c1t
∫ t

0
β2

1(x1)g
2
1(x1)z

2
2e

c1τdτ (6.82)
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Remark 6.3.10 In (6.82), if there is no extra term e−c1t
∫ t
0 β2

1g
2
1z

2
2e

c1τdτ within the

inequality, we can conclude that V1(t), ζ1, Ŵ1, are all bounded on [0, tf ) according

to Lemma 6.3.1. According to Proposition 2 in [70], tf = +∞ and we can claim

that z1, Ŵ1 are SGUUB. Remark 2.3 in [115] also explains the problem. Due to the

presence of extra term e−c1t
∫ t
0 β2

1g
2
1z

2
2e

c1τdτ in (6.82), Lemma 6.3.1 cannot be ap-

plied directly. It was supposed in [83] that if z2 can be regulated such that it is square

integrable, the regulation of z1 can be achieved. However, the situation is different

in this section. Owing to the introduction of exponential term in Lemma 6.3.1, the

requirement for square integrability can be further relaxed to boundedness.

Noting Assumption 6.3.2, we have the following inequality [115]

e−c1t
∫ t

0
β2

1g
2
1z

2
2e

c1τdτ = e−c1t
∫ t

0
ḡ2
1z

2
2e

c1τdτ

≤ e−c1tl+1
2

sup
τ∈[0,t]

[z2
2(τ)]

∫ t

0
ec1τdτ ≤ 1

c1

l+1
2

sup
τ∈[0,t]

[z2
2(τ)] (6.83)

Thus if z2 can be regulated as bounded, then from (6.83) we can readily conclude

the boundedness of the extra term e−c1t
∫ t
0 β2

1g
2
1z

2
2e

c1τdτ .

The effect of e−c1t
∫ t
0 β2

1g
2
1z

2
2e

c1τdτ will be dealt with in the following steps.

Step i (2 ≤ i ≤ n − 1): Similar procedures are taken recursively for each step of

i = 2, · · · , n − 1.

The time derivative of zi(t) is given by

żi(t) = gi(x̄i(t))[zi+1(t) + αi(t)] + fi(x̄i(t)) + hi(x̄i(t − τi)) − α̇i−1(t) (6.84)

Consider Vzi
(t) given in (6.67). Its time derivative is

V̇zi
(t) =

∂Vzi

∂zi

żi +
∂Vzi

∂x̄i−1

˙̄xi−1 +
∂Vzi

∂αi−1

α̇i−1

= ziβi(x̄i)żi +
∫ zi

0
σ
[
˙̄x
T
i−1

∂βi(x̄i−1, σ + αi−1)

∂x̄i−1

+α̇i−1
∂βi(x̄i−1, σ + αi−1)

∂αi−1

]
dσ (6.85)

Noting (6.84) and∫ zi

0
σ ˙̄x

T
i−1

∂βi(x̄i−1, σ + αi−1)

∂x̄i−1

dσ = z2
i
˙̄x
T
i−1

∫ 1

0
θ
∂βi(x̄i−1, θzi + αi−1)

∂x̄i−1

dθ

∫ zi

0
σα̇i−1

∂βi(x̄i−1, σ + αi−1)

∂αi−1

dσ = α̇i−1

[
ziβi(x̄i) − zi

∫ 1

0
βi(x̄i−1, θzi + αi−1)dθ

]
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equation (6.85) becomes

V̇zi
(t) = zi(t)

[
βi(x̄i(t))gi(x̄i(t))(zi+1(t) + αi(t)) + βi(x̄i(t))fi(x̄i(t))

+βi(x̄i(t))hi(x̄i(t − τi)) + zi(t) ˙̄x
T
i−1

∫ 1

0
θ
∂βi(x̄i−1, θzi + αi−1)

∂x̄i−1

dθ

−α̇i−1

∫ 1

0
βi(x̄i−1, θzi + αi−1)dθ

]

where

˙̄xi−1 = [ẋ1, ẋ2, · · · , ẋi−1]
T

= [g1(x1)x2 + f1(x1) + h1(x1(t − τ1)),

g2(x̄2)x3 + f2(x̄2) + h2(x̄2(t − τ2)), · · · ,
gi−1(x̄i−1)xi + fi−1(x̄i−1) + hi−1(x̄i−1(t − τi−1))]

T

Since αi−1 is a function of x̄i−1, ζi−1, x̄di, Ŵ1,..., Ŵi−1, α̇i−1 can be expressed as

α̇i−1 =
i−1∑
j=1

∂αi−1

∂xj

ẋj + ωi−1(t)

=
i−1∑
j=1

∂αi−1

∂xj

[
gj(x̄j)xj+1 + fj(x̄j) + hj(x̄j(t − τj))

]
+ ωi−1(t)

where

ωi−1(t) =
∂αi−1

∂ζi−1

ζ̇i−1 +
∂αi−1

∂x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂Ŵj

˙̂
W j

Note that the computation of α̇i−1, which is required by the recursive backstep-

ping design, and the appearance of ˙̄xi−1 make the unknown time delays of all the

previous subsystems appear, which should all be compensated for in this step. In

other words, Lyapunov-Krasovskii functionals (6.68) shall be utilized to compen-

sate for not only the unknown time delay τi, but also τi−1, ..., τ1. This difficulty or

complexity was avoided by assuming that ẋi−1 is available for feedback control in

[124].

Applying Assumption 6.3.4 and using Young’s Inequality, we have

V̇zi
(t) = zi(t)

[
βi(x̄i(t))gi(x̄i(t))(zi+1(t) + αi(t)) + βi(x̄i(t))fi(x̄i(t))

+zi(t)f̄
T
i−1

∫ 1

0
θ
∂βi(x̄i−1, θzi + αi−1)

∂x̄i−1

dθ
]
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+
1

2
z4

i (t)
[ ∫ 1

0
θ
∂βi(x̄i−1, θzi + αi−1)

∂x̄i−1

dθ
]T ∫ 1

0
θ
∂βi(x̄i−1, θzi + αi−1)

∂x̄i−1

dθ

+
1

2
z2

i (t)β
2
i (x̄i(t)) +

1

2
�2

i (x̄i(t − τi))

−zi

∫ 1

0
βi(x̄i−1, θzi + αi−1)dθ

[ i−1∑
j=1

∂αi−1

∂xj

(gj(x̄j)xj+1 + fj(x̄j)) + ωi−1(t)
]

+
1

2

[ i−1∑
j=1

z2
i (
∫ 1

0
βi(x̄i−1, θzi + αi−1)dθ)2

(∂αi−1

∂xj

)2
+ 2�2

j(x̄j(t − τj))
]
(6.86)

where f̄i−1 = [g1(x1)x2 + f1(x1), · · ·, gi−1(x̄i−1)xi + fi−1(x̄i−1)]
T .

Considering the Lyapunov-Krasovskii functional VUi
(t) as given in (6.68), we have

V̇zi
+ V̇Ui

≤ ziβi(x̄i)gi(x̄i)zi+1 + ziβi(x̄i)gi(x̄i)αi + ziQi(Zi) (6.87)

where

Qi(Zi) = βi(x̄i)fi(x̄i) +
1

2
ziβ

2
i (x̄i) +

1

2zi

�2
i (x̄i)

+zif̄
T
i−1

∫ 1

0
θ
∂βi(x̄i−1, θzi + αi−1)

∂x̄i−1

dθ

+
1

2
z3

i (t)
[ ∫ 1

0
θ
∂βi(x̄i−1, θzi + αi−1)

∂x̄i−1

dθ
]T ∫ 1

0
θ
∂βi(x̄i−1, θzi + αi−1)

∂x̄i−1

dθ

+
i−1∑
j=1

[
− ∂αi−1

∂xj

(gj(x̄j)xj+1 + fj(x̄j))
∫ 1

0
βi(x̄i−1, θzi + αi−1)dθ

+
1

2
zi

(∂αi−1

∂xj

)2
(
∫ 1

0
βi(x̄i−1, θzi + αi−1)dθ)2 +

1

zi

�2
j(x̄j)

]

−ωi−1

∫ 1

0
βi(x̄i−1, θzi + αi−1)dθ

Zi = [x̄i, αi−1,
∂αi−1

∂x1

,
∂αi−1

∂x2

, · · · , ∂αi−1

∂xi−1

, ωi−1] ∈ Ωzi
⊂ R2i+1 (6.88)

For the adaptive neural intermediate control law given in (6.70)-(6.72) with ki1(t)

being given in (6.73), consider Lyapunov function candidate Vi(t) given in (6.69).

