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Abstract 

While our senses and interactions are confined in the three dimensional space 

we live in, the human intellectual faculty makes it possible for us to imagine 

higher dimensional space and objects with the aid of visualization. This thesis 

describes GL4D, a GPU-based architecture for interactive 4D visualization, for 

producing imageries of objects inside four dimensional Euclidean space. The 

GL4D visualization platform comprises of utilities for generating and process-

ing 4D objects from equations to tetrahedral mesh and a tetrahedron-based 4D 

rendering pipeline. The 4D rendering pipeline in GL4D is implemented on top 

of OpenGL.to utilize recent advances in programmable graphics hardware and 

achieve interactive frame-rate on mainstream consumer graphics hardware. 
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論文撮要 

雖然我們的日常感官和互動受限於三維世界，但是人類的智慧能 

讓我們想像更高維的空間與物件。本論文描述一個稱為GL4D的 

架構——GL4D能利用,繪圖處理器互動地可視化於四維歐氏空間 

的物件。GL4D是一個四維可視化平台，它包括從數學公式產生 

和處理四維四面體模型的軟體及一個基於四維四面體的成像流 

程。GL4D的成像流程是基於OpenGL的，故此我們可以利用可 

編程績圖硬件的發展來達致於大眾市場, 繪圖硬件上加速四維成像 

至可互動可視化的幀率。 
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Summary of Notations 

Summary of Mathematical Notations 

Notation Description 
R" n dimensional real vector space 
E" n dimensional Euclidean space 

^m—n 爪 dimensional manifold immersed in E打 

Table 1: Summary of mathematical notations 

Summary of notations for Section 3.2.2 

Notation Description 
p A 3-tuple denoting the location of a voxel within the volume data 

X = f [ p ) the (scalar or vector) value of voxel at location p 
V f i f f ) the estimated gradient at location p 
C{x) the color transfer function 
a{x) the opacity transfer function 
C ' i f ) the final color value of voxel at location p ' 
a'{p) the final opacity value of voxel at location p 

\ 

Table 2: Summary of notations in the Direct Volume Rendering section 
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Chapter 1 

Introduction 

While our everyday experience is fundamentally limited by the dimensionality 

of the space we live in, it is still possible to glimpse into the world of higher 

dimensionality by using one of the most important intellectual gift to homo 

sapiens — imagination. 

We interact with three dimensional objects in a three dimensional world: 

three parameters—width, height and thickness—are required to fully specify 

the size of three dimensional objects. Three dimensional objects also have three 

perpendicular directions of movement—forward or backward, left or right, and 

up or down. Is it possible for us to imagine a four dimensional objects in a four 

dimensional world? A four dimensional object wil l have its size specified by 

four parameters and it wil l have four perpendicular directions to travel when 

roaming in its four dimensional world. While it is popular to think of the 

fourth axis being the time axis, this is not necessarily the case. In our research 

we treat all four axes being homogeneous and equal, and together they form 

the basis of an abstract four dimensional world. 

Visualization plays a vital role in helping us to comprehend and imagine 

what a 4D object would appear before 4D human beings. Visualization of 

4D objects, from hand sketches to computer rendering, is the gateway for us 

to stand in the shoes of 4D human beings and see what they see. Previous . 

attempts had been focused on generating plausible images for what 4D objects 

2 



Chapter 1 Introduction 3 

look like in front of 4D human beings, and output from these researches were 

static images or pre-animated animation sequence of 4D objects. 

With the advances and increase in programmability of graphics hardware 

it is now possible to compute and render 4D objects at interactive frame-

rate. These advances encourage us to build an interactive system that would 

allow users to manipulate 4D objects and provide instant feedback. We have 

further developed various advanced and novel 4D rendering and visualization 

techniques on top of the basic 4D rendering pipeline. These new visualization 

techniques will be tremendously useful for exploring and understanding novel 

4D objects. 

1.1 Motivation 

Abstract thinking and imagination led to the development of high dimensional 

mathematics and its subsequent application in physics. We believe that our 

4D visualization system can have both pedagogical and research usages in the 

field of science. Our 4D visualization system can be used in education set-

tings to capture the attention of children and teenagers and keep them more 

interested in science than conventional science education can. Furthermore, 

teenagers can better appreciate 4D objects by manipulating them in our inter-

active visualization system. As modern mathematics and physics are becoming 

increasingly complex and abstract, we hope that, by providing a platform for 

manipulating 4D objects interactively, we can advance our understanding of 

these new theories and make further discoveries from the gained knowledge of 

their geometrical structure. 

Last but not least, it is a human endeavor to go beyond what we know, 

and GL4D fulfills our curiosity by allowing us to look into the abstract world 

of higher dimension in a way we have never tried before. 

And here is where the fun begins. 
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Chapter 2 

Background 

2.1 OpenGL and OpenGL Shading Language 

The OpenGL API [1] was created when the underlying hardware is less pow-

erful and flexible, as a result the rendering pipeline contains fixed stages and 

few configurable options. As graphics hardware becomes increasingly powerful 

and flexible, more options are exposed and made configurable via the OpenGL 

API. Recently, advances in graphics hardware allowed us not only to configure 

the fixed pipeline via predefined options, but to program the pipeline directly. 

This revolutionary transition from a fixed pipeline to a programmable pipeline 

had created a new research area for utilizing GPU for general computing [2 — 

GPGPU (General Purpose Graphics Processing Unit). This new research area 

focuses primarily on harnessing the powerful parallel floating point processing 

power in GPUs to perform scientific computations and run parallel algorithms. 

Graphics pipeline is programmed by shader programs (Figure 2.1). A high 

level programming language based on the C language called OpenQL Shading 

Language (GLSL) is used to write shader programs. The two most basic 

shaders in a modern GPUs are vertex and fragment shader. 

Vertex shader replaces the part in fixed function pipeline between vertex 

data input and primitive assembly (Figure 2.1). I t is responsible for trans- . 

forming vertices by model view and projection matrices. Vertex shader takes 

4 . 
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Figure 2.1: OpenGL 4.0 rendering pipeline [3 • 
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Chapter 2 Background 6 

one vertex as input, performs all necessary transformation computations and 

emits one vertex as output. Vertex shaders are invoked to 'shade' every vertices 

before the vertices are assembled into primitives and rasterized. 

Fragment shader replaces the part in fixed function pipeline between ras-

terization and frame-buffer blending. I t is responsible for calculating the color 

value for each fragment. Fragment shader takes one fragment as input, along 

with any auxiliary data such as interpolated normal vector and material pa-

rameters, computes a color value from shading equation for the fragment and 

emits the color value as output. Fragment shaders are invoked to 'shade' every 

fragment from rasterization stage before they are blended to the frame-buffer. 

A new shader type had to be invented every time a stage of the fixed 

pipeline had made programmable. One such example is geometry shader: ge-

ometry shader replaces the part in fixed function pipeline between primitive 

assembly and rasterization. Although geometry shader, unlike vertex and frag-

ment shaders, introduces a new stage to the pipeline to support operations that 

are not available with the fixed function pipeline: geometry shader can create 

or destroy primitives within the pipeline by taking one primitive as input and 

emits zero or more primitives as output. Geometry shader is invoked to ‘shade， 

every assembled primitives before they are rasterized. 

2.2 4D Visualization 

4D visualization concerns with the problem of visualizing 4D objects, but we 

first need to define the space where 4D objects live in before we can define the 

4D objects themselves. 4D objects live inside four dimensional Euclidean space 

E4. An n-dimensional Euclidean space E^ is defined as a real vector space R" 

with the inner product between vectors x and y being x-y = Ya=o工iVi. This 

inner product definition imposes the Euclidean structure to the real vector 

space. 
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The problem of 3D visualization concerns with rendering 2D surfaces form-

ing the boundary of 3D objects. These 2D surfaces are 2-manifolds immersed 

in 3D Euclidean space (E^). We define 2-manifolds immersed in 3D Euclidean 

space as mappings from E^ to E^, i.e. ： ^ E^. Analogously, 

4D visualization concerns with rendering 3D surfaces forming the boundary 

of 4D objects. These 3D surfaces are 3-manifolds immersed in 4D Euclidean 

space (E4). We define 3-manifolds in 4D Euclidean as mappings from 

to E4, i.e. .股3 — 

In this thesis we will use the notation ； " to denote m-manifolds im-

mersed in n dimensional Euclidean space E". 

2.2.1 3-manifold as Surface for 4D Objects 

One way to imagine what a 3-manifold looks like in E^ is by using the flat-land 

analogy. The flat-land analogy begins with having point-landers living on one 

dimensional surfaces, e.g. a curve. Point-landers can only move back and forth 

along a curve, and their movements have only one degree of freedom. Flat-

landers, as its name implies, live inside a two dimensional surface, and they 

have two degrees of freedom when gliding in the 2D surface. Finally, space-

landers, such as we human beings, live within a three dimensional surface and 

have three degrees of freedom in our movements. 

Assuming that there are another form of super-human in a four dimensional 

Euclidean space E^, and they encounter a 3D human being on the surface 

of a 4D object (say, a hypersphere). Although the 3D human being on the 

hypersphere surface think they have exhausted all degrees of freedom in its 

movements and the surface they are living in comprises the whole world known 

to them, 4D super-human outside the hypersphere has access to an additional 

fourth degree of freedom that is unavailable to the 3D human wandering within 

the confinement of the hypersphere. ‘ 



Chapter 2 Background 8 

2.2.2 Visualizing 4D Objects in Euclidean 3-space 

There are many ways to visualize a 4D object. One of the simplest way is to 

present a sequence of 3D objects and this sequence of 3D objects, when one 

is stacked on top of another along an imaginary axis of the fourth dimension, 

is equivalent to the 4D object in its full glory. I t would be easier to imagine 

this if we start from lower dimensions: a one dimensional line-lander would 

have difficulty imagining how a two dimensional circle looks like in a two 

dimensional space, but it can be told that a two dimensional circle is formed 

by a stack of one-dimensional lines with different lengths; a two-dimensional 

flat-lander would have no idea how a three dimensional sphere looks like in 

a three dimensional space, but it is told that a three dimensional sphere is 

the same as putting a bunch of circles of different radii together; finally a 

three-dimensional space-lander would have no idea how a hypersphere looks 

like in a four dimensional space, but it is told that a hypersphere is actually 

a stack of ordinary spheres with varying radii. Another angle to understand 

this is that the sequence of the objects actually represents the cross sections 

of a higher dimensional object, and we can form the concept of the 4D object 

in question by stacking cross sections of it mentally. While this cross section-

based interpretation of 4D objects is simple enough to understand, it fails 

to provide a holistic view of the whole object at once, making this approach 

inappropriate for visualizing 4D objects under interactive manipulation. 

