
GL4D: A GPU-based Architecture for
Interactive 4D Visualization

CHU, Alan

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of •

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

October 2010

j,

\

- ；

t

\

" " " — " 1 扇

• - . i

• . ！
I

. i
‘ I

j

i

！

I

Thesis Committee

Professor WONG, Kin Hong (Committee Chair)

Professor HENG, Pheng Ann (Thesis Supervisor)

Professor WONG, Tien Tsin (Thesis Supervisor)

Professor SUN, Hanqiu (Committee Member)

Professor CAI, Yiyu (External Examiner)

Abstract

While our senses and interactions are confined in the three dimensional space

we live in, the human intellectual faculty makes it possible for us to imagine

higher dimensional space and objects with the aid of visualization. This thesis

describes GL4D, a GPU-based architecture for interactive 4D visualization, for

producing imageries of objects inside four dimensional Euclidean space. The

GL4D visualization platform comprises of utilities for generating and process-

ing 4D objects from equations to tetrahedral mesh and a tetrahedron-based 4D

rendering pipeline. The 4D rendering pipeline in GL4D is implemented on top

of OpenGL.to utilize recent advances in programmable graphics hardware and

achieve interactive frame-rate on mainstream consumer graphics hardware.

i

論文撮要

雖然我們的日常感官和互動受限於三維世界，但是人類的智慧能

讓我們想像更高維的空間與物件。本論文描述一個稱為GL4D的

架構——GL4D能利用,繪圖處理器互動地可視化於四維歐氏空間

的物件。GL4D是一個四維可視化平台，它包括從數學公式產生

和處理四維四面體模型的軟體及一個基於四維四面體的成像流

程。GL4D的成像流程是基於OpenGL的，故此我們可以利用可

編程績圖硬件的發展來達致於大眾市場, 繪圖硬件上加速四維成像

至可互動可視化的幀率。

ii

Acknowledgments

I would like to take this opportunity to thank my supervisors Prof. Pheng-Ann

Heng and Prof. Tien-Tsin Wong for their guidances, patience, understanding

and support for my research. I am also indebted to Prof. Andrew Hanson for

his assistance and expert review for theoretical background and correctness of

rendered images, and also to Prof. Chi-Wing Fu for his assistance in technical

and implementation side of my research.

I am fortunate to have colleagues and friends Jacky Chan, Kwun-Kit Lo,

Albert Lam, Edith Ngai, Pat Chan, Clement Lee, Mole Wong, Matthew

Chung, Tsz-Ho Yu, Charles Siu, May Woo, Yim-Pan Choi, Raymond Pang,

Joe Chan, Dong Ni, Jixiang Guo, Justin Yip, Patrick Cheung and Cleave Lam

to engage in countless leisurely and academic, sometimes fierce, discussions

that are both entertaining and drive my research forward.

Gratitudes also need to be given to administrative and technical staff in

the department for their support: Stephen Lai, Fiona Lam, K im Law, Annie

Pih，Yung-Koon Ping, Angus Siu, Temmy So, Calvin Tsang, Tony Wu, Siu-

Yee Yik, with special thanks to Ms. A. D. Zee her guidance and insights for

personal development and plans.

Last but not least, I would not be what I am today without the endless

love and support from my family.

To people mentioned above and countless other unnamed individuals I give

my most hearty thanks to. •

iii

Contents

1 Introduction 2

1.1 Motivation 3

2 Background 4

2.1 OpenGL and OpenGL Shading Language 4

2.2 4D Visualization 6

2.2.1 3-manifold as Surface for 4D Objects 7

2.2.2 Visualizing 4D Objects in Euclidean 3-space 8

2.2:3 The 4D Rendering Pipeline 9

3 Related Work 11

3.1 General Purpose Processing on Graphics Processing Units . . . 11

3.2 Volume Rendering 12

3.2.1 Indirect Volume Rendering 13

3.2.2 Direct Volume Rendering on Structured Grid 13

3.2.3 Direct Volume Rendering on Unstructured Grid 18

3.2.4 Acceleration of DVR 19

3.3 4D Visualization 22

4 GL4D: Hardware Accelerated Interactive 4D Visualization 26

4.1 Preprocessing: Prom Equations to Tetrahedral Mesh 28

4.2 Core Rendering Pipeline: OpenGL for 4D Rendering 29

iv

4.2.1 Vertex Data Upload 30

4.2.2 Slice-based Multi-pass Tetrahedral Mesh Rendering . . . 30

4.2.3 Back-to-front Composition 38

4.3 Advanced Visualization Features in GL4D 38

4.3.1 Stereoscopic Rendering 39

4.3.2 False Intersection Detection 40

4.3.3 Transparent 4D Objects Rendering 42

4.3.4 Optimization 44

5 Results 48

5.1 Data Sets 48

5.1 . 1 3-manifolds in E 4 — 4 49

5.1.2 2-manifolds in E4—yW2~>4 50

5.2 Performance 69

6 Conclusion 71

7 Future Work 72

Bibliography 74

V

List of Figures

2.1 OpenGL 4.0 rendering pipeline [3] 5

3.1 The volume rendering pipeline proposed by Levoy [6] 14

3.2 3D texture mapping technique proposed by Cullip and Neu-

mann [21] 21

3.3 Volume bounding box for determining entry and exit point of

rays casted from viewing plane [23] 22

3.4 Tetrahedra classification [16] 23

3.5 Tetrahedra decomposition [16] 24

4.1 An overview of GL4D 27

4.2 Two possible ways of decomposing a hexahedral cell into tetra-

hedra: 6-tetrahedra (top) and 5-tetrahedra (bottom) 29

4.3 4D transformations in vertex shader 33

4.4 Two possible vertex ordering in a tetrahedron, po is above the

paper and pi，p2 and ps are on the paper 34

4.5 Two possible intersection between a tetrahedron and a plane: a

triangle or a quadrilateral . . . 36

4.6 Steiner surface in divergent stereoscopic rendering 41

5.1 Hypercube in convergent stereoscopic view 52

5.2 Hypercube rotation in E^ 53

5.3 3-torus in convergent stereoscopic view 55

vi

5.4 3-torus rotation in E^ 56

5.5 Trefoil knot in E^ 60

5.6 Open trefoil knot in E^ before spinning 61

5.7 Trefoil knot hidden in knotted sphere in convergent stereoscopic

view

5.8 Knotted sphere rotation in E^ 62

5.9 (1,2)-Fermat surface in convergent stereoscopic rendering. . . . 65

5.10 (1,3)-Fermat surface in convergent stereoscopic rendering. . . . 65

5.11 (2,2)-Fermat surface in convergent stereoscopic rendering. . . . 66

5.12 (2,3)-Fermat surface in convergent stereoscopic rendering. , . . 66

5.13 (2,4)-Fermat surface in convergent stereoscopic rendering. . . . 67

5.14 (3,3)-Fermat surface in convergent stereoscopic rendering. . . . 67

5.15 (3,4)-Fermat surface in convergent stereoscopic rendering. . . . 68

5.16 (4,4)-Fermat surface in convergent stereoscopic rendering. . . . 68

5.17 (5,5)-Fermat surface in convergent stereoscopic rendering. . . . 69

vii

List of Tables

1 Summary of mathematical notations 1

2 Summary of notations in the Direct Volume Rendering section • 1

4.1 Lookup table for acclerating marching tetrahedra 37

5.1 Frame-rate (frame per second) of GL4D for different 4D models

and different hardware configurations with different numbers of

slices 70

X

viii

List of Algorithms

1 glFrustum setup for the image for left eye 39

2 glFrustum setup for the image for right eye 40

3 The 4D dual depth peeling algorithm 45

4 Generation of all vertices for a bounding hypercube in E" 46

5 Generation of a hypercube 51

ix

Summary of Notations

Summary of Mathematical Notations

Notation Description
R" n dimensional real vector space
E" n dimensional Euclidean space

^m—n 爪 dimensional manifold immersed in E打

Table 1: Summary of mathematical notations

Summary of notations for Section 3.2.2

Notation Description
p A 3-tuple denoting the location of a voxel within the volume data

X = f [p) the (scalar or vector) value of voxel at location p
V f i f f) the estimated gradient at location p
C{x) the color transfer function
a{x) the opacity transfer function
C ' i f) the final color value of voxel at location p '
a'{p) the final opacity value of voxel at location p

\

Table 2: Summary of notations in the Direct Volume Rendering section

1

Chapter 1

Introduction

While our everyday experience is fundamentally limited by the dimensionality

of the space we live in, it is still possible to glimpse into the world of higher

dimensionality by using one of the most important intellectual gift to homo

sapiens — imagination.

We interact with three dimensional objects in a three dimensional world:

three parameters—width, height and thickness—are required to fully specify

the size of three dimensional objects. Three dimensional objects also have three

perpendicular directions of movement—forward or backward, left or right, and

up or down. Is it possible for us to imagine a four dimensional objects in a four

dimensional world? A four dimensional object wil l have its size specified by

four parameters and it wil l have four perpendicular directions to travel when

roaming in its four dimensional world. While it is popular to think of the

fourth axis being the time axis, this is not necessarily the case. In our research

we treat all four axes being homogeneous and equal, and together they form

the basis of an abstract four dimensional world.

Visualization plays a vital role in helping us to comprehend and imagine

what a 4D object would appear before 4D human beings. Visualization of

4D objects, from hand sketches to computer rendering, is the gateway for us

to stand in the shoes of 4D human beings and see what they see. Previous .

attempts had been focused on generating plausible images for what 4D objects

2

Chapter 1 Introduction 3

look like in front of 4D human beings, and output from these researches were

static images or pre-animated animation sequence of 4D objects.

With the advances and increase in programmability of graphics hardware

it is now possible to compute and render 4D objects at interactive frame-

rate. These advances encourage us to build an interactive system that would

allow users to manipulate 4D objects and provide instant feedback. We have

further developed various advanced and novel 4D rendering and visualization

techniques on top of the basic 4D rendering pipeline. These new visualization

techniques will be tremendously useful for exploring and understanding novel

4D objects.

1.1 Motivation

Abstract thinking and imagination led to the development of high dimensional

mathematics and its subsequent application in physics. We believe that our

4D visualization system can have both pedagogical and research usages in the

field of science. Our 4D visualization system can be used in education set-

tings to capture the attention of children and teenagers and keep them more

interested in science than conventional science education can. Furthermore,

teenagers can better appreciate 4D objects by manipulating them in our inter-

active visualization system. As modern mathematics and physics are becoming

increasingly complex and abstract, we hope that, by providing a platform for

manipulating 4D objects interactively, we can advance our understanding of

these new theories and make further discoveries from the gained knowledge of

their geometrical structure.

Last but not least, it is a human endeavor to go beyond what we know,

and GL4D fulfills our curiosity by allowing us to look into the abstract world

of higher dimension in a way we have never tried before.

And here is where the fun begins.

‘

I

Chapter 2

Background

2.1 OpenGL and OpenGL Shading Language

The OpenGL API [1] was created when the underlying hardware is less pow-

erful and flexible, as a result the rendering pipeline contains fixed stages and

few configurable options. As graphics hardware becomes increasingly powerful

and flexible, more options are exposed and made configurable via the OpenGL

API. Recently, advances in graphics hardware allowed us not only to configure

the fixed pipeline via predefined options, but to program the pipeline directly.

This revolutionary transition from a fixed pipeline to a programmable pipeline

had created a new research area for utilizing GPU for general computing [2 —

GPGPU (General Purpose Graphics Processing Unit). This new research area

focuses primarily on harnessing the powerful parallel floating point processing

power in GPUs to perform scientific computations and run parallel algorithms.

Graphics pipeline is programmed by shader programs (Figure 2.1). A high

level programming language based on the C language called OpenQL Shading

Language (GLSL) is used to write shader programs. The two most basic

shaders in a modern GPUs are vertex and fragment shader.

Vertex shader replaces the part in fixed function pipeline between vertex

data input and primitive assembly (Figure 2.1). I t is responsible for trans- .

forming vertices by model view and projection matrices. Vertex shader takes

4 .

i

•

Chapter 2 Background 5

^ Transform
Feedback

•二 " e x Primitive Fragment
Data _ and Assembly Shading and ^ Framebuffer

— 二 e r verier ^ and ^ Per-Fragment
Operations Rasterization Operations

Pixel A A
Data T

Texture
Memory

i
_ Pixel
—Pack/Unpack

Figure 2.1: OpenGL 4.0 rendering pipeline [3 •

I

j

Chapter 2 Background 6

one vertex as input, performs all necessary transformation computations and

emits one vertex as output. Vertex shaders are invoked to 'shade' every vertices

before the vertices are assembled into primitives and rasterized.

Fragment shader replaces the part in fixed function pipeline between ras-

terization and frame-buffer blending. I t is responsible for calculating the color

value for each fragment. Fragment shader takes one fragment as input, along

with any auxiliary data such as interpolated normal vector and material pa-

rameters, computes a color value from shading equation for the fragment and

emits the color value as output. Fragment shaders are invoked to 'shade' every

fragment from rasterization stage before they are blended to the frame-buffer.

