COITROL SYETEMS ANAEYSIS AND DEGIGN

VIA
THE MOST GONTROILABLE M OD OBSEEVABLE SURSYSTEMS

$3 y$
Chau Chun Bnn

A thesis
Suunitted in partial Eunfillment of tine cequisements for the dagree of Master of Bhis.osophy in tie Drpartment of g2Getronics The Chinese ULiversity of Mong Kong
Decamber, 1984

459334

$$
+\sigma \quad \text { i }
$$

The author is greatly indobted to the sinporvisor, rwof. Chik-Fan Chen, for his eridance amd tmopiring advice duking the phoaration of this thesis. 'ne author aiso expresses his thanks to Dr. G. P. Krong for his valuable diecussions, and fiss. Loung Eor hor halp in dere loping the $I B M / 370$ ApL software proprams.

1. GENFRAL SURVEY
2. Tntroduction
3. The mathomatical tool
4. REDUCED ORDER MODETLING
5. Mntroduction
?. Freģuency domain analysis
6. Cortrollability belanced representation
7. The proposed model reduction procedure
4.1 The al处orithm
8. 2 Moperties of the reduced order model
4.2.1 Minimality of the reduced model
4.2.2 Dffect of soaling on the procedure
4.2.3 The dual of the ratuced ordex modelling procedure
4.2.4 The impulse response of the reduced model
9. 5xamples
10. Discussions
11. SUBOPTIMAL CONTROL
12. Tnt.roduction
13. Linear regulator
14. Almost unoontrollable system and suboptimal control
3.1 Ontimal control and unoontrollable system
3.2 Almost uncontrollable system and soboptimal control
15. GIEDOPTIMAL GONTROL
16. Tite belamced raperantation
17. The prosent mathod
j.l State weighting matrix and implicit ovtput vactor
5.2 Imput waighting matrix and the wadified input mitrix
5.3 Derivation of the suboptimal control Law
18. Bmbuples
19. The improved alcorithm
20. Discrassion
21. GONCFINSIONS

CMAPTER 1

GEMRRAL EUWVEY

2．Intこoduction

Tise aitalysis awd weßign of control sj゙サ立ems are uoually done on a mathomatical model for the porticular physical aỷtem comcsrned．The syitem medel may turn gut to be of kigh sxder．To resuce the eomputational burden and to miximize the cost for bie paxticular anclysis and design problems，aonetimes it is desired to raduce the order of the aystem medel．A list of various matnods ard a olamafication Uf tio wathods can to sound in tio paper（Gerosio and ME2anese 2376）。

A common piaiovophy adoptad in comiving a reduced ozder wodel is co cumbider the parivoular gitvon sjrtem mosel zs a vounosito ayistom of a duminant subeystem and a mon－ dominant oulisystem in a cestain somse．It is a whinnknown Pact that no roduced order model oan meet all purposes bhurefore the dominant gubeystom should retain the properties of tiae usiginal ayistem which wire of fundenental importance in tion pazticular ancilysis and deaign protems．For imetance， if for tio case tiat it is the stoady state ragponse of the given syiztem which is of fuacamental inportance，the acouracy of tio trunsient rieponse of the raduced order

The ajove comblueration is dapicted in Pig．1．And
the dominant subsystem is taken ws the rediced arder mociol for the pazicular pwoblem yy dibcarding the roze...dominant subsystem and -Gnoring the couslings botiven the ghooystems.

Fig. 1

It is known that when a subsystem of a composite syutem is completely uncelitrollable or is comiletely unobsorvable, the subsystem will not cortribute to the imput-output chaxacteristics of the composite gystem. Therefore, from the input-output point of riew, a dominant subsystem can de darined as the subejstem whitch is completely controllable and conpletely observable。
 controllable and completely obewsvable，the tetter corsideration may not we wpilied．However，when the original system is couposed of a＇wost couscollable＇and／or＇most observable＇subsystem，a schuced order molel can still be found．Moore（1981）darived a wesuced order model whith corresponds to the＇stost conefollable wind mast obsarvable＇ subsystem of tiae given ayistem。 While，in the ratuced osder modelling piocedure of Kteng（i982），called vptimal abeinod
 as the reciuced oider model．It is important to point out taat in uxder tuat one can Luantify the＇most armotrollable＇ or the＇ruost unsaxvable＇subsystem，ane should have a measure of the＇cogree of contwollability＇and a mensure of the＂ciegree of oissax＂vability＂．No今ice that the maraure may have a determinant influence on the rivionses af the reduced order models．The wたdsure of moore（1981）will be shown to stress in tine ataday state ratyonse of the system，while that of Kwong（i982）stoosses on the titersient

In this thesis，a Toduced arder modelling prosedure will be given in Chapter 2. Tae puoposed procadure shares the same point of view as that of Kwong（1982）axcept
that the most ubsurvable subuystem is ertracted through an internal courdinate trams Cormation of the given sys tem to take into account of tie input coupling esfect in the reduced order model. The precadure of Twong (1982) i.enores the input coupling afrect ecopletely. In Cbupter 3 wo consider the problem of dawiving a suboptimal control kaw for the Linear ragulator wioblem. Since it ts the gtaady state response which is of fundumental jtapertance hore, the mettodology of Moore (1981) is empioyed. In order that the offect of the weighting matrices in the cost fumetional may be taken into account in the suboptimal oostrol law, an implicit oucput vactor and a medified input voctor are introduced.
2. The mathematical tool

Singular value docesmosition is the mein mathmatical tool used to perform the urder reciuction. Sirigular relue decomposition is recognized as a reliable tectaique to find the rank of a macrix. An excellent review of the properties of singular value decomposition can be formd in (Klema and Laub 1\%80). For the purpose of onrpleteness, the singular value decompostion tucurem is given bolow.

Theorem (Klema and Laub 1980)
Int $A \leqslant R^{m \times n}$, then there exists orthogonal matrices $U \in R^{m \times m}$ and $V<R^{n \times n}$ such that

$$
\begin{equation*}
A=U \sum V^{\prime} \tag{2,1}
\end{equation*}
$$

where

$$
\Sigma=\left(\begin{array}{ll}
S & 0 \tag{2.2}\\
0 & 0
\end{array}\right)
$$

and $\mathrm{S}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ with

$$
\sigma_{1} \geqslant \cdot \geqslant \sigma_{k}>0
$$

Mote that the onlumns of U are called the left singulaz Tsotors of A while the eolumns of V are called the right singular vactors of A. Tbe rank of the matrix A is k. If the orthegonal matrices U and V are partitioned compatibly $\varepsilon, 3$

$$
\begin{align*}
& U=\left[\begin{array}{l:l}
U_{1} & U_{2}
\end{array}\right] m \tag{2.3}\\
& V=\left[\begin{array}{l:l}
k & V_{1} \\
V_{2}
\end{array}\right] n \tag{2.4}
\end{align*}
$$

then U_{i}, V_{i} Erovide orthonormal bases for the four fundamental subspaces: $\operatorname{Im} V_{1}=(\operatorname{ker} A)^{1}, \operatorname{Im} U_{2}=\operatorname{Im} A_{0}$ $\therefore m V_{2}=\operatorname{ker} A$ and $\operatorname{Im} H_{2}=(\operatorname{Im} A)^{\perp}$.

REDJCED OREER MODELLING

2．Intさのduction

In this ehapter an aderithm is mroposed for obtaining a raduced order meclel for a fiven system．The proposed method Is trased on ertracting the mest obstrvable subrpace of the given sjetem．The eftraction of the mest obstrvable artapace Is done theough an internal courdinate trangformation of the Eiven syitem model，called the＇ecatrollability peranced representation＇．The remsons for the raed to transform the given aytem model is twofold：first，to take into acoount the input coupling offect and acond，to make the aleorithm 1ndepondent of the internal coordinates of the original sy゙atem miclel．

Wa shall first raview the series axpasions of the wansfer Iumction in Section 2．The expansions of the transfer function at $s: 00$ and $s=0$ are eamjdered．This sis of help in interpreting the properties of the roduced order model．In Section 3，the＇controllability balanced Topresentation＇is introduced and some of the nroperties of the representation are diseussed．In section 4，along with the pxoposed aigerithm，the oftimal ehoined agexegation＇reduced order wedelling procodure of Krong （iy82）will be cutiined wad digeussed．The prosent mork
is in fact stimulated by the raper. In section j, mumarical

2. Proguency domain madysis

Cozoider a Iinear, timeminvariant mad ayyototically stable उyttem dofined by

$$
\begin{align*}
& \frac{y}{x}=A x+B u \tag{2.1a}\\
& y=C x \tag{2.210}
\end{align*}
$$

Whore x is tie mxl state vector, u is the rux input vootor and y is the pen output vector. $\{A, B, G\} a r e$ constant matrices
 (2.1) is buth completely onntrollable and mompetely obonvable. Wine transfer furction matrix of (2.1) is clofinod by

$$
\begin{equation*}
G(s)=C(s I-A)^{-1} B \tag{2,2}
\end{equation*}
$$

Rus hanment armpinsion of (2.2) about $s=\infty$ yiselds
whore

$$
\begin{equation*}
G(s)=\sum_{i=0}^{\infty} M_{i} s^{-(i+1)} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
M_{i}=C A^{i} B \tag{2,4}
\end{equation*}
$$

The onafifcient M_{i} of $(2,4)$ are termed the Merkov perameters of (2.1). On the other hand, the Lanrent ornansion of (2.2) a.bout s=0 yiglds

$$
\begin{equation*}
G(s)=\sum_{i=0}^{\infty} H_{i} s^{i} \tag{2.5}
\end{equation*}
$$

$$
\text { P. } 7
$$

where

$$
H_{j}=-C A^{-(j+1)} B, \quad j=0,1, \cdots
$$

are called the time moments of (2.1).

It is ©asily wroved that a simplified medel having
tine Maxkov yaxameters crose to that of the qriginal moclel will yield decurate transient revponse. Arid when the time moments of tioe bimplified welel are olose to that of the unginal uno, tiae zteady etate part of the ramponse will be retained.
3. Contrellability VElanced raprogentation

In this section the contrillability belanced roparsentation is dufined. Given the aviaptotically stable system wodel (2.1) which $\pm s$ also aswumed to be both controllable and obseavable, the cortrollability Eramman is dafined as

$$
\begin{equation*}
W_{c}=\int_{0}^{\infty} e^{A t_{B B^{\prime}} e^{A^{\prime} t}} d t \tag{3.1}
\end{equation*}
$$

and the cidedrability grammian zs darined as

$$
\begin{equation*}
W_{0}=\int_{0}^{\infty} e^{A^{\prime} t} C^{\prime} C e^{A t} d t \tag{3.2}
\end{equation*}
$$

It is \%hown (2rockett 2970) that the Eremmians ${ }_{c}$
and w o are the unique symmetric poeititye definite matrices which zabisfy the fellowing matrix Itipunov acuations

$$
A W_{c}+W_{c} A^{\prime}=-B B^{\prime}
$$

$$
\begin{equation*}
A^{\prime} W_{0}+W_{0} A=-C^{\prime} C \tag{3.4}
\end{equation*}
$$

Tie range zpaces of W_{c} and W_{0} span the controllable and cbascuable subspaces regpectively.

The gramians are not invariant umder the aquatelent transformations, and the gramians for the tramoformed syitem maich is given by

$$
\left\{\begin{array}{lll}
T^{-1} A T & T^{-1} B, & C T \tag{3.5}
\end{array}\right\}
$$

are

$$
\text { P. } 9
$$

$$
\begin{align*}
& W_{c}(T)=T^{-1} W_{c}\left(T^{-1}\right)^{\prime} \tag{3.6}\\
& W_{c}(T)=T^{\prime} W_{0} T \tag{3.7}
\end{align*}
$$

The notations $(T), W_{0}(T)$ denote the grammians of the original system $\{A, B, C\}$ under the transformation

$$
\begin{equation*}
x=T x_{1} \tag{3.8}
\end{equation*}
$$

To fascilitate future discussion, the eigenvalues for (3.1) are given by $\sigma_{C i}$ and

$$
\begin{equation*}
\sigma_{\mathrm{c} 1} \geqslant \sigma_{\mathrm{c} 2} \geqslant \cdots \cdot \geqslant \sigma_{\mathrm{cn}} \geqslant 0 \tag{3.9}
\end{equation*}
$$

end that the eigenvalues for (3.2) are given by $\mathcal{\sigma}_{0 i}$ and

$$
\begin{equation*}
\sigma_{01} \geqslant \sigma_{02} \geqslant \cdots \cdot \sigma_{o n}>0 \tag{3.10}
\end{equation*}
$$

Dofinition: The model $\{A, B, C\}$ is controllability balanced if the controllability gmamian of the model W is such that

$$
\begin{equation*}
W_{c}=I_{n} \tag{3.11}
\end{equation*}
$$

where I_{n} is the nth order identity matrix.
Definition: The model $\{A, B, C\}$ is ooservability balanced i.f the observability erammian of the model w_{0} is such that

$$
\begin{equation*}
W_{0}=I_{n} \tag{3.12}
\end{equation*}
$$

Lemma ja

The controllability (observability) balanced representation is invariant to orthogonal transformation.

