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SUMMARY 

 Lipids are necessary components of all cell membranes and are important 

both as structural elements and as modulators of cell fluidity. Several lipid 

molecular species are present in cells, including various types of phospholipids, 

cholesterols and sphingolipids. Lipids are especially important in the central 

nervous system (CNS). Homeostasis of membrane lipids in neurons and myelin 

is essential to prevent the loss of synaptic plasticity, cell death and 

neurodegeneration. Because membrane lipids are so important as structural 

components in the CNS, changes in brain lipid levels due to their increased or 

decreased synthesis or metabolism may result in homeostatic dysregulation and 

ultimately neurodegeneration. This is important because neurodegeneration is a 

characteristic component of all dementias. Inhibition of dysregulated lipid 

metabolism may confer neuroprotection. This study used a kainate-induced 

neurodegenerative model and suggests that dysregulation of two important 

membrane lipids, cholesterol and ceramide, may lead to or accelerate 

neurodegeneration and therefore may be important in the pathogenesis of 

neurodegenerative diseases. The results also indicate the neuroprotective effect 

of a lipid binding protein, apolipoprotein D (apoD). 

 The first part of the present study was carried out to elucidate alterations 

in metabolism of cholesterol, a key lipid component of the cell membrane, after 

neuronal injury induced by the excitotoxin, kainate. Increased immunolabeling of 

the oxysterol biosynthetic enzyme, cholesterol 24-hydroxylase, was observed in 

 XV



the rat hippocampus after kainate lesions. This was accompanied by increased 

levels of cholesterol, 24-hydroxycholesterol (product of cholesterol 24-

hydroxylase enzymatic activity) and 7-ketocholesterol in homogenates of the 

degenerating hippocampus, as detected by gas chromatography / mass 

spectrometry (GC/MS). Hippocampi from rats or organotypic slices that had been 

treated with kainate plus lovastatin showed significantly lower levels of 

cholesterol, 24-hydroxycholesterol, and 7-ketocholesterol, compared to those 

treated with kainate only. Lovastatin also modulated hippocampal neuronal loss 

after kainate treatment, in vivo and in vitro. The level of 24-hydroxycholesterol 

detected in vivo after kainate treatment ( > 50 µM) was found to be neurotoxic in 

hippocampal slice cultures. The above results suggest that increased brain 

cholesterol biosynthesis and oxysterol formation play a role in propagation of 

neuronal death after kainate injury and brain permeable statins such as lovastatin 

could have a neuroprotective effect by limiting the levels of oxysterols in brain 

areas undergoing neurodegeneration. 

 The second part of the study focused on changes in metabolism of 

ceramide, another major lipid component of the cell membrane, after kainate-

induced neuronal injury. Ceramide is involved in many cellular events including 

apoptosis, growth arrest, differentiation, senescence, mediating an immune 

response, oxidative stress responses, and nitric oxide signaling. An increase in 

ceramide species has recently been demonstrated by lipidomic analysis of the rat 

hippocampus after kainate-induced excitotoxic injury. In addition, increased 

expression of serine palmitoyltransferase (SPT), the first enzyme in the ceramide 
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biosynthetic pathway was observed in reactive astrocytes of the hippocampus 

after kainate injections. The increase in enzyme expression was paralleled by 

increased SPT enzyme activity in the hippocampus at two week post-kainate 

injection. In vitro studies showed that treatment of hippocampal slice cultures 

with SPT inhibitor ISP-1 (myriocin) or L-cycloserine modulated increases in 16:0, 

18:0 and 20:0 ceramide species and partially reduced kainate-induced cell death. 

The above findings indicate a role of SPT in ceramide increase after kainate 

injury. They also suggest that increased SPT activity and biosynthetic ceramide 

might contribute to neuronal injury after kainate excitotoxicity. 

 The third part of this study was carried out to examine potential effects of 

a lipid binding protein, apoD on neuronal survival after kainate injury. ApoD 

belongs to the lipocalin superfamily of transporter proteins that carry various 

small hydrophobic ligands, such as arachidonic acid and cholesterol. A marked 

increase of apoD has been shown in the rat hippocampus after neuronal injury 

induced by kainate. Addition of purified human apoD to kainate treated 

hippocampal slice cultures resulted in reduction in neuronal death, and 

modulation of increased arachidonic oxidation product (F2-isoprostane), 

cholesterol, and cholesterol oxidation product (24-hydroxycholesterol and 7-

ketocholesterol) levels in the kainate treated slices. The results showed that the 

neuroprotective effect of apoD may be due to its ability to bind arachidonic acid, 

thus resulting in reduction of lipid peroxidation products, and its ability to prevent 

the formation of neurotoxic cholesterol oxidation products by regulating the 

cholesterol metabolism. Fibroblasts from apoD knockout mice showed increased 

 XVII



F2-isoprostane and 7-ketocholesterol levels after hydrogen peroxide induced 

oxidative stress, suggesting that this lipocalin may be an important antioxidant 

protein in the brain. 

 Taken together, the above findings indicate that deleterious changes in 

lipid homeostasis and signaling may be a key factor in the onset and progression 

of pathologies of the brain. They also provide clues to the development of 

pharmaceutical strategies to treat neurodegenerative disorders by regulating the 

lipid metabolism, in which cholesterol and ceramide metabolic enzyme, and 

apoD may play important roles. 
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CHAPTER I 

INTRODUCTION 
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1. General introduction 

 Lipids are important for the brain, as it contains the second highest 

concentration of lipids exceeded only by adipose tissue (Adibhatla et al. 2006). 

Besides this quantitative importance, lipids in the brain show bewildering diversity 

(Wenk 2005). A large number of proteins are associated with synaptic 

membranes. In addition, a number of key enzymes involved in the metabolism of 

lipids have been discovered and characterized in nerve terminals (Cremona and 

De Camilli 2001).  

 The majority of cellular lipids are organized in membranes (van Meer 

2001). This is a fluid patchwork of lipid and protein molecules in constant motion. 

Carbohydrates attached to the proteins and phospholipids form glycoproteins 

and glycolipids (Alberts et al. 1994). The most abundant membrane lipids are the 

phospholipids (PPs). In addition, sphingolipids form a static, solid membrane, 

which is fluidized by cholesterol (reviewed in Fahy et al. 2005).  

 Functional responses of ion channels, synaptic function and cellular 

signaling cascades may be affected by the lipid composition of the cell 

membrane. It has been suggested that neuronal cell function can be modified to 

meet physiologic demand through appropriate alterations in the type, nature and 

organization of lipids in specific cell membrane compartments (reviewed in Gross 

et al. 2005).  

 Deleterious changes in lipid homeostasis are viewed as important factors 

in the pathogenesis of many neurological disorders such as Alzheimer’s disease 

(AD) (Cutler et al. 2004b), Parkinson’s disease (PD) (Sharon et al. 2003), 
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Niemann–Pick disease type C disease (NPC) (Sturley et al. 2004), and cerebral 

ischemic injury (Farooqui et al. 2004; Rao et al. 2000; Nakane et al 2000). 

 

2. Cell lipids 

2. 1. Phospholipids 

2. 1. 1. Structure and functions 

 Phospholipids are composed of a glycerol (3 carbon chain) backbone with 

fatty acids esterified at the sn-1 and sn-2 positions (Fig. 1). The fatty acids can 

vary in length from 14 to 22 carbons and can have from 0 to 6 double bonds 

(Schiller et al. 2004). The sn-3 position has a phosphate group attached to a 

polar head group (Fig. 1). The amphiphilic nature of phospholipids, owing to the 

polar head group and non-polar fatty acid tails, causes them to come together as 

a bilayer (reviewed in Peterson and Cummings 2006). There are several groups 

of phospholipids based on the polar head group: choline glycerophospholipids 

(PC), ethanolamine glycerophospholipids (PE), inositol glycerophospholipids (PI), 

glycerol glycerophospholipids (PG) or serine glycerophospholipids (PS) (Paltauf 

1994; Farooqui et al. 2000a). The cell membrane has an asymmetrical 

distribution of phospholipids. The outer leaflet is mainly composed of PC while 

PE and PS are the primary phospholipids found in the inner cytosolic membrane 

(Bevers et al.1998). Besides the above glycerophospholipids, membranes also 

contain plasmalogens (PlsC and PlsE), which are glycerophospholipids of neural 

membranes containing vinyl ether bonds (Farooqui and Horrocks 2001). 
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Figure 1. Basic structure of phospholipids. Consists of a glycerol backbone with fatty acids (R1 
and R2) linked at the sn-1 and sn-2 positions. Various polar head groups (X) link to the 
phosphate group at the sn-3 position (Peterson and Cummings 2006). 
  
 Phospholipid bilayer membranes are highly structured, dynamic and 

penetrated to varying degree by receptors, enzymes, and ion channels. The 

latter protrude differentially through the membrane or localize predominantly on 

the intracellular or extracellular membrane surface. The changes in phospholipid 

metabolism can regulate activities of membrane-bound enzymes, receptors, and 

ion channels (Farooqui and Horrocks 1985). Different pools of phospholipid 

molecular species may have different metabolic and physical properties 

depending upon their localization in different types of cell membranes (Farooqui 

et al. 2004).  

 

2. 1. 2. Phospholipids in the brain 

 Brain tissue contains relatively high amounts of phospholipids. Together 

with cholesterol and glycolipids, they represent 50–60% of the total membrane 

mass of neural membranes (Farooqui et al. 2000b). Human brain neural 

membranes contain a variety of phospholipids including PC, PE, PlsE, PS, PI, 

and sphingomyelin (Horrocks et al. 1981). PC, PlsE, and PE are major 
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phospholipid components of neural membranes in all regions. This is followed by 

sphingomyelin, which is most enriched in white matter (Söderberg et al. 1990). 

Among the membranes of the brain, myelin contains the highest content of 

phospholipids. The phospholipid composition of myelin is similar to that of white 

matter and very different from that of grey matter (Farooqui et al. 2004). 

 Neural membrane phospholipids are predominantly synthesized in the 

endoplasmic reticulum (ER). Significant synthesis of PC and PI also occurs in 

Golgi membranes (Farooqui et al. 2000a). Following synthesis, phospholipids are 

transported to membranes by phospholipid transfer-exchange proteins (Voelker 

et al. 2003). Neural membrane phospholipids are degraded by receptor-mediated 

hydrolytic process involving phospholipases (PLA), lysophospholipases (LPA), 

and lipases (Farooqui 2000b). 

 The polyunsaturated fatty acids at the sn-2 position of phospholipids are 

susceptible to free radical attack at the α-methylene carbon. The lipid 

hydroperoxides thus formed are not completely stable in vivo and, in the 

presence of iron, can further decompose to radicals that can propagate the chain 

reactions started by an initial free radical attack. Lipid hydroperoxides also 

generate aldehydes that can in turn cross-link enzymes and proteins making 

them inactive (Farooqui et al. 2000a, Halliwell 1994). 

  The damage to neural membranes induced by lipid peroxidation can 

result in the following effects: (a) changes in physicochemical properties of neural 

membranes (microviscosity) resulting in alterations in the orientation of optimal 

domains for the interaction of functional membrane proteins such as receptors, 
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enzymes, and ion-channels; (b) changes in the number of receptors and their 

affinity for neurotransmitters and drugs; and (c) inhibition of ion pumps resulting 

in changes in ion homeostasis (Farooqui et al. 2000a). 

 The presence of peroxidized phospholipids in neural membranes may also 

produce a membrane-packing defect, making the sn-2 ester bond more 

accessible to the action of PLA2. The hydrolysis of peroxidized phospholipids 

results in removal of peroxidized fatty acyl chains, which are reduced and re-

esterified. Thus, the action of PLA2 repairs and restores the physiological 

physicochemical state of neural membranes (Farooqui et al. 2000a). Healthy 

neural cells contain tight packing of phospholipids in the outer leaflet. The 

disruption of phospholipid asymmetry leads to looser phospholipid packing in the 

outer leaflet, thus allowing Ca2+ entry. The alteration in Ca2+ homeostasis and its 

short duration may lead to neuronal degeneration by the activation of PLA2 

(Farooqui et al. 2000b).  

 The activation of PLA2 releases arachidonic acid from neural membrane 

phospholipids and sets in motion an uncontrolled ‘‘arachidonic acid cascade’’. 

That includes the synthesis and accumulation of prostaglandins, leukotrienes, 

thromboxanes, and 4-hydroxy-2-nonenal (4-HNE), a peroxidized product of 

arachidonic acid. High concentration of arachidonic acid has a profound adverse 

effect on the ATP producing capacity of the brain mitochondria. It uncouples 

oxidative phosphorylation and induces efflux of Ca2+ and K+ from mitochondria 

(Katsuki and Okuda 1995). 4-HNE impairs the activities of key metabolic 

enzymes, including Na+, K+-ATPase, glucose-6-phosphate dehydrogenase, and 
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several kinases. It stimulates stress-activated protein kinases such as c-jun 

amino terminal kinase (JNK) and p38 mitogen-activated protein kinase 

(Camandola et al. 2000; Tamagno et al. 2003). The arachidonic acid cascade 

also potentiates the formation of free radicals and lipid hydroperoxides produced 

by the action of 12-lipoxygenase. The lipid hydroperoxides are known to inhibit 

reacylation of phospholipids in neuronal membranes (Zaleska and Wilso 1989). 

This inhibition may contribute to necrotic cell death in neural cells (Farooqui et al. 

2000c).  

 

2. 1. 3. Phospholipids in neurological disorders 

 Loss of phospholipids and increase in phospholipid-degradation products 

are known to occur in acute brain trauma and neurodegenerative diseases 

(Farooqui and Horrocks 1994; Pettegrew et al. 1995). Changes in phospholipids 

and stimulation of phospholipases have been reported in acute brain disorders 

such as ischemia, hypoxia, hypoglycemia, spinal cord and brain injuries 

(Farooqui and Horrocks 1991), excitotoxic models of neurodegeneration 

(Sandhya et al. 1998), and in chronic neurodegenerative diseases such as AD 

(Kanfer et al. 1986; Nitsch et al. 1992; Farooqui et al.1990; Farooqui and 

Horrocks 1991; Prasad et al. 1998), schizophrenia (Gattaz and Brunner 1996; 

Ross et al. 1999), and Huntington's disease  (HD) (Ellison et al. 1987).  

 Phospholipid degradation in brain tissue results in a decrease in content of 

essential phospholipids in neuronal and glial cell membranes, and an 

accumulation of free fatty acids, prostaglandins, lysophospholipids, and lipid 
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peroxides (Prasad et al. 1998). High concentrations of these metabolites may 

alter the physicochemical properties of neuronal and glial cell membranes and 

loss of ionic gradients due to alterations in the conformation and function of 

transmembrane ion-channels, inflammation, and oxidative stress. All these 

processes, along with compromised metabolism, may contribute to irreversible 

neural cell injury (Farooqui and Horrocks 1994; Farooqui et al. 1997; Farooqui et 

al. 2000b).  

 In ischemic injury, the glutamate-mediated neurodegeneration may be 

rapid (in days) because of the sudden lack of oxygen, quick drop in ATP, and 

alterations in ion homeostasis. Ischemic injury results in a huge increase in the 

levels of free fatty acids and a marked decrease in the phospholipid content of 

neural membranes. This is due to the stimulation of PLA2 (Edgar et al. 1982; 

Rordorf et al. 1991).  

 In chronic neurodegenerative diseases such as AD, oxygen, nutrients, and 

ATP are available to the nerve cells and ionic homeostasis is maintained to a 

limited extent. Thus the resulting neural cell injury takes several years to develop 

(Farooqui and Horrocks 1991; 1994). Neural membranes of AD patients is not 

only accompanied by increased PLA2 activities in different regions of AD brain 

compared to age matched controls (Stephenson et al. 1996; 1999), but also by 

the elevation of phospholipid degradation metabolites. This increase in 

phospholipid metabolites correlates with pathologic markers of AD such as 

neurofibrillary tangles and senile plaques (Pettegrew 1989). The aldehydic 

product of arachidonic acid metabolism, 4-HNE, co-localizes with intraneuronal 
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neurofibrillary tangles and has been suggested to contribute to the cytoskeletal 

derangement found in AD. Alterations in phospholipid metabolism may be closely 

associated with the loss of synapses and neurons in AD (Farooqui and Horrocks 

1994; Prasad et al. 1998). 

 

2. 2. Cholesterol 

2. 2. 1. Distribution and functions 

 Cholesterol is a sterol (a combination of steroid and alcohol) found in the 

cell membrane of all body tissues. It makes the membrane's fluidity- degree of 

viscosity - stable over wider temperature. It is a constituent of the myelin sheath 

in nerves and present in all plasma lipoproteins. The requirement for cholesterol 

is much greater in cells dividing or growing rapidly than in those in a resting state. 

It is a component of lipid rafts in the plasma membrane and implicated in cell 

signalling processes. Cholesterol reduces the permeability of the plasma 

membrane to proton and sodium ions (Haines 2001). It is also essential for the 

structure and function of caveolae and clathrin-coated pits, including the 

caveolae-dependent endocytosis and clathrin-dependent endocytosis (Pichler 

and Riezman 2004).   

 Cholesterol plays an important role with respect to the physical structure 

of the cell membrane. Another important role of cholesterol is its interaction with 

membrane proteins and this interaction has been described in both neuronal and 

non-neuronal cells (Krueger and Papadopoulos 1990; Michelangeli 1990). In 

both erythrocytes (Schroeder et al. 1991) and synaptic plasma membranes 
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(Wood et al. 1989a), cholesterol accounts for over 40 mol% (40 membrane 

cholesterol molecules/100 cholesterol molecules in a lipid unit) of total 

cholesterol lipid. The distribution of cholesterol in the plasma membrane is 

asymmetric and lateral, and it is usually located in different pools or domains 

(Schroeder et al. 1988; Wood et al. 1993; Wood et al. 1999). Modification of 

membrane cholesterol content in different pools or domains can alter membrane 

fluidity, lipid packing and interdigitation, as well as membrane protein functions 

(Yeagle 1992). 

 The brain is the cholesterol-rich organ in the human body (Cook 1958). 

The central nervous system accounts for only 2% of the whole body mass but 

contains almost a quarter of the unesterified cholesterol (~ 15 g) present in the 

whole individual (Dietschy and Turley 2001). Brain cholesterol is found in the 

plasma membranes of glial cells, in neuronal membranes, and in the myelin 

sheaths (Spady and Dietschy 1983). Cholesterol is important for the function of 

this organ as a constituent of myelin and cell membranes, and has also been 

shown to modulate the stability of microtubules in cultured neurons, as well as 

neuronal functions such as endocytosis and antigen expression (Fan et al. 2002).  

 Cholesterol plays an important role in the normal function of the brain. 

Modification of cholesterol domains can alter the activity of certain intergral 

proteins, and such domains may be important to neuronal functions, such as ion 

transport and receptor function. For example, a reduction in the content of 

cholesterol in the membranes produces a loss in sodium dependent γ-

aminobutyric acid (GABA) uptake in synaptic plasma membrane and 
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synaptosomes (North and Fleischer 1983). The uptake is restored by the addition 

of cholesterol. The functions of other proteins, including Na+-K+ ATPase (Yeagle 

et al. 1988; Incerpi et al. 1992) and Ca2+-Mg2+ ATPase (Cornea and Thomas 

1994), are also affected by alterations in the content of membrane cholesterol.  

 The inner leaflet of synaptic plasma membranes contains over 85% of the 

total plasma membrane cholesterol (Wood et al. 1990). It is well known that 

membrane fluidity is inversely correlated with the cholesterol-to-phospholipid 

ratio and that the increased ratio reduces fluidity. As a result, the inner leaflet that 

contains almost seven times as many cholesterol levels as those of outer leaflet 

is markedly less fluid compared to the outer leaflet (Wood et al. 1990). Factors 

such as ethanol (Schroeder et al. 1988; Wood et al. 1989b) and increasing 

temperature (Schroeder et al. 1988) have a greater effect on the fluidity of the 

outer leaflet. In vivo, the synaptic plasma membrane cholesterol can also be 

modified by specific factors (Wood et al. 1999). A mouse model of chronic 

ethanol consumption showed approximately a two-fold increase in cholesterol in 

outer leaflet, but no change in total cholesterol compared with control groups 

(Wood et al. 1989b). 

 Thus far, little is known about the mechanisms that regulate cholesterol 

domains and their contribution to neuronal homeostasis. Evidence shows that 

changes in sterol carrier protein-2 (SCP-2), brain fatty acid binding protein (B-

FABP), and heart fatty acid binding protein (H-FABP) in the brain are associated 

with modification of the transbilayer distribution of cholesterol and fluidity in the 

synaptic plasma membrane of chronic ethanol consumption mice and aged mice 
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(Myers-Payne et al. 1996a, b; Pu et al. 1999). In addition, other factors 

associated with cholesterol metabolism such as apolipoproteins, their receptors, 

and sphingomyelin could also play a role in regulation of the distribution of 

cholesterol content in the plasma membrane. This is supported by the 

observation that the cholesterol level of the outer leaflet is two-times higher in the 

synaptic plasma membrane of apoE-deficient and low-density lipoprotein 

receptor (LDL-R) deficient mice than that in controls (Igbavboa et al. 1997). 

These differences in cholesterol distribution are not accounted for by difference 

in the total amount of membrane cholesterol. 

 

 2. 2. 2. Cholesterol in the brain 

 2. 2. 2. 1. Cholesterol synthesis and elimination in the brain 

 A large number of studies have established that there is little uptake of 

cholesterol from the bloodstream into the brain, and that brain cholesterol is 

derived mostly from de novo synthesis (Fig. 2, Wilson 1970; Kabara 1973; 

Jurevics and Morell 1995). The brain has a high rate of cholesterol synthesis 

during late fetal and early neonatal life (Ness et al. 1979; Dietschy et al. 1983; 

Cavender et al. 1995). This declines rapidly at about the time of weaning, and 

remains low throughout adulthood (Ness et al. 1979; Dietschy et al. 1983; Spady 

and Dietschy 1983). The high rate of cholesterol synthesis in early life is 

essential to ensure normal growth and development of the brain. In patients with 

Smith-Lemli-Optiz syndrome, an autosomal recessive disorder, a major block in 

 12



the terminal step of the cholesterol biosynthesis pathway results in severe mental 

retardation and multiple birth defects (Tint et al. 1994).  