A new shader type had to be invented every time a stage of the fixed

pipeline had made programmable. One such example is geometry shader: ge-

ometry shader replaces the part in fixed function pipeline between primitive

assembly and rasterization. Although geometry shader, unlike vertex and frag-

ment shaders, introduces a new stage to the pipeline to support operations that

are not available with the fixed function pipeline: geometry shader can create

or destroy primitives within the pipeline by taking one primitive as input and

emits zero or more primitives as output. Geometry shader is invoked to ‘shade，

every assembled primitives before they are rasterized.

2.2 4D Visualization

4D visualization concerns with the problem of visualizing 4D objects, but we

first need to define the space where 4D objects live in before we can define the

4D objects themselves. 4D objects live inside four dimensional Euclidean space

E4. An n-dimensional Euclidean space E^ is defined as a real vector space R"

with the inner product between vectors x and y being x-y = Ya=o工iVi. This

inner product definition imposes the Euclidean structure to the real vector

space.

1

Chapter 2 Background 7

The problem of 3D visualization concerns with rendering 2D surfaces form-

ing the boundary of 3D objects. These 2D surfaces are 2-manifolds immersed

in 3D Euclidean space (E^). We define 2-manifolds immersed in 3D Euclidean

space as mappings from E^ to E^, i.e. ： ^ E^. Analogously,

4D visualization concerns with rendering 3D surfaces forming the boundary

of 4D objects. These 3D surfaces are 3-manifolds immersed in 4D Euclidean

space (E4). We define 3-manifolds in 4D Euclidean as mappings from

to E4, i.e. .股3 —

In this thesis we will use the notation ； " to denote m-manifolds im-

mersed in n dimensional Euclidean space E".

2.2.1 3-manifold as Surface for 4D Objects

One way to imagine what a 3-manifold looks like in E^ is by using the flat-land

analogy. The flat-land analogy begins with having point-landers living on one

dimensional surfaces, e.g. a curve. Point-landers can only move back and forth

along a curve, and their movements have only one degree of freedom. Flat-

landers, as its name implies, live inside a two dimensional surface, and they

have two degrees of freedom when gliding in the 2D surface. Finally, space-

landers, such as we human beings, live within a three dimensional surface and

have three degrees of freedom in our movements.

Assuming that there are another form of super-human in a four dimensional

Euclidean space E^, and they encounter a 3D human being on the surface

of a 4D object (say, a hypersphere). Although the 3D human being on the

hypersphere surface think they have exhausted all degrees of freedom in its

movements and the surface they are living in comprises the whole world known

to them, 4D super-human outside the hypersphere has access to an additional

fourth degree of freedom that is unavailable to the 3D human wandering within

the confinement of the hypersphere. ‘

Chapter 2 Background 8

2.2.2 Visualizing 4D Objects in Euclidean 3-space

There are many ways to visualize a 4D object. One of the simplest way is to

present a sequence of 3D objects and this sequence of 3D objects, when one

is stacked on top of another along an imaginary axis of the fourth dimension,

is equivalent to the 4D object in its full glory. I t would be easier to imagine

this if we start from lower dimensions: a one dimensional line-lander would

have difficulty imagining how a two dimensional circle looks like in a two

dimensional space, but it can be told that a two dimensional circle is formed

by a stack of one-dimensional lines with different lengths; a two-dimensional

flat-lander would have no idea how a three dimensional sphere looks like in

a three dimensional space, but it is told that a three dimensional sphere is

the same as putting a bunch of circles of different radii together; finally a

three-dimensional space-lander would have no idea how a hypersphere looks

like in a four dimensional space, but it is told that a hypersphere is actually

a stack of ordinary spheres with varying radii. Another angle to understand

this is that the sequence of the objects actually represents the cross sections

of a higher dimensional object, and we can form the concept of the 4D object

in question by stacking cross sections of it mentally. While this cross section-

based interpretation of 4D objects is simple enough to understand, it fails

to provide a holistic view of the whole object at once, making this approach

inappropriate for visualizing 4D objects under interactive manipulation.

The second approach for visualizing 4D objects is to simulate the vision

system of 4D super-human. We again work our analogy from low dimensions

and extend to high dimension for easier understanding. A two dimensional

flat-lander has a one dimensional retina that produces one dimensional images

of the two dimensional flat-land world; a three dimensional space-lander has

a two dimensional retina that produces two dimensional images of the three

i

i.

I
j

i
I
I

Chapter 2 Background 9 |

dimensional space-land world; finally, by extending the argument, a four di-

mensional hyperspace-lander wil l have a three dimensional retina to see the

four dimensional hyperspace-land world. This approach of 4D object visual-

ization relies on our ability to simulate and reproduce the retina image that

our hypothetical 4D super-human sees when living in a hypothetical four di-

mensional world. The biggest drawback of this approach is that while a four

dimensional hyperspace-lander can directly see every voxel in the three dimen-

sional retina image without difficulties—just like we can see every pixel on a

two dimensional image at once without one pixel being occluded by another

pixel—a person living in a three dimensional world couldn't do this as some

voxels of the retina image occlude other voxels. This problem can be allevi-

ated by allowing space-landers to rotate tune the transparency of the retina

image. A space-landers can, by manipulating these two controls, reconstruct a

mental model of the full three dimensional retina image. Such a system needs

to provide two sets of controls for manipulating the rendering of a 4D object:

the first set of controls controls the transformation of the 4D object before pro-

jection to the three dimensional retina and the second set of controls controls

the transformation of 3D retina image before projection onto 2D screen. This

system of two controls allows users to fully comprehend the three dimensional

structure of the projected 4D object within the 3D retina.

The second approach to 4D object rendering is chosen in our research

because we need a visualization approach that provides a holistic view of 4D

objects while being manipulated under heavily interactive use cases.

2.2.3 The 4D Rendering Pipeline

The main focus in the field of computer graphics had been solving the problem

of 3D rendering. There are two main schools of thought for 3D rendering: ray

tracing-based and rasterization-based rendering, but consumer graphics APIs ‘

！

i|
！

i

Chapter 2 Background 10

and hardware accelerator focuses primarily on rasterization-based technique.

We have chosen to adopt a rasterization-based instead of a ray tracing-based

4D rendering pipeline and API in order to best leverage consumer graphics

accelerators that are widely available now.

The traditional rasterization-based 3D rendering pipeline can be modified

and extended for rendering 4D objects. The 4D pipeline we are adopting in

our work is based on previous work by Hanson and Heng.

The primitive used in 4D rendering pipeline is tetrahedron. To render a 3D

surface in E^, we first need to discretize the surface to a hexahedral mesh, then

further decompose the surface into a soup of tetrahedra. This process is similar

to decomposing a 2D surface in E^ into a soup of triangles in 3D rendering.

Once we get the tetrahedral mesh of the 4D object ready we can feed them into

the rendering pipeline. Inside the GPU these tetrahedra wil l be transformed

by 4D model, view and projection matrices and subsequently rasterized into

fragments. The fragments wil l then be shaded by the 4D extension of the

Phong shading equation using 4D light sources and written to a 3D frame-

buffer. The occluded fragments along the w-coordinate, i.e. fourth dimension,

wil l be filtered by a 3D depth buffer if the 4D object we are rendering is opaque.

On the other hand proper depth sorting and composition is required if the 4D

object is transparent. A final volume rendering step is required to present the

3D frame-buffer on an ordinary 2D display.

• \

. i!
|i

I

Chapter 3

Related Work

We build GL4D upon previous work on volume rendering and 4D visualization.

In this chapter, we review work that we base upon and draw inspiration from

when working on GL4D.

3.1 General Purpose Processing on Graphics

Processing Units

General Purpose Processing on Graphics Processing Units (GPGPU) had been

a hot research area in recent years. The thrust of the research is fueled by the

possibility of harnessing the large number of parallel floating point computa-

tion units in modern GPUs to perform highly parallel computation. Currently

there are two categories of APIs to leverage GPU hardware: an older shader-

based rendering pipeline and a newer kernel-based computation model. The

shader-based rendering pipeline is an evolution of traditional fixed function

pipeline by making some stages in the fixed pipeline programmable, examples

include OpenGL GLSL, DirectX HL and NVIDIA Cg. On the other hand the

kernel-based computation model is a completely new API that allows programs

running on CPU to submit kernel programs to GPU for parallel computation,

examples are CUDA and OpenCL. These two APIs serve different purposes: •

shader-based APIs are more suitable when the output is an rendered image

11

I
！

i • t
I

I
！

I

Chapter 3 Related Work 12 |
i

1

but kernel-based computation APIs are more suitable for computation oriented |

work. We choose to focus on shader-based APIs in this thesis since our work

is primarily rendering-based and would benefit most from a rendering oriented

API.

Section 3.2.4 contains a review of related work on applying GPGPU to

accelerate volume rendering algorithms.

3.2 Volume Rendering

Volume rendering is a branch of Computer Graphics that concerns with solv-

ing the problem of visualizing volumetric data. Volumetric data are usually

obtained from sampling taken from real life objects or simulation studies. I t

is extremely difficult, if not impossible, for human to comprehend raw volume

data due to their shear size, visualization of volume data, therefore, is neces-

sary to allow human to fully utilize and extract information hidden behind the

raw data.

There are two categories of volumetric data - structured and unstructured.

Structured volumetric data have data points defined on a regular grid. On the

other hand unstructured volumetric data have data points defined on irregular

grid. The problem domain and data collection procedure dictate the format

of the volumetric data: experimental procedures such as medical imaging take

samples at regular interval in three dimensional space nautrally produce struc-

tured volume data and numerical techniques such as finite element method

produce unstructured volume data.

Two categories of rendering strategy are available for visualizing volumetric

data: indirect volume rendering and direct volume rendering [4]. In indirect

volume rendering, the volume data is first converted to an implicit surface and

the implicit surface is then rendered in lieu of the original volume data. In

Chapter 3 Related Work 13

direct volume rendering, as its name implies, renders the volumetric data di-

rectly without an implicit surface acting as a proxy. Indirect volume rendering

produces a succinct representation of the volume data using implicit surface,

while direct volume rendering produces a more holistic view of the volume

data.

3.2.1 Indirect Volume Rendering
I 1

In indirect volume rendering a constant c is first chosen to generate the implicit

surface from the volume data input. To generate the implicit surface each data j

point X in the volume data are first classified as 'inside' {x < c) or 'outside'

(x > c) the implicit surface. An algorithm will then be used to approximate the

implicit surface by generating a mesh along the boundary between the 'inside'

and 'outside' data points. The classical algorithm for generating the implicit

surface is the marching cube algorithm [5]. The marching cube algorithm

reads the voxels within a structured volume data one-by-one and a patch of

surface is generated from a case table. The summation of these surface patches

provides the final geometric model for rendering. A variation of marching

cube called marching tetrahedra had been devised to circumvent the patent

around the marching cube algorithm and to enable indirect volume rendering

on unstructured volume data.

3.2.2 Direct Volume Rendering on Structured Grid

In direct volume rendering (DVR) the voxels in volume data are projected

onto the 2D viewing plane directly. The overall architecture for DVR system

had not changed much since Levoy's pioneering work [6]. Levoy's proposed

pipeline for volume rendering is depicted in Figure 3.1. There are three main

steps in the pipeline after data preparation. The first two steps are shading

and classification, and the third step is compositing the color and opacity value

！ •

I

Chapter 3 Related Work 14

厂 Voxel valuer f(t) j

\ , ‘ - ~ ： 3 _ _ ^
Shading Classification

/ voxel i r s CO) ； / 二 ；

T I
Ray tracins/resampiing Ray tradns/resamplins

‘ V ‘ I .
/ sample colô C(U) / / 。口丨。广丨

L 1 ^ , 1
•

/ Pixel colors C(u) /

Figure 3.1: The volume rendering pipeline proposed by Levoy [6 .

for each voxel to pixels in the 2D viewing plane.

Major Components in DVR

There are five major components in DVR, they are color and opacity transfer

functions, gradient estimation, shading and composition. They wi l l be intro-

duced in the following subsections. Section contains a summary of notations

used in this section,

Chapter 3 Related Work 15

Transfer functions are mappings from voxel values f{p) : R^ M" to

scalar {n = 1) or vector (n > 1) quantities. There are two common transfer

functions for volume data: color and opacity. Transfer functions is important

for volume rendering because they control how volume data are visualized.

Transfer function by itself is a hot research area in volume rendering as it is

crucial to the usefulness and quality of the visualization result [7 .

A color transfer function C{x) : {re : 0 < a: < 1}^ is a mapping from
I丨

voxel value f{p) to a 3-tuple representing a color in the RGB color space. This ！

function is used to assign color to the otherwise meaningless voxel values.

