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Abstract of thesis entitled 

In geometric modeling, the fundamental units obtained from real world are usually 
points, which are often contaminated by noise, outliers and non-uniformities. In this 
article, we present a framework to consolidate models represented by those unorganized 
points through an iterative procedure of interlaced down-sampling and up-sampling 
steps. Based on this technique of consolidating un-orientated points, the design tool 
for shape modeling with points are also developed. The framework begins with a 
normal estimator which provides an option to compute the normal vectors. We down-
sample the point and perform some steps of relaxation and repulsion followed by an 
up-sampling operator. After that, a selection operation is conducted to remove outliers 
while preserving geometric details; the uniformity of points is improved by up-sampling, 
and the geometric details are preserved by the selection of up-sampled points while the 
outliers are identified and removed by the selecting operator as well. Moreover, the 
selection also helps to speed up the down-sampling and up-sampling steps during the 
iteration. The design tool developed in this research enables the local deformation 
of a particular group of points, which is iteratively selected by users. Experimental 
results demonstrate the effectiveness of the proposed point processing framework and 
the functionality of the design tool developed under this framework. 
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for the degree of Master of Philosophy 
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Abstract of thesis entitled 

(Chinese Abstract) 

在幾何造型，從現實世碰得的基本單願常爲點數據’這些數據往往是 

受噪聲污染的’孤立的和非均句的。在本文章中，我fl提出了一個， 

通過迭代程序隔行降採樣和上採樣步驟，以鞏固這些散亂點數據•的素 

質。我們在以鞏固散亂點數據的技術之上’同時開發了以點數據爲基礎的 

形狀模型設計工具。我們的框架由提供一個選項來計算法向量開始。然後 

向下採樣，並執行一些緩和，gf斥及上採樣的操作。之後’選擇步驟 

會刪除孤立的點數據’同時保留幾何細節；點的均与性因此提高了，並保 

存了 tis的細節，而孤立點數據會在選擇步驟中被辨認及消除。此外’選 

擇步驟也有利於加速向下採樣和向上採樣的迭代過程。另外這項硏究開發 

的形狀_設計工具能讓用戶反覆選定一個特定群體的點數據並進行局部 

變形°我們會提供實驗結果證明聽和設計工具所提出的•及其有效 

性。 
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Chapter 1 

Introduction 
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Figure 1.1: (Left group) The point cloud of an Inukshuk model obtained from a 
3D scanner with incomplete sample points. The reconstructed surfaces generated by 
various algorithms in literature are poor at the regions with imperfect input samples. 
(Right group) The quality of surfaces reconstructed from the point cloud processed by 
our approach using various methods is all improved. The orientated normal vectors 
are generated by [LWIO] for the approaches that need consistently orientated normal 
vectors. 

The research of reverse engineering often involves the problem of acquiring and par 
"‘ rameterizing structural information from a given object for later applications, such as 

computer graphics, virtual reality and CAD/CAM. Ascribed to the increase in accuraxjy 
and the decrease in cost, 3D scanning devices are becoming more and more popular 
in modeling and converting complex real world objects into digital 3D models. Most 
non-contact based devices like optical scanners acquire information in the form of un-
orientated point cloud data, and their preciseness usually bring the data to the amount 
of a few million points. Surface can be implicitly represented by points and therefore 
makes it relatively easier on shape modeling before defining the topological information 
[PKKG03]. However, reconstruction from preliminary data sometimes causes imper-
fection as these data are unavoidably contaminated with noise, outliers and incomplete 
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Chapter 1. Introduction 2 

regions due to occlusions and physical limitation of the scanners. In the regions that are 
invisible to the cameras (e.g., deep cavities and bifurcations), the corresponding points 
of the resulting point cloud are absent. The under-sampled or completely missed re-
gions on the scanned point cloud of a real-world geometry will lead to an imperfect 
shape on the surface reconstructed by most reconstruction algorithms. Normally, one 
may think of having some operations to the point source than to the mesh result. To 
obtain a desirable shape, we need some quality methods with a few input parameters 
and high automatically for the point treatment. 

The abbreviations of the algorithms adopted in our tests are explained below. 

(POS) Poisson method of surface reconstruction [KBH06b] 

(RBF) Radial Basis Function (RBF) based surface reconstruction [OBSOSa] 

(INT) Integrating meshing method [OBS05b] 

(CON) Consolidation of unorganized point clouds [HLZ*09] 

(OUR) Our iterative consolidation approach 

Table 1.1: Abbreviations of algorithms 

We propose a point cloud processing framework to improve the quality of point clouds 
and thus improve the quality of reconstructed meshes. Due to acquisition errors or 
misalignment of multiple scans, the input of our approach is an unorganized point 
cloud which may contain outliers, noises and non-uniformities in both thickness and 
spacing. Based on the point positions alone, we focus on how to make points evenly 

n V 1 m m l 
CON+POS 1 OUR+POS I 

Figure 1.2: The comparison of the Inukshuk model using CON+POS (Left) and 
OUR+POS (Right). The input after CON has severe drop in the number of points 
and many details are lost. In OUR method it selectively merges the CON result and 
the initial input. The structural connectivity is inherited from CON while the details 
axe still preserved. 
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distributed by inserting samples into sparse regions using the down-sampling, up-
sampling and selection mechanisms. During the iterations, noises and outliers are 
naturally detected and are discarded at the very beginning of the process by the two 
noise removal steps in different stages, which gives cleaner data to the down-stream 
process. For all approaches that need consistently orientated normal vectors in our 
framework, the orientated normal vectors are generated by [LWIO] or [HLZ*09]. We also 
provide an option to calculate the orientation of the initial sample point by using either 
of these methods, which turns out to make the down-stream process more accurate 
with our modified consolidation algorithm (OAWLOP). 

Another ingredient of our job is the point based shape modeling tool. Different from 
mesh based tools, the problems of self-intersection and topological changes have little 
influence on the data during deformation. In our framework points are inserted and/or 
removed using simple mechanisms in order to maintain a good speed of interaction. 
These mechanisms are mainly some linear interpolations with a weight formula that 
is controllable by the user, and their speed is usually very high compared with other 
surface defining tools. Some trade-off on quality includes the decrease in evenness of 
point distribution and normal accuracy. In our work the quality can be enhanced by 
running our consolidation framework once (see in Fig. 1.3). 

: 變 翁 暴 
胃 Modeled, _ y ^ I ^ ^ ^ ^ M o d e 丨 ed + Oim 
W TOP view 遏 l i f e , J ^ A / V ^ 

Figure 1.3: Deforming Armadillo model using our shape modeling tools: The blue 
points and yellow points are the handle region and the deform region respectively. The 
neck after deformation (Modeled, Close up) experiences some non-uniformity and is 
then improved by the OUR framework. 



Chapter 1. Introduction 4 

The resultant point cloud processed by O U R and the surfaces reconstructed by POS, 
RBF and INT are shown in the bottom row of Fig. 1.1. Compared with the results 
generated by non-iterative consolidation approach (CON) [HLZ*09] shown in Fig. 3.6, 
our iterative consolidation framework can preserve more geometric details. Under this 
framework, the quality of points is incrementally improved during the iteration of re-
sampling and selection (see Fig. 3.1). After the process, we provide a simple, effective 
shape modeling tool that directly acts on point data. This tool performs real-time 
translation, rotation and twisting similar to those with mesh deformation tools expect 
that the surface is not yet defined during the deformation. Depending on which surface 
reconstruction method is used, the mesh topology of the point set is defined at the final 
stage of point processing. 

1.1 Main contributions 

Our aim is to process a raw point set typically contaminated with noise, outliers, uneven 
distributions and even holes. While the reconstructed result from the unprocessed 
points may experience stnictural defects, our processing fixes those drawbacks and 
results in an improved meshing by the following: 

• an iterative framework for point cloud processing to improve the quality of point 
clouds while preserving the geometric details, 

• several modifications on the down-sampling/up-sampling operators to make them 
better fit the framework of point processing, 

• a new selection operation for this framework, and 

• a fast shape modeling tool with its quality enhanced by the consolidation frame-
work. 

1.2 Overview 

This report is organized as follows: 

• In Chapter 2, we first review some previous work on point based processing. We 
examine the advantages and drawbacks of those methods and judge whether to 
modify and/or implement them into our algorithm. After that we search for 
various kinds of surface definition method. The aim is to investigate how the 
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consolidated point cloud affects the defined surface. Last, we investigate some 
papers about mesh based and point based deformations as a reference for our 
shape modeling tool. There are also some mesh reconstruction methods that 
polygonize the defined surface for our result comparison. 

• Chapter 3 explains to you the detailed algorithm of our Iterative Consolidation. 
The sequence of the topics follows our program flow: We first give an Overview 
about our framework. This is followed by the Down-sampling And Outliers 
Removal section which states how to generate clean and uniform particles. Then 
in section APSS Base Repulsion we describe the further relaxation of the 
particles using an APSS based repulsion scheme in detail. The Refinement 
section mentions the procedure of inserting new points to the original point set 
using the \/^like refinement operator[KBOO], as well as the sample point cleaning 
step and selectively point merging. These three sections are the key ingredients 
involved in our iterative framework. 

