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Summary

Ramanujan (1919) studied expansions of the form ηdE(P, Q,R) for d = 1 or 3

where η is Dedekind’s eta function and E(P, Q,R) is some polynomial in terms of

the Eisenstein series, P, Q and R. In another direction, Newman (1955) used the

theory of modular forms to prove that the fourier coefficients of ηd satisfy some

special arithmetic properties whenever d = 2, 4, 6, 8, 10, 14 and 26. Subsequently,

Serre (1985) proved that for even d, ηd is lacunary if and only if d belongs to the

same set of integers.

In this thesis, we generalize the results of Ramanujan, Newman and Serre by

constructing infinitely many expansions of ηdE(P, Q, R) where d = 2, 4, 6, 8, 10

and 14, of which the last 3 cases are new. We first use invariance properties of

generalized Jacobi theta functions to construct identities involving two variables

which are equivalent to the Macdonald identities for A2, B2 and G2. Applying

appropriate differential operators, we establish the cases for d = 8, 10 and 14.

The problem can also be studied in a more uniform manner by using modular

forms. In this case, we obtain infinitely many identities for ηdF (Q, R) where d =

v



Summary vi

2, 4, 6, 8, 10, 14, 26 and F (Q,R) is a certain polynomial in terms of Q and R. Most

of the results described here are original and appears in [CCT07].

In the second part of this thesis, we will describe an original construction of the

Macdonald identities for all the infinite families. Again by applying appropriate

differential operators, we deduce new formulas for higher powers of η. For example,

the formulas for ηn2+2, η2n2+n and η2n2−n for all positive n are given. The results

described here will appear in [Toh].
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Chapter 1
Jacobi theta functions

Theta functions first appeared in Jakob Bernoulli’s Ars Conjectandi (1713) and

subsequently in the works of Euler and Gauss but the first systematic study was

published by C. G. J. Jacobi. Jacobi’s analysis was so complete that most of

the important properties of the theta functions appeared in his Fundamenta Nova

(1829) [Jac29]. One aspect of theta functions that was not studied by Jacobi is

the connection with modular forms. These came into prominence in the 1900s and

were pioneered by E. Hecke.

In Section 1.1, we will define the four theta functions introduced by Jacobi and

study some of their key properties. In Section 1.2, we will consider a generalization

of the Jacobi theta functions and establish some useful results. These functions

play a key role in the subsequent chapters of this thesis.

In Section A.2, we will review some key properties of modular forms.

1



1.1 Classical Jacobi theta functions 2

1.1 Classical Jacobi theta functions

Definition 1.1.1. Let q = eπit where Im(t) > 0. The classical Jacobi theta func-

tions are:

θ1(z|q) = −iq
1
4

∞∑
k=−∞

(−1)kqk2+ke(2k+1)iz

= 2q
1
4

∞∑
k=0

(−1)kqk2+k sin(2k + 1)z,

θ2(z|q) = q
1
4

∞∑
k=−∞

qk2+ke(2k+1)iz

= 2q
1
4

∞∑
k=0

qk2+k cos(2k + 1)z,

θ3(z|q) =
∞∑

k=−∞

qk2

e2kiz

= 1 + 2
∞∑

k=1

qk2

cos 2kz

and θ4(z|q) =
∞∑

k=−∞

(−1)kqk2

e2kiz

= 1 + 2
∞∑

k=1

(−1)kqk2

cos 2kz.

They are analytic functions of a complex variable z and a parameter t. We shall

state some important facts about the Jacobi theta functions. These are well known

and can be found in [WW27, Chpt. 21] or [MM97, Chpt. 3].

Remark 1.1.2. In the classical theory of theta functions, it is customary to set

q = eπiτ but in the theory of modular forms, the standard notation is q = e2πiτ .

Throughout this thesis, we let t = 2τ and use the parameter t for theta functions

and τ for modular forms.
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Proposition 1.1.3. The Jacobi theta functions satisfy the following transforma-

tion formulas:

θ1(z + π|q) = −θ1(z|q); θ1(z + πt|q) = −q−1e−2izθ1(z|q);

θ2(z + π|q) = −θ2(z|q); θ2(z + πt|q) = q−1e−2izθ2(z|q);

θ3(z + π|q) = θ3(z|q); θ3(z + πt|q) = q−1e−2izθ3(z|q);

θ4(z + π|q) = θ4(z|q); θ4(z + πt|q) = −q−1e−2izθ4(z|q).

Hence they are quasi-elliptic with (quasi) periods π and πt and it suffices to study

their values in the fundamental parallelogram,

Π = {aπ + bπt | 0 ≤ a < 1, 0 ≤ b < 1}.

The four theta functions are all related to each other via a half-period transforma-

tion. For example,

θ2

(
z +

π

2

∣∣∣q) = −θ1(z|q).

Table 1.1 gives all the half-period transforms satisfied by the four theta functions.

x = z + π
2

x = z + π+πt
2

x = z + πt
2

θ1(x|q) θ2(z|q) q−
1
4 e−izθ3(z|q) iq−

1
4 e−izθ4(z|q)

θ2(x|q) −θ1(z|q) −iq−
1
4 e−izθ4(z|q) q−

1
4 e−izθ3(z|q)

θ3(x|q) θ4(z|q) iq−
1
4 e−izθ1(z|q) q−

1
4 e−izθ2(z|q)

θ4(x|q) θ3(z|q) q−
1
4 e−izθ2(z|q) iq−

1
4 e−izθ1(z|q)

Table 1.1: Half-period transforms of Jacobi theta functions

Proposition 1.1.4. Each θi(z|q) vanishes at exactly one point in Π. Specifically,

we have

θ1(0|q) = θ2

(π

2

∣∣∣q) = θ3

(π + πt

2

∣∣∣q) = θ4

(πt

2

∣∣∣q) = 0.
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Proof. We first note the following consequences of Proposition 1.1.3,

θ′1(z + πt|q)
θ1(z + πt|q)

=
θ′1(z|q)
θ1(z|q)

− 2i and
θ′1(z + π|q)
θ1(z + π|q)

=
θ′1(z|q)
θ1(z|q)

.

Next, let m be a constant such that, C, the boundary of the parallelogram m + Π

does not contain any zeroes of θ1(z|q). Then the number of zeroes inside m + Π

can be computed by

1

2πi

∫
C

θ′1(z|q)
θ1(z|q)

dz =
1

2πi

∫ m+π

m

(
θ′1(z|q)
θ1(z|q)

− θ′1(z + πt|q)
θ1(z + πt|q)

)
dz

− 1

2πi

∫ m+πt

m

(
θ′1(z|q)
θ1(z|q)

− θ′1(z + π|q)
θ1(z + π|q)

)
dz

=
1

2πi

∫ m+π

m

2idz

= 1.

By the principle of analytic continuation, we can let m tend to 0 and conclude that

θ1(z|q) has exactly one zero in Π. Since θ1(z|q) is odd, it vanishes at z = 0. The

zeroes of the other theta functions can then be deduced from Table 1.1.

We now state a fundamental lemma, the proof of which can be found in [Ahl78,

Chpt. 7, Sect.2, Thm. 3 and 4].

Lemma 1.1.5. Let F (z, t) be a complex function in the variables z and t. If t is

fixed and

1. F (z, t) has at most a simple pole in Π;

2. F (z + π, t) = F (z, t) and F (z + πt, t) = F (z, t),

then F (z, t) is a constant independent of z.

The first consequence of Lemma 1.1.5 is the following.

Proposition 1.1.6 (Duplication Formula).

θ1(2z|q) = 2
θ1(z|q)θ2(z|q)θ3(z|q)θ4(z|q)

θ2(0|q)θ3(0|q)θ4(0|q)
.



1.1 Classical Jacobi theta functions 5

Proof. Using Proposition 1.1.3, we can check that both sides satisfy the same

transformation formula. Moreover, it is also evident that θ1(2z|q) = 0 when z = 0,

π/2, (π + πt)/2 and πt/2. Thus the quotient

θ1(2z|q)θ2(0|q)θ3(0|q)θ4(0|q)
2θ1(z|q)θ2(z|q)θ3(z|q)θ4(z|q)

is an entire function and equals a constant. As z approaches 0, we see that this

constant equals to 1.

We shall now look at the expressions of the theta functions as infinite products.

For this purpose, we will adopt the following q-Pochhammer symbol.

Definition 1.1.7. For |q| < 1, we define

(a1, . . . , ak; q)∞ =
∞∏

n=1

(1− a1q
n−1) . . . (1− akq

n−1)

and

(q)∞ =
∞∏

n=1

(1− qn).

The celebrated Jacobi’s triple product identity is the following.

Theorem 1.1.8 (Jacobi’s Triple Product Identity). For x 6= 0 and |q| < 1, we

have
∞∑

n=−∞

xnqn2

= (−xq; q2)∞(−x−1q; q2)∞(q2; q2)∞.

A proof of this theorem can be found in Appendix A.1.2.

Using Theorem 1.1.8, we can easily express each θi(z|q) as an infinite product.
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Proposition 1.1.9 (Infinite Product Formulas).

θ1(z|q) = iq
1
4 e−iz(q2; q2)∞(e2iz; q2)∞(q2e−2iz; q2)∞ (1.1)

= 2q
1
4 sin z(q2; q2)∞(q2e2iz; q2)∞(q2e−2iz; q2)∞, (1.2)

θ2(z|q) = 2q
1
4 cos z(q2; q2)∞(−q2e2iz; q2)∞(−q2e−2iz; q2)∞, (1.3)

θ3(z|q) = (q2; q2)∞(−qe2iz; q2)∞(−qe−2iz; q2)∞, (1.4)

θ4(z|q) = (q2; q2)∞(qe2iz; q2)∞(qe−2iz; q2)∞. (1.5)

Corollary 1.1.10. We have the following identities at z = 0.

θ′1(0|q) = θ2(0|q)θ3(0|q)θ4(0|q) (1.6)

= 2q
1
4 (q2)3

∞, (1.7)

θ2(0|q) = 2q
1
4 (q2)∞(−q2; q2)2

∞ = 2q
1
4
(q4)2

∞
(q2)∞

, (1.8)

θ3(0|q) = (q2)∞(−q; q2)2
∞ =

(q2)5
∞

(q4)2
∞(q)2

∞
, (1.9)

θ4(0|q) = (q2)∞(q; q2)2
∞ =

(q)2
∞

(q2)∞
. (1.10)

Remark 1.1.11. In Jacobi’s original work, he did not prove the triple product

identity directly. Instead, he first used logarithmic differentiation of the duplication

formula (Proposition 1.1.6) to obtain (1.6). Thereafter, he proved the product

formulas via Lemma 1.1.5 and calculated the constant with (1.6).

1.2 Generalized Jacobi theta functions

We now construct a m-th order generalization of Jacobi theta functions and study

the complex vector space spanned by these functions.

Definition 1.2.1 (m-th order Jacobi theta function). Let q = eπit, Im(t) > 0. For



1.2 Generalized Jacobi theta functions 7

each m, j ∈ Z, m ≥ 1 and l ∈ {0, 1}, we define

T 0
m,j(z) =

∞∑
k=−∞

qmk2+jke(2mk+j)iz

= q
m−2j

4 e(j−m)izθ2

(
mz + (j −m)

πt

2

∣∣∣qm
)
,

T 1
m,j(z) =

∞∑
k=−∞

(−1)kqmk2+jke(2mk+j)iz

= iq
m−2j

4 e(j−m)izθ1

(
mz + (j −m)

πt

2

∣∣∣qm
)
,

El
m,j(z) = T l

m,j(z) + T l
m,j(−z)

and Ol
m,j(z) = T l

m,j(z)− T l
m,j(−z).

These functions are equivalent to the N -th order θ-function with rational charac-

teristic developed by Farkas and Kra.1 Most of the results given in this section are

adapted from [FK01, Chpt. 2, Sect. 7].