Proof
$\operatorname{From}(3.6), W_{c}(T)=T^{-1} W_{c}\left(T^{-1}\right)^{\prime}$,
if
$W_{c}=I_{n}$

Enid $\quad T T^{\prime}=T^{\prime} T=I_{n}$
therefore
$W_{c}(I T)=T^{\prime} I_{n} T=I_{n}$
and the lemma is proved. The proof for the observability balanced representation is similar.

Ore can observe from the proof of Lemma J. that an algorithm which can transform the given system model to the controllability balanced representation is as follows.

Algorithm 1
Stop 1 Find the controllability grampian W_{c} for $\{A, B, C\}$ by solving the matrix Liapunov equation (3.3).

Step ? Find the decomposition of We, i.e.

$$
W_{c}=U_{c} \sum_{c}^{2} U_{c}^{\prime}
$$

where ${ }_{c}$ is orthogonal and

$$
\Sigma_{c}=\operatorname{diag}\left(\sigma_{c 1}, \ldots, \sigma_{c n}\right)
$$

Step 3 Perform the transformation

$$
\begin{aligned}
x & =P x_{1} \\
\text { where } \quad P & =U_{c} \Sigma_{c}
\end{aligned}
$$

The traneformed system $\left\{P^{-1} A P, P^{-1} B, C P\right\}$ will now in the controllability belanced raprosentation. Note that the docomposition of K_{c} in Step 2 can be pexformed by means of sirggular value deosmposition.

The foasibility of Alerithm 1 can be easily soen, since

$$
\begin{align*}
w_{c} & =U_{c} \sum_{c}^{2} U_{c}^{\prime} \\
& =\left(U_{c} \sum_{c}\right)\left(U_{c} \Sigma_{c}\right)^{\prime} \tag{3.13}
\end{align*}
$$

therefore

$$
\begin{equation*}
\left(U_{c} \Sigma_{c}\right)^{-1} U_{c}\left(U_{c} \Sigma_{c}\right)^{-1}=I_{n} \tag{3.14}
\end{equation*}
$$

The trangformation of a fiven sj゙vtem to tho obsamvability belsnced representation is similar to the procedure eiven In Algorithm 1 , except that (3.7) is weod. Notice thet the contrullability bulanced fepresentation has also boen used oy Voore (2981) though implicitly.
4. The proposed model reduction procedure

To obtain the simplified model by the present method the original system model $\{A, B, C\}$ in (2.1) is transformed to the controllability balanced representation $\left\{A_{1}, B_{1}, C_{1}\right\}$ by means of the transformation

$$
\begin{equation*}
x=T x_{1} \tag{4.1}
\end{equation*}
$$

Whare the nonsingular transformation matrix T is obtained by employing Algoritbu 1 . A sequence of orthogonal transformation is tben performed to $\left\{A_{1}, B_{1}, C_{1}\right\}$ to extract the most observable subsystem. An algorithm is given in Patel. (1981) to porform the above transformation. The same algorithm was employed in the reduced order modelling procedure by Kworg (1982) which is called the optimal chained aggregation procedure. The optimal chained aggregation procedure will be further dianssed loter in this section.
4.1 Alabrithm for obtainimi the reduced model

In this subsection the algorithm through which the rednced order model is obtained is given. Algorithm ? Step 1. Transform $\{A, B, C\}$ to the controllability balanced representation $\left\{A_{1}, B_{1}, C_{3}\right\}$ by means of the transformation

$$
\begin{equation*}
x=T_{1} x_{1} \tag{4.2}
\end{equation*}
$$

the transformation matrix T_{1} is obtained by the Algorithin 1.

Step 2 Find the singular value decomposition of C_{1}, i.e.

$$
\begin{equation*}
c_{1}=U_{1} \sum v_{1}^{\prime} \tag{4.3}
\end{equation*}
$$

Transform $\left\{A_{1}, B_{1}, C_{1}\right\}$ to $\left\{A_{2}, B_{2}, C_{2}\right\}$ by means of the orthogonal transformation

$$
\begin{equation*}
x_{1}=v_{1} x_{2} \tag{4.4}
\end{equation*}
$$

where A_{2}, B_{2} and C_{2} is given by

$$
\begin{align*}
& A_{2}=\left(\begin{array}{ll}
A_{21} & A_{22} \\
A_{23} & A_{24}
\end{array}\right] \tag{4.5a}\\
& B_{2}=\binom{B_{21}}{B_{22}} \tag{4.5b}\\
& C_{2}=\left(\begin{array}{ll}
C_{21} & 0
\end{array}\right) \tag{4.5c}
\end{align*}
$$

Step 3 Define the residue subsystem as $\left\{A_{R 2}, B_{R 2}, C_{R 2}\right\}$
where $A_{R 2}=A_{24}, B_{R 2}=A_{23}$ and $C_{R 2}=A_{2.2}$. If the norm of $C_{R 2}$ is small as compared with the norm of A_{1} then the reduced order model is the one defined by $\left\{A_{21}, B_{21}, C_{21}\right\}$. If not, repeat Step 2 to the residue subsystem $\left\{A_{R 2}, B_{R 2}, C_{R 2}\right\}$ until at $k>2$,
the norm of the output matrix $C_{R k}$ of
the residue subsystem $\left\{A_{R k}, B_{R k}, C_{R k}\right\}$ is small
es compared with the norm of A_{1}. Perform the
seguence of orthogonal transformations

$$
\begin{equation*}
p_{1}, p_{2}, \ldots, p_{k-1} \tag{4.6}
\end{equation*}
$$

to $\left\{A_{1}, B_{1}, C_{1}\right\}$; where $P_{1}=V_{1}$ and

$$
\text { p. } 14
$$

$$
P_{i}=\left[\begin{array}{ll}
I_{i} & 0 \tag{4.7}\\
0 & V_{i}
\end{array}\right]
$$

V_{i} composes of the right singular vectors of $C_{R i}$, $3 \leqslant i<k$. I_{i} is an identity matrix of appropriate order. After performing the sequence of orthogonal transformation (4.6), the system model would bo in a form
 $(4,8 a)$
$\mathrm{B}_{\mathrm{k}}=\left[\begin{array}{c}\mathrm{e}_{\mathrm{k}}^{\mathrm{I}} \\ \mathrm{B}_{\mathrm{k}}^{2} \\ \vdots \\ \hdashline \mathrm{~B}_{\mathrm{k}}^{\mathrm{k}}\end{array}\right]$
$c_{k}=\left(\begin{array}{lll|l}c_{21} & 0 & \ldots & 0\end{array}\right)$
And the reduced order model is the one defined by the top loft hand block shown in (4.8a), (4.8b) and (4,8c).

If there exists no integer k such that the output matrix C_{Rk} of the residue subsystem $\left\{\mathrm{A}_{\mathrm{Rk}}, \mathrm{B}_{\mathrm{Rk}}, \mathrm{C}_{\mathrm{Rk}}\right\}$ is small as compared with the norm of A, then no reduced order model can be claimed.

When the block matrix $A_{k}^{k-1, k}$ is exactly a null matrix, the system $\left\{A_{k}, B_{k}, C_{k}\right\}$ is not completely observable, the subsystem corresponds to the matrix $A_{k}^{k k}$ is completely unobservable. Since we have assumed that the given system $\{A, B, C\} i s$ completely controllable and completely observable, $A_{k}^{k i-1, k}$ cannot be a null matrix. However, when the norm of the block matrix $A_{k}^{k-1, k}$ is small, the subsystem corresponds to $A_{k}^{k k}$ is said to be almost unobservable. The norm of $A_{k}^{k-1, k}$ is therefore a measure of the degree of observability of the elmost unobservable subsystem. It is now seen that A. 1 gorithm 2 oorresponds to exploring the almost unobservable slngsystem, and the reduced order model is obtained by disenarding the almost unobservable subsystem. 4. 2 Properties of the reduced order model

We shall investigate some of the properties of the reduced order model obtained by employing the aleorithm 2 given in the previous subsection. The procedure by Kwong (1982) will also be considered here. Notice that the only djfference between the optimal chained aggregation of Kwong and the present one is that Step 1 in Algorithm 2 is omitted.
4.2.1 Minimality of the roduced order model

When a given realization of a rational transter function matrix is minimal we mean that the state space of the reqlization is of minimal order. It is woll known that a realization is mintmal i.f and only if it is jointly completely controllable and completely obsarvable. Since the observability of the reduced model is guaxenteed by the alrorithm of potel (1981), we now consider the controllability of the reduced model.

Lemma 2

If the system

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u} \\
& y=\left(\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

is in the controllability balanced representation, the subsystems $\left\{A_{11}, B_{1}, C_{1}\right\}$ and $\left\{A_{22}, B_{2}, C_{2}\right\}$ would also be in the controllability balanced representation, under the conditions that the input matrices of the subsystems are not null matrices, and A_{11}, A_{22} are asymptotically stable

Proof
Since the controllability grammian is the unique symmetrical matrix which aftisfies

$$
A W_{c}+W_{c} A^{\prime}=-B B^{\prime}
$$

and for the controllability balanced representation, W_{c} is en identity matrix, ie. $W_{c}=I_{n,}$, therefore

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]+\left(\begin{array}{ll}
A_{11}{ }^{\prime} & A_{21}{ }^{\prime} \\
A_{12}^{\prime} & A_{22}^{\prime}
\end{array}\right]=-\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]\left[\begin{array}{ll}
B_{1}^{\prime} & B_{2}^{\prime}
\end{array}\right]
$$

j. plies

$$
\begin{aligned}
& A_{11}+A_{11}{ }^{\prime}=-B_{1} B_{1}{ }^{\prime} \\
& A_{22}+A_{22}^{\prime}=-B_{2} B_{2}^{\prime}
\end{aligned}
$$

and so the lemma is proved.

$$
\text { P. } 17
$$

By means of Lemma 2, we can claim the following,

Property 1

Under the condition that the input matrix of the xeduced order model is a non-null matrix, the reduced order model is minimal, if the reduced order model is asymtotically stable。 4.2.2 Fffect of scaling on the procedure

Since the system model is generally a mathematical model of a realistic plant, during the process of modelling different units (scaling) or even different system of unit may be employed in modelling the physical plant. Therefore it is important to investigate whother the derived reduced order model would depend upon the scaling used.

Assume that $\{\bar{A}, \bar{B}, \bar{C}\}$ and $\{A, B, C\}$ are two controllability balanced representation of a given systom model. By Lemma 1.

$$
\begin{equation*}
\bar{A}=P^{\prime} A P, \bar{B}=P^{\prime} B, \bar{C}=C P \tag{4.10}
\end{equation*}
$$

where P jis an orthogonal transformation matrix.
Pofer to Algorithm 2, the singular value decompositions of \bar{C} and C are respectively,

$$
\begin{align*}
& \overline{\mathrm{c}}=\left(\overline{\mathrm{U}} \sum: 0\right) \overline{\mathrm{v}}^{1}, \overline{\mathrm{~V}}=\left(\overline{\mathrm{v}}_{1}: \overline{\mathrm{v}}_{2}\right) \tag{4.31}\\
& \mathrm{c}=\left(\mathrm{U} \sum: 0\right) \mathrm{v}^{\prime}, \mathrm{v}=\left(\mathrm{v}_{1} \vdots \mathrm{v}_{2}\right) \tag{4,12}
\end{align*}
$$

\sum is now considered as a diagonal matrix with the singular values of \bar{C} or O as elements, since \bar{C} and C are related by an orthogonal matrix, they have the same singular values. The corresponding transformed systems after completing the

$$
\text { P. } 18
$$

second step of Algorithm $2(\operatorname{see}(4.5))$ are given by

$$
\begin{align*}
& \left(\begin{array}{ll}
\bar{A}_{21} & \bar{A}_{22} \\
\bar{A}_{23} & \bar{A}_{24}
\end{array}\right],\left[\begin{array}{l}
\bar{B}_{21} \\
\bar{B}_{22}
\end{array}\right],\left[\begin{array}{ll}
\bar{C}_{21} & 0
\end{array}\right] \tag{4.13}\\
& \left(\begin{array}{ll}
A_{21} & A_{22} \\
A_{23} & A_{24}
\end{array}\right],\left(\begin{array}{l}
B_{21} \\
B_{22}
\end{array}\right],\left[\begin{array}{ll}
C_{21} & 0
\end{array}\right] \tag{4.14}
\end{align*}
$$

Since the columns of \bar{U} are the eigenvectors of $\overline{\mathrm{O}} \overline{\mathrm{A}}^{\prime}=\mathrm{CDP} \mathrm{C}^{\prime}=\mathrm{CC}$ therefore the columns of \bar{U} are also the eigenvectors of co'. That is \bar{U} and U are related by

$$
\begin{equation*}
\bar{U}=U I_{ \pm 1} \tag{4.15}
\end{equation*}
$$

where $J_{\text {di }}$ is a diagonal matrix of oomatible dimension and the diagonal elements are either ϕ or -1 , to take into account that the eigenvectors may have opposite directions. Without loss of generality, it is assumed that

$$
\begin{equation*}
\overline{\mathrm{U}}=\mathrm{U} \tag{4.16}
\end{equation*}
$$