• In Chapter 4，we describe the key feature of our point based shape-modeling 
tool and its implementation in detail. The chapter first presents the principle of 
our shape-modeling tool. It then explains the application guideline of our tools 
including point selection, stretching, compressing, bending twisting and extra 
point insertion after each deformation operation. The chapter ends with the 
illustrations of some deformation results. 

• In Chapter 5，we present the results generated by our program. The results are 
classified into two categories, In the first part of the chapter, the results generated 
by iterative consolidation are shown. For comparison, results generated using 
other methods are also listed and their mesh reconstructions are studied. In 
the second part, we show the results of our de-noising step and how it improves 
the quality of reconstruction. The performance of the program and our machine 
specification are also listed. 

• Chapter 6 summarizes the work conducted in this research. We point out some key 
factors affecting our algorithm, as well as the guidance on these factors to make 
the results better. Some possible enhancements are also suggested as potential 
future work. 

• In Appendix, we attach some information about the technical details of our im-
plementation. This includes the finding of k-th. nearest neighboring points and 
the use of the PCA which is the classic way for normal estimation of point. 
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Chapter 2 

Related Work 

The problem of reconstructing a surface from points has been investigated extensively 
for more than three decades and the reconstruction methods have become a stan-
dard way of geometry creation. Many techniques have been developed. However, the 
points acquired by scanners are typically incomplete and highly non-uniform. Point 
pre-processing is sometimes necessary in order to get a better reconstruction. Some re-
lated approaches concerning the point processing and reconstruction of a surface from 
inhomogeneous sample density or missing data are reviewed below. 

2.1 Point cloud processing 

Well-known definitions, such as moving least squares (MLS) [Lev03] and extremal sur-
faces [ABCO*01, GM97, MLTOO], can be applied to smooth or down-sample a raw point 
cloud. Amenta and Kil [AK04] used surfels (points equipped with normals) instead of 
points to define a surface with elliptical ball as distance function. Alexa et al.[AA09] 
introduced a new Hermite PSS Scheme which uses the projection of neighboring points 

* instead of the original points for computation. Both [AK04] and [AA09] adopt the idea 
of planar MLS and can achieve the convexity of defined surface. Algebraic Point Set 
Surfaces [GG07] use the concept of MLS by directly fitting a higher order algebraic 
surface [Pra87] rather than a plane. This fitting can significantly improve the stability 
in situations where planar MLS fails. For instance, in the case where tight data approx-
imation is accomplished or under-sampling, APSS performs much better and exhibits 
a high degree of stability. The nature of algebraic spheres can elegantly handle planar 
areas and regions around inflection points. We use APSS as the projection term in our 
repulsion operator. 

7 



Chapter 2. Related Work 8 

To down-sample a point set, Carsten et al.[CN03] proposed the computationally and 
memory efficient FastFPS method which allows users to control the point density with 
coarse-tofine uniform or feature-sensitive simplification. There are also algorithms for 
point cloud smoothing [LP05] and simplification [PGK02] guided by local geometry 
analysis, such as curvature estimation. Song and Feng [SF08] studied the problem of 
point cloud simplification by searching for a subset of the original input data set ac-
cording to a user-specified number of points. Kalaiah and Varshney [KV03] represented 
surfaces by a sampled collection of differential points and offered a novel point-based 
simplification technique that factors in the complexity of local geometry. The decima-
tion process in [ABCO*03] repeatedly removes the point that contributes the small-
est amount of information to the shape. Liu et al. [LWL*08] applied quasi-Newton 
methods to compute Centroidal Voronoi Diagram (CVD) and demonstrated a faster 
convergence than Lloyd's method [Llo82]. However the time cost of computation in 
these approaches is very expensive. Valette et al.[VCP08] proposed a local update 
scheme, but not Kmeans [CSAD04] or Lloyd relaxation, to compute CVD on a given 
mesh surface, and then remesh the given surface according to CVD. Other methods in-
clude those introduced by Lipman et al.[LCOLTE07] who developed a highly effective, 
parameterization-free projection operator (LOP) which 'consolidates' a given point set 
to a uniform particles. Later Huang et al.[HLZ*09] proposed a weighting term to LOP 
(WLOP) to improve the LOP in the regions where points are highly non-uniform. How-
ever, due to the absence of normal, the consolidation of thin layer collapses into one. 
In the following chapter, we propose an improved version of WLOP - the orientation 
aware WLOP (OAWLOP) in our consolidation. 

Defining a surface usually requires the point cloud to reach certain density and unifor-
mity, which is one of our interested topics and some researches are studied. [Tur92] uses 
particle simulation procedure to control the sampling density. Zwicker et al.[ZPvBG01 
proposes a novel Elliptical Weighted Average (EWA) filter for point-based rendering 
using "Surface Splatting" technique (a splat is a point equipped with normal and lo-
cal supporting size). "Phong Splatting" like techniques [BK04a] improve the inner 
blur using second order informations, but at the same time also increase the memory 
consumption. [GBP05] uses a \/^like refinement procedure[KBOO] combined with the 
points/normal interpolation of PN trianglesfVPBMOl] which have the smoothing prop-
erty of inserting points to the region of low density. This method can naturally fill 
large holes in the geometry and plays a role in our up-sampling step. To better deal 
with outliers and delicate surface structures, the idea of mean-shifting method [FH75] 
is adopted to point cloud processing. 

... 
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2.2 Model repairing 

Ohtake et al. [OBSOSa] and Can et al. [CBC*01] exploited the extrapolation properties 
of radial basis functions to fill regions of sparse sampling. The work of Savchenko and 
Kojekine [SK02] warps a given surface model towards the missing region of the given 
surface using control points. This is followed by a fairing step along the boundary of the 
hole. This method is not automatic. It requires some manual interventions, and a prior 
model must be given in advance. Verdera et al. [VCBSOS] also used an implicit function 
to represent the surface. They modeled a PDE for the smooth interpolation of a given 
hole based on the normal vector field around it. In [CDD*04] a surface is repaired by an 
optimization process. It minimizes the integral of the squared mean curvature to yield 
a smooth surface. Weyrich et al. [WPH*04] extended the volumetric diffusion method 
proposed by Davis et al. [DMGL02] to point-sampled models by replacing the distance 
estimation with a moving least square projection step. These methods are successful 
in repairing small deficiencies in the data, but have difficulties with complex holes or 
when large parts of the object are missing (e.g., the human model in Fig. 11). 

The method of Kolluri et al. [KS004] requires filtering of the Voronoi diagram to obtain 
a correct pole graph. To compute a watertight surface, they used global normalized cuts 
that smoothly complete large missing parts. The surface synthesis methods [SAC004], 
[PMG*05] complete missing parts in the surface by integrating patches which are taken 
from a well annotated shape database or a given example set. If no appropriate exam-
ples exist, the result might be poor and the process might fail. The method of Hornung 
and Kobbelt [HK06] requires the definition of a watertight voxel crust in which the 
unknown surface is supposed to lie. To complete the crust, the authors used flood-
fill and dilation operators. Sharf et al. [SLS*06] evolved an explicit mesh in a scalar 
field guided by the local feature size in a coarse to fine manner to avoid local min-
ima and capture details. The method also requires a volumetric grid to evaluate the 
distance transformation, and the topological change has to be tracked. The computa-

- tional implementation can be quite intricate (especially the topology variation on the 
two-manifold mesh surfaces). In [SLS*07], Sharf et al. interactively reconstructed the 
surface using only the positions of raw scanned data, where the user defines the general 
in/out orientation and assists the interpretation of data in automatically detected topo-
logically unstable regions. Different from the mesh surface reconstruction algorithms, 
we focus on how to improve the quality of a given unorganized point cloud by adding 
sample points to change the uniformity of scattered points and removing outliers. After 
iteratively consolidating the given unorganized point cloud, a high-quality surface can 
be reconstructed from those points by various methods as shown in the right group of 
fig. 1.1 with O U R method. 
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2.3 Deformation and reconstruction 

Many researches in free-form shape deformations have been studied extensively over 
the past decades: [WH94] provides a simple constraint that locks a set of particles 
onto a surface while the particles are able to flow on it. Later, [HBJF05] develops 
new techniques which allow constrained particles systems to sample and control more 
complex models. Other interactive modeling tools like [ST92] use orientated particles to 
model surface by short-range repulsion and long-range attraction to keep the particles 
from clumping or flying apart, therefore allowing users to move the particles on the 
surface. However, these interactive methods are not efficient enough to handle a massive 
number of points. Apart from point based deformation [Bar84, SP86, CR94, KE], 
some researches on mesh defonnation[BK04b, KCVS98] are also studied. Our free-form 
modeling tool is quite similar to that proposed in [PKKG03], which allows arbitrary 
subsets of the distance function to define a smooth deformation field. 