Proposition 1.2.2. We have

T l
m,j(z) = T l

m,−j(−z) and T l
m,j(z) = (−1)lqm+jT l

m,2m+j(z). (1.11)

Furthermore,

O0
m,0(z) ≡ O1

m,0(z) ≡ O0
m,m(z) ≡ E1

m,m(z) ≡ 0. (1.12)

Definition 1.2.3. For each integer m ≥ 1 and k, l ∈ {0, 1}, we define V l
m,k to

be the complex vector space consisting of entire functions, F l
m,k(z), satisfying the

following transformation formulas:

F l
m,k(z + π) = (−1)kF l

m,k(z); F l
m,k(z + πt) = (−1)lq−me−2mizF l

m,k(z). (1.13)

We can easily check that the functions T l
m,j(z), El

m,j(z) and Ol
m,j(z) all belong to

V l
m,k whenever j ≡ k (mod 2).

1See Definition A.1.1.
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Proposition 1.2.4. Let F l
m,j(z) ∈ V l

m,k, where j ≡ k (mod 2). Then F l
m,j(z) has

exactly m zeroes in Π, the fundamental parallelogram.

Proof. The number of zeroes can be calculated in a similar fashion as Proposition

1.1.4 using the transformation formulas (1.13).

Corollary 1.2.5. Let F l
m,j(z) ∈ V l

m,k, where j ≡ k (mod 2). Then F l
m,j(z) has the

following special values:

F l
m,j

(
π + πt

2

)
= (−1)j+m+lF l

m,j

(
−π + πt

2

)
,

F l
m,j

(π

2

)
= (−1)jF l

m,j

(
−π

2

)
and F l

m,j

(
πt

2

)
= (−1)lF l

m,j

(
−πt

2

)
.

Corollary 1.2.5 is a direct consequence of (1.13) and is useful for locating the zeroes

of El
m,j(z) and Ol

m,j(z). For example, the even function E1
2n+1,2j−1(z) is necessarily

zero at z = π/2, πt/2 and (π + πt)/2 since it satisfies

E1
2n+1,2j−1

(
π + πt

2

)
= (−1)2j+2n+lE1

2n+1,2j−1

(
−π + πt

2

)
= −E1

2n+1,2j−1

(
π + πt

2

)
,

E1
2n+1,2j−1

(π

2

)
= (−1)2j−1E1

2n+1,2j−1

(
−π

2

)
= −E1

2n+1,2j−1

(π

2

)
,

E1
2n+1,2j−1

(
πt

2

)
= (−1)E1

2n+1,2j−1

(
−πt

2

)
= −E1

2n+1,2j−1

(
πt

2

)
.



Chapter 2
Powers of Dedekind’s eta function

Let q = e2πiτ where Im(τ) > 0. Dedekind’s eta-function is defined as

η = η(τ) = q
1
24

∞∏
k=1

(1− qk) = q
1
24 (q)∞.

For brevity, we sometimes omit the dependence on τ and just write η.

Certain powers of η possess very remarkable properties. M. Newman (1955) and

J. P. Serre (1985) proved two interesting theorems for some even powers of η using

the theory of modular forms. On the other hand, S. Ramanujan (1919) used

elementary methods to generalize the classical results of Euler and Jacobi for η

and η3. We shall describe their work and present our generalizations in Section

2.1. Explanations and proofs of these results will occupy the rest of the chapter.

Most of the results presented in this chapter are original and appear in [CCT07].

2.1 Theorems of Ramanujan, Newman and Serre

Let r denote an even integer and define the coefficients ar(n) by

ηr(τ) = q
r
24

∞∑
n=0

ar(n)qn.

9



2.1 Theorems of Ramanujan, Newman and Serre 10

Then Newman [New55] proved the following interesting theorem.

Theorem 2.1.1 (Newman). Let r be a positive even integer and p be a prime

> 3 such that r(p + 1) ≡ 0 (mod 24). Defining ar(α) = 0 whenever α is not a

non-negative integer, we have

ar

(
np +

r

24

(
p2 − 1

))
= (−p)

r
2
−1ar

(
n

p

)
(2.1)

if and only if r ∈ {2, 4, 6, 8, 10, 14, 26}.

To describe another remarkable theorem for ηr, we need the following definition.

Definition 2.1.2. A power series is lacunary if the arithmetic density of its non-

zero coefficients is zero. More precisely,
∑

a(n)qn is lacunary if

lim
x→∞

∣∣{n|n ≤ x, a(n) 6= 0}
∣∣

x
= 0.

Serre [Ser85] proved that:

Theorem 2.1.3 (Serre). If r is a positive even integer, then ηr(τ) is lacunary if

and only if r ∈ {2, 4, 6, 8, 10, 14, 26}.

Both Serre and Newman used the theory of modular forms. On the other hand,

using elementary methods, Ramanujan [Ram88, Pg. 369] gave the following.

Theorem 2.1.4 (Ramanujan). Let m be a non-negative integer and define

S1(m) =
∑

α≡1 (mod 6)

(−1)(α−1)/6αmqα2/24,

S3(m) =
∑

α≡1 (mod 4)

αmqα2/8.

Then

S1(2m) = η(τ)
∑

j+2k+3`=m

ajk`P
jQkR`, (2.2)

S3(2m + 1) = η3(τ)
∑

j+2k+3`=m

bjk`P
jQkR`, (2.3)
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where ajk` and bjk` are rational numbers, j, k and ` are non-negative integers, and

P , Q and R are Ramanujan’s Eisenstein series defined as

P = P (q) = 1− 24
∞∑

k=1

kqk

1− qk
,

Q = Q(q) = 1 + 240
∞∑

k=1

k3qk

1− qk
,

R = R(q) = 1− 504
∞∑

k=1

k5qk

1− qk
.

When m = 0, (2.2) and (2.3) reduces to the classical formulas of Euler and Jacobi

for
∏

k≥1(1− qk) and
∏

k≥1(1− qk)3 respectively.

The main aim of this chapter is to prove analogues of Theorem 2.1.4 involving ηr

when r belongs to {2, 4, 6, 8, 10, 14, 26}. The cases when r = 2, 4 and 6 are direct

consequences of Ramanujan’s theorem.

Theorem 2.1.5. Let m and n be non-negative integers and define

S2(m, n) = S1(m)S1(n),

S4(m, n) = S1(m)S3(n),

S6(m, n) = S3(m)S3(n).

Then

S2(2m, 2n) = η2(τ)
∑

j+2k+3`=m+n

ajk`P
jQkR`, (2.4)

S4(2m, 2n + 1) = η4(τ)
∑

j+2k+3`=m+n

ajk`P
jQkR`, (2.5)

S6(2m + 1, 2n + 1) = η6(τ)
∑

j+2k+3`=m+n

ajk`P
jQkR`. (2.6)

In each case, ajk` are rational numbers, and j, k and ` are non-negative integers.

The cases for r = 8 and r = 10 are as follows:
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Theorem 2.1.6. Let m and n be non-negative integers and define

S8(m, n) =
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

αmβnq(α2+3β2)/12.

Then S8(1, 0) = 0 and

S8(2m + 1, 2n) = η8(τ)
∑

j+2k+3`=m+n−1

ajk`P
jQkR`, (2.7)

provided m+n ≥ 1. Here ajk` are rational numbers, and j, k and ` are non-negative

integers.

Theorem 2.1.7. Let m and n be non-negative integers and define

S10(m,n) =
∑

α≡1 (mod 6)
β≡3 (mod 6)

(−1)(α+β−4)/6(αmβn − αnβm)q(α2+β2)/24.

Then

S10(2m + 1, 2n + 1) = η10(τ)
∑

j+2k+3`=m+n−1

ajk`P
jQkR`, (2.8)

where ajk` are rational numbers, and j, k and ` are non-negative integers.

The proofs of Theorem 2.1.6 and 2.1.7 will be presented in Sections 2.2 and 2.3

respectively.

The case for r = 14 is more complicated and will be discussed in Section 2.4. All

these identities involve the function P which is not a modular form on SL2(Z).

However, by restricting to modular forms on SL2(Z), we can obtain more uniform

results. In particular, we have the following theorems.

Theorem 2.1.8. Let n be a positive integer and define

C14(n|τ) =
∑

α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6 Im
(
(α + iβ

√
3)n
)

q(α2+3β2)/12.

Then

C14(6n|τ) = η14(τ)
∑

4j+6k=6n−6

ajkQ
jRk. (2.9)
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Theorem 2.1.9. Let n be a positive integer and define

C2(n|τ) =
∑

α≡1 (mod 6)
β≡1 (mod 6)

(−1)(α+β−2)/6(α + iβ)nq(α2+β2)/24,

C∗
2(n|τ) =

∑
α≡0 (mod 6)
β≡1 (mod 6)

(−1)(α+β−1)/6(α + iβ
√

3)nq(α2+3β2)/36.

Then

1

36n
C∗

2(12n|τ)− (−1)n

26n
C2(12n|τ) = η26(τ)

∑
4j+6k=12n−12

ajkQ
jRk. (2.10)

These modular form identities will be discussed in Sections 2.5 and 2.6.

Finally we remark that all these identities can be viewed as extensions of the results

of Newman and Serre. By a theorem of Landau [BD04, Pg. 244], each of the

series given in (2.4) to (2.10) is lacunary. Moreover, the coefficients of each series

satisfy an arithmetic relation analogous to (2.1). We will give explicit examples in

Theorems 2.2.4, 2.3.2 and 2.4.3.

2.2 The eighth power of η(τ )

In this section we prove Theorem 2.1.6, the analogue of Ramanujan’s result for

η8(τ). We first prove two lemmas and a theorem. Let f (`)(z|q) denote the `-th

derivative of f(z|q) with respect to z.

Lemma 2.2.1.

θ
(2`1+1)
1 (0|q

1
2 )θ

(2`2+1)
1 (0|q

1
2 ) · · · θ(2`m+1)

1 (0|q
1
2 )

=
(
η(τ)

)3m
∑

j+2k+3`=`1+`2+···+`m

ajk`P
jQkR`,

for some rational numbers ajk`, where j, k and ` are non-negative integers.
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Proof. We have

θ
(2`1+1)
1 (z|q) = 2(−1)`1q

1
4

∞∑
k=0

(−1)k(2k + 1)2`1+1qk2+k cos(2k + 1)z.

Therefore

θ
(2`1+1)
1 (0|q

1
2 ) = 2(−1)`1q

1
8

∞∑
k=0

(−1)k(2k + 1)2`1+1q(k2+k)/2

= 2(−1)`1

∞∑
k=−∞

(4k + 1)2`1+1q(4k+1)2/8

= 2(−1)`1S3(2`1 + 1)

= η3(τ)
∑

j+2k+3`=`1

ajk`P
jQkR`,

by Theorem 2.1.4. The general case m ≥ 1 now follows by multiplying m copies of

this result together.

The second lemma consists of two equivalent forms of the quintuple product iden-

tity which appeared in [She99]. More information on this identity can be found in

[Coo06].

Lemma 2.2.2.

O0
3,1(z) =

iq−1/4

(q2)2
∞

θ1(z|q)θ3(z|q)θ4(z|q),

O0
3,2(z) =

iq−1/2

(q2)2
∞

θ1(z|q)θ2(z|q)θ4(z|q).

Proof. We prove only the first identity. Since O0
3,1(z) is an odd function, we observe

from Corollary 1.2.5 that O0
3,1(z) has three zeroes in the fundamental parallelogram

Π, namely z = 0, πt/2 and (π + πt)/2. Furthermore it satisfies the following

transformation formulas (see (1.13)),

F (z + π, t) = −F (z, t) and F (z + πt, t) = q−3e−6izF (z, t).
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By Propositions 1.1.3 and 1.1.4, the product θ1(z|q)θ3(z|q)θ4(z|q) has the same

zeroes and the same transformation formulas as O0
3,1(z). Lemma 1.1.5 then allows

us to conclude that the quotient

O0
3,1(z)

θ1(z|q)θ3(z|q)θ4(z|q)

is independent of z. Now we let z = π/2 and use Table 1.1, (1.7) and Jacobi’s

triple product identity to simplify the required constant. We have

O0
3,1(z)

θ1(z|q)θ3(z|q)θ4(z|q)

=
1

θ2(0|q)θ4(0|q)θ3(0|q)

∞∑
k=−∞

q3k2+k
(
e(6k+1)πi/2 − e−(6k+1)πi/2

)
=

1

2q1/4(q2)3
∞

∞∑
k=−∞

(−1)kq3k2+k (2i)

=
i(q2, q4, q6; q6)∞

q1/4(q2)3
∞

=
iq−1/4

(q2)2
∞

.