The second approach for visualizing 4D objects is to simulate the vision 

system of 4D super-human. We again work our analogy from low dimensions 

and extend to high dimension for easier understanding. A two dimensional 

flat-lander has a one dimensional retina that produces one dimensional images 

of the two dimensional flat-land world; a three dimensional space-lander has 

a two dimensional retina that produces two dimensional images of the three 
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Chapter 2 Background 9 | 

dimensional space-land world; finally, by extending the argument, a four di-

mensional hyperspace-lander wil l have a three dimensional retina to see the 

four dimensional hyperspace-land world. This approach of 4D object visual-

ization relies on our ability to simulate and reproduce the retina image that 

our hypothetical 4D super-human sees when living in a hypothetical four di-

mensional world. The biggest drawback of this approach is that while a four 

dimensional hyperspace-lander can directly see every voxel in the three dimen-

sional retina image without difficulties—just like we can see every pixel on a 

two dimensional image at once without one pixel being occluded by another 

pixel—a person living in a three dimensional world couldn't do this as some 

voxels of the retina image occlude other voxels. This problem can be allevi-

ated by allowing space-landers to rotate tune the transparency of the retina 

image. A space-landers can, by manipulating these two controls, reconstruct a 

mental model of the full three dimensional retina image. Such a system needs 

to provide two sets of controls for manipulating the rendering of a 4D object: 

the first set of controls controls the transformation of the 4D object before pro-

jection to the three dimensional retina and the second set of controls controls 

the transformation of 3D retina image before projection onto 2D screen. This 

system of two controls allows users to fully comprehend the three dimensional 

structure of the projected 4D object within the 3D retina. 

The second approach to 4D object rendering is chosen in our research 

because we need a visualization approach that provides a holistic view of 4D 

objects while being manipulated under heavily interactive use cases. 

2.2.3 The 4D Rendering Pipeline 

The main focus in the field of computer graphics had been solving the problem 

of 3D rendering. There are two main schools of thought for 3D rendering: ray 

tracing-based and rasterization-based rendering, but consumer graphics APIs ‘ 
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and hardware accelerator focuses primarily on rasterization-based technique. 

We have chosen to adopt a rasterization-based instead of a ray tracing-based 

4D rendering pipeline and API in order to best leverage consumer graphics 

accelerators that are widely available now. 

The traditional rasterization-based 3D rendering pipeline can be modified 

and extended for rendering 4D objects. The 4D pipeline we are adopting in 

our work is based on previous work by Hanson and Heng. 

The primitive used in 4D rendering pipeline is tetrahedron. To render a 3D 

surface in E^, we first need to discretize the surface to a hexahedral mesh, then 

further decompose the surface into a soup of tetrahedra. This process is similar 

to decomposing a 2D surface in E^ into a soup of triangles in 3D rendering. 

Once we get the tetrahedral mesh of the 4D object ready we can feed them into 

the rendering pipeline. Inside the GPU these tetrahedra wil l be transformed 

by 4D model, view and projection matrices and subsequently rasterized into 

fragments. The fragments wil l then be shaded by the 4D extension of the 

Phong shading equation using 4D light sources and written to a 3D frame-

buffer. The occluded fragments along the w-coordinate, i.e. fourth dimension, 

wil l be filtered by a 3D depth buffer if the 4D object we are rendering is opaque. 

On the other hand proper depth sorting and composition is required if the 4D 

object is transparent. A final volume rendering step is required to present the 

3D frame-buffer on an ordinary 2D display. 

• \ 
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Chapter 3 

Related Work 

We build GL4D upon previous work on volume rendering and 4D visualization. 

In this chapter, we review work that we base upon and draw inspiration from 

when working on GL4D. 

3.1 General Purpose Processing on Graphics 

Processing Units 

General Purpose Processing on Graphics Processing Units (GPGPU) had been 

a hot research area in recent years. The thrust of the research is fueled by the 

possibility of harnessing the large number of parallel floating point computa-

tion units in modern GPUs to perform highly parallel computation. Currently 

there are two categories of APIs to leverage GPU hardware: an older shader-

based rendering pipeline and a newer kernel-based computation model. The 

shader-based rendering pipeline is an evolution of traditional fixed function 

pipeline by making some stages in the fixed pipeline programmable, examples 

include OpenGL GLSL, DirectX HL and NVIDIA Cg. On the other hand the 

kernel-based computation model is a completely new API that allows programs 

running on CPU to submit kernel programs to GPU for parallel computation, 

examples are CUDA and OpenCL. These two APIs serve different purposes: • 

shader-based APIs are more suitable when the output is an rendered image 

11 
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but kernel-based computation APIs are more suitable for computation oriented | 

work. We choose to focus on shader-based APIs in this thesis since our work 

is primarily rendering-based and would benefit most from a rendering oriented 

API. 

Section 3.2.4 contains a review of related work on applying GPGPU to 

accelerate volume rendering algorithms. 

3.2 Volume Rendering 

Volume rendering is a branch of Computer Graphics that concerns with solv-

ing the problem of visualizing volumetric data. Volumetric data are usually 

obtained from sampling taken from real life objects or simulation studies. I t 

is extremely difficult, if not impossible, for human to comprehend raw volume 

data due to their shear size, visualization of volume data, therefore, is neces-

sary to allow human to fully utilize and extract information hidden behind the 

raw data. 

There are two categories of volumetric data - structured and unstructured. 

Structured volumetric data have data points defined on a regular grid. On the 

other hand unstructured volumetric data have data points defined on irregular 

grid. The problem domain and data collection procedure dictate the format 

of the volumetric data: experimental procedures such as medical imaging take 

samples at regular interval in three dimensional space nautrally produce struc-

tured volume data and numerical techniques such as finite element method 

produce unstructured volume data. 

Two categories of rendering strategy are available for visualizing volumetric 

data: indirect volume rendering and direct volume rendering [4]. In indirect 

volume rendering, the volume data is first converted to an implicit surface and 

the implicit surface is then rendered in lieu of the original volume data. In 
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direct volume rendering, as its name implies, renders the volumetric data di-

rectly without an implicit surface acting as a proxy. Indirect volume rendering 

produces a succinct representation of the volume data using implicit surface, 

while direct volume rendering produces a more holistic view of the volume 

data. 

3.2.1 Indirect Volume Rendering 
I 1 

In indirect volume rendering a constant c is first chosen to generate the implicit 

surface from the volume data input. To generate the implicit surface each data j 

point X in the volume data are first classified as 'inside' {x < c) or 'outside' 

(x > c) the implicit surface. An algorithm will then be used to approximate the 

implicit surface by generating a mesh along the boundary between the 'inside' 

and 'outside' data points. The classical algorithm for generating the implicit 

surface is the marching cube algorithm [5]. The marching cube algorithm 

reads the voxels within a structured volume data one-by-one and a patch of 

surface is generated from a case table. The summation of these surface patches 

provides the final geometric model for rendering. A variation of marching 

cube called marching tetrahedra had been devised to circumvent the patent 

around the marching cube algorithm and to enable indirect volume rendering 

on unstructured volume data. 

3.2.2 Direct Volume Rendering on Structured Grid 

In direct volume rendering (DVR) the voxels in volume data are projected 

onto the 2D viewing plane directly. The overall architecture for DVR system 

had not changed much since Levoy's pioneering work [6]. Levoy's proposed 

pipeline for volume rendering is depicted in Figure 3.1. There are three main 

steps in the pipeline after data preparation. The first two steps are shading 

and classification, and the third step is compositing the color and opacity value 
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/ sample colô C(U) / / 。口丨。广丨 

L 1 ^ , 1 
• 

/ Pixel colors C(u) / 

Figure 3.1: The volume rendering pipeline proposed by Levoy [6 . 

for each voxel to pixels in the 2D viewing plane. 

Major Components in DVR 

There are five major components in DVR, they are color and opacity transfer 

functions, gradient estimation, shading and composition. They wi l l be intro-

duced in the following subsections. Section contains a summary of notations 

used in this section, 
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Transfer functions are mappings from voxel values f{p) : R^ M" to 

scalar {n = 1) or vector (n > 1) quantities. There are two common transfer 

functions for volume data: color and opacity. Transfer functions is important 

for volume rendering because they control how volume data are visualized. 

Transfer function by itself is a hot research area in volume rendering as it is 

crucial to the usefulness and quality of the visualization result [7 . 

A color transfer function C{x) : {re : 0 < a: < 1}^ is a mapping from 
I丨 

voxel value f{p) to a 3-tuple representing a color in the RGB color space. This ！ 

function is used to assign color to the otherwise meaningless voxel values. 

An opacity transfer function a{x) : R" {x : 0 < re < 1} is a mapping 

from a voxel value / (p) to a real number between and including 0 and 1. The | 

presence of opacity transfer function allows translucent display of overlapping | 

isosurfaces and to suppress the display of 'unwanted' voxel values by mapping 

these voxel values to 0. If the opacity function maps all voxel values to only 

0 and 1，in this special case the opacity function is equivalent to binary iso-

surfaces classification. Therefore the opacity transfer function can be seen as 

a generalization of classification. 

Gradient es t imat ion is an important component both in Levoy's work and 

other volume rendering systems {e.g., [6, 8, 9, 10, 11]). 

The most popular gradient estimation technique is the central difference 

method and it is also one of the simplest estimation method. Forward and 

backward differences are used in edge cases. 

+ [-1,0,01)+[1,0,0]) 

V / ® = l f { p + [0,-1,0]) - [0,1,0]) 

Rheingans and Ebert [9] had studied various gradient method and they 

found that although there are no systematic difference between the results 
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generated from different gradient estimation method although the results do 

differ. 

In Levoy's work, the estimated gradients are used to modulate the opacity 

value in both the isovalue contour surfaces and the region boundary surfaces 

algorithms. The essence of modulating opacity value by the estimated gradient 

is to enhance the voxels at the boundary of different voxel values {i.e. with 

large gradient) such as the boundary between organ and fat, and suppress the 

voxels within a region of uniform voxel values {i.e. with low gradient) such as 

the interior of an organ. 