To visualize our effect of consolidation, we study on how to reconstruct a given point set 
into a mesh. The Marching Cube(MC) algorithm [LCS?] and it's derivatives [JLSW02, 
KBSSOl] generate one or more polygons for each cube in the grid that intersects the 
contours, where the in/out state and the required information is detected by various 
surface definitions like [OBS05a, KBH06b, AK04] etc.. The INT[OBS05b] method ap-
proximates a surface with triangle mesh by generating spherical cover and auxiliary 
points. Tight Cocone[DG03] reconstructs water-tight surfaces by computing an initial 
surface using Voronoi based approach followed by a subsequent marking and peeling 
step for filling all holes to complete the mesh reconstruction. Some re-meshing algo-
rithms are also studied. Turk[Tur92] made the particles repel each other to sample 
polygonal meshes. Hoppe et al. [HDD*93] minimized an energy function that explic-
itly models the competing desires of conciseness of representation and fidelity to the 
data and can be effectively used in surface reconstruction from unorganized points. 



Chapter 3 

Iterative Consolidation on 
Un-orientated Point Clouds 
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Figure 3.1: Progressive result of consolidating a head model: The intermediate 
results of both the point data (upper row) and their reconstruction (bottom row) are 
shown. The figure shows that our framework can progressively improve the quality of 
point set and thus its mesh. 

Given an unorganized set P = pj C M̂  with the presence of noise, outliers and non-
uniformities, surface reconstruction from such data are likely to cause significant misin-
terpretation of the topology and leads to an erroneous surface. Our method presented 
in this paper aims to recover the structural information of P without losing the geo-
metric details by iteratively inserting points in sparse regions to make the points evenly 
distributed and removing outliers that are far away from the up-sampled surface. Such 
a 'massage' procedure of point clouds is called consolidation [ABCO*03]. Our con-
solidation method consists of three steps: down-sampling, up-sampling and selection, 
which are iteratively applied to the input point set P. 
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Our point processing method is inspired by an image completion approach based on 
multi-resolution techniques [FL09]. Their method is based on the observation that 
lower resolution representation of an image contains stronger structural information 
while higher resolution representation contains more details. Therefore, the structural 
information is recovered at the lower resolution. The structural and nonstructural 
information on the 3D models represented by a set of sample points is analogous. And 
by combining both information after the recovery, the resultant models' holes are filled 
with their details preserved. 

Another motivation is that conventional 3D scanners usually have difficulties in ob-
taining the data at regions where their normals are almost tangential to the scanner 
viewing direction. The resultant regions are highly sparse or even with holes because of 
the missing data. Therefore, we introduce a repulsion term which repels the point along 
that direction. The repulsion operator moves the points in the direction perpendicular 
to the 'surface' normal that is represented by the nearby points. Apart from tangential 
direction, we propose a spherical fitting to move the points along the circumference of 
the resultant sphere. 

3.1 Algorithm overview 

In our approach, we first estimate the normal vectors with consistent orientations on 
the given points in P. Then, the points in P are down-sampled into m particles, which 
perform relaxations and are redistributed on the surface defined by the samples in P. 
The redistribution of the particles is performed by iteratively applying an orientation-
aware Weighted Locally Optimal Projection (OAWLOP) operator that is a variant 
of the WLOP in [HLZ*09]. After the iterations, a particle removal operator using 
the mean shifting principle is applied to detect and remove particle outliers. Then a 
new repulsion operator based on the Algebraic Point Set Surface (APSS) [GG07] is 
performed. While the normal is calculated by principle component analysis (PCA), 
the orientation of the particle can be obtained from the mean normal direction of 
its k closest point in P , followed by orientation-aware principle component analysis 
(OAPCA). After that, the redistributed particles are refined into a smooth point set 
surface by a V^like interpolatory refinement scheme [GBP05] - this is an up-sampling 
step. The newly generated sample points are selectively merged into the given point set 
P , while the points in P are considered as outliers and removed if they are far away from 
the up-sampled points (i.e., a smooth surface interpolating the redistributed particles). 
Again, the orientation of the up-sampled points is inherited from the refinement scheme 
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Figure 3.2: An illustration of our point processing framework, where the given unor-
ganized points (in white small dots) are first down-sampled into particles (in yellow) 
and redistributed, and then up-sampled into a dense point set (in small green dots). 
Among the points generated by the up-sampling, the ones falling into the regions that 
are lack of samples in the given point set are selected (shown in red small dots) and re-
tained. In the next iteration, the points retained from up-sampling are down-sampled 
into new particles (the yellow ones in the second and the third columns), redistributed, 
and up-sampled into new points (the green dots in the pictures of the last row). The 
iteration repeats until only a few up-sampled points are added. 

in which the points will be selectively added to the original point set P. ‘ The down-
sampling, up-sampling and selection steps are repeatedly applied to the point set. The 
iteration stops when very few new points are inserted into the point set P or some 
conditions are met. Nevertheless, the repeated application of down-sampling and up-
sampling to the whole set of point samples in the framework proposed above wastes a 
lot of time in the regions that have been processed in the previous iteration steps. To 
reduce the redundant computations, an adaptive framework is investigated and used 
here. As illustrated in Fig. 3.2, we only down-sample the newly added points into 'alive' 
particles while retaining the particles used in the previous iterations as 'static' particles, 
and only the 'alive' particles are allowed to move in relaxation, repulsion and being up-
sampled to new points (the inserted points during up-sampling are also regarded as 

4 • 
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alive points). Specifically, the steps of our point processing algorithm applied to a 
given unorganized point set P are as follows: 

Algorithm 1; Iterative-Consolidation 
1： P and z 0; 
2: Initialize a particle set X by down-sampling all points of P into m particles; 
3： repeat 

4： 

5： Repeatedly move the particles in by the WLOP operator; 
6： if i = 0 then 

7： Remove the outliers particles from X^ by a mean shift based selection 
operation; 

8： end if 

9： Estimate the orientation of particles by [LWIO] or [HLZ*09]; 
10： Apply the repulsion operator based on APSS to all particles in X � ; 
11： Refine the points in X无 into a set of up-sampled points T � 

12： if i = 0 then 

13： Remove the outliers in P according to T。； 
14： end if 

15： Select the points of T* into a subset 
16： P ^ P U P^+i and i <(= 2 + 1; 
17： Down-sample all points of P^ into X^ with rrf particles (m* = 2m\P^\/\P^\ with 

. . . I being the number of points); 
18： until the terminal condition is reached 
19： Estimate the consistently orientated normals on the sample points in P by [LWIO] 

or [HLZ*09]; 
20： return P; 

In this adaptive framework, the points/particles that are processed in the previous 
iterations will not be further processed so that a lot of computational redundancies are 
removed. The speedup compared with the primary implementation introduced in the 
above paragraph is about 3-5 times. We employ a hybrid terminal condition for the 
iteration: 1) ^ ' 'pl l f ' ' < 40 % or 2) more than a number of iterations that is specified 
by the user. 

3.2 Down-sampling and outliers removal 

3.2.1 Normal estimation 

Our following operations require a point cloud to be equipped with consistently orien-
tated normal vectors, which are usually missing in raw 3D scanning. In such a case we 
need a robust normal estimator which can handle noisy and unevenly-distributed data. 
We implement the method of ORT [LWIO] for normal estimation. ORT is robust 
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in handling point data with a certain level of noise, non-uniformities and thin-sharp 
features where conventional orientating schemes using minimal spanning tree usually 
fail under such conditions. One minor drawback is that ORT is unable to detect 
whether the orientated normals are all 'inside' or 'outside', thus affecting the recon-
struction during the iteration. To avoid it, we apply ORT on P at the beginning of 
the iteration and let users decide which orientation to flip. Our iteration consolidar 
tion involves the continuous changing of particle location X and the normal orientation 
of the particles needs to be recalculated each time. Repeatedly using the mentioned 
orientators are inefficient and time consuming. Besides, the inside/outside orientation 
is uncontrollable. In our framework, after applying ORT to P for the first time to 
get the orientated normal, we can simplify the normal orientation of X^ involved in 
the downstream operation. As the main idea of ORT is to generate a mesh M for a 
reference of orientation, which in our case the function of the mesh can.be replaced by 
the orientated P. With the advantageof correct orientation of P as it is confirmed by 
users, we can first apply Principle Component Analysis (PCA) to each point set X^, 
then we search for the k nearest neighbors (we choose 18) from P to obtain the average 
normal, which is also the orientation for those particular points. After that we perform 
an orientation-aware PCA (OAPCA) to further improve the normal direction. To be 
in detail, the algorithm is as follows: 

Algorithm 2; Normal Estimation 
1： Compute the orientated normal Up oi P using ORT; 
2: Obtain the down-sampled and consolidated X; 
3： for i = 1 to m do 

4： Compute the normal nx^ of X by PCA; 
5： For each point Xj, search the k nearest neighbors in P; 
6： Prom the neighbors, compute the average normal iia-； 
7： if (nx.nai) < 0 then 
8: Flip Ux； 
9： end if 

10： end for 

11： Compute the normal of X by orientation-aware PCA; 