 

Figure 2. Synthetic and metabolic pathways for cholesterol (Buhaescu and Izzedine 2007) 

 The rate of cholesterol biosynthesis was reported to be only ~ 0.1% of 

newly synthesized cholesterol in adult monkey brains. The biosynthetic rates 

were assessed by measuring the velocity at which [3H] water was incorporated 

into digitonin-precipitable sterols (DPS) in the intact animal. When expressed as 

a percentage of total body synthesis, the whole brain of the monkey contained 

 13



1% of the [3H] DPS and the liver contained 40% of [3H] DPS (Spady and 

Dietschy 1983). In humans, therefore it is estimated that only 1-2 mg of 

cholesterol will be synthesized each day. Nevertheless, a study that measures 

the absolute rate of cholesterol synthesis in the brain of neonatal rats shows the 

amount of cholesterol synthesized locally is sufficient to fully account for all the 

brain cholesterol deposition that occurs during that stage of their development 

(Jurevics et al. 1997; Turley et al. 1981). Based on in vitro experiments, it is 

expected that the half-life of brain cholesterol in rat brain slices is about 6 months 

(Andersson et al. 1990). 

 The highest concentration of cholesterol is found in myelin in the brain. 

The source of cholesterol for myelination is mainly by local synthesis (Snipes and 

Suter 1997). In vitro studies have confirmed that oligodendrocytes have the 

ability to synthesize cholesterol from acetoacetate and glucose (Koper et al. 

1984). However, it appears that oligodendrocytes may not be the only cell type in 

the brain that can synthesize cholesterol. An increase of cholesterol esters 

(Kinney et al. 1994), 24-hydroxycholesterol, and 7-dehydrodesmosterol (Bourre 

et al. 1990) is observed, even before the time of myelination in the human CNS. 

It is therefore likely that neurons may be another important cell type that can 

synthesize cholesterol in the brain. This is supported by the finding in cultured rat 

sympathetic neurons that the cell bodies of neurons have the ability to synthesize 

cholesterol. This study also suggests that cholesterol synthesized by neuron cell 

bodies is sufficient for the elongation of axons (Vance et al.1994). 
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 As mentioned earlier, essentially all of the cholesterol in the brain is 

derived from local synthesis (Dietschy and Turley 2001). Cholesterol in 

membranes is held in place primarily with van der Waal's and hydrophobic forces. 

Cholesterol molecules can easily leave the bilayer membrane and then return. 

This type of turnover is rapid, but not easily detected. Metabolic turnover is very 

slow. Brain cholesterol is characterized by a low turnover and little exchange with 

lipoproteins in the circulation because of the protection of blood-brain barrier 

(Björkhem et al. 1997). Thus, mechanisms that remove cholesterol from the brain 

are required for the brain cholesterol homeostasis. Recent evidence suggests 

that a 24S-hydroxylase mediated mechanism could be the most important 

mechanism in the elimination of cholesterol in the brain (Björkhem et al. 1999). 

80% of the 24S-hydroxycholesterol in the human body is present in the brain, 

and the concentration of 24S-hydroxycholesterol is 30-1500 times higher in the 

brain than in any other organs except adrenals (Lütjohann et al. 1996).  

 A net flux has been demonstrated from the brain into the circulation by 

measuring the 24S-hydroxycholesterol in the serum samples from the internal 

jugular vein and the branchial artery in human (Lütjohann et al. 1996). Moreover, 

the rate of excretion of this compound into the plasma roughly equals the rate of 

cholesterol synthesis in the adult rat brain (Björkhem et al. 1997). Once the 24S-

hydroxycholesterol is synthesized, it is readily secreted across the blood-brain 

barrier into the circulation (Björkhem et al. 1997) and rapidly taken up and 

metabolized in the liver (Björkhem et al. 1998).  
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 24S-hydroxylase cDNA has been cloned and the expression of the 

enzyme in the mouse brain was studied by in situ hybridization and 

immunohistochemistry (Lund et al. 1999). 24S-hydroxylase is expressed in 

neurons rather than the cholesterol-laden cells or lipid-rich myelin sheaths. It is 

expressed in multiple subregions of mouse brain, including the cerebral cortex, 

hippocampus, dentate gyrus, and thalamus. These results suggest that the 24S-

hydroxylase mediated pathway is an important mechanism for elimination of 

cholesterol from the human brain (Lund et al. 1999).  

 

2. 2. 2. 2. Cholesterol binding/ transport proteins in the brain 

 Cholesterol transport and the proteins involved in such transport have 

been extensively studied in vitro and in systems outside the brain. In contrast, 

studies on cholesterol transport in the brain are relatively few. Most of the 

transport proteins found in brain tissues belong to either intracellular transport 

proteins or apolipoproteins. At least four families of transport proteins that may 

be involved in cholesterol trafficking have been reported in the brain. 

 The first group of intracellular cholesterol transport proteins found in the 

brain is SCP-2 (van Amerongen et al. 1985; Myers-Payne et al. 1996a). Pro-

SCP-2 was detected in brain by immunoblotting (Van Heusden et al. 1990) and 

was present in pinched off nerve ending or synaptosomes (Myers-Payne et al. 

1996a). An in vitro binding study reveals that SCP-2 can bind cholesterol with 

high affinity and it markedly facilitates transfer of cholesterol as well as other 

molecules, such as oxysterols and phospholipids (Schroeder et al. 1996). 
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Overexpressing the SCP-2 gene products led to upregulation of many aspects of 

cholesterol metabolism, including cholesterol uptake (Moncecchi et al. 1996), 

cellular cholesterol mass, cholesterol esterification (Murphy and Schroeder 1997), 

cellular cholesteryl ester mass, transfer of plasma membrane cholesterol to ER, 

and mitochondrial cholesterol oxidation (Yamamoto et al. 1991). However, thus 

far, the function role of SCP-2 in the brain has not been determined. Evidence 

shows that cholesterol is synthesized only in the cell body and transported to the 

axon by some unidentified mechanism in cultured sympathetic neurons (Vance et 

al. 1994). The isolation of SCP-2 from neurons suggests that it may be part of 

such a transport mechanism. 

 The second group of intracellular cholesterol transport proteins found in 

the brain is caveolin (Cameron et al. 1997; Ikezu et al. 1998). Caveolins belongs 

to a multimember family and caveolin 1, 2, 3 have been identified in brain 

endothelial cells and astrocytes (Cameron et al. 1997; Ikezu et al. 1998). Their 

functions are thought to be involved in the transport of cholesterol from ER to the 

plasma membrane (Smart et al.1996). 

 The third group of intracellular cholesterol transport proteins isolated from 

the brain is the fatty acid binding family. Two members of the family, H-FABP and 

B-FABP, are found in synaptosomes (Myers-Payne et al. 1996b). Interestingly, 

these proteins inhibit intermembrane sterol transfer in vitro instead of binding 

cholesterol (Pu et al. 1998). 

 The last group of cholesterol transport proteins reported in the brain is 

apolipoproteins. This family includes apolipoprotein A-I (apoA-I) (Harr et al. 1996), 
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apolipoprotein A-IV (apoA-IV), apolipoprotein E (apoE) (Pitas et al. 1987; Harr et 

al. 1996), apolipoprotein J (apoJ) (Harr et al. 1996), and apolipoprotein D (apoD) 

(Suresh et al. 1998). These apolipoproteins, which are the primary means of 

cholesterol trafficking systemically, are believed to be capable to bind cholesterol, 

esterified cholesterol, phospholipids, and triglycerides (Harr et al. 1996).  

 Among all the apolipoproteins found in the brain, apoE has been intensely 

studied as a result of the association between the apoE4 allele and AD (Poirier et 

al. 1993; Strittmatter et al. 1993; 1996). This apolipoprotein is thought to be 

synthesized in astrocytes and released to deliver cholesterol to other cells in the 

brain (Pitas et al. 1987). The released apoE enriched lipoproteins can bind to 

cells expressing the low-density lipoprotein receptor (LDL-R), VLDL receptor 

(VLDL-R), the low density lipoprotein receptor-related protein (LRP), and the 

apoE receptor 2 (apoER2). These receptors were observed in astrocytes, pial 

cells (Pitas et al. 1987; Wolf et al. 1992) and neurons (Poirier et al. 1993; Wolf et 

al. 1992; Christie et al. 1996; Narita et al. 1997). Besides apoE, there is 

increasing attention on the role of an atypical apolipoprotein, apoD, in the brain. 

 

2. 2. 2. 3. Apolipoprotein D 

 Apolipoprotein D (apoD), a member of the lipocalin superfamily of ligand 

transporters, has also been shown to localize in the brain (Peitsch and Boguski 

1990). ApoD was first isolated and partially characterized from plasma high 

density lipoproteins (HDL) in 1973 (McConathy and Alaupovic 1973). Human 

apoD cDNA was cloned and sequenced, and immunoreactive apoD was 
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expressed by cultured cells transfected with the clone cDNA (Drayna et al. 1986). 

Translation of the apoD gene sequence predicts a 169-amino acid mature protein 

preceded by a 20-residue hydrophobic leader peptide (Drayna et al. 1987). As a 

member of lipocalin protein family, apoD has three characteristic conserved 

sequence motifs, the kernel lipocalins. Unlike typical apolipoproteins, which 

feature an amphipathic α-helical structure that mediates noncovalent interaction 

with lipids, the tertiary structure of apoD is characterized by eight antiparallel β-

sheets (Peitsch and Boguski 1990), which form a ligand-binding pocket. The 

functional role of apoD is thought to be a transporter for several small 

hydrophobic molecules including cholesterol (Drayna et al. 1986), progesterone 

(Lea 1988; Balbin et al. 1990), porphyrins (Peitsch and Boguski 1990), and 

arachidonic acid (Morais et al. 1995).  

 ApoD showed high binding affinity to cholesterol (Patel et al. 1997). This is 

thought to have a physiological role in cholesterol transport. Such binding could 

allow translocation of cholesterol between domains of high and low 

concentrations of the sterols that are known to exist within cellular membranes 

(Patel et al. 1997). ApoD could also form a complex with lecithin cholesterol 

acyltransferase (LCAT). An increase in the cholesteryl esterification activity of 

LCAT is observed in presence of apoD and the formation of an apoD–LCAT 

complex appears to have a stabilizing effect on LCAT (Kostner and Steyer 1988). 

Thus, by increasing cholesterol esterification by LCAT, apoD could indirectly 

promote reverse cholesterol transport (Drayna et al. 1986). ApoD metabolism 

has been shown to interact with that of cholesterol. In mouse astrocytes, apoD 
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expression is induced by 25-hydroxycholesterol and apoD is secreted associated 

with lipids (Ong et al. 1997). 

 Arachidonic acid is a potential physiological ligand with highest affinity for 

apoD (Morais-Cabral et al. 1995).  ApoD could be implicated in the transport of 

arachidonic acid and play an important role in cellular regulation. Through its 

association with LCAT, apoD could also modulate the metabolism of arachidonic 

acid in lipoproteins by controlling the conversion of arachidonic acid (active form) 

into cholesteryl esters (inactive form) (Morais-Cabral et al. 1995). 

 The apoD gene is expressed in many tissues, with high levels of 

expression in spleen, testes and brain (Drayna et al. 1986). In a study on the 

cellular localization of apoD mRNA in the rhesus monkey brain by in situ 

hybridization (Smith et al. 1990), strong hybridization was observed in a number 

of cells within the subarachnoid space, as well as in a population of perivascular 

cells surrounding small vessels penetrating from the surface of the brain. Similar 

results have been observed in human brain by immunocytochemistry (Navarro et 

al. 1998). ApoD immunoreactivity is found in neuroglial cells, pial cells and 

perivascular cells, in the white matter (Boyles et al. 1990a; Smith et al. 1990; 

Patel et al. 1995; Navarro et al. 1998). ApoD is secreted in the CNS by 

oligodendrocytes and astrocytes, and has been postulated to participate in 

reinnervation of damaged neurons (Patel et al. 1995; Boyles et al. 1990b). 

 ApoD may participate in CNS maintenance and repair. Elevated apoD 

expression is present after experimental brain injury (Ong et al. 1997; Montpied 

et al. 1999, Franz et al. 1999; Terrisse et al. 1999), and in neurological disorders 

 20



such as AD (Terrisse et al. 1998; Thomas et al. 2003), NPC disease (Suresh et 

al. 1998), and prion disease (Dandoy-Dron et al. 1998). Increased apoD 

expression could be linked to the ability of apoD to function as a transporter of 

sterols, steroids, arachidonic acid or a still unidentified ligand in the brain that is 

implicated in tissue repair following injury (Rassart et al. 1998).  

 

2. 2. 3. Cholesterol in neurological disorders 

 There is considerable turnover of cholesterol in neurons and glia during 

brain growth, neuronal repair and remodeling (Dietschy and Turley 2001). 

Abnormalities in cholesterol metabolism have also been reported to play a role in 

the pathophysiology of AD (Eckert et al. 2000). The evidence for such an 

association is the epidemiological data indicating a relationship between the 

apoE4 allele and the occurrence of AD (Strittmatter and Roses 1996; Sparks 

1997). Production of Aβ appears to play a central role in the pathophysiology of 

AD. The β-secretase pathway is critical to the amyloid hypothesis because it 

generates Aβ. APP is first cleaved by β-secretase and then by the γ-secretase 

complex to yield Aβ. A critical reason that Aβ production is sensitive to 

cholesterol levels is because the activity of β- and γ-secretase complexes is 

dependent on cholesterol metabolism. Both β- and γ-secretase complexes reside 

in cholesterol-rich membrane domains within the membrane. β-Secretase 

appears to be particularly sensitive to membrane cholesterol content and is 

located in lipid rafts. Reducing cellular cholesterol appears to inhibit β-secretase 

activity (Cordy et al. 2003; Fassbender et al. 2001). γ-Secretase is an aspartyl 
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protease complex composed of the four core components APH-1, nicastrin 

(NCT), presenilin (PS), and PEN-2 (Capell et al. 2005), and also resides in 

cholesterol-rich membrane domains and the cleavage has also been shown to be 

affected by cholesterol content (Wahrle et al. 2002). 

 Cholesterol content is slightly but significantly increased in frontal cortex 

gray matter of AD patients with the apoE4 allele (Sparks 1997). However, 

another study concluded that brain cholesterol content may be lower in AD 

patients than that in non-demented subjects. The cholesterol to phospholipid 

ratio is decreased by 30% in the temporal gyrus, but not in the cerebellum, of the 

autopsied brains from AD patients compared to control brains (Mason et al. 

1992). The reduction in the cholesterol to phospholipid ratio is likely attributed to 

a reduction of cholesterol content since the phospholipid to protein ratio is similar 

in brains from AD patients and control subjects. Platelet membrane of AD 

patients has been found to be more fluid than control membranes and this 

difference in fluidity may be resulted from a reduction in membrane cholesterol of 

AD patients (Zubenko et al. 1987). 

 Several studies have indicated that the amount of 24-hydroxycholesterol is 

higher in plasma and cerebrospinal fluid of AD patients than in unaffected 

individuals (Lütjohann et al. 2000; Papassotiropoulos et al. 2002; Schonknecht et 

al. 2002), suggesting that the turnover of cholesterol in the brain is increased 

during the neurodegenerative changes of AD. In contrast, in other studies the 

amount of 24-hydroxycholesterol in plasma was found to be lower in advanced 

AD patients, and also in a murine model of AD, than in controls (Bretillon et al. 
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2000; Heverin et al. 2004). It is possible that an increased plasma level of 24-

hydroxycholesterol reflects ongoing neurodegeneration and/or demyelination, 

whereas a decrease in the amount of plasma 24-hydroxycholesterol reflects a 

selective loss of the population of neurons that express cholesterol 24-

hydroxylase (Björkhem and Meaney 2004). Thus, a reduction in cholesterol 

levels in the brains of AD patients might be the result, rather than the cause, of 

the enhanced neurodegeneration. 

 

2. 3. Ceramide 

2. 3. 1. Structure and functions 

 Besides phospholipids and cholesterol, another major group of lipids, 

sphingolipids, have long been regarded as structural and inert components of cell 

membranes. Sphingolipids comprise around 3% of the cell membrane. They are 

derivatives of long-chain bases and display a great structural diversity and 

complexity (Hakomori 1981).  

 A key sphingolipid is ceramide. The latter is comprised of a sphingosine 

backbone and fatty acid joined in an amide bond. The sphingosine base in 

ceramides is typically D-erythro-1, 3-dihydroxy-2-amino-14-octadecene (C18:1). 

Minor additional forms include C20:1 (mainly in brain), 1,3,4-trihydroxy-2-amino-

hexadecanol (phytosphingosine) and D-erythro-1,3-dihydroxy-2-amino-4,14-

octadecadiene. The fatty acid chain length of ceramide can vary from 2 to 28 

carbons, although C16 to C24 ceramides are most abundant in mammalian cells. 

These fatty acids are usually saturated or monounsaturated, and sometimes may 
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contain a hydroxyl group at the C2 position (α-hydroxy fatty acid) or on the 

terminal C atom (Cremesti et al. 2002). All sphingolipids contain ceramide as the 

basic hydrophilic component. They derive from ceramide through biosynthetic 

pathways that modify primarily the 1-hydroxyl position of the ceramide backbone 

(Spiegel and Merrill 1996). This hydroxyl group can serve as an acceptor for 

glucose in the first step of glycosphingolipid synthesis or as a phosphocholine 

acceptor to yield sphingomyelin. Conversely, in catabolic pathways, ceramide is 

most commonly cleaved at the amide bond to yield sphingosine and a fatty acid 

(Perry and Hannun 1998). 

 Ceramide is known to function within the cell membrane in both 

microdomain coalescence and receptor clustering (Bollinger et al. 2005), and is 

involved in many cellular events including apoptosis, growth arrest, differentiation, 

senescence, mediating an immune response, oxidative stress responses, and 

nitric oxide signaling (Kolesnick and Hannun 1999; Hannun and Obeid 2002; 

Pettus et al. 2002).  

 Several targets for ceramide action have been identified. They include 

kinases, phosphatases, proteases and various transcription factors including AP1, 

NF-κB, and IL-6 (Kolesnick and Kronke 1998; Ohanian and Ohanian 2001). 

Ceramide also interacts with cholesterol to form microdomains (caveolae) and 

lipid rafts (Simons and Toomre 2000; van Meer and Lisman 2002). These 

microdomains and lipid rafts have been implicated in the modulation of signal 

transduction, cell adhesion, and function of ion channels (Bock et al. 2003).  
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 Ceramide can interact with phospholipids to alter the physicochemical 

properties of neural membranes (Farooqui et al. 2004). These interactions are 

important because they constitute the physicochemical basis of several 

processes of potential physiological significance, namely the ceramide-

dependent increase in membrane permeability, transbilayer lipid motion, and 

lateral segregation of ceramide-enriched domains (Montes et al. 2002; Carrer 

and Maggio 1999; Ruiz-Arguello et al. 1998). In the brain, other important effects 

of ceramide in hippocampal neurons include modulation of ion currents, 

neurotransmitter release and synaptic transmission (Furukawa and Mattson 1998; 

Yang 2000).  

 

2. 3. 2. Ceramide generation and metabolism 

 Ceramide can be generated in cells by de novo synthesis or 

sphingomyelin hydrolysis. De novo synthesis of ceramide occurs in cytosolic face 

of the ER (Mandon et al. 1992) and in mitochondria (Bionda et al. 2004; Shimeno 

et al. 1998) and begins with the condensation of serine and palmitoyl-CoA to 

form 3-ketosphinganine as catalyzed by serine palmitoyltransferase (SPT). SPT 

is the first and rate-limiting enzyme in the pathway (Merrill et al. 1989; Merrill and 

Wang 1986; Perry et al. 2000). 3-Ketosphinganine is then reduced to form 

sphinganine, which is acylated to generate dihydroceramide. The acylation of 

sphinganine to form dihydroceramide is catalyzed by ceramide synthase. A trans 

double bond is then introduced at the 4–5 position to generate ceramide. 

Alternately, this pathway may reutilize sphingosine released by sequential 
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degradation of more complex sphingolipids for ceramide synthesis. Recent 

evidence suggests that exogenous, cell-penetrant, short chain ceramides recycle 

into long chain ceramides via this pathway (Ogretmen et al. 2002).  

 SPT consists of heterodimers of 53-kDa regulatory SPT1 and catalytic 63-

kDa SPT2 subunits and binds to the ER (Hanada et al. 1997; Hanada 2003). 

Ceramide synthase can utilize both sphingosine and sphinganine as substrates, 

and thus, ceramide can be directly generated from sphingosine and a fatty acyl-

CoA. Ceramide synthase has been localized to the ER (Michel and van Echten-

Deckert 1997), mitochondrial outer and inner membranes (Bionda et al. 2004). 

The enzymes involved in the de novo synthesis of cellular ceramide are 

principally localized within the ER and mitochondria. However, ceramide 

generated within a specific site may be subsequently transported to other cellular    

compartments (van Meer and Lisman 2002).  

 De novo synthesis of ceramide is an important pathway for increasing   

ceramide levels in response to tumor necrosis factor (TNF), chemotherapeutic 

agents, and ionizing radiation, resulting in apoptosis as reflected by nuclear 

morphology and DNA fragmentation (Perry and Hannun 1998). De novo 

production of ceramide is implicated in cell cycle arrest (Lee et al. 1998) and 

apoptosis (Kolesnick and Kronke 1998; Kroesen et al. 2001; Perry et al. 2000; 

Perry 2002).  

 Recent findings have highlighted the importance of the de novo synthetic 

pathway. Reduction of ceramide synthesis by inhibitors of SPT or ceramide 

synthase attenuates cell death (Edsall et al. 2001; Bieberich et al. 2001; 
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Korkotian et al. 1999). The disorder known as hereditary sensory neuropathy 

(HSN) was traced to certain missense mutations in SPT, resulting in increased 

activity. Subsequent increases in ceramide biosynthesis were proposed to trigger 

apoptosis in peripheral sensory neurons resulting in the progressive 

degeneration of dorsal root ganglia and motor neurons in these patients 

(Dawkins et al. 2001). 

