
3D Reconstruction of Curved Objects 
from Single 2D Line Drawings 

WANG, Yingze 

A Thesis Submitted in Partial Fulfillment 
of the Requirements for the Degree of 

Master of Philosophy 
in 

Information Engineering 

July 2009 





Abstract 

3D object reconstruction from 2D line drawings is an important problem in 
both computer vision and graphics. It has a wide range of applications includ-
ing flexible sketching input for designers who prefer to use pencil and paper, 
providing rich databases to object recognition systems, friendly user interface 
for 3D object retrieval, and interactive generation of 3D models from images. 

A single 2D line drawing is defined as the 2D projection of the edges and 
vertices of a 3D object in a generic view. Many methods have been proposed 
to solve 3D reconstruction from single 2D line drawings. However, they can 
only handle the line drawings of planar objects. The reconstruction of curved 
objects is still a challenging problem. Few works have been developed to deal 
with this problem and they usually carry out the curved object reconstruction 
based on human interactions. 

In this thesis, a novel approach is proposed to reconstruct solid objects 
that have not only planar but also curved faces. Our approach consists of four 
steps: (1) identifying the curved faces and the planar faces in a line drawing; 
(2) transfoririing the line drawing into a new one with straight edges only; (3) 
reconstructing a 3D wireframe of the curved object from the transformed line 
drawing and the original line drawing; (4) generating the curved faces with 
Bezier patches and triangular meshes. There is no strict restriction on the 
objects in our algorithm and we construct complex curved objects automati-
cally. A number of experimental results are given to demonstrate the excellent 
performance of our approach on 3D curved object reconstruction. 



摘要 

在機器視覺和圓丨形學領域，個重要的方向是硏究一種算法，它能夠從物體輪廓 

的二維線畫圖重建物體的三維結構。該硏究具有廣泛的應用，包括方便喜歡用船 

筆和紙給圓的用戶自由設計草圖來描繪物體，爲物體識別系統提供豐富強大的數 

據庫，提供三維物體檢索的友好界面，方便用戶從單幅圖片交互的重建三維物體。 

二維線畫圖是指三維物體從一般角度投影所產生的二維頂點和邊的線畫圖。目前 

基於二維線畫圖的三維物體重建方面有很多的硏究。但是，他們都只能重建平面 

組成的物體。由曲面和平面組成的比較複雜的物體的重建仍然是一個非常具有挑 

戰性的問題。這方面的硏究非常少，其中的方法通常都需要人工交互。 

本論文提出了一個全新的方法，它可以重建由平面和曲面組成的複雜物體。該方 

法包含四個步驟：（1 )辨別二維線畫圖中表示的曲面和平面；〔2 )將線畫圓轉 

化成爲僅含有直線的線畫園；（3 )通過轉化後的線•进_和原線畫圖重建曲面物 

體的三維輪靡；(4)利用貝塞爾曲面和三角網格產生曲面。我們的算法不需要 

對物體有嚴格限制，可以自動重建複雜的曲面物體。大量的實驗結果證明該算法 

在三維曲面物體的重建方面具有良好的性能。 
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Chapter 1 

Introduction 
Three dimensional objects shown on images and the screen lose their depth 
information. Recovering of this lost information and reconstruction of 3D ob-
jects have always been of great concern and is a problem faced by different 
researchers. Nowadays, 3D reconstruction is used in a wide variety of applica-
tions. For examples, the architecture industry uses it to design 3D buildings 
and shows desired configuration and landscape through particular software. 
Researchers arid designers reconstruct 3D objects in computer game, virtual 
reality, internet web pages, etc. Moreover, 3D reconstruction of blood vessels 
or other organs has been widely used in medical imaging field to facilitate 
doctors' diagnosing. Consequently, many researchers in computer vision and 
graphics have made their efforts in designing algorithms and new methods for 
3D reconstruction. 

There exists many different aspects of research in 3D reconstruction, in-
cluding 3D reconstruction from video sequences, 3D reconstruction from single 
view or multiple view images, 3D reconstruction from engineering drawings of 
multiple views, etc. This thesis focuses on understanding a single 2D line 
drawing representing an object with planar and curved faces and reconstruct-
ing the 3D geometry of the object. This area belongs to the field shape from 
line drawings or shape from contours. 

Single 2D line drawings provide a straightforward and easy way of illus-
trating 3D objects. The human vision system has the ability to interpret 2D 
line drawings as 3D objects without difficulty. How to bestow this ability on 
a computer vision system is an important topic. It would be very helpful if 
there is an efficient algorithm to make such a drawing used in computer-aided 
design (CAD), where tools that can directly convert a design sketch into a 
3D model are extremely desirable. The reason for this is that creating 3D 
objects with current sophisticated CAD tools is still a tedious work, while a 
2D line drawing is simple to draw and is the most direct way of demonstrat-
ing a 3D object. Current CAD tools cannot convert a line drawing into a 
3D object, which prevents designers, especially conceptual designers from in-
putting or designing conveniently. Therefore, developing approaches that can 
understand single 2D line drawings and reconstruct the 3D models from the 
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sketches become more and more important and useful. A number of publica-
tions have been devoted to this research in the major computer vision literature 
10], [29], [33], [35], [36], [38], [37], [34], [42], [43], [48], [51], [52], [54], [56], and 

in CAD and graphics 
applications including: 

2], [3], [13], [14], [62], [63], [59]. This research has many 

flexible sketching input for conceptual designers who tend to prefer pencil 
36 and paper to mouse and keyboard in current CAD systems [3], [33 

49 

providing rich databases to object recognition systems and reverse engi-
neering algorithms for shape reasoning [2], [3], [14], [57]; 

automatic conversion of industrial wireframe models to solid models [2 
24 

interactive generation of 3D models from images [20], [34], [59], [53 

friendly user interface for 3D object retrieval [7], [45] [68 

Here a 2D line drawing is defined as the parallel or nearly-parallel projection 
of a 3D wireframe object in a generic view where all the edges (including 
silhouettes) and vertices of the object are visible, and the line drawing can be 
represented by a single edge-vertex graph. A line drawing with hidden lines 
shown makes it possible to reconstruct a complete 3D object, including its 
back, from the line drawing. Fig. 1.1 shows an example of 3D reconstruction 
from line drawings. Such line drawings may be inputted from sketch images on 
paper, a digitizer tablet, and the screen drawn with a pen or a mouse, generated 
by the user (designer) or came from existing industrial wireframe models. To 
extract an edge-vertex graph in a scanned image, some procedures are required 
such as binarizing and thinning of the image, tracking and analyzing of the 
lines, curves and vertices. In what follows, we call an object with only planar 
faces a planar object, and call an object with at least one curved face a curved 
object. A planar solid is a polyhedron. 

There have been a number of papers discussing 3D reconstruction from sin-
gle 2D line drawings [6], [8], [10], [29], [33], [34], [42], [47], [48], [51], [54], [56], [59]: 
65]. However, they handle only line drawings of planar objects, and most of 

them consider simple objects of genus 0 (without holes). Although there are 
few works which deal with curved objects [7], [9], [30], [44], these methods can-
not reconstruct curved objects automatically and fail in dealing with complex 
objects. As a consequence, reconstruction of curved objects is still a chal-
lenging problem. Three non-collinear points determine a plane, but a curved 
surface often has much more degrees of freedom. Therefore, the reconstruction 
of curved objects owns a higher underconstrained nature. 
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(b) 

(d) 

Figure 1.1: Two line drawings of solids and their reconstructed shapes, (a) 
A 2D line drawing obtained by scanning the sketch image on paper, (b) Re-
constructed 3D object of (a), (c) A 2D line drawing coming from the screen 
drawn with a mouse, (d) Reconstructed 3D object of (c). 

In this thesis, we propose an approach to the 3D reconstruction from line 
drawings of solids with not only planar but also curved faces. Previous methods 
for line drawing reconstruction usually fail for curved objects, so the main 
contribution of the thesis is that the algorithm can handle complex curved 
objects automatically. To the best of our knowledge, our approach can tackle 
objects with the most complex geometrical structures in this area. Given a line 
drawing LDa, we define some rules to differentiate between curved faces and 
planar faces based on the result of face identification. Then LDa is transformed 
into another line drawing LD^ with only straight lines. From LDa and LDb, 
the reconstruction of the 3D wireframe of the curved object is carried out 
using several regularities. Finally, the curved faces are recovered by developing 
Bezier surface patches and triangular meshes. Fig. 1.2 illustrates the process 
of our approach. It should be emphasized that although there are infinite 
possible 3D wireframes that can be projected to the same 2D line drawing, 
human observers trend to have quite definite 3D perception from the line 
drawing. Obviously, in this research, there is no a precise (but a rough) 3D 
object corresponding to a sketch. Whether or not a reconstruction is successful 
is judged by human observers. 

