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CHAPTER 1

GENERAL SURVEY

1. Introduction

The analysis and design of control systems are usually

done on a mathematical model for the particular physical

system concerned. The system model may turn out to be of

high order. To reduce the computational burden and to

minimize the cost for the particular analysis and design

problems, sometimes it is desired to reduce the order of

the system model. A list of various methods and a classification

of the methods can be found in the paper (Genesio and

Milanese 1976).

A. common philosophy adopted in deriving a reduced order

model is to consider the particular given system model as

a composite system of a dominant subsystem and a non-

dominant subsystem in a certain sense. It is a well-known

fact that no reduced order model can meet all purposes

therefore the dominant subsystem should retain the properties

of the original system which are of fundamental importance

in the particular analysis and design problem8. For instance,

if for the case that it is the steady state response of

the given system which is of fundamental importance, the

accuracy of the transient response of the reduced order

model may be sacrified.

The above consideration is depicted in Fig. 1. And



2

the dominant subsystem is taken as the reduced order model

for the particular problem by discarding the non-dominant

subsystem and ignoring the couplings between the subsystems.

Unreduced high order model

Dominant

subsystem

OutputInput

Non-dominant

subsystem

Fig. 1

It is known that when a subsystem of a composite

system is completely uncontrollable or is completely

unobservable, the subsystem will not contribute to the

input-output characteristics of ttze composite system.

Therefore, from the input-output point of view, a

dominant subsystem can be defined as the subsystem which

is completely controllable and completely observable.
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If the given system is in fact both completely

controllable and completely observable, the latter

consideration may not be applied. However, when the original

system is composed of a 'most controllable' and/or I most

observable' subsystem, a reduced order model can still be

found. Moore (1981) derived a reduced order model which

corresponds to the 'most controllable and most observable'

subsystem of the given system. While, in the reduced order

modelling procedure of Kwong (1982), called 'optimal chained

aggregation', the most observable subsystem is extracted

as the reduced order model. It is important to point out

that in order that one can identify the 'most controllable'

or the 'most observable' subsystem, one should have a

measure of the 'degree of controllability' and a measure

of the 'degree of observability'. Notice that the measure

may have a determinant influence on the responses of the

reduced order models. The measure of Moore (1981) will

be shown to stress on the steady state response of the

system, while that of Kwong (1982) stresses on the transient

response.

In this thesis, a reduced order modelling procedure

will be given in Chapter 2. The proposed procedure shares

the same point of view as-that of Kwong (1982) except
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that the most observable subsystem is extracted through

an internal coordinate transformation of the given system

to take into account of the input coupling effect in the

reduced order model. The procedure of Kwong (1982) ignores

the input coupling effect completely. In Chapter 3 we

consider the problem of deriving a suboptimal control law

for the linear regulator problem. Since it is the steady

state response which is of fundamental importance here,

the methodology of Moore (1981) is employed. In order that

the effect of the weighting matrices in the cost functional

may be taken into account in the suboptimal control law,

an implicit output vector and a modified input vector

are introduced.

2. The mathematical tool

Singular value decomposition is the main mathematical

tool used to perform the order reduction. Singular value

decomposition is recognized as a reliable technique to

find the rank of a matrix. An excellent review of the

properties of singular value decomposition can be found

in (Klema and Laub 1980). For the purpose of completeness,

the singular value decocnpostion theorem is given below.



Thoorora (Klema and Laub 19Q)

Let A£ R p then there exists orthogonal matrices U6 R

and V 6 jnxn jguLcti that

(2.1)

(2,2)

where

and S- d±a£ with

Note that the columns of U ar© called the left singular

vectors of A while the columns of V are called the right

singular vectors of A. Th© rank of the matrix A is k« If

the orthogonal matrices U and V ar© partitioned compatibly

as

and

(2.3)

(2®4)

then U 9 V provide orthonormal bases for th© four

fundamental subspaces; Ira» (ker A), Xra U0« Ira A9'

Im V= ker A and Im U= (Ira A)
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CHAPTER 2

REDUCED ORDER MODELLING

1. Introduction

In this chapter an algorithm is proposed for obtaining

a reduced order model for a given system. The proposed method

is based on extracting the most observable subspace of the

given system. The extraction of the most observable subspace

is done through an internal coordinate transformation of

the given system model, called the 'controllability balanced

representation'. The reasons for the need to transform the

given system model is twofold: first, to take into account

the input coupling effect and second, to make the algorithm

independent of the internal coordinates of the original

system model

We shall first review the series expansions of the

transfer function in Section 2. The expansions of the

transfer function at s=o and s=O are considered. This is

of help in interpreting the properties of the reduced ordex

model. In Section 3, the-' controllability balanced

representation' is introduced and some of the properties

of the representation are discussed. In section 4, along

with the proposed algorithm, the 'optimal chained

aggregation' reduced order modelling procedure of Kwong

(1982) will be outlined and discussed. The present work
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is in fact stimulated by the paper. In section 5, numerical

examples are given to demonstrate the results.

2. Frequency domain analysis

Consider a linear, time-invariant and asymptotically

stable system defined by

(2,la)

(2. lb)

where x is the nxl state vector, u is the rxl input vector

and y is the pxn output vector.{ A. B, C }are constant matrices

of compatible dimensions. It is also assumed that the system

(2.1) is both completely controllable and completely observable.

The transfer function matrix of (2.1) is defined by

(2.2)

The Laurent expansion of (2.2) about s=oo yields

(2,3)

where (2o4)

The coefficient M i of (2.4) are termed the Markov parameters

of (2.1). On the other hand, the Laurent expansion of (2,2)

about s=O yields

(2 5)
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who re

(2.6)

are called the time moments of (2.1).

It is easily proved that a simplified model having

the Markov parameters close to that of the original model

will yield accurate transient response. And when the time

moments of the simplified model are close to that of the

original one, the steady state part of the response will

be retained.
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3. Controllability balanced representation

In this section the controllability balanced represent-

ation is defined. Given the asymptotically stable system

model (2.1) which is also assumed to be both controllable

and observable, the controllability grarnrnian is defined as

(3.1)

and the observability grammian is defined as

(3.2)

It is shown (Brockett 1970) that the grarnmians Wc

and Wo are the unique symmetric positive-definite matrices

which satisfy the following matrix Liapunov equations

(3.3)

(3.4)

The range spaces of Wc and Wo span the controllable and

observable. subspaces respectively.

The grammians are not invariant under the equivalent

transformations, and the grammians for the transformed

system which is given by

(3.5)

are



W (T)= T-1W (T-1)'
c c

(3-6)

W (T)= T' W T
o o

(3.7)

The notations W (T), W (T) deno t© the grainmians of the
c o

original system A 9 Bs G J? under the transformation

x=T x
1

(3.8)

To fascilitate future discussion? the eigenvaluos for

(3•1) are given by y. and
C3

l 3. 9)

and that the eigenvalues for (32) are given by CTT-: ana

f i o

Definition: The model| A,BPC i is controllability balanced

if the controllability graramian of the model W is such that
c

(3,11)W = I
c n

where I is the nth order identity matrix.
n

Definition: The model |a,B,C j1 is ooservability b a J- an cgq

if the observability gramniian of the model W is such that

(3.12)W= X
o n



Lemma 1

The controllability (observability) balanced representation

is invariant to orthogonal transformation,

Proof

From( 3.6)

if

and

therefore

and th© iamrna is proved, Th© proof for the observability

balanced representation is similar.

On© can observe from the proof of Lemma 1 that an

algorithm which can transform th© given system model to

th© controllability balanced representation is as follows.