 Besides de novo synthesis, ceramides can also be generated from the 

sphingomyelin pathway via the sphingomyelin hydrolysis catalyzed by distinct 

sphingomyelinases (SMase) (Kolesnick and Kronke 1998; Liu et al. 1997). 

SMases are classified by their pH optima, dependence on cofactors, such as 

magnesium and zinc, and subcellular location (Okazaki et al. 1989; 1990; 

Marchesini and Hannun 2004; Levade and Jaffrezou 1999; Samet and Barenholz 

1999; Stoffel 1999). Membrane neutral magnesium-dependent SMase (nSMase) 

and acid SMase (aSMase) are rapidly activated by diverse stress stimuli such as 

cytokines, antibody receptors steroids, G protein-coupled receptors and cellular 

stress, resulting in increased ceramide levels over a period of minutes to hours 

(Hannun et al. 2001; Mathias et al. 1998).  

 Once generated, ceramide can accumulate in the cell or may be 

converted into a variety of metabolites (Fig. 3). Phosphorylation by ceramide 

kinase (Hannun et al. 2001; Mathias et al. 1998) generates ceramide 1-

phosphate, while deacylation by either neutral or acid ceramidase (Li et al. 2002) 

yields sphingosine, which may then be phosphorylated by sphingosine kinases 

(SKs) to generate S1P. Ceramide can be glycosylated to form complex 
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glycosphingolipids in the Golgi apparatus or can be used to form sphingomyelin 

as catalyzed by sphingomyelin synthase (Kolesnick 2002).  

 

 

 
Figure 3. Major synthetic and metabolic pathways for ceramides (Kolesnick 2002) 

 
2. 3. 3. Ceramide in the brain 
 Both de novo and the sphinomyelin breakdown pathway have been shown 

involved in neuronal ceramide generation. De novo ceramide synthesis is 

involved in regulating various aspects of neuronal development and death. 

Studies using inhibitors of de novo ceramide synthesis (Wang et al. 1991), 

originally suggested an important role for de novo synthesis of ceramide in 

axonal and dendritic development of hippocampal neurons (Harel and Futerman 

1993; Schwarz and Futerman 1998). Similar results were also shown in Purkinje 

cells (Furuya et al. 1995). Treatment of sensory neurons with the ceramide 

synthesis inhibitors also inhibits the generation of ceramide and apoptosis 

induced by suramin (Gill and Windebank 2000).  
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 In neurons, distal axons are rich in nSMase activity but contain almost no 

aSMase activity, which is concentrated in cell bodies/proximal axons (de Chaves 

et al. 2000). Consequently, the axonal pool of ceramide responsible for the 

inhibition of axonal growth in sympathetic neurons is mostly generated by 

nSMase. NSMase is found at highest levels in brain, and its expression and 

specific activity rapidly increases in parallel with neuronal maturation during the 

neonatal period in the rat brain (Spence and Burgess 1978). This suggests that 

ceramide generated from sphingomyelin by nSMase may contribute to normal 

neuronal survival, growth and maturation of the CNS. In Neuro2a cells, bioactive 

ceramide generated in response to retinoic acid (RA) treatment is derived from 

both de novo synthesis and the activity of nSMase (Riboni et al. 1995). 

 Exogenous ceramide may either protect or kill neurons, depending upon 

the concentration and experimental paradigm used (Weisner and Dawson 1996a, 

b; Furuya et al. 1998; Irie and Hirabayashi 1998). The effects of ceramide on 

hippocampal neuron survival and dendrite outgrowth depend on the 

developmental neuronal stage and the concentration of ceramide used. At 

concentrations below 5 µM exogenous ceramide either does not affect survival 

during the first day in culture (Schwarz and Futerman 1997) or increases cell 

viability (Mitoma et al. 1998). At concentrations over 5 µM exogenous ceramide 

given to immature hippocampal neurons causes apoptosis (Mitoma et al. 1998, 

Schwarz and Futerman 1997). In addition, ceramide concentrations lower than 1 

µM protect hippocampal neurons from several insults such as excitotoxicity, 

FeSO4 and Aβ (Goodman and Mattson 1996). In mature hippocampal neurons 
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(after 6–7 DIV) even low concentrations of ceramide cause cell death (Mitoma et 

al. 1998). C6-ceramide (<3 mM) increased cell survival and neurite outgrowth 

and protected against excitotoxic agents whereas C6-ceramide (>3 mM) induced 

cell death (Mitoma et al. 1998). 

 Ceramide-induced apoptosis of cortical neurons is accompanied by 

caspase 3 and caspase 9 activation (Willaime et al. 2000; Willaime-Morawek et 

al. 2003). With respect to neurite development and extension, treatment of 

cortical neurons with ceramide causes rapid neurite retraction and loss of 

dendritic MAP2 immunoreactivity (Willaime et al. 2000; Willaime-Morawek et al. 

2003). Treatment of cerebellar granule cells in culture with exogenous short-

chain ceramides causes apoptosis (Colombaioni and Garcia-Gil 2004; Centeno 

et al. 1998; Toman et al. 2002; Vaudry et al. 2003). Serum/K+ deprivation or 

exposure of granule cells to the anticancer agent etoposide leads to 

accumulation of endogenous ceramide and cerebellar granule cells death 

(Vaudry et al. 2003). In addition to the activation of apoptosis, C2-ceramide 

induces rapid and transient activation of cell migration and inhibits neurite 

outgrowth in immature cerebellar granule cells (Falluel-Morel et al. 2005).   

 

2. 3. 4. Ceramide in neurological disorders 

 In addition to the effects of cholesterol on AD, substantial depletions of 

plasmalogen and sulfatide as well as dramatic increases in ceramide are 

manifested at the earliest clinically recognizable stage of AD. Ceramide elevation 

in the brain is evident at an early stage in AD patients (Han et al. 2002; Cutler et 
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al. 2004b; Satoi et al. 2005). The increase of ceramide in AD may result from 

membrane-associated oxidative stress and might be accompanied by a decrease 

in sphingomyelin (Cutler et al. 2004b). Alteration of sphingolipid metabolism 

might be associated with the development of sporadic AD and ceramides have 

emerged as significant regulators of APP cleavage and Aβ production. Addition 

of C6- ceramide or nSMase increases Aß generation by regulating β-cleavage 

through β-site APP cleaving enzyme 1 (BACE1) stabilization but without affecting 

γ-cleavage of APP in cultured cells expressing APP (Puglielli et al. 2003).   

 Ceramide has also been identified as a possible second messenger in Aβ-

induced death. Treatment of cultured cells with Aβ (Jana et al. 2004; Lee et al. 

2004; Cutler et al. 2004b) or intracerebral administration of Aβ to rats (Alessenko 

et al. 2004) causes ceramide elevation. The apoptotic effects of Aβ are mimicked 

by exogenous short-chain ceramides (Jana and Pahan 2004; Liu et al. 1998). 

Aβ-induced activation of nSMase has been demonstrated in human primary 

neurons, oligodendrocytes and cerebral endothelial cells (Jana and Pahan 2004; 

Lee et al. 2004; Yang et al. 2004). The mechanisms by which Aβ causes 

nSMase activation and ceramide accumulation seem to be redox-sensitive and 

activation of NADPH oxidase and/or regulation of glutathione metabolism (Jana 

and Pahan 2004). Ceramide elevation is accompanied by an increase in the 

peroxidation product 4-HNE and is prevented by the antioxidant α-tocopherol 

(Cutler et al. 2004b). 

 Recent finding has shown that overproduction of ceramide may be 

involved in neuronal death in HIV-associated dementia patients (Haughey et al. 
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2004). Sphingolipid deregulation is more pronounced in HIV-associated dementia 

patients with an apoE4 genotype, who have worse prognoses (Cutler et al. 

2004a).  

 Elevated levels of ceramide have also been detected in the brain after 

cerebral ischemia (Herr et al. 1999; Kubota et al. 1996; Nakane et al. 2000; 

Takahashi et al. 2004; Ohtani et al. 2004) and status epilepticus (Mikati et al. 

2003). A previous study demonstrated that ceramide is released in vivo in the 

post-ischemic rat brain. Maximal generation of ceramide occurs during the early 

phase of reperfusion and is mediated by enhanced aSMase activity as found by 

the use of a neuroblastoma cell line in an in vitro model for ischemia/reperfusion 

(Herr et al. 1999). Exogeneous ceramide have been shown to reduce the infarct 

size in focal cerebral ischemia with an upregulation of Bcl-2 and a reduction of 

TUNEL-positive cells (Chen et al. 2001). 

 In addition, dopaminergic and other neurons in primary cultures derived 

from the mesencephalon, a primary region of neuronal degeneration in PD, 

undergo apoptosis through a ceramide-dependent mechanism that may be 

identical to the cytokine-stimulated signaling pathway in the immune system. The 

presence of a ceramide-dependent apoptotic system in mesencephalic 

dopaminergic neurons suggests that inappropriate activation of such a cell death 

mechanism may be a factor contributing to PD (Brugg et al. 1996). 

 

3. Kainate-induced excitotoxic neuronal injury 
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 Excitotoxicity refers to a process of neuronal death caused by excessive 

or prolonged activation of glutamate receptors (GluRs) by the excitatory amino 

acid neurotransmitter glutamate (Olney et al. 1971). GluRs are categorized into 

two classes, ionotropic and metabotropic receptors (reviewed in Ozawa et al. 

1998). Glutamate activates postsynaptic receptors, including the ionotropic 

receptors. Upon activation, these receptors open their associated ion channel to 

allow the influx of Ca2+ and Na+ ions. Although physiological elevations in 

intracellular Ca2+ are salient to normal cell functioning, the excessive influx of 

Ca2+ together with any Ca2+ release from intracellular compartments can 

overwhelm Ca2+-regulatory mechanisms and lead to cell death (Choi 1987). This 

phenomenon known as excitotoxicity contributes to neuronal degeneration in 

many acute CNS disorders, including ischemia, trauma, and epilepsy, and may 

also play a role in chronic neurodegenerative diseases (reviewed in Arundine 

and Tymianski 2003). 

 Kainic acid (KA) is a rigid analog of the excitatory amino acid glutamate 

that binds to and activates ionotropic glutamate receptor. Kainate-induced 

epileptic seizures have been widely used as a model for studying human 

temporal lobe epilepsy (Sloviter and Dempster 1985; Represa et al. 1990; Sutula 

et al. 1992). A single systemic injection of a convulsive dose of kainate results in 

both short- and long-term effects on the rat CNS. Within 1 h of its administration 

to the rats, the neuronal circuitry of the hippocampus is activated and later the 

animal undergoes robust and recurrent seizures. Within 3-4 days after kainate 

injection, pyramidal cells in CA1 and CA3 field of the hippocampus begin to 
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degenerate (Coyle et al. 1983; Sutula et al. 1992; Bing et al. 1996). 1-2 weeks 

later, spontaneous convulsions can be observed in kainate-treated rats. KA 

produces selective degeneration of neurons after intraventricular and 

intracerebral injection, especially in the striatal and hippocampal areas of the 

brain (Lerma 1997; Ben-Ari and Cossart 2000). Axons and nerve terminals are 

more resistant to the destructive effects of KA than the cell soma. In developing 

brains, however, administration of KA fails to produce neurotoxicity (Sperber et al. 

1991). Instead, low doses of KA appear to exert trophic effects such as increases 

in survival and neurite outgrowth in cultured neurons derived from the cerebellum, 

hippocampus, and spinal cord (Balazs and Hack 1990).  

 KA has been injected into the ventral globus pallidus of rats to produce 

neurodegeneration of cholinergic neurons in a pattern similar to nerve cell loss in 

AD (Johnston et al. 1979). Neurofibrillary tangles and neuritic plaques similar to 

those found in AD have been shown in cerebral cortical and hippocampal 

neurons after KA injection in rats (Arendash et al. 1987). In addition, KA 

injections into the rat striatum produce behavioral, biochemical and 

morphological effects similar to those described in human afflicted with 

Huntington's chorea (Coyle and Schwarcz, 1976; McGeer and McGeer 1976).  

 An increasing number of studies suggest a caused relation between 

excitotoxicity and free radicals in vivo (Bondy and Lebel 1993; Nakao and 

Brundin 1998). Increased concentration of malonaldehyde and 4-hydroxyalkenals, 

which was measured as an index of lipid peroxidation, was found in rat cerebral 

cortex, cerebellum, hippocampus, hypothalamus, and corpus striatum after 
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administration with KA (Melchiorri et al. 1995; Bruce and Baudry 1995). These 

results suggest the involvement of oxygen free radicals in the initial phases of 

KA-induced pathology. 

 KA can cause excitotoxic neuronal death through interacting with kainic 

acid-type receptors in neurons, which induces neuronal Ca2+ overloading. The 

alteration in Ca2+ homeostasis and its short duration may lead to neuronal 

degeneration by the activation of PLA2 and subsequent arachidonic acid cascade. 

Elevated levels of arachidonic acid and its metabolites produce a variety of 

detrimental effects on neural membrane structure, activities of membrane 

enzymes, and neurotransmitter uptake systems (Farooqui and Horrocks 1994; 

Farooqui et al. 1997). Thus, KA receptor-mediated degradation of neuronal 

membrane phospholipids, calcium overload, and oxidative stress can disrupt 

cellular homeostasis and thus threaten cellular membrane integrity and viability 

and lead to neurodegeneration (Farooqui et al. 2000b). 

 

4.  Aims of the present study 

 In contrast to kainate-induced dysregulated phospholipid metabolism, 

relatively little is known about altered cholesterol and ceramide metabolisms after 

kainate injury. In view of importante role of these two membrane lipids in the 

brain function, the present study aimed to elucidate changed concentrations of 

cholesterol, 24-hydroxycholesterol, 7-ketocholesterol, and ceramides after 

kainate injury. The altered expression and activity of a cholesterol metabolic 

enzyme, cholesterol 24-hydroxylase, and a ceramide synthetic enzyme, SPT, 
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after kainate injury were also carried out. Finally, the role of apoD in modulation 

of kainate-induced changed levels of cholesterol, cholesterol oxidative products, 

and an oxidative stress biomarker, F2-isoprostanes, and neurodegeneration were 

elucidated.  This study is composed of several parts as follows: 

   

4.1. Dysregulation of cholesterol metabolism after kainate injury 

 Kainate injection has been shown to result in increased immunoreactivity 

to cholesterol in the affected CA fields of the hippocampus (Ong et al. 2003). 

However, it is not known whether this increased cholesterol expression is 

associated with changes in the expression of the cholesterol metabolic enzymes 

and with the disturbance of cholesterol turnover in the kainate-induced 

excitotoxic brain. The effect of an inhibitor of cholesterol biosynthesis, lovastatin, 

on kainate-induced brain injury is still not clear.   

 The methods of western blot, immunohistochemistry, immunofluorescence 

and electron microscopy were carried out to investigate the expression change of 

cholesterol 24-hydroxylase, and any correlation with cholesterol levels in the rat 

hippocampus after kainate lesion. The method of GS/MS was carried out to 

quantify the concentration of cholesterol, 24-hydroxycholesterol and 7-

ketocholesterol in kainate or kainate plus lovastatin treated rat hippocampus and 

hippocampal slices. Cell survival was measured using MAP2 immunostaining 

and LDH assay. 

 

4. 2. Dysregulation of ceramide metabolism after kainate injury 
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Recent studies suggest that in addition to the alterations of cholesterol 

metabolism, an abnormality in ceramide metabolism is involved in 

neurodegenerative diseases such as AD and stroke. Although previous studies 

have demonstrated a role for sphingomyelinase activity in ceramide 

accumulation during neurodegeneration, relatively little is known about possible 

contributions from ceramide biosynthetic activity.  

 The methods of western bloting, immunohistochemistry, 

immunofluorescence, electron microscopy and SPT enzyme activity assay were 

used to elucidate the altered distribution and activity change of SPT, and any 

correlation with ceramide levels in the rat hippocampus after kainate lesion. The 

method of ESI-MS was carried out to quantify ceramide levels in the kainate or 

kainate plus SPT inhibitor treated hippocampal slices. Cell survival was 

measured using MAP2 immunostaining and LDH assay. 

 

4. 3. Effect of apolipoprotein D on the neuronal injury after kainate injury 

 ApoD has the ability to bind several small hydrophobic ligands, including 

arachidonic acid and cholesterol. A marked increase of apoD expression in the 

rat hippocampus after kainate-induced neuronal injury has been shown (Ong et 

al. 1997), and the increase in apoD is paralleled by decreases in phospholipid 

level and increases in arachidonic acid, ceramide and cholesterol levels in the 

kainate-injured hippocampus. One possibility is that apoD may be upregulated in 

injured neurons as part of a cellular defensive mechanism by regulating lipid 

metabolism. 
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 The method of GC/MS was carried out to quantify F2-isoprostane, 

cholesterol, 24-hydroxylcholsterol, and 7-ketocholesterol levels in kainate-treated 

hippocampal slices. The effect of oxidative stress on cultured fibroblasts from 

wild type and apoD knockout mice was also studied, as a comparison. Cell 

survival was measured using MAP2 immunostaining and LDH assay. 
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I. Lovastatin modulates increased cholesterol and 

oxysterol levels and has a neuroprotective effect on rat 

hippocampal neurons after kainate injury 
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1. Introduction 

 Oxysterols or cholesterol oxidation products are products of cholesterol 

metabolism, and play important roles in cholesterol turnover, atherosclerosis and 

inflammation (Björkhem and Diczfalusy 2002). Because of their ability to pass 

through cell membranes and the blood-brain barrier at a faster rate than 

cholesterol itself, they are also important as transport forms of cholesterol. 

Oxysterols can be formed by direct oxidation of cholesterol, or through the action 

of oxysterol biosynthetic enzymes (Russell 2000). 7β-Hydroxycholesterol and 7-

ketocholesterol are formed by the direct oxidation of cholesterol (Miguet-Alfonsi 

et al. 2002). In contrast, 24-hydroxycholesterol, 25-hydroxycholesterol and 27-

hydroxycholesterol are produced by enzymatic action. Increased levels of 7β-

hydroxycholesterol and 7-ketocholesterol are present in atherosclerotic plaques 

(Brown et al. 1997). These two oxysterols are also increased in patients with 

aceruloplasminemia (Miyajima et al. 2001). 

 The enzyme cholesterol 24-hydroxylase synthesizes 24-

hydroxycholesterol, and to a lesser extent, 25-hydroxycholesterol. This enzyme 

is expressed mainly in the brain, and is normally present in neurons (Lund et al. 

1999). The conversion of CNS cholesterol to 24-hydroxycholesterol, which 

readily crosses the blood brain barrier, is a major pathway for brain cholesterol 

efflux and maintenance of CNS cholesterol homeostasis (Björkhem et al. 1998; 

1999; Lund et al. 2003). Increased expression of cholesterol 24-hydroxylase has 

been reported in the brain in Alzheimer’s disease (Bogdanovic et al. 2001; Brown 

et al. 2004). Oxysterols including 7-ketocholesterol (Lizard et al. 2000; Ong et al. 
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2003) and 24-hydroxycholesterol (Kolsch et al. 1999; 2001) are toxic to cells in 

culture. 

 Intracerebroventricular injection of kainate, a model of excitotoxic injury, 

causes acute neuronal death of the affected CA subfields in the hippocampus, 

and proliferation and hypertrophy of glial cells in the glial scar (Farooqui et al. 

2001). Our previous study has shown that there is significant de novo synthesis 

of cholesterol in the degenerating hippocampus after neuronal injury (Ong et al. 

2003), and that the cholesterol is directly oxidized to oxysterols at relatively short 

time intervals (3 days) after kainate injury. The present study was carried out to 

determine whether there could be changes in oxysterol biosynthetic enzyme 

expression and oxysterol formation at longer time intervals after kainate 

injections. HMG-CoA is the rate-limiting enzyme for cholesterol synthesis in liver 

and other tissues (Brown and Goldstein 1980). We also examined whether 

treatment by a brain permeable 3-hydroxy 3-methylglutaryl coenzyme A (HMG-

CoA) reductase inhibitor, lovastatin, could affect brain cholesterol and oxysterol 

levels and neuronal survival after kainate injury. 

 

2. Materials and Methods 

2. 1. Animals and intracerebroventricular kainate injection 

 Wistar rats weighing approximately 200 g were anesthetized with an 

intraperitoneal injection of 1.2 ml of 7% chloral hydrate, and the cranial vault 

exposed. Kainate (1 µl of a 1 mg/ml solution) was injected into the right lateral 

ventricle (coordinates: 1.0 mm caudal to bregma, 1.5 mm lateral to the midline, 
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4.5 mm from the surface of the cortex) using a microliter syringe. The needle was 

withdrawn 10 min later, and the scalp sutured. Experimental control rats were 

injected with 1 µl of saline instead of kainate. All procedures involving animals 

were in accordance with guidelines of the Guide of National Research Council of 

Singapore for the care and use of laboratory animals, and approved by the 

Institutional Animal Care and Use Committee. 

 

2. 2. Western blots 

 This was carried out to demonstrate specificity of the cholesterol 24-

hydroxylase antibody. Two kainate-injected rats and two saline-injected rats were 

killed 2 weeks after injection. The rats were deeply anesthetized with an 

intraperitoneal injection of 7% chloral hydrate, and killed by decapitation. The 

right hippocampi from both animals in each treatment group were pooled, and 

homogenized in 10 volumes of ice-cold buffer containing 0.32 M sucrose, 4 mM 

Tris-Cl, pH 7.4, 1 mM EDTA, and 0.25 mM dithiothreitol (DTT). After 

centrifugation at 1000 xg for 15 min, the supernatant was collected, and protein 

concentrations in the preparation measured using the BioRad protein assay kit. 

Total proteins (50 µg) were resolved in 10% SDS-polyacrylamide gels under 

reducing conditions and electrotransferred to a polyvinylidene difluoride (PVDF) 

membrane (Amersham Pharmacia Biotech, Little Chalfont, UK). Nonspecific 

binding sites on the PVDF membrane were blocked by incubation with 5% non-

fat milk for 1 h. The PVDF membrane was then incubated overnight with a rabbit 

polyclonal antibody to cholesterol 24-hydroxylase (diluted to 2 µg/ml in Tris 
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buffered saline [TBS]). The antibody to cholesterol 24-hydroxylase was raised in 

the rabbit against amino acids 254-270 of the mouse cholesterol 24-hydroxylase, 

and has been shown to detect a single band at ~56 kDa in brain (Lund et al. 