3.2.2 Down-sampling 

For a given point set P知，we randomly select m^ points to form a set X^. The points 
in X^ are called particles, and m^ is selected as m*̂  = ^ ^ ^ where m is a user input 
parameter - we usually choose m = The points in both P^ and X^ are 
all equipped with consistently orientated normal vectors. These normal vectors enable 
us to modify the Weighted Locally Optimal Projection(WLOP) operator in [HLZ*09 
to a new orientation-aware relation operator of particles. 
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In WLOP, every particle Xi e X^ is moved to a new position by the formula below. 
The update of position consists of two terms, where the first term attracts the particle 
to the given point set by the weighted local density 

巧 = 1 + E ^(IIPiP/ll) (3.1) 
p/G(n{p,}) 

and the second term repulses the particles away from other particles by the density 

叫 IxpxJ) (3.2) 

The updated position of Xj is 

本"V V ( | | x 广 x j ) / | | x 广 x j (3.3) 
‘ - x j ) / | | x . - x, | | 

where | | . . . | | is the L^-norm and 6(r) = is adopted as in [HLZ*09l. 0(r) is 
rapidly decreasing smooth weight function neighborhood, /z G [0,0.5) and h is served 
as two parameters selected by users to tune the performance of the operator. During 
our tests, the default values /i =0.45 and h = 2Lavg work well on all models with Lavg 
being the average distance between particles and their fc-nearest neighboring particles 
-we choose fc=20. 

However, the WLOP operator in Eq. (3.3) will lead to a degenerated shape according 
to the relocated particles on the sharp and thin features (as shown in the left of Fig. 
3.3). To overcome this defect, we introduce an orientation-aware WLOP by modifying 
the function 0(r)into 

‘ (3.4) 
1 0 . nx-np . < 0 

where nx^ and np .̂ are the normal vectors at x^ and P j respectively. Since the nor-
mal informations are missing in the original WLOP, we pre-calculate it to achieve our 
orientation-aware WLOP. By this modification, the particles redistributed by the op-
erator can better preserve thin and sharp features. 
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Figure 3.3: The sample points in the bottom row are the up-sampled result cor-
responding to the sample in the top row: (a) an original point set, (b) the down-
sampled point set from a, (c) the down-sampled particles after WLOP, and (d) the 
down-sampled particles after OAWLOP. 

If the input point cloud is very noisy, one may argue that the normal obtained by ORT 

is not accurate. In such a case we can still apply ORT and get the orientation of X 
from P. And instead of OAWLOP, we use WLOP during the consolidation process. 

Starting from the second iteration, i.e., fc ^ 0, only the particles in X^ are moved by 
having their positions updated based on Eqs. (3.3) and (3.4). All other particles in 
X are involved in the computation but with their positons fixed. When a particle is 

.. moved to a new position, its normal vector must also be evaluated again to preserve the 
correctness of the orientation-aware WLOP operator. This can be achieved by applying 
PCA with their orientation calculated by weighted normals from the neighboring P, 
followed by OAPCA, just like the previous method does. 

3.2.3 Particle noise removal 

WLOP has the ability of de-noising particles due to its MLS fitting in nature. This 
property can effectively deal with non-structural noise which is not far from the defined 
MLS surface. However, minor structural noise and noise far away from the structure, 
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remain after applying the WLOP operator. These unwanted particles will potentially 
affect the quality of the consolidation in the next APSS repulsion by affecting the 
algebraic sphere fitting and thus are necessary to be removed. It is observed that 
outliers are still present after WLOP; however, the number is much smaller than that 
of sample points and most of them are distant enough from the particle "surface" (see 
Fig. 5.7). We propose a mean shift method to detect and remove those unwanted 
outliers during the first iteration of the consolidation. 

For the first iteration, we obtain the X � t h a t is processed by WLOP and perform the 
following operation: 

Algori thm 3: Particle Noise Removal 
1: for all Xi e X do 

2: Initialize xj <= Xj； 

3： for j = 1 to m do 

4: Search the k nearest neighbors of xj in X and let them be the subset K\ 
5： x j 由SvkieKki; {Mean shift step}; 
6： end for 

7： end for 

8： for all Xi G X do 
9： Search the k nearest neighbors of xj in X and let them be the subset K; 

10： <= SykieA" 斤丨丨；{The average distance} 
11： if ||xj — Xill > sdxj) then 

12： Xi is considered as outliers; 
13： end if 

14： end for 

15： Remove all outliers from X; 
16: return X; 

The mean shifting method will iteratively move the query point to its nearby region 
having a higher point density, where the points within this region are more considerable 
to be the structural information of the model. We set up a threshold s ^ / which is 
proportional to the local point density respective to this region. If a query point is 
likely to be an outlier, it is observed that the distance of movement is large enough to 
be distinguished. And any query point with its movement exceeding the threshold is 
regarded as an outlier and is discarded at the end of the operation. The weighting s 
controls the magnitude of noise removal: a smaller s results in stronger noise removal 
but less detail preservation, and vice versa. By performing some experimental testings, 
we believe that the number of iteration m = 3 and the distance factor s = 3 give a 
better balance between the noise removal and detail preservation. 
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Figure 3.4: To determine whether a query point (green) is an outlier or not, we first 
search its kd neighbors (yellow) and calculate their average positi6n(red). Then we 
iterate this process by updating the query point as the average position(pi^). Finally 
the query point (green) is regarded as an outlier and is discarded if the distance 5 
between the query point and its final average position (red) exceeds certain threshold. 

3.3 APSS based repulsion 

The WLOP operator can evenly redistribute the particles along a surface defined by 
a given point set P. The mean shift method significantly improves the particles by 
further de-noising. However, if the point distribution of P is highly uneven, the ability 
of WLOP to move the particles into the highly sparse regions is still insignificant. The 
same observation has also been reported in [HLZ*09]. There are two reasons for this: 
First the down-sampled particles X are randomly chosen from P, which means that 
the density of P affects the initial density of X. WLOP aims to solve this effect but for 
some highly uneven density cases, WLOP needs a high number of iteration and thus 
becomes inefficient. Secondly, although WLOP operator is insensitive, it will still be 
affected by the density of the sample point P. This can be reflected from the first term 
of eq. (3.3). In this case large holes (sparse region) may take many iterations to be 
filled. To overcome these limitations, we introduce a repulsion operator below to move 
the particles into the highly sparse region efficiently. 

As the particles in X have been locally evenly distributed after repeatedly applying the 
orientation-aware WLOP operators, an Algebraic Point Set Surface (APSS)[GG07] 
can be defined by the particles Vx, G X and their normal vectors nx‘. APSS is a kind 
of Moving Least-square Surface (MLS). Instead of plane fitting, APSS directly fits 
higher order algebraic spheres. The advantage is that APSS yields more stable results 
than planar MLS in regions with high curvature (i.e., thin and sharp features). 
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Using u=[ i to ,W4] as a vector of scalar coefficient describing a general algebraic sphere 
in 股3，the solution of algebraic sphere fitting at a given point x e R^ can be evaluated 

by 

u = arg min ||W臺(x)u||2 (3.5) 
UJUT̂O 

The solution of u can be found by solving the following linear equation system (details 
can be found in [GG07]). 

W5(x)Du = W5(x)6 (3.6) 

The coefficient matrices have 4n rows where n is the number of particles. 
• mm 

Wi{-x.) 

W(x) 二 8 M (3.7) 
細 ( X ) 

_ _ 

• • • • 

* • • • 

• • • • 

1 xf x f x i 0 
0 e � 2 e � X i e'^n^, 

D — n T o T 肌db = (3.8) 
0 ei 2e{ Xi e{ n^. 
0 e � 2 e � X i e^nx^ 

• • • • 
• • • • • • • * 

• mi im m 

Here, the weight function Wi{x) = </)(丨丨兀：乂‘丨丨)describes the weight of the particle Xi ifor 
the local evaluation of the APSS at the position x with 

乂 ， � / ( l - r 2 ) 4 | r | < l , � 

叫 0 .>1 (3.9) 

h is the supporting size of the repulsion where the same value is chosen as the orientation-
aware WLOP above and {efc} represents the unit basis vector of the coordinate system. 
P = suggested in [GG07； 

is adopted to compensate the variance of scaling. Note 
that, in practical computations, only the particles whose distance to x is less than h , 
axe employed to determine the coefficients in u since the weight function Wi(x) only 
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Figure 3.5: An illustration of a fish model performing one iteration of consolidation. 
The left model is consolidated without a repulsion step while in the right model, the 
repulsion step is applied two times. The comparison shows that the repulsion step can 
enhance the hole filling ability by moving points further to the sparse region and thus 
speedup our framework. 

shows non-zero values on these particles. After computing the u vector, the center c 
and the radius of the algebraic sphere can be calculated as 

c = r = c^c - mo/w4 (3.10) 

By the APSS defined above, we can then move the particles along the APSS in repulsive 
manner. The movement consists of two components: the tangential component of a 
particle Xi is determined by rotating along an axis rx^ that passes through the center 

• The tangential component of repulsion is derived from the second term of WLOP 
as 

1 - M E _ _ (3.11) 

- with Q = 0(||xi — xp||)/||xi - Xp||. Generally speaking, it is not perpendicular 
to the normal vector n* at Xj. We thus compute the corresponding orthogonal 
vector to n^i by 

r = l - ( l . n x j n x , . (3.12) 

• The rotation axis of the tangential component is 

r - ( X j - c x j x r 

•‘ • 
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and the rotation angle is obtained by 

広 = o II 丨丨 1'丨丨~~ii (3.14) 

The tangential component of the movement is then defined by 

R 〜 - CxJ + Cx, 一 Xi (3.15) 

where Rr^. is the rotation matrix around the axis Fx̂ . In order to improve the 
stability of the particle movement, we restrict the rotation angle by 

where Lavg is the average distance between particles and their fc-nearest neigh-
boring particles (with A;=20). 

