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Summary 

Floral organ development, especially petals and stamens is impaired in severe 

Arabidopsis GA-deficient mutant ga1-3, suggesting that GA is a general regulator of 

floral development. However, the mechanism via which GA regulates petal and 

stamen development remains unclear. Although previous analysis have shown that 

GA promotes the elongation of plant’s organs by opposing the function of the 

DELLA proteins, a family of nuclear growth repressors, it was not clear if the 

DELLA proteins are involved in the GA-regulation of petal and stamen development. 

Arabidopsis genome encodes five distinct DELLA proteins (GAI, RGA, 

RGL1, RGL2 and RGL3).  Previous genetic studies have shown that GAI and RGA 

have overlapping functions in the repression of plant stem growth, while RGL2 

controls the seed germination. RGL1 may play a role both in stem elongation and 

seed germination. Although DELLA proteins GAI, RGA, RGL2 and RGL1 are all 

expressed in inflorescences, no obvious suppression of ga1-3 floral phenotype was 

observed in ga1-3 mutants lacking GAI, RGA, GAI and RGA, or RGL2. Using novel 

combinations of loss-of-function mutations of DELLA proteins, we determined that 

RGA, RGL1 and RGL2 act synergistically to repress stamen filament cell elongation 

and microsporogenesis. GA promotes stamen filament cell elongation and pollen 

development by opposing the function of DELLA proteins RGA, RGL1 and RGL2. 

DELLAs act as negative regulators of GA response. However, as a group of 

putative transcription regulators, the molecular mechanism of DELLAs repressing 

floral development is largely unknown. Comparing the global gene expression 

patterns in unopened flower buds of the ga1-3 mutant with that of the wild type and 

the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant, we found that about half of GA-

regulated genes are regulated in a DELLA-dependent fashion. This data also 



 ix

suggested that there might be a DELLA-independent or –partially-dependent 

component of GA-dependent gene regulation.  

MYB21, MYB24, and MYB 57 are flower-specific genes. DELLA proteins 

RGA or RGL2 repress expression of these genes in ga1-3 flower buds. Genetic study 

showed that MYB21, MYB24, and MYB 57 are necessary for normal stamen 

development. Absence of four DELLAs (GAI, RGA, RGL1 and RGL2) cannot 

suppress the short stamen /phenotype conferred by the loss-of-functions of MYB21 

and MYB24, suggesting that these MYB genes might act downstream of DELLA 

proteins in controlling the floral development. 

Jasmonic acid (JA) is a lipid-derived signaling molecule that is required for 

normal stamen development. Recently, MYB21 and MYB24 were identified to be 

down-regulated in JA deficient mutant opr3, suggesting that JA might regulate stamen 

development via promoting the expression of MYB21 and MYB24. It is intriguing to 

know if there is a cross-talk between GA and JA pathways in controlling stamen 

development. We found that JA was able to induce the expression of AtMYB21 and 

AtMYB24 in the absence of GA, but GA could not induce the expression of AtMYB21 

and AtMYB24 in the absence of JA. These data suggested that JA might act 

downstream of GA in promoting the expression of AtMYB21 and AtMYB24. Further 

study indicated that GA might regulate AtMYB21 and AtMYB24 through modulation 

of JA biosynthesis. However, JA induced expression of MYB21 and MYB24 in ga1-3 

gai-t6 rgl1-1 rgl2-1 mutant is necessary but not sufficient enough to induce the 

normal elongation growth of stamen filament in Arabidopsis, suggesting that 

AtMYB21 and AtMYB24 are not the master check-point for GA functions in regulating 

stamen development. 
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Chapter 1 

Literature Review 

1.1 Gibberellins 

Gibberellins (GAs) are important plant hormone. They are classified on the 

basis of structure as well as function. All gibberellins are derived from the ent-

gibberellane skeleton (Fig. 1.1). There are currently 136 GAs identified from plants, 

fungi and bacteria (http://www.plant-hormones.info/gibberellins.htm). Only a few of 

them (for example, GA1, GA3, GA4, GA5 and GA6) are bioactive. GA4 acts as an 

active GA in regulating stem elongation and flowering in Arabidopsis (Xu et al., 1997; 

Eriksson et al., 2006). In monocot Lolium temulentum, GA5 and GA6 are the active 

GAs in the induction of flowering, but have little effects on stem elongation (King et 

al., 2001b; King et al., 2003). GAs are mainly present in actively growing tissues such 

as shoot apices, young leaves and flowers, indicating that GAs are primarily 

synthesized at the sites of their action (Kaneko et al., 2003). Comparison of 

expression pattern of genes involved in GA biosynthesis or GA signaling revealed 

that the sites where bioactive GAs synthesized almost overlap with the sites where 

GA signaling occurred, with the exception in aleurone and anthers (Kaneko et al., 

2003).  On the other hand, the presence of long-distance transport of GA was also 

reported (Hoad, 1995). 

Gibberellins (GAs) act throughout the life cycle of plants regulating vegetative 

growth (including stem, hypocotyl and root elongation), seed germination, as well as 

reproductive development (including floral induction, floral organ development, 

embryo development and pollen tube growth) (Swain and Singh, 2005; Fleet and Sun, 

2005). They play important role in agriculture. Commercially, Gibberellins are widely 

used to increase malting of barley during beer production and to increase fruit size of  
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Fig. 1.1. Gibberellins. (A) Structure of ent-gibberellane skeleton. (B) Examples of 
structure of GAs derived from ent-gibberellane skeleton (Hedden and Phillips, 2000). 
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seedless grapes. The substantial increases in world wheat and rice yields during the 

“Green Revolution” were resulted from the introduction of dwarfing traits into the 

plants. Identification of these “Green Revolution” genes revealed that the interference 

with the action or production of GA resulted in dwarfing traits. Semi-dwarf wheat 

varieties carried a semi-dominant mutation in Rht genes which turned out to be the 

orthologues of Arabidopsis DELLA-domain genes RGA and GAI (GA-signaling 

components) (Peng et al., 1999; Silverstone and Sun, 2000). In contrast to wheat, 

dwarfing rice alleles contained a recessive mutation in SD1 (SEMIDWARF 1) gene 

which is a GA biosynthesis gene encoding GA 20-oxidase (GA 20ox) (Hedden, 2003). 

Insight into the mechanisms of GA-regulated plant growth and development 

has been gained from researches on both GA biosynthesis and signaling pathways. 

Majority of genes encoding enzymes involved in GA biosynthesis and catabolism 

pathways have been cloned and well characterized (Hedden and Phillips, 2000; 

Olszewski et al., 2002). Examination of the expression pattern of these genes by using 

reporter genes or in situ hybridization techniques led to the revelation of the sites of 

the GA metabolism during development and the homeostasis of bioactive GAs 

controlled by developmental and environmental cues.  

Several factors have been identified to influence GA metabolism. These 

factors include type of tissue, development stages, light and responses to GA (hedden 

and Phillips, 2000). A set of 2-oxoglutarate-dependent dioxygenases, GA 20-oxdases 

(GA20ox) and GA 3-oxdases (GA3ox) which catalyze the later steps in the 

production of biologically active GAs, are the major targets for light regulation of GA 

metabolism (Kamiya and Garcia-Martinez, 1999). Distinct tissue and cell specific 

expression pattern of GA3oxs in Arabidopsis also suggested that individual AtGA3ox 

members played distinct developmental roles (Mitchum et al., 2006). Both GA3oxs 
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and GA20oxs are under feedback regulation by GA signaling (Sun and Gubler, 2004; 

Hedden and Phillips, 2000). In addition, it was reported that other endogenous signals 

such as auxin promote the expression of GA20ox and GA3ox (Garcia-Martinez et al., 

1997; Van Huizen et al., 1997) (Fig. 1.2).  

  The signal transduction pathway transmits the GA signal from outside into 

cellular to regulate the gene expression and plant morphology. Significant progress 

has been made in understanding the molecular and biochemical basis of how plant 

response to GAs. These include the identification and characterization of the upstream 

GA signaling components, trans- and cis- acting factors that regulate downstream 

GA-response genes as well as the newly discovered molecular mechanism of GA-

induced proteolysis of GA signaling repressors (Pimenta Lange and Lange, 2006). 

 

1.2 The GA signaling components 

Mutants with altered response to bioactive GA have been isolated through 

genetic screens. These GA response mutants fall into two phenotypic categories: with 

constitutively active GA responses (GA oversensitive) or impaired GA responses (GA 

insensitive). GA oversensitive mutants have a slender and paler-green phenotype 

which mimics wild-type plants that are treated with excessive GA. GA insensitive 

mutants display a dwarfed and dark-green phenotype which resembles the GA 

deficient mutants, but their dwarfing phenotype cannot be rescued by exogenous GA. 

Cloning of genes that are affected in these GA response mutants led to identify a 

number of negative and positive regulators of GA signal pathway (Sun and Gubler, 

2004). 

 

1.2.1 Negative regulators     
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Fig. 1.2. Regulatory mechanisms known to affect expression of the genes 
encoding enzymes for gibberellin (GA) metabolism (Hedden and Phillips, 2000). 
Hormone and light regulation are indicated in blue and red, respectively, with arrow 
heads denoting enhanced gene expression and bars denoting suppressed expression. 
The green arrows indicate genes that have been shown to exhibit tissue-specific 
patterns of expression. The biologically active GAs are highlighted in yellow. 
Abbreviations: CPP, ent-copalyl diphosphate; CPS, CPP synthase; GA2ox, gibberellin 
2-oxidase; GA3ox, gibberellin 3-hydroxylase; GA20ox, gibberellin 20-oxidase; GGPP, 
trans-geranylgeranyl diphosphate. 
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Several negative regulators of GA signaling including DELLA proteins, 

SPINDLY (SPY) and SHORT INTERNODE (SHI), have been identified by 

characterization of the recessive (loss-of-function) elongated GA-oversensitive 

mutants and the semi-dominant (gain-of-function) GA-insensitive mutants.  

 

1.2.1.1   DELLA proteins 

DELLA proteins form the largest group of negative regulators of GA response. 

They are highly conserved in Arabidopsis (RGA, GAI, RGL1, RGL2, and RGL3) and 

several crop plants, including maize (d8), wheat (Rht), rice (SLR1), barley (SLN1), 

and grape (VvGAI) (Fig. 1.3) (Boss and Thomas, 2002; Olszewski et al., 2002). 

DELLA proteins belong to plant specific GRAS (GAI, RGA, SCARECROW) family 

of putative transcriptional regulators (Pysh et al., 1999). The Arabidopsis genome 

contains over 30 GRAS family members, all of which contain a number of 

characteristic features in C-terminal region, including 1) two leucine heptad repeats 

(LHR) which may mediate protein-protein interaction, 2) putative nuclear localization 

signals (NLS) which could localize the protein into nucleus (Itoh et al., 2002; 

Silverstone et al., 2001), and 3) a putative SH2 phosphotyrosine binding domain. 

Their N-termini are more divergent. DELLA proeins are named after their unique and 

conserved DELLA domain near the N terminus of the DELLA proteins. DELLA 

domain confers the GA response specificity of DELLA proteins. The polymeric 

Ser/Thr motif (poly S/T) could serve as the targets of phosphorylation or 

glycosylation (Fig. 1.4) (Richards et al., 2001). 

 

1.2.1.1.1  DELLA proteins in Arabidopsis  
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Fig. 1.3. Alignment of DELLA protein sequences from Arabidopsis (GAI, RGA, 
RGL1-3), rice (SLR1), barley (SLN1), wheat (RHT1-D1a), maize (d8) and grape 
(VvGAI). The highly conserved region I and II at N terminus are shown in green 
(Peng et al., 1999). 
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Fig. 1.4. Schematic domain structure of DELLA protein (Sun and Gubler, 2004). 
The C-terminus (dark green) is highly conserved in all GRAS proteins and contains 
the repressor activity. Functional domains identified in this region include two leucine 
heptad repeats (LHR) (purple), the first of which mediates dimerization, a nuclear 
localization signal (NLS) and a SH2-like domain (red), which could indicate the 
involvement of phosphotyrosine signaling. The N-terminus (white) contains the GA-
signaling domain. It is more variable, but includes two highly conserved motifs 
(named DELLA and VHYNP) that are required for GA-induced degradation, and a 
Poly S/T region. The arrow indicates position of stop codons in Rht-B1b and Rht-D1b 
(Hedden, 2003). 
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The first two DELLAs identified in Arabidopsis were GAI (gibberellic acid 

insensitive) and RGA (REPRESSOR OF GA1-3 MUTANT or RESTORATION OF 

GROWTH ON AMMONIA). The Arabidopsis gai mutants are dwarfed, dark green and 

flowering late in short day (Wilson et al., 1992; Koornneef et al., 1985). This 

phenotype cannot be rescued by GA treatment.  gai mutants accumulate bioactive 

GAs to higher levels than wild type controls. gai is a semi-dominant mutation and 

was cloned by insertional mutagenesis (Peng et al., 1997). Wild type GAI encodes a 

protein that displays extensive homology with SCARECROW (SCR) at C-terminus 

(Sabatini et al., 2003; Di Laurenzio et al., 1996). The mutant gai allele contains a 51-

base pair (in-frame) deletion in the sequence of wild type GAI, resulting in a mutant 

protein gai that lacks 17-amino acid residues in DELLA domain. This in-frame 

deletion confers a dominant dwarf, reduced GA responses phenotype (Peng et al., 

1997).  

Arabidopsis RGA gene was initially identified in a screen for mutations that 

suppressed the phenotype conferred by ga1-3 (Silverstone et al., 1998). These 

recessive rga alleles partially suppress the defects conferred by ga1-3 such as reduced 

stem elongation, delayed flowering as well as apical dominance. Like ga1-3, rga ga1-

3 plants are non-germinating and sterile. It contains low level of bioactive GA and 

application of GA can restore their fertility and other defects. Once cloned, RGA was 

found to be a homologue of GAI with 82% identity, and both of them belong to the 

plant specific GRAS family with a unique N terminus (Silverstone et al., 1998).  

Although null alleles of GAI confer a no visible phenotype from wild type, 

they have increased PAC resistance, indicating that loss-of-function of GAI may 

partially suppress the effects of GA-deficiency (Peng and Harberd, 1993; Wilson and 

Somerville, 1995). Knock-out of both RGA and GAI allows for a GA-independent 
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rosette leaf expansion, flowering, and stem elongation (Dill and sun, 2001; King et al., 

2001a). Therefore, GAI and RGA encode negative regulators of GA signaling in 

Arabidopsis.  

Three other DELLAs, RGL1, RGL2, and RGL3, are present in Arabidopsis. 

Their specific roles in GA signaling were uncovered through reverse genetic studies. 

Screens of a Ds-transposant collection (Parinov et al., 1999; Sundaresan et al., 1995) 

for Ds-GUS within the RGL1and RGL2 ORFs led to the isolation of recess mutants 

for RGL1 (rgl1-1) and RGL2 (rgl2-1, rgl2-5, and rgl2-12) (Lee et al., 2002). T-DNA 

insertion mutant alleles for RGL1, RGL2, and RGL3 were also isolated (Tyler et al., 

2004).  rgl2 mutants were strongly resistant to PAC in seed germination and loss-of-

function of RGL2 was able to suppress the non-germination phenotype of ga1-3, 

indicating that RGL2 may be the key suppressor in seed germination (Lee et al., 2002; 

Tyler et al., 2004). Further study showed that this function was enhanced by GAI and 

RGA (Cao et al., 2005; Penfield et al., 2006). None of the single mutation in 

Arabidopsis DELLA proteins shows any visible phenotype in floral development. 

RGA and GAI function together in controlling the stem elongation and flowering 

transition, but the floral organ development is still arrested in the ga1-3rga-t2gai-t6 

mutant (King et al., 2001a). Detailed analysis of different mutation combinations of 

DELLAs suggested that RGA, RGL1 and RGL2 act synergistically in repressing 

flower development (this thesis; (Cheng et al., 2004). Absence of RGA, RGL2, RGL1 

and GAI leads to GA-independent plant growth (this thesis; Cheng et al., 2004; Tyler 

et al., 2004; Cao et al., 2005). These data indicated that four out of five DELLAs in 

Arabidopsis may play distinct and overlapping roles in Arabidopsis life cycle (Fig. 

1.5). 
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Fig. 1.5. DELLA proteins function in Arabidopsis life cycle (Lee et al., 2002). 
RGL2 links the environmental cue (moisture) with the GA-signaling pathway during 
the regulation of seed germination. Signaling through GAI and RGA mediates GA-
promoted stem elongation, leaf expansion and flowering (peng et al., 1997; 1999, 
silverstone et al., 1998; Dill and Sun, 2001; King et al., 2001; Lee et al., 2002). 
Signaling through RGA, RGL1 and RGL2 mediates GA-promoted floral development 
(Cheng et al, 2004; Tyler et al., 2004). 
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1.2.1.1.2  DELLA proteins in other species 

 Unlike in Arabidopsis, only one GAI/RGA functional ortholog is present in 

rice (SLENDER RICE 1(SLR1)) and barley (SLENDER1 (SLN1)). Null alleles of SLR1 

and SLN1 displayed a constitutive GA response slender phenotype. Elongation was 

not affected by GA inhibitor in these mutants. Endogenous GA levels in mutants were 

lower than that in wild type. In contrast, over-expression of SLR1 with a truncated 

DELLA domain showed a dominant GA-insensitive dwarf phenotype (Ikeda et al., 

2001; Itoh et al., 2002). These data indicated that the function of DELLA proteins in 

repressing GA signaling may be highly conserved in various species.   

In wheat and maize, REDUCED HEIGHT-1 (RHT-1) and dwarf-8 (d8) were 

identified as GAI/RGA functional orthologs, respectively. In particular, the 

introduction of wheat Rht-B1b/Rht-D1b semi-dwarf mutation alleles confer wheat 

semi-dwarf phenotype with an impressive increase in grain yields in 1960s, which 

was termed as “Green Revolution” (Peng et al., 1999). Molecular analysis revealed 

that Rht-B1b/Rht-D1b and D8 alleles contained mutations that altered the N-terminal 

region of the protein. Genetic analysis indicated that Rht-B1b/Rht-D1b and D8 made 

active products. All three D8 alleles either have an in frame deletion within highly 

conserved region I (D8-1), or region II (D8-2023), or have a deletion that made an N-

terminally truncated product that lacks region I and most of the region II  (D8-Mpl) 

(Fig. 1.3, Fig. 1.4). The Rht-B1b/Rht-D1b mutations were both nucleotides 

substitutions that create stop codons to make N-trminally truncated products that lack 

region I (Peng et al., 1999).  

 Dwarfism associated “Green Revolution” mutation was also identified in 

grapevine. Genetic evidence showed that GAs inhibited flowering in grapevine (Boss 

et al., 2003). Characterization of a grapevine dwarf mutant revealed that the mutated 
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gene (called VvGAI) associated with the dwarf phenotype was a homologue of the 

wheat “green revolution” gene RHT-1 and the Arabidopsis gene GAI. Sequence 

comparison of wild type VvGAI and its mutant allele Vvgai1 indicated that mutant 

Vvgai1 contained a point mutation resulting in an amino acid change in DELLA 

region. The conversion of tendrils to inflorescences in the dwarf grapevine 

demonstrated that the grape tendril was a modified inflorescence inhibited from 

completing floral development by GAs (Boss and Thomas, 2002).  

  

1.2. 1.2  SPINDLY (SPY) and SECRET AGENT (SEC) 

Recessive mutations at the SPY locus of Arabidopsis conferred resistance to 

GA biosynthesis inhibitor PAC (Jacobsen and Olszewski, 1993). spy mutant plants 

were slender with constitutive GA response. Mutations in SPY partially rescued all the 

phenotypes of ga1-3 including non-germination, dwarfing, dark green leaves, late 

flowering in long days and non-flowering in short days (Filardo and Swain, 2003); 

indicating that SPY might act as negative regulator of GA response. Over-expression 

of SPY in petunia phenotypically resembled PAC treated petunia wild type plants, 

further supporting the role of SPY as a negative regulator of GA action (Izhaki et al., 

2001).  

SPY encodes a putative OGT (O-linked N-acetyl-glucosamine transferase) and 

SPY  was detected both in cytoplasm and nucleus in plant cells (Swain et al., 2002). 

In animal, OGT catalyze the transfer of O-linked N-acetylglucosamin (GlcNAc) from 

UDP-GlcNAc to Ser/Thr residues of proteins. GlcNAc modification may interfere or 

compete with kinases or phosphorylation sites and is implicated in regulating many 

signaling pathways (Roos and Hanover, 2000; Comer and Hart, 2000; Wells et al., 
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2001). Like animal OGTs, purified recombinant SPY protein had OGT activity in 

vitro (Thornton et al., 1999).  

SPY contains 10 copies of a tetratricopeptide repeats (TPR motif) at N-

terminus and a catalytic domain at C-terminal (Jacobsen et al., 1996); Izhaki et al., 

2001). The TPR of SPY interacts with SPY both in vitro and in yeast-hybrid assays, 

indicating that SPY may function as a homodimer by protein-protein interaction via 

TPR motif. Ectopic expression of TPR in Arabidopsis wild type caused a phenotype 

similar to loss-of-function spy mutants including resistant to GA biosynthesis 

inhibitors, short hypocotyl length and early flowering (Tseng et al., 2001). Over-

expression of SPY’s TPR in petunia generated a dominant negative mutant and 

conferred resistance to PAC in seed germination (Izhaki et al., 2001). These data 

demonstrated that elevated TPRs alone may block the SPY functions by forming 

inactive hereodimers with SPY and/or by interacting with the target proteins of SPY, 

suggesting that the TPR domain could participate in protein-protein interactions and 

that these interactions were important for the proper function of SPY.  

spy alleles were epistatic to gai and enhanced the rga phenotype, suggesting 

that SPY may act downstream of GAI (Jacobsen et al., 1996). However, if SPY is an 

OGT, it may modify GAI or RGA via addition of an O-GlcNAc moiety, rather than 

being a downstream signaling component (Swain and Olszewski, 1996; Harberd et al., 

1998). It was reported that the function of OsSPY in GA signaling was not via 

changes in the amount or stability of SLR1, but by controlling the suppressive 

function of DELLA protein SLR1(Silverstone et al., 2006; Shimada et al., 2006).  

There are two OGTs in Arabidopsis: SPINDLY (SPY) and SECRET AGENT 

(SEC). T-DNA insertion mutants of SEC did not exhibit obvious phenotypes. sec and 

spy mutations had a synthetic lethal interaction. SPY and SEC had overlapping 
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functions necessary for gamete and seed development (Hartweck et al., 2006). More 

recently, SEC has been shown to have unique role in the infection of Arabidopsis by 

Plum pox virus (Chen et al., 2005).  More detailed analysis of the relationship 

between SPY and SEC revealed that unlike SPY, SEC had a limited role in GA 

signaling but it functioned in a partially redundant manner with SPY to regulate 

reproductive development (Hartweck et al., 2006). 

spy mutants exhibited various phenotypic alterations that was not found in 

GA-treated plants. A detailed investigation of spy mutant phenotype suggested that 

SPY might play a role beyond in GA signaling (Swain et al., 2001). spy mutants were 

resistant to exogenously applied cytokinins, demonstrating that SPY acted as both a 

repressor in GA signaling and a positive regulator of cytokinin signaling (Greenboim-

Wainberg et al., 2005). Study of HvSPY in barley aleurone showed that HvSPY 

played a negatively role for GA-induced promoter and a positively role for an ABA-

induced promoter (Robertson et al., 1998). It was also reported that SPY and 

GIGANTEA (GI) interacted and acted in Arabidopsis pathways involved in light 

response, flowering, and rhythms in cotyledon development (Tseng et al., 2004). 

Therefore, the function of SPY in planta is more complicated than thought at first. 

  

1.2.1.3  SHORT INTERNODES (SHI) 

shi (short internodes) mutant in Arabidopsis, caused by a transposon insertion, 

displayed a typical semi-dominant dwarf phenotype similar to GA deficient mutant. 

However this dwarfing phenotype could not be rescued by GA application, indicating 

SHI was involved in GA signal pathway.  It contained elevated endogenous bioactive 

GA indicating that the feedback control of GA biosynthesis may be defective in this 

mutant. Cloning of the SHI gene revealed that suppression of GA response in shi 



 16

mutant was a result of over-expression of SHI (Fridborg et al., 1999). SHI contains a 

zinc finger domain, suggesting its role in transcriptional regulation. Transient 

expression of SHI in barley aleurone was able to suppress GA induction of barley α-

amylase expression, supporting that SHI acts as a suppressor of GA response. SHI 

belongs to a gene family consisting nine members in Arabidopsis. Loss-of-function 

insertion alleles of SHI showed no phenotype. It was possible that SHI and SHI-

related genes were functionally redundant (Fridborg et al., 2001). 

 

1.2.2 Positive regulators 

Several positive regulators of GA response including GA receptors and F-box 

proteins were identified by characterization of loss-of-function (recessive), GA 

unresponsive dwarf mutants. On the other hand, several other signaling components 

including U-box proteins and GAMYBs were also identified to function as positive 

regulators in GA signaling. 

 

1.2.2.1     GA receptor: GA INSENSITIVE DWARF 1 (GID1)   

GAs are soluble in the inter- and intra-cellular compartment of plant tissues. It 

may cross the membrane by passive diffusion. Therefore, receptors on the protoplast 

surface may not be required for the perception of GA. It has been proposed that 

soluble GA receptors rather than membrane bound receptors may be involved in cell 

elongation (Hooley et al., 1992). The soluble 50 kDa GA-binding protein observed in 

aleurone by GA4 photoaffinity labelling may be a good candidate for a soluble GA 

receptor (Hooley et al., 1992). However, based on the induction of α-amylase gene 

expression in isolated aleurone protoplasts of Avena fatua L. by Sepharose beads-

immobilized GA4, it was indicated that GA receptors might be located at, or near, the 
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external face of the aleurone plasma membrane (Hooley et al., 1990). Comparison of 

the effects of microinjected GA and extracellular GA on α-amylase expression in 

barley aleurone cells showed that injected GA did not elicit GA response, including 

induction of a-amylase expression, while extracellular GA did, further indicating that 

the perception of GA might occur at the external face of the plasma membrane of 

barley aleurone protoplasts (Gilroy and Jones, 1994). Therefore, it was proposed that 

plants might have both soluble and membrane-bound GA receptors. Two proteins (6 

kDa and 18 kDa) were identified through gibberellin-photoaffinity labeling 

experiment in plant plasma membranes (Lovegrove et al., 1998). In contrast, in vitro 

binding and purification of radiolabeled GA4 have identified soluble GA-binding 

proteins in cucumber and Azukia angularis (Keith et al., 1982; Nakajima et al., 1997). 

Although both membrane-bound and soluble GA-binding proteins have been reported, 

their roles in GA perception or action await to be elucidated by the cloning and 

characterization of these genes. 

Recently, rice GID1 was shown to possess the expected properties of the long-

sought GA receptor. The rice gid1 mutant appeared to be completely unresponsive to 

GA. SLR1 was epistatic to GID1 and was not degraded in the gid1 mutant. The GID1 

encodes an unknown protein with similarity to the hormone-sensitive lipases and 

preferentially nuclear localized. The affinity between GID1 and bioactive GA were 

consistent with GID1 as a functional receptor. Most importantly, in a yeast two-hybrid 

assay, GID1 interacted with the rice DELLA protein SLR1 in a GA-dependent 

manner. Overexpression of GID1 resulted in a GA-hypersensitive phenotype. These 

data supported that GID1 was a soluble GA receptor. It was believed that on binding 

GA, AtGID1 binds to DELLA proteins to stimulate the ubiquitination of DELLA 
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proteins by promoting binding of DELLA to SCFSLY1/GID2 E3 ubiquitin ligase 

(Ueguchi-Tanaka et al., 2005; Hartweck and Olszewski, 2006). 

Arabidopsis contains three GID1 orthologs (AtGID1a, AtGID1b, and 

AtGID1c). The expression of AtGID1s in rice gid1-1 mutant rescued the GA-

insensitive dwarf phenotype of gid1-1, indicating that all three AtGID1s may function 

as GA receptors in Arabidopsis. Early genetic screens for GA response mutants did 

not identify any of these receptors, indicating there are significantly functional 

overlapping among these genes. Characterization of the knock-out mutants of 

AtGID1s suggested that they may function redundantly but specifically as well 

(Nakajima et al., 2006; Griffiths et al., 2006). gid1a gid1b gid1c triple mutant 

displayed a dwarf phenotype that was more severe than GA deficient mutant ga1-3 

and was completely insensitive to GA application. RGA accumulated in the gid1a 

gid1b gid1c triple mutant and loss of RGA function could partially rescue the 

phenotype of the triple mutant. Biochemical analyses revealed that all three 

recombinant proteins showed higher affinity to GA4 than to other GAs. Yeast two-

hybrid and in vitro pull-down assays supported that AtGID1s interact with 

AtDELLAs in both GA4 and DELLA domain dependent manner. Furthermore, the 

GA-GID1 complex promotes the interaction between RGA and the F-box protein 

SLY1. All these results demonstrated that resembling rice GID1, AtGID1a, b and c 

also functioned as GA receptor in Arabidopsis (Nakajima et al., 2006; Griffiths et al., 

2006). 

 

1.2.2.2  E3 ubiquitin ligases 

The ubiquitin-proteasome pathway is very important for the hormone 

regulated cellular processes in plant. The general function of the ubiquitin/26S 
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pathway is to conjugate ubiquitin to Lys residues within the substrate proteins, thus 

targeting the degradation of these substrate proteins by the 26S proteasome. In the 

early steps of this pathway, three enzymes: the ubiquitin activating enzyme (E1), 

ubiquitin conjugating enzyme (E2) and ubiquitin ligase (E3) are involved. The E3 

enzyme, containing either a HECT domain or RING/U-box domain, specifies the 

substrate (Moon et al., 2004).  

 

1.2.2.2.1  F-box proteins: GA-INSENSITIVE DWARF 2 (GID2), SLEEPY 1 

(SLY1) and SNEEZY (SNE) 

The SCF class of E3 ligases, which belongs to multiple subunit RING domain 

E3s, are the most thoroughly studied E3 in plant. The name is derived from their three 

subunits: SKP1 (ASK in plants for Arabidopsis SKP1), CDC53 (or Cullin), and the F-

box protein. F-box proteins were named after the conserved 60-amino acid motif (F-

box) at N terminus which is responsible for binding to ASK/SKP. F-box proteins 

represent the largest superfamily in Arabidopsis.  The role of SCFs in plant 

development is extensive. They are involved in diverse processes including hormone 

response, phtotomorphogenesis, circadian rhythms, floral development and 

senescence (Moon et al., 2004). 