We use those line drawings from previous papers and also draw more com-
plex ones to verify the effectiveness of our new approach. The experiments 
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⑷ The input line drawing /.Da. (b) Distinguishing between curved (c) Transronneci line drawing I..D b. 

and planar faces of ,刀a. • 

(f) Reconstructed results from 

another view 

(e) Rcconstruclcd results with 

surface patches 

(d) 3D wireframe of the curved objects 

Figure 1.2: Illustration of our approach to the problem of curved objects re-
construction from a single line drawing. 

show that our approach can tackle 3D reconstruction from much more com-
plex line drawings with both planar and curved faces. This work has been 
accepted by IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR)，2009. 
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Related Work 
Related work on the interpretation of line drawings can be classified into three 
groups: (a) line labeling, (b) 3D reconstruction from multiple views of wire-
frame models, and (c) face identification and 3D reconstruction from single 
line drawings with hidden lines visible. Line labeling focuses on finding a set 
of consistent labels from a line drawing without hidden lines in order to test if. 
it is legal, and/or on 3D reconstruction based on such a labeled line drawing. 
Methods in the second group try to reconstruct a 3D CAD model from its 
multiple orthographic projections. More information can be found from three 
orthographic views for the reconstruction task than from a single projected 
view. Our work belongs to the third group. In this section, we give a brief 
review on these related works. 

2.1 Line labeling and realization problem 
Since the early stage of computer vision, a large amount of works are about 
line labeling and 3D reconstruction based on a labeled drawing [12], [15], [16], 
17], [18], [23], [25], [26], [41], [54], [56], [55], [66], [61]. Line labeling is meant 

to find a set of consistent labels from a line drawing and to provide a qual-
itative description of the scene by classifying the segments of a line drawing 
as the projection of concave, convex or contour edges. However it does not 
explicitly give the 3D structure represented by a line drawing. Early work on 
line labeling focuses on labeling polyhedra without hidden lines. Huffman et 
al. [25] first described a scheme for labeling line drawings, and independently 
by Clowes [12], in 1971. Huffman restricted his attention to the case where 
all faces are planar, that is, a "polyhedral world", so now there are only four 
possible labels { + , —,V,A}. He also assumed that all vertices are trihedral, 
that is, they are formed by exactly three faces, and that there are no object 
alignments, which would result in a "crack" edge. In 1971, Waltz [66] exhib-
ited a filtering algorithm with very good average running time (roughly linear 
in the number of segments). The algorithm achieved local consistency in the 
following way: given a junction, rule out all legal labelings of the junction 
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for which there is no labeling of the neighbor junctions which is compatible 
with it. Then, repeat this procedure until no further progress can be made. 
To label a line drawing, the algorithm need first achieve this local consistency 
and then achieve global consistency by tree searching with backtracking. Most 
of the line drawings labeling algorithms are generally suitable for polyhedra 
without hidden edges. Recently, Cooper extended this line labeling research 
to wireframes with hidden lines visible as well as curved objects [16], [17], [18 . 
However, the limitations of line labeling are that multiple consistent labeling 
solutions for one line drawing are possible [50 . 

Another area of the work is Realization, which involves the physical le-
gitimacy of the interpreted scene for line labelings, and tries to recover the 
underlying 3D structure based on algebra test with linear equalities and in-
equalities [54], [56], [55], [60], [48]. Using line labeling schemes, all physical 
objects should be labelable. However, labelability is not a sufficient condition 
for physical realizability. Because there are always vertex position errors in 
the practical line drawing, which is either extracted from an image or drawn 
by a person, so it is often impossible to find a 3D object whose projection is 
exactly the line drawing. Small deviations of some vertices from their precisely 
projected 2D positions may cause the 3D vertices on the same planar face to 
be noncoplanar. A typical example is illustrated in Fig. 2.1. In Fig. 2.1 (b), it 
may seem to represent a truncated pyramid, but it does not, for the reason that 
three side edges (when extended) should meet at one common point for the 
real truncated while they do not as shown is Fig. 2.1 (c). Therefore, Fig. 2.1 
(c) is not the projection of a truncated pyramid and Fig. 2.1 (b) does not rep-
resent a polyhedron correctly. However, human beings can understand with no 
difficulty what the line drawing represents and visualize this object as a real 
truncated pyramid. This problem is termed superstrictness. Consequently, the 
limitations of these methods [54], [56], [55], [60] are that such a formulation is 
superstrict and not robust; realizability can be efficiently checked only when a 
legal labeling is available. 

2.2 3D reconstruction from multiple views 
Papers in this group try to reconstruct a 3D CAD model from its multiple 
(three, in general) orthographic projections [1], [67], [27], [39], [11], [21], [28], [31], 
40]. More information can be found from three orthographic views for the re-

construction task than from a single projected view, so this work is more easier 
compared to 3D reconstruction from a single line drawing. Traditionally, en-
gineering objects are represented by three orthographic views: front, top and 
side views, which are the case for most of the engineering drawings. Liu et 
al. [39] used matrices to represent conic faces for the reconstruction of dif-
ferent objects such as planar, cylindrical and conical faces. He also gave the 
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(a) (b) (c) 

Figure 2.1: (a) A line drawing representing truncated pyramid, (b) A consis-
tent labeling [54]. (c) The wrong projection of truncated pyramid. 

proof that minimum number of views required to represent conics are three. 
The approach in [11] was based on constructive solid geometry and required 
three orthographic views. The technique is powerful in handling blind pockets, 
through pockets, circular pockets, through holes, blind holes, counter bored 
through holes, counter bored blind holes, etc. Dimri et al. [21] introduced a 
novel technique of reconstruction from x-sectional views. Handling of sectional 
views was also discussed by Wesley [67] but their approach is limited to full 
sectional views only. Technique of Dimri [21] took into account full sectional, 
half sectional, offset sectional. Because our work does not belong to 3D re-
construction from multiple views in this thesis, we won't give much detailed 
review of this group of research. 

2.3 3D reconstruction from single line draw-
ings 

Research on 3D reconstruction from single line drawings, which our work be-
longs to, can be divided into two subproblems: face identification from the 
line drawings and 3D geometry reconstruction. Next, the methods in these 
two aspects will be reviewed in more details. 

2.3.1 Face identification from the line drawings 
Face identification from a line drawing is a necessary step. An object consists 
of faces. If the face configuration of an object is known before the reconstruc-
tion of its 3D geometry, the complexity of the reconstruction will be reduced 
significantly. Fig. 2.2 shows the faces of the two line drawings in Figs. 1.1(a) 
and (c). 
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Figure 2.2: The faces of the two line drawings in Fig. 

In general, there are many cycles in a line drawing and only a small subset 
of them represent its faces, and the number of cycles grows exponentially with 
the number of edges. Thus finding the faces from a line drawing is not a trivial 
problem. Much effort has been made in this area [36], [3], [2], [29], [52], [38 
35], [37], [32]. 

A distinct decomposition method for extracting face topologies from wire-
frame models was proposed by Agarwal and Waggenspack's method [2]. They 
employed a divide-and-conquer strategy to remove stars (tetrahedra, N-sided 
pyramids, or multiply connected stars) from a drawing. The faces of the draw-
ing were obtained by combining triangles that were created from the stars. 
However this method failed in some occasions mentioned in [36]. Bagali and 
Waggenspack's approach [3] was based on an efficient shortest path algorithm 
for cycle generation. Their algorithm is fast, conceptually simpler and easy to 
implement, but limited to 3-coiinected drawings of genus 0. The recent work 
presented in [33] and [35] can handle a larger range of objects than previous 
methods. Both of them included two steps: finding a set of circuits that may 
be potential faces and searching for faces from this set. It needs to be em-
phasized that the two steps in each of the two methods correspond to two 
combinatorial problems. The number of circuits is generally exponential in 
the number of edges of a line drawing. Shpitalni and Lipson [33] presented 
two algorithms for the face identification problem. Their first algorithm was 
using the planar embedding algorithm to locate faces of a drawing. Although 
they put in more effort to find multiple interpretations of a drawing that was 
not 3-connected, the algorithm was still suitable only for manifolds of genus 0. 
Their second algorithm was an optimization-based procedure. The criterion 
they employed to formulate the face identification was based on the observation 
on face configuration and a basic theorem called the face adjacency theorem. 
The observation, serving as the criterion for the problem, is that, given a line 
drawing, human beings tend to choose a face configuration in which there are 



Chapter 2 Related Work 18 

as many edges as possible. The face adjacency theorem stated that two adja-
cent planar faces may coexist in the same object if and only if their common 
edges are collinear. This algorithm is suitable for a large set of drawings rep-
resenting manifold and nonmanifold objects. However, it fails when handling 
the objects with internal faces. Liu and Lee [35] revisited the problem tack-
led by Shpitalni and Lipson and used the same criterion and face adjacency 
theorem to formulate the problem. They formulated the face identification as 
a rriaxirriiim weight clique problem and developed a much faster algorithm to 
find faces in a line drawing. Their algorithm outputs the same results of face 
identification, and has the same problem, as Shpitalni and Lipsons. Liu et al. 
[38] and [37] proposed variable-length genetic algorithms with heuristic and 
geometric constraints incorporated for local search and tackled simultaneously 
the two combinatorial problems involved in the previous methods [33], [35]. 