Shading and shadowing of volumetric data is similar to that of geometric 

shapes. The Phong's shading equation is commonly used [12]. 

h = laxkaOdX + fattlpx (kdOdx{N . L) + ks{R • v y ) 

The result of the Phong's shading equation h is the intensity of light for a 

voxel at wavelength A, Ia\ is the intensity of ambient light source at wavelength 

A, and Ipx is the intensity of the directional light source at wavelength 入 . O d x is 

the diffuse color of the voxel at wavelength 入 . T h e constants ka, kd and kg are 
—• —# —• 

ambient, diffuse and specular coefficient，and the vectors N, L, R, and ^ are 

the normal vector, light vector, reflection vector and view vector respectively. 

Finally, fatt is the atmospheric attenuation for the light source. 

In the simplest case when fatt = 1, the intensity of the light source will not 

be attenuated by the intervening voxels between the voxel being shaded and 

the light, and shadowing will not occur. Shadowing can be achieved by using a 

non-constant fatt in the shading equation. One example of fatt which permits 

shadowing is fatt = e—广"⑴也[13]. In the equation, s, T, and f i { t ) are the 

voxel being shaded, the light source, and the mass density value respectively. 

The mass density value is determined from a transfer function. 

> 
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Image compos i t ion is the final step of volume rendering for producing a 

rasterized 2D viewing plane on the frame-buffer with the final opacity a'{p} 

and color C'{p) values assigned to all voxels. In the simplest case a ' ® = 

a{f{p)) and C'{p) = C{f{p)) where the results of the transfer functions are 

used directly as the final color and opacity values of the voxel. 

There are three major categories of image composition techniques, image-

order, object-order, hybrid and domain techniques [13]. Image-order tech-

niques start from the 2D viewing plane and calculate the color and opacity 

pixel-by-pixel, one widely used image-based technique is ray casting, which 

was proposed by Levoy [6]. Object-order techniques, on the other hand，work 

from mesh-to-render to the 2D viewing plane by first sorting the cells in the, 

volume and project each occupied cell to the 2D viewing plane one at a time. 

Hybrid method tries to combine the advantages of image- and object-order 

technique, one attempt is the shear warp method developed by Lacroute and 

Levoy [14]. Finally domain based composition method tries to transform the 

volume data from spatial domain to another domains such as frequency, and 

the volume data is then rendered directly from or aided by the transformed 

voxel data. 

Optical mode l is fundamental to image-based techniques such as ray 

casting as it describes how light is accumulated and attenuated when passing 

through the volume. The low-albedo optical model is the simplest optical 

model where light rays entering the volume are assumed to scattered only 

once. The low-albedo optical model can be described by the following integral 

and can be simplified using the following steps [13 . 

\ plength{r) 
h{r) = / CMs)/^ ⑷ e(_/。s"⑷刑 ds 

Jo 

The result of the equation Ix{r) is the intensity of the ray r at wavelength 

A. Cx{s) is the intensity of the color at wavelength A of voxel s. Similar to the 
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volumetric shadowing equation, fi{s) is the mass density value of voxels and 

is the attenuation of light way from the starting point of the ray 

to the voxel being considered by the outer integral. 

The discrete Riemann sum approximation of the above integral is 

L/As-l / i-l \ 

1=0 \ j=0 / 

By assuming that q;(zAs) = 1 - (込石)八〜the above approximation can 

be further simplified as 

L/As-l / i-l \ 

W 和 E C'A(^As)/x(iA5)Asn (1 - ^O'As)) 
i=0 \ j=0 / 

Using Taylor series expansion ^ 1 一 A s ， t h e r e f o r e Q:(iAs) ^ 

IJ,{jAs)As. Substituting the result into the approximation results in 

L/As-l / i - l \ 
/aM^ ^ [ C , { i A s ) a { i A s ) l [ { l - a i j A s ) ) • 

i=0 \ j=0 J 

The above closed form formula can be written as the following recursive 

definition and these are the front-to-back composition formulae used by most 

ray casting algorithms. 

c(0) = 0 

c{i + 1) = C{jAs)(x{iAs) (1 一 a{i)) + c { i ) ' 

a{0) = 0 

a{i + 1) = a{iAs) (1 - a(i)) + a ( i ) 
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3.2.3 Direct Volume Rendering on Unstructured Grid 

Direct volume rendering on unstructured grid requires specialized algorithms 

or adaptation of algorithm that are applicable to structured grid. Some of 

the popular algorithms includes ray casting [15], projected tetrahedra [16, 17], 

scan plane [18] and slicing [19 . 

Two popular tetrahedral mesh rendering algorithms are projected tetrahe-

dra (PT) algorithm proposed by Shirley and Tuchman and rasterization by 

view axis aligned slicing plane. The projected tetrahedra algorithm works by 

transforming the tetrahedra mesh and create two to four semi-transparent tri-

angular proxy primitives for rendering the original tetrahedron. Slicing-based 

volume rendering algorithm, on the other hand, renders the tetrahedral mesh 

by slicing the tetrahedral mesh by slicing plane at regular interval, and the 

images formed by successive slicing planes are composited to form the final 

image. 

3.2.4 Acceleration of DVR 

A lot of research effort had been put into accelerating DVR in various ways. 

These acceleration can be classified into three main categories: algorithmic 

improvements, texture mapping and parallel computation using GPGPU. 

Algorithmic improvements 

DVR algorithms can be improved algorithmically. Starting from adaptive ray 

termination and hierarchical spatial enumeration proposed by Levoy [20], a 

lot of research effort had been put into improving both the speed and reduce 

the memory usage of the volume renderer. This research direction is driven 

by the development of data acquisition hardware in clinical procedures which 

are capable to produce data at a much higher resolution than the data set . 

(> 5123) usually used in research projects [10]. 
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GPU accelerated volume rendering 

GPU accelerated volume rendering provides an alternative means to speed 

up DVR by using modern graphics hardware. There are two approaches to 

accelerate volume rendering using GPU: image-based algorithms such as 3D 

texture mapping and ray casting, and object-based algorithms like projected 

tetrahedra. 

Hardware support of 3D texture mapping had been used by various re-

searchers in volume rendering system because of the fast trilinear interpolation 

implementation provided by GPU. One of the earliest application of 3D texture 

mapping [21] uses the final color C'{p) and opacity value a'{p) of each voxel 

as the RGB A values of the 3D texture, and the 3D texture is then mapped 

onto a series of 2D planes as shown in Figure 3.2. Only the composition stage 

in the volume rendering pipeline is moved to the graphics hardware in this 

application. Later applications of 3D texture mapping tries to offload more 

pipeline stages from CPU to the graphics hardware. Although using 3D tex-

ture mapping can achieve higher frame-rate, rendering quality is sacrificed due 

to the restriction of texture memory in using single precision floating point 

format (32-bit) on common graphics cards [22 . 

Another image-based GPU accelerated volume rendering technique is ray 

casting. Kriiger and Westermann [23] had proposed an implementation of ray 

casting algorithm with optimizations that can run on GPU entirely. An impor-

tant difference between using 3D texture mapping and GPU-based ray casting 

is that optimizations such as adaptive termination and empty space skipping 

can be implemented in GPU-based ray casting to save fragment (pixel) opera-

tions on transparent voxels. GPU-based ray casting algorithm has two stages: 

the first stage determines the entry and exit points of each ray from each pixel 

in the 2D viewing plane, this is accomplished by rendering the volume bound-

ing box (Figure 3.3); the second stage involves a multi-pass rendering that ‘ 
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object space 
sample planes \ 

volume 
boundary 

image space 
sample planes \ ^ W A x ^ 

Figure 3.2: 3D texture mapping technique proposed by Cullip and Neumann 
21]. 
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(0丄 0) 

歡 ’ ” J 

(Urn 
Figure 3.3: Volume bounding box for determining entry and exit point of rays 
casted from viewing plane [23 . 

calculate the color and opacity accumulated for each ray. 

The projected tetrahedra algorithm [16] is a prime example of object-based 

volume rendering technique that can be accelerated by GPU. Projected tetra-

hedra begins with decomposing the input hexahedral mesh into tetrahedral 

mesh. These tetrahedra will be classified into one of the classes outlined in 

Figure 3.4 and subsequently decomposed into triangular strips (Figure 3.5. 

Finally the triangular strips can be rendering to the 2D frame-buffer. 

Wylie et al. [24] had implemented the projected tetrahedra algorithm on 

GPU. They have implemented the tetrahedron classification and decomposi-

tion algorithms on vertex shader and made projected tetrahedra algorithm 

running entirely on GPU. 

3.3 4D Visualization 

Early research on visualization of high-dimensional geometry includes the 

work by Noll [25] and Banchoff [26，27], who exploited 3D computer graph-

ics methods to display 4D objects. Methods exploited in a variety of early 

work [28, 29, 30，31, 32, 33] included wireframe representations, hyperplane 

slicing, color coding, view transformations, projection, and animation. 
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r class la y/^ / class 3a 

… - V + + -。 

yl 
\ ： / class lb / J class 3b 

Y - - - + \J -… 
\ \ / class 2 / I class 4 

\ \ / - - + + X / + - 0 0 

Figure 3.4: Tetrahedra classification [16 . 

Burton et al. [34, 35] and Hanson and Heng [36, 37, 38] proposed various 

frameworks that included lighting models for the visualization of 4D geometries 

and extended the methods of 3D rendering to the fourth dimension. Rendering 

3D objects onto a 2D screen was replaced by projecting 4D geometry into a 

3D frame-buffer volume, and 4D depth buffer to cull occluded fragments in the 

4D-to-3D projection. Hanson and Heng also proposed a thickening mechanism 

to support converting 2-manifolds immersed in 4 dimensional Euclidean space 

E4 to renderable 3-manifolds. The resulting volume frame-buffer calls for 3D 

volume rendering methods to expose the internal structure of the projected 

4D geometry. Transparent 4D objects rendering and, hence, alpha blending 

along the 4D projection direction had not been studied in previous work. An 

alternative volume rendering to expose geometric structure after 4D-to-3D 

projection was suggested by Banks [39] , who employed principal curves on 

surfaces, transparency, and screen-door effects to highlight intersections in the 

projected geometry; in addition, Banks [40] proposed a general mechanism to 

compute diffuse and specular reflection of a fc-manifold embedded in n-space. 
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Tetrahedron Projection Triangle Decomposition 

classes la & lb 3 triangles 

class 2 4 triangles 

刹€ 
classes 3a & 3b 2 triangles 

Z / 」 
class 4 1 triangle 

Figure 3.5: Tetrahedra decomposition [16 . 



Chapter 3 Related Work 25 

Hanson and Cross [41, 42] developed techniques implementing 4D rendering 

with the Shirley-Tuchman volume method [16]. assuming that the objects 

in 4D are static and occlusion-free in the 3D frame-buffer. Such methods 

cannot provide real-time occlusion computation and have limited interactivity 

compared to our approach. 