The next theorem is equivalent to Macdonald’s identity for A2 [Mac72]. (See

Chapter 3 for an introduction to the Macdonald identities.)

Theorem 2.2.3 (Identity for A2).

O0
3,1(x)θ2(x + 2y|q)− q1/4O0

3,2(x)θ3(x + 2y|q)

=
−iq−1/8

(q)∞
θ1(x|q

1
2 )θ1(y|q

1
2 )θ1(x + y|q

1
2 ).

Proof. Let

M(x, y, t) = O0
3,1(x)θ2(x + 2y|q)− q1/4O0

3,2(x)θ3(x + 2y|q)
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and

N(x, y, t) = θ1(x|q)θ1(y|q)θ1(x + y|q)θ4(x|q)θ4(y|q)θ4(x + y|q)

=
1

8
θ1(x|q

1
2 )θ1(y|q

1
2 )θ1(x + y|q

1
2 )θ2(0|q

1
2 )3.

The second equality follows from the infinite product formulas in Proposition 1.1.9.

The transformation formulas in Proposition 1.1.3 and (1.13) imply that M(x, y, t)

and N(x, y, t) satisfy the following:

F (x + π, y, t) = F (x, y, t); F (x + πt, y, t) = q−4e−8ix−4iyF (x, y, t);

F (x, y + π, t) = F (x, y, t); F (x, y + πt, t) = q−4e−4ix−8iyF (x, y, t).

Fix y and consider M(x, y, t) and N(x, y, t) as functions of x. N(x, y, t) has four

simple zeroes in Π, namely x = 0, x = −y, x = πt/2 and x = −y + πt/2. Now,

O0
3,1(x) and O0

3,2(x) are both zero at x = 0 and x = πt/2.

M(−y, y, t) = −O0
3,1(y)θ2(y|q) + q1/4O0

3,2(y)θ3(y|q)

is also zero by Lemma 2.2.2. Therefore M(x, y, t)/N(x, y, t) has at most a simple

pole in Π and satisfy the hypothesis of Lemma 1.1.5.

Now fix x and consider M(x, y, t) and N(x, y, t) as functions of y. We can check

that M(x, y, t)/N(x, y, t) also has at most a simple pole and thus is independent

of y. It follows that
M(x, y, t)

N(x, y, t)
= C(t)

for some constant C(t) independent of x and y. To calculate C(t), we let x = π/2

and y = π/4.

M
(

π
2
, π

4
, t
)

N
(

π
2
, π

4
, t
) =

O0
3,1(

π
2
)θ2(π|q)− 0

1
8
θ1 (π

2

∣∣ q 1
2 )θ1 (π

4

∣∣ q 1
2 )θ1 (3π

4

∣∣ q 1
2 )θ2(0|q

1
2 )3

=
−2i(q2)∞ · 2q1/4(q2)∞(−q2; q2)2

∞

2q1/8(q)∞(−q; q)2
∞
(√

2q1/8(q)∞(−q2; q2)∞
)2 · 1

8
θ2(0|q

1
2 )3

=
−i

q1/8(q)∞ · 1
8
θ2(0|q

1
2 )3

.
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Hence

M(x, y, t) = O0
3,1(x)θ2(x + 2y|q)− q1/4O0

3,2(x)θ3(x + 2y|q)

=
−iq−1/8

(q)∞
θ1(x|q

1
2 )θ1(y|q

1
2 )θ1(x + y|q

1
2 ).

We shall use the A2 identity to prove Theorem 2.1.6.

Proof of Theorem 2.1.6. We change variables by setting x as u and x + 2y as v.

Next, apply
∂2m+2n+1

∂u2m+1∂v2n
to the identity in Theorem 2.2.3 and let u = v = 0. The

left hand side is

∞∑
j=−∞

(−1)m(6j + 1)2m+1q3j2+j(2i)
∞∑

k=−∞

(−1)n(2k + 1)2nqk2+k+1/4

− q1/4

∞∑
j=−∞

(−1)m(6j + 2)2m+1q3j2+2j(2i)
∞∑

k=−∞

(−1)n(2k)2nqk2

= 2(−1)m+niq−1/12
∑

α≡1 (mod 6)

α2m+1qα2/12
∑

β≡1 (mod 2)

β2nqβ2/4

+ 2(−1)m+niq−1/12
∑

α≡4 (mod 6)

α2m+1qα2/12
∑

β≡0 (mod 2)

β2nqβ2/4

= 2(−1)m+niq−1/12
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

α2m+1β2nq(α2+3β2)/12. (2.11)

Since θ1(z|q
1
2 ) is an odd function, the right hand side is a linear combination of

terms of the form

−iq−1/12

η(τ)
θ

(2`1+1)
1 (0|q

1
2 )θ

(2`2+1)
1 (0|q

1
2 )θ

(2`3+1)
1 (0|q

1
2 )

where (2`1 + 1) + (2`2 + 1) + (2`3 + 1) = 2m + 2n + 1. By Lemma 2.2.1, the right

hand side is therefore of the form

η8(τ)
∑

j+2k+3`=m+n−1

ajk`P
jQkR`. (2.12)
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If we combine (2.11) and (2.12), we complete the proof of the theorem for the case

m+n ≥ 1. The fact that S8(1, 0) = 0 can be deduced easily from Lemma 2.2.2.

The following identities are consequences of Theorem 2.1.6.

S8(1, 0) = 0,

S8(3, 0) = −6η8(τ),

S8(5, 0) = −30η8(τ)P,

S8(7, 0) = −63

2
η8(τ)(5P 2 −Q),

S8(7, 2) = 2η8(τ)R,

S8(5, 4) = η8(τ)(5P 3 − 3PQ).

An identity equivalent to S8(1, 2) = 2η8(τ) was stated without proof by L. Winquist

[Win69]. The formula for η8(τ) given by F. Klein and R. Fricke [KF92, Pg. 373] can

be shown to be equivalent to S8(3, 0) + 27S8(1, 2) = 48η8(τ). We end this section

with an extension of (2.1) (Newman’s theorem) for the coefficients of S8(m, n).

Theorem 2.2.4. Let m be odd and n be even and

S8(m,n) = q1/3

∞∑
k=0

a(k)qk.

Then the coefficients satisfy

a

(
pk +

p2 − 1

3

)
= −pm+na

(
k

p

)
,

where p is prime and p ≡ 5 (mod 6).

Proof.

S8(m,n) =
∑

u≡1 (mod 6)
v≡1 (mod 2)

umvnq(u2+3v2)/12 +
∑

x≡4 (mod 6)
y≡0 (mod 2)

xmynq(x2+3y2)/12.
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Hence

a(k) =
∑

u≡1 (mod 6)
v≡1 (mod 2)

12k=u2+3v2−4

umvn +
∑

x≡4 (mod 6)
y≡0 (mod 2)

12k=x2+3y2−4

xmyn.

When
u2 + 3v2 − 4

12
= pk +

(p2 − 1)

3
, (2.13)

we have u2 + 3v2 ≡ 0 (mod p). Since −3 is a quadratic non-residue for primes

p ≡ 5 (mod 6), we conclude that u ≡ v ≡ 0 (mod p). Let u = −u1p and v = v1p,

where u1 ≡ 1 (mod 6) and v1 ≡ 1 (mod 2). Then (2.13) reduces to

u2
1 + 3v2

1 = 12
k

p
+ 4.

Similarly, we let x = −x1p and y = y1p, where x1 ≡ 4 (mod 6) and y1 ≡ 0

(mod 2). Then we have

a

(
pk +

p2 − 1

3

)
=

∑
u1≡1 (mod 6)
v1≡1 (mod 2)

12(k/p)=u2
1+3v2

1−4

(−1)mpm+num
1 vn

1 +
∑

x1≡4 (mod 6)
y1≡0 (mod 2)

12(k/p)=x2
1+3y2

1−4

(−1)mpm+nxm
1 yn

1

= −pm+na

(
k

p

)
.
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2.3 The tenth power of η(τ )

The first few examples of Theorem 2.1.7 are:

S10(3, 1) = −48η10(τ),

S10(5, 1) = −480η10(τ)P,

S10(7, 1) = −336η10(τ)(15P 2 − 2Q),

S10(5, 3) = −144η10(τ)(5P 2 − 2Q),

S10(9, 1) = −192η10(τ)(315P 3 − 126PQ + 16R),

S10(7, 3) = −288η10(τ)(35P 3 − 28PQ + 8R).

To prove Theorem 2.1.7, we construct an equivalent form of Winquist’s identity

[Win69], which is also the Macdonald identity for B2 [Mac72]. See [BCLY04,

CS72, CLN05, CCT07, Hir87, Kan97, KL03, Liu05] for more information about

this identity.

Theorem 2.3.1 (Identity for B2).

O1
3,1(x)O1

3,3(y)−O1
3,1(y)O1

3,3(x) =
−2

q(q2)2
∞

θ1(x|q)θ1(y|q)θ1(x + y|q)θ1(x− y|q).

Proof. Let F (x, y, t) denote the function on the left hand side of the above identity.

It satisfies the transformation formulas:

F (x + π, y, t) = −F (x, y, t); F (x + πt, y, t) = −q−3e−6ixF (x, y, t);

F (x, y + π, t) = −F (x, y, t); F (x, y + πt, t) = −q−3e−6iyF (x, y, t).

If y is fixed, F (x, y, t) has zeroes at x = 0 and x = ±y in Π. Thus, the quotient

F (x, y, t)

θ1(x|q)θ1(y|q)θ1(x + y|q)θ1(x− y|q)

satisfies the hypothesis of Lemma 1.1.5 and equals a constant independent of x.

The same conclusion holds when we exchange the roles of x and y. Hence

F (x, y, t) = C(t)θ1(x|q)θ1(y|q)θ1(x + y|q)θ1(x− y|q),
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for some constant C(t). To determine the value of this constant, we let x = π/2

and y = π/3. Since O1
3,3(π/3) = 0,

F

(
π

2
,
π

3
, t

)
= −O1

3,1

(
π

3

)
O1

3,3

(
π

2

)
= −

∞∑
j=−∞

(−1)jq3j2+j(i
√

3)
∞∑

k=−∞

(−1)kq3k2+3k
(
e(6k+3)πi

2 − e−(6k+3)πi
2

)
= −2

√
3(q2, q4, q6; q6)∞ · 2(−q6,−q6, q6; q6)∞

= −4
√

3(q2)∞(−q6,−q6, q6; q6)∞.

On the other hand,

F

(
π

2
,
π

3
, t

)
= C(t)θ1

(
π

2

∣∣∣∣q)θ1

(
π

3

∣∣∣∣q)θ1

(
π

6

∣∣∣∣q)θ1

(
5π

6

∣∣∣∣q)
= C(t)θ2(0|q) ·

√
3q

1
4 (q6)∞

(
q

1
4 (q2)∞(q2e

π
3 , q2e−

π
3 ; q2)∞

)2

= C(t)θ2(0|q) ·
√

3q
1
4 (q6)∞

(
q

1
4

(q2)∞
(−q2; q2)∞

(−q6; q6)∞

)2

= 2
√

3C(t)q(q2)3
∞(−q6,−q6, q6; q6)∞.

So

C(t) =
−2

q(q2)2
∞

.

