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Summary

Recent advances in micro-electro-mechanical systems, digital electronics, and wireless

communications have led to the emergence of wireless sensor networks (WSNs), which

are comprised of a large number of sensors each with sensing, data processing and

communication capabilities. As sensors are unattended low-cost devices, network

lifetime is one of the most important and challenging issues in WSNs which defines

how long the deployed WSN can function well. Maintaining coverage and connectivity

are two fundamental requirements in a WSN. In this thesis, we consider the connected

target coverage (CTC) problem with the objective of maximizing the network lifetime

by scheduling sensors into multiple sets, each of which can maintain both target

coverage and connectivity.

We first model the CTC problem as a maximum cover tree (MCT) problem and

prove that the MCT problem is NP-Complete. We determine an upper bound and

a lower bound on the network lifetime for the MCT problem and then develop a

(1 + w)H(M̂) approximation algorithm to solve it, where w is an arbitrarily small

number, H(M̂) =
∑

1≤i≤M̂
1
i
≤ (ln M̂ + 1) and M̂ is the maximum number of targets

in the sensing area of any sensor. We further prove that [1−O(1)] ln(M) is a thresh-

old below which the MCT problem cannot be approximated efficiently, unless NP has

slightly super-polynomial time algorithms, i.e. NP ⊂ TIME(nO(loglogn)), where M is



the number of targets. As the protocol cost of the approximation algorithm may be

high in practice, we develop a faster heuristic algorithm based on the approximation

algorithm called Communication Weighted Greedy Cover (CWGC) algorithm and

present a distributed implementation of the heuristic algorithm. We study the per-

formance of the approximation algorithm and CWGC algorithm by comparing them

with the lifetime upper bound and other basic algorithms.

Next, we consider the CTC problem when the data generation rate of a sensor is

proportional to the number of targets it observes and with K coverage requirement

wherein each target is observed by at least K sensors. Such K-coverage requirement

improves the accuracy and reliability of the observations. We formulate the problem

as the Lifetime Maximization Observation Schedule (LMOS) problem and study the

problem with two observation scenarios depending on whether a sensor can select a

subset of targets in its sensing area to observe or not. For the first scenario, we develop

a polynomial-time algorithm which can achieve the optimal solution. For the second

scenario, we show that the problem is NP-complete. We develop approximation

algorithms for both scenarios. Based on the approximation algorithms, we develop

a low-cost heuristic algorithm which can be implemented in a distributed fashion for

both scenarios.

Finally, we present a general framework of approximation algorithm for the CTC

problem. We show that the CTC problem can be approximated by solving the prob-

lem of selecting a set of active sensors that minimizes the weighted communication

cost while maintaining connectivity and coverage.

viii
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Chapter 1

Introduction

1.1 An Overview of Wireless Sensor Networks

Recent advances in micro-electro-mechanical systems, digital electronics, and wireless

communications have led to the emergence of wireless sensor networks (WSNs) [1, 2].

Wireless sensor networks are proposed for a wide range of applications including bat-

tlefield surveillance, environmental monitoring, biological detection, smart spaces and

industrial diagnostics [3, 4, 5, 6]. In wireless sensor networks, there are a large num-

ber of low-cost, low-power, multi-functional sensing devices called sensor nodes. Each

sensor node is equipped with sensing, data processing and communication capabili-

ties. The sensor nodes form a connected network and work collectively to accomplish

the assigned tasks such as surveillance, environment monitoring and data gathering.

Since sensors are low-cost devices, a large amount of sensors could be densely

deployed [7] inside or surrounding the interested phenomenon to provide the mea-

surements with satisfactory accuracy. The dense deployment of sensors makes it

difficult and unnecessary to have deterministic deployment of sensors. Thus the sen-

sor nodes could be randomly deployed in the hostile or hazardous environment. Once

the sensors are randomly deployed, sensors have to be self-organized to build the

1



Figure 1.1: A typical sensor network architecture

network topology and route the collected information.

The dense and random deployment of sensor nodes also makes it almost imprac-

tical to recharge such a large amount of devices in a possibly hostile or rather large

area. Thus sensor nodes are usually assumed unattended devices. Further, each

low-cost sensor node has only limited resources such as power, computational ability,

bandwidth and memory. Once a sensor node consumes all its battery energy, it will

“die” – disappear in the network. The network may cease to work when the remain-

ing sensor nodes are not sufficient to accomplish the assigned tasks. Energy efficiency

is a crucial issue in sustaining sensor network functionalities and extending system

lifetime.

In a typical sensor network architecture as shown in Fig. 1.1, a phenomenon of

2



interest such as the fire is sensed by sensors around it. One or more central controllers

called sink nodes collect and further process the data generated by the sensors. The

sink node may communicate with the users via traditional wired or wireless network

infrastructures. The sensor nodes report the sensed data and communicate to the sink

node via single or multi-hop communications. As the sink node may not be unat-

tended, it is usually regarded as a node in the network with infinite (i.e. sufficiently

large) resources such as battery energy and processing capability.

1.1.1 Comparison with traditional Ad hoc networks

Wireless sensor networks are a new family of wireless ad hoc networks. Although

many algorithms and protocols have been proposed for wireless ad hoc networks,

they are not well suited to the unique features and application requirements of sensor

networks. The key differences between wireless sensor networks and ad hoc networks

are:

1. The number and the density of nodes in a sensor network are likely to be much

larger than that of most ad hoc networks.

2. Sensor queries in sensor networks are often data-centric. The queries indicate

the required data but not the addresses of sources that provide the data. Any

sensor node that can provide the required data can be the source.

3. The limited battery energy of unattended sensor nodes makes sustaining sensor

network functionalities to be one of the most important issues in WSNs.

4. As sensor nodes are densely deployed and data is being extracted from the

3



environment, the data from neighboring nodes is highly redundant [8]. By

reducing the data redundancy, both the network traffic can be reduced and the

energy efficiency can be improved.

5. Sensor nodes are prone to failures. Sensor nodes may fail due to lack of power,

physical damage, or radio interference. The topology of sensor networks may

be highly dynamic due to sensor node failures or environmental changes.

6. Sensor networks have a different communication paradigm compared to tradi-

tional ad hoc networks. As the sink node is the destination of most sensing

data, the dominating communication paradigm in sensor networks is many-to-

one communications instead of the point to point communications in ad hoc

networks.

7. Sensors are cheap and simple devices, and therefore the use of complex algo-

rithms and expensive facilities is not desirable.

The above features of sensor networks pose new challenges and require new solution

approaches. The sensor network algorithms and protocols should be scalable, robust,

self-organized and energy efficient.

1.2 Network lifetime of wireless sensor networks

Network lifetime is one of the most important and challenging issues in WSNs which

defines how long the deployed WSN can function well. Sensors are unattended nodes

with limited battery energy. In the absence of proper planning, the network may

quickly cease to work due to the network departure or the absence of observation

4



sensors deployed close to the interested phenomenon. Since a sensor network is usually

expected to last several months without recharging [9, 10], prolonging network lifetime

is one of the most important issues in wireless sensor networks.

A sensor node is generally composed of four components: sensing unit, data pro-

cessing unit, data communication unit and power unit [1]. The power unit supplies

power to the other three units. Any activity of the other three units – sensing,

data processing, data transmitting and data receiving – will consume battery energy.

Experiments show that wireless communication (data transmitting and receiving)

contributes a major part to energy consumption rather than sensing and data pro-

cessing [11]. Therefore, reducing the energy consumption of wireless radios is the key

to energy conservation and prolonging network lifetime.

Radios in sensors consume energy not only when sensors are transmitting or

receiving, but also when listening or idle. In idle state the radio still needs to be

powered to detect the presence of incoming data packets. It is observed that the

energy consumption in the idle state cannot be ignored compared with that in the

state of transmitting or receiving. Sensors consume almost the same amount of energy

when it is idle or receiving. For example, the power usage for WINS Rockwell seismic

sensor for transmit:receive:idle:sleep operational modes is 0.38-0.7 W:0.36 W: 0.34

W:0.03 W while the sensing power is 0.02 W [12]. Therefore, the radios should be

turned off to save the energy consumption when the sensors are not necessary for the

assigned tasks. We call the sensors with radios turned on to be in “active” state and

the sensors with radios turned off to be in “sleep” state. The network lifetime can

5



be greatly increased by scheduling sensor activities wherein only a subset of sensors

are let to be active and all the other sensors are let to sleep. The improved lifetime is

achieved due to the reduced idle listening, collisions of media access control (MAC)

and traffic load.

There are multiple definitions for the network lifetime based on different assump-

tions. In [13, 14, 15], etc. the network lifetime is defined as the period from the

time when the network was set up to the time when the first sensor node dies due

to energy dissipation. However, sensor nodes are normally highly redundant in the

network to accomplish the assigned tasks. The network may still function well af-

ter the first sensor node dies. A more realistic definition of the network lifetime is

the period from the time when the network was set up to the time when the WSN

cannot satisfy the requirement of assigned tasks [16, 17]. For most sensor network

applications such as surveillance or data gathering, coverage and connectivity are two

fundamental requirements. Therefore, in this thesis, we define the network lifetime

as the duration until the coverage or connectivity of the sensor network breaks.

1.3 Coverage in Wireless Sensor Networks

Coverage is a fundamental issue in a WSN, which determines how well a phenomenon

of interest (area or target) is monitored or tracked by sensors [18, 19]. Each sensor

node is able to sense the phenomenon in a finite sensing area. Any point in the

sensing area of a sensor is said to be covered by the sensor. The sensing area of a

sensor is normally assumed to be a disk with the sensor located at the center. The

6



radius of the disk is called the sensing range of the sensor. There are broadly three

types of coverage classified based on what is to be covered, namely area coverage,

discrete points coverage and barrier coverage [18].

The area coverage requires that each point in the interested area is covered by at

least one active sensor node. The requirement can be extended to K-coverage where

each point in the area should be covered by at least K active sensors. The K-coverage

requirement improves the accuracy and reliability of the observations [20], and is

necessary for many applications such as localization and target classification [21].

Area coverage guarantees that each point in the interested area is continuously

monitored, however, this may be more than what is necessary for applications. We

may be more interested in some crucial positions (targets) than the whole area in

which sensors are deployed, e.g. the street crossing in a city or the gates in a build-

ing. Instead of covering the whole area as in the area coverage problem, the target

coverage problem requires to cover only a finite set of discrete points (targets) in the

interested area. Clearly, providing area coverage is a sufficient condition for provid-

ing target coverage, but may waste the precious battery energy. On the other hand,

providing target coverage can approximate area coverage by increasing the number

of targets [22], and the target coverage will be equal to area coverage when there is

at least one target in each face divided by the area boundary and boundaries of de-

ployed sensors’ sensing areas [23]. Here a face is defined as the region surrounded by

the boundaries but without any boundary crossing it. The target coverage problem is

useful for the kinds of applications such as surveillance or environment data collection

7



where fixed points or locations are required to be monitored.

If the discrete targets of interest are geographically separated with known lo-

cations and the number of targets is small, deterministically deploying a cluster of

sensors close to each target with a long radio range node in each cluster to communi-

cate with the sink can be a good solution. However, a more general case needs to be

considered where the targets may spread in an area and a sensor can have multiple

targets in its sensing area. This can happen in applications where a cluster of sensors

is casually or randomly deployed around a cluster of geographically-nearby targets.

Further, in applications such as battle field surveillance the exact locations of targets

may not be known in advance and the deterministic deployment is prohibitive. The

sensors have to be randomly deployed into the susceptible area, where they recog-

nize the targets, observe them and send the observation data back to the sink via

multi-hop communications.

Both the area coverage and target coverage use a binary model for the sensing

capacity of sensors, that is, the interested phenomenon would be equally sensed by

a sensor at any point in its sensing area and would not be sensed outside the area.

However, in barrier coverage [24, 25], the sensing capability of a sensor is presented

as the probability that a sensor detects the phenomenon, and is assumed to be re-

lated to some other factors such as the distance between the sensor and interested

phenomenon. The barrier coverage concerns with determining the probability that

an undetected penetration passes through the barrier (area where sensors deployed).

The maximal breach path (MBP) and the maximal support path (MSP) are defined

8



as the path with the highest or lowest probability, respectively, that an undetected

penetration passes through the barrier [24, 25].

1.4 Connectivity in Wireless Sensor Networks

Connectivity is an important issue in WSNs which concerns with delivering the sensed

data from the source sensor to the destination (sink node) via radio transmissions. As

sensors are low-cost devices with constrained resources, each sensor node has only lim-

ited communication range compared with the size of the monitored area. Multi-hop

communications are necessary when a sensor cannot reach the sink node directly. Two

sensors are called neighbors if they are within each other’s communication range. The

sensor nodes and the communication links between each pair of neighbors build the

network topology, which is required to be connected by the connectivity requirement.

The network lifetime can be extended and the communication energy consumption

can be saved by controlling the network topology. Two techniques are often used to

control the network topology while guaranteeing network connectivity. The first one

tries to adjust the transmission power of each sensor node which results in adjusting

the network connectivity [26, 27, 28, 29, 30, 31, 32, 33, 34], while the other one tries

to schedule the activity of sensors - turning nodes’ radio on or off - to control the

network topology and decrease the total energy consumption [35, 36, 37, 38, 39].

Due to the space fading of wireless signals, the transmission power used at the

sender will exponentially increases as the transmission range increases. To avoid

wasting the precious energy, the transceiver of a sensor could be power controlled such

9



that different transmission power levels are used to achieve different communication

ranges. A sensor may forward the data packages to different neighbors using different

transceiver power lever according to the distance from itself to the neighbor. By this

way, an one-hop transmission from the sender to the receiver may consume much more

energy than a multi-hop transmission through relays located between the sender and

the receiver [40]. By carefully selecting the relay nodes, the total data transmission

energy consumption in the network can be greatly saved and many redundant links

in the network can be deleted from the network topology.

On the other hand, sensors are redundantly deployed. Only a subset of sensors

may be sufficient to build the network communication backbone. Other sensors not

on the backbone can go into a sleep state to conserve the energy consumption of

idle listening and overhearing. Therefore, many techniques are developed to carefully

choose the subset of sensors providing network connectivity which can also conserve

the energy consumption or maximize the network lifetime.

1.5 Scheduling sensor activities while maintaining coverage and connec-

tivity

Scheduling sensor activities is a promising approach to save the energy consumption

and prolong the system lifetime, which selects a necessary subset of sensors to be

active satisfying the application requirements. The problem of scheduling sensor

activities can be categorized based on different application requirements i.e. coverage

and connectivity requirements. The problem of scheduling sensor activities while

10



maintaining area coverage has been studied in [23, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

The problem of scheduling sensor activities while maintaining target coverage has

been studied in [16, 51, 52, 53, 54]. The problem of scheduling sensor activities while

maintaining connectivity has been studied in [35, 36, 37, 38, 39]. The problem of

scheduling sensor activities while maintaining both coverage and connectivity has

been studied in [55, 56, 57, 58, 59, 60, 61, 62]. It has been shown in [60, 61] that the

network connectivity can be guaranteed if the complete area coverage is achieved and

the communication range is at least twice the sensing range. However, for the target

coverage problem, this claim does not hold as shown by an example in [62].

Although all the above techniques on scheduling sensor activities aim to save

the energy consumption and prolong the system lifetime, the specific optimization

objective that each technique considers may be different. A straightforward objective

for the scheduling problem is to select a minimum set of sensors to be active, i.e.

the number of active sensors selected is minimized ([46, 55, 56], etc.). However, the

minimum set of active sensors may not be the most energy efficient one, e.g. the

total data transmission energy consumption can be reduced by properly adding relay

sensors between the transmitter and the receiver. In [48, 49], etc. the authors try to

select a set of active sensors such that the total energy consumption is minimized.

Further, as sensors are redundantly deployed, different sets of sensors can be activated

within different durations before the network lifetime ends. Finding the minimum or

most energy efficient set of active sensors is not sufficient to maximize the network

lifetime. In [41, 51], etc. the design objective is to find a maximum number of disjoint

sets of active sensors. Each set of active sensors is able to operate for a fixed duration
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of time, and thus the network lifetime can be prolonged by finding more sets of active

sensors. In [16] the authors illustrate that network lifetime can be further improved

without the constraint that the chosen active sensor sets are disjoint, i.e. a sensor

may appear in different sets. In [16, 23], etc. the design objective is to maximize the

network operation duration before the application requirements cannot be met due

to the death of sensors.

1.6 Contribution and organization of the thesis

In this thesis, we address the problem of scheduling sensor activities while maintaining

target coverage and network connectivity.

Chapter 2 reviews related work on scheduling sensor activities and lifetime max-

imization in wireless sensor networks.

In chapter 3, we introduce the Connected Target coverage (CTC) problem. The

sensor field consists of a set of discrete targets with fixed locations, a number of

randomly deployed sensors and a sink node. We assume that sensors are equipped

with power controlled transceivers and non-rechargeable batteries with limited energy.

The application requirements are to cover all the targets all the time and to send

all the sensed data to the sink by a subset of the deployed sensors. In other words,

the connected target coverage problem requires that all the targets are covered by

a subset of sensors (coverage requirement) and all the targets are connected to the

sink node through a subset of sensors by single-hop or multi-hop paths (connectivity

requirement). If any of the above requirements cannot be satisfied, we say that the
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deployed WSN reaches its lifetime. Sensing, transmission and reception consume

battery energy and the lifetime of such energy-constrained WSN is limited. Our

objective is to maximize the network lifetime of such a WSN. We model the CTC

problem as a Maximum Cover Tree (MCT) problem and prove that the MCT problem

is NP-Complete. We develop a linear programming formulation to derive the upper

bound and lower bound on the network lifetime for the MCT problem.

In chapter 4, based on the upper bound and lower bound derived in chapter 3, we

develop a H(M̂)(1 + w) approximation algorithm to solve the MCT problem, where

w is an arbitrarily small number, H(M̂) =
∑

1≤i≤M̂ 1/i and M̂ denotes the maximum

number of targets in the sensing area of any sensor. Our approach is to divide the

deployed sensors into a number of sensor sets each of which can cover all the targets

and can send all the sensed data to the sink. These sensor sets need not be disjoint,

and are activated successively one by one: Each time only one set is active. Only

sensors in an active set are used to sense targets and to relay data to the sink, and

all the other sensors go into an energy-saving sleep state. The energy consumption

of each sensor is directly related to the amount of data sensed and relayed by the

sensor. We further prove that [1− O(1)]ln(M) is a threshold below which the MCT

problem cannot be approximated efficiently, unless NP ⊂ TIME(nO(loglogn)), where

M is the number of targets. As a practical implementation we develop a much faster

heuristic algorithm called Communication Weighted Greedy Cover (CWGC). The

CWGC algorithm uses a greedy method to select the set of source nodes (called source

set) that cover the targets and it couples the communication cost and the selection

of source sets. We carry out extensive simulations to demonstrate the effectiveness
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of the proposed approximation algorithm and heuristic algorithm by comparing their

results with the upper bound on the lifetime. Further, we demonstrate the superiority

of our algorithms by comparing them with other basic algorithms which consider the

coverage and connectivity problems independently.

In chapter 5, we consider the CTC problem when the data generation rate of

a sensor is proportional to the number of targets it observes and with K coverage

requirement wherein each target is observed by at least K sensors. Such K-coverage

requirement improves the accuracy and reliability of the observations. We model the

CTC problem in this case as a Lifetime Maximization Observation Schedule (LMOS)

problem and discuss the problem with two different observation scenarios depending

on whether a sensor can select a subset of targets in its sensing area to observe or not.

We prove that the LMOS problem for the first scenario (LMOS-1) is a P problem and

develop a polynomial-time algorithm for it which can achieve the optimal solution

based on Linear Programming and Integer Theorem [63]. We show that the LMOS

problem for the second scenario (LMOS-2) is NP complete. We derive an upper

bound and a lower bound of the LMOS-2 problem based on the optimal solution of

LMOS-1 problem.

In chapter 6, approximation algorithms for both LMOS-1 and LMOS-2 prob-

lems are developed which provide insights into the LMOS problem and can be used

to evaluate the performance of other algorithms. As a practical implementation we

develop a faster flexible heuristic algorithm called Communication Weighted Observa-

tion Scheduling (CWOS) for both problems which can be implemented in a distributed
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fashion. We carry out extensive simulations to demonstrate the effectiveness of the

proposed heuristic algorithm by comparing its performance with that of the optimal

solution for the LMOS-1 problem and the approximation algorithm of the LMOS-2

problem.

In Chapter 7 we present a general framework of approximation algorithm for the

CTC problem. This algorithm is applicable to various possible instances of the CTC

problem described by different application scenarios, say for example, with different

observation scenarios and communication schemes. We show that the lifetime maxi-

mization problem for connected target coverage can be approximated by solving the

problem of selecting a set of active sensors that minimizes the weighted communica-

tion cost while maintaining connectivity and coverage.

Chapter 8 summarizes the work in this thesis and presents some future directions.

The list of research papers based on this thesis work is given in “List of publica-

tions”.
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Chapter 2

Related Work

2.1 Network coverage

The coverage concept is a measure of the quality of service (QoS) of the sensing func-

tion and is subject to a wide range of interpretations due to a large variety of sensors

and applications [24]. The coverage requirements include (complete or partial) area

coverage and complete target coverage. Barrier coverage is another type of cover-

age problem but the objective is to minimize the probability of undetected intrusion

through the barrier [24, 25]. Considering the coverage concept, different problems can

be formulated, based on the subject to be covered – area or discrete targets, and on

the objective of the problem – maximizing network lifetime or minimizing the number

of active sensors. The coverage algorithms proposed in the literature are centralized,

or distributed and localized. In distributed algorithms, the decision process is decen-

tralized. Distributed and localized algorithms refer to a distributed decision process

at each node that makes use of only neighborhood information (within a constant

number of hops). Because the network has a dynamic topology and needs to accom-

modate a large number of sensors, the algorithms and protocols designed should be

distributed and localized in order to accommodate a scalable architecture better.
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2.1.1 Area coverage

The problem of scheduling sensor activities for complete area coverage is addressed

in [60, 61, 23, 47, 55, 48, 49, 50]. Maintaining partial (but high) area coverage is

discussed in [64, 65, 45, 66].

In [41, 47] the authors consider a large population of sensors, deployed randomly

for area monitoring. The goal is to achieve an energy-efficient design that maintains

area coverage. Because the number of sensors deployed is larger than the optimum

required to perform the monitoring task, the solution proposed is to divide the sensor

nodes into disjoint sets so that every set can individually perform the area monitoring

tasks. These sets are then activated successively. When the current sensor set is

active, all other nodes are in a low-energy sleep mode. The goal of this approach is

to determine a maximum number of disjoint sets because this has a direct impact on

the network lifetime i.e., no sensor appears in two covers. The solutions proposed are

centralized in nature.

In [41] the area is modeled as a collection of fields in which every field has the

property that any enclosed point is covered by the same set of sensors. The most con-

strained, least constraining algorithm [41] is developed to successively compute the

disjoint covers. The algorithm prefers to the sensors that cover the critical element

(field covered by a minimal number of sensors) and gives priority to the sensors cov-

ering a high number of uncovered fields or sparsely covered fields. In [47] the disjoint

sets are modeled as disjoint dominating sets. The maximum disjoint dominating sets

computation is NP complete, and an algorithm based on graph coloring is proposed to
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compute the maximum number of disjoint dominating sets. Simulation results show

that the number of sets obtained in [47] is 1.5 to 2 times more than those in [41].

The above algorithms focus on finding maximum number of disjoint sets. In [23],

sensors are divided into non-disjoint sets for the area coverage problem using a packing

Linear Programming technique. An approximation algorithm is proposed based on

the Garg-Konemann algorithm.

The above solutions are all centralized algorithms. In [48] a distributed and local-

ized algorithm is proposed to solve the area coverage problem, called Node Scheduling

Scheme Based On Eligibly rule (SBO). In the SBO rule, the operation is divided into

rounds such that at each round, the sensors decide their own state, i.e., whether to

sleep or be active. At each round, the active sensors are active to cover the given area

where all the other sensors are in the sleep mode. This operation repeatedly runs for

next round. The main question that needs to be addressed here is that what rule

the sensors should follow to determine their state. The authors proposed a Coverage-

based Off-duty Eligibility rule (CBO) to address this question. In the CBO rule, a

sensor decides to turn it off when its sensing area is covered by its neighbors, called

sponsors. To avoid blind point, which may happen when two or more neighboring

sensors expect each other’s sponsoring, a Back-off based scheme is also introduced

in [48]. This scheme lets each sensor delay the decision process with a random period

of time. To obtain neighboring information, each sensor broadcasts a position ad-

vertisement message containing node ID and node location at the beginning of each

round.There is no proof on the performance ratio of the proposed algorithm.
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2.1.2 Target coverage

From the definitions of target coverage and area coverage, one can easily see that there

must exist a relationship between the area coverage problem and the target coverage

problem. The area coverage problem can be transformed to the target coverage

problem [41] by placing a target in each face surrounded by the area boundary and

boundaries of deployed sensors’ sensing areas. In [23] it is proved that the number of

faces of the graph is at most n(n − 1) + 2 given n sensors each with convex sensing

area. If the positions of sensors are given, we could find all the faces in O(n3) time

and thus reduce the area coverage problem into a target coverage problem.