Previous researches closely related to our work include Feiner and Besh-

ers’ [43] 'worlds within worlds' interface system to manipulate and explore 

high-dimensional data space via nested coordinate systems. Another related 

system developed by Miller and Gavosto [44]; used sampling methods to ren-

der and visualize 4D slices of n-dimensional data such as fractals and. satellite 

orbits. DufRn and Barrett [45] proposed a user interface design to carry out 

n-dimensional rotation. Hanson [46] generalized the 3D rolling ball control [47 

to manipulate the six degrees of freedom of 4D rotations. Among other in-

teresting contributions to the field are those of Egli et al. [48], who proposed 

a moving coordinate frame mechanism to generalize the sweeping method for 

representing high-dimensional data, the work of Bhaniramka et al. [49], who 

explored isosurfacing in high-dimensional data by a marching-cube-like algo-

rithm for hypercubes, and that of Neophytou and Mueller [50], who investi-

gated the use of splatting to display 4D datasets such as time-varying 3D data. 

Recently, Hanson and Zhang [51] proposed a multimodal user interface design 

that integrates visual representation and haptic interaction, allowing users to 

simultaneously see and touch 4D objects; this approach was then extended [52 

to exploit the idea of a reduced-dimension shadow space to directly manipulate 

higher-dimensional geometries. 
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GL4D: Hardware Accelerated 

Interactive 4D Visualization 

GL4D is a platform for hardware accelerated 4D visualization. The core of 

GL4D is a GPU-friendly implementation of a 4D rendering pipeline designed 

to be accelerated by modern graphics processor. GL4D is able to visualize 

4D objects at interactive speed with high quality rendering. While GL4D is 

based on previous work on 4D visualization and volume rendering, it is not 

a simple and trivial translation of the basic 4D rendering pipeline to GPU, 

a combination of algorithmic simplification and implementation optimizations 

had been employed to build the 4D rendering engine on top of a GPU originally 

designed for rendering 3D surface models. 

GL4D consists of two major components: a preprocessing component for 

generating tetrahedral mesh from parametric equations on CPU and a core 

rendering pipeline for rendering tetrahedral mesh on GPU. Both the prepro-

cessing component and the core rendering pipeline wil l be discussed in details 

in the following sections. Figure 4.1 provides a schematic overview of GL4D. 

26 
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4.1 Preprocessing: From Equations to Tetra-

hedral Mesh 

Akin to a traditional 3D rendering pipeline that uses triangles (2-simplex) as 

primitive, the GL4D rendering pipeline uses tetrahedra (3-simplex) as primi-

tive. Therefore 3-manifolds specified in parametric equations have to be dis-

cretized to tetrahedral meshes before it can be rendered by the rendering 

pipeline. 

A 3-manifold u, v) e {M^ E^} is specified by a set of parametric 

equations and M l - ' ^ t . u . v). The 

generation of the tetrahedral mesh for 3-manifold requires two sets of para-

metric equation: the positional parametric equations given above and the set 

of parametric equations for normals A^nwmazC^'^'^) ^ -> E^}-

These two sets of parametric equations are sampled at regular interval in 

the parametric space to create a hexahedral mesh, and the hexahedral mesh are 

further decomposed into a tetrahedral mesh via 5- or 6-tetrahedral decomposi-

tion algorithm (Figure 4.2). The major differences between the two algorithms 

are the number of tetrahedra output and whether the decomposition line of 

the opposite face matches. While 5-tetrahedra decomposition produces less 

tetrahedra output, adjacent hexahedra needs to be decomposed in opposite 

orientation to make the decomposition line matches for adjacent hexahedra. 

This limits the number of hexahedra decomposed along each parameter to be 

even-numbered if the 3-manifold is closed to make the decomposition line of 

the first and last hexadedra match. Both 5- and 6-tetrahedra decomposition 

are supported by GL4D but 5-tetrahedra decomposition is used by default to 

keep the size of tetrahedra mesh small whenever possible. 

Section 5.1 gives the parametric equations for the surfaces that can be 

rendered with GL4D. , 
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J F^^^;：：：^^^ 
••/ /six-tetrahedron ^ ^ ^ V 

/ decomposition L / 
five-tetrahedron \ 
decomposition，， ^ / 

Figure 4.2: Two possible ways of decomposing a hexahedral cell into tetrahe-
dra: 6-tetrahedra (top) and 5-tetrahedra (bottom). 

4.2 Core Rendering Pipeline: OpenGL for 4D 

Rendering 

While OpenGL is primarily an API for rendering 3D graphics, most of its 

internal data path handles 4-vectors and 4 x 4 matrices—with the notable 

exception of normal vectors—due to its use of homogeneous coordinate system 

for translation and perspective projection in 3D space. Recent development 

in OpenGL introduces programmable shaders that allow customization and 

augmentation to the otherwise hardwired OpenGL rendering pipeline. The 

combination of 4-vector data path and programmable shaaders in OpenGL 

opens the door for GL4D to utilize and extend OpenGL for 4D rendering. 

GL4D utilizes vertex, geometry and fragment shaders to implement the 4D 

rendering pipeline. The vertex shader applies transformation and perspective 

calculation to the 4D vertices of tetrahedra and suppresses perspective divi-

sion in fixed function pipeline, the geometry shader [53] slices the tetrahedra ‘ 
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to rasterize the tetrahedra into voxels and the fragment shader computes the 

Phong shading equation from 4D light sources to shade the voxels. One com-

plete rendering pass through all shaders, vertex, geometry, and fragment, are 

needed to render one slice of volume frame-buffer. 

The GL4D core rendering pipeline implemented in GL4D is separated into 

several stages: vertex data upload, slice-based multi-pass tetrahedral mesh ren-

dering and a back-to-front composition to form the final image. The following 

sections will introduce and describe these stages. 

In GL4D the process of rendering to a 3D frame-buffer is implemented by 

multi-pass rendering, with a different slicing plane defined for each pass. A 

slicing plane is an axis-aligned plane along the z-axis after projection from 4D 

to 3D and corresponds to a slice of voxels within the 3D frame-buffer. 

4.2.1 Vertex Data Upload 

The tetrahedral mesh for the 3-manifold generated in the preprocessing step 

is uploaded entirely to the GPU memory to eliminate the need to upload ver-

tex data for each rendering pass. The vertex data are stored in vertex buffer 

object (VBO) to allow more efficient storage using GL_ELEMENT_ARRAY_BUFFER. 

GL_ELEMENT_ARRAY_BUFFER adds an additional level of indirection when draw-

ing primitives from VBO: GL_ELEMENT_ARRAY_BUFFER stores indices which in-

directly refers to vertex data stored in other vertex arrays. This level of indi-

rection allows vertex data to be shared among multiple primitives. 

4.2.2 Slice-based Multi-pass Tetrahedral Mesh Render-

ing 

GL4D features a slice-based algorithm for tetrahedral mesh rendering: n ren-

dering passes are needed to render n slices within the 3D frame-buffer volume 
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and the complete OpenGL vertex-geometry-fragment shader pipeline is in-

voked for each pass. The division of work among the shaders will be described 

in the coming sections. 

Choice of Volume Rendering Algorithm for Tetrahedral Mesh 

While the basic 4D rendering pipeline leverages a 3D frame-buffer [37] for 

efficient texture-based volume rendering，OpenGL supports rendering to a 

3D texture a-slice-at-a-time only. This limitation is the biggest challenge in 

implementing the core rendering pipeline in OpenGL and we have considered 

two strategies for solving this problem. .. 

The first strategy is to treat the tetrahedral mesh after projection to 3D 

view space as unstructured grid and perform direct rendering on the projected 

unstructured tetrahedral grid directly using algorithm such as Shirley and 

Tuchman's Projected Tetrahedra [16]. The biggest advantage of this strategy 

is low algorithmic complexity as the 3D frame-buffer is eliminated and the pro-

jected tetrahedral mesh is volume rendered directly onto the 2D screen. While 

rendering unstructured tetrahedral grid to screen in one pass is a very attrac-

tive solution, Projected Tetrahedra assumes the whole tetrahedron contributes 

to the final image without any occlusion. While this assumption is valid for 

volume rendering standard 3D tetrahedral mesh dataset, GL4D requires a 3D 

depth buffer in place to perform depth buffering in 4D space properly. Dif-

ficulties in generating the 3D depth buffer and maintaining the whole depth 

buffer in graphics memory make the choice of rendering the projected tetra-

hedral mesh directly onto the screen in one single pass an implausible choice 

for GL4D. 

The second strategy is to use slice-based algorithm to volume render the 

tetrahedral mesh. While slice-based algorithm requires multiple rendering 

passes to generate one frame, incurring high performance penalty, the slice- . 

based nature of the algorithm allows us to maintain the depth buffer for the 
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current slice only and, more importantly, makes it possible to utilize hardware-

based z-buffer for efficient 4D depth testing. 

Therefore the GL4D core rendering pipeline is evolved from slice-based 

rendering algorithm that, we believe, strikes a good balance between rendering 

speed and memory consumption. 

Vertex Shader 

The vertex shader is responsible for transforming the input 4D vertices to 

normalized device space within the 3D frame-buffer and 4D normals to 4D eye 

space. The transformed vertex coordinates in 3D normalized device space, the 

transformed normal in 4D eye space, and the w-coordinate of the vertex in 

eye space are attached to the vertex output and sent to subsequent shaders for 

the purpose of rasterization, 4D lighting calculation, and occluded fragment 

removal respectively. 

The calculation in vertex shader includes 4D model view transformation 

and 4D perspective projection. Since GL4D have exhausted all four com-

ponents of the 3D homogeneous coordinates to specify a true 4D coordinate 

space, GL4D needs to perform explicit perspective calculation instead of us-

ing perspective division from homogeneous coordinate system. Two sets of 

transformations transform the 4D vertex input: the first transformation is 

for manipulating the object in 4D space and the second transformation is for 

rotating the 3D frame-buffer volume. 