Proof of Theorem 2.1.7. Set q as q1/2 and apply
∂2m+2n+2

∂x2m+1∂y2n+1
to both sides of

Theorem 2.3.1. Next, let x = y = 0, the left hand side simplifies to

4i2(−1)m+n

∞∑
j=−∞

(−1)j(6j + 1)2m+1q(3j2+j)/2

∞∑
k=−∞

(−1)k(6k + 3)2n+1q(3k2+3k)/2

− 4i2(−1)m+n

∞∑
j=−∞

(−1)j(6j + 1)2n+1q(3j2+j)/2

∞∑
k=−∞

(−1)k(6k + 3)2m+1q(3k2+3k)/2



2.3 The tenth power of η(τ) 22

= −4(−1)m+nq−10/24
∑

α≡1 (mod 6)
β≡3 (mod 6)

(−1)(α+β−4)/6α2m+1β2n+1q(α2+β2)/24

+ 4(−1)m+nq−10/24
∑

α≡1 (mod 6)
β≡3 (mod 6)

(−1)(α+β−4)/6α2n+1β2m+1q(α2+β2)/24

= 4(−1)m+n+1q−10/24
∑

α≡1 (mod 6)
β≡3 (mod 6)

(−1)(α+β−4)/6
(
α2m+1β2n+1 − α2n+1β2m+1

)
q(α2+β2)/24.

We omit the remaining details as they are similar to those in the proof of Theorem

2.1.6.

We also have the following result for the coefficients of S10(m, n).

Theorem 2.3.2. Let m and n be odd and

S10(m,n) = q10/24

∞∑
k=0

a(k)qk.

Then the coefficients satisfy

a

(
pk +

5

12
(p2 − 1)

)
= pm+na

(
k

p

)
,

where p > 3 is prime and p ≡ 3 (mod 4).

Proof. We define

ε =

{
1 if p ≡ 7 (mod 12)

−1 if p ≡ 11 (mod 12).

Since

S10(m, n) =
∑

α≡1 (mod 6)
β≡3 (mod 6)

(−1)(α+β−4)/6 (αmβn − βmαn) q(α2+β2)/24,

we have

a(k) =
∑

α≡1 (mod 6)
β≡3 (mod 6)

24k=α2+β2−10

(−1)(α+β−4)/6 (αmβn − βmαn) .
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When
α2 + β2 − 10

24
= pk +

5

12
(p2 − 1), (2.14)

it follows that α2 +β2 ≡ 0 (mod p). Since p ≡ 3 (mod 4), we must have u ≡ v ≡ 0

(mod p). Let α = uεp and β = vεp, where u ≡ 1 (mod 6) and v ≡ 3 (mod 6).

Then (2.14) reduces to

u2 + v2 = 24
k

p
+ 10.

We can also check that

(−1)(α+β−4)/6 = (−1)(u+v−4)/6.

Thus

a

(
pk +

5(p2 − 1)

12

)
=

∑
u≡1 (mod 6)
v≡3 (mod 6)

24(k/p)=u2+v2−10

(εp)m+n(−1)(u+v−4)/6 (umvn − vmun)

= pm+na

(
k

p

)
.

2.4 The fourteenth power of η(τ )

Similar to the cases of the eighth and tenth powers, the analogue of Ramanujan’s

theorem for η14(τ) is deduced from a theta function identity, which in this case is

equivalent to the Macdonald identity for G2 [Mac72, Coo97a].

Theorem 2.4.1 (Identity for G2).

O1
6,4(x + y)O1

2,2(x− y) + O1
6,4(y)O1

2,2(2x + y)−O1
6,4(x)O1

2,2(x + 2y)

=
2q−

3
2

(q2)4
∞

θ1(x|q)θ1(y|q)θ1(x + y|q)

× θ1(x− y|q)θ1(2x + y|q)θ1(x + 2y|q). (2.15)
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Proof. Once again, we shall use Lemma 1.1.5. Exploiting the symmetry, it suffices

to let y be fixed and consider both sides of the identity as functions of x, satisfying

the transformations

F (x + π, y, t) = F (x, y, t) and F (x + πt, y, t) = q−8e−16ix−8iyF (x, y, t).

We can next check that both sides are zero at the following points:

x = 0, x = ±y, x = −2y,

x = −y
2
, x = −y

2
+ π

2
, x = −y

2
+ πt

2
, x = −y

2
+ π+πt

2
.

What remains is the constant which can be calculated by setting y = π/2 and

x = πt/2.

Now replace q by q1/2 and apply
∂

∂x

∣∣∣∣
x=0

followed by
∂5

∂y5

∣∣∣∣
y=0

to Theorem 2.4.1 to

obtain

T (5, 1)− 10T (3, 3) + 9T (1, 5) = −30η14(τ), (2.16)

where

T (m, n) =
∑

α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6αmβnq(α2+3β2)/12.

Applying appropriate differential operators, we get additional identities:

−210η14(τ)P = T (7, 1)− 7T (5, 3)− 21T (3, 5) + 27T (1, 7)

−210η14(τ)(8P 2 −Q) = T (9, 1)− 4T (7, 3)− 42T (5, 5)− 36T (3, 7) + 81T (1, 9)

4290η14(τ)R = T (11, 1)− 55T (9, 3) + 594T (7, 5)

−1782T (5, 7) + 1485T (3, 9)− 243T (1, 11).

From the above examples, it is clear that the formulas involving η14(τ) are much

more complicated. The derivation of the following theorem from the G2 identity

can be found in [CCT07, Sect. 5].
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Theorem 2.4.2. Let

S14(m,n, p) =∑
α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6
(
β(α2 − β2)

)m (
α(α2 − 9β2)

)n (
α2 + 3β2

)p
q(α2+3β2)/12.

Then

S14(2m + 1, 2n + 1, p) = η14(τ)
∑

j+2k+3`=3m+3n+p

ajk`P
jQkR`, (2.17)

where ajk` are rational numbers, and j, k and ` are non-negative integers.

Theorem 2.4.3. Let m and n be odd and

T (m, n) = q14/24

∞∑
k=0

a(k)qk.

Then the coefficients satisfy

a

(
pk +

7

12
(p2 − 1)

)
= pm+na

(
k

p

)
,

where p is prime and p ≡ 11 (mod 12).

2.5 Modular form identities

In previous sections, we used equivalent forms of Macdonald’s identities to deduce

analogues of Ramanujan’s theorem. In this section, we will reconsider the same

problem using the theory of modular forms. The advantage is that this approach

works uniformly for all cases of r ∈ {2, 4, 6, 8, 10, 14}. A minor modification is

required when r = 26 and this will be explained in Section 2.6. Relevant facts

about modular forms can be found in Appendix A.2.

Theorem 2.5.1. Let

C2(n|τ) =
∑

α≡1 (mod 6)
β≡1 (mod 6)

(−1)(α+β−2)/6(α + iβ)nq(α2+β2)/24,

then C2(4n|τ)/η2(τ) is a weight 4n modular form on SL2(Z).



2.5 Modular form identities 26

Theorem 2.5.2. Let

C∗
2(n|τ) =

∑
α≡0 (mod 6)
β≡1 (mod 6)

(−1)(α+β−1)/6(α + iβ
√

3)nq(α2+3β2)/36,

then C∗
2(6n|τ)/η2(τ) is a weight 6n modular form on SL2(Z).

Theorem 2.5.3. Let

C4(n|τ) =
∑

α≡1 (mod 6)
β≡1 (mod 4)

(−1)(α−1)/6Im
(
(α + iβ

√
3)n
)

q(α2+3β2)/24,

then C4(2n + 1|τ)/η4(τ) is a weight 2n modular form on SL2(Z).

Theorem 2.5.4. Let

C6(n|τ) =
∑

α≡1 (mod 4)
β≡1 (mod 4)

(α + iβ)nq(α2+β2)/8,

then C6(4n + 2|τ)/η6(τ) is a weight 4n modular form on SL2(Z).

Theorem 2.5.5. Let

C8(n|τ) =
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

(α + iβ
√

3)nq(α2+3β2)/12,

then C8(6n + 3|τ)/η8(τ) is a modular form of weight 6n on SL2(Z).

Theorem 2.5.6. Let

C10(n|τ) =
∑

α≡1 (mod 6)
β≡4 (mod 6)

Im ((α + iβ)n) q(α2+β2)/12,

then C10(4n + 4|τ)/η10(τ) is a modular form of weight 4n on SL2(Z).

Theorem 2.5.7. Let

C14(n|τ) =
∑

α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6 Im
(
(α + iβ

√
3)n
)

q(α2+3β2)/12,

then C14(6n + 6|τ)/η14(τ) is a modular form of weight 6n on SL2(Z).
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A few special cases of the above theorems appeared in Ramanujan’s Lost Notebook,

for example [Ram88, p.249]. Some of these identities have been examined by S. S.

Rangachari [Ran82, Ran88].

We shall give a detailed proof of Theorem 2.5.5. The details for the other theorems

are similar, and a detailed proof of Theorem 2.5.6 can be found in [CCT07]. We first

recall some properties of a class of theta functions studied by B. Schoeneberg [Sch74].

Let f be an even positive integer and A = (aµ,ν) be a symmetric f ×f matrix such

that

1. aµ,ν ∈ Z;

2. aµ,µ is even;

3. xtAx > 0 for all x ∈ Rf such that x 6= 0.

Let N be the smallest positive integer such that NA−1 also satisfies conditions

1—3. Let

PA
k (x) :=

∑
y

cy(ytAx)k,

where the sum is over finitely many y ∈ Cf with the property ytAy = 0, and cy

are arbitrary complex numbers.

When Ah ≡ 0 (mod N) and Im(τ) > 0, we define

ϑA,h,P A
k
(τ) =

∑
n∈Zf

n≡h (mod N)

PA
k (n)e

2πiτ
N

1
2

ntAn
N .

The result which we need is the following [Sch74, Pg. 210, Theorem 2]:

Theorem 2.5.8. The function ϑA,h,P A
k

satisfies the following transformation for-

mulas.

ϑA,h,P A
k
(τ + 1) = e

2πi
N

1
2

htAh
N ϑA,h,P A

k
(τ)
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and

ϑA,h,P A
k

(
−1

τ

)
=

(−i)
f
2
+2kτ

f
2
+k√

|det A|

∑
g (mod N)

Ag≡0 (mod N)

e
2πi
N

gtAh
N ϑA,g,P A

k
(τ).

We will also need the following.

Lemma 2.5.9. Let

ϕr,s(τ) = ϕr,s(6n + 3; τ) =
∑

α≡r (mod 12)
β≡s (mod 12)

(3α + i
√

3β)6n+3e
2πiτ
12

1
2

6α2+2β2

12 ,

where we suppressed the dependency on n. Then

ϕr,s(τ + 1) = e2πi(3r2+s2)/122

ϕr,s(τ) (2.18)

and

ϕr,s

(
−1

τ

)
=

(−i)7τ 6n+4

√
12

∑
(u,v) (mod 12)

(6u,2v)≡(0,0) (mod 12)

e2πi(6ru+2sv)/122

ϕu,v(τ). (2.19)

Proof. These follow from Theorem 2.5.8 on taking

A =

 6 0

0 2

 , h =

r

s

 , g =

u

v

 , y =

 1

i
√

3

 ,

N = 12 and k = 6n + 3.

Proof of Theorem 2.5.5. We observe that

66n+3C8(6n + 3|τ) (2.20)

=
∑

α≡1 (mod 6)
β≡1 (mod 2)

(6α + i6
√

3β)6n+3q(α2+3β2)/12 +
∑

α≡4 (mod 6)
β≡0 (mod 2)

(6α + i6
√

3β)6n+3q(α2+3β2)/12

=
∑

α≡2 (mod 12)
β≡6 (mod 12)

(3α + i
√

3β)6n+3q(3α2+β2)/122

+
∑

α≡8 (mod 12)
β≡0 (mod 12)

(3α + i
√

3β)6n+3q(3α2+β2)/122

= ϕ2,6(τ) + ϕ8,0(τ).
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(2.18) implies

ϕ2,6(τ + 1) + ϕ8,0(τ + 1) = e2πi/3
(
ϕ2,6(τ) + ϕ8,0(τ)

)
, (2.21)

and (2.19) gives

ϕ2,6

(
−1

τ

)
+ ϕ8,0

(
−1

τ

)
=

(−i)7τ 6n+4

2
√

3

5∑
j=0

1∑
k=0

(
e2πi(2j+6k)/12 + e2πi(8j/12)

)
ϕ2j,6k(τ)

=
(−i)7τ 6n+4

2
√

3

(
2ϕ0,0 + 2ϕ6,6 + (−1 + i

√
3)ϕ4,0 + (−1− i

√
3)ϕ8,0

+(−1− i
√

3)ϕ2,6 + (−1 + i
√

3)ϕ10,6

)
.