Its time derivative along (6.70)-(6.72) and (6.87) is

V̇i(t) ≤ −ciVi(t) + cεi + βi(x̄i)gi(x̄i)N(ζi)ζ̇i + ζ̇i + β2
i (x̄i)g

2
i (x̄i)z

2
i+1 (6.89)

Multiplying (6.89) by ecit, it becomes

d

dt
(Vi(t)e

cit) ≤ cεie
cit + βi(x̄i)gi(x̄i)N(ζi)ζ̇ie

cit + ζ̇ie
cit + β2

i (x̄i)g
2
i (x̄i)z

2
i+1e

cit(6.90)

178



6.3 NN Control of Time-Delay Systems with Unknown VCC

Integrating (6.90) over [0, t], we have

Vi(t) ≤ ρi + [Vi(0) − ρi]e
−cit + e−cit

∫ t

0
(βi(x̄i)gi(x̄i)N(ζi) + 1)eciτ ζ̇idτ

+e−cit
∫ t

0
β2

i (x̄i)g
2
i (x̄i)z

2
i+1e

ciτdτ

≤ ρi + Vi(0) + e−cit
∫ t

0
(βi(x̄i)gi(x̄i)N(ζi) + 1)eciτ ζ̇idτ

+e−cit
∫ t

0
β2

i (x̄i)g
2
i (x̄i)z

2
i+1e

ciτdτ (6.91)

Remark 6.3.11 Similarly as discussed in Remark 6.3.10, if zi+1 can be regulated

as bounded, we can readily guarantee the boundedness of the extra term e−cit
∫ t
0 β2

i g
2
i z

2
i+1e

ciτdτ

in (6.91). Then applying Lemma 6.3.1, the boundedness of Vi(t), zi(t), ζi(t) and

Ŵi(t) can be readily obtained.

The effect of e−cit
∫ t
0 β2

i g
2
i z

2
i+1e

ciτdτ will be dealt with in the next step.

Step n. This is the final step, since the actual control u(t) appears in the derivative

of zn(t) as given in

żn = gn(x̄n(t))u + fn(x̄n(t)) + hn(x̄n(t − τn)) − α̇n−1(t) (6.92)

Consider the scalar function Vzn(t) given in (6.67). Its time derivative is

V̇zn(t) = zn(t)
[
βn(x(t))gn(x(t))u(t) + βn(x(t))fn(x(t))

+βn(x(t))hn(x(t − τn)) + zn(t) ˙̄x
T
n−1

∫ 1

0
θ
∂βn(x̄n−1, θzn + αn−1)

∂x̄n−1

dθ

−α̇n−1

∫ 1

0
βn(x̄n−1, θzn + αn−1)dθ

]

Since αn−1 is a function of x̄n−1, ζn−1, x̄dn, Ŵ1,..., Ŵn−1, α̇n−1 can be expressed as

α̇n−1 =
n−1∑
j=1

∂αn−1

∂xj

ẋj + ωn−1(t)

=
n−1∑
j=1

∂αn−1

∂xj

[
gj(x̄j)xj+1 + fj(x̄j) + hj(x̄j(t − τj))

]
+ ωn−1(t)

where

ωn−1(t) =
∂αn−1

∂ζn−1

ζ̇n−1 +
∂αn−1

∂x̄dn

˙̄xdn +
n−1∑
j=1

∂αn−1

∂Ŵj

˙̂
W j
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Applying Assumption 6.3.4 and using Young’s Inequality, we have

V̇zn(t) = zn(t)
[
βn(x(t))gn(x(t))u(t) + βn(x(t))fn(x(t))

+zn(t)f̄T
n−1

∫ 1

0
θ
∂βn(x̄n−1, θzn + αn−1)

∂x̄n−1

dθ
]

+
1

2
z4

n(t)
[ ∫ 1

0
θ
∂βn(x̄n−1, θzn + αn−1)

∂x̄n−1

dθ
]T ∫ 1

0
θ
∂βn(x̄n−1, θzn + αn−1)

∂x̄n−1

dθ

+
1

2
z2

n(t)β2
n(x(t)) +

1

2
�2

n(x(t − τn))

−zn

∫ 1

0
βn(x̄n−1, θzn + αn−1)dθ

[ n−1∑
j=1

∂αn−1

∂xj

(gj(x̄j)xj+1 + fj(x̄j)) + ωn−1(t)
]

+
1

2

[ n−1∑
j=1

z2
n(
∫ 1

0
βn(x̄n−1, θzn + αn−1)dθ)2

(∂αn−1

∂xj

)2
+ 2�2

j(x̄j(t − τj))
]

(6.93)

where f̄n−1 = [g1(x1)x2 + f1(x1), · · ·, gn−1(x̄n−1)xn + fn−1(x̄n−1)]
T .

Considering the Lyapunov-Krasovskii functional VUn(t) given in (6.68), we have

V̇zn + V̇Un ≤ znβn(x)gn(x)u + znQn(Zn) (6.94)

where

Qn(Zn) = βn(x)fn(x) +
1

2
znβ2

n(x) +
1

2zn

�2
n(x)

+znf̄
T
n−1

∫ 1

0
θ
∂βn(x̄n−1, θzn + αn−1)

∂x̄n−1

dθ

+
1

2
z3

n(t)
[ ∫ 1

0
θ
∂βn(x̄n−1, θzn + αn−1)

∂x̄n−1

dθ
]T ∫ 1

0
θ
∂βn(x̄n−1, θzn + αn−1)

∂x̄n−1

dθ

+
n−1∑
j=1

{
− ∂αn−1

∂xj

(gj(x̄j)xj+1 + fj(x̄j))
∫ 1

0
βn(x̄n−1, θzn + αn−1)dθ

+
1

2
zn(

∂αn−1

∂xj

)2
[ ∫ 1

0
βn(x̄n−1, θzn + αn−1)dθ

]2
+

1

zn

�2
j(x̄j)

}

−ωn−1

∫ 1

0
βn(x̄n−1, θzn + αn−1)dθ

Zn = [x, αn−1,
∂αn−1

∂x1

,
∂αn−1

∂x2

, · · · , ∂αn−1

∂xn−1

, ωn−1] ∈ ΩZn ⊂ R2n+1 (6.95)

For the adaptive neural control law given in (6.70)-(6.72) with kn1(t) being given in

(6.73), consider the Lyapunov function candidate Vn(t). Its time derivative along

(6.70)-(6.72) and (6.94) is

V̇n(t) ≤ −cnVn(t) + cεn + βn(x)gi(x)N(ζn)ζ̇n + ζ̇n (6.96)
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Multiplying (6.96) by ecnt, it becomes

d

dt
(Vn(t)ecnt) ≤ cεne

cnt + βn(x)gn(x)N(ζn)ζ̇ne
cnt + ζ̇ne

cnt (6.97)

Integrating (6.97) over [0, t], we have

Vn(t) ≤ ρn + [Vn(0) − ρn]e−cnt + e−cnt
∫ t

0
(βn(x)gn(x)N(ζn) + 1)ecnτ ζ̇ndτ

≤ ρn + Vn(0) + e−cnt
∫ t

0
(βn(x)gn(x)N(ζn) + 1)ecnτ ζ̇ndτ (6.98)

Using Lemma 6.3.1, we can conclude that Vn(t) and ζn(t), hence zn(t), Ŵn are

SGUUB on [0, tf ). From the boundedness of zn(t), the boundedness of the extra

term e−cn−1t
∫ t
0 β2

n−1g
2
n−1z

2
ne

cn−1τdτ at Step (n − 1) is readily obtained. Applying

Lemma 6.3.1 for (n − 1) times backwards, it can be seen from the above iterative

design procedures that Vi(t), zi(t), Ŵi(t) and hence xi(t) are SGUUB, i = 1, ..., n−
1.