1999). After washing with 0.1% Tween-20 in TBS, the membrane was incubated 

with horseradish peroxidase-conjugated goat anti-rabbit immunoglobulin IgG 

(Amersham) for 2 h at room temperature. The protein was visualized with an 

enhanced chemiluminescence kit (Pierce, Rockford, IL, USA) according to the 

manufacturer's instructions. 

 

2. 3. Immunohistochemical analyses 

2. 3. 1. Immunoperoxidase labeling 

 Four kainate-injected rats at each post-injection time interval were killed at 

1 day, 3 days, 1 week, 2 weeks and 4 weeks after injection. Four saline-injected 

rats at 2 weeks after injection were used as experimental controls. The rats were 

deeply anesthetized by intraperitoneal injection of 1.5 ml of 7% chloral hydrate 

and perfused through the left cardiac ventricle with a solution of 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The brains were removed, 

and a block consisting of the posterior two thirds of the forebrain, including the 

hippocampi, dissected out. The blocks were sectioned coronally at 100 µm using 

a vibrating microtome. The sections were divided into four sets, for cresyl fast 

violet (Nissl), and immunohistochemical staining as follows: sections were 

washed for 3 h in phosphate buffered saline (PBS) to remove traces of fixative. 

They were then incubated overnight with a mouse monoclonal antibody to 
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cholesterol (MAb 2C5-6, 1:50 dilution), or a rabbit polyclonal antibody to 

cholesterol 24-hydroxylase (diluted to 10 µg/ml in PBS). MAb 2C5-6 has 

previously been characterized and shown to be specific for cholesterol (Swartz et 

al. 1998). The sections were washed in three changes of PBS, and incubated for 

1 h at room temperature in a 1:200 dilution of biotinylated horse anti-mouse IgG, 

or goat anti-rabbit IgG (Vector, Burlingame, CA, USA). The sections were then 

reacted for 1 h at room temperature with an avidin-biotinylated horseradish 

peroxidase complex, and the reaction visualized by treatment for 5 min in 0.05% 

3,3-diaminobenzidine tetrahydrochloride (DAB) solution in Tris buffer containing 

0.05% hydrogen peroxide. The color reaction was stopped with several washes 

of Tris buffer, followed by PBS. Some sections were mounted on glass slides and 

lightly counterstained with methyl green before cover slipping. The remaining 

sections were processed for electron microscopy. Control sections were 

incubated with cholesterol-absorbed antibody (prepared by incubating 5 µg/ml of 

cholesterol with 1:50 dilution of cholesterol antibody overnight), pre-immune 

rabbit serum, or PBS, instead of primary antibodies. They showed absence of 

staining. 

 

2. 3. 2. Quantitation of labeled cells in vivo 

The number of cholesterol positive neurons or cholesterol 24-hydroxylase 

positive glial cells in lesioned areas of dosal CA1 subregion of the right 

hippocampus of each rat was counted manually using a light microscope. The 

counts were conducted in a "blind" manner on coded slides at 200 x 
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magnification with the help of a grid. A total area of 200 x 300 µm from each 

section, and four sections from each of the four rats in each category were 

analyzed. The pyramidal neurons in CA fileds are dispersed and can be 

separated for counting with the help of microscope. The mean number of stained 

cells/ mm2 was then calculated for each group of rats at a specific time interval 

after kainate injection (n = 4 per group). The 'unlesioned' control group consisted 

of four rats at 2 weeks after saline injection.  

 

 2. 3. 3. Electron microscopy 

Electron microscopy was carried out by subdissecting some of  

immunostained sections into smaller portions that included the lesioned CA1 field. 

These were osmicated, dehydrated in an ascending series of ethanol and 

acetone, and embedded in Araldite. Thin sections were obtained from the first 5 

µm of the sections, mounted on copper grids coated with Formvar, and stained 

with lead citrate. They were viewed using a Jeol 1010EX electron microscope. 

 

2. 3. 4. Double immunofluorescence labeling 

Four kainate-injected rats and four saline-injected rats were killed at 2 

week post-injection. The rats were deeply anesthetized by intraperitoneal 

injection of 1.5 ml of 7% chloral hydrate, and transcardially perfused with normal 

saline, followed by a fixative, consisting of 4% paraformaldehyde in 0.1 M 

phosphate buffer (pH 7.4). The brains were dissected out and blocks containing 

the hippocampus sectioned coronally at 30 µm thickness using a freezing 

 46



microtome. They were washed for 3 h in phosphate buffered saline containing 

0.1% Triton-X 100 (PBS-Tx) to remove traces of fixative, and immersed for 1 h in 

a solution of 5% normal goat serum (Vector) in PBS-Tx to block non-specific 

binding of antibodies. The sections were then incubated overnight with a rabbit 

polyclonal antibody to cholesterol 24-hydroxylase (diluted to 10 µg/ml in PBS), 

and a mouse monoclonal antibody to GFAP (a marker for astrocytes, diluted to 1 

µg/ml in PBS, Chemicon, Temecula, CA, USA). This was followed by three 

washes of PBS and incubation for 1 h at room temperature in 1:200 dilution of 

fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG, and Cy3-

conjugated goat anti-rabbit IgG (both from Chemicon). The sections were 

mounted and examined using an Olympus FluoView FV500 confocal microscopy. 

Control sections incubated with PBS instead of primary antibodies. They showed 

absence of staining. 

 

2. 4. Hippocampal slice cultures  

Hippocampal slice cultures were prepared as previously described 

(Stoppini et al. 1991) with minor modifications (Lu et al. 2001). In brief, 10 day old 

Wistar rat pups were anesthetized with intraperitoneal injections of 3.5% chloral 

hydrate, decapitated, and the brain removed. The hippocampi were dissected out, 

and sectioned transversely at 350 µm thickness using a tissue chopper. The 

slices were transferred to 30 mm Millicell CM culture plate inserts with 0.4 µm 

polytetrafluoroethylene membranes (Millipore, Bedford, MA, USA), and placed in 

6-well culture plates containing culture medium (50% minimum essential medium 
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[Gibco], 25% horse serum [Sigma, St Louis, MO, USA], 25% Hanks balanced 

salt solution [Gibco], supplemented with D-glucose [6.5 mg/ml, Sigma], glutamine 

[2 mM, Gibco], penicillin G [1 unit/ml, Gibco] and streptomycin sulfate [1 µg / ml, 

Gibco], pH 7.15). The slices were maintained at 37°C, 100% humidity, 95% air 

and 5% CO2. The medium was changed to fresh medium every 3 days in culture. 

The effects of kainate and other agents were tested in cultures after 14 days in 

vitro. 

 

2. 5. Gas chromatographic/mass spectrometric (GC/MS) analysis 

2. 5. 1. Kainate and lovastatin treatment 

Initial experiments were performed to elucidate the time course of 

cholesterol and oxysterol formation after kainate injection. Four kainate-injected 

rats were killed at 3 days, 1 week, 2 weeks and 4 weeks after injection. The 

animals were anaesthetized by intraperitoneal injections of chloral hydrate and 

decapitated. The lesioned right hippocampi were quickly removed, and snap 

frozen in liquid nitrogen, and kept in an -80°C freezer till analysis. Four 2 week 

post-saline-injected rats were used as experimental controls. 

Subsequent experiments were carried out to investigate possible effects of 

lovastatin on cholesterol and oxysterol levels after kainate treatment. For in vivo 

analyses, eleven kainate-injected rats were injected intracerebroventricularly with 

kainate and intraperitoneally with lovastatin (4 mg/kg) 3 h after the kainate 

injection, followed by daily injections of the same dose of lovastatin till the time of 

sacrifice at 1 week (6 rats) or 2 weeks (5 rats) after kainate injection. The rats 
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showed status epilepticus that peaked at 90 to 180 mins after kainate injection 

(Lothman and Collins 1981), and this had abated by the time of the first injection 

of lovastatin (3 hours after kainate injection). The lovastatin solution was 

prepared by dissolving pure lovastatin (kind gift of Ranbaxy Malaysia Sdn Bhd) in 

20% ethanol and diluted to the final concentration with saline (pH 7.4). Fresh 

solutions were used daily. Another nine kainate-injected rats were 

intraperitoneally injected with 20% ethanol in saline for 1 week (4 rats) or 2 

weeks (5 rats), and were used as controls. The right hippocampi of the above 

rats were removed for analysis. 

In vitro analysis of the effect of lovastatin was also carried out. Kainate 

(100 µM final concentration) was applied to slice cultures for 3 h in serum-free 

medium. The medium was removed, and the slices treated with fresh serum-free 

medium containing lovastatin or vehicle for 24 h. The above concentration of 

kainate has been shown to be toxic to neurons in hippocampal slice cultures (Lu 

et al. 2001). Lovastatin was prepared as a 25 mM stock solution in 100% ethanol 

and stored at 4°C. This was diluted to a 2.5 mM solution in sterile water and 

further diluted in serum-free medium to a final concentration of 1 µM. The vehicle 

consisted of similarly diluted ethanol. Material from twelve to sixteen slices in 

each treatment group was collected for a single experiment. The mean and 

standard deviation from three separate experiments were then calculated. 

All reagents for GC/MS analysis were of analytical grade. Standards for 

cholesterol, 7-ketocholesterol, 25-hydroxycholesterol, cholesterol 5 alpha, 6 

alpha-epoxide, cholesterol 5 beta, 6beta-epoxide, 5α-cholestane and ergosterol 

 49



were purchased from Sigma and of at least 95% purity. 24S-hydroxycholesterol 

(non-deuterated) was purchased from Medical Isotopes (Pelham, AL, USA). 5α-

cholestane and ergosterol were used as internal standards. Standard solutions of 

cholesterol, oxysterols, 5α-cholestane and ergosterol were diluted in ethanol. 

 

2. 5. 2.  Lipid extraction 

Extraction of lipids was carried out using Folch's method (Folch et al. 1957) 

with slight modification. Hippocampal specimens were homogenized at 4°C with 

1.5 ml PBS (pH 7.4) and 6 ml Folch organic solvent mixture 

(chloroform/methanol 2:1, containing 0.05% butylated hydroxytoluene [BHT]). 

The cultured hippocampal slices were homogenized at 4°C with 0.5 ml PBS (pH 

7.4) and 2 ml Folch organic solvent mixture. The homogenates were sealed 

under N2 and centrifuged at 1000 x g for 10 min at 4 °C. The upper phase was 

discarded and the lower organic phase carefully transferred to a glass vial and 

evaporated under a stream of N2.  

 

2. 5. 3. Lipid hydrolysis 

 2 ml of 0.5 M KOH (in 50% methanol) was added with 400 ng ergosterol 

and 10 µg 5α-cholestane, and the vial sealed under N2. The lipid extract was 

hydrolyzed at 23°C for 2 h in the dark. 

 

2. 5. 4. Cholesterol and oxysterol extraction 
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2.7 ml formic acid (40 mM), 0.2 ml HCI (5 M) and 0.5 ml methanol were 

added in the above dydrolysed lipid extract and thoroughly mixed before loading 

onto a 3 ml, 60 mg Oasis Mixed Anion Exchange (MAX) solid phase extraction 

column (Waters, Milford, MA, USA) previously conditioned with 2 ml methanol 

and 2 ml formic acid (20 mM). The column was then washed with 2 ml 2% 

ammonium hydroxide followed by 2 ml methanol/formic acid (40/60). Cholesterol 

and oxysterols were eluted with 2 ml hexane followed by 2 ml ethyl 

acetate/hexane (30/70), and collected together into a glass tube containing 50 

mg Isolute HM-N (International Sorbent Technologies) to remove traces of water. 

50 µl of the extract was aliquoted into a separate glass vial and evaporated under 

N2 for cholesterol analysis, and the remaining organic solvent was evaporated 

under N2 for oxysterols analysis. Aliquots for cholesterol analysis were 

derivatized with 25 µl acetonitrile and 25 µl N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) + 1% trimethylchlorosilane (TMCS) 

for 1 h at room temperature and injected directly onto GC/MS. Samples for 

oxysterol analysis were derivatized with 50 µl acetonitrile and 50 µl BSTFA + 1% 

TMCS for 1 h at room temperature, evaporated to dryness under N2 and 

reconstituted in 30 µl undecane before injection into the GC/MS. 

 

2. 5. 5. GC/MS measurement 

 Cholesterol and oxysterols were both analyzed with a Hewlett-Packard 

5973 mass selective detector interfaced with a Hewlett-Packard 5890II gas 

chromatograph and equipped with an automatic sampler and a computer 
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workstation. Separations were carried out on a fused silica capillary column (12 

m x 0.2 mm i.d.) coated with cross-linked 5% phenylmethylsiloxane (film 

thickness 0.33 µm) (Ultra2, Agilent). The carrier gas was helium with a flow rate 

of 1 ml/min (average velocity = 55 cm/sec). Selected-ion monitoring was 

performed using the EI mode at 70 eV with the ion source maintained at 230°C 

and the quadrapole at 150°C. One target ion and two qualifier ions selected from 

each compound mass spectrum were monitored to optimize sensitivity and 

specificity. Quantitation of modified bases was achieved by relating the peak 

area of the analyte with its corresponding internal standard.  

 

2. 5. 6. Cholesterol analysis 

Derivatized samples (1 µl) were injected with a 25:1 split into the GC 

injection port (280°C). Column temperature was increased from 240°C to 300°C 

at 25°C/min after 1 min at 240°C, and then held at 300°C for 4 min. Cholesterol 

was monitored using m/z 329 as target ion and m/z 458, 453 as qualifier ions and 

5α-cholestane was monitored as internal standard (target ion = m/z 357, qualifier 

ions = m/z 372, 232). 

 

2. 5. 7.  Oxysterol analysis 

Derivatized samples (1 µl) were injected with a 5:1 split into the GC 

injection port (280°C). The column temperature was increased from 175°C to 

280°C at 30°C/min after 1 min at 175°C, then increased to 291°C at 2°C /min. 

Finally, the oven temperature was increased to 306°C at 30°C /min and held for 
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1.5 min. Ergosterol was monitored as internal standard for the quantification of 

oxysterols. Target ions for 24-hydroxycholesterol and 7-ketocholesterol were m/z 

413 and m/z 472 respectively. Quantification of cholesterol and oxysterols was 

achieved by relating the peak area of the compound with the internal standard 

peak area and by applying the following formula: ng/mg hippocampus = (A/AIS) x 

[IS] x (1/k) ÷ hippocampus weight, where A = peak area of product, AIS = peak 

area of the internal standard, [IS] = concentration of the internal standard (400 ng 

ergosterol or 10 µg 5α-cholestane), k = relative molar response factor for each 

product calculated from the gradient of the calibration curve for each product. 

Data were expressed as mean ± standard deviation. Calibration curves were 

constructed from 5 different concentrations in triplicate of cholesterol (5 to 2500 

µg) as well as oxysterols (5-2500 ng), and showed good linearity (r2 > 0.95).  

 

2. 6. In vivo effect of lovastatin on neuronal survival after kainate injury 

A further ten male Wistar rats (each weighing approximately 200 g) were 

injected with kainate as described above. The injected rats were randomly 

divided into two groups (5 rats each). The first group received an 

intracerebroventricular injection of kainate as described previously, followed 3 h 

later by an intraperitoneal injection of lovastatin (4 mg/kg dissolved in vehicle 

consisting of 20% ethanol diluted in saline), following by daily injections of the 

same dose of lovastatin till the time of sacrifice at 2 weeks after kainate injection. 

The second group of rats was used as controls. These received 

intracerebroventricular injection of kainate followed by intraperitoneal injections of 
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vehicle, following the same schedule as the lovastatin-treated rats. The rats were 

killed at 2 week post-kainate injection by transcardial perfusion. Blocks 

containing the hippocampus were sectioned as described above. The sections 

were stained using the Nissl technique, or immunostained for microtubule 

associated protein 2 (MAP2, Sigma, diluted 1:500) to demonstrate viable 

neurons. The slides were coded and quantitation was carried out in a “blinded” 

manner. Due to the patchy nature of the cell loss even within a CA fields (i.e CA1 

and CA3), and the enormous total number of cells in entire hippocampus, direct 

counting of cells was not carried out. Instead the portion of surviving neurons in 

CA fields was estimated by taking digital images of the entire right hippocampus 

from 6 Nissl or MAP2 stained sections from each rat, and a discontinous line 

traced along the row of hippocampal pyramidal neuronal cell bodies from 

hippocampal fields CA1 to CA3. This was followed by a second trace, along the 

viable pyramidal neurons in the Nissl stained sections, or pyramidal neurons that 

showed immunolabeling in their cell bodies and dendrites in the MAP2 labeled 

sections. The ratio of the second to the first trace was calculated, to indicate the 

percentage of uninjured neurons in the CA fields.  

 

2. 7. In vitro effect of lovastatin on neuronal survival after kainate injury 

Kainate (100 µM) was applied to slice cultures for 3 h in the serum-free 

media before treatment of lovastatin (1 µM) or vehicle 24 h in fresh serum-free 

media. Slices (6 slices per group) were fixed by immersion in 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), after treatment. The 
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polytetrafluoroethylene membranes were cut from the culture plate inserts, 

washed, and immunostained with the attached slices for MAP2. The number of 

labeled neurons was counted as described in Chapter II, I. 2. 3. 2 (page 44).  

 Cellular injury in the hippocampal slices was also estimated by 

quantitation of lactate dehydrogenase (LDH) released from the slices into the 

culture media. LDH present in the culture supernatant (due to plasma membrane 

damage) participates in a coupled reaction which converts a yellow tetrazolium 

salt into a red, formazan-class dye which is measured by absorbance at 492 nm 

(Decker and Lohmann-Matthes 1988). The culture media were collected after 

various treatments, and analysed using a LDH cytotoxicity detection kit (Roche, 

Mannheim, Germany) as follows: neuronal death = [(A-Min)/(Max- Min)]x100, in 

which A is LDH activity measured in media of test condition, Max is maximum 

LDH release after 3 h treatment with Triton X-100, defined as 100% of cell death, 

Min is the LDH activity in media of untreated slices. Media from three culture 

dishes in each treatment group was collected for a single experiment. The mean 

and standard deviation from three separate experiments were then calculated. 

 

2. 8. In vitro effect of oxysterols on neuronal survival  

The toxicity of 24-hydroxycholesterol (15 µM and 50 µM of final 

concentration) on cultured hippocampall slices was determined by MAP2 staining 

and LDH release as described above. Oxysterols were dissolved in 100% 

ethanol at a concentration of 5 mM, and stored at -20°C before use. They were 

added to slice cultures for 24 h in serum-free medium. Control slices were 
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treated with vehicle (ethanol). The latter had no effect on cell viability at the 

concentration used (Wang et al. 2002). 

 

2. 9. Statistical analysis 

 Experimental data were subjected to statistical analysis using Student's t-

test or 1-way ANOVA with Bonferroni's multiple comparison post-hoc test (SPSS 

for Windows software). P < 0.05 was considered significant.  

 

3. Results 

3. 1. Western blot analysis (Fig. 1. 1) 

The antibody to cholesterol 24-hydroxylase detected a single band at ~56 

kDa in both the saline and kainate-injected rat hippocampus (Fig. 1. 1). This is 

consistent with the expected molecular weight of the enzyme, and similar to 

results obtained from the mouse brain (Lund et al. 1999; 2003). 

 

3. 2. Immunohistochemical analyses of cholesterol 24-hydroxylase after 

kainate lesions (Fig. 1. 2 and 1. 3; Table 1. 1) 

3. 2. 1. Light microscopy (Fig. 1. 2 and Table 1. 1) 

Saline-injected rats 

The saline-injected hippocampus showed light labeling for cholesterol (Fig. 

1. 2A). The low level of staining may be due to the fact most of the cholesterol in 

the brain is associated with cellular membranes and hidden within the 

phospholipid bilayer of the membranes (Ong et al. 2003). Light labeling for 
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cholesterol 24-hydroxylase (Fig. 1. 2B) was also observed. Labeling was 

observed in the cell bodies and dendrites of pyramidal neurons and punctate 

profiles in the neuropil. 

 

Kainate-injected rats 

Three days after kainate injection 

 Loss of neurons was observed in fields CA1 and CA3 of the hippocampus 

in Nissl stained sections (data not shown). The loss was more extensive on the 

side of the kainate injection than on the contralateral side. An increase in 

cholesterol immunoreactivity compared to saline-injected rats was observed in 

the affected CA fields (Fig. 1. 2C). The increased cholesterol staining was 

observed in the cell bodies and apical dendrites of pyramidal neurons and 

diffusely throughout the neuropil of the affected areas. In contrast to the 

increased immunoreactivity to cholesterol, decreased immunoreactivity to 

cholesterol 24-hydroxylase (Fig. 1. 2D) was observed in neurons of the affected 

CA field at this time. 

 

One to two weeks after kainate injection 

 Loss of neurons, and large numbers of glial cells were observed in fields 

CA1 and CA3 of the hippocampus as judged by Nissl staining. A further increase 

in cholesterol immunoreactivity compared to 3 day post-kainate-injected 

hippocampus was observed in the affected CA fields (Fig. 1. 2E). The number of 

cholesterol positive neurons was significantly greater in the 1 week (919 ± 104 
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cells / mm2) and 2 week (1018 ± 145 cells / mm2) post-kainate-injected rats, 

compared to saline-injected rats (0 ± 0 cells / mm2) (Table 1. 1). The increased 

cholesterol staining was observed in the cell bodies and apical dendrites of 

pyramidal neurons of the affected areas (Fig. 1. 2E). 

 An increased immunoreactivity to cholesterol 24-hydroxylase (Fig. 1. 2F) 

was observed in glial cells in the affected CA fields at this time. The number of 

cholesterol 24-hydroxylase positive glial cells was significantly greater in the 1 

week (1312 ± 195 cells / mm2) and 2 week (1815 ± 225 cells / mm2) post-kainate-

injected rats, compared to saline-injected rats (0 ± 0 cells / mm2) (Table 1. 1). 

The labeled cells had large diameter processes that tapered gradually from the 

cell bodies. They were shown to be astrocytes by electron microscopy and 

double immunofluorescence labeling with GFAP (see below). 

 No increase in cholesterol 24-hydroxylase immunoreactivity in glial cells 

was observed in areas of the hippocampus, or other parts of the brain that were 

unaffected by the kainate injections (data not shown). 