If we use the relation ϕr,s(τ) = −ϕ12−r,12−s(τ) and simplify, we find that

ϕ2,6

(
−1

τ

)
+ ϕ8,0

(
−1

τ

)
= (−i)8τ 6n+4

(
ϕ2,6 (τ) + ϕ8,0 (τ)

)
. (2.22)

(2.20), (2.21), (2.22) and (A.4) imply that the function

F (τ) :=
C8(6n + 3|τ)

η8(τ)

satisfies the transformation properties

F (τ + 1) = F (τ) and F

(
−1

τ

)
= τ 6nF (τ).

Since F (τ) is holomorphic, it is a modular form of weight 6n on SL2(Z). This

completes the proof of Theorem 2.5.5.

2.6 The twenty-sixth power of η(τ )

The analogue of Ramanujan’s theorem for the 26th power of η(τ) is:
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Theorem 2.6.1. Let n ≥ 1, then

1

η26(τ)

(
C∗

2(12n|τ)

36n
− (−1)n C2(12n|τ)

26n

)
is a weight 12n− 12 modular form on SL2(Z)

Proof. Calculations using Theorems 2.5.1 and 2.5.2 imply that the first few terms

in the q-expansions are

C2(12n|τ) = (−64)nq1/12

(
1−

(
(2 + 3i)12n + (2− 3i)12n

)
q

+
(
512n − (4 + 3i)12n − (4− 3i)12n

)
q2 + · · ·

)
,

C∗
2(12n|τ) = (729)nq1/12

(
1−

(
(1 + 2i

√
3)12n + (1− 2i

√
3)12n

)
q

−512nq2 + · · ·
)

.

The q2 terms in the two expansions are different because Re((4 + 3i)/5)12n 6= 1 for

any integer n [Niv56, Cor. 3.12]. Therefore C2(12n|τ) and C∗
2(12n|τ) are linearly

independent. It follows that

1

η2(τ)

(
C∗

2(12n|τ)

36n
− (−1)n C2(12n|τ)

26n

)
is a cusp form of weight 12n on SL2(Z), and so must be of the form η24(τ)F , where

F is a modular form of weight 12n− 12.

Corollary 2.6.2.

η26(τ) =
1

16308864

(
C2(12|τ)

64
+

C∗
2(12|τ)

729

)
.

Proof. Take n = 1 in Theorem 2.6.1 and observe that

(2 + 3i)12 + (2− 3i)12 − (1 + 2i
√

3)12 − (1− 2i
√

3)12 = 16308864.
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The twenty-sixth power of η(τ) is interesting because it cannot be explained by any

of the Macdonald identities. The first known formula for η26(τ) was discovered by

A.O.L. Atkin [Atk] and his formula was stated without proof in [Dys72]. (See also

Sect. 3.1.) The first published proof of an identity for η26(τ) appeared in [Ser85].

A different proof of Corollary 2.6.2 using elliptic parameter methods is given in

[CCT06].



Chapter 3
Macdonald’s Identities

The Macdonald identities are generalizations of the Weyl denominator formula.

We will give a brief background to these identities in Section 3.1. In Section 3.2,

we will describe an original construction for the infinite families. Finally in Section

3.3, we will discuss an application of these identities to obtain new formulas for

q-products. These results will appear in [Toh].

3.1 Background

F. J. Dyson in his Josiah Willard Gibbs lecture [Dys72], gave the following formula.

η24 =
∑ (a− b)(a− c)(a− d)(a− e)(b− c)(b− d)(b− e)(c− d)(c− e)(d− e)

1! 2! 3! 4!
qn, (3.1)

where the summation is over all sets of integers, a, b, c, d, e, with

a, b, c, d, e ≡ 1, 2, 3, 4, 5 (mod 5) respectively,

a + b + c + d + e = 0,

a2 + b2 + c2 + d2 + e2 = 10n.

A proof of Dyson’s formula can be found on page 46. He went on to say “I found

that there exists a formula of the same degree of elegance as (3.1) for the dth power

32
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of η whenever d belongs to the following sequence of integers:

d = 3, 8, 10, 14, 15, 21, 24, 26, 28, 35, 36, . . . .

In fact the case d = 3 was discovered by Jacobi (1.1.8) [Jac29], the case d = 8 by

Klein and Fricke [KF92], and the cases d = 14, 26 by Atkin [Atk].”

It turns out that these numbers with the exception of 261, correspond to the

dimensions of finite-dimensional simple Lie algebras. This important connection

was established by I. G. Macdonald. In his landmark paper [Mac72], Macdonald

introduced and completely classified affine root systems. The list of all irreducible

affine root systems are:

• Infinite families:

An−1, n ≥ 2; Bn, n ≥ 3; B∨
n , n ≥ 3; Cn, n ≥ 2;

C∨
n , n ≥ 2; BCn, n ≥ 1; Dn, n ≥ 4;

• Exceptional cases:

G2, G∨
2 , F4, F∨

4 , E6, E7, E8.

To each root system, he associated a multi-variate infinite product, and computed

the corresponding Laurent series. These resulted in a list of identities that equate

a series to an infinite product, now commonly known as the Macdonald identities.

When the variables in the identities are specialized, we obtain the formulas that

were alluded to by Dyson.

For example, the An−1 identity is∏
1≤j<k≤n

(
xjx

−1
k ; q

)
∞

(
qx−1

j xk; q
)
∞ =

1

(q)n−1
∞

∑
µ∈M

xnm1
1 . . . xnmn

n q
Pn

j=1
n
2

m2
j+jmj

×
∏

1≤j<k≤n

(
1− xjq

mj

xkqmk
; q

)
∞

, (3.2)

1See Section 2.6 for more on η26
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where

M =
{

µ = (m1, . . . ,mn)
∣∣∣mj ∈ Z,

n∑
j=1

mj = 0
}

.

In the previous chapter, we had also seen equivalent forms of the Macdonald iden-

tities for A2, B2 and G2.

Several elementary proofs of the Macdonald identities for the infinite families have

appeared in the literature, notably by D. Stanton [Sta89]. The An−1 case was

studied separately by S. Cooper [Coo97b] and S. C. Milne [Mil85]. Recently, H.

Rosengren and M. Schlosser [RS06] used elliptic determinant evaluations to give

new proofs for all the infinite families. With the exception of [Mil85] which involves

a basic hypergeometric series generalization of the q-binomial theorem, all of the

above proofs are based on the affine root systems. In Section 3.2, we will present a

construction for all the infinite families that is independent of root systems. (This

work will appear in [Toh].)

On the other hand, very little has been done for the exceptional cases since Mac-

donald. Cooper [Coo97a] gave elementary proofs for G2 and G∨
2 and an elliptic

function proof for G2 can be found in [CCT07]. (See Section 2.4.)

We should also mention that there are non elementary approaches to the Mac-

donald identities. In particular, they can be interpreted in terms of Kac-Moody

algebras. (See the introductions in [Kac90] and [Mil85].)

3.2 An original construction for the infinite fam-

ilies

In this section, we will construct the equivalent forms of the Macdonald identities

for the infinite families. These identities were discovered in January 2006. We

found out later that they appeared in the work of Rosengren and Schlosser [RS06].
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However, our construction differs from theirs and is independent of the affine root

systems. For ease of comparison with the existing literature, we will label our

identities according to the affine root systems.

Previously in Definition 1.2.3, we defined the vector space V l
m,k. We shall use the

structure of these spaces to construct the Macdonald identities.

Method of Construction

Fix a subspace of V l
m,k spanned by functions {F1, . . . , Fn}, where each Fi is of the

type T l
m,j(z), El

m,j(z) or Ol
m,j(z) and j ≡ k (mod 2).

1. Form a determinant function in n independent variables,

det
1≤j,k≤n

(
Fj(zk)

)
.

2. Locate the zeroes of this function. Some of these are intrinsic zeroes of all

the basis functions, i.e. Fj(a) = 0, for all 1 ≤ j ≤ n. These can be calculated

from Corollary 1.2.5. The remaining zeroes result from the determinant

function. For example, if zj = zk, we will have two identical columns in the

determinant.

3. Form the infinite product on the right hand side of the identity with one

Jacobi theta function for each zero.

det
1≤j,k≤n

(
Fj(zk)

)
= constant×

∏
intrinsic

θ(zl)
∏

θ1(zj − zk).

4. Check that both sides satisfy the same transformation formulas, giving an

elliptic function identity.

5. Calculate the constant.

There are altogether twenty possible cases depending on the parities of m, k and

l, giving us twenty families of identities.
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Theorem 3.2.1 (Identities for Ãn−1). For l ≡ n (mod 2),

det
1≤j,k≤n

(
T l

n,2j−n(zk)
)

=
(−i)

n2−n−2
2 q

−n2+n−2
8

(q2)
n2−3n+2

2∞

θ1 (z1 + z2 + . . . + zn|q)

×
∏

1≤j<k≤n

θ1(zj − zk|q). (3.3)

det
1≤j,k≤n

(
T l

n,2j−n−1(zk)
)

=
(−i)

n2−n
2 q

−n2+n
8

(q2)
n2−3n+2

2∞

θ4 (z1 + z2 + . . . + zn|q)

×
∏

1≤j<k≤n

θ1(zj − zk|q). (3.4)

For l 6≡ n (mod 2),

det
1≤j,k≤n

(
T l

n,2j−n(zk)
)

=
(−i)

n2−n
2 q

−n2+n−2
8

(q2)
n2−3n+2

2∞

θ2 (z1 + z2 + . . . + zn|q)

×
∏

1≤j<k≤n

θ1(zj − zk|q). (3.5)

det
1≤j,k≤n

(
T l

n,2j−n−1(zk)
)

=
(−i)

n2−n
2 q

−n2+n
8

(q2)
n2−3n+2

2∞

θ3 (z1 + z2 + . . . + zn|q)

×
∏

1≤j<k≤n

θ1(zj − zk|q). (3.6)

Theorem 3.2.2 (Identities for Bn).

det
1≤j,k≤n

(
O1

2n−1,2j−1(zk)
)

=
in2q−

n2

4

(q2)n2−n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)
n∏

l=1

θ1(zl|q). (3.7)

det
1≤j,k≤n

(
E0

2n−1,2j−1(zk)
)

=
2q−

n2

4

(q2)n2−n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)
n∏

l=1

θ2(zl|q). (3.8)

det
1≤j,k≤n

(
E0

2n−1,2j−2(zk)
)

=
2q−

n2−n
4

(q2)n2−n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)
n∏

l=1

θ3(zl|q). (3.9)

det
1≤j,k≤n

(
E1

2n−1,2j−2(zk)
)

=
2q−

n2−n
4

(q2)n2−n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)
n∏

l=1

θ4(zl|q). (3.10)
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Theorem 3.2.3 (Identities for B∨
n ).

det
1≤j,k≤n

(
O1

2n,2j(zk)
)

=
in2q−

n2+n
4 (q4)∞

(q2)n2+1
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ1(zl|q)θ2(zl|q). (3.11)

det
1≤j,k≤n

(
E1

2n,2j−2(zk)
)

=
2q−

n2−n
4 (q4)∞

(q2)n2+1
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ3(zl|q)θ4(zl|q). (3.12)

Theorem 3.2.4 (Identities for BCn).

det
1≤j,k≤n

(
E1

2n+1,2j−1(zk)
)

=
q−

n2

4

(q2)n2+n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ2(zl|q)θ3(zl|q)θ4(zl|q). (3.13)

det
1≤j,k≤n

(
O0

2n+1,2j−1(zk)
)