The work in this thesis focuses on the 3D reconstruction of manifold objects 
with both planar and curved faces. Thus, we assume that given a line drawing, 
its face topology is known before the reconstruction of its 3D geometry. Here, 
the face topology denotes the set of circuits that represent all the faces of the 
3D object. Among these face identification techniques, the work in [36] is most 
suitable for face identification in this thesis. Because, the previous approaches 
to the face identification from line drawings with hidden lines visible are still 
not satisfactory. For manifolds only, none of the previous algorithms can han-
dle both the objects with the internal faces and with the holes. In addition, 
it seems that it is impossible to develop an efficient (polynomial) algorithm to 
handle drawings with genus > 0. Liu et al. [36] proposed a new method based 
on a number of properties implied in line drawings representing manifold ob-
jects, used a tree search scheme to find the faces of manifolds. The two main 
steps in the method were 1) searching for cycles from a line drawing and 2) 
searching for faces from the cycles. In order to speed up the face identification 
procedure, a number of properties, most of which relate to planar manifold ge-
ometry in line drawings, were presented to identify most of the cycles that are 
or are not real faces in a drawing, thus reducing the number of unknown cycles 
in the second searching. Schemes to deal with manifolds of curved faces and 
manifolds each represented by two or more disjoint graphs were also proposed. 

2.3.2 3D geometry reconstruction 
To reconstruct the 3D object from single 2D line drawings, the main stream 
approach in the previous researches is to formulate the problem as an optimiza-
tion problem based on different objective functions. Our work in this thesis 
belongs to this group. 
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3D planar object reconstruction from single line drawings 

Marill [42] presented his method based on a simple criterion: minimizing the 
standard deviation of the angles in the reconstructed object, which is called 
the MSDA principle. This criterion can be used to inflate a 2D line drawing 
into a 3D shape. Marill's approach is tolerant of freehand sketching errors, 
but it can just reconstruct simple 3D objects, such as cubic, pyramid, stairs, 
etc. Motivated by the MSDA, Brown and Wang [6] proposed to minimize 
the standard deviation of the segment magnitudes (MSDSM) in the recovered 
planar object, and Shoji et al. [51] presented the criterion of minimizing the 
entropy of angle distribution (MEAD), and claimed that it is more general 
than both the MSDA and the MSDSM. 

MSDA, MSDSM, and MEAD can only recover simple objects from line 
drawings arid base on the criteria of regularities that humans perceive when 
interpreting 2D line drawings. Later, some researchers extended the criterions 
following this idea and incorporated more heuristic regularities in the recon-
struction process. Leclerc arid Fischler et al. [29] considered not only the 
MSDA, but also the regularity of face planarity for planar object reconstruc-
tion. By modifying Marill's objective function to explicitly favor planar-faced 
solutions, and by using a more competent optimization technique, this method 
performs better than MSDA, MSDSM, and MEAD. The methods in [47] and 
[65] concentrated on the reconstruction of symmetric polyhedra by developing 
a regularity of model symmetry. Lipson and Shpitalni [33] took Leclerc and 
Fischler’s work further using more regularities for the reconstruction such as 
line parallelism, line verticality, isornetry, corner orthogonality, skewed facial 
orthogonality and skewed facial symmetry, all of which are in accordance with 
human visual perception of line drawings. All these constraints are combined 
together to form an objective function to reconstruct more complex objects 
than all the previous methods. In this thesis, we proposed a new scheme 
handling the curved objects reconstruction, while we still keep using some reg-
ularities proposed in [33] and the idea of optimization-based reconstruction. 
Here, we give more detailed review of Lipson's method [33]. The regularities 
in 33] which we use in curved reconstruction are: 

• Line parallelism: A parallel pair of lines in the sketch plane reflects 
parallelism in space. The term used to evaluate the parallelism of a line 
pair is 

^parallel = [COS—丄. k)]"^ Wi’2 = /iQOjO [cOS~̂  (/i . h )] (2.1) 

where /i and I2 are the unit direction vectors of the first and second 
lines, respectively. A continuous compliance factor / i a ’ 6 � is defined as 
fia b � = m a x [ 0， 1.1 • e-(宁)2 - 0.1 ]. The weight w;i,2 given to this 
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regularity for a specific pair of lines depends on how the two lines are 
parallel in the sketch plane. 

• Corner orthogonality: A junction of three lines that mathematically 
qualifies as a projection of a 3D orthogonal corner is orthogonal in space. 
To determine whether a junction of three lines in a plane qualifies as a 
projection of an orthogonal corner, a following test is applied [33], based 
on the fact that the projection of an orthogonal corner spans at least 
90� . 

• Isometry: Lengths of entities in the 3D model are uniformly propor-
tional to their lengths in the sketch plane. The term to account for 
non-uniformity corresponds to the standard deviation of scales. 

— 2/ _ 1 TV/- \ _ lengthientityi) 
a i s o m e t r y = n-a [v, = I... J^^) U = I 饥 gth'(entity i) (2.2) 

where n is the number of entities, Ne is the number of edges in the line 
drawing, 7\ is the ratio between the current length of entity i and its 
length in the sketch plane, and a is the standard deviation of the series 
of Ti. 

Besides these three regularities, there are more regularities proposed in the 
33]. When the reconstruction process begins, the given 2D edge-vertex graph 

is analyzed and image regularities are identified. For each regularity, the corre-
sponding weighting coefficient is computed. A 3D configuration can be repre-
sented by a vector Z containing the z coordinates of the vertices. A compliance 
function F ( Z ) can then be computed for any 3D configuration by summing 
the contributions of the regularity terms. Regularities are prefixed by a global 
balancing coefficient vector W. The final compliance function to be optimized 
takes the form 

F(Z) = W'^Y.[a] (2.3) 

where a is the vector containing all the constraints including OipianarUy, otparaiieU 
Otverticah C^isometry, Otcornerskewedorthogonality, etC. The appropriate Configuration 
of z's (the vector Z) is sought using optimization. 

Chen et al. [10] used a divide-and-conquer strategy shown in Fig. 2.3 to 
deal with complex objects reconstruction. In this thesis, we apply this method 
to deal with the complex line drawings with both planar and curved faces. 
The approach consists of three steps: 1) dividing a complex line drawing into 
multiple simpler line drawings based on the result of face identification; 2) 
reconstructing the 3D shapes from these simpler line drawings; 3) merging the 
3D shapes into one complete object represented by the original line drawing. 
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(a) All inputted line drawing 

也 A 

(b) Separated seven line drawings 

0 
/ b 

(d) Combination of the seven parts (c) 3D reconstruction of the seven parts 

Figure 2.3: Illustration of divide-and-conquer approach to the problem of line 
drawing reconstruction. 

3D curved object reconstruction from single line drawings 

The above 3D reconstruction methods handle only planar objects. Although 
few works are available to tackle curved objects, some efforts [7], [64], [9], [30 
44] do try to deal with this problem. In [7], Cao et al. used 3D objects 

reconstructed from 2D line drawings as the input for 3D object retrieval. The 
method needs the user to manually add lines on some curved faces so that the 
line drawing of an approximate planar object can be obtained. In [64], Varley 
et al's method cannot work directly on the line drawing of a curved object. 
Instead, it requires the user to create another line drawing of a polyhedral 
template first. When the polyhedron is reconstructed, some faces are bent to 
generate curved faces. Other limitation of this method is the templates cannot 
have holes. [30] and [9] focused on architectural modeling where the faces are 
mainly planar. Both methods need the user to help derive camera parameters, 
and the constructed models are actually 2.5D but not full 3D since no hidden 
lines are drawn. Both construct a model in a progressive way: one polygon 
after another in [30] and one primitive after another in [9]. Besides, [9] heavily 
relies on a primitive database and when the user finishes drawing a primitive, 
he needs to specify its type to help reconstruction. [44] also used a progressive 
way to do 3D reconstruction where the constructed models are full 3D since 
hidden lines are drawn. One limitation of [44] is that it requires the edges of 
an object exhibit pronounced angular trends so that an underlying axis system 
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can be found. Prom the experimental results in [30], [9], [44], it is easy to see 
that they are limited to simple curved surfaces that are symmetric in [9] or 
(parts of) cylinders or spheres in [30] and [44]. 