An opacity transfer function a{x) : R" {x : 0 < re < 1} is a mapping

from a voxel value / (p) to a real number between and including 0 and 1. The |

presence of opacity transfer function allows translucent display of overlapping |

isosurfaces and to suppress the display of 'unwanted' voxel values by mapping

these voxel values to 0. If the opacity function maps all voxel values to only

0 and 1，in this special case the opacity function is equivalent to binary iso-

surfaces classification. Therefore the opacity transfer function can be seen as

a generalization of classification.

Gradient es t imat ion is an important component both in Levoy's work and

other volume rendering systems {e.g., [6, 8, 9, 10, 11]).

The most popular gradient estimation technique is the central difference

method and it is also one of the simplest estimation method. Forward and

backward differences are used in edge cases.

+ [-1,0,01)+[1,0,0])

V / ® = l f { p + [0,-1,0]) - [0,1,0])

Rheingans and Ebert [9] had studied various gradient method and they

found that although there are no systematic difference between the results

Chapter 3 Related Work 16

generated from different gradient estimation method although the results do

differ.

In Levoy's work, the estimated gradients are used to modulate the opacity

value in both the isovalue contour surfaces and the region boundary surfaces

algorithms. The essence of modulating opacity value by the estimated gradient

is to enhance the voxels at the boundary of different voxel values {i.e. with

large gradient) such as the boundary between organ and fat, and suppress the

voxels within a region of uniform voxel values {i.e. with low gradient) such as

the interior of an organ.

Shading and shadowing of volumetric data is similar to that of geometric

shapes. The Phong's shading equation is commonly used [12].

h = laxkaOdX + fattlpx (kdOdx{N . L) + ks{R • v y)

The result of the Phong's shading equation h is the intensity of light for a

voxel at wavelength A, Ia\ is the intensity of ambient light source at wavelength

A, and Ipx is the intensity of the directional light source at wavelength 入 . O d x is

the diffuse color of the voxel at wavelength 入 . T h e constants ka, kd and kg are
—• —# —•

ambient, diffuse and specular coefficient，and the vectors N, L, R, and ^ are

the normal vector, light vector, reflection vector and view vector respectively.

Finally, fatt is the atmospheric attenuation for the light source.

In the simplest case when fatt = 1, the intensity of the light source will not

be attenuated by the intervening voxels between the voxel being shaded and

the light, and shadowing will not occur. Shadowing can be achieved by using a

non-constant fatt in the shading equation. One example of fatt which permits

shadowing is fatt = e—广"⑴也[13]. In the equation, s, T, and f i { t) are the

voxel being shaded, the light source, and the mass density value respectively.

The mass density value is determined from a transfer function.

>

Chapter 3 Related Work 17

Image compos i t ion is the final step of volume rendering for producing a

rasterized 2D viewing plane on the frame-buffer with the final opacity a'{p}

and color C'{p) values assigned to all voxels. In the simplest case a ' ® =

a{f{p)) and C'{p) = C{f{p)) where the results of the transfer functions are

used directly as the final color and opacity values of the voxel.

There are three major categories of image composition techniques, image-

order, object-order, hybrid and domain techniques [13]. Image-order tech-

niques start from the 2D viewing plane and calculate the color and opacity

pixel-by-pixel, one widely used image-based technique is ray casting, which

was proposed by Levoy [6]. Object-order techniques, on the other hand，work

from mesh-to-render to the 2D viewing plane by first sorting the cells in the,

volume and project each occupied cell to the 2D viewing plane one at a time.

Hybrid method tries to combine the advantages of image- and object-order

technique, one attempt is the shear warp method developed by Lacroute and

Levoy [14]. Finally domain based composition method tries to transform the

volume data from spatial domain to another domains such as frequency, and

the volume data is then rendered directly from or aided by the transformed

voxel data.

Optical mode l is fundamental to image-based techniques such as ray

casting as it describes how light is accumulated and attenuated when passing

through the volume. The low-albedo optical model is the simplest optical

model where light rays entering the volume are assumed to scattered only

once. The low-albedo optical model can be described by the following integral

and can be simplified using the following steps [13 .

\ plength{r)
h{r) = / CMs)/^ ⑷ e(_/。s"⑷刑 ds

Jo

The result of the equation Ix{r) is the intensity of the ray r at wavelength

A. Cx{s) is the intensity of the color at wavelength A of voxel s. Similar to the

Chapter 3 Related Work 18

volumetric shadowing equation, fi{s) is the mass density value of voxels and

is the attenuation of light way from the starting point of the ray

to the voxel being considered by the outer integral.

The discrete Riemann sum approximation of the above integral is

L/As-l / i-l \

1=0 \ j=0 /

By assuming that q;(zAs) = 1 - (込石)八〜the above approximation can

be further simplified as

L/As-l / i-l \

W 和 E C'A(^As)/x(iA5)Asn (1 - ^O'As))
i=0 \ j=0 /

Using Taylor series expansion ^ 1 一 A s ， t h e r e f o r e Q:(iAs) ^

IJ,{jAs)As. Substituting the result into the approximation results in

L/As-l / i - l \
/aM^ ^ [C , { i A s) a { i A s) l [{ l - a i j A s)) •

i=0 \ j=0 J

The above closed form formula can be written as the following recursive

definition and these are the front-to-back composition formulae used by most

ray casting algorithms.

c(0) = 0

c{i + 1) = C{jAs)(x{iAs) (1 一 a{i)) + c { i) '

a{0) = 0

a{i + 1) = a{iAs) (1 - a(i)) + a (i)

Chapter 3 Related Work 19

3.2.3 Direct Volume Rendering on Unstructured Grid

Direct volume rendering on unstructured grid requires specialized algorithms

or adaptation of algorithm that are applicable to structured grid. Some of

the popular algorithms includes ray casting [15], projected tetrahedra [16, 17],

scan plane [18] and slicing [19 .

Two popular tetrahedral mesh rendering algorithms are projected tetrahe-

dra (PT) algorithm proposed by Shirley and Tuchman and rasterization by

view axis aligned slicing plane. The projected tetrahedra algorithm works by

transforming the tetrahedra mesh and create two to four semi-transparent tri-

angular proxy primitives for rendering the original tetrahedron. Slicing-based

volume rendering algorithm, on the other hand, renders the tetrahedral mesh

by slicing the tetrahedral mesh by slicing plane at regular interval, and the

images formed by successive slicing planes are composited to form the final

image.

3.2.4 Acceleration of DVR

A lot of research effort had been put into accelerating DVR in various ways.

These acceleration can be classified into three main categories: algorithmic

improvements, texture mapping and parallel computation using GPGPU.

Algorithmic improvements

DVR algorithms can be improved algorithmically. Starting from adaptive ray

termination and hierarchical spatial enumeration proposed by Levoy [20], a

lot of research effort had been put into improving both the speed and reduce

the memory usage of the volume renderer. This research direction is driven

by the development of data acquisition hardware in clinical procedures which

are capable to produce data at a much higher resolution than the data set .

(> 5123) usually used in research projects [10].

Chapter 3 Related Work 20

GPU accelerated volume rendering

GPU accelerated volume rendering provides an alternative means to speed

up DVR by using modern graphics hardware. There are two approaches to

accelerate volume rendering using GPU: image-based algorithms such as 3D

texture mapping and ray casting, and object-based algorithms like projected

tetrahedra.

Hardware support of 3D texture mapping had been used by various re-

searchers in volume rendering system because of the fast trilinear interpolation

implementation provided by GPU. One of the earliest application of 3D texture

mapping [21] uses the final color C'{p) and opacity value a'{p) of each voxel

as the RGB A values of the 3D texture, and the 3D texture is then mapped

onto a series of 2D planes as shown in Figure 3.2. Only the composition stage

in the volume rendering pipeline is moved to the graphics hardware in this

application. Later applications of 3D texture mapping tries to offload more

pipeline stages from CPU to the graphics hardware. Although using 3D tex-

ture mapping can achieve higher frame-rate, rendering quality is sacrificed due

to the restriction of texture memory in using single precision floating point

format (32-bit) on common graphics cards [22 .

Another image-based GPU accelerated volume rendering technique is ray

casting. Kriiger and Westermann [23] had proposed an implementation of ray

casting algorithm with optimizations that can run on GPU entirely. An impor-

tant difference between using 3D texture mapping and GPU-based ray casting

is that optimizations such as adaptive termination and empty space skipping

can be implemented in GPU-based ray casting to save fragment (pixel) opera-

tions on transparent voxels. GPU-based ray casting algorithm has two stages:

the first stage determines the entry and exit points of each ray from each pixel

in the 2D viewing plane, this is accomplished by rendering the volume bound-

ing box (Figure 3.3); the second stage involves a multi-pass rendering that ‘

Chapter 3 Related Work 21

object space
sample planes \

volume
boundary

image space
sample planes \ ^ W A x ^

Figure 3.2: 3D texture mapping technique proposed by Cullip and Neumann
21].

Chapter 3 Related Work 22

(0丄 0)

歡 ’ ” J

(Urn
Figure 3.3: Volume bounding box for determining entry and exit point of rays
casted from viewing plane [23 .

calculate the color and opacity accumulated for each ray.

The projected tetrahedra algorithm [16] is a prime example of object-based

volume rendering technique that can be accelerated by GPU. Projected tetra-

hedra begins with decomposing the input hexahedral mesh into tetrahedral

mesh. These tetrahedra will be classified into one of the classes outlined in

Figure 3.4 and subsequently decomposed into triangular strips (Figure 3.5.

Finally the triangular strips can be rendering to the 2D frame-buffer.

Wylie et al. [24] had implemented the projected tetrahedra algorithm on

GPU. They have implemented the tetrahedron classification and decomposi-

tion algorithms on vertex shader and made projected tetrahedra algorithm

running entirely on GPU.

3.3 4D Visualization

Early research on visualization of high-dimensional geometry includes the

work by Noll [25] and Banchoff [26，27], who exploited 3D computer graph-

ics methods to display 4D objects. Methods exploited in a variety of early

work [28, 29, 30，31, 32, 33] included wireframe representations, hyperplane

slicing, color coding, view transformations, projection, and animation.

Chapter 3 Related Work 23

r class la y/^ / class 3a

… - V + + -。

yl
\ ： / class lb / J class 3b

Y - - - + \J -…
\ \ / class 2 / I class 4

\ \ / - - + + X / + - 0 0

Figure 3.4: Tetrahedra classification [16 .

Burton et al. [34, 35] and Hanson and Heng [36, 37, 38] proposed various

frameworks that included lighting models for the visualization of 4D geometries

and extended the methods of 3D rendering to the fourth dimension. Rendering

3D objects onto a 2D screen was replaced by projecting 4D geometry into a

3D frame-buffer volume, and 4D depth buffer to cull occluded fragments in the

4D-to-3D projection. Hanson and Heng also proposed a thickening mechanism

to support converting 2-manifolds immersed in 4 dimensional Euclidean space

E4 to renderable 3-manifolds. The resulting volume frame-buffer calls for 3D

volume rendering methods to expose the internal structure of the projected

4D geometry. Transparent 4D objects rendering and, hence, alpha blending

along the 4D projection direction had not been studied in previous work. An

alternative volume rendering to expose geometric structure after 4D-to-3D

projection was suggested by Banks [39] , who employed principal curves on

surfaces, transparency, and screen-door effects to highlight intersections in the

projected geometry; in addition, Banks [40] proposed a general mechanism to

compute diffuse and specular reflection of a fc-manifold embedded in n-space.

Chapter 3 Related Work 24

Tetrahedron Projection Triangle Decomposition

classes la & lb 3 triangles

class 2 4 triangles

刹€
classes 3a & 3b 2 triangles

Z / 」
class 4 1 triangle

Figure 3.5: Tetrahedra decomposition [16 .

Chapter 3 Related Work 25

Hanson and Cross [41, 42] developed techniques implementing 4D rendering

with the Shirley-Tuchman volume method [16]. assuming that the objects

in 4D are static and occlusion-free in the 3D frame-buffer. Such methods

cannot provide real-time occlusion computation and have limited interactivity

compared to our approach.

Previous researches closely related to our work include Feiner and Besh-

ers’ [43] 'worlds within worlds' interface system to manipulate and explore

high-dimensional data space via nested coordinate systems. Another related

system developed by Miller and Gavosto [44]; used sampling methods to ren-

der and visualize 4D slices of n-dimensional data such as fractals and. satellite

orbits. DufRn and Barrett [45] proposed a user interface design to carry out

n-dimensional rotation. Hanson [46] generalized the 3D rolling ball control [47

to manipulate the six degrees of freedom of 4D rotations. Among other in-

teresting contributions to the field are those of Egli et al. [48], who proposed

a moving coordinate frame mechanism to generalize the sweeping method for

representing high-dimensional data, the work of Bhaniramka et al. [49], who

explored isosurfacing in high-dimensional data by a marching-cube-like algo-

rithm for hypercubes, and that of Neophytou and Mueller [50], who investi-

gated the use of splatting to display 4D datasets such as time-varying 3D data.