The following equations describe the first set of transformation with vertex 

Pin4D, normal nin4D and model view matrix MModeiView4D-

P0ut4D = MModelView4Dfin4D 

^Out4D = ^ModeWiewAD^ln^^ 

The above equation can be extended to incorporate 4D perspective trans- . 

formation with an axis-aligned near plane ai w = near^； and vanishing point 
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Object space Eye space 3D NDC space 
/ \,.>Each 

Position in 4D t z j ) Position in 4D j z z j ) Position in 3D 

Tetrahedron input Normals in 4D 1 ^ Normals in 4D 
in object space | l '1 ^ …“ 

4D Modelview 4D to 3D Projection 

Figure 4.3: 4D transformations in vertex shader. 

at (0,0,0, vanishing^,). 

vanishing^ - near^ 氏 ’ 

~ = vanishing, - (MModelView4DP0 

The second set of transformation follows after projection of the 4D vector 

Pout4D to 3D by discarding the w-coordinate and becomes 药n3D. The model 

view projection matrix MModeiviewProjSD is used to transform the projected 

vector pinSD-

S n 3 D = Projxy^(POut4D) 

- _ MModelViewProj3DSn3D 
R)ut3D = 7；^ r -

UvlModelViewProj3DPln3D ) w 

Pout3D is finally translated by amount (0，0，-ZsUce) for slicing plane >2 = 

Zsiice and the original depth value pout4Du； is piggy-backed to the ly-coordinate 

of the output vector pout to support hardware 4D depth testing. 

POut = ((POutSD — (0, 0, Zsiice))xyz ,POut4Dtz;) 

GL4D does not currently support translation in 4D, but it would be trivial 

to achieve this using an extra shader variable for the 4D translation vector. 

Figure 4.3 summarizes the transformation calculations done by vertex shader 

in GL4D. 

Geometry Shader 

The need of depth testing the fragments in GL4D ruled out the possibility to 

reuse existing algorithms for tetrahedra rasterization. Therefore we have de-

vised a novel geometry shader-based tetrahedra slicing algorithm that supports . 

efficiently depth test each fragment for tetrahedra in tetrahedral mesh. 
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(Above the ^ _ (Above the 
paper) p 。 p a p e r ) p 。 

Pi P2P3 一 clockwise order p! PjPg - anti-clockwise order 

Figure 4.4: Two possible vertex ordering in a tetrahedron, po is above the 
paper and pi, p2 and ps are on the paper. 

The geometry shader [53] receives transformed vertices of one tetrahedron 

from vertex shader, performs back-tetrahedra culling, and calculates the inter-

section between the input tetrahedron and the axis-aligned plane at the speci-

fied w-coordinate. There are three types of intersection between a plane and a 

tetrahedron: no intersections, a triangle, or a quadrilateral. The input to the 

geometry shader is one tetrahedron specified by a 4-vertex geometry-shader-

specific primitive GL_LINES_ADJACENCYJEXT. The output of geometry shader is 

one triangle strips specifying the intersection between the input tetrahedron 

and the slicing plane. The collective sum of these triangle strip outputs forms 

the cross section between the entire tetrahedral mesh and the slicing plane. 

Back-tetrahedra culling is used in GL4D to eliminate back-facing or de-

generated tetrahedra from the rendering pipeline and avoid them from partici-

pating in subsequent pipeline stages as they do not contribute to the rendered 

image. Similar to back-face culling in traditional 3D rendering, back-facing 

culling in GL4D requires the vertices of tetrahedra in the tetrahedral mesh to 

be specified in a consistent order. The four vertices (po,Pi,P2,P3) of a tetrahe-

dron can be specified either in clockwise or anti-clockwise order, depending on 

the spatial ordering of pi , p2 and pz when observed from po. Figure 4.4 illus-

trates the two possible (clockwise and anti-clockwise) vertex orderings when 

specifying a tetrahedron. 
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GL4D distinguishes front- and back-facing tetrahedra by calculating the 

face normal of a tetrahedron: 

Vlx V2x V3x X 

Face normal of a tetrahedron = ^̂  ^̂  ^̂  ^ 
Viz V2z Z 

Vlw V2w VZw W 

where vi = {vix,viy,viz,vuv) = Pi - Po, with i = 1, 2, and 3, are the 

three vectors forming the edges of tetrahedron tetrahedron from the vertex po. 

Furthermore, since back-face culling requires only the sign of the ly-coordinate 

in the face normal, we can simplify the computation to: 

Vix V2x Vsx 

w—coordinate of the face normal = viy V2y v^y 

l^lz V2z Vzw 

=Vixyz • {V2xyz X V^xyz)-

The final equation is the signed volume of tetrahedron, and GL4D treats 

tetrahedra with negative signed volume as back-facing. Furthermore, tetrahe-

dra with zero signed volume is degenerated and should also be culled. 

Slice-based tetrahedra rasterization rasterizes the tetrahedra! mesh slice-

by-slice by calculating the intersection between a slicing plane and the tetra-

hedra (Figure 4.5) in the mesh using Marching Tetrahedron algorithm [54] in 

geometry shader. 

Geometry shader can assume the slicing plane is always located at 2； = 0 as 

the vertex output po^t from vertex shader is already translated by the amount 

(0’ 0，-Zsiice) for slicing plane z = ZsUce. 

The geometry shader first calculates a sign vector {̂ ign for the tetrahedron 

input {po,Pi,P2,P3) by filtering 2;-coordinate of each vertex through the sign . 
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- .̂.̂ ^Slicing plane L.__^SIicing plane 

Figure 4.5: Two possible intersection between a tetrahedron and a plane: a 
triangle or a quadrilateral 

operator. The sign operator is defined as sign(x) = 0 if x < 0 and sign (a;) = 1 

if a; > 0. 

^sign = {sign{poz), sign{pi^), sign{p2z), sign{psz)) 

There are possible sign vectors and it is used to lookup which edges of 

a tetrahedron intersects with slicing plane z = 0 from a lookup table stored in 

an integer texture (Table 4.1). 

Finally the geometry shader outputs 3 or 4 vertices with vectors for position 

and normal linearly interpolated along the edges specified by the lookup table. 

The output vertices form a triangle strip (GL_TRIANGLE_STRIP) and represents 

the intersection between the slicing plane z = 0 and the tetrahedron. 

Hardware Accelerated 4D Depth Testing 

GL4D utilizes OpenGL hardware depth buffer to cull occluded fragments along 

the fourth dimension. Enabling 4D depth testing can significantly improve 

rendering performance by reducing fragment shader executions. 

The 2:-coordinate of the output vertices from geometry shader is guaran-

teed to be 0 since these 

vertices must lie on the slicing plane z = 0. This 

observation allows us to overwrite the ； -̂coordinate of the vertex output by 
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sign vector (î sign) set of tetrahedron edges intersecting plane z = ZsUce 
- - - - 0 

+ 
- - + - {(̂，̂)，（Vl，?̂2)，fe,̂ 2̂)} 
一 - + + {(?；0,'^2), {V1,V2), (Vo.Vs), 
- + - - {(幻0,"̂1)，(幻2,̂；1)，(?；3，？；1)} 

-+ — + {K, ̂ l̂), V3), (V2, Vl), (V2, V3)} 
-+ + - {(Vo, Vl), (Vo, V2), (Vi, V3), (V2, V3)} 
- + + + 

+ {(孙，&,(̂ )̂，?̂ 2),(卯，?；3)} 

+ - - + { (Vo, ), (Vo, ^2), (t；!, ?；3), (?；2, ) } 

+ 一 + - Vl), (Vo, V3), (V2, Vl), (V2, ?；3)} 
+ 一 + + {(̂ 0̂，外)，(仍，̂ 1̂)，(仍，"̂ 1)} 

+ + - + {(iJ0,V2):(VI,V2),(V2,V2)} • 
+ + + — {(鄉,仍)，（̂ 1̂,仍)，（仍，̂ 3̂)} + + + + 0 
Table 4.1: Lookup table for acclerating marching tetrahedra 

the w-coordinate from the original transformed 4D vertex pout4D before pro-

jection to 3D. This is made possible by having the vertex shader piggy backing 

Pout4Du； to its output vout and overwriting >2:-coordinate of the vertex output 

from geometry shader by pout4D«；-

Fragment Shader 

Fragment shader in GL4D is responsible for calculating color and opacity val-

ues for each voxel in 3D frame-buffer volume. The fragment shader employs 

per-voxel Phong shading extended to four dimensional light source to obtain 

maximum rendering quality. The following equation formally presents the 

Phong's shading equation for calculating the shading value of a fragment at 

position p wi th normalized normal N . The ambient constant is ia, and there 

are n point light sources wi th each light characterized by position vector I 

plus diffuse and specular constants id and is. The constants ka, kd, ks and n^ 
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are global factor for ambient, diffuse, specular and specular exponent respec-

tively. We further need to compute the unit vectors Li = normalize (/J - p) 

and Ri = normalize(2(Li. N)N - Li) for each light source I. Finally we take 
A 

V = (0，0,0，1) since GL4D assumes a constant viewing vector. 

I = kJa + ^ (kdid max • -h ksis max ( ( 总 . ， 0 ) ) 
lights 

The above shading equation is good for rendering single-sided surface. The 

two max operators will be replaced by abs operators when the surface-to-render 

is two-sided. 

4.2.3 Back-to-front Composition 

While conceptually we volume render the whole 3D frame-buffer after com-

pleting all rendering passes of the multi-slice tetrahedral mesh rasterization 

algorithm, this 3D frame-buffer does not actually exist in GL4D. In GL4D the 

3D frame-buffer are rendered and composited in back-to-front order on-the-fly: 

the furthest slice is rendered and composited to the output and subsequent 

slices are blended to the output using ordinary alpha blending equation right 

after they are rendered. The need to maintain the whole 3D frame-buffer 

texture in graphics memory is therefore eliminated. 

4.3 Advanced Visualization Features in GL4D 

Building upon the basic 4D rendering pipeline, GL4D supports several ad-

vanced rendering techniques. This section describes these advanced rendering 

options made possible by GL4D, and how these options enable better appre-

ciation of 3-manifold in 4D space. 
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4.3.1 Stereoscopic Rendering 

Unlike ordinary 3D rendering, the voxels in the 3D frame-buffer does not cast 

shadow upon itself. This made interpreting the intricate 3-manifold projection 

in the 3D frame-buffer more difficult than usual as the depth cues such as light-

shadow contrast we have accustomed to are unavailable. One way to overcome 

this limitation is by using stereoscopic rendering to provide 3D information via 

binocular vision instead of traditional light-shadow depth cues. GL4D supports 

stereoscopic rendering of the 3D frame-buffer at the expense of executing at 

half the normal frame-rate. 