2.4 Our research topic and contributions 
In previous sections, we have reviewed the contributions and problems of these 
previous researches related to interpretation of line drawings. This thesis 
mainly concentrates on the topics of 3D reconstruction of curved objects from 
single 2D line drawings in view of the limitations in the previous work: most 
of previous methods for line drawing reconstruction just concentrated on pla-
nar objects. Although there are little few works dealing with curved object, 
all of these methods cannot reconstruct the line drawings automatically, but 
in a progressive way using human interaction or template. Moreover, these 
methods fail in many complex curved objects and limit to very simple curved 
surfaces. To the best of our knowledge, no method has been published to 
tackle curved objects with more complex and general geometrical structure in 
an automatic way. 

In light of this problem, we present a novel approach which is mainly de-
voted to handle complex curved objects. This method creates full 3D models 
and does not require the user to derive camera parameters or to draw an ob-
ject with edges mainly in the axis directions. It works in an automatic way, 
so it can handle more complex objects in essence. The techniques, identifying 
curved/planar faces in a line drawing, creating a generalized polyhedron, and 
regularities for curved object reconstruction, are novel contributions in this 
thesis. Our approach can tackle the objects with more complex general curved 
surfaces among all the researches in this area. 



Chapter 3 

Reconstruction of Curved 
Manifold Objects 

In this chapter, we first state the assumptions for the curved object reconstruc-
tion problem and the terms that will be used in what follows, then develop 
our approach to this problem, and finally give the corresponding algorithm. 

3.1 Assumptions and terminology 
The following four assumptions are made before the reconstruction problem is 
formulated. 

• A line drawing, represented by a single edge-vertex graph, is the parallel 
or near-parallel projection of a wireframe manifold object in a generic 
view where all the vertices and edges of the object are visible. 

• Every curved edge of a line drawing is the projection of a 3D planar 
curve. 

• All the faces of a manifold that a line drawing represents are available. 

• Each face is either planar or curved. For a planar face, two principal 
curvatures are both zero at every point of surface, that is /Q = 0, ( 2 = 0. 
For a curved face, two principal curvatures can be nonzero. But we 
assume that the curved face we deal with can be transformed to piecewise 
surfaces whose definition is shown below. 

A line drawing in a generic view means that no two vertices appear at 
the same position, no two edges overlap in the 2D projection plane, 3D non-
colliriear edges are not projected as collinear edges, and no 3D curves are 
projected as straight lines. In this theis, we focus on a class of most common 
solids, called manifolds (see below for their definition), and we refer to a poly-
hedron as a planar manifold. The second assumption requires that each 3D 
curve is on a 3D plane. This is reasonable because given a 2D curve in a line 

14 
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drawing, we interpret it as a 3D planar curve in most cases. There have been a 
number of algorithms developed for face identification from line drawings such 
as [32] and [36], as mentioned in Section 2.3.1. This is not the focus of this 
thesis and is why we have the third assumption. For better understanding the 
content in the following sections, we summarize the terms that appear in this 
thesis. 

• Manifold. A manifold, or more rigorously 2-manifold, is a solid where 
every point on its surface has a neighborhood topologically equivalent to 
an open disk in the 2D Euclidean space. A basic property of a manifold 
is that each edge is shared exactly by two faces [36 . 

• Face. A face is one of the surface patches of a manifold bounded by 
edges. 

• Edge. An edge of a line drawing is the intersection of two non-coplanar 
real faces, which can be a curve or straight line. An edge e is also denoted 
by {ve^,Ve2} where Vê  and Ve] are two vertices of e. 

• Cycle. A cycle is formed by a sequence of vertices vq.vi, - • • , Vn, where 
n > 3, Vo = Vn, where n vertices are distinct, and there exists an edge 
connecting Vi and Vî i for z = 0,1, • • • ,n - 1. A cycle is denoted by 
{î o, I；!, • • • , Vn}- A face is a cycle. 

• Generalized polyhedron. A generalized polyhedron is represented by 
a line drawing whose edges are all straight lines, transformed from a line 
drawing of a curved manifold. It is not a real polyhedron since it has 
non-planar generalized faces that are defined below. 

• Generalized face. A generalized face, only existing in a generalized 
polyhedron, is a face that is not subject to the planarity constraint. It 
corresponds to a curved face in the line drawing of a curved manifold. 

• Developable surface. At least one of the principal curvatures is zero 
at every point. 

• Silhouette. A silhouette is defined as an edge with one adjacent face 
in front and the other at the back and it is satisfied that the two faces 
are C: continuous along such an edge in 3D space. At every point along 
a silhouette, the surface orientation is normal to the line of sight and to 
the tangent to the silhouette [4]. It can be identified by the two faces 
adjacent to it and the property of its vertices [16 . 

• Piecewise surface. The surface is segmented from a curved face includ-
ing silhouette. The slope of the tangent at every point along silhouette 
in piecewise surface has the same sign (negative or positive). 
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m 

(a) (b) 

Figure 3.1: Illustration of some terms. 

• Artificial line. An artificial line^ is a line used to indicate that two 
cycles lie on the same plane or the same curved surface. 

• Edge set of a face. The edge set Edge(f) of a face f is the set of all 
the edges of f . 

• Farthest point. The farthest points of a curve are defined as the points 
having the maximal distance to the line passing through the two end-
points of the curve. 

• Singular point. Singular point on a curve f(x,y) = 0 is the point if 
the X and y partial derivatives of f are both zero at this point. 

• Concurvity. Two edges with a common vertex are called concurved 
if they are C^ continuous at the common vertex. This concurvity is the 
generalizetiori of collinearity. 

• Genus The genus of a surface can be considered as the number of holes 
that pass through it completely. 

Many of these terms are illustrated with the line drawings in Fig. 3.1. 
Curved edges adc and abc are concurved at vertices a and c. Two artificial lines 
hi and f j indicate the coplanarity of the cycles (e’/，仏/i, e) and {ij, k, 
Edges ae, eg, im, and ko in Fig. 3.1(a) are four silhouettes of the line drawing. 
Points d and b are the farthest points of curves adc and abc, respectively. 
Fig. 3.1(b) shows the line drawing of the generalized polyhedron corresponding 
to the curved manifold represented by the line drawing in Fig. 3.1(a). There 

1 Artificial lines have been used in solid modeling to indicate the co-surface of two cycles 
in a line drawing [2], [10], [36]. Without them, it is impossible to determine the 3D geometric 
relation between the two cycles (see Fig. 3.1 for example). 

d 
a 

e 
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are four generalized faces in it, such as (a, 6, c,p, / , e, a). How to transform 
a line drawing representing a curved solid into a line drawing representing a 
polyhedron or generalized polyhedron is discussed in Section 3.2.2. 

3.2 Reconstruction of curved manifold objects 
This section discusses our main work on the reconstruction of curved mani-
folds. First, we give some rules to distinguish between curved faces and planar 
faces. Second, we present the scheme to transform the line drawing of a curved 
manifold into the line drawing of a generalized polyhedron. Third, we develop 
new regularities for curved object reconstruction. Fourth, we discuss how to re-
construct the 3D wireframe of the curved object. Finally, we create the curved 
faces with Bezier surface patches and triangular meshes from the obtained 3D 
wireframe. 

3.2.1 Distinguishing between curved and planar faces 
Before 3D reconstruction, it is helpful to find whether a face is curved or 
planar. In [18], several labeling rules are proposed for discriminating between 
curved and planar faces in a line drawing. However, these rules cannot be 
applied to our problem since [18] deals with line drawings without hidden lines 
(besides, it does not consider 3D reconstruction). In this section, we propose 
four rules for the face labeling problem. Before giving the rules, we present 
several properties. 

Property 1. Two faces that share a straight edge can be either planar or 
curved. 

Property 2. At least one of the two faces that share a curved edge is curved. 

Property 3. Both faces that share a silhouette are curved. 

The above three properties are obvious for manifolds. When two or more 
disjoint cycles are on the same surface, artificial lines are used to indicate 
this co-surface property [2], [10], [36]. Artificial lines are easily identified, and 
when they are removed, these cycles become faces. Note that some such cycles 
denote holes, but they are still considered as faces in face identification after 
the artificial lines are removed. Finally, the real visible face can be known from 
the 2D geometric relation among these co-surface cycles [2], [10], [36]. Here 
these cycles are still called faces, which have the following property. 

Property 4. Two or more co-surface faces indicated by artificial lines are all 
planar or all curved faces. 
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Figure 3.2: Illustration of Properties 1-4. (a) A straight edge, (b) A curved 
edge, (c) A silhouette, (d) Two faces connected by two artificial lines. 