Recently, Hanson and Zhang [51] proposed a multimodal user interface design

that integrates visual representation and haptic interaction, allowing users to

simultaneously see and touch 4D objects; this approach was then extended [52

to exploit the idea of a reduced-dimension shadow space to directly manipulate

higher-dimensional geometries.

Chapter 4

GL4D: Hardware Accelerated

Interactive 4D Visualization

GL4D is a platform for hardware accelerated 4D visualization. The core of

GL4D is a GPU-friendly implementation of a 4D rendering pipeline designed

to be accelerated by modern graphics processor. GL4D is able to visualize

4D objects at interactive speed with high quality rendering. While GL4D is

based on previous work on 4D visualization and volume rendering, it is not

a simple and trivial translation of the basic 4D rendering pipeline to GPU,

a combination of algorithmic simplification and implementation optimizations

had been employed to build the 4D rendering engine on top of a GPU originally

designed for rendering 3D surface models.

GL4D consists of two major components: a preprocessing component for

generating tetrahedral mesh from parametric equations on CPU and a core

rendering pipeline for rendering tetrahedral mesh on GPU. Both the prepro-

cessing component and the core rendering pipeline wil l be discussed in details

in the following sections. Figure 4.1 provides a schematic overview of GL4D.

26

‘

,
/

更

•
•

一

—

.
一

.
.
.

f
y =

=

f
^

i
H

H
H

^
I

o
Si

ck
en

in
g

^
=

I^
JK

Fr

ag
m

en
tS

ha
de

r
完

产

w

=
W

u,
v,

w
)

(O
pt

io
na

l)
G

eo
m

et
ry

Sh
ad

er

|
\

D
if

fu
se

 a
n

d
S

pe
cu

la
r

^

>
/.

..
e

te
rs

p
a

c
e

S
l

_
|

1
L

/
j

|

口

I
D

isc
re

tiz
at

io
n

3D
 R

as
te

ri
za

tio
n

.J

Iv

召

0
\

(O
pti

on
al)

Te

tra
he

dr
on

s
〜

f-
,、

>
^z

•

^
^

B
^

H

§；

1
丨

、
T
秘

鄉

/U
TI

 ih
M

B
^H

^

！

f
t
f
t
t
u

/
r
-
N

X
m
e
F
r
a
m
L
J

l

L
^

E
|

H
H

1

^
一
 "：

：
?
 一

\

/
》

4
D

/3
D

 P
ro

je
ct

io
n

&
O

iff
晩

 a
nd

 叩
 ec

ul
ac

oe
/fi

dS
^

•
I

^
B

B
I".

^

，
乙

iX

Te
tra

hc
dr

al

\
/

/
'

|
/

f
Tr

an
sf

or
m

at
io

n
/

GP
U-

ac
ce

ier
afe

d
^

白

IK
I

'
'

^
D

e
c

o
m

p
o

si
ti

o
n

^
^

1
_

^
V

ol
um

eR
fe

nd
er

in
g

J
•

(O
pt
io
na
l)

—
"

^
to

. fi I o
•

S

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 28

4.1 Preprocessing: From Equations to Tetra-

hedral Mesh

Akin to a traditional 3D rendering pipeline that uses triangles (2-simplex) as

primitive, the GL4D rendering pipeline uses tetrahedra (3-simplex) as primi-

tive. Therefore 3-manifolds specified in parametric equations have to be dis-

cretized to tetrahedral meshes before it can be rendered by the rendering

pipeline.

A 3-manifold u, v) e {M^ E^} is specified by a set of parametric

equations and M l - ' ^ t . u . v). The

generation of the tetrahedral mesh for 3-manifold requires two sets of para-

metric equation: the positional parametric equations given above and the set

of parametric equations for normals A^nwmazC^'^'^) ^ -> E^}-

These two sets of parametric equations are sampled at regular interval in

the parametric space to create a hexahedral mesh, and the hexahedral mesh are

further decomposed into a tetrahedral mesh via 5- or 6-tetrahedral decomposi-

tion algorithm (Figure 4.2). The major differences between the two algorithms

are the number of tetrahedra output and whether the decomposition line of

the opposite face matches. While 5-tetrahedra decomposition produces less

tetrahedra output, adjacent hexahedra needs to be decomposed in opposite

orientation to make the decomposition line matches for adjacent hexahedra.

This limits the number of hexahedra decomposed along each parameter to be

even-numbered if the 3-manifold is closed to make the decomposition line of

the first and last hexadedra match. Both 5- and 6-tetrahedra decomposition

are supported by GL4D but 5-tetrahedra decomposition is used by default to

keep the size of tetrahedra mesh small whenever possible.

Section 5.1 gives the parametric equations for the surfaces that can be

rendered with GL4D. ,

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 29

J F^^^;：：：^^^
••/ /six-tetrahedron ^ ^ ^ V

/ decomposition L /
five-tetrahedron \
decomposition，， ^ /

Figure 4.2: Two possible ways of decomposing a hexahedral cell into tetrahe-
dra: 6-tetrahedra (top) and 5-tetrahedra (bottom).

4.2 Core Rendering Pipeline: OpenGL for 4D

Rendering

While OpenGL is primarily an API for rendering 3D graphics, most of its

internal data path handles 4-vectors and 4 x 4 matrices—with the notable

exception of normal vectors—due to its use of homogeneous coordinate system

for translation and perspective projection in 3D space. Recent development

in OpenGL introduces programmable shaders that allow customization and

augmentation to the otherwise hardwired OpenGL rendering pipeline. The

combination of 4-vector data path and programmable shaaders in OpenGL

opens the door for GL4D to utilize and extend OpenGL for 4D rendering.

GL4D utilizes vertex, geometry and fragment shaders to implement the 4D

rendering pipeline. The vertex shader applies transformation and perspective

calculation to the 4D vertices of tetrahedra and suppresses perspective divi-

sion in fixed function pipeline, the geometry shader [53] slices the tetrahedra ‘

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 30

to rasterize the tetrahedra into voxels and the fragment shader computes the

Phong shading equation from 4D light sources to shade the voxels. One com-

plete rendering pass through all shaders, vertex, geometry, and fragment, are

needed to render one slice of volume frame-buffer.

The GL4D core rendering pipeline implemented in GL4D is separated into

several stages: vertex data upload, slice-based multi-pass tetrahedral mesh ren-

dering and a back-to-front composition to form the final image. The following

sections will introduce and describe these stages.

In GL4D the process of rendering to a 3D frame-buffer is implemented by

multi-pass rendering, with a different slicing plane defined for each pass. A

slicing plane is an axis-aligned plane along the z-axis after projection from 4D

to 3D and corresponds to a slice of voxels within the 3D frame-buffer.

4.2.1 Vertex Data Upload

The tetrahedral mesh for the 3-manifold generated in the preprocessing step

is uploaded entirely to the GPU memory to eliminate the need to upload ver-

tex data for each rendering pass. The vertex data are stored in vertex buffer

object (VBO) to allow more efficient storage using GL_ELEMENT_ARRAY_BUFFER.

GL_ELEMENT_ARRAY_BUFFER adds an additional level of indirection when draw-

ing primitives from VBO: GL_ELEMENT_ARRAY_BUFFER stores indices which in-

directly refers to vertex data stored in other vertex arrays. This level of indi-

rection allows vertex data to be shared among multiple primitives.

4.2.2 Slice-based Multi-pass Tetrahedral Mesh Render-

ing

GL4D features a slice-based algorithm for tetrahedral mesh rendering: n ren-

dering passes are needed to render n slices within the 3D frame-buffer volume

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 31

and the complete OpenGL vertex-geometry-fragment shader pipeline is in-

voked for each pass. The division of work among the shaders will be described

in the coming sections.

Choice of Volume Rendering Algorithm for Tetrahedral Mesh

While the basic 4D rendering pipeline leverages a 3D frame-buffer [37] for

efficient texture-based volume rendering，OpenGL supports rendering to a

3D texture a-slice-at-a-time only. This limitation is the biggest challenge in

implementing the core rendering pipeline in OpenGL and we have considered

two strategies for solving this problem. ..

The first strategy is to treat the tetrahedral mesh after projection to 3D

view space as unstructured grid and perform direct rendering on the projected

unstructured tetrahedral grid directly using algorithm such as Shirley and

Tuchman's Projected Tetrahedra [16]. The biggest advantage of this strategy

is low algorithmic complexity as the 3D frame-buffer is eliminated and the pro-

jected tetrahedral mesh is volume rendered directly onto the 2D screen. While

rendering unstructured tetrahedral grid to screen in one pass is a very attrac-

tive solution, Projected Tetrahedra assumes the whole tetrahedron contributes

to the final image without any occlusion. While this assumption is valid for

volume rendering standard 3D tetrahedral mesh dataset, GL4D requires a 3D

depth buffer in place to perform depth buffering in 4D space properly. Dif-

ficulties in generating the 3D depth buffer and maintaining the whole depth

buffer in graphics memory make the choice of rendering the projected tetra-

hedral mesh directly onto the screen in one single pass an implausible choice

for GL4D.

The second strategy is to use slice-based algorithm to volume render the

tetrahedral mesh. While slice-based algorithm requires multiple rendering

passes to generate one frame, incurring high performance penalty, the slice- .

based nature of the algorithm allows us to maintain the depth buffer for the

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 32

current slice only and, more importantly, makes it possible to utilize hardware-

based z-buffer for efficient 4D depth testing.

Therefore the GL4D core rendering pipeline is evolved from slice-based

rendering algorithm that, we believe, strikes a good balance between rendering

speed and memory consumption.

Vertex Shader

The vertex shader is responsible for transforming the input 4D vertices to

normalized device space within the 3D frame-buffer and 4D normals to 4D eye

space. The transformed vertex coordinates in 3D normalized device space, the

transformed normal in 4D eye space, and the w-coordinate of the vertex in

eye space are attached to the vertex output and sent to subsequent shaders for

the purpose of rasterization, 4D lighting calculation, and occluded fragment

removal respectively.

The calculation in vertex shader includes 4D model view transformation

and 4D perspective projection. Since GL4D have exhausted all four com-

ponents of the 3D homogeneous coordinates to specify a true 4D coordinate

space, GL4D needs to perform explicit perspective calculation instead of us-

ing perspective division from homogeneous coordinate system. Two sets of

transformations transform the 4D vertex input: the first transformation is

for manipulating the object in 4D space and the second transformation is for

rotating the 3D frame-buffer volume.

The following equations describe the first set of transformation with vertex

Pin4D, normal nin4D and model view matrix MModeiView4D-

P0ut4D = MModelView4Dfin4D

^Out4D = ^ModeWiewAD^ln^^

The above equation can be extended to incorporate 4D perspective trans- .

formation with an axis-aligned near plane ai w = near^； and vanishing point

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 33

Object space Eye space 3D NDC space
/ \,.>Each

Position in 4D t z j) Position in 4D j z z j) Position in 3D

Tetrahedron input Normals in 4D 1 ^ Normals in 4D
in object space | l '1 ^ …“

4D Modelview 4D to 3D Projection

Figure 4.3: 4D transformations in vertex shader.

at (0,0,0, vanishing^,).

vanishing^ - near^ 氏 ’

~ = vanishing, - (MModelView4DP0

The second set of transformation follows after projection of the 4D vector

Pout4D to 3D by discarding the w-coordinate and becomes 药n3D. The model

view projection matrix MModeiviewProjSD is used to transform the projected

vector pinSD-

S n 3 D = Projxy^(POut4D)

- _ MModelViewProj3DSn3D
R)ut3D = 7；^ r -

UvlModelViewProj3DPln3D) w

Pout3D is finally translated by amount (0，0，-ZsUce) for slicing plane >2 =

Zsiice and the original depth value pout4Du； is piggy-backed to the ly-coordinate

of the output vector pout to support hardware 4D depth testing.

POut = ((POutSD — (0, 0, Zsiice))xyz ,POut4Dtz;)

GL4D does not currently support translation in 4D, but it would be trivial

to achieve this using an extra shader variable for the 4D translation vector.

Figure 4.3 summarizes the transformation calculations done by vertex shader

in GL4D.

Geometry Shader

The need of depth testing the fragments in GL4D ruled out the possibility to

reuse existing algorithms for tetrahedra rasterization. Therefore we have de-

vised a novel geometry shader-based tetrahedra slicing algorithm that supports .

efficiently depth test each fragment for tetrahedra in tetrahedral mesh.

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 34

(Above the ^ _ (Above the
paper) p 。 p a p e r) p 。

Pi P2P3 一 clockwise order p! PjPg - anti-clockwise order

Figure 4.4: Two possible vertex ordering in a tetrahedron, po is above the
paper and pi, p2 and ps are on the paper.