The following theorem shows the stability and control performance of the closed-

loop adaptive system.

Theorem 6.3.2 Consider the closed-loop system consisting of the plant (6.27) un-

der Assumptions 6.3.1-6.3.4, the adaptive neural control laws (6.70)-(6.73). We

can guarantee the following properties under bounded initial conditions (i) all sig-

nals in the closed-loop system remain semi-globally uniformly ultimately bounded;

(ii) the vectors Zi remain in the compact set Ω0
Zi

⊂ R2i+1, i = 1, ..., n, specified as

Ω0
Zi

:=

{
Zi

∣∣∣|zi| ≤ µi, ‖W̃i‖2 ≤ µ2
i

λmin(Γ
−1
i )

, x̄di ∈ Ωdi

}

whose sizes, µi > 0, can be adjusted by appropriately choosing the design parame-

ters.

Proof: Consider the Lyapunov function candidate Vn(t) given in (6.69) with Vzn(t),

VUn(t) being defined in (6.67) and (6.68). From the previous derivation, we have

Vn(t) ≤ ρn + Vn(0) + e−cnt
∫ t

0
(βn(x)gn(x)N(ζn) + 1)ecnτ ζ̇ndτ
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From the above iterative design procedures from Step 1 to Step n, we can conclude

Vi(t), ζi(t), zi(t), Ŵi(t), i = 1, ..., n, and hence x(t) are SGUUB.

Letting cβn be the upper bound of e−cnt
∫ t
0 |βngnN(ζn) + 1|ecnτ ζ̇ndτ and noting the

definition of Vn(t), we have

1

2
z2

n ≤ Vn(t) ≤ (ρn + cβn) + Vn(0)

‖W̃n‖2 ≤ 2Vn(t)

λmin(Γ−1
n )

In the rest of the steps from n − 1 to 1, we obtain

Vi(t) ≤ ρi + Vi(0) + e−cit
∫ t

0
(βi(x̄i)gi(x̄i)N(ζi) + 1)eciτ ζ̇idτ

+e−cit
∫ t

0
β2

i (x̄i)g
2
i (x̄i)z

2
i+1e

ciτdτ, i = 1, ..., n − 1

Letting cβi be the upper bound of e−cit
∫ t
0 |βigiN(ζi)ζ̇i+ζ̇i+β2

i g
2
i z

2
i |eciτdτ and noting

the definition of Vi(t), we have

1

2
z2

i ≤ Vi(t) ≤ (ρi + cβi) + Vi(0)

‖W̃i‖2 ≤ 2Vi(t)

λmin(Γ
−1
i )

where constant

Vi(0) =
∫ zi(0)

0
σβi(x̄i−1(0), σ + αi−1(0))dσ +

1

2
W̃ T

i (0)Γ−1
i W̃i(0)

with βi(x̄i−1(0), σ + αi−1(0)) = β1(σ + yd(0)) for i = 1.

By letting µi =
√

2(ρi + cβi + Vi(0)), we know that |zi| ≤ µi. We can conclude that

there do exist compact sets Ω0
Zi

such that Zi ∈ Ω0
Zi

, ∀t ≥ 0. ♦

Remark 6.3.12 For the choice of ki1(t) in (6.73), it is found that if czi
is chosen

to be very small, ki1(t) will take a very large value, which may saturate the control

actuator. To solve this problem, we would like to find an alternative for ki1(t) such

that it provides smooth control input, and at the same time guarantees the stability

result. One such choice is

ki1(t) =
1

εi

[
1 +

∫ 1

0
θḡi(x̄i−1, θzi + αi−1)dθ

+
cosh(zi)

1 + z2
i

∫ t

t−τmax

(1

2
Ui(x̄i(τ)) +

i−1∑
j=1

Uj(x̄j(τ))
)
dτ
]
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Following the same derivation procedure and using the property of function κ(.) in

(6.30), we can readily obtain 6.89 with ci being modified/changed to

ci := min
{gi0

εi

,
κ(czi

)

εi

,
σi

λmin(Γ
−1
i )

}

Although the bounded region may be enlarged by introducing the function κ(·), there

are still design flexibility from εi, Γi and σi, which can help reduce the bounded

region. Note that such modifications together with the choice of function κ(·) are

also not unique and worth further investigation.

Remark 6.3.13 Note that the choices of βi(x̄i) are not unique [88]. As an alter-

native, we can choose βi(x̄i) = 1/|gi(x̄i)|. In this case, the upper bound function of

|gi(x̄i)|, i.e., ḡi(x̄i) are not necessarily known. The smooth integral scalar function

becomes

Vzi
=
∫ zi

0

σ

|gi(x̄i−1, σ + αi−1)|dσ, i = 1, · · · , n
By Mean Value Theorem, Vzi

can be rewritten as

Vzi
=

λsz
2
i

|gi(x̄i−1, λszi + αi−1)| , λs ∈ (0, 1)

From Assumption 6.3.1, 0 ≤ gi0 ≤ |gi(x̄i)|, we know that Vzi
(t) is a positive definite

function and Vzi
(t) ≤ λs

g10
z2

i . For conciseness of presentation, we give the control

and adaptive laws directly without proof, as well as the stability results.

Theorem 6.3.3 For system (6.27), we choose the adaptive neural control laws

(6.70)-(6.72), where ki(t) = ki0 + ki1(t) with constant ki0 > 0 and ki1(t) is chosen

as

ki1(t) =
1

εi

[
1 + λs +

1

z2
i

∫ t

t−τmax

1

2

(1

2
Ui(x̄i(τ)) +

i−1∑
j=1

Uj(x̄j(τ))
)
dτ
]

(6.99)

with 0 < εi0 ≤ 4, λs ∈ (0, 1). Then, under the bounded initial conditions, all

signals in the closed-loop system remain bounded and the tracking error converges

to a small neighborhood around zero by appropriately choosing design parameters.

Similar as the modification made to ki1 in Remark 6.3.12, we can modify (6.99) to

ki1(t) =
1

εi

[
1 + λs +

cosh(zi)

1 + z2
i

∫ t

t−τmax

1

2

(1

2
Ui(x̄i(τ)) +

i−1∑
j=1

Uj(x̄j(τ))
)
dτ
]

(6.100)
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for a relatively gentle control gain.

Though the non-differentiability of the intermediate controls can be solved in a

very practical way as discussed in the previous subsection. In fact, this problem

can also be solved theoretically by modifying the control laws such that they are

differentiable to certain desired order as will be discussed below. It should be

pointed out that the solution is not unique. For clarity, only one such a solution is

presented.

It can be seen that the computation of αi(t) requires that of α̇i−1(t). This is also

the case for the computation of αi−1, · · ·, and α2, which requires to compute α̇i−2,

· · ·, and α̇1 respectively. Therefore, we know that the computation of αi shall

include that of α
(i−1)
1 , α

(i−2)
2 , · · ·, and α̇i−1. This rule applies to the rest of the

steps till the last step n. We can conclude that αi need to be at least (n − i)th

differentiable. By using the property of (n-i)th order differentiable function qi(zi)

(6.29), the intermediate control, αi (6.70) can be easily modified to satisfy the

required (n − i)th order differentiability as follows

αq
i = qi(zi)N(ζi)[ki(t)zi + Ŵ T

i Si(Zi)], i = 1, · · · , n − 1 (6.101)

where qi(zi) is defined in (6.29). It can be easily verified by actual differentiation.