In [51], the discrete target coverage problem is modeled as a disjoint set covers

(DSC) problem which is proven to be NP-Complete. The DSC problem is trans-

formed into a maximum-flow problem, which is then formulated as a mixed integer

programming as a basis for a heuristic solution. The simulation results in [51] show

that the heuristic outperforms the SP heuristic [41] in terms of the increased num-

ber of produced disjoint sensor covers. The above work is extended in [16] that the

network lifetime can be further improved without the constraint that the chosen set

covers are disjoint, that is, a sensor may appear in different covers. For example,

as in Figure 2.1, the network consists of 3 sensors {s1, s2, s3} that cover 3 targets

{p1, p2, p3}. Target p1 is covered by sensors s1 and s2. Target p2 is covered by sensors

s2 and s3. Target p3 is covered by sensors s3 and s1. Each sensor can operate for

a unit of time and each target is required to be covered by at least one sensor. If

the sensors are organized into disjoint sets each of which covers all the three targets,
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Figure 2.1: An example network for illustration of disjoint and non-disjoint sets

only one set among the three sets {s1, s2}, {s2, s3} or {s1, s3} can be selected as the

set of active sensors. The set can operates for 1 unit of time and thus the network

lifetime is 1 unit of time. If the sensors are organized into non-disjoint sets each

of which covers all the targets, the optimal network lifetime is 1.5 unit of time by

sequentially selecting sets {s1, s2}, {s2, s3} and {s1, s3} as the set of active sensors

and letting each set operate for 0.5 unit of time. In [16], the problem of maintaining

target coverage is modeled as a Maximum Set Covers (MSC) problem and is shown

to be NP-Complete. Two heuristics are designed to efficiently compute the sets based

on linear programming and a greedy approach.

Sensors are assumed to have the same sensing range in the above works [41] [51,

16]. In [52], the target coverage problem is addressed based on another assumption

that sensors have adjustable sensing ranges. It is formulated as an Adjustable Range

Set Covers (AR-SC) problem with the objective to find a maximum number of set

covers for the ranges associated with each sensor. Three heuristics are designed for

the problem. One is based on the integer programming and two others are based on
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a greedy approach with centralized and localized versions.

Different from the assumption used in [41, 51, 16, 52, 62] that each active sensor

simultaneously observes all the targets in its sensing area, in [53] the authors assume

that each sensor can freely select the target to observe and it observes only one target

at each time. With this assumption, an optimal solution is proposed to find the

target observation schedule that achieves maximum network lifetime. The results are

extended to the situation when each target is required to be covered by at least K

sensors (K coverage) in [54].

All the above works do not consider the connectivity issue. Further, the impact

of communication energy consumed for sending the sensed data and relayed data

on the sensor activity scheduling has not been given due consideration in the above

works, because, they either ignore the energy consumption for data transmission

or assume that each active sensor consumes the same amount of energy per unit

time. However, in a practical scenario, the energy consumed by the active nodes

can vary significantly depending on the amount of sensed and relayed data. When

the objective is to maximize the network lifetime, the impact of the existence of

transmission bottleneck caused by multiple flows traversing through the same relay

node should not be neglected.

2.2 Maintaining network connectivity

Maintaining network connectivity is concerned with deciding which set of nodes

should be turned on/off and when, for the purpose of constructing energy saving
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topology to prolong the network lifetime. In [36], geographical adaptive fidelity (GAF)

algorithm is proposed to conserve energy consumption by identifying nodes that are

equivalent from a routing perspective and then turning off unnecessary nodes. In

GAF nodes use location information to divide the field into fixed square grids. The

size of each grid stays constant, regardless of node density. Nodes within a grid

switch between sleeping and listening mode, with the guarantee that one node in

each grid stays up so that a dynamic routing backbone is maintained to forward

packets. In [35], a power saving topology maintenance algorithm called Span is pro-

posed for multi-hop wireless networks which adaptively elects coordinators from the

nodes to form a routing backbone and turn off other nodes radio receivers most of the

time to conserve power. In [38], STEM (Sparse Topology and Energy management)

approach is proposed, which exploits the path setup latency dimension rather than

the node density dimension to control a power saving topology of active nodes. They

switch nodes between two states – transfer state and monitoring state. Data are only

forwarded in the transfer state. In the monitoring state, nodes keep their radio off

and will switch into transfer state to be an initiator node on the event detected. The

extended study on combining STEM and GAF shows the potential of further power

saving by exploiting both path setup latency dimension and node density dimension.

All the above works do not consider the coverage issue. Further, the objective of

these works is either minimizing the energy consumption in the network or selecting

a minimum subset of sensors to be active.
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2.3 Coverage and connectivity

2.3.1 Maintaining both connectivity and area coverage

It has been proved that 1-coverage implies 1-connectivity when the ratio between

the radio transmission range and the sensing range is at least two [61]. Based on the

observation, a distributed mechanism, Optimal Geographic Density Control (OGDC),

is proposed in [61] to maximize the number of sleeping sensors while ensuring that

the working sensors provide complete 1-coverage and 1-connectivity. OGDC tries to

minimize the overlapping area between the working sensors. A sensor is turned on

only if it minimizes the overlapping area with the existing working sensors and if

it covers an intersection point of two working sensors. A sensor can verify whether

it satisfies these conditions using its own location and the locations of the working

sensors. OGDC can maintain both 1-coverage and 1-connectivity when the radio

transmission range is at least twice the sensing range.

An integrated coverage and connectivity configuration protocol called CCP pro-

posed in [60, 67] aims to minimize the number of active nodes, while maintaining

both K-coverage and K-connectivity. It is proved that K-coverage also implies K-

connectivity when the transmission range is at least twice the sensing range. To

ensure K-coverage, a node only needs to check whether the intersection points inside

its sensing area are K-covered. Since CCP cannot guarantee network connectivity

when the radio transmission range is less than twice the sensing range, CCP and

Span [35] are combined to provide network connectivity when the communication

range is less than 2 times of the sensing range.
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2.3.2 Maintaining both connectivity and target coverage

In [60] and [61], it is shown that the network connectivity can be guaranteed if the

complete area coverage is achieved and the communication range is at least twice the

sensing range. However, this claim may not hold in the discrete points coverage prob-

lem as indicated by an example in [62]. In [62], the connected set cover problem with

adjustable sensing ranges (called ASR-CSC problem) is considered and a heuristic is

proposed for it. The connectivity in [62] refers to network connectivity and hence

requires that all sensors in the network are connected to each other. The heuristic

proposed for the ASR-CSC problem is to construct a virtual backbone (a connected

dominating set, CDS) for network-wide connectivity and then select working sensors

and their sensing ranges for the target coverage. A distributed and localized rule is

applied to construct the CDS [68] and the selection of working sensors is based on a

greedy approach that adds a sensor to the cover according to its contribution to the

target coverage. However, the energy consumption model in [62] does not consider

the transmission and reception power but only the sensing power. Further, in most

cases, network-wide connectivity may not be necessary for target coverage and only

the sensors along the routes carrying the sensed data are required to be active.

2.4 Maximizing network lifetime

Maximizing network lifetime is an important issue in wireless sensor networks. De-

signing efficient routing algorithms or communication mechanisms to prolong the

network lifetime has been studied in [14, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
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80, 81, 82, 83, 84, 85, 86]. In [69], the routing problem is formulated as a linear pro-

gramming problem, where the objective is to maximize the network lifetime, which is

equivalent to the time until the network partition occurs due to battery outage, and a

minimum cost path routing algorithm is proposed to prolong the network lifetime. In

[14], upper bounds on the lifetime of a sensor network are provided by taking into ac-

count all the possible collaborative data gathering strategies over the possible network

routes. The Maximum Lifetime Data Aggregation (MLDA) and Maximum Lifetime

Data Routing (MLDR) problem [70] are also studied and solved as the LP problem.

In [71], the maximum data collection problem is formulated as a LP problem and

an approximation algorithm is developed. In [72], the problem of the lifetime maxi-

mization in a wireless sensor network under the constraint of the target end-to-end

transmission success probability is investigated, by adopting a cross-layer strategy

that considers both physical layer (i.e., power control) and network layer (i.e., rout-

ing protocol) jointly. However, all the above lifetime maximization techniques are

based on a communication network graph, they do not address the issue of network

coverage and scheduling sensors activities.
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Chapter 3

Maximum cover tree (MCT) problem

In this chapter, we consider the problem of scheduling sensor activities to maximize

network lifetime while maintaining network connectivity and target coverage. We

call the problem as Connected target coverage (CTC) problem. We study the con-

nectivity issue and consider the communication energy consumption in the network.

The impact of the communication energy consumed for sending the sensed data and

relayed data on the sensor activity scheduling has not been given due consideration

in the former works as they ignore the energy consumption for data transmission and

assume that each active sensor consumes the same amount of energy per unit time.

However, in a practical scenario, the energy consumed by the active nodes can vary

significantly depending on the amount of sensed and relayed data. When the objec-

tive is to maximize the network lifetime, the impact of the existence of transmission

bottleneck caused by multiple flows traversing through the same relay node should

not be neglected. Regarding the set of active sensors in each time point as an cover

tree, we formulate the CTC problem into the maximum cover tree (MCT) problem.

We prove that MCT problem is NP-complete by reducing it from the 3-SAT problem.

We propose an upper bound and a lower bound for the MCT problem by solving a

Linear Programming (LP) formulation.
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3.1 Connected target coverage (CTC) problem

We consider the following application scenario. In a sensor field, a number of targets

with fixed locations are required to be continuously monitored (covered) in the field

by a (large) number of randomly scattered sensors. Each sensor is assumed to cover a

fixed area and any target located in the area could be monitored by the sensor. The

data that are sensed and transmitted by the sensors are collected and processed by

a sink node. If a sensor is selected to be active for performing the monitoring task,

it generates data messages (e.g., quantized measurements) at a certain rate. Such a

sensor is called a source sensor. Sensed data messages are transmitted to the sink

via radio communication. Multiple-hop communication may be needed from a source

to the sink. A sensor node which does not perform monitoring task but needs to be

activated to relay data is called a relay node. A sensor is called an active node if it

is selected either as a source or as a relay or both. A sensor that is not active goes

into an energy saving sleep state. In this thesis, scheduling sensor activity refers to

determining the state of the deployed sensors to be either active (as source or relay

or both) or sleep as well as their state durations.

We assume that the following assumptions hold initially when the network is set

up:

• (assumption 1) all the sensors deployed in the WSN can reach the sink via

single-hop or multi-hop communication;

• (assumption 2) each target is covered by at least one sensor;
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The network lifetime is defined as the time period from the time when the network

was set up until 1) one or more targets cannot be covered, or 2) a route cannot

be found to send the sensed data to the sink. Now we define the connected target

coverage problem (CTC).

Definition 1 : Connected Target Coverage Problem: Given M targets with known

locations and an energy constrained WSN with N sensors, it is required to schedule

sensor activity so as to maximize the network lifetime subject to the conditions: 1)

each target is covered by at least one source and 2) from each source to the sink,

there must exist a route traversing through only the active sensors.

We illustrate the CTC problem in Fig. 3.1. There are 13 sensors, 5 targets and 1

sink in the sensor field. The sensors that can cover one or more targets are indicated

by their circles – solid circles for active source sensors and others for sleep or relay

sensors. Arrowed lines are used to denote the routes used to relay data from sources

to the sink. Two possible solutions are illustrated in Fig. 3.1(a) and Fig. 3.1(b). In

both solutions illustrated in Fig. 3.1, all the targets are covered by active sensors and

each active sensor can reach the sink. This figure illustrates that only a subset of the

deployed sensors is sufficient to carry out the functionalities of the WSN and different

subsets can be used in different intervals.

3.2 Problem formulation

In this section, we model the CTC problem as a Maximum Cover Tree (MCT) prob-

lem, prove that it is NP-Complete and provide an upper bound on the network lifetime
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Figure 3.1: Illustration of the CTC problem. (a) solution 1; (b) solution 2

for the MCT problem.

Let S = {s1, s2, · · · , sN} (|S| = N) and P = {p1, p2, · · · , pM} (|P| = M) denote

the set of deployed sensors and the set of targets, respectively. We use R to denote

the sink. If sensor si and sj are neighbors, we say there exists a communication link

between them. If target pm is in the sensing area of sensor si, we say there exists

an observation link between si and pm. The set of sensors, targets and sink can

be modeled as a (undirected) connected graph G = (V,E), where V = S
⋃
R
⋃
P
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and E is the set of communication links and observation links. Let Ss(τ) and Sr(τ)

denote the set of selected sensors as sources and relays in an operational time interval

(defined later) τ , respectively. The set of active sensors in τ is therefore given by

Sa(τ) = Ss(τ)
⋃
Sr(τ), where Ss(τ), Sr(τ), Sa(τ) ⊆ S.

We assume that the active/sleep state of each sensor will not change within an

operational time interval, i.e., an active sensor is always in active state and a sleeping

sensor is always in energy saving state within the time interval. Further, we assume

that all sources have the same data generation rate, i.e., all sources use the same

sampling frequency, quantization, modulation and coding scheme. Therefore, a fixed

amount of bits, denoted by B(τ), is generated by each source in a time interval τ .

Since each sensor has limited energy, if the time interval is too long, it may so happen

that a selected active sensor cannot carry out its functionality for generating/relaying

data within such an interval. Therefore, we define the operational time interval (OTI)

as the time duration within which each sensor remains in the same state and each se-

lected active sensor can accomplish its data generating/relaying task using its residual

energy.

For simplicity, we consider the following energy consumption model which mainly

takes into account the energy consumption for sensing and relaying data. Signalling

overheads are not included in the energy consumption model. Let es and er denote the

energy consumed for sensing and receiving a bit, respectively. The energy consumed

for transmission depends on the distance between the transmitter and receiver. Let

etij denote the energy consumed by sender si for transmitting a bit to receiver sj:
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etij = et + b · dαij, where et and b are constants, dij is the Euclidean distance between

node si and sj and α is the path loss factor. For simplicity, we omit the sender and

receiver id and use etrans to represent etij. A source needs to consume es×B(τ) energy

for its sensing task and at least etrans × B(τ) energy for sending out its sensed data

in an OTI τ . The energy consumed by a relay is dependent on the number of bits it

will transmit or receive in an OTI, where the latter is further dependent on how we

construct a connected tree from the sources to the sink. We let E0(s) to denote the

initial energy of a sensor s at the time of the network setup.

Let T (τ) = (Ss(τ)
⋃
Sr(τ),E′(τ)) denote the constructed tree in an OTI τ , where

Ss(τ)
⋃
Sr(τ) is the set of active sensors and E′(τ) is the set of edges used to connect

the selected active sensors and the sink. The tree T (τ) has the following properties:

• (tree property 1) The root of the tree is the sink;

• (tree property 2) Each leaf of the tree is a source sensor;

• (tree property 3) Each target can directly connect to at least one source in the

tree.

Such a tree is called as cover tree since it covers all the targets and, by definition, a

tree is connected. Note that a sensor can act as a source or relay or both. In a cover

tree, we call a sensor si a descendant of another sensor sj if sensor si needs sj to relay

its data to the sink; and sj is called the ancestor of si. Let D(s, T ) denote the number

of sources among the descendants of sensor s in a given cover tree T . If a sensor s′

is a leaf, i.e., s′ has no descendent, then D(s′, T ) = 0. Obviously, D(R, T ) = |Ss|.

Since all the sensed data should be relayed to the sink, a sensor s in the tree needs
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(etrans + es) × B(τ) × D(s, T ) energy to relay the data from its descendants in an

OTI.

From the above discussion, for a given set of sources Ss(τ), set of relays Sr(τ)

and cover tree T (τ) in an OTI, the energy consumption model for a sensor s in the

sensor field is given by

E(s, T (τ)) =



esB(τ) + etransB(τ), s ∈ Ss(τ) and s 6∈ Sr(τ);

(etrans + er)B(τ)D(s, T (τ)), s ∈ Sr(τ) and s 6∈ Ss(τ);

(es + etrans)B(τ) + (etrans + er)B(τ)D(s, T (τ)), s ∈ Ss(τ)
⋂
Sr(τ);

0, s 6∈ Ss(τ) and s 6∈ Sr(τ).

(3.1)

Definition 2: Maximum Cover Tree (MCT) Problem: Given a graph G = (V,E)

and the initial energy E0(s) of each sensor s, where V = S
⋃
P
⋃
R and E is composed

of communication links and observation links, find a family of cover trees T (τ1),

T (τ2), ..., T (τx) and their OTIs τ1, τ2, ..., τx such that the network lifetime, denoted

as T (S, T ,R), is maximized; Mathematically, the MCT problem is defined as:

Maximize T (S, T ,R)≡
x∑
i=1

τi, (3.2)

subject to
x∑
i=1

E(s, T (τi)) ≤ E0(s),∀s ∈ S. (3.3)

In the MCT problem definition, the number of OTIs is denoted by x. Given

a finite initial energy and a minimum time duration τ , the value of x is finite but

unknown. Further, note that the duration of any two OTIs may be different. Also,

a sensor can appear in different trees, i.e., the sets of sensors in different trees need

not be disjoint.
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3.2.1 Proof of NP-Completeness

First we define the decision version of the MCT problem and then prove that it is

NP-Complete. The decision version of the MCT problem is to determine whether

there exists a family of cover trees T (τ1), T (τ2), ..., T (τx) and their OTIs τ1, τ2, ...,

τx such that for a given initial energy of each deployed sensor, the value of t1 + · · ·+ tx

is larger than equal to a given value T .

Theorem 1 The MCT problem is NP-Complete.

Proof:

Given T and an arbitrary family of cover trees T (τ1), T (τ2), ..., T (τx) with their

OTIs τ1, τ2, ..., τx, we can verify in polynomial time whether 1)
∑

1≤k≤x τk ≥ T , 2)

all the targets are covered in each cover tree and 3) the energy consumption of each

node si over all the trees does not exceed E0(si). Therefore MCT ∈ NP .

To prove that the MCT problem is NP-Hard, we reduce the 3SAT problem to the

MCT problem in polynomial-time. Let U = {u1, u2, · · · , un} be the set of variables

and C = {c1, c2, · · · , cm} be the set of clauses in an arbitrary instance of 3SAT.

First, we add a sink node R into the network. For each variable ui ∈ U , there

is a component (illustrated in Fig. 3.2-(b)), composed of one target pi, three sensor

nodes Si = {ui, ui, ri}, three communication links Ec
i = {(ui, ri), (ui, ri), (ri,R)} and

two observation links Eo
i = {(ui, pi), (ui, pi)}. For each clause cj ∈ C with the three

literals xj, yj, zj ∈ U ∪U , there is a component (illustrated in Fig. 3.2-(a)) composed

of a target cj, three sensor nodes xj, yj and zj, and three observation links Eo
j =

{(xj, cj), (yj, cj), (zj, cj)}.
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Figure 3.2: Reduction of 3SAT to MCT problem

The construction of our instance of the MCT problem is completed by setting T =

1, with the set of sensor nodes S =
⋃
i Si, targets P = (

⋃
i pi)∪(

⋃
j cj), communication

links Ec =
⋃
i Ec

i and observation links Eo = (
⋃
i Eo

i )∪ (
⋃
j Eo

j) (illustrated in Fig. 3.2-

(c)). As an example, in Fig. 3.2-(c), the clause c1 is assumed to be c1 = {u1∨ ū2∨un}.

In that case, x1 = u1, y1 = ū2 and z1 = un. For each sensor node, the initial energy

E0 is 1 unit, er = es and (er + etrans)B(1) = 1. It is easy to see that the construction

can be accomplished in polynomial time.
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First, we show that a solution for the 3SAT problem can be transformed to the so-

lution for the MCT problem in polynomial time. Suppose that t : U → {True, False}

is a satisfying truth assignment for C. If t(ui) = True, we assign sensor ui to be the

source sensor; otherwise assign ui to be the source sensor. Node ri is the relay node to

connect ui or ui to the sink node. It is easy to verify that all the targets are covered,

the lifetime is 1 and this can be done in polynomial time.

Now, we show that a solution for the MCT problem can be transformed to a

solution for the 3SAT problem. Suppose that cover trees T (τ1), T (τ2), ..., T (τx) and

their OTIs τ1, τ2, ..., τx is a feasible solution for the MCT problem and
∑

1≤k≤x τk ≥ 1.

As target pi can be covered by sensor ui and ui only, at least one of them should be

active as the source node at any time, and thus ri must be active as the relay node

all the time. Further, ui and ui cannot be simultaneously chosen as the source nodes,

otherwise ri will consume more than 1 unit of energy if the lifetime is 1. Thus in

any cover tree T (τx), one and only one sensor among sensor ui and ui (but not

both) should be chosen as the source node. Further, if target cj is covered by a

source node xj ∈ U ∪ U , the corresponding clause cj must be true if we set xj = 1.

Therefore, assigning the corresponding literals of the source nodes in any cover tree

T (τk) (1 ≤ k ≤ x) to be true gives a satisfying true assignment for C. Therefore, the

MCT problem is NP-Hard.

Since the MCT problem belongs to class NP and is NP-Hard, it is NP-Complete.

35



3.3 Lifetime upper bound and lower bound

In this section, we develop a linear programming problem formulation, the solution

of which can be used as a performance bound for the MCT problem. In OTI τk

(1 ≤ k ≤ x), for each target pm, let Sm(τk) ⊆ Ss(τk) denote the set of source sensors

whose sensing areas cover target pm. For a given solution of the MCT problem, in

OTI τk, for each target pm, we can arbitrarily select exactly one source si ∈ Sm(τk)

and call it as the solo-observer of target pm.

Lemma 1 There exists an optimal solution of the MCT problem, wherein, during

each OTI, no matter how the solo-observers are selected, the set of source nodes is

equal to the set of solo-observer nodes.

Proof: Consider an optimal solution of the MCT problem. From the definition of

solo-observer node, each solo-observer node must be the source node. If a source node

is not the solo-observer of any target, we can simply remove it from the source set

without breaking the target coverage. The removal of such sensors from the source

set cannot decrease the lifetime and at the same time it cannot increase the lifetime,

because the original solution is optimal. Thus, we get an optimal solution which

contains only the solo-observer nodes as source nodes.

Let B(τ) = τ · fs, where fs is the bit rate generated by a source sensor. Let

τim denote the total length of time that sensor si is selected as the solo-observer of

target pm, maxm(τim) be the maximum total length of time that sensor si functions

as the solo-observer of a target, Fij be the total amount of data that are transmitted

through the link (si, sj) and T be the network lifetime. We introduce the following
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linear programming (LP) problem and prove that the optimal solution of it is the

lifetime upper bound for the MCT problem:

Maximize:

T (3.4)

Subject to: ∑
i

τim = T ; ∀pm ∈ P (3.5)

∑
j

Fij ≥
∑
j

Fji + max
m

(τim) · fs; ∀si ∈ S (3.6)

∑
j

Fije
t
ij +

∑
j

Fjier + max
m

(τim) · fses ≤ E0(si), ∀si ∈ S (3.7)

Theorem 2 The optimal solution of the above LP problem is an upper bound of the

optimal solution of the MCT problem.

Proof: If we can prove that there exists an optimal solution of the MCT problem

which is also a feasible solution of the LP problem, then the maximum lifetime ob-

tained by solving the LP problem must be an upper bound of the optimal solution

of the MCT problem. From Lemma 1, there exists an optimal solution with only

the solo-observers as source nodes. Let this optimal solution of the MCT problem be

{T (τ1), · · · , T (τx)} and {τ1, · · · , τx}.

We have τim =
∑

1≤k≤xX
k
imτk, where Xk

im = 1 if sensor si is selected as the solo-

observer of target pm in OTI τk; otherwise 0. As in each OTI, exactly one sensor node

could be the solo-observer node of each target,
∑

i τim =
∑

k τk
∑

iX
k
im =

∑
k τk = T ,

and hence Eq. 3.5 must be satisfied. Assuming τ si is the total length of time that
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node si functions as the solo-observer node, we have

max
m

(τim) ≤ τ si =
∑
k

τk × (
⋃
m

Xk
im) ≤

∑
m

τim (3.8)

From Lemma 1 and the flow conservation, for each node si ∈ S, we have

∑
j

Fij =
∑
j

Fji + τ si · fs (3.9)

Using Eq. 3.8 in Eq. 3.9 will satisfy Eq. 3.6. Further, as each node cannot consume

more energy than its initial energy, for each node si ∈ S, we have

∑
j

Fije
t
ij +

∑
j

Fjier + τ si · fses ≤ E0(si) (3.10)

Using Eq. 3.8 in Eq. 3.10 will satisfy Eq. 3.7.

Thus, the optimal solution of the MCT problem must also be a feasible solution

of the LP problem and the theorem is proved.