Algorithm 1

Stop 1
Find the controllability grammian for APBtCj

by solving the matrix Liapunov equation (33)•

Step 2 Find the decomposition of i«e

where U is orthogonal and

diag

Step 3 Perform th© transformation

X= Px1

where
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will now in theThe transformed system

controllability balanced representation. Note that the

decomposition of We in Step 2 can be performed by means

of singular value decomposition

The feasibility of Algorithm 1 can be easily soon

since

(3-13)

therefore

! 3 n i4

The transformation of a divan system to tho observability

balanced representation is similar to the procedure given.

in Algorithm 1, except that (3.7) is used. Notice that

the controliability balanced representation has also boon

used by Moore (1981) through implieitly.



k. The proposed model reduction procedure

To obtain tho simplified model by the present method

the original system model in (2.1) is transformed to

f I
the controllability balanced representation. A,» B, C|

V J

by means of the transformation

x= Txx
( h. 1)

where the nonsingular transformation matrix T is obtained b)-

employing Algorithm X. A sequence of orthogonal transformation

is then performed to to extract the most observable

subsystem An algorithm is given in Patel, (X 9 I j to perforin

the above transformation. The same algorithm was employed in

th© reduced order modelling procedure by Kwong which

is called th© optimal chained aggregation procedure, The

optimal chained aggregation procedure will he further

discussed later in this section.

4. 1 Algorithm for obtaining the reduced model

In this subsection the algorithm through which the

reduced order model is obtained is given.

Algorithm 2

Step 1 Transform to tho controllability balanced

representation J A ,B ,C by means of the trans-

{111)

formation

x= T x
X JL

( 4. 2)

the transformation matrix Tis obtained by

the Algorithm 1.



Stop 2 Find the singular value decomposition of C t 1.©„

(4.3)

Transform to A2' h' c2 by mQans of

the orthogonal transformation

(4.4)x== V x
1 1 2

where, B and is given by

(4.5a)

( 4. 5 b J

(4.5c)

Stop 3 Define the residue subsystem as A_,0, B_, 0

where A ~A,, B =A and C =A Q• If the norm

of C is small as compared with the norm of A,

than the reduced order model is the on© defined

by A} If not} repeat Step 2 to tho

residue subsystem j A?,BR9j until at k 2,

the norm of the output matrix of

the residue subsystem» BpV? s sraaH

as compared with the norm of A. Perform the

secuence of orthogonal transformations

(46)
Pl P2 Pk-1

where P =Vn and



(4.7)
P

]

V. composes of the right singular vectors of CT_..,

±k. 1 is an identity matrix of appropriate

order. After performing the sequence of

orthogonal transformation (46), the system model

would b© in a form

A A. 0
k ML

21 22 23

Ay Ay A,J. Ik

Ak

n

Q

k-°l 91 k-1 s 2 k-»l j, 3

k k k
; k-i,k
I k

kl k2. k3

v Ak Ak Ak

kk
A,

k S

(4«8s.)

Bk

B1
k

2

k

k

,Bk

(4 8b)

( '

c,= cQ, 0 0
k 21!

(4 o 8c)

And th© reduced order model is the on© defined

by th© top left hand block shown in (408a)? (4,8b)

and (4 o 8c)•

If there exists no integer k such that the

output matrix CRk of the residue subsystem ARk cRkj--

is small as compared with the norm of A, then

no reduced order model can be claimed.



k—1 k

When the block matrix A' is exactly a null matrix,

the system is not completely observable, the

subsystem corresponds to the matrix A is completely

unobservable• Since we have assumed that the given system

|A,3,c|is completely controllable and completely observable,
k—1 k

A cannot be a null matrix However, when the norm of

k—1 k
the block matrix A' is small, the subsystem corresponds

kk k-1 k

to A is said to be almost unobservable The norm of A'

is therefore a measure of the degree of observability of

the almost unobservable subsystem. It is now seen that

Algorithm 2 corresponds to exploring the almost unobservable

subsystem, and the reduced order model is obtained by

discarding the almost unobservable subsystem

4.2 Properties of the reduced order model

We shall investigate some of the properties of the

reduced order model obtained by employing the algorithm 2

given in the previous subsection The procedure by Kwong

(1982) will also be considered here. Notice that the only

difference between the optimal chained aggregation of Kwong

and the present one is that Step 1 in Algorithm 2 is omitted.

4.2.1 Minimality of the reduced order model

When a given realization of a rational transfer function

matrix is minimal we mean that the state space of the

realization is of minimal order. It i3 well known that

a realization is minimal if and only if it is jointly

completely controllable and completely observable. Since

the observability of the reduced model is guaranteed by

the algorithm of Patel (1981), we now consider the

controllability of the reduced model



Lemma 2

If the system

(4.9)

is in the controllability balanced representation, the

subsystems Au» Bx' Ci j[ and{ A2 2 9 B2? wcmld also b©

in th© controllability balanced representation, under the

conditions that th© input matrices of the subsystems are not

null matrices, and A-, 22 are asYmP°tically stable»

Proof

Sine© th© controllability gramiaian is the unique symmetrical

matrix which satisfies

and for th© controllability balanced representation,¥ isc

an identity matrix, i.e. W 13 X, thereforeC 3T3t

implies

and so the lemma is proved.



By means of Lemma 2, we can claim the following.

Property 1

Under the condition that the input matrix of the reduced

order model is a non-null matrix9 the reduced, order model

is minimal§ if the reduced order model is asymto tically stable

42.2 Effect of scaling on the procedure

Sine© the system model is generally a mathematical

model of a realistic plant, during the process of modelling

different units (scaling) or ©von different system of unit

may be employed in modelling the physical plant Therefor©

it is important to investigate whether the derived reduced

order model would depend upon tho scaling used»

Assume that| A, B, C j- and| A, B, cl are two controll¬

ability balanced representation of a given system model.

By Lemma 1,

(4.10)

where P is an orthogonal transformation matrix.

Refer to Algorithm 2, tho singular value decompositions

of G and C are respectively,

(4 ell)

(4.12)

2_ is now considered as a diagonal matrix with the singular

values of C or C as elements, since C and C are related by

an orthogonal matrix, they have the same singular values®

The corresponding transformed systems after completing the



second 3tep of Algorithm 2( see (4.5)) are given by

(4.13)

(4.14)

Since the columns of U are th© eigenvectors of CC 5 ~CPP' C 6 ==CC s

therefore the columns of U are also th© eigenvectors of CGs•

That is U and U are related by

(4.15)

where I is a. diagonal matrix of compatible dimension and
±1

the diagonal elements are either Pi or -1 to take into

-account that the eigenvectors may have opposite directions f

Without loss of generality, it is assumed that

( 4 .16)

This would imply that

(4.1.7)

Moreover, since the columns of Y1 are the eigenvectors ofJ.

the matrix C'C= P'C5 CP, therefore

(4.18)

P. 19



And,

(4.19)

Similarly,

(4.20)

Therefor© w© have

(4.21)

If the above consideration is repeated for the subsystems

and ue can

assert the following.

Property 2

The reduced order model derived by employing the Algorithm 2

is unique to within a similarity transformation said is

independent of the internal coordinate system of th© given

unreduced system model©

Property 2 implies that w© can always obtain the same

reduced order model irrespective of the units being used to

represent the state variables. While the optimal chained



aggregation procedure of reduced order modelling: can be

easily demonstrated to be dependent on the internal

coordinate system of the given system model. An example

will be given in the next section to illustrate this point.

4.2.3 The dual of the reduced order modelling procedure

The underlying philosophy in the reduced order modelling

procedure given in Algorithm 2 is that the almost unobservabl©

subsystem is assumed to be completely unobservabl© and is

deleted from the state space. But it may so happen that

the almost unobservabl© subsystem may be strongly controllable.