Recently, characterization of the recessive GA-insensitive mutants identified 

several F-box genes involved in GA signaling. A severe GA-insensitive dwarf mutant, 

GA-insensitive dwarf 2 (gid2), was isolated in rice. gid2-1 slr1-1 double mutant 

showed a slender phenotype identical to slr1-1 single mutant, indicating that GID2 

functions upstream of SLR1. Positional cloning of GID2 indicated that it encodes an 

F-box protein. Yeast two-hybrid analysis showed that GID2 interacted with OsSKP15 

protein. GA-dependent degradation of SLR1 did not occur in gid2 mutant. On the 
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other hand, an accumulation of phosphorylated SLR1 was observed in the GA-treated 

gid2 mutant. These data suggested that GID2 may be a positive regulator of GA 

signaling and target the degradation of SLR1 which is initiated by GA-dependent 

phosphorylation ((Sasaki et al., 2003). Yeast two-hybrid assay and immuno-

precipitation experiments demonstrated that GID2 formed a component of an SCF 

complex, specifically interacted with phosphorylated SLR1 proteins and triggered the 

GA-dependent degradation of SLR1 in rice (Gomi et al., 2004). 

sleepy 1 (sly1) was first isolated in a screen for suppressors of the ABA-

insensitive mutant abi1-1 in Arabidopsis. The sly1 alleles were the first recessive GA-

insensitive dwarfing mutants identified. They showed the full spectrum of phenotypes 

associated with severe GA deficient mutant, including the failure of germination in 

the absence of the abi1-1 lesion (Steber et al., 1998). rga null allele partially 

suppressed the sly1 mutant phenotype (McGinnis et al., 2003). Positional cloning of 

the SLY1 genes revealed that it encodes a putative F-box protein. DELLA domain 

protein RGA was accumulated in sly1 mutant even after GA treatment. These data 

suggested that SCFSLY1 may mediate the degradation of RGA through 26S proteasome 

pathway (McGinnis et al., 2003).  By yeast two-hybrid and in vitro pull-down assay, it 

was demonstrated that SLY1 directly interacted with RGA and GAI via their c-

terminal GRAS domain (Dill et al., 2004; Fu et al., 2004).  

Over-expression of SLY1 in sly1-2 and sly1-10 mutant plants rescued the 

recessive GA-insensitive phenotype of these mutants. Surprisingly, antisense 

expression of SLY1 also suppressed the phenotype of these mutants (Strader et al., 

2004). These data led to the hypothesis that the SLY1 homologue SNE could 

functionally replace SLY1 in the absence of the recessive interfering sly1-2 or sly1-10 

genes. This hypothesis was verified by the result that over-expression of SNE in sly1-
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10 plants restored normal RGA level and rescued the dwarf phenotype of sly1-10 

plants (Strader et al., 2004). 

 

1.2.2.2.2  U-box arm-repeat protein: PHOTOPERIOD REGULATED 1 

(PHOR1)  

U-box domain, designated after a 70 amino acid motif of yeast ubiquitination 

factor UFD2, is related to the RING finger motif of E3 ubiquitin ligase.  U-box 

domain is similar in structure to RING finger domain, but does not require Zinc ions 

to stabilize the motif. The first U-box proteins identified, UFD2, CHIP and NOSA, 

were implicated to function as ubiquitin ligases in ubiquitin-dependent protein 

degradation (Hatakeyama et al., 2001; Jiang et al., 2001). 

PHOR1 was identified to be a novel component of the GA signaling pathway 

in potato. Resembling the GA-deficient mutants, antisense inhibition of PHOR1 

produced semi-dwarf phenotype. The antisense lines showed a reduced response to 

GA application and accumulated higher GA levels than wild type, indicating that 

PHOR1 may function as GA signaling components. PHOR1 encodes an arm repeat 

containing protein similar to the Drosophila segment polarity gene Armadillo and 

contains a U-box domain in its N-terminal (Amador et al., 2001). Three PHOR1 

homologs have been identified in Arabidopsis, suggesting that the function of U-box 

domain proteins might be conserved in different species (Monte et al., 2003). Further 

studies are required to demonstrate if U-box domain protein PHOR1 really functions 

as a ubiquitin E3 ligase to ubiquitinate its potential targets, DELLA proteins, for 

proteasome degradation. 

 

1.2.2.3  GAMYB transcription factors  
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GA activates the expression of α-amylase gene expression in aleurone cells. 

Functional analysis of α-amylase gene promoters led to identify a 21bp GA response 

element (GARE) containing a conserved sequence TAACAA/GA. A number of other 

cis-acting elements including Box1/O2S-like element, pyrimidine box (C/TCTTTT) 

and TATCCAC box in α-amylase gene promoters have also been shown to act as 

enhancers within GA response complex (GARC) (Gubler and Jacobsen, 1992; 

Lanahan et al., 1992; Tregear et al., 1995; Woodger et al., 2003; Sun and Gubler, 

2004).  

The similarity of TAACAA/GA sequence to plant and animal MYB binding 

sites led to the isolation of a GA-regulated transcription factor HvGAMYB in barley 

aleurone cells. HvGAMYB contains a typical R2/R3-MYB DNA binding domain at N 

terminus and two transcriptional activation domains at C terminus. It bound 

specifically to the TAACAA/GA sequence of GARE (Gubler et al., 1995). 

Transiently expressed HvGAMYB strongly activated the α-amylase promoter, 

indicating that HvGAMYB functioned as a transcriptional activator of α-amylase 

(Gubler et al., 1999; Gubler et al., 1995). Transient silencing of HvGAMYB in 

aleurone cells caused a dramatic reduction of α-amylase promoter activity and 

constitutive expression of HvGAMYB triggered α-amylase promoter activity. These 

data indicated that HvGAMYB expression was necessary and sufficient for the GA 

induction of α-amylase gene expression (Zentella et al., 2002). 

The involvement of GAMYB as a trans-activator of GA signaling was not 

restricted in the cereal aleurone system. In addition to aleurone, HvGAMYB was 

found to be strongly expressed in anthers. Transgenic barley plants with over-

expression of HvGAMYB failed to dehisce and were male sterile, suggesting that 

GAMYB may function in anther development (Murray et al., 2003). 
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Long-day promotes the expression of LtGAMYB in grass Lolium temulentum 

in the apex, suggesting that GAMYB may play a role in flowering (Gocal et al., 1999). 

A role of GAMYB in flowering was also investigated in Arabidopsis. Based on the 

sequence similarity, GAMYB-like genes, MYB33, MYB65, MYB97, MYB101 and 

MYB120 have been identified in Arabidopsis (Gocal et al., 2001; Stracke et al., 2001). 

Transient expression assays indicated that MYB33, MYB65 and MYB101 were able 

to functionally substitute for HvGAMYB in transactivation of the α-amylase promoter 

in barley aleurone (Gocal et al., 2001). Like LtGAMYB, an increase of expression of 

MYB33 at shoot apex coincided with the onset of flowering. In addition, expression of 

MYB33 overlapped with the expression of floral meristem identity gene LEAFY 

(Gocal et al., 2001). Furthermore, MYB33 specifically bound to a MYB-binding site 

within LEAFY promoter, an element that was known to be essential for GA activation 

of LEAFY promoter (Blazquez and Weigel, 2000). Therefore, GA may regulate 

flowering through inducing the expression of GAMYB in the apex.  

Recently, characterization of GAMYB knock-out mutants in both rice and 

Arabidopsis has led to define the roles of GAMYB in GA-regulated processes outside 

cereal aleurone. The induction of α-amylase expression by GA in the endoderm was 

blocked in the rice gamyb mutant alleles. No obvious phenotype was observed in the 

mutants at vegetative stage. After phase transition to the reproductive stage, the 

internodes of mutants were shortened and floral development, especially pollen 

development was affected. These results demonstrated that, in addition to its role in 

the induction of α-amylase in aleurone, OsGAMYB was also important for pollen 

development (Kaneko et al., 2004). Knockout mutants of Arabidopsis MYB33 and 

MYB65 were also isolated. Characterization of the mutant alleles revealed that MYB33 

and MYB65 functioned redundantly in controlling anther development. Double mutant 
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myb33myb65 was conditionally male sterile due to the premeiotically blocking of 

pollen development (Millar and Gubler, 2005).  

Time-course studies have shown that GA induced a rapid increase in 

HvGAMYB gene expression prior to α-amylase gene expression in barley aleurone 

layers. The increase in HvGAMYB might due to an increase in the rate of transcription 

or at postranscription level (Gubler et al., 2002). DELLA protein SLN1 acted as a 

repressor in HvGAMYB expression in aleurone cells. There is a lag time of 1h 

between SLN1 degradation and the expression of HvGAMYB, indicating that SLN1 is 

not a direct repressor of HvGAMYB. Like many other GA response genes in cereal 

aleurone, HvGAMYB was also repressed by ABA which acts downstream of SLN1 

(Gomez-Cadenas et al., 2001; Penson et al., 1996). The facts, that there were multiple 

isoforms of HvGAMYB in aleurone and HvGAMYB was detectable in the non-GA 

treated aleurone without the accumulation of α-amylase, indicated that HvGAMYB 

might be regulated at posttranscriptional level as well. In addition, MYB transcription 

factors may also be modulated by phosphorylation and acylation (Vorbrueggen et al., 

1996; Tomita et al., 2000). 

MYB transcription factors may operate as part of large transcriptional 

complex. HvGAMYB-binding proteins have been identified in barley aleurone. These 

factors could be involved in the posttranscriptional regulation of HvGAMYB. DOF 

(DNA-binding with one finger) transcription factors bind to pyrimidine boxes in 

hydrolase GARC and regulate hydrolase expression in aleurone cells (Washio, 2003). 

BPBF (Barley Prolamine Box-binding Factor), a barley DOF transcription factor, was 

found to interact with HvGAMYB and repress HvGAMYB-mediated trans-activation 

of the promoter of the GA-response protease gene, AL21, in barley aleurone (Mena et 

al., 2002; Diaz et al., 2002). On the other hand, SAD (Scutellum and Aleurone-
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expressed DOF), another DOF transcription factor, interacted with HvGAMYB to 

positively regulate the function of HvGAMYB (Isabel-LaMoneda et al., 2003). In 

addition, KGM (Kinase associated with GAMYB), another GAMYB-binding protein, 

was isolated in barley aleurone and identified to be a repressor of GAMYB in barley 

aleurone (Woodger et al., 2003). 

Recently, regulation of GAMYB by miRNA159 was reported. MiRNA159 is a 

microRNA of 21 nucleotides sequence which is near-perfect /closely complementary 

to an internal sequence of the mRNA of AtGAMYBs, HvGAMYB and OsGAMYBs. 

MicroRNAs can regulate gene expression by directing cleavage or by inhibition of 

translation of target transcripts (Llave et al., 2002; Chen, 2004; Aukerman and Sakai, 

2003). In Arabidopsis, miRNA159 was regulated by GA through DELLA protein. It 

was able to direct the cleavage of mRNA encoding GAMYB-related proteins (e.g. 

AtMYB33). Over-expression of miRNA159 caused a reduction of LEAFY transcript 

levels, delayed flowering in short day and perturbed anther development (Achard et 

al., 2004). Translational GUS fusion study indicated that miRNA159 target sequence 

in MYB33 was important for restricting the expression of MYB33 in anther for its 

proper function (Millar and Gubler, 2005). In rice, it was suggested that the regulation 

of OsGAMYBs was different in aleurone and flowers. MiRNA159 was co-expressed 

with GAMYB or -like genes in anthers rather than aleurone. Thus, it seemed that 

miRNA159 might only regulate OsGAMYB and -like genes in flowers rather than in 

aleurone (Tsuji et al., 2006). However, recent report showed that ABA induced the 

expression of miR159 to control transcript levels of two MYBs (MYB33 and MYB101) 

during Arabidopsis seed germination (Reyes and Chua, 2007). 

Microarray analysis revealed that OsGAMYB and its upstream regulator 

SLR1 were involved in the regulation of almost all GA-mediated gene expression in 
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rice aleurone cells and different sets of genes were regulated by GAMYB in aleurone 

cells and anthers, indicating that OsGAMYBs function differently in aleurone and 

anther (Tsuji et al., 2006). 

 

1.2.2.4  Heterotrimeric G protein- DWARF 1 (D1) in rice and G 

PROTEIN in ARABIDOPSIS (GPA1)  

Heterotrimetric G proteins mediate the transmission of the external signals via 

receptor molecules to effector molecules. The G proteins consist of three different 

subunits: alpha, beta and gamma subunits. Evidences showed that alpha subunit of G 

proteins (Gα) were involved in GA signaling at low GA concentrations. Rice dwarf 1 

(d1) mutant is a GA-unresponsive dwarf mutant resulting from a defect in DWARF 

1(D1) gene which encodes Gα protein (Fujisawa et al., 2001; Ashikari et al., 1999). In 

the presence of low GA concentrations, the GA induction of OsGAMYBs and alpha-

amylase was dramatically reduced in d1 aleurone. However, at higher GA 

concentrations, response to GA in d1 mutant seemed to be normal, indicating that D1 

was involved in GA signaling and an alternative GA-signaling pathway that 

independent of Gα protein might also be present in rice (Mitsunaga et al., 1994; 

Ueguchi-Tanaka et al., 2000; Kaziro et al., 1991; Ashikari et al., 2003)..   

Null mutation in Gα protein in Arabidopsis (GPA1) has resulted in100-fold 

less response to GA. Meanwhile, Plants with over-expression of GPA1 had increased 

sensitivity to GA, yet GA was still required for its germination, indicating that GPA1 

might indirectly operate on GA pathway to control germination (Ullah et al., 2002a).  

Gα gene was a single copy gene in rice and Arabidopsis. Analysis of the 

mutants for Gα gene indicated that Gα gene might also be involved in many other 

signaling pathways such as auxin, ABA and Brassinolide (BR). Studied on gpa1 
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mutant indicated that BR signaling pathway seemed to be more directly coupled by 

heterotrimetric G protein at various points in plant development (Wang et al., 2001; 

Ullah et al., 2001; Ullah et al., 2003; Ullah et al., 2002b). 

 

1.2.2.5  PICKLE (PKL)  

PKL gene was identified during screening for Arabidopsis mutants exhibiting 

abnormal root development. The pkl plants displayed several shoot phenotypes that 

were characteristics of Arabidopsis GA-deficient mutants including dwarfism, dark 

green leaves with short petioles, delayed bolting and reduced apical dominance (Ogas 

et al., 1997). pkl plants exhibited reduced GA responsiveness and increased 

endogenous GAs (Henderson et al., 2004). These phenotypes suggested that PKL may 

play a role in GA response. The synergistic effect of combining the pkl and gai 

mutations in flowering further supported that PKL, like GAI, may be involved in GA 

signaling pathway (Ogas et al., 1997).  

Roots of pkl mutant exhibited embryonic traits after germination. This “pickle 

root” phenotype was dependent on GA. In pkl seedling, GA repressed the penetration 

of “pickle root” phenotype while inhibiting GA biosynthesis strongly enhanced this 

phenotype (Ogas et al., 1997). Although the penetrance of the “pickle root” phenotype 

was strongly response to GA, it is only marginally responsive to ABA and mutation 

on SPY (Henderson et al., 2004). These data suggested that GA response pathway that 

mediates the repression of embryonic identity in pkl seedling may be distinct from 

previously characterized GA response pathway that regulates seed germination 

(Henderson et al., 2004). 

Cloning of PKL revealed that it encodes a CHD3 chromatin remodeling factor, 

suggesting that the inability of pkl seedling to repress embryonic identity might result 
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from a defect in transcription regulation (Ogas et al., 1999). Several embryonic 

identity genes which were repressed by PKL were identified through microarray 

studies (Rider et al., 2003). However, these genes were not affected by GA 

biosynthesis inhibitor.  Therefore, further characterization of genes that are regulated 

by both GA and pkl might be needed to elucidate the function of PKL in GA signaling 

(Sun and Gubler, 2004). 

 

1.2.3 Additional potential components  

With Genome-sequencing efforts and microarray technology, a number of 

genes that potentially act in GA signaling have been indicated.  

 

1.2.3.1  WRKY proteins 

The WRKY proteins are a superfamily of transcription factors that control 

diverse developmental and physiological processes. The WRKY domain is defined by 

the conserved amino acid sequence WRKYGQK at its N terminus (Eulgem et al., 

2000). Two wild oat (A. sativa subsp.fatua) WRKY proteins (ABF1 and ABF2) were 

able to bind to the promoter of GA-regulated gene, α-Amy2. This data indicated that 

WRKY proteins might modulate the GA response in aleurone (Rushton et al., 1995). 

Analysis of rice (Oryza sativa) genomic sequences identified at least 105 

WRKY genes, among which OsWRKY71 is highly expressed in aleurone cells. 

OsWRKY71 expression was repressed by GA application. It was suggested that 

OsWRKY51 and OsWRKY71 may be transcriptional repressors of GA signaling in 

aleurone cells by functionally interfering with OsGAMYB (Zhang et al., 2004; Xie et 

al., 2006; Xie et al., 2007). 
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1.2.3.2  Others 

Whole genome expression profiling and proteomic technology provided 

powerful tools to facilitate the identification of new GA signaling components and 

tissue specific GA regulated genes. Microarray analysis in Arabidopsis and rice have 

identified a number of GA- and DELLA-regulated genes in seed germination and 

floral development (Ogawa et al., 2003; Bethke et al., 2006; Cao et al., 2006; Tsuji et 

al., 2006). Further studies on these genes and their respective mutants would be of 

great help to our understanding of GA response pathway.  

 

1.3 GA induced proteolysis of the DELLA proteins via the ubiquination-

proteasome pathway 

In plants, targeted degradation of regulatory proteins by the ubiquitin/26S 

proteasome pathway contributes significantly to development by affecting a wide 

range of processes including embryogenesis, hormone signaling and senescence. 

Based on genetic and biochemical studies on DELLA proteins, the “relief-of-

restraint” model proposed that DELLA proteins restrain plant growth, while GA 

promotes plant growth by relieving this DELLA-mediated growth restraint via 

triggering degradation of DELLA proteins (Harberd, 2003). 

   As mentioned earlier, DELLA proteins are key repressors of GA response. 

Studies of the effect of GA on Arabidopsis RGA revealed that the levels of GFP-RGA 

fusion protein and endogenous RGA were reduced rapidly by GA treatment, 

indicating that GA promotes plant growth by degrading the repressor protein RGA 

(Silverstone et al., 2001). Similarly, GA regulates the appearance and disappearance 

of rice SLR1 in nuclei (Itoh et al., 2002). Using specific inhibitors of proteasome 

function, it was found that proteasome-mediated protein degradation was necessary 
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for GA-mediated destabilization of barley SLN1 (Fu et al., 2002). Further experiments 

with protein kinase and protein phosphatase inhibitors indicated that phosphorylation 

and dephosphorylation steps were also involved for GA-mediated degradation of 

SLN1 and RGL2 (Fu et al., 2002; Hussain et al., 2005). Site-directed substitution 

studies of conserved serine/threoine and tyrosine residues suggested that 

dephosphorylation of serine/threonine and phosphorylation of tyrosine were critical in 

GA induced degradation of RGL2 via the proteasome pathway (Hussain et al., 2007; 

Hussain et al., 2005). 

17 amino acid in-frame deletions in DELLA domain of gai mutant protein 

made it a constitutive repressor of GA response (Peng et al., 1997). Similar internal 

deletions in other DELLA proteins from different species also resulted in a GA-

unresponsive dwarf phenotype ( Peng et al., 1999; Boss and Thomas, 2002; Chandler 

et al., 2002). It was revealed that mutation in DELLA motif in RGA, SLR1 and SLN1 

made the mutant protein resistant to GA-induced degradation, indicating that DELLA 

motif was essential for GA-induced degradation of DELLA proteins (Dill et al., 2001; 

Gubler et al., 2002; Itoh et al., 2002). Recent experiment showed that the N-terminal 

sequence containing DELLA domain was necessary for GID1 binding (Griffiths et al., 

2006). In addition, studies on transgenic plants with over-expression of different kind 

of truncated SLR1 revealed that additional domains for example LHR1 and C 

terminus (Fig. 1.4) were also required for GA induced DELLA protein degradation 

(Itoh et al., 2002; Gubler et al., 2002). 

F-box proteins SLY1 and GID2 are positive regulators of GA response. 

SCFSLY1/GID2 positively regulates GA signaling by causing the destruction of the 

negative regulators, DELLA proteins. This conclusion is based on the fact that RGA 

and SLR1 accumulated at higher levels in sly1 and gid2 mutants than in wild type, 
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respectively. Null mutation of RGA could rescue the dwarf phenotype of sly1 mutants. 

Similarly, null mutation of SLR1 also restored the normal height of gid2 mutants. 

DELLA proteins have been shown to interact with F-box proteins SLY1 and GID2. It 

was found that GA induced an accumulation of phosphorylated SLR1 in gid2 mutant, 

suggesting that GID2 may preferentially target the phosphorylated SLR1 for 

degradation (McGinnis et al., 2003; Sasaki et al., 2003; Gomi et al., 2004). In 

Arabidopsis, SCFSLY1 also interacted more strongly with phosphorylated DELLA 

proteins (Fu et al., 2004). Based on these results, DELLA proteins are believed to be 

degraded through the 26S proteasome pathway once ubiquitinated by SCFSLY1/GID2. 

 

1.4 Model of GA signaling pathway   

The process of GA signaling in the nucleus depends directly on presence or 

absence of DELLA protein activity. DELLA proteins are putative transcription 

regulators that inhibit the expression of GA-activated genes. GA releases the 

repression of DELLA proteins through proteolysis of DELLA proteins. The GA-

induced proteolysis of DELLA proteins is dependent on SCFSLY1/GID2 E3 ligase. An 

UPHOR1 E3 ligase might also be involved in these proteolysis process (Fig. 1.6) 

(Thomas and Sun, 2004; Gomi and Matsuoka, 2003; Sun and Gubler, 2004).  

SPY may act as negative regulator of GA response through activating DELLA 

protein by GlcNAc modification. OsGID1 and AtGID1-like were soluble GA 

receptors. Binding on GA, GID1 binds to DELLA domain of DELLA proteins to 

stimulate the ubiquitination of DELLA proteins by promoting binding of DELLA to 

the SCFSLY1/GID2 E3 ligase (Willige et al., 2007). Through an unknown mechanism, 

GA induced the phosphorylation of DELLA proteins. Binding affinity of DELLA 

protein and SCFSLY1/GID2 was increased by GA-induced-phosphorylation of DELLA 
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Fig. 1.6. Model of GA signaling pathway. Arrows and T-bars indicate positive and 
inhibitory effects, respectively. Weak and strong effects are represented by dotted and 
solid lines, respectively. [Ub]n represents polyubiquitination. 
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proteins (Fig. 1.6).  

GAMYBs are GA activated genes that act downstream of DELLA proteins. In 

Arabidopsis GA regulates GAMYB through miRNA159, which acts downstream of 

DELLA protein. In barley aleurone cells, GAMYB activity is repressed by KGM (Fig. 

1.6) (Woodger et al., 2003). 

 

1.5   GA signaling and GA metabolism 

The genes encoding GA biosynthesis enzymes have been well characterized in 

numerous species. GA 20-oxidases (GA20ox) and GA 3-oxidases (GA3ox), enzymes 

catalyzing the final steps of the biosynthesis of GA, are particular important for 

controlling bioactive GA levels. In addition, GA2-oxidase (GA2ox) which is 

responsible for the deactivation of GA also plays important role in the modulation of 

bioactive GA levels. 

GA response pathway is tightly linked to its biosynthesis and catabolism 

(Olszewski et al., 2002). The constitutive GA-response mutants (e.g., rice slr1, barley 

sln1 and Arabidopsis rga/gai-t6) contain lower bioactive GA levels than in wild type. 

It was found that mRNA levels of GA20ox and/or GA3ox genes were present at lower 

levels in these mutants than in wild type (Croker et al., 1990; Dill and Sun, 2001; 

Silverstone et al., 2001). On the other hand, in reduced GA-responsive mutants, such 

as in gain-of-function mutant (gai) and loss-of-function mutant (sly1), higher levels of 

bioactive GA and GA20ox/GA3ox mRNA were accumulated (Ueguchi-Tanaka et al., 

2000; Talon et al., 1990; McGinnis et al., 2003). These results indicated that the 

biosynthesis and catabolism of GA were subject to feedback regulation by GA 

signaling pathway.  
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The molecular mechanism involved in feedback regulation is not elucidated 

yet. REPRESSION OF SHOOT GROWTH (RSG), a tobacco trans-activator with a 

bZIP domain, regulates endogenous GA levels by controlling ent-Kaurene Oxidse 

gene in GA biosynthetic pathway. GA regulates the intracellular translocation of RSG. 

Over-expression of dominant negative mutant form of RSG confers a GA deficient 

phenotype and feedback regulation of GA20ox was affected in this transgenic tobacco. 

These data suggested that RSG might play a role in feedback regulation of GA20ox 

(Fukazawa et al., 2000; Ishida et al., 2004; Takahashi et al., 2003).  

 

1.6 Interaction between GA and other hormone signaling pathways 

The GA metabolism and response pathways integrate with other signaling 

pathways to regulate plant growth and development. GA and ABA antagonized in 

regulating developmental transition from embryogenesis to seed germination. In 

barley aleurone cells, GA induces while ABA inhibits the expression of α-amylase. α-

amylase expression in sln1 mutant was blocked by ABA, indicating that ABA 

signaling acts downstream of SLN1 in barley aleurone (Gomez-Cadenas et al., 2001; 

Zentella et al., 2002; Olszewski et al., 2002). On the other hand, evidences showed 

that miR159 played a role in the ABA repression of GA induction of GAMYB (Reyes 

and Chua, 2007).  

SPY is a negative regulator of GA response. However, spy mutants also 

showed reduced response to cytokinin. Both GA and spy mutation suppressed 

numerous cytokinin responses. But cytokinin had no effect on GA biosynthesis or 

responses. These data suggested that SPY may act as a repressor of GA response and 

a positive regulator of cytokinin signaling. Hence SPY might play a central role in the 

regulation of the cross talk between GA-cytokinin response pathways during plant 
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development (Greenboim-Wainberg et al., 2005). OsSPY antisense and RNAi plants 

showed increased lamina joint bending, which is a brassinosteroid-related phenotype, 

indicating that OsSPY might play roles in both GA signaling and brassinosteroid 

pathway (Shimada et al., 2006). 

DELLA proteins have been proposed to act as a point of intersection for 

several hormone-signaling pathways as well as environmental cues. It was reported 

that lower concentration auxin was necessary for GA-mediated Arabidopsis root 

growth by promoting GA-dependent degradation of DELLA proteins (Fu and Harberd, 

2003), whereas ethylene inhibits Arabidopsis root growth and flowering by delaying 

the GA-induced DELLA destabilization (Achard et al., 2003; Achard et al., 2007; 

Achard et al., 2003). In addition, DELLA proteins also integrate responses to 

independent hormonal and environmental signals of adverse conditions (Achard et al., 

2006). 

 

1.7       Gibberellins and flower development 

Flower development starts from the specification of the floral meristem 

identity followed by the floral organ identity. In response to both environmental and 

endogenous signals, the plant switches from vegetative growth to reproductive growth. 

This process is controlled by a large group of flowering time genes. Signals from 

various flowering time pathways are integrated and lead to the activation of a small 

group of meristem identity genes that specify the floral identity (Jack, 2004). The 

promotion of flowering by GA is one of the four major flowering time promotion 

pathways. The GA deficient mutant such as ga1 in Arabidopsis never flowering in 

short days and delays flowering in long days with the retarded growth of all floral 

organs (especially the development of petal and stamen) (Koornneef and van der 
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Veen, 1980). Application of exogenous GA can restore all the flower defects of ga1, 

indicating that GA is an important stimulator of flowering in the absence of long day 

promotion and plays an important role in the floral organs development in the long 

days (Koornneef and van der Veen, 1980).  

It has been demonstrated that GA promotes flowering of Arabidopsis by 

activation of flower meristem identity gene LEAFY (LFY) and controls floral organ 

development through induction of the expression of the floral homeotic genes: 

APETALA3 (AP3), PISTILLATA (PI) and AGAMOUS (AG) (Blazquez et al., 1998; Yu 

et al., 2004; Eriksson et al., 2006; Yanofsky, 1995). As shown previously, lack of 

GAI and RGA substantially suppressed the effect of the ga1-3 mutation on flowering 

time (a measure of time of floral initiation) in SD (Dill and Sun, 2001). SOC1 

(SUPPRESSOR OF OVEREXPRESSION OF CO 1), an integrator of GA and 

verbalization pathways, seems to function downstream of DELLA protein in 

controlling flowering (Moon et al., 2003). 

Although little is known about how GA controls floral organ development, 

previous reports have suggested that GA signaling component may modulate the GA-

regulated floral development. Over-expression of SPY inhibited postmeiotic anther 

development in petunia (Izhaki et al., 2002). In addition, transgenic expression of wild 

type or mutant forms of GAI in tobacco and Arabidopsis resulted in male sterile 

phenotype owing to the delayed stamen development (Huang et al., 2003; Hynes et al., 

2003). Furthermore, lacking of rice or barley DELLA proteins SLR1 and SLN1 

impaired the floral development (Ikeda et al., 2001; Chandler et al., 2002). Recently, 

genetic studies have revealed that GA regulates flower development via suppression 

of DELLA proteins. It was shown that GA promotes floral organ development via 
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suppressing the function of RGA, RGL2 and RGL1 synergistically (this thesis, Cheng 

et al., 2004, Tyler et al., 2004; Yu et al., 2004).  

 

1.8 Conclusions 

During last decade and during the course of our studies, significant progresses 

have been achieved in understanding of GA signaling pathway. These achievements 

include the identification of signaling components including positive regulators (e.g. 

F-box proteins, GID1 and GID1-like), negative regulators (e.g. DELLA proteins), and 

mechanisms of the proteolysis of DELLA negative regulator. DELLA proteins have 

been indicated to act as a control molecule in modulating information from several 

hormone pathways and environmental cues (Fu and Harberd, 2003; Achard et al., 

2003; Achard et al., 2005). Recent report showed that GID1 interact with DELLA 

protein to promote the degradation of DELLA proteins (Nakajima et al., 2006; 

Griffiths et al., 2006), indicating that GID1 may play a central role in controlling the 

stability and perhaps activity of DELLA proteins.  However, the regulation of 

DELLA proteins has been indicated to be more complicate than just destabilization 

(Itoh et al., 2005). It was indicated that intrinsic activity of DELLA proteins may be 

regulated posttranslationally via phosphorylation or O-linked GlcNAc (O-GlcNAc) 

(Silverstone et al., 1998; Dill et al., 2001; Itoh et al., 2002; Itoh et al., 2005b; Hussain 

et al., 2005; Hussain et al., 2007).  