Corollary 1 When the maximum number of targets in the sensing area of any sensor

is 1, the optimal solution of the LP problem is the optimal solution of the MCT

problem.

Proof: From Eq. 3.8, τ si = maxm(τim), thus the optimal solution of the LP problem

is also a feasible solution of the MCT problem. From Theorem 2, the optimal solution

of the LP problem is the upper bound of the optimal solution of the MCT problem.

Hence proved.

Corollary 2 When the maximum number of targets in the sensing area of any sensor

is M̂ , the upper bound achieved by solving the LP problem, which is denoted by TLP ,
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is at most M̂ times the optimal solution of the MCT problem. Hence, TLP/M̂ is a

lower bound for the MCT problem.

Proof: Given the optimal solution of the LP problem TLP and τLPim , we can construct

a feasible solution of the MCT problem with lifetime TLP/M̂ . First for each node

si ∈ S, we set the duration that it operates as solo-observer for target pm to be

τim = 1

M̂
τLPim . From the constraints given in Eq. 3.5, we could schedule the sensors

as observers such that all the targets could be continuously observed for a period of

time 1

M̂
TLP . For example, if target pm is in the sensing area of s1, s2, · · · , sj, we could

randomly select them as the solo-observer for pm one by one, with each si operating

for a period of time τim. If a sensor node is selected as the solo-observer, no matter

for a single or multiple targets, it is an active source node. From Eq. 3.8, the total

duration that a node si operates as the source node (also as the solo-observer node)

is τ si ≤
∑

m τim ≤ M̂ maxm(τim) ≤ maxm(τLPim ). From Eq. 3.6 and 3.7, there exists a

solution to route the observed data to the sink such that no node consumes energy

more than its initial energy. Therefore, it is a feasible solution for the MCT problem

and the achieved network lifetime is at least TLP/M̂ .

Corollary 2 gives a lower bound for the optimal solution of the MCT problem. Also

it provides a basis to design a M̂ -approximation algorithm for the MCT problem, that

is, first solving the LP problem and then selecting the source nodes and their operation

durations according to the solution. However, the design of such an algorithm is

beyond the scope of this thesis. In this thesis, we focus on an approximation algorithm

with a better approximation ratio of H(M̂)(1 + w) which is presented in the next
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chapter (Chapter 4).

3.4 Summary

In this chapter, we introduced the connected target coverage problem and formulated

it as the maximum cover tree problem. We proved that MCT problem is NP-complete

and provided an upper bound and a lower bound for it by solving the LP problem.
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Chapter 4

Approximation and heuristic algorithm

for the MCT problem

In this chapter, we develop a (1 + w)H(M̂) approximation algorithm to solve the

MCT problem introduced in the last chapter, where w is an arbitrarily small number,

H(M̂) =
∑

1≤i≤M̂
1
i

and M̂ is the maximum number of targets in the sensing area of

any sensor. The approach of the approximation algorithm developed by us is to first

formulate it as a LP problem with exponential number of variables, and then use a

prime-dual approach to develop the approximation algorithm. The idea of solving LP

problems approximately originated with the work of [87]. Several works have been

carried out in the literature improving and extending these results. Our approxima-

tion algorithm follows the algorithm and analysis developed for the flow problems

in [88, 89]. Our algorithm is different in that the constraints of our problem are on

the nodes. In addition, the concept of weighted greedy algorithm for the minimum

weighted set cover problem is used in our approximation algorithm design. We fur-

ther prove that (1−O(1))ln(M) is a threshold below which the MCT problem cannot

be approximated efficiently, unless NP has slightly super-polynomial time algorithms,

i.e. NP ⊂ TIME(nO(loglogn)) [90]. As the protocol cost of the approximation algo-
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rithm may be high in practice, we develop a faster heuristic algorithm based on the

approximation algorithm called Communication Weighted Greedy Cover (CWGC)

algorithm and present a distributed implementation of the heuristic algorithm. We

study the performance of the approximation algorithm and CWGC algorithm by com-

paring them with the lifetime upper bound and other basic algorithms that consider

the coverage and connectivity problems independently. Simulation results show that

the approximation algorithm and CWGC algorithm perform much better than others

in terms of the network lifetime and the performance improvement can be up to 45%

than the best-known basic algorithm. The lifetime obtained by our algorithms is

close to the upper bound. Compared with the approximation algorithm, the CWGC

algorithm can achieve a similar performance in terms of the network lifetime with a

lower protocol cost.

4.1 Approximation algorithm

4.1.1 LP formulation

The number of variables in the LP problem developed in section 3.3 is polynomial

to the MCT problem scale (number of nodes and number of targets). However, it

provides only the performance bound but not the solution of the MCT problem.

In this section, we formulate the MCT problem as a LP problem. Although the

number of variables in this LP may be exponential to the MCT problem scale, this

formulation is helpful for developing polynomial approximation algorithm. Given

an instance of the MCT problem, let us enumerate all the possible set of sources

42



U = {U1, U2, · · · , UQ} in the feasible solution of the instance, such that each set

Uq ∈ U contains observing sensors that can cover all the targets. Thus, the source

set of any cover tree in the feasible solution of the MCT problem will be in U . Let

τq denote the duration that Uq is selected as the source set of the cover tree, where q

denotes the index of source set in U ; Let F s
i denote the total amount of data that are

generated by node si when it is selected as the source node; Let Ni denote the set of

neighbors of sensor si; Let Xiq be 1 if node si belongs to the source set Uq, otherwise

0. The MCT problem can be formulated as follows:

Maximize:
∑

1≤q≤Q

τq (4.1)

∑
1≤q≤Q

Xiq · fsτq − F s
i = 0; ∀si ∈ S (4.2)

−
∑
j∈Ni

Fij +
∑
j∈Ni

Fji + F s
i − FiR = 0; ∀si ∈ S (4.3)

∑
j∈Ni

Fije
t
ij +

∑
j∈Ni

Fjier + F s
i es + FiRe

t
iR ≤ E0(si);∀si ∈ S (4.4)

Equations 4.2 and 4.3 are the flow conservation constraints. Equation 4.4 is the

energy consumption constraint.

4.1.2 The dual problem and its interpretation

The dual problem of the above LP problem is as follows:

Minimize:
∑

1≤i≤N

ciE0(si) (4.5)

−ai + aj + etijci + ercj ≥ 0; ∀i 6= j, sj ∈ Ni (4.6)

etiRci − ai ≥ 0; ∀si ∈ NR (4.7)
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−bi + ai + esci ≥ 0; ∀1 ≤ i ≤ N (4.8)

∑
1≤i≤N

Xiqfs · bi ≥ 1; ∀1 ≤ q ≤ Q (4.9)

where ai, bi, ci ≥ 0 (1 ≤ i ≤ N) are variables in the dual problem. The dual

problem can be interpreted as a problem of assigning weights to the links in the

network. Next we define the link weight, node weight and path weight, and then

rewrite the dual problem.

Let ~C be a vector whose ith element is ci. We define the objective function of the

dual problem as

D(~C) =
∑
i

ciE0(si) (4.10)

In addition, we define the link weight wij(~C) for each link (si, sj) ∈ E and node weight

wi(~C) for each node si in the original MCT problem:

wij(~C) =


etijci + ercj, if j 6= R, (si, sj) ∈ E;

etiRci, if j = R, (si,R) ∈ E;

(4.11)

wi(~C) = esci,∀si ∈ S (4.12)

The dual problem can now be re-written as follows:

Minimize:D(~C) (4.13)

wij(~C) ≥


ai − aj, if j 6= R, link (si, sj) ∈ E;

ai, if j = R, link (si,R) ∈ E;

(4.14)

wi(~C) ≥ bi − ai, ∀si ∈ S (4.15)

∑
1≤i≤N

Xiqfs · bi ≥ 1; ∀1 ≤ q ≤ Q (4.16)
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Consider an arbitrary path P from node si to the sink R. Let P be

{si, n1, n2, · · · , nl,R}, we define the path weight of P as follows:

wP (~C) = wsi(
~C) + wsi,n1(~C)

+
∑

1≤z<l

wnz ,nz+1(~C) + wnl,R(~C) (4.17)

Using Eq. 4.14 and 4.15, we have

wP (~C) ≥ bi − ai + ai − an1 + · · ·+ anl = bi (4.18)

Let wiSPT (~C) denote the path weight of the shortest path (path with the minimum

path weight) from node si to the sink. We define

α(~C) ≡ min
1≤q≤Q

{∑
i

Xiqfs · wiSPT (~C)

}
(4.19)

≥ min
1≤q≤Q

{∑
i

Xiqfs · bi

}
(4.20)

≥ 1 (4.21)

The dual problem is then equivalent to assigning values to ~C such that D(~C)/α(~C)

is minimized subject to the constraint that α(~C) ≥ 1. Let

β = min

{
D(~C)

α(~C)

}
(4.22)

4.1.3 Algorithm description

Let Pi be the set of targets that are in the sensing area of sensor si. The above

interpretation of the dual LP problem leads to our approximation algorithm, which

is described as follows:
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1. Initialization

(a) Properly scale the problem so that β ≥ 1;

(b) t = 0; T = 0; Set δ = ( N

1−εH(M̂)
)−1/ε; For each node si set ci = δ/E0(si);

Let λ = log
1/δ
1+ε; Set τp = 1/λ;

2. Set τ t = 0, k = 0, loop until τ t = τp;

(a) k = k + 1; Build the shortest path tree rooted at the sink with the link

weight function wij(~C) and the path weight function wP (~C); Set Stk = φ

as the observing sensor set and P tki = Pi as the set of uncovered targets

in each node si’s sensing area.

(b) Until all the targets are covered by Stk do the following:

i. select sensor si 6∈ Stk which has the minimum value of
wiSPT ( ~C)

|Ptki |
and

add it into Stk.

ii. for each sensor sj 6∈ Stk, P tkj = P tkj − P tki ∩ P tkj .

(c) The shortest path from each sensor in Stk to the sink forms the cover tree

T tk , and the operation duration τ tk of T tk ends when τ tk = τp − τ t or any

node si in T tk consumes E0(si)/λ unit of energy;

(d) τ t = τ t + τ tk; Let etki denote the amount of energy that node si has con-

sumed in duration τ tk, ci(t, k) = ci(t, k − 1)× (1 + ε · λetki
E0(si)

).

3. t = t+ 1; ci(t, 0) = ci(t− 1, k); if D(~C) < 1, T = T + τp.

4. repeat step 2 and step 3 until D(~C) ≥ 1; double τp for every 2λ iterations.
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The output of the algorithm is T , T tk and τ tk, which are the network lifetime,

cover trees and their operation durations, respectively. At the beginning, we scale

the problem such that β ≥ 1. This scaling is useful for our analysis for computing

approximation ratio as explained later. We set the initial value for δ, λ and ci. The

algorithm then proceeds in loops. Let us call the outer loop of steps 2 and 3 as

an iteration, and call the inner loop of steps 2a, 2b, 2c and 2d as a phase in the

iteration. The duration of each iteration is τp. Each iteration may be composed of

multiple phases. In each phase, we try to build a cover tree, such that the total path

weight from all the source nodes to the sink is minimized. The duration of the phase

(OTI of the cover tree) ends when the duration of the iteration ends or any node si

consumes E0(si)/λ units of energy in the phase. Here we use the concept of weighted

greedy algorithm for minimum weighted set cover problem to select the source set.

Considering Pi as the subset and wiSPT (~C) as the subset weight, we greedily select the

sensor that has the minimum value of
wiSPT ( ~C)

|Pi| as the source node until all the targets

are covered. The shortest path from each selected source node to the sink builds the

cover tree. The value of ci will be updated according to the energy consumption of

node si in the phase.

We will first present the method to scale the problem (in step 1a), determine the

approximation ratio and discuss the value of λ, δ in the next section (section 4.1.4).

Then we explain why τp is doubled (in step 4) and analyze the complexity in sec-

tion 4.1.5.
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4.1.4 Analysis

We first explain the scaling method used in our algorithm so that β ≥ 1. Let TLP

denote the lifetime upper bound achieved by solving the LP problem presented in

section 3.3, from theorem 2 and corollary 2, we have TLP/M̂ ≤ β ≤ TLP . Thus

scaling the initial energy of each node by TLP/M̂ or increasing fs by a factor TLP/M̂

can guarantee that M̂ ≥ β ≥ 1. With β ≥ 1, we carry out the analysis as given

below.

Using Eq. 4.11 and Eq. 4.12 in the definition of path weight wP (~C) (Eq. 4.17),

we have

wP (~C) = (es + eti,n1
)ci + (er + etnl,R)cnl +

∑
1≤z<l

(er + etnz ,nz+1
)cnz (4.23)

Let Kt denote the number of phases in iteration t, ~C(t, k) denote the vector of ci

after the kth phase of iteration t. Assuming that the qth source set in U is selected

as the source set in the kth phase of iteration t, the value of D(~C) at the end of this

phase is

D(~C(t, k)) =
∑
i

ci(t, k)E0(si) (4.24)

=
∑
i

(ci(t, k − 1))E0(si)(1 + ε
λetki
E0(si)

) (4.25)

= D(~C(t, k − 1)) + ε
∑
i

λetki ci(t, k − 1) (4.26)

= D(~C(t, k − 1)) + εfsτ
t
kλ
∑
i

Xiqw
i
SPT (~C(t, k − 1)) (4.27)

where
∑

iXiqw
i
SPT (~C(t, k − 1)) is the total path weight from all the source nodes in

Uq to the sink. Let wmin(t, k− 1) denote the minimum value of the total path weight

for all the source sets in U . As greedy weighted algorithm is a H(k) approximation
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algorithm [91] where H(k) =
∑

1≤i≤k
1
i

and k is the maximum subset size, we have

∑
i

Xiqw
i
SPT (~C(t, k − 1)) ≤ H(M̂)wmin(t, k − 1) (4.28)

where M̂ is the maximum number of targets in the sensing area of any sensor. As the

algorithm proceeds, the link weights are monotonically non-decreasing. Therefore,

wmin(t, k − 1) ≤ wmin(t, k) (4.29)

Further, using the definition of α(~C) in Eq.4.19,

α(~C) = fswmin(~C) (4.30)

For any iteration t ≥ 1, using Eq.4.27, Eq.4.28 and Eq. 4.29,

D(~C(t, 0)) = D(~C(t− 1, 0)) + εfsλ
∑

1≤k≤Kt−1

τ t−1
k

·
∑
i

Xiqw
i
SPT (~C(t− 1, k − 1)) (4.31)

≤ D(~C(t− 1, 0)) + εfsλ
∑

1≤k≤Kt−1

τ t−1
k

·H(M̂)wmin(t− 1, k − 1) (4.32)

≤ D(~C(t− 1, 0)) + εfsλ
∑

1≤k≤Kt−1

τ t−1
k H(M̂)wmin(t, 0) (4.33)

If τp is never doubled,
∑

1≤k≤Kt−1
τ t−1
k = τp = 1/λ. We assume that τp is never

doubled now and will explain latter why the approximation ratio still holds when this

assumption is removed in section 4.1.5. From Eq. 4.30,

D(~C(t, 0)) ≤ D(~C(t− 1, 0)) + εH(M̂)α(~C(t, 0)) (4.34)

Since β = min
{
D(~C)/α(~C)

}
≤ D( ~C(t,0))

α( ~C(t,0))
we have

D(~C(t, 0)) ≤ D(~C(t− 1, 0))

1− εH(M̂)/β
(4.35)
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Since D(~C(0, 0)) = Nδ, for any iteration t ≥ 1,

D(~C(t, 0)) ≤ Nδ

(1− εH(M̂)/β)t
(4.36)

=
Nδ

1− εH(M̂)/β
(1 +

εH(M̂)

β − εH(M̂)
)(t−1) (4.37)

≤ Nδ

1− εH(M̂)/β
e
εH(M̂)(t−1)

β−εH(M̂) (4.38)

≤ Nδ

1− εH(M̂)
e
εH(M̂)(t−1)

β(1−εH(M̂)) (4.39)

The last inequality uses the assumption that β ≥ 1.

Let Nt denote the iteration that the algorithm ends, i.e. D(~C(Nt, 0)) ≥ 1.

1 ≤ D(~C(Nt, 0)) ≤ Nδ

1− εH(M̂)
e
εH(M̂)(Nt−1)

β(1−εH(M̂)) (4.40)

Therefore, we have

β

Nt − 1
≤ εH(M̂)

(1− εH(M̂)) ln(1−εH(M̂)
Nδ

)
(4.41)

In each iteration, the network lifetime will be increased by a duration of 1/λ. Since

the algorithm ends when D(~C(Nt, 0)) ≥ 1, the network lifetime is T = (Nt − 1)/λ.

Lemma 2 The solution of our approximation algorithm is a feasible solution for

the MCT problem, (Nt − 1)/λ is strictly less than the optimal solution of the MCT

problem.

Proof: The flow conservation constraints are not violated in our algorithm, thus if

the energy consumption constraints are not violated, the solution of our algorithm

(Nt − 1)/λ is a feasible solution.

Consider an arbitrary node si ∈ S. In any phase k of any iteration t, the energy

consumption of si will be less than equal to E0(si)/λ. Thus for every E0(si)/λ units
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of energy consumed by node si, the value of ci will be increased by at least a factor

(1 + ε). In other words, if ci is increased by a factor (1 + ε), the energy consumption

of node si will be at most E0(si)/λ. Initially, ci equals to δ/E0(si). In the iteration

before the algorithm ends, as D(~C(Nt − 1, 0)) =
∑

i ci(Nt − 1, 0)E0(si) < 1, we have

ci(Nt − 1, 0) < 1/E0(si) for any node si. Therefore, the total amount of energy

consumption of node si is strictly less than log1+ε
1/E0(si)
δ/E0(si)

×E0(si)/λ = E0(si). Hence

proved.

Theorem 3 Our algorithm is a H(M̂)(1 +w) approximation for the MCT problem.

Proof: Let γ denote the approximation ratio. Using Eq. 4.41 and from Lemma 2,

we have

γ <
β

(Nt − 1)/λ
≤

εH(M̂) log1+ε 1/δ

(1− εH(M̂)) ln(1−εH(M̂)
Nδ

)

=
εH(M̂)

(1− εH(M̂)) ln(1 + ε)

ln(1/δ)

ln(1−εH(M̂)
Nδ

)
(4.42)

As δ = ( N

1−εH(M̂)
)−1/ε,

γ ≤ εH(M̂)

(1− εH(M̂))(1− ε) ln(1 + ε)
(4.43)

≤ εH(M̂)

(1− εH(M̂))(1− ε)(ε− ε2/2)
(4.44)

≤ H(M̂)(1− εH(M̂))−1(1− ε)−2 (4.45)

= H(M̂)(1 + w) (4.46)

Hence proved.
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4.1.5 Complexity Analysis

From lemma 2,

1 ≤ γ <
β

(Nt − 1)/λ
⇒ Nt < 1 + βλ (4.47)

Therefore, the total number of iterations Nt until the approximation algorithm ter-

minates is strictly less than 1 + βλ. In fact, if our algorithm doesn’t terminate after

2dλe, we know β ≥ 2 and we can double the duration of iterations τp. Note that this

is equivalent to re-scaling the problem. β will be half of its previous value but still

larger than 1, and therefore the approximation ratio still holds. As we repeat this

procedure until the algorithm terminates, the approximation algorithm will terminate

in 2 log2 M̂dλe iterations (β ≤ M̂ after scaling).

We note that in each phase of an iteration, except for the last phase, there exists

at least one node si that consumes energy E0(si)/λ, whose ci is increased by a factor

1 + ε. Since for any node si, the initial value of ci is δ/E0(si) and the final value

is less than 1/E0(si) (for D(~C) < 1), the number of phases exceeds the number of

iterations by at most N log1+ε
1
δ

= Nλ (otherwise there exists at least one sensor si

whose ci exceeds 1/E0(si)). In each phase we build a shortest path tree and greedily

select the source nodes until all the targets are covered, which requires O(N2) and

O(N min(M,N)) time, respectively. Therefore, the time complexity of our algorithm

is (2 log2(M̂) +N)d1
ε

log1+ε(
N

1−H(M̂)ε
)eO(N2 +N min(M,N)).
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4.2 Inapproximality of the MCT problem

Theorem 4 There does not exist a polynomial time algorithm which can approx-

imate the MCT problem within (1 − ε)ln(M), for any constant ε > 0, unless

NP ⊂ TIME(nO(loglogn)).

Proof: We prove the theorem by reducing each instance of the minimum set cover

(MSC) problem to the MCT problem. Given a collection C of subsets of a finite set

S, the minimum set cover problem ties to find a set cover for S, i.e., a subset C ′ ⊆ C

such that every element in S belongs to at least one member of C ′, with the minimum

cardinality of the set cover, i.e., |C ′|. Given an instance of the minimum set cover

problem S,C, assuming that |S| = M and |C| = N , we construct the corresponding

MCT instance as shown in Fig. 4.1 and illustrate the construction below.

For each set ci ∈ C, we construct a sensor si; for each element sm ∈ S, we

construct a target pm. If sm ∈ ci, we construct an observation link (pm, si). A sensor

node s̄ is added with communication links connecting to all the sensors s1, · · · , sN .

A sink node R is added with a communication link (s̄, R). For each sensor node, the

initial energy E0 is 1 unit, er = es and (er + etrans)B(1) = 1. It is easy to see that

the construction can be accomplished in polynomial time. Also it is easy to examine

that for each cover tree in the solution of the MCT instance, the corresponding sets

of the sources in the cover tree build a set cover of the MSC instance. Further, for

each set cover of the MSC instance, a cover tree for the MCT instance can be built by

connecting the corresponding sources of the sets in the set cover to s̄, which connects

R.
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Figure 4.1: Construction of the MCT instance for a given MSC instance

As s̄ is the single node connected with the sink, s̄ should be active as the relay

node in all the cover trees. Given any cover tree T with L source nodes, s̄ will

consume the energy L times of each source node. Clearly, the network lifetime is

maximized when the cover tree with the minimum number of source nodes operates

for the whole network lifetime. Let the minimum number of sources in a cover tree

be Lmin, the optimal solution for the MSC instance will be Lmin, and the optimal

network lifetime for the MCT instance will be 1/Lmin.

Suppose that there exists a polynomial-time algorithm which can approximate

the MCT problem within r. Then for each instance of the MSC problem, we can

construct the corresponding MCT instance and find a solution with lifetime larger

than 1/rLmin. There must exist a cover tree in the solution with no more than rLmin
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source nodes. And thus, we find a set cover for the MSC instance with cardinality

no more than r times of the minimum cardinality. As the reduction is in polynomial

time, we also find a polynomial time algorithm which can approximate the MSC

problem within r.

In [90] it has been shown that if there exists some ε > 0 such that a polynomial

time algorithm can approximate MSC problem within (1 − ε)ln(|C ′|), then NP ⊂

TIME(nO(loglogn)). Hence the theorem is proved.

4.3 Communication Weighted Greedy Cover algorithm

4.3.1 Motivation

The approximation algorithm provides useful theoretical insights into the MCT prob-

lem. On the other hand, the number of cover trees generated could be large, because,

to achieve satisfactory results, we need to set ε to be small, which results in a small δ

and large λ. As generating a new cover tree will incur protocol cost, e.g. exchanging

the states of a node among neighbors and broadcasting the operational duration of the

cover tree, the protocol cost of the approximation algorithm will be high. Therefore,

we develop a faster low-cost heuristic algorithm for the MCT problem.

The similarities and differences between the heuristic algorithm and the approx-

imation algorithm are listed below:

1. In the approximation algorithm, there are two nested loops. There may be

multiple inner loops (phases) in each outer loop (iteration). The duration of

each iteration is fixed while the duration of each phase can vary according to
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the tree covers being generated. In each phase, no node can consume energy

more than E0(si)/λ. In the heuristic algorithm, we modify the nested loops

into a single loop, and set the duration of the loop as a fixed value unless any

node dies. This modification can greatly decrease the number of cover trees

to be built and thus reduce the protocol cost. In addition, broadcasting the

operational duration of each newly built cover tree is not necessary now as the

duration is fixed and the duration can be broadcasted once at the beginning.

2. We modify the link weight function of the approximation algorithm. Instead

of using ci to calculate the link weight and increasing ci after each new cover

tree is built, we directly use each node’s current energy to calculate the link

weight. Further, as the energy consumption of data transmission is normally

larger than that of data reception, we calculate the link weight considering

the state of the sender only, and thus each node can update the link weight

originating from itself without tracking the state of its neighbors.

3. Different from the approximation algorithm which terminates when D(C) ≥ 1,

the heuristic algorithm terminates when no new cover tree can be built, that

is, either some targets cannot be covered or the selected source cannot connect

to the sink.

4.3.2 Heuristic algorithm description

The heuristic algorithm uses a greedy method to select the source set to cover the

targets and it couples the communication cost and source set selection. Hence it is
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called Communication Weighted Greedy Cover (CWGC). The inputs of the algorithm

are S, P , R and E0(si) of each sensor si. The output of the algorithm is a sequence

of cover trees T1, · · · , Tx and their OTIs τ1, · · · , τx. The position of the cover tree Tx

in the sequence is denoted as x.