The above modification not only guarantees the differentiability of the intermediate

controls, but also preserves the closed-loop stability of the practical control design

by noticing that αq
i = αi ∀zi ∈ Ω0

Zi
. The analysis is similar as in Section 5.4.

6.3.4 Simulation

To illustrate the proposed adaptive neural control algorithms, we consider the

following second-order time-delay system

ẋ1(t) = g1(x1)x2(t) + f1(x1) + h1(x1(t − τ1))

ẋ2(t) = g2(x)u(t) + f2(x) + h2(x(t − τ2))

y1(t) = x1(t)

where g1(x1) = 1 + x2
1, g2(x) = 3 + cos(x1x2), f1(x1) = x1(t)e

−0.5x1(t), f2(x) =

x1(t)x
2
2(t), h1(x1) = 2x2

1, and h2(x) = 0.2x2 sin(x2). Apparently, by choosing
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�1(x1) = 2x2
1 and �2(x) = 0.2|x2|, Assumption 6.3.4 satisfies. Choose the initial

condition [x1(0), x2(0)]T = [0, 0]T , the time delay τ1 = τ2 = 2sec., and the desired

reference signal yd = 0.5[sin(t) + sin(0.5t)]. For the design of neural adaptive

controller, let z1 = x1 − yd, z2 = x2 − α1. For simplicity, simulation is carried out

based on Theorem 6.3.3 for the case βi(x̄i) = 1/|gi(x̄i)|. The intermediate control

αi and control u(t) are given by (6.101) and (6.70) respectively with ki1(t) being

chosen in (6.100) as follows

α1(t) = q1(z1)N(ζ1)[k1(t)z1 + Ŵ T
1 S1(Z1)],

u(t) =

⎧⎨
⎩ N(ζ2)[k2(t)z2 + Ŵ T

2 S2(Z2)], |z2| ≥ cz2

0, otherwise

ζ̇i = ki(t)z
2
i + Ŵ T

i Si(Zi)zi, i = 1, 2

˙̂
W i = Γi[Si(Zi)zi − σi(Ŵi − W 0

i )], i = 1, 2

where N(ζi) = eζ2
i cos(π

2
ζi), i = 1, 2 are the Nussbaum functions, Z1 = [x1, yd, ẏd]

T ,

Z2 = [x1, x2, α1,
∂α1

∂x1
, ω1]

T , and ki(t) = ki0 + ki1(t) with constant ki0 > 0 and ki1(t)

being chosen as

ki1(t) =
1

εi

[
1 + λs +

cosh(zi)

1 + z2
i

∫ t

t−τmax

1

2

(1

2
Ui(x̄i(τ)) +

i−1∑
j=1

Uj(x̄j(τ))
)
dτ
]

The following design parameters are adopted in the simulation: Γ1 = diag[0.2],

Γ2 = diag[0.4], σ1 = σ2 = 0.5, W 0
1 = W 0

2 = 0.01, ε1 = 4, ε2 = 4, λs = 0.5, and

cz1 = cz2 = 1.0e−7.

In practice, the selection of the centers and widths of RBF has a great influence on

the performance of the designed controller. According to [45], Gaussian RBF NNs

arranged on a regular lattice on Rn can uniformly approximate sufficiently smooth

functions on closed, bounded subsets. Accordingly, in the following simulation

studies, the centers and widths are chosen on a regular lattice in the respective

compact sets. Specifically, neural networks Ŵ T
1 S1(Z1) contains 27 nodes (i.e., l1 =

27) with centers µl(l = 1, · · · , l1) evenly spaced in [−1, +1] × [−1, +1] × [−1, +1],

and widths η2
l = 1(l = 1, · · · , l1). Neural networks Ŵ T

2 S1(Z2) contains 243 nodes

(i.e., l2 = 243) with centers µl(l = 1, · · · , l2) evenly spaced in [−1, +1]×[−1.5, +1]×
[−1.5, +1]×[−5, +5]×[−5, +5], and widths η2

2 = 8(l = 1, · · · , l2). The initial weight

estimates are assumed to me 0, i.e., Ŵ1(0) = 0.0 and Ŵ2(0) = 0.0.
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Fig. 6.5 shows that good tracking performance is achieved after 10 seconds learning

periods. Fig. 6.6 shows that the state x2 in the closed-loop is also bounded. Figs.

6.7 and 6.8 show the boundedness of the control input and the NN weights in the

control loop.

6.3.5 Conclusion

An adaptive neural-based control has been addressed for a class of parametric-

strict-feedback nonlinear systems with unknown time delays. The proposed design

method does not require a priori knowledge of the signs of the unknown virtual

control coefficients. The unknown time delays have been compensated for by using

appropriate Lyapunov-Krasovskii functionals. The proposed systematic backstep-

ping design method has been proved to be able to guarantee semi-global uniformly

ultimately boundedness of all the signals. In addition, the output of the system

has been proven to converge to a small neighborhood of the origin. Simulation has

been conducted to show the effectiveness of the proposed approach.
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Figure 6.5: Output y(t)(“−”) and reference yd(“- -”).
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Figure 6.6: Trajectory of state x2(t).
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Figure 6.8: Norms of NN weights ‖Ŵ1‖(“−”) and ‖Ŵ2‖(“- -”).
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis, robust adaptive control has been investigated for uncertain nonlinear

systems. The main purpose of the thesis is to develop adaptive control strategies

for several classes of general nonlinear systems in strict-feedback form with uncer-

tainties including unknown parameters, unknown nonlinear systems functions, un-

known disturbances, and unknown time delays. Systematic controller designs have

been presented using backstepping methodology, neural network parametrization

and robust adaptive control. The results in the thesis have been derived based on

rigorous Lyapunov stability analysis. The control performance of the closed-loop

systems has been explicitly analyzed.

The traditional backstepping design is cancellation-based as the coupling term re-

maining in each design step will be cancelled in the next step. In this thesis, the

coupling term in each step has been decoupled by elegantly using the Young’s in-

equality rather than leaving to it to be cancelled in the next step, which was referred

to as the decoupled backstepping method. In this method, the virtual control in

each step has been only designed to stabilize the corresponding subsystems rather

than previous subsystems and the stability result of each step obtained by seeking

the boundedness of the state rather than cancelling the coupling term so that the
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residual set of each state can be determined individually. Two classes of nonlin-

ear systems in strict-feedback form have been considered as illustration examples

to show the design method. It has been also applied throughout the thesis for

practical controller design.

For nonlinear system with unknown time delays, the main difficulty lies in the

terms with unknown time delays. In this thesis, by using appropriate Lyapunov-

Krasovskii functionals in the Lyapunov function candidate, the uncertainties from

unknown time delays have been compensated for such that the design of the sta-

bilizing control law was free from unknown time delays. In this way, the iterative

backstepping design procedure can be carried out directly. Controller singularities

have been effectively avoided by employing practical robust control. It has been

first applied to a kind of nonlinear strict-feedback systems with unknown time-

delay using neural networks approximation. Two different NN control schemes

have been developed and semi-globally uniformly ultimately boundedness of the

closed-loop signals is achieved. It has been then extended to a kind of nonlinear

time-delay systems in parametric-strict-feedback form and globally uniformly ulti-

mately boundedness of the closed-loop signals has obtained. In the latter design,

a novel continuous function has been introduced to construct differentiable control

functions.

When there is no a priori knowledge on the signs of virtual control coefficients or

high-frequency gain, adaptive control of such systems becomes much more difficult.

In this thesis, controller design incorporated by Nussbaum-type gains has been

presented for a class of perturbed strict-feedback nonlinear systems and a class of

nonlinear time-delay systems with unknown virtual control coefficients/functions.

To cope with uncertainties and achieve global boundedness, an exponential term

has been incorporated into the stability analysis and novel technical lemmas have

been introduced. The proof of the key technical lemmas was given for different

Nussbaum functions being chosen.