After applying the tangential component on a particle Xi, we consecutively apply the 
following projective component on it for three times to retain the moved particles on 
the APSS defined by the particles equipped with normal vectors. 

c x ‘ + 制 （3.17) 

The resultant particles obtained by our repulsion operator are distributed more evenly 
in the highly sparse regions. 

3.4 Refinement 

An up-sampling step is conducted to generate more sample points on the surface that 
interpolates the particles in X � a s well as the normal vectors on the particles. The 
up-sampled point set T^ is expected to regularize the scattered samples and converge 
on a smooth surface interpolating the particles and their normals. A good candidate 
up-sampling scheme that satisfies these requirements is the interpolatory refinement 
method presented in [GG07), which is therefore used in our framework for generating 
T*̂  from X � . We integrate this method as a part of our program for application. 

3.4.1 Adaptive up-sampling 

To fit in with our adaptive down-sampling/up-sampling strategy, only the 'alive' parti- • 
cles (i.e., particles that can be moved in the repulsion) and the points up-sampled from 
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the 'alive' particles are used as the centers to generate refined points. Again, all the 
particles are involved in the calculation, i.e. the static particles can be the searching 
neighbor of the alive points. The refinement at a center is prevented if its distance to 
the closest neighbor is less than the mean minimum distance of Pmin- Here, Pmin is 
calculated by: 

(3.18) 

The up-sampling is stopped when no refinement on any center is allowed. In fact, the 
repulsion operator and the up-sampling operator work together to generate the sample 
points on a smooth surface extrapolating the particles generated by orientation-aware 
WLOP. Such an extrapolatory helps to improve the uniformity of sample points in the 
highly sparse regions. Points are more likely to be added to the sparse regions than the 
dense regions. 

3.4.2 Selection of up-sampled points 

The points in T*' are selected to merge into the point set P^ to form a new point set 
pfc+i This selection is very important for the preservation of geometric details on 
the shape represented by scanned points, as well as the surface reconstructed from the 
processed points. If we simply merge all the points of T*̂  into the points from T先 

may then dominate the shape represented by P知+i where the points in T*' represent a 
smooth surface interpolating the particles in X^. In other words, the geometric details 
presented by the given cloudy points are blurred. Therefore, to preserve the geometric 
details on the given point cloud, we merge T^ and P^ by the criterion that: 

• Vqj e should be excluded from if 3pi e P^ with Hq̂ - 一 p � < /i/200. 

3.4.3 Sample noise removal 

This is the second cleaning step performed when A; = 0 to remove outliers from the 
given point cloud P . After down-sampling the points in P into uniformly distributed 
particles in X � ’ we remove the outliers using mean shift, and then up-sample them 
back into points in T^. The up-sampled point can be treated as a smooth surfece 
that represents the structural information of P. Thus the points in P which are far 
away from the surface represented by TfO are considered as outliers. This is based on the 
assumption that the 'noisy points' are sparse from each other so that after consolidation, 
no particles are left near those noisy regions. Therefore, we have: 
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Figure 3.6: Progressive results using (top row) vs. without using (bottom row) the 
repulsion operator. Simply down-sampling and up-sampling the points with the newly 
proposed repulsion operator without a selection step cannot fill the missed regions 
on given point clouds (see the bottom row). On the contrary, our framework can 
progressively improve the quality of the points cloud (see the top row). The up-
sampled and selected points are displayed in red. 

• Vpi G P, it will be removed from P when - q̂ -H > "(Vq�-6 

This simple selection operation can effectively remove outliers embedded in the given 
point cloud. If the point set P is said to be noise-free, we can simply turn off this 
operation to preserve more details. 

3.5 Set constraints to sample points 

In general, it is easy to get models that have open end surfaces, which maybe inborn, 
caused by missing points or point preprocessing. Our algorithm further defines the 
surface along its tangential direction. As a result some burrs will be present in those 
regions, which is undesired for the future reconstruction. To solve this problem, we 
enable users to select a set of anchor points Pa at the beginning of iteration, so that 
the later processing simply ignores the selected region and the original point data are 
kept without point insertion or elimination in this region. To achieve this, the user first 
defines a set of Pa from the original P. After down-sampling and relaxation, we have 
the consolidated particles X and if for each xG X its closest neighbor is an element of 
PA') it is regarded as anchor point. These anchor points behave like static points and 
do not perform relaxation, repulsion and up-sampling for the rest of the iteration. The 
effect on setting anchor points can be seen in Fig. 3.7. 
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Figure 3.7: A consolidation of a fish fin with and without user constraints: (a.) the 
original model, (b.) the consolidate result without user constraints - note that there 
are some burrs caused by excess definition of the surface, (c.) the blue areas are the 
user constrained region where the original points are kept. 
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Chapter 4 

Shape Modeling by Point Set 

TO 

Figure 4.1: Shape modeling on Armadillo model: (Left) The original points, (Middle) 
points after deformation and (Right) its reconstruction. The meshes are generated by 
POS method. 

After consolidation, we obtain an orientated point set which is hole filled, noise reduced 
and evenly distributed. In practice, it is more desirable to model the shape interactively 
before converting it to a mesh. Recently, there are various kinds of mesh deformation 
based on NURBS, on subdivision surfaces or on arbitrary triangular meshes [ZSOO]. 
We provide a free-form shape modeling framework for point-sampled geometry, which 
enable users to locally deform the points by dragging, twisting and rotating. We im-
plement the method which is similar to [PKKG03] as our deformation tool: 

4.1 Principle of deformation 

Given a point cloud P — {pj , users first define the handle region H — {hi} C P, the 
deform region D = {di} CP\ {H} and the static region S = {si} C P\{H,D}. The 

27 
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deformation occurs in region D, while region S remains static and region H undergoes 
rigid movement/rotation. The main calculations are in region D, in which we define 
a continuously varying scale parameter t € [0,1] that is the shortest relative distance 
from S to H. For d^ closer to H, t will be larger. More precisely, t is defined as 

0 P i E S 
ti(p) = 1 PiElI (4.1) 

We also call H the one — region and S the zero—region. Now we can simply apply t as 
a linear shape modeler, or together with another shape function /? with the constraint 

= 0 and /3{1) ̂  I. j3 can be a square function (i.e.,卢(x) = x2)’ a root function 
(i.e., /3{x) 二 yGE), or any other smooth functions that satisfy the previous constraint. 
The position of each point p G P after the deformation is p ' = •FXPtt) where F is 
a deformation function composed of a translation and a rotation part, i.e. F(p, t)— 
FT(p,t) + Fi2(p,^), where 

• F t (p , t, = p +1- V- /3 with V being the translation vector, and 

• F/j(p, t)=丑(枉，亡.0；./3).口 where R{a., a) is the matrix that specifies a rotation 
around an axis a with an angle a. 

I 

邏 麗 身 • 
* 

Figure 4.2: Point based shape modeling tools including (Left) twisting, (Top) rotat-
ing and (Bottom) stretching. 
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4.2 Selection 

Our point selection tools are intuitive. Users can either select a group of points inside 
a boundary or the highlighted points and all points fallen within a preset radius. If 
users choose to select a group of points inside a boundary, they first define a polygon 
on the screen. All the points are then projected onto a plane which is parallel to the 
screen. Any points that falls into the polygon is marked as selected. To detect whether 
a point is in/out, we simply compare it with each line of the polygon using the following 
algorithm: 

Algorithm 4: Normal Estimation 
1： Initialize variable In = FALSE; 
2: for each point do 

3： Project the point onto a plane that is parallel to the screen with coordinate x V ; 
4: for each line of the polygon do 
5： Get the starting point x^y^ and end point x^y^； 
6: if ((((yi <= y) AND (y < y )̂) OR ((ŷ  <= y) AND (y < y；))) then 
7: if (X < (x'2 - xi) * (y - y ; ) / ( y ^ - y i ) + xi)) t hen 
8： In = ！In; 
9： end if 

10： end if 

11： end for 

12： end for 

13： return In; 

In = FALSE In»TRUE ln = FALSE 

(a) (b) (c) 

In = TRUE In-TRUE In = TRUE 

(d) (e) (f) (xiVi) 

Figure 4,3: To check whether a point is inside a polygon: Starting from (a.), each 
line of the polygon forms a region (yellow) using its x and y coordinates. If the point 
falls inside the region, we invert the boolean state of an indicator with its initial value 
of FALSE. This process will not stop until all the lines are checked. The final state 
of the indicator determines whether the point is inside(TRUE) or outside(FALSE) 
the polygon. 