For each face / of a line drawing, we use L{f) G {P,C, X} to denote if f 
is planar (P), curved (C), or of unknown planarity (X). The four properties 
are illustrated in Fig. 3.2. With them, we have the following rules for labeling 
faces. Let f i and /2 be two faces of a line drawing, and an edge e G Edge(Ji�r\ 
Edge{f2). 

Rule 1. If e is a straight edge and the face fi, i = 1,2, is unlabeled, then 
L(fi) = X. 

Rule 2. If e is a curved edge and L{fi) = P, i = 1,2, then L { f s - i ) = C. 

Rule 3. If e is a silhouette, then L(/i) = L(/2) = C. 

Rule 4. If fI and f: are connected by two artificial lines and L{fi) = C or P, 
i = then = L{fi). 

Based on Rules 1-4, we develop Algorithm 1 to find the optimal face la-
beling configuration. The optimal face labeling is defined as the labeling con-
figuration with the maximum number of planar faces in the interpretation of 
a line drawing, because planar faces are most common in man-made objects. 
This criterion is already used in [18]. The algorithm is initialized by assuming 
a face to be planar. The four rules are then used to deduce the labels of other 
faces. For any face whose label cannot be decided from any of its edges (labeled 
by X), we relabel it as planar (P) according to the criterion of maximizing 
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Algorithm 1 Identifying planar and curved faces. 

Input: A line drawing with its edge set S and face set T. 

1. for each face / G JF： 

2. if f has no silhouettes, then set L(/) = P; else goto 1. 

3. for each face fi E fi ^ f , set its initial label L( / i ) = Null. 

4. for each edge e E S^ set visit{e) = 0. 

5. while not all the faces are labeled with either C or P do 

6. Save the previous labeling configuration LC'{f) — {Z/(/2)|/2 € 

7. for each edge e e in the line drawing, try to label its neighboring 
faces according to Rules 1-4. If both of its neighboring faces are 
labeled, set visit{e) = 1. 

8. for each face /a G •F, if L(/3) = X and visit{e) = 1 
for all the edges e G Edgeif^), then set Lijs) = P. 

9. Obtain the current labeling configuration LC{f) = {I/(/4)|/4 ^ 

10. if LC(f) = LC'(f), then randomly select a face /s from those 

labeled by X and set L{f^) = P. 

Output: The configuration LC* G {LC{f)\f G J^} with the maximum num-
ber of planar faces. 
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(a) (b) (c) 

Figure 3.3: A line drawing (a) with two correct labeling configurations (b) and 
(c). Only curved faces are marked with bold edges. 

the number of planar faces. The labeling algorithm repeats until all the faces 
are labeled with either curved (C) or planar (P), and Step 10 can prevent 
the deadlock of the face labeling. The optimal face labeling configuration is 
obtained by initializing the algorithm from each face of the line drawing and 
adopting the labeling configuration with the maximum number of planar faces. 

Although we cannot prove that Algorithm 1 can label all line drawings 
correctly, our experiments show that all the examples we try are successfully 
labeled. In some cases, multiple solutions occur, such as the one shown in 
Fig. 3.3. 

3.2.2 Transformation of Line Drawings 
Transforming a line drawing with curved edges into the one with straight edges 
only is an important step for reconstructing the curved object. This trans-
formed line drawing represents a polyhedron or generalized polyhedron. With 
this line drawing and the original one, we can reconstruct the 3D wireframe 
of the curved object by combining previous regularities for planar objects and 
our new regularities for curved objects. Based on the careful observations, we 
find that there are many 3D objects whose boundaries contain silhouettes with 
curve lines. For these objects, we have to add some curves on the undevel-
opable surface before transforming the line drawing to make the reconstructed 
results more accurate and closer to human perception. After this operation, 
we then carry out our transformation to a line drawing without curve. 

Transformation of undevelopable surface 

If a curved face whose boundary contains silhouette is an undevelopable sur-
face, we add some curves automatically to transform it into some piecewise 
surfaces. 

As in Fig. 3.4 shown, the back and front curved faces (Po，Pi’Qi,Qo) are 
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Figure 3.4: Transformation of an undevelopable surface into piecewise surfaces 

both undevelopable faces. Firstly, we calculate the singular point of one sil-
houette. We should mention that the silhouettes may not be totally sym-
metrical. The Bezier curve in R"̂  is described in the parameterized form 
C(t) = {x(t),y{t)). The singular points are those points where 

da：� dy{t) 
dt dt 

=0. (3.1) 

In Fig. 3.4, we calculate singular points of curve PoQo, that is Mq. 
Secondly, we find the corresponding point in the other silhouette. The 

corresponding point Mi as shown in Fig. 3.4 should satisfy the below equation, 

k = I l i V y ^ IIAi^ill 
¥M~\\PiQI\\ 

(3.2) 

where k represents the proportion of two line segments' length. As seen in the 
Fig. 3.4, we can get some equations from the geometric properties. 

MqRQ = aMoRu 

MoRo = Mo- (Po + KQo - Po)), 
M ^ = Mo- {Pi + KQi - Pi)), 

(3.3) 

(3.4) 

(3.5) 

where a is the coefficient. 
We can put the coordinates of Mq, Po, Qo, Qi into the equation(3.3), 

(3.4) and (3.5) to get an quadratic equation with k. By solving the equation, 
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we can get the value of k at the interval of [0,1]. When k is known, we can get 
coordinates of Ro,Ri, and finally Mi. 

At last, control points of each curve which we add can be calculated. As 
we use Bezier curve to represent curves, the existing curves' equations are 

n 

Cpi � = jyi,iBi’n � , (3.6) 

= (3.7) 
i = 0 

where I\i and Qi’i are the control points of curves Cpi(t) and Cqi{t) respec-
tively. Also Pi,o = Pq, Pi,n = Pi and Qi,o = Qo, Qi,n = Qi-

In order to calculate the control points of curve Cmi, we introduce new-
points Rî i firstly, as shown in Fig. 3.4, 

= (1- k)Pi,i + (3.8) 

It is easy to prove that triangle RoRi^iRi is similar to triangle MqMi^iMi. 
Then we use Rî i to get control points Mi’i, 

Ml,, = Mo + 丨||二 — — Ro), i = 0,l,…n. (3.9) 

Then we can find its corresponding Bezier curve Cmi, 
n 

Cml{t) = (3.10) 
i=Q 

Similarly, Bezier curve Cm2 can be found in the same way. Thus, we auto-
matically calculate the two curves and add them on the line drawing in order 
to transform undevelopable surface into two piecewise surfaces. By adding 
curves, the original Bezier curve PqQq is split into two Bezier curves PqMq 
and MoQo, so is curve PiQi. [22] presents the subdivision algorithm of Bezier 
curve. By using this method, we could get new Bezier curves which are con-
tinuous at the split point. If the silhouette contains more than one singular 
point, we could add more curves in the similar way. After this transformation 
of undevelopable surface, a new line drawing which is regarded as the input 
line drawings has been generated for reconstruction. We apply the Algorithms 
1 described in Section 3.2.1 to distinguish between curved and planar faces, 
and then transform it into a line drawing without curve. 

Transformation to a line drawing without curve 

Our scheme of line drawing transformation is described as follows. When there 
is only one curve between two vertices, as shown in Fig. 3.5(a), the curve is 
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Figure 3.5: Examples of the transformation of line drawings, where (c) is a 
polyhedron and (f) is a generalized polyhedron. 

straightened (see Figs. 3.5(b) and (c)). When there is more than one curved 
edge between two vertices, such as the curves abc and adc between a and c in 
Fig. 3.5(d), the curved edges cannot be straightened directly because otherwise 
the two edges become one. In this case, we first find a farthest point in a curve 
and then replace the curve with two straight lines (Fig. 3.5(e)). In Fig. 3.5(c), 
the line drawing represents a polyhedron, while in Fig. 3.5(f), the line drawing 
denotes a generalized polyhedron. In both cases, the face configurations are 
the same as their corresponding original line drawings, which guarantees that 
the 3D wireframes of the (generalized) polyhedra can be good approximations 
of the 3D wireframes of the curved objects. 

3.2.3 Regularities 
Many previous regularities developed for handling planar object reconstruction 
can be used to reconstruct a polyhedron such as the one in Fig. 3.5(c). How-
ever, a generalized polyhedron with generalized faces does not exist actually 
(see Fig. 3.5(f) for example). Our strategy is that based on the transformed 
line drawing and the original line drawing, use some previous regularities and 
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the regularities proposed in this section to recover the 3D wireframe of the 
curved object. 
Curve Parallelism. Before defining curve parallelism as a new regularity for 
curved object reconstruction, we first define two terms. 