In summary, Chapter 2 has given the basic definition and useful results related

to stability, while the decoupled backstepping design introduced in Chapter 3 is

the fundamental design tool being utilized throughout the thesis. The following

three chapters have dealt with several kinds of nonlinear systems with unknown
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time delays. The virtual control coefficients of the systems under consideratin were

unknown functions of states in Chapter 4 and unknown constants in Chapter 5,

where their signs have been assumed known, while in Chapter 6, the virtual control

coefficients were unknown functions of states with unknown sign. Due to the differ-

ent problem formulation, the design methodology being utilized in these chapters

were different. Chapter 4 and Chapter 6 have used NNs as a function approxi-

mator to deal with the unknown nonlinearity while adaptive scheme was proposed

in Chapter 5 for unknown parametric uncertainties. As Chapter 6 considered the

case when the signs of the virtual control coefficients were unknown, adaptive and

adaptive neural control schemes using Nussbaum functions were proposed.

7.2 Further Research

In the following, some suggestions are made for further studies.

• Sliding Mode Control of Nonlinear Time-Delay Systems: Time-delay systems

are actually infinite-dimensional systems. The extension of sliding mode con-

trol strategy to infinite-dimensional systems [140] makes the application of

sliding mode control to time-delay systems possible. It has shown that for

systems with state delays, the idea are essentially the same as for finite-

dimensional systems, even if design and computations are much more com-

plicated. Due to the rich dynamic behaviors of nonlinear systems, the sliding

mode control of nonlinear time-delay systems is a promising and challenging

future research are.

• Systems with Input Delay: The presence of an input delay in the systems is

still an open problem [99]. Even matching additive disturbance is difficult to

be rejected. It is even more challenging when considering nonlinear case or

control input nonaffine case.

• Universal Adaptive Controller: The behavior of the universal adaptive con-

troller using Nussbaum-gain can be interpreted as the controller tries to sweep

all possible control gains and stops when a stabilizing gain is found, i.e., the

switching of the control gain will finally stop when the system has “found”
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the unknown control directions. To determine the settling time is well worth

being investigated for better control performance and computation efficiency.

• Overparametrization Problem in Decoupled Backstepping Design: The pro-

posed decoupled backstepping design procedure has the disadvantage of over-

parameterization, which may reduce its practicality. Obviously, overparme-

terization increases controller’s dynamic order In addition, it may deteriorate

the parameter convergence and system robustness. Future research could be

done to remove this drawback.
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[9] P. V. Kokotović and H. J. Sussmann, “A positive real condition for global

stabilization of nonlinear systems,” Systems & Control Letters, vol. 13, no. 2,

pp. 125–133, 1989.

[10] R. Ortega, “Passivity properties for stabilization of cascaded nonlinear sys-

tems,” Automatica, vol. 27, no. 2, pp. 423–424, 1989.

[11] C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback equivalence,

and the global stabilization of minimum phase nonlinear systems,” IEEE

Trans. Automat. Contr., vol. 36, no. 11, pp. 1228–1240, 1991.
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[14] M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, “Adaptive nonlinear
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[61] B. Mårtensson, “The order of any stabilizing regulator is sufficient a priori

information for adaptive stabilization,” Systems & Control Letters, vol. 6,

pp. 87–91, 1985.

[62] R. D. Nussbaum, “Some remarks on the conjecture in parameter adaptive

control,” Systems & Control Letters, vol. 3, pp. 243–246, 1983.

[63] J. C. Willems and C. I. Byrnes, “Global adaptive stabilization in the absence

of information on the sign of the high frequency gain,” in Lect. Notes in

Control and Inf. Sciences 62, pp. 49–57, Berlin: Springer-Verlag, 1984.

[64] D. R. Mudgett and A. S. Morse, “Adaptive stabilization of linear systems

with unknown high frequency gain,” IEEE Trans. Automat. Contr., vol. 30,

pp. 549–554, 1985.

[65] A. Ilchmann, D. H. Owens, and D. Prätzel-Wolters, “High gain robust adap-

tive controllers for multivariable systems,” Systems & Control Letters, vol. 8,

pp. 397–404, 1987.

[66] A. Ilchmann and D. H. Owens, “Adaptive exponential tracking for nonlinearly

perturbed minimum phase systems,” Control Theory and Advanced Technol-

ogy, vol. 9, pp. 353–379, 1993.

[67] T. H. Lee and K. S. Narendra, “Stable discrete adaptive control with un-

known high-frequency gain,” IEEE Trans. Automat. Contr., vol. 31, no. 5,

pp. 477–479, 1986.

[68] M. Corless and E. P. Ryan, “Adaptive control of a class of nonlinearly per-

turbed linear systems of relative degree two,” Systems & Control Letters,

vol. 21, pp. 59–64, 1992.
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Appendix A

Proof of Lemma 2.4.6

Proof: Since g0(x(t)) ∈ [l−, l+], let us define gmax = max{|l−|, |l+|} and gmin =

min{|l−|, |l+|} for convenience. We first show that ζ(t) is bounded on [0, tf ) by

seeking a contradiction. Suppose that ζ(t) is unbounded and two cases should be

considered: (i) ζ(t) has no upper bound and (ii) ζ(t) has no lower bound.

Case (i): ζ(t) has no upper bound on [0, tf ). In this case, there must exist a

monotone increasing sequence {ti}, i = 1, 2, · · ·, such that {ωi = ζ(ti)} is monotone

increasing with ω1 = ζ(t1) > 0, limi→+∞ ti = tf , and limi→+∞ ωi = +∞.

For clarity, define

Ng(ωi, ωj) =
∫ ωj

ωi

g0(x(τ))N(ζ(τ))e−c1(tj−τ)dζ(τ)

with an understanding that Ng(ωi, ωj) = Ng(ω(ti), ω(tj)) = Ng(ti, tj) for notation

convenience, and ωi ≤ ωj, τ ∈ [ti, tj].

Using integral inequality (b − a)mf1 ≤ ∫ b
a f(x)dx ≤ (b − a)mf2 with mf1 =

infa≤x≤b f(x) and mf2 = supa≤x≤b f(x), and noting that g0(x(t)) ≤ gmax, 0 <

e−c1(t−τ) ≤ 1 for τ ∈ [0, t], we have

|Ng(ωi, ωj)| ≤ gmax(ωj − ωi) sup
ζ∈[ωi,ωj ]

|N(ζ)| = gmax(ωj − ωi)e
ω2

j (A.1)

for the Nussbaum function N(ζ) = eζ2
cos(π

2
ζ), which is positive for ζ ∈ (4m −

1, 4m + 1) and negative for ζ ∈ (4m + 1, 4m + 3) with m an integer.

Let us first consider the case g0(x) > 0. First, let us consider the interval [ω0, ωm1 ] =
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[ω0, 4m − 1], and the following expression

Ng(ω0, ωm1) =
∫ ωm1

ω0

g0(x(τ))e−c1(tm1−τ)N(ζ(τ))dζ(τ)

Applying (A.1), we have

|Ng(ω0, ωm1)| ≤ gmax(4m − 1 − ω0)e
(4m−1)2 (A.2)

Next, let us observe variation in the interval [ωm1 , ωm2 ] = [4m− 1, 4m + 1]. Noting

that N(ζ) ≥ 0, ∀ζ ∈ [ωm1 , ωm2 ], we have the following inequality

Ng(ωm1 , ωm2) ≥
∫ 4m+ε1

4m−ε1
g0(x(τ))e−c1(tm2−τ)N(ζ(τ))dζ(τ)

with ε1 ∈ (0, 1). Similarly using the integral inequality by noting that g0(x(t)) ≥
gmin, e−c1(t−τ) ≥ e−c1(tm2−tm1 ) for τ ∈ [tm1 , tm2 ], we have

Ng(ωm1 , ωm2) ≥ 2ε1gmine
−c1(tm2−tm1 ) inf

ζ∈[ωm1 ,ωm2 ]
N(ζ) = cb1e

(4m−ε1)2 (A.3)

where cb1 = 2ε1gmin cos(π
2
ε1)e

−c1(tm2−tm1 ).