•• • . 
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For the second selection, we first detect the upper most point in the selected region 
which is a few pixels around the mouse cursor. Then we highlight all the points with a 
Euclidean distance smaller than a user defined value. 

4.3 Stretching and compressing 

After defining the handle and region to be deformed, we can simply drag the handle to 
perform translational deformation. As we are using the mouse movement to control the 
magnitude of deformation and are mapping from R^ to R^ (screen coordinate to local 
object coordinate), we develop a better user interface for the 2-D to 3-D conversion:-
We first find out the viewing vector Vy that points outward the screen direction. Then 
for each hi and dj, their movement are constrained to be perpendicular to v^ . . 

4.4 Bending and twisting 

To perform bending and twisting, we first arbitrarily define two points in 3-D space. 
These two points can be moved by the user. Same as the previous section, the way and 
the magnitude of moving the points are constrained to be perpendicular to v„. These 
two points will define the rotation axis a and all H and D are rotated along this axis. 
Again, the direction and the angle of rotation a are specified by the mouse movement. 

4.5 Inserting points 

During the deformation process, points are progressively changing their position. Our 
algorithm in sections 4.3 and 4.4 provide a real time interaction for calculating and 
displaying, yet the point density drops significantly when the magnitude of movement 
is large. The main problem is that the sparse regions will cause difficulty when applying 
surface definition tools. We propose a simple point mechanism which keeps the point 
density by inserting points as the final step of the deformation. Since the deformation 
is carried out in D, this mechanism will be effective in D only: We first build the 
connectivity of region D by searching the k-th. nearest neighbors and storing them in a 
search table. The local density of D is then evaluated as: 

(4.2) 
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where kmd is the k-d mean distance of a point di ^ D and Ni is the sum of L? norm 
of all the six nearest neighbors of dj. Once the deformation is confirmed, we search 
for the corresponding neighbors of each dj, and for each neighboring, if the distance is 
greater than 2kmd, we insert points in between with the following algorithm: 

Algorithm 5; Point inserting 
1： for all dieD do 
2: Retrieve its neighbors dn^ , j = {1, . . . ,6} from the search table; 
3： for j =1 to 6 do 

4: dis — ||di — dnjil； 

5： if dis > 2kmd then 
6: number of inserting points n = round down; 
7： for fc =1 to n do 
8： insert point at the position di + 二‘)**^; 
9: end for 

10： end if 

11: end for 

12： end for 

To avoid repeated point insertion of two mutual neighbors, we suggest a simple con-
straint when building the search table: During the searching, we label each searched 
neighbor with a flag and with a flag is not allowed to build its search list. The labeling 
is sequential, meaning that the search list of the visited d^ will not be affected by the 
flag. And after the searching we skip any di that does not have its corresponding search 
list at the beginning (first line) of the algorithm. 

This algorithm is suitable for small scale deformation. When the deformation is large, 
some 'patterns' can be observed in the deformed region (see Fig. 4.6). In such a case we 
can apply our consolidation framework once to remove those artifacts. The following 
is some results obtained using our shape modeling tools: 
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J 】 J J Jljj 
Figure 4.4: Shape modeling on a human model: (Left) The original points, (Middle) 
points after deformation and (Right) its reconstruction. The meshes are generated by 
POS method. 

Figure 4.5: Shape modeling on a hand model: (Left) The original points, (Middle) 
points after deformation and (Right) its reconstruction. Note that there are topological 
changes but we do not necessarily have to handle it during the deformation period. 
The meshes axe generated by POS method. 
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Figure 4.6: Shape modeling on a cylinder: The cylinder is being progressively de-
formed to a mug. When deforming the container area (First row, right fig.), the large 
deformation causes the point set to have imdesired 'patterns'. The quality is improved 
by running our consolidation for one iteration (Second row, left fig.). The final mesh ’ 
result is obtained using POS method. 
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Figure 4.7: Shape modeling on a rectangle: The rectangle is being progressively 
deformed to a guitar. The mesh is generated by POS method. 
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Original + POS Modeled + POS 

Figure 4.8: An alternative method for hole filling: In the previous chapter, we 
mention some situations where the iterative consolidation cannot give a desired output. 
Our shape modeling tool provides an alternative solution which handles the situations 
interactively. We improve both the point set (Top left) and its mesh (Bottom right). 



_ 



Chapter 5 

Results and Discussion 

5.1 Program environment 

We have implemented the pipeline of iterative consolidation on un-orientated noisy 
points into a prototype system by C++. The OpenMP library is employed to implement 
the WLOP/OAWLOP running part in multiple threads on a PC with multi-core CPU. 
All the tests and results are generated by a PC with core i5-750 CPU with 2.66 GHz 
frequency, 3.46GB main memory, with the hardware graphic card of model NVIDIA 
GeForce 9800 GT and runs in an environment of Windows XP SP3 Home Edition. The 
program is coded and compiled by Microsoft Visual Studio 2005. 

5.2 Results of iterative consolidation on un-orientated points 

To test the performance of our program, we use raw models found from the Internet that 
are un-orientated, contaminated with noise and have non-uniformities. These models 

- are then passed to the program while some constraints and parameters (i.e. number 
of iterations, noise removal and selection of static points, etc.) are set before running 
the program automatically. The resultant points are reconstructed to mesh and the 
differences are studied below: 

. 

In Fig. 5.1，the input is a hand model with missing data between two fingers. The � 

resultant mesh is reconstructed by POS method [KBH06b]. Note that due to the 
missing points, the fingers are connected together after the reconstruction. This is 
caused by incorrect surface definition of missing points. With our treatment which fills 
the missing area, a better surface is defined and the fingers are separated which are 
more desirable for future usage. 

37 
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In Fig. 5.2, the input is a human model which is probably acquired with a scanner with 
two transceivers, one at the front and another at the back. The resultant boundaries 
(centre) are not connected. Direct reconstruction from the raw points has misinterpre-
tation which causes defects on the mesh, especially in the underarm area. However, 
after our treatment, the point set is significantly improved and the underarm is recon-
structed correctly. The same effect is also shown in Fig. 5.4. In addition, the treatment 
improves the area along the boundaries (e.g. head), where the concave appearance is 
avoided after our treatment. Moreover, after hole filling, the feet of the model have 
sufficient points to be reconstructed better. 

Fig. 5.3 is another example showing the missing data resulted from using 3D scanners. 
The gap between the fins is difficult to be reached by the scanner rays and thus has a 
large area of missing data. Direct reconstruction is not suitable for those areas. With 
our treatment, which fills the missing area with points first, there is significant improve-
ment on the resultant mesh compared with the original one. In addition, we compare 
our results with another hole filling tool which is the plug-in of PointShopSD [ZPKG02]. 
The results are very similar with slight differences onlu. However, the plug-in tool re-
quires users to fill the holes manually by using a local MLS fitting, whereas our program 
fills the holes automatically, thus our method is more efficient. 

Fig. 5.5 shows the results of seal models after our treatment on various kinds of re-
construction method. With the comparison between POS[KBH06b], INT[OBS05b], 
RBF[OBS05a], CON[HLZ*09l, we can observe that prior to the situation of causing 
no negative effects, our method can produce results with a higher chance of successful 
reconstruction while I N T fails to reconstruct the model using the original data. In the 
comparison between using the C O N and O U R methods, it can be noticed that our 

selection operator can preserve more details for the models. 

‘ • 



Chapter 5. Results and Discussion 39 

縫 
職 n n m m 

ii^ 
OUR+POS 

Figure 5.1: A point consolidation and reconstruction of a human hand model: (Top) 
Raw points and its mesh result. (Bottom) points after our point consolidation and its 
mesh result. The meshes are generated using the POS method. 

‘‘ • 



Chapter 5. Results and Discussion 40 

Bra Ea 
Original Points Original Points + POS 
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OUR OUR + POS 

Figure 5.2: A point consolidation and reconstruction of a human model: (Top left) 
Raw points and (Top right) its mesh result. (Bottom left) points after our point 
consolidation and (Bottom right) its mesh result. The meshes are generated using the . 
POS method. 
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Original Points + POS CON+ POS OUR+ POS iiii Original Points CON + POS OUR+POS Pofntshop3D+ + POS POS Figure 5.3: A comparison of consolidation using CON, OUR, and PointShopSD: (Top) Our method can successfully fill the holes between the fins and preserve more details compared with CON. (Bottom) The result obtained using OUR are simi-lar to those using PointShopSD; however, OUR method can handle reconstruction automatically with a few parameters set up at the beginning. 
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Original Points + POS OUR + POS 

Figure 5.4: A point consolidation and reconstruction of Japanese Lady model: (Left) 
Raw points and its mesh result. (Right) Points after our point consolidation and its 
mesh result. The meshes are generated using the POS method. 