The pseudo-code for the algorithm is shown in Table 4.1. In the table, the fol-

lowing notations are used:

Sl set of live sensors;

Ss set of live sensors that can cover targets;

Ps set of targets that can be covered by s;

ws path weight of sensor s in MWCT;

W (s) profit of sensor s ∈ Ss;

R(s, T ) route from the sensor s to the sink R in

tree T , R(s, T ) ≡< s, s1, · · · ,R >

R(s, T ) set of sensors in route R(s, T ) excluding

sensor s and sink R;

The algorithm is initialized before constructing cover trees (lines 1-5). The algo-

rithm repeatedly builds cover trees and stops until no new cover tree can be built (i.e.,

the network lifetime is reached). Each cover tree operates for a fixed time duration

τ , unless some sensors in the cover tree will die before the end of the time duration

due to the lack of energy. In that case, the operational time duration of the cover

tree is determined by the sensor which has the least operational time until death, i.e.,
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Table 4.1: Pseudo-codes for the CWGC algorithm

(01) Sl = S; Ss = ∅; x = 1;

(02) for each s ∈ Sl,
(03) Er(s) = E0(s);

(04) if Ps 6= ∅, Ss = Ss
⋃
{s}; endif

(05) endfor

(06) while
⋃
s∈Ss Ps = P and Sl 6= ∅,

(07) phase 1:

(08) for each link (si, sj), wij = etij × E0(si)/Er(si); endfor

(09) Build a MWCT Tm connecting each sensor s ∈ Sl to the sink

(10) phase 2:

(11) S ′s = ∅; P ′ = ∅; Tx = ∅; τx = τ ;

(12) while P ′ 6= P ,

(13) Find a sensor s∗ ∈ Ss − S ′s with the maximum profit W (s∗)

(14) S ′s = S ′s
⋃
{s∗}; P ′ = P ′

⋃
Ps∗ ;

(15) for each s ∈ R(s∗, Tx),
(16) ws = ws + (etrans + er)B(τ)× ws/Er(s);
(17) endfor

(18) endwhile

(19) phase 3:

(20) for each s ∈ S ′s, Tx = Tx
⊎
R(s, Tc); endfor

(21) for each s ∈ Tx, τx = min(τx,
Er(s)

E(s,Tx(τx))
τx); endfor

(22) for each s ∈ Tx, Er(s) = Er(s)− E(s, Tx(τx)); endfor

(23) Remove dead and isolated nodes; x = x+ 1

(24) endwhile

mins∈Tk(
Er(s)

E(s,Tk(τ))
τ). Thus, the active time of a cover tree Tk is given by

τk = min(τ,min
s∈Tk

(
Er(s)

E(s, Tk(τ))
τ)) (4.48)

where Er(s) is the residual energy of sensor s at the beginning of operating cover tree

Tk.

If a sensor has no residual energy, we call it a dead sensor. If a sensor has residual

energy but cannot find a route from itself to the sink without traversing a dead sensor,

58



we call it an isolated sensor. Before each iteration of building a new cover tree, the

dead sensors and isolated sensors in the network will be removed. The graph used to

build the new cover tree contains only the live sensors.

In each iteration, the algorithm works in three phases to construct a cover tree.

In the first phase (phase 1), an energy-aware communication tree is constructed con-

necting all the live sensor nodes to the sink. The algorithm then greedily selects

source sensors that can cover all the targets (phase 2), considering both the number

of uncovered targets in the sensing area and the possible communication cost from

sensors to the sink. Finally, in phase 3, the new cover tree is constructed based on

the communication tree built in phase 1 and the source sensor set selected in phase

2.

In phase 1, we first assign a weight wij to each link between live sensors si and sj

(line 8) which reflects both the communication energy consumption on the link and

the residual energy level of the sender. We use

wij = etij × E0(si)/Er(si) (4.49)

A minimum weight communication tree (MWCT) is then constructed connecting all

sensors such that the sum of the link weights from each node to the sink is minimized

(line 9). Known techniques to find the shortest path tree (e.g. Dijkstra’s Algorithm)

could be used to construct the tree.

In phase 2, we use a greedy method to choose the sources until all the targets are

covered. The greedy method first assigns each sensor s a profit value W (s), and then

repeatedly chooses the sensor with the highest W (s) into the source set (lines 13-17).
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The profit function which is used in our algorithm is given by

W (s) ≡ |Ps − Ps
⋂
P ′|

ws
(4.50)

where |Ps − Ps
⋂
P ′| is the number of uncovered targets in the sensing area of node

s and ws is the path weight of node s (the sum of link weights in the route R(s, T )).

After a new source is selected, the path weights of the upstream nodes in MWCT are

updated (line 16).

In phase 3, the cover tree is extracted as a sub-tree of the MWCT based on the

selected sources (line 20). After the cover tree is built, we use the energy consumption

model (given in Eq. 3.1) for each sensor in the cover tree. The operation duration

for the cover tree is then calculated using Eq. 4.48 (line 21). Finally, The residual

energy for sensors in the cover tree is updated according to their functionalities, and

the dead and isolated sensors are removed (line 23).

Let TLP denote the lifetime upper bound achieved by solving the LP problem

presented in section 3.3. Each cover tree operates for a duration τ otherwise at least

one sensor will die. Therefore, the number of cover trees to be built in the heuristic

algorithm is upper bounded by N + TLP
τ

.

4.3.3 Distributed implementation

In practice, if the sensors can identify the targets in their sensing area, e.g. through

target localization, the CWGC algorithm can be easily implemented in an on-line

distributed manner. Before each OTI, all the sensor nodes will wake up to become

active. Each node computes the weight of links originated from itself to its neighbors
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(Eq. 4.49) and builds MWCT using any known distributed shortest path tree algo-

rithm, e.g. distributed Dijkstra algorithm. Each node then knows the minimum path

weight from itself to the sink node and computes its profit value (Eq. 4.50).

For each node si, we define set Sn(i) which contains sensors that cover at least

one target which is also covered by node si. If node si has the largest profit value

among all the nodes in Sn(i), node si should be chosen as the source node before any

node in Sn(i). Therefore, each node si broadcasts its profit value to all the nodes

in Sn(i). If all the profit values received by si are less than its own profit value,

si will broadcast a message declaring itself as the source node to all the nodes in

Sn(i). It will then send a message to the sink node such that all its ancestors are

notified to be the relay nodes and update their path weights. If the profit value of

si is not the largest, it examines the number of uncovered targets in its sensing area

and recalculates its profit value. This procedure is repeated with non-source sensors

that still have uncovered targets in the sensing area.

A sensor node estimates its energy consumption using Eq. 3.1 if it is selected to

be the source node or receives a message notifying it as the relay node. If any sensor

forecasts that it will consume more energy than its residual energy, it will calculate

the new OTI duration τ and broadcast it to all the other sensors. A sensor will

wait for a period of time (sufficient to complete the building of cover tree) after all

the targets in its sensing area are covered to determine the length of the next OTI

duration. Then it goes into sleep until the end of the OTI duration.
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4.4 Performance Study

In this section we evaluate the performance of the approximation algorithm and the

proposed CWGC algorithm. The initial energy of each sensor is set to be 20J ; the

value of various parameters are chosen to be et = 50nJ/bit, b = 100pJ/bit/m4, α = 4,

er = 150nJ/bit and es = 150nJ/bit [69]; and data is generated by each source node

at the rate of 10Kbps. In the simulation, we assume that each sensor covers a disk

centered at itself with a fixed sensing range as the disk radius. All sensors are assumed

to have the same sensing range Rs and the same maximum communication range Rc.

The approximation algorithm presented in section 4.1 terminates when D(C) ≥ 1.

However, when the algorithm terminates, all the nodes are still alive and the network

can still operate as shown in lemma 2. Therefore, we extend the approximation

algorithm such that the algorithm terminates when some node consumes all its battery

energy. Clearly, the lifetime achieved by the extended algorithm is larger than equal

to that achieved by the original algorithm, and thus it can achieve at least the same

approximation ratio. We call the original approximation algorithm as App MCT and

the extended one as App MCT Ext.

To demonstrate the effectiveness of our algorithms (App MCT, App MCT Ext

and CWGC), for each topology generated, we compute the lifetime upper bound

achieved by solving the LP problem developed in section 3.3 using CPLEX. Further,

to demonstrate the superiority of our algorithms, we compare their performance with

three other basic algorithms: RANDOM, MSC SPT and MSC EAWARE. The RAN-

DOM algorithm randomly chooses a set of sensors which can cover all the targets.
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The set is selected such that no sensor in the set can be removed without breaking

the coverage of the targets. Each source sensor will transmit its sensed data to the

sink using the shortest path (path with minimum communication energy consump-

tion). The MSC SPT algorithm also uses the shortest path to transmit the sensed

data to the sink, but uses a greedy method to select the source set. It repeatedly

selects the node that covers the most uncovered targets as the source node until all

the targets are covered. The MSC EAWARE algorithm chooses the set of nodes in

the same way as MSC SPT algorithm. However, instead of using the shortest path

to transmit data, it uses an energy-aware communication tree which is built in a

similar way as our CWGC algorithm. The difference between this algorithm and the

CWGC algorithm is that in the CWGC algorithm the selection of the source nodes is

coupled with the communication tree construction. Finally, as the connectivity issue

is not considered in most existing works on discrete target problem, we compare the

performance of our algorithms with the greedy MSC algorithm proposed in [16] with

a suitable modification to account for the connectivity. This modification is done by

using a shortest path tree to transmit the sensed data to the sink node. We refer the

modified algorithm as Greedy MSC SPT. The greedy MSC algorithm greedily selects

a “critical” target and then selects the sensor with the greatest contribution to the

“critical” target until all the targets are covered. The “critical” target is chosen as

the target in the sensing area of the least number of sensors, and the contribution

function is chosen as the number of uncovered targets in the sensing area of a sensor.

We use the following simulation scenario. Sensors are randomly deployed in a

100m × 100m area. The sink node is placed in the middle of the area [at point
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Figure 4.2: Normalized lifetime vs. ε (N = 60, M = 20)

(50m, 50m)]. Each value plotted on the curves is obtained from the results of one

hundred random topologies.

4.4.1 Impact of algorithm parameters

First we study the performance of App MCT and App MCT Ext by varying the value

of ε. Sixty sensor nodes (N = 60) and 20 targets (M = 20) are randomly scattered

in the area. The sensing range and the communication range is set as Rs = 20m

and Rc = 40m. For each topology the network lifetime achieved by the algorithms

is normalized by the lifetime upper bound achieved by solving the LP problem. Fig-

ure 4.2 shows the average and worst case normalized lifetime achieved by App MCT

and App MCT Ext with different values of ε. For the average normalized lifetime,
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Figure 4.3: Number of cover trees vs. ε (N = 60, M = 20)

the 95% confidence intervals are shown in the figure. As expected, both the average

and worst case normalized lifetime achieved by both algorithms decreases when ε

increases. When ε is small, both algorithms can achieve near-optimal result. How-

ever, the performance of App MCT declines much faster than that of App MCT Ext

when ε increases. Figure 4.3 shows the number of cover trees generated by the two

algorithms with different values of ε. It can be seen that the number of cover trees is

very large when ε is small (above 40000 when ε = 0.02).

Next we study the impact of operation duration τ on the performance of the

CWGC algorithm. The same scenario as chosen for the approximation algorithms

is used in the simulation. The lifetime achieved by the CWGC algorithm is nor-

malized by the lifetime upper bound. The value of τ is taken as τ = TLP/kM ,
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Figure 4.4: Normalized lifetime vs. k = TLP/Mτ (N = 60, M = 20)

where k is the parameter that we will vary. Figure 4.4 shows the average normalized

lifetime achieved by the CWGC algorithm with different values of TLP/Mτ (From

corollary 2, TLP/M is the lower bound of the optimal solution). The 95% confidence

intervals are shown in the figure. It can be seen that the CWGC algorithm can achieve

near-optimal lifetime similar to the App MCT Ext algorithm. When τ is large, the

performance of the CWGC algorithm declines very slowly. Fig. 4.5 shows the number

of cover trees generated by the CWGC algorithm with different values of TLP/Mτ .

It increases linearly with the increase of TLP/Mτ .

Comparing Fig. 4.2 and 4.3 with Fig. 4.4 and 4.5, we can observe that the CWGC

algorithm can achieve the network lifetime close to that achieved by App MCT and
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Figure 4.5: Number of cover trees vs. k = TLP/Mτ (N = 60, M = 20)

APP MCT Ext, while generating significantly small number of cover trees. When

τ = TLP/2M , the CWGC algorithm can achieve about 95% of the network lifetime

upper bound with only about 40 cover trees. The App MCT and App MCT Ext can

achieve about 95% of the network lifetime upper bound for ε = 0.02 and ε = 0.08,

but with about 45000 and 2800 cover trees, respectively.

In the following simulations, we fix the value of ε = 0.1 and τ = TLp/2M which are

a reasonable balance between algorithm performance and computation complexity. As

App MCT Ext always performs better than App MCT algorithm, we will only show

the performance of App MCT Ext.
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Figure 4.6: Network lifetime vs. number of nodes (M = 20)

4.4.2 Impact of network parameters

In Fig. 4.6 and 4.7, we study the impact of network density on the network lifetime

and performance of the CWGC and App MCT Ext algorithms. We compare the

performance of the CWGC and App MCT Ext algorithms with other four algorithms:

MSC EAWARE, MSC SPT, Greedy MSC SPT and Random algorithm. The number

of targets is fixed at 20. The sensing range and the communication range is set as

Rs = 20m and Rc = 40m. Figure 4.6 plots the network lifetime achieved by CWGC

and App MCT Ext algorithms in comparison with other algorithms and the lifetime

upper bound when the number of nodes increases from 50 to 140. As the number

of nodes increases, more nodes can be scheduled to sense the targets and relay the

messages, leading to the increased network lifetime.
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Figure 4.7: Normalized network lifetime vs. number of nodes (M = 20)

To demonstrate the superiosity of our algroithm more clearly, we normalize the

network lifetime achieved by CWGC, App MCT Ext and other algorithms by the

lifetime upper bound achieved by solving LP problem. Figure 4.7 plots the normalized

lifetime achieved by the CWGC and App MCT Ext algorithms in comparison with

other algorithms when the number of nodes increases from 50 to 130. It can be seen

that the lifetime achieved by the CWGC algorithm is very close to the upper bound.

When the number of nodes is 50, the CWGC algorithm can achieve about 95% of

the lifetime upper bound. As the number of nodes increases, the performance slowly

decreases – when the number of nodes is 130, about 90% of the lifetime upper bound

is achieved. It can also be observed that the CWGC algorithm performs considerably

better than App MCT Ext and significantly considerably better than the other three
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Figure 4.8: Minimum and average normalized network lifetime (M = 20)

algorithms. The decreasing performance trend (as the number of nodes increases)

is observed for all the algorithms, the reason can be attributed to the looser upper

bound when the number of nodes increases. Finally, we observe that the length of

the confidence interval of the normalized lifetime achieved by the CWGC algorithm is

similar to App MCT Ext (0.99) and is much shorter than the other three algorithms

(about 0.4 of that of Random algorithm and about 0.5 of that of MSC EAWARE,

MSC SPT and Greedy MSC SPT), which implies that the CWGC algorithm can

achieve a stable performance.

The worst-case and average-case normalized lifetimes of the six algorithms are

compared in Fig. 4.8. We consider the same random networks which are used to

generate the results plotted in Fig. 4.7. A total of 900 topologies, with the number
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Figure 4.9: Distribution of normalized network lifetime of CWGC algorithm (M = 20)

of nodes N = {50, 60, · · · , 130} with one hundred randomly generated graphs for

each value of N are used. The average performance of the CWGC algorithm is the

best (0.91), but the worst case performance of it (0.63) is a little less than that

of App MCT Ext (0.68). The CWGC algorithm performs 53% and 290% better

than the RANDOM algorithm in the average and worst case, respectively. Although

MSC EAWARE, MSC SPT and Greedy MSC SPT algorithms perform better than

the Random algorithm, they are not as good as the CWGC algorithm, which performs

about 10% better than them in the average case, and about 53%, 95% and 140%

better than them in the worst case, respectively. Figure 4.9 gives the distribution of

the normalized lifetime achieved by CWGC algorithm, with N increases from 50 to

130. It can be seen that In most cases (97% when N = 50 and 92% when N = 130)
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Figure 4.10: Network lifetime vs. number of targets (N = 100)

CWGC algorithm can achieve more than 80% of the lifetime upper bound (which is

the average performance of MSC EWARE and MSC SPT algorithm). As we observed

earlier in Fig. 4.6, when the number of nodes increases, the probability of achieving

lower normalized lifetime also increases.

In Fig. 4.10 and 4.11, we study the impact of varying the number of targets on

networkl lifetime and the performance of the algorithms. The number of targets is

increased from 15 to 55 and the number of sensors is fixed at 100. The sensing range

and the communication range are set as Rs = 20m and Rc = 40m, respectively. It can

be observed that the network lifetime decreases as the number of targets increases.

This is because more nodes need to be activated to maintain the coverage of all the

targets. When the number of targets increases from 15 to 55 (N=100), the absolute
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Figure 4.11: Normalized network lifetime vs. number of targets (N = 100)

value of average network lifetime upper bound decreases from 1326 to 898. The

algorithms also show a similar declining trend for the lifetime. The CWGC algorithm

performs better than all the other algorithms in all cases. It is also observed in

Fig. 4.11 that the performance of the algorithms decreases as the number of targets

increases, which is due to the reason that the upper bound becomes looser when the

number of targets increases. For App MCT Ext an increase of the number of targets

will in turn increase M̂ – the maximum number of targets in the sensing range of any

sensor, leading to smaller approximation ratio of App MCT Ext (see Theorem 3).

Therefore, the performance of App MCT Ext declines faster than other algorithms.
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4.4.3 Potential protocol cost

The construction of new cover trees incurs protocol cost. To construct a cover tree,

any algorithm (MWCT or SPT based) needs to construct a communication tree and

select the source nodes to cover all the targets. Therefore, the number of cover trees

generated by the algorithms could be a good indicator for the potential protocol

cost. We note that the construction of new cover trees in MSC SPT algorithm is

triggered by topology changes, i.e. when a node dies due to energy depletion, while

the construction of new cover trees in CWGC and MSC EAWARE algorithms is time-

based and related to the chosen value of τ . We set N = 100 and M = 20. For τ =

TLP/2M , the mean number of cover trees generated by CWGC, MSC EAWARE and

MSC SPT algorithms is 57.2, 51.4 and 26.3, respectively. We observe that MSC SPT

algorithm generates considerably smaller number of cover trees than CWGC and

MSC EAWARE algorithms. When τ is increased to TLP/M , the normalized network

lifetime of CWGC algorithm slightly decreases from 0.92 to 0.91, while the number

of cover trees drastically decreases from 57.2 to 39.2. If we set τ to be infinity,

the construction of a new cover tree is also triggered by topology changes, and the

normalized network lifetime of CWGC algorithm decreases to 0.90 with 27.8 cover

trees constructed. So, by suitably selecting the value of τ , CWGC algorithm can

achieve a protocol cost close to that of MSC SPT while achieving significantly better

performance in terms of lifetime.
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Figure 4.12: Normalized network lifetime vs. number of nodes for non-identical data

generation rates (M = 20)

4.4.4 Impact of non-identical data generation rates

We study the performance of our App MCT Ext and CWGC algorithms for non-

identical data generation rates and compare it with that of other algorithms. We

suitably extend our formulation and analysis presented earlier, to account for non-

identical data generation rates. For example, in section 4.1.3 on algorithm description,

in step 2(b)i, the expression
wiSPT ( ~C)

|Ptki |
can be modified as

wiSPT ( ~C)fs

|Ptki |
, where fs is the data

generation rate of source s. Similarly, the right side of Eq. 4.50 can be modified as

|Ps−Ps
⋂
P ′|

wsfs
. We note that the claims on bounds and analysis are not affected. In

our simulation, the data generation rate of the source nodes is uniformly distributed
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in the range from 6 to 14Kbps (with the mean of 10Kbps). From Fig. 4.12 we

observe that our algorithms perform significantly better than other algorithms and

the performance improvement can be up to 45% than Greedy MSC SPT algorithm

when N = 130. Further, the performance gain achieved by our algorithms is higher

when compared to the case when the data generation rate of the sources is the same

with 10Kbps (shown in Fig. 4.7). The reason for the increased performance gain

is that, when the data generation rates are different, our algorithms tend to prefer

source nodes with lower rates.

In summary, the approximation algorithm and CWGC algorithm can achieve

near-optimal performance and they perform much better than MSC EWARE,

MSC SPT, Greedy MSC SPT and Random algorithms. Compared with the approx-

imation algorithm App MCT Ext, the CWGC algorithm can achieve better perfor-

mance with much lower complexity and protocol cost.

4.5 Summary

In this chapter we developed an efficient approximation algorithm and a faster greedy

heuristic algorithm for the MCT problem. We also presented a distributed implemen-

tation of the heuristic algorithm. Simulation results show that the lifetime achieved

by our approximation algorithm and heuristic algorithm is very close to the upper

bound and their performance is much better than that of other possible heuristics.
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Chapter 5

Lifetime Maximization observation

Schedule (LMOS) problem

In this chapter, we consider the CTC problem when the data generation rate of a

sensor is proportional to the number of targets it observes, and with K coverage

requirement wherein each target is observed by at least K sensors. Such K-coverage

requirement improves the accuracy and reliability of the observations. In the CTC

problem we discussed in chapter 3 and chapter 4, we assume that all the targets

located in the sensing area of a sensor node would be observed by the sensor, and

the amount of observation data generated by the sensor is independent of the targets

observed by the sensor. However, in some applications the data generated by the

source sensor is related to the targets observed by it, i.e. more the targets observed,

more the observation data generated. Further, some kinds of sensor nodes may have

the ability and freedom to select only a subset of targets in its sensing area to observe.

For example, a fixed camera or video sensor observes all the targets in its sensing area

simultaneously, while a camera sensor with adjustable observation angle can focus on

only a subset of targets in its sensing area. The observation redundancy would be

further reduced by carefully selecting the set of targets to be observed by each source
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sensor. In this chapter, we formulate the connected target coverage problem with

observation-related data generation rate and K coverage requirement as a Lifetime

Maximization Observation Schedule (LMOS) problem. We discuss the problem with

two different observation scenarios depending on whether a sensor can select a subset

of targets in its sensing area to observe or not. We prove that the LMOS problem for

the first scenario (LMOS-1) is a P problem and develop a polynomial-time algorithm

which can achieve the optimal solution based on Linear Programming and Integer

Theorem. We show that the LMOS problem for the second scenario (LMOS-2) is NP

complete. We derive an upper bound and a lower bound of the LMOS-2 problem

based on the optimal solution of LMOS-1 problem.

5.1 System Model and Problem Description

We consider the CTC problem with the similar application scenario as in the Chapter

3. However, we assume that the rate at which data messages are generated by a source

is related to the set of targets observed by the source. Further, we extend the coverage

requirement to be K coverage wherein each target is required to be simultaneously

observed by at least K sensor nodes at any time. The definition of the source nodes,

relay nodes, active nodes and sleep nodes are the same as in Chapter 3. As defined

earlier, the network lifetime is the time duration starting from when the network was

set up until the sink can no longer receive the required observation reports of all the

targets.

A target rate rm is defined for each target pm as the observation data reporting

78



rate. The data rate outgoing from a source is the sum of the data rates associated

with the targets (called target rate) it is observing, which is called as source rate.

Depending on the sensor devices and applications, we consider the following two

different observation scenarios (OS) regarding the observation of targets by a source

sensor:

OS-1 An observing sensor is able to control the observation of the targets in its

sensing area and select a subset of targets to observe. We set an integer L as

the maximum number of targets a sensor can simultaneously observe and call

this constraint as the observation constraint. When L = 1, each sensor can

only observe one target at a time. When L is larger than the number of targets

in the sensing area of a sensor node, the sensor can select any subset of targets

in its sensing area to observe.

OS-2 An observing sensor should simultaneously observe all the targets in its sensing

area.

We assume without loss of generosity that the whole network lifetime is slotted

into a series of time slots. Within each time slot the state (observation, relay or

sleeping) of each sensor node and the set of targets that each source sensor observes

do not change. An observation assignment determines the state of each sensor and

the set of targets each source observes in a time slot. The overall duration of the time

slots within which the same observation assignment exists is called the operation du-

ration of the observation assignment. For both observation scenarios, an observation

assignment should decide the set of source nodes and relay nodes together with the
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path from each source to the sink. For OS-2, as the sensors and targets are all static,

the set of targets observed by each source as well as the source rate is fixed. However,

for OS-1, an observation assignment should additionally decide the subset of targets

that each selected source sensor observes and in turn decide the source rate.