It is known that if |f1(x)| ≤ a1 and f2(x) ≥ a2, then f1(x)+f2(x) ≥ a2 −a1. Using

this property, from (A.2) and (A.3), we obtain

Ng(ω0, ωm2) ≥ e(4m−1)2{cb1e
[2(4m−1)(1−ε1)+(1−ε1)2] − gmax(4m − 1 − ω0)}

which can be further written as

1

ωm2

Ng(ω0, ωm2) ≥
e(4m−1)2

4m + 1
{cb1e

[2(4m−1)(1−ε1)+(1−ε1)2] − gmax(4m − 1 − ω0)} (A.4)

The following property is useful for our derivation

lim
x→+∞

b0e
x2

(eb1x − b2x + b3)

x + a0

= +∞, x + a0 �= 0, b0, b1, b2 > 0 (A.5)

which can be easily proven by applying the L’Hopital’s Rule as

lim
x→+∞

b0e
x2

(eb1x − b2x + b3)

x + a0

= lim
x→+∞

∂
∂x

[
b0e

x2
(eb1x − b2x + b3))

]
∂
∂x

(x + a0)
= +∞

Using property (A.5) and noting (1 − ε1) ∈ (0, 1), from (A.4), we have

lim
m→+∞

1

ωm2

Ng(ω0, ωm2) = +∞ (A.6)
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We have shown that limm→+∞ 1
4m+1

Ng(ω0, 4m + 1)= +∞, now we would like to

show that limm→+∞ 1
4m+3

Ng(ω0, 4m + 3)= −∞.

To this end, let us first observe the interval [ω0, ωm2 ] = [ω0, 4m + 1]. Similarly,

applying (A.1), we can obtain

|Ng(ω0, ωm2)| ≤ gmax(4m + 1 − ω0)e
(4m+1)2 (A.7)

Then, let us consider the next immediate interval [ωm2 , ωm3 ] = [4m + 1, 4m + 3].

Noting that N(ζ) ≤ 0, ∀ζ ∈ [ωm2 , ωm3 ], as for ω ∈ [ωm1 , ωm2 ], we have the following

inequality

Ng(ωm2 , ωm3) ≤
∫ 4m+2+ε2

4m+2−ε2
g0(x(τ))e−c1(tm2−τ)N(ζ(τ))dζ(τ)

≤ −cb2e
(4m+2−ε2)2 (A.8)

where cb2 = 2ε2gmin cos(π
2
ε2)e

−c1(tm3−tm2 ) and ε2 ∈ (0, 1).

It is also known that if |f1(x)| ≤ a1 and f2(x) ≤ a2, then f1(x) + f2(x) ≤ a2 + a1.

Accordingly, from (A.7) and (A.8), we obtain

Ng(ω0, ωm3) ≤ −e(4m+1)2{cb2e
[2(4m+1)(1−ε2)+(1−ε2)2] − gmax(4m + 1 − ω0)}

which can be further written as

1

ωm3

Ng(ω0, ωm3) ≤ −e(4m+1)2

4m + 3
{cb2e

[2(4m+1)(1−ε2)(1−ε2)2] − gmax(4m + 1 − ω0)} (A.9)

Using property (A.5) and noting (1 − ε2) ∈ (0, 1), from (A.9), we have

lim
m→+∞

1

ωm3

Ng(ω0, ωm3) = −∞ (A.10)

Therefore, from (A.6) and (A.10), we can conclude that, g0(x) > 0,

lim
ωj→+∞ sup

1

ωj

Ng(ω0, ωj) = +∞ (A.11)

lim
ωj→+∞ inf

1

ωj

Ng(ω0, ωj) = −∞ (A.12)

In what follows, we would like to show that (A.11) and (A.12) also hold for g0(x) <

0. Let us observe the following intervals [ω0, 4m−1], [4m−1, 4m+1] and, [ω0, 4m+1]
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and [4m + 1, 4m + 3], respectively for g0(x) < 0. In the intervals [ω0, 4m − 1] and

[ω0, 4m + 1], inequalities (A.2) and (A.7) remain. In the interval [4m− 1, 4m + 1],

noting that g0(x) < 0 and N(ζ) ≥ 0, we can similarly obtain

Ng(ωm1 , ωm2) ≤
∫ 4m+ε1

4m−ε1
g0(x(τ))e−c1(tm2−τ)N(ζ(τ))dζ(τ)

≤ −cb1e
(4m−ε1)2 (A.13)

Combining (A.2) and (A.13) yields

1

ωm2

Ng(ω0, ωm2) ≤ −e(4m−1)2

4m + 1
{cb1e

[2(4m−1)(1−ε1)+(1−ε1)2] − gmax(4m − 1 − ω0)}(A.14)

Using the property (A.5) and noting (1 − ε1) ∈ (0, 1), from (A.14), we have

lim
m→+∞

1

ωm2

Ng(ω0, ωm2) = −∞ (A.15)

In the interval [4m + 1, 4m + 3], noting that g0(x) < 0 and N(ζ) ≤ 0, we have

Ng(ωm2 , ωm3) ≥
∫ 4m+2+ε2

4m+2−ε2
g0(x(τ))e−c1(tm2−τ)N(ζ(τ))dζ(τ)

≥ cb2e
(4m+2−ε2)2 (A.16)

Combining the inequalities (A.7) and (A.16) on the intervals [ω0, 4m + 1] and

[4m + 1, 4m + 3] respectively, we have

1

ωm3

Ng(ω0, ωm3) ≥
e(4m+1)2

4m + 3
{cb2e

[2(4m+1)(1−ε2)+(1−ε2)2] − gmax(4m + 1 − ω0)}(A.17)

Similarly using the property (A.5) and noting (1 − ε2) ∈ (0, 1), from (A.17), we

have

lim
m→+∞

1

ωm3

Ng(ω0, ωm3) = +∞ (A.18)

From (A.15) and (A.18), we can also obtain (A.11) and (A.12). Therefore, we can

conclude that (A.11) and (A.12) hold no matter g0(x(t)) > 0 or g0(x(t)) < 0.

Dividing (2.55) by ωi = ζ(ti) > 0 yields

0 ≤ V (ti)

ζ(ti)
≤ c0

ζ(ti)
+

ζ(ti) − ζ(0)

ζ(ti)
sup

ζ∈[ζ(0),ζ(ti)]

e−c1(ti−τ)

+
1

ζ(ti)

∫ ζ(ti)

ζ(0)
g0(x(τ))N(ζ(τ))e−c1(ti−τ)dζ(τ)

=
c0

ωi

+
(
1 − ζ(0)

ωi

)

+
1

ωi

∫ ωi

ζ(0)
g0(x(τ))N(ζ(τ))e−c1(ti−τ)dζ(τ) (A.19)
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On taking the limit as i → +∞, hence ti → tf , ωi → +∞, (A.19) becomes

0 ≤ lim
i→+∞

V (ti)

ζ(ti)
≤ 1 + lim

i→+∞
1

ωi

Ng(ζ(0), ωi)

which takes a contradiction as can be seen from (A.12). Therefore, ζ(t) is upper

bounded on [0, tf ).

Case (ii): ζ(t) has no lower bound on [0, tf ). There must exist a monotone

increasing sequence {ti}, i = 1, 2, · · ·, such that {ωi = −ζ(ti)} with ω1 = ζ(t1) > 0,

limi→+∞ ti = tf , and limi→+∞ ωi = +∞.