Model Fig. Input Points Initial Particle # Iterative Steps Total time+ 

Inukshuk 1.1 205,858 10,293 6 313" 
Hand 5.1 194,457 38,892 8 11'19" 
Lady 5.4 175,514 35,103 2 4'26" 
Body 5.2 170,346 8,518 6+8* 15'11" 
Seal 5.5 889,076 44,454 2 6,59” 

Table 5.1: Computational statistics 

+ For system specification, please refer to section 5.1. 

* To obtain a good result, we conduct the pre-processing on the human body example 
in two phases - in the first phase, the repulsion operation is not applied and a smaller 
v^ue for h is used; and in the second phase, a normal procedure is fully applied. 

% 
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Figure 5.5: An example of the seal model. The point cloud processed under our 
framework results in higher quality surfaces reconstructed by various methods. The 
geometric details are preserved by our method, while the consolidation method of 
CON removes the geometric details. 
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5.3 Effect of our de-noising based on up-sampled points 

In our program, we have a de-noising step that removes non-structural noise. We have 
tested the effect on both models with naturally present noise and models with artificially 
generated noise. To generate the noise, we apply Gaussian noise to the original point 
cloud by shifting the points in a range of 2% of the bounding box's diagonal. The 
Gaussian noise is randomly distributed with the specified percentage of amount. The 
resultant points are then reconstructed and studied. 

Fig. 5.6 is the point set of a human face. For better rendering, we first find out the 
point orientation. Note that our algorithm does not necessarily require the original 
points to be equipped with normals. The result is a much cleaner point cloud with 
a significant amount of noise removed. And due to our consolidation framework, the 
holes become smaller. The same result can be observed in the mesh result, where the 
mesh surfaces are smoother than the original ones with the holes small enough to be 
reconstructed. 

In Fig. 5.7, different amounts of Gaussian noise are added to the Armadillo model. 
Starting from the top, the amounts are 5%, 10%, 15% and 20% respectively which are 
shown in the middle column. The left column is the direct reconstructions from their 
respective noise levels while the right column is the results obtained by applying our 
noise removal before performing the same reconstruction method. It can be seen that 
our treatment can still result in a good meshing even on a model with a large amount of 
Gaussian noise. Although our de-noising step is not designed for removal of structural 
noise, noise that is very similar to structural noise can still be detected. The effect is 
shown on Fig. 5.8 where a 'piece' of noisy points is removed. We also test our program 
on models with structural noise. Fig. 5.9 is a skull model containing a large amount of 
random and structural noise. We can see that the result is a much cleaner model with 
significant amount of structural noise detected and removed. 
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Figure 5.6: Noise removal of a human face model: (Top) The original model and its 
reconstruction. (Bottom) The model after our framework and its reconstruction. Note 
that both the point data and the mesh are improved after the treatment. Meshes are 
generated using INT method. 
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Figure 5.7: Noise removal of Armadillo model: The Gaussian noise is generated 
randomly with the maximum magnitude of 2% of the diagonal of the bounding box. 
The effect with/without our treatment is shown with (1st row) 5%, (2nd row) 10%, 
(3rd row) 15% and (4th row) 20% of noise. Meshes are generated using INT method. 
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Figure 5.8: Noise removal of Inukshuk model: (Left) Original points and its reocat-
struction. (Right) Points with our treatment and its reconstruction. It can be seen 
that our method can remove a small amount of structural noise. 
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〃 •暴遍慕 
Figure 5.9: Noise removal of a skull model: (Left) The original points. Middle left 
During the "particle removal" step, red dots are identified as outliers and are removed. 
(Middle right) The result of skull model after applying one iteration of noise removal. 
(Right) The result of skull model after applying two iterations of noise removal. It can 
be seen that the results are significantly cleaner than that before the treatment. 

-‘ _ , 



1
 



Chapter 6 

Conclusions 

This chapter summarizes the key contributions and the limitations of the current im-
plementation. The possible future research directions are pointed out at the end. 

6.1 Advantages 

In our work, we present and implement an iterative framework that progressively im-
proves the quality of a given point set. Our idea is inspired from the image completion 
[FL09], which continually retrieves the missing data using a set of down-sampled parti-
cles. First we modify the WLOP operator by adding an orientation-aware term during 
the down-sampling and relaxation. The modification makes the consolidation more 
robust to regions with sharp and thin features. Next, a new repulsion operator further 
relaxes the particles by slightly repelling the particles to the sparse regions. This one 
results in a faster completion. The up-sampled points are then selectively merged back 
to the original point set to improve its uniformity. On the other hand, we arrange 
the mentioned steps as an iterative framework that continuously improve the quality 
of the point set. And to further speed up the framework, we introduce two terms of 
'alive' and 'static' . Although the proportion of static to alive points is high in the 
later iterations, we prevent most of the work on static points and thus greatly shorten 
the computational time. Our consolidation framework is also advantageous to shape 
modeling, as we can use simpler algorithms to deform the points directly and reduce � 

the interacting time of designing. 

Compare to the recent works on point completion, we provide a very convenient tool 
that improves the quality of point set within a few user input. Our algorithm is also 
against some typical defect of models which are obtained from 3D scanners (Fig. 1.1, 5.1, 
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5.2). Those models are oftenly missing points with their normal perpendicular to the 
scanner direction, where many point completion methods interpret the surface of the 
missing region unexpectedly and resulting in some indentation or imperfect shapes. On 
the other hand, we handle this kind of defect by naturally extent the 'surface' along its 
normal direction and insert new points onto it. The inserted points serve as supporting 
information which can improve the reconstruction using some conventional tools. 

6.2 Factors affecting our algorithm 

There are several factors affecting our algorithm. They are the density of points, the 
user input parameters, and the user selected points. In addition, some particular group 
of models are also affecting our result. 

Inherited from [HLZ*09], our algorithm depends on the supporting factor h, which is 
initially some ratio controlled by the diagonal of the bounding box and the number of 
particles. This parameter controls the searching radius and also the supporting weight 
for the searched neighbors. We later modified it so that it depends on the particle 
density oiily(see section 3.2.2). This supporting factor plays a very important role in 
our framework as it affects the relaxation, repulsion and selection steps, in the form of 
weighting the kd nearest neighbors. A small h will cause undefined conditions (i.e. no 
neighbor searched within h) in some sparse regions, which results in insufficient data 
for computation. On the contrary, a large h may cause degenerations on regions of thin 
and sharp features, especially during WLOP for noisy data. Our new h depends on 
the particle density directly and is more natural and robust to various kinds of input 
models. In our program the value of h is initially estimated. However experience users 
can make changes refer to this value to get a better result. 

At the beginning of computation, users have to define the value m which controls the 
number of particles. The down-sampled particles are then used to retrieve structural 
information for later repulsion and up-sampling. If m is small, there is an advantage 
of filling larger holes in a faster speed as the hole regions are more easily regarded as 
structural connected. However, if the model has thin layers, the results after WLOP 
axe likely to have insufficient particles for separation, i.e. the thin layers are considered 
to be connected. This would lead to unwanted point insertion during the up-sampling ’ 
step. Although most of the unwanted insertions can be detected and removed in the 
de-noising step, having a very small m is not preferred. 

Another factor that affects our algorithm is the user selection. Recall that for models 
having open end surfaces (see Fig. 3.7), which maybe inborn or caused by missing points 
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or point preprocessing, our algorithm further defines the surface along its tangential 
direction. Users only needs to perform a few simple selections to define the regions to 
be constrained and will completely prevent further definitions. 

We aim on processing various kinds of model with our algorithm. During our testing, 
we find out that most of the free form models are having a good result, both in con-
solidation and noise removal. In contrast, our algorithm has limitation on preserving 
sharp features. This can be happened when the inputs are some engineering models. 
The sharp features are often smooth out which we believe, is caused by the relaxation 
part and the APSS repulsion part. Recall that we are using MLS and APSS for surface 
definition. The smothing properties of these operators will hardly preserve sharp fea-
tures. The up-sampled points from the particles are thus 'smoothed ’ and after several 
iterations, some sharp features are lost. 

6.3 Possible future works 

Our framework can handle un-orientated points and improve their quality by an one-
press iteration. In the future, there are still various improvements that can be done 
to our proposed algorithm. As our implementation is a block-like structure, different 
operators can be inserted to or removed from the pipeline stream easily, which makes 
our framework very adaptive to other algorithms. 

6.3.1 Improve on the quality of results 

During our implementation, we notice that some burrs are generated during the itera-
tion. Those burrs are mainly appear on the unbounded open end surfaces defined by 
the points. Due to the local property of our framework, it is hard to detect such a 
situation by an effective algorithm. To solve this, we enable user selection to prevent 
such regions from contributing to the consolidation. However, the constrained region 
has the problem of noise and non-uniformity. Finding a way to detect such regions will 
surely have great improvements to our consolidation. In the future, we will consider 
using a global way to detect such regions. The authors of [HLZ*09] proposed a way of 
defining a boundary point, which we may consider taking advantage of to develop our • 
new algorithm. 