Despite all these achievements, the molecular mechanism of GA function in 

regulating many aspects of plant growth and development such as seed germination, 

stem elongation, and flower development is still unclear. Based on what is known 

about GA signaling, it should be interesting to identify more new GA signaling 

pathway components that interact with GA receptor (e.g. GID1 or GID1-like) or 
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negative regulators (e.g. DELLA proteins ). DELLA proteins are believed to be a 

putative transcription regulator (Ogawa et al., 2000). However, wild-type DELLA 

proteins have not been shown to interact with chromatin. Therefore, it is important to 

identify DELLA-regulated downstream genes, and to learn if DELLA proteins 

interact with chromatin at specific genes and if this interaction affects the expression 

of these genes. 

 

1.9 Objectives of this study 

GA is an endogenous regulator of floral development. Severe GA-deficient 

mutant, ga1-3 exhibits retarded reproductive growth of floral organs, especially petals 

and stamens (Koornneef and van der Veen, 1980; Fu and Harberd, 2003). Previous 

reports have suggested that GA signaling components, SPY, GAI, SLR1 and SLN1, 

may modulate these processes (Izhaki et al., 2002). However, the mechanism via 

which GA regulates petal and stamen development remained unclear. 

Although Arabidopsis DELLA genes GAI, RGA, RGL2 and RGL1 are all 

expressed in inflorescences, no obvious suppression of ga1-3 mutant floral 

phenotypes was observed in ga1-3 mutants lacking GAI, RGA, RGL1, RGL2, or GAI 

and RGA together (Dill and Sun, 2001; King et al., 2001a; Lee et al., 2002). However, 

based on the fact that transgenic RGL1 loss-of-function line was resistant to PAC-

induced arrestment of floral organ development, it was suggested that RGL1 may play 

a role in regulating floral development (Wen and Chang, 2002). These observations 

highlight the importance of determining systematically the respective roles of various 

DELLA proteins in GA-mediated regulation of Arabidopsis floral development. 

Therefore, one of the purposes in this thesis is to determine if GA regulates floral 

development through different combinations of DELLA proteins in Arabidopsis. 
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DELLA family proteins belong to the GRAS family of putative transcriptional 

regulator (Pysh et al., 1999; Richards et al., 2000; Pharis and King, 1985). However, 

as a group of putative transcription regulators (Pysh et al., 1999; Richards et al., 2000), 

the molecular mechanism of DELLAs repressing plant growth is largely unknown. 

Does it control the transcription of other transcription factors or instead directly affect 

the transcription of the structure proteins? To address this question, one strategy 

would be to identify the components downstream of DELLA proteins. Microarray 

analysis allows the simultaneous detection of thousands of transcripts in a single 

experiment. Thus Affymetrix Arabidopsis GeneChip (ATH1, carrying 22,810 genes) 

will be used to identify the targets of DELLA proteins. 

By comparing the expression profiles of the inflorescence of ga1-3 and ga1-3 

mutants lacking different combination of DELLA proteins (quadruple and penta 

mutants), a subset of genes that possibly act downstream of DELLA protein(s) will be 

identified. Detailed functional studies of these genes will help us to decipher the 

network of GA signaling pathway in controlling flower development, especially 

stamen development. 
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Chapter 2 

General Materials and Methods 

2.1 Plant materials and growth conditions 

Arabidopsis thaliana wild type controls used in this study were Ler, Col-0, 

and Ws-0 ecotypes.  The ga1-3 and Ds insertion lines (DELLA-related mutants) were 

in Landsberg erecta background (Lee et al., 2002; Cheng et al., 2004). T-DNA 

insertion lines for DELLA regulated genes were in Col-0 background. opr3 mutant 

was in Ws-0 background (Stintzi and Browse, 2000). 

For plants grown in soil, seeds were imbibed on water-moistened filter paper 

at 4°C for 7d (to break dormancy). The seeds were planted on Florobella potting 

compost in growth room (16h light/8h darkness photoperiod, 20-23°C). For the ga1-3 

mutant and ga1-3 mutation-containing lines that does not germinate without 

exogenous GA, seeds were imbibed on filter paper wetted with a 10-4 M solution of 

GA3 (Sigma, St. Louis) and planted as described in the above. For anatomical analysis 

of anthers of ga1-3 mutants, seeds were chilled for 7 days without GA application, 

following which the seed coat was manually removed and the seeds were sown on soil. 

 

2.2 Genotyping of mutant plants  

 Mutant plants were identified through PCR-based methods as described in 

section 2.3.2. Primer pairs used for genotyping were listed in Table 2.1, Table 2.2 and 

Table 2.3. Ds (or T-DNA) primer pairs (Table 2.1, Table 2.2) contain one Ds (or T-

DNA) border primer and one gene specific primer. Full length primer pairs (Table 2.1, 

Table 2.2) contain two gene specific primers that spanning the Ds (or T- DNA) 

insertion. Therefore, for homozygous mutant plants, only the DNA band produced by 

the Ds (or T-DNA) primer pairs will be detected. No band will be detected with full 
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length primer pairs because the DNA fragment (Ds or T-DNA) inserted between these 

primers was too long to be amplified by the PCR condition used for genotyping. For 

heterozygous plants, Both Ds (or T-DNA) primer pairs and full length primer pairs 

will generate bands. For WT plants, only the DNA band will be detected with full 

length primer pairs. 

 

Table 2.1. Primers used for genotyping Ds insertion mutants and mutants in  ga1-3 
background 
Mutant 
lines 

Ds insertion primer pairs Full length primer pairs 

CCGGTATATCCCGTTTTCG  AAGCTAGCTCGAAACCCCAAAT  rgl1-1 
5’CCACAGAGCGCGTAGAGGATAAC  
 
 

CCACAGAGCGCGTAGAGGATAAC  

CGGTCGGTACGGGATTTTCC  GCTGGTGAAACGCGTGGGAACA  rgl2-1 
ACGCCGAGGTTGTGATGAGTG  
 

ACGCCGAGGTTGTGATGAGTG  
 
 

CCGGTATATCCCGTTTTCG  AAGAATTTTAAACAAGTGAACG  rga-t2 
GCCGGAGCTATGAGAAAAGTGG  
 

GCCGGAGCTATGAGAAAAGTGG  
 
 

CGGTCGGTACGGGATTTTCC  CCCAACATGAGACAGCCG  gai-t6 
TAGAAGTGGTAGTGGAGTG  
 

TAGAAGTGGTAGTGGAGTG  
 
 

           Primer pairs used to detect ga1-3 mutation      Primer pairs used to detect  WT 
 

TGTATGCACGTTAACGATCAAT  TTTGGCCCAACACACAAACCTT  ga1-3 
TTTCTTCATACCACCTGCGTTC  AAGCCTCGAACTCAAGGTTCTA  

 
Ds insertion primer pairs were used to determine if there is a Ds inserted in the respective genes. 
Full length primer pairs were used to determine if the plants are heterozygous or homozygous for Ds 
insertion.  
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Table 2.2.  Primer pairs for confirming T-DNA insertion in selected DELLA-D and DELLA-U 
candidate genes  
Gene ID T-DNA insertion lines T-DNA insertion primer 

pairs 
Full length primer pairs 

At2g34790 SALK_072827(Intron)  LBa1+3111F 3111F+3776R 
 SALK_069340(Intron)   LBa1+5452R 4682F+5452R 
    
At4g18780 SALK_026812(Intron)   LBa1+2906F 2906F+3723R 
At5g44030 SALK_084627(Exon)  LBa1+3571R 2485F+3571R 
    
At3g62020 SALK_065289(Exon) LBa1+2591F 2591F+3779R 
 SALK_023872(300-UTR5) LBa1+2591F 2591F+3779R 
    
At1g78440 SALK_020228(Exon)   LBa1+3688F 3688F+5094R 
At2g17950 SALK_114398(300-UTR3) LBa1+5316R 4489F+5316R 
At1g09610 SALK_050883(Exon LBa1+3244F 3244F+4097R 
    
At3g18660 SALK_063763(Exon)   LBa1+4645F 4645F+5630R 
 SALK_046841(Exon) LBa1+3397F 3397F+4331R 
    
At3g27810 SALK_003625(300-UTR5)   LBa1+3273R 2492F+3273R 
 SALK_042711(Intron)   LBa1+5355R 4334F+5577R 
 SALK_039465(300-UTR3) LBa1+6471R 5326F+6471R 
 Gabi-Kat (N311167) (intron) 08409+5355R 4334F+5577R 
    
At5g40350 SALK_065218(Intron)   LBa1+4975R 4566F+4975R 
 SALK_017221(Intron) LBa1+4975R 4566F+4975R 
    
At4g34990 SALK_132874(Exon) LBa1+3477F 3477F+4449R 
    
At1g17950 SALK_118938(Intron)  LBa1+4318R 3697F+4318R 
 SALK_138624(Exon)   LBa1+3977F 3977F+4679R 
    
At3g01530 SALK_065776(Exon) LBa1+3411F 3411F+4511R 
At2g38080 SALK_051892(300-UTR5) LBa1+2490R 2092F+2490R 
At4g12730 SALK_001056(Exon)   LBa1+4210R 3267F+4210R 
    
At1g69490 Salk_005010(Exon) LBa1+4596R 3188F +4596R 
 Salk_049717(UTR3) LBa1+3188F 3188F +4596R 
    
At3g04070 Salk_066615(UTR5) LBa1+3543R 2868F+3543R 
At2g43620 Salk_056680(intron) LBa1+3894R 3245F+3894R 
At1g21520 Salk_045038(UTR3) LBa1+2550F 2550F+3501R 
At5g65040 Salk_106042(UTR5) LBa1+2793F 2793F+3321R 
T-DNA insertion primer pairs were used to determine if there is T-DNA inserted in the respective 
genes. Full length primer pairs were used to determine if the plants are heterozygous or homozygous 
for T-DNA insertion. Primer sequences were listed in Table 2.3. 
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Table 2.3.  Primers for confirming T-DNA insertion in selected DELLA-D and DELLA-U candidate 
genes  
LBa1 TGGTTCACGTAGTGGGCCATCG  5316R TTGAGATTGATTTTGACCGTTCG 
08409 ATATTGACCATCATACTCATTGC 5326F CCAGGAAGAACGGACAACGAGA 
2092F CGACCTACCACCTAAAACGAC 5355R TTGATATGATGTCGGTGTAGGAGA 
2485F GCCAGCTTCGACGATGAGGTA 5452R TGAAATAATGACGCGAATGAAGAG 
2490R TCCACTACGAAGCCACAAACA 5577R CGCGGCCGAATAGTTACCATAGT 
2492F TTAGAAACAAACAAAACGGACCAC 5630R TGAATCTCGGGTCCTTTACTCTTA 
2550F CCTTGCACCGATGGGAGAGT 6471R GTTTAAGATCCGCCGCATACA 
2591F AAGTGGGCCTATTTGTTTATCTAC   
2793F AGGGGCAAAAATGGGGGTAT   
2868F GATCTTTTCCTCCGGTCTACTTTA   
2906F CTCCAAATTTAGCTTACCCATCAG   
3111F TCCTCCACGCTACAACAAGA   
3188F TGTCTAAACCATGCCCTGTCTCC   
3244F CAAAGAGATAGCGGTAAGCAGTAG   
3245F GGTGGTGCAGGCGGTCTAAA   
3267F GGCCGTCGATAACTCAGCAATGT   
3273R GTCCATGGTCCTTTTCTCACTTCT   
3321R CACGATGATGGCAGAGACTTC   
3397F TTATCATCATTCTCTTTCCCACTC   
3411F CATGGTGAAGGTCTTTGGAACT   
3477F CTTATTGCGACGAGATTACCA   
3501R ACCATAATTAATCACAACGCATCA   
3543R TACCGCAATCAATTTATCTGTTCC   
3571R GATCACGATGCGGTAAGGACTG   
3688F TCTGACCAAAACACGGACTCG   
3697F GGCAACCACAACCGCTATC   
3723R TTGCCATATTCATCATTCAGTTCT   
3776R TTCCCCAAATGGCAATAGACA   
3779R AACGACGCGATTTTTAGACTT   
3894R AGGCAACTTGGGGGCTACGA   
3977F AATGTGCAAGTAAATGAGTAATGG   
4097R TATATGTTCTGCTCTTTTCTCCTG   
4210R CGGCGCCGTTTTTATCGTCA   
4318R ATCTTCGAATCCGTGTTTACTTGA   
4331R CTGAGTGAAGAATTGTTGCGTAAG   
4334F ATCGTGCCTATTTCTCCTCCAT   
4449R ACGAAATATGCCAAAAGGTT   
4489F GGTGGAGGATGGGCAAACA   
4511R TAAACAATAACAACGTCCCTTCCT   
4566F TGCCGATTCTACCACAAC   
4596R AAATTAGCAAAAAGGGTCCACATA   
4645F AGCTACAGGAAACAATGGAACTCT   
4679R CCGAATGGTGATGAGTCTGA   
4682F TACCCAAATGCAAAAACCTAATA   
4975R CTACATCTACGTCGAGCAATAA   
5094R CCATTGGAACCGGTTTAGGATT   
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2.3 DNA handling 

2.3.1 Plasmid DNA isolation 

Plasmid DNA was isolated using QIAprep Spin Miniprep Kit (QIAgen, 

Germany) according to the manufacturer’s recommendations. The bacterial cells were 

first centrifuged and the pellet was resuspended in Cell Resuspension Solution. The 

Cell Lysis Solution was then added to the suspension, after which the solution was 

neutralised by addition of Neutralisation Solution. The lysate was centrifuged to 

remove cell debris. The clear supernatnant was then added to the QIAprep spin 

column for binding of the plasmid DNA to the resin. After the supernatant had passed 

through the column by centrifugation, the column was washed with Buffer PE to 

remove the debris. The Buffer PE was removed completely from the resin by brief 

centrifugation. The plasmid DNA was then eluted from the column with 100 μl of 

ddH2O. 

 

2.3.2 Polymerase chain reaction (PCR) 

 Reaction was set up in 50 µl total volume in a 0.2 ml PCR tube as follow: 1X 

reaction buffer, 0.2 mM of dNTPs, 0.4 µM of primers, 0.1 µg template DNA and 1.25 

units of Taq (Roche, Germany) or Pfu DNA polymerase (Stratagene). Thermal 

cycling was carried out in a Programmable Thermal Controller (PTC-100, MJ 

Research) using the following program: initial denaturation of 94oC for 3 minutes, 

followed by 35 cycles of 94oC for 30 seconds, 45-55oC (depending on the annealing 

temperature for each primer pairs) for 30 seconds, 72oC (Taq) or 68oC (Pfu) for 30 

seconds to 10 minutes (depending on the length of amplified DNA fragments), and 

final extension of 72oC (Taq) or 68oC (Pfu) for 5 minutes. PCR products were 

separated by electrophoresis on agarose gels and purified as described in section 2.3.3. 
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2.3.3 Purification of DNA fragment from agarose gels 

DNA from agarose gels were purified using Qiagen Gel Extraction Kit as 

described by the manufacturer (QIAgen, Valencia, CA, USA). The DNA fragment 

was excised from the agarose gel under long wavelength UV light and the gel slice 

was weighed, mixed with Buffer QG (3 gel volumes of Buffer QG to 1 volume of gel, 

100 mg ~ 100 µl) and incubated at 50oC until the gel slice dissolved completely. 10 µl 

of 3 M sodium acetate (pH5.0) was added to the mixture if the color of the mixture 

was not as yellow as Buffer QG. The mixture was mixed with 1 gel volume of 

isopropanol, applied to the QIAquick column and centrifuged. The column was 

washed with Buffer PE and DNA was eluted from the column with 50 µl Buffer EB. 

 

2.3.4 Preparation of plasmid vectors  

2.3.4.1  Blunt-ending of DNA templates with T4 DNA polymerase 

Blunting ends of restricted plasmid DNA for cloning was performed using T4 

DNA polymerase according to the manufacturer’s recommendations (New England 

Biolabs). Restricted plasmid DNA was dissolved in 1X restriction enzyme reaction 

NEBuffer supplemented with 100 µm dNTPs. T4 DNA polymerase (1 unit T4 DNA 

polymerase per microgram DNA) was added and the reaction mixture was incubated 

for 15 minutes at 12oC. The reaction was stopped by adding EDTA to a final 

concentration of 10 mM and heating to 75oC for 20 minutes.  

 

2.3.4.2  Dephosphorylation of restricted plasmid DNA by shrimp alkaline 

phosphatase (SAP) 
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The restricted plasmid DNA was dephosphorylated using SAP (Roche, 

Germany). Digested DNA was mixed with SAP (0.5 U/µg DNA) and incubated at 

37oC for 1 hour in the presence of 1X SAP buffer. The dephosphorylated DNA was 

purified using QIAgen Gel Extraction Kit as described in section 2.3.3. 

 

2.3.5 Ligation of DNA inserts into plasmid vectors 

50 ng of linearized vector DNA was mixed with insert DNA at a molar ratio of 

(1:3) (vector: insert). The ligation was carried out with the Rapid DNA Ligation Kit 

(Roche, Germany) at room temperature for 5-10 minutes. 

 

2.3.6 DNA sequencing 

Fluorescence-based cycle sequencing reactions were performed using BigDye® 

Terminator v 3.1 Cycle Sequencing Kit as described in manufacturer’s protocol 

(Applied Biosystems, Perkin-Elmer, USA). The dye-labeled DNA samples were 

purified and run on ABI PRISM® 3700 DNA Analyzer by the IMCB Sequencing Facility.  

 
2.3.7 Preparation of E.coli competent cells for heat-shock transformation 

E.coli DH5α competent cells were prepared as described (Inoue et al., 1990). 

Single colony of  DH5α from a freshly streaked plate was inoculated into 250 ml of 

LB medium (2% Bacto trytone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgSO4) in a 1-liter flask, and grown with vigorous shaking (200-250 rpm) at 

18˚C until  OD600 reached 0.6. The culture was placed on ice for 10 minutes to cool 

and centrifuged at 2500g for 10 minutes at 4˚C. The pellet was resuspended in 80 ml 

of ice-cold TB (10 mM Pipes, 55 mM MnCl2, 15 mM CaCl2, 250 mM KCl) and 

incubated on ice for 10 minutes, and spun down as above. The cell pellet was gently 

resuspended in 20 ml of TB, and DMSO was added with gentle swirling to a final 
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concentration of 7%. After incubating on ice for 10 minutes, the cell suspension was 

dispensed into 1.5 ml microfuge tubes and immediately immersed in liquid nitrogen. 

The frozen competent cells were stored at -80˚C. 

 

2.3.8 Transformation of E.coli cells using heat-shock method 

E. coli DH5α competent cells (100 μl) were mixed with 10 μl of ligation 

reaction mixture and kept on ice for 30 minutes and subjected to heat shock at 42˚C 

for 90 seconds. After chilling on ice for 2 minutes, 800 μl of LB medium was added 

and the mixture was shaken at 37˚C for 1 hour. 200 μl of bacterial culture was 

streaked on LB plate containing appropriate antibiotics and incubated at 37˚C 

overnight. 

 

2.3.9 Preparation of electro-competent Agrobacterium  

Single colony of Agrobacterium AGL1 strain was inoculated into 5 ml of LB 

medium containing appropriate antibiotics and shaken overnight at 28oC. The culture 

was diluted in 100 ml LB medium and incubated at 28oC for approximately 4 hours to 

an OD600 of 0.5. The culture was spun down at 10,000g for 10 minutes at 4oC. The 

pellet was washed with 40 ml of 1 mM HEPES (pH 7.0), then resuspended with 40 ml 

of 1 mM HEPES (pH 7.0), 10% glycerol. The suspended cells were aliquoted 

(100ul/tube) and immediately immersed in liquid nitrogen. The frozen competent 

cells were stored at -80oC. 

 

2.3.10 Transformation of Agrobacterium cells by electroporation method 

Miniprep plasmid DNA (0.1 µg) was added to 50 µl of frozen competent cells 

and incubated on ice until completely thawed. The mixture was placed in a cold 0.2 
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cm electroporation cuvette (BioRad) and electroporation was performed using a 

BioRad Gene Pulser. The parameters were set at 25 µF, 400 Ώ for a 2.5 kV pulse, 

followed with an 8-9 ms delay. The electroporation mixture was added with 1 ml LB, 

transferred to a sterile culture tube, and shaken at 28oC for 2 hours to allow cell 

recovery and antibiotic resistance gene expression. 20 µl of the bacterial culture was 

spread on a LB plate containing appropriate antibiotics and grown at 28oC for 2 days. 

 

2.4 Generation of binary vectors  

For the pMYB21::GUS construct, a 2570bp (112bp upstream of AtMYB21 start 

codon ATG) fragment was PCR amplified from Col-0 genomic DNA using primers 

323F (PstI) and 2890R. For the pMYB24::GUS construct, a 3098bp (68bp upstream of 

AtMYB24 start codon ATG) fragement was PCR amplified from Col-0 genomic DNA 

using primers 18F (PstI) and 2934R. PCR amplifications of promoter regions were 

performed using PfuTurbo DNA polymerase (Stratagene).  The amplified DNAs were 

digested with PstI and then cloned into PstI/NcoI-cleaved pCambia 1301 vector. Their 

sequences were confirmed by sequencing. Primer pairs used for cloning were listed in 

Table 2.4. These promoter-GUS fusion constructs were then introduced into 

Arabidopsis thaliana ecotype Col-0 plants as described in section 2.5. More than three 

independent lines were examined for each construct at various stages of development.  

Table 2. 4. Primers used for amplification of promoters of AtMYB21 and AtMYB24 
Constructs Primers  

 
pMYB21::GUS 
 

323F (Pst I): 5’ TTGACATTCTGCAGTAGGGAAGTGC 3’ 
2890R: 5’ GTAGAGAAAGATGTGGGTGAGTTGAT 3’ 
 

pMYB24::GUS  18F (Pst I): 5’ TTCTAGGCTGCAGCTAAACGACTTC 3’ 
2934R: 5’ GTAATAGAAAGGGAGAGTTGTGAAAG 3’ 

 

2.5 Transformation of Arabidopsis by Agrobacterium vacuum-infiltration 

transformation method 
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Transformation of Arabidopsis plants by Agrobactrium was performed by the 

floral dip method as described previously (Clough and Bent, 1998). Primary 

inflorescences of Arabidopsis plants were clipped at their bases and secondary 

inflorescences were allowed to grow until they started to show open flowers. 

Agrobacterium AGL1 cells carrying appropriate Ti plasmid were grown in LB 

medium with appropriate antibiotics until OD600 reached 2. The bacteria were spun 

down at 4,000g for 10 minutes. The pellet was resuspended in ½ MS liquid medium 

(pH5.7) with 5% sucrose, 44 nM 6-benzyl aminopurine and 0.005% silwet L-77. The 

final concentration of bacterial was an OD600 of 0.8. The plants were submerged in the 

Agrobacterium suspension and vacuum was drawn until solution began to bubble 

vigorously. The vacuum was then quickly released. Plants were covered with plastic 

cover overnight and cultivated in the growth room until seeds matured and dried. 

 

2.6 Plant genomic DNA isolation  

2.6.1 Plant genomic DNA for genotyping 

One Arabidopsis leaf was cut and briefly grounded by plastic pestle in 1.5 ml 

centrifuge tube.  200 μl of DNA extraction buffer (200 mM Tris pH 7.5, 250 mM 

NaCl, 25 mM EDTA pH 8.0, and 0.5% SDS) was added and mixed well. The plant 

tissue debris was removed by centrifuging at 14,000 rpm for 5 minutes at room 

temperature. The supernatant was transferred to a new tube and mixed with equal 

volume of isopropanol. The DNA was precipitated by centrifuging at 14,000 rpm for 

10 minutes. The pellet was washed with 70% ethanol and air-dried.  50 μl of ddH2O 

was used to dissolve the pellet. Typically 1-2 μl was used for genotyping by PCR. 

 

2.6.2 Plant genomic DNA for promoter cloning or southern blots 
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Plant genomic DNA (for promoter cloning or southern blots) was extracted 

using Plant DNAZOL® Reagent (Invitrogen) following the manufacturer’s 

recommendation. Arabidopsis leaves or flowers (0.1 g) were pulverized in liquid 

nitrogen using a mortar and pestle. The frozen powder was transferred to a 

microcentrifuge tube containing Plant DNAZOL (use 0.3 ml Plant DNAZOL for 0.1 g 

of plant tissue). The solution was mixed thoroughly by gentle inversion a few times 

and incubated at 25°C with shaking for 5 minutes. 0.3 ml chloroform was then added. 

The solution was mixed vigorously and further incubated at 25°C with shaking for 

another 5 minutes. The extracts were centrifuged at 12,000g for 10 minutes and the 

resulting supernatant was transferred to a new tube. DNA was precipitated by 

centrifugation after mixing of supernatant with 0.225 ml of 100% ethanol. The DNA 

pellet was vortexed with 0.3 ml Plant DNAZOL-ethanol wash solution (1 volume of 

Plant DNAZOL with 0.75 volume of 100% ethanol). The samples were incubated for 

5 minutes at room temperature and centrifuged at 5,000g for 4 minutes to remove the 

DNAZOL wash solution. The DNA pellet was washed by vigorous mixing with 0.3 

ml of 75% ethanol, followed by centrifugation at 5,000g for 4 minutes. The ethanol 

wash was removed by decanting. The DNA pellet was air dried and dissolved in 70 µl 

TE buffer (pH 8.0). 

 

2.7 RNA isolation  

Total RNA was isolated from plant tissues using Tri Reagent (Molecular 

Research Center, Cincinnati, OH) following the manufacturer’s instructions. Briefly, 

0.1 g of inflorescences was grounded into powder with liquid nitrogen. The powder 

was transferred to a 2 ml microcentrifuge tube containing 1 ml of Tri Reagent 

followed by 20 seconds of vortexing. 200 μl of chloroform was added and the mixture 
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was homogenized by 20 seconds of vortexing. After centrifuging at 12000g for 15 

minutes at 4oC, the aqueous phase was transferred to a new tube and mixed with 500 

μl of isopropanol and incubated at room temperature for 10 minutes. The RNA pellets 

were obtained by centrifuging at 12000g for 8 minutes at 4˚C. The RNA pellet was 

washed with 70% ethanol, air dried, and dissolved in RNase-free H2O. 

 

2.8 Reverse transcription-polymerase chain reaction (RT-PCR) 

Total RNA for RT-PCR was extracted as described in section 2.7. The residue 

genomic DNA in the total RNA was removed via treatment with RNase-free DNase I 

(Roche, Germany) and the total RNA further purified with the RNeasy Mini kit 

(QIAgen, Valencia, CA, USA). 

SuperScriptTMII RNase H- Reverse Transcriptase (Invitrogen) was used to 

synthesize first strand cDNA. 20 μl reactions were set up in 0.2 ml PCR tubes as 

follow: 4 μg of total RNA, 1 μl of 200 ng/µl random hexamer, and 1 μl of 10 mM 

dNTP were mixed and topped up to 12 µl with ddH2O. The mixture was heated to 

65˚C for 5 minutes and quickly chilled on ice. 4 μl of 5x reaction buffer, 2 μl of 0.1 M 

DTT and 1 μl of RNase Inhibitor (Promega) were added to the reaction. The contents 

were mixed gently and incubated at 42˚C for 2 minutes. 1 μl (200U) of 

SuperScriptTMII was added and the reaction was incubated for 50 minutes at 42˚C. 

The mixture was heated to 70˚C for 20 minutes to inactivate the enzymes. This first 

strand cDNA was used as template for PCR in the gene expression studies. 