The geometry shader [53] receives transformed vertices of one tetrahedron

from vertex shader, performs back-tetrahedra culling, and calculates the inter-

section between the input tetrahedron and the axis-aligned plane at the speci-

fied w-coordinate. There are three types of intersection between a plane and a

tetrahedron: no intersections, a triangle, or a quadrilateral. The input to the

geometry shader is one tetrahedron specified by a 4-vertex geometry-shader-

specific primitive GL_LINES_ADJACENCYJEXT. The output of geometry shader is

one triangle strips specifying the intersection between the input tetrahedron

and the slicing plane. The collective sum of these triangle strip outputs forms

the cross section between the entire tetrahedral mesh and the slicing plane.

Back-tetrahedra culling is used in GL4D to eliminate back-facing or de-

generated tetrahedra from the rendering pipeline and avoid them from partici-

pating in subsequent pipeline stages as they do not contribute to the rendered

image. Similar to back-face culling in traditional 3D rendering, back-facing

culling in GL4D requires the vertices of tetrahedra in the tetrahedral mesh to

be specified in a consistent order. The four vertices (po,Pi,P2,P3) of a tetrahe-

dron can be specified either in clockwise or anti-clockwise order, depending on

the spatial ordering of pi , p2 and pz when observed from po. Figure 4.4 illus-

trates the two possible (clockwise and anti-clockwise) vertex orderings when

specifying a tetrahedron.

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 35

GL4D distinguishes front- and back-facing tetrahedra by calculating the

face normal of a tetrahedron:

Vlx V2x V3x X

Face normal of a tetrahedron = ^̂ ^̂ ^̂ ^
Viz V2z Z

Vlw V2w VZw W

where vi = {vix,viy,viz,vuv) = Pi - Po, with i = 1, 2, and 3, are the

three vectors forming the edges of tetrahedron tetrahedron from the vertex po.

Furthermore, since back-face culling requires only the sign of the ly-coordinate

in the face normal, we can simplify the computation to:

Vix V2x Vsx

w—coordinate of the face normal = viy V2y v^y

l^lz V2z Vzw

=Vixyz • {V2xyz X V^xyz)-

The final equation is the signed volume of tetrahedron, and GL4D treats

tetrahedra with negative signed volume as back-facing. Furthermore, tetrahe-

dra with zero signed volume is degenerated and should also be culled.

Slice-based tetrahedra rasterization rasterizes the tetrahedra! mesh slice-

by-slice by calculating the intersection between a slicing plane and the tetra-

hedra (Figure 4.5) in the mesh using Marching Tetrahedron algorithm [54] in

geometry shader.

Geometry shader can assume the slicing plane is always located at 2； = 0 as

the vertex output po^t from vertex shader is already translated by the amount

(0’ 0，-Zsiice) for slicing plane z = ZsUce.

The geometry shader first calculates a sign vector {̂ ign for the tetrahedron

input {po,Pi,P2,P3) by filtering 2;-coordinate of each vertex through the sign .

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 36

- .̂.̂ ^Slicing plane L.__^SIicing plane

Figure 4.5: Two possible intersection between a tetrahedron and a plane: a
triangle or a quadrilateral

operator. The sign operator is defined as sign(x) = 0 if x < 0 and sign (a;) = 1

if a; > 0.

^sign = {sign{poz), sign{pi^), sign{p2z), sign{psz))

There are possible sign vectors and it is used to lookup which edges of

a tetrahedron intersects with slicing plane z = 0 from a lookup table stored in

an integer texture (Table 4.1).

Finally the geometry shader outputs 3 or 4 vertices with vectors for position

and normal linearly interpolated along the edges specified by the lookup table.

The output vertices form a triangle strip (GL_TRIANGLE_STRIP) and represents

the intersection between the slicing plane z = 0 and the tetrahedron.

Hardware Accelerated 4D Depth Testing

GL4D utilizes OpenGL hardware depth buffer to cull occluded fragments along

the fourth dimension. Enabling 4D depth testing can significantly improve

rendering performance by reducing fragment shader executions.

The 2:-coordinate of the output vertices from geometry shader is guaran-

teed to be 0 since these

vertices must lie on the slicing plane z = 0. This

observation allows us to overwrite the ； -̂coordinate of the vertex output by

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 37

sign vector (î sign) set of tetrahedron edges intersecting plane z = ZsUce
- - - - 0

+
- - + - {(̂，̂)，（Vl，?̂2)，fe,̂ 2̂)}
一 - + + {(?；0,'^2), {V1,V2), (Vo.Vs),
- + - - {(幻0,"̂1)，(幻2,̂；1)，(?；3，？；1)}

-+ — + {K, ̂ l̂), V3), (V2, Vl), (V2, V3)}
-+ + - {(Vo, Vl), (Vo, V2), (Vi, V3), (V2, V3)}
- + + +

+ {(孙，&,(̂)̂，?̂ 2),(卯，?；3)}

+ - - + { (Vo,), (Vo, ^2), (t；!, ?；3), (?；2,) }

+ 一 + - Vl), (Vo, V3), (V2, Vl), (V2, ?；3)}
+ 一 + + {(̂ 0̂，外)，(仍，̂ 1̂)，(仍，"̂ 1)}

+ + - + {(iJ0,V2):(VI,V2),(V2,V2)} •
+ + + — {(鄉,仍)，（̂ 1̂,仍)，（仍，̂ 3̂)} + + + + 0
Table 4.1: Lookup table for acclerating marching tetrahedra

the w-coordinate from the original transformed 4D vertex pout4D before pro-

jection to 3D. This is made possible by having the vertex shader piggy backing

Pout4Du； to its output vout and overwriting >2:-coordinate of the vertex output

from geometry shader by pout4D«；-

Fragment Shader

Fragment shader in GL4D is responsible for calculating color and opacity val-

ues for each voxel in 3D frame-buffer volume. The fragment shader employs

per-voxel Phong shading extended to four dimensional light source to obtain

maximum rendering quality. The following equation formally presents the

Phong's shading equation for calculating the shading value of a fragment at

position p wi th normalized normal N . The ambient constant is ia, and there

are n point light sources wi th each light characterized by position vector I

plus diffuse and specular constants id and is. The constants ka, kd, ks and n^

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 38

are global factor for ambient, diffuse, specular and specular exponent respec-

tively. We further need to compute the unit vectors Li = normalize (/J - p)

and Ri = normalize(2(Li. N)N - Li) for each light source I. Finally we take
A

V = (0，0,0，1) since GL4D assumes a constant viewing vector.

I = kJa + ^ (kdid max • -h ksis max ((总 . ， 0))
lights

The above shading equation is good for rendering single-sided surface. The

two max operators will be replaced by abs operators when the surface-to-render

is two-sided.

4.2.3 Back-to-front Composition

While conceptually we volume render the whole 3D frame-buffer after com-

pleting all rendering passes of the multi-slice tetrahedral mesh rasterization

algorithm, this 3D frame-buffer does not actually exist in GL4D. In GL4D the

3D frame-buffer are rendered and composited in back-to-front order on-the-fly:

the furthest slice is rendered and composited to the output and subsequent

slices are blended to the output using ordinary alpha blending equation right

after they are rendered. The need to maintain the whole 3D frame-buffer

texture in graphics memory is therefore eliminated.

4.3 Advanced Visualization Features in GL4D

Building upon the basic 4D rendering pipeline, GL4D supports several ad-

vanced rendering techniques. This section describes these advanced rendering

options made possible by GL4D, and how these options enable better appre-

ciation of 3-manifold in 4D space.

Chapter 4 GI4D: Hardware Accelerated Interactive 4D Visualization 39

4.3.1 Stereoscopic Rendering

Unlike ordinary 3D rendering, the voxels in the 3D frame-buffer does not cast

shadow upon itself. This made interpreting the intricate 3-manifold projection

in the 3D frame-buffer more difficult than usual as the depth cues such as light-

shadow contrast we have accustomed to are unavailable. One way to overcome

this limitation is by using stereoscopic rendering to provide 3D information via

binocular vision instead of traditional light-shadow depth cues. GL4D supports

stereoscopic rendering of the 3D frame-buffer at the expense of executing at

half the normal frame-rate.

Stereoscopic rendering in GL4D is accomplished by rendering the 3D frame-

buffer twice, one for left eye and the other for right eye, with two slightly

different asymmetric frustum projection for projecting the voxels in 3D frame-

buffer to 2D screen. The asymmetric frustum algorithm adopted by GL4D is

adapted from description by Paul Bourke [55]:

A l g o r i t h m 1; glFrustum setup for the image for left eye.
1 ScreenHalf 卜 0.5 * ScreenWidth * FrustumFar / FrustumNear ；

2 glFrustum(
/ / Left

3 -(ScreenHalf - Halflod) * FrustumNear / FrustumFar,
II Right

4 +(ScreenHalf + Halflod) * FrustumNear / FrustumFar,
II Bottom

5 - (0 .5 * Screen Height),
II Top

6 0.5 * ScreenHeight,
7 FrustumNear, FrustumFar
8)；

9 glTranslatedC-Halflod, 0，0);

Algorithms 1 and 2 show how glFrustum is setup differently for left and

right eyes in GL4D to allow stereoscopic rendering. The constants ScreenWidth

and Screen Height are the size of the screen; FrustumNear and FrustumFar are ,

the ^-coordinate of the near and far plane along the z-axis; and Halflod is

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 40

Algor i thm 2; glFrustum setup for the image for right eye.
1 ScreenHalf f - 0.5 * ScreenWidth * FrustumFar / FrustumNear ；

2 glFrustum(
II Left

3 -(ScreenHalf + Halflod) * FrustumNear / FrustumFar，

II Right
4 +(ScreenHalf - Halflod) * FrustumNear / FrustumFar,

II Bottom
5 -(0.5 * Screen Height),

/ / Top
6 0.5 * ScreenHeight；

7 FrustumNear, FrustumFar
8)；

9 glTranslatedC+Halflod, 0，0);

half of interocular distance—the greater the interocular distance the more the

stereoscopic polarity between the images for left and right eyes.

4.3.2 False Intersection Detection

Similar to a 3D object without self intersections itself can produce 2D pro-

jection with self intersections, a 4D object without self intersection can also

produce projection with self intersections when projected to 3D frame-buffer.

GL4D has the ability to detect these false intersections using the min-max

depth buffer technique [56] and display these self intersections to users.

False intersection detection works by rendering each slice in the 3D frame-

buffer two times: the first pass produces a min-max depth buffer for the slice

2 = Zsiice and the second pass renders the object normally.

A min-max depth buffer records the minimum and maximum depth value

of all fragments frag^ = {x,y, ZsHcê Wi) arriving at the same pixel {x,y) of the

min-max depth texture, i.e.

MinDepthoOr，y) = min ({w;̂ : Vfrag^ = (x, y, ZsHce,切i)})

MaxDeptho{x,y) = ma.x {{wi : Vfrag^ = {x,y,Zsiice,Wi)}).

Chapter 4 GL4D: Hardware Accelerated Interactive 4D Visualization 41

• •

• •
Figure 4.6: Steiner surface in divergent stereoscopic rendering.

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 42

This min-max depth buffer is computed using the GL_MAX blending equa-

tion and writing (frag、ŷ ，— fragi’„^，0,0) as the output color value from frag-

ment shader for fragment frag^. This process creates a 2D texture with pixels

recording the maximum and minimum depth value for fragments arriving at

each pixel. The minimum and maximum depth value differs only when more

than one fragment with different depth value had accumulated to the same

voxel, i.e. MinDeptho(x,2/) + MaxDeptho(a;,?/). In such case the voxel in 3D

frame-buffer at (x, y) is deemed a false intersection and can be rendered with

special color in the second normal rendering pass.

4.3.3 Transparent 4D Objects Rendering

While the volume rendered image of the projected 3-manifold shows some

degree of transparency, the 4D object being rendered is actually opaque. The

transparency is added artificially in the volume rendering step to allow better

understanding of the intricate structure inside the 3D frame-buffer. On the

other hand GL4D also supports rendering a transparent 4D object by adapting

and extending the dual depth peeling algorithm [56] to 4D rendering.

The basic 4D rendering pipeline assumes the opaque 3-manifolds, therefore

4D depth testing is done along the fourth dimension to eliminate occluded

fragments. To support rendering transparent 4D object we first need to disable

4D depth testing and then sort the fragments compositing on the same voxel

in back-to-front order in order to composite them correctly. Consider the

scenario where orthographic projection is used to project n fragments fragg =

{x,y,z,wo), fragi = {x,y,z,wi), ..., frag„_i = (x,y,z,Wn-i) with Wq < wi <

...< Wn-i, to the same voxel (x, y, z) in the 3D frame-buffer volume. For

opaque 4D object all but the nearest fragment /。= {x, y, z, Wq) is discarded

and only the nearest fragment can be written to the voxel {x,y,z) in the

frame-buffer volume. On the contrary when rendering transparent 4D object .

Chapter 4 GL4D: Hardware Accelerated Interactive 4D Visualization 43

all fragments frag^ = (x, ？/, z, Wi) have to be composited to the voxel {x, y, z).

GL4D supports rendering transparent 4D objects by performing 4D depth

peeling algorithm on every slice in the 3D frame-buffer volume. To render a

slice qX, z — Zsiice GL4D first needs to obtain an initial min-max depth buffer.