Given graph G = {S ∪ P ∪R,E} building the network topology, we define an

observation assignment φ in OS-1 as a set of paths starting from the target set to

the sink node. All the sensors on the paths are “active” nodes. For each path, the

starting observation link (pm, si) represents that sensor si is assigned as a source to

observe target pm, and the observation data of pm will be transmitted by si to the

sink through the path. On the other hand we define an observation assignment φ

in OS-2 as a set of paths from the source set to the sink node. All the sensors on

the paths are “active” nodes. For each path, the starting node is the source node

which transmits the observation data of all the targets in its sensing area to the sink

through the path.

For OS-1, an observation assignment φ is called feasible if and only if

1. the K coverage requirement is satisfied,

2. no observation link is selected more than once,

3. no sensor is selected as the source sensor on more than L paths.

For OS-2 an observation assignment is called feasible if and only if the K coverage

requirement is satisfied.

We define an observation schedule as a sequence of observation assignments with

their operation durations. An observation schedule is called feasible if and only if
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all the observation assignments in the schedule are feasible and each node consumes

energy less than its initial energy after the execution of the schedule.

We consider the same energy consumption model as in Chapter 3 which takes into

account the energy consumption for sensing and relaying data. Let es and er denote

the energy consumed for sensing and receiving a bit, respectively. Let etij denote the

energy consumed by sender si for transmitting a bit to receiver sj: e
t
ij = et + b · dαij,

where et and b are constants, dij is the Euclidean distance between node si and sj

and α is the path loss factor.

The Lifetime Maximization Observation Schedule (LMOS) problem is defined

below:

Definition 1 (LMOS problem) Given a graph G = {S ∪ P ∪R,E}, target rate

set {rm}, coverage requirement K, the initial energy E0(si) for each sensor si, find a

feasible sensor observation schedule, which has the maximum total execution time T

(i.e. maximum lifetime).

We use LMOS-1 to refer to the LMOS problem for OS-1 and LMOS-2 to refer to

the LMOS problem for OS-2.

5.2 The solution for LMOS-1 problem

In this section we develop a polynomial-time algorithm to find the optimal solution

for LMOS-1 problem, and thus prove that LMOS-1 problem is a P problem. The

developed algorithm first solves a LP problem and then decomposes the solution of

the LP problem to find the optimal observation schedule.
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5.2.1 Derivation of upper bound of LMOS-1 problem – LP formulation

Let τim denote the overall time duration that sensor si is assigned to observe target pm,

i.e. the period during which observation link (pm, si) is selected in all the observation

assignments. Let Fij denote the total amount of data traversing through link (si, sj).

Let T denote the network lifetime. The following LP formulation gives an upper

bound on the maximum network lifetime of LMOS-1 problem:

Objective:

Maximize: T (5.1)

Subject to:

τim ≤ T ; ∀(si, pm); (5.2)

∑
m

τim ≤ LT ; ∀si; (5.3)

∑
i

τim = KT ; ∀pm; (5.4)

∑
m

τimrm +
∑
j 6=i

Fji =
∑
j 6=i

Fij; ∀si; (5.5)

∑
m

τimrmes +
∑
j 6=i

(Fije
t
ij + Fjier) ≤ E0(si);∀si. (5.6)

In the above formulation, Eq. 5.2 specifies that no observation link can be selected

more than once in an observation assignment, Eq. 5.3 indicates that each sensor can

simultaneously observe up to L targets, Eq. 5.4 specifies the K coverage requirement,

Eq. 5.5 is the flow conservation constraint and Eq. 5.6 is the energy consumption

constraint.

Since the constraints in the LP problem are only necessary conditions (i.e. an

observation link can still be selected more than once in an assignment even when
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Eq. 5.2 satisfies), the solution of the above LP problem provides a lifetime upper

bound for the LMOS-1 problem. Further, the optimal observation schedule is not

given in the LP solution. To completely solve the LMOS-1 problem, in the next

sections, we develop a polynomial-time algorithm which finds a feasible observation

schedule achieving the same network lifetime as given by the LP solution, and thus

prove that the solution of LP problem gives exactly the optimal lifetime of LMOS-1

problem.

5.2.2 Algorithm Description

In this section we describe our algorithm for building the optimal observation sched-

ule. The input of the algorithm is the optimal solution obtained by solving the LP

problem {T, {τim : ∀(si, pm)} , {Fij : ∀(si, sj)}}. The output is the desired optimal ob-

servation schedule {φ(x), τ(x) : 1 ≤ x ≤ X}, where each φ(x) is a feasible observation

assignment in the schedule and τ(x) is the corresponding operation duration of the

assignment. The optimal observation schedule is built by iteratively decomposing the

LP solution, and thus the algorithm is called as the decomposition algorithm.

For each feasible observation assignment φ(x), given its operation duration τ(x),

we can calculate the amount of time that each observation link (pm, si) is occupied

in the duration – τim(x), as well as the amount of flow traversing through each com-

munication link (si, sj)– Fij(x) as follows:

τim(x) =


τ(x); (pm, si) ∈ φ(x);

0; (pm, si) 6∈ φ(x);

(5.7)
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Table 5.1: Pseudo-code for the decomposition algorithm

Input: T ,{τim}, {Fij} .
Output: {φ(1), φ(2), · · · , φ(X)}, {τ(1), τ(2), · · · , τ(X)}.
(01) x = 1;

(02) while (T > 0)

(03) Build flow network G∗;

(04) Find E′o, Build flow network G
′
;

(05) Find integer valued maximum flow f̄ on network G
′
;

(06) Let Ef
o denote the observation links on which f̄ is 1;

Eφ
o = E′o ∪ Ef

o ;

(07) For ∀si connected with Eφ
o , find the path from sensor

si to the sink via only communication links in E∗c ;
(08) Build observation assignment φ(x) by appending

∀(pm, si) ∈ Eφ
o with the path from si to the sink;

(09) Calculate τ omin, τ cmin and τ
′
max; Set

τ(x) = min(τ omin, τ
p
min, τ

c
min, T − τ

′
max)

(10) ∀(pm, si) ∈ Eφ
o , τim = τim − τ(x);

(11) ∀(si, sj) ∈ Eφ
c , Fij = Fij − fφijτ(x);

(12) T = T − τ(x); x = x+ 1;

(13) Endwhile

Fij(x) =
∑

m:(si,sj)∈Rm(x)

rmτ(x); (5.8)

where Rm(x) is the route in φ(x) from target pm to the sink.

If all the assignments in a schedule are feasible observation assignments, together

with
∑

x τ(x) = T ,
∑

x τim(x) = τim and
∑

x Fij(x) = Fij (where T , τim and Fij

are elements in the solution set), we can conclude that the schedule is the desired

optimal schedule. Let us call {τ(x), {τim(x) : ∀(si, pm)}, {Fij(x) : ∀(si, sj)}} as the

xth assignment solution.

The pseudo code of the algorithm is described in Table 5.1. The algorithm runs

in iterations. In each iteration x, a feasible assignment φ(x) with proper operation
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Figure 5.1: Flow network G∗ = {V ∗,E∗}

duration τ(x) is found based on the solution set, and then the solution set {T, τim, Fij}

is updated by decreasing the assignment solution {τ(x), τim(x), Fij(x)}. Next we

introduce how to find the assignment and its operation duration in each iteration,

and prove its correctness.

In the xth iteration, given the current solution set {T, τim, Fij}, we first build a

flow network G∗ = {V ∗,E∗} as shown in Fig. 5.1 (line 3). The graph consists of

all the observation links (pm, si) with non zero τim together with the targets and

sensors connected by those links. Let E∗o denote these observation links, S∗ denotes

these sensors and P∗ denote these targets. Further, a pseudo target p̂ is added in

G∗ with pseudo observation links connecting to all the sensors in S∗. We define

τip̂ = T (drie − ri) as the pseudo observation duration that each sensor si observes p̂,

where ri =
∑

m τim/T . A source node s is added with links connecting all the targets

in P ∪ p̂; a destination node t is added with links connecting all the sensors in S∗.
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Unit capacity is assigned to each link in E∗o. The capacity of the link from s to

each target pm is set to be K. For each link from sensor si to the destination t, the

capacity is set to be drie. For each link from the pseudo target p̂ to the sensor si, the

capacity is set to be 0 if ri = drie, otherwise 1. The capacity of link (s, p̂) is set to be∑
i(drie − ri). Now we complete the building of flow network G∗.

Let E′o denote the set of the observation links (pm, si) on which τim = T . Clearly

E′o ⊆ E∗o. For each observation link (pm, si) ∈ E′o, we delete the link (pm, si) from the

G∗, and in turn decrease the capacity of links (s, pm) and (si, t) by 1, respectively.

After deleting all the links with zero capacity we construct a new flow network G
′

(line 4). Using Ford-Fulkerson method [63], we find a maximum flow f̄ on G
′

(line

5). Let Ef
o and Ef

p denote the set of observation links and pseudo observation links

on which flow f̄ is positive, respectively. We construct the set of observation links in

the observation assignment as Eφ
o = E′o ∪ Ef

o (line 6).

For each observation link (pm, si) ∈ Eφ
o , we find a path from si to the sink via only

communication links with Fij > 0 (e.g. using breadth first search) (line 7). Appending

each observation link (pm, si) ∈ Eφ
o with the path, we build an observation assignment

φ(x) (line 8).

After building the observation assignment φ(x), we can determine the operation

duration τ(x). The value of τ(x) is chosen as the maximum value while satisfying the

following four conditions: (a) Fij(x) ≤ Fij for any communication link (si, sj) ∈ φ; (b)

τim(x) ≤ τim for any observation link (pm, si) ∈ Eφ
o ; (c) T−τ(x) ≥ max(τim : (pm, si) 6∈

Eφ
o ); (d) τ(x) ≤ τip̂ for any pseudo observation link (p̂, si) ∈ Ef

p . (Recall that Ef
p denote
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the set of pseudo observation links on which the maximum flow f̄ is positive). Let τ cmin

denote the minimum value of Fij/
∑

m:(si,sj)∈Rm(x) rm on each selected communication

links (si, sj); τ
o
min denote the minimum value of τim for observation links in Eφ

o ; τ pmin

denote the minimum value of τip̂ for pseudo observation links in Ef
p ; and τ

′
max denote

the maximum value of τim for observation links in E∗o − Eφ
o . The operation duration

of assignment φ is set (line 9) as

τ(x) = min(τ omin, τ
p
min, τ

c
min, T − τ

′

max) (5.9)

Then we calculate the xth assignment solution {τ(x), τim(x), Fij(x)} and update

the solution set {T, τim, Fij} by decreasing it by the assignment solution. If the value

of T becomes zero in the updated solution set, the algorithm stops.

5.2.3 Correctness of the algorithm

Theorem 5 The solution set {T, τim, Fij} in each iteration satisfies the following

equations:

τim ≤ T ; ∀(si, pm); (5.10)∑
m

τim ≤ LT ; ∀si; (5.11)∑
i

τim = KT ; ∀pm; (5.12)∑
m

τimrm +
∑
j 6=i

Fji =
∑
j 6=i

Fij; ∀si; (5.13)

τim ≥ 0; T ≥ 0; Fij ≥ 0; ∀si, sj, pm (5.14)

Proof: We prove the theorem by induction. In the first iteration, as the solution set

is the solution of the LP problem, all the equations are satisfied.
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Suppose that the equations are satisfied in the xth iteration. Let
{
T x, τxim, F

x
ij

}
denote the solution set in the iteration and

{
T x+1, τx+1

im , F x+1
ij

}
denote the solution

set in the next iteration. From the description of the algorithm, we have

T x+1 = T x − τ(x); (5.15)

τx+1
im =


τxim − τ(x); (pm, si) ∈ Eφ

o

τxim; (pm, si) 6∈ Eφ
o

(5.16)

F x+1
ij = F x

ij − Fij(x); (5.17)

From Eq. 5.15 and Eq. 5.16, for observation links in Eφ
o , we have τx+1

im ≤ T x+1. As

τ(x) ≤ T x − τ ′max, for observation links not in Eφ
o , we also have τx+1

im ≤ T x+1. Thus

Eq. 5.10 is satisfied in the x+ 1th iteration.

As τ(x) ≤ τ omin and τ(x) ≤ τ cmin, we have τx+1
im ≥ 0 and F x+1

ij ≥ 0. As Eq. 5.10 is

satisfied in the x+ 1th iteration, T x+1 ≥ τx+1
im ≥ 0. Eq. 5.14 is satisfied in the x+ 1th

iteration.

Consider the flow network G∗ as constructed in section 5.2.2. The capacity on

all the links except link (s, p̂) are integer values (K, 1 or drie). As Eq. 5.12 is

satisfied in the xth iteration, the capacity of link (s, p̂) is
∑

i(drie − ri) =
∑

idrie −∑
i

∑
m τ

x
im/T

x =
∑

idrie − KM , which is also an integer value. Thus the capacity

of all the links in G∗ are integer values. In turn, the capacity of all the links in G
′

are also integer values as we build G
′

from G∗. Let n denote the number of links in

E′o (links with τxim = T x which are deleted from G∗); ni denote the number of links

in E′o connecting with si; nm denote the number of links in E′o connecting with pm.

For each sensor si, as ri =
∑

m τ
x
im/T

x, ni ≤ drie, the capacity of link (si, t) on G
′

is
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given by drie − ni ≥ 0. For each target pm, from Eq. 5.12, we infer nm ≤ K, and the

capacity of link (s, pm) is K − nm ≥ 0. Therefore, the capacity of each link in G
′

is a

non-negative integer.

It is easy to prove that the capacity of G
′

is
∑

idrie − n, the set of links

{(s, pm) : ∀pm} ∪ (s, p̂) and {(si, t) : ∀si} are both minimum cuts of G
′
. Therefore,

the value of the maximum flow f̄ is also
∑

idrie − n. In addition, as all the links in

G
′

have non-negative integer capacity, from Integer Theorem (pp. 666 in [63]), the

value of f̄ on all the link are also integer values. Since unit capacity is assigned to

all the observation links and pseudo observation links, f̄ can only take a value of 0

or 1 on these links. As the set of links {(s, pm) : ∀pm} ∪ (s, p̂) is the minimum cuts

of G
′
, the value of flow f̄ on each link (s, pm) is the capacity on the link. From flow

conservation, we have
∑

i f̄mi = K − nm. Since f̄ only take 0 or 1 values on observa-

tion links,
∑

i f̄mi is the number of links in Ef
o connecting with pm. As Eφ

o = E′o ∪Ef
o ,

from Eq. 5.16, we have

∑
i τ

x+1
im =

∑
i τ

x
im − (

∑
i f̄mi + nm)τ(x)

= K(T x − τ(x)) = KT x+1

(5.18)

and thus Eq. 5.12 is satisfied in x+ 1th iteration.

As the set of links {(si, t) : ∀si} is also the minimum cut of G
′
, the value of flow

f̄ on each link (si, t) is the capacity on the link. From flow conservation, we have∑
m f̄mi + f̄p̂i = drie − ni. From τ(x) ≤ τ pmin, we have τ(x) ≤ τip̂ = (drie − ri)T x.
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Consequently, we have∑
m τ

x+1
im =

∑
m τ

x
im − (

∑
m f̄mi + ni)τ(x)

= riT
x − (drie − f̄p̂i)τ(x)

= drie(T x − τ(x))− (drie − ri)T x + τ(x)f̄p̂i

≤ drieT x+1 ≤ LT x+1

and hence Eq. 5.11 is satisfied in x+ 1th iteration.

From Eq. 5.7 and Eq. 5.8, if Eq. 5.13 is satisfied in xth iteration, it is still satisfied

in x+ 1th iteration.

Thus the theorem is proved.

Corollary 3 In each iteration, for each observation link (pm, si) ∈ Eφ
o , there exists a

path from si to the sink via only communication links with Fij > 0.

Proof: As Eq. 5.13 is satisfied in each iteration (flow conservation), for each sensor

si ∈ S∗ (the sensor with τim > 0), there must exist a route from si to the sink via

only links with Fij > 0. As the set of sensors connected by Eφ
o is a subset of S∗, the

corollary is proved.

Corollary 4 The observation assignment built in each iteration is feasible observa-

tion assignment.

Proof: In the proof of Theorem 5, we have
∑

i f̄mi = K − nm in each iteration. As

f̄ can only take 0 or 1 values on observation links, there are K − nm sensors selected

to observe target pm in Ef
o . Since there are nm sensors selected to observes target pm

in E′o, E′o ∩Ef
o = φ and Eφ

o = E′o ∪Ef
o , there are totally K sensors selected to observe

each target pm in the observation assignment built in each iteration.
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Also, we have
∑

m f̄mi + f̄p̂i = drie − ni in each iteration. Each sensor si can

observe at most drie − ni targets in Ef
o and ni targets in E′o. As Eq. 5.11 is satisfied

in each iteration, we have drie ≤ L. Each sensor si can observe at most L targets in

the observation assignment built in each iteration.

Finally, as in corollary 3, we can find a route from each selected source node to the

sink, e.g. via breath-first or depth-first search. Therefore, the observation assignment

built in each iteration is feasible. Hence it is proved.

Lemma 3 In each iteration x, if T > 0, we have τ(x) > 0.

Proof: The operation duration τ(x) takes one of the following four values:

τ omin, τ
p
min, τ

c
min, T − τ

′
max. As G∗ contains only observation links with non-zero τim,

we have τ omin > 0. As all the observation links with τxim = T x are selected into the

observation assignment, we have τ
′
max < T . As all the links with zero pseudo capacity

has been deleted in G
′
, we have τip̂ > 0. As the route from each source node to the

sink is built by links with F x
ij > 0, we have τ cmin > 0. Hence it is proved.

Theorem 6 The decomposition algorithm terminates in at most N(M + 1) +N2 + 1

iterations with
∑

x τ(x) = T and has polynomial-time worst case time complexity.

Proof: In any iteration x, the operation duration τ(x) takes one of the following four

values: τ omin, τ
p
min, τ

c
min, T − τ

′
max. If τ(x) = τ cmin, at least one positive element F x

ij > 0

in the solution set is updated to be F x+1
ij = 0. If τ(x) = τ omin, at least one positive

element τxim > 0 in the solution set is updated to be τx+1
im = 0.

If τ(x) = T − τ ′max, at least one element τxim < T x in the solution set is updated

to be τx+1
im = T x+1. If we have τxim = T x in the xth iteration, as link (pm, si) will be
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selected in the observation assignment, we have τx+1
im = T x+1 in the x+ 1th iteration,

and thus we have τ zim = T z in all the iterations with z > x.

If τ(x) = τ pmin, let si be the sensor that has τip̂ = τ pmin. From the definition of

τ pmin we have f̄p̂i = 1. As
∑

m f̄mi + f̄p̂i = drie − ni, from Eq. 5.16 and Eq. 5.15, we

have

∑
m τ

x+1
im =

∑
m τ

x
im − (

∑
m f̄mi + ni)τ(x)

= riT
x + τ(x)− drieT x + drie(T x − τ(x))

= τ(x)− τip̂ + drieT x+1 = drieT x+1

And thus at least one sensor si with τip̄ > 0 in the xth iteration has τip̄ = 0 in the

x + 1th iteration. If a sensor si has τip̄ = 0 in the xth iteration, as f̄p̂i = 0, we have

ri = drie and
∑

m f̄mi = drie − ni, and thus we have
∑

m τ
x+1
im = drieT x+1. Sensor si

has τip̄ = 0 in all the following iterations z > x.

As there are at most N2 communication links, at most NM observation links

and at most N pseudo observation links, the algorithm will stop in at most

N(M + 1) + N2 + 1 iterations. As the maximum flow on graph G
′

is at most

KM+N , the time complexity of Ford-Fulkerson algorithm is O(KM2N+MN2) [63].

The time complexity of bread-first search to find path from each source to the sink

node is O(N3). Therefore, the time complexity of the decomposition algorithm is

O(N2(KM2 + MN + N2)(M + N)). From corollary 4 and lemma 3, the algorithm

will continuously generate feasible observation assignments and non-zero operation

duration until T = 0. As after each iteration T is updated by decreasing τ(x), we

have
∑

x τ(x) = T .
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Theorem 7 The observation schedule constructed by the decomposition algorithm is

feasible and the solution of the LP problem gives the optimal lifetime of LMOS-1

problem.

Proof: The algorithm stops when T = 0. From Eq. 5.10 and Eq. 5.13, we have τim =

0 and Fij = 0 when T = 0, and thus we have
∑

x τ
x
im = τim and

∑
x F

x
ij = Fij. From

Eq. 5.6 we can conclude that the energy consumption of each node si after executing

the constructed schedule is less equal to E0(si). Since each observation assignment in

the schedule is feasible (corollary 4), the constructed observation schedule is feasible.

As the LP solution gives an upper bound of the optimal lifetime of LMOS problem,

and we can find an feasible observation schedule (solution of LMOS problem) that

achieves this upper bound, the solution of the LP problem gives the optimal lifetime

of LMOS-1 problem.

5.2.4 Numerical example

In this section we present a numerical example to illustrate the LMOS-1 problem and

solution. There are 7 nodes and 3 targets randomly scattered in an 100 × 100 area.

The sink node is placed at the top left corner of the area. The coverage requirement

K is set as 3 and the observation constraint L is set as 2. The value of various

parameters are chosen to be et = 50nJ/bit, b = 100pJ/bit/m4, α = 4, er = 150nJ/bit

and es = 150nJ/bit [69]. We assume that the target rate of each target is the same –

1kbps, and each sensor has the same initial energy 20J . The sensing range is set as

60m and the communication range is set as 100m.
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Figure 5.2: Network topology with non-zero links in the LP solution

In the first step, we formulate and solve the LP problem as described in sec-

tion 5.2.1. The maximized lifetime obtained is T = 11. Figure 5.2 shows the network

topology with those observation links (pm, si) and communication links (si, sj) that

have non-zero values of τim or Fij in the solution of LP problem. The values of {τim}

in the LP solution set are listed in Table 5.2, for example, τ11 = 9.8 and τ12 = 1.2.

We normalize each value of Fij in the LP solution by the target rate (1Kbps) and

label the normalized values on the corresponding links in Fig. 5.3, e.g. F12 = 3.1 and

F4R = 6.6. Then we execute the decomposition algorithm. The calculated pseudo

observation durations are also shown in Table 5.2, e.g. τ3p̄ = 7.3.

First we build the flow network G∗ as in Fig. 5.4-a. The dashed lines denote

the observation links with τim = T , e.g. observation link (p1, s4) is dashed line as

τ41 = T = 11. The values labeled on the links from the sender s to each target or
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Table 5.2: Values of {τim} in the LP solution and {τip̄}

Targets Nodes

s1 s2 s3 s4 s5 s6 s7

p1 9.8 0 0 11 3.7 5.1 3.4

p2 1.2 11 0 9.8 11 0 0

p3 11 11 3.7 0 7.3 0 0

p̄ 0 0 7.3 1.2 0 5.9 7.6

Figure 5.3: Normalized {Fij} in the LP solution

from each sensor to the destination t are the link capacities on these links, i.e. the

capacity from s to p̄ is 1. Next we find the maximum flow on graph G
′
. The links

that the maximum flow passes through together with the observation links that have

τim = T are shown in Fig. 5.4-b. It can be easily examined that the observation links

shown in Fig. 5.4-b cover each target 3 times and cover each sensor less than 2 times.

In Fig. 5.4-c from each sensor to the sink a path is found via only communication

links with non-zero Fij. Fig. 5.4-d shows the constructed observation assignment by

appending the selected observation links with the path from each source to the sink.
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Figure 5.4: Illustration of the decomposition algorithm

The values labeled on each communication link is the normalized (by target rate) flow

rate on the link when the observation assignment is executed. Finally, we calculate

the observation duration of the assignment τ as in Fig. 5.4-e: τ omin = τ51 = 3.7;

τ pmin = τ6p̄ = 5.9; τ cmin = F4R/2 = 3.3; T − τ ′max = 11− τ53 = 3.7. Therefore, we have

τ = 3.3. After that, the solution set is updated and we have T = T − τ = 7.7. The

updated {τim} and {Fij} is shown in Table. 5.3 and Fig. 5.5.
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Table 5.3: Values of {τim} and {τip̄} after the first update

Targets Nodes

s1 s2 s3 s4 s5 s6 s7

p1 6.5 0 0 7.7 0.4 5.1 3.4

p2 1.2 7.7 0 6.5 7.7 0 0

p3 7.7 7.7 0.4 0 7.3 0 0

p̄ 0 0 7.3 1.2 0 2.6 4.3

Figure 5.5: Normalized {Fij} after the first update

The above procedures are repeated until the total observation duration equals to

the network lifetime. The observation schedule obtained is shown in Fig. 5.6.

5.2.5 Performance Study

In this section we study the impact of various network parameters on the network

lifetime for LMOS-1 problem, including the number of nodes – N , the number of

targets – M , the coverage constraint – K and the observation constraints L. We

consider stationary networks with sensor nodes and targets uniformly located in a

square of 100m × 100m area. The sink node is placed in the middle of the area.
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Figure 5.6: The optimal observation schedule
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Figure 5.7: Normalized network lifetime vs. L

The sensing range and communication range of each node Rs = 40m, Rc = 40m.