This would imply that

$$
\begin{equation*}
\overline{\mathrm{c}}_{21}=\mathrm{c}_{21} \tag{4,17}
\end{equation*}
$$

Moreover, since the columns of \bar{V}_{2}, are the eigenvectors of the matrix $\overline{\mathrm{C}} \overline{\mathrm{C}}=$ p'C'CP, therefore $^{\prime}$

$$
\begin{equation*}
p \bar{v}_{1}=V_{1} \tag{4.18}
\end{equation*}
$$

p. 29

And,

$$
\begin{align*}
\overline{\mathrm{A}}_{21} & =\bar{V}_{1}^{\prime} \bar{A}^{V_{V}} \\
& =\left(P^{\prime} V_{1}\right)^{\prime}\left(P^{\prime} A P\right)\left(P^{\prime} V_{1}\right) \\
& =V_{1}^{\prime} A V_{1} \\
& =A_{21} \tag{4.19}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\bar{B}_{21} & =\bar{v}_{1}^{\prime} \bar{B} \\
& =\left(p^{\prime} v_{1}\right)^{\prime} p B \\
& =v_{1}^{\prime B} \\
& =B_{21} \tag{4.20}
\end{align*}
$$

Threxfore we heve

$$
\begin{equation*}
\bar{A}_{21}=A_{21}, \bar{B}_{21}=B_{21} \text { and } \bar{C}_{21}=C_{21} \tag{4.21}
\end{equation*}
$$

If the above consideration is repeated for the subsystems

$$
\left(\bar{A}_{24},\left(\bar{A}_{23} ; \bar{B}_{22}\right), \bar{A}_{22}\right) \text { and }\left[A_{24},\left(A_{23}: B_{22}\right) \cdot A_{22}\right] \text { we can }
$$

assert the following.

Property 2
The reduced order model derived by employing the Algorithm 2 jis unique to within a similarity transformation and is independent of the internal coordinate system of the given unreduced system model.

Property 2 implies that we can always obtain the same redriced order model irrespective of the units being used to represent the state variables. While the optimal chained

$$
\text { P. } 20
$$

aggregation procedure of reduced order modelling can be essily demonstrated to be dependent on the internal coordinate system of the given system model. An example will be given in the next section to jllustrate this point.
4.2.3 The dual of the reduced order modelling procedure

The underlying philosophy in the reduced order modelling prosedure given in Alporithm 2 is that the almost unobservable subsystem is assumed to be completely unobservable and is deleted from the state space. But it may so happen that the almost unobservable subsystem mey be strongly controllable. The reason for first tronsforming the fiven system modol to the controllability balanced represontation is that, from Jemma 2 every subsystems of the controllability balanced representation is also controllability balanced. That is from the point of view of $(3,1)$, the subsystems have the same degree of controllability. The subsystem which is almost unobservable can then he deleted, since wo do not have the risk that the almost unobservable subsystem is strongly controllable.

It is obvious that the cual of the Algorithm 2 can also be ueed to derive a reduced order model. The reduced order model is obtained by first transforming the system medel to the observability belanced representation, and then the most eontrollable subsystem is extracted by using the deal of aloorithm fiven in (Patel 1.981).
4.2.4 The impulse response of the reduced model

From the structure of the transformed system, see (4.8), we see that the Markov parameters of the reduced order model wi.ll approximate that of the unreduced ones if the norm of $A_{k}^{k-1, k}$ is small as compared with that of A_{k}. From the analysis given in Section 2, we may confirm that the transient response of the reduced order model will approximate that of the unreduced ons. If the steady state part of the response of the reduced oxder model should also approximate that of the unreduced one, the time moments of the reduced order model should also approximate that of the unreduced one. If the transformed system (4.8) is rewritten as $\left\{A_{T}, B_{T}, C_{T}\right\}$,

$$
A_{T}=\left(\begin{array}{ll}
A_{11} & A_{12} \tag{4.22}\\
A_{21} & A_{22}
\end{array}\right) \quad B_{T}=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] \quad C_{T}=\left[\begin{array}{ll}
C_{1} & 0
\end{array}\right]
$$

where $\left\{A_{11}, B_{1}, C_{1}\right\}$ is the reduced order model obtained by employing Algorithm 2. From (2.6) we see that in order that the time moments of the reduced order model should approximate that of the unreduced one, the inverse of AT, that is

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \tag{4.23}\\
A_{21} & A_{22}
\end{array}\right)^{-1}
$$

should be of good approximation to that of

$$
\text { P. } 22
$$

$$
\bar{A}^{-1}=\left[\begin{array}{ll}
A_{11} & 0 \tag{4.24}\\
A_{21} & A_{22}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A_{11} & 0 \\
-A_{22} & { }^{-1} A_{21} A_{11}
\end{array} A_{22}^{-1} A^{-1}\right]
$$

whare

$$
\bar{A}=\left(\begin{array}{ll}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right)
$$

For $A_{T}^{-1} \doteq \bar{A}^{-1}$, it requires that (stewart 1973) the norm of

$$
\left\|\left(\begin{array}{cc}
A_{11}^{-1} & 0 \\
-A_{22}{ }^{-1} A_{21} A_{11}^{-1} & A_{22}^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & A_{12} \\
0 & 0
\end{array}\right)\right\| \ll 1
$$

Which is equivalent to the condition

$$
\begin{equation*}
\left\|\left(A_{11}{ }^{-1} A_{12}: A_{22} A_{21} A_{11}^{-1} A_{12}\right)\right\| \ll 1 \tag{4.26}
\end{equation*}
$$

Notice that if $A_{T}{ }^{-1} \doteq \bar{A}^{-1}$, it implies that the almost unobservable subspace is an approxtmate invariant subspace of the original state space, this is in consistent with that the unobservable subspace is the largest invariant subspace contained in the kernel of the output matrix.

We consider the example used by Kwong (1982). The system is given by

$$
\begin{align*}
& \dot{x}=A x+B u \\
& y=C x \tag{5.1}
\end{align*}
$$

where
$A=\left[\begin{array}{cccccc}-0.21053 & -0.10526 & -0.0007 .378 & 0 & 0.0706 & 0 \\ 1.0 & -0.03537 & -0.000118 & 0 & 0.0004 & 0 \\ 0 & 0 & 0 & 1.0 & 0 & 0 \\ 0 & 0 & -605.16 & -4.92 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.0 \\ 0 & 0 & 0 & 0 & -3906.25 & -12.5\end{array}\right]$
$A^{\prime}=\left[\begin{array}{llllll}-7.211 & -0.05232 & 0 & 794.7 & 0 & -448.5\end{array}\right]$
$c=\left[\begin{array}{cccccc}1.0 & 0 & 0 & 0.000334 & 0 & -0.007728 \\ 0 & 1.0 & 0 & 0 & 0 & 0\end{array}\right]$
and $x^{\prime}=\left(x_{1} x_{2} x_{3} x_{4} \quad x_{5} x_{6}\right)^{\prime}$ i.s the state vector.
To demonstrate how the effect of the units (scaling)
employed in modelling a physical plant may affect the responses of the reduced order models, the state variable x_{4} is substituted by x_{4}, where

$$
\begin{equation*}
100000^{\prime \prime} x_{4}=x_{4} \tag{5.3}
\end{equation*}
$$

Notice that (5.3) corresponds to using different units to represent the state variable x_{4}. With the substitution of
\mathbf{x}_{i} by $\hat{\mathbf{x}}_{4}$, the system model (5.1) is transformed to

$$
\begin{align*}
& \dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u \\
& y=C \hat{x} \tag{5.4.}
\end{align*}
$$

where $\hat{A}=P^{-1}{ }_{A P}, \hat{B}=P^{-1} B$ and $\hat{C}=C P$. The transformation matrix P is given by

$$
P=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \tag{5.5}\\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 100000 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and
$\hat{A}=\left(\begin{array}{cccccc}-0.21053 & -0.10526 & -0.0007378 & 0 & 0.0706 & 0 \\ 1 & -0.03537 & -0.000118 & 0 & 0.0004 & 0 \\ 0 & 0 & 0 & 100000 & 0 & 0 \\ 0 & 0 & -0.006052 & -4.92 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -3906.25 & -12.5\end{array}\right)$
$\hat{B}^{\prime}=\left(\begin{array}{llllll}-7.211 & -0.05232 & 0 & 0.007947 & 0 & -448.5\end{array}\right)$
$\hat{C}=\left[\begin{array}{lllccc}1 & 0 & 0 & 33.4 & 0 & -0.007728 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$
$\{\hat{A}, \hat{B}, \hat{C}\}$ iss called the scaled system model of (5.1).

If now Alforithm 2 is applied to the scoled system $\{\hat{A}, \hat{B}, \hat{C}\}$, we fet the tronsformed system $\{\bar{A}, \bar{B}, \bar{C}\}$, where

$$
\left.\begin{array}{l}
\overline{\mathrm{A}}=\left[\begin{array}{cccc:cc}
-0.00002 & 0.3336 & -0.06266 & 0.0222 & 0 & 0 \\
-0.3537 & -0.0568 & -4.303 & -0.00032 & 0 & 0 \\
0.06868 & 4.630 & -0.4702 & -59.48 & 5.923 & 0.364 \\
-0.05495 & -1.777 & 64.59 & -13.9 & 1.4 & 0.0802 \\
\hdashline-0.01549 & -0.8407 & -3.504 & -14.55 & -3.111 & 25.54 \\
0.00316 & 0.1715 & -0.8575 & 2.602 & -24.27 & \cdots 0.1294
\end{array}\right] \\
\overline{B^{\prime}}=\left[\begin{array}{cccccc}
0.006211 & 0.337 & -0.9697 & 5.272 & 2.494 & -0.5088
\end{array}\right] \\
\overline{\mathrm{C}}=\left[\begin{array}{ccccc}
-1.224 & -10.30 & 0 & 0 & 0 \\
-30.71 & 0.4107 & 0 & 0 & 0
\end{array}\right]
\end{array}\right]
$$

The fourth order reduced model obtained by ooordinate truncation of $\{\bar{A}, \bar{B}, \bar{C}\}$ has the eigenvalues $-7.089 \pm j 61.769$, $-0.123 \pm$ j0.312. The initial part of the impulse response y_{2} of the reduced order model is given in Fig. 1.

The transformed system obtained by the optimal chained aggregation procedure of Kwong (1982) is $\{\tilde{A}, \tilde{B}, \tilde{C}\}$, where
$\widetilde{\mathrm{A}}=\left[\begin{array}{cccc:cc}-4.916 & -0.00315 & -0.5245 & -7.515 & 0 & 0 \\ -0.02993 & -0.03537 & -0.8280 & -0.4389 & 0 & 0 \\ 304 & 0.09451 & 6.563 & 0.864 & 0.3648 & 0.02142 \\ -595.3 & 0.04624 & -13.1 & -13.90 & -0.7519 & -0.0433 \\ \hdashline-3.293 & 0 & -1717 & 3509 & -4.939 & 26.12 \\ 99950 & -0.00001 & 2688 & 1315 & -23.14 & -0.3453\end{array}\right]$

$$
\text { P. } 26
$$

$$
\tilde{B}_{\mathrm{B}}:=\left[\begin{array}{lllllll}
-0.1041 & -0.05232 & 0.859 & 2.389 & 448.5 & -0.0008
\end{array}\right]
$$

$$
\tilde{C}=\left[\begin{array}{cccc:cc}
33.41 & 0 & 0 & 0 & 0 & 0 \tag{5.8}\\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The initial part of the impulse response y_{1} of the fourth order reduced obtained by optimal chained ageregation is shown in Fig. 2. It is seen that the response of the reduced model deviates greatly from that of the original system modial. This example demonstrates that the reduced order modelling procedure by Kwong (1982) may be affected by the scaling (units) employed during the modelling process, since when the procedure is applied to the unscaled system model in the oxiginal paper (Kwong 1982) the response of the reduced monel i.s shown to a good fit with that of the unreduced model. While, irrespective to the scaling of the system model the same reduced order model is obtained whon the procedure given in Algorithm 2 is employed. In Table 1 the eigenvalues of the different models are shown.