Recall that a min-max depth buffer records the minimum and maximum depth

value of all fragments arriving at the same pixel, and this initial min-max depth

buffer is the same as the one used in false intersection detection in Section 4.3.2.

After the initial min-max depth buffer is created GL4D proceeds to com-

posite fragments arriving to the slice 2； = ZsUce in the volume frame-buffer

using multiple rendering passes. In the rendering pass the min-max depth

buffer for the next pass storing the next minimum and maximum depth values

is computed, i.e.

MinDepthi(a:,2/) = min ({？: Vfrag^ = ix,y,Zsiice,w) Aw> MinDepthi_i(x, ?/)})

MaxDepthiOc，y) = max ({？i； : Vfrag^ = {x, y, ZsUce, w) Aw < MaxDepthi_i(a;, y)}).

At the same time fragments bearing the same depth value as the minimum

or the maximum depth value in the min-max depth buffer (MinDepth“ i ’ MaxDepth^.i)

is rendered and composited with fragments from previous passes. The GL_MAX

blending equation is used for min-max depth buffer generation and front-to-

back composition and the conventional GL_SRC_ALPHA and GL_ONE_MINUS_SRC-ALPHA

is used for back-to-front composition. .

The front-to-back composition equation is the same as the one used in [56 .

The color Q and alpha Ai values are associated with the fragment (x, ？/, z^nce, Wi),

ie . Co, •. .，Cn-i and A。，.. .，̂n-i are ordered in front-to-back order. C- and

X

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 44

in the equation represents the state of the composition buffer after com-

positing color {Ci,Ai).

Cli = 0
= 1

成 = (1 -

Furthermore, since we are using GL_MAX blending we need to make and

monotonically increasing for increasing i. This is achieved by tweaking the

above equations to write I - A[instead of A[to the composition buffer.

C'U = 0
= 0

The pseudo-code in Algorithm 3 summarizes the 4D dual depth peeling

algorithm for rendering one slice in the volume frame-buffer.

4.3.4 Optimization

Various optimization techniques have been employed in GL4D to achieve inter-

active frame-rate without sacrificing rendering quality. This section describes

a novel GPU-assisted hexahedral culling that dramatic reduces the number

of tetrahedra being processed for each rendering pass by removing tetrahedra

that have no intersection with the slicing plane.

GPU-assisted Hexahedral Culling

Each slice of the 3D frame-buffer is to be rendered and composited indepen- .

dently to produce the volume rendered image of the 3D frame-buffer. In other

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 45

A l g o r i t h m 3: The 4D dual depth peeling algorithm.
1 Texture MinMaxDepthTexture [2];
2 Texture FrontTexture [2];
3 Texture BackTexture;
4 Texture OutputTexture;

5 Create and initialize textures MinMaxDepthTexture, FrontTexture,
BackTexture and OutputTexture ；

6 Initialize MinMaxDepthTexture [0] to store the minimum and maximum
depth value for each pixel in the slice.、 •‘

7 for i 0 to MAX_DUAL_DEPTH_PEELING_ITERATI0NS-1 do

8 Clear BackTexture ；

9 glBlendEquatioii(GLJlAX)；

10 Shader Program 1

11 Write the next set of min-max depth value for next iteration to
MinMaxDepthTexture [(z + 1) % 2] ;

12 Accumulate fragments from front-to-back by compositing
fragments having the same depth value as the minimum depth
value in MinMaxDepthTexture [i % 2] with fragment in
FrontTexture [i % 2] using the front-to-back blending equations ；

13 Write the composited result for front-to-back composition to
FrontTexture [(z + 1) % 2]；

14 Write fragments having the same depth value as the maximum
depth value in MinMaxDepthTexture [i % 2] to BackTexture ；

15 glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)；

16 Shader Program 2

17 Composite the BackTexture to OutputTexture.;
18 Empty fragments in BackTexture is discarded to allow occlusion

query to terminate the dual depth peeling loop when there is
_ nothing more to peel ；

19 Shader Program 3

20 Composite FrontTexture to OutputTexture ；

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 46

words the 3-manifold have to be rendered repeatedly for each slice in a naive

implementation of the 4D rendering pipeline. Based on the observation that

not all tetrahedra in the 3-manifold participate in the rendering process of

one slice—only tetrahedra which intersect with the slicing plane do. We have

employed an algorithm to cull these out-of-slice tetrahedra by dividing the 3-

manifold into multiple patches and calculate a bounding hypercube for each

patch. With the assistance of GPU these bounding hypercubes will be used to

cull patches of tetrahedra mesh that do not intersect with the slicing plane.

The 3-manifold model is first preprocessed by separating it into multiple

surface patches along the parametric space at regular interval For each patch a

bounding hypercube is calculated to bound the whole surface patch in E^. This

process is akin to breaking up a 2-manifold in into patches and calculate

a bounding cube to bound each of these patches. The following equation

formalizes this operation with a given surface patch P in an n-dimensional

space, i.e. _P e W, and the two extrema for the bounding hypercube

B = {{min{jp:,),min{py)), {max{p:,),max{py))) \/peP e

The two extrema can be used to calculate the vertices of the bounding

hypercube. A bounding hypercube in E" has vertices. Algorithm 4 can be

used to generate all vertices for the bounding hypercube in E" and store them

in GPU memory as vertex buffer objects.

A l g o r i t h m 4; Generation of all vertices for a bounding hypercube in E"
1 Vertex Hull [2]; 一 ‘
2 Hull [0] = first extremum;
3 Hull [1] = second extremum;
4 for z ^ 0 to - 1 do
5 Vertex v;
6 for j 0 t o n - 1 do
7 |_ v\j] — Hull[(z k (1 « j)) > 0][i];
8 _ Store V to a vertex buffer object., •

Chapter 4 GLJ^D: Hardware Accelerated Interactive 4D Visualization 47

In GL4D 16 vertices are used to specify the bounding hypercube of a sur-

face patch. Before rendering a frame the nearest and furthest depth values

are computed for each bounding hypercube under the 4D transformation. The

min-max depth buffer algorithm had been modified to calculate the nearest and

furthest depth value for the bounding hypercubes: The 16 vertices of a bound-

ing hypercube are transformed by vertex shader and are written to the same

fragment location with the color value {-z, z, 0,0), 2； being the j2;-coordinate of

a hypercube vertex after 4D transformation, with GL_MAX blending equation.

The above procedure allows us to compute the minimum and ma:ximum depth

value for each bounding hypercube efficiently using GPU. Memory usage of

the target texture is further reduced by packing the minimum and maximum

depth value of two bounding hypercube into one pixel, red and green channel

for one hypercube and blue and alpha channel for another, this technique ef-

fectively halves the memory usage and allows us to optimize the speed when

reading back from the texture by CPU.

Chapter 5

Results

5.1 Data Sets

We have developed a series of data sets to work with the GL4D rendering

platform. These data sets fall into two categories: 3- and 2-manifolds. These

3- and 2-manifolds are defined in E^, i.e. 4 and 4 respectively, but

they differ in the number of degree of freedom on the surface. GL4D only

supports rendering Al^"^^ as only are capable of interacting with 4D

light sources. A thickening operation can be used to upgrade «M2~>4【〇

as a preprocessing step to render M ^ ^ ^ in GL4D.

We take analogies from 3-dimensional space to illustrate this. There are

two types of surfaces with different dimension in three-dimensional Euclidean

space E3: 2-manifolds (two dimensional surfaces, M ^ ^ ^) and 1-manifolds (one

dimensional lines, M^^^) . 2-manifolds in E^ are capable of interacting

with 3D light sources, while l-manifolds in E^ do not as normal vectors

are not defined for a line in E^.

While 1-manifolds do not have normal vectors we can still to define

a normal plane for each point t on M^-'^it). The normal plane at is

perpendicular to the tangent vector 必 f (力)at I f we attach circles

(1-sphere, S^) with a fixed radius r to each point on the 1-manifold .

then the 1 dimensional line wil l be thickened to a tube with 2 dimensional

48

Chapter 5 Results 49

surface. The thickening process is essentially forming topological product

3 = 3 X 51 between M ^ ^ ^ and S^. In general only (n - l)-manifolds

defined in n-dimensional Euclidean space E" are capable of interacting with

lights, but we can thicken (n - 2)-manifolds to (n - l)-manifolds by forming

topological product between them and another 1-manifold such as circles (5^).

Similarly in order to to render 2-manifolds 胚4 g l 4 D we need

to first thicken them to by attaching 1-spheres to the normal plane at

each point on the 2-manifolds M^^'^ix^y). The thickened 2-manifold can be

illuminated by 4D light sources and rendered by GL4D.

Most of the data sets in this section was derived from previous litera-

tures [37], with the exception of the Fermat surface. We have reimplemented

these data sets to verify the correctness of GL4D by comparing our rendered

images against those generated from previous work.

5.1.1 3-manifolds in

3-manifolds 4 ^re three dimensional surfaces in E^ that are capable of

reflecting lights from 4D light sources directly. These surfaces can be directly

decomposed into tetrahedral mesh and rendered by GL4D without thickening.

3-sphe re~S^

An n-sphere is a generalization of ordinary spheres to higher dimensional

spaces. An n-sphere has an n dimensional surface and can be embedded into

spaces with dimensions from n + 1 onwards. A circle is a 1-sphere, an ordinary

sphere is a 2-sphere, and finally a hypersphere is a 3-sphere. A hypersphere

(3-sphere) is a 3-manifold that can be embedded into E^ and therefore can be

Chapter 5 Results 50

visualized by GL4D. The equations
/

cos(<s)

sin(s) sm{t) sm{u)
S'^{s,t,u) = , where 0 < s < 7 r , 0 < t < 7 r , 0 < ? i < 2 7 r

sin(s) sin⑷ cos(?x)

sin(s) cos ⑷
\

characterize a unit 3-sphere S^ in E^.

The above equations define both the position and the normal for each point

on the surface of the 3-sphere.

Hypercube

The surface of a 4D hypercube is a 3-manifold formed by 8 3D cubes. The 4D

hypercube can be generated directly using Algorithm 5.

Each of the eight cubes in the 4D hypercube can be directly decomposed

into tetrahedra. A 4D hypercube can be decomposed into 8 x 5 = 40 tetrahe-

dra if 5-tetrahedra decomposition is used. Each of the 8 cubes can be rendered

using different colors to better visualize the relationship among them during

4D rotation. Figure 5.1 is a hypercube rendered with 4D perspective projec-

tion and 4D transparency but without back-face culling to achieve the classical

cube-in-cube effect for hypercube visualization. Figure 5.2 contains a 4D ro-

tation sequence of 4D hypercube rendered by GL4D.

5.1.2 2-manifolds in E'̂ —

2-manifolds must first be converted to 3-manifolds by a thicken-

ing algorithm before they can be rendered by GL4D.

Chapter 5 Results 51

Algor i thm 5: Generation of a hypercube
1 for i — 0 to 4 - 1 do

// For each dimension

2 for j ^ 0 to 2 - 1 do
II For the two cubes along each dimension

3 if j = 0 then
4 Extra Dimension < 1;

5 else
6 Extra Dimension 1;

7 for Cube[0] — 0 to 2 - 1 do
8 for Cube[l] — 0 to 2 - 1 do
9 for Cube[2] — 0 to 2 - 1 do
10 Vertex v;
11 Vertex n;

12 for A; — 0 to i — 1 do
13 v[k] = Cube[A;] * 2 — 1;
14 if (i + j) % 2 then
15 v[k] < v[k]-,

16 n[k] 0;

IT ij⑷—ExtraDimension; n[i] — ExtraDimension;

18 for — i + 1 to 4 — 1 do
19 ^ Cube[/c — 1] * 2 — 1;
20 if {i + j) % 2 then
21 v[k] i v[k]',

22 n[k] '(r- 0;

23 _ OutputVertex(^;); OutputNormal(n);

Chapter 5 Results 52

Figure 5.1: Hypercube in convergent stereoscopic view.

The Thickening Algorithm

A 2-manifold in E^ is specified by a system of four parametric

equations with two parameters u and v. Two sets of partial derivatives are

calculated analytically and these two sets of partial derivatives can then be

used to calculate two tangent vectors T^{u,v) and for each position

T''(u,v)= I 召"

, du

, du

dv ••

X T%u,v)={ 彻

dv

dv .

The triad formed by the positional vector v) and the two tangent

Chapter 5 Results 53

I
Figure 5.2: Hypercube rotation in E l

Chapter 5 Results 54

vectors T^{u,v) and T^{u,v) for parameters {u,v) can be ortho-normalized

by Gramm-Schmidt process to form a Cartesian frame A{u,v)^ B(u,v) and

C{u^v) at (u, f) .