Dividing (2.55) by ωi = −ζ(ti) > 0 yields

0 ≤ V (ti)

−ζ(ti)
≤ c0

−ζ(ti)
− 1

−ζ(ti)

∫ −ζ(ti)

ζ(0)
e−c1(ti−τ)d[−ζ(τ)]

− 1

−ζ(ti)

∫ −ζ(ti)

ζ(0)
g0(x(τ))N(ζ(τ))e−c1(ti−τ)d[−ζ(τ)] (A.20)

Noting that N(·) is an even function, i.e., N(ζ) = N(−ζ), and letting χ(t) = −ζ(t),

(A.20) becomes

0 ≤ V (ti)

−ζ(ti)
≤ c0

−ζ(ti)
− 1

−ζ(ti)

∫ −ζ(ti)

ζ(0)
e−c1(ti−τ)dχ(τ)

− 1

−ζ(ti)

∫ −ζ(ti)

ζ(0)
g0(x(τ))N(χ(τ))e−c1(ti−τ)dχ(τ)

≤ c0

ωi

− ωi − ζ(0)

ωi

inf
τ∈[0,ti]

e−c1(ti−τ)

− 1

ωi

∫ ωi

ζ(0)
g0(x(τ))N(χ(τ))e−c1(ti−τ)dχ(τ)

=
c0

ωi

−
(

1 − ζ(0)

ωi

)
e−c1ti − 1

ωi

∫ ωi

ζ(0)
g0(x(τ))N(χ(τ))e−c1(ti−τ)dχ(τ)

Taking the limit as i → +∞, hence ti → tf , ωi → +∞, we have

0 ≤ lim
i→+∞

V (ti)

−ζ(ti)
≤ −e−c1tf − lim

i→+∞
1

ωi

Ng(ζ(0), ωi)

which takes a contradiction as can be seen from (A.11). Therefore, ζ(t) is lower

bounded on [0, tf ).

Therefore, ζ(t) must be bounded on [0, tf ). In addition, V (t) and
∫ t
0 g0(x(τ))N(ζ)ζ̇dτ

are bounded on [0, tf ). ♦
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Appendix B

Proof of Lemma 2.4.7

Proof: We first show that ζ(t) is bounded on [0, tf ) by seeking a contradiction.

Suppose that ζ(t) is unbounded and two cases should be considered: (i) ζ(t) has

no upper bound and (ii) ζ(t) has no lower bound.

Case (i): ζ(t) has no upper bound on [0, tf ). In this case, there must exist a

monotone increasing sequence {ti}, i = 1, 2, · · ·, such that {ωi = ζ(ti)} is monotone

increasing with ω1 = ζ(t1) > 0, limi→+∞ ti = tf , and limi→+∞ ωi = +∞.

For clarity, define

Ng(ωi, ωj) =
∫ ωj

ωi

g0N(ζ(τ))e−c1(tj−τ)dζ(τ) (B.1)

with an understanding that Ng(ωi, ωj) = Ng(ω(ti), ω(tj)) = Ng(ti, tj) for notation

convenience, and ωi ≤ ωj, τ ∈ [ti, tj]. Let ζ−1(x) denote the inverse function of

ζ(x), i.e., ζ(ζ−1(x)) = ζ−1(ζ(x)) ≡ x (according to the definition of inverse function

). Noting N(ζ) = ζ2 cos(ζ), (B.1) can be re-written as

Ng(ωi, ωj) =
∫ ωj

ωi

g0N(ζ(τ))e−c1[tj−ζ−1(ζ(τ))]dζ(τ)

=
∫ ωj

ωi

g0ζ
2 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ (B.2)

Integration by parts, we have

Ng(ωi, ωj) =
∫ ωj

ωi

g0ζ
2e−c1[tj−ζ−1(ζ)]d[sin(ζ)]

= g0ζ
2 sin(ζ)e−c1[tj−ζ−1(ζ)]

∣∣∣ωj

ωi

−
∫ ωj

ωi

g0 sin(ζ)d{ζ2e−c1[tj−ζ−1(ζ)]} (B.3)
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Applying the following property for the derivative of inverse function

dζ−1(ζ(x))

dζ(x)
=

1
dζ(x)

dx

(B.4)

we have

d

dζ

{
ζ2e−c1[tj−ζ−1(ζ)]

}
= 2ζe−c1[tj−ζ−1(ζ)] + c1ζ

2e−c1[tj−ζ−1(ζ)]dζ−1(ζ))

dζ

= 2ζe−c1[tj−ζ−1(ζ)] + c1ζ
2e−c1[tj−ζ−1(ζ)]dτ

dζ

i.e.,

d
{
ζ2e−c1[tj−ζ−1(ζ)]

}
= 2ζe−c1[tj−ζ−1(ζ)]dζ + c1ζ

2e−c1(tj−τ)dτ (B.5)

then (B.3) becomes

Ng(ωi, ωj) = g0ζ
2 sin(ζ)e−c1[tj−ζ−1(ζ)]

∣∣∣ωj

ωi

−
∫ ωj

ωi

2g0ζ sin(ζ)e−c1[tj−ζ−1(ζ)]dζ

−
∫ tj

ti
c1g0ζ

2 sin(ζ)e−c1(tj−τ)dτ (B.6)

Integration by parts for the term
∫ ωj
ωi

2g0ζ sin(ζ)e−c1[tj−ζ−1(ζ)]dζ in (B.6), we have∫ ωj

ωi

2g0ζ sin(ζ)e−c1[tj−ζ−1(ζ)]dζ = − 2g0ζ cos(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

+
∫ ωj

ωi

2g0 cos(ζ)d{ζe−c1[tj−ζ−1(ζ)]} (B.7)

Applying (B.4), we have

d

dζ

{
ζe−c1[tj−ζ−1(ζ)]

}
= e−c1[tj−ζ−1(ζ)] + c1ζe−c1[tj−ζ−1(ζ)]dτ

dζ
(B.8)

then (B.7) becomes∫ ωj

ωi

2g0ζ sin(ζ)e−c1[tj−ζ−1(ζ)]dζ

= − 2g0ζ cos(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

+
∫ ωj

ωi

2g0 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ

+
∫ tj

ti
2c1g0ζ cos(ζ)e−c1(tj−τ)dτ (B.9)

Substituting (B.9) into (B.6) yields

Ng(ωi, ωj) = g0ζ
2 sin(ζ)e−c1[tj−ζ−1(ζ)]

∣∣∣ωj

ωi

+ 2g0ζ cos(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

−
∫ ωj

ωi

2g0 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ −
∫ tj

ti
2c1g0ζ cos(ζ)e−c1(tj−τ)dτ

−
∫ tj

ti
c1g0ζ

2 sin(ζ)e−c1(tj−τ)dτ (B.10)
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Similarly, integration by parts for the term
∫ ωj
ωi

2g0 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ in (B.10)

by noting that
d

dζ
{e−c1[tj−ζ−1(ζ)]} = c1e

−c1[tj−ζ−1(ζ)]dτ

dζ

we have

∫ ωj

ωi

2g0 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ = 2g0 sin(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

−
∫ tj

ti
2c1g0 sin(ζ)e−c1(tj−τ)dτ (B.11)

Substituting (B.11) into (B.10), we have

Ng(ωi, ωj) = g0ζ
2 sin(ζ)e−c1[tj−ζ−1(ζ)]

∣∣∣ωj

ωi

+ 2g0ζ cos(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

−2g0 sin(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

+
∫ tj

ti
2c1g0 sin(ζ)e−c1(tj−τ)dτ

−
∫ tj

ti
2c1g0ζ cos(ζ)e−c1(tj−τ)dτ −

∫ tj

ti
c1g0ζ

2 sin(ζ)e−c1(tj−τ)dτ (B.12)

Let us first consider the term
∫ tj
ti 2c1g0 sin(ζ)e−c1(tj−τ)dτ on the right side of (B.12).

