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Yeung and Zhang [3] and Ahlswede et al. [1] established that if 
coding is applied at the nodes in a network, rather than rout ing 
alone, the network capacity can be increased. L i et al. [6] proved 
that linear network coding is sufficient to achieve the maximum 
capacity in a single-source finite acyclic network. In this the-
sis, we study variable-rate linear network coding and propose 
a scheme for efficient implementation. Two efficient algorithms 
are proposed for implementing variable-rate linear network cod-
ing in different situations. In addition, a simple scheme that de-
termines the maximum broadcast rate of a linear network code 
is presented. 
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Yeung and Zhang [3]禾卩Ahlswede et al. [1]證實在網絡節點(node)進行編碼’比起純 

粹路由(routing)更能提昇網絡傳輸極限。Li et al. [6]證明在單一源頭、沒有循環、 

有限的網絡裡，線性網絡編碼(linear network code)能將傳輸速率提昇至網絡傳輸極 

限°這篇論文在探討可變速率線性網絡編碼(variable-rate linear network coding)的同 

時，也建議了兩個高效率的演算法(algorithm)，可在不同的情況下在網絡裡實行可 

變速率線性網絡編碼。此外，這篇論文也建議了另外一個簡單的演算法去計算任何 

一個線性網絡編碼最大的廣播傳輸速率(broadcast rate)。 
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Chapter 1 

Introduction 

Summary 

Introduction to network coding is given. 

Yeung and Zhang [3] and Ahlswede et al. [1] established that 
if coding is applied at the nodes in a network, rather than routing 
alone, the network capacity can be increased. The advantage of 
network coding over routing is explained by means of a simple 
example. We wi l l use a finite directed graph to represent a 
point-to-point communication network. A node in the network 
corresponds to a vertex in the graph, while a communication 
channel in the network corresponds to an edge in the graph. We 
wi l l not distinguish a node from a vertex, nor wi l l we distinguish 
a channel from an edge. In the graph, a node is represented 
by a circle, wi th the exception that the unique source node, 
denoted by 5, is represented by a square. Each edge carries one 
information symbol taken from some finite alphabet that can 
be transmitted over the channel per unit time. For simplicity, 
we assume every transmission on a channel and every internal 
processing of any node incur no delay. In this chapter, we assume 
that the information symbol is binary. When there is only one 
edge from node A to node B, we denote the edge by (A, B). 
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Figure 1.1: Butterfly Network 

E x a m p l e 1 (Butterfly Network)[l][4] The well-known Butterfly 
Network is shown in Fig, 1.1. In this network, two bits bi and 62 
are generated at the source node S, and they are to be multicast 
to two sink nodes T and U. It can be easily proved that no 
routing scheme enables T and U to decode the two bits per unit 
time. If network coding is allowed, Fig. 1.1 shows a scheme 
which multicasts both bi and 62 to nodes T and U, where '+' 
denotes modulo 2 addition. In this scheme, node A receives 61 
and 62 and sends the encoded symbol bi + 62 on channel (A, B), 
At node T, bi is received and 62 can be recovered by adding bi 
and bi + 62； because 

b2 = bi-{- (61 + 62). 

Similarly, U can recover hi and 62. 

L i et al. [6] proved t h a t l inear ne twork cod ing is suff ic ient to 
achieve the m a x i m u m capaci ty i n a single-source f in i te acycl ic 
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network. Consequently, linear network coding for single-source 
finite acyclic networks has been a subject of much research in-
terest. We refer the reader to [4] for a tutorial on the subject. 
In this work, they classify linear network codes for single-source 
finite acyclic networks into four types: (a) generic; (6) linear 
dispersion; (c) linear broadcast ;⑷ linear multicast. These four 
types of linear network code possess properties of decreasing 
strength. Although there has been much investigation into var-
ious properties of linear network codes wi th a fixed rate, l i t t le 
research has been undertaken to investigate into the possible 
relationships among codes wi th different rates. In this thesis, 
we focus on analyzing the linkage among linear broadcasts of 
different rates. 

This thesis is organized as follows. Chapter 2 presents various 
kinds of linear network code, including linear broadcast. Chap-
ter 3 presents the concept of variable-rate linear network coding 
and provides efficient algorithms for efficient implementations 
of variable-rate linear network coding. Chapter 4 concludes this 
thesis. 

• End of chapter. 



Chapter 2 

Linear Network Code 

Summary 

Various kinds of linear network code are presented. 

2.1 Linear Network Code without Link Fail-
ures 

A network is represented by a finite directed graph G — [E, V) 
consisting of node set V and edge set E. Nodes are denoted by 
upper case letters { X , y , etc). Edges are denoted by lower case 
letters (e, z, etc) on which a symbol f rom a finite field F , called 
the base field, can be transmitted. For simplicity, we assume 
every transmission on a channel and every internal processing 
of any node incur no delay. The source node is denoted by 
S which generates a message every uni t t ime. The max imum 
flow f rom the source 5 to a non-source node T is denoted by 
maxflow(T). The set of incoming edges and outgoing edges of 
node U are denoted by In(U) and Out(U) respectively. Let a 
pair of edges (d, e) be called an adjacent pair when there exists 
a node T with d G In{T) and e G Out{T). 

4 



CHAPTER 2. LINEAR NETWORK CODE 5 

In a linear network code, all the information symbols are 
regarded as elements of a base field F. These symbols include 
the symbols that comprise the information source as well as 
the symbols transmitted on the channels. For example, F is 
taken to be the field GF{2) when the information unit is the 
bit. Furthermore, encoding and decoding are based on linear 
algebra defined on the base field, so that efficient algorithms 
for encoding and decoding as well as for code construction can 
be obtained. The global description of a linear network code 
described in [4] is used in this thesis. 

Definition 1 Let F be a finite field and cu be a positive integer. 
An LJ-dimensional F-valued linear network code on an acyclic 
communication network consists of a scalar kd、e for every ad-
jacent pair [d, e) in the network as well as an uu-dimensional 
column vector fe for every edge e in the network such that: 

( 0 fe = UdeiniT) kd、efd，where e G Out[T); 

{ i i ) The vectors fe for the u imaginary channel e G