Using first strand cDNA as template, gene expression was examined by PCR 

in different genotypes and different floral organs. The primers used for expression 

studies of DELLA regulated genes, GA and JA responsive and biosynthesis genes 

were listed in Table 2.5 and Table 2.6. 
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2.9 Southern blot analysis  

PCR products were separated on 1.2% agarose gel by electrophoresis in 1X 

TAE buffer. The DNA was transferred overnight onto Hybond-N+ nylon membrane 

using 0.4 N NaOH. The membrane was cross-linked, pre-hybridized at 50°C for 2 h in 

DIGTM Easy Hybridization buffer (Roche, Germany), and hybridized overnight at 

50°C in the same buffer containing 25 ng/ml of DIG-labeled gene specific DNA 

probe prepared as described in Section 2.11.1. The membrane was washed in 2X 

SSC/0.1% SDS twice, each for 5 minutes at room temperature, followed by 0.5X 

SSC/0.1% SDS twice, each for 15 minutes at 68°C, and 0.1X SSC/0.1% SDS for 15 

minutes at 68°C. Chemiluminescent detection of the probe was performed by 

incubating the membrane in 1 X Blocking Reagent (Roche, Germany) for 30 minutes 

at room temperature with shaking. The membrane was then incubated for another 30 

minutes in the anti-DIG-alkaline phosphatase Fab fragments with a 20,000 times 

dilution in blocking reagent. The membrane was washed twice at room temperature in 

washing buffer, each for 15 minutes. The membrane was then rinsed in 1 x detection 

buffer for 2 minutes. Ready-to-use CDP-star solution was layered onto the membrane 

in a plastic bag. The membrane was incubated for 5 minutes at room temperature and 

the CDP-star solution drained from the bag. HyperfilmTM MP (Amersham 

Biosciences) was used for autoradiography. All the buffers and reagents were from 

Roche, Germany. 
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Table 2.5. Primers used in RT-PCR confirmation of microarray 
expression data 
Gene ID Primer Pairs 
At 5g65040 5’ GCCGTCCGATCATCTAACCTT 3’ 

5’ AACAAATCACACGAACAAATCAAA 3’ 
 

At1g02340 5’ GCGAAGGAGGATTTATTGGTTGTT 3’ 
5’ ATGTCGCCGGAAGAAAATAAGGAT 3’ 
 

At1g02850   5' AAGGCGCATTTGATTTCGTT 3' 
5' GATGGTGCAGTGTTCCCTTGAG 3' 
 

At1g02930 5’ CTCTCAACTGGCAAGGACAT 3’ 
5’ CGGCAGCAGAAAAACAGAGTAAA 3’ 
 

At1g05560   5' GTTTTAAGTCACCGAGCCGTAGG 3' 
5' TAGCAAATAACACTCCGCCACTTC 3' 
 

At1g09610 5’ TACCACGTTCCCTCGCACAAG 3’ 
5’ GATCCCAACCGGTCTCATAAAT 3’ 
 

At1g09970 5’ GATCACTCCCGACGCTCAA 3’ 
5’ GACCGCAACTTCTTTACCATCA 3’ 
 

At1g17950 5’ GTGGCTGCGACTGGGATGATT 3’ 
5’ TTCTCGTTAGGAATTCGGTTG  3’ 
 

At1g21520 5’ ACACAAACACATACATTCTTACTT 3’ 
5’ TCATTCATCATCTCCCTTTCTCGT 3’ 
 

At1g27030   5' TCTTTCTAGTACTTTGGGGTCTTT 3' 
5' CGTGGTTGGCGTTATCG 3' 
 

At1g50420 5’ ACTGCGCTTTACGGTTTC 3’ 
5’ CTCGCAGGATATGATGTTCTT 3’ 
 

At1g52690 5’ AGCCCAGTCAGCCCAACAA 3’ 
5’ CGAACGCAACAAACACTAATCAAA 3’ 
 

At1g53160   5' ACGGATGAAGAAGAGGAAGTAGG 3' 
5' TTTGGCATAGGAAGTGTCATCTCT 3' 
 

At1g56120 5’ AGAGTGGCAGGGACGATTGGGTAT 3’ 
5’ TTCGATTCGCCGTCTCTAAGTGG 3’ 
 

At1g69490 5' GAAAGCAACCGGTACAGACAAAG 3' 
5' GAACCAACTAGACTCCGAATCAGG 3' 
 

At1g70690 5’ GCGGCGACCTAGACCCAACC 3’ 
5’ GCGGCTAACATTTCGACAAGTAA 3’ 
 

At1g74670 5’ TGGCCAAACTCATAACTTCTT 3’ 
5’ TAAATGATACCTGCAAAAACACTA 3’ 
 

At1g75820   5' CCGGCGGTATTCCAGATTC 3' 
5' AGCTCCGCCTTTACCGATTATGTT 3' 
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Table 2.5. Continued 
Gene ID Primer Pairs 
At1g75880 5’ CGTTCCGGCGGTAATAGTG 3’ 

5’ GGGGGAGAGTAAAGAAGTCGTT 3’ 
 

At1g75900 5’ CAGCGACGACATAGCCAATACATA 3’ 
5’ AGACACGTCGGGACATACAGAAGA 3’ 
 

At1g76240 5’ AGCCGAAGACAAAACACCAACACT 3’ 
5’ AACGCAAATAGACAGGAAACAAGA 3’ 
 

At1g78440 5’ CGGTTCGGGTCCACTATTTC 3’ 
5’ ACCTCCCATTTGTCATCACCTG 3’ 
 

At2g04240 5’ TCTCGCCGTCTTCATCCTC 3’ 
5’ TCCCCGGTTTAAATCTGCTC 3’ 
 

At2g17950 5’ ACCATCTTCATCACCCAACTCG 3’ 
5’ ATAAGCATCGCCACCACATTCT 3’ 
 

At2g34790 5' TTCACCGGCCAGTAAAACCACCAA 3' 
5’ TTTCCTCGCTCACTTTCCCATCTT 3’ 
 

At2g34810 5’ TTCAAGCACCAATCTCAAAACAGG 3’ 
5’ AGAACCGGAATCCCTTGCTGAG 3’ 
 

At2g34870 5’ AACCGTCGCTCGTCGTCTTACTG 3’ 
5’ ATCGATCGGTCCTTTATTTCTTAG 3’ 
 

At2g38080 5’ CTACAGCGGAGGATCAGTCACGAA 3’ 
5’ ATCCTTAGGCGGCGGCAAAAT 3’ 
 

At2g40610 5’ GTGGCGGGTGCTATGAGATGAAG 3’ 
5’ CCGAACTGCCAATTAGAAGGAG 3’ 
 

At2g42990 5’ ATCGGAGAGCTGCCAAAATCATCA 3’ 
5’ TGTCCTGGCCGCAAAGAAATCC 3’ 
 

At2g43620   5' TACACCGGGAAAAGACTACTACG 3' 
5' GACAACCGATTCAAACAACACA 3' 
 

At2g46220   5' CGCCGTTCGTAGTATCAGAGA 3' 
5' AGTAGGTCGGCTTGGGAGTC 3' 
 

At3g01530 5’ GTGCGGCGAGGGAACATAA 3’ 
5’ TCAGCAATAGAAAAACCAAATAAC 3’ 
 

At3g04070 5' TCTTCTAGGAGCGGTGGTA 3' 
5' CAACTGCGGTAACTTCTGAT 3' 
 

At3g07450 5’ GGTTATGGTCCAGTCAGGTCT 3’ 
5’ TACATGGAAGAAAATTGGCAGAAC 3’ 
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Table 2.5. Continued 
Gene ID Primer Pairs 
At3g12000 5’ TGGTCGGGATCTCAAAACAGG 3’ 

5’ AAGCCCAAGCCGTCACATTCT 3’ 
 

At3g16920 5’ CCGTCGGCTTTTGGGATTAC 3’ 
5’ TGCTTCTTCGGTGGTGACAT 3’ 
 

At3g18660 5’ TTTGGATTGGCGATGAAGATGACG 3’ 
5’ CAAGTTATGGCCGGGAAGTGATGA 3’ 
 

At3g18780 5' TGCTGACCGTATGAGCAAAG  3' 
5' CAGCATCATCACAAGCATCC 3' 
 

At3g20520 5’ TTCCCGGGCTGTACTGACTTG 3’ 
5’ GTACCGCATCGACCACGCTAAT 3’ 
 

At3g22800 5’ TATCGCCGGTTATCTCCCTTTAG 3’ 
5’ ACCGGTTAGTTGTGAGTTCGTGAT 3’ 
 

At3g27810 5’ AAAATCGCCAAACATCTTCC 3’ 
5’ AATTATAACCCCAAACCTCTACAA 3’ 
 

At3g52130 5’ TGAAAGCTATGAGAGTTGGGTTGG 3’ 
5’ GAAGAGCCATGGAGCGGTCAA 3’ 
 

At3g54720   5' CTGGGTCGGCGCAAGGTAAC 3' 
5' CCCGAATTCCGCCACTCCA 3' 
 

At3g54770 5’ GGTGGCCGTCTTCGTAAATC 3’ 
5’ TATGGCCTTCTTCTGTATGCTCTC 3’ 
 

At3g58780 5’ GAAAACCCATAAACCAAAATAGAT 3’ 
5’ CACTGTTTGTTGGCGTACTCATAGA 3’ 
 

At3g60690   5' CAAGCCGAGAGCCATCACAAAA 3' 
5' TCATCTTCTTCCACCATCGTTATT 3' 
 

At3g62020 5’ TCGCACTTCAGGGATAAAA 3’ 
5’ CCGGAGTGGCTGTGAATA 3’ 
 

At3g63010   5' CCTCGACGGCGTTTTCTCCT 3' 
5' ATAAGCCCTCCAATACCAATCTCG 3'  
 

At4g08850 5’ GCGCCGGAATCTTCATCTGTT 3’ 
5’ TCTTCGCTTCATCATCATTCTCCA 3’ 
 

At4g09960 5’ ACTCGTGGCCGTCTCTATGA 3’ 
5’ AGTTATTGCAGCTCGGTTTTTC 3’ 
 

At4g12730 5’ CTCCGGCGAACAAGACTGC 3’ 
5’ CGGCGCCGTTTTTATCGT 3’ 
 

At4g12960 5’ CCGATCAGAAATCACAATACTCGTT 3’ 
5’ AAGCTTCCATTTCCTCTCAG 3’ 
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Table 2.5.Continued 
Gene ID Primer Pairs 
At4g18780 5’ CCGCCTCAAGTTGCTCCAGA 3’ 

5’ ATCACCCAAAAGGCGAAAAATACC 3’ 
 

At4g24000 5’ GAGCCTCCGATGATGGTGGTTA 3’ 
5’ TTTGGCATCATCTCTGTTTCGTTA 3’ 
 

At4g28240   5' TGGCAGCATCGTTCGTAG 3' 
5' TGCATCCAGAAAATCCGACTCAA 3' 
 

At4g34990 5’ GGTTGTTGGCGTTCTCTTCCTA 3’ 
5’ CACGCACTGCACCTATACTTCACT 3’ 
 

At5g08260   5' AAATCGTCGTGTCTCCTCGTCTCC 3' 
5' AGTCCACCGGCATAAGTCTCAACC 3' 
 

At5g12870 5’ AACCCTTCCTTGACCCACATA 3’ 
5’ CTCAAGCCCTAGTACGAAAAGATT 3’ 
 

At5g17420 5’ TTGGGCGCCGGAGAAAGA 3’ 
5’ GAGGACTGTGCCGGCTGAAAAAT 3’ 
 

At5g17540 5’ AATGCGGCGGTTTTATCTTC 3’ 
5’ AGCCGCATCTCCTTGTCCT 3’ 
 

At5g17760   5' CCGTGGCGAGTCTCAGGTTAG 3' 
5' GGCATCGCAGCATCACTCAA 3' 
 

At5g23970 5' CCATCACGGCGCTGCTGTTA 3'                    
5' ACCGGCTTCCCCCATCCA 3' 
 

At5g28030   5' ACTCCCGGTGGTTACATAC 3' 
5' TTGAATCCTACGTTACTACTACTC 3' 
 

At5g33370 5’ AGCGGGTTGGTCGGAGAAGAAGAG 3’ 
5’ TTGTGGGTCGCTAATGAAGTCC 3’ 
 

At5g40350 5’ CCAGAAATACATCATCAAGAGCGG 3’ 
5’ GCCAAAGATCATCGACGCTCC 3’ 
 

At5g43270 5’ TTTTGGGAAGTGGAGAATGCTAA 3’ 
5’ CTCGGTATCGGAAATCTCAGTCTT 3’ 
 

At5g44030 5’ CGGAGGCGACGAACACGA 3’ 
5’ AGAAGACAAACGGCCGGAATAGTA 3’ 
 

At5g44630 5’ AAGCCTGGCCGATTGTTT 3’ 
5’ TTCTCTACTGGCTTCTTCTTTTGT 3’ 
 

At5g59120 5’ AGAATCCGCAGGGCTTTGTGAG 3’ 
5’ GAT GCGATGCCAGTTCCAGTAGCA 3’ 
 

At3g15270 5’ ACGCCGGGGTTACTTGAAA 3’ 
5’ TTGACCGCTAAACCCTCTCC 3’ 

 
 
 
 
 



 57

Table 2.6. Primers used in checking genes in GA and JA 
treatment studies 
Genes primers 
AtMYB21 5’ AAAATCGCCAAACATCTTCC 3’ 

5’ AATTATAACCCCAAACCTCTACAA 3’ 
 

AtMYB24 5’ ATGCAAAATGGGGAAATAGGTG 3’ 
5’ AAGATCATCGACGCTCCAATAGTT 3’ 
 

AtMYB57 5’ GTGCGGCGAGGGAACATAA 3’ 
5’ TCAGCAATAGAAAAACCAAATAAC 3’ 
 

GA2ox1 5’ CGGTTCGGGTCCACTATTTC 3’ 
5’ ACCTCCCATTTGTCATCACCTG 3’ 
 

GA3ox1 5’ GGCCCCAACATCACCTCAACTACT 3’ 
5’ GGACCCCAAAGGAATGCTACAGA 3’ 
 

GA20ox1 5’ AGCCGCTTCTTTGATATGCCTCTC 3’ 
5’ TTGGGGTTGGGACGAATGGA 3’ 
 

GA20ox2 5’ CCGGCAGAGAAAGAACACGAA 3’ 
5’ TACGCCTAAACTTAAGCCCAGAA 3’ 
 

DAD1 5’ GGGCCTACTGGAGCAAATCTAAAC 3’ 
5’ GTCTCCTCCACGCGTCTCTGTAT 3’ 
 

LOX1 5’ GGGCTTGAGGTTTGGTATGCTATT 3’ 
5’ AACGCCTCCAACGCTTCTTTCT 3’ 
 

LOX2 5’ CCCGGCCGTTTATGGTG 3’ 
5’ GTCTATTTGCCGCTATTATGTATG 3’ 
 

AOS 5’ GGCGGGCGGGTCATCAAGT 3’ 
5’ TCGCCGGAAAATCTCAATCACAAA 3’ 
 

AOC1 5’ CACGCCCAAGAAGAAACTCACTC 3’  
5’ GCTGGCTCCACGTCCTTAGA 3’ 
 

AOC2 5’ CTCGGAGATCTCGTACCATTCAC 3’ 
5’ ACTTATAACTCCGCTAGGCTCCAG 3’ 
 

AOC3 5’ CAATGGCTTCTTCTTCTGCTGCTA 3’ 
5’CTTCGAATCTGTCACCGCTCTTTT 3’ 
 

AOC4 5’ TCCCCTTCACAAACAAACTCTACA 3’ 
5’ GGACGGGACACATTACGCTTACG 3’ 
 

OPR3 5’ ACGGCGGCACAAGGGAACTCTAAC 3’ 
5’ GGGAACCATCGGGCAACAAAACTC 3’ 
 

THI2.1 5’ GGGTAAACGCCATTCTCG 3’ 
5’ GCTAAGTCGCATCTGTGTCA 3’ 
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2.10 Northern blot analysis 

For northern analysis, 25 μg total RNA was treated with glyoxal/DMSO 

mixture containing 1.3 M glyoxal, 70% dimethyl sulfoxide (DMSO) and 0.01 M 

NaPO4. RNA was separated on a 1% agarose/NaPO4 gel by electrophoresis, and 

transferred overnight onto a Hybond-N nylon membrane. The membrane was washed 

for 5 minutes with 2xSSC, cross-linked and stained with methylene blue (0.03% w/v 

methylene blue in 0.3 M sodium acetate pH 5.2) to monitor the equal loading. Pre-

hybridization, hybridization and detection were performed as described in section 2.9.  

 

2.11 Probe labeling 

2.11.1 DNA probe labeling 

 The DIG-labeled DNA probes were prepared by PCR amplification using 

DIG-labeled dNTP mix (Roche, Germany). 20 µl reaction mixture was set up in a 0.2 

ml PCR tube as follow: 1x reaction buffer, 0.2mM DIG-labeled dNTP mix, 0.2 mM 

of T7 primer (5’-TAATACGACTCACTATAGG-3’), 0.2 mM of SP6 primer (5’-

ATTTAGGTGACACTATAG-3’), 2 ng of plasmid DNA containing target gene 

fragment cloned in pGEM®-T or pGEM®-T Easy vectors and 1 Units of Taq DNA 

polymerase (Roche, Germany).  

 

2.11.2 RNA probe labeling 

The DIG-labeled RNA probes were prepared by in vitro transcription as 

described in following sections. 

 

2.11.2.1 Template preparation 
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Approximately 10 μg of plasmid containing the target gene fragment cloned in 

pGEM®-T or pGEM®-T Easy vectors were digested with appropriate restriction 

enzymes. The linearized plasmids were purified using phenol: chloroform. Equal 

volume of phenol: chloroform (pH 7.9) was mixed with the linearized plasmids by 

vortexing vigorously. After centrifuging at 10000g for 1 minute at room temperature, 

the aqueous phase was removed and mixed well with 1/10 volume of 3 M sodium 

acetate (pH5.2) and 2.5 volume of 100% ethanol. The mixture was stored at -20˚C for 

3 hours. DNA pellets were obtained by centrifuging at 10000g for 10 minutes at 4˚C. 

After washing with 70% ethanol, the pellets were air dried and dissolved in RNase-

free H2O. 

 

2.11.2.2 In vitro transcription 

The purified linearized plasmid (1 μg) was mixed with 2 μl of 10 x DIG RNA 

labeling mix (Roche, Germany), 2 μl of 10 x transcription buffer, 2 μl of T7 RNA 

polymerase or SP6 RNA polymerase (NEB), 1 μl of RNase Inhibitor (Promega), 

adjusted to a final volume of 20 μl with RNase-free H2O, and incubated for 2 hours at 

37˚C. The reaction was stopped by incubation with 2 μl of RNase-free DNase I 

(Roche) at 37oC for 30 minutes. The reaction mixture was mixed with 100 μl 5 M 

ammonium acetate, 600 μl of 100% ethanol, 1 μl glycogen (20 mg/ml, Roche), 60 μl 

DEPC-H2O and left at -20oC overnight. After centrifuging at 14,000 rpm at 4oC for 

15 minutes, the pellet was washed with 200 μl of 75% ethanol, air-dried and dissolved 

in 50 μl DEPC-H2O. 

 

2.11.2.3 Probe quantification 
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The yield of DIG-labeled RNA probe was estimated by dot blot method using 

control RNA supplied by the manufacturer (Roche, Germany). A series of dilutions of 

both the control RNA and the DIG-labeled RNA probe were prepared, and 1 μl of 

each dilution was applied onto Hybond-N+ nylon membrane. The RNA on the 

membrane was cross-linked. Chemiluminescent detection method was used as 

described in section 2.9. 

 

2.12  Histology and in situ hybridization 

Arabidopsis inflorescences were fixed in fixation solution (4% 

paraformaldehyde containing 0.1% Tween 20 and 0.1% Triton X-100) under vacuum 

for 15 minutes and shaken overnight at 4oC. The tissues were dehydrated in increasing 

concentrations of ethanol (30%, 50%, 70%, 95% and 100%), each for 3 hours. The 

tissues were then infiltrated and embedded according to the protocols for anther 

sectioning or in situ hybridization as below. 

For anther sectioning, the inflorescences were infiltrated and embedded using 

Jung HistoResinTM Plus according to manufacturer’s recommendation (Leica). Briefly, 

the inflorescences were first immersed in a series of ethanol/infiltration solution (75% 

ethanol/25% infiltration solution, 50% ethanol/50% infiltration solution, 25% 

ethanol/75% infiltration solution) for 1 hour each, then soaked in 100% HistoResinTM 

Plus three times for 5 hours each. The samples were embedded in LEICA 

HISTORESIN embedding medium and mounted in LEICA HISTORESIN mounting 

medium. Sections (2.5 µm) were made using a Leica RM 2055 microtome and stained 

with 0.25% Toluidine Blue O (Sigma). 

For in situ hybridization, the inflorescences were immersed in 50% 

ethanol/50% Histo-ClearTM II (National diagnostics, USA) for 1 hour and three times 
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in 100% Histo-ClearTM II for 1 hour each. The inflorescences were transferred to 50% 

Histo-ClearTM II /50% paraplast and incubated at 60oC overnight. The inflorescences 

were then immersed in 100% paraplast for 3 days with changes of fresh paraplast 

once a day. Sections (10 µm) were made using a Leica RM 2055 microtome and 

deposited on poly L-lysine coated slides (Sigma).  

In situ hybridization was performed as described previously (Luo et al., 1996; 

Coen et al., 1990). Each slide was incubated at 50oC overnight with 200 µl of 

hybridization buffer containing DIG labeled RNA probe (800ng/ml), 50% formamide, 

300 mM NaCl, 10 mM Tris (pH7.5), 1 mM EDTA, 1X Denhardt’s solution, 10% 

dextran sulphate, 100µg/ml Herring sperm DNA  and 100 µg/ml tRNA. Slides were 

washed in several changes of 2xSSC, 50% formamide at 50oC, followed by two rinses 

with 0.5 M NaCl, 10mM Tris-HCl (pH 7.5), 1mM EDTA, and treated with 20 µg/ml 

RNAase A in this buffer at 37oC for 30 minutes. The slides were then washed again in 

2xSSC, 50% formamide for 1 hour and several times in 1x PBS buffer (pH 7.0). The 

slides were stored overnight at 4oC in 1x PBS buffer. Immunological detection of the 

hybridized probe was carried out as described by manufacturer (Roche, Germany) 

with some modification. Slides were incubated with gentle agitation for 45 minutes in 

1% blocking reagent diluted in 1X maleic acid (pH 7.5) (Roche, Germany), followed 

by 45 minutes in 1X maleic acid containing 1% bovine serum albumin (Sigma), 0.3% 

Triton X-100 (buffer A). This was followed by 2 hours incubation in diluted anti-

DIG-alkaline phosphatase Fab fragments (1 in 2500) in buffer A followed by four 

washes with buffer A for 20 minutes each. Slides were briefly washed in 100 mM 

Tris-HCl, 100 mM NaCl, 50 mM MgCl2 (pH 9.5) (buffer B), and incubated for 1-2 

days in 0.34 mg/ml nitroblue tetrazolium salt and 0.175 mg/ml 5-bromo-4-chloro-3-

indoyl phosphate toluidinium salt in buffer B. The color reaction was stopped with 10 
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mM Tris, 1 mM EDTA (pH 8), and sections were mounted in CRYSTAL/MOUNTTM 

Aqueous/Dry Mounting Medium (Biomeda, CA). 

 

2.13 Callose staining and chromosome spread analysis 

Callose that surrounded the pollen mother cells (PMCs) was stained with 

aniline blue as describe previously (Regan and Moffatt, 1990). Sections or manually 

dissected microspores on slide were stained with 0.05% aniline blue (Sigma) in 0.067 

M NaPO4 (pH8.5) at room temperature for 5 minutes. The slide was then mounted 

with Vectashield antifade mounting medium containing DAPI (1µg/ml) (Vector Labs, 

UK). 

Chromosome spread analysis was performed as described previously (Ross et 

al., 1996). Arabidopsis inflorescences were immersed in Carnoy’s fixative (ethanol: 

chloroform: glacial acetic acid at 6: 3: 1) at room temperature for 4 hours with 

occasional agitation, followed by 8 hours without agitation and then stored at -20oC. 

The fixed inflorescences were transferred to black watch glass and rinsed in two 

changes of distilled water, followed by two 5-minute changes in citrate buffer (10 mM 

sodium citrate pH4.5), The inflorescences were incubated with enzyme mixture (0.3% 

(W/V) pectolyase (Sigma), 0.3% (W/V) cytohelicase (Sigma), and 0.3% (W/V) 

cellulase (Sigma) in citrate buffer) at 37oC for 1-2 hours in humid chamber. After 

sufficient digestion, buds were transferred to citrate buffer and maintained at 4oC. 

A single enzyme-digested bud was transferred to a clean slide and excess 

buffer was removed. A small drop of 60% acetic acid was added to the bud and the 

whole bud was macerated with a needle under dissecting microscope in a minimum 

amount of liquid, taking care to avoid the material drying out. About 7 µl of 60% 

acetic acid was then added to the slide and the droplet stirred gently on a hotplate 
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(45oC) for 1 minute. The slide was then flooded with freshly made ice-cold Carnoy’s 

ethanol-acetic acid fixative (ethanol: acetic acid at 3: 1). Finally, the slide was titled to 

remove the fixative, shaken to remove any droplets and air dried using a hairdryer. 

Air dried slides were stained by adding a small drop of DAPI (1µg/ml) in 

Vectashield antifade mounting medium and covered with a cover slip. The mounted 

slide was blotted between filter paper sheets to remove excess stain and mountant. 

 

2.14 Histochemical localization of GUS activity 

Histochemical detection of the GUS activity in plant tissues was performed as 

described previously (Jefferson et al., 1987; Topping and Lindsey, 1997). Tissues 

were first vacuum-infiltrated in the staining solution consisting of 2 mM 5-bromo-4-

chloro-3-indolyl-β-glucuronic acid (X-Gluc), 50 mM sodium phosphate (pH 7.0), 10 

mM EDTA, 1 mM potassium ferricyanide and 1 mM potassium ferrocyanide. The 

treated tissues were incubated at 37°C overnight, followed by removal of chlorophyll 

by treatment with increasing concentrations of ethanol (20%, 50%, 70%, 90%, and 

100% ethanol). The dehydrated tissues were examined microscopically.  

 

2.15 Microarray  

Total RNA from inflorescences was extracted as described in Section 2.7. 

cDNA synthesis, cRNA amplification, RNA probe labeling, GeneChip hybridization, 

washing, staining and scanning were performed by the IMCB Affymetrix Microarray 

Facility following the manufacturer’s instructions (Affymetrix,  Santa Clara, 

California, USA). GeneChip (Arabidopsis ATH1) arrays were scanned on an 

Affymetrix probe array scanner. Data were preliminarily analyzed using a statistics 

software MAS5.0 from Affymetrix (https://www.affymetrix.com/analysis/netaffx/index.affx). 
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2.16 Cross-comparing DELLA-dependent transcriptomes and ontology 

analysis  

We obtained the signal intensities of individual genes using the statistical 

algorithms on Affymetrix Microarray Suite Version 5.0 (MAS5). The presence or 

absence of a reliable hybridization signal for each gene was determined by the 

detection call on MAS5.  Genes were classified as GA responsive if the signal 

intensities deviated either positively or negatively two-fold or more between ga1-3 

and WT. Genes for which transcripts were determined to be undetectable (absent or 

marginal present) in ga1-3 samples were eliminated from the list of up-regulated 

genes in ga1-3. Similarly, genes for which transcripts were determined to be 

undetectable (absent or marginal present) in WT samples were eliminated from the 

list of down-regulated genes in ga1-3. When the transcript was undetectable in only 

ga1-3 or WT sample, we gave the background signal intensity to the undetectable 

transcript. If the signal intensity from the other sample was greater by two-fold or 

more relative to the background value, this gene was regarded as being GA-regulated. 

A gene is regarded as DELLA-down, if this gene is down-regulated in ga1-3, the 

signal intensity of ga1-3 was less by two-fold or more relative to the intensity of ga1-

3 gai-t6 rga-t2 rgl1-1 rgl2-1, and the signal intensity did not deviate negatively more 

than two-fold between ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 and WT. Similarly, a gene is 

regarded as DELLA-up, if this gene is up-regulated in ga1-3, the signal intensity of 

ga1-3 was greater by two-fold or more relative to the intensity of ga1-3 gai-t6 rga-t2 

rgl1-1 rgl2-1, and the signal intensity did not deviate positively more than two-fold 

between ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 and WT. In the flower samples, genes that 

were GA-responsive in any four of the six independent replicates were classified as 

GA-responsive. 
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The Gene Ontology (GO) information was retrieved through the NetAffx 

Gene Ontology (GO) Mining Tool, based on Molecular Function and Biological 

Process. Throughout the data sets, genes were identified by the AGI gene code, which 

was linked to Affymetrix Probe Set ID based on the gene annotation information in 

the NetAffx Analysis Center. 
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Chapter 3 

Gibberellin Regulates Arabidopsis Floral Development via Suppression of 

DELLA Protein Functions  

3.1 Introduction 

Although little is known about how GA controls stamen filament elongation 

and anther development, previous reports have suggested that GA signaling 

components may modulate these processes. Recently, DELLA proteins has been 

identified to be crucial for the regulation of stem elongation growth in response to GA 

(Peng et al., 1997; 1999; Silverstone et al., 1998; Ikeda et al., 2001; Boss and Thomas, 

2002; Chandler et al., 2002). The Arabidopsis genome encodes five distinct DELLA 

proteins (GAI, RGA, RGL1, RGL2 and RGL3).  Genetic studies have shown that 

GAI and RGA function overlap in repressing plant stem growth (Dill and Sun, 2001; 

King et al., 2001), while RGL2 controls seed germination (Lee et al., 2002). RGL1 

may play a role both in stem elongation and seed germination (Wen and Chang, 2002). 

Although GAI, RGA, RGL2 and RGL1 are all expressed in inflorescences, no obvious 

suppression ga1-3 floral phenotype was observed in ga1-3 mutants lacking GAI, 

RGA, GAI and RGA, or RGL2 (Dill and Sun, 2001; King et al., 2001; Lee et al., 

2002). However, a transgenic RGL1 loss-of-function line was resistant to the arrest of 

floral organ development induced by paclobutrazol (PAC, an inhibitor of GA 

biosynthesis), suggesting that RGL1 might play a role in regulating floral 

development (Wen and Chang; 2002). These observations underscore the importance 

of determining systematically the respective roles of various DELLA proteins in GA-

mediated regulation of Arabidopsis petal and stamen development. 

In order to understand how GA regulates floral development, we first carried 

out experiments to determine at which stage of the flower and anther development in 
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ga1-3 mutant was arrested. Then we use novel combinations of loss-of-function 

mutations of DELLA proteins to determine if DELLA proteins are repressors of 

stamen filament elongation and microsporogenesis. Results showed that GA is crucial 

both for filament cell elongation and for the developmental progression from 

microspore to mature pollen grain during pollen development. We also found that the 

DELLA proteins, RGA, RGL2 and RGL1, work together to repress stamen and anther 

development in GA deficient plants. 

 

3.2 Materials and methods 

3.2.1 Plant materials  

Arabidopsis thaliana Landsberg erecta was used as the WT control. All 

mutants described in this chapter were derived from Landsberg erecta. Single mutant 

(gai-t6 and ga1-3) and double mutant (ga1-3 gai-t6) were obtained as described 

previously (Peng et al., 1997; King et al., 2001). Three Ds-insertion lines (rgl1-1, 

rgl2-1, and rga-t2) were obtained from a previously described Ds-tagging population 

(Parinov et al., 1999; Sundaresan et al., 1995). Double mutants (ga1-3 rgl2-1, ga1-3 

rgl1-1, and ga1-3 rga-t2) were obtained from crosses between the relevant single 

mutants and ga1-3. The triple mutants (ga1-3 gai-t6 rga-t2 (T1), ga1-3 rgl2-1 rga-t2 

(T2), ga1-3 rgl2-1 gai-t6 (T3), ga1-3 gai-t6 rgl1-1, ga1-3 rga-t2 rgl1-1, and ga1-3 

rgl1-1 rgl2-1), quadruple mutants (Q1: ga1-3 rgl1-1 rgl2-1 gai-t6, Q2: ga1-3 rgl1-1 

rgl2-1 rga-t2, Q3: ga1-3 rgl1-1 gai-t6 rga-t2 and Q4: ga1-3 rgl2-1 gai-t6 rga-t2) and 

penta mutant (ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1) were made via cross-pollination (this 

thesis, Cheng et al., 2004). Primer pairs used for genotype verification were listed in 

Table 2.1. 
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3.2.2 Histology and in situ hybridization 

For scanning electron microscopy (SEM), individual flower buds from fresh 

wild-type or mutant inflorescences were dissected; outer organs (sepals and petals) 

were removed using stainless steel needles. Buds were attached to a mounting plate, 

plunged into liquid nitrogen, and immediately transferred to a specimen chamber and 

scanned at 10 KV (JSM-5310LV, JEOL, Japan). Pollen grains were mounted on 

scanning electron microscopy stubs and coated with gold using previously described 

techniques (Bozzola and Russell, 1999).  