The reason for first transforming the given system model to

the controllability balanced representation jlsi ins, ts froiu

Lemma 2 every subsystems of the controllability balanced

representation is also controllability balanced. That is

from the point of view of (31) the subsystems have the

same degree of controllability. Th© subsystem which is

almost unobservabl© can then be deleted; since w© do not

hav© th© risk that the almost unobservabl© subsystem is

strongly controllable.

It is obvious that the dual of th© Algorithm 2 can

also be used to derive a reduced order model. The reduced

ordor model is obtained by first transforming the system

model to the observability balanced representationf and

then the most controllable subsystem is extracted by using

th© dual of algorithm given in (Patel 1981).



4.2.4 The impulse response of the reduced model

From th© structure of th© transformed system, see (4.8),

we see that the Markov parameters of th© reduced order model

will approximate that of th© unreduced ones If th© norm of

A' is small as compared with that of A From the. analysis

given in Section 2, we may confirm that th© transient response

of the reduced order model will approximate that of the

unreduced on©. If th© steady state part of th© response

of the reduced order model should also approximate that of

th© unreduced one, th© time moments of the reduced order

oiodel should also approximate that of the unreduced one.

If the transformed system (4.8) is rewritten as| A,, B,»cA»

(4.22)

where J A ,B, G A is the reduced order model obtained by

11 1 IJ

employing Algorithm 2. From (2.6) w© see that in order

that th© time moments of the reduced order model should

approximate that of the unreduced one, th© inverse of

Athat is

(4.23)

should be of good approximation to that of



(4.24)

where

For , it requires that (Stewart 1973) the norm of

(4.25)

which is equivalent to the condition

(4.26)

-1=-1
Notice that if-1= A, it implies that the almostT

unobs©rvable subspace is an approximate invariant sub3pace

of the original state space, this is in consistent with

that the unobservablo subspace is the largest invariant

subspace contained in the kernel of the output matrix.



5. Examples

We consider the example used by Kwong (l982)» Th©

system is given by

x =5 Ax+Bu

y s= Cx (5.1)

where

-0.2X053 -0.10526 -O.OOO7378 0 0.0706 0

1.0 -0.03537 -0.000113 0_ 0.0004 0

0 0 0 1.0 0 o

0 0 -605.16 -4.92 0 0

0 0 0 0 0 1.0

00 00 -3906.25 -12.5

A

B1 -7.211 -0.05232 0 794.7 0 -448.5

1.0 0 0 0.000334 0 -0.007728

0 1.0 0 0 0 0

c

(5-2)

and x' is th© state vector.

To demonstrate how the effect of th© units (scaling)

employed in modelling a physical plant may affect th©

responses of the reduced order models, the state variable

A

x is substituted by x, where

A

lO0OOOx= x
(5.3)

Notice that (5.3) corresponds to using different units to

represent the state variable x. With the substitution of
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x by x, the system model (5.1) is transformed t

; A a A
x= Ax+ Bu

A

y= Cx (5.4.;

when = CPo The transformation

matrix P is given b

P=

1 0 0 0 0 C

O 1 O O O O

0 0 1 0 0 0

000 100000 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(5.5

and

'-0.21053 -0.10526 -0.000737a 0 0.0706 0

1 -0.03537 -0.000118 0 0.0004 O

00 0 100000 0 0

O O -0,006052 -4.92 O O

0 0 0 0 0 1

oo oo -3906.25 -12.5

-7.211 -0.05232 0 0.007947 0 -448.5

1 0 0 33.4 0 -0.007728

0 1 0 0 0 0

(5.6)

is called the scaled system model of (5. 1)



If now Algorithm 2 is applied to the scaled system

w© get the transformed system where

-0.00002 0.3336 -0.06266 0.0222 j 0 0

I

-0.3537 -0.0568 -4.303 -0.00032! 0 0

0.06868 4.630 -0.4702 -59.48 1 5.923 0.364

-0.05495 -1.777 64.59 -13.9' 1.4 0.0802

-0.01549 -0.8407 -3.504 -14.55 -3.ill 25.54

0.00316 0.1715 -O.8575 2.602 '-24.27 -0.1294

0.006211 0.337 -0.9697 5.272| 2.494 -0,5088

-1.224 -10.30 0 0 j 0 0

-30.71 0.4107 0 0,0 0

(5.7)

The fourth order reduced model obtained by coordinate

truncation of AfB9cj has the eigenvalue® -7089-j61.769,

-123-jo.312. Th© initial part of the impulse response

y of th© reduced order model is given in Fig 1.
1

Th© transformed system obtained by the optimal chained

I f-i)
aggregation procedure of Kwong (1982) is j A,B,Cf, where

-4.916 -0.00315 -0.5245 -7.515 I 0 0

-0.02993 -0.03537 -0.8980 -0.4389' 0 0

304 0.09451 6.563 6,864 1 0 3648 0.02142

-595.3 0.04624 -13.1 -13.99 '-0.7519 -0.0433

-1,293 0 -1717 3509 |~4.939 26.12

99950 -0.00001 2688 1315 1-23.14 -0.3453



j-0. 104l -0.05232 6.859 2.389! 448.5 -0.0008

33.4i 0 0 0; 0 0

0 1 0 0 i 0 0

(5.8)

The initial part of the impulse response y of th© fourth

order reduced obtained by optimal chained aggregation

i© shown in Fig. 2. It is seen that the response of the

reduced model deviates greatly from that of the original

system model. This example demonstrates that the reduced order

modelling procedure by Kvong (1982) may be affected by the

scaling (units) employed during th© modelling processQ since

vhen the procedure is applied to the unsealed system model

in the original paper (Kwong 1982) the response of the

reduced model is shown to a good fit with that of th© unreduced

model. While, irrespective to the scaling of the system model

the same reduced order model is obtained vhon the procedure

given in Algorithm 2 is employed. In Table 1 the

eigenvalues of the different models are shown.

TABLE 1

ORIGINAL MODEL REDUCED MODEL

BY KVONG

REDUCED MODEL BY

THE PRESENT METHOD

-6.25- j 62 0187

-2.46- j24.477

-0.123- jO.3124

-6.068 i j24.54

-0.123- jO.3124

-7.089- j61.709

-0.123- jO.312



original model

reduced order model

(by the present method)

Fig. 1
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y1

original model

4.01

reduced order model

5.0 (by the method of Kwong)

6.0

1.0

9.0

10.0

0.05 0.10 0.15 0.20 0.25 0.35 0.40 0.45 0.50 0.55 0.60

Fig. 2



Example 2

In this example the system model (5-2) given

in the previous example is reworked by applying the dual

of Algorithm 2 to derive a reduced order model. The

transformed system model |AfB(C when the dual of

Algorithm 2( section 4.2.3) is applied to the system (5.2) is:

-0.00576 1.512 -0.5328 O.OI583 I -0.324 -0.04984

-1.4l -0.4574 62.9 -0.04912 i 2.844 0.425

0 -58.21 -12.32 -15.08 1 -14.99 -2.312

0 0 15.86 -0.209 1 -3.091 1.263

000 3.583 1 -4.559 23.65

000 -1.132' -25.06 -0.1126

-32.42 0 0 0 I 0 0

0.1073 -0.9434 4.964 -0.1569' 3.019 0.4657

0.00161 -0.1577 0.00073 0.6272! -0.0286 -0.09133

(5.9)

The initial part of th© impulse response y of the fourth

order reduced model is given in Fig. 3

I n V V

Th© transformed system A,BjC obtained by the dual

of the optimal chained aggregation procedure is given by



-6.751 -4100 -1352 -1400

3-395 367-9 1317 2952

0 -119.6 -405.9 -910.5

0 0 3-551 8.414

000 12.89

000 0.1334

f 912.6 0 0 0! 0 0

84.75 -0.6987

! -220.3 -14

67.98 4.321

!-0.6589 -0.0533

-1.3209 -0.2115

0.9938 -0.0426

-0.003813 -0.02149 -0.02028 0.0862110.9958 -0.0079

-0.000057 -0.00244 -o.00759 0.00896 0.0069 0.9999

(5.10)

The response of the fourth order reduced mod©I obtained

by the above procedure is also shown in F±gc 3 9 We see

that the response of the reduced order model deviates

greatly from the original one«

From this example and the previous one, we see that

merely extracting the most observable or the most

controllable subsystem as the reduced order model may

not be a reliable method of model reduction. This is

due to the possibility that the most observable subsystem

so extracted may be least controllable, and the most

controllable subsystem may be least observable.