 

Four weeks after kainate injection 

 Little immunoreactivity to cholesterol was observed in the degenerating 

CA field at this time (Fig. 1. 2G), and the number of cholesterol positive neurons 

was significantly less than at earlier post-injection time intervals (Table 1. 1). The 

number of cholesterol 24-hydroxylase immunoreactive cells was similarly fewer, 

compared to that at 1 week or 2 week post-kainate injection (Fig. 1. 2H; Table 1. 

1). 
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3. 2. 2. Electron microscopy (Fig. 1. 3A, B) 

Dense staining for cholesterol 24-hydroxylase was observed in glial cells, 

in the 2 week post-kainate-injected rats. The glial cells had large cell bodies with 

irregular cell outlines. The nucleus contained evenly dispersed fine 

heterochromatin clumps, and absence of dense marginated heterochromatin on 

the inner aspect of the nuclear envelope. The cytoplasm contained dense 

bundles of glial filaments. They thus had features of astrocytes (Fig. 1. 3A, B). 

 

3. 2. 3. Double immunofluorescence labeling of cholesterol 24-hydroxylase 

and GFAP (Fig. 1. 3C, D) 

Dense staining for cholesterol 24-hydroxylase in glial cells in the 2 week 

post-kainate-injected rats. The glial cells had large cell bodies with irregular cell 

outlines and were double immunolabeled for GFAP, confirming their identity as 

astrocytes (Fig. 1. 3C, D). The cholesterol 24-hydroxylase and GFAP stainings 

merged and showed that cholesterol 24-hydroxylase was only present in 

astrocyes at this time. 

 

3. 3. GC/MS analysis of cholesterol and oxysterols in the kainate-injected 

rat hippocampus (Table 1. 2) 

 Kainate injection resulted in significantly greater levels of cholesterol at 1 

week (63.0 ± 10.2 µg/mg), 2 weeks (98.6 ± 16.7 µg /mg) and 4 weeks (67.0 ± 4.2 
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µg /mg) after injection, compared to the saline-injected rats (23.0 ± 15.8 µg/mg) 

(Table 1. 2).  

 Significantly greater levels of 24-hydroxycholesterol were also observed at 

1 week (26.2 ± 6.3 ng/mg) and 2 weeks (30.1 ± 4.9 ng/mg) after kainate injection, 

compared to the saline-injected rats (7.2 ± 5.4 ng/mg) (Table 1. 2). The level of 

24-hydroxycholesterol returned to baseline level, and was not significantly 

greater than that of the saline-injected rats, at 4 weeks after kainate injection 

(Table 1. 2). 

 The level of 7-ketocholesterol was also significantly greater at 2 weeks 

(4.2 ± 0.9 ng/mg) after kainate injection, compared to saline injection (1.4 ± 0.4 

ng/mg) (Table 1. 2). Very low or undetectable levels of cholesterol epoxides, and 

25-hydroxycholesterol were found in the hippocampi of the kainate or saline-

injected rats. 

 

3. 4. Effect of lovastatin on cholesterol and oxysterol concentrations after 

kainate injury (Table 1. 3 and 1. 4) 

3. 4. 1. In vivo analyses (Table 1. 3) 

 Systemic administration of lovastatin resulted in significantly lower 

cholesterol and oxysterol levels in the hippocampus after kainate injection. The 

level of cholesterol in the 1 week post-kainate plus lovastatin injected rats was 

41.6 ± 16.0 µg/mg (Table 1. 3). This was significantly less than that of the kainate 

plus vehicle injected rats (67.6 ± 15.6 µg/mg, Table 1. 3), and approximately 65% 
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of the increase in cholesterol level after kainate treatment was blocked by 

lovastatin. 

 Lovastatin injection also resulted in significantly lower levels of 24-

hydroxycholesterol, in the kainate plus lovastatin injected rats (7.2 ± 2.9 and 11.6 

± 3.0 ng/mg at 1 week and 2 weeks postinjection respectively) compared to the 

kainate plus vehicle injected rats (23.1 ± 10.6 and 27.2 ± 7.8 ng/mg) (Table 1. 3). 

This effect was even more pronounced than that of cholesterol, and 

approximately 85% of the increase in 24-hydroxycholesterol after kainate 

treatment was blocked by lovastatin. 

 The level of 7-ketocholesterol in the kainate plus lovastatin injected rats 

(2.0 ± 0.9 ng/mg) was comparable to that of the kainate plus vehicle injected rats 

(2.9 ± 1.1 ng/mg) at 1 week after kainate injection, but was significantly lower 

compared to the kainate plus vehicle injected rats at 2 weeks after kainate 

injection (1.4 ± 0.2 ng/mg compared to 3.8 ± 0.8 ng/mg) (Table 1. 3). 

 

3. 4. 2. In vitro analyses (Table 1. 4) 

The changes in cholesterol and oxysterol levels after kainate / kainate plus 

lovatstatin treatment in vivo were also observed in vitro, although the absolute 

levels of cholesterol and oxysterols per weight of “slice tissue” was much lower 

than the brain. This could be due to increased extracellular space in the slices. 

Kainate treatment of hippocampal slice cultures also resulted in significantly 

greater levels of cholesterol, 24-hydroxycholesterol and 7-ketocholesterol, 

compared to the untreated slices (Table 1. 4). The levels of cholesterol and 
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oxysterols in the kainate plus lovastatin treated slices were significantly lower 

compared to the kainate plus vehicle treated slices (Table 1. 4). 

 

3. 5. Effect of lovastatin on neuronal survival after kainate injury (Fig. 1. 4 

and 1. 5) 

3. 5. 1. In vivo analyses (Fig. 1. 4) 

 Systemic administration of lovastatin partially protected hippocampal 

neurons after kainate injection as shown by representative Nissl stained sections 

(Fig. 1. 4A). Nissl stained sections showed 48.9 ± 10.6% cell survival in the 

kainate plus lovastatin injected rats. This was significantly more than the 17.0 ± 

8.7% uninjured neurons in the kainate plus vehicle injected rats (Fig. 1. 4B). 

MAP2 immunostained sections similarly showed greater proportion of uninjured 

neurons (47.3 ± 5.7 %) in the kainate plus lovastatin injected rats, compared to 

the kainate plus vehicle injected rats (19.2 ± 9.6%, Fig. 1. 4B). 

 

3. 5. 2. In vitro analyses (Fig. 1. 5) 

 Lovastatin also partially protected hippocampal neurons from kainate 

injury in slice cultures. Significantly lower MAP2 positive neuronal cells in fields 

CA1 and CA3 of the hippocampus were detected after kainate treatment, 

compared to the untreated slices (Fig. 1. 5A, B). Slices that had been treated 

with the kainate plus lovastatin showed significantly lower neuronal loss, 

compared to those treated with the kainate plus vehicle (Fig. 1. 5A, B). The 

protective effect of lovastatin was confirmed by detection of lower LDH activity in 
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the culture media of kainate plus lovastatin treated slices (50.9 ± 10.2% of total 

LDH release), compared to kainate plus vehicle treated slices (75.2 ± 8.3% of 

total LDH release) (Fig. 1. 5C).  

 

3. 6. Effect of 24-hydroxycholesterol on neuronal injury (Fig. 1. 6) 

In vitro analyses (Fig. 1. 6) 

 Treatment of the lower concentration of 24-hydroxycholesterol (15 µM) 

had no toxic effect on cultured hippocampal slices as shown by MAP2 stained 

sections (Fig. 1. 6A). In contrast, the higher concentration of 24-

hydroxycholesterol (50 µM) showed significantly fewer number of MAP2 positive 

neuronal cells in both CA1 and CA3 of the cultured hippocampus, compared to 

the untreated slices (Fig. 1. 6A, B). 

 24-Hydroxycholesterol induced neuronal injury was confirmed by the 

detection of increased LDH release in the culture media of the 24-

hydroxycholesterol (50 µM) treated slices, compared to the vehicle treated slices 

(Fig. 1. 6C). Treatment with 7-ketocholesterol (50 µM) also resulted in toxicity 

(Fig. 1. 6C). 

 

4. Discussion 

 Increased cholesterol immunoreactivity was detected in the degenerating 

CA fields of the hippocampus after kainate lesions, using a specific antibody to 

cholesterol. The cholesterol labeling was observed in the cell bodies and 

dendrites of pyramidal neurons, which are known to degenerate after kainate 
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injury (Sandhya et al. 1998). An increased immunolabeling of the oxysterol 

biosynthetic enzyme, cholesterol 24-hydroxylase was also observed in glial cells, 

in the affected areas. Electron microscopy confirmed that the glial cells had 

dense bundles of glial filaments, whilst double immunofluorescence labeling 

showed that cholesterol 24-hydroxylase positive glial cells were double labeled 

with GFAP, confirming that they were astrocytes. 

 The increase in cholesterol levels after kainate injury was confirmed by 

GC/MS analysis. A significant elevation in cholesterol levels was detected at 1 

week, 2 weeks, and 4 weeks after kainate injection, compared to saline-injected 

controls. Similar increases in cholesterol were detected in hippocampal slice 

cultures after kainate treatment. The technique of GC/MS measures the absolute 

amount of cholesterol in tissue samples, regardless of whether it is present within 

cell membranes, or free in the cytosol. Since little cholesterol is thought to enter 

the brain from the bloodstream (Dietschy and Turley 2004), the increase in brain 

cholesterol that is detected by this method therefore indicates de novo 

cholesterol synthesis. Increases in 24-hydroxycholesterol and 7-ketocholesterol 

levels were also detected by GC/MS after kainate injury, in vivo and in vitro. The 

in vitro results suggest that the increased cholesterol and oxysterols in brain 

tissue after kainate injury may be a consequence of increased cholesterol 

synthesis and cholesterol 24-hydroxylase expression in the degenerating brain 

tissue, and not only or primarily uptake from the bloodstream. This notion is 

supported by a previous study which found that most of the 24-

hydroxycholesterol in the serum is derived from the brain (Björkhem et al. 1998). 
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 The present study adds to our previous study, which showed that there is 

increased cholesterol and oxysterol levels in the hippocampus at short time 

intervals (3 days) after kainate injury (Ong et al. 2003). In this study, we showed 

that there were further significant increases in cholesterol, 24-hydroxycholesterol 

and 7-ketocholesterol levels in the degenerating hippocampus, at later time 

points, i.e. two weeks after the initial excitotoxic insult. The increases in 

cholesterol and oxysterols followed a similar pattern, increasing up to two weeks 

after kainate injection, followed by a decrease to near pre-lesion levels at four 

week post-injection. Other oxysterols such as cholesterol 5 alpha, 6 alpha-

epoxide, cholesterol 5 beta, 6 beta-epoxide, and 25-hydroxycholesterol were also 

analyzed in our samples, but these were not detected. 

 Neurotoxic effects of cholesterol metabolites have been reported recently 

(Nelson and Alkon 2005). 24-hydroxycholesterol and 7-ketocholesterol are toxic 

to cultured cerebellar granule neurons SH-SY5Y human neuroblastoma cells 

(Chang and Liu 1998; Kolsch et al. 2001). 24-hydroxycholesterol and 7-

ketocholesterol produce neuronal death (apoptosis) by caspase-3 activation, 

DNA fragmentation, and decreasing mitochondrial membrane potential (Kolsch et 

al. 1999; Lizard et al. 2005). Our recent studies also showed that 7-

ketocholesterol, cholesterol 5 alpha, 6 alpha-epoxide and cholesterol 5 beta, 6 

beta-epoxide were neurotoxic to pyramidal neurons in slice preparations of the 

rat hippocampus (Ong et al. 2003). The oxysterols, together with other factors 

such as iron-induced free radical damage (Wang et al. 2002), might contribute to 

increasing neuronal death in the hippocampus with time after kainate injury 
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(Sandhya et al. 1998). The toxicity of 24-hydroxycholesterol has been reported to 

be equal to that of 7-ketocholesterol in SH-SY5Y cells (Kolsch et al. 1999).  

 Slice cultures were treated with low (15 µM) and high (50 µM) 

concentrations of 24-hydroxycholesterol, to determine its possible neurotoxicity 

on hippocampal neurons. These concentrations were chosen based on 24-

hydroxycholesterol levels detected in vivo (~ 7.2 ng/mg tissue in the saline-

injected hippocampus and ~ 26.2 ng/mg tissue in the 1 week post-kainate-

injected hippocampus), and assuming a specific gravity of 1.05 g/cm3 (Morano 

and Seibyl 2003). The results showed that the lower concentration of 24-

hydroxycholesterol (15 µM or ~7.2 ng/mg tissue) was not toxic to hippocampal 

neurons, whereas the higher concentration (50 µM or ~26.2 ng/mg tissue) was 

neurotoxic. These results suggest that the level of 24-hydroxycholesterol 

encountered in vivo after kainate injury was sufficient to cause neuronal damage. 

 The effect of lovastatin on brain oxysterol levels and neuronal survival 

after kainate injury was also investigated. Rats that had been injected with 

kainate plus lovastatin showed lower levels of cholesterol, 24-hydroxycholesterol, 

and 7-ketocholesterol at 1 and 2 weeks after injection, compared to rats injected 

with kainate and vehicle. Interestingly, the level of 24-hydroxycholesterol was ~ 

7.2 ng/mg tissue (non-toxic range) after lovastatin treatment. This could be 

related to an observed protective effect of lovastatin on hippocampal neurons 

after kainate treatment. Nissl-stained, or MAP2 immunostained sections showed 

significantly lower neuronal death in the hippocampus, in kainate plus lovastatin 

 66



injected rats, compared to kainate plus vehicle injected rats. Lovastatin was also 

found to show neuroprotective effect on kainate-treated hippocampal slices. 

 Although high concentrations (10–25 µM) of lovastatin can suppress cell 

proliferation and induce apoptosis in various cell lines (Choi and Jung 1999; 

Crick et al. 1998; Garcia-Roman et al. 2001), low concentrations (4 µM) of 

lovastatin did not affect cell viability of cultured hippocampal neurons (Chou et al. 

2003; Fassbender et al. 2001). The concentration of lovastatin (1 µM) used in the 

present study is therefore unlikely to cause cellular injury. The findings of 

neuroprotective effect of lovastatin in slice cultures support the notion that 

inhibition of excess cholesterol synthesis could have a neuroprotective effect, 

apart from its effects on the microvasculature (see below). Together, the above 

findings suggest that increased brain cholesterol synthesis and oxysterol 

formation play a role in propagation of neuronal death after kainate injury. 

 The findings of the present paper may have implications in 

neuropathology. The use of statins has been reported to reduce the risk of AD 

(Jick et al. 2000; Wolozin et al. 2000), and also improve the outcome after stroke 

(Jacobs 2004; Vaughan 2003). Statins have also been shown to protect cortical 

neurons from excitotoxicity in cell culture (Zacco et al. 2003).There are several 

ways in which statins could exert their beneficial effects. One possibility is that 

statins might upregulate brain endothelial nitric oxide synthase, thus increasing 

blood flow, inhibiting platelet aggregation, and improving neurologic outcome 

(Amin-Hanjani et al. 2001; Vaughan et al. 2001). A second possibility is that 

statins might have anti-inflammatory actions including reducing interleukin-1 and 

 67



tumor necrosis factor production, thus inhibiting the consequences of neuronal 

damage (Balduini et al. 2003). A third possibility is that statins may enhance 

brain plasticity by increasing vascular endothelial growth factor, angiogenesis, 

endogenous cell proliferation and neurogenesis, thus improving functional 

outcome after neuronal injury (Chen et al. 2003). A fourth possibility is that 

neuroprotective effects of statins may be related to preservation of copper/zinc 

superoxide dismutase activity (Kumagai et al. 2004). A fifth possibility, in view of 

the present study, is that the neuroprotective effect of statins may be related to 

decreased cholesterol and oxysterol synthesis in the brain areas undergoing 

neurodegeneration / neuroinflammation. It is to be noted, however, that severe 

depletion of cholesterol in the brain (> 23% by use of experimental compounds, 

compared to lovastatin, < 10%) could result in seizures (Serbanescu et al. 2004). 

Further studies are necessary to elucidate changes in brain oxysterols, and 

possible protective effect of statins on other forms of neuronal injury. 
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 II. Expression, activity, and role of serine 

palmitoyltransferase in the rat hippocampus after 

kainate injury 
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1. Introduction 

Ceramides or N-acylsphingosines are components of distinct domains or 

rafts, which serve the spatial organization of signaling molecules in the cell 

membrane. They can be generated by hydrolysis of sphingomyelin through the 

action of sphingomyelinases in cellular membranes (reviewed in Marchesini and 

Hannun 2004). Surface acid sphingomyelinase is activated by receptors or stress 

stimuli and generates ceramide that fuse small rafts to form large ceramide-

enriched membrane platforms. The latter cluster receptor molecules and recruit 

intracellular signaling molecules to aggregated receptors (reviewed in Gulbins 

and Li 2006). Neutral, membrane-bound Mg2+-independent sphingomyelinase 

activity is increased in response to TNFα, heat stress, ischemia/reperfusion, 

arachidonic acid, and glutathione depletion (Liu et al. 1998; reviewed in Levade 

and Jaffrezou 1999). 

 Besides sphingomyelin breakdown, ceramides could be generated by de 

novo synthesis. The first reaction in the biosynthetic pathway consists of 

condensation of serine and palmitoyl CoA, a reaction catalyzed by serine 

palmitoyltransferase (SPT). This enzyme consists of heterodimers of 53-kDa 

regulatory SPT1 and catalytic 63-kDa SPT2 subunits bound to the endoplasmic 

reticulum (Hanada et al. 1997; Hanada 2003). The resulting keto-sphinganine is 

reduced and acylated to dihydroceramide, and desaturated to ceramide 

(reviewed in Perry 2002). Ceramides could also be formed from sphingosine 

through the action of (dihydro)ceramide synthase (sphingosine N-

acyltransferase). Ceramide biosynthesis is activated by free palmitoyl CoA, TNFα, 
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and chemotherapeutic agents, and could lead to apoptosis (Paumen et al. 1997; 

Xu et al. 1998). 

Increased ceramide levels have been detected in the brains of patients 

with Alzheimer's disease (Han et al. 2002; 2005; Cutler et al. 2004b; Satoi et al. 

2005) and HIV dementia (Haughey et al. 2004). Elevated levels of ceramide have 

also been detected in the brain after cerebral ischemia (Herr et al. 1999; Nakane 

et al. 2000; Takahashi et al. 2004; Ohtani et al. 2004) and status epilepticus 

(Mikati et al. 2003). Although previous studies have demonstrated a role for 

sphingomyelinase activity in ceramide accumulation during neurodegeneration 

(Yu et al. 2000; Alessenko et al. 2004), relatively little is known about possible 

contributions from ceramide biosynthetic activity. It has been suggested that 

sphingolipid biosynthesis is a necessary but potentially dangerous pathway that 

could lead to cell death (Merrill 2002). 

Our previous study has shown significant increases in 16:0, 18:0, 20:0, 

22:0 and 24:1 ceramide species and decreases in sphingomyelin species in the 

rat hippocampus after intracerebroventricular injection of the excitotoxin, kainate 

(Guan et al. 2006). The purpose of the present study is to elucidate the 

expression and activity of SPT in the rat hippocampus after kainate injury. 

Possible contributions of this enzyme to ceramide accumulation and neuronal 

injury after kainate treatment were also elucidated using hippocampal slice 

cultures. 

 

2. Materials and Methods 
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2. 1. Animals and intracerebroventricular kainate injection  

 This was carried out as described in Chapter II, I. 2. 1 (Page 41).  

 

2. 2. SPT expression by Western blot analyses 

This was carried out as described in Chapter II, I. 2. 2 (Page 42). The 

PVDF membrane was then incubated overnight in primary antibody, a rabbit 

polyclonal antibody to SPT (Cayman 10005260, MI, USA, diluted 1 µg/ml in Tris 

buffered saline [TBS]). The affinity purified antibody to SPT was raised against 

amino acids 548-562 of the human SPT catalytic subunit, SPT2. 

Immunoreactivity was visualized using a chemiluminescent substrate 

(Supersignal West Pico, Pierce, Rockford, IL, USA). Equivalent protein loading 

was confirmed by re-probing of membrane with antibody to β-actin (Sigma, St 

Louis, MO, USA). Films were scanned and the densities of the bands measured 

using the Quantity One software (BioRad, CA). The densities of the SPT bands 

were normalized against those of β-actin and the ratios calculated. Possible 

significant differences in the mean ratios between the kainate and saline treated 

animals were analyzed using 1 way ANOVA with Bonferroni’s multiple 

comparison post-hoc test. P < 0.05 was considered significant. 

 

2. 3. SPT activity assay 

 Kainate-injected rats were sacrificed at 3 days and 2 weeks post-injection 

(8 rats at each time point. Controls consisted of saline-injected rats of 2 weeks 

post-injection, 6 rats). The animals were deeply anesthetized with an 
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intraperitoneal injection of Nembutal and decapitated. The right hippocampus 

was then rapidly removed. Material from two hippocampi were pooled as a single 

sample for analysis. SPT activity was assayed in microsomal fractions of the 

hippocampi as previously described (Merrill et al. 1985). The reaction mixture 

consisted of 100 mM Hepes (pH 8.3, Sigma), 5 mM DTT, 2.5 mM EDTA, and 50 

µM pyridoxal phosphate (Sigma). Microsomal proteins (100-200 µg), 150 µM 

palmitoyl-CoA (Sigma) and 1 mM L-[3H] serine (PerkinElmer, Waltham, Ma, USA) 

were added to the reaction mixture and incubated at 37 °C for 10 min. The 

reaction was terminated by addition of 0.2 ml of 0.5 M NH4OH on ice. This was 

followed by addition of 1.5 ml of chloroform/methanol (1:2, v/v), 2 ml of 0.5 M 

NH4OH, and 50 µg of sphinganine (Sigma) as a carrier. The aqueous phase was 

discarded, and the organic phase rinsed twice with 2 ml of water. A sample (0.8 

ml) was then obtained and dried. Radioactivity was quantified using scintillation 

counting (Beckman, Fullerton, CA, USA). To correct for radioactivity that may not 

have been due to SPT activity, control assays were performed with each sample 

in the absence of palmitoyl-CoA. SPT activity was expressed as product 

formed/min·mg protein. Possible significant differences in mean SPT activity of 

samples from kainate or saline treated rats were analyzed using 1 way ANOVA 

with Bonferroni’s multiple comparison post-hoc test. P < 0.05 was considered 

significant. 