The value of various parameters are chosen to be et = 50nJ/bit, b = 100pJ/bit/m4,

α = 4, er = 150nJ/bit and es = 150nJ/bit [69]. We assume that each target produces

data at the same rate 10kbps, and each sensor has the same initial energy 20J . Each

value plotted in the figure or shown in the table is the average result of 100 randomly

generated topologies.

In Fig. 5.7 we study the impact of L - the number of targets a sensor can simul-

taneously observe - on the network lifetime with different values of K, N and M .

The value of each point is normalized by the network lifetime achieved corresponding

to L = ∞. It can be observed that the network lifetime is improved as L becomes

larger. When the number of targets is larger or the coverage requirement is higher,
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Figure 5.8: Network lifetime vs. number of nodes (M = 15)

the improvement of lifetime with the increasing L becomes more significant.

In Fig. 5.8 we study the impact of the number of sensors N on the network lifetime

for different values of K and L. The number of targets in the network is fixed at 15.

It can be observed that the network lifetime increases nearly linearly as the number of

nodes increases. This is because, with more number of nodes, possibly large number of

observation assignments can be built. In Fig. 5.9 we study the impact of the number

of targets M on the network lifetime for different values of K and L. The number of

sensors in the network is fixed at 100. The decreasing trend of network lifetime can

be observed as the number of targets increases. This is because, more the number of

targets, the larger the data generated, and the larger the energy consumed.
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5.3 NP-Completeness of LMOS-2 problem

We can show LMOS-2∈NP by verifying in polynomial time whether a non-

deterministically selected observation schedule is feasible. Further, LMOS-2 problem

can be proven to be a NP-Complete problem as the Maximum Set Covers (MSC)

problem [16], which has been proven to be NP-complete, is a special case of LMOS-2

problem when 1) each node communicates directly with the sink node, 2) K = 1 and

3) (es + etiR)
∑

pm∈Pi rm is the same for each sensor si, where Pi is the set of targets

that are in the sensing area of sensor si.
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5.3.1 Upper bound and lower bound of LMOS-2 problem

Given an instance of LMOS-2 problem, we can build an instance of LMOS-1 problem

with the same initial requirements and L =∞. Let T1 denote the optimal lifetime of

the LMOS-1 instance and let T2 denote the optimal lifetime of the LMOS-2 instance.

let M = maxi maxm∈Pi

∑
m∈Pi

rm

rm
. We make the following claim.

Claim 1 T1 ≥ T2 ≥ 1
MT1.

Proof: Given any feasible solution of the LMOS-2 instance with lifetime T2, we can

build a feasible solution of the corresponding LMOS-1 instance with lifetime T2 by

building the same observation assignments and setting the same operation durations

as in the solution of LMOS-2 and assigning each source node to observe all the targets

in it sensing area since L =∞. Thus we have T1 ≥ T2. Given any feasible solution of

the LMOS-1 instance with lifetime T1, we can build a feasible solution of the LMOS-

2 instance by assigning the same set of source nodes as in the solution of LMOS-1

instance. The data generated by each node in LMOS-2 solution is at most M times

of that in LMOS-1 solution, and thus we have T2 ≥ 1
MT1.

5.4 Summary

In this chapter, we considered the CTC problem when the data generation rate of a

sensor is proportional to the number of targets observed by it and with K coverage

requirement wherein each target is observed by at least K sensors. We modeled the

CTC problem in this case as a Lifetime Maximization Observation Schedule (LMOS)

problem and discussed the problem with two different observation scenarios depending

102



on whether a sensor can select a subset of targets in its sensing area to observe or not.

We proved that the LMOS problem for the first scenario (LMOS-1) is a P problem

and developed a polynomial-time algorithm which can achieve the optimal solution

based on Linear Programming and Integer Theorem. We showed that the LMOS

problem for the second scenario (LMOS-2) is NP complete. We derived an upper

bound and a lower bound of the LMOS-2 problem based on the optimal solution of

the LMOS-1 problem.
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Chapter 6

Approximation and Heuristic algorithms

for the LMOS problem

In this chapter approximation algorithms for both LMOS-1 and LMOS-2 problems

are developed. They provide insights into the LMOS problem and can be used to

evaluate and compare the performance of other algorithms. As a practical implemen-

tation we develop a faster flexible heuristic algorithm called Communication Weighted

Observation Scheduling (CWOS) for both problems which can be implemented in a

distributed fashion. We carry out extensive simulations to demonstrate the effective-

ness of the proposed heuristic algorithm by comparing its performance with that of

the optimal solution for the LMOS-1 problem and the approximation algorithm of

the LMOS-2 problem.

6.1 Approximation algorithm for the LMOS problem

6.1.1 LP packing formulation and dual problem

Given an instance of the LMOS-1 problem, let us enumerate all the possible sets of

observation links U = {U1, U2, · · · , UQ} in the feasible observation assignment of the

instance, such that each set Uq ∈ U contains a set of observation links satisfying
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K-coverage requirement and L observation constraint. Thus, the set of observation

links of any feasible observation assignment of the LMOS-1 problem instance would

be in U . Let τq denote the duration that Uq is selected as the set of observation

links in the observation assignment, where q denotes the index of set of observation

links in U ; Let F s
i denote the total amount of data that are generated by node si

when it is selected as the source node; Let Ni denote the set of neighbors of sensor si;

Let Pi denote the set of targets in the sensing area of sensor si; Let Xq
im be 1 if the

observation link (pm, si) belongs to the set Uq, otherwise 0. The LMOS-1 problem

can be formulated as follows:

Maximize:
∑

1≤q≤Q

τq (6.1)

∑
1≤q≤Q

∑
1≤M

Xq
imrm · τq − F s

i = 0; ∀si ∈ S (6.2)

−
∑
j∈Ni

Fij +
∑
j∈Ni

Fji + F s
i − FiR = 0; ∀si ∈ S (6.3)

∑
j∈Ni

Fije
t
ij +

∑
j∈Ni

Fjier + F s
i es + FiRe

t
iR ≤ E0(si);∀si ∈ S (6.4)

Equations 6.2 and 6.3 are the flow conservation constraints. Equation 6.4 is the energy

consumption constraint. Eq. 6.3 and Eq. 6.4 are the same as Eq. 4.3 and Eq. 4.4 in

Chapter 4.

Given an instance of the LMOS-2 problem, let U = {U1, U2, · · · , UQ} enumerates

all possible sets of sources in the feasible observation assignments. Let Xiq be 1 if

node si belongs to the set Uq, otherwise 0. The LMOS-2 problem can be formulated

as a LP problem the same as the LP formulation of LMOS-1 problem but replacing
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Eq. 6.2 by ∑
1≤q≤Q

Xiq ·
∑
m∈Pi

rmτq − F s
i = 0; ∀si ∈ S (6.5)

6.1.2 The dual problem and its interpretation

The dual problem of the LP formulation of LMOS-1 problem is as follows:

Minimize:
∑

1≤i≤N

ciE0(si) (6.6)

−ai + aj + etijci + ercj ≥ 0; ∀i 6= j, sj ∈ Ni (6.7)

etiRci − ai ≥ 0; ∀si ∈ NR (6.8)

−bi + ai + esci ≥ 0; ∀1 ≤ i ≤ N (6.9)

∑
1≤i≤N

∑
1≤m≤M

Xq
imrm · bi ≥ 1; ∀1 ≤ q ≤ Q (6.10)

where ai, bi, ci ≥ 0 (1 ≤ i ≤ N) are variables in the dual problem. Eq. 6.7, Eq. 6.8

and Eq. 6.9 are the same as Eq. 4.6, Eq.4.7 and Eq. 4.8 in Chapter 4. The dual

problem of the LP formulation of LMOS-2 problem is the same as the above problem

but replacing Eq. 6.10 by

∑
1≤i≤N

Xiq

∑
m∈Pi

rm · bi ≥ 1; ∀1 ≤ q ≤ Q (6.11)

The dual problem can be interpreted as a problem of assigning weights to the links in

the network. Let ~C be the vector such that its ith element is ci. We define the objective

function of the dual problem D(~C), the link weight wij(~C) for each link (si, sj) ∈ E,

the node weight wi(~C) for each node si and the path weight P = {si, n1, n2, · · · , nl,R}
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which are the same as Eq. 4.10, Eq. 4.11, Eq. 4.12, and Eq. 4.17 in Chapter 4. The

dual problem of the LMOS-1 problem can now be re-written as:

Minimize:D(~C) (6.12)

wij(~C) ≥


ai − aj, if j 6= R, link (si, sj) ∈ E;

ai, if j = R, link (si,R) ∈ E;

(6.13)

wi(~C) ≥ bi − ai, ∀si ∈ S (6.14)∑
1≤i≤N

∑
1≤m≤M

Xq
imrm · bi ≥ 1; ∀1 ≤ q ≤ Q (6.15)

The dual problem of the LMOS-2 problem is the same as that of LMOS-1 but replacing

Eq. 6.15 by: ∑
1≤i≤N

Xiq

∑
m∈Pi

rm · bi ≥ 1; ∀1 ≤ q ≤ Q (6.16)

Using Eq. 6.13 and 6.14, we have

wP (~C) ≥ bi − ai + ai − an1 + · · ·+ anl = bi (6.17)

Let wiSPT (~C) denote the path weight of the shortest path (path with the minimum

path weight) from node si to the sink. For LMOS-1, we define

α(~C) = min
1≤q≤Q

{∑
i

∑
m

Xq
imrm · wiSPT (~C)

}
≥ 1 (6.18)

For LMOS-2, we define

α(~C) = min
1≤q≤Q

{∑
i

Xiq

∑
m∈Pi

rm · wiSPT (~C)

}
≥ 1 (6.19)

The dual problem is then equivalent to assigning values to ~C such thatD(~C)/α(~C)

is minimized subject to the constraint that α(~C) ≥ 1. Let

β = min

{
D(~C)

α(~C)

}
(6.20)
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6.1.3 Algorithm description

The above interpretation of the dual LP problem leads to our approximation algo-

rithm, which is given below:

1. Initialization

(a) Properly scale the problem so that β ≥ 1;

(b) t = 0; T = 0; Set δ; For each node si set ci = δ/E0(si); Let λ = log
1/δ
1+ε;

Set τp = 1/λ;

2. Set τ t = 0, k = 0, loop until τ t = τp;

(a) k = k + 1; Build the shortest path tree rooted at the sink with the link

weight function wij(~C) and the path weight function wP (~C);

(b) If LMOS-1:

i. Call FindOSlink subroutine to find a set of observation links Ψt
k

such that K coverage requirement is satisfied for each target, L

observation constraint is satisfied for each sensor, and the value of∑
(pm,si)∈Ψtk

rmw
i
SPT (~C) is minimized; If return FALSE, exit;

ii. The observation links in Ψt
k and the shortest path from each sensor

in Stk to the sink forms the observation assignment φtk

(c) If LMOS-2:

i. Stk = φ; for ∀si ∈ S, P tki = Pi; Until all the targets are covered K

times by Stk, do:
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A. select si 6∈ Stk with the minimum
∑
m∈Pi

rmwiSPT ( ~C)

|Ptki |
; Add si into Stk;

B. for each sensor sj 6∈ Stk, P tkj = P tkj − P tki ∩ P tkj .

ii. The shortest path from each sensor in Stk to the sink constructs the

observation assignment φtk;

(d) The operation duration τ tk of φtk ends when τ tk = τp − τ t or any node si in

φtk consumes E0(si)/λ unit of energy;

(e) τ t = τ t + τ tk; Let etki denote the amount of energy that node si has con-

sumed in duration τ tk, ci(t, k) = ci(t, k − 1)× (1 + ε · λetki
E0(si)

).

3. t = t+ 1; ci(t, 0) = ci(t− 1, k); if D(~C) < 1, T = T + τp.

4. Double τp every 2λ iterations; repeat step 2 and step 3 until D(~C) ≥ 1.

The FindOSlink subroutine (step 2(b)i) finds the set of observation links in each

constructed observation assignment of LMOS-1 problem, and is described as follows:

1. Build network flow graph Go with all the observation links, the sensors and

targets connected with the observation links, a source node s connected with

all the targets and a destination node t connected with all the sensors; Assign

link capacity K and link cost 0 to the link from s to each target; Assign link

capacity L and link cost 0 to the link from each sensor to the destination

t; Assign link capacity 1 and link cost rmw
i
SPT (~C) to each observation link

(pm, si);

2. For each link (u, v) ∈ Go, set fuv = fvu = 0;

3. While there exists path from s to t in the residual network Go
f ;
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(a) Find the minimum cost path p from s to t in Go
f ;

(b) For each edge (u, v) in p, fuv = fuv + 1, fvu = −fuv;

(c) If
∑

(s,v)∈Go fsv = KM , return the set of observation links (si, pm) with

fim = 1; else return FALSE

The output of the algorithm is T , φtk and τ tk, which are the network lifetime, ob-

servation assignments and their operation durations, respectively. Similar to the ap-

proximation algorithm presented in chapter 4, at the beginning, we scale the problem

such that β ≥ 1 (step 1a). We then set the initial value for δ, λ and ci. For LMOS-1

problem, δ is set as ( N
1−ε)

−1/ε; for LMOS-2 problem, δ is set as δ = ( N

1−εH(M̂)
)−1/ε,

where M̂ is the maximum number of targets in the sensing area of a sensor. The

algorithm then proceeds in loops. As in chapter 4, we call the outer loop of steps as

an iteration, and call the inner loop of steps as a phase in the iteration. The duration

of each iteration is τp. Each iteration may be composed of multiple phases.

Let us define the communication weight of a link as the multiplication of the link

weight and the flow on the link. In each phase, we try to find a feasible observation

assignment, such that the total communication weight from all the source nodes to

the sink is minimized (step 2).

For LMOS-1 problem, we find the desired observation assignment by solving a

minimum cost flow problem. In step 2a we build a shortest path tree rooted at the

sink node and each node get the shortest path from itself to the sink. We find the

set of observation links in the desired observation assignment in step 2(b)i using the

FindOSlink subroutine. After the flow network is built in step 1 of the subroutine,
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the minimum cost maximum flow in the constructed network gives us the observation

links in the minimum communication weight observation assignment. The subroutine

solves the minimum cost maximum flow problem by repeatedly admitting a minimum

cost flow in the residual network (step 3 in subroutine). The residual network Go
f of

Go consists of links that can admit more flows (pp. 651 in [63]). The cost of link in

the residual network is the same as the link in the original network but is negative if

the direction of the link is adverse. The subroutine returns FALSE only when there

does not exist a feasible observation assignment and the approximation algorithm will

exit.

For LMOS-2 problem, we use the concept of greedy algorithm for weighted set

multi-cover problem to select the set of sources. The weighted set multi-cover problem

is an extension to the weighted set cover problem by requiring that each element is

covered by multiple times. Considering Pi as the subset and wiSPT (~C) as the subset

weight in weighted set multi-cover problem, denoting P tki as the set of targets that

have not been K-covered in Pi, we greedily select the sensor that has the minimum

value of
∑
m∈Pi

rmwiSPT ( ~C)

|Ptki |
as the source node until all the targets are covered K times.

The shortest path from each selected source node to the sink builds the observation

assignment.

The duration of the phase (operation duration of the observation assignment)

ends when the duration of the iteration ends or any node si consumes E0(si)/λ units

of energy in the phase. Once the observation links are found, appending the short-

est paths from each selected source node to the sink builds the desired observation
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assignment. The value of ci will be updated according to the energy consumption of

node si in the phase.

We present the method to scale the problem (in step 1a), analyze the approxima-

tion ratio and discuss the value of λ, δ in the next section (section 6.1.4). Then we

analyze the complexity in section 6.1.5.

6.1.4 Analysis

We first explain the scaling method used in our algorithm so that β ≥ 1. For LMOS-

1 problem, let TLP denote the optimal network lifetime achieved by solving the LP

problem presented in Chapter 5. Thus scaling the initial energy of each node by

TLP/2 can guarantee that 2 ≥ β ≥ 1. For LMOS-2 problem, from claim 1, we have

TLP/M ≤ β ≤ TLP . Thus scaling the initial energy of each node by TLP/M can

guarantee that M≥ β ≥ 1.

Using the definition of path weight wP (~C), we have

wP (~C) = (es + eti,n1
)ci + (er + etnl,R)cnl +

∑
1≤z<l

(er + etnz ,nz+1
)cnz (6.21)

Let Kt denote the number of phases in iteration t, ~C(t, k) denote the vector of ci

after the kth phase of iteration t. Assuming that the qth set in U is selected as the

set of observation links or sources in the kth phase of iteration t, the value of D(~C)

at the end of this phase is

D(~C(t, k)) =
∑
i

ci(t, k)E0(si) (6.22)

= D(~C(t, k − 1)) + ε
∑
i

λetki ci(t, k − 1) (6.23)
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For LMOS-1 problem, we have

D(~C(t, k)) = D(~C(t, k − 1)) + ετ tkλ
∑
i

∑
m

Xq
imrmw

i
SPT (~C(t, k − 1)) (6.24)

For LMOS-2 problem, we have

D(~C(t, k)) = D(~C(t, k − 1)) + ετ tkλ
∑
i

Xiq

∑
m∈Pi

rmw
i
SPT (~C(t, k − 1)) (6.25)

For LMOS-1 problem, as the FindOSlink subroutine find the set of observation links

of a feasible observation assignment with minimum
∑

(pm,si)∈ψtk
rmw

i
SPT (~C), we have

∑
i

∑
m

Xq
imw

i
SPT (~C(t, k − 1)) = α(~C(t, k − 1)) (6.26)

For LMOS-2 problem, as greedy algorithm is a H(k) approximation algorithm for

weighted set multi-cover problem [92] where H(k) =
∑

1≤i≤k
1
i

and k is the maximum

subset size, we have

∑
i

Xiq

∑
m∈Pi

rmw
i
SPT (~C(t, k − 1)) ≤ H(M̂)α(~C(t, k − 1)) (6.27)

As the algorithm proceeds, the link weights are monotonically non-decreasing. There-

fore, for both problems,

α(~C(t, k − 1)) ≤ α(~C(t, k)) (6.28)

If τp is never doubled,
∑

1≤k≤Kt−1
τ t−1
k = τp = 1/λ. We assume that τp is never

doubled now and will explain latter why the approximation ratio still holds when this

assumption is removed in section 6.1.5. For any iteration t ≥ 1, for LMOS-1 problem,

we have

D(~C(t, 0)) = D(~C(t− 1, 0)) + ελ
∑

1≤k≤Kt−1

τ t−1
k α(~C(t− 1, k − 1)) (6.29)

≤ D(~C(t− 1, 0)) + ελ
∑

1≤k≤Kt−1

τ t−1
k α(~C(t, 0)) (6.30)

≤ D(~C(t− 1, 0)) + εα(~C(t, 0)) (6.31)
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For any iteration t ≥ 1, for LMOS-2 problem, we have

D(~C(t, 0)) ≤ D(~C(t− 1, 0)) + ελ
∑

1≤k≤Kt−1

τ t−1
k H(M̂)α(~C(t− 1, k − 1)) (6.32)

≤ D(~C(t− 1, 0)) + ελ
∑

1≤k≤Kt−1

τ t−1
k H(M̂)α(~C(t, 0)) (6.33)

≤ D(~C(t− 1, 0)) + εH(M̂)α(~C(t, 0)) (6.34)

Since β = min
{
D(~C)/α(~C)

}
≤ D( ~C(t,0))

α( ~C(t,0))
and D(~C(0, 0)) = Nδ, for LMOS-1 problem,

we have

D(~C(t, 0)) ≤ D(~C(t− 1, 0))

1− ε/β
≤ Nδ

(1− ε/β)t
(6.35)

=
Nδ

1− ε/β
(1 +

ε

β − ε
)(t−1) (6.36)

≤ Nδ

1− ε/β
e
ε(t−1)
β−ε ≤ Nδ

1− ε
e
ε(t−1)
β(1−ε) (6.37)

The last inequality uses the assumption that β ≥ 1. Let Nt denote the iteration

number when the algorithm ends, i.e. We have

β

Nt − 1
≤ ε

(1− ε) ln(1−ε
Nδ

)
(6.38)

Similarly, for LMOS-2 problem, we have

β

Nt − 1
≤ εH(M̂)

(1− εH(M̂)) ln(1−εH(M̂)
Nδ

)
(6.39)

In each iteration, the network lifetime will be increased by a duration of 1/λ. Since

the algorithm ends when D(~C(Nt, 0)) ≥ 1, the network lifetime is T = (Nt − 1)/λ.

Lemma 4 The solution of our approximation algorithm is a feasible solution for both

the LMOS-1 and LMOS-2 problem, (Nt−1)/λ is strictly less than the optimal solution

of the LMOS problem.
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Proof: Similar to the proof of lemma 2 presented in Chapter 4.

Theorem 8 Our algorithm is a (1 +w) approximation for the LMOS-1 problem and

a (1 + w)H(M̂) approximation for the LMOS-2 problem.

Proof: Let γ denote the approximation ratio. Using Eq. 6.39 and from Lemma 4,

for LMOS-1 problem, we have

γ <
β

(Nt − 1)/λ
≤

ε log1+ε 1/δ

(1− ε) ln(1−ε
Nδ

)
=

ε

(1− ε) ln(1 + ε)

ln(1/δ)

ln(1−ε
Nδ

)
(6.40)

As δ = ( N
1−ε)

−1/ε,

γ ≤ ε

(1− ε)−2 ln(1 + ε)
≤ ε

(1− ε)−2(ε− ε2/2)
(6.41)

≤ (1− ε)−3 = (1 + w) (6.42)

Similarly for LMOS-2 problem, we have

γ <
β

(Nt − 1)/λ
≤ H(M̂)(1− εH(M̂))−1(1− ε)−2 (6.43)

= H(M̂)(1 + w) (6.44)

Hence proved.

6.1.5 Complexity Analysis

From lemma 4,

1 ≤ γ <
β

(Nt − 1)/λ
⇒ Nt < 1 + βλ (6.45)

Therefore, the total number of iterations Nt until the approximation algorithm ter-

minates is strictly less than 1 +βλ. For LMOS-1 problem, after we scale the problem
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by TLP/2 we have 1 ≤ β ≤ 2. Therefore, the approximation algorithm will terminate

in 2dλe iterations. For LMOS-2 problem, after we scale the problem by TLP/M we

have 1 ≤ β ≤M. If the algorithm doesn’t terminate after 2dλe, we know β ≥ 2 and

double the duration of iterations τp. The approximation ratio will not be affected as

this is equivalent to re-scalling the problem. As we repeat this procedure until the al-

gorithm terminates, the approximation algorithm for LMOS-2 problem will terminate

in 2dλe log2M iterations (β ≤M after scaling).

We note that in each phase of an iteration, except for the last phase, there exists at

least one node si that consumes energy E0(si)/λ, whose ci is increased by a factor 1+ε.

Since for any node si, the initial value of ci is δ/E0(si) and the final value is less than

1/E0(si) (for D(~C) < 1), the number of phases exceeds the number of iterations by at

most N log1+ε
1
δ

= Nλ (otherwise there exists at least one sensor si whose ci exceeds

1/E0(si)). For LMOS-1 problem, in each phase we build a shortest path tree and apply

the FindOSLink routine to select the set of obervation links, which requiresO(N2) and

O(MN(M+N))) time, respectively. Therefore, the time complexity of approximaton

algorithm for LMOS-1 problem is Nd1
ε

log1+ε(
N

1−ε)eO(NM(M + N))). For LMOS-2

problem, in each phase we build a shortest path tree and greedily select the source

nodes until all the targets are covered, which requires O(N2) and O(N min(M,N))

time, respectively. Therefore, the time complexity of approximation algorithm for

LMOS-2 problem is (2 log2(M) +N)d1
ε

log1+ε(
N

1−H(M̂)ε
)eO(N2 +N min(M,N)).
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6.2 Communication Weighted Observation Scheduling algorithm

6.2.1 Motivation

The optimal solution of LMOS-1 problem developed in section 5.2 is an off-line cen-

tralized algorithm. Any initial input variations due to sensor nodes failures, new

nodes deployment or sensor movements, will make the computed schedule unusable

and force the algorithm to be re-executed. As solving the LP problem is computation-

ally complex and sensors could be unreliable low price devices, the implementation

cost of the optimal solution in the unreliable sensor network may be high. The ap-

proximation algorithm developed in section 6.1 provides useful theoretical insights

into the LMOS problem and is more flexible for input variations as it generates ob-

servation assignments one by one based on the current network state. On the other

hand, the number of observation assignments generated could be large, because, to

achieve satisfactory results, we need to set ε to be small, which results in a small δ

and large λ. As generating a new observation assignment will incur protocol cost, e.g.

exchanging node state among neighbors and broadcasting the operational duration of

the observation assignment, the protocol cost of the approximation algorithm is likely

to be high. Therefore, it becomes necessary to develop a flexible low-cost heuristic

protocol for the LMOS problem for both scenarios, which can be implemented in the

real applications.
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6.2.2 Algorithm Description

The heuristic algorithm generates the observation assignments one by one based on

the current network state. It uses a greedy method to construct the observation as-

signments to cover the targets and it couples the communication cost and sources se-

lection. Hence it is called Communication Weighted Observation Scheduling (CWOS).