Stereoscopic rendering in GL4D is accomplished by rendering the 3D frame-

buffer twice, one for left eye and the other for right eye, with two slightly 

different asymmetric frustum projection for projecting the voxels in 3D frame-

buffer to 2D screen. The asymmetric frustum algorithm adopted by GL4D is 

adapted from description by Paul Bourke [55]: 

A l g o r i t h m 1; glFrustum setup for the image for left eye. 
1 ScreenHalf 卜 0.5 * ScreenWidth * FrustumFar / FrustumNear ； 

2 glFrustum( 
/ / Left 

3 -(ScreenHalf - Halflod) * FrustumNear / FrustumFar, 
II Right 

4 +(ScreenHalf + Halflod) * FrustumNear / FrustumFar, 
II Bottom 

5 - (0 .5 * Screen Height), 
II Top 

6 0.5 * ScreenHeight, 
7 FrustumNear, FrustumFar 
8 )； 

9 glTranslatedC-Halflod, 0，0); 

Algorithms 1 and 2 show how glFrustum is setup differently for left and 

right eyes in GL4D to allow stereoscopic rendering. The constants ScreenWidth 

and Screen Height are the size of the screen; FrustumNear and FrustumFar are , 

the ^-coordinate of the near and far plane along the z-axis; and Halflod is 
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Algor i thm 2; glFrustum setup for the image for right eye. 
1 ScreenHalf f - 0.5 * ScreenWidth * FrustumFar / FrustumNear ； 

2 glFrustum( 
II Left 

3 -(ScreenHalf + Halflod) * FrustumNear / FrustumFar， 

II Right 
4 +(ScreenHalf - Halflod) * FrustumNear / FrustumFar, 

II Bottom 
5 -(0.5 * Screen Height), 

/ / Top 
6 0.5 * ScreenHeight； 

7 FrustumNear, FrustumFar 
8 )； 

9 glTranslatedC+Halflod, 0，0); 

half of interocular distance—the greater the interocular distance the more the 

stereoscopic polarity between the images for left and right eyes. 

4.3.2 False Intersection Detection 

Similar to a 3D object without self intersections itself can produce 2D pro-

jection with self intersections, a 4D object without self intersection can also 

produce projection with self intersections when projected to 3D frame-buffer. 

GL4D has the ability to detect these false intersections using the min-max 

depth buffer technique [56] and display these self intersections to users. 

False intersection detection works by rendering each slice in the 3D frame-

buffer two times: the first pass produces a min-max depth buffer for the slice 

2 = Zsiice and the second pass renders the object normally. 

A min-max depth buffer records the minimum and maximum depth value 

of all fragments frag^ = {x,y, ZsHcê Wi) arriving at the same pixel {x,y) of the 

min-max depth texture, i.e. 

MinDepthoOr，y) = min ({w;̂  : Vfrag^ = (x, y, ZsHce,切i)}) 

MaxDeptho{x,y) = ma.x {{wi : Vfrag^ = {x,y,Zsiice,Wi)}). 
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• • 

• • 
Figure 4.6: Steiner surface in divergent stereoscopic rendering. 
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This min-max depth buffer is computed using the GL_MAX blending equa-

tion and writing (frag、ŷ ，— fragi’„^，0,0) as the output color value from frag-

ment shader for fragment frag^. This process creates a 2D texture with pixels 

recording the maximum and minimum depth value for fragments arriving at 

each pixel. The minimum and maximum depth value differs only when more 

than one fragment with different depth value had accumulated to the same 

voxel, i.e. MinDeptho(x,2/) + MaxDeptho(a;,?/). In such case the voxel in 3D 

frame-buffer at (x, y) is deemed a false intersection and can be rendered with 

special color in the second normal rendering pass. 

4.3.3 Transparent 4D Objects Rendering 

While the volume rendered image of the projected 3-manifold shows some 

degree of transparency, the 4D object being rendered is actually opaque. The 

transparency is added artificially in the volume rendering step to allow better 

understanding of the intricate structure inside the 3D frame-buffer. On the 

other hand GL4D also supports rendering a transparent 4D object by adapting 

and extending the dual depth peeling algorithm [56] to 4D rendering. 

The basic 4D rendering pipeline assumes the opaque 3-manifolds, therefore 

4D depth testing is done along the fourth dimension to eliminate occluded 

fragments. To support rendering transparent 4D object we first need to disable 

4D depth testing and then sort the fragments compositing on the same voxel 

in back-to-front order in order to composite them correctly. Consider the 

scenario where orthographic projection is used to project n fragments fragg = 

{x,y,z,wo), fragi = {x,y,z,wi), ..., frag„_i = (x,y,z,Wn-i) with Wq < wi < 

...< Wn-i, to the same voxel (x, y, z) in the 3D frame-buffer volume. For 

opaque 4D object all but the nearest fragment /。= {x, y, z, Wq) is discarded 

and only the nearest fragment can be written to the voxel {x,y,z) in the 

frame-buffer volume. On the contrary when rendering transparent 4D object . 
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all fragments frag^ = (x, ？/, z, Wi) have to be composited to the voxel {x, y, z). 

GL4D supports rendering transparent 4D objects by performing 4D depth 

peeling algorithm on every slice in the 3D frame-buffer volume. To render a 

slice qX, z — Zsiice GL4D first needs to obtain an initial min-max depth buffer. 

Recall that a min-max depth buffer records the minimum and maximum depth 

value of all fragments arriving at the same pixel, and this initial min-max depth 

buffer is the same as the one used in false intersection detection in Section 4.3.2. 

After the initial min-max depth buffer is created GL4D proceeds to com-

posite fragments arriving to the slice 2； = ZsUce in the volume frame-buffer 

using multiple rendering passes. In the rendering pass the min-max depth 

buffer for the next pass storing the next minimum and maximum depth values 

is computed, i.e. 

MinDepthi(a:,2/) = min ({？: Vfrag^ = ix,y,Zsiice,w) Aw> MinDepthi_i(x, ?/)}) 

MaxDepthiOc，y) = max ({？i； : Vfrag^ = {x, y, ZsUce, w) Aw < MaxDepthi_i(a;, y)}). 

At the same time fragments bearing the same depth value as the minimum 

or the maximum depth value in the min-max depth buffer (MinDepth“ i ’ MaxDepth^.i) 

is rendered and composited with fragments from previous passes. The GL_MAX 

blending equation is used for min-max depth buffer generation and front-to-

back composition and the conventional GL_SRC_ALPHA and GL_ONE_MINUS_SRC-ALPHA 

is used for back-to-front composition. . 

The front-to-back composition equation is the same as the one used in [56 . 

The color Q and alpha Ai values are associated with the fragment (x, ？/, z^nce, Wi), 

ie . Co, •. .，Cn-i and A。，.. .，̂n-i are ordered in front-to-back order. C- and 

X 
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in the equation represents the state of the composition buffer after com-

positing color {Ci,Ai). 

Cli = 0 
= 1 

成 = ( 1 -

Furthermore, since we are using GL_MAX blending we need to make and 

monotonically increasing for increasing i. This is achieved by tweaking the 

above equations to write I - A[ instead of A[ to the composition buffer. 

C'U = 0 
= 0 

The pseudo-code in Algorithm 3 summarizes the 4D dual depth peeling 

algorithm for rendering one slice in the volume frame-buffer. 

4.3.4 Optimization 

Various optimization techniques have been employed in GL4D to achieve inter-

active frame-rate without sacrificing rendering quality. This section describes 

a novel GPU-assisted hexahedral culling that dramatic reduces the number 

of tetrahedra being processed for each rendering pass by removing tetrahedra 

that have no intersection with the slicing plane. 

GPU-assisted Hexahedral Culling 

Each slice of the 3D frame-buffer is to be rendered and composited indepen- . 

dently to produce the volume rendered image of the 3D frame-buffer. In other 
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A l g o r i t h m 3: The 4D dual depth peeling algorithm. 
1 Texture MinMaxDepthTexture [2]; 
2 Texture FrontTexture [2]; 
3 Texture BackTexture; 
4 Texture OutputTexture; 

5 Create and initialize textures MinMaxDepthTexture, FrontTexture, 
BackTexture and OutputTexture ； 

6 Initialize MinMaxDepthTexture [0] to store the minimum and maximum 
depth value for each pixel in the slice.、 •‘ 

7 for i 0 to MAX_DUAL_DEPTH_PEELING_ITERATI0NS-1 do 

8 Clear BackTexture ； 

9 glBlendEquatioii(GLJlAX)； 

10 Shader Program 1 

11 Write the next set of min-max depth value for next iteration to 
MinMaxDepthTexture [(z + 1) % 2 ] ; 

12 Accumulate fragments from front-to-back by compositing 
fragments having the same depth value as the minimum depth 
value in MinMaxDepthTexture [i % 2] with fragment in 
FrontTexture [i % 2] using the front-to-back blending equations ； 

13 Write the composited result for front-to-back composition to 
FrontTexture [(z + 1) % 2]； 

14 Write fragments having the same depth value as the maximum 
depth value in MinMaxDepthTexture [i % 2] to BackTexture ； 

15 glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)； 

16 Shader Program 2 

17 Composite the BackTexture to OutputTexture.; 
18 Empty fragments in BackTexture is discarded to allow occlusion 

query to terminate the dual depth peeling loop when there is 
_ nothing more to peel ； 

19 Shader Program 3 

20 Composite FrontTexture to OutputTexture ； 
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words the 3-manifold have to be rendered repeatedly for each slice in a naive 

implementation of the 4D rendering pipeline. Based on the observation that 

not all tetrahedra in the 3-manifold participate in the rendering process of 

one slice—only tetrahedra which intersect with the slicing plane do. We have 

employed an algorithm to cull these out-of-slice tetrahedra by dividing the 3-

manifold into multiple patches and calculate a bounding hypercube for each 

patch. With the assistance of GPU these bounding hypercubes will be used to 

cull patches of tetrahedra mesh that do not intersect with the slicing plane. 

The 3-manifold model is first preprocessed by separating it into multiple 

surface patches along the parametric space at regular interval For each patch a 

bounding hypercube is calculated to bound the whole surface patch in E^. This 

process is akin to breaking up a 2-manifold in into patches and calculate 

a bounding cube to bound each of these patches. The following equation 

formalizes this operation with a given surface patch P in an n-dimensional 

space, i.e. _P e W, and the two extrema for the bounding hypercube 

B = {{min{jp:,),min{py)), {max{p:,),max{py))) \/peP e 

The two extrema can be used to calculate the vertices of the bounding 

hypercube. A bounding hypercube in E" has vertices. Algorithm 4 can be 

used to generate all vertices for the bounding hypercube in E" and store them 

in GPU memory as vertex buffer objects. 