In Table 2 the eigenvalues of the reduced order models

are shown.

TABLE 2

Original model Reduced model by

the method of Kwong

Reduced model by

the present method

-6.25-j62.l87

-2.kbij2k.k77

-0.l23ij0. 3124

-5.90362.096

- 2. 248-j 24.442

-6„38-j 62.19

-0.118-jO.341



reduced order model

(by the method of Kwong)

reduced order model

(by the present method)

original model

Fig. 3



Example 3

In this example, the unreduced system model

| A,B,c

is given by

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

-2 -33.6 -155.94 -209.4b -102.42 -IB.3
%

0 0 0 0 0 1

2 3 16 20 8 1

1 2 7 8 1 1 (5.11)

The transformed system model obtained by applying the

Algorithm 2 is given by

-9.351 -0.431 -6.446 -1.148

-14.057 -5.613 -9.263 0.799

-2.681 2.192 -2.227 -0.991

-1.865 -3.134 -0.480 -0.243

-3.48 2.696 1.849 -0.547

4.506 -3.491 -2.087 0.8676

0 0

0 0

!-o. 1506 -0.1123

-0.0138 -0.1416

-0.3238 -0.1489

0.9814 -0.5428 4



'4.325 3-350 2.111 0.697; 0.805 -1.042

0.270 -0.049 0 0 I 0 0

0.171 0.078 0 0 1 0 0

(5.12)

Wb.il© the transformed system model obtained by means

of the optimal chained aggregation procedure is given by

'-11.78 -0.706 0.714 0.391' 0 o

67.58 6.469 -6.266 o.o44| 0 0

1

171.5 16.42 -14.62 -1.4441-1.61 -0.1505
1

-174.3 -17.08 14.37 1.5441 0.56 -0.5303

-119.7 -11.65 9.964 1.178'0.2062 0.8213

4.735 1.313 -0.3656 -0.031!-0.236 -0.123

0.045 -2.24 -0.611 0.62 |0.426 -0.0188

27.08 0.855 0 0' 0 0

10.74 -2.155 0 0! 0 0 (5.13)

In Table 3 the eigenvalues of the fourth order reduced

order models ar© shown. And the initial part of the impulse

responses are shown in Fig. h and Fig. 5 -s seen that

the responses of the reduced model obtained by the present

method fit so well with that of the unreduced one that th©

two cannot be distinguished. From this example we can also

see that the present method can also b© used to reduce the

order of a given transfer function.



original model the reduced model

by the present method

reduced order model

'(by the method of Kwong)

fij.4



original model
rpfinned model, bv the present method

reduced order model

•(by the method of Kwong)

Fig.5



TABLE j

Original model Reduced model by

method of Kwong

Reduced model by

the present method

-10

-5

-2

CE»1

-0,2

-0.1

-11.73

-4.37

— 2. 0 B

-0,2003

-10.04

-4.73

—2 o 6 6»

— 0,000 X

6. Dis cussion

We have demonstated in this chapter that by applying

the algorithm of Patel (1981) to the controllability

balanced representation (or to its dual) we can obtain

a reduced order model whose transient response is close

to that of the unreduced given system model, In addition,

the present proposed procedure has some very useful

properties. It should be noted that the present reduced

order modelling procedure cannot in general guarantee

the stability 01 the reduced rnodol. Since th© reduced

model is in fact an aggregated model (Kwong i9°2 s Aolci 19bS)

of the original system, if the original system is stable

and if the discarded subsystem is really 5 almost unobsorvable1

the stability of the reduced order model can usually be

f ulfi1lod.



CHAPTER 3

SUBOPTIMAL CONTROL

1. Introduction

In this chapter ve shall consider the near optimal

solution of the optimal linear regulator problem It is

well known that the determination of the optimal state

feedback control law involves th© solution of th© matrix

Riccati equation, which corresponds to th© solution of

a set of scalar nonlinear equations The number of equations

in th© set increases with the squar© of th© order of the

given system to b© regulated This would mean a large

amount of computational effort and cost, hence t'hore is

a n©ed to d©riv© a suboptimal control lav Tor th© regulator

problem through an approximate model of th© given system.

To fascilitat© future discussion, th© regulator

problem is first defined in section 2. In section 3 we shall

discuss how a suboptimal control law can be derived through

an almost uncontrollable model. In section 4 w© shall review

th© balanced representation of Moor© (191) which w© shall

make us© of Th© proposed method is given in section 5° And

numerical examples are given in section 6. In section 7

another procedure is proposed which can further improve

the performance of the suboptimal control law for systems

which have dominant fast modes



40

2. The regulator problem

We shall briefly review the linear quadratic regulator

problem in this section.

Consider the system

(2.1)

where x is an nXl state vector, u is a mxl control vector.

The matrices A and B are constant matrices of compatible

dimensions. The quadratic regulator problem is to establish

a state feedback control law

(2 2)

where F is a constant mxn matrix, such that it is required

to control the system at the set point Xd=0 under the

constraint that the cost functional

(2, 3)

is minimized. The input weighting matrix R is a positive

definite symmetric. inatrix, and the state weighting matrix Q

is a positive semidefinite symmetric matrix. Since Q is

positive semidefinite we can decompose Q as

(2.4)

If the pair (A, B) is oompletely controllable and (A. 1i) is

completely observable j the feedback matrix F is given by

(2.5)

where M is the unique positive definite symmetric matrix

Q=H;H

F=R-1B'M

u=-Fx



solution of the Riccati equation

0= A'M+MA-MBR B'M+Q (2.6)

and the optimal cost is given by

J= x 'Mx
o o

(2.7)

If we define

y Hx (2.8)

as the implicit output vector for the system (2al), w©

see that the cost functional (2,3) can be rewritten as

(2.9)

Notice that th© implicit output vector offers a machinery

through which we can take th© effect of the state weighting

matrix Q in th© cost functional (2,3) tn our suboptimal

control law.



3- Almost uncontrollable system and suboptimal control

In tills section we shall investigate how ve can

obtain a suboptimal control law for an almost uncontrollable

system. Kwong( 1983) employed a similar method to derive

the suboptimal control law, though with different setting.

We shall first consider how the optimal control law can be

obtained for a system which is not completely controllable.

3.1 Optimal control and not completely controllable system

It is known that if the given system (2.1) is not

controllable it may nor be possible to obtain M by solving

(2.6). It was however shown that( Dressier and Larson 1969)

under some additional assumptions one can obtain the optimal

contro1.