DAPI (4’, 6-diamidino-2-phenylindole) staining of pollen grain nuclei was 

performed as described (Chen and McCormick, 1996) and pollen numbers were 

counted under a microscope (Leica DM RXA2) with 40X or 20X objectives. Color 

photos were taken using a Spot Insight QE digital camera (Diagnostic Instruments).  

Both antisense and sense probes of ATA7 and SDS were synthesized from the 

pMC1577 and pMC2317 plasmids, respectively (Zhao et al., 2002) and in situ 

hybridization was performed as described previously in chapter 2. 

. 

3.3  Results  

3.3.1 Characterization of floral development in ga1-3 plant 

3.3.1.1  GA regulates epidermal cell elongation during filament elongation  

The early flower development of Arabidopsis from initiation until the opening 

of the bud has been divided into 12 stages according to a series of landmark events 

(Smyth et al., 1990). To determine the developmental stage at which ga1-3 flower 

buds become arrested, the relative growth of stamens versus gynoecium in 

inflorescence flower buds (starting with the outmost and ending with the innermost 

dissectible bud) was compared in ga1-3 and wild type via SEM. All floral organs 

were properly initiated in ga1-3 plants, and appeared to develop normally until around 
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floral stage 10 (as defined by Symth et al., 1990, petals level with short stamens at 

stage 10). Comparing wild type and ga1-3 flowers at stage 13, subsequent petal and 

stamen development beyond stage 10 was arrested in ga1-3 (Fig. 3.1A). The ultimate 

stamens and pistils of ga1-3 flower buds were much shorter than the mature stamens 

and pistils of the wild type control (Fig. 3.1C). In addition, GA deficiency had 

stronger effect on stamen filament length than on pistil length: the arrestment of 

stamen development resulted in significantly shorter stamens versus pistils in ga1-3 

(Fig. 3.1C). SEM of stamen filament epidermal cells showed that the arrestment of 

stamen filament growth in ga1-3 was due to reduced cell length rather than to the 

reduction in cell number (Fig. 3.1B, D). These results indicated that GA regulates 

epidermal cell elongation during stamen filament elongation. 

 

3.3.1.2  ga1-3 plants fail to produce tricellular pollen grains  

Arabidopsis anther consists of four lobes with identical cell type architecture. 

Microsporogenesis initiates within the reproductive locule of each lobe. The 

sporogenous cells divide to generate microspore mother cells (MMC). MMC undergo 

meiosis to generate tetrads of free haploid microspores (MSp). The MSp are released 

from tetrads and undergo two rounds of cell devision to form mature tricelluar pollen 

grains (Sanders et al., 1999). 

The surface structure of the mature pollen grains released by wild type plants 

was compared with that of pollen grains manually dissected from ga1-3 anther locules. 

All wild type pollen grains were oval shaped with long indented lines. Very few oval 

shaped pollen grains were observed in ga1-3. Instead, the pollen grains from ga1-3 

plants were spherical in shape (Fig. 3.2A). Wild type and ga1-3 anthers were 

dissected and stained with DAPI. As expected, the mature pollen grains from 
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Fig. 3.1. GA regulates stamen filament length via control of cell elongation. (A) 
SEM of wild-type and ga1-3 mutant flowers at floral stages 10 and 13. (B) SEM of 
wild-type and ga1-3 mutant stamen filament epidermal cells. (C) Comparison of 
filament and pistil lengths between WT and ga1-3 mutant. (D) Comparison of 
filament cell numbers between WT and ga1-3 mutant. 
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Fig. 3.2. ga1-3 plants fail to produce tricellular pollen grains. (A) SEM of WT and 
ga1-3 mutant pollen grain surfaces. (B) DAPI staining showed that the majority of 
pollen grains from ga1-3 plants had either no or only a single condensed nucleus. (C) 
Frequencies of tricellular pollen grains in anther locules as revealed by DAPI staining 
as shown in B. 
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plants were tricelluar, and contained three nuclei (Fig. 3.2B). However, fewer than 

10% of the developing grains examined in ga1-3 pollen sacs were found to be 

bicellular/tricellular (Fig. 3.2B, Fig. 3.2C). In fact, about 48% of ga1-3 pollen grains 

contained only a single nucleus and 46% had no nucleus. Clearly, ga1-3 fails to 

produce mature pollen, and this probably results from an arrest or impairment in 

pollen development prior to or during pollen mitosis in ga1-3 (Fig. 3.2C). 

 

3.3.1.3  Microsporogenesis is arrested before pollen mitosis in ga1-3  

In wild type, floral organs development is a highly programmed and 

coordinated process. Arabidopsis anther development can be divided into 14 stages 

according to major events and morphological markers. Meiosis in MMC occurred 

between stages 5 and 7 within each of the four locules with the generation of free 

tetrads of haploid microspores at stage 7.  Free microspores were released from 

tetrads at anther stage 8 and differentiated into tri-cellular pollen grains between 

stages 9-12. Coordinated with pollen development was the growth and expansion in 

anther size, degeneration of several cell layers such as tapetum, and visible changes in 

specific anther cell types preceded the release of pollen grains during dehiscence 

(Sanders et al., 1999).  

Stage 10 flowers contained anthers corresponding to stage 7-8 of anther 

development (Sanders et al., 1999). Petal and stamen growth arrests at around floral 

stage 10 in ga1-3, suggesting that anther development may arrest at stage 7-8 in this 

mutant. To determine the specific stage of anther development arrestment in ga1-3 

mutant, transverse sections of anthers from whole inflorescences of ga1-3 plants were 

compared with that of wild type. No obvious differences were observed between ga1-

3 and wild type up to anther stage 7 when tetrads are formed as defined by Sanders et 
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al., 1999 (Fig. 3.3). However, after stage 7, it appeared that the microspores in ga1-3 

were appeared clustered and egenerated. Furthermore the anther in ga1-3 failed to 

expand so significantly as that in WT and not dehisce at the later stage (Fig. 3.3, Fig. 

3.12). In addition, the ga1-3 tapetum remained at the vacuole stage (at anther stage 6) 

and then degenerated together with the microspores (Fig. 3.3, Fig. 3.12). As a result, 

the later stages of anther development (stages 9-12) could not be convincingly 

determined in ga1-3, suggesting that anther development may be arrested at stages 7-

8 when microsporogenesis is arrested prior to pollen mitosis. 

To confirm that microsporogenesis was arrested prior to pollen mitosis in ga1-

3, we used the gene expression markers SDS and ATA7. SDS is a marker gene that 

specifically expressed in meiotic cells (Azumi et al., 2002). In situ hybridization 

analysis revealed near-identical expression patterns for SDS in anthers of ga1-3 

mutants and wild type, suggesting that the early stages of microsporogenesis were not 

affected in ga1-3 (Fig. 3.4A). In fact, chromosome spread experiments confirmed that 

meiosis in ga1-3 was successful, resulting in the formation of tetrads (Fig. 3.4B). To 

further confirm this, aniline blue staining was used. Aniline blue stains the callose 

wall by binding specifically to β-1, 3-glucan (Regan and Moffatt, 1990). It was known 

that microspore mother cells were surrounded by a callose wall. After meiosis, the 

callose wall degenerated and the microspores were released at stage 8. Aniline blue 

staining showed that the formation and degeneration of callose wall in anthers of ga1-

3 was normal. However, the tetrads in ga1-3 anthers were not properly separated from 

one another, as is seen in wild type (Fig. 3.4C). ATA7 is an early tapetum-specific 

molecular maker (Rubinelli et al., 1998). As expected, ATA7 was highly expressed in 

wild type between stages 7 and 9 (Fig. 3.4A). The ATA7 signal then gradually 

disappeared during the later stages. ATA7 was also strongly expressed in ga1-3 
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Fig. 3.3. Histological analysis of microsporogenesis in ga1-3. Transverse sections 
of anthers from WT and ga1-3 mutant are displayed in developmental sequence, 
showing the progress in microsporogenesis in ga1-3 and WT. ga1-3 anthers 
developed normally up to the tetrad formation stage (stage7) but after this, they 
diverted from the normal (compared with stages 9 and 12 in wild type; ga1-3 stages 
highlighted with red question mark). Eventually, all ga1-3 pollen sac aborted. 
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Fig. 3.4. Pollen development is arrested in ga1-3. (A) The anther-specific markers 
SDS and ATA7 were used for in situ hybridization analysis to compare anther 
development in ga1-3 and wild type. (B) Chromosome spread experiments confirmed 
that pollen meiosis is successfully completed in ga1-3, resulting in tetrad formation. 
(C) Aniline blue staining showed that tetrads in ga1-3 tend to be clustered and are not 
found in the form of free microspores as is seen in the wild type. Scale bars: 1µm in B; 
50µm in C. 
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anthers (Fig. 3.4A), implying that tapetum initiation may not be affected by GA 

deficiency. However, the ga1-3 tapetum marked by expression of ATA7 was irregular 

in shape. The microspores in ATA7 marked pollen sacs had also become deformed, 

indicating that both tapetum and microspore were severely degenerated at a 

developmental stage prior to the disappearance of the ATA7 signal (Fig. 3.4A). All of 

the above observations strongly suggested that microsporogenesis might be arrested 

prior to mitosis. 

 

3.3.2 Absence of specific DELLA combinations suppresses ga1-3 floral 

phenotype  

3.3.2.1  RGL2 and RGA are the key GA response regulators in repressing 

floral development 

To investigate if DELLA proteins are repressors of floral development, floral 

phenotype of ga1-3 plants lacking various combinations of GAI, RGA, RGL1 and 

RGL2 were studied. Previous studies have shown that absence of GAI or RGL1 had 

little effect on phenotype of ga1-3 (Fig. 3.6). Although absence of RGA partially 

suppressed the stem elongation phenotype of ga1-3 and absence of RGL2 rescued 

seed germination phenotype of ga1-3 (Silverstone et al., 1998; Lee et al., 2002), 

absence of RGA or RGL2 did not restore normal floral development or fertility to 

ga1-3 (Fig. 3.5A, Fig. 3.6).  

ga1-3 plants lacking all possible pair-wise combinations of RGL1, RGL2, 

GAI or RGA were analyzed. Lacking GAI and RGA completely suppressed the dwarf 

phenotype conferred by ga1-3 (Fig. 3.5B) (Dill and Sun, 2001; King et al., 2001). All 

other combinations caused a phenotype that was indistinguishable from that of ga1-3 

(plants that lack RGL1 and RGL2, or RGL1 and GAI, or RGL2 and GAI) or from 
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Fig. 3.5. RGA and RGL2 are key GA-response regulators of floral development. 
(A,B) Comparison of growth of ga1-3 plants lacking single (A) or pairs (B) of 
DELLA proteins at 48 days. (C, D) Wild type plants were compared with ga1-3 plants 
containing loss-of-function mutations causing lack of various combinations of RGL1, 
RGL2, GAI or RGA at 22 days (C) or 48 days (D). (E) Plant height of various 
genotypes at 28 days old under LD growth condition. Results are presented as mean 
± standards error (n=30). Presence of wild-type gene is indicated by + and presence 
of loss-of function mutation is indicated by. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 



 79

 

 
 
 
 
Fig. 3.6. RGA and RGL2 are key regulators to repress the stamen and petal 
development. Comparison of flower development in different genotypes (T1: ga1-3 
gai-t6 rga-t2; T2-a: ga1-3 rgl2-1 rga-t2 (~50d); T2-b: early developed sterile flowers 
of T2-a (~40d); T3: ga1-3 rgl2-1 gai-t6). 
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ga1-3 plants lacking RGA (plants lacking RGL1 and RGA, or RGL2 and RGA) 

(Fig.3.5B). Thus, combination of GAI and RGA played the dominant role in 

controlling stem growth. Absence of RGA partially suppressed the stem phenotype of 

ga1-3. However, absence of RGL1 and RGL2 did not enhance this suppression, 

suggesting that RGL1 and RGL2 have relatively minor roles in the regulation of stem 

elongation (Fig. 3.5B). 

In most cases, the pair-wise DELLA absence combinations failed to confer 

normal flower development on ga1-3. All of these lines produced flowers buds, but 

the buds failed to open and exhibited the arrested petal and stamen growth 

characteristic of ga1-3 (Fig. 3.6, Fig. 3.7A). However, some flower opening was 

observed in the late developed flowers of two of the pair-wise DELLA absence 

combination lines. Although flowers of 40-day old ga1-3 plants lacking RGL2 and 

RGA were sterile, at approximately 50 days and later, these plants produced flowers 

that opened and were able to set seeds (Fig. 3.6, Fig. 3.7B). In addition, the late 

developed flowers of ga1-3 plants lacking GAI and RGA sometimes opened, but 

these flowers were almost always sterile (Fig. 3.5B; Fig. 3.6; Fig. 3.7A). 

Transverse section analysis of anthers from ga1-3 plants lacking RGA or 

RGL2 showed that RGA or RGL2 alone could partially rescue the anther 

development of ga1-3 to anther stage 11 (anther development of ga1-3 was arrested at 

anther stage 7-8) (Fig 3.8A). Although anthers from early developed flowers of ga1-3 

plants lacking both RGL2 and RGA were indistinguishable from that of ga1-3 plants 

lacking either RGL2, or RGA, or RGA and GAI together, anthers from the late 

developed flowers of ga1-3 plants lacking both  RGA and RGL2 were normal (Fig. 

3.8A). In situ hybridization analysis using ATA7 marker showed that the tapetums 
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Fig. 3.7. RGL1, RGL2 and RGA repress flower opening, petal and stamen 
development in ga1-3 plants. (A) Comparison of the flowers of 30-day-old plants of 
genotypes. (B) ga1-3 plants lacking RGL2 and RGA initially produced sterile non-
opening flowers, then began to produce fertile open flowers. (C) Comparison of seed 
set of various genotypes.(Q1: ga1-3 rgl1-1 rgl2-1 gai-t6; Q2: ga1-3 rgl1-1 rgl2-1 rga-
t2; Q3: ga1-3 rgl1-1 gai-t6 rga-t2; Q4: ga1-3 rgl2-1 gai-t6 rga-t2; penta: ga1-3 rgl1-
1rgl2-1 gai-t6 rga-t2; T1: ga1-3 gai-t6 rga-t2; T2: ga1-3 rgl2-1 rga-t2 ). 
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Fig. 3.8. Microsporogenesis in double and triple mutants. (A) Transverse sections 
of anthers are displayed according to developmental stages, showing the progress of 
microsporogenesis in ga1-3 plants lacking RGL2 or RGA or GAI and RGA or RGL2 
and RGA. (B) SEM of pollen surface of ga1-3 plants lacking GAI and RGA or RGL2 
and RGA. (T1: ga1-3 gai-t6 rga-t2,  T2: ga1-3 rgl2-1 rga-t2). 
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of ga1-3 plants lacking RGL1, RGL2 or RGA singularly or pair-wise were 

morphologically normal. This suggested that absence of any of these three DELLAs 

could fully restore normal tapetum development in ga1-3 plants. Therefore, all three 

DELLAs RGL1, RGL2 and RGA might be required to suppress the tapetum 

development in ga1-3 plants (Fig. 3.9). SEM analysis of pollen surface of ga1-3 

plants lacking RGA and RGL2 or RGA and GAI showed that ga1-3 plants lacking 

RGA and RGL2 produced morphologically normal oval-shaped pollen grains. 

However, ga1-3 plants lacking RGA and GAI produced ga1-3 liked, spherical-shaped 

pollen grains (Fig. 3.8B).  

Comparison of stamens and pistils from ga1-3 plants lacking RGL2, GAI or 

RGA and ga1-3 plants lacking RGL2 and GAI, RGL2 and RGA, or GAI and RGA 

indicated that absence of RGL2, GAI or RGA singularly or absence of both RGL2 

and GAI did not restore the growth of stamens and pistils of ga1-3 plants (Fig.3.10A). 

However, absence of GAI and RGA or RGL2 and RGA were able to fully rescue the 

development of pistils in ga1-3 (Fig.3.10A), indicating that RGA is the key repressor 

of pistil elongation, while RGL2 and GAI enhance its function. Although early 

developed flowers of ga1-3 plants lacking RGL2 and RGA were indistinguishable 

from that of ga1-3 plants lacking GAI and RGA, The stamens from late developed 

flowers of ga1-3 plants lacking RGL2 and RGA were morphologically normal (Fig. 

3.6, Fig. 3.7, Fig. 3.10A). These observations suggested that RGL2 and RGA are 

likely the key repressors in GA regulated stamen development. 

 

3.3.2.2  RGL1, RGL2 and RGA act synergistically to control Arabidopsis 

stamen and petal development 
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Fig. 3.9. ATA7 expression in different genotypes. (A) Tapetum marked with 
expression of ATA7 were abnormal in ga1-3 mutant. (B, C) Absence of RGL1, RGL2, 
and RGA singularly (B) or pair-wise (C) was able to restore normal tapetum 
development in ga1-3.  
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Fig. 3.10. RGA and RGL2 are key GA response regulators in stamen filament 
epidermal cell elongation. (A) Comparison of stamen and pistil lengths among 
different genotypes. (B) SEM of filament epidermal cells of WT, ga1-3 and penta 
mutants. (Q1: ga1-3 rgl1-1 rgl2-1 gai-t6; Q2: ga1-3 rgl1-1 rgl2-1 rga-t2; Q3: ga1-3 
rgl1-1 gai-t6 rga-t2; Q4: ga1-3 rgl2-1 gai-t6 rga-t2; penta: ga1-3 rgl1-1 rgl2-1 gai-t6 
rga-t2; T1: ga1-3 gai-t6 rga-t2; T2-a: ga1-3 rgl2-1 rga-t2; T3: ga1-3 rgl2-1 gai-t6; 
T2-b: early developed flowers of T2-a (~40 days). Q4-1&2: early developed flowers 
of Q4 (~30 days).   
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Studies on ga1-3 plants lacking all possible three-way combinations of RGL1, 

RGL2, GAI and RGA showed that absence of RGL1, RGL2 and GAI failed to 

suppress any detectable aspects of ga1-3 phenotype (Fig. 3.5C & D, Fig. 3.7, Fig. 

3.10A, Fig. 3.11). Absence of RGL1, RGL2 and RGA completely restored petal and 

stamen development of ga1-3 and permitted normal seed set (Fig. 3.7; Fig. 3.11), 

despite the fact that this line was semi-dwarf and exhibited a stem elongation only 

slightly taller than that of ga1-3 lacking RGA alone (Fig. 3.5A and D). Although ga1-

3 plants lacking RGL2 and RGA produced fertile flowers only in late maturity, ga1-3 

plants lacking RGL1, RGL2 and RGA produced fertile flowers at the onset of 

flowering, indicating that RGL1 enhances the function of RGL2 and RGA. Thus 

RGL1, RGL2 and RGA act in combination to control flower in response to GA (Fig. 

3.5D, Fig. 3.7A and C, Fig. 3.11).  

ga1-3 plants lacking RGL1, GAI and RGA were taller than ga1-3 plants 

lacking GAI and RGA (Fig. 3.5C, D), suggesting that RGL1 has a significant role in 

the control of stem elongation in the absence of GAI and RGA. However, absence of 

RGL1, GAI and RGA did not restore the normal petal and stamen development of 

ga1-3 and this line were therefore sterile (Fig. 3.7A and C, Fig. 3.11). In fact, the 

young flower buds of this line were indistinguishable from those of ga1-3 lacking 

GAI and RGA (Fig. 3.7A). 

ga1-3 plants lacking RGL2, GAI and RGA were taller at maturity than control 

lines lacking GAI and RGA alone (Fig. 3.5C, D and E). In contrast to what was seen 

with lack of RGL1, lack of RGL2 (ga1-3 plants lacking RGL2, GAI and RGA) 

partially restored petal and stamen development of ga1-3 plants lacking GAI and 

RGA, making this plants partially fertile (Fig. 3.7C, Fig. 3.11). 
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Fig. 3.11. RGA, RGL2 and RGL1 act synergistically to repress the stamen and 
petal development. Comparison of flower development among different genotypes. 
(Q1: ga1-3 rgl1-1 rgl2-1 gai-t6; Q2: ga1-3 rgl1-1 rgl2-1 rga-t2; Q3: ga1-3 rgl1-1gai-
t6 rga-t2; Q4: ga1-3 rgl2-1 gai-t6 rga-t2; penta: ga1-3 rgl1-1 rgl2-1 gai-t6 rga-t2). 
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Transverse section analysis of anthers from quadruple mutants (ga1-3 plants 

lacking three-way combinations of RGL1, RGL2, GAI and RGA) showed that 

absence of RGL1, RGL2 and RGA were able to fully restore anther development of 

ga1-3 (Fig. 3.12). However, absence of RGL2, RGA and GAI partially rescued the 

anther development of late developed flowers with successfully completion of 

microsporogenesis in some of the four locules (Fig. 3.13). Lack of both RGL2 and 

RGA had great effect on microsporogenesis, as ~80% and ~60% of pollen grains were 

found to be tricellular in ga1-3 plants lacking RGL1, RGL2 and RGA and ga1-3 

plants lacking GAI, RGL2 and RGA respectively (Table 3.1, Fig. 3.14). SEM of the 

pollen surface showed that ga1-3 plants lacking RGL1, RGL2 and RGA produced 

WT-like oval-shaped pollen, while ga1-3 plants lacking RGL2, GAI and RGA 

produced WT-like oval-shaped but wrinkled pollen grains (Fig. 3.15).  

 

 

Table 3.1 Frequencies of tricellular pollen grains in anther locules of 
various genotypes as revealed by DAPI staining. 
Genotype 2-3 

nuclei 
(%) 

1 nuclei    
(%) 

No 
nuclei 
(%) 

Pollen 
numbers 
examined 

Number of 
flowers 

WT 97.5 0.7 1.8 2159 6 
ga1-3 6.5 48 45.5 4408 27 
Q1 28.3 7.6 64.1 2768 20 
Q2 78.9 0.3 20.8 2635 12 
Q3 33.9 14.5 51.6 4825 40 
Q4 58 5.2 36.8 2906 24 
penta 88 0.1 11.9 1216 8 
(Q1: ga1-3 rgl1-1 rgl2-1 gai-t6, Q2: ga1-3 rgl1-1 rgl2-1 rga-t2, Q3: ga1-3 
rgl1-1 gai-t6 rga-t2, Q4: ga1-3 rgl2-1 gai-t6 rga-t2, penta: ga1-3 rgl1-1 rgl2-1 
gai-t6 rga-t2) 
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Fig. 3.12. Absence of RGL1, RGL2 and RGA restored normal microsporogenesis 
of ga1-3 mutant. Transverse sections of anthers are displayed according to 
developmental stages, showing the progress of microsporogenesis in various 
genotypes. ga1-3 anthers developed normally up to the tetrad formation stage (stage7) 
but after this, they diverted from the normal (compared with stages 9-12 in wild type; 
ga1-3 stages highlighted with question mark). Eventually, all ga1-3 pollen sac aborted. 
ga1-3 plants lacking RGL1, RGL2 and RGA (Q2), or RGL1, RGL2, GAI and RGA 
(penta) successfully completed microsporogenesis and released mature viable pollen 
(scale bar: 50µm). 
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Fig. 3.13. Histological analysis of microsporogenesis in quadruple and penta 
mutants. Transverse sections of anthers of different quadruple and penta mutant are 
displayed according to developmental stages, showing the progress of 
microsporogenesis (Q1: ga1-3 rgl1-1 rgl2-1 gai-t6; Q2: ga1-3 rgl1-1 rgl2-1 rga-t2; 
Q3: ga1-3 rgl1-1 gai-t6 rga-t2; Q4: ga1-3 rgl2-1 gai-t6 rga-t2; penta: ga1-3 rgl1-1 
rgl2-1 gai-t6 rga-t2). 
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Fig. 3.14. DAPI staining of pollen grains from various genotypes. Pollen grains 
from penta and Q2 are tricellular as shown in WT. Majority of pollen grains from Q4 
are also tricellular. Tricellular pollen grains can also be observed in Q3 with a 
relatively low frequency (Q2: ga1-3 rgl1-1 rgl2-1 rga-t2; Q3a&b: ga1-3 rgl1-1 gai-t6 
rga-t2; Q4: ga1-3 rgl2-1 gai-t6 rga-t2; penta: ga1-3 rgl1-1 rgl2-1 gai-t6 rga-t2). 
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Fig. 3.15. SEM of pollen grains from quadruple and penta mutants. Pollen grains 
from Q2 mutant were almost identical to wild type pollen grains, with oval shaped 
and long indented lines on the surface. Pollen grains from penta and Q4 mutants were 
similar to WT pollen grains but were slightly more wrinkled in appearance. Pollen 
grains from Q1 and Q3 mutants were similar to that of ga1-3 mutant, with round and 
in some cases, short indented lines on the wall surface. (Q1: ga1-3 rgl1-1 rgl2-1 gai-
t6; Q2: ga1-3 rgl1-1 rgl2-1 rga-t2; Q3: ga1-3 rgl1-1 gai-t6 rga-t2; Q4: ga1-3 rgl2-1 
gai-t6 rga-t2; penta: ga1-3 rgl1-1 rgl2-1 gai-t6 rga-t2). 
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Despite ga1-3 plants lacking RGL1, RGL2 and GAI had hugely different stem 

elongation phenotypes from ga1-3 plants lacking RGL1, GAI and RGA (Fig. 3.5 C 

and D), microsporogenesis of these two lines were very similar and were partially 

restored in these two lines. Anther development in ga1-3 plants lacking RGL1, RGL2 

and GAI or RGL1, GAI and RGA were both arrested at around anther stage 11-12 and 

both lines contained ~30% tricellular pollen grains (Fig. 3.13, Table 3.1). However, 

ga1-3 plants lacking RGL1, RGL2 and GAI and ga1-3 plants lacking RGL1, GAI and 

RGA still produced ga1-3 liked spherical-shaped pollen (Fig. 3.14). These results 

further confirmed that RGA and RGL2 play dominant roles in the repression of 

microsporogenesis in Arabidopsis, and GA regulates microsporogenesis by 

overcoming the repressing effects of RGL1, RGA and RGL2. 

Comparison of stamens and pistils of different mutants showed that ga1-3 

plants lacking RGL2, GAI and RGA had much longer stamens than that of ga1-3 

plants lacking GAI and RGA, suggesting RGL2 may play an important role in 

filament elongation (Fig. 3.10A). ga1-3 plants lacking RGL1, GAI and RGA 

produced similar length of filament and pistil as those of ga1-3 plants lacking GAI 

and RGA. However, in ga1-3 plants lacking RGL1, RGL2 and RGA, both stamens 

and pistils are much longer than that of wild type, other three quadruple mutants and 

ga1-3 plants lacking RGL2 and RGA. These data suggested that in the absence of 

RGL2 and RGA, absence of RGL1 might enhance filament and pistil elongation (Fig. 

3.10A). Both the stamen and pistil were arrested in ga1-3 plants lacking RGL1, RGL2 

and GAI demonstrated that RGA play a predominant role in regulating both stamen 

and pistil elongation (Fig. 3.10A). SEM of stamen filament epidermal cells of 

different genotypes indicated that RGL1, RGL2 and RGA repressed stamen filament 
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cell elongation rather than cell division (Fig. 3.11A, Table 3.2). These observations 

suggested that RGL1, RGL2 and RGA may be the key repressors of stamen filament 

cell elongation, and GA regulates filament cell elongation via suppression of these 

DELLA proteins. 

In summary, GA regulation of Arabidopsis petal and stamen elongation is 

mediated via RGL1, RGL2 and RGA, with RGL2 and RGA playing dominant roles. 

 

Table 3. 2. Number of epidermal cells in stamen filament 
 WT  ga1-3 ga1-3 

rgl2-1 
ga1-3 
gga-t2 

ga1-3 
gai-t6 

     T1      T2 T2-1 T3 

Cell 
No. 

16±0.4 14±0.2 13±0.2 15±0.2 14±0.2 15±0.3 16±0.3 17±0.3 14±0.3

   penta     Q1     Q2      Q3    Q4 Q4-1    
Cell 
No 

13±0.2 13±0.2 15±0.4 14±0.3 15±0.3 14±0.2    

Average number of epidermal cells per stamen filament in wild type (28 days), ga1-3 
(38 days) and ga1-3 plants lacking different DELLA combinations.(Q1: ga1-3 rgl1-1 
rgl2-1 gai-t6 (32 days); Q2: ga1-3 rgl1- 1rgl2-1 rga-t2 (34 days); Q3: ga1-3 rgl1-1 gai-
t6 rga-t2(30 days); Q4: ga1-3 rgl2-1 gai-t6 rga-t2 (40 days); penta: ga1-3 rgl1-1 rgl2-1 
gai-t6 rga-t2 (22 days); T1: ga1-3 gai-t6 rga-t2 (40 days); T2: ga1-3 rgl2-1 rga-t2 (50 
days). Cell No for T2-1 and Q4-1 represents early developed flowers from T2 (~ 40 
days) and Q4 (~ 30 days) plants, respectively. 
 

 

3.3.3 Absence of RGA, RGL2, RGL1 and GAI leads to GA-independent plant 

growth 

ga1-3 plants lacking RGL1, RGL2, GAI and RGA were analyzed. This mutant 

line bolted and flowered earlier than WT both in long day and short day (Cheng et al., 

2004). In addition, these mutant plants were taller than wild type control (Fig. 3.5C, D 

and E). The combined absence of RGL1, RGL2, GAI and RGA were able to suppress 

the effects of ga1-3 on petal and stamen development. The flowers of ga1-3 plants 

lacking RGL1, RGL2, GAI and RGA exhibited fully extended stamens and petals 
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(Fig. 3.7A, Fig. 3.11). Anther development proceeded to completion, resulting in 

flowers that were fertile and able to set seeds in both LD and SD (Fig. 3.7C).  

Transverse sectioning showed that, like ga1-3 plants lacking RGL1, RGL2 

and RGA, ga1-3 lacking RGL1, RGL2, GAI and RGA achieved complete 

microsporogenesis (Fig. 3.12, Fig. 3.13). No obvious difference was observed 

between wild type and ga1-3 plants lacking RGL1, RGL2 and RGA. However, we 

often observed that one or two of the four locules of the anthers of ga1-3 plants 

lacking RGL1, RGL2, GAI and RGA were aborted (Fig. 3.12, Fig. 3.13). DAPI 

staining showed that 97.5% of the pollen grains were tri-cellular in WT, while only 

88% of the pollen grains were tri-cellular in ga1-3 plants lacking RGL1, RGL2, GAI 

and RGA (Fig. 3.14, Table 3.1). SEM analysis of pollen grains from ga1-3 plants 

lacking RGL1, RGL2, and RGA showed that their surface structure was 

indistinguishable from that of wild type, with oval-shaped with long indented lines 

(Fig. 3.15). However, surface appearance of pollen grains from ga1-3 plants lacking 

RGL1, RGL2, GAI and RGA were substantially different from those of wild type, 

mostly having a wrinkled appearance, and occasionally with severe deformity (Fig. 