=
inq−

n2

4

(q2)n2+n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ1(zl|q)θ3(zl|q)θ4(zl|q). (3.14)

det
1≤j,k≤n

(
O0

2n+1,2j(zk)
)

=
inq−

n2+n
4

(q2)n2+n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ1(zl|q)θ2(zl|q)θ4(zl|q). (3.15)

det
1≤j,k≤n

(
O1

2n+1,2j(zk)
)

=
inq−

n2+n
4

(q2)n2+n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ1(zl|q)θ2(zl|q)θ3(zl|q). (3.16)
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Theorem 3.2.5 (Identities for Cn).

det
1≤j,k≤n

(
O0

2n+2,2j(zk)
)

=
inq−

n2+n
4

(q2)n2+2n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ1(zl|q)θ2(zl|q)θ3(zl|q)θ4(zl|q). (3.17)

Theorem 3.2.6 (Identities for C∨
n ).

det
1≤j,k≤n

(
O0

2n,2j−1(zk)
)

=
inq−

n2

4

(−q; q2)∞(q2)n2−1
∞ (q4)∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ1(zl|q)θ4(zl|q). (3.18)

det
1≤j,k≤n

(
O1

2n,2j−1(zk)
)

=
inq−

n2

4

(q)∞(q2)n2−2
∞ (q4)∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ1(zl|q)θ3(zl|q). (3.19)

det
1≤j,k≤n

(
E0

2n,2j−1(zk)
)

=
q−

n2

4

(−q; q2)∞(q2)n2−1
∞ (q4)∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ2(zl|q)θ3(zl|q). (3.20)

det
1≤j,k≤n

(
E1

2n,2j−1(zk)
)

=
q−

n2

4

(q)∞(q2)n2−2
∞ (q4)∞

∏
1≤j<k≤n

θ1(zj ± zk|q)

×
n∏

l=1

θ2(zl|q)θ4(zl|q). (3.21)

Theorem 3.2.7 (Identities for Dn, n > 1).

det
1≤j,k≤n

(
E0

2n−2,2j−2(zk)
)

=
4q−

n2−n
4

(q2)n2−2n
∞

∏
1≤j<k≤n

θ1(zj ± zk|q). (3.22)
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Remark 3.2.8. 1. The identities associated to the same root system are equiv-

alent up to a half period transform. (Table 1.1.) For example (3.7) can be

obtained from (3.10) by replacing zj with zj + πt/2 for all j.

2. Identities (3.19) and (3.21) can be obtained from (3.18) and (3.20) respec-

tively, by replacing q with −q.

3. The infinite product on the right hand side of Theorem 3.2.1 has an extra

theta factor when compared to the Macdonald identity for An−1, thus we label

them as Ãn−1. Nevertheless the two identities are equivalent.

We shall now prove the Cn case in detail.

Proof of Identity (3.17). We consider the subspace of V 0
m,0 with m even, spanned

by the functions {O0
m,j|j even}. From the fact that both O0

m,0(z) and O0
m,m(z) are

identically zero, and (1.11), we can conclude that there are at most m−2
2

linearly

independent functions. If we let n denote this number, then the possible candidates

for a basis would be {
O0

2n+2,2, . . . , O
0
2n+2,2n

}
.

1. Let F (z1, . . . , zn) denote the determinant expression in (3.17). We first assume

that all zj, j 6= 1 are fixed, distinct complex numbers in the fundamental parallel-

ogram Π, that are different from 0, π/2, πt/2 and (π + πt)/2. Then, F (z1, . . . , zn)

can be considered as a function of z1, i.e F (z1, . . . , zn) = F (z1).

2. As a function of z1, F (z1) is a linear combination of odd functions and is also

odd. Corollary 1.2.5 allows us to conclude that the intrinsic zeroes of F (z1) are

the four values 0, π/2, πt/2 and (π + πt)/2. It is also evident that F (±zj) = 0,

2 ≤ j ≤ n. This accounts for all the 2n + 2 zeroes of F (z1) in Π. (The points −zj

are not in Π but their equivalent points −zj + π + πt are.)
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3. Now, we let

P (z1, . . . , zn) =
∏

1≤j<k≤n

θ1(zj ± zk|q)
n∏

l=1

θ1(zl|q)θ2(zl|q)θ3(zl|q)θ4(zl|q).

As a function of z1, i.e. P (z1, . . . , zn) = P (z1), it has the same zeroes as F (z1).

4. Since F (z1) is a linear combination of O0
2n+2,2j(z1) for j = 1 to n, it satisfies

the transformation formula (1.13). From Proposition (1.1.3), we check that P (z1)

also satisfies the same transformation formula. Thus the quotient F (z1)/P (z1)

is elliptic and entire. By Lemma 1.1.5, F (z1)/P (z1) is a “constant” expression

c(z2, . . . , zn, q) that is independent of z1.

We can repeat the same argument for each of the zj and conclude that the quotient

F (z1, . . . , zn)/P (z1, . . . , zn) equals a constant c(q) that is dependent only on q. The

principle of analytic continuation then allows us to conclude that the identity holds

for all zj.

5. We now calculate explicitly c(q), following the method of [RS06]. Let zk =

πk/(2n + 2) and let w denote the primitive (2n + 2)-th root of unity, i.e.

wk = e2izk = e
2πi

2n+2
k.

Thus,

det
1≤j,k≤n

(
O0

2n+2,2j(zk)
)

= det
1≤j,k≤n

(
∞∑

l=−∞

q(2n+2)l2+2jl(wkj − w−kj)

)

=

(
n∏

j=1

(q4n+4,−q2n+2+2j,−q2n+2−2j; q4n+4)∞

)
det

1≤j,k≤n

(
wkj − w−kj

)
=

(
(q4n+4)n

∞

2n+2∏
j=1

(−q2j; q4n+4)∞

)
(−q2n+2; q2n+2)−1

∞ det
1≤j,k≤n

(
wkj − w−kj

)
= (q4n+4)n−1

∞ (q2n+2; q2n+2)∞(−q2; q2)∞ det
1≤j,k≤n

(
wkj − w−kj

)
, (3.23)
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where we have used Jacobi’s triple product identity to convert the series into infinite

products.

To evaluate the determinant expression explicitly, we use [Kra99, Identity (2.3)]

to obtain

det
1≤j,k≤n

(
wkj − w−kj

)
= (w1 . . . wn)−n

∏
1≤j<k≤n

(wj − wk)(1− wjwk)
n∏

k=1

(w2k − 1)

= (w1 . . . wn)−n+1
∏

1≤j<k≤n

(wj − wk)(1− wjwk)
n∏

k=1

(wk − w−k)

=
∏

1≤j<k≤n

(w
j−k
2 − w

k−j
2 )(w

−j−k
2 − w

j+k
2 )

n∏
k=1

(wk − w−k). (3.24)

Next, we evaluate the right hand side of (3.17) for the same values of zk. From the

duplication formula (Proposition 1.1.6) and the infinite product formulas (Propo-

sition (1.1.9)), we have

n∏
l=1

θ1(zl|q)θ2(zl|q)θ3(zl|q)θ4(zl|q)

= (−i)nq
n
2 (q2)4n

∞

n∏
l=1

(wl − w−l)(q2w2l, q2w−2l; q2)∞

= (−i)nq
n
2 (q2)4n−2

∞ (q2n+2; q2n+2)2
∞

n∏
l=1

(wl − w−l), (3.25)

and ∏
1≤j<k≤n

θ1(zj ± zk|q)

= (−i)n2−nq
n2−n

4 (q2)n2−n
∞

∏
1≤j<k≤n

(w
j−k
2 − w

k−j
2 )(w

j+k
2 − w

−j−k
2 )

×
∏

1≤j<k≤n

(q2wj−k, q2wk−j, q2wj+k, q2w−j−k; q2)∞. (3.26)

We first observe that the products involving only powers of w is equal to the

determinant evaluation in (3.24) up to a factor of (−1)
n2−n

2 . To simplify the four
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infinite products in the last line of (3.26), we set k as j and j as k for the second

product, k as k + 1 for the third product. For the last product set j as n− j and

k as n− k + 1 to get∏
1≤j<k≤n

(q2wj−k, q2wk−j, q2wj+k, q2w−j−k; q2)∞

=

∏n
j=1

∏n
k=1(q

2wj−k; q2)∞∏n
k=1(q

2)∞
×

n−1∏
j=1

n−1∏
k=1

(q2wj+k+1; q2)∞

n−1∏
k=1

(q2w2k+1; q2)∞

=

∏n−1
j=1

∏2n+2
k=1 (q2wj+k; q2)∞

(q2)n−1
∞
∏n−1

k=1(q
2wk+1, q2wn+k+1; q2)∞

×
n−1∏
k=1

(q2w2k+1; q2)∞

=
(q4n+4)n−1

∞ (q2w, q2wn+1, q2w2n+1; q2)∞
(q2)n−2

∞ (q4n+4)∞
×

n−1∏
k=1

(q2w2k+1; q2)∞

=
(q4n+4)n−2

∞ (−q2; q2)∞
(q2)n−2

∞
×

n∏
k=0

(q2w2k+1; q2)∞. (3.27)

Substituting (3.27) into (3.26) and combining with (3.25), we have a simplified

expression for the right hand side of identity (3.17). Comparing with the expression

(3.23), we can conclude that the constant

c(q) =
inq−

n2+n
4

(q2)n2+2n
∞

.

Theorems 3.2.1 to 3.2.7, provide a clearer picture of the structure of the vector

spaces V l
m,k.

Theorem 3.2.9. V l
m,k has dimension m and{

T l
m,j(z)

∣∣∣ j ≡ k (mod 2),−m < j ≤ m
}

forms a basis.

Proof. Since the infinite product in each identity of Theorem 3.2.1 is non-trivial,

the determinant is also non-trivial. Hence the set of m functions T l
m,j that appears
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in the determinant are linearly independent. To complete the proof, we will show

in Lemma A.1.4 that the dimension of each V l
m,k is at most m.

Each V l
m,k can be decomposed into odd or even subspaces spanned respectively by{

Ol
m,j(z)

}
or
{

El
m,j(z)

}
. The dimensions of the odd and even subspaces depend

on the parities of m, l and k. These are tabulated in Table 3.1.

Basis m odd m even

j ≡ k (mod 2) k = 1 k = 0 k = 1 k = 0

O0
m,j(z) m−1

2
m−1

2
m
2

m
2
− 1

E0
m,j(z) m+1

2
m+1

2
m
2

m
2

+ 1

O1
m,j(z) m+1

2
m−1

2
m
2

m
2

E1
m,j(z) m−1

2
m+1

2
m
2

m
2

Table 3.1: Dimensions of subspaces of V l
m,k

3.3 Formulas for q-products

The main application of the Macdonald identities is to obtain formulas for η prod-

ucts in terms of some power series. We shall ignore the fractional powers and

consider a general a q-product, i.e. an infinite product of the following form,

(qa)α
∞(qb)β

∞ . . . (qk)κ
∞.

In this section, we give new formulas for q-products in terms of determinants,

or more precisely Wronskians, as applications of the identities proven in Section

3.2. The method of proof is uniform in all cases. For each variable zk, we apply

an appropriate power of the differential operator ∂
∂zk

, followed by setting zk = 0.

Making use of the fact that all even derivatives of θ1(zk|q) is zero at zk = 0, we can
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obtain a simple expression in terms of θ′1(0|q) which equals 2q
1
4 (q2)3

∞. (See (1.7).)

Replacing q2 by q gives the required formula. We will illustrate in more detail for

the identities associated to Ãn−1, and simply list the differential operator used for

the other identities.

Finally, we remark that in the appendix of [Mac72], Macdonald gave one or more

specializations of each identity to obtain various formulas. These specializations

all correspond to the half-period transforms that gave us the various identities in

our list. Besides [Mac72], other representations for powers of (q)∞ were also given

in [LM99a] and [LM99b].

Formula 3.3.1 (Ãn−1: Representations of (q)n2+2
∞ ).