We assume here that the system (2.1) is not completely

controllablej then there exists a transformation

13.1)

for some nonsangular matrix T, such that the transformed

system given by w here

(3.2)

and have the forms

(3.3)



Dressier and Larson (1969) showed that if is

observable, and is a stable matrix, then the solution

of the regulator problem for the not completely controllable

system given in the form (3«3J corresponds to the solution

of the Riccati equation

( 3•)

for p, where

(3.5)

And, at th© same time, p is solved in the following' equation,

(36)

where p is the solution of the Riccati equation (30• The

feedback matrix for the optimal control law (2.2) is then

given by

(3.7)

3.2 Almost uncontrollable system and suboptimal control

We now consider the case where the given system (2.1)

is completely controllable. It is not possible to find tho

transformation matrix T to transform the system to the

form (3.3). But if there exists a transformed system



of S, S, such that the states are so arranged that w© can

partition the system into two subsystems and whereas

one of the subsystems say, S£, is 'almost uncontrollable1

then we can ignor the input coupling of the subsystem

and at the sam© time neglect the coupling 1 otwoen the

subsystems and. The notion of 'almost uncontrollabllity1

means that a system is completely controllable, but small

perturbation of th© system parameters may render the system

uncontrollable® A system is said to b© almost uncontrollable

if the almost uncontrollable subsystem exists, Th© above

consideration is depicted in Fig® 1. After setting

and Aq1~Q w© can then apply th© result of Section 31 to

derive a suboptimai control law for th© original regulator

problem® X11 order that th© above discussion b© a sensible

one, it is important that we should have a measure of th©

degree of controllability to ©nabl® us to identify th©

'almost uncontrollable subsystem', this is given in th©

following sectioEu

M ri a± r or t: ro 1 1 h 1 fl R1i h 53 Vfi i: m

Almost uncontrollaol©

subsystem



4. The balanced representation (Moore 1981)

W© shall first define in the following the balanced

representation.

Definition

A completely controllable and completely observable

asymptotically stable system is said to b© in its balanced

representation if the controllability grammiaii and the

observability gramraian of the system are equal and ar©

diagonal.

Consider the asymptotically stable system |A?.B,C)

which is assumed to be both completely controllable

and completely observable,w© shall demonstrate how to

transform to its balanced representation in the

following algorithm. Noting that the notations W (T)p

W(f) denote the grammians of th© given system |a,B0cJ

under the transformation x=Tx, where x is th© stat© vector

of |A,B,cJ and x is that for the transformed system. And

(4.1)

(4.2)

W. W are th© controllability grammian and observability

for the original system |asB,C|„

Algorithm 1

Step 1 Solve

(4.3)



Stop 2 Find the singular value decomposition of VJ s

that is

(4.4)

Step 3 Perform the transformation x=Tx, where

(4.5)

and the transformed system is given by

where

Step 4 Solve

(4,6)

for

Step 3 Find th© singular value decomposition of W (T),

t hat is s

(4.7)

whe r©

(4.8)

Step 6 Perform the transformation =T0x, where

(4.9)

and the transformed system jwhere

is now

in the balanced representation.



Notice that stop 1 to step J in the above algori thrn

correspond to transforming the system |AfB,Cj to the

controllability balanced representation defined in

Chapter 2.

The controllability grammian and observability grammian

A,B,C
for the balanced representation A,B,C V is now given by

(4,10)

where diag

After introducing the balanced representation, we are

now ready to give our proposed method of suboptimal control

for the regulator problem in the next section®



5- THE PRESENT METHOD

In this section the computation of the suboptimal

control law is proposed. The system

(51)

is assumed to he asymptotically stable. The cost functional

is given by

(5-2)

Before the proposed method is given in section 5 3

we shall show how the effect of the weighting matrices

Q and R can be taken info account in the system model, and

thu-s- simplifies the linear quadratic regulator problem0

51 State weighting matrix and the implicit output vector

It has been pointed out in section 2 that the state

weighting matrix Q in the cost functional {5•2) is to reflect

the relative importance of keeping the states near the

origin of the state space. It has been shown that an

implicit output vector is defined as

(5.3)

( 5,4)
where

y= Hx

With the help of the implicit output vector (5.3)

the cost functional can then be given as



(5.5)(y'y+u'Ru)dt

and the system is to be defined as

: Ax+ Bu

(5.6)

y= Hx

It is worth noting the decomposition Q= H' H in( 3»)

is not unique( Strang 1980). But we shall show in a

later section that the nonuniquenesa of the decomposition of

Q does not affect our future consideration in any way. In

fact the implicit output vector or the output matrix

is not involved in our computation of the suboptimal

control law. The implicit output vector is merely a

conceptual tool.

3.2 Input weighting matrix and the modified input matrix

an this subsection we shall show how the linear quadratic

regulator can be further simplified.

Consider (33)» since R is a symmetric positive

definite matrix, w© can decompose R as

(5.7)

where the matrix D is nonsingular. By putting

( 5 8)

(5.9)



we can rewrite (55) and (56) as

(5.10)

(5.11)y-- Hx

and the cost functional is

(5.12)

Ve shall call u and B as the modified input vector and the

modified input matrix respectively®

One can interpret (5-6) as merely using different

units for the input variables,, Since D is nonsingular,

the optimal control law for (5»10)- (512) corresponds

to that of (51) and (5- 2) by the relation

(5.13)

Therefore once the control law for (5.10)- (512) is

obtained, the control lav for (5-l) and (52) is readily

found by using- the relation (513)• ln (510)— (5» 12)

the weighting of the input variables R in the cost functional

is taken into account by the modified input matrix B.

To end this subsection we shall show how the nonsingular

transformation for the system (5.10)- (5.1l) may affect

the control law. It is easily seen that the cost functional

(5.12) is invariant to the nonsingular transformation



( tr i J i N

If the control law Tor the regulator problem

oT the transformed systei
I• 1 «=i x-r-i uteri

b]

e; 1 O

F is related to that of the control lav for the original

system u= —Fx by the relation

(5.16)

(5.16) is obtained by putting (5.W) to (515)•

5.3 Derivation of the suboptimal control law

The results of section 3•1 and 3•2 show that the

original regulator problem can be switched to that of the

form given by (3.10)- (3«12)0If the suboptimal control

law is derived by approximating the almost uncontrollable

subsystem of the original system( if it exists) as being

completely uncontrollable} the performance degradation

can then be seen to be minimized if the almost uncontrollable

subsystem of the original system is also almost unobservable.

To explore the almost uncontrollable subsystem which

is also almost unobservable, the system (3•10)-(3•H) is

first transformed to the balanced representation by means of

the algorithm given in section 4. The contro1lability

grammian (observability grammian) of the balanced

representation is given by



(5.17)

whe rc If thier© exists k, lkn such that

(- i H

we say that the almost uncontrollable subsystem exists, and

is of order n-k. Notice that (5.18) is a measure of the degree

of controllability (and observability). The procedure to

derive the suboptimal control law is given below.

Algorithm 2

Stop 1 Find the implicit output matrix H by decomposing

( r i ol

Step 2 Find the modified input matrix B by decomposing

( 5.

and the modified input matrix is given by

(~. 2 1)

Step 3 Perform the algorithm 1 to transform•

to its balanced representation i v

the nonsangular transformation

(522)

Step k Identify the presence of the almost uncontrollable

subsystem. If there exists k, such that (5-18)

is satisfied, then the almost uncontrollable

subsystem is that defined by

(5.23)

where is partitioned as



Step 5 Us© the result given in Section 3 to dorivo a

suboptimal feedback law for the balanced

representation |A,B,Cj by setting A21=°' B22=0

Step 6 By moans of th© result given in the subsection

52, the suboptimal feedback control la

for the original regulator problem is that

defined by

(5.28)

In Step 3? the transformation of the modified system to

its balanced representation9 neither the matrix B nor th®

matrix H need to be known explicitly« Rather it is the

matrices

and

(5.29)

(5.30)

which aro involved in th© transformation, see (4=3) and

(4.6) in Algorithm 1® This confirms that the noiiuniqu©n©ss

of the decompositions (3®19) and (3»20) do not affect th©

resulting suboptimal control law

Notice that the subsystems and

are stable subsystemss see (Moor© 19Q) and (Pernebo and

Silverman 191)•



6. EXAMPLES

Example 1

Consider the voltage regulator problem( Lamba and

Pvao 1974) for which the system is given by;