3.15).  

As in ga1-3 plants lacking RGL1, RGL2 and RGA, stamen filament growth in 

ga1-3 plants lacking RGL1, RGL2, GAI and RGA were found to be slightly longer 

than those of the wild type (Fig. 3.10A). SEM of stamen filament epidermal cells 

indicated that restoration of stamen filament length in ga1-3 plants lacking RGL1, 

RGL2, GAI and RGA was due to an increase in cell length elongation as opposed to 

an increase in cell number (Fig. 3.10B, Table 3.2), a difference similar to what was 

previously observed between wild type and ga1-3 stamen filaments. Thus, the 
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elongation of stamen filaments became GA independent when all four DELLA 

proteins were removed. 

    

3.4 Discussions 

DELLA proteins act as repressors of plant growth whose function is opposed 

by GA (Richards et al., 2002). In several cases, GA opposes DELLA function by 

promoting DELLA disappearance (Silverstone et al., 2001; Itoh et al., 2002; Gubler et 

al., 2002; Fu et al., 2002). Recent studies have identified candidate F-box components 

of a SCF E3 ubiquitin ligase responsible for targeting DELLA proteins to the 

proteasome (McGinnis et al., 2003; Sasaki et al., 2003). Therefore GA stimulates GA-

responses by targeting DELLA protein growth repressors for destruction in the 

proteasome (Harberd, 2003). Interestingly, it seems that GA opposes RGL2 function 

both by causing downregulation of RGL2 transcripts and RGL2 protein levels during 

seed germination (Lee et al., 2002; Tyler et al., 2004).  

Previous studies of Arabidopsis DELLA function have involved phenotypic 

comparisons of GA-deficient (ga1-3) plants with GA-deficient plants lacking GAI, 

RGA, RGL1, or RGL2 or a limited range of combinations of these factors (Dill and 

Sun, 2001; King et al., 2001; Lee et al., 2002). In this chapter, we described the 

effects of a more comprehensive set of loss-of-function combinations of DELLA 

proteins, focusing specially on floral development. 

Flower development consists of three distinct phases: floral initiation (in 

which the vegetative meristem is transformed into an inflorescence meristem), floral 

organ initiation and floral organ growth. As shown previously, absence of GAI and 

RGA substantially suppresses the effect of the ga1-3 mutation on flowering time (a 

measure of time of floral initiation) in SD (Dill and Sun, 2001). We have shown that 
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an additional lack of RGL2 or RGL2 and RGL1 together further advances the 

flowering time (in both LD and SD) of ga1-3 plants lacking GAI and RGA (Cheng et 

al., 2004). However, the magnitude of this further advance is relatively small 

compared with that initially caused by lack of both GAI and RGA. Thus, GAI and 

RGA play the predominant role in regulating flowering time in the GA signaling 

floral promotive pathway (Simpson and Dean, 2002), with only small contributions 

from RGL1 and RGL2. 

By contrast, RGL1, RGL2 and RGA play key roles in floral organ 

development. The temporal coordination of the development of individual floral 

organs is essential for floral function. For example, at around the time that the pollen 

matures and is released from the anther, the stamen filaments of flowers of self-

fertilizing species such as Arabidopsis elongate and bring the pollen into contact with 

the stigmatic papillae(Smyth et al., 1990; Bowman, 1994). We showed that the 

relatively short stamen filaments of ga1-3 flowers resulted from an arrest of cell 

elongation rather than division and that the combined lack of RGL1, RGL2, GAI and 

RGA restored stamen filament cell elongation in ga1-3 plants. We also showed that, 

in general, microspores do not proceed to the formation of mature pollen in ga1-3 

anthers, and that microspore development is possibly arrested prior to pollen mitosis 

in ga1-3, and that tapetum development is arrested in ga1-3. Whether the effect of 

ga1-3 on pollen mitosis is a secondary effect of arrested tapetum development, or is 

independent of the effect on tapetum development is at present unclear. In addition, 

we occasionally observed ga1-3 flower buds containing a significant number of 

tricellular pollen grains. Further investigation is needed to find out if this is a true 

reflection of the ga1-3 developmental process or is caused by some other unknown 

environmental factors. Lack of RGL1, RGL2 and RGA or RGL1, RGL2, GAI and 
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RGA proteins restored microsporogenesis in ga1-3 plants. Further genetic analysis 

enabled us to identify RGL2, RGA and RGL1 as the key GA-response regulators 

controlling stamen filament length and microsporogenesis. Interestingly, pollen grains 

from ga1-3 plants lacking GAI, RGL1, RGL2 and RGA, although tricellular and 

viable, are deformed when compared with the wild-type-appearing pollen grains from 

ga1-3 plants lacking RGL1, RGL2 and RGA. Perhaps absence of all four DELLA 

proteins activates the GA pathway to such high levels that pollen wall materials might 

be overproduced, resulting in abnormal pollen morphology. 

Previous developmental genetic analyses showed that the Arabidopsis DELLA 

proteins GAI and RGA act as repressors of stem elongation and that GA exerts its 

promotive effects on stem growth by overcoming the effects of GAI and RGA (Dill 

and Sun, 2001; King et al., 2001). These observations, and additional observations on 

the behavior of DELLA proteins in other species, have been incorporated into a 

general ‘release of restraint’ model, which envisages DELLA proteins as general 

agents of restraint of plant organ growth, and GA as a means of overcoming that 

restraint (Peng et al., 1997; King et al., 2001; Richards et al., 2001; Harberd, 2003). 

However, the initial experiments (which examined the effect of lack of Arabidopsis 

GAI and RGA) showed that although stem elongation could be explained in terms of 

the ‘release of restraint’ model, other aspects of growth and development which were 

known to be GA regulated (in particular seed germination and floral organ growth) 

could not (Dill and Sun, 2001; King et al., 2001). It therefore remained possible that 

some other, entirely different, mechanism was responsible for the GA-mediated 

regulation of seed germination and floral organ growth. 

It has been reported that the GA-promotion of Arabidopsis seed germination 

can be explained in terms of a GA-mediated release of the restraint upon germination 
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imposed by RGL2 (Lee et al., 2002) or RGL1 (Wen and Chang, 2002). The results in 

this thesis show for the first time that the GA-regulation of floral organ development 

is also DELLA mediated. However, different combinations of DELLA proteins are 

key players to floral organ development (RGA, RGL1 and RGL2), seed germination 

(RGL2 and RGL1) and stem elongation (RGA, GAI). The three key aspects of the 

ga1-3 mutant phenotype (dwarfism, inhibition of seed germination, retarded floral 

organ development) can now be explained: the lack of GA in this mutant causes a 

failure to overcome the repressive effects of the DELLA protein combinations that are 

specific to each particular phenotypic aspect. As a consequence, the ‘release of 

DELLA restraint’ hypothesis can now be considered to be a viable model with which 

to understand GA responses in general. One possible explanation for how different 

DELLA combinations control different developmental processes (e.g. seed 

germination versus stem elongation versus stamen development) is that individual 

DELLA proteins have different temporal and spatial expression patterns. For example, 

GAI and RGA are ubiquitously expressed in all plant tissues, whereas RGL1 and 

RGL2 transcripts are relatively enriched in the inflorescence (Silverstone et al., 1998; 

Lee et al., 2002; Wen and Chang, 2002). In situ hybridization showed that RGL1 is 

highly expressed in the stamen primordium (Wen and Chang, 2002). Examination of 

an RGL2 promoter-GUS fusion line showed that RGL2 transcripts are also enriched in 

the stamen (Lee et al., 2002). The expression patterns of RGL1 and RGL2 are 

therefore consistent with our current observation that RGL1 and RGL2 are both 

important for stamen development.  

The nature of the arrest in flower development conferred by ga1-3 (and 

restored by lack of RGL1, RGL2 and RGA) is particularly interesting. Our results 

identify a relatively distinct developmental stage at which arrest occurs. Before that 
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stage, ga1-3 stamen and anther development proceeds in a way that is 

indistinguishable from that of wild type. After that stage, wild-type development 

continues, while ga1-3 development is blocked. It will be interesting to determine if 

other GA deficiency phenotypes (e.g. the particular shape of leaves of ga1-3 mutant 

plants) are also due to premature arrest of an identifiable developmental sequence.  
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Chapter 4 

Identification of DELLA Regulated Genes in Flowers  

4.1 Introduction 

DELLAs act as negative regulators of GA response. However, as a group of 

putative transcription regulators (Pysh et al., 1999; Richards et al., 2000), the 

molecular mechanism of DELLAs repressing plant growth is largely unknown. Floral 

organ development, especially petals and stamens is impaired in severe Arabidopsis 

GA-deficient mutant ga1-3, resulting in male-sterile phenotype of ga1-3. In contrast, 

the floral phenotypes of the GA-deficient mutant ga1-3 are fully restored in the ga1-3 

plant lacking four DELLAs (RGL1, RGL2, GAI and RGA), suggesting that GA 

signaling through these four DELLAs is the major pathway for GA-mediated floral 

development (Cheng et al., 2004; Tyler et al., 2004; Yu et al., 2004). Therefore, GA-

regulated transcriptomes for floral development might be DELLA-dependent. 

However, it is currently not known if all GA-regulated genes are DELLA-dependent.  

Floral development is retarded in the ga1-3 mutant, suggesting that the GA-

regulated-transcriptome for floral development in the ga1-3 mutant might be kept at a 

repressive state (Ogawa et al., 2003). Meanwhile, the floral development is fully 

restored in the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant suggested that in this mutant 

line the GA-regulated-transcriptomes responsible for floral development might have 

been constitutively activated. It is reasonable to speculate that genes that are up 

regulated by GA would be at a lower expression level in ga1-3. If stabilized high 

levels of DELLA repressors in ga1-3 were responsible for a proportion of these lower 

expressing genes, the ones which are genuinely repressed, directly or indirectly, by 

DELLAs would be restored to WT levels or even higher in the ga1-3 gai-t6 rga-t2 

rgl1-1 rgl2-1 mutant in which four DELLA proteins were knocked out (resulting in 
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fully fertile flowers). In contrast, genes that are down regulated by GA and supposed 

to be activated by DELLAs would be expressed at higher level in ga1-3. These group 

of genes would be brought back to WT levels or even lower in the ga1-3 gai-t6 rga-t2 

rgl1-1 rgl2-1 mutant. Thus, comparing the expression profiles in ga1-3 with that in 

the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant would help to identify the set of DELLA-

dependent transcriptomes essential for floral development.  

In this chapter, we compared the global gene expression patterns in unopened 

flower buds of the ga1-3 mutant with that of wild type and ga1-3 gai-t6 rga-t2 rgl1-1 

rgl2-1 mutant using oligonucleotide-based DNA microarray analysis (Affymetrix 

ATH1 GeneChip, carrying 23,000 genes). We chose to compare ga1-3 to WT instead 

of ga1-3 treated with GA to identify GA-regulated (both up- and down-regulated) 

transcriptomes in young flower buds because we also wished to compare WT to ga1-3 

gai-t6 rga-t2 rgl1-1 rgl2-1 mutant (which showed phenotypic suppression of ga1-3) 

at the same time.  GA-regulated (both up- and down-regulated) transcriptomes in 

young flower buds was first identified by comparing the expression patterns between 

the ga1-3 mutant and WT control. Then, DELLA-dependent (both up- and down-

regulated) transcriptomes were identified by finding out the subgroups of GA-

regulated genes with their expression restored to the WT levels in the ga1-3 rga-t2 

gai-t6 rgl1-1 rgl2-1 mutant. Data analysis showed that, in young flower buds, 

approximately half of the GA-regulated genes (down- or up-regulated in ga1-3) were 

restored to the WT level in the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant. These GA-

regulated DELLA-dependent genes were likely responsible for mediating floral 

development.  

 

4.2       Materials and methods 
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Total RNA from young unopened flower buds of WT (28 day old), ga1-3 

mutant (38 day old) and ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant (22 day old) was 

extracted as described in section 2.7. The residue genomic DNA in the total RNA was 

removed as described in section 2.8. Microarray analysis was carried out as described 

in section 2.15 and 2.16. Primers used for genotyping and expression studies were 

listed in Table 2.2, Table 2.3, and Table 2.5. 

 

4.3  Results  

4.3.1 Identification of DELLA-dependent transcriptome expressed during 

floral development  

To identify DELLA-dependent transcriptomes essential for floral development, 

we carried out microarray analysis of RNA samples extracted from the young and 

unopened flower buds of the WT control, the ga1-3 mutant and the ga1-3 gai-t6 rga-

t2 rgl1-1 rgl2-1 mutant. Six microarray replicates for each of the three genotypes 

were performed. Only genes with the signal log ratio of WT vs ga1-3 more than 1 

(two folds higher) or less than -1 (two folds lower) in at least four replicates were 

referred to as GA-up or GA-down, respectively. Based on the above criteria, 826 

genes were identified as GA-up in the ga1-3 young flower buds when compared to 

that of WT. The transcript levels of 360 out of these 826 GA-up genes (44%) were at 

least 2-fold higher in the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant than in ga1-3 while 

the remaining 466 genes did not show significant changes in their expression. These 

360 genes were expected to be DELLA-down genes in the young flower buds while 

the 466 genes were thought to be DELLA-independent or partially-dependent GA-

regulated genes. Meanwhile, the transcripts of 422 genes were accumulated to higher 

levels in ga1-3 young flower buds than in the wild-type. The transcript levels of 273 
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out of these 422 genes (65%) were at least 2-fold lower in the ga1-3 gai-t6 rga-t2 

rgl1-1 rgl2-1 mutant than in ga1-3 while the remaining 149 genes did not show 

significant changes in their expression. These 273 genes were determined to be 

DELLA-up genes in the flower buds and the 149 genes to be DELLA-independent or 

-partially-dependent GA-regulated genes (Table 4.1).  

 

 

 

 

 

To confirm the reliability of results from expression profiles analysis, RT-PCR 

experiments were performed using cDNAs synthesized from RNA material identical 

to those used in arrays. 59 genes that consist of 38 DELLA-down genes and 21 

DELLA-up genes were randomly examined. RT-PCR analysis confirmed that all 38 

DELLA-down genes and 19 out of 21 DELLA-up genes exhibited the expected 

expression patterns (Fig. 4.1A, B), demonstrating that the microarray data obtained 

here was highly reproducible.  

 

4.3.2 Ontology analysis of DELLA-dependent transcriptomes expressed during 

floral development 

Out of the 360 DELLA-repressed genes, 243 genes have been assigned a 

putative molecular function based on amino acid homology anlaysis and 117 are 

recorded as functionally unassigned putative genes. Majority of DELLA-down floral 

genes encode enzymes (155 genes) responsible for the metabolism of protein, 

carbohydrate and lipid and encode proteins (89 genes) with binding activity to nucleic 

Table 4. 1. Summary of GA- and DELLA-regulated transcriptomes   
 No of genes  No of Genes 
GA-up 826 DELLA-down 360 
GA-down 422 DELLA-up 273 
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Fig. 4.1. RT-PCR confirmation of DELLA-down and DELLA-up genes in the 
unopened young flower buds. (A) DELLA-down genes. (B) DELLA-up genes. RT-
PCR analysis was repeated on three independent samples and a representative 
ethidium bromide gel picture is shown here. Corresponding gene locus identity (Gene 
ID) is provided. Two genes (At1g09970 and At2g04240) in panel B didn’t show 
obvious difference in expression and were highlighted with asterisk. penta: ga1-3 gai-
t6 rga-t2 rgl1-1 rgl2-1 penta mutant. ACT2 (At3g18780) was used as the 
normalization control.  
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acid, nucleotide, ion, and protein binding, suggesting that the arrest of floral organ 

growth may be coupled with low metabolic activities (Table 4.2). Many types of 

transcription factors are known to control or regulate floral development (Krizek and 

Fletcher, 2005). Our microarray analysis identified seven MYB family genes, four 

squamosa promoter binding protein genes, three bHLH family genes, three MADS 

box genes and three AP2 domain-containing transcription factor genes as DELLA-

down genes (Table 4.2, Table 4.3), suggesting that these factors might be the link 

between DELLA-mediated GA signaling and floral development.  

Previous studies have shown that the impaired growth of petal and stamen 

filament in ga1-3 is due mainly to the arrest of cell elongation rather than cell division 

(Cheng et al., 2004). In our microarray studies, four expansin genes were identified as 

DELLA-down genes in the young flower buds (Table 4.3), and two of them 

(At2g37640, At2g40610) were also identified as DALLA-down genes in seeds (Cao 

et al., 2006), suggesting that expansins may be crucial for the cell elongation in both 

seed germination and floral development. On the other hand, seven xyloglucan 

endotransglycosylase/hydrolase (XTH) genes and six pectinesterase genes were 

suggested to be the major genes responsible for cell wall loosening in the imbibed 

seeds (Cao et al., 2006). However, none of these two categories of genes was 

identified to be DELLA-down genes in the young flower buds. Instead, four cellulose 

synthase genes, two cellulase, and one 1, 4-beta-mannan endohydrolase were found as 

DELLA-down genes in the young flower buds (Table 4.3). These data suggested that 

DELLAs might repress the expression of genes responsible for the biogenesis and 

modification of cell wall components in controlling stamen development. 
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Table 4. 2. Ontology analysis of DELLA-regulated genes in unopened flower buds 
based on molecular function assigned 

 
Unopened Flower Buds  

 
 
Molecular Function 

    

 
DELLA-D 

 
DELLA-U 

Catalytic activity (Total)  (155) (110) 
 Hydrolase (Subtotal) (60) (21) 
         acting on: glycosyl bonds 17 7 
  ester bonds 21 6 
  peptide bonds 16 3 
  acid anhydride 2 5 
 Transferase  37 55 
 Oxidoreductase  32 24 
 Lyase  11 4 
 Ligase  5 4 
  Others   3 2 
     
Binging activity (total)  (89) (99) 
        binding to: Nucleic acid   36 30 
 Ion   15 27 
 Nucleotide  11 30 
 Protein   10 18 
 Oxygen   10 10 
 Tetrapyrrole   6 9 
 Lipid   7 2 
 Carbohydrate   3 9 
  Others   5 6 
     
Transcription 
regulator activity 

(total)  (32) (27) 

 MYB  8 4 
 Zinc finger   1 7 
 bHLH  3 3 
 MADS box   3 0 
 WRKY genes   0 3 
  Others   19 12 
     
Transporter activity     24 15 
     
Structure molecular     3 0 
     
Antioxidant activity     4 0 
     
Nutrient reservoir     1 1 
In the young flower buds, 243/360 DELLA-D and 180/273 DELLA-U genes were 
assigned with molecular functions.  
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Table 4. 3. Genes related to some important biochemical and 
biological processes in unopened young flower buds 
 
 

 
Unopened Flower Buds 

 DELLA-D DELLA-U 
1. Cell growth and cell wall loosening   
XTH  At4g37800 
  At5g57560 
   
Cellulose synthase At4g18780  
 At4g24000  
 At5g17420  
 At5g44030  
   
Cellulose At1g13130  
 At3g26140  
   
1,4-beta-mannan endohydrolase At3g10890  
   
Glycoside hydrolase At3g16920  
 At3g42950  
   
Expansin At1g20190 At2g18660 
 At2g37640  
 At2g40610  
 At3g29030  
   
2. Transcription Factors   
bHLH family proteins At1g25330 At4g01460 
 At1g59640 At5g46760 
 At5g39860 At5g50915 
   
MYB family proteins At1g17950 At1g06180 
 At2g38090 At3g11280 
 At3g01140 At5g44190 
 At3g27810 At5g59780 
 At3g27812  
 At4g34990  
 At5g40350  
 At3g01530  
   
Zinc-finger family proteins At5g25830 At1g13400 
  At1g66140 
  At1g68520 
  At1g73870 
  At2g01940 
  At2g47680 
  At5g25160 
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Table 4.3-continued 
 
 

 
Unopened Flower Buds 

 DELLA-D DELLA-U 
MADS box family proteins At2g45650  
 At3g58780  
 At4g09960  
   
WRKY family proteins  At2g23320 
  At3g56400 
  At4g23810 
   
AP2 domain containing protein At1g15360 At1g25560 
 At1g16060  
 At5g67180  
   
Squamosa promoter binding protein  At1g27360  
 At1g53160  
 At3g15270  
 At5g43270  
   
Homeodomain transcription factor At1g62990  
 At2g17950  
   
3. Protein Phosphorylation   
Protein kinase At1g61590 At1g16260 
 At5g57670 At1g21250 
  At1g21270 
  At1g29720 
  At1g65190 
  At1g66880 
  At1g66920 
  At1g69730 
  At2g26980 
  At2g32680 
  At3g09830 
  At3g23110 
  At3g45640 
  At3g45780 
  At4g04540 
  At5g25440 
  At5g38210 
  At5g40540 
  At5g60900 
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Table 4. 3.-continued 
 
 

 
Unopened Flower Buds 

 DELLA-D DELLA-U 
Leucine-rich repeat proteins At4g18640 At1g09970 
  At1g33560 
  At1g35710 
  At1g51805 
  At1g56120 
  At2g31880 
  At3g11010 
  At4g08850 
  At5g48380 
   
Receptor protein kinase  At1g75820 
  At4g23130 
  At4g23180 
   
S-locus lectin protein kinase  At1g11350 
  At2g19130 
  At4g11900 
  At4g27300 
   
S-receptor kinase  At1g65790 
   
4. Disease and stress response   
Response to disease and pathogens  At1g55020 At1g33560 
 At1g72260 At1g72930 
 At3g11480 At2g32680 
 At3g13650 At2g43570 
 At3g16920 At2g43620 
 At3g21240 At3g11010 
 At4g23690 At3g20590 
 At5g24780 At3g23110 
  At3g50950 
  At4g16990 
  At4g19530 
  At4g26090 
  At5g45250 
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Table 4. 3-continued 
 
 

 
Unopened Flower Buds 

 DELLA-D DELLA-U 
Water and salt stress  At1g05260 At1g33560 
 At1g29395 At2g21620 
 At1g52690  
 At2g21490  
 At5g24780  
   
Oxidative stress At3g59845 At3g45640 
 At4g11290  
 At4g30170  
 At5g24780  
 At5g51890  
   
Cold At1g05260 At5g57560 
 At1g29395  
   
Heat At5g67180  
   
UV At3g21240  
 At4g13770  
   
Toxin catabolism At1g17190 At1g02930 
   
Multidrug transport At3g26590  
 At4g22790  
 At5g49130  
   
Wounding At1g55020 At2g38870 
 At3g11480  
 At3g21240  
 At5g24780  
   
DNA damage response At3g12710  
 At5g44680  
   
Others At1g11000 At1g31580 
 At1g52040  
 At2g43550  
 At5g51060  
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Table 4. 3-continued 
 
 

 
Unopened Flower Buds 

 DELLA-D DELLA-U 
5. Hormone response   
ABA At1g29395 At1g75750 
 At1g52690 At2g26980 
 At1g55020 At3g22060 
 At5g59320 At3g45640 
   
GA At1g74670 At1g15550 
 At1g78440 At1g22690 
  At1g75750 
  At4g25420 
  At5g51810 
   
Auxin At1g29510 At2g45210 
 At1g44350 At3g60690 
 At2g21220  
 At3g15540  
 At3g23050  
 At3g25290  
 At4g12410  
 At4g13790  
 At5g47530  
   
Ethylene At1g15360 At1g05010 
  At1g28360 
  At5g25190 
   
BR  At1g75750 
   
Cytokinin  At2g26980 
Genes listed here are summary of microarray results based on 
information provided in Gene Title, Molecular Function and Gene 
Description by Affymetrix. DELLA-D: DELLA-down genes; 
DELLA-U: DELLA-up genes.    
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GA2-oxidase (At1g78440, responsible for the degradation of bioactive GAs) 

and a GAST1-like gene (At1g74670) have previously been shown to be up-regulated 

by GA (Shi and Olszewski, 1998; Ogawa et al., 2003). The restoration of expression 

of these two genes in ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 suggests that GA may regulate 

their expression by triggering the degradation of DELLA proteins and therefore they 

were identified as DELLA-down genes (Table 4.3). Interestingly, nine auxin-response 

genes including auxin responsive transcription factors IAA19 (At3g15540) and 

AUXIN RESISTANT 2 (AXR2) (At3g23050) (Liscum and Reed, 2002), putative IAA-

amino acid hydrolase 6 (ILL6) (At1g44350) (LeClere et al., 2002), two auxin-

responsive dopamine beta-monooxygenase (At5g47530 and At3g25290) (Neuteboom 

et al., 1999), and four auxin-responsive genes (At4g13790, At1g29510, At4g12410, 

At2g21220) (Table 4.3) were identified as DELLA-down genes in the young flower 

buds. 

Among the 273 DELLA-up floral genes, 180 genes have been assigned a 

putative molecular function and 93 are recorded as expressed putative genes. Again, 

the two largest groups of DELLA-up genes consist of genes encoding proteins with 

catalytic activity (110 genes) or binding activity (99 genes) (Table 4.2). Majority of 

DELLA-up enzyme genes were transferase genes (55 genes) and oxidoreductase 

genes (24 genes) but not hydrolase genes as observed in DELLA-down floral genes 

(Table 4.2). GA biosynthesis is controlled by a negative feedback loop. The lower 

expression levels of three key gibberellin biosynthesis genes (two GA-20-oxidase 

genes (At4g25420, At5g51810) and one GA-3β-hydroxylase gene (At1g15550) in 

ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 suggest that GA down-regulates these genes by the 

degradation of DELLA proteins and therefore they were identified as DELLA-up 

genes (Table 4.3) (Ogawa et al., 2003). Further analysis showed that a great number 
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of transcription factors, including seven putative zinc finger family genes (ZINC 

FINGER PROTEIN ZEP3, ZEP4, JAG etc) (Tague and Goodman, 1995; Riechmann 

et al., 2000),  four MYB family genes (MYB59, MYB13, At5g44190, At3g11280) 

(Riechmann et al., 2000), three putative bHLH family genes (At5g50915, At5g46760, 

At4g01460) (Heim et al., 2003) and three WRKY family genes (WRKY15, WRKY70, 

WRKY53) (Eulgem et al., 2000) were identified as DELLA-up genes (Table 4.3), 

suggesting that DELLAs might mediate a complex genetic regulatory network to 

repress floral development.  

Recent studies have shown that DELLAs act as the integrator of 

environmental cues as well as endogenous phytohormonal signals to protect plants 

from environmental stress (Lee et al., 2002; Cao et al., 2005; Achard et al., 2003; 

Achard et al., 2006). In young flower buds, five genes responsive to oxidative stress 

were identified as DELLA-down genes (Table 4.3). Meanwhile, multidrug transport 

(3 genes) and wounding response genes (4 genes) were identified as DELLA-down 

genes in the young flower buds (Table 4.3). Interestingly, while only two protein 

kinase genes (At5g57670 and At1g61590) and one leucine-rich repeat kinase gene 

(At4g18640) were identified as DELLA-down genes, a significant number of putative 

protein kinase genes (19 protein kinase genes, nine leucine-rich repeat kinase genes, 

four S-locus protein kinase genes and three receptor protein kinase genes) are 

identified as DELLA-up genes in the young flower buds (Table 4.3), suggesting that 

protein phosphorylation modification might play a key role in controlling floral organ 

growth (Morris and Walker, 2003). These data implied that DELLAs are not only 

actively involved in protecting plant from different environmental stress but probably 

also in mediating disease resistance in young flower buds.                                                                    
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4.3.3 Identification of 37 stamen-enriched DELLA-down regulated genes  

Studies in ga1-3 plants showed that GA plays a more important role in petal 

and stamen development than in sepal and pistil development. We showed in the 

previous chapter that GA regulates stamen filament cell elongation via suppression of 

DELLA proteins. It will be interesting to determine which of these DELLA regulated 

genes might function in stamen development. Therefore, the spatial expression 

patterns of 43 DELLA-down genes were examined in four different floral organs: 

sepal, petal, stamen and pistil. 36 genes (out of 43) were identified to be enriched in 

stamen (Table 4.4).  

Among these 36 stamen-enriched genes, there were six DELLA-down MYB 

genes (AtMYB21, AtMYB24, AtMYB32, AtMYB46, AtMYB52, and AtMYB57) (Table 

4.4), indicating that MYBs might play an important role in stamen development. 

However, with the exception of AtMYB32, which has been indicated to be involved in 

normal pollen development (Preston et al., 2004), the functions of the rest MYB genes 

are largely unknown. Three cellulose synthase catalytic subunits (CesA04 (IRX5), 

CesA07 (IRX3) and CesA08 (IRX1)) were also identified to be stamen-enriched. 