 

2. 4. SPT immunohistochemistry 

2. 4. 1. Immunoperoxidase labeling 
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 This was carried out as described in Chapter II, I. 2. 3. 1 (Page 43). The 

sections were then incubated overnight with primary antibody, a rabbit polyclonal 

a rabbit polyclonal antibody to SPT (Cayman, diluted to 1 µg/ml in PBS). Control 

sections were incubated with pre-immune rabbit serum or SPT immunizing 

peptide-absorbed antibody (Cayman) instead of primary antibody. The latter 

were prepared by incubating 20 µg/ml of SPT immunizing peptide with 1:1000 

dilution of SPT antibody overnight, followed by centrifugation, and collection of 

the supernatant for immunostaining. They showed absence of labeling. 

Quantitation of SPT labeled cells was carried out as described in Chapter 

II, I. 2. 3. 2 (Page 44). 

 

2. 4. 2. Double immunofluorescence labeling 

 This was carried out as described in Chapter II, I. 2. 3. 4 (Page 45). The 

sections were then incubated overnight with polyclonal antibodies to SPT (diluted 

to 1 µg/ml in PBS) and mouse monoclonal antibody to GFAP (Chemicon, 

Temecula, CA, USA, diluted 1:1000). The sections were then washed three times 

in PBS, and incubated for 1 h at room temperature in 1:200 dilution of fluorescein 

isothiocyanate (FITC)-conjugated goat anti-mouse IgG, and Cy3-conjugated goat 

anti-rabbit IgG (Chemicon). They were mounted and examined using an 

Olympus FluoView FV500 confocal microscopy. Control sections incubated with 

SPT immunizing peptide-absorbed antibody or pre-immune rabbit serum instead 

of primary antibody. They showed absence of labeling. 
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2. 4. 3. Electron microscopy 

 This was carried out as described in Chapter II, I. 2. 3. 3 (Page 45). 

 

2. 5. Hippocampal slice cultures 

 This was carried out as described in Chapter II, I. 2. 4 (Page 46). 

 

2. 6. Electrospray ionization mass spectrometry (ESI-MS) 

 Hippocampal slices were treated with 100 µM kainate for 3 hours, followed 

by treatment with SPT inhibitors, ISP-1 (myriocin) (Sigma, M1177, 100 nM) or L-

cycloserine (Sigma, 30018, 10 µM); a ceramide synthase inhibitor, fumonisin B1 

(Sigma, F1147, 10 µM); or a neutral sphingomyelinase inhibitor, GW4869 (Sigma, 

D1692 10 µM) for 24 h. Controls consisted of untreated slices. The 

concentrations of ISP-1 (Furuya et al. 1998; Cutler et al. 2004b), fumonisin B1 

(Merrill et al. 1993) and GW4869 (Luberto et al. 2002) have previously been 

shown to be effective in inhibiting the respective enzymes in vitro. 

 Each sample consisted of material pooled from 8-12 slices. Lipids were 

extracted using the protocol of Bligh and Dyer (1959). Briefly, 400 µl of 

chloroform-methanol (1:2, v/v) were added to 10 mg hippocampal slice 

homogenate and 1 µg of internal standards, C19-CER and C12-SPM were added. 

After 10 min incubation on ice, 300 µl of chloroform and 200 µl of 1 M 

hydrochloric acid (HCl) were added to the mixture and the lipids were isolated 

from the organic phase following centrifugation. The sample was vacuum dried 
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(Thermo Savant SpeedVac, Thermo, Waltham, MA, USA), resuspended in 1 ml 

of chloroform-methanol (1:1, v/v) and used for analysis. 

 Quantification of individual molecular species was performed using 

multiple reaction monitoring (MRM) with an Applied Biosystems 4000 Q-Trap 

mass spectrometer (Applied Biosystems, Foster City, CA). Typically 10 µl of 

samples were injected for analysis. The inlet system consisted of an autosampler 

and a pump and chloroform-methanol (1:1, v/v) at a flow rate of 200 µl/min was 

used as the mobile phase. In these experiments, the first quadrupole, Q1, was 

set to pass the precursor ion of interest to the collision cell, Q2, where it 

underwent collision induced dissociation. The third quadruple, Q3, was set to 

pass the structure specific product ion characteristic of the precursor lipid of 

interest. Each individual ion dissociation pathway was optimized with regard to 

collision energy to minimize variations in relative ion abundance due to 

differences in rates of dissociation. Ceramide or sphingomyelin levels were 

calculated relative to relevant internal standards. The mean of 4 samples from 

each treatment group was calculated, and possible significant differences 

between the means analyzed using 1 way ANOVA with Bonferroni’s multiple 

comparison post-hoc test. P < 0.05 was considered significant. 

 

2. 7. Quantification of cellular injury by microtubule associated protein 

(MAP2) immunolabeling 

 Hippocampal slices were treated with 100 µM kainate for 3 hours, followed 

by treatment with ISP-1 (1 nM, 10 nM and 100 nM) or LCS (0.1, 1, 10, and 100 
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µM). Controls consisted of untreated slices. The above concentration of kainate 

has previously been shown to be toxic to neurons in hippocampal slices (Lu et al. 

2001). The slices were fixed at 24 h after treatment by immersion in 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Polytetrafluoroethylene 

membranes were cut from the culture plate inserts, washed, and immunostained 

with the attached slices using an antibody to MAP2 (Sigma, diluted 1:500) to 

demonstrate viable neurons. The number of MAP2 positive cells in 

representative regions of CA fields of the hippocampal slices was then counted 

as described in Chapter II, I. 2. 3. 2 (Page 44). The mean of 6-8 slices in each 

treatment group was calculated, and possible significant differences in the means 

analyzed using 1 way ANOVA with Bonferroni’s multiple comparison post-hoc 

test. P < 0.05 was considered significant. 

 

2. 8.  Quantitation of cellular injury by lactate dehydrogenase (LDH) assay 

 Hippocampal slice cultures were treated with 100 µM kainate for 3 hours, 

followed by treatment with ISP-1 (100 nM), LCS (10 µM), fumonisin B1 (10 µM), 

or GW4869 (10 µM) for 24 h. Controls consisted of untreated slices. Media from 

three culture wells (4 slices in each well) was pooled as a single sample, and 

analyzed using a LDH cytotoxicity detection kit (Roche, Mannheim, Germany) as 

follows: neuronal death = [(A-Min)/(Max- Min)]x100, in which A is LDH activity 

measured in media of test condition, Max is maximum LDH release after 3 h 

treatment with Triton X-100, defined as 100% of cell death, Min is the minimum 

LDH activity in media of untreated slices. The mean of four samples in each 
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treatment group was calculated, and possible significant differences between the 

means analyzed using 1 way ANOVA with Bonferroni’s multiple comparison post-

hoc test. P < 0.05 was considered significant. 

 

3. Results 

3. 1. SPT expression by Western blot analyses (Fig. 2. 1A, B) 

The affinity purified polyclonal antibody to SPT detected a single band at 

~65 kDa in saline- and kainate-injected rat hippocampus, consistent with the 

molecular weight of the SPT2 subunit (Batheja et al. 2003; Hanada 2003) (Fig 2. 

1A). The antibody to β-actin reacted against a band at ~42 kDa. SPT protein 

level was similar between kainate- and saline-injected rats at 1 or 3 day post-

injection, but was significantly greater in kainate injected rats at 1 and 2 weeks 

post-injection (Fig. 2. 1A, B). 

 

3. 2. SPT activity assay (Fig. 2. 1C). 

SPT activity was 28.4 ± 1.9 pmol/min·mg in the saline-injected rat 

hippocampus (Fig. 2. 1C). This is consistent with the results of a previous study 

(30.1 ± 4.2 pmol/min·mg in the normal rat brain) (Merrill et al. 1985). SPT activity 

was significantly increased at 2 weeks post-injection in kainate-injected rats 

compared to saline injected controls (Fig. 2. 1C). 

 

3. 3. SPT immunohistochemistry (Fig. 2. 2 and 2. 3; Table 2. 1) 

3. 3. 1.  Immunoperoxidase labeling (Fig. 2. 2 and Table 2. 1) 
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Control rats 

Light labeing for SPT (Fig. 2. 2A) was observed in pyramidal neurons in 

the CA fields of the hippocampus. 

 

Three day post-kainate injection 

 Loss of neurons was observed in fields CA1 and CA3 of the hippocampus 

in Nissl stained sections (data not shown). The damage was more extensive on 

the side of the kainate injection, but was also observed on the contralateral side, 

possibly due to diffusion of the toxin via the ventricular system. Also, unilateral 

excitotoxicity can drive the commissural projections of CA3, which can cause a 

contralateral excitotoxicity and cell death (Yasuda et al. 2001). The lesioned 

areas showed loss of SPT immunolabeling in neurons, but occasional labeling in 

glial cells (Fig. 2. 2B). 

 

One week post-kainate injection 

 Loss of neurons, and large numbers of glial cells were observed in fields 

CA1 and CA3 of the hippocampus in Nissl stained sections (data not shown). 

Increased labeling of glial cells was observed at this time (Fig. 2. 2C; Table 2. 1). 

The latter were double labeled with GFAP, a marker for astrocytes (see below). 

 

Two week post-kainate injection 

A further increase in number of SPT positive glial cells was observed at 

this time (Fig. 2. 2D, E; Table 2. 1). 
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Four week post-kainate injection 

A decline in SPT (Fig. 2. 2F) immunoreactivity was observed, and the 

number of SPT immunolabeled glial cells was fewer than that at 2 week post-

kainate injection (Table 2. 1). 

 

3. 3. 2. Double immunofluorescence labeling (Fig. 2. 3A, B) 

Immunolabeling for SPT was observed in glial cells in the kainate-lesioned 

hippocampus. The latter were double immunolabeled for GFAP, a marker for 

astrocytes (Fig. 2. 3 A, B). 

 

3. 3. 3. Electron microscopy (Fig. 2. 3 C, D) 

 Dense immunoreactivity to SPT was observed in reactive glial cells at 2 

weeks after kainate lesions. The nucleus contained fine heterochromatin clumps 

and the cytoplasm contained dense bundles of glial filaments characteristic of 

astrocytes (Fig. 2. 3C, D). Immunoreactivity was also present in end feet around 

blood vessels (Fig. 2. 3C, D). 

 

3. 4. Role of SPT in kainate injury (Fig. 2. 4- Fig. 2. 6) 

3. 4. 1. Effect on ceramide and sphingomyelin concentrations (Fig. 2. 4) 

 A significant increase in 16:0, 18:0 and 20:0 ceramide species was 

detected after kainate treatment (Fig. 2. 4A). Slices treated with kainate plus ISP-

1, LCS, or fumonisin B1 showed significantly lower levels of several ceramide 
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species, compared to slices treated with kainate alone. LCS attenuated the 

kainate-induced increases in 16:0 and 20:0 ceramide, whereas ISP-1 and 

fumonisin B1 attenuated increases in 16:0, 18:0 and 20:0 ceramide. Slices 

treated with kainate plus GW4869 showed non-significant decrease in ceramide 

compared to slices treated with kainate alone (Fig. 2. 4A). 

 A trend to a decrease but non-significant was observed in several 

sphingomyelin species after kainate treatment. No change in sphingomyelin 

species was detected after treatment of slices with kainate plus inhibitors (Fig. 2. 

4B). Possible significant differences were analyzed using 1 way ANOVA with 

Bonferroni’s multiple comparison post-hoc test. P < 0.05 was considered 

significant.  

 

3. 4. 2. Effect on MAP2 immunolabeling (Fig. 2. 5) 

 Kainate treatment resulted in a significant decrease in MAP2 

immunoreactivity in the CA fields of hippocampal slices, compared to controls. 

Treatment of slices with 100 nM ISP-1 or 10 and 100 µM LCS significantly 

attenuated the kainate-induced decrease in MAP2 staining (Fig. 2. 5). 

 

3. 4. 3. Effect on lactate dehydrogenase (LDH) release (Fig. 2. 6). 

 Kainate treatment resulted in a significant increase in LDH activity in the 

culture media compared to controls (Fig. 2. 6). Significantly lower LDH activity 

was detected in the culture media after treatment with kainate plus ISP1, LCS, or 

 81



fumonisin B1, compared to treatment with kainate alone. No significant difference 

was detected after treatment with kainate plus GW4869 (Fig. 2. 6). 

 

4. Discussion 

 The present study aimed to determine the expression, activity, and 

possible role of the first enzyme in the ceramide biosynthetic pathway, SPT, after 

kainate-induced neuronal injury. Western blot analyses and enzyme activity 

assay were carried out to elucidate SPT expression and activity after 

intracerebroventricular kainate injections. SPT enzyme protein levels of the 

hippocampus remained at near baseline levels at 1-3 days after kainate 

injections, but increased significantly at 1 week and 2 weeks after kainate 

injection. The increase in enzyme protein was paralleled by significantly 

increased hippocampal SPT enzyme activity at two weeks post-kainate injection, 

compared to saline injected controls. 

 Immunohistochemical analyses showed baseline expression of SPT in 

neurons. This finding is consistent with a previous study which showed neuronal 

expression of the enzyme in the brain (Batheja et al. 2003). Kainate treatment 

resulted in decreased labeling in neurons but increased labeling in glial cells, in 

the affected CA fields. The number of SPT positive glial cells peaked at 2 weeks 

after kainate injection. The glial cells were double labeled for GFAP, confirming 

that they were astrocytes. Non-specific binding by the antibody is unlikely, since 

sections incubated with antigen-absorbed antibody showed absence of labeling. 

 In vitro studies were carried out using hippocampal slice cultures to 
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elucidate ceramide biosynthesis after kainate lesions. Kainate treatment resulted 

in significant increases in 16:0, 18:0 and 20:0 ceramide species. The greatest 

increase was in C18:0 ceramide. These results are similar to that observed after 

intracerebroventricular kainate injections (Guan et al. 2006). Slices which had 

been treated with kainate plus SPT inhibitors ISP-1 or LCS, or the ceramide 

synthase inhibitor fumonisin B1, showed significantly lower levels of 16:0, 18:0 

and 20:0 ceramide species, compared to those treated with kainate alone. 

Treatment with a neutral sphingomyelinase inhibitor GW4869 resulted in no 

significant difference. A trend to a decrease, but non-significant, was detected in 

sphingomyelin after kainate treatment. Together, these findings indicate a role for 

ceramide biosynthesis contributing to the ceramide increase after kainate injury 

although additional effects of sphingomyelinases cannot be excluded. 

 A possible effect of ceramide biosynthesis in kainate injury was then 

investigated. Neuronal injury was determined by quantitation of MAP2 

immunostaining of viable neurons in CA fields of hippocampal slices, and assay 

of LDH released into the culture media from damaged neurons. Addition of 

kainate to slices resulted in neuronal injury, as demonstrated by decrease in 

MAP2 immunolabeling of slices, but increase in LDH released into the culture 

media. Treatment of slices with kainate plus ISP-1 or LCS resulted in significantly 

reduced neuronal injury, compared to treatment with kainate alone. Treatment 

with GW4869 showed no significant protective effect. These results indicate that 

SPT might contribute to neuronal injury after kainate treatment. These findings 

are consistent with previous studies which showed that ISP-1 prevented A beta 
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induced death of hippocampal neurons (Cutler et al. 2004b). ISP-1 also 

attenuated ethanol-induced cell death in SK-N-SH neuroblastoma cells (Saito et 

al. 2005). ISP-1 or LCS could act by reducing ceramide biosynthesis in neurons 

or astrocytes even though decreased neuronal expression of SPT was observed 

after injury. Our data also showed significant kainate-induced cell death that was 

not inhibited by SPT inhibitors. This might be attributed to excitotoxicity / calcium 

mediated neuronal injury, which is well-known to play an important role in kainate 

injury (Mattson et al. 1991). 

Ceramide causes apoptotic and non-apoptotic cell death in cultured 

neurons depending on model system and experimental conditions (Brugg et al. 

1996; Sortino et al. 1999; Movsesyan et al. 2002; Kim et al.  2005). The C16:0 

ceramide has been reported to be more potent than ceramides of other chain 

lengths in inducing apoptosis (Osawa et al. 2005). The mechanism of ceramide 

action may include: (a) Ceramide-mediated clustering of membrane receptors, 

thus enabling membrane domains to be involved in induction of apoptosis by 

death receptors (Dobrowsky and Carter 1998; reviewed in Gulbins and Li 2006), 

(b) formation of ceramide-mediated large protein permeable channels on the 

outer membrane of mitochondria (Siskind 2005). This could facilitate the release 

of proapoptotic proteins including cytochrome c from mitochondria to the 

cytoplasm, and trigger the induction of mitochondrial-dependent intrinsic caspase 

pathway (Stoica et al. 2005). (c) Besides apoptosis, ceramides could produce 

non-apoptotic, caspase-independent cell death through activation of cytosolic 

phospholipase A2α (cPLA2α) in glial cells (Kim et al. 2005). Ceramide-1-
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phosphate could facilitate translocation and activation of cPLA2α directly and by a 

PKC-dependent pathway (Nakamura et al. 2006). This could lead to increased 

generation of arachidonic acid from membrane phospholipids, and formation of 

toxic lipid peroxidation products such as 4-hydroxynonenal (Farooqui et al. 2004). 

Further studies are necessary to elucidate effects of inhibition of SPT after 

kainate injury in vivo, and possible roles of various sphingomyelinases in kainate 

injury.  
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III. Effect of apolipoprotein D on neuronal survival, 

cholesterol and lipid oxidation product formation after 

kainate-induced neuronal injury 
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1. Introduction 

 Apolipoprotein D (apoD) is a 169-amino acid glycoprotein that was 

originally identified as a component of high-density plasma lipoproteins 

(McConathy and Alaupovic 1973). ApoD is not a typical apolipoprotein, but 

belongs to the lipocalin superfamily of transporter proteins that carry various 

small hydrophobic ligands (Flower 1996). ApoD is widely expressed in both 

neural and non-neural tissues (Boyles et al.1990a; Provost et al. 1990; Seguin et 

al.1994). It is present in neurolemma cells and endoneurial fibroblasts in 

peripheral nerves (Boyles et al. 1990b), and oligodendrocytes, astrocytes, and 

perivascular cells in the brain (Boyles et al. 1990a; Smith et al. 1990; Patel et al. 

1995; Navarro et al. 1998). 

A 40-fold accumulation of apoD has been detected in the extracellular 

space of regenerating crushed rat nerve (Spreyer et al. 1990).  An even more 

marked increase in apoD has also been reported in regenerating peripheral 

nerves of rabbits, and monkeys (Boyles et al. 1990a). Elevated apoD levels was 

present after experimental brain injury (Ong et al. 1997; Montpied et al. 1999, 

Franz et al. 1999; Terrisse et al. 1999), and in neurodegenerative conditions 

such as Alzheimer's disease (Terrisse et al. 1998; Thomas et al. 2003), 

Niemann–Pick type C disease (Suresh et al. 1998) and prion disease (Dandoy-

Dron et al. 1998).  

 ApoD has the ability to bind several small hydrophobic ligands, including 

arachidonic acid, cholesterol, progesterone, porphyrins and heme-related 

molecules (Lea 1988; Peitsch and Boguski 1990; Boyles et al. 1990b; Morais-
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Cabral et al. 1995; Patel et al. 1997). Although the exact physiological function 

for apoD in the brain is not known, the diversity of ligands transported by apoD 

suggests that it may have wide-ranging physiological cellular functions. 

The excitotoxin, kainate, is commonly used to induce neuronal injury in 

studies of diseases of the CNS. KA treatment results in neuronal death in rat 

brain (Pohle and Rauca 1994; Lan et al. 2000; Boldyrev et al. 1999). We have 

previously shown a marked increase of apoD expression in the rat hippocampus 

after neuronal injury induced by kainate (Ong et al. 1997). The increase in apoD 

is paralleled by decreases in phospholipid levels and increases in arachidonic 

acid and cholesterol levels in the degenerating hippocampus (Farooqui et al. 

2001, Guan et al. 2006; He et al. 2006). One possibility is that apoD may be 

upregulated in injured neurons as part of a cellular defense mechanism to bind 

and perhaps limit the increase in free arachidonic acid or cholesterol. The 

present study was therefore carried out to examine potential neuroprotective 

effects of apoD by regulating lipid abnormalities, in hippocampal slice cultures. 

The effect of oxidative stress on cultured fibroblasts from wild type and apoD 

knockout mice was also studied as a comparison.  

 

2. Materials and methods 

2. 1. hippocampal slice cultures 

 This was carried out as described in Chapter II, I. 2. 4 (page 46). After 

initial kainate treatment, cultures were incubated with 1) different concentrations 

of apoD, diluted in fresh serum-free medium 2) 10 µg/ml of apoD and 1:100 
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dilution of rabbit antibody to apoD, and 3) 10 µg/ml beta-lactoglobulin (BLG, 

Sigma). Beta-lactoglobulin is a lipocalin with limited affinity to cholesterol and 

arachidonic acid. Purified apoD protein from human breast cystic fluid was 

prepared by centrifugation at 35,000 g for 2 h, followed by dialysis of the 

aqueous phase against K2HPO4 10 mM pH 7.4, and hydroxyapatite in same 

buffer. ApoD elutes in the flow through and is concentrated on DEAE-agarose 

and eluted with 400 mM NaCl. Stock apoD and BLG (1 mg/ml) were dissolved in 

serum-free medium and sterilized through 0.22 µm filter for sterilization. Controls 

consisted of untreated slices. 

 

2. 2. Quantitation of cellular injury by MAP2 immunolabeling 

 This was carried out as described in Chapter II, II. 2. 7 (page 75).   

 

2. 3. Quantitation of cellular injury by LDH assay 

 This was carried out as described in Chapter II, II. 2. 8 (page 76).  