TABLE 2

ORTMINAL MODEL	PEDUGED MODEL BY FHONG	REDUCED MODEL BY THE PBESENT METHOD
$-6.25 \pm j 62.187$	$-6.068 \pm .324 .54$	$-7.089=j 61.769$
$-2.46 \pm j 24.477$	-0.123 ± 30.3124	-0.123 ± 10.312
$-0.123 \pm .0 .3124$		

Fig. 1
P. 28

Fig. ?
P. 29

Example 2
In this example the system model (5.2) given in the previous example is reworked by applying the dual of Algorithm 2 to derive a reduced order model. The transformed system model $\{\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}\}$ when the dual of A. gorithm $2($ section 4.2 .3$)$ is applied to the system (5.2) is:

$$
\overline{\mathrm{A}}=\left(\begin{array}{cccc:cc}
-0.00576 & 1.512 & -0.5328 & 0.01583 & -0.324 & -0.04984 \\
-1.41 & -0.4574 & 62.9 & -0.04912 & 2.844 & 0.425 \\
0 & -58.21 & -12.32 & -15.08 & -14.99 & -2.312 \\
0 & 0 & 15.86 & -0.209 & -3.091 & 1.263 \\
\hdashline 0 & 0 & 0 & 3.583 & -4.559 & 23.65 \\
0 & 0 & 0 & -1.132 & -25.06 & -0.1126
\end{array}\right]
$$

$\bar{B}^{\prime}=\left(\begin{array}{llll:ll}-32.42 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\overline{\mathrm{C}}=\left[\begin{array}{cccc:cc}0.1073 & -0.9434 & 4.964 & -0.1569 & 3.019 & 0.4657 \\ 0.00161 & -0.1577 & 0.00073 & 0.6272 & -0.0286 & -0.09133\end{array}\right]$

The initial part of the impulse response y_{3} of the fourth order reduced model is given in Fig. 3 , The transformed system $\left\{\begin{array}{c}N \\ N_{i}, \\ \mathcal{B}, \hat{C}\end{array}\right\}$ obtained by the dual of the optimal chained aggregation procedure is given by

$$
\begin{align*}
& \widetilde{A}=\left[\begin{array}{cccc:cc}
-6.751 & -4100 & -1352 & -1400 & 84.75 & -0.6987 \\
3.395 & 387.9 & 1317 & 2952 & -220.3 & -14 \\
0 & -119.6 & -405.9 & -910.5 & 67.98 & 4.321 \\
0 & 0 & 3.551 & 8.414 & -0.6589 & -0.0533 \\
\hdashline 0 & 0 & 0 & 12.89 & -1.3209 & -0.2115 \\
0 & 0 & 0 & 0.1334 & 0.9938 & -0.0426
\end{array}\right] \\
& \tilde{B}^{\prime}=\left[\begin{array}{cccc:c}
912.0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right] \\
& \tilde{\mathrm{C}}=\left[\begin{array}{cccccc}
-0.003813 & -0.02149 & -0.02028 & 0.08621 & 0.9958 & -0.0079 \\
-0.000057 & -0.00244 & -0.00759 & 0.00896 & 0.0069 & 0.9999
\end{array}\right] \tag{5.10}
\end{align*}
$$

The response of the fourth order reduced model obtained by the above procedure is also shown in Fig. 3. We see that the response of the reduced order model deviates greatly from the original one.

From this example and the previous one, we see that merely extracting the most observable or the most controllable subsystem as the reduced order model may not be a. reliable method of model reduction. This is due to the possibility that the most observable subsystem so ertracted may be least controllable, and the most controllable subsystem may be least observable.

$$
\text { P. } 31
$$

In Teble 2 the eigenvalues of the reduced order modele are shown.

TABLE 2

Original model	Beduced model by the method of Kwong	Reduced model by the present method
$-6.25^{ \pm}-j 62.187$	$-5.903^{ \pm}-j 62.096$	$-6.38 \pm j 62.19$
$-2.46^{+}-j 24.477$	$-2.248^{+}-j 24.442$	$-0.118 \pm j 0.341$
$-0.123^{+}-j 0.3124$		

Example 3
In this example, the unreduced system model $\{A, B, C\}$ is given by
$A=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -2 & -33.6 & -155.94 & -209.46 & -102.42 & -18.3\end{array}\right)$
$B^{\prime}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$C=\left[\begin{array}{llllll}2 & 3 & 16 & 20 & 8 & 1 \\ 1 & 2 & 7 & 8 & 1 & 1\end{array}\right]$

The transformed system model obtained by applying the
Algorithm 2 is given by
$\overrightarrow{\mathrm{A}}=\left[\begin{array}{cccc:cc}-0.351 & -0.431 & -6.446 & -1.148 & 0 & 0 \\ -14.057 & -5.613 & -0.263 & 0.799 & 0 & 0 \\ -2.681 & 2.192 & -2.227 & -0.991 & -0.1506 & -0.1123 \\ -1.865 & -3.134 & -0.480 & -0.243 & -0.0138 & -0.1416 \\ \hdashline-3.48 & 2.696 & 1.849 & -0.547 & -0.3238 & -0.1489 \\ 4.506 & -3.491 & -2.087 & 0.8676 & 0.0814 & -0.5428\end{array}\right)$
$\bar{B}^{\prime}=\left[\begin{array}{llll:ll}4.325 & 3.350 & 2.111 & 0.697 & 0.805 & -1.042\end{array}\right]$
$\overline{\mathrm{C}}=\left[\begin{array}{lrll:l}0.270 & -0.049 & 0 & 0 & 0 \\ 0.371 & 0.078 & 0 & 0 & 0 \\ 0.37\end{array}\right]$

While the transformed system model obtained by means of the onttmal chained aggregation procedure is given by
$X=\left[\begin{array}{cccc:cc}-1.1 .78 & -0.706 & 0.714 & 0.391 & 0 & 0 \\ 67.58 & 6.469 & -6.266 & 0.044 & 0 & 0 \\ 171.5 & 1.6 .42 & -14.62 & -1.444 & -1.61 & -0.1505 \\ -1.74 .3 & -3.7 .08 & 14.37 & 1.544 & 0.56 & -0.5303 \\ \hdashline-119.7 & -1.1 .65 & 9.964 & 1.178 & 0.2062 & 0.8213 \\ 4.735 & 1.313 & -0.3056 & -0.031 & -0.236 & -0.123\end{array}\right]$
$\tilde{B}^{\prime}=\left(\begin{array}{llll:ll}0.045 & -2.24 & -0.611 & 0.62 & 0.426 & -0.0188\end{array}\right)$
$\widetilde{C}=\left[\begin{array}{rrrr:rr}27.08 & 0.855 & 0 & 0 & 0 & 0 \\ 1.0 .74 & -2.155 & 0 & 0 & 0 & 0\end{array}\right]$
In Temble 3 the eifenvalues of the fourth order reduced order models ere shown. And the initial part of the impulse responses are shown in Fig. 4 and Fig. 5. It is seen that the responses of the reduced model obtained by the present mothod fit so well with that of the unreduced one that the two cannot be distinguished. From this example we can also see that the present method can also be used to reduce the order of a given transfer function.

Fig. 5

TABLE 3

Original model	Reduced model by method of Kwong	Reduced model by the present method
-10	-1.1 .73	-10.04
-5	-4.37	-4.73
-2	-2.08	-2.66
-1	-0.2005	-0.0001
-0.2		
-0.1		

6. Litscussion

We have demonstated in this chapter that by appiying the algorithm of Patel (1981) to the controllability balanced representation (or to its dual) we can obtain a reduced order model whose transient response is close to that of the unteduced givon system model. In addition, the present proposed procedure has some very useful properties. It should be noted that the present reduced order modelling procedure cannot in general guarentee the stability of the reduced modol. Since the roduced model is in fact an aggregatod model (Kwong 2982, Aoki 1968) of the original system, if the original system is stable and iff the diosearded subsystem is really 'almost unobservable' the stability of the reduced order model can usually be fulfilled.

CHAPTER

SIJROPTIMAL CONTROL

1. Introduction

In this chapter we shall consider the near optimal solution of the optimal linear regulator problem. It is woll known that the determination of the optimal state fromback control law involves the solution of the matrix Biccati equation, which corresponds to the solution of a set of scalar nonlinear equations. The number of equations in the set increases wi.th the square of the order of the given system to be regulated. This would mean a large amount of computational effort and cost, hence there is a need to derive a suboptimal control law for the regulator problem through an approximate model of the given system.

To foscilitate future discussion, the regulator problem is first defined in section 2. In section 3 we shall discuss how a suboptimal control law can be derived through en almost unoontrollable model. In section 4 we shall review the balanced representation of Moore (1981) which we shall make uee of. The proposed method is given in section 5. And numerical examples are given in section 6. In section 7 enother procedure is proposed which can further improve the performance of the suboptimal control law for systems Whath have dominant fast modes.

$$
\text { P. } 39
$$

2. The roginlator problem

Wa shall briefly feview the Innear quadratic aperulator problem in this eaction.

Consider the sy゙atem

$$
\begin{equation*}
\dot{x}=A x+B u, \quad x(0)=x_{0} \tag{2.1}
\end{equation*}
$$

where x is an $n \times 1$ state vector, u is a $m \times 1$ control vector. Tine matrices A and B are comstant matrices of compatible dimensions. The quadratic regulator problem is to estsblish a state feddback control aw

$$
\begin{equation*}
u=-F x \tag{2,3}
\end{equation*}
$$

where F is a cunstant mun matrix, such that it is roguired to control tine ayiutem at the get point $x_{d}=0$ urider the conetraint that the eost frmotional

$$
\begin{equation*}
J=\int_{0}^{\infty}\left(x^{\prime} Q x+u^{\prime} R u\right) d t \tag{2.3}
\end{equation*}
$$

Is mininized. The input woighting motrix 8 is a positive definite symetric matrix, and tho state we. ehting matrix Ω is a positive semidefinite ayamotric matrix. Stince Q is positive bemidefinite we can deodapose Q ss

$$
\begin{equation*}
Q=H^{\prime} H \tag{2.4}
\end{equation*}
$$

If the pair (A, B) is wwimietely corterolable and (A, H) is completely observable, the feedback matrix F is given by

$$
\begin{equation*}
F=R^{-1} B^{\prime} M \tag{2.5}
\end{equation*}
$$

where M is the unique pusitive definite symmeric matrix

$$
\text { P. } 40
$$

solution of the Riccati eguation

$$
\begin{equation*}
O=A^{\prime} M+M A-M B R^{-1} B^{\prime} M+Q \tag{2.6}
\end{equation*}
$$

and the ontimal cost is given by

$$
\begin{equation*}
J=x_{c}{ }^{\prime} M x_{0} \tag{2.7}
\end{equation*}
$$

If WG drifine

$$
\begin{equation*}
y=H x \tag{2.8}
\end{equation*}
$$

as the implicit output vector for the system (2.1), we soe that the oost functional (2.3) can be rewritton as

$$
\begin{equation*}
J=\int_{0}^{\infty}\left(y^{\prime} y+u^{\prime} R u\right) d t \tag{2.9}
\end{equation*}
$$

Notice that the implicit output vector offers a machinery through which we can take the effect of the state weighting motrix f. in the cost functional (2.3) in our subontimal gontrol ?aw.
3. Almost uncontrollable system and suboptimal control

In this section we shall investigate how we can
obtain a suboptimal control law for an almost uncontrollable system. Kwong (1983) employed a similar method to derive the suboptimal control law, though with different setting. h'e shall first consider how the optimal control Jaw can be obtained for a system which is not completely controllable.
3.1 Optimal control and not completely controllable system I.t i.s known that if the given system (2.1) i.s not contmollable i.t may not be possible to obtain M by solving (2,6). It was however shown that (Dressler and Larson 1969) under sone additional assumptions one can obtain the optimal control.