Definition 3.1. Given a differentiable curve C{t) = {xi(t)^x2{t)^ •. • , Xn(t))'^, 
t G [0,1], of the normalized arc-length parametrization of the curve C{t) 
is defined as G(s) : [0,1] — C(t), where 

s 二 y ( 拳 ( 3 . 1 1 ) 
/o llG'WIIdz. 

for s G [ 0 , 1 ] and G'{u) is the first derivative of G(u). 

Note that (3.11) is the condition that s satisfies; it is not used to determine 
the arc length s. 

Definition 3.2. The parallelism between two curves Ci(t) and C2(t) in W^ is 
defined as 

I I- K.AS''^' 
'厂1 2 = max 

f 广 G ' l ⑷ 了 G ' 2 � 广 G U ^ m a - . ) 1 

U o l | G ' i ( s ) 丨 I . I 丨 G ' 2 (州 | a s ’ 人 I IG'i ⑷丨丨• | | G ' 2 ( 1 - s ) | | / ' 

(3.12) 
where Gi(s) and G2(s) are the normalized arc-length parameterizations of 
C i � and C2⑴，respectively, and G'i(s)^ is the transpose ofG[{s). 

In the two definitions, n takes 2 or 3 to denote 2D or 3D curves. It is easy to 
see that - 1 < ri，2 < 1. The geometric meaning of ri，2 is the sum (integration) 
of the normalized dot products of the tangent vectors at the corresponding 
points between Ci and C2. When Ci and C2 are parallel perfectly, such as C2 
being a copy of Ci shifted to another position, ri’2 = 1. Two unparallel curves 
result in a small ri,2. Let r器 and rf^ be the parallelism values between two 
curves in the 2D sketch plane and 3D space, respectively. Then the term used 
to enforce the constraint of curve parallelism is 

叱户= :E<P(l-r?’？)2, (3.13) 
hj 

where the weighting factor 

w (3.14) 

and CTi is a parameter to control the effect of w?f. When acp is minimized, 
the regularity requires that two parallel curves in the 2D line drawing are also 
parallel in 3D space. In our experiments, we choose ai = 100. 
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Generalized Face Perpendicularity. Face perpendicularity is first intro-
duced as a regularity to inflate a flat line drawing into a 3D shape in [33 . 
It requires adjacent faces to be perpendicular. In this work, we generalize 
it for generalized polyhedra. Using the vertices of each curved face, we find 
a best-fitting plane and enforce it to be perpendicular to its adjacent planar 
faces. For example, in Fig. 3.5(f), the best-fitting plane obtained from the four 
vertices of the curved face (a, e , / , c, 6, a) is required to be perpendicular to 
the faces (a, d, c, b, a) and (e, h, g, / , e). The following term is used to enforce 
this regularity: 

K 

OLGFP = ^ [ s i n - i ( n “ • ni2)]2’ （3.15) 
i=l 

where Un and ni2 denote all the possible combinations of the unit normals of 
the best-fitting planes and their corresponding adjacent planar faces, and K 
is the number of the combinations. 
Curve Concurvity. Curve concurvity is a generalization of the regularity of 
line collinearity in [33]. This regularity requires that two concurved edges in 
the 2D sketch plane are also concurved in 3D space. According to the definition 
in Section 3.1, curve concurvity means that two edges have the same tangents 
at their common end. In our work, we use Bezier curves to represent all the 
curved edges in a line drawing. Checking the concurvity between two curves is 
reduced to verifying if the two corresponding control points and the common 
vertex are collinear. Fig. 3.6 shows two concurved edges ei and e2. If both ei 
and 62 are curved, then the control points pu, P21, and the common vertex v 
are collinear; if e! is curved and 62 is straight, then the control point pi2 and 
the vertices v and V2 are collinear. We hence use the following term to describe 
this regularity: 

叱 c - L � | | P . _ P ^ | | . | | P , _ P ^ | | ) ’ （3.16) 
:kes(i) j./fc 

where N is the number of vertices of the line drawing; 8{i) is the set of all 
the edges ending at vertex i\ Pj is the 3D point of vertex i\ Pj (Pfc) is the 3D 
point of the other end of the edge j (k) if edge j {k) is a straight line, or the 
first control point neighboring to vertex i of edge j {k) if edge j (k) is a curve; 
the weighting factor 

" " 综 = 1 + eccp [ - - 8^/9)] ’ （。.工？） 

where Pijk is the angle between two vectors (P,- - Pi) and (Pfc - Pi) with Pi, 
Pj , and Pfc being the available 2D projections of Pj, P j , ar^ respe^ively, 
and (72 is a parameter to control the effect of . When P^, P j , and P^ are 
nearly collinear, is larger and close to 1; otherwise u;淀 is close to 0. In 
our experiments, we choose (J2 = 100. 
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(a) 

Figure 3.6: Illustration 

3.2.4 3D Wireframe Reconstruction 
We use both the original line drawing and the transformed line drawing of the 
(generalized) polyhedron to reconstruct the 3D wireframe of the curved object. 
Several regularities used in previous work for planar object reconstruction are 
applied to the transformed line drawing, which are minimizing the standard 
deviation of angles in the reconstructed object (ai) [42], face planarity (0:2) 
29] (effective on the planar faces but not the generalized faces), line paral-

lelism (0:3) [33], and corner orthogonality (0:4) [33]. The three new regularities 
(denoted as 0:5, ae, and 0:7) proposed in Section 3.2.3 and the regularity isom-
etry (as) [33] are applied to the original line drawing. Isometry can be used for 
both straight and curved edges. It requires that the lengths of the edges in the 
3D wireframe are uniformly proportional to their lengths in the line drawing. 
It is used to avoid that a reconstructed object becomes too distorted but still 
projects to the same line drawing. 

During the 3D reconstruction, previous methods for a planar object only-
need to use the z coordinates (depths) of the vertices to compute the regularity 
terms (the x and y coordinates of the vertices are available). In our work, 
however, not only the depths but also the 3D curves are required to compute 
all the regularity terms. Next, we discuss how to determine the curves during 
the reconstruction. 

Let a 3D curve C{t) be described in the parameterized form 

C{t) = (x{t),y{t),z{t)). 

Under parallel projection, the 2D image of C{t) is simply 

e�=(0：⑴’ 2 /�) . 

(3.18) 

(3.19) 

Now we need to recover z{t) from C � . I n general, given C(t) and several 
specific 3D points on C(t), it is impossible to determine other 3D points on 
it. However, in our case where the 3D curve is planar, determining it becomes 
possible. 
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Obviously, a plane can be defined with a point and a normal vector, 

na:(x(t) - xo) + n y _ - yo)) + n,{z{t) - zq) = 0 (3.20) 

Given the 2D curve C � = { x { t ) , y { t ) ) ' ^ and the coordinate of its one endpoint 
Po = {xq, yo, zq)'^ in 3D space, if we can find the unit normal vector n = 
{rix.ny.nzY of the plane which the 3D curve C(t) = {x{t),y(t), z{t))'^ lies on, 
we can recover the depth of the curve by 

z{t) = zo- (na:(x{t) 一 3；0) + ny{y{t) — ？/o))Av (3.21) 

Note that n^ 0; otherwise the 3D curve is projected onto a straight line, 
which contradicts the assumption that the line drawing is in a generic view. 

The manipulation of the curve in the form of (3.18) is not convenient 
because we do not have explicit expressions for x{t) and y{t). We use Bezier 
curves to represent general curves in this thesis. 

Bezier curves are very popular in the representation of curves. Bezier curves 
have good mathematical properties which enable them to be manipulated and 
analyzed easily. They are also convenient to be drawn with a few control points 
5 . 

A Bezier curve of degree n is specified by a sequence of n + 
0 < 2 < n, which are called control points. Its equation is 

c � = ⑴， 

points Pi, 

(3.22) 

where 战’n � is the Bernstein polynomial function 

e { i - t y (3.23) 

From (3.22), we can see that the n + 1 control points P^ define the curve 
completely. In our reconstruction tool, the user is able to move the control 
points freely to change the shape of a curve. If a line drawing is obtained by 
scanning a sketch image, we can find the control points by fitting a Bezier curve 
to an inputted curve using the technique in [46]. When the control points are 
collinear, the Bezier curve degenerates to a straight line. Thus, it can be used 
to represent straight lines too. _ 

Let the control points of a curve C{t) in the 2D projection plane be Pi = 
(xi, yi), meaning that 

n 

C � = � . 

i=0 

Then we can find its corresponding Bezier curve C{t) in 3D space: 
n 

COO = ；^PiBi，„ ⑴， 
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by deriving P^ = {xi,yi,Zi) with Zi = zq - {n:^(xi — a;�) + ny{yi — yo))/几z in 
(3.21). 