A{u, v)=卞，； a{u, v) = v)

B M = b(u,v) = r\u,v) - p r o j 一) 『 (— ）

C(u,v) = = T^(u,v) - proj_，„)Cr—))

Two normal vectors N^(u,v) and v) span the normal plane at posi-

tion The first normal vector Ni(u,v) is the first vector A{u,v)

in the cartesian frame at and the second normal vector N^{u,v)

is the 4D cross product of the Cartesian frame {A^, Ay^ Az, A^) = A{u,v),

{B^,By,B,,B^) = B(u,v) and = C{u,v).

N'^{u,v) =A{u,v) X B{u,v) X C{u,v)

. . i j k I

•^x -^y •^z -^w

Bx By Bz Byj

Cx Cy Cz Cyj

\ 、 B A - B^C,) - A,{ByC^ — B^Cy) — A^{ByC, - B,Cy)、

= - B^C,) — A“B工Cy^ - B^a) — —

Aa^iByC^ — B^Cy) - Ay(B工C比-B^a) - — ByC^)

[MByC, - B,Cy) - Ay{B,C, - — A,{B,Cy - ByC：,) >

The 2-manifold ^an then be thickened to a 3-manifold by

attaching a 1-spheres (circle, S^) with radius r on the normal plane of every

points on

normal(«M3—4)(权，幻，没）=cos{e)N\u,v)sm{e)N\u,v)

Chapter 5 Results 55

m
Figure 5.3: 3-torus in convergent stereoscopic view.

normal(«M3~^4)(以,〜没）and v, 9) are parametric equations for nor-

mal and positional vector of the thickened 2-manifold.

3-torus一T3

3-torus T^ = T2 X = X X S^ is a topological product of three circles

(S^i). The following equations produce a 2-torus T^{u,v) e in E^

f

cos(w)

sin(tt)
v) = < where 0 < u,v < 27r.

cos(v)
sin(v)

The 2-torus T^(u,v) can be thickened to a 3-torus (Figure 5.3 and 5.4)

T^ e in E4 using the thickening equation.

Chapter 5 Results 56

_

；睡
_

钃
_

_ m
Figure 5.4: 3-torus rotation in E^. .

Chapter 5 Results 57

Knotted Sphere

The knotted sphere starts from a Trefoil knot Trefoil(i)

(2 + cos 3t) cos 2t

Trefoil(t) = j (2 + cos 3t) sin 2t ’ where 0 < t < 2?:.

sin 3右

\

The Trefoil knot is then cut open and the loose ends are attached to the 2;-axis

(Figure 5.6). The open Trefoil knot is defined piecewise with the constants
•r … , a a , 1001 , 3 。

a = 1.414 b = - c = - d = —— I = - Xo = 2
3 2 3000 5

Chapter 5 Results 58

<尸2a；、 ((Pix\ /(a + bcos (Snd)) cos (27rd) - a;。、、

0 0 + 0

y2zj \ \Piz/ \ - c s i n (SttcJ)))

(0 \

+ {a + b cos (STrd)) sin {^ird)

V C /

—(a + 6 cos (警)）cos (等）+ xo

P i = (a + 6 c o s (f)) s i n (f)

e s i n (f)
、
‘

户2 = + 6 cos (警))cos (f) 一 (a + 6 cos (3警)）(sin (2 学)+ cos (2等)）

0
、

卜Y卜、
尸3 = -O.bPiy + 1.5P2y

Chapter 5 Results 59

and the piece-wise equations

‘ (\

cos tP2x

lP2,smt-{-P2y ,t = 华 if 0 < 5 < 1

V 尸2- /

CatmullRom(5 - 1’ 尸3，巧，A, A) if 1 < 5 < 2

/ \
-(a + b cos ⑶)）cos(2i) + Xq

(a + 6 cos (3t)) sin⑶） ，t = f + 警(s — 2) if 2 < 5 < 3

y c sin (3 亡） 乂

OpenTrefoi l⑷=< ((P o x \ (Pix ^ ^

S — 3 ， -Poy ， -Ply

CatmullRom if 3 < s < 4

(\ (\
P2x Pzx

‘—尸2y ‘ -Pzy

(\
C0StP2x

= if 4 < 5 < 5

A -PH]

Chapter 5 Results 60

Figure 5.5: Trefoil knot in E^

where 0 < s < 5 and Catmull-Rom spline defined by the equation

/ ,3 \ ^ / 1 o ^ 1 \ / \

—1 3 —3 1 \ I po

CatmullR6m(po,Pi,P2,P3,^) = 0.5 七 2 5 4 1 .

t - 1 0 1 0 P2

V V 2 0 0 ； [psj
The open Trefoil knot is finally spun in E^ to form a knotted sphere

f

OpenTrefoil(u)a； cos(^)

OpenTrefoil(w)y
SpunTrefoil(w,^) = ^ .

OpenTrefoil(u)a,sin(^)

OpenTrefoil(ii)^
、

This knotted sphere is a 2-manifold in E4 and can be thickened

before being rendered by GL4D (Figure 5.7 and 5.8).

Chapter 5 Results 61

Figure 5.6: Open trefoil knot in E^ before spinning.

Figure 5.7: Trefoil knot hidden in knotted sphere in convergent stereoscopic
view. .

Chapter 5 Results 62

_

_ 國I
國

國

Figure 5.8: Knotted sphere rotation in E l

Chapter 5 Results 63

Steiner Surface

A real projective plane is formed by gluing the antipodal points on the only

edge that loops around a Mobius strip. Steiner surface is the immersion of real

projective plane in E^. The equation

cos^(w) cos2(i)) — sin̂ (ii) coŝ (?;)

sin(w) cos(w)
Steiner(w, ！‘) = < where 0 < u, < tt

cos(w) sin(?;) cos(?;)
sin(ii) sin ⑷ cos(?;)

describes the Steiner surface in E^. Since it is formed from a Mobius strip

it is a one-sided surface. Figure 4.6 is a stereoscopic rendition of the Steiner

surface.

r

Chapter 5 Results 64

Fermat Surfaces

(ni,n2)-Fermat surface (Fermat(ni,7^2)) is a 2-manifold in E^ formed by a

patch work of n\ x 712 2-manifolds (FermatPatch(A;i, ni； [57'.

a ⑷ = 臺 (e 〜 ’

Uirie,(j)) = COS + (6(0) sinef

«2r (仏 0) = y (a⑷ COS (• —) 2 + (b⑷ Sin (f —力) 2

, … 2 1 (6(0) sin (l - 0) \
从2认0, (f>) = - tan-i —^~~

n2 乂 a{(j)) cos - 0) J

Ulr(fi, (t>) cos (271"告 + (f))^

FermatPatch(fci,ni；/C2,n2) = < ^̂ ^ , 利 . (n i 1功（，於)) ，

0) COS (27r浩 + U2讽

U2r{0, (f) sin (27r普 + U2认0,0))

where 0 < 0 < ^t t , - 1 < 1

Fermat(ni,n2) = (J (J FermatPatch(/ci, ni;/c2’ n2)
fcie{0,l,…,ui-l} &2€{0’1,…,ti2—1}

A (ni,n2)-Fermat surface can be thickened to a 3-manifold jVfS—4 and

rendered in GL4D. Figure 5.9-5.17 shows a gallery of (ni,n2)-Fermat surfaces

in convergent stereoscopic rendering. •

Chapter 5 Results 65

E M
H^HHB^BBI

Figure 5.9: (1,2)-Fermat surface in convergent stereoscopic rendering.

X ”

Figure 5.10: (1,3)-Fermat surface in convergent stereoscopic rendering.

I》r I
确 •

Chapter 5 Results 67

• B H H

Figure 5.13: (2,4)-Fermat surface in convergent stereoscopic rendering.

Figure 5.14: (3,3)-Fermat surface in convergent stereoscopic rendering.

Chapter 5 Results 68

Figure 5.15: (3，4)-Fermat surface in convergent stereoscopic rendering.

.\

Figure 5.16: (4,4)-Fermat surface in convergent stereoscopic rendering.

Chapter 5 Results 69

Figure 5.17: (5,5)-Fermat surface in convergent stereoscopic rendering.

5.2 Performance
Three PC systems with different graphics hardware configurations were em-

ployed to render three opaque 4D models—hypercube, 3-torus, and Steiner

surface—with 4D depth testing and per-voxel shading in 4D. Table 5.1 sum-

marizes a performance analysis of GL4D.

• 8600 GTS: Dell OptiPlex GX620 with Intel Pentium D 3GHz, 1GB mem-

ory, and NVIDIA GeForce 8600 GTS;

• 9800 GT: Dell XPS 730 with Intel Core 2 Quad Q94p0 2.66GHz, 3GB

memory, and NVIDIA GeForce 9800 GT;

• GTX 285: Dell Precision T5400 with Intel Xeon 2.50 GHz, 8GB memory,

and NVIDIA GeForce GTX 285.

I t is worth noting that although the hypercube only has 40 4D tetrahedra,

these tetrahedra are relatively large in size when compared to tetrahedra in

other models; hence, they produce a substantial number of tetrahedron-slice .

intersections and voxel fragments. The number of slices in the 3D rasterization

Chapter 5 Results 70

Number of slices 64 128 256 512
Hypercube — Tetrahedra sliced 1920 " ^ 0 7680 — 15360 =
(40 tetrahedra) 8600 GTS Wf ^ 15 KE

9800 GT 59.9 59.88 29.95 15.98
GTX 285 59.95 59.95 29.95 19.98

4D Torus : Tetrahedra sliced 672000= 1363200 "2736000 H O O ^
(115200 tetrahedra) 8600 GTS ^ 72 ^

9800 GT 29.95 19.98 9.98 5.44
GTX 285 59.95 29.97 29.93 14.98

Steiner Surface — Tetrahedra sliced "8868Q0~ 1770400^ 3533600 7064000
(115200 tetrahedra) 8600 GTS 10 KS ^

9800 GT 29.94 19.96 9.98 4.99
GTX 285 58.53 29.97 19.97 14.98

Table 5.1: Frame-rate (frame per second) of GL4D for different 4D models and
different hardware configurations with different numbers of slices.

(or voxelization) process can greatly affect the performance (and quality) of

GL4D; the greater the number of slices, the more tetrahedron-slice intersec-

tions occur (the first data row for each model shown in the table), and hence,

the more calls to the geometry shader and the more voxel fragments for the

fragment shader to process. In general, 256 slices are employed in practice.

We tested the performance of GL4D on a series of three successive generations

of graphics cards: NVIDIA GeForce 8600, NIVIDIA GeForce 9800 GT, and

NVIDIA GeForce GTX 285. We can see from the table that real-time perfor-

mance can be achieved with the latest GPU technology. For instance, using

the GeForce GTX 285 to display the flat torus using 256 . slices, GL4D can

generate 81.9M tetrahedron-slice intersections per second.

Chapter 6

Conclusion

GL4D is a 4D rendering platform which includes uti l i ty programs to gen-

erate and preprocess manifolds in 4D Euclidean spacewhich can be na-

tive 3-manifolds M ^ ^ ^ or 2-manifold M ^ ^ ^ after thickening~into hexahe-

dral mesh and subsequently to tetrahedral mesh. The resulting tetrahedral

mesh is uploaded to memory on graphics processor as OpenGL vertex buffer

objects (VBO). The core GL4D rendering pipeline can then rasterizes the up-

loaded tetrahedral mesh to a 3D frame-buffer and finally volume render the

frame-buffer , to the 2D computer display. Advanced rendering and visualiza-

tion techniques such as stereoscopic rendering, false intersection detection and

transparent 4D object rendering had also been implemented and explored in

GL4D. Finally GL4D achieves interactive frame-rate and produces high-quality

rendering by employing various optimization techniques and implementation

tricks. These features had allowed GL4D platform to unravels the mysterious

4D objects within 4D world before us and fuel future scientific and mathemat-

ical researches.

X

71

Chapter 7

Future Work

While GL4D has a complete suite of tools for generating and rendering 4D

objects from mathematical equations to computer display, much can be done

to make the visualization platform perfect. Currently GL4D is capable of

rendering 4D objects that had been pre-generated offline and cached in GPU

memory to achieve interactive performance, and this limitation makes GL4D

unsuitable for applications that requires online model editing such as CAD for

4D objects. Furthermore, the process of creating a 4D tetrahedral mesh from

mathematical equations is very labor intensive and involves a lot of human

intervention, e.g. deriving the tangential equations analytically and fixing any

singularity points encountered. This non-automated model generation process

made creating new models for GL4D difficult.

The GL4D visualization system is just the first step towards a more full

fledged interactive 4D visualization for exploring high dimensional objects,

and a lot of work is still necessary to bring 4D visualization to its full po-

tential. Possible future research directions include designing additional vi-

sual cue to aid interpretation of 4D objects; explore the application of non-

photorealistic rendering techniques to selectively emphasize important land-

marks on 3-manifolds; devise a more systematic way to help users to develop

intuition for high dimensional objects; and comparative study to compare be-

tween various visualization cues.

72

Chapter 7 Future Work 73

These further researches will evolve GL4D from merely a 4D rendering

system to a comprehensive suite for high dimensional object exploration. These

future research work will make the fruit of this research seeds new researches

in the future.