We assume here that the system (2.1) is not completely controllable, then there exists a transformation

$$
\begin{equation*}
x=T \hat{x} \tag{3.2}
\end{equation*}
$$

for some nonsingular matrix T, such that the transformed
system given by $\{\hat{A}, \widehat{B}\}$, where

$$
\begin{equation*}
\hat{A}=T^{-1} A T, \hat{B}=T^{-1} B \tag{3.2}
\end{equation*}
$$

and \hat{A}, \hat{B} have the forms

$$
\hat{A}=\left[\begin{array}{cc}
\hat{A}_{11} & \hat{A}_{12} \tag{3.3}\\
0 & \hat{A}_{22}
\end{array}\right] \quad B=\left[\begin{array}{c}
\hat{B}_{11} \\
0
\end{array}\right]
$$

Dressler and Larson (1969) showed that if $\left\{\hat{A}_{11}, \widehat{H}_{1}\right\}$ i.s observable, and $\hat{\mathrm{A}}_{22}$ is a stable matrix, then the solution of the reepulator problem for the not completely controllable system given in the form (3.3) coxresponds to the solution of the piecati equation

$$
\begin{equation*}
0=\hat{A}_{11} p_{1}+p_{1} \hat{A}_{11}-p_{1} \hat{B}_{11} R^{-1} \hat{B}_{11}{ }^{\prime} p_{1}+\hat{Q}_{1} \tag{3,4}
\end{equation*}
$$

for p_{1}, where $\hat{Q}_{1}=\hat{H}_{1}^{\prime} \hat{H}_{1}$

$$
\hat{Q}=\left[\begin{array}{ll}
\hat{Q}_{1} & \hat{Q}_{2} \tag{3.5}\\
\hat{Q}_{2}^{\prime} & \hat{Q}_{4}
\end{array}\right], \quad \hat{Q}=T^{\prime} Q T
$$

And, at the same time, p_{2} is solved in the following equation,

$$
\begin{equation*}
0=\left(\hat{A}_{11}-\hat{B}_{11} R^{-1} \hat{B}_{11}{ }^{\prime} p_{1}\right)^{\prime} p_{2}+p_{2} \hat{A}_{22}+p_{1} \hat{A}_{12}+\hat{Q}_{2} \tag{3.6}
\end{equation*}
$$

where p_{1} is the solution of the Riccati equation (3.4). The feedback motrix for the optimal control law (2.2) is then given by

$$
\begin{equation*}
\mathrm{F}=\mathrm{R}^{-1} \hat{\mathrm{~B}}_{11}\left[\mathrm{p}_{1}: \mathrm{p}_{2}\right] \mathrm{T}^{-1} \tag{3.7}
\end{equation*}
$$

3.2 Anmost uncontrollable system and suboptimal control
Wo now consider the case where the given system (2.1)
is completely controllable. It is not possible to find the traneformation matrix T to transform the system to the form (3.3). But if there exists a transformed system

$$
\text { P. } 43
$$

of S, \widehat{S}, such that the states are so arranged that we can partition the system into two subsystems \hat{S}_{1} and \hat{S}_{2} whereas one of the subsystems say, \hat{S}_{2}, is 'almost uncontrollable' tbon we can ignor the input coupling of the subsystem \hat{S}_{2} and at the same time neglect the coupling \hat{A}_{21} between the subsystems $\hat{\mathrm{S}}_{1}$ and $\hat{\mathrm{S}}_{2}$. The notion of 'almost uncontrollability' means that a system is completely controllable, but small perturbation of the systom parameters may render the system uncontrollable. A system is said to bo almost uncontrollablo if. the almost uncontrollable subsystem exists. The above consideration is dopicted in Fig. I. After setting $\hat{B}_{22}=0$, and $\hat{A}_{21}=0$ wo can then apply the result of Section 3.1 to derive a suboptimal control law for the original regulator problem. In order that the above discussion be a sensiblo ons, it is important that we should have a measure of tho degree of controllability to enable us to identify the 'elmost uncontrollable subsystem', this is given in the folnowing section.

4．The balanced representation（Moore 1981）

We sball first define in the following the balanced representation．

りふだnition

A．completely controllable and completely observable asymptotically stable system is said to bs in its balanced remresentation if the controllability grammian and the observability grammian of the system are equal and are diegonal．

Consider the asymptotically stable system $\{A, B, C\}$ Which is assumed to be both completely controllable and oompletely observable，we shall demonstrate how to transform $\{A, B, C\}$ to its balanced representation in the following alforithm．Noting that the notations $W_{c}(T)$ ， $W_{0}(T)$ denote the grammians of the given system $\{A, B, C\}$ under the transformation $x=T x_{1}$ ，where x is the state vector of $\{A, B, C\}$ and x_{1} is that for the transformed system．And

$$
\begin{align*}
& W_{c}(T)=T^{-1} W_{c}\left(T^{-1}\right)^{\prime} \tag{4,1}\\
& W_{0}(T)=T^{\prime} W_{0} T \tag{4.2}
\end{align*}
$$

Wc＇Wo are the ontrollability yrammian and observability for the original system $\{A, B, C\}$ ．

Algorithm 1

Step 1 Solve

$$
\begin{aligned}
& A W_{c}+W_{c} A^{\prime}=-B B^{\prime} \\
& \text { for } W_{c} .
\end{aligned}
$$

Step 2 Find the singular value decomposition of W_{c}, that is

$$
\begin{equation*}
w_{c}=v_{c} \sum_{c}^{2} v_{c}^{\prime} \tag{4.4}
\end{equation*}
$$

Step 3 Perform the transformation $x=T_{3} x_{1}$, where

$$
\begin{equation*}
T_{1}=v_{c} \Sigma_{c} \tag{4.5}
\end{equation*}
$$

and the trensformed system is given by $\left\{A_{1}, B_{1}, C_{1}\right\}$ whare $A_{1}=T_{1}^{-1} A T_{1}, B_{1}=T^{-1} B$ and $C_{1}=C T_{1}$.

Step 4 Solve
$W_{0}\left(T_{1}\right) A_{1}+A_{1}^{\prime} W_{0}\left(T_{1}\right)=-C_{1}^{\prime} C_{1}$
for $W_{0}\left(T_{1}\right)$.
Step 5 Find the singular value decomposition of $W_{0}\left(T_{1}\right)$, thet iss

Where

$$
\begin{equation*}
\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right) \tag{4.8}
\end{equation*}
$$

Step 6 Perform the transformation $x_{1}=T_{2} x_{2}$, where

$$
T_{2}=v_{0} \Sigma^{-\frac{1}{2}}
$$

and the transformed system $\{\hat{A}, \hat{B}, \hat{C}\}$, where
$\hat{A}=T_{2}{ }^{-1} A_{1} T_{2}, \hat{B}=T_{2}{ }^{-1} B_{1}$ and $\hat{C}=C_{1} T_{2}$, is now
in the belanced representation.

Notice that step 1 to step 3 in the above algorithm correspond to transforming the system $\{A, B, C\}$ to the controllability balanced representation defined in

Chapter?.
The controllability grammian and observability grampian for the balanced representation $\{\hat{A}, \hat{B}, \hat{C}\}$ is now given by

$$
\begin{equation*}
\int_{0}^{\infty} e^{\hat{A} t} \hat{B} \hat{B}^{\prime} e^{\hat{A}} \hat{A}^{\prime} t d t=\int_{0}^{\infty} e^{\hat{A}} \cdot \hat{C} \cdot \hat{C} e^{\hat{A} t} d t=\sum \tag{4,10}
\end{equation*}
$$

Where $\sum=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{i}>\sigma_{i+1}>0$.

After introducing the balanced representation, we are now ready to give our proposed method of suboptimal control for the regulator problem in the next section.
5. THE PRESENT METHOD

In this section the computation of the suboptimal control law is proposed. The system

$$
\begin{equation*}
\dot{x}=A x+B u, x(0)=x_{0} \tag{5.1}
\end{equation*}
$$

is assumed to be asymptotically stable. The cost functional is given by

$$
\begin{equation*}
\int_{0}^{\infty}\left(x^{\prime} Q x+u^{\prime} R u\right) d t \tag{5.2}
\end{equation*}
$$

Before the proposed method is given in section 5.3 . we shall show how the effect of the weighting matrices Q and R can be taken into account in the system model, and thus simplifies the linear quadratic regulator problem. 5.1 State weighting matrix and the implicit output vector

It has been pointed out in section 2 that the state weighting matrix Q in the cost functional (5.2) is to reflect the relative importance of keeping the states near the origin of the state space. It has been shown that an implicit output vector is defined as

$$
y=H x
$$

where

$$
\begin{equation*}
Q=H^{\prime} H \tag{5.4}
\end{equation*}
$$

With the help of the implicit output vector (5.3) the cost functional can then be given as

$$
\begin{equation*}
\int_{0}^{\infty}\left(y^{\prime} y+u^{\prime} R u\right) d t \tag{5.5}
\end{equation*}
$$

and the system is to be defined as

$$
\begin{aligned}
& \dot{x}=A x+B y \\
& y=H x
\end{aligned}
$$

It is worth noting the decomposition $Q=H^{\prime} H$ in (5.4) is not unique (Strang 1980). But we shall show in a Iater section that the nonuniqueness of the decomposition of Q does not affect our future consideration in any way. In fact the implicit output vector or the output matrix is not involved in our computation of the suboptimal control law. The implicit output vector is merely a conceptual tool.
5.2 Input weishting matxix and the modified input matrix

In this subsection we shall show how the linoar quadratic remulator can be further simplified.

Consider (5.5), since R is a symmetric positive definite matrix, we can decompose R as

$$
\begin{equation*}
R=D^{\prime} D \tag{5.7}
\end{equation*}
$$

where the matrix D is nonsingular. By putting

$$
\begin{align*}
& \overline{\mathrm{u}}=\mathrm{Du} \tag{5.8}\\
& \bar{B}=\mathrm{BD}^{-1} \tag{5.9}
\end{align*}
$$

$$
\text { P. } 49
$$

We cen rewrite (5.5) and (5.6) as

$$
\begin{align*}
\dot{x} & =A x+B D^{-1} D u \\
& =A x+\vec{B} \bar{u} \tag{5.10}\\
y & =H x \tag{5,11}
\end{align*}
$$

and the cost functional is

$$
\begin{equation*}
\int_{0}^{\infty}\left(y^{\prime} y+\bar{u}^{\prime} \bar{u}\right) d t \tag{5,12}
\end{equation*}
$$

We shall call \bar{u} and \bar{B} as the modified input vector and the modified input matrix respectively.

One can interpret (5.8) as merely using different units for the input variables. Since D is nonsingular. the optimal control law for (5.10) - (5.12) corresponds to that of (5.1) and (5.2) by the relation

$$
\begin{equation*}
u=D^{-1} \bar{u} \tag{5.13}
\end{equation*}
$$

riberefore once the control law for (5.10) - (5.12) is obtained, the control law for (5.1) and (5.2) is readily found by using the relation (5.13). In (5.10) - (5.12) the weighting of the input variables R in the cost functional sis taken into account by the modified input matrix \bar{B}.

To end this subsection we shall show how the nonsingular transformation for the system (5.10) - (5.11) may affect the control law. It is easily seen that the cost functional (5.12) is invariant to the nonsingular transformation

$$
\begin{equation*}
x=T x_{1} \tag{5.14}
\end{equation*}
$$

If the control law for the regulator problem of the transformed system $\left\{T^{-1} A T, T^{-1} B, H T\right\}$ is given by

$$
\begin{equation*}
\mathrm{u}=-\mathrm{F}_{1} \mathrm{x}_{1} \tag{5.15}
\end{equation*}
$$

F_{1} is related to that of the control law for the original system $u=-F x$ by the relation

$$
\begin{equation*}
\mathrm{F}=\mathrm{F}_{1} \mathrm{~T}^{-1} \tag{5.16}
\end{equation*}
$$

$(5.1 .6)$ is obtained by putting (5.14) to (5.15).
5.3 Derivation of the suboptimal control law

The results of section 5.2 and 5.2 show that the original resulator problem can be switched to that of the form given by $(5.10)-(5.12)$. If the suboptimal control. law is derived by approximating the almost uncontrollable subsystem of the oxiginal system (ifit exists) as being completely uncontrolladle, the periormance degradation cen then be seen to be minimized if the almost uncontrollable subsystem of the original system is also almost unobservable.

To explore the almost uncontrollable subsystem which is also almost unobservable, the system $(5.10)-(5.11)$ is first transformed to the balanced representation by means of the algorithm given in section 4. The controllability grammian (observability grammian) of the balanced representation is given by

$$
\begin{equation*}
w_{o}=w_{c}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \tag{5.17}
\end{equation*}
$$

where $\sigma_{i}>\sigma_{i+1}>0$. If there exists $k, 1<k<n$ such that

$$
\begin{equation*}
\sigma_{k} \gg \sigma_{k+1} \tag{5.18}
\end{equation*}
$$

we say that the almost uncontrollable subsystem exists, and is of order $\mathrm{n}-\mathrm{k}$. Notice that (5.18) is a measure of the degree of controllability (and observability). The procedure to derive the suboptimal control law is given below.