Here, we need to determine the unit normal vector n = (n̂；, n^, n^)^ of 
the plane each 3D curve lies on. In this thesis, every curved edge in a line 
drawing is planar. It can be formed either by the intersection of a curved face 
and a planar face or by the intersection of two curved faces. In the former 
case, the normal of the plane on which the 3D curve lies can be determined 
directly since the 3D planar face is available during the reconstruction of the 
3D wireframe. 

When a curved edge is formed by two curved faces, there are an infinite 
number of planes passing through the two endpoints of the curve. In this case, 
we find suitable planes such curved edges lie on by minimizing the regularities 
where these 3D curves are involved. Therefore, in addition to the depths of 
all the vertices, the unit normal vectors of these planes are used as part of the 
variables of the objective function defined as follows: 

8 

F(zuZ2, . . . ’ z/v, ni, 1 1 2 ’ …，n M ) = 乂 讽 . (3-24) 
i=\ 

where Ai_8 are eight weighting factors determined by experiments, ai—8 are 
the eight regularity terms, zi一n are the depths of all the N vertices of the line 
drawing, and ni_M are the unit normal vectors of the M planes on which each 
of the M curved edges is the intersection of two curved faces. We use the hill-
clirnbing method presented in [29] to minimize F. Note that in (3.24), each unit 
normal vector n̂  has only one independent variable due to the two relations 
||ni||2 = 1 and nf (P^i - Pi2) = 0 where P î and Pi2 are the two vertices of the 
zth curve and are available during the optimization (reconstruction) process. 

3.2.5 Generating Curved Faces 
After obtaining the 3D wireframe of the curved object, we fill in the cycles 
denoting the curved faces with smooth surface patches. A Bezier patch is 
generated for a curved face with three or four edges and a triangle mesh is 
used to create a curved face with more than four edges. 

Bezier surface patches 

suitable for patches with four boundaries 
；a special case). A Bezier surface patch 

S(ii, V) is defined by a (n + 1) x (m + 1) array of control points Ptj , as shown 
in Fig. 3.7. The parametric form of S(u, t*) is 

Bezier and Coons patches [19]； 

(patches with three boundaries 

S(u, V) = E E PijBi,n(u)Bj,„,(v). (3.25) 
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喝 ’ 1) 

〜卿1) 
P o , o = ^0，0) 

Figure 3.7: Bezier surface patch S{u,v) and its control points. 

Now we derive the equations of the boundaries of the patch S(u, v). A 
Bezier patch comprises two families of parameterized curves C(u) and C{v). 
Without loss of generality, the parameters u, v are chosen to lie in the interval 
0,1]. Thus the boundaries of S{u,v) are four curves Ci(v), C2(v), C3{u), and 

C4(u)’ with respect to li = 0,1 and = 0,1. Considering Ci{v) where u = 0’ 
we have 

m n 

Ci{v) == s(o,̂；) = 

m 

= (3.26) 
j=0 

since Bo’„(0) 二 1 and Bi,n(0) = 0 for all i + 0. Similarly, we have the other 
three boundaries 

C2 � = S ( M ) = 爪⑷, 

J=0 
n 

Csiu) = S(7X,0) = 战,nM, 
i = 0 
n 

C 4 � = 1 ) 二 

(3.27) 

(3.28) 

(3.29) 

Obviously, Ci一4 are Bezier curves defined by their control points, which are 
also part of the (n + 1) x (m + 1) control points of S(u, v) in (3.25). 

Given the patch boundaries represented by the 3D Bezier curves C1-4, our 
final task is now to generate the Bezier patch. This is equivalent to finding 
all the other control points P^j of S{u,v) based on the known control points, 
Poj , Pnj , Pi’o, and P .̂m, of Ci_4 where 0 < z < n, 0 < j < m. 
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Consider three new surfaces obtained from the boundaries: 

Si{u, = (1 - u)S(0, v) + uS(l, V), (3.30a) 
S2(u’ v) = ( l - v)S(u, 0) + vS(u, 1)， (3.30b) 
S s K … = ( 1 - u){l - … S ( 0 ’ 0) + (1 - u>S(0,1) 

+ u(l - v)S(l , 0) + uvS(l, 1). (3.30c) 

Here, (3.30a) is a surface passing through curves S(0, v) and S(l , v), (3.30b) is 
a surface passing through curves S(u, 0) and S(u, 1)，and (3.30c) is a surface 
passing through the four corners, S(0, 0), S(0,1), S( l , 0), and S(l , 1), of the 
patch S(u, v). If we consider the surface defined by the sum Si(u, v) + S2(u, v), 
we will find that each corner is counted twice. Hence, if we subtract 83(1 ,̂ v) 
from the sum, we will recover a surface that passes through the four boundaries 
with each corner counted once: 

S*(u,v) = Si(u,v) + S2(u,v) 一 S3(u,v) 
= ( 1 - u)S(0, v) + uS(l, v) + ( l - v)S(u, 0) + vS(u, 1) 

- ( l - u ) ( l - v)S(0,0) - (1 - — S ( 0 ’ 1) 
- - … S ( l ’ 0) 一 uvS(l, 1). (3.31) 

S*(u, v) is called the Coons surface patch [19], which passes through the four 
boundaries and the four corners exactly once. Note that this kind of surface 
patches gives not only an easy way of interpolation from the boundaries, but 
also good results in accordance with human visual observation. 

Since the boundary curves are represented by Bezier curves in our work, 
motivated by the Coons patch, we use a similar manner to interpolate all the 
control points Pij of the Bezier patch S(u,v) = ZliLo S ^ o 
based on the known control points, Pqj , Pi’o, and P — of the boundaries 
Ci_4 where 0 < i < n,0 < j < m. The interpolation equation is written as 

P � , = (1 4 ) P � ’ � n ， … 1 - > ’ 。 + 吉 

- ( l - > - 4 ) P � ’ � . - ( l - ^ ’ -
—丄(1 —丄)P„，0 —丄丄Pn,m. (3.32) 

n m nm 

The following proposition points out that the control points chosen in such a 
way generate a Bezier patch equivalent to the Coons patch. 

Proposition 1. The Bezier patch S{u,v) defined by the {n + 1) x (m + 1) 
control points P^j in (3.32) is the same as the Coons patch in (3.31). 
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Proof. Substituting Pij in (3.32) into S(u,v) in (3.25) yields 

n 771 

- E E BUu)Bj’m(V) [(1 - - ) P o j + - P n 
ft f L 1=0 j=0 

n m ‘ 

+ E E BiAu)Bj,m{y) [(1 - 5 ) P � � + 
i=0 j=0 

- i > ’ “ 讽 • ’ 》 [ ( 1 - > - ii)p� ’ 

+ ( 1 _ + " ( 1 - -)Pn,0 + - - P . 

n m ’ n m nm 

Further we simplify some terms in (3.33). 
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(3.33) 

Similarly, we can derive 
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Hence, (3.33) becomes 
m n 

S ( 以 ’ … = - u ) P o j + + — v)Fi,o + vPi,m]Bi,n{u) 
j=0 i=0 

—(1 — u)(l - ？;)Po,0 - (1 - U)vPo’m - —…Pn’0 — UVFn,m 
= ( 1 - u)S(0, v) + uS(l, ?;) + ( ! - v)S(u, 0) + vS(u, 1) 
- ( 1 - 'ii)(l - ^)S(0,0) - (1 - 1) - u(l - v)S(l, 0) — uvS(l, 1), 

which is equal to S*(u,v) in (3.31), and thus completes the proof. • 

Although topologically-rectangular surface patches are most commonly used, 
there exist triangular faces in line drawings. For a three-boundary patch, we 
treat one corner as a special Bezier "curve" where all the control points are 
the same and coincident at that corner. In such a way, a three-boundary face 
can also be recovered with the same reconstruction scheme. 