'-0.2 0.5 0 0 0

O -0.5 1.6 0 0

0 0 -14.28 85.71 0

0 0 0 -25 75

0000 -10

0 0 0 0 30

(6,1a)

(6.1b)

and the state weighting matrix is given by

1 0 0 0 0

0 0 0 0 0

00000

00000

00000

(6.1c)

therefor© the implicit output matrix H is given by

1 0 0 0 0 (b.Id)

and the input weighting matrix R is given by

R= 1 (b.1©)



The balanced representation of is iven by

-0.0838 0.2139 -0.0688 0.0199 -0.0043

-0.2139 -0.3862 0.4341 -0.1299 0.0282

-0.0688 -0.4341 -6.933 4.19 -0.870

-0.0199 -0.1299 -4.19 -14.23 6.321

, -0.0043 -0.0282 -0.8706 -6.32I -28.13

(6.2a)

0.58 7.073 2.706 0.7842 0.1701

[ 6.38 -7.073 2.706 -0.7842 0,1701

(6.2b)

( 6 o 2 c J

The observability grammian and controllability gTammian of

the balanced representation is

W= W= diagr P 238.2 42.67 0.328 0.02161 0.0003131 (6a 1)

We see from the above that the most controllable subsystem

may be defined as the third order subsystem given by

-0.0838 0.2139 -0.0688

-0.2159 -0.3802 0.4341

-0.0088 -0.4341 -6.933

(6.4a)

6.38 7.073 2.700

0.38 -7.073 2.700

(6.4b)

(6.4c)

and the almost uncontrollable subsystem is then given by



'-14.23

, -6.321

b. 321

-28.13

( 0.7842
0.1701

[-0.784 0.1701

( b o 3 a)

(6.3b j

(6.3c)

By assuming- Aj= 0 and BO and following the procedure

given in algorithm 2} the suboptimal control law is given

by u=-Fx, where

0.9248 0.1707 0.01528 0.04637 0.2786 ( b e 6}

and the optimal feedback lav is given by u=-Fx, where

(0.9049 0.1703 0.01611 0.04931 0.2636J
( 6.« I)

To compare the performance of the suboptimal feedback

control lav wit a that of the optimal one, the performance

index given in reference 10 (Levin© and Athans 1970) is used.

That is if P is the solution

( b« b j

and P is the solution of

(6.9)

then the closeness of the trace of P as compared with the

trace of P assesses the performance degradation due to the

application of the suboptimal control law to the original



regulator problem.

For the present example,

trace P= 03777

trace P= 0,3778

(6.10)

(6,11)and

which shows that the performance degradation with the

suboptimal control law ii(t) is less than 0.026 per cent.

From the controllability grammian we see that considering

the second order subsystem

' -0.0838 0.2139

-0.2139 -0.5862
L

(6.12a)

[6.58 7.073 (6.12b)

[6.58 -7.073 (6.12c)

as the most controllable subsystem is also acceptable. The

suboptimal Feedback matrix is given by

(0.9165 0.1862 0.01996 0.06561 0.4382) (6.13)

the performance index For the suboptimal control law by

considering the second order most controllable susbsystorn is:

trace P- O.3887• (6.14)

The performance degradation For the present case is 2.91

per cent.

Notice that iF the procedure oF Kwong( 1983) is

being used to extract the suboptimal control law, no acceptable



suboptimal control lav can be obtained, since the transformed

system model by using- the procedure is

' -10 0 0 0 0

75 -25 0 0 0

0 8571 -14.28 0 0

0 0 —1.0 -0.5 0

0 0 0 0.5-0.2

f 30 0 0 0 0

(6.15a)

(6.15b)

and the state weighting matrix for the transformed system is

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

(6.15c)

It can be seen from the state weighting matrix Q for the

transformed system that any 'most controllable' subsystem

of order less than 5 in the sense of Kworig( 1983) has

a corresponding state weighting matrix which is a null matrix.

Therefore, it is obvious that no approximate system can be

obtained by the procedure of Kwong (1983) fox- the present

example

It is well known that the optimal linear regulator

should correspond to an optimal set of eigenvalues. In Table 1

the eigenvalues for the optimal and suboptimal regulators are

shown.



TAJJLE 1

Optimal regulator S u b o p t i rn a 1 regulator

(with 2nd order most

controllable subsystem)

Subopiiinal regulator

(with '}vd order most

controllable subsystem)

Eigenvalue s

-3.82+j4.85

-3.82~j4.85

-25

-13.82

-11.48

-3.oo4-fj3.403

-3.004-j3.403

-26 .17

-15. 47tj6.834

-l5.47-j6.834

-3.63j5.132

-3.634-J5.132

-24.02

-18.05

-9

Performance

index

( d egradat i 011)

0.3777 0.3887

( 3%)

o.3778

(0.03%)

( Kwong's procedure fails in this example)



Example 2

Here w© consider th© example given in (Medanic ©t

al. 1978). The system model is given by

Ax 4- Bu

y= Cx

where

-0.21053 -0.10526 -0.0007378 0 0.0706 0

1.0 -0.03537 —0 000118 0 00004 0

0 0 0 1.0 0 0

0 0 -605.16 -4.92 0 0

0 0 0 0 0 1.0

00 00 -3906.25 -12.5

A=

(6.l6a)

B': -7.211 -0.05232 0 794.7 0 -448.5 ( 6 .16 b)

C=

1.0 0 0 0.00033 0 -0.00772

01.00 o 0 0

(6.16c)

and the input weighting matrix is given by

R= 1 (6.l6d)

For the present example it is the output y of the

given system that is to be regulated, and the weighting

matrix for th© output variables is an identity matrix.

The balanced representation of |a,B,c| is given by



-0.0821 0.303 0.0251 0.0007 0.001 -0.0064

-0.3275 -0.1638 0.0752 0.0026 0.0028 -0.0192

-0.0949 -0.185 -12.67 -62.78 -1.235 5.523

0.0031 0.006 62.78 -0.0139 -0.0278 0.2654

0.0037 0.0073 1.235 -0.0279 -0.1024 24.49

0.0244 0.0476 5.523 -0.2665 -24.49 -4.629

(6.17a)

-3.247 -3.326 -1.875 0.0617 0.0738 0.4827

(6.17b)

' O.8505 1.34 -I.875 -0.06.l6 -0.0738 0.482'

3.134 -3.044 0 0.0023 -0.0015 01

(6.17c)

The observability grammian and the controllability grammian

of the balanced system (6,17) is given by

diag 6k.2, 33.77, 0.133, 0.137, 0.0266, 0.0252

(6.18)

The most controllable subsystem is defined to be the fourth

order subsystem given by

-0.0821 0.303 0.0251 0.0007

-0.3275 -0.1638 0.0752 0.0026

-0.0949 -0.185 -12.67 -62.78

0.0031 0.006 62.78 -0.0133

(6.19a)

-3.247 -3.326 -1.875 0.0617 (6.19b)



' 0.850'

3.134
k.

1.34

-3.044

-1.875

0

-O.0616

0.002:

(6.19c)

and the almost uncontrollable subsystem is that given by

'-0.1024 24.49

-24.49 -4.629

(6.20a)

0.0738 0.482'i (6.20b)

' -0.0738 0.4827

-0.0015 0

(6.20c)

A A
By assuming A =0 and B =0 and following the procedure given

in algorithm 2, the suboptimal control lav is u=~Fx, where

'-1.0888 -0.9474 0,0004 0 -0.0603 -0.0011 (6.21)

And the optimal feedback control law u=-Fx is defined by

F=
(-1.0851 -0.932 0.0023 0 -0.0604 -0.0014 (6.22)

We see the suboxtimal feedback lair (6.21) is very close

to that of the optimal on©. The performance index for the

suboptimal regulator is given by

trace P= 1.2388 (6.23)

while that fox- the optimal one is given by

trace P~ 12367 (b.24)



Thereforej the performance degradation of the suboptimal

regulator by employing the suboptimal control lav u(tj is

less than 0,008%.