A) gorithm 2

Step 1 Find the implicit output matrix H by decomposing

$$
\begin{equation*}
Q=H^{\prime} H \tag{5,19}
\end{equation*}
$$

Step 2 Find the modified input matrix \bar{B} by decomposing

$$
\begin{equation*}
K=D^{\prime} D \tag{5.20}
\end{equation*}
$$

and the modified input matrix is given by

$$
\begin{equation*}
\bar{B}=B D^{-1} \tag{5.21}
\end{equation*}
$$

Step 3 perform the algorithm 1 to $\operatorname{transform}\{A, \tilde{B}, H\}$ to its balanced representation $\{\hat{A}, \hat{B}, \widehat{C}\}$ by the nonsingular transformation

$$
\begin{equation*}
x=T x_{1} \tag{5.22}
\end{equation*}
$$

Step 4
Identify the presence of the almost uncontrollable subsystem. If there exists k, such that (5.18) i.s satisfied, then the almost uncontrollable subsystem is that defined by

$$
\left\{\begin{array}{lll}
\hat{\mathrm{A}}_{22}, & \hat{\mathrm{~B}}_{22}, & \hat{\mathrm{C}}_{22} \tag{5.23}
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { where }\{\hat{A}, \hat{B}, \hat{C}\} \text { is partitioned as }
\end{aligned}
$$

```
Stop 5 Wre the rasult given in Section 3 to derive a
smbontimal feedbeck law \overline{M}=-\mp@subsup{F}{1}{}\mp@subsup{M}{1}{}\mathrm{ for the belanced}
representation {\hat{A},\hat{B},\hat{C}}\mathrm{ by setting }\mp@subsup{\hat{A}}{21}{}=0,\mp@subsup{\hat{B}}{\beta2}{}=0\mathrm{ .}
```

Step 6 By means of the result given in the gmbeection
5.2, the suboptimal feesback onntrol law u=-Fx
for the original regulator problem is that
dafined by

$$
\begin{equation*}
\mathrm{F}=\mathrm{D}^{-1} \mathrm{~F}_{1} \mathrm{~T}^{-1} \tag{5,28}
\end{equation*}
$$

Th Step ?, the trangformation of the modified system to its bahanced represantation, neither the matrix \bar{B} nor the matrix H need to be known explicitlyo Rather it is the motrices

$$
\begin{equation*}
\bar{B} \bar{B}^{\prime}=B R^{-1} B^{\prime} \tag{5,29}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{\prime} \mathrm{H}=\mathrm{Q} \tag{5,30}
\end{equation*}
$$

which are involved in the transformation, see (4.3) and (4.6) in A1Porithm T. This confirms that the nominiqueness of the deoompositions $(5,19)$ and $(5,20)$ do not affect tho rosulting subontimal control low.

$$
\text { Notice that the subsystems }\left\{\hat{A}_{11}, \hat{B}_{11}, \hat{C}_{11}\right\} \text { and }\left\{\hat{A}_{22}, \hat{B}_{22}, \hat{C}_{22}\right\}
$$

are stable enbsystems, see (Moore 1980) and (Pernebo and Silverman 1981).

$$
\text { P. } 53
$$

6. ENAMPIES

Example 1
Consider the voltage regulatox problem (Lamba and Ran 1974) for which the system is given by:
$\left.\begin{array}{l}A=\left[\begin{array}{ccccc}-0.2 & 0.5 & 0 & 0 & 0 \\ 0 & -0.5 & 1.6 & 0 & 0 \\ 0 & 0 & -14.28 & 85.71 & 0 \\ 0 & 0 & 0 & -25 & 75 \\ 0 & 0 & 0 & 0 & -10\end{array}\right] \\ B^{\prime}=\left[\begin{array}{ccc}0 & 0 & 0\end{array} 0\right.\end{array}\right]$
(6.1b)
and the state weighting matrix is given by

$$
Q=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{6.1c}\\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

therafore the implicit output matrix H is given by

$$
H=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{6.1d}
\end{array}\right)
$$

and the input weiphting matrix R is given by

$$
R=1
$$

The belanced representation of $\{A, B, H\}$ is tiven by
$\hat{A}=\left[\begin{array}{ccccc}-0.0838 & 0.2159 & -0.0688 & 0.0199 & -0.0043 \\ -0.2159 & -0.5862 & 0.4541 & -0.1299 & 0.0282 \\ -0.0688 & -0.4541 & -0.933 & 4.19 & -0.8706 \\ -0.0199 & -0.1299 & -4.19 & -14.23 & 6.321 \\ -0.0043 & -0.0282 & -0.8706 & -6.321 & -28.15\end{array}\right](0.2 \mathrm{a})$
$\hat{B}^{\prime}=\left(\begin{array}{lllll}0.58 & 7.073 & 2.706 & 0.7842 & 0.1701\end{array}\right]$
$\hat{C}=\left[\begin{array}{lllll}6.58 & -7.073 & 2.706 & -0.7842 & 0.1701\end{array}\right)$
$(6.2 b)$

The observability grammian and controliability grammian of the balanced representation i.s
$W_{c}=W_{c}=$ dias $(258.242 .670 .5280 .021610 .0005137)(6.3)$
We see from the above that the most controllable subsystem may be defined as the third order subsystem fiven by
$\hat{A}_{11}=\left(\begin{array}{ccc}-0.0838 & 0.2159 & -0.0688 \\ -0.2159 & -0.5802 & 0.4541 \\ -0.0088 & -0.4541 & -0.933\end{array}\right)$
$\hat{B}_{11}=\left[\begin{array}{lll}6.58 & 7.073 & 2.706\end{array}\right]$
(0.4b)
$\hat{c}_{11}=\left(\begin{array}{lll}0.58 & -7.073 & 2.700\end{array}\right)$
and the almost uncontrollable subsystem is then given by
$\hat{A}_{22}=\left(\begin{array}{cc}-1.4 .23 & 6.321 \\ -6.321 & -28.15\end{array}\right)$
$\hat{B}_{22}=\left(\begin{array}{ll}0.7842 & 0.1701\end{array}\right)$
$\hat{C}_{22}=\left[\begin{array}{ll}-0.7842 & 0.1701\end{array}\right]$

By assuming $\hat{\mathrm{A}}_{2}=0$ and $\hat{\mathrm{B}}_{22}=0$ and following the procedure
given in algorithm 2, the suboptimal control law is given by $\hat{u}=-\hat{F} X$, where

$$
\hat{\mathrm{F}}=\left(\begin{array}{lllll}
0.9248 & 0.1707 & 0.01528 & 0.04637 & 0.2786 \tag{6.6}
\end{array}\right)
$$

and the optimal feedback law is given by $u=-\mathrm{Fx}$, where

$$
F=\left[\begin{array}{lllll}
0.9049 & 0.1705 & 0.01611 & 0.04931 & 0.2656 \tag{6.7}
\end{array}\right)
$$

To compare the performance of the suboptimal feedback control Jaw with that of the optimal one, the performance index given in reference 10 (Levine and Athens 1970) is used. That iss if P_{S} is the solution

$$
0=(A-B \hat{F})^{\prime} P_{S}+P_{S}(A-B \hat{F})+\hat{F}^{\prime} R \hat{F}+Q
$$

and F_{0} is the solution of

$$
\begin{equation*}
0=(A-B F)^{\prime} Y_{0}+P_{0}(A-B F)+F^{\prime} R F+Q \tag{6.9}
\end{equation*}
$$

then the closeness of the trace of P_{s} as compared with the trace of P_{0} assesses the performance degradation due to the application of the suboptimal control law to the original
regulator problem.

For the present example,
and

$$
\begin{align*}
& \text { trace } p_{0}=0.3777 \tag{6.10}\\
& \text { trace } p_{s}=0.3778 \tag{6.11}
\end{align*}
$$

Which shows that the performance degradation with the suboptimal control law $\hat{u}(t)$ is less than 0.026 per cent.

From the controllability grammian we see that considering the second order subsystem
$\hat{\mathbf{A}}_{11^{\prime}}=\left(\begin{array}{cc}-0.0838 & 0.2159 \\ -0.2159 & -0.5862\end{array}\right)$
$\hat{B}_{111^{\prime}}=\left(\begin{array}{ll}6.58 \quad 7.073\end{array}\right)$
$\hat{c}_{11,}=\left[\begin{array}{ll}6.58 & -7.073\end{array}\right]$
es the most controllable subsystem is also acceptable. The suboptimal feedback matrix is given by

$$
\left(\begin{array}{llllll}
0.9165 & 0.1862 & 0.01996 & 0.06661 & 0.4382
\end{array}\right)(6.13)
$$

the performance index for the suboptimal control law by considering the second order most controllable susbsystem is:

$$
\begin{equation*}
\text { trace } P_{s^{\prime}}=0.3887 . \tag{0.14}
\end{equation*}
$$

The performance degradation for the present case is 2.91 per cent.

$$
\text { Notice that if the procedure of Kwong (} 1983 \text {) is }
$$

being used to extract the suboptimal control law, no acceptable

$$
\text { P. } 57
$$

suboptimal control law can be obtained, since the transformed system model by using the procedure is
$\overline{\mathrm{A}}=\left[\begin{array}{ccccc}-10 & 0 & 0 & 0 & 0 \\ 75 & -25 & 0 & 0 & 0 \\ 0 & 85.71 & -1.4 .28 & 0 & 0 \\ 0 & 0 & -1.6 & -0.5 & 0 \\ 0 & 0 & 0 & 0.5 & -0.2\end{array}\right]$
$\bar{B}^{\prime}=\left(\begin{array}{lllll}30 & 0 & 0 & 0 & 0\end{array}\right)$
and the state weighting matrix for the transformed system jis
$\bar{Q}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
I.t cen be seen from the state weighting matrix $\bar{\rho}$ for the trensformed system that any 'most controllable' subsystem of ordex Jess than 5 in the sense of Kwong (1983) has a. corresponding state weighting matrix which is a null matrix. Therefore, i.t is obvious that no approximate system can be obtained by the procedure of Kwong (1983) for the present example.
I.t is whil known that the optimal linear regulator should correspond to an optimal set of eigenvalues. In Table 1 the eipenvalues for the optimal and suboptimal regulators are shown.