Triangle mesh 

When a curved face is bounded by more than four edges, we use a triangle mesh 
to generate it. The mesh generation is formulated as a quadratic optimization 
problem. An initial isotropic mesh is first built from the boundary edges of 
each curved face, and then the mesh is refined by minimizing the following 
objective function: 

Q(UI’U2,…•’UK) = A E [ ||Ui-Uj.||2 
i 

+ 7 E E I|c广 CJ2 + ;^||U广 U'#， (3.34) 
姊s j^M{i)\S i£S 

where u'^, Uj, and c ,̂ i = 1,2, • • • , X , are the initial positions, the new posi-
tions, and the curvatures of all K mesh points, respectively; is the set of 
mesh points connected to the zth point in the mesh; S is the set of mesh points 
located on the 3D wireframe; A and 7 are weighting factors. On the right hand 
side of (3.34), the first term enforces the smoothness on the mesh, the second 
term is used to maintain the continuity of the curvature in the mesh which is 
approximated by the discrete graph Laplacian [58] 

Ci 二 u 广 ] ^ E u^z 仏 （3.35) 
丨 “ 丨 3£M(i) 

and the last term is the fitting constraint that requires the mesh to fit the 
points oil the wireframe well. By minimizing Q, we find the positions of all the 
mesh points. This optimization problem has a closed-form solution derived by 
the process shown below. 
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First notice that the objective value Q(ui, U2,…，u/^) can be decomposed 
into the sum of function Q over each single coordinate, for that û  represents 
a 3D mesh points yi, Zi). Therefore, we could optimize Q over each coor-
dinate of (ui, U2, • • • , Ux) and then combine them together. Now we focus on 
the following optimization problem: 

i 

妹s j£M{i)\s ies 

i f 

- 以 ; | 2 , (3.36) 

where 6 M, z = 1, 2, • • • , K and 

In the graph setting, we assume a connect graph 
V = { I , - - . ,K} and edge set E = {{ij)\j G 
is defined as below: 

G = {V, E) with node set 
The Laplacian matrix A 

deg(z) if i = j 
Ai j ^ - 1 if i + j and j e Af{i) (3.37) 

� 0 otherwise 

Let the column vector u = {ui, • • • ’ uk}^, the first term of (3.36) can be writ-
ten as Au^Au. For any node subset A C V , let A ^ be the |乂| x |乂| Laplacian 
matrix of the subgraph induced by A. And let M be the transformation ma-
trix from u to c = (Ci’ •. • ， c 二 M u and S be the complement set of S. 
The second term of (3.36) can be written as: ^c^AsC = 7u^M^A5Mu. For 
any node subset A C V, define the diagonal matrix I乂, where I乂(i, i) = I if 
i G A and 0 otherwise. Let u' = { ^ i , . . . the third term of (3.36) then 
can be written as (u - u')了I«s(u - u'). In sum, the objective function can be 
expressed as 

Au^Au + tu^M^A^-Mu + (u - u'fls(u — u'). (3.38) 

Taking the derivative of (3.38) with respect to u and setting it to zero, we 
obtain the closed form solution of u: 

u = (AA + 7M'^A5-M + I s ) - % u ' . (3.39) 

3.2.6 The Complete 3D Reconstruction Algorithm 
The outline of the complete 3D reconstruction algorithm is summarized in 
Algorithm 2. 
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Figure 3.8: Illustration of adding artifical line on line drawing 

When a line drawing represents a complex object, as shown in Fig. 3.8, 
we firstly add the artificial lines ab, cd, e/，and fg on the original line draw-
ing. Then we use the divide-and-conquer technique in [10] to separate it into 
simpler line drawings and transform them into (generalized) polyhedra. After 
reconstructing the 3D shapes from these line drawings, we merge them into a 
complete object. 

Algorithm 2 3D curved object reconstruction. 

1. Distinguish between the planar and curved faces in the line drawing by 
Algorithm 1. 

2. Transform the line drawing into one representing a (generalized) polyhe-
dron. 

3. Reconstruct the 3D wireframe of the curved object. 

4. Generate the surface patches of the curved faces. 



Chapter 4 

Experiments 
A number of manifold objects with both planar and curved faces have been 
drawn to test our approach. The algorithm is implemented in Visual C++， 

running on a 3.2 GHz Pentium IV PC. The weighting factors Ai_8 are cho-
sen to be 100, 1, 80, 20, 80, 80, 80, and 15，respectively. The parameters 
A and 7 in (3.34) are set to 0.05 and 0.2. These parameters are obtained 
from a few tests first and then fixed in the reconstruction of all the ob-
jects. They are not sensitive. For example,入i_8 can be chosen in the ranges 
of [90，110], [1，5], [70,90], [15，25], [70,90], [70,90], [70，90], [10,20], respectively, 
and the results are similar. 

Fig. 4.1 � 4 . 4 shows a set of line drawings and their reconstruction results. 
For each line drawing, we also show the transformed line drawing superimposed 
on its original one. Each 3D reconstruction result is displayed in two views. 
Here, the original line drawing of teapot in Fig. 4.4 do not include the curves on 
ampullae. Before using the algorithm 2 for reconstruction, we apply method 
described in Section 3.2.2 to transform undevelopable surface into piecewise 
surfaces by adding two curves. Then the line drawing of teapot has been 
changed as shown in Fig. 4.4 and then reconstructed. Like the teapot, the 
lamp in Fig. 4.3 uses the similar method. 

From Fig. 4.1 � 4 . 4 , we can see that the results accord with our visual 
perception very well. The input line drawings are not required to be very 
accurate, which can be seen from the figures. Note that some results may not 
look so perfect, such as the teapot. The ampullae is not as round as the real 
teapot as well as the position of pothole and hold are not perfectly right. It is 
part of our future work to fine-tune the results. In addition, our algorithm still 
cannot handle line drawings representing free-form objects such as a human 
body. 

The computational time of our algorithm varies with different line drawings 
depending on the complexity of them. For those in Fig. 4.1 � 4 . 4 , it ranges 
from 8.0 seconds to 127 seconds. Among the four steps given in Section 3.2.6, 
Steps 3 and 4 take almost all the computational time. 

35 



Figure 4.1: A set of line drawings, their transformed line drawings, and their 
reconstructed results, each shown from two viewpoints. 
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Figure 4.2: A set of line drawings, their transformed line drawings, and their 
reconstructed results, each shown from two viewpoints. 



Figure 4.4: A set of line drawings, their transformed line drawings, and their 
reconstructed results, each shown from two viewpoints. 
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Conclusions and Future Work 

5.1 Conclusions 
3D object reconstruction from single 2D line drawings has been a long-standing 
challenging problem in computer vision. Most methods existing in the liter-
ature can only handle planar objects. Reconstruction of curved objects is a 
much harder problem. As we known, there still is no method published to 
tackle curved objects with complex and general geometrical structure auto-
matically. In this thesis, we have proposed a novel approach to 3D curved 
manifold object reconstruction from single 2D line drawings. It includes four 
steps: 

• Discriminating between curved faces and planar faces in the line drawing, 

• Transforming the line drawing of a curved manifold into the line drawing 
of a (generalized) polyhedron, 

參 Reconstructing the 3D wireframe of the curved object based on the trans-
formed line drawing and the original line drawing, and 

• Generating the curved faces with Bezier patches and triangular meshes. 

A number of examples given in the experimental section clearly indicate 
the ability of our approach to perform 3D curved object reconstruction. The 
results are quite satisfactory and in accordance with human visual perception 
of the objects. Our approach is also very efficient; it can finish a reconstruction 
within about two minutes after a line drawing is available, for each of the line 
drawings in the experiments. Compared with previous methods of curved 
object reconstruction from line drawings, ours can reconstruct more complex 
curved objects automatically. 

5.2 Future work 
Although the good results shown in our thesis testify the novel approach effi-
ciently for 3D curved object reconstruction from single line drawings, there still 

40 
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exist some cases where our method fails and needs to be improved. Moreover, 
many interesting and exciting directions in this area lie ahead. We describe 
these below in the hope that one or some of them may give inspiration to the 
future work. 

• Our algorithm 1 in Section 3 cannot guarantee a global maximum because 
it is based on some randomized mechanisms. We find it is empirically 
efficient in searching the labeling combination and the problem of local 
maximum can usually be fixed by running the algorithm with multiple 
starts. Whether we can find a global algorithm for this problem is an 
interesting topic. 

參 Among all of the works on 3D reconstruction from line drawings, we 
first propose an complete new method to reconstruct 3D curved objects. 
However, we concentrate on the common objects containing 3D planar 
curves and our method may not be applicable to generalized complex 
3D curved objects including space curves. In the future, tackling more 
free-formed curved objects is a significant work after its current stage. 
Moreover, we note that some results may not look so perfect in the 
experiments, such as the teapot. Work on finding algorithms of fine-
tuning the results is also valuable in the future. 

In this thesis, we propose three new regularities (Curve parallelism, 
Generalized face perpendicularity, Curve concurvity) in Section 
3.2.3, we believe that there exists more useful constrains on curved object 
reconstruction particularly. Thus, the future work can include developing 
more efficient regularities and using them in the optimization process. 
Moreover, nearly all the researchers on 3D reconstruction of line drawings 
explore only geometric and topological rules of line drawings, which are 
based on human's vision perception. Until now, no researchers try to 
incorporate machine learning schemes to handle this problem. Since the 
process that human's ability to understand things is a learning process 
which uses past experiences, attempting to reconstruct a 3D object from 
its 2D line drawing using a learning-based method is also attractive. 
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