 

2. 4. GC/MS analysis 

2. 4. 1. Chemicals 

 High purity (> 99%) F2-isoprostanes (F2-isoPs), 8-iso-PGF2α (iPF2α-III), 

and deuterium-labeled heavy isotopes 8-iso-PGF2α-d4 (iPF2α-III-d4) and iPF2α-

VI-d4 were purchased from Cayman Chemical (Ann Arbor, MI, USA). Standards 

for cholesterol, 7-ketocholesterol, 5α-cholestane and ergosterol were purchased 

from Sigma (St Louis, MO, USA) and of at least 95% purity. 24S-
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hydroxycholesterol (non-deuterated) was purchased from Medical Isotopes 

(Pelham, AL, USA). 5α-cholestane and ergosterol were used as internal 

standards. Standard solutions of cholesterol, oxysterols, 5α-cholestane and 

ergosterol were diluted in ethanol. Formic acid (Lancaster, England), ammonium 

hydroxide, potassium hydroxide, butylated hydroxytoluene (BHT), hydrochloric 

acid (Merck, Darmstadt, Germany), and hexane (Tedia, Fairfield, OH, USA) were 

of analytical grade. Methanol (EM Science, Darmstadt, Germany) and ethyl 

acetate (Fisher Scientific, UK) were of HPLC grade. N,O-

bis(trimethylsilyl)trifluoroacetamide +1% trimethylchlorosilane (BSTFA+TMCS) 

silylating agent was obtained from Pierce Chemicals (Rockford, IL, USA). 

Pentafluorbenzylbromide (PFBBr) and N,N-diisopropylethylamine (DIPEA) were 

purchased from Sigma Chemicals. Oasis Mixed Anion Exchange (MAX) 

cartridges were from Waters Corp (Milford, MA, USA). 

 

2. 4. 2. Lipid extraction 

 This was carried out as described in Chapter II, I. 2. 5. 2 (Page 49)  

 

2. 4. 3. Lipid hydrolysis 

 2 ml of 0.5 M KOH (in 50% methanol) was added with 400 ng ergosterol 

and 10 µg 5α-cholestane, an internal standard for cholesterol and oxysterol 

analysis, and 20 µl mixed heavy isotopes (0.5 ng 8-iso-PGF2α-d4 and 0.5 ng 

iPF2α), an internal standard for F2-isoprostanes analysis, and the vial sealed 

under N2. The lipid extract was hydrolyzed at 23°C for 2 h in the dark. 
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2. 4. 4. Mixed anion exchange solid phase extraction 

 2.7 ml formic acid (40 mM), 0.2 ml HCI (5 M) and 1 ml methanol were 

added and thoroughly mixed before loaded onto a 3 ml, 60 mg Oasis Mixed 

Anion Exchange (MAX) solid phase extraction column previously conditioned 

with 2 ml methanol and 2 ml formic acid (20 mM). The column was then washed 

with 2 ml 2% (v/v) ammonium hydroxide followed by 2 ml 40% methanol/formic 

acid. Cholesterol and oxysterols were eluted with 2 ml hexane followed by 2 ml 

ethyl acetate/hexane (30/70) and collected together into a glass tube, while 

isoprostanes are eluted with 1.6 ml ethyl acetate.  

 

2. 4. 5. Derivatization 

 The eluted solvent was evaporated under N2. Samples for cholesterol 

analysis were derivatized with 25 µl acetonitrile and 25 µl BSTFA with 1% TMCS 

for 30 min at room temperature and injected directly onto GC/MS. Samples for 

oxysterol analyses were derivatized with 50 µl acetonitrile and 50 µl BSTFA + 1% 

TMCS for 30 min at room temperature, evaporated to dryness under N2 and 

reconstituted in 30 µl undecane before injection into the GC/MS. Samples for F2-

isoprostanes were firstly derivatized with 15 µl DIPEA (10% v/v acetonitrile) and 

30 µl PFBBr (10% v/v acetonitrile) for 30 min then secondly derivatized with 20 µl 

acetonitrile and BSTFA with 40 µl 1% TMCS for 30 min at 40 0C for silylation of 

the F2-isoPs. Samples were evaporated to dryness under N2 and reconstituted in 
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30 µl undecane before injection onto GC/MS. GC/MS running will be described 

as below. 

 

2. 4. 6. GC/MS analysis of cholesterol and oxysterols 

  This was carried out as described in Chapter II, I. 2. 5. 5- 2. 5. 7 (Page 

50). 

 

2. 4. 7. GC/MS analysis of F2-isoprostanes 

 The derivatized samples were analyzed by a Hewlett-Packard 5973 mass 

selective detector interfaced with a Hewlett-Packard 6890 gas chromatograph, 

equipped with an automatic sampler and a computer workstation. The injection 

port and GC/MS interface were kept at 280 and 290 °C, respectively. The mass 

spectrometer was used in the negative chemical ionization (NCI) mode with the 

ion source and quadrapole at 150 and 106 °C, respectively, and the methane 

flow rate at 2 ml/min. Separations were carried out on a fused silica capillary 

column (30m x 0.2 mm i.d.) coated with cross-linked 5% phenylmethylsiloxane 

(film thickness 0.33 µm) (Agilent). Helium was the carrier gas with a flow rate of 1 

ml/min. Derivatized samples (1 µl) were injected splitless into the GC injection 

port. The column temperature was maintained at 170 °C for 2 min, and then 

increased to 275 °C at 15 °C /min, then held at 275 °C for 11 min. Finally 

temperature was raised to 295 °C at 25 °C /min and held for 3 min. Emission 

energy was 250 µA. Selected ion monitoring was performed to monitor the 

carboxylate ion (M-181: loss of pentafluorobenzyl, CH2C6F5) at ions m=z 569 for 
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8-iso-PGF2α and at m=z 573 for deuterium-labeled (8-iso-PGF2α-d4 and iPF2α-VI-

d4) internal standards. Quantitation was achieved by relating the peak area of the 

total F2-isoPs with the sum of the 2 different F2-isoPs’ internal standard peaks. 

Concentration values were expressed as total F2-isoPs per gram tissues and 

expressed as mean + standard deviation.  

 

2. 5. Statistical analysis 

 The results were subjected to statistical analyses, using 1 way ANOVA 

with Bonferroni’s multiple comparison post-hoc test and Student's t-Tests. P < 

0.05 was considered significant. 

 

3.  Results 

3. 1. Effect of apoD on kainate-induced injury (Fig.  3. 1- Fig. 3. 3) 

 Treatment of hippocampal slice cultures with kainate (100 µM) for 3h 

caused neuronal injury in the hippocampal field CA1 and CA3. This was shown 

by the light microscopic observation of fewer MAP2 immunostained pyramidal 

neurons in hippocampal CA fields of kainate-treated slices compared to that in 

the untreated control slices (Fig. 3. 1 and 3. 2A). In addition, kainate-induced 

neuronal death was confirmed by increase in LDH activity in the culture media of 

kainate-treated slices compared to untreated control slices (Fig. 3. 2B). 

 ApoD treatment resulted in a dose-dependent neuroprotective effect on 

the kainate-injured hippocampal slices. There were a greater number of MAP2 

immunostained pyramidal neurons in hippocampal CA fields of kainate and 10 
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µg/ml apoD, or kainate and 20 µg/ml apoD treated slices compared to the 

kainate-treated slices (Fig 3. 1). 10 µg/m ApoD protected about 53%, and 20 

µg/ml apoD protected about 37% kainate-injured neurons in the CA fields. The 

neuroprotective effect was not detected in the kainate plus 1 µg/ml apoD or 

kainate plus 5 µg/ml apoD treated slices (Fig. 3. 1). Further examination of MAP2 

immunostained pyramidal neurons in hippocampal subfields showed that post-

treatment with 10 µg/ml apoD produced protection in CA1 and CA3 (Fig. 3. 2 A). 

The effect of apoD on neuronal survival was further studied LDH assay. Post-

treatment of 10 µg/ml apoD significantly reduced LDH released from cultures 

after kainate treatment, confirming a neuroprotective effect of apoD (Fig 3. 2B). 

 In contrast to apoD, addition of the lipocalin, beta lactoglobulin (BLG), did 

not result in neuroprotection in the kainate-treated slices. Addition of apoD plus 

apoD antibody to slices also resulted in reduced neuroprotective effect compared 

to treatment with apoD alone (Fig. 3. 3) 

 

3. 2. Effect of apoD on F2-isoprostanes, cholesterol, and oxysterol levels in 

cultured hippocampal slices (Fig. 3. 4) 

 An increased level of the arachidonic peroxidation products, F2-isoPs were 

detected in the kainate-treated slices, compared to untreated controls. The 

elevation in F2-isoP level was modulated by treatment of slices with 10 µg/ml 

apoD (Fig. 3. 4A). Kainate treatment also resulted in significantly increased 

cholesterol, 7-ketocholesterol, and 24-hydroxycholesterol levels in slices, and 

these increases were similarly attenuated by apoD (Fig.  3. 4B, C, D). 
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3. 3. Effect of apoD on F2-isoprostane and oxysterol levels in cultured 

fibroblasts after hydrogen peroxide treatment (Fig. 3. 5) 

 Similar levels of F2-isoPs were detected in untreated fibroblasts from wild 

type or apoD knockout mice. After treatment with hydrogen peroxide for 4 and 8 

h however, significantly greater increases in F2-isoP levels were detected in 

fibroblasts from apoD knockout mice, compared to those from the wild type mice 

(Fig. 3. 5 A). 

The levels of 7-ketocholesterol levels were also similar, between untreated 

fibroblasts from wild type- and apoD knockout mice, but significantly greater in 

the fibroblrasts from the apoD knockout mice, after treatment with hydrogen 

peroxide (Fig 3. 5C). No significant differences in cholesterol or 24-

hydroxycholsterol levels were detected between wild type and apoD knockout 

fibroblasts, either in the untreated state or after hydrogen peroxide treatment (Fig 

3. 5B, D). 

 

4. Discussion 

 ApoD is a member of the lipocalin family of transport proteins, with ability 

to sequester small hydrophobic ligands such as arachidonic acid and cholesterol. 

The latter may be related to physiological function of the lipocalin. The present 

study was carried out to elucidate potential effects of exogenous apoD on 

neuronal survival and lipid oxidation products in hippocampal slices cultures, 

after kainate treatment. Slice cultures preserve several characteristics of the 
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intrahippocampal circuitry observed in vivo. Addition of kainate to hippocampal 

has also been shown to result in cell death, similar to the effect of kainate in 

intact animals (Lu et al. 2001). The results showed that apoD treatment dose-

dependently resulted in protection of neurons against kainate-induced neuronal 

injury, as determined by MAP2 immunohistochemistry and assay of LDH 

released into the culture media. The neuroprotective effect of apoD was partially 

blocked by antibody to apoD. Neuroprotective effect was also not observed after 

application of another lipocalin, beta lactoglobulin, suggesting that the effect was 

perhaps specific to apoD. 

 There is increasing evidence that early alteration of lipid metabolism 

during injury may play a critical role in neuronal death (Relton et al. 1993; 

Geddes et al. 1997; Keller et al. 1997; Cutler et al. 2004b). Kainate treatment 

results in a rapid breakdown of phospholipids and accumulation of arachidonic 

acid (Farooqui et al. 2001). The increase in arachidonic acid is accompanied by 

increases in the level of its toxic lipid peroxidation product, 4-hydroxynonenal, 

suggesting that this could play a major role in neuronal death after kainate 

excitotoxicity (Ong et al. 1999; Lu et al. 2001). The present results showed that 

addition of apoD significantly modulated the levels of lipid peroxidation product 

F2-isoPs in hippocampal slice cultures after kainate treatment. The latter are 

stable decomposition products of arachidonic acid peroxidation, and one of the 

most reliable biomakers of oxidative stress (Roberts and Morrow 2000; Basu 

2004). The results suggest that the neuroprotective effect of apoD may be due to 

its ability to bind arachidonic acid, thus resulting in reduction of its lipid 
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peroxidation products. Although F2-isoPs were measured in this study due to 

their stability, it is possible that other more reactive and toxic lipid peroxidation 

products such as 4-hydroxynonenal (4-HNE) might also be reduced by apoD. 

 Another way in which apoD might exert its neuroprotective effect could be 

through binding to cholesterol. Our recent studies showed that there is an 

increased cholesterol synthesis in the hippocampus after kainate treatment (Ong 

et al. 2003; He et al. 2006). Since apoD is known to bind cholesterol (Patel et al. 

1995; Suresh et al. 1998), one possibility is that apoD may sequester excess 

cholesterol in the degenerating hippocampus after kainate treatment, and 

prevent the formation of its oxidation products. This may have a neuroprotective 

function, since excess cholesterol oxidation products such as 7-ketocholesterol 

or 24-hydroxycholesterol are known to be toxic to neurons (Kolsch et al. 2001, 

Chang et al. 1998; He et al. 2006). The present study support this hypothesis, by 

showing that apoD treatment significantly modulates kainate-induced increases 

in 7-ketocholesterol and 24-hydroxycholesterol levels in hippocampal slices. 

Increased sequestration of cholesterol by apoD could reduce the content of both 

7-ketocholesterol which is formed by direct oxidation of cholesterol (Miguet-

Alfonsi et al. 2002), and 24-hydroxycholesterol, produced by the brain specific 

enzyme, cholesterol 24-hydroxylase (Russell 2000). 

 Together, the ability of apoD to prevent the formation of kainate-induced 

F2-isoPs and oxysterols suggests that this lipocalin may be an important 

antioxidant protein in the brain. This was directly studied by comparing cell 

survival and lipid oxidation in fibroblasts from wild-type mice and apoD knockout 
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mice. Fibroblasts from apoD knockout mice showed reduced cell survival after 

hydrogen peroxide treatment. Similarly F2-isoP, cholesterol, 7–ketocholesterol 

and 24-hydroxycholesterol levels were detected in untreated fibroblasts from 

both wild type and apoD knockout mice. In contrast, treatment with hydrogen 

peroxide treatment for 4h and 8h resulted in significantly greater F2-isoP and 7-

ketocholesterol levels in fibroblasts from apoD knockout mice, compared to those 

from the wild type mice. No significant difference in cholesterol and 24-

hydroxycholsterol levels were detected between wild type and apoD knockout 

fibroblasts, consistent with the reported neuron-specific localization of cholesterol 

24-hydroxylase (Russell 2000). 

 Besides kainate lesions, an increase in apoD levels has also been 

detected in the brain in neurodegenerative conditions such as Alzheimer's 

disease (Terrisse et al. 1998; Thomas et al. 2003), Niemann–Pick type C disease 

(Suresh et al. 1998) and prion disease (Dandoy-Dron et al. 1998). It is possible, 

in view of the present findings, that apo D might play a similar role in 

sequestering arachidonic acid and cholesterol, in the brain tissue in these 

conditions. Further studies are necessary to study signaling mechanisms that 

regulate apoD expression in the brain. 
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 The brain is the organ with the second highest concentration of lipids, 

exceeded only by adipose tissue. There is increasing evidence that early 

alteration of lipid metabolism during injury may play a critical role on neuronal 

death in neurodegenerative diseases. Kainate intracerebroventricular injection in 

rat brain and kainate-treated hippocampal slice cultures are widely used as in 

vivo and in vitro models of neurodegeneration. Using these models, kainate 

treatment results in breakdown of phospholipids and accumulation of arachidonic 

acid. The increase in arachidonic acid is accompanied by increases in the level of 

the toxic lipid peroxidation product, 4-hydroxynonenal, suggesting that altered 

phospholipid metabolism and lipid peroxidation could play a major role in 

neuronal death after kainate excitotoxicity.  

 Beside phospholipids, alterations in other major membrane lipids such as 

cholesterol and ceramide have been implicated in many neurological diseases 

such as AD, PD or stroke. However, the role of misregulation of cholesterol and 

ceramide metabolism in neurodegeneration is poorly understood. The present 

study was carried out to elucidate the dysregulation of cholesterol and ceramide 

metabolism after kainate injury. The role of apoD in modulation of kainate-

induced changed levels of lipid oxidative products and neurodegeneration was 

also elucidated. 

 Increased immunolabeling to cholesterol and the oxysterol biosynthetic 

enzyme, cholesterol 24-hydroxylase, was observed in the rat hippocampus after 

kainate lesions. This was accompanied by increased levels of cholesterol, 24-

hydroxycholesterol (product of cholesterol 24-hydroxylase enzymatic activity) and 



7-ketocholesterol in homogenates of the degenerating hippocampus, as detected 

by gas chromatography / mass spectrometry (GC/MS) in vivo and in vitro.  

 The in vitro results suggest that the increased cholesterol and oxysterols 

in brain tissue after kainate injury may be a consequence of increased 

cholesterol synthesis and cholesterol 24-hydroxylase expression in the 

degenerating brain tissue, and not only or primarily uptake from the bloodstream. 

In order to determine the possible neurotoxicity of oxysterol on hippocampal 

neurons, the hippocampal slices were treated with different concentrations of 24-

hydroxycholesterol. The results showed that the lower concentration of 24-

hydroxycholesterol (15 µM or ~7.2 ng/mg in normal tissue) was not toxic to 

hippocampal neurons, whereas the higher concentration (50 µM or ~26.2 ng/mg 

in kainate-treated tissue) was neurotoxic. These suggest that the level of 24-

hydroxycholesterol encountered in vivo after kainate injury was sufficient to 

cause neuronal damage. Hippocampi from rats or organotypic slices that had 

been treated with kainate plus lovastatin showed significantly lower levels of 

cholesterol, 24-hydroxycholesterol, and 7-ketocholesterol, compared to those 

that had been treated with kainate only.  

 Lovastatin also modulated hippocampal neuronal loss after kainate 

treatment, in vivo and in vitro. Together, the above findings suggest alterations in 

cholesterol metabolism after neuronal injury may be induced by kainate. 

Increased brain cholesterol synthesis and oxysterol formation play a role in 

propagation of neuronal death after kainate injury, and brain permeable statins 

such as lovastatin could have a neuroprotective effect by limiting the oxysterol 
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levels in brain areas undergoing neurodegeneration. 

 An increased ceramide level has also been shown in the kainate-injured 

brain by lipidomic analysis. Ceramide accumulation derives from a biosynthsis or 

from breakdown of sphingomyelin. In this study, increased expression of SPT, 

the first enzyme in the ceramide biosynthetic pathway was shown in reactive 

astrocytes of the hippocampus after kainate injections. The increase in enzyme 

expression was paralleled by increased SPT enzyme activity in the hippocampus 

at two weeks post-kainate injection. In vitro ESI/MS studies showed that 

treatment of hippocampal slice cultures with the SPT inhibitors ISP-1 and L-

cycloserine modulated increases in 16:0, 18:0 and 20:0 ceramide species. A 

possible effect of ceramide biosynthesis in kainate injury was also investigated. 

Neuronal injury was determined by quantitation of MAP2 immunostaining of 

viable neurons in CA fields of hippocampal slices, and by assay of LDH released 

into the culture. Treatment of hippocampal slices with SPT inhibitors partially 

reduced kainate-induced cell death. The above findings indicate changes in 

another major membrane lipid, ceramide, after kainate-induced neuronal injury. 

They also suggest that increased SPT activity and resulting accumulation of  

ceramide might contribute to neuronal injury after kainate excitotoxicity. 

 These finding suggest that the decreased phospholipids, increased lipid 

peroxidation, arachidonic acid, ceramide biosynthesis and cholesterol synthesis 

are involved in the neuronal injury induced by kainate. Prevention of these lipid 

changes may confer neuroprotection. Inhibition of abnormal kainate-induced 

accumulation of cholesterol and ceramide by lovastatin and SPT inhibitors, was 
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shown to prevent neural injury. The effect of a lipocalin, apoD, on the neuronal 

injury after kainate treatment was also investigated since it can carry various 

small hydrophobic ligands such as arachidonic acid and cholesterol. A previous 

study showed a marked increase of apoD expression in the rat hippocampus 

induced by kainate (Ong et al. 1997). The present study was carried out to 

examine potential effects of apoD on neuronal survival after kainate injury. 

Addition of purified human apoD to kainate-treated hippocampal slice cultures 

resulted in reduction in neuronal death, and modulation of kainate-induced 

increases in arachidonic oxidation product (F2-isoprostanes), cholesterol, 24-

hydroxycholesterol and 7-ketocholesterol. The results showed that the 

neuroprotective effect of apoD may be due to its ability to bind arachidonic acid, 

thus resulting in reduction of lipid peroxidation products, and its ability to prevent 

the formation of neurotoxic cholesterol oxidation products by regulating 

cholesterol metabolism. Fibroblasts from apoD knockout mice showed increased 

F2-isoprostane and 7-ketocholesterol levels after hydrogen peroxide-induced 

oxidative stress, suggesting that this lipocalin may be an important antioxidant in 

the brain. No significant difference in 24-hydroxycholsterol level was detected 

between wild type and apoD knockout fibroblasts, which is consistent with the 

reported neuron-specific localization of cholesterol 24-hydroxylase. 

 Phospholipids, cholesterol and sphingolipids in the brain are indispensable. 

Interactions among their mediators are not only necessary for normal function 

and survival of neurons but also for their death. Kainate can cause excitotoxic 

neuronal death through interacting with kainic acid-type receptors in neurons, 
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which induces neuronal Ca2+ overloading. The alteration in Ca2+ homeostasis 

and its short duration may lead to the degradation of phospholipids by the 

activation of PLA2 and subsequent arachidonic acid cascade. Arachidonic acid 

sets a stage to genarate oxidative stress. Oxidative stress and kainate-induced 

abnormally accumulated ceramide may be important factors that promote the 

increased cholesterol levels in kainate-treated tissue. Studies of non-neuronal 

and neuronal cells have shown that oxidative stress and ceramide production can 

induce the accumulation of cholesterol in cells by activating sterol regulatory 

element binding protein (SREBP), a family of transcription factors regulating 

synthesis of cholesterol (Zager and Kalhorn 2000, Culter et al. 2004). Depleted 

hippocampal neurons of ceramide with ISP-1 showed inhibition effect on the 

cholesterol level (Culter et al. 2004). Oxidative stress, which alters membrane 

lipid metabolism, may result in increased amounts of ceramides and cholesterols. 

The derangements of sphingolipid and cholesterol metabolism, in combination 

with AA-induced oxidative stress may cause synaptic dysfunction and neuronal 

degeneration. 