The inputs of the algorithm include graph G = {V,E} and initial energy E0(si) of

each sensor si. The output of the algorithm is a sequence of observation assignments

φ(1), φ(2), · · · , φ(X) and their operation durations τφ(1), τφ(2), · · · , τφ(X).

The pseudo-code of the algorithm is shown in Table 6.1. The algorithm repeat-

edly constructs feasible observation assignments and stops until no new observation

assignment can be built (i.e., the network lifetime is reached). Each observation

assignment operates for a fixed time duration τp, unless any sensor selected by the

observation assignment dies due to the lack of energy. Let Er
i denote the residual

energy of si and eφi denote the energy consumption rate of node si in a given the

observation assignment φ. Thus, the operation duration of a feasible observation

assignment φ is given by τφ = min( τp,minsi∈φ(Er
i /e

φ
i )).

In each iteration, there are two steps to build the observation assignment. In the

first step, an energy-aware communication tree is constructed connecting all the live

sensor nodes to the sink. In the second step, the set of observation links or source

sensors which cover the targets are selected, and the paths from the sources to the

sink construct the observation assignment.

In the first step, a weight wij is assigned to each link between live sensors si and
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sj which reflects both the communication energy consumption on the link and the

residual energy level of the sender. Here we use wij = etij × E0(si)/E
r
i . A minimum

weight communication tree (MWCT) T (x) is then constructed connecting all sensors

such that the sum of the link weights from each node to the sink is minimized. For

each live sensor si on T (x), it remembers the sum of link weights from itself to the

sink through T (x), which is denoted by Wi.

In the second step, a modified greedy set cover algorithm is developed to select

the set of observation links or sources that covers each target at least K times. The

algorithm greedily selects the sources among the live sensors which have not been

selected and has at least one target not K-covered in its sensing area. For different

observation scenarios, the procedure is a little different:

• For LMOS-1 problem, the sensor with the minimum path weight to the sink

(Wi) is selected as the source. The new source randomly chooses target which

is not yet K covered to observe until L targets or all the targets not yet K

covered in its sensing range are observed by it. Then the next new source is

selected.

• For LMOS-2 problem, for each sensor si, a cost function is defined as Ci =

Wi

∑
pm∈Pi rm/|P

∗
i |, where Pi is the set of targets in the sensing range of si

and P∗i is the set of targets without K covered in the sensing area of si. The

sensor with the minimum cost function is selected as the new source node and

the cost function of other sensors are updated accordingly.

The procedure of selection ends until no more source nodes can be selected. In
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practice, this algorithm can be implemented in a distributed way. For each node

si, we define set Sn(i) which contains non-source sensors that cover at least one

target without K-covered which is also in the sensing area of node si. If si has the

minimum value of weight/cost in Sn(i), si must be selected before other sensors in

Sn(i). Therefore, let each sensor si broadcasts its weight/cost value to all the nodes

in Sn(i), if a sensor si finds its weight/cost value to be the minimum one in Sn(i),

it claims itself as the source node, selects targets to observe (for LMOS-1 problem)

and broadcasts message to all other nodes in Sn(i) to update their information. The

procedure continues until si is selected as the source or all the targets in the sensing

area of si are K covered.

Finally, each source node sends a message through T (x) to the sink notifying the

bypassing relay nodes. Each active node determines the amount of data to be sent

and estimates the amount of energy consumption in the next operation duration.

If any sensor forecasts that it will consume more energy than its residual energy,

it will calculate the operation duration and broadcast it to all the other sensors. A

sensor will wait for a period of time (sufficient to complete the building of observation

assignment) after the source selection procedure and determines the length of the

next operation duration. Then it goes into sleep state until the end of the operation

duration.

For LMOS-1 problem, let TLP denote the optimal lifetime archived by solving

LP problem in section 5.2.1; for LMOS-2 problem, let TLP denote the lifetime upper

bound in claim 1. Each observation assignment operates for a duration τp otherwise

120



at least one sensor will die. Therefore, the number of observation assignments to be

built in the heuristic algorithm is upper bounded by N + TLP/τp. In each iteration,

the complexity of constructing MWCT is O(N |E|) using Bellman-Ford algorithm,

the complexity of source selection procedure is O(KMN), and thus the complexity

of CWOS algorithm is O((KMN +N |E|)(N + TLP/τp)).

Note that the modified greedy set cover algorithm (step 2) for LMOS-1 problem

does not necessarily generate a feasible set of observation links when there still ex-

ists feasible observation assignments. To study whether the performance of CWOS

algorithm can be further improved by using other algorithms to select the set of

observation links, we develop another more complex algorithm to select the set of

observation links for LMOS-1 problem. Consider the graph constructed by the ob-

servation links together with the sensors and targets connected with the observation

links. Set the link capacity and link cost of each observation link (pm, si) to be 1 and

rmWi. By adding a source node s connecting all the targets with link capacity K

and link cost 0, and a destination node t connecting all the sensors with link capacity

L and link cost 0, the problem of finding a feasible set of observation links can be

converted to a minimum cost flow problem on the graph. A modified Edmonds-Karp

(E-K) algorithm (pp. 660 in [63]) can be developed to solve the minimum cost flow

problem and hence find a feasible set of observation links with the minimum total

path weight. The E-K algorithm has been shown to find a feasible set of observation

links if exits. It repeatedly finds the minimum cost path from s to t on the residual

network and admitting flow on the path. Let us call the modified CWOS algorithm

which selects set of observation links using the modified E-K algorithm as CWOS-EK.
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We will compare the performance of the two algorithms and show that CWOS can

achieve almost the same performance as CWOS-EK in section 6.3.

6.3 Performance Study

In this section we present the numerical results and evaluate the performance of the

approximation algorithm and heuristic algorithm we have proposed. CPLEX is used

to solve the LP problem formulated for LMOS-1. The performance of the heuristic

algorithm is evaluated in terms of network lifetime T and the number of observation

assignments.

We consider the stationary networks with sensor nodes and targets uniformly

located in a square of 100m × 100m area. The sink node is placed in the middle of

the area. The communication range of each node Rc = 40m. The value of various

parameters are chosen to be et = 50nJ/bit, b = 100pJ/bit/m4, α = 4, er = 150nJ/bit

and es = 150nJ/bit [69]. We assume that each target produces data at the same

rate 10kbps, and each sensor has the same initial energy 20J . Each value plotted

on the figure or shown in the table is the average result of 100 randomly generated

topologies.

6.3.1 LMOS-1

In Fig. 6.1 we compare the network lifetime achieved by CWOS algorithm with the

optimal lifetime when the network density increases for different values of K and L.

The sensing range Rs = 40m. The number of targets in the network is fixed at 20.
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Figure 6.1: The network lifetime of optimal solution and CWOS algorithm vs. number

of nodes

The number of nodes is increased from 50 to 130, thus the density is varied. As the

network lifetime may vary greatly for different topology, the value of τp is set to be

LLP/2M , where LLP denotes the network lifetime in the optimal solution. It can be

observed that the network lifetime increases nearly linearly as the number of nodes

increases. The CWOS algorithm can achieve at least 90% of the optimal network

lifetime in all the cases.

In Table 6.2 we compare the network lifetime achieved by CWOS algorithm with

CWOS-EK algorithm for different values of N and L. The sensing range Rs is set to

be 40m, the number of targets is set as 20 and K is set as 1. It can be observed that

CWOS algorithm achieves almost the same lifetime as CWOS-EK.
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6.3.2 LMOS-2

As the connectivity issue is not considered in most existing works on discrete target

problem, we compare the performance of our algorithms with the greedy MSC algo-

rithm proposed in [16] with suitable modification to account for the connectivity. This

modification is done by using an energy-aware communication tree which is built in

a similar way as our CWOS algorithm to transmit the sensed data to the sink node.

We refer the modified algorithm as GrMSC EW. The greedy MSC algorithm greedily

selects a “critical” target and then selects the sensor with the greatest contribution to

the “critical” target until all the targets are covered. The “critical” target is chosen

as the target in the sensing area of the least number of sensors, and the contribution

function is chosen as the number of uncovered targets in the sensing area of a sensor.

In Table 6.3, the network lifetime (lifetime) achieved and the number of obser-

vation assignments (Num. Ass) generated by CWOS algorithm, the approximation

algorithm and GrMSC EW algorithm are compared when the network parameters

K, N and M are taken different values. The sensing range Rs = 20m. For CWOS

and GrMSC EW algorithm, the value of τp is set to be LLP/2M , which implies that

the number of observation assignments are bounded by 2M + N . For approxima-

tion algorithm, the value of ε is set to be 0.1. It can be observed that in all the

cases CWOS algorithm can achieve similar (within 5% lower) network lifetime as the

approximation algorithm while generating much less observation assignments. The

CWOS algorithm can achieve significantly (as 24%) higher network lifetime than

GrMSC EW algorithm. As expected, for all the algorithms the network lifetime will
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increase as the number of nodes N increases, the number of targets M decreases or

the coverage requirement K decreases. The number of observation assignments gen-

erated by the CWOS and GrMSC EW algorithms increases as the number of nodes or

the number of targets increases. This is due to the increased upper bound of number

of observation assignments 2M +N .

The construction of new observation assignments incurs protocol cost. To

construct an observation assignment, any algorithm (CWOS, approximation or

GrMSC EW) needs to construct a communication tree and then select the source

nodes to cover all the targets. Therefore, the number of observation assignments gen-

erated by the algorithms could be a good indicator for the potential protocol cost. As

we have discussed above, CWOS algorithm can achieve similar lifetime with a much

lower protocol cost compared with the approximation algorithm. We note that the

construction of new observation assignments in CWOS and GrMSC EW algorithms is

time-based and related to the chosen value of τp. If both the CWOS and GrMSC EW

algorithms choose the same value of τp in the simulation, as CWOS algorithm can

achieve higher network lifetime, CWOS will generate more observation assignments.

We set K = 1, N = 100, M = 20 and Rs = 20m. For τp = LLP/2M , the mean

number of observation assignments generated by CWOS and GrMSC EW algorithms

is 55.6 and 42.7, respectively. The lifetime generated by the two algorithms is 408.23

and 331.09, respectively. However, when τp is increased to LLP/M , the network

lifetime of CWOS algorithm slightly decreases to 405.42 which is still much higher

than the lifetime of GrMSC EW algorithm when τp = LLP/2M , while the number

of observation assignments of CWOS algorithm drastically decreases to 43.9 which is
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similar to that of GrMSC EW algorithm when τp = LLP/2M . Therefore, by suitably

selecting the value of τp, CWOS algorithm can incur a protocol cost close to that of

GrMSC EW while achieving significantly better performance in terms of lifetime.

6.4 Summary

In this chapter we developed approximation algorithms and heuristic algorithms for

the LMOS problem. We demenstrated the performance of algorithms through exten-

sive simulations.
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Table 6.1: Pseudo-codes for the heuristic algorithm

Input: G = {V,E}
Output: {φ(1), φ(2), · · · , φ(X)},

{
τφ(1), τφ(2), · · · , τφ(X)

}
.

(01) T = 0, x = 1;

(02) while (1)

step 1:

(03) Each node si assign weight wij = etij × E0(si)/E
r
i

to any link (si, sj) ∈ E originating from si;

(04) Build the minimum weight tree T (x) rooted at sink R
with link weight wij;

step 2:

(05) Call modified greedy set-cover algorithm to find set of

observation links or sources; If return FALSE, break;

(06) Appending the route from each source to the sink construct

the observation assignment φ(x);

(07) Each node si estimates its energy consumption rate eφi ;

(08) τφ(x) = min(τp,mini(E
r
i /e

φ
i ));

(09) x = x+ 1, T = T + τφ(x); Update the network, delete

dead or isolated nodes;

(10) Endwhile

Modified Greedy set-cover algorithm

(01) P∗ = P ; let S∗ denote the set of unselected sensors

cover at least one target in P∗;
(02) While S∗ 6= φ and P∗ 6= φ

(03) If LMOS-1,

(04) Select si ∈ S∗ with minimum Wi as the source;

(05) If |P∗ ∩ Pi| > L, randomly select L targets from

P∗ ∩ Pi to be observed by si;

(06) Else all the targets in P∗ ∩ Pi are observed by si;

(07) If LMOS-2,

(08) Select si ∈ S∗ with minimum Ci as the source node;

(09) Delete targets covered at least K times from P∗;
(10) Update S∗, update ci for each sensor si ∈ S∗;
(11) If the sources cannot cover all the targets K times,

return FALSE;

(12) Else return the set of obervation links or sources;
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Table 6.2: Comparison of CWOS with CWOS-EK algorithm for LMOS-1 problem

(N,L) lifetime(s)

Optimal CWOS-EK CWOS

(60, 1) 253.717 242.352 236.749

(60, 10) 387.576 369.199 364.739

(100, 1) 675.518 629.674 627.944

(100, 10) 955.277 887.049 885.589

Table 6.3: Comparison of CWOS with approximation and GrMSC EW algorithm for

LMOS-2 problem

(K,N,M) CWOS Approximation GrMSC EW

Lifetime Num. Ass Lifetime(s) Num. Ass Lifetime(s) Num. Ass

(1, 60, 15) 152.70 26.40 156.30 2368.8 129.25 21.90

(1, 100, 15) 492.47 42 516.17 5069.2 426.33 36.2

(1, 130, 15) 898.9 71.6 938.58 8138.4 723.74 58.5

(1, 100, 30) 238.0 64.0 239.36 4238.3 196.0 52.4

(2, 100, 15) 235.51 42.3 247.06 4983.4 194.6 33.0

128



Chapter 7

A general framework of approximation

algorithm for the Connected Target

Coverage problem

In chapter 4 and chapter 6 we developed approximation algorithms for the MCT and

LMOS problem, respectively. These algorithms use a prime-dual approach to approx-

imate the problems. The approach is to repeatedly select a set of active sensors that

can satisfy both the coverage and connectivity requirements. To select a suitable set

of active sensors, a weight is assigned for each node and is updated according to the

energy consumption of the node. We try to select the set of active sensors such that

the total weighted energy consumption in the network is minimized while the target

coverage and connectivity requirements are satisfied. In this chapter, we present a

general framework of approximation algorithm for the CTC problem. This algorithm

is applicable to various possible instances of the CTC problem described by differ-

ent application scenarios, say for example, with different observation scenarios and

communication schemes. We show that the lifetime maximization problem for con-

nected target coverage can be approximated by solving the problem of selecting a set

of active sensors that minimizes the weighted communication cost while maintaining
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connectivity and coverage.

7.1 Possible instances of the CTC problem

The CTC problem considers the problem of scheduling sensor activities while main-

taining connected target coverage to maximize the network lifetime. However, differ-

ent applications in WSNs may construct different instances of CTC problems as they

may have different application scenarios including

• different target coverage and connectivity requirements, for example, an ap-

plication may require that different targets are covered by different number

of sensors, sensors observing the same target are separated by at least some

pre-defined distance, or source nodes connect to the sink node through node-

disjoint paths, etc.;

• different data generation and energy consumption models, for example, the

amount of data generated by a source node may be defined to be related to

the positions of targets observed by it (when some kind of data processing rule

is applied), or the transmission power is the same for each node (when power

control is not applied), etc.;

• or different observation and communication scenarios, for example, a sensor

has ability to select the targets to observe but all the targets observed by the

same source sensor should be within a predefined distance (e.g. smaller than

the sensing range), or data aggregation is used in the network, etc.;
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Apparently, the algorithm designed for one instance of the CTC problem may not be

applicable for other instances of the CTC problem. Therefore, it becomes important

to develop a general framework of approximation algorithm for CTC problems, which

can cover several possible instances of it.

7.2 Preliminaries

Without loss of generality, we assume that the network lifetime is slotted into a series

of time slots. Within each time slot the state of a sensor does not change. However, for

different application scenarios, the description of the network state in a time slot may

be different. For example, for the MCT problem, a cover tree provides the description

of the network state in a time slot, which describes the set of source nodes and relay

nodes as well as the path from each source node to the sink; whereas for the LMOS

problem, an observation assignment provides the description of the network state in

a time slot, which additionally describes the sensor target observation pairs in the

case of the first observation scenario. In an attempt to generalize the modeling of

the application scenarios, two descriptions are used together to describe the network

state, which are called as the “observation” description and “energy” description.

The observation description of the network state in a time slot is application-related

and thus may be different for different application scenarios, such as the cover tree for

the MCT problem and observation assignment for the LMOS problem. The energy

description of the network state in a time slot is application-independent, which is

defined as the set of energy consumption rates of sensors in the time slot. Given the
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specific application scenario, we assume an energy consumption mapping is known

for mapping a specific observation description to the energy description, i.e. given

the specific application scenario and the network description in a time slot, we can

calculate the energy consumption rate of each sensor in the time slot. The specific

mapping from the observation description to the energy description may vary for

different application scenarios.

For a given application scenario, we call the observation description in a time slot

as an assignment and the duration of the time slot as the operation duration of the

assignment. If an assignment can satisfy the coverage and connectivity requirements

of the CTC problem, we call it a feasible assignment. Let us call the energy description

in a time slot as the energy mapping of the assignment in the time slot. Although

different assignments may have the same energy mapping, given an optimal solution

of the CTC problem, multiple time slots with different feasible assignments but having

the same energy mapping can be combined without affecting the network lifetime.

We re-define the Connected Target Coverage for Lifetime Maximization (CT-

CLM) problem as below:

Definition 2 Given a network topology and an application scenario, find a series of

feasible assignments with operation durations, such that the energy consumption of

each node is less than its initial energy and the sum of the operation durations is

maximized.

We also define the Connected Target Coverage for Minimizing weighted Energy con-

sumption problem (CTCME) problem as below:
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Definition 3 Given a network topology, an application scenario and a set of

weights wi for each sensor si, find a feasible assignment with the energy mapping

{e1, e2, · · · , eN}, such that the total weighted energy consumption rate
∑

1≤i≤N eiwi is

minimized.

Theorem 9 If there exists an γ approximation algorithm for the CTCME problem,

then there also exists an (1 +w)γ approximation algorithm for the CTCLM problem,

where w is an arbitrarily small number.

We prove the theorem by constructing an (1 + w)γ approximation algorithm for the

CTCLM problem based on the γ approximation algorithm for CTCME problem.

Given an instance of the CTCLM problem, let us enumerate the energy mapping of

all the feasible assignments U = {U1, U2, · · · , UQ}. In each energy mapping Uq the

energy consumption rate of sensor si is eqi . Let τq denote the duration in which the

energy mapping of the assignment is Uq. The CTCLM problem can be formulated as

below:

Maximize:
∑
q

τq (7.1)

∑
q

τqe
q
i ≤ E0(si) ∀si (7.2)

The Dual problem of the above Linear programming problem is:

Minimize:
∑
i

ciE0(si) (7.3)

∑
i

cie
q
i ≥ 1 ∀Uq ∈ U (7.4)

where c1, c2, · · · , cN are the variables in the dual problem.
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Let ~C be the vector such that its ith element is ci. We define

D(~C) =
∑
i

ciE0(si) (7.5)

α(~C) = min
Uq∈U

∑
i

eqi ci (7.6)

The dual problem is then equivalent to assigning values to ~C such that β =

D(~C)/α(~C) is minimized subject to the constraint that α(~C) ≥ 1.

7.3 Pseudo code of the algorithm

The approximation algorithm is given below. The explanation is similar to that

presented in chapter 4 and chapter 6.

1. Initialization

(a) Properly scale the problem so that β ≥ 1;

(b) t = 0, T = 0; Set δ = ( N
1−γε)

−1/ε; For each node si set ci = δ/E0(si); Let

λ = log
1/δ
1+ε; Set τp = 1/λ;

2. Set τ t = 0, loop until τ t = τp;

(a) k = k + 1; Find a feasible assignment such that
∑

i ci(t, k)ei ≤

γminUq∈U
∑

i ci(t, k)eqi with the γ approximation algorithm for the

CTCME problem;

(b) τ t = τ t+τ tk; Let etki denote the energy consumption of node si in duration

τ tk, ci(t, k) = ci(t, k − 1)× (1 + ε · λetki
E0(si)

).

3. t = t+ 1; ci(t, 0) = ci(t− 1, k); if D(~C) < 1, T = T + τp.
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4. repeat step 2 and step 3 until D(~C) ≥ 1; double τp every 2λ iterations.

7.4 Analysis

The analysis follows the analysis presented in chapter 4 and chapter 6. As

ci(t, k) = ci(t, k − 1)× (1 + ε · λetki
E0(si)

) (7.7)

we have

D(~C(t, k))=
∑
i

ci(t, k)E0(si) (7.8)

=
∑
i

ci(t, k − 1)E0(si)(1 + ε · λetki
E0(si)

) (7.9)

=D(~C(t, k − 1) + ε · λ
∑
i

etki ci(t, k − 1) (7.10)

As ci is monotonically non-decreasing, we have α(~C(t + 1, 0)) ≥ α(~C(t, k) for any

1 ≤ k ≤ Kt, where Kt denote the number of phases in an iteration. Further, as∑
i ci(t, k)etki ≤ γminUq∈U

∑
i ci(t, k)eqi τ

t
k ≤ γα(~C(t, k))τ tk satisfies for any t and k, we

have

D(~C(t+ 1, 0)=D(~C(t, 0)) + ε · λ
∑
i

∑
0≤k≤Kt−1

etki ci(t, k) (7.11)

≤D(~C(t, 0)) + ε · λγ
∑
k

τ tkα(~C(t, k)) (7.12)

≤D(~C(t, 0)) + ε · λγτpα(~C(t+ 1, 0)) (7.13)

≤D(~C(t, 0)) + ε · γα(~C(t+ 1, 0)) (7.14)

The following analysis is similar to the analysis of approximation algorithm in Chap-

ter 4 by replacing H(M̂) by γ. Let Nt denote the number of iterations before the
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algorithm ends. We have

β

Nt − 1
≤ εγ

(1− εγ) ln(1−εγ
Nδ

)
(7.15)

Lemma 5 The solution of our approximation algorithm is a feasible solution for the

CTCLM problem, i.e., when the algorithm ends, the energy consumption of each node

is less than its initial energy.

Proof: similar to the proof of lemma 2 presented in Chapter 4.

Theorem 10 Our algorithm is a γ(1 + w) approximation for the CTCLM problem.

Proof: similar to the proof of Theorem 3 presented in Chapter 4.

The complexity of the algorithm is analyzed as below. If all the sensors in the

network are active, the duration until the first sensor in the network consumes all

its energy gives a lower bound on the network lifetime. Let us denote it as Tl.

Normalizing the initial energy of each node by Tl guarantees that β ≥ 1. From

Eq. 7.15, the total number of iterations until the approximation algorithm terminates

is strictly less than 1 + βλ. In fact, if our algorithm doesn’t terminate after 2dλe, we

know β ≥ 2 and can double the duration of iterations τp. Note that this is equivalent

to re-scaling the problem. β will be half of its previous value but still larger than

1, and thus the approximation ratio still holds. As we repeat this procedure until

the algorithm terminates, the approximation algorithm will terminate in 2 log2 βdλe

iterations.

We note that in each phase of an iteration, except for the last phase, there exists at

least one node si that consumes energy E0(si)/λ, whose ci is increased by a factor 1+ε.
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Since for any node si, the initial value of ci is δ/E0(si) and the final value is less than

1/E0(si) (for D(~C) < 1), the number of phases exceeds the number of iterations by at

most N log1+ε
1
δ

= Nλ (otherwise there exists at least one sensor si whose ci exceeds

1/E0(si)). In each phase a shortest path tree is built and the approximation algorithm

for CTCME problem is executed. The building of shortest path tree requires time

O(N2). Let ΘME denote the time complexity of the approximation algorithm for

CTCME problem. Therefore, the time complexity of our algorithm is (2 log2(β) +

N)d1
ε

log1+ε(
N

1−γε)e(N
2 + ΘME).

7.5 Summary

In this chapter we developed a general framework of approximation algorithm for

the CTC problem. We demonstrated that the network lifetime maximization prob-

lem for connected target coverage can be approximated by solving the problem of

selecting a set of active sensors that minimize the weighted communication cost while

maintaining connectivity and target coverage.
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Chapter 8

Conclusions and Future Work

In this thesis, we addressed the problem of scheduling sensor activities while main-

taining target coverage and network connectivity. First we introduced the Connected

Target coverage (CTC) problem and modeled it as a Maximum Cover Tree (MCT)

problem. We proved that the MCT problem is NP-Complete and develop a linear

programming formulation to derive an upper bound and a lower bound on the network

lifetime for the MCT problem.