TABLE 1

	Optimal regulator	TABBLE 1	
		Suboptimal regulator (with 2nd order most controllable subsystem)	Subontimal regulator fuith 3rd order most controllable subsystem)
Etenenvalues	$\begin{aligned} & -3.82+j 4.85 \\ & -3.82-j 4.85 \\ & -25 \\ & -13.82 \\ & -13.48 \end{aligned}$	$\begin{aligned} & -3.004+j 3.403 \\ & -3.004-j 3.403 \\ & -26.27 \\ & -15.47+56.834 \\ & -15.47-j 6.834 \end{aligned}$	$\begin{aligned} & -3.634+j 5.132 \\ & -3.634-j 5.132 \\ & -24.02 \\ & -18.05 \\ & -9 \end{aligned}$
```Performance jindex (degradation)```	0.3777	$\begin{aligned} & 0.3887 \\ & (3 \%) \end{aligned}$	$\begin{aligned} & 0.3778 \\ & (0.03 \%) \end{aligned}$

[^0]
## Example 2

Here we consider the example given in (Medanic et al. 1978 ). The system model is given by

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

whore
$A=\left[\begin{array}{cccccc}-0.21053 & -0.10526 & -0.0007378 & 0 & 0.0706 & 0 \\ 1.0 & -0.03537 & -0.000118 & 0 & 0.0004 & 0 \\ 0 & 0 & 0 & 1.0 & 0 & 0 \\ 0 & 0 & -605.16 & -4.92 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.0\end{array}\right]$ (6.16a)
$E^{\prime}=\left[\begin{array}{llllll}-7.211 & -0.05232 & 0 & 794.7 & 0 & -448.5\end{array}\right] \quad(6.16 \mathrm{~b})$
$C=\left(\begin{array}{cccccc}1.0 & 0 & 0 & 0.000334 & 0 & -0.007728 \\ 0 & 1.0 & 0 & 0 & 0 & 0\end{array}\right)$
and the input weiphting matrix is given by
$F=1$
For the present example it is the output y of the given system that is to be regulated, and the weighting matrix for the output variables is an identity matxix.

The balanced representation of $\{A, B, C\}$ is given by P. 60
$\hat{\mathbf{A}}=\left(\begin{array}{cccccc}-0.0821 & 0.303 & 0.0251 & 0.0007 & 0.001 & -0.0064 \\ -0.3275 & -0.1638 & 0.0752 & 0.0026 & 0.0028 & -0.0192 \\ -0.0949 & -0.185 & -12.67 & -62.78 & -1.235 & 5.523 \\ 0.0031 & 0.006 & 62.78 & -0.0139 & -0.0278 & 0.2664 \\ 0.0037 & 0.0073 & 1.235 & -0.0279 & -0.1024 & 2.4 .49 \\ 0.0244 & 0.0476 & 5.523 & -0.2665 & -24.49 & -4.629\end{array}\right]$
$\hat{B}^{\prime}=\left[\begin{array}{llllll}-3.247 & -3.326 & -1.875 & 0.0617 & 0.0738 & 0.4827\end{array}\right]$

$$
(6,17 b)
$$

$\hat{C}=\left[\begin{array}{cccccc}0.8505 & 1 . .34 & -1.875 & -0.0616 & -0.0738 & 0.4827 \\ 3.1 .34 & -3.044 & 0 & 0.0023 & -0.0015 & 0\end{array}\right]$
(6,17c)

The observability grammian and the controllability grammian of the balanced system $(6.17)$ is given by
$W_{o}=W_{c}=\operatorname{diag}(64.2,33.77,0.139,0.137,0.0266,0.0252)$

The most controllable subsystem is defined to be the fourth order subsystem given by
$\widehat{\mathrm{A}}_{11}=\left(\begin{array}{cccc}-0.0821 & 0.303 & 0.0251 & 0.0007 \\ -0.3275 & -0.1638 & 0.0752 & 0.0026 \\ -0.0949 & -0.185 & -1.2 .67 & -02.78 \\ 0.0031 & 0.006 & 0.2 .78 & -0.0139\end{array}\right)$
$\hat{B}_{11}=\left(\begin{array}{llll}-3.247 & -3.326 & -1.875 & 0.0617\end{array}\right)$
$\hat{\mathrm{c}}_{11}=\left[\begin{array}{cccc}0.8505 & 1.34 & -1.875 & -0.0616 \\ 3.134 & -3.044 & 0 & 0.0023\end{array}\right]$
and the almost uncontrollable subsystem is that given by
$\widehat{A}_{22}=\left(\begin{array}{ll}-0.1024 & 24.49 \\ -24.49 & -4.629\end{array}\right)$
$\widehat{B}_{22}{ }^{\prime}=(0,0738 \quad 0,4827)$
$\widehat{\mathrm{C}}_{22}=\left[\begin{array}{cc}-0.0738 & 0.4827 \\ -0.0015 & 0\end{array}\right]$
By assuming $\hat{A}_{21}=0$ and $\hat{B}_{22}=0$ and following the procedure given in algorithm 2, the suboptimal control law is $\hat{u}=-\hat{F} x$, where

$$
\widehat{F}=\left[\begin{array}{llllll}
-1.0888 & -0.9474 & 0.0004 & 0 & -0.0605 & -0.0010
\end{array}\right](6.21)
$$

And the optimal feedback control law $u=-\mathrm{Fx}$ is defined by

$$
F=\left[\begin{array}{llllll}
-1.0851 & -0.9432 & 0.0023 & 0 & -0.0604 & -0.0014
\end{array}\right](6.22)
$$

We see the suboptimal feedback law (6.21) is very close to that of the optimal one. The performance index for the suboptimal regulator is given by

$$
\begin{equation*}
\text { trace } P_{s}=1.2388 \tag{6.23}
\end{equation*}
$$

while that for the optimal one is given by

$$
\begin{equation*}
\text { trace } P_{0}=1.2387 \tag{6.24}
\end{equation*}
$$

$$
\text { P. } 62
$$

Therefore, the performance degradation of the suboptimal rewlator by employing the suboptimal control law $\hat{u}(t)$ is less than $0,008 \%$.

If instead, the procedure of Kwong (1983) is used, at the 5th sten of the procedure, the transformed system model i.s given by
$\bar{A}=\left[\begin{array}{cccccc}-6.751 & -4.10 & -1352 & -1400 & 8.475 & 0.699 \\ 3.395 & 387.9 & 1317 & 2952 & -220.4 & -140 \\ 0 & -119.6 & -405.9 & -910.5 & 67.98 & 4.321 \\ 0 & 0 & 3.551 & 8.414 & -0.659 & -0.0533 \\ 0 & 0 & 0 & 12.89 & -1.321 & -0.212 \\ 0 & 0 & 0 & 0.133 & 0.994 & -0.0426\end{array}\right](0.25 a)$
$\bar{B}^{\prime}=\left(\begin{array}{llllll}012.6 & 0 & 0 & 0 & 0 & 0\end{array}\right) \quad(0.25 b)$
$\overline{\mathrm{c}}=\left[\begin{array}{llllll}-0.003813 & -0.02149 & -0.02028 & 0.00021 & 0.9958 & -0.00785 \\ -0.0000573 & -0.002441 & -0.007593 & 0.008903 & 0.006901 & 0.9999\end{array}\right]$
(0.25c)

Using the method proposed by Kwons (1983), the suboptimal control law $\bar{a}=-\bar{F} x$ thus obtained is
$\overline{\mathrm{F}}=\left[\begin{array}{llllll}-0.06931 & -0.01447 & -0.01059 & 0.005597 & -0.1147 & -0.0019\end{array}\right]$ (6.26)

The nerformance index for the suboptimal control law $(6.20)$ is

$$
\begin{equation*}
\text { trace } P_{s^{\prime}}=5.77 \tag{0,27}
\end{equation*}
$$

P. 63

- Comparing this with the performance index for the optimal repulator, we see that the suboptimal control law (6.26) is not accontable.

In Table 2 the eigenvalues for the optimal regulator and the suboptimal regulators are shown.

TABLE 2


Example 3

As this last example in this section, we use the example taken from Harvey and Stein (1978). The system model is defined by
$A=\left(\begin{array}{cccccc}-0.746 & 0.387 & -12.9 & 0 & 0.952 & 0.05 \\ 0.024 & -0.174 & 4.31 & 0 & -1.76 & -0.416 \\ 0.006 & -0.999 & -0.0578 & 0.0369 & 0.0092 & -0.0012 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -10 & 0 \\ 0 & 0 & 0 & 0 & 0 & -5\end{array}\right)$
$B=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 20 & 0 \\ 0 & 10\end{array}\right]$
The otate weirfoting matrix is given by $Q=H^{\prime} H$, where
$H=\left[\begin{array}{rrrrrr}-0.131 & -0.012 & 1.04 & 0.0175 & 1 & 0 \\ 0.507 & 0.100 & -2.39 & 0.0303 & 0 & 1\end{array}\right)$
and the input weighting matrix is
$R=\left[\begin{array}{ll}3 & 0 \\ 0 & 1 .\end{array}\right]$

The balanced representation of $\{A, B, H\}$ is given by
$\hat{A}=\left(\begin{array}{cccccc}-0.0173 & 0.0134 & 0.1933 & -0.0809 & -0.0245 & 0.0365 \\ 0.0317 & -0.0521 & -1.996 & 0.1282 & 0.2249 & -0.0642 \\ -0.168 & 0.0251 & -0.1708 & 0.401 & 0.0508 & -0.1389 \\ -0.0802 & 0.1152 & -0.2232 & -0.8927 & -0.5684 & 0.6983 \\ -0.0799 & 0.2587 & -0.5298 & -1.1019 & -0.6573 & 1.8927 \\ 0.0329 & -0.0367 & 0.010 & 0.6626 & 0.6062 & -5.1876\end{array}\right)$
(6.29a)
$\widehat{E}=\left(\begin{array}{rr}-0.7741 & 0.7149 \\ 1.5008 & -0.2184 \\ -2.5420 & -0.7494 \\ -1.7528 & 2.2146 \\ -4.0449 & -0.7536 \\ 0.3887 & -1.0684\end{array}\right)$
$\hat{\mathrm{G}}=\left[\begin{array}{rrrrrr}-0.2323 & 1.2803 & 0.2029 & -0.9146 & -4.1133 & 0.4461 \\ 1.0278 & -0.8129 & -2.6424 & 2.6721 & -0.0961 & -1.0458\end{array}\right]$
(6,29c)

The obsorvability grammian and controllability graminain for the balanced system $(6,29)$ is given by
$W_{0}=W_{c}=\operatorname{diag}(32.2,22.1,20.6,4.5,0.9,0.1)$
The most onntrollability subsystem is defined to be the fourth order subsystem given by

$$
\text { P. } 67
$$

$\hat{A}_{1,1}=\left(\begin{array}{cccc}-0.0173 & 0.0134 & 0.1933 & -0.0809 \\ 0.0317 & -0.0521 & -1.996 & 0.1282 \\ -0.168 & 2.0251 & -0.1708 & 0.401 \\ -0.0802 & 0.1152 & -0.2232 & -0.8927\end{array}\right)$
(6.31a)
$\hat{B}_{11}=\left(\begin{array}{rr}-0.7741 & 0.7149 \\ 1.5008 & -0.2184 \\ -2.5420 & -0.7494 \\ -1.7528 & 2.2146\end{array}\right)$
$\hat{C}_{1.1}=\left(\begin{array}{rrrr}-0.2323 & 1.2803 & 0.2029 & -0.9146 \\ 1.0278 & -0.8129 & -2.6424 & 2.6721\end{array}\right)$
and the almost uncontrollable subsystem is defined by

$$
\begin{align*}
& \hat{\mathrm{A}}_{22}=\left(\begin{array}{rr}
-9.0573 & 1.8927 \\
0.0062 & -5.1876
\end{array}\right)  \tag{6.32a}\\
& \hat{B}_{22}=\left(\begin{array}{rr}
-4.0449 & -0.7536 \\
0.3887 & -1.0684
\end{array}\right)  \tag{6.32b}\\
& \hat{\mathrm{C}}_{22}=\left(\begin{array}{rr}
-4.1133 & 0.4461 \\
-0.0961 & -1.0458
\end{array}\right)
\end{align*}
$$

Ry following the procedure given in alyorithm 2 , the suboptimal control law $\hat{u}=-\hat{F} x$ is obtained, where

$$
\text { P. } 08
$$

$$
\hat{F}=\left(\begin{array}{cccccc}
-0.0752 & -0.8813 & 0.9369 & 0.0286 & 0.8116 & 0.1263  \tag{6.33}\\
0.5337 & 0.5606 & -3.054 & 0.0162 & -0.02 & 0.9613
\end{array}\right)
$$

and the ontimal feedback control law $u=-F x$ is given by
$F=\left[\begin{array}{rrrrrr}-0.1293 & -0.8792 & 1.5651 & 0.0263 & 0.6664 & -0.0249 \\ 0.5181 & 0.4156 & -2.8133 & 0.0208 & -0.0124 & 0.8507\end{array}\right]$

The performance index for the suboptimal regulator (6.33)
is given by

$$
\begin{equation*}
\operatorname{trace} p_{E}=2.19 \tag{6,35}
\end{equation*}
$$

While that for the ontimal regulator is

$$
\text { trace } P_{0}=2.03
$$

If instead the procedure of Kwong (1983) is employed, the ferdback matrix and the performance index are given by

$$
\bar{F}=\left(\begin{array}{rrrrrr}
-0.1116 & -0.5983 & 1.43 & 0.0234 & 0.0003 & -0.0043 \\
0.5269 & 0.1922 & -3.035 & 0.0178 & -0.0021 & 0.8683 \tag{6.38}
\end{array}\right)
$$

He see that the performance of the suboptimal resulator (0.35) is superior than that of $(0.37)$. The performance degradation for the suboptimal regulator (6.35) is 7 per cont, while that for (0.37) is 20 per cent. In Table 3 the eigenvalues for the respective regulators are shown.

	Optimal regulator $(6.34)$	Suboptimal regulator by the present method (6.33)	Suboptimal regulator by the method of kwong $(6.37)$
Elgenvalues	$\begin{aligned} & -2: .7 \\ & -10.21 \\ & -3.808 \\ & -0.737+j 2.313 \\ & -0.737-j 2.313 \\ & -0.049 \end{aligned}$	$\begin{aligned} & -25.1 \\ & -11.9 \\ & -3.487 \\ & -0.674+12.159 \\ & -0.674-12.159 \\ & -0.047 \end{aligned}$	$\begin{aligned} & -22.46 \\ & -10.43 \\ & -3.851 \\ & -0.557+j 2.298 \\ & -0.557-j 2.298 \\ & -0.033 \end{aligned}$
Performance index	2.03	$2 \cdot 19$	2.45

U日rarks:

1. It is obvious that from the definition of the linear quadratic requlator problem that it is the steady state behavior of the unregulated system which is of major importance. Since it is the transient behavior which is emphasized in the procedure of kwong (1983), it may seem tbat the suboptimal control law obtained by the method may not be satisfactory. This is in fact the situation, as can be seen from the provious examples.
2. Although it is the steady state behavior which is of fundamental importance for the regulator problem, the performance of the suboptimal control lav may be improved if the transient behavior of the unregulated system model is also taken into account in deriving the suboptimal. control law. In Fig. I the transient response of the approximate model $(6.31)$ is shown. Ho see that the initial pert of the transiont response of the approximate model (6.31) deviates greatly from that of the original one $(6,29)$. This is due to the fact that the present method emphasized the steady state Dehavior. In the next section another procedure is proposed which j. $n$ dridition to the steady state behavior, the behavior of the transient is also taken into account.
```
\mp@subsup{y}{1}{}
```

$20.0-$
$15.0-$
12.5-


Fig. I
P. 72
7. Improved algoxithm to derive the suboptimal control law In Algorithm 2, the controllability grammian and the observability grammian (5.17) are employed to explore the almost uncontrollable subsystem. The grammians are defined by the integrals (4.10), thus the fast modes which are important only during the initial portion of the response may be considered as the almost uncontrollable modes in the sonse of $(5,18)$. However, wo see that if the performance of the suboptimal control law is to be further improved, the initial transient behavior should also be considered. The key here is to match the first Markoy parameter of $\{A, \bar{B}, H\}$ in the approximate model, where $\bar{B}, H$ is the modified input matrix and the implicit output matrix rospectively.

## A)sorithm 3

Step 1 Employ Step 1 to Step 4 of Algorithin 2 to $\{A, \bar{B}, H\}$ to explore the almost uncontrollable subsystem $\left\{\hat{A}_{22}, \hat{B}_{22}, \hat{\mathrm{C}}_{2 \alpha}\right\}$ defined in $(5.23)$. If the norms $\hat{B}_{22}$ and $\hat{C}_{22}$ is small, Algorithm 2 is carried out to complete the suboptimal design problem. (Since when the norm of $\widehat{\mathrm{S}}_{22}$ and $\hat{\mathrm{C}}_{22}$ is small, the subsystem $\left\{\hat{A}_{22}, \hat{\mathrm{~B}}_{22}, \widehat{\mathrm{C}}_{22}\right\}$ contributes little to the input-output response of the original system.) Otherwise, go to Step 2.