If instead, the procedure of Kwong (1983) is

used, at the step of the procedure, the transformed

system model is given by

'-6751 -410 -1352 -1400 8.475 0.699

3.395 387.3 1317 2952 -220.4 ~l40

0 -119.6 -405.5 -9105 6798 4321

0 0 3.551 8 414 -0639 -00533

0 0 0 1289 -1.321 -0.212

000 0133 0,994 -0.0426

(6.25a)

9126 0000 0
(6.25b)

'-0003813 -0,02149 -0.02028 O.08021 09958 -0,00785

-0.0000573 -0.002441 -0,007593 0,008903 0,000901 0.9999

( 0 e 2 5 c)

Using the method proposed by Kwong (1983)} the suboptimal

control law u=-Fx thus obtained is

-0.00931 -0.01447 -0.01059 0.005597 -0.1147 -0,0019

(6.20)

The performance index for the suboptimal control law

(0.20) is

trace P,= 5•77 (b.27)



Comparing this with the performance index Tor the optimal

regulator, we see that the suboptimal control law (626)

is not acceptable.

In Table 2 the eigenvalues Tor the optimal regulator

and the suboptimal regulators are shown.



0 nt ima1 reeulato

( 6. 2 2

1 1

r n i

he me t h

E igenvalues

-6. 5 9+ j 6 2.33

-2 .465+ j24 .5 1

-7• 0 46

- I .008

-6. 4 8+ j 6 2 .36

-2, 4 5 3+ j 2 4 .4 9

7 o 0 8 9

- i. 0 14

-6 ,706+ j62 .5 1

-4 ,65 1+ j23 .95

Performance index 1. 2387 i o 1 a a 5.77



Example 3

As this last example in this section, we use the example

taken from Harvey and Stein (1978). The system model is defined

by

-0.746 0.367 -12.9 O 0.932 6,03

0.024 —0.174 4.31 0 -1. 76— O«416

0.006 -0.999 -0.0376 O.O369 0.0092 -0.0012

1 0 0 0 0 0

0 0 0 0— 10 0

0 0 00 0 -3

(3 o 2 8a)

0

o

0

o

20

0

0

0

0

o

o

10

( 3 o 2 8 b)

The state weighting matrix is given by 0= H H, where

'-0.131 -0.612 1.64 0.0173 1 O

0.367 0.160 -2 o 39 0.0303 0 1

(5.28c)

and the input weighting matrix is

1

0

0

1

(5.28d J



The balanced representation of( A, B, H is given by

1

' -0.0173 0.0134 0.1933 -0.0809 -0.0245 O.O365

0.0317 -0.0521 -1.996 0.1282 0.2249 -0.0642

-0.168 2.0251 -0.1708 0.401 0.0508 -0.1389

-0.0802 0.1152 -0.2232 -0.8927 -0.5684 O.6983

-0.0799 0.2587 -0.5298 -1.1019 -9.6573 1.8927

0.0329 -O.0367 0.010 0.6626 0.6062 -5.1876

(6.29a)

A
B

-0.7741 0.7149

1.5008 -0.2184

-2.5420 -0.7494

-1.7528 2.2146

-4.0449 -0.7536

v 0.3887 -1.0684

(6.29b)

A
C

«

'-0.2323 1.2803 0.2029 -0.916 -4.1133 0.4461

1.0278 -0.8129 -2.6424 2.6721 -0.0961 -1.0458,

(6.29c)

The observability grammian and controllability gramuiain for

the balanced system (6.29) is given by

diag (32.2, 22.1, 20.6, 4.5, 0.9, O.l) (6.30)

The most controllability subsystem is defined to be the fourth

order subsystem given by



A

An=

-0.0173 0.0134 0.1933 -0.0809

0.0317 -0.0521' -1.996 0.1282

-0.168 2.0251 -0.1708 0.401

-0.0802 0.1152 -0.2232 -0.8927

(6.31a)

A

Bll=

-0.7741 0.714s

1.5008 -0.2l8i

-2.5420 -0.749

-1.7528 2.2l4t

(6.31b)

A

cn=

-0.2323 1.2003 0.2029 -0.916

1.0278 -0.8129 -2.6424 2.6721

(6.31c)

and the almost uncontrollable subsystem is defined by

A

A22=

-9-6573 1.8927

0.6062 -5.1876

(6.32a)

A

B22=

-4.0449 -O.7536

O.3887 -1.0684

(6.32b)

A

C22=

-4.1133 0.4461

-0.0961 -1.0438

(6.32c)

By following- the procedure given in algorithm 2, the suboptimal

control law u=-Fx is obtained, where



A
F=

'-0.0752 -0.8813 O.9389 0.0286 0.8116 O.1263

0.5337 0.360b -3.054 0.0162 -0.02 O.9613

(6.33)

and the optimal feedback control law u=—Fx is given by

F:

'-O.1293 -O.8792 1.5651 0.0263 0.6664 -0.0249

0.5181 0,4156 -2.8133 0.0208 -0.0124 0.8507

(6.34.)

The performance index for t h© suboptimal regulator( 6 o 3 3)

is given by

fy o c
trace P= 2•19

S

while that for the optimal regulator is

trace P- 2,0 3
o

IT instead the procedure of Kwong (X93) is employed, the

feedback matrix and the pcrforRiance index are given by

F~
~Q .1116 -0. 3903 1.43 0.0234 O0O6O3 —0 a 0043

0,3269 0.1922 -3.035 0.0X78 —0•0021 0.8683

(6.17)

(6.38)trace P.= 2.43
s'

W© see that the performance of the suboptimal regulator

(b.33) iQ superior than that of (b.37j. The performance

degradation for the suboptimal regulator (6.35) is 7 per

cont, while that for (0. 37) is 20 per cent, Xn Table 3

the eigenvalues Tor the respective regulators are shown.



Optimal regulator

(6 34)

Subopt imal regulator

by the present method

(6. 3 3)

Suboptimal regulator

bv the method of kwong

(6.37)

E ige nv al ue s

-21.7

- 10. 2 1

-3 .808

-0. 7 3 7+ j 2. 3 13

-0. 7 3 7- j 2 o 3 13

-0 .0 4 9

-25.1

— 11.9

-3 .4 8 7

-0. 67 4 +j2. 15 9

-0.674~j2.159

— 0 «0 4 7

-22.4 6

- 10 .43

-3.851

-0. 5 5 7 -1 j 2 .298

-0.557-j2.298

-0 .033

Performance index 2.03 2. 19 2.4 5



Remarks:

1.

2.

It is obvious that from th© definition of th© linear

quadratic regulator problem that it is th© steady state

behavior of the unregulated system which is of major

importance. Sine© it is the transient behavior which

is emphasized in th© procedure of ivwong (193)? it

may seern that the suboptimal control lav obtained by

th© method may not be satisfactory. This is in fact

the situation{ as can be seen from th© previous examples.

Although it is the steady 3 tat© behavior which is of

fundamental importance for th© regulator problem, the

performance of the suboptimal control law may be improved

if the transient behavior of the unregulated system model

is also taken into account in deriving the suboptimal

control law. In Fig.I the transient response of the

approximate model (6.31) is shown. Vo see that the

initial part of the transient response of th© approximate

model (6.31) deviates greatly from that of trie original

one (6.29). This is due to tiie fact that the present

method emphasized the steady state behavior.