(q)n2+2
∞ =

(
i

n2−n−2
2 2

−n2+n−2
2

n
∏n−1

j=1 (−1)j(j)!

)
det

1≤j,k≤n
f(j, k, n), (3.28)

where for k < n,

f(j, k, n) =
∞∑

`=−∞

(−1)n` ((2n` + 2j − n)i)k−1 q(n`2+(2j−n)`)/2

and f(j, n, n) =
∞∑

`=−∞

(−1)n` ((2n` + 2j − n)i)n q(n`2+(2j−n)`)/2.

Proof. For each k, from 1 to n − 1, we shall apply successively, the operator(
∂

∂zk

)k−1 ∣∣∣
zk=0

. All four identities for Ãn−1 can be treated uniformly at this point.

After applying
(

∂
∂z1

)0 ∣∣∣
z1=0

, the right hand side equals

Cµθµ(z2 + . . . + zn|τ)
n∏

j=2

θ1(−zj|q)
∏

2≤j,k≤n

θ1(zj − zk|q).

Next apply
(

∂
∂z2

)1 ∣∣∣
z2=0

and the right hand side equals

Cµθµ(z3 + . . . + zn|τ)
(
− θ′1(0|q)

) n∏
j=3

θ1(−zj|q)2
∏

3≤j,k≤n

θ1(zj − zk|q).
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Inductively, after applying
(

∂
∂zn−1

)n−2 ∣∣∣
zn−1=0

, the right hand side equals

Cµθµ(zn|τ)

(
n−1∏
j=1

(−1)jj!

)
θ′1(0|q)

(n−2)(n−1)
2 θ1(−zn|q)n−1.

At this point, if µ = 1, we apply
(

∂
∂zn

)n ∣∣∣
zn=0

to obtain formula 3.3.1 after simpli-

fication. Otherwise, we apply
(

∂
∂zn

)n−1 ∣∣∣
zn=0

to obtain the following three formu-

las.

Formula 3.3.2 (Ãn−1: Consequence of (3.4)).

(q)n2−2
∞ (q

1
2 )2
∞ =

i
n2−n

2 2
−n2+n

2∏n−1
j=1 (−1)j(j)!

(3.29)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)n` ((2n` + 2j − n− 1)i)k−1 q(n`2+(2j−n−1)`)/2

)
.

Formula 3.3.3 (Ãn−1: Consequence of (3.5)).

(q)n2−2
∞ (q2)2

∞ =
i

n2−n
2 2

−n2+n−2
2∏n−1

j=1 (−1)j(j)!
(3.30)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)(n+1)` ((2n` + 2j − n)i)k−1 q(n`2+(2j−n)`)/2

)
.

Formula 3.3.4 (Ãn−1: Consequence of (3.6)).

(q)n2+4
∞

(q2)2
∞(q

1
2 )2
∞

=
i

n2−n
2 2

−n2+n
2∏n−1

j=1 (−1)j(j)!
(3.31)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)(n+1)` ((2n` + 2j − n− 1)i)k−1 q(n`2+(2j−n−1)`)/2

)
.

Due to the extra theta factor in identity (3.3), we obtain a representation of (q)n2+2
∞

instead of (q)
(n−1)2+2(n−1)
∞ given in [Mac72]. This can be overcome with a slight

modification. We illustrate this modification by giving a proof of Dyson’s formula

(3.1). The case for general n can be proven similarly.
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Proof of Dyson’s formula. We shall use the Ã4 identity in (3.6). We first introduce

a new variable x by replacing zk with zk + x/5. Our resulting identity is now

det
1≤j,k≤5

(
T 0

5,2j−6

(
zk +

x

5

))
=
−q−

5
2

(q2)6
∞

θ3 (x + z1 + . . . + z5|q)
∏

1≤j<k≤5

θ1(zj − zk|q).

Now apply
(

∂
∂zk

)k−1 ∣∣∣
zk=0

for each k. The right hand side simplifies to

− 210

(
4∏

k=1

k!

)
(q2)24

∞θ3(x|q). (3.32)

On the other hand, we have

det
1≤j,k≤5

(
∞∑

`=−∞

((10` + 2j − 6)i)k−1 q(5`2+(2j−6)`)e2`ixe
2j−6

5
ix

)
=

∑
σ∈S5

sgn(σ)
∑

(m1,...,m5)∈Z5

(10m1 − 4)σ(1)−1(10m2 − 2)σ(2)−1(10m3)
σ(3)−1

×(10m4 + 2)σ(4)−1(10m5 + 4)σ(5)−1

×q5m2
1+...+5m2

5−4m1−2m2+2m4+4m5e2i(m1+...+m5)x.

Extracting the term independent of x and setting

(5m1 − 2, 5m2 − 1, 5m3, 5m4 + 1, 5m5 + 2) = (a, b, c, d, e),

we have(
4∏

k=1

k!

)
(q2)24

∞ =

∑
σ∈S5

sgn(σ)
∑

(a,b,c,d,e)∈Z5

a+b+c+d+e=0

aσ(1)−1bσ(2)−1cσ(3)−1dσ(4)−1eσ(5)−1q
a2+b2+c2+d2+e2−10

5 .

By switching the order of summation and using Vandemonde’s determinant formula

[Kra99, Identity 2.1], we complete the proof.

Formula 3.3.5 (Bn: Representations of (q)2n2+n
∞ ).

(q)2n2+n
∞ =

2−n2+n−1∏n
k=1(−1)k−1(2k − 1)!

(3.33)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)`+k−1 ((4n− 2)` + 2j − 1)2k−1 q((2n−1)`2+(2j−1)`)/2

)
.
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Proof. Apply
(

∂
∂zk

)2k−1 ∣∣∣
zk=0

to identity (3.7). This is equivalent to specialization

(a) in [Mac72, p. 135].

Formula 3.3.6 (Bn: Consequence of (3.8)).

(
(q)2n−3

∞ (q2)2
∞
)n

=
2−n2+n−1∏n−1

k=1(−1)k(2k)!
(3.34)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)k−1 ((4n− 2)` + 2j − 1)2(k−1) q((2n−1)`2+(2j−1)`)/2

)
.

Proof. Apply
(

∂
∂zk

)2(k−1) ∣∣∣
zk=0

to identity (3.8). This is equivalent to specialization

(b) in [Mac72, p. 135].

Formula 3.3.7 (Bn: Consequence of (3.9)).(
(q)2n+3

∞

(q2)2
∞(q

1
2 )2
∞

)n

=
2n−1∏n−1

k=1(−1)k(2k)!
(3.35)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)k−1 ((2n− 1)` + j − 1)2(k−1) q((2n−1)`2+(2j−2)`)/2

)
.

Proof. Apply
(

∂
∂zk

)2(k−1) ∣∣∣
zk=0

to identity (3.9). This does not appear in [Mac72].

Formula 3.3.8 (Bn: Consequence of (3.10)).(
(q)2n−3

∞ (q
1
2 )2
∞

)n

=
2n−1∏n−1

k=1(−1)k(2k)!
(3.36)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)`+k−1 ((2n− 1)` + j − 1)2(k−1) q((2n−1)`2+(2j−2)`)/2

)
.

Proof. Apply
(

∂
∂zk

)2(k−1) ∣∣∣
zk=0

to identity (3.10). This is equivalent to specializa-

tion (c) in [Mac72, p. 135].
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Formula 3.3.9 (B∨
n : Consequence of (3.11)).(

(q)n−1
∞ (q2)∞

)2n+1
=

2−1∏n
k=1(−1)k−1(2k − 1)!

(3.37)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)`+k−1 (2n` + j)2k−1 qn`2+j`

)
.

Proof. Apply
(

∂
∂zk

)2k−1 ∣∣∣
zk=0

to identity (3.11). This is equivalent to specialization

(a) in [Mac72, p. 136].

Formula 3.3.10 (B∨
n : Consequence of (3.12)).(

(q)n+1
∞

(q2)∞

)2n−1

=
2n−1∏n−1

k=1(−1)k(2k)!
(3.38)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)`+k−1 (2n` + j − 1)2(k−1) q2n`2+(j−1)`

)
.

Proof. Apply
(

∂
∂zk

)2(k−1) ∣∣∣
zk=0

to identity (3.12). This is equivalent to specializa-

tion (b) in [Mac72, p. 136].

Formula 3.3.11 (BCn: Representations of (q)2n2−n
∞ ).

(q)2n2−n
∞ =

2−n2+n∏n−1
k=1(−1)k(2k)!

(3.39)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)`+k−1 ((4n + 2)` + 2j − 1)2(k−1) q((2n+1)`2+(2j−1)`)/2

)
.

Proof. Apply
(

∂
∂zk

)2(k−1) ∣∣∣
zk=0

to identity (3.13).This is equivalent to specialization

(c) in [Mac72, p. 138].

Formula 3.3.12 (BCn: Consequence of (3.14)).(
(q)2n+3

∞
(q2)2

∞

)n

=
2−n2+n∏n

k=1(−1)k−1(2k − 1)!
(3.40)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)k−1 ((4n + 2)` + 2j − 1)2k−1 q((2n+1)`2+(2j−1)`)/2

)
.
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Proof. Apply
(

∂
∂zk

)2k−1 ∣∣∣
zk=0

to identity (3.14). This is equivalent to specialization

(a) in [Mac72, p. 138].

Formula 3.3.13 (BCn: Consequence of (3.15)).(
(q)2n−3

∞ (q
1
2 )2
∞(q2)2

∞

)n

=
1∏n

k=1(−1)k−1(2k − 1)!
(3.41)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)k−1 ((2n + 1)` + j)2k−1 q((2n+1)`2+2j`)/2

)
.

Proof. Apply
(

∂
∂zk

)2k−1 ∣∣∣
zk=0

to identity (3.15). This is equivalent to specialization

(b) in [Mac72, p. 138].

Formula 3.3.14 (BCn: Consequence of (3.16)).(
(q)2n+3

∞

(q
1
2 )2
∞

)n

=
1∏n

k=1(−1)k−1(2k − 1)!
(3.42)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)`+k−1 ((2n + 1)` + j)2k−1 q((2n+1)`2+2j`)/2

)
.

Proof. Apply
(

∂
∂zk

)2k−1 ∣∣∣
zk=0

to identity (3.16). This is equivalent to specialization

(d) in [Mac72, p. 138].

Formula 3.3.15 (C∨
n : Consequence of (3.18)).(

(q)n−1
∞ (q

1
2 )∞

)2n+1

=
2−n2+n∏n

k=1(−1)k−1(2k − 1)!
(3.43)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)k−1 (4n` + 2j − 1)2k−1 q(2n`2+(2j−1)`)/2

)
.

Proof. Apply
(

∂
∂zk

)2k−1 ∣∣∣
zk=0

to identity (3.18). This is equivalent to specialization

(a) in [Mac72, p. 137].
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Formula 3.3.16 (C∨
n : Consequence of (3.19)).(

(q)n+2
∞

(q2)∞(q
1
2 )∞

)2n+1

=
2−n2+n∏n

k=1(−1)k−1(2k − 1)!
(3.44)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)`+k−1 (4n` + 2j − 1)2k−1 q(2n`2+(2j−1)`)/2

)
.

Proof. Apply
(

∂
∂zk

)2k−1 ∣∣∣
zk=0

to identity (3.19). This does not appear in [Mac72].

Formula 3.3.17 (C∨
n : Consequence of (3.20)).(

(q)n+1
∞

(q
1
2 )∞

)2n−1

=
2−n2+n∏n−1

k=1(−1)k(2k)!
(3.45)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)k−1 (4n` + 2j − 1)2k−2 q(2n`2+(2j−1)`)/2

)
.

Proof. Apply
(

∂
∂zk

)2(k−1) ∣∣∣
zk=0

to identity (3.20). This is equivalent to specializa-

tion (b) in [Mac72, p. 137].