 Taken together, these findings indicate that deleterious changes in lipid 

homeostasis and signaling may be a key factor in the onset and progression of 

pathologies of the nervous system. Beside the dysregulation of membrane 

phospholipids, the misregulation of the other two major membrane lipids, 

cholesterol and ceramide, was also found in kainate-lesioned hippocampus. 

Similar to the degraded phospholipids, abnormally accumulated cholesterol and 

ceramide after kainate injury may contribute to neuronal cell. The results are 
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useful for understanding the mechanism of dysregulation of lipids involved in the 

pathology of neurodegeneration (Fig. 4). Prevention of dysregulated lipid 

metabolism may confer neuroprotection and provide clues to the development of 

pharmaceutical strategies to treat neurodegenerative disorders.   

 

Figure 4. Lipid alterations after KA injury 
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 Table 1. 1. Number of cholesterol positive pyramidal neurons or cholesterol 24-

hydroxylase (CYP46) positive glial cells in field CA1 of saline or kainate-injected 

rat hippocampus 

 

  S 1D 3D 1W 2W 4W 

CHO-Neu 0 313 + 39 464 + 63 919 + 104 1018 + 145 148 + 81 

CYP46-As 0 157 + 83 619 +136 1312 + 195 1815 + 225 512 + 139 

1D, 3D, 1 - 4 W refer to 1 day or 3 day, and 1, 2 and 4 week post-kainate 

injection. CHO, CYP46, Neu, As and S indicate cholesterol staining, cholesterol 

24-hydroxylase staining, neurons, astrocytes and saline respectively. The values 

are mean ± standard deviation of number of cells / mm2 in field CA1. Four 

sections were counted in each of the four rats in each category. Results were 

analyzed by 1-way ANOVA with Bonferroni's multiple comparison post-hoc test, 

P < 0.05 was considered significant. P values < 0.05 are as follows: CHO-Neu: S 

vs 1D, 3D, 1W, 2W; 1D vs 1W, 2W; 3D vs 1W, 2W, 4W; 1W vs 4W; 2W vs 4W. 

CYP46-As: S vs 3D, 1W, 2W, 4W; 1D vs 3D, 1W, 2W; 3D vs 1W, 2W; 1W vs 2W, 

4W; 2W vs 4W. 
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Table 1. 2. Concentrations of cholesterol, 24-hydroxycholesterol and 7-

ketocholesterol in the right hippocampus of the saline or kainate-injected rats 

 

  S 3D 1W 2W 4W 

Chol (µg/mg) 23.0 + 15.8 37.5 + 16.8 63.0 + 10.2 98.6 + 16.7 67.0 + 4.2 

24-OH-Chol (ng/mg) 7.2 + 5.4 10.8 + 3.7 26.2 + 6.3 30.1 + 4.9 7.4 + 2.8 

7-keto-Chol (ng/mg) 1.4 + 0.4 1.4 + 0.3 2.8 + 0.7 4.2 + 0.9 2.6 + 0.1 

3D, 1 - 4 W refer to 3 day, and 1, 2 and 4 week post-kainate injection. Chol, 24-

OH-Chol, 7-keto-Chol and S indicate cholesterol, 24-hydroxycholesterol, 7-

ketocholesterol and saline respectively. Data was normalized to the tissue weight 

and expressed as mean + standard deviation for four rats at each time point. 

Results were analyzed by 1-way ANOVA with Bonferroni's multiple comparison 

post-hoc test, P < 0.05 was considered significant. P values < 0.05 are as follows: 

Chol: S vs 1W, 2W, 4W; 3D vs 2W; 1W vs 2W. 24-OH-Chol: S vs 1W, 2W; 3D vs 

1W, 2W; 1W vs 4W; 2W vs 4W. 7-keto-Chol: S vs 2W; 3D vs 2W. 

 

 

 

 

 

 

 

 

 139



Table 1. 3. Effect of intraperitoneal injection of lovastatin on concentrations of 

cholesterol, 24-hydroxycholesterol and 7-ketocholesterol in the right hippocampi 

of 1 week and 2 week post-kainate-injected rats 

 

 Time kainate / saline kainate / lovastatin 

Chol (µg/mg) 1 W 67.6 + 15.6 41.6 + 16.0 * 

24-OH-Chol (ng/mg) 1 W 23.1 + 10.6 7.2 + 2.9 * 

24-OH-Chol (ng/mg) 2 W 27.2 + 7.8 11.6 + 3.0 * 

7-keto-Chol (ng/mg) 1 W 2.9 + 1.1 2.0 + 0.9 

7-keto-Chol (ng/mg) 2 W 3.8 + 0.8 1.4 + 0.2 * 

1 W, 2 W, Chol, 24-OH-Chol and 7-keto-Chol indicate 1 week, 2 weeks, 

cholesterol, 24-hydroxycholesterol and 7-ketocholesterol respectively. Data was 

normalized to the tissue weight and expressed as mean ± standard deviation. 

Results were analyzed by Student's t-test, *P < 0.05 was considered significant. 
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Table 1. 4. Effect of lovastatin on concentrations of cholesterol, 24-

hydroxycholesterol and 7-ketocholesterol in hippocampal slices 

 

  CONT KA KA/LOVA 

Chol (µg/mg) 1.56 + 0.29 2.17 + 0.11# 1.68+ 0.12* 

24-OH-Chol (ng/mg) 0.37 + 0.05 0.61 + 0.07# 0.43 + 0.09* 

7-keto-Chol (ng/mg) 0.42 + 0.06 1.27 + 0.46# 0.45 + 0.09* 

CONT, KA, KA/LOVA, Chol, 24-OH-Chol and 7-keto-Chol indicate untreated 

cultures, cultures treated with kainate plus vehicle, and cultures treated with 

kainate plus lovastatin, cholesterol, 24-hydroxycholesterol, and 7-ketocholesterol. 

Data was normalized to the weight of the slices and expressed as mean ± 

standard deviation of 3 experiments (12-16 slices were used in each treatment 

group per experiment). Results were analyzed by 1-way ANOVA with 

Bonferroni's multiple comparison post-hoc test, P < 0.05 was considered 

significant. # Significant difference compared to CONT group; * Significant 

difference compared to KA group. 
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 Fig. 1. 1.  Immunoblots of cholesterol 24-hydroxylase in the rat hippocampus. 

The antibody detects a band at ~56kDa in homogenates of both saline (S) and 

kainate-injected (K) rat hippocampus  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 142



Fig. 1. 1.  
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 Fig. 1. 2. A,B: light micrographs of sections of hippocampal CA1 field from a 

saline-injected rat. A: cholesterol immnuostained section, showing little labeling in 

neurons (asterisk). B: cholesterol 24-hydroxylase immunostained section, 

showing light labeling of neurons (asterisk). C,D: sections through the affected 

CA1 field of the right hippocampus, from a rat that had been injected with kainate 

3 days earlier. C: cholesterol immunostained section, showing labeled pyramidal 

cell bodies (arrows) and diffused labeling of the neuropil (asterisk). D: cholesterol 

24-hydroxylase immunostained section, showing occasional labeling in glial cells 

(arrows) but not neurons. E,F: sections through the affected CA1 field of the right 

hippocampus, from a rat that had been injected with kainate 2 weeks earlier. E: 

cholesterol immunostained section. Labeling is present in the cell bodies and 

dendrites of pyramidal neurons (arrows). Inset: control section incubated with 

antigen (cholesterol)-absorbed antibody, showing absence of staining in 

pyramidal neurons. F: cholesterol 24-hydroxylase immunostained section, 

showing labeled glial cells (arrows). G,H: sections through the affected CA1 field 

of the right hippocampus, from a rat that had been injected with kainate 4 weeks 

earlier. There is little or no staining for cholesterol (G) or cholesterol 24-

hydroxylase (H) in the degenerating CA1 field at this time (asterisks). CTRL: 

saline-injected rat. 3D, 2W, 4W: 3 days, 2 weeks, and 4 weeks after kainate 

injection. Scale = 50 µm. 
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Fig. 1. 2.  
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Fig. 1. 3. A,B: electron micrographs of cholesterol 24-hydroxylase 

immunolabeled profiles in the hippocampus of a 2 week post-kainate-injected rat. 

A: labeled astrocyte (AS), next to an unlabeled microglial cell (M). The nucleus of 

the astrocyte contains evenly dispersed fine heterochromatic clumps, and are 

distinguished from the marginated heterochromatin in the microglial cell. F: glial 

filaments. Arrows indicate reaction product. B: astrocytic end foot (AS), on a 

blood vessel. F: glial filaments. E: endothelial cell, L: lumen of vessel. Arrows 

indicate reaction product. C,D: double, cholesterol 24-hydroxylase (C, red 

channel) and GFAP (D, green channel) immunofluorescence labeled section 

from field CA1 of a 2 week post-kainate-injected rat. The cells which are positive 

for cholesterol 24-hydroxylase (arrows in B) are also labeled for GFAP (arrows in 

C), indicating that they are astrocytes. Scale: A,B = 1 µm, C,D=100 µm. 
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Fig .1. 3.  

 

 

A B DDDdC 
 

 

 

 

 148



Fig. 1. 4. In vivo analyses of the effect of lovastatin on neuronal survival after 

intracerebroventricular kainate injection. A: Nissl stained sections from the 

hippocampus from representative animals. CONT, KA and KA/LOVA indicate 

saline, kainate plus vehicle, and kainate plus lovastatin injected rats. Arrows 

indicate uninjured neurons in fields CA1 and CA3. Scale = 1 mm. B: percentage 

of the CA fields that contains uninjured neurons in Nissl or MAP2 stained 

sections. A significantly greater number of hippocampal neurons is present in the 

kainate plus lovastatin (KA/LOVA) injected rats, compared to the kainate plus 

vehicle (KA) injected rats. Data is expressed as mean ± standard deviation. n = 5 

in each group. Results were analyzed by Student's t-test, *P < 0.05 was 

considered significant.  
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Fig. 1. 4.  
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Fig. 1. 5. In vitro analyses of the effect of lovastatin on neuronal survival after 

addition of kainate to hippocampal slices. CONT, KA and KA/LOVA indicate 

untreated, kainate plus vehicle, and kainate plus lovastatin treated slices. A: 

MAP2 immunostained sections from representative slices. Arrows indicate 

uninjured neurons in fields CA1 and CA3. Scale = 300 µm. B: number of MAP2 

positive pyramidal neurons in cultured hippocampal slices. Values are mean ± 

standard deviation of number of cells / mm2 in fields CA1 or CA3 (n = 6 slices in 

each group). Results were analyzed by 1-way ANOVA with Bonferroni's multiple 

comparison post-hoc test, P < 0.05 was considered significant. # Significant 

difference compared to CONT group; * Significant difference compared to KA 

group. C: effect of lovastatin on LDH activity in hippocampal slice cultures. Data 

is expressed as percentage of total LDH release (mean ± standard deviation) of 3 

experiments. Results were analyzed by Student's t-test, P < 0.05 was considered 

significant. * Significant difference compared to KA group.  
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Fig. 1. 5.  
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Fig. 1. 6. In vitro analyses of neurotoxic effect of 24-hydroxycholesterol on 

hippocampal slice cultures. CONT, V, 24-OHC(15), 24-OHC(50) and 7-KetoC (50) 

indicate untreated cultures, cultures treated with vehicle, cultures treated with 15 

µM 24-hydroxycholesterol, cultures treated with 50 µM 24-hydroxycholesterol, 

and cultures treated with 50 µM 7-ketocholesterol. A: MAP2 immunostained 

sections from representative slices. Arrows indicate uninjured neurons in fields 

CA1 and CA3. Scale = 250 µm. B: number of MAP2 positive pyramidal neurons 

in cultured hippocampal slices. Values are mean ± standard deviation of number 

of cells / mm2 in fields CA1 or CA3 (n = 6 slices in each group). Results were 

analyzed by 1-way ANOVA with Bonferroni's multiple comparison post-hoc test, 

P < 0.05 was considered significant. #: significant difference compared to CONT; 

&: significant difference compared to 24-OHC(15). C: effect of 24-

hydroxycholesterol or 7-ketocholesterol on LDH activity in hippocampal slice 

cultures. Data were expressed as percentage of total LDH release (mean ± 

standard deviation) of 3 experiments. Results were analyzed by Student's t-test, 

P < 0.05 was considered significant. # Significant difference compared to V.  
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Fig. 1. 6.  
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Table 2. 1. Number of SPT-positive neurons and astrocytes in field CA1 of

hippocampus.  

 

S, 1D, 3D, 1W, 2W, 4W indicate saline injection (2 week post-injection), 1 day, 3 

 S a 1D b 3D c 1W d 2W 

 the 

days, 1 week, 2 week, and 4 week post-kainate-injection. Values indicate mean 

number of cells / mm2 ± standard deviation. P values < 0.05 are as follows: 

Neurons: a vs b, c, d, e, f; b vs d, e, f; c vs d, e, f; d vs e, f. Astrocytes: a vs c, d, 

e, f; b vs c, d, e, f; c vs d, e, f; d vs e; e vs f. 

 

 

 

 

 

 

 

 

 

 

 

 

e 4W f

Neurons 941 ± 172 128 ± 66 118 ± 50 43 ± 29 0 0 

Astrocytes 0 76 ± 45 179 ± 43 433 ± 82 829 ±164 478 ± 126
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Fig. 2. 1. SPT enzyme protein level and activity after kainate lesions. A,B: 

Western blot analyses of saline or kainate-treated hippocampus. The antibody to 

SPT r cognized ngle ba t 65kDa sisten  the ex d mol r 

we the tal nit nific crease SPT enz e 

p tected t 1 and ks a ate nt,  

eated controls (B). Values indicate mean relative density of SPT to β-actin ± 

, 3D, 1W, 2W, 4W indicate saline 

jection (2 weeks postinjection); and 1 day, 3 days, 1 week, 2 weeks, and 4 

eeks post kainate injection. 

e a si nd a  con t with pecte ecula

ight of SPT2 ca ytic subu  (A). Sig antly in d ym

rotein is de  a  2 wee fter kain  treatme compared to saline 

tr

standard deviation. #: significant difference compared to saline injected controls. 

&: significant difference compared to 4 weeks post-kainate injection (P < 0.05). C: 

SPT enzymatic activity in microsomal fractions of the hippocampus. The values 

indicate mean activity ± standard deviation. #: significant difference compared to 

controls (P < 0.05). Abbreviations: S, 1D

in

w
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Fig. 2. 1. 
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Fig. 2. 2. Light micrographs of field CA1 of the hippocampus. A: SPT 

immunolabeled section from saline injected rat showing light immunoreactivity in 

pyramidal neurons (arrowheads). B,C,D: SPT immunolabeled sections from rats 

that have been injected with kainate 3 days (B), 1 week (C), and 2 weeks (D) 

earlier. Loss of labeling in neurons, but increased labeling in astrocytes (arrows) 

is observed in areas affected by kainate. E: adjacent section from the same 

animal as D incubated with antigen-absorbed antibody, showing absence of 

labeling (asterisk). F: SPT immunolabeled section from a rat that has been 

injected with kainate 4 weeks earlier, showing light labeling of glial cells (arrow). 

Abbreviations: S, 3D, 1W, 2W, 4W indicate saline injection, 3 day, 1 week, 2 

week, and 4 week post kainate injection. Scale bar = 50 µm. 
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Fig. 2. 2.  

 

 

 159



Fig. 2. 3. A,B: SPT (A, red channel) and GFAP (B, green channel) double 

rescence labeled section of field CA1, from a rat that had been 

injected with kainate 2 weeks earlier. Cells which are positive for SPT are also 

labeled for GFAP (arrows) indicating that they are astrocytes. Scale A,B = 20 µm. 

C,D: sections immunostained for SPT from a rat that had been injected with 

kainate 2 weeks earlier, showing an immunoreactive glial cell with morphological 

features of astrocytes (C) and labeled astrocytic end feet (D) around blood vessel. 

Label is absent from endothelial cells (E). AS: astrocyte; F: glial filaments; L: 

lumen of the blood vessel. Arrows indicate immunoreaction products. Scale C,D 

= 1 µM. 
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Fig. 2. 3.  
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Fig. 2. 4. Mass spectrometric analyses of hippocampal slice cultures. A: changes 

 ceramide species after kainate treatment, and effects of enzyme inhibitors. 

Data are calculated as relative abundance of the various molecular species of 

ceramides (Cer) to internal standard (C19 ceramide) and normalized to protein 

concentration. Significant increases in 16:0, 18:0, 20:0 ceramide species were 

detected after kainate injury, and the increase were partially blocked by inhibitors 

to SPT (ISP-1 or LCS). B: sphingomyelin species after kainate treatment. Data 

are calculated as relative abundance of the various molecular species of 

sphingomyelin (SM) to internal standard (C12 sphingomyelin) and normalized to 

protein concentration. A non-significant trend to a decrease in 18:0 

phingomyelin species was detected after kainate treatment. No significant effect 

was observed after treatment with any of the enzyme inhibitors. Values indicate 

mean ± standard error. CONT, KA, KA/ISP-1, KA/LCS, KA/FUM and 

KA/GW4869 indicate untreated slices, kainate-treated slices, kainate plus ISP-1 

treated slices, kainate plus L-cycloserine treated slices, kainate plus fumonisin 

B1 treated slices, and kainate plus GW4869 treated slice P < 0.05 was 

considered significant. #: significant difference compared to CONT group. *: 

significant difference compared to KA group.  

in

s

s. 
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Fig. 2. 4. 
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Fig. 2. 5. Effect of SPT inhibitors on kainate-induced neuronal injury in 

hippocampal slice cultures. A,B: light micrographs (A) and cell counts (B) of 

MAP2 immunostained sections from untreated slices (CONT), kainate-treated 

slices (KA) or kainate plus ISP-1 treated slices (KA/ISP-1). Kainate treatment 

results in loss of labeling in neurons, and this loss was partially prevented by 

treatment with ISP-1. Arrows indicate uninjured neurons in fields CA1 and CA3. 

Scale = 300 µm. #: significant difference compared to CONT, *: Significant 

difference compared to KA (P < 0.05). C: cell counts of MAP2 immunostained 

sections from untreated slices (CONT), kainate-treated slices (KA) or kainate 

plus LCS treated slices (KA / LCS). Kainate treatment results in loss of labeling in 

neurons, and this loss was partially prevented by treatment with LCS. #: 

significant difference compared to CONT; *: significant difference compared to 

KA (P < 0.05). 
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Fig. 2. 5.  
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Fig. 2. 6. Effect of SPT, ceramide synthase, and neutral sphingomyelinase 

inhibitors on kainate-induced neuronal injury in hippocampal slice cultures. 

Kainate treatment results in damage to neurons reflected by increased LDH 

activity in the culture medium, and this increase was partially prevented by 

treatment with ISP-1, LCS, and fumonisin B1. No significant effect was observed 

after treatment with GW4869. CONT, KA, KA/ISP-1, KA/LCS, KA/FUM and 

KA/GW4869 indicate untreated slices, kainate-treated, kainate plus ISP-1 treated, 

kainate plus L-cycloserine treated, kainate plus fumonisin treated, and kainate 

plus GW4869 treated slices. #: significant difference compared to CONT; *: 

significant difference compared to KA (P < 0.05). 
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Fig. 2. 6. 
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Fig. 3. 1. The number of MAP2 labeled pyramidal neurons in CA field of cultured 

ippocampal slice. CONT, KA, 1, 5, 10 and 20 µg/ml apoD indicate untreated, 

ainate, and kainate plus 1, 5, 10 and 20 µg/ml final concentrations of apoD 

eated slices. The values are mean ± standard deviation of number of cells / 

mm2 in CA field. Results were analyzed by 1-way ANOVA with Bonferroni's 

multiple comparison post-hoc test. P < 0.05 was considered significant. * 

Significant difference compared to CONT group; # Significant difference 

compared to KA group. 
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Fig. 3. 1.  
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Fig. 3. 2. A: effect of apoD on neuronal survival after addition of kainate to 

ippocampal slices. MAP2 immunostained sections from representative slices. 

and 

A/apoD indicate untreated, kainate, kainate plus apoD treated slices. Scale = 

00 µm. B: effect of apoD on LDH release in hippocampal slice cultures. CONT, 

A and KA/apoD indicate untreated, kainate, and kainate plus apoD treated 

lices. The values are mean ± standard deviation of percentage of total LDH 

lease. Results were analyzed by 1-way ANOVA with Bonferroni's multiple 

omparison post-hoc test. P < 0.05 was considered significant. * Significant 

difference compared to CONT group; # Significant difference compared to KA

group. 
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Fig 3. 2.  
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 172

The number of MAP2 labeled pyramidal neurons in CA field of cultured 

hippocampal slice. CONT, KA, apoD, BLG and apoD/Ab indicate untreated, 

kainate, kainate plus apoD, kainate plus beta-lactoglobulin, kainate plus apoD 

and antibody to apoD treated slices. The values are mean ± standard deviation of 

number of cells / mm2 in CA field. Results were analyzed by 1-way ANOVA with 

Bonferroni's multiple comparison post-hoc test. P < 0.05 was considered 

significant.  

Fig. 3. 3. 
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Fig. 3. 3. 
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Fig. 3. 4. Effect of apoD on F2-isoprostanes (A), cholesterol (B), 7-

etocholesterol (C) and 24-hydroxycholesterol (D) levels in cultured hippocampal 

slices. CONT, KA and KA/apoD indicate untreated, kainate, and kainate plus 

apoD treated slices. Data was normalized to the weight of the slices and 

expressed as mean ± standard deviation of 3 experiments (12-16 slices were 

used in each treatment group per experiment). Results were analyzed by 1-way 

ANOVA with Bonferroni's multiple comparison post-hoc test. P < 0.05 was 

considered significant. * Significant difference compared to CONT group; # 

Significant difference compared to KA group. 
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Fig. 3. 4. 
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Fig. 3. 5. Effect of hydrogen peroxide on F2-isoprostanes (A), cholesterol (B), 7-

etocholesterol (C) and 24-hydroxycholesterol (D) levels in cultured fibroblasts 

from wild type and apoD knockout mice. CONT, WT and apoD KO indicate 

untreated control, cultured fibroblasts from wild type and apoD knockout mice. 

Data are expressed as mean ± standard error of concentrations per 1 x 106 cells. 

Results were analyzed by Student's t-test, P < 0.05 was considered significant. * 

Significant difference compared to WT group.  
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Fig. 3.5.  
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