A l g o r i t h m 4; Generation of all vertices for a bounding hypercube in E" 
1 Vertex Hull [2]; 一 ‘ 
2 Hull [0] = first extremum; 
3 Hull [1] = second extremum; 
4 for z ^ 0 to - 1 do 
5 Vertex v; 
6 for j 0 t o n - 1 do 
7 |_ v\j] — Hull[(z k (1 « j)) > 0][i]; 
8 _ Store V to a vertex buffer object., • 
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In GL4D 16 vertices are used to specify the bounding hypercube of a sur-

face patch. Before rendering a frame the nearest and furthest depth values 

are computed for each bounding hypercube under the 4D transformation. The 

min-max depth buffer algorithm had been modified to calculate the nearest and 

furthest depth value for the bounding hypercubes: The 16 vertices of a bound-

ing hypercube are transformed by vertex shader and are written to the same 

fragment location with the color value {-z, z, 0,0), 2； being the j2;-coordinate of 

a hypercube vertex after 4D transformation, with GL_MAX blending equation. 

The above procedure allows us to compute the minimum and ma:ximum depth 

value for each bounding hypercube efficiently using GPU. Memory usage of 

the target texture is further reduced by packing the minimum and maximum 

depth value of two bounding hypercube into one pixel, red and green channel 

for one hypercube and blue and alpha channel for another, this technique ef-

fectively halves the memory usage and allows us to optimize the speed when 

reading back from the texture by CPU. 
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Results 

5.1 Data Sets 

We have developed a series of data sets to work with the GL4D rendering 

platform. These data sets fall into two categories: 3- and 2-manifolds. These 

3- and 2-manifolds are defined in E^, i.e. 4 and 4 respectively, but 

they differ in the number of degree of freedom on the surface. GL4D only 

supports rendering Al^"^^ as only are capable of interacting with 4D 

light sources. A thickening operation can be used to upgrade «M2~>4【〇 

as a preprocessing step to render M ^ ^ ^ in GL4D. 

We take analogies from 3-dimensional space to illustrate this. There are 

two types of surfaces with different dimension in three-dimensional Euclidean 

space E3: 2-manifolds (two dimensional surfaces, M ^ ^ ^ ) and 1-manifolds (one 

dimensional lines, M^^^ ) . 2-manifolds in E^ are capable of interacting 

with 3D light sources, while l-manifolds in E^ do not as normal vectors 

are not defined for a line in E^. 

While 1-manifolds do not have normal vectors we can still to define 

a normal plane for each point t on M^-'^it). The normal plane at is 

perpendicular to the tangent vector 必 f (力)at I f we attach circles 

(1-sphere, S^) with a fixed radius r to each point on the 1-manifold . 

then the 1 dimensional line wil l be thickened to a tube with 2 dimensional 

48 
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surface. The thickening process is essentially forming topological product 

3 = 3 X 51 between M ^ ^ ^ and S^. In general only (n - l)-manifolds 

defined in n-dimensional Euclidean space E" are capable of interacting with 

lights, but we can thicken (n - 2)-manifolds to (n - l)-manifolds by forming 

topological product between them and another 1-manifold such as circles (5^). 

Similarly in order to to render 2-manifolds 胚4 g l 4 D we need 

to first thicken them to by attaching 1-spheres to the normal plane at 

each point on the 2-manifolds M^^'^ix^y). The thickened 2-manifold can be 

illuminated by 4D light sources and rendered by GL4D. 

Most of the data sets in this section was derived from previous litera-

tures [37], with the exception of the Fermat surface. We have reimplemented 

these data sets to verify the correctness of GL4D by comparing our rendered 

images against those generated from previous work. 

5.1.1 3-manifolds in 

3-manifolds 4 ^re three dimensional surfaces in E^ that are capable of 

reflecting lights from 4D light sources directly. These surfaces can be directly 

decomposed into tetrahedral mesh and rendered by GL4D without thickening. 

3-sphe re~S^ 

An n-sphere is a generalization of ordinary spheres to higher dimensional 

spaces. An n-sphere has an n dimensional surface and can be embedded into 

spaces with dimensions from n + 1 onwards. A circle is a 1-sphere, an ordinary 

sphere is a 2-sphere, and finally a hypersphere is a 3-sphere. A hypersphere 

(3-sphere) is a 3-manifold that can be embedded into E^ and therefore can be 
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visualized by GL4D. The equations 
/ 

cos(<s) 

sin(s) sm{t) sm{u) 
S'^{s,t,u) = , where 0 < s < 7 r , 0 < t < 7 r , 0 < ? i < 2 7 r 

sin(s) sin⑷ cos(?x) 

sin(s) cos ⑷ 
\ 

characterize a unit 3-sphere S^ in E^. 

The above equations define both the position and the normal for each point 

on the surface of the 3-sphere. 

Hypercube 

The surface of a 4D hypercube is a 3-manifold formed by 8 3D cubes. The 4D 

hypercube can be generated directly using Algorithm 5. 

Each of the eight cubes in the 4D hypercube can be directly decomposed 

into tetrahedra. A 4D hypercube can be decomposed into 8 x 5 = 40 tetrahe-

dra if 5-tetrahedra decomposition is used. Each of the 8 cubes can be rendered 

using different colors to better visualize the relationship among them during 

4D rotation. Figure 5.1 is a hypercube rendered with 4D perspective projec-

tion and 4D transparency but without back-face culling to achieve the classical 

cube-in-cube effect for hypercube visualization. Figure 5.2 contains a 4D ro-

tation sequence of 4D hypercube rendered by GL4D. 

5.1.2 2-manifolds in E'̂ — 

2-manifolds must first be converted to 3-manifolds by a thicken-

ing algorithm before they can be rendered by GL4D. 
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Algor i thm 5: Generation of a hypercube 
1 for i — 0 to 4 - 1 do 

// For each dimension 

2 for j ^ 0 to 2 - 1 do 
II For the two cubes along each dimension 

3 if j = 0 then 
4 Extra Dimension < 1; 

5 else 
6 Extra Dimension 1; 

7 for Cube[0] — 0 to 2 - 1 do 
8 for Cube[l] — 0 to 2 - 1 do 
9 for Cube[2] — 0 to 2 - 1 do 
10 Vertex v; 
11 Vertex n; 

12 for A; — 0 to i — 1 do 
13 v[k] = Cube[A;] * 2 — 1; 
14 if (i + j) % 2 then 
15 v[k] < v[k]-, 

16 n[k] 0; 

IT ij⑷—ExtraDimension; n[i] — ExtraDimension; 

18 for — i + 1 to 4 — 1 do 
19 ^ Cube[/c — 1] * 2 — 1; 
20 if {i + j) % 2 then 
21 v[k] i v[k]', 

22 n[k] '(r- 0; 

23 _ OutputVertex(^;); OutputNormal(n); 
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Figure 5.1: Hypercube in convergent stereoscopic view. 

The Thickening Algorithm 

A 2-manifold in E^ is specified by a system of four parametric 

equations with two parameters u and v. Two sets of partial derivatives are 

calculated analytically and these two sets of partial derivatives can then be 

used to calculate two tangent vectors T^{u,v) and for each position 

T''(u,v)= I 召" 

, du 

, du 

dv •• 

X T%u,v)={ 彻 

dv 

dv . 

The triad formed by the positional vector v) and the two tangent 
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I 
Figure 5.2: Hypercube rotation in E l 
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vectors T^{u,v) and T^{u,v) for parameters {u,v) can be ortho-normalized 

by Gramm-Schmidt process to form a Cartesian frame A{u,v)^ B(u,v) and 

C{u^v) at (u, f ) . 

A{u, v)=卞，； a{u, v) = v) 

B M = b(u,v) = r\u,v) - p r o j 一 ) 『 ( — ） 

C(u,v) = = T^(u,v) - proj_，„)Cr—)) 

Two normal vectors N^(u,v) and v) span the normal plane at posi-

tion The first normal vector Ni(u,v) is the first vector A{u,v) 

in the cartesian frame at and the second normal vector N^{u,v) 

is the 4D cross product of the Cartesian frame {A^, Ay^ Az, A^) = A{u,v), 

{B^,By,B,,B^) = B(u,v) and = C{u,v). 

N'^{u,v) =A{u,v) X B{u,v) X C{u,v) 

. . i j k I 

•^x -^y •^z -^w 

Bx By Bz Byj 

Cx Cy Cz Cyj 

\ 、 B A - B^C,) - A,{ByC^ — B^Cy) — A^{ByC, - B,Cy)、 

= - B^C,) — A“B工Cy^ - B^a) — — 

Aa^iByC^ — B^Cy) - Ay(B工C比-B^a) - — ByC^) 

[MByC, - B,Cy) - Ay{B,C, - — A,{B,Cy - ByC：,) > 

The 2-manifold ^an then be thickened to a 3-manifold by 

attaching a 1-spheres (circle, S^) with radius r on the normal plane of every 

points on 

normal(«M3—4)(权，幻，没）=cos{e)N\u,v)sm{e)N\u,v) 
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m 
Figure 5.3: 3-torus in convergent stereoscopic view. 

normal(«M3~^4)(以,〜没）and v, 9) are parametric equations for nor-

mal and positional vector of the thickened 2-manifold. 