Cellulose synthase catalytic subunits (CesAs) have been indicated in catalyzing the 

biosynthesis of cellulose, the major component of plant cell walls (Taylor et al., 1999; 

Taylor et al., 2000; Turner and Somerville, 1997; Gardiner et al., 2003; Holland et al., 

2000). This result suggested that GA might regulate cell elongation via modulation of 

the formation of plant cell walls. Two APG (anther-specific gene)-like proteins and 

one putative APG isolog protein which possibly function in anther development were 

also identified to be stamen enriched (Roberts et al., 1993). In addition, several 

unknown and putative proteins were also identified to be DELLA regulated stamen-
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enriched genes in this study (Table 4.4). These 36 genes would serve as candidates to 

understand how DELLAs regulate stamen development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 4. RT-PCR examination of DELLA-down genes in different floral organs 

Expression in floral organs Gene ID Gene description  DELLA-
Down Se Pe St Pi Yb 

At5g23970 Acetyl-coA benzylacohol confirmed +++ +++ + ++ +++ 
At3g58780 Agamous like 1 confirmed ++ ++ ++ ++ ++ 
*At1g75880 APG-like confirmed ++ ++ +++ - + 
*At1g75900 APG-like confirmed + - + + + 
*At2g34790 Berberrine bridge enzyme confirmed + - +++ + + 
*At2g34810 Berberrine bridge enzyme confirmed - - + + - 
*At4g18780 Cellulose synthase (IRX1) confirmed + ++ +++ + + 
*At5g44030 Cellulose synthase (IRX5) confirmed + + +++ ++ + 
*At5g17420 Cellulose synthase (IRX3) confirmed ++ ++ +++ + + 
*At3g16920 Chitinase(GHF19) confirmed + - ++ + + 
*At3g22800 Extensin-like confirmed ++ ++ +++ +++ ++ 
*At3g62020 Germin-like protein confirmed ++ ++ +++ ++ ++ 
*At1g78440 Gibberellin 2-oxidase confirmed ++ ++ +++ +++ +++ 
*At2g17950 Homeodomain transcription 

factor 
confirmed + - +++ + + 

*At3g11480 Hypothetical confirmed + + +++ +++ ++ 
*At1g09610 Hypothetical protein confirmed ++ + +++ + + 
*At1g76240 Hypothetical protein confirmed ++ + +++ + + 
*At3g18660 Hypothetical protein confirmed ++ ++ +++ + + 
*At3g20520 Hypothetical protein confirmed ++ ++ ++ ++ ++ 
*At1g52690 Late embryogenesis abundant 

protein 
confirmed ++ +++ +++ ++ +++ 

*At4g09960 MADX-box protein (AGL11) confirmed + + ++ +++ ++ 
*At3g27810 MYB21 confirmed ++ ++ +++ + - 
*At5g40350 MYB24 confirmed + +++ +++ + - 
*At4g34990 MYB32 confirmed ++ ++ +++ +++ +++ 
*At5g12870 MYB46 confirmed ++ ++ +++ ++ ++ 
*At1g17950 MYB52 confirmed - - ++ - + 
*At3g01530 MYB57 confirmed +++ + ++ +++ - 
At5g17540 Protein hypersensitity related 

gene 
confirmed + + + ++ + 

At3g07450 Putative 5B anther specific confirmed + + - - +++ 
*At2g42990 Putative APG isolog protein confirmed ++ +++ ++ ++ +++ 
*At2g38080 Putative diphenol oxidase confirmed ++ + +++ ++ + 
*At2g40610 Putative expansin-8 confirmed ++ +++ ++ ++ + 
*At4g12730 Putative pollen surface protien confirmed +++ ++ +++ +++ +++ 
*At3g54770 RNA binding protein confirmed - - + + - 
*At3g12000 S-locus related confirmed - - ++ ++ + 
At5g43270 Squamose promoter binding 2 confirmed ++ + + ++ ++ 
At3g15270 Squamose promoter binding 5 confirmed ++ + + + ++ 
*At5g59120 Subtilisin-like serine protease confirmed ++ + ++ ++ ++ 
*At5g44630 Terpene synthase confirmed ++ ++ +++ +++ ++ 
*At1g02340 Unknown confirmed ++ +++ ++ ++ ++ 
*At1g70690 Unknown confirmed ++ + ++ + + 
*At2g34870 Unknown confirmed - + + + + 
At4g12960 Unknown confirmed - - + ++ + 

Se: sepal, Pe: petal, St: stamen, Pi: pistil, Yb: young flower buds that not dissectible.  Expression 
levels in different floral organs were based on the semi-quantitative RT-PCR results. “-” not detected, 
“+” faintly detected, “++” detected, “+++” strongly detected. “*”: genes enriched in stamen 
compared to other floral organs. DELLA-D: down-regulated by DELLA proteins.  
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4.3.4 Identification of RGL2-down and -up genes in flower buds 

In our previous experiment, we have shown that knock-out of four DELLAs 

(RGL1, RGL2, RGA and GAI) was able to fully rescue plant growth of GA-deficient 

mutant ga1-3 (Cao et al., 2006). In Q3 (ga1-3 rgl1-1 rga-t2 gai-t6) plants where three 

DELLAs (RGL1, RGA and GAI) were knock-out, stem elongation was restored. 

However, the flowers of Q3 (ga1-3 rgl1-1 rga-t 2gai-t6) were indistinguishable from 

that of ga1-3 plants (Fig. 4.2) (this thesis, Cheng et al., 2004, Tyler et al., 2004), 

indicating that RGL2 plays a key role in repressing floral development. In our 

microarray studies, when cross-somparing the expression profile among Wt, ga1-3 

and ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6 (penta mutant), 360 DELLA-down and 273 

DELLA-up genes were identified in flowers. It will be interesting to find out if these 

genes were also RGL2-regulated. 

It is reasonable to speculate that those DELLA-down or -up regulated genes 

which are essential for floral development should be also RGL2-down or -up 

regulated genes. To identify this subgroup of genes, expressions of 33 DELLA-down 

genes and 21 DELLA-up genes were examined in Q3 mutant flowers. Genes that 

were down regulated or up regulated in Q3 mutant flowers were referred as RGL2-

down or RGL2-up genes, respectively. We identified 7 (out of 33) RGL2-down genes 

and 5 (out of 21) RGL2-up genes (Fig. 4.3, Fig. 4.4). RGL2-down genes encodes 

proteins such as transcription factors (e.g. MYB21, MYB24), enzymes related to cell 

wall formation and modification (e.g. Berberine bridge enzyme, putative expansin 8), 

as well as several hypothetical proteins (e.g. At1g76240) (Fig. 4.3). These genes 

would serve as good candidates for further study of DELLA-regulated floral organ 

development.  
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Fig. 4.2. Characteristics of penta (ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6), Q3 (ga1-3 
rgl1-1 rga-t2 gai-t6) and ga1-3 mutants. (A) Plant pictures of WT, penta, Q3 and 
ga1-3 mutants. (B) Flowers of WT, penta, Q3 and ga1-3 mutants. (C) Bolts of WT, 
penta and Q3 mutants. 
 

 
 
 
 
 
 
 
 
 
 



 119

 

 
 
 
 
Fig. 4.3. Identification of genes that were down-regulated in both ga1-3 and Q3 
mutants. Representive genes that identified to be down regulated in both ga1-3 and 
Q3 mutant was shown and were highlighted by “*”. Expression of these genes may be 
repressed by RGL2.  
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Fig. 4.4. Identification of genes that were up-regulated in both ga1-3 and Q3 
mutants. Five genes were identified to be up-regulated in both ga1-3 and Q3 mutants. 
These genes might be activated by RGL2. 
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Among the RGL2-up regulated genes, NAP (NAC-like protein) has been 

shown to repress stamen development when overexpressed (Sablowski and 

Meyerowitz, 1998). However, it is unclear if it is GA regulated. Besides NAP, another 

Nam family gene was also found to be dramatically upregulated in both ga1-3 and Q3 

mutant. In addition, one glycosyl hydrolase family 19 gene (At2g43620), one 

senescence-associated protein (At5g65040) and one unknown gene were also 

identified to be RGL2-up genes (Fig. 4.4). 

 

4.3.5 Isolation and characterization of T-DNA insertion lines of DELLA-

regulated floral genes 

Previous experiments have shown that DELLA proteins repress filament 

elongation by suppressing cell elongation rather than cell division (this theis, Cheng et 

al., 2004), suggesting that factors that promote cell elongation growth were likely 

down regulated in ga1-3.  In contrast, those factors which inhibit cell elongation could 

be upregulated in ga1-3 plants. In our previous studies, we identified a number of 

DELLA-regulated genes that might be related to the cell wall formation or 

modification. Expression study showed that some of them were highly enriched in the 

stamen. However, it is still unknown if they really function in DELLA controlling 

stamen filament elongation.  Therefore, phenotypic analyses of loss-of-function or 

gain-of-function mutants of these genes are required to investigate the role of these 

genes. Abnormal phenotypes in the flower development in mutants should be 

observed if they function in this process.  

To isolate loss-of-function mutants, our primary approach is to screen mutant 

lines with T-DNA inserted in candidate genes. T-DNA insertion lines have been 
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identified for 23 genes (4 unknown genes, 5 MYBs, 2 cellulose synthase subunit genes, 

2 Nam family genes and 10 others) (Table 4.5). We obtained these T-DNA lines from 

ABRC (Arabidopsis Biological Resource Center at The Ohio State University) 

(Alonso et al., 2003). After two rounds of backcrossing of these lines to clean their 

background, these T- DNA lines were subjected to phenotypic analysis.  

Mutant alleles of two cellulose synthase subunits (IRX1 (At4g18780) and 

IRX5 (At5g44030)) exhibited almost identical anther non-dehiscence phenotype 

(Table 4.5, Fig. 4.5). This observation is consistent with the fact that both of them are 

involved in the same complex for the secondary cell wall synthesis (Taylor et al., 

1999; 2000; Holland et al., 2000). It would be interesting to study if GA regulated 

anther dehiscence via these cellulose synthase subunits in the future. In addition, two 

mutant alleles of AtMYB21 showed male sterile phenotype (Table 4.5, Fig. 4.5). The 

stamen filament elongation of early developed flowers in these two alleles was 

arrested, resulting in male sterile phenotype. These data indicate that MYB21 might 

play an important role in GA regulated stamen filament cell elongation.   

In contrast, most of the T-DNA insertion lines which were supposed to be null 

alleles of their respective genes showed no obvious floral phenotype (Table 4.5). This 

might result from: 1) they are not genuine null alleles, 2) gene redundancy exists, or 3) 

they are not essential for normal flower development. In future, more detailed analysis, 

for example, construction of double or triple mutants would be a good and appropriate 

approach to study gene redundancy. 
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Fig. 4.5. Flower phenotype in irx5-1 mutant, myb21-b and myb21-d mutants. (A) 
Flower picture of Col-0. (B) Flower picture of mutant allele of IRX5 (irx5-1). Anthers 
in irx5-1 mutant were not able to dehisce. (C, D) Different alleles of MYB21 (myb21-b 
and myb21-d) showed short stamen phenotype. 
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Table 4.5.  Summary of T-DNA insertion lines for genes selected from  DELLA-D and DELLA-U 
genes  
Gene ID Gene description T-DNA insertion lines Phenotype 
At2g34790 berberine bridge enzyme SALK_072827(Intron)  No 
  SALK_069340(Intron)   No 
    
At4g18780 cellulose synthase (IRX1) SALK_026812(Intron)   yes 
At5g44030 cellulose synthase (IRX5) SALK_084627(Exon)  yes 
    
At3g62020 Germin-like protein(GLP10) SALK_065289(Exon) No 
  SALK_023872(300-UTR5) No 
    
At1g78440 gibberellin 2-oxidase SALK_020228(Exon)   No 
At2g17950 homeodomain transcription factor SALK_114398(300-UTR3) No 
At1g09610 hypothetical protein SALK_050883(Exon No 
    
At3g18660 hypothetical protein SALK_063763(Exon)   No 
  SALK_046841(Exon) No 
    
At3g27810 MYB21 SALK_003625(300-UTR5)   No 
  SALK_042711(Intron)   Yes 
  SALK_039465(300-UTR3) No 
  Gabi-Kat (N311167) (intron) Yes 
    
At5g40350 MYB24 SALK_065218(Intron)   No 
  SALK_017221(Intron) No 
    
At4g34990 MYB32 SALK_132874(Exon) No 
    
At1g17950 MYB52 SALK_118938(Intron)  No 
  SALK_138624(Exon)   No 
    
At3g01530 MYB57 SALK_065776(Exon) No 
At2g38080 putative diphenol oxidase SALK_051892(300-UTR5) No 
At4g12730 putative pollen surface protein SALK_001056(Exon)   No 
    
At1g69490 NAP(NAC-like protein) SALK_005010(Exon) No 
  SALK _049717(UTR3) No 
    
At3g04070 NAM protein family SALK _066615(UTR5) No 
At2g43620 chitinase (Glycosyl hydrolase family 19)  SALK _056680(Intron) No 
At1g21520 unknown protein SALK _045038(UTR3) No 
At5g65040 senescence-associated protein-related SALK _106042(UTR5) No 
All of the lines were confirmed by sequencing the PCR products derived from T-DNAinsertion border s 
in the genomic DNA. Genetic background was cleared by two rounds of backcross to WT and 
homozygous plants were used for phenotype observation. DELLA-D: DELLA down regulated genes, 
DELLA-U: DELLA up-regulated genes 
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4.4 Discussions 

DELLAs are putative transcription regulators. Presumably, they may directly 

regulate the expression of some GA-response genes. However, there is currently no 

evidence to support this hypothesis. Alternatively, DELLAs may regulate the 

expression of some downstream transcription factors and these DELLA-regulated 

transcription factors then control the expression of GA-response genes. GAMYB genes 

are the best studied GA-regulated transcription factors. Previous studies have shown 

that GA regulates GAMYB through DELLA protein SLN1 and SLR1 in barley and 

rice respectively (Gubler et al., 2002; Kaneko et al., 2003). In Arabidopsis, MYB33 

and MYB65 are identified as GAMYB genes based on homology analysis. However, 

MYB33 and MYB65 and their subfamily members are regulated at the post-

transcription level by miRNA159 (Achard et al., 2004; Millar and Gubler, 2005; 

Reyes and Chua, 2007). In fact, MYB33 and MYB65 are not identified among the 

DELLA-down or DELLA-up genes in our dataset. In contrast, our data showed that 

MYB24, MYB32, MYB52, MYB106, MYB21, MYB57 and At2g38090 were the eight 

DELLA-down MYB genes involved in floral development (Table 4.2, Table 4.3). 

These data suggested that DELLAs might regulate a subset of MYB genes to repress 

floral development. Interestingly, four MYBs (MYB59, MYB At5g44190, MYB 

At1g06180, and At3g11280) were identified as DELLA-up genes in the young flower 

buds (Table 4.3). Therefore, these MYB genes may represent new types of GAMYBs 

and future work will focus on studying the relationship between GA and these MYB 

genes.  

In addition to MYB genes, DELLA-down or –up bHLH and zinc-finger family 

genes are also identified in the young flower buds (Table 4.3). As expected, three 

types of transcription factors, namely three MADS box family genes (AGL1, AGL6 
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and AGL11), three WRKY family genes (WRKY15, WRKY70, WRKY53) (Eulgem et al., 

2000) and four squamosa promoter binding protein-box family genes (SPL2, SPL5, 

SPL11 and SPL12) were found among the DELLA-regulated genes for floral 

development (Table 4.3) (Krizek and Fletcher, 2005). Apparently, these transcription 

factors will regulate their own specific targets to fine-tune the regulation initiated by 

DELLAs. One of the future tasks will be to identify the targets controlled by these 

transcription factors. 

As expected, the GA-response gene GAST1 (At1g74670) and the key GA 

biosynthesis gene GA-3-beta-hydroxylase (At1g15550) are identified as DELLA-

down and –up genes respectively in young flower buds (Shi and Olszewski, 1998; 

Ogawa et al., 2003). Recently, it was reported that GID1 in rice encodes a soluble 

GA-receptor with homology to the consensus sequence of the hormone-sensitive 

lipase (HSL) homologous family (Ueguchi-Tanaka et al., 2005). Database search 

identified three GID1 homologues in Arabidopsis and all of them have recently been 

shown to bind GA and DELLA proteins (Nakajima et al., 2006; Griffiths et al., 2006; 

Willige et al., 2007). Interestingly, two of these GID1 homologues (At3g05120 and 

At3g63010) are identified as DELLA-up genes in the young flower buds, suggesting 

that these GID1 homologues are probably negatively regulated by GA. However, the 

fact that DELLA proteins are stabilized in the ga1-3 mutant suggests that GA is 

necessary to activate the GID1-like receptors to trigger the degradation of DELLA 

proteins.  

Previous studies have shown that ABA signaling through ABI1, and ethylene 

signaling through CTR1, enhance the stability of DELLAs (Achard et al., 2003; 

Achard et al., 2006; Achard et al., 2007), suggesting that a fraction of ABA- and 

ethylene-signaling response genes may be identified as DELLA-regulated genes in 
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our dataset. Indeed, a number of ABA- and ethylene-response genes were identified 

as DELLA-up and -down genes in young flower buds (Table 4.3). Ethylene-related 

genes (3 genes) were also found as DELLA-up genes in the young flower buds (Table 

4.3). In addition, low concentrations of auxin are known to promote the 

destabilization of DELLAs (Fu and Harberd, 2003). Accordingly, nine auxin-response 

genes were identified as DELLA-down genes in the young flower buds.  

Both AtMYB21 and AtMYB24 were identified as RGL2-down genes and were 

enriched in stamen, indicating that RGL2 might repress stamen development via 

suppression of these two MYBs. However, no obvious phenotype was observed in 

AtMYB24 mutant plants. AtMYB21 single mutant showed very weak phenotype in 

stamen. Based on amino acid sequence analysis, AtMYB21 and AtMYB24 belong to 

the same MYB subfamily 19, suggesting they might function redundantly in 

controlling stamen development.  

All of the three cellulose synthase subunits, which were supposed to form a 

complex to control the biosynthesis of secondary cell wall, were identified to be 

DELLA-down and stamen-enriched genes. Mutant alleles of their respective genes 

also showed anther no-dehiscence phenotype. However, the expression of these three 

genes is recovered in Q3 mutant while the stamen development in Q3 mutant was still 

arrested (Fig. 4.2, Fig. 4.3, and data not shown). These data implied that they might be 

necessary but insufficient for GA-regulated anther development in Q3 mutant.  
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Chapter 5 

DELLAs Repress Flower-specific Genes AtMYB21, AtMYB24 and AtMYB57 

through Modulation of JA Pathway in Arabidopsis 

5.1      Introduction 

Jasmonic acid (JA) is a lipid-derived signaling molecule that contributes to the 

control of metabolic, developmental and defensive processes in plants (Devoto and 

Turner, 2003; Weber et al., 1997). Severe JA-deficient mutant opr3 displayed 

retarded filament elongation, delayed anther dehiscence, and reduced pollen viability. 

As a consequence, the opr3 mutant is male sterile (Sanders et al., 2000; Stintzi and 

Browse, 2000; Feys et al., 1994; Xie et al., 1998; Scott et al., 2004). Application of 

exogenous JA can fully restore the stamen development of opr3, suggesting that JA 

plays an important role during stamen development (Stintzi and Browse, 2000). 

Resembling the opr3 mutant, the coi1 mutant is also specifically impaired in stamen 

development. However, in contrast to opr3, application of exogenous JA could not 

restore the coi1 mutant phenotype to normal, suggesting that COI1 functions as a 

master check-point for JA-signaling (Xie et al., 1998). COI1 is an F-box E3-ligase 

that forms the SCF complex with SKP and CUL to mediate the degradation of its 

downstream targets (Xu et al., 2002). Based on the mutant phenotype displayed, it is 

reasonable to speculate that some of COIl’s targets may be involved in controlling 

stamen development. 

It is intriguing to know if GA-mediated and JA-mediated stamen development are 

via two parallel pathways or if they converge at a certain gene to regulate the same set 

of downstream genes to control stamen development. The known GA-response genes 

encoding transcription factors involved in stamen development are GAMYBs (MYB33 

and MYB65), a subset of MYB genes. Genetic studies showed that MYB33 and MYB65 
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are essential to anther development but not for elongation growth of stamen filament 

in Arabidopsis (Millar and Gubler, 2005). Previous studies have shown that GA 

regulates GAMYB through DELLA protein SLN1 and SLR1 in barley and rice, 

respectively (Gubler et al., 1995; Gubler et al., 1999; Gubler et al., 2002; Kaneko et 

al., 2003; Scott et al., 2004). However, several reports failed to identify MYB33 and 

MYB65 as GA-inducible genes in Arabidopsis and these two MYB genes are in fact 

regulated at the post-transcriptional level by miRNA159 (Achard et al., 2004; Cao et 

al., 2006; Tsuji et al., 2006; Millar and Gubler, 2005). It has been suggested that JA 

regulates water transport in the stamens and petals to synchronize flower opening, 

anther dehiscence and pollen maturation (Ishiguro et al., 2001). An alternative 

hypothesis is that JA regulates programmed cell death in the anther as part of the 

dehiscence process (Zhao and Ma, 2000). A recent report showed that two MYB genes, 

MYB21 and MYB24, which are responsive to JA treatment in opr3 mutant, play 

crucial roles for stamen filament elongation. Interestingly, in an expression profiling 

study, we identified several MYBs including MYB24, MYB21, and MYB57 as DELLA-

down regulated genes in flower buds (Cao et al., 2006).  This observation prompted 

us to investigate if there might be a cross-talk between GA signaling and JA signaling 

during stamen development. 

MYB 24 and MYB21 are flower-specific genes (Mandaokar et al., 2006; Shin et al., 

2002; Noji et al., 1998; Yang et al., 2006). In this chapter, we present data to 

demonstrate that expression of AtMYB21, AtMYB24, and AtMYB57 was down-

regulated in the ga1-3 mutant but was restored to normal level in ga1-3 plants lacking 

RGA, RGL1 and RGL2. This data suggested that these MYB genes may be DELLA-

regulated downstream genes. This conclusion is further supported by the observation 

that the absence of four DELLAs (GAI, RGA, RGL1 and RGL2) cannot suppress the 
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short stamen phenotype conferred by the loss-of-function of MYB21 and MYB24. In 

addition, we observed that application of exogenous JA onto ga1-3 single mutant or 

ga1-3 gai-t6 rgl1-1 rgl2-1 quadruple mutant flower buds could restore the expression 

of MYB21 and MYB24. On the contrary, application of exogenous GA onto opr3 

mutant flower buds failed to induce the expression of these two MYBs, suggesting that 

JA might act downstream of GA in promoting stamen filament elongation. Analysis 

of the JA biosynthesis genes in different genotypes revealed that DAD1, one of the 

key JA biosynthesis genes, was down-regulated in both ga1-3 and Q3 (ga1-3 rgl1-1 

rga-t2 gai-t6) mutants. Furthermore, the expression of DAD1 could be induced upon 

GA treatment in Q3 mutant. These data indicated that GA may regulate these three 

MYB genes through modulation of JA biosynthesis. Although application of JA could 

significantly restore the expression of MYB21 and MYB24 in ga1-3 gai-t6 rgl1-1 rgl2-

1 mutant, the mutant plant still had short stamen identical to that in the untreated 

control. This observation strongly suggests that MYB21 and MYB24 are necessary but 

insufficient for the normal elongation growth of stamen filament in Arabidopsis. 

 

5.2       Materials and methods 

5.2.1 Plant materials 

ga1-3, Q3 (ga1-3 rgl1-1 rga-t2 gai-t6) and penta (ga1-3 rgl1-1 rgl2-1 rga-t2 

gai-t6) mutants are in Ler background as described previously. T-DNA insertion lines 

for MYB21 (myb21-b & myb21-d), MYB24 (myb24-a & myb24-b) and MYB57 

(myb57-1) are in Col-0 background. Hexa1 (ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6 myb24-

b), hexa2 (ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6 myb21-b) and hepta (ga1-3 rgl1-1 rgl2-1 

rga-t2 gai-t6 myb21-b myb24-b) mutants are in Ler background via cross-pollination 

of myb21-b myb24-b to penta mutant four times. opr3 mutant (obtained from Dr Xie 
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Daoxin) is in Ws background. Primer pairs used for genotyping were as described in 

Table 2.2 and Table 2.3. 

 

5.2.2 GUS staining, northern blot and in situ hybridization 

Protocols for GUS staining, northern blot and in situ hybridization were 

described in chapter 2. Gene specific probes were used for northern blot and in situ 

hybridization. AtMYB21 (+294 to +801 nt, nt stands for nucleotides, the A of the start 

codon ATG =1), GA20ox2 (+28 to +627 nt), LOX1 (+1903 to +2408 nt), LOX2 

(+1278 to +1714 nt), and OPR3 (+4 to +439 nt) probes for Northern blots were 

labeled using PCR DIG probe synthesis kit (Roche, Germany) as described in Section 

2.11.1. Antisense and sense probes of AtMYB21 (+294 to +801 nt) for in situ 

hybridization were labeled by in vitro transcription as described in Section 2.11.2. 

 

5.2.3 Hormone treatment  

Both Q3 and opr3 mutant plants (~27 days old) were sprayed with mock 

(0.1% ethanol v/v), GA3 (10-4M) (Sigma) or MeJA (0.015% v/v) (Sigma). After 

treatment, whole infloresences (including two opened flowers in opr3 mutant and two 

old flower buds in Q3 mutant) were collected at different time course (18h, 48h, 3d 

and 4d) for RNA extraction. RT- PCR was carried out according to the protocol 

described in Section 2.8. Primers used in expression study of GA and JA response and 

biosynthesis genes were listed in Table 2.6. 

 

5.3 Results 

5.3.1 DELLAs repress the expression of AtMYB21, AtMYB24 and AtMYB57 in 

the Arabidopsis inflorescences  
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Our previous microarray analysis showed that AtMYB21, AtMYB24 and 

AtMYB57 were DELLA down-regulated genes. The repression of these MYBs by 

DELLAs was confirmed by RT-PCR (Fig. 5.1). We found that the expressions of 

AtMYB21, AtMYB24 and AtMYB57 were very low or barely detectable in ga1-3 while 

their expressions were restored to WT level in penta mutant (ga1-3 rgl1-1 rgl2-1 rga-

t2 gai-t6). This data implied that in normal condition, GA was required for the 

expression of these MYBs.  In ga1-3 mutant where endogenous GA level was very 

low, DELLAs could repress the MYBs expressions. Meanwhile, in penta mutant, no 

GA was required for the expression of these three MYBs due to the lack of DELLA 

functions. Therefore, GA promotes the expression of these three MYBs via 

suppression of DELLA functions. 

In order to single out which DELLA (RGL1, RGL2, RGA and GAI) is 

dominant in repression of these MYBs, MYB expressions were studied in four 

quadruple mutants in which only one of the four DELLAs remained. Results showed 

that their expressions were lower in Q1 (ga1-3 rgl1-1 rgl2-1 gai-t6) and Q3 (ga1-3 

rgl1-1 rga-t2 gai-t6) mutants compared to Q2 (ga1-3 rgl1-1 rgl2-1 rga-t2) and Q4 

(ga1-3 rgl2-1 rga-t2 gai-t6) mutants (Fig. 5.1), suggesting that RGL2 and RGA, not 

GAI or RGL1, were the main DELLAs in repressing the expression of these three 

MYBs. Furthermore, the high expression of AtMYB21, AtMYB24 and AtMYB57 in Q2 

and Q4 mutants correlated with the normal flower phenotype in these mutants. While 

in Q1 and Q3 mutants, where MYBs expressions were relatively low, flower 

development were arrested (Cheng et al., 2004). This suggested that the expression of 

these MYBs was probably required for normal floral development. 
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Fig. 5.1. Expression of AtMYB21, AtMYB24 and AtMYB57 were both GA and JA 
dependent. All of these three genes were down regulated in ga1-3 and opr3 mutants. 
Detailed analysis showed that these three genes may be repressed by RGL2 and RGA 
because their expressions were repressed in Q1 and Q3 mutants. Unopened flower 
buds were used for Laer, ga1-3, Q1, Q2, Q3, Q4 and penta; whole inflorescences 
(opened and unopened flowers) were used for opr3 mutant and Ws. (Q1: ga1-3 rgl1-1 
rgl2-1 gai-t6, Q2: ga1-3 rgl1-1 rgl2-1 rga-t2, Q3: ga1-3 rgl1-1 rga-t2 gai-t6, Q4: 
ga1-3 rgl2-1 rga-t2 gai-t6, penta: ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6). 
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5.3.2 Isolation and characterization of the insertion mutants of MYB21, MYB24 

and MYB57  

Both AtMYB21 and AtMYB24 are flower-specific genes and function in stamen 

development (Noji et al., 1998; Shin et al., 2002; Mandaokar et al., 2006). Expression 

analysis showed that AtMYB57 is also a flower specific gene (Fig. 5.6). To further 

investigate their roles in GA signaling, we pursued a reverse genetic approach and 

identified T-DNA mutant alleles for these three MYBs from the Salk Institute 

Genomic Arabidopsis Laboratory (SIGnAL) database (Alonso et al., 2003). Mutant 

alleles were isolated and designated as myb21-b (SALK_042711) and myb21-d (Gabi-

Kat (N311167)) for MYB21, myb24-a (SALK_065218) and myb24-b (SALK_017221) 

for MYB24, and myb57-1 (SALK_065776) for MYB57 (Fig. 5.2A, Table 4.5). After 

clearing the genetic background, we found that none of these null alleles showed any 

detectable differences from wild type with the exception of myb21-b and myb21-d 

(Fig. 5.3A-E). MYB21 transcripts were dramatically reduced in myb21-b mutant allele 

and barely detectable in myb21-d mutant allele (Fig. 5.2B). The early developed 

flowers on homozygous myb21 plants were sterile but the late developed flowers were 

fertile just as reported by Mandaokar et al., 2006. The stamen filament elongation of 

early developed flowers of myb21 mutant alleles is arrested (Fig. 5.3B-C). These data 

demonstrated that AtMYB21 may be the key player for the early developed flowers 

and its function might be dispensable for the late developed flowers due to functional 

redundancy.  

 

5.3.3 AtMYB24 and AtMYB57 function additively with AtMYB21 in controlling 

 filament elongation, anther development and seed production  
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Fig. 5.2. T-DNA insertion mutant alleles and sequence alignment of AtMYB21, 
AtMYB24 and AtMYB57.  (A) Schematic diagram of the genomic structure and T-
DNA insertion sites for mutant alleles of three MYB genes (black boxes represent 
exons and lines represent introns). (B) Expression study in mutant alleles and WT. 
MYB24 and MYB57 expression was examined via RT-PCR and MYB21 expression 
was examined via RNA gel blot hybridization. (C) Amino acid sequence alignment of 
AtMYB21, AtMYB24 and AtMYB57. In addition to the MYB domain, they shared 
another aa motif, called NYWS

V/M
E/D/DlWP/S (Kranz et al., 1998). There are 61.6% 

identity between AtMYB21 and AtMYB24 and 51.0% identity between AtMYB21 
and AtMYB57. 
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Fig. 5.3. Flower phenotype in different mutants. (A-E) Flowers of Col-0 and single 
mutant alleles of AtMYB21 (myb21-b and myb21-d), AtMYB24 (myb24-b) and 
AtMYB57 (myb57-1). (F-I) Flowers of double mutants (myb21-b myb24-b, myb21-d 
myb24-b, myb21-b myb57-1 and myb24-b myb57-1). (J-K) Flowers of triple mutants 
(myb21-b myb24-b myb57-1 and myb21-d myb24-b myb57-1). 
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Based on the phylogenetic tree, AtMYB24, AtMYB21and  AtMYB57 belong to 

subgroup 19 of R2R3-MYB gene family (Kranz et al., 1998).  Overall, MYB24 and 

MYB21 shared 61.6% identity at amino acid level and 51.0% identity between 

MYB21 and MYB57 (Fig. 5.2C). To elucidate if their functions are overlapping, 

crosses were made among homozygous myb21-b&d, myb24-b, and myb57-1 plants. 

Four double mutants (myb21-b myb24-b, myb21-d myb24-b, myb21-b myb57-1, and 

myb24-b myb57-1) and two triple mutants (myb21-b myb24-b myb57-1 and myb21-d 

myb24-b myb57-1) were generated and used for further phenotypic analysis. 