For models having large holes, the missing point areas after hole filling are flat and can 
be distinguished from the original sample points. In our current framework the surface 
of the down-sampled particles is defined using the APSS method, which is embedded 
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to have some smoothing effects. To retrieve the details of the missing area, we can take 
reference to the original sample points and extract the detailed information from them. 
Recently there are similar researches [KSWIO] on image processing domain and we can 
study their effects on point based geometry. 

6.3.2 Reduce user input 

Our framework requires users to input some parameters before the one-press iteration. 
For some cases they also need to judge whether a region has to be constrained. Thus 
the consolidated result varies with different inputs. More importantly, users may have 
difficulty in deciding which area and how much of it is needed to be constrained. Al-
though we suggest a range for the input parameters, it is better to reduce the number 
of parameters to as few as possible. While the constraint setting may be solved by 
detecting the boundary, finding the parameters m, the number of iterations and the 
number of repulsion step automatically will be the upcoming tasks for this project. 

6.3.3 Multi-thread computation 

Currently our framework is programed for a single core CPU environment, with limited 
parts that can be computed in parallel during the relaxations. In the future, the 
framework can be re-programed so that it is capable of multi-thread computation. 
There are various kinds of parallelization [BKBH07, KMXB08, KBHOGa, ZHWGOS] 
covering point processing, query point searching and mesh reconstruction on both multi-
core CPU and GPU computation. Up to this stage, our adaptive computation plus the 
limited parallelization has speeded up the framework for around two to three times. We 
can speed up the processing by parallelizing the steps of kd tree construction, repulsion, 
up-sampling and mesh reconstruction. 



Appendix A 

Finding Neighbors 

In point based processing, an effective way to build up the connectivity between points 
is by searching their neighborhoods. In our algorithm we often use the fc-nearest neigh-
bors (fcNN) for computation. However, typical point set data consist of a few hundred 
thousands of points. Hence a fast and efficient searching method plays an important 
role in shortening the time of program execution. Recent researches state that a good 
data structure can result in faster searching. Thus many famous searching methods 
commonly consist of two parts: constructing and querying. For example, k-d tree and 
octree are the most common spatial data structure to decompose a space into differ-
ent cells by constructing a special tree structure which stores the data. By searching 
through the structure, the speed is greatly enhanced. 

A.l k_d Tree 

The k-d tree (short for k-dimensional tree) is a binary tree structure that stores k-
dimensional points in each of its node. For each non-leaf node, one can imagine that 
there is a splitting hyperplane generated which subdivides the space into left and right 
parts called the subspace. While the points belonging to the left of this hyperplane 
fall into the left sub-tree of that node, the right sub-tree contains the points which 
are on the right of the hyperplane. Each node in the tree is assigned to one of the 
k-dimensions and the hyperplane direction is chosen to be perpendicular to the axis of 
that dimension. In our case, we have k = 3 which is represented by x，y and z axes. To 
construct a better k-d tree for searching, we use the library of [MA06] with the standard 
kd-tree splitting rule where the splitting point is the median of the coordinates along 
its assigned dimension. 
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Figure A.l: Different tree like data structures including the (Top) fc-d tree, (Centre) 
the octtree and (Bottom) the MST tree. 

[MA06] is an open source kd tree constructing and searching method using single core 
CPU for computation. In our implementation we speed up the computation by storing 
the searched results on a table prior to CPU parallelization on investigation of the 
results. As most of the fcNN searchings happen in the OAWLOP/WLOP step, the 
speedup for this step is about three to five times. 

A.2 Octree 

Different from k-d tree, octree[Mea82] has its non-leaf nodes subdivided into up to eight 
parts named the octants. During each subdivision, each octant will contain a datum 
that falls into its corresponding part. For an octant containing more than one datum, 
we call it non-leaf node and further subdivision is performed. The subdivision of the 
node can be ended by limiting the depth, or when every octant is a leaf node. 



Appendix A. Finding Neighbors ^ 

A.3 Minimum spanning tree 

In our point geometry case, given a point cloud, we can treat every point pair to be 
connected (called edge) and form a graph with its respective edges weighting equal to 
the Euclidean distance. Then, a spanning tree of that graph is a subgraph that is a tree 
which links every point together with no cycles nor loops. A minimum spanning tree 
(MST)[HDD*92] is thus a spanning tree with a weight less than or equal to the weight 
of every other spanning tree. MST is a common way to find the normal orientation of a 
given point set: First a point is randomly picked and its normal direction is propagated 
to its connected neighboring point with the smallest weighting. We call these points 
the visited points. Then, among the visited points, we select another point with the 
smallest weighting connecting to them and propagate the normal direction. The process 
repeats until all the points are visited. And the result is a point set with orientated 
normal. 

However, MST using Euclidean distance as weighting fails to orientate the normal in 
regions of sharp feature and thin layer, and regions with noise. Thus in [HLZ*09] a new 
method was proposed to specially deal with such cases. In our framework, we have both 
the method of [LWIO] and the proposed method to estimate the normal orientation. 
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Appendix A 

Principle Component Analysis 

B.l Principle component analysis 

With the help of finding the fc-neaxest neighbors, one of the common ways to find 
the point orientation[PGK02] is by the principle component analysis (PCA). We first 
construct a 3 x 3 covariance matrix C and then find out the eigenvectors of the matrix. 
The orientation will be the eigenvector with the smallest eigenvalue. For instance, given 
a set K{x.) which stores the fc-nearest neighbors of x: 

r T -I 

X l - X X i - X 

C = . . . • . . . ,Xi e ir(x) (B.l) 
_ X f c - X J [ X f c - X 

where x is the centroid of the neighbors Xi of x (see Fig. B.l). To find out the 
eigenvectors, we can solve the following eigen-problem: 

C.Vj = Aj-Vj,jG 0,1,2 (B.2) 

Since C is symmetric and positive semi-definite, we will have all the eigenvalues Xj 
real-valued and the eigenvectors Vj form an orthogonal frame corresponding to the 
principal components of the point set defined by K{x). Xj is the eigenvalues which 
measure the variation of Xj € K{x) along the direction of the corresponding eigen-
vectors. With the first principal component having as high variance as possible, each 
succeeding component in turn has the highest variance possible, but with the constraint 
that it is orthogonal to the preceding components. The total variation (sum of squared 
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Figure B.l: Local neighborhood (Left) and covariance analysis (Right), 

distances) of Xi from their center of gravity is thus 

|xi - x|2 二 Ao + + (B.3) 

Assume Aq < Ai < A2, it follows that the plane 

T(x) : ( x - x ) . v o = 0 (B.4) 

passing through x minimizes the sum of squared distances to the neighbors of x. Thus 
vo approximates the surface normal at x. 
In our program, we use OAPCA which is the improved version of PCA in some cases. 
The OAPCA requires an initial orientation of the points first. Then for each query 
point X, we search for its k-d neighbors K{x). The difference of orientation between x 
and Xi affects its contribution by simply ignoring x^ with n*- nx‘ < 0 when composing 
the covariance matrix. This can improve the accuracy of orientation in regions of thin 
layers and sharp corners. Commonly, the initial orientation of the points can be found 
by PCA followed by [HLZ*09] using minimum spanning tree or [LWIO] as chosen by 
users. In our program, we implemented both. 
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UI of the program 

C.l User Interface 

During the program implementation, we need to continuously monitor the quality of our 
proposed algorithms. Therefore we implemented a precise and user friendly interface for 
control and display. The interface is also capable of various file format import/export. 
Here are some snapshots of our UI. 

l5l MesliWoils - UnliUeil 
FJ.! Hit Vbw H-vIp CAGD 

‘h：因 n ^ ^ ^ , . 一 • r ^ Hi J 
^ s r r r m y t 

î suxcboi L — H m 

^ ^ J 

一 厕 
Figure C.l: User interface of the program: The right area renders the model which 
shows the qualities of our algorithm. In the left area there are tabs holding the input 
parameters and some control buttons. Users can drag the render area to change the 
viewing direction, as well as sliding and zooming. And depends on some operations, 
there are additional pop up dialogs requesting for parameter input. 
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/ / / 
/ / / 

1 ？/L I ,.办—J , h i 
(a) |b) (c) 

身〜會I 
/ / / / 

: h ' l : J / i i 
‘_— ...m — .‘ - . — * J 

(d) (e) 

Figure C.2: To define different regions, we simply select an area by picking points 
(a). The regions are marked with different color (b and C). To deform, we drag the 
handle region (d) and some points will be inserted after moving (e). The same is true 
when setting the constraint for our iterative consolidation. 
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Publications 

• Shengjun Liu, Kwan-Chung Chan, and Charlie C. L. Wang, "Iterative Consol-
idation of Unorganized Point Clouds", IEEE COMPUTER GRAPHICS AND 
APPLICATIONS, accepted. 
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