We developed an H(M̂)(1 +w) approximation algorithm to solve the MCT prob-

lem based on the upper bound and lower bound, where w is an arbitrarily small

number, H(M̂) =
∑

1≤i≤M̂ 1/i and M̂ denotes the maximum number of targets in

the sensing area of any sensor. As a practical implementation we developed a faster

heuristic algorithm called Communication Weighted Greedy Cover (CWGC). We fur-

ther proved that (1 − O(1))ln(M) is a threshold below which the MCT problem

cannot be approximated efficiently, unless NP has slightly super-polynomial time al-

gorithms, i.e. NP ⊂ TIME(nO(loglogn)) [90], where M is the number of targets. We

demonstrated the effectiveness of the proposed approximation algorithm and heuristic

algorithm by carrying out extensive simulations and comparing their results with the

upper bound on the lifetime and other basic algorithms which consider the coverage
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and connectivity problems independently. Simulation results show that our approx-

imation algorithm and CWGC algorithm perform much better than others in terms

of the network lifetime and the performance improvement can be up to 45% than the

best-known basic algorithm. The lifetime obtained by our algorithms is close to the

upper bound. Compared with the approximation algorithm, the CWGC algorithm

can achieve a similar performance in terms of network lifetime with a lower protocol

cost.

Next we considered the CTC problem with K coverage requirement wherein each

target is observed by at least K sensors. We formulated the problem as the Lifetime

Maximization Observation Schedule (LMOS) problem and studied the problem with

two observation scenarios depending on whether a sensor can distinguish the targets

in its sensing area, or not. For the first scenario, we developed a polynomial-time

algorithm which can achieve optimal solution based on Linear Programming and

Integer Theorem. For the second scenario, we showed that the LMOS problem is

NP-complete. We developed approximation algorithms for both scenarios. Based on

the approximation algorithms, we developed a low-cost heuristic algorithm which can

be implemented in a distributed fashion for both scenarios. We demonstrated the

effectiveness of the heuristic algorithm through extensive simulations.

Finally, we presented a general framework of approximation algorithm for the

CTC problem, which is applicable to various possible instances of the CTC problem

described by different application scenarios, say for example, with different observa-

tion scenarios and communication schemes. We show that the lifetime maximization
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problem for connected target coverage can be approximated by solving the problem

of selecting a set of active sensors that minimizes the weighted communication cost

while maintaining connectivity and coverage.

In this thesis the CTC problem was solved as an optimization problem which

jointly considers both the target coverage and connectivity. The CTC problem may

also be solved by breaking it into two stages, wherein the target coverage and con-

nectivity problems are independently solved. Intuitively joint optimization achieves

better performance compared with breaking the problem into stages. This is substan-

tiated by our performance study in Chapter 4. The three basic algorithms designed

for comparison (Random, MSC SPT and MSC EAWARE) solve the MCT problem

by separately solving the target coverage and connectivity problems. Our algorithms

which solve the coverage and connectivity problems by joint optimization outper-

formed them.

We now present some possible directions for future investigation. In this thesis we

developed approximation algorithms for the CTC problem in wireless sensor networks.

However, the protocol cost of the approximation algorithms may be high. Developing

low-cost faster approximation scheme for the CTC problem is an important problem

to be studied. Another interesting problem is to study and develop efficient algorithms

for the case where sensors or targets are mobile. Further study could also consider

other performance metrics such as reliability and quality of observation.

140



List of Publications

1. Zhao Qun and Mohan Gurusamy, ”Lifetime Maximization for Connected Tar-

get Coverage in Wireless Sensor Networks”, to appear in, IEEE/ACM Transactions

on Networking.

2. Zhao Qun and Mohan Gurusamy, ”Connected K-target-coverage in Wireless

Sensor Networks with different sensing scenarios”, to appear in, Computer Networks

journal.

3. Zhao Qun and Mohan Gurusamy, ”Optimal Observation Scheduling for con-

nected target coverage problem in Wireless Sensor Networks”, in Proc. of IEEE

International Conference on Communications (ICC), 2007.

4. Zhao Qun and Mohan Gurusamy, ”Maximizing Network Lifetime for Con-

nected Target Coverage in Wireless Sensor Networks”, in Proc. of 2nd IEEE Inter-

national Conference on Wireless and Mobile Computing, Networking and Communi-

cations (WiMob), 2006.

5. Zhao Qun and Mohan Gurusamy, ”Lifetime Maximization using Observation

Time Scheduling in Multi-hop Sensor Networks”, in Proc. of 2nd IEEE/CreateNet In-

ternational Workshop on Broadband Advanced Sensor Networks (BroadNets), 2005.



Bibliography

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “Wireless sensor

networks: A survey,” Computer Networks, vol. 39, no. 4, pp. 393–422, 2002.

[2] A. I.F., S. Weilian, S. Y. and C. E., “A survey on sensor networks,” IEEE

Communications Magazine, vol. 40, no. 8, pp. 102 – 114, 2002.

[3] E. D., G. R., H. J. and K. S., “Next century challenges: scalable coordina-

tion in sensor networks,” in Proc. of ACM International Conference on Mobile

Computing and Networking (MOBICOM), 1999, pp. 263–270.

[4] P. G.J. and K. W.J., “Wireless integrated network sensors,” Communications

of the ACM, vol. 43, no. 5, pp. 51–58, 2000.

[5] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton and J. Zhao, “Habitat

monitoring: application driver for wireless communications technology,” in Proc.

of ACM SIGCOMM Workshop on Data Communications in Latin America and

the Caribbean, 2001, pp. 3–5.

[6] M. Alan, P. Joseph, S. Robert, C. David and A. John, “Wireless sensor networks

for habitat monitoring,” in Proc. of ACM International Workshop on Wireless

Sensor Networks and Applications (WSNA), 2002, pp. 88–97.

[7] S. E., C. S., I. N., M. R., S. A., W. A. and C. A., “Physical layer driven

142



protocol and algorithm design for energy-efficient wireless sensor networks,” in

Proc. of ACM International Conference on Mobile Computing and Networking

(MOBICOM), 2001, pp. 272–286.

[8] G. Yong, W. Kui and L. Fulu, “Analysis on the redundancy of wireless sen-

sor networks,” in Proc. of ACM International Workshop on Wireless Sensor

Networks and Applications (WSNA), 2003, pp. 108 – 114.

[9] K. S., L. T. H. and B. J., “On k-coverage in a mostly sleeping sensor network,”

in Proc. of ACM International Conference on Mobile Computing and Networking

(MOBICOM), 2004, pp. 144–158.

[10] W. K., G. Y., L. F. and X. Y., “Lightweight deployment-aware scheduling

for wireless sensor networks,” ACM/Kluwer Mobile Networks and Applications

(MONET) Special Issue on Energy Constraints and Lifetime Performance in

Wireless Sensor Networks, vol. 10, no. 6, pp. 837–852, 2005.

[11] Y. Yong, Y. Zongkai, H. Zhihai and H. Jianhua, “Energy-efficient scheduling

of packet transmissions over wireless networks provisioning in wireless sensor

network,” Computer Communications, vol. 29, no. 2, pp. 162–172, 2006.

[12] R. V., S. C., P. S. and M. Srivastava, “Energy-aware wireless microsensor net-

works,” IEEE Signal Processing Magazine, vol. 19, pp. 40–50, 2002.

[13] C. J. and T. L., “Routing for maximum system lifetime in wireless ad-hoc

networks,” in Proc. of 37th Annual Allerton Conference on Communication,

Control, and Computing, 1999.

[14] M. Bhardwaj and A. P. Chandrakasan, “Bounding the lifetime of sensor networks

143



via optimal role assignments,” in Proc. of Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), 2002, vol. 3, pp. 1587 –

1596.

[15] G. A. and K. P.R., “Maximizing the functional lifetime of sensor networks,”

in Proc. of IEEE Communications Society Conference on Sensor and Ad Hoc

Communications and Networks (SECON), 2005, pp. 5– 12.

[16] M. Cardei, M. T. Thai, Y. Li and W. Wu, “Energy-efficient target coverage in

wireless sensor networks,” in Proc. of the Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), 2005, pp. 1976–1984.

[17] S. Tao, K. Marwan and V. Sarma, “Power balanced coverage-time optimiza-

tion for clustered wireless sensor networks,” in Proc. of ACM International

Symposium on Mobile ad hoc Networking and Computing (MobiHoc), 2005, pp.

111–120.

[18] M. Cardei and J. Wu, Coverage Problems in Wireless Ad Hoc Sensor Networks

(Mohammad Ilyas and Imad Mahgoub eds.), Handbook of Sensor Networks, chap-

ter 19, CRC Press, 2004.

[19] C.-F. Huang and Y.-C. Tseng, “A survey of solutions to the coverage problems

in wireless sensor networks,” Journal of Internet Technology, vol. 6, no. 1, pp.

1–8, 2005.

[20] H. D. L. and L. J., Handbook of Multisensor Data Fusion, CRC Press, 2001.

[21] A. A., D. P., B. S. and etc., “A line in the sand: A wireless sensor network for

target detection, classification, and tracking,” Computer Networks, vol. 46, no.

144



5, pp. 605–634, 2004.

[22] Y. Shuhui, D. Fei, C. Mihaela and W. Jie, “On multiple point coverage in

wireless sensor networks,” in Proc. of IEEE International Conference on Mobile

Ad-hoc and Sensor Systems (MASS), 2005.

[23] P. Berman, G. Calinescu, C. Shah and A. Zelikovsky, “Power efficient monitoring

management in sensor networks,” in Proc. of IEEE Wireless Communications

and Networking Conference (WCNC), 2004, vol. 4, pp. 2329– 2334.

[24] M. S., K. F., P. M. and S. M., “Coverage problems in wireless ad-hoc sensor

networks,” in Proc. of Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), 2001, pp. 1380–1387.

[25] M. S., K. F., Q. G. and P. M., “Exposure in wireless ad hoc sensor networks,” in

Proc. of ACM International Conference on Mobile Computing and Networking

(MOBICOM), 2001, pp. 139–150.

[26] L. Ning and H. J. C., “Topology control in heterogeneous wireless networks:

Problems and solutions,” in Proc. of the Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), 2004, vol. 1, p. 243.

[27] M. Tommaso, P. Dario and A. I. F., “Optimal local topology knowledge for

energy efficient geographical routing in sensor networks,” in Proc. of the Annual

Joint Conference of the IEEE Computer and Communications Societies (INFO-

COM), 2004, vol. 3, pp. 1705 – 1716.

[28] G. Javier and C. A. T., “A case for variable-range transmission power control

in wireless multihop networks,” in Proc. of the Annual Joint Conference of the

145



IEEE Computer and Communications Societies (INFOCOM), 2004, vol. 2, pp.

1425 – 1436.

[29] Z. Qun and M. Gurusamy, “Topology knowledge range control for lifetime maxi-

mization in sensor networks with data aggregation,” in Proc. of ACM Workshop

on Performance Evaluation of Wireless Ad Hoc, Sensor and Ubiquitous Net-

works, ACM/IEEE MSWiM, 2005.

[30] L. L. (Erran) and S. Prasun, “Throughput and energy efficiency in topology-

controlled multi-hop wireless sensor networks,” in Proc. of ACM International

Workshop on Wireless Sensor Networks and Applications (WSNA), 2003.

[31] C. Xiuzhen, N. Bhagirath, S. Rahul and C. M. Xiaoyan, “Strong minimum

energy topology in wireless sensor networks: Np-completeness and heuristics,”

IEEE Transactions on Mobile Computing, vol. 2, no. 3, pp. 248–256, 2003.

[32] M. Rajit and S. Anna, “Power optimal routing in wireless networks,” in Proc.

of IEEE International Conference on Communications (ICC), 2003, vol. 4, pp.

2979 – 2984.

[33] L. Jilei and L. Baochun, “Distributed topology control in wireless sensor net-

works with asymmetric links,” in Proc. of IEEE Global Telecommunications

Conference (Globecom), 2003, vol. 3, pp. 1257 – 1262.

[34] K. Martin, K. Holger, W. Adam, Z. L. Charlie and R. Jan, “Distributed al-

gorithms for transmission power control in wireless sensor networks,” in Proc.

of IEEE Wireless Communications and Networking Conference (WCNC), 2003,

vol. 1, pp. 558 – 563.

146



[35] C. Benjie, J. Kyle, B. Hari and M. Robert, “Span: An energy-efficient coordina-

tion algorithm for topology maintenance in ad hoc wireless networks,” Wireless

Networks, vol. 8, no. 5, pp. 481–494, 2002.

[36] X. Ya, H. John and E. Deborah, “Geography-informed energy conservation for ad

hoc routing,” in Proc. of ACM International Conference on Mobile Computing

and Networking (MOBICOM), 2001, pp. 70–84.

[37] A. Cerpa and D. Estrin, “Ascent: adaptive self-configuring sensor networks

topologies,” in Proc. of the Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), 2002.

[38] S. C., T. V. and S. M.B., “Stem: Topology management for energy efficient

sensor networks,” in Proc. of IEEE Aerospace Conference, 2002, vol. 3, pp.

109–1108.

[39] G. J. van, P. Dragan and B. Alvise, “Adaptive sleep discipline for energy conser-

vation and robustness in dense sensor networks,” in Proc. of IEEE International

Conference on Communications (ICC), 2004, vol. 6, pp. 3657 – 3662.

[40] R. Volkan and M. T. H., “Minimum energy mobile wireless networks,” IEEE

Journal on Selected Areas in Communications, vol. 17, no. 8, 1999.

[41] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sen-

sor networks,” in Proc. of IEEE International Conference on Communications

(ICC), 2001, vol. 2, pp. 472–476.

[42] C. Qing, A. Tarek, H. Tian and S. John, “Towards optimal sleep scheduling

in sensor networks for rare-event detection,” in Proc. of ACM International

147



Symposium on Information Processing in Sensor Networks (IPSN), 2005.

[43] W. Tzu-Ting and S. Kuo-Feng, “Determining active sensor nodes for complete

coverage without location information,” International Journal of Ad Hoc and

Ubiquitous Computing, vol. 1, no. 1, pp. 38–46, 2005.

[44] H. Chi-Fu, L. Li-Chu, T. yu Chee and C. Wen-Tsuen, “Decentralized energy-

conserving and coverage-preserving protocols for wireless sensor networks,” in

Proc. of International Symposium on Circuits and Systems (ISCAS), 2005.

[45] A. Zoe, G. Ashish and P. Serge, “Set k-cover algorithms for energy efficient mon-

itoring in wireless sensor networks,” in Proc. of ACM International Symposium

on Information Processing in Sensor Networks (IPSN), 2004, pp. 424–432.

[46] X. Guoliang, L. Chenyang, P. Robert and O. J. A., “Co-grid: An efficient

coverage maintenance protocol for distributed sensor networks,” in Proc. of

ACM International Symposium on Information Processing in Sensor Networks

(IPSN), 2004.

[47] M. Cardei, D. MacCallum, X. Cheng, M. Min, X. Jia, D. Li and D.-Z. Du,

“Wireless sensor networks with energy efficient organization,” Journal of Inter-

connection Networks, vol. 3, no. 3-4, pp. 213–229, 2002.

[48] D. Tian and N. D. Georganas, “A coverage preserving node scheduling scheme

for large wireless sensor networks,” in Proc. of ACM International Workshop on

Wireless Sensor Networks and Applications (WSNA), 2002.

[49] H. Gupta, Z. Zhou, S. R. Das and Q. Gu, “Connected sensor cover: Self-

organization of sensor networks for efficient query execution,” IEEE/ACM

148



Transactions on Networking, vol. 14, no. 1, pp. 55–67, 2006.

[50] Z. Rong, H. Guanghui and L. Xue, “Location-free coverage maintenance in

wireless sensor networks,” Tech. Rep. Tech. No. UH-CS-05-15, Department of

Computer Science, University of Houston, 2005.

[51] M. Cardei and D.-Z. Du, “Improving wireless sensor network lifetime through

power aware organization,” Wireless Networks, vol. 11, no. 3, pp. 333–340, May

2005.

[52] M. Cardei, J. Wu, M. Lu and M. O. Pervaiz, “Maximum network lifetime in

wireless sensor networks with adjustable sensing ranges,” in Proc. of IEEE

International Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob), 2005.

[53] L. Hai, W. Pengjun, Y. Chih-Wei, J. Xiaohua, M. Sam and N. Pissinou, “Maxi-

mal lifetime scheduling in sensor surveillance networks,” in Proc. of the Annual

Joint Conference of the IEEE Computer and Communications Societies (INFO-

COM), 2005, vol. 4, pp. 2482 – 2491.

[54] L. Hai, W. Pengjun and X. Jia, “Maximal lifetime scheduling for k to 1 sensor-

target surveillance networks,” Computer Networks, vol. 50, no. 15, pp. 2839–

2854, 2006.

[55] Z. Zhou, S. Das and H. Gupta, “Connected k-coverage problem in sensor net-

works,” in Proc. of IEEE International Conference on Computer Communica-

tions and Networks (ICCCN), 2004, pp. 373 – 378.

[56] C. Jean, G. Antoine and S.-R. David, “Preserving area coverage in wireless

149



sensor networks by using surface coverage relay dominating sets,” in Proc. of

IEEE Symposium on Computers and Communications (ISCC), 2005, pp. 347–

352.

[57] Z. Zhou, S. Das and H. Gupta, “Fault tolerant connected sensor cover with vari-

able sensing and transmission ranges,” in Proc. of IEEE Communications Soci-

ety Conference on Sensor and Ad Hoc Communications and Networks (SECON),

2005, pp. 594– 604.

[58] Z. Yi and C. Krishnendu, “A distributed coverage and connectivity centric tech-

nique for selecting active nodes in wireless sensor networks,” IEEE Transactions

on Computers, vol. 54, no. 8, pp. 978–991, 2005.

[59] I. Metin, M.-I. Malik and Y. Bulent, “Power optimal connectivity and coverage

in wireless sensor networks,” Tech. Rep., Department of Computer Science,

Rensselaer Polytechnic Institute, July 2003.

[60] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless and C. Gill, “Integrated coverage

and connectivity configuration in wireless sensor networks,” in Proc. of ACM In-

ternational Conference on Embedded Networked Sensor Systems (SenSys), 2003,

pp. 28–39.

[61] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity in large

sensor networks,” Tech. Rep., Department of Computer Science, University of

Illinois at Urbana-Champaign, 2003.

[62] M. Lu, J. Wu, M. Cardei and M. Li, “Energy-efficient connected coverage of

discrete targets in wireless sensor netorks,” in Proc. of International Conference

150



on Computer Networks and Mobile Computing (ICCNMC), 2005.

[63] C. T. H., L. C. E., R. R. L. and S. Clifford, Introduction to Algorithms (Second

Edition), The MIT Press and McGraw-Hill, 2001.

[64] L. Yuzhen and L. Weifa, “Approximate coverage in wireless sensor networks,” in

Proc. of IEEE Conference on Local Computer Networks (LCN), 2005, pp. 68–75.

[65] W. Limin and K. S. S., “pcover: Partial coverage for long-lived surveillance

sensor networks,” Tech. Rep. MSC-CSE-0530, Department of Computer Science

and Engineering, Michigan State University, 2005.

[66] Z. Honghai and H. J. C., “On the upper bound of -lifetime for large sensor

networks,” ACM Transactions on Sensor Networks (TOSN), vol. 1, no. 2, pp.

272–300, 2005.

[67] X. Guoliang, W. Xiaorui, Z. Yuanfang, L. Chenyang, P. Robert and G. Christo-

pher, “Integrated coverage and connectivity configuration for energy conserva-

tion in sensor networks,” ACM Transactions on Sensor Networks (TOSN), vol.

1, no. 1, pp. 36–72, 2005.

[68] F. Dai and J. Wu, “Distributed dominant pruning in ad hoc networks,” in

Proc. of IEEE International Conference on Communications (ICC), 2003, pp.

353–357.

[69] J.-H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless sensor

netwokrs,” IEEE/ACM Transactions on Networking, vol. 12, no. 4, pp. 609–

619, 2004.

151



[70] K. Kalpakis, K. Dasgupta and P. Namjoshi, “Maximum lifetime data gather-

ing and aggregation in wireless sensor networks,” Tech. Rep., Department of

Computer Science and Electrical Engineering, University of Maryland Baltimore

County, 2002.

[71] N. Sadagopan and B. Krishnamachari, “Maximizing data extraction in energy-

limited sensor networks,” in Proc. of Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), 2004, vol. 3, pp. 1717–

1727.

[72] K. Hojoong, K. T. Hyun, C. Sunghyun and L. B. Gi, “Lifetime maximization un-

der reliability constraint via cross-layer strategy in wireless sensor networks,” in

Proc. of IEEE Wireless Communications and Networking Conference (WCNC),

2005, vol. 3, pp. 1891 – 1896.

[73] H. Y.T., S. Yi, P. Jianping and M. S.F., “Maximizing the lifetime of wireless

sensor networks through optimal single-session flow routing,” IEEE Transactions

on Mobile Computing, vol. 5, no. 9, pp. 1255 – 1266, 2006.

[74] S. Rik, Z. Xianjin and G. Jie, “Double rulings for information brokerage in sensor

networks,” in Proc. of ACM International Conference on Mobile Computing and

Networking (MOBICOM), 2006.

[75] B. Chiranjeeb, A. Divyakant, Subhash and Suri, “Power aware routing for sensor

databases,” in Proc. of the Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), 2005.

[76] L. Juan, Z. Feng and P. Dragan, “Information-directed routing in ad hoc sensor

152



networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 4,

pp. 851–861, 2005.

[77] T. Mohammed, T. K. E. and N. Mohammad, “Energy saving dynamic source

routing for ad hoc wireless networks,” in Proc. of International Symposium on

Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),

2005, pp. 305–310.

[78] J. Neha, B. Ratnabali, N. Nagesh and A. D. P., “Energy aware routing for

spatio-temporal queries in sensor networks,” in Proc. of IEEE Wireless Com-

munications and Networking Conference (WCNC), 2005, vol. 3, pp. 1860 – 1866.

[79] L. Qilian and R. Qingchun, “Energy and mobility aware geographical multipath

routing for wireless sensor networks,” in Proc. of IEEE Wireless Communica-

tions and Networking Conference (WCNC), 2005, vol. 3, pp. 1867 – 1871.

[80] D. Arjan, P. Vamsi and B. Leonard, “Delay-energy aware routing protocol for

sensor and actor networks,” in Proc. of IEEE International Conference on Par-

allel and Distributed Systems, 2005, vol. 1, pp. 292 – 298.

[81] Y. T. Hou, Y. Shi and H. D. Sherali, “On lexicographic max-min node lifetime

for wireless sensor networks,” in Proc. of IEEE International Conference on

Communications (ICC), 2004, vol. 7, pp. 3790 – 3796.

[82] C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed diffusion: A scalable

and robust communication paradigm for sensor networks,” in Proc. of ACM

International Conference on Mobile Computing and Networking (MOBICOM),

2000.

153



[83] M. Gerla, T. J. Kwon and G. Pei, “On demand routing in large ad hoc wireless

networks with passive clustering,” in Proc. of IEEE Wireless Communications

and Networking Conference (WCNC), 2000.

[84] Y. Yu, R. Govindan and D. Estrin, “Geographical and energy aware routing:

a recursive data dissemination protocol for wireless sensor networks,” Tech.

Rep. UCLA/CSD-TR-01-0023, Department of Computer Science, University of

California, Los Angeles, 2001.

[85] R. C. Shah and J. M. Rabaey, “Energy aware routing for low energy ad hoc

sensor networks,” in Proc. of IEEE Wireless Communications and Networking

Conference (WCNC), 2002, vol. 1, pp. 350 – 355.

[86] M. Zorzi and R. R. Rao, “Energy and latency performance of geographic ran-

dom forwarding for ad hoc and sensor networks,” in Proc. of IEEE Wireless

Communications and Networking (WCNC), 2003, vol. 3, pp. 1930 – 1935.

[87] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow problem,”

Journal of the Association for Computing Machinery, vol. 37, no. 2, pp. 318–

334, 1990.

[88] N. Garg and J. Konemann, “Faster and simpler algorithm for multicommodity

flow and other fractional packing problems,” in Proc. of IEEE Symposium on

Foundations of Computer Science, 1998, pp. 300–309.

[89] G. Karakostas, “Faster approximation schemes for fractional multicommodity

flow problems,” in Proc. of the thirteenth annual ACM-SIAM symposium on

Discrete algorithms, 2002, pp. 166–173.

154



[90] F. Uriel, “A threshold of ln n for approximating set cover,” Journal of ACM,

vol. 45, no. 4, pp. 634–652, 1998.

[91] V. Vhvatal, “A greedy heuristic for the set-covering problem,” Mathematics of

Operations Research, vol. 4, no. 3, pp. 233–235, 1979.

[92] G. Dobson, “Worst-case analysis of greedy heuristics for integer programming

with non-negative data,” Mathematics of Operations Research, vol. 7, no. 4, pp.

515 – 531, 1982.

155