```
P. }7
```

Step 2
Find the singular value ascemposition of $\hat{B}$, whe input matrix of the balanced reprosentation $\{\hat{A}, \hat{B}, \hat{C}\}$ of $\{A, \bar{B}, H\}$, that is

$$
\begin{equation*}
\hat{\mathrm{B}}=\mathrm{V}_{1} \sum \mathrm{U}_{1}^{\prime}, \quad \sum=\binom{\mathrm{D}}{0} \tag{7.1}
\end{equation*}
$$

D) is the diagonal matrix with its elements the singular values of $\hat{3}$.

Siep 3 Transform the gystem $\{\hat{A}, \hat{B}, \hat{C}\}$ to $S_{1}$

$$
\begin{equation*}
S_{1}:\left\{V_{1}, \hat{A} V_{1}, V_{1}, \hat{B}, \hat{\mathrm{C}} V_{1}\right\} \tag{7.2}
\end{equation*}
$$

And the transformed sjetem $S_{1}$ is now eiven in the 10 rm

$$
\begin{align*}
\binom{x_{11}}{x_{12}} & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{13} & A_{14}
\end{array}\right)\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right]+\left[\begin{array}{c}
B_{11} \\
0
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
C_{11} & C_{12}
\end{array}\right)\left[\begin{array}{l}
x_{11} \\
x_{12}
\end{array}\right]
\end{align*}
$$

Notice now that $x_{11}$ is an inx istate vector, wtere $m$ is the rank of the input matrix $\overline{3}$.

Step 4 Define the residue abivystem $\mathcal{S}_{R 1}$ as

$$
\begin{equation*}
\left\{A_{14}, A_{13},\binom{c_{12}}{A_{12}}\right\} \tag{7.4}
\end{equation*}
$$

And use Algorithm 2 to explore the almost uncontrollable sionsstem of the siondue swbsystem. If the balanced representation of $S_{R 1}$ after perfurming algurithm ? is given by

$$
\left\{\left[\begin{array}{l:c}
A_{21} & A_{22}  \tag{7.5}\\
\hdashline A_{23} & A_{24}
\end{array}\right],\left[\begin{array}{l}
A_{131} \\
\hdashline A_{132}
\end{array}\right],\left[\begin{array}{cc}
C_{121} & C_{122} \\
\hdashline A_{121} & A_{122}
\end{array}\right]\right\}
$$

The sitesystem

$$
\begin{equation*}
\left\{A_{24}, A_{132},\binom{C_{122}}{A_{122}}\right\} \tag{7,6}
\end{equation*}
$$

Is the almost uncentrollable astisystem for
the residue subsystem $S_{R I}$. And now $\{A, \vec{B}, H\}$
is transformed to the form

$$
\left\{\left(\begin{array}{ll:l}
A_{11} & A_{121} & A_{122} \\
A_{131} & A_{21} & A_{22} \\
\hdashline A_{132} & A_{23} & A_{24}
\end{array}\right),\left(\begin{array}{l}
B_{11} \\
0 \\
\hdashline 0
\end{array}\right],\left[\begin{array}{lll}
C_{11} & C_{121} & C_{122}
\end{array}\right)\right\}
$$

Tine biock matrices are all of sompatible osders. Tinus the most costrollable subsystem fox $\left\{A_{-}, \bar{B}, H\right\}$ is eiven by
$\left\{\left(\begin{array}{ll}A_{11} & A_{121} \\ A_{131} & A_{21}\end{array}\right),\binom{B_{11}}{0},\left(\begin{array}{ll}C_{11} & C_{121}\end{array}\right]\right\}$
And the uncontrollable system $\left\{A_{24}, 0, C_{122}\right\}$ is comisidered iss the almost uncontrollable subejstem for $\{A, \overline{\mathrm{P}}, \mathrm{H}\}$. Follow the procedure ouvlined in aiguxithm 2, the swboptimal oontrol Law can then to found.

$$
\text { Y. } 75
$$

Remarks:

1. In algorithm 3, step 2 corresponds to matching the first markov parameter of the original system model $\{A, \bar{B}, H\}$ in the approximate model. That is why the procedure would give an approximate model having a initial transient response which is close to that of the original one. And after step 2, the system model can be depicted as shown in fig. 2.


Fig. 2
2. In the residual system defined in (7.4) : A13 and A12 are considered as the additional input matrix and output matrix to take into account the coupling effects between the subsystems shown in Fig. 2. In Fir. 2 the residue system is also shown.

In the next example, Example 3 is reworked by using the algorithm 3.

Example 4

Here we use the system model and weighting matrices shown in Example 3. The transformed system after employing algorithm 3 is given by
$\hat{A}=\left(\begin{array}{cccccc}-6.488 & -0.436 & -0.6784 & 4.055 & -0.7511 & -1.549 \\ -1.373 & -2.015 & -0.5523 & 0.003 & -0.3502 & 1.348 \\ 1.445 & 0.7335 & -0.1603 & 1.622 & 0.06548 & -0.0022 \\ 4.835 & 0.8814 & -1.698 & -3.12 & -0.6791 & 1.1903 \\ 0.6226 & -0.6185 & -0.06552 & -0.3941 & -0.2782 & 0.8791 \\ -0.8642 & 1.002 & -0.01768 & 0.475 & 0.8846 & -3.916\end{array}\right]$
$\stackrel{A}{\mathrm{~B}}=\left[\begin{array}{cc}-5.376 & 0.0571 \\ -0.0296 & -2.78 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
$\hat{\mathrm{C}}=\left[\begin{array}{cccccc}-3.72 & -0.0764 & -0.8845 & 2.144 & 0.264 & -0.116 \\ 0.0198 & -3.596 & 1.039 & -1.572 & 0.0969 & -0.367\end{array}\right]$
$(7.9 \mathrm{c})$

Whe mest controlable subsystem is defined to be the fourth order subsystem given by
$\hat{A}_{21}=\left[\begin{array}{cccc}-6.488 & -0.436 & -0.6784 & 4.055 \\ -1 . .373 & -2.015 & -0.5523 & 0.803 \\ 1.445 & 0.7335 & -0.1603 & 1.622 \\ 4.835 & 0.8814 & -1.698 & -3.12\end{array}\right]$
$\hat{B}_{1.1}=\left(\begin{array}{cc}-5.376 & 0.0571 \\ -0.0296 & -2.78 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
$\hat{\mathrm{c}}_{1.1}=\left[\begin{array}{cccc}-3.72 & -0.0764 & -0.8845 & 2.144 \\ 0.0198 & -3.596 & 1.039 & -1.572\end{array}\right]$
and the almost uncontrollable subsystem for the original system model is now the uncontrollable system
$\hat{A}_{22}=\left[\begin{array}{cc}-0.2782 & 0.8791 \\ 0.8846 & -3.916\end{array}\right]$
$\hat{\mathrm{c}}_{22}=\left[\begin{array}{ll}0.264 & -0.116 \\ 0.0969 & -0.367\end{array}\right]$
$\hat{\mathrm{A}}_{22}$ is now a null matrix.
Following the procedure given in algorithm 3, the suboptimal control Jaw i.s defined by the feedback matrix
$\hat{F}=\left[\begin{array}{rrrrrr}-0.1379 & -0.9417 & 1.564 & 0.0289 & 0.0829 & -0.0064 \\ 0.5544 & 0.4553 & -2.6879 & 0.0228 & -0.0032 & 0.8226\end{array}\right]$
(7.12)

The performance index for the suboptimal reßulator is riven i) $5^{r}$

$$
\begin{equation*}
\text { trace } \mathrm{P}_{\mathrm{S}}=2.05 \tag{7.13}
\end{equation*}
$$

and the performance derradation is $1.0 \%$. It is seen that the performance desadation for the subuptimal resulator outained by the alyorithm siven in this section is further reduced as compared with that obtained uy aleorthm 2 . In Tanle 4 the results for the varies suboptimal control laws are shown for comparsion.

In fig. 2 the response of the fourth order reduced model obtained by means of Algorithm 3 is shown together with the fourth order reduced model ootained by means of Alyorithm 2 for comparsion. It can we se日n that the fourth order reduced model obtained by Alaorithm 3 has a better initial transient response。

		Optimal reg,ulator	Suboptimal regulator   by method of Section 7	Suboptimal regulator   by method of Section 6	Suboptimal regulator by method of Kwong
$\begin{aligned} & \text { - } \\ & \infty \\ & 0 \end{aligned}$	Elgenvalues	$\begin{aligned} & -21.7 \\ & -10.21 \\ & -3.808 \\ & -0.737 \pm .22 .313 \\ & -9.049 \end{aligned}$	$\begin{aligned} & -22.39 \\ & -9.55 \\ & -4.335 \\ & -0.766+j 2.317 \\ & -0.052 \end{aligned}$	$\begin{aligned} & -25.1 \\ & -11.9 \\ & -3.487 \\ & -0.674 \pm j 2.159 \\ & -0.047 \end{aligned}$	$\begin{aligned} & -22.46 \\ & -10.43 \\ & -3.851 \\ & -0.557 \pm j 2.298 \\ & -0.033 \end{aligned}$
	Porformance 1ndex	2.03	2.05	2.19	2.45

$y_{1} \quad\left(u_{1}\right.$ as input)


Fig. 2
P. 81

## 8. DTSUISSIONS

In this chonter a procedure to derive a suboptimal control law is proposed using an internal cooridinate transformation of the given system, so that the almost unoontrollable subsystem is identified. The computational burden is reduced. The ooordinate trenstormation also teles into account the waighting matrices in the cost functional of the repulator problem. This is important since the control law depends on both the system dynamics and also the weifhting matrices in the cost functional. It fis also demonstrated in the chapter how the dynamics of the unrefulated system are related to the suboptimal control law.

## CHAPTER 4

## CONCIUSIONS

In this thesis we have demonstrated that how the notion of 'almost uncontrollability' and 'almost unobservability' can be employed to derive a simplifiod model to fescilitate the analysis and design of control systems. In the procedures only orthogonal and diagonal matrices are involved, which from the computation point of view, are convenient. It is also shown that in the examples that the simplified model thus obtained fit the tasks of analysis and design woll.

Although we have some well establishod criteria to test the exact controllability and observability of a givon syotem (paige 1981), it is domonstrated in this thosis that this is not the case of 'almost controllaillity' or 'almost observability', When one employ ditierent measures foz the above notions of 'almost controllability' and 'almost opservability', one may obtain different simplified modol which can fulfill different predetermined tasks. It is believed by the present author that the above consideration can be applied to the more general nonlinear and timevariant system to fascilitate the analysis and design of the more general system models. But, in order that the shove consideration be a fruitful one, the correspoding notions of 'almost controllability' and 'almost observability'
should be re-established for the more genexal systom models. The latter would be a very interesting field of further investigation。

1. AOKI, Control of Large-scale Systems by Aggregation, IEFE Trans. AC-13, pp. 246-253, 1968.
2. BROCKEIT, R.W., 1970, Finite dimensional linear system (New York, Wiley)
3. DPESSIJER R.M., and LARSON R.E., Computation of Optimal Control in Partially Controlled Linear Systems, IEEE Trans. Ar-14, pp. 575-578, 1969.
4. GENESIO R. and MTLANESE M, A note on the derivation and use of Reduced-order models, IEEE Trans. AC-21, pp. 118-1.22,1976.
5. PARYEY C.A. and STAIN G., Quadratic Weights for Asymptotic Regulator Properties, IEEE Trans. AC-23, рр. 378-387, 1978.
G. KLEMA V.C. and LAUB A.J., The singulax value decomposition: Its Computation and Some Applications, IEEE Trans. AC-25, pp. 164-176, 1980。
6. KWONG, C.P., Int. J. Contr., vol. 35, 965, 1982.
7. KWONG, C.P., Int. J. Contr., vol. 37, 843, 1983.
8. LAMBA S.S., and HAO V., On Suboptimal Control via the Simplified Model of Davison, IEEE Trans. AC-19, pp. $448-450,1974$.

$$
\text { P. } 85
$$

10. IFVINE W.S. and ATHANS M., On the determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems, IEEE Trans. AC-15, pp. 44-48, 1970.
11. MCMI,AMROCH N.H., Duality and Bounds for the Matrix Riccati Equations, Journal of Mathematical Analysis and Applications 25, 622-627, 1969.
12. MOORE B.C., Principal Component Analysis in Linear Systems: Controllability, Observability, and the Model Reduction, IEEE Trans. AC-26, pp. 17-32, 1981.
13. PATCE C.C., Properties of Numerical Algorithms Related to Computing Controllability, IEEE Trans. AC-26, pn. 130-138, 1981.
14. PATEL R.V., Computation of Minimal-order State Space Raslifzations and Observability Indices using Orthogonal Transformation, Int. J. Contro, vol. 33, pp. 227-246, 1981.
15. STEWART G.W., Introduction to Matrix Computations, Academic, 1.973.
16. STPANG G., Linear Algebra and Its Applications, Academic, 1980 .

$$
\text { P. } 86
$$




[^0]:    (Kwong's procedure fails in this example)