Bibliography

1] Khronos Group, "OpenGL - the industry standard for high performance

graphics." h t t p : / / o p e n g l . o r g / .

2] D. Luebke, M. Harris, J. Kriiger, T. Purcell, N. Govindaraju, 1. Buck,

C. Woolley, and A. Lefohn, "Gpgpu: general purpose computation on

graphics hardware," in SIGGRAPH '04： ACM SIGGRAPH 2004 Course

Notes, (New York, NY, USA), p. 33，ACM, 2004.

3] K. A. Mark Segal, "The OpenGL graphics system: A specification (ver-

sion 4.0 (core profile) - march 11, 2010).’，http: //www. opengl. o rg /

reg is t ry /doc/g lspec40.core .20100311.pdf .

4] M. MeiBner, U. Hoffmann, and W. StraBer, "Enabling classification and

shading for 3d texture mapping based volume rendering using opengl and

extensions," in VIS ,99: Proceedings of the conference on Visualization

，99, (Los Alamitos, CA, USA), pp. 207-214, IEEE Computer Society

Press, 1999.

5] W. E. Lorensen and H. E. Cline, "Marching cubes: A high resolution 3d

surface construction algorithm," SIGGRAPH Comput Graph., vol. 21，

no. 4, pp. 163-169, 1987.

6] M. Levoy, "Display of surfaces from volume data," IEEE Comput Graph.

AppL, vol. 8, no. 3, pp. 29-37, 1988. •

74

http://opengl.org/

7] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. S.

Avila, K. Martin, R. Machiraju, and J. Lee, "The transfer function bake-

off," IEEE Comput. Graph. AppL, vol. 21, no. 3，pp. 16-22，2001.

8] D. Ebert and P. Rheingans, "Volume illustration: non-photorealistic ren-

dering of volume models," in VIS ’00: Proceedings of the conference on

Visualization ,00, (Los Alamitos, CA, USA), pp. 195-202, IEEE Com-

puter Society Press, 2000.

9] P. Rheingans and D. Ebert, "Volume illustration: Nonphotorealistic ren-

dering of volume models," IEEE Transactions on Visualization and Com-

puter Graphics, vol. 7，no. 3, pp. 253-264, 2001.

10] S. Grimm, S. Bruckner, A. Kanitsar, and E. Groller, "Memory efficient

acceleration structures and techniques for cpu-based volume raycasting

of large data," in VV，04: Proceedings of the 2004 IEEE Symposium on

Volume Visualization and Graphics, (Washington, DC, USA), pp. 1-8 ’

IEEE Computer Society, 2004.

11] D. S. Ebert, C. J. Morris, P. Rheingans, and T. S. Yoo, "Designing effec-

tive transfer functions for volume rendering from photographic volumes,"

IEEE Transactions on Visualization and Computer Graphics, vol. 8, no. 2,

pp. 183-197, 2002.

12] J. D. Foley, A. van Dam, and J. F. Feiner, Steven K. a nd Hughes, Com-

puter Graphics: Principles and Practice in C. Addison-Wesley Profes-

sional, second ed.，August 1995.

13] C. Johnson and C. Hansen, Visualization Handbook Orlando, FL, USA:

Academic Press, Inc., 2004.

75

14] P. Lacroute and M. Levoy, "Fast volume rendering using a shear-warp fac-

torization of the viewing transformation," in SIGGRAPH '94： Proceed-

ings of the 21st annual conference on Computer graphics and interactive

techniques, (New York, NY, USA), pp. 451-458, ACM, 1994.

15] C. T. Silva and J. S. B. Mitchell, "The lazy sweep ray casting algorithm

for rendering irregular grids," IEEE Transactions on Visualization and

Computer Graphics, vol. 3, pp. 142-157, 1997.

16] P. Shirley and A. Tuchman, "A polygonal approximation to direct scalar

volume rendering," SIGGRAPH Comput Graph., vol. 24, no. 5, pp. 63-

70, 1990.

17] S. Rottger, M. Kraus, and T. Ert l , "Hardware-accelerated volume and

isosurface rendering based on cell-projection," in VIS，00: Proceedings of

the conference on Visualization，00, (Los Alamitos, CA, USA), pp. 109-

116，IEEE Computer Society Press, 2000.

18] R. Westermann and T. Ertl , "The vsbuffer: visibility ordering of unstruc-

tured volume primitives by polygon drawing," in VIS '97: Proceedings

of the 8th conference on Visualization '97, (Los Alamitos, CA, USA),

pp. 35-ff., IEEE Computer Society Press, 1997.

19] D. M. Reed, R. Yagel, A. Law, P.-W. Shin, and N. Shareef, "Hardware

assisted volume rendering of unstructured grids by incremental slicing,"

in VVS，96: Proceedings of the 1996 symposium on Volume visualization,

(Piscataway, NJ, USA), pp. 55-ff., IEEE Press, 1996.

20] M. Levoy, "Efficient ray tracing of volume data," A C M Trans. Graph.,

vol. 9, no. 3, pp. 245-261, 1990.

76

21] T. J. Cullip and U. Neumann, "Accelerating volume reconstruction wi th

3d texture hardware," tech. rep., University of North Carolina at Chapel

Hill, Chapel Hill, NC, USA, 1994.

22] M. Meifiner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis，"A prac-

tical evaluation of popular volume rendering algorithms," in VVS，00:

Proceedings of the 2000 IEEE symposium on Volume visualization, (New

York, NY, USA), pp. 81-90, ACM, 2000.

23] J. Kriiger and R. Westermann, "Acceleration techniques for gpu-based

volume rendering," in VIS ’03: Proceedings of the 14th IEEE Visual-

ization 2003 (VIS,03), (Washington, DC, USA), p. 38, IEEE Computer

Society, 2003.

24] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno, "Tetrahedral pro-

jection using vertex shaders," in VVS '02: Proceedings of the 2002 IEEE

symposium on Volume visualization and graphics, (Piscataway, NJ, USA),

pp. 7—12，IEEE Press, 2002.

25] A. M. Noll, "A computer technique for displaying N-dimensional hyper-

objects," Communication ACM, vol. 10，no. 8, pp. 469-473, 1967.

26] T. F. BanchofF, "Visualizing two-dimensional phenomena in four-

dimensional space: A computer graphics approach," in Statistical Im-

age Processing and Computer Graphics (E. Wegman and D. Priest, eds.),

pp. 187-202, New York: Marcel Dekker, Inc., 1986.

27] T. F. Banchoff, "Beyond the third dimension: Geometry, computer graph-

ics, and higher dimensions," Scientific American Library, 1990.

28] A. R. Forsyth, Geometry of Four Dimensions. Cambridge University

Press, 1930.

77

29] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination. New

York: Chelsea, 1952.

30] E. A. Abbott, Flatland. Dover Publications, Inc., 1952.

31] G. K. Francis, A Topological Picturebook. Springer Verlag, 1987.

32] S. Hollasch, "Four-space visualization of 4D objects," 1991. Master thesis,

Arizona State University.

33] C. M. Hoffmann and J. Zhou, "Some techniques for visualizing surfaces in

four-dimensional space," Computer Aided Design, vol. 23，no. 1, pp. 83—

91, 1991.

34] S. A. Carey, R. P. Burton, and D. M. Campbell, "Shades of a higher

dimension," Computer Graphics World, pp. 93-94, October 1987.

35] K. V. Steiner and R. P. Burton, "Hidden volumes: The 4th dimension,"

Computer Graphics World, pp. 71-74, February 1987.

36] A. j . Hanson and P. A. Heng, "Visualizing the fourth dimension using

geometry and light," in Proc. of IEEE Visualization ,91, pp. 321-328,

1991.

37] A. J. Hanson and P. A. Heng, "Il luminating the fourth dimension," IEEE

Computer Graphics and Applications, vol. 12, pp. 54-62, July 1992.

38] A. J. Hanson, "Geometry for N-dimensional graphics," in Graphics Gems

IV (P. Heckbert, ed.), pp. 149-170, Cambridge, MA: Academic Press,

1994.

39] D. C. Banks, "Interactive display and manipulation of two-dimensional

surfaces in four dimensional space," in Symposium on Interactive 3D

Graphics, (New York), pp. 197-207, ACM, 1992. .

78

40] D. C. Banks, "Illumination in diverse codimensions," in Computer Graph-

ics, pp. 327-334, 1994. SIGGRAPH 1994.

41] A. J. Hanson and R. A. Cross, "Interactive visualization methods for four

dimensions," in Proc. of IEEE Visualization 1993, pp. 196-203, 1993.

42] R. A. Cross and A. J. Hanson, "Virtual reality performance for virtual

geometry," in Proc. of IEEE Visualization 1994, pp. 156-163, 1994.

43] S. Feiner and C. Beshers, "Visualizing N-dimensional virtual worlds wi th

N-vision," in SIGGRAPH 1990, pp. 37-38, 1990.

44] Miller and Gavosto, "The immersive visualization probe for exploring n-

dimensional spaces," IEEE Comp. Graph, and App., vol. 24, no. 1’ pp. 76-

85, 2004.

45] K. L. Duffin and W. A. Barrett, "Spiders: a new user interface for ro-

tation and visualization of n-dimensional point sets," in Proc. of IEEE

Visualization 1991 PP. 205-211，1994.

46] A. J. Hanson, "Rotations for N-dimensional graphics," in Graphics Gems

V{A. Paeth, ed.), PP. 55-64, Cambridge, MA: Academic Press, 1995.

47] A. J. Hanson, "The rolling ball," in Graphics Gems III (D. Kirk, ed.),

pp. 51—60, Cambridge, MA: Academic Press, 1992.

48] R. Egli, C. Petit, and N. F. Stewart, "Moving coordinate frames for repre-

sentation and visualization in four dimensions," Computers and Graphics,

vol. 20, no. 6，pp. 905-919, 1996.

49] P. Bhaniramka, R. Wenger, and R. Crawfis，"Isosurfacing in higher di-
\

mensions," in Proc. of IEEE Visualization 2000, pp. 267-273, 2000.

79

.

50] N. Neophytou and K. Mueller, "Space-time points: 4D splatting on effi-

cient grids," in Proc. of IEEE Symposium on Volume Visualization and

Graphics, pp. 97-106, 2002.

51] A. J. Hanson and H. Zhang, "Mult imodal exploration of the fourth di-

mension," in Proc. of IEEE Visualization 2005, pp. 263-270, 2005.

52] H. Zhang and A. J. Hanson, "Shadow-driven 4D haptic visualization," in

Proc. of IEEE Visualization 2007, pp. 1688-1695, 2007.

53] P. Brown and B. Lichtenbelt, "Ext-geometry_shader4 extension spec-

ification," 2007. http://developer.download.nvidia.com/opengl/spe

cs/GL_EXT_geometry_shader4. t x t (last modified: May 2007).

54] Y. Zhou, W. Chen., and Z. Tang, "An elaborate ambiguity detection

method for constructing isosurfaces within tetrahedral meshes," Comput-

ers & Graphics, vol. 19, no. 3，pp. 355-364，1995.

55] P. Bourke, "Calculating stereo pairs." h t t p : / / l o c a l . wasp. uwa. edu. au/

-pbourke /misce l laneous /s te reograph ics /s te reorender / , 1999.

56] L. Bavoil and K. Myers, "Order independent transparency

wi th dual depth peeling," 2008. White paper, NVidia,

http://developer.download.nvidia.com/SDK/lO/opengl/src/

dual_depth_peeling/doc/DualDepthPeeling. pdf.

57] A. J. Hanson, "A construction for computer visualization of certain com-

plex curves," Notices of the Amer. Math. Soc., vol. 41, no. 9, pp. 1156-

1163, 1994.

80

A

http://developer.download.nvidia.com/opengl/spe
http://developer.download.nvidia.com/SDK/lO/opengl/src/

^ ^ 键 ： : : 、 。 , ： 聲 :
. . - 、 . : " : . 、 " . . ： : . . • " I、 . . - ..•.去、.‘ . . , . ; . .今心笔‘ 、

% . … • • . J , ： • ； • . - - • 〜 ；

_

• , ‘ “

, . - . ,

• . , • ‘ .. •

- ‘ - …

"‘ - - i . .

•...

• -
. “

• . , ‘

• ‘ • .

、. ‘‘ • . . . • , . .

• • ,

.

• .

• - —
• . ‘ - •

• • . . • ‘ . . - • ‘

• - . .

一 ‘ ：‘ • •

- • - .. ‘

‘ i. ‘ " *
、 • .， •、*

- “

•. , ‘

‘ Z • •
. ‘ “ ‘ 、

、 • - •

• . V . - •

• - ‘ . . … -

，J .

- . , • • . - •
• . ‘ ‘ ‘ .

、• . . .

、.：-—-_- 、 , - .、 ..

.! ： CUHK L i b r a r i e s

: : ：] ！ 、
i 004828032

. , • - . 丨 I
- '

. - .
• . “ 尸、 .