Flower development for all the double and triple mutants are normal before 

flower stage 12 (Smyth et al., 1990). The flower development of myb24-b myb57-1 

mutant was indistinguishable from wild type (Fig. 5.3I). The early developed flowers 

in myb21-b myb57-1 mutant showed a similar short stamen phenotype to that of 

myb21-b single mutant (Fig. 5.3H). However, myb21-b myb57-1 mutant was unable to 

set seeds as well as the myb21-b single mutant (Fig. 5.4, Table 5.1). This implied that 

MYB57 had additive effects on MYB21 for late developed flowers in either filament   

elongation or processes after pollination. Stamens of myb21-b myb24-b and myb21-d 

myb24-b mutants were typically shorter than their myb21 and myb24 counterparts and 

failed to fully extend above stigma at stage 13 (Fig. 5.3F-G). These data suggested 

that MYB24 may enhance the function of MYB21 in filament elongation. With the 

exception of filament elongation, pollen development appeared to be morphological 

normal in myb21-b myb24-b plants. However, in myb21-d myb24-b mutant, anther 

development was also affected (Fig. 5.3G), suggesting that MYB24 might function 

redundantly with MYB21 in controlling anther development. 
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Fig. 5.4. Characteristics of bolts of different mutants. Bolts of myb57-1 and 
myb24-b were indistinguishable from the Col-0 wild type control. Early developed 
siliques of myb21-b and myb24-b myb57-1 failed to set any seeds, late developed 
siliques were normal in these two mutants. Bolts of myb21-b myb57-1 and myb21-b 
myb24-b exhibited sporadic setting of siliques, where majority of siliques failed to set 
any seeds, with occasionally fully or partially filled siliques were set. Bolts were from 
45 days old plants. The triple mutant myb21-b myb24-b myb57-1 was almost sterile 
except occasionally some siliques were set.  
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Reciprocal crosses between myb21-b myb24-b plants and wild type plants 

demonstrated that their mature pollens were viable and their female parts were fully 

fertile (data not shown). Although the triple mutant (myb21-b myb24-b myb57-1) had 

stamens similar to that of myb21-b myb24-b double mutant, its phenotype was more 

severe in seed production (Fig. 5.3F, G, J, K, and Fig. 5.4). Both myb21-d myb24-b 

and myb21-d myb24-b myb57-1 plants do not set seed at all (data not shown). 

However, for myb21-b myb24-b plants and myb21-b myb24-b myb57-1 plants, we 

occasionally observed that in the same inflorescence, some flowers did not set seeds; 

however, for other flowers they were able to develop very good siliques with seeds 

inside (Fig. 5.4). It is highly possible that environmental factors may influence the 

male fertility in the myb21-b myb24-b, myb21-b myb57-1 as well as myb21-b myb24-b 

myb57-1 mutants. 

 

Table 5. 1. Fertility examinations for mutants grown at LD condition 
Col-0/ mutant Total Number of 

Siliques/Primary 
Inflorescence 

Total Number of Filled 
Siliques/ Primary 
Inflorescence 

Percentage 
of Filled 
Siliques 

Col-0 21.1±5.1 20.7±5.0 98.1±2.7 
myb57 22.3±5.7 20.3±6.6 89.4±1.27 
myb24 28.1±3.8 27.3±3.8 97.3±2.9 
myb21 26.3±4.8 17.1±5.4 64.2±10.7 
myb24myb57 26.3±6.9 22.6±6.8 85.1±6.3 
myb21myb57 30.6±6.4 9.4±6.5 29.5±17.3 
myb21myb24 30.8±9.5 5.6±4.3 16.9±11.8 
myb21myb24myb57 33.4±7.5 1.6±1.5 4.1±3.6 
aSiliques formed in primary inflorescence of plants  were scored at 45 days 

 

 

5.3.4 AtMYB21 and AtMYB24 act downstream of DELLA proteins in 

controlling filament cell elongation and anther development 

  Application of exogenous GA cannot rescue the stamen development in 

myb21 myb24 mutant (data not shown), implying that AtMYB21 and AtMYB24 may be 
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GA-response genes. Their expressions were restored to WT level in penta (ga1-3 

rgl1-1 rgl2-1 rga-t2 gai-t6) mutant, suggesting that GA regulates MYB21 and MYB24 

through DELLA proteins. To confirm this hypothesis, we crossed myb21-b myb24-b 

mutant to penta mutant (ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6) to generate hexa1 mutant 

(ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6 myb24-b), hexa2 mutant (ga1-3 rgl1-1 rgl2-1 rga-

t2 gai-t6 myb21-b) and hepta mutant (ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6 myb21-b 

myb24-b). Analysis of these mutants revealed that flowers in hexa1 and hexa2 

mutants are morphologically normal. However, seed production in these two mutants 

was dramatically reduced when compared to penta mutant ((Fig. 5.5A, data not 

shown). These obsevation demonstrated that myb21-b and myb24-b mutations were 

epistatic to mutations on DELLA. 

  Hepta mutant plant displayed no differences from penta mutant plant in 

vegetative growth. However, hepta mutant showed a short filament phenotype 

identical to the myb21-b myb24-b double mutant (Fig. 5.5A). Unlike in the myb21-b 

myb24-b double mutant, anther development in hepta mutant was affected. In most 

cases, anthers in hepta mutant do not dehisce. However, occasionally some anthers 

can dehisce (Fig. 5.4A). These results suggested that AtMYB21 and AtMYB24 may act 

downstream of DELLA genes in controlling stamen filament elongation and anther 

development. SEM analysis of epidermal cells of stamen filament of hepta, hexa1, 

hexa2, and penta mutants showed that the arrestment of filament elongation in hepta 

mutant is due to cell elongation rather than cell division (Fig. 5.5B &C, Table 5.2), 

suggesting that  MYB21 and MYB24 act redundantly in controling the filament cell 

elongation instead of cell division. 
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Fig. 5.5. Absence of four DELLAs (GAI, RGA, RGL1 and RGL2) was unable to 
suppress the short stamen phenotype conferred by the loss-of-function of MYB21 
and MYB24. (A) Flower phenotype of hepta and hexa mutants. Stamen of hepta (ga1-
3 rgl1-1 rgl2-1 rga-t2 gai-t6 myb21 myb24) mutant showed a more severe phenotype 
than myb21-bmyb24-b with majority of anthers undehisced. Stamen of hexa1 (ga1-3 
rgl1-1 rgl2-1 rga-t2 gai-t6 myb24) and hexa2 (ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6 
myb21) mutants were similar to penta mutant. (B) SEM of epidermal cells of top and 
middle part of stamen filament of different mutants. (C) Comparison of stamen and 
pistil lengths among different genotypes. 
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Table 5. 2. Number of epidermal cells in filament 
 penta 

(n=20) 
hepta 
(n=30) 

hexa1 
(n=30) 

hexa2 
(n=30) 

Cell number 14±1.2 13±1.5 13±1.1 14±1.1 
 

5.3.5 Expression pattern of AtMYB21, AtMYB24 and AtMYB57 

The absence of AtMYB21and AtMYB24 together resulted in short stamen. We 

speculated that the expressions of these genes may be correlated with the phenotype. 

Firstly, we investigated the expression of AtMYB21, AtMYB24, and AtMYB57 in 

tissues such as inflorescences, cauline leaves, rosette leaves, bolting stem, and roots 

by RT-PCR. It was found that all of these three genes were detectable only in the 

inflorescences (Fig. 5.6A). Meanwhile, expression of AtMYB21 and AtMYB24 was 

detected in all four floral organs (sepal, petal, stamen and pistil). Expression of 

AtMYB57 was also detected in sepal, stamen and pistil (Fig. 5.6A). 

Expression pattern of AtMYB21 in flowers was also examined by in situ 

hybridization. Strong signals were detected in cells between the junction of anther and 

filament, where rapid filament elongation was hypothesized to occur at stage 13 for 

successful pollination (Smyth et al., 1990).  Besides the filament, strong expression 

was detected in the nectaries, ovules, as well as in the vascular regions of anthers (Fig. 

5.6B), indicating that AtMYB21 may function outside of stamens. 

To gain more information about MYB21 and MYB24, promoters of AtMYB21 

and AtMYB24 were fused to GUS to generate the promoter-GUS fusion constructs 

pMYB21::GUS and pMYB24::GUS. Similar GUS expression pattern was observed in 

both pMYB21::GUS and pMYB24::GUS plants. In contrast to the flower-specific 

expression pattern of AtMYB21 and AtMYB24 detected by RT-PCR and insitu 

hybridization, GUS staining in pMYB21::GUS and pMYB24::GUS plants was 

detected in the inflorescences as well as in other parts of the plants (Fig. 5.7 A-D). 
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Fig. 5.6. Expression patterns of AtMYB21, AtMYB24 and MYB57. (A) Tissue 
specific expression of AtMYB21, AtMYB24 and AtMYB57 was analyzed through RT-
PCR in different tissues and different floral organs. (B) AtMYB21 in situ hybridization 
in flowers. (VT: vascular tissue). 
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Strong GUS expression was observed in the vascular bundle of sepals, upper parts of 

pistils, and nectaries of flowers (Fig. 5.7B). GUS expression was only detected in the 

vascular bundles of the long stamens at stage 12 and later (Fig. 5.7B-C). There was no 

GUS expression in petals at all stages of flower development. Besides in flowers, 

strong expression was also observed in both end of the siliques (Fig. 5.7D), the 

vascular bundles of stems, roots and leaves, and especially in the newly emerged 

rosette leaves (Fig. 5.7A). These observations suggested that there may be additional 

regulatory elements outside of these cloned promoter regions of AtMYB21 and 

AtMYB24 to restricted their expression in floral organs.  

 

5.3.6 Expression of AtMYB21, AtMYB24 and AtMYB57 is dependent on JA 

pathway  

In our previous experiments, we have shown that the expression of AtMYB21, 

AtMYB24 and AtMYB57 was repressed in Q3 (ga1-3 rgl1-1 rga-t2 gai-t6) mutant 

(Fig.5.1). It was also shown recently that the expression of AtMYB21and AtMYB24 

was downregulated in opr3 mutant (Mandaokar et al., 2006) (Fig. 5.1). These results 

raised questions about the possible interaction between the JA and GA pathways in 

regulating stamen development. Conceptually, there are three different models for the 

interaction. The first model implies that GA regulates the expression of these MYBs 

through JA pathway. The second model is identical to the first but in reverse. The 

third model is that GA and JA do not act in a sequential manner but rather via parallel 

pathways, both of which are needed for the expression of these MYBs. To test these 

divergent predictions, the flowers of Q3 and opr3 mutants were sprayed with GA and 

MeJA. After three independent experiments, we consistently observed that JA-

treatment induced the expression of the three MYBs both in the ga1-3 gai-t6 rga-t2  
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Fig. 5.7. Expression of GUS reporter in pMYB21::GUS transgenic plants. (A) 
GUS staining in pMYB21::GUS plants. (B) Flower of pMYB21::GUS plants at stage 
12. (C) Flower of  pMYB21::GUS plants at stage 10. (D) Inflorescence and silliques 
of pMYB21::GUS plants. 
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rgl1-1 quadruple (Q3) and opr3 mutants at 18 hrs (Fig. 5.8). On the other hand, 

compared to MeJA treatment, induction of MYBs expression by GA was much slower 

in Q3 mutant. The expression of these three MYBs was detected 3 days after GA 

treatment when normal flower developed in GA treated mutants (Fig. 5.8). However, 

GA could not induce the expression of MYBs in opr3 mutant even 4 days after GA 

treatment (Fig. 5.9). These data demonstrated that in the absence of JA, GA was 

unable to induce the expression of MYBs, suggesting that JA pathway might act 

downsteam of GA pathway in regulating the expression of MYBs. 

To exclude the possibility that GA pathway may be affected in JA deficient 

opr3 mutant, we checked the expression of GA biosynthesis and responsive genes, 

GA2ox1, GA3ox1 and GA20ox2, in different GA-related mutants and opr3 mutant. 

GA2ox1, GA3ox1 and GA20ox2 are key GA biosynthesis genes that contribute to the 

biosynthesis of bioactive GA. These three genes are also under negative feedback 

regulation of GA signal pathway. RT-PCR results showed that GA2ox1 expression 

was down-regulated, while GA3ox1 and GA20ox2 expression was up-regulated in GA 

deficient ga1-3 and Q3 mutants, while expression of these genes was restored to 

normal level in penta mutant (Fig. 5.10A, B). Interestingly, similar expression level of 

these genes was observed in opr3 mutant and Ws control (Fig. 5.10A, B). These 

results supported that GA biosynthesis and signaling pathways were normal in JA 

deficient opr3 mutant. 
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Fig. 5.8. Induction of expression of AtMYB21, AtMYB24 and AtMYB57 by GA 
and JA in Q3 mutant. JA induced the expression of AtMYB21, AtMYB24 at 18h after 
treatment. Induction of expression of AtMYB57 by JA was detected at 48h after 
treatment. The induction of expression of three MYBs by GA was detected 3 days 
after treatment. DAD1 expression was induced at 48h after GA treatment (Q3: ga1-3  
rgl1-1 rga-t2 gai-t6). 
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Fig. 5.9. Induction of expression of AtMYB21, AtMYB24 and AtMYB57 by GA 
and JA in opr3 mutant. GA responsive genes were induced (GA2ox1) or repressed 
(GA3ox1 and GA20ox2) at 18 h after GA treatment, indicating that the GA signaling 
pathway was not affected in opr3 mutant. However, GA was unable to induce the 
expression of AtMYB21, AtMYB24 and AtMYB57 even 4 days after treatment in opr3 
mutant, suggesting that GA-induced expression of these three MYBs was JA-
dependent. 
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Fig. 5.10. Expression of GA and JA responsive and biosynthesis genes in 
different mutants. (A) RT-PCR results of GA and JA response and biosynthesis 
genes in different GA and JA related mutants. (B) Northern blot of GA and JA 
biosynthesis genes in different GA and JA related mutants. 
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5.3.7 DAD1 expression was GA and DELLA dependent 

Based on the above experiments, we hypothesized that GA may act upstream 

of JA pathway in regulating the expression of MYBs. The fact that JA was able to 

induce the expression of MYBs and JA response gene (LOX2) in Q3 mutant indicated 

that Q3 mutant could response to JA correctly.  

In order to find out if JA biosynthesis pathway was affected in Q3 mutant, 

expression of JA biosynthesis genes including DAD1 (Defective in anther dehiscence 

1), LOX2 (Lipoxygenase 2), AOS (Allene oxide synhase), AOC1 (Allene oxide cyclase 

1, At3g25760), AOC 2 (At3g25770), AOC 3 (At3g25780), AOC 4 (At1g13280) and 

OPR3 (OPDA reductase 3) was examined in different GA and JA mutants (Fig. 5.11, 

Stenzel et al., 2003b). In the JA deficient opr3 mutant, we found that with the 

exception of LOX2, AOC1, and OPR3, which showed reduced expression in opr3 

mutant, all the other genes were expressed at similar levels in opr3 mutant and Ws 

control. However, their expression in GA-related mutant was more complicated. We 

found that the expression level of AOS, AOC1, AOC3, AOC4 and OPR3 did not show 

significant differences in all GA-related mutants and Ler control, while the expression 

of AOC2 was significantly induced in ga1-3 mutant and then restored to WT level in 

Q3 and penta mutants. In contrast, the expression of LOX1 and LOX2 was reduced in 

ga1-3 mutant and kept at a similar level in Q3 and penta mutants (Fig. 5.10A, B). 

These data suggested that GA and DELLA proteins might be required for the 

regulation of these genes.  

DAD1 expression was found to be down regulated in both ga1-3 and Q3 

mutants and partially restored in penta mutant, indicating that GA may regulate the 

expression DAD1 via suppression of DELLA protein (Fig. 5.10A). DAD1 is a stamen 
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Fig. 5.11. JA biosynthetic pathway following wounding or pest attack and in 
pollen development (Devoto and Turner, 2003). The activation of a phospholipase 
(PLD or DAD1) may result from the elicitation of a membrane receptor. 
Abbreviations for enzyme names are in bold and underlined: AOC, allene oxide 
cyclase; AOS, allene oxide synthase; DAD1, defective anther dehiscence1; JMT, S -
adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase; LOX, lipoxygenase; 
OPR3, OPDA reductase3; PLD, phospholipase. Abbreviations for names of 
intermediates are in bold: 13-HPOT, 13-hydroperoxylinolenic acid; OPC 8 : 0, 3-oxo-
2(2'pentenyl)-cyclopentane-1-octanoic acid; OPDA, 12-oxo-phytodienoic acid.  
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specific gene encoding chloroplastic phospholipase A1 protein that catalyzes the 

initial step of JA biosynthesis. Mutation in DAD1 resulted in a typical JA-deficient 

phenotype in anther dehiscence, pollen maturation and flower opening (Ishiguro et al., 

2001). This phenotype is quite similar to that of myb21-d myb24-b double mutant. It is 

reasonable to speculate that GA modulates the production of JA via DAD1 genes to 

regulate the expression of MYB21 and MYB24. Furthermore, GA was able to induce 

the expression of DAD1 prior to the induction of expression of MYB21 and MYB24 in 

Q3 mutant (Fig. 5.8), further suggesting that DAD1 gene expression is neccessary for 

GA induced expression of MYBs in Q3 mutant. 

 

5.3.8 Expression of AtMYB21, AtMYB24 and AtMYB57 is neccessary but 

insufficient for normal floral development in Q3 mutant 

AtMYB21, AtMYB24 and AtMYB57 act downstream of DELLAs in controlling 

filament elongation. Expression of AtMYB21, AtMYB24 and AtMYB57 was repressed 

and floral development was arrested in Q3 (ga1-3 rgl1-1 rga-t2 gai-t6) mutant (Cheng 

et al., 2004). It is speculated that expression of MYBs could rescue the male sterile 

phenotype of Q3 mutant. Based on the observation that MeJA could restore the MYBs 

expression in Q3 mutant, we analyzed the flowers of MeJA treated Q3 mutant. 

Interestingly, although MeJA was able to induce MYBs expression in Q3 mutant 

similar to opr3 mutant, we observed that the stamen development of MeJA treated Q3 

plants was still arrested (Fig. 5.12). However, in GA treated Q3 plants, expression of 

MYB21, MYB24 and MYB57 correlated very well with the recovery of normal floral 

development in Q3 plants. These results suggested that only expression of MYB21, 

MYB24 and MYB57 were insufficient for normal floral development in Q3 mutant, 

suggesting that besides these JA inducible MYBs, other more important factors 
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Fig. 5.12. Flower phenotypes of Q3 and opr3 mutants treated with mock, JA and 
GA. GA was able to rescue the flower phenotype of Q3 but not able to rescue the 
flower of opr3. On the contrary, JA was able to rescue the flower phenotype of opr3 
but not able to rescue the flower of Q3. Flower pictures were taken 4 days after JA 
and GA treatment (Q3: ga-13rgl1-1rga-t2gai-t6). 
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which are regulated by GA may be needed for normal floral development in Q3 

mutant.  

 

5.4 Discussions 

The presence of active cross-talk between hormone signaling pathways have 

been indicated in many developmental processes. GA and ABA antagonized in 

regulating developmental transition from embryogenesis to seed germination. 

Evidences showed that ABA repressed the GA induction of GAMYB. It was suggested 

that ABA block the GA response between SLN1 and GAMYB (Gόmez-Cadenas et al., 

2001; Zentella et al., 2002; Olszewski et al., 2002). Recently, it was reported that in 

germinating Arabidopsis seeds, ABA induces the accumulation of microRNA 159 

(miR159) to mediate the cleavage of GAMYB: MYB101 and MYB33 (Reyes and Chua, 

2007).  

It was reported that auxin was necessary for GA-mediated Arabidopsis root 

growth by promoting GA-dependent degradation of DELLA proteins (Fu and Harberd, 

2003). In contrast, ethylene inhibits Arabidopsis root growth by delaying the GA-

induced destabilization of DELLA (Achard et al., 2003). Recently, multiple 

interactions between ethylene and GA signal transduction pathways were revealed in 

a detailed analysis of responses induced by ethylene and GA in different ethylene and 

GA related mutants (De Grauwe et al., 2007). 

Flower development is a highly coordinated process. Many signaling 

pathways and genes have been implied to be involved in these processes. Hormone-

hormone interaction in controlling flowering has been indicated recently. It was found 

that stress induced hormone ethylene control floral transition via DELLA-dependent 

regulation of floral meristem-identity genes LEAFY and SUPPRESSOR OF 
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OVEREXPRESSION OF CONSTANS 1 (SOC1) (Achard et al., 2007). Although it has 

been known that both GA and JA are involved in stamen development, no report 

showed that they act independently or interactively. From our initial attempt to define 

the relationship between DELLA proteins and floral development, we found that there 

might be interactive relationship between GA and JA in controlling stamen 

development.  

As repressors of floral development, the molecular mechanism of DELLA 

repressing floral organ development is largely unknown. GAMYBs are the well 

studied candidates which act downstream of DELLAs in controlling anther 

development (Millar and Gubler, 2005). However, this group of transcription factors 

is regulated post-transcriptionally by miR159. By microarray analysis we showed that 

GA regulates expression of AtMYB21, AtMYB24 and AtMYB57 via suppression of 

DELLA proteins. Flower development in Q3 mutant was arrested at flower stage 10, 

while flower development in Ler and penta mutant progresses well. Although we have 

minimized this stages effect by using unopened young flower buds in Ler and penta 

mutant. We could not strictly compare the flower stages in all these genotypes. 

Therefore, it is still possible that downregulation of MYB21, MYB24 and MYB57 in 

Q3 mutant may result from this stages differences among these different genotypes. 

Therefore these MYBs could be indirectly regulated by DELLA proteins or GA 

signaling. 

It was reported that JA is also required for the expression of these MYBs (Fig. 

5.1, Mandaokar et al., 2006). Genetic studies have shown that these three MYBs are 

required for normal stamen development. Surprisingly, JA induces the expression of 

these MYBs in the absence of GA. However, GA could not induce the MYBs 



 157

expression in the absence of JA. Thus GA may act upstream of JA pathway to control 

floral development.  

It is possible that JA induces the expression of MYBs via modulation of 

stability or activity of DELLA proteins. However, if JA induces the expression of 

MYBs via destabilization or inactivation of RGL2 protein, both MYBs expression and 

flower development of JA-treated Q3 mutant (ga1-3 rgl1-1 rga-t2 gai-t6) should be 

restored to normal, as observed in penta mutant (ga1-3 rgl1-1 rgl2-1 rga-t2 gai-t6). 

The fact that the flower of JA-treated Q3 plants is identical to that of control-treated 

Q3 plants suggested that JA could not modify the function of RGL2 in the absence of 

GA. Results showed that MYBs are highly expressed in JA-treated Q3 mutant at 18h 

after JA treatment. However, Preliminary results showed that RGL2 protein level 

remains high at this time course (data not shown). These data suggested that 

destabilization of RGL2 protein may not be necessary for JA induced expression of 

MYBs in Q3 mutant. In contrast, JA may function downstream of DELLA proteins in 

controlling the expression of these MYBs. However, we could not exclude that JA 

could play a role for GA regulated degradation of DELLA. Future study of the GA 

induced degradation of DELLA proteins in JA deficient mutants would be a great 

help in addressing this question.  

JA biosynthesis was regulated by OPDA compartmentalization and a JA-

mediated  positive feedback loop (Sasaki et al., 2001). Biotic and abiotic stresses also 

induce JA formation (Howe et al., 2000; Maucher et al., 2000; Ziegler et al., 2000). 

Although transcriptional up-regulation of JA biosynthesis genes (DAD1, LOXs, AOS, 

AOCs and OPR3) was observed upon treatment with JA or biotic and abiotic stresses, 

the accumulation of mRNA of JA biosynthesis genes was not always accompanied by 

endogenous formation of JA (Kramell et al., 2000; Miersch and Wasternack, 2000). 
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Furthermore, wounding induced JA formation prior to the accumulation of AOS or 

AOCs mRNA (Ziegler et al., 2001; Stenzel et al., 2003a). In our experiment, we found 

that JA biosynthesis gene DAD1 was down-regulated in both ga1-3 and Q3 mutants, 

implying that GA may be required for the expression of DAD1 to control the 

production of JA via repression of DELLA proteins. On the other hand, the fact that 

the induction of DAD1 expression prior to the expression of MYBs by GA in Q3 

mutant strongly support our hypothesis that GA may regulate the MYBs expression 

via modulation of the biosynthesis of JA. In addition to DAD1, we also observed that 

expression of JA responsive genes LOX1 and LOX2 was down-regulated in ga1-3 

mutant (Fig. 6.10A, B). In contrast, some JA biosynthesis genes such as AOC2 were 

up-regulated in ga1-3 mutant. These observations suggested that GA may be one of 

the endogenous signal involved in the regulation of JA biosynthesis and responsive 

genes. In flowers of dad1 null mutant, the JA levels were only 22% of that of WT 

(Ishiguro et al., 2001), indicating that limited initial substrate generation by DAD1 

reaction may act as a control point for JA biosynthesis in flowers. Therefore, it is 

highly possible that reduced expression of DAD1 in Q3 or ga1-3 mutant may result in 

relative low JA production. Future quantification of JA concentration in these GA 

deficient mutants will be critical to our understanding of the relationship between JA 

and GA.  

Genetic studies have shown that AtMYB21, AtMYB24 and AtMYB57 are 

indispensable for flower development. The flower phenotype of myb21-d myb24-b 

myb57-1 triple mutant is similar to that of JA deficient mutants: for example opr3 and 

dad1 mutants. It is interesting to study if expression of these MYBs in opr3 or dad1 

mutants could rescue the flower phenotype of these mutants. Both ga1-3 and Q3 

mutants showed a more severe flower phenotype than myb21-d myb24-b myb57-1 
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triple mutant. The fact that expression of these MYBs in Q3 mutant was not enough to 

rescue the flower phenotype of Q3 mutant indicated that these MYBs were not the 

master check-point genes for GA signaling in controlling floral development. These 

data indicated that modulation of JA pathway may be only one of branches of GA 

function in regulating floral development.  

Expression pattern of MYBs (AtMYB21, AtMYB24 and AtMYB57) basically 

correlates with their respective functions. All of these three genes are highly enriched 

in stamen compared to the other floral organs. The stamen enriched expression pattern 

is consistent with their functions in controlling stamen filament elongation and anther 

development. Besides in stamen, expression was also detected in other floral organs, 

indicating that they might play a role in these organs. However, genetic study showed 

that only stamen showed phenotype in myb21-d myb24-b myb57-1 triple mutant. It is 

possible that these genes might be regulated at post-transcription level or other genes 

might function redundantly outside stamen. Promoter-GUS fusion study showed a 

different expression pattern with the endogenous genes, indicating that there might be 

other regulatory element outside the promoter regions. Therefore, further study in 

protein levels or translation-GUS fusion studies will greatly broad our understanding 

of the function of these genes. 
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Chapter 6 

General Conclusions and Future Perspectives 

GA is a general regulator of floral development. However, the mechanism of 

GA regulating floral development is largely unknown. Through this study, we found 

that GA promotes stamen filament cell elongation rather than cell division. In addition, 

GA regulates the cellular developmental pathways of anthers leading from microspore 

to mature pollen. Using novel combinations of loss-of-function mutations, we 

determined that DELLA proteins are the repressors of stamen filament elongation and 

microsporogenesis in Arabidopsis. GA promotes stamen development through 

repression of DELLA proteins RGA, RGL1 and RGL2. 

Through microarray analysis, we identified 273 DELLA-up genes and 360 

DELLLA-down genes in Arabidopsis flowers. Among the DELLA-down genes, there 

are several MYBs that are different from those already known GAMYBs. Genetic study 

showed that three DELLA-down MYBs (AtMYB21, AtMYB24 and AtMYB57) are 

necessary for normal stamen development and may function downstream of DELLA 

proteins in controlling stamen development. It has been shown that JA is also required 

for the expression of these MYBs. This information prompts us to speculate that there 

might be interaction between GA and JA in controlling expression of these MYBs. 

Our results indicated that JA may act downstream of GA in controlling these MYBs. 

Further study suggested that GA possibly regulates JA biosynthesis gene, DAD1, to 

control the JA production via suppression of DELLA proteins. 

Based on these results, a model was proposed on GA-regulated the petal and 

stamen development (Fig. 6.1). As shown in the model, GA promotes the 

development of petal and stamen via suppression of DELLA proteins. DELLA 

proteins repress the development of petal and stamen through activating or inhibiting 
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 Fig. 6.1. Model of GA regulating petal and stamen development. Arrows and T-
bars indicate induction and repression, respectively. Effects that were supported by 
strong evidences are represented solid lines. Dotted lines represent proposed effects. 
Dotted arrow for the JA biosynthesis part represents more than one step is involved. 
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a subset of DELLA-up genes or DELLA-down genes, respectively. There is cross-talk 

between GA and JA in regulating stamen development. GA is required for the 

expression of DAD1, LOX1 and LOX2. GA promotes DAD1 expression through 

suppression of DELLA proteins. Therefore, GA may regulate expression of AtMYB21, 

AtMYB24 and AtMYB57 through modulation of JA biosynthesis pathway.  

Although a lot of progress has been achieved through this study, there are still 

many mysteries regarding how GA regulated floral development. We have identified 

DELLA-up and DELLA-down genes for floral development. However, the way these 

DELLA-regulated genes are organized is largely unknown. Further studies defining 

the hierarchic relationship among these DELLA regulated genes will be necessary for 

our understanding of the DELLAs’ functions in flower development. 

We suggested that JA might act downstream of GA in regulating expression of 

AtMYB21, AtMYB24 and AtMYB57. However, besides AtMYB21, AtMYB24 and 

AtMYB57, JA might also regulate other DELLA regulated genes in controlling stamen 

development. Identification of both GA and JA regulated genes would be of great 

help to the understanding of GA regulated flower development. Expression of 

AtMYB21, AtMYB24 and AtMYB57 could not rescue the flower phenotype of Q3 

mutant, suggesting that these MYBs may not be the master check-point genes for GA 

regulated flower development. Therefore, further study will also be needed to find out 

what these genes or pathways are.  

The interaction of GA and JA might be more complicated than we have 

reported. Like ethylene and auxin, JA could also be required for the GA induced 

degradation of DELLA proteins. Our results suggested that DELLA proteins might 

repress the expression of JA biosynthesis gene DAD1. However, the molecular 

mechanism of how DELLA proteins regulate DAD1 expression is still unknown: is 
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DAD1 the direct or indirect target of DELLA proteins?  Therefore, future work would 

be needed to address these interesting questions. 
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