Using integral inequality (b − a)mf1 ≤ ∫ b
a f(x)dx ≤ (b − a)mf2 with mf1 =

infa≤x≤b f(x) and mf2 = supa≤x≤b f(x), and noting that 0 < e−c1(tj−τ) ≤ 1 for

τ ∈ [ti, tj], we have

∣∣∣ ∫ tj

ti
2c1g0 sin(ζ)e−c1(tj−τ)dτ

∣∣∣ ≤ (tj − ti)2c1g0 (B.13)

Next, for the term
∫ tj
ti 2c1g0ζ cos(ζ)e−c1(tj−τ)dτ , applying integral inequality simi-

larly by noting that 0 < e−c1(tj−τ) ≤ 1 for τ ∈ [ti, tj], we have

∣∣∣ ∫ tj

ti
2c1g0ζ cos(ζ)e−c1(tj−τ)dτ

∣∣∣ ≤ (tj − ti)2c1g0ωj (B.14)

Then, let us consider the term
∫ tj
ti c1g0ζ

2 sin(ζ)e−c1(tj−τ)dτ . Using the property that

if f(x) ≤ g(x), ∀x ∈ [a, b], then
∫ b
a f(x)dx ≤ ∫ b

a g(x)dx and noting that

−ω2
j e

c1τ ≤ ζ2(τ) sin(ζ(τ))ec1τ ≤ ω2
j e

c1τ , ∀τ ∈ [ti, tj]

we have

e−c1tj

∫ tj

ti
c1g0ζ

2 sin(ζ)ec1τdτ ≤ e−c1tjc1g0ω
2
j

∫ tj

ti
ec1τdτ = g0ω

2
j [1 − e−c1(tj−ti)]
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and

e−c1tj

∫ tj

ti
c1g0ζ

2 sin(ζ)ec1τdτ ≥ −e−c1tjc1g0ω
2
j

∫ tj

ti
ec1τdτ = −g0ω

2
j [1 − e−c1(tj−ti)]

i.e.,

∣∣∣∣e−c1tj

∫ tj

ti
c1g0ζ

2 sin(ζ)ec1τdτ
∣∣∣∣ ≤ g0ω

2
j [1 − e−c1(tj−ti)] (B.15)

Noting that ζ−1(ωi) = ζ−1(ζ(ti)) = ti and ζ−1(ωj) = ζ−1(ζ(tj)) = tj, from (B.13),

(B.14) and (B.15), we have the following two inequalities

Ng(ωi, ωj) ≤ g0ω
2
j sin(ωj) + 2g0ωj cos(ωj) − 2g0 sin ωj

+g0ω
2
j [1 − e−c1(tj−ti)] + (tj − ti)2c1g0ωj + (tj − ti)2c1g0

−g0e
−c1(tj−ti)ω2

i sin(ωi) − 2g0e
−c1(tj−ti)ωi cos(ωi)

+2g0e
−c1(tj−ti) sin(ωi) (B.16)

and

Ng(ωi, ωj) ≥ g0ω
2
j sin(ωj) + 2g0ωj cos(ωj) − 2g0 sin ωj

−g0ω
2
j [1 − e−c1(tj−ti)] − (tj − ti)2c1g0ωj − (tj − ti)2c1g0

−g0e
−c1(tj−ti)ω2

i sin(ωi) − 2g0e
−c1(tj−ti)ωi cos(ωi)

+2g0e
−c1(tj−ti) sin(ωi) (B.17)

Re-write (2.56) as

0 ≤ V (ti) ≤ c0 +
∫ ζ(ti)

ζ(0)
g0N(ζ(τ))e−c1(ti−τ)dζ(τ) +

∫ ζ(ti)

ζ(0)
e−c1(ti−τ)dζ(τ)(B.18)

Using (B.16) by noting ωi = ζ(ti), we have

0 ≤ V (ti) ≤ c0 + Ng(ζ(0), ωi) + [ωi − ζ(0)] sup
τ∈[0,ti]

e−c1(ti−τ)

≤ c0 + g0ω
2
i sin(ωi) + 2g0ωi cos(ωi) − 2g0 sin ωi

+g0ω
2
i [1 − e−c1ti ] + 2tic1g0ωi + 2tic1g0 + [ωi − ζ(0)]

−g0e
−c1tiζ2(0) sin(ζ(0)) − 2g0e

−c1tiζ(0) cos(ζ(0)) + 2g0e
−c1ti sin(ζ(0))

= ω2
i

{
g0[sin(ωi) + 1 − e−c1ti ] +

f(ωi)

ω2
i

}
(B.19)
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where

f(ωi) = c0 + 2g0ωi cos(ωi) − 2g0 sin ωi + 2tic1g0ωi + 2tic1g0 + [ωi − ζ(0)]

−g0e
−c1tiζ2(0) sin(ζ(0)) − 2g0e

−c1tiζ(0) cos(ζ(0))

+2g0e
−c1ti sin(ζ(0)) (B.20)

Taking the limit as i → +∞, hence ti → tf , ωj → +∞, f(ωi)
ω2

i
→ +∞, we have

0 ≤ lim
i→+∞

V (ti) ≤ lim
i→+∞

ω2
i g0[sin(ωi) + 1 − e−c1ti ] (B.21)

which, if g0 > 0, draws a contradiction when [sin(ωi) + 1 − e−c1ti ] < 0, and if

g0 < 0, draws a contradictions when [sin(ωi) + 1 − e−c1ti ] > 0. Therefore, ζ(t) is

upper bounded on [0, tf ).

Case (ii): ζ(t) has no lower bound on [0, tf ). There must exist a monotone in-

creasing sequence {ti}, i = 1, 2, · · ·, such that {ωi = −ζ(ti)} with ω1 = ζ(t1) > 0,

limi→+∞ ti = tf , and limi→+∞ ωi = +∞.

Re-write (2.56) as

0 ≤ V (ti) ≤ c0 −
∫ −ζ(ti)

ζ(0)
g0N(ζ(τ))e−c1(ti−τ)d[−ζ(τ)]

−
∫ −ζ(ti)

ζ(0)
e−c1(ti−τ)d[−ζ(τ)] (B.22)

Since N(·) is an even function, we have N(ζ) = N(−ζ). Letting χ(t) = −ζ(t),

(B.22) becomes

0 ≤ V (ti) ≤ c0 −
∫ ωi

ζ(0)
g0N(χ(τ))e−c1(ti−τ)dχ(τ) −

∫ ωi

ζ(0)
e−c1(ti−τ)dχ(τ) (B.23)

Using (B.17) by noting ωi = −ζ(ti), we further have

0 ≤ V (ti) ≤ c0 − Ng(ζ(0), ωi) − [ωi − ζ(0)] inf
τ∈[0,ti]

e−c1(ti−τ)

≤ c0 − g0ω
2
i sin(ωi) − 2g0ωi cos(ωi) + 2g0 sin(ωi)

+g0ω
2
i [1 − e−c1ti ] + 2tic1g0ωi + 2tic1g0 − [ωi − ζ(0)]e−c1ti

+g0e
−c1tiζ2(0) sin(ζ(0)) + 2g0e

−c1tiζ(0) cos(ζ(0)) − 2g0e
−c1ti sin(ζ(0))

= ω2
i

{
g0[− sin(ωi) + 1 − e−c1ti ] +

f(ωi)

ω2
i

}
(B.24)
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where

f(ωi) = c0 − 2g0ωi cos(ωi) − 2g0 sin(ωi) + 2tic1g0ωi + 2tic1g0

−[ωi − ζ(0)]e−c1ti + g0e
−c1tiζ2(0) sin(ζ(0)) + 2g0e

−c1tiζ(0) cos(ζ(0))

−2g0e
−c1ti sin(ζ(0)) (B.25)

Taking the limit as i → +∞, hence ti → tf , ωj → +∞,
f(ωi)

ω2
i

→ +∞, we have

0 ≤ lim
i→+∞

V (ti) ≤ lim
i→+∞

ω2
i g0[sin(ωi) + 1 − e−c1ti ] (B.26)

which, if g0 > 0, draws a contradiction when [− sin(ωi) + 1 − e−c1ti ] < 0, and if

g0 < 0, draws a contradictions when [− sin(ωi) + 1 − e−c1ti ] > 0. Therefore, ζ(t) is

lower bounded on [0, tf ).

Therefore, ζ(t) must be bounded on [0, tf ). In addition, V (t) and
∫ t
0 g0(x(τ))N(ζ)ζ̇dτ

are bounded on [0, tf ). ♦
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