3-torus一T3 

3-torus T^ = T2 X = X X S^ is a topological product of three circles 

(S^i). The following equations produce a 2-torus T^{u,v) e in E^ 

f 

cos(w) 

sin(tt) 
v) = < where 0 < u,v < 27r. 

cos(v) 
sin(v) 

The 2-torus T^(u,v) can be thickened to a 3-torus (Figure 5.3 and 5.4) 

T^ e in E4 using the thickening equation. 
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_ 

；睡 
_ 

钃 
_ 

_ m 
Figure 5.4: 3-torus rotation in E^. . 
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Knotted Sphere 

The knotted sphere starts from a Trefoil knot Trefoil(i) 

(2 + cos 3t) cos 2t 

Trefoil(t) = j (2 + cos 3t) sin 2t ’ where 0 < t < 2?:. 

sin 3右 

\ 

The Trefoil knot is then cut open and the loose ends are attached to the 2;-axis 

(Figure 5.6). The open Trefoil knot is defined piecewise with the constants 
•r … , a a , 1001 , 3 。 

a = 1.414 b = - c = - d = —— I = - Xo = 2 
3 2 3000 5 
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<尸2a；、 ( (Pix\ /(a + bcos (Snd)) cos (27rd) - a;。、、 

0 0 + 0 

y2zj \ \Piz/ \ - c s i n (SttcJ) ) ) 

( 0 \ 

+ {a + b cos (STrd)) sin {^ird) 

V C / 

—(a + 6 cos (警)）cos (等）+ xo 

P i = (a + 6 c o s ( f ) ) s i n ( f ) 

e s i n ( f ) 
、 
‘ 

户2 = + 6 cos (警))cos ( f ) 一 (a + 6 cos (3警)）(sin (2 学 )+ cos (2等)） 

0 
、 

卜Y卜、 
尸3 = -O.bPiy + 1.5P2y 
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and the piece-wise equations 

‘ ( \ 

cos tP2x 

lP2,smt-{-P2y ,t = 华 if 0 < 5 < 1 

V 尸2- / 

CatmullRom(5 - 1’ 尸3，巧，A, A ) if 1 < 5 < 2 

/ \ 
-(a + b cos ⑶)）cos(2i) + Xq 

(a + 6 cos (3t)) sin⑶） ，t = f + 警(s — 2) if 2 < 5 < 3 

y c sin (3 亡） 乂 

OpenTrefoi l⑷=< ( ( P o x \ ( Pix ^ ^ 

S — 3 ， -Poy ， -Ply 

CatmullRom if 3 < s < 4 

( \ ( \ 
P2x Pzx 

‘—尸2y ‘ -Pzy 

( \ 
C0StP2x 

= if 4 < 5 < 5 

A -PH ] 
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Figure 5.5: Trefoil knot in E^ 

where 0 < s < 5 and Catmull-Rom spline defined by the equation 

/ ,3 \ ^ / 1 o ^ 1 \ / \ 

—1 3 —3 1 \ I po 

CatmullR6m(po,Pi,P2,P3,^) = 0.5 七 2 5 4 1 . 

t - 1 0 1 0 P2 

V V 2 0 0 ； [psj 
The open Trefoil knot is finally spun in E^ to form a knotted sphere 

f 

OpenTrefoil(u)a； cos(^) 

OpenTrefoil(w)y 
SpunTrefoil(w,^) = ^ . 

OpenTrefoil(u)a,sin(^) 

OpenTrefoil(ii)^ 
、 

This knotted sphere is a 2-manifold in E4 and can be thickened 

before being rendered by GL4D (Figure 5.7 and 5.8). 
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Figure 5.6: Open trefoil knot in E^ before spinning. 

Figure 5.7: Trefoil knot hidden in knotted sphere in convergent stereoscopic 
view. . 



Chapter 5 Results 62 

_ 

_ 國I 
國 
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Figure 5.8: Knotted sphere rotation in E l 
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Steiner Surface 

A real projective plane is formed by gluing the antipodal points on the only 

edge that loops around a Mobius strip. Steiner surface is the immersion of real 

projective plane in E^. The equation 

cos^(w) cos2(i)) — sin̂ (ii) coŝ (?;) 

sin(w) cos(w) 
Steiner(w, ！‘) = < where 0 < u, < tt 

cos(w) sin(?;) cos(?;) 
sin(ii) sin ⑷ cos(?;) 

describes the Steiner surface in E^. Since it is formed from a Mobius strip 

it is a one-sided surface. Figure 4.6 is a stereoscopic rendition of the Steiner 

surface. 

r 
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Fermat Surfaces 

(ni,n2)-Fermat surface (Fermat(ni,7^2)) is a 2-manifold in E^ formed by a 

patch work of n\ x 712 2-manifolds (FermatPatch(A;i, ni； [57'. 

a ⑷ = 臺 ( e 〜 ’ 

Uirie,(j)) = COS + (6(0) sinef 

«2r (仏 0) = y ( a⑷ COS ( • — ) 2 + (b⑷ Sin ( f —力 ) 2 

, … 2 1 ( 6(0) sin ( l - 0 ) \ 
从2认0, (f>) = - tan-i —^~~ 

n2 乂 a{(j)) cos - 0 ) J 

Ulr(fi, (t>) cos (271"告 + (f))^ 

FermatPatch(fci,ni；/C2,n2) = < ^̂ ^ , 利 . ( n i 1功（，於)) ， 

0) COS (27r浩 + U2讽 

U2r{0, (f) sin (27r普 + U2认0,0)) 

where 0 < 0 < ^t t , - 1 < 1 

Fermat(ni,n2) = ( J ( J FermatPatch(/ci, ni;/c2’ n2) 
fcie{0,l,…,ui-l} &2€{0’1,…,ti2—1} 

A (ni,n2)-Fermat surface can be thickened to a 3-manifold jVfS—4 and 

rendered in GL4D. Figure 5.9-5.17 shows a gallery of (ni,n2)-Fermat surfaces 

in convergent stereoscopic rendering. • 
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E M 
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Figure 5.9: (1,2)-Fermat surface in convergent stereoscopic rendering. 

X ” 

Figure 5.10: (1,3)-Fermat surface in convergent stereoscopic rendering. 
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• B H H 

Figure 5.13: (2,4)-Fermat surface in convergent stereoscopic rendering. 

Figure 5.14: (3,3)-Fermat surface in convergent stereoscopic rendering. 
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Figure 5.15: (3，4)-Fermat surface in convergent stereoscopic rendering. 

.\ 

Figure 5.16: (4,4)-Fermat surface in convergent stereoscopic rendering. 
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Figure 5.17: (5,5)-Fermat surface in convergent stereoscopic rendering. 

5.2 Performance 
Three PC systems with different graphics hardware configurations were em-

ployed to render three opaque 4D models—hypercube, 3-torus, and Steiner 

surface—with 4D depth testing and per-voxel shading in 4D. Table 5.1 sum-

marizes a performance analysis of GL4D. 

• 8600 GTS: Dell OptiPlex GX620 with Intel Pentium D 3GHz, 1GB mem-

ory, and NVIDIA GeForce 8600 GTS; 

• 9800 GT: Dell XPS 730 with Intel Core 2 Quad Q94p0 2.66GHz, 3GB 

memory, and NVIDIA GeForce 9800 GT; 

• GTX 285: Dell Precision T5400 with Intel Xeon 2.50 GHz, 8GB memory, 

and NVIDIA GeForce GTX 285. 

I t is worth noting that although the hypercube only has 40 4D tetrahedra, 

these tetrahedra are relatively large in size when compared to tetrahedra in 

other models; hence, they produce a substantial number of tetrahedron-slice . 

intersections and voxel fragments. The number of slices in the 3D rasterization 
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Number of slices 64 128 256 512 
Hypercube — Tetrahedra sliced 1920 " ^ 0 7680 — 15360 = 
(40 tetrahedra) 8600 GTS Wf ^ 15 KE 

9800 GT 59.9 59.88 29.95 15.98 
GTX 285 59.95 59.95 29.95 19.98 

4D Torus : Tetrahedra sliced 672000= 1363200 "2736000 H O O ^ 
(115200 tetrahedra) 8600 GTS ^ 72 ^ 

9800 GT 29.95 19.98 9.98 5.44 
GTX 285 59.95 29.97 29.93 14.98 

Steiner Surface — Tetrahedra sliced "8868Q0~ 1770400^ 3533600 7064000 
(115200 tetrahedra) 8600 GTS 10 KS ^ 

9800 GT 29.94 19.96 9.98 4.99 
GTX 285 58.53 29.97 19.97 14.98 

Table 5.1: Frame-rate (frame per second) of GL4D for different 4D models and 
different hardware configurations with different numbers of slices. 

(or voxelization) process can greatly affect the performance (and quality) of 

GL4D; the greater the number of slices, the more tetrahedron-slice intersec-

tions occur (the first data row for each model shown in the table), and hence, 

the more calls to the geometry shader and the more voxel fragments for the 

fragment shader to process. In general, 256 slices are employed in practice. 

We tested the performance of GL4D on a series of three successive generations 

of graphics cards: NVIDIA GeForce 8600, NIVIDIA GeForce 9800 GT, and 

NVIDIA GeForce GTX 285. We can see from the table that real-time perfor-

mance can be achieved with the latest GPU technology. For instance, using 

the GeForce GTX 285 to display the flat torus using 256 . slices, GL4D can 

generate 81.9M tetrahedron-slice intersections per second. 
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Conclusion 

GL4D is a 4D rendering platform which includes uti l i ty programs to gen-

erate and preprocess manifolds in 4D Euclidean spacewhich can be na-

tive 3-manifolds M ^ ^ ^ or 2-manifold M ^ ^ ^ after thickening~into hexahe-

dral mesh and subsequently to tetrahedral mesh. The resulting tetrahedral 

mesh is uploaded to memory on graphics processor as OpenGL vertex buffer 

objects (VBO). The core GL4D rendering pipeline can then rasterizes the up-

loaded tetrahedral mesh to a 3D frame-buffer and finally volume render the 

frame-buffer , to the 2D computer display. Advanced rendering and visualiza-

tion techniques such as stereoscopic rendering, false intersection detection and 

transparent 4D object rendering had also been implemented and explored in 

GL4D. Finally GL4D achieves interactive frame-rate and produces high-quality 

rendering by employing various optimization techniques and implementation 

tricks. These features had allowed GL4D platform to unravels the mysterious 

4D objects within 4D world before us and fuel future scientific and mathemat-

ical researches. 

X 
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Future Work 

While GL4D has a complete suite of tools for generating and rendering 4D 

objects from mathematical equations to computer display, much can be done 

to make the visualization platform perfect. Currently GL4D is capable of 

rendering 4D objects that had been pre-generated offline and cached in GPU 

memory to achieve interactive performance, and this limitation makes GL4D 

unsuitable for applications that requires online model editing such as CAD for 

4D objects. Furthermore, the process of creating a 4D tetrahedral mesh from 

mathematical equations is very labor intensive and involves a lot of human 

intervention, e.g. deriving the tangential equations analytically and fixing any 

singularity points encountered. This non-automated model generation process 

made creating new models for GL4D difficult. 

The GL4D visualization system is just the first step towards a more full 

fledged interactive 4D visualization for exploring high dimensional objects, 

and a lot of work is still necessary to bring 4D visualization to its full po-

tential. Possible future research directions include designing additional vi-

sual cue to aid interpretation of 4D objects; explore the application of non-

photorealistic rendering techniques to selectively emphasize important land-

marks on 3-manifolds; devise a more systematic way to help users to develop 

intuition for high dimensional objects; and comparative study to compare be-

tween various visualization cues. 

72 
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These further researches will evolve GL4D from merely a 4D rendering 

system to a comprehensive suite for high dimensional object exploration. These 

future research work will make the fruit of this research seeds new researches 

in the future. 
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