Formula 3.3.18 (C∨
n : Consequence of (3.21)).(

(q)n−2
∞ (q2)∞(q

1
2 )∞

)2n−1

=
2−n2+n∏n−1

k=1(−1)k(2k)!
(3.46)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)`+k−1 (4n` + 2j − 1)2k−2 q(2n`2+(2j−1)`)/2

)
.

Proof. Apply
(

∂
∂zk

)2(k−1) ∣∣∣
zk=0

to identity (3.21). This does not appear in [Mac72].

Formula 3.3.19 (Cn: Representations of (q)2n2+n
∞ ).

(q)2n2+n
∞ =

1∏n
k=1(−1)k−1(2k − 1)!

(3.47)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)k−1 ((2n + 2)` + j)2k−1 q(n+1)`2+j`

)
.
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Formula q-product R.S. Formula q-product R.S.

3.3.1 (q)n2+2
∞ Ãn−1 3.3.11 (q)2n2−n

∞ BCn

3.3.2 (q)n2−2
∞ (q

1
2 )2
∞ Ãn−1 3.3.12

(
(q)2n+3

∞
(q2)2

∞

)n

BCn

3.3.3 (q)n2−2
∞ (q2)2

∞ Ãn−1 3.3.13
(
(q)2n−3

∞ (q
1
2 )2
∞(q2)2

∞

)n

BCn

3.3.4
(q)n2+4

∞

(q2)2
∞(q

1
2 )2
∞

Ãn−1 3.3.14

(
(q)2n+3

∞

(q
1
2 )2
∞

)n

BCn

3.3.5 (q)2n2+n
∞ Bn 3.3.15

(
(q)n−1

∞ (q
1
2 )∞

)2n+1

C∨
n

3.3.6
(
(q)2n−3

∞ (q2)2
∞
)n

Bn 3.3.16

(
(q)n+2

∞

(q2)∞(q
1
2 )∞

)2n+1

C∨
n

3.3.7

(
(q)2n+3

∞

(q2)2
∞(q

1
2 )2
∞

)n

Bn 3.3.17

(
(q)n+1

∞

(q
1
2 )∞

)2n−1

C∨
n

3.3.8
(
(q)2n−3

∞ (q
1
2 )2
∞

)n

Bn 3.3.18
(
(q)n−2

∞ (q2)∞(q
1
2 )∞

)2n−1

C∨
n

3.3.9
(
(q)n−1

∞ (q2)∞
)2n+1

B∨
n 3.3.19 (q)2n2+n

∞ Cn

3.3.10

(
(q)n+1

∞
(q2)∞

)2n−1

B∨
n 3.3.20 (q)2n2−n

∞ Dn

Table 3.2: Formulas for q-products

Proof. Apply
(

∂
∂zk

)2k−1 ∣∣∣
zk=0

to identity (3.17). This is equivalent to the formula

in [Mac72, p. 136].

Formula 3.3.20 (Dn: Representations of (q)2n2−n
∞ , n > 1).

(q)2n2−n
∞ =

2n−2∏n−1
k=1(−1)k(2k)!

(3.48)

× det
1≤j,k≤n

(
∞∑

`=−∞

(−1)k−1 ((2n− 2)` + j − 1)2k−2 q(n−1)`2+(j−1)`

)
.

Proof. Apply
(

∂
∂zk

)2(k−1) ∣∣∣
zk=0

to identity (3.22).



Appendix A

A.1 Theta functions

There is a more general notion of a theta function [FK01, Pg. 72] defined in the

following way.

Definition A.1.1. The theta function with characteristic
[ ε

ε′

]
∈ R2 is defined by

θ
[ ε

ε′

]
(z, t) =

∞∑
n=−∞

exp 2πi

(
1

2

(
n +

ε

2

)2

t +
(
n +

ε

2

)(
z +

ε′

2

))
.

Comparing with Definition 1.2.1, our m-th order Jacobi theta function

T l
m,j(πz) = e−πi jl

2m q−( j
2m

)2θ

[ j
m

l

]
(mz, mt).

We list below, some useful results mentioned in Chapters 1 and 3, starting with a

proof of Theorem 1.1.8.

Theorem A.1.2 (Jacobi’s Triple Product Identity). For x 6= 0 and |q| < 1, we

have
∞∑

n=−∞

xnqn2

= (−xq; q2)∞(−x−1q; q2)∞(q2; q2)∞.

Proof. There are many proofs of this theorem. In the following, we reproduce the

proof in [KL03]. (As explained in [Coo98], this proof was actually first given by

52



A.1 Theta functions 53

Macdonald [Mac72].) Let

F (x) = (−xq; q2)∞(−x−1q; q2)∞(q2; q2)∞

and consider the Laurent series expansion

F (x) =
∞∑

n=−∞

cn(q)xn.

The quotient
F (q2x)

F (x)
=

(−xq3; q2)∞(−(xq)−1; q2)∞
(−xq; q2)∞(−x−1q; q2)∞

=
1

xq
.

Hence

xqF (xq2) = F (x).

Equating coefficients, we have the following recurrence

cn(q) = cn−1(q)q
2n−1 = . . . = c0(q)q

n2

,

which gives us

F (x) = (−xq; q2)∞(−x−1q; q2)∞(q2; q2)∞ = c0(q)
∞∑

n=−∞

xnqn2

. (A.1)

To evaluate c0(q), let ω denote the primitive cube root of unity and substitute

x = −q, −ωq and −ω2q respectively, into (A.1). Summing the three resulting

equations, we get

3(q6; q6)∞ = c0(q)
∞∑

n=−∞

(−1)nqn2+n(1 + wn + w2n)

= c0(q)
∞∑

n=−∞
3|n

3(−1)nqn2+n.

Finally, set q as q9 and x as −q3 in (A.1) to get

(q6; q6)∞ = c0(q
9)

∞∑
n=−∞

(−1)nq9n2+3n.

Comparing these last two equations, we can calculate that c0(q) is actually inde-

pendent of q and equals 1.
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Proposition A.1.3. Let F l
m,j(z) ∈ V l

m,k, j ≡ k (mod 2). Then F l
m,j(z) has exactly

m zeroes in Π, the fundamental parallelogram, whose sum is(
m− l

2
+ K

)
π +

(
m− j

2
+ K ′

)
πt,

for some integers K and K ′.

Proof. The fact that each F l
m,j(z) has exactly m zeroes is given in Proposition

1.2.4. For the second part, we use the fact that

1

2πi

∫
C

z
(
F l

m,j(z)
)′

F l
m,j(z)

dz =
∑

zeroes−
∑

poles,

where C is the positive contour about a + Π, for some a.

1

2πi

∫
C

z
(
F l

m,j(z)
)′

F l
m,j(z)

dz

=
1

2πi

∫ a+π

a

(
z
(
F l

m,j(z)
)′

F l
m,j(z)

−
(z + πt)

(
F l

m,j(z + πt)
)′

F l
m,j(z + πt)

)
dz

− 1

2πi

∫ a+πt

a

(
z
(
F l

m,j(z)
)′

F l
m,j(z)

−
(z + π)

(
F l

m,j(z + π)
)′

F l
m,j(z + π)

)
dz

=
1

2πi

∫ a+π

a

(
−πt

(
F l

m,j(z)
)′

F l
m,j(z)

+ 2mi(z + πt)

)
dz

+
1

2πi

∫ a+πt

a

(
π

(
F l

m,j(z)
)′

F l
m,j(z)

)
dz

=
m

2
(2a + π + 2πt)− t

2i

∫ a+π

a

(
F l

m,j(z)
)′

F l
m,j(z)

dz +
1

2i

∫ a+πt

a

(
F l

m,j(z)
)′

F l
m,j(z)

dz.

To evaluate the last integral, we consider an open domain containing the segment a

to a + πt, where F l
m,j(z) has neither poles nor zeroes. In this domain, the function

has an analytic logarithm and we can write

F l
m,j(z) = exp

(
hl

m,j(z)
)
.



A.1 Theta functions 55

When z = a + πt, by (1.13),

F l
m,j(a + πt) = (−1)lq−me−2miaF l

m,j(a)

= exp
(
πil −mπit− 2mia + hl

m,j(a) + 2Kπi
)
,

where K is some integer.

Hence

1

2i

∫ a+πt

a

(
F l

m,j(z)
)′

F l
m,j(z)

dz =
1

2i

(
hl

m,j(a + πt)− hl
m,j(a)

)
=

πl

2
− mπt

2
−ma + Kπ.

The other integral can be calculated in a similar fashion to obtain

− t

2i

∫ a+π

a

(
F l

m,j(z)
)′

F l
m,j(z)

dz =

(
−j

2
+ K ′

)
πt.

Lemma A.1.4. V l
m,k has dimension at most m.

Proof. Suppose on the contrary that the dimension of V l
m,k is strictly greater than

m. Let x1, x2, . . . , xm−1 be distinct points. Consider the following evaluation map

φ : V l
m,k → Cm−1

f 7→
(
f(x1), f(x2), . . . , f(xm−1)

)
.

Since ker(φ) has dimension at least two, we can find independent f, g ∈ ker(φ).

Choose a point α such that

α 6=
(

m− l

2
+ K

)
π +

(
m− j

2
+ K ′

)
πt−

m−1∑
k=1

xk.

Then the function f(α)g(z) − f(z)g(α) vanishes at α and each xi contradicting

Proposition A.1.3.
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A.2 Modular forms

We list below, some standard facts about modular forms. See [Ser73, Chpt. VII]

or [Kob93, Chpt. III] for a more detailed account.

Let SL2(Z) denote 
(

a b

c d

) ∣∣∣∣∣∣ a, b, c, d ∈ Z , ad− bc = 1

 .

Definition A.2.1. A modular form f(τ) of weight k is a holomorphic function on

the complex upper half plane, i.e. Im(τ) > 0, satisfying

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), for all

(
a b

c d

)
∈ SL2(Z). (A.2)

Definition A.2.2. A cusp form f(τ) is a modular form that vanishes at infinity.

We use Mk(SL2(Z)) (and Sk(SL2(Z))) to denote the set of modular (resp. cusp)

forms of weight k.

Theorem A.2.3. A holomorphic function f ∈ Mk(SL2(Z)) if and only if

f(τ + 1) = f(τ), f(−1/τ) = τ kf(τ). (A.3)

Since modular forms satisfy the first relation in the previous equation, we can

express f as a function of q where q = e2πiτ , i.e.

f(τ) =
∞∑

n=0

a(n)qn.

Definition A.2.4. Ramanujan’s Eisenstein series are defined as

P = P (q) = 1− 24
∞∑

k=1

kqk

1− qk
,

Q = Q(q) = 1 + 240
∞∑

k=1

k3qk

1− qk
,

R = R(q) = 1− 504
∞∑

k=1

k5qk

1− qk
.
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Q(q) and R(q) are modular forms of weight 4 and 6 respectively, while P (q) is not

a modular form on SL2(Z). We usually omit the dependence on q.

Theorem A.2.5. Ramanujan’s Eisenstein series satisfies the following differential

equations [Ram16, Eq. 30]:

q
dP

dq
=

P 2 −Q

12
, q

dQ

dq
=

PQ−R

3
, q

dR

dq
=

PR−Q2

2
.

Theorem A.2.6. [Kob93, Pg. 118] Let k > 2, then any f ∈ Mk(SL2(Z)) can be

written in the form,

f(τ) =
∑

4i+6j=k

ci,jQ
iRj.

Definition A.2.7. Dedekind’s eta-function is defined as

η = η(τ) = q
1
24

∞∏
k=1

(1− qk) = q
1
24 (q)∞.

η(τ) satisfy the following transformation formula [Kob93, Pg. 121]:

η(τ + 1) = eπi/12η(τ), η(−1/τ) =
√
−iτ η(τ). (A.4)

Theorem A.2.8. [Kob93, Pg. 117] S12(SL2(Z)) = Cη24. Moreover for k > 14,

we have

Sk(SL2(Z)) = η24Mk−12(SL2(Z)).
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Jacobi theta functions, 2

Jacobi’s triple product identity, 5, 52

lacunary, 10

Macdonald identities, 15, 33

Macdonald identity
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