In th© next section another procedure is proposed which

in addition to the steady state behavior, the behavior of

the transient is also taken into account.
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7 . Improved algorithm to derive the suboptimal control law

In Algorithm 2, the controllability graramian and the

observability grammian (5«17) are employed to explore

the almost uncontrollable subsystem. The graramians are

defined by the integrals (4.10), thus the fast modes which

are important only during the initial portion of the response

may be considered as the almost uncontrollable modes in

the sense of (5.18). However, we see that if the performance

of the suboptimal control law is to be further improved,

the initial transient behavior should also be considered«

The key here is to match the first Markov parameter of

(a,B,hJ in the approximate model, where B, H is the modified

input matrix and the implicit output matrix respectively.

Algorithm 3

St e o 1JL Employ Step i to Step 4 of Algorithm 2 to 4 A, 3, H
v

to explore the almost uncontrollable subsystem

[a a]
J a B, C V defined in .5 3• 23?• 1 f uhe norms

22 9 229 22

A J
and C- is small- Algorithm 2 as carried out

22 22

to complete the suboptimal design problem,(Since

N A

when the norm of B and C is small, the

a O 1

subsystem j 22 9 29 9 22j contrthutes little to

the input-output response of the original system.)

Otherwise, go to Step 2.
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Step 2 Find the singular value decomposition of B,

the input matrix of the balanced representation.

(7.1)

D is ttie diagonal matrix with its elements the

singular values of B.

Stop 3 Transform tie system

7.2

And the transformed system S1 is now given

in the form

(7.3)

Notice now that x1l Is an rnxl state vector, wtzere

m is the rank of the input matrix B.

Step 4 Define the residue subsystem SRI as

(7.4)

And use Algorithm 2 to explore the almost

uncontrollable subsystem of the residue subsystem.

If the balanced representation of SRI after

performing Algorithm 2 is given by

(7.5)
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The subsystem

(7.6)

is the almost uncontrollable subsystem for

the residue subsystem SR1. And now {ABH}

is transformed to the form

(7.7)

The block matrices are all of compatible orders.

Thus the most controllable subsystem for {A, B, H}

is given by

(7.8)

And the uncontrollable system {A24,0,cl22}

is considered as the almost uncontrollable

subsystem for A, B, H. Follow the procedure

outlined in algorithm 2, the suboptimal control

law can then be found.



Remarks:

1. In algorithm 3 step 2 corresponds to matching the

first inarkov parameter of the original system model

a, B, H| in the approximate model. That is why the

procedure would give an approximate model having a

initial transient response which is close to that

of the original one. And after step 2, the system

model can be depicted as shown in Fig. 2.

-8n A11
residual system

11

13

Al4 C12

12

Fig.2

2. In the residual system defined in(?. 4j, A and A

are considered as the additional input matrix and

output matrix to take into account the coupling effects

between the subsystems shown in Fig. 2. In Fig. 2 the

residue system is also stiown,

In the next example, Example 3 is reworked by using

the algorithm 3-



.Example 4

Here we use the system model and weighting matrices

shown in Example 3 The transformed system after employing

algorithm 3 is given by

A
A

-6.488 -0.436 -0.6784 4.055 -O.7511 -1.549

-1.373 -2.015 -0.5523 0,803 -0.352 1.348

1.445 0.7335 -0.1503 1.622 0.06548 -0.0022

4.835 0.8814 -I.698 -3.12 -0.6791 1.1903

0.6226 -0.6185 -O.O6552 -0.3941 -0.2782 O.8791

-0.8b 42 1.902 -0.01768 0.475 0.8846 -3.916

(7.9a)

A
B=

-5.376 O .0571

-0.0296 -2.76

0

0

0

0

0

0

0

0

(7.9b)

A
c=

-3.72 -0.0704 -0.8845 2.144 0.264 -0.116

0.0198 -3.596 1.039 -1.572 0.0969 -0.367

(7.9c)

The most controllable subsystem is defined to be the fourth

order subsystem given by



A

An=

-6.488 -0.436 -0.6784 4.05'

-1.373 -2.015 -0.5523 0.80'

1.445 0.7335 -0.1603 1.622

4.835 0.8814 -1.098 -3.12

(7•10a)

A

Bll=

-5.376 0.0571

-0.0296 -2.78

0

0

c

c

(7.10b)

A

cir

-3.72 -0.0704 -0.8845 2.144

0.0198 -3.596 1.039 -1.572

(7.10c)

and the almost uncontrollable subsystem for the original

system model is now the uncontrollable system

A

A22=

-0.2782

0.8840

0.8791

-3.916

(7. Ha)

A

C 2 2~

0.264

0.0969

-0.116

-0.367

(7.11b)

A
B is now a null matrix.

Following the procedure given in algorithm 3 the suboptimal

control law is defined by the feedback matrix

A

F=

-0.1379

0.354

-0.9417

0.4333

1.364

-2.6879

0.0269

O. O 2 2 8

0.6829

-0.00 82

-0.0064

0.8226

(7.12



The nerformance index .for the suboptimul regulator is friven

by

trace P= 2.05 (7.13)

and the performance degradation is 1.0%. it is seen that

the performance degradation Tor the suboptimal regulator

obtained by the algorithm given in this section is further

reduced as compared with that obtained by algorthm 2. In

Taole 3 the results Tor the varies suboptimal control laws

are shown Tor comparsion.

In Fig. 2 the response of the fourth order reduced

model obtained by means of Algorithm 3 is shown together

with the fourth order reduced model ootained by means of

Algorithm 2 for comparsion. It can he seen that the fourth

order reduced model obtained by Algorithm 3 has a better

initial transient response.



TABLE 4

Optimal regulator Suboptimal regulator

by method of Section 7

Suboptimal regulator

by method of Section 6

Suboptimal regulator

by method of Kwong

Eigenvalues

-2 1 .7

-10.2 1

-3 .808

-0 -7 3 7± j 2 .3 13

-0 .0 4 9

- 2 2 .39

-9. 3 3

-4 ,335

- 0 .7 6 6±) 2 .3 i 7

-0 .0 5 2

-25.1

-11.9

-3 .487

-0. 67 4± j2. 159

-0 .04 7

-22.46

- 10 .43

-3.851

-0 .5 5 7 it j 2 .298

-0 .033

Perf orraance

index
2 .03 2.0 5 2. 19 2.45
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8. DISCUSSIONS

In this chapter a procedure to derive a suboptimal

control law is proposed using an internal cooridinate

transforniation of the given system, so that the almost

uncontrollable subsystem is identified,, Tho computational

burden is reduced, The coordinate transformation also

takes into account the weighting matrices in the cost

functional of the regulator problem. This is important

since the control law depends on both the system dynamics

and also tho weighting matrices in tho cost functional®

It i3 also demonstrated in the chapter how the dynamics

of th© unregulated system are related to the suboptimal

control law.



CHAPTER 4

CONCLUSIONS

In this thesis we have demonstrated that how the

notion of salmost uncontrollability1 and 'almost

unoDsorvability1 can bo employed to derive a simplified

model to fascilitat© the analysis and design of control

systems. In the procedures only orthogonal and diagonal

matrices are involved, which from the computation

point of view, are convenient. It is also shown that

in the examples that the simplified model thus obtained

fit the tasks of analysis and design well.

Although we have some well established criteria to

test the exact controllability and observability of a

given system (Paige 191) 9 ft is demonstrated in this thesis

that this is not the case of 'almost controllaoility1 or 'almost

observability1.When one employ different measures for

the above notions of 'almost controllability1 and 'almost

observability1 9 one may obtain different simplified model

which can fulfill different predetermined tasks. It is

believed by the present author that the above consideration

can be applied to the more general nonlinear and time-

variant system to fascilitat© th© analysis and design of

the more general system models, hut, in order that the

above consideration be a fruitful one, the correspoding

notions of 'almost controllability' and 'almost observability'



should be re-established Tor the more generai system models,

The latter would be a very interesting field of further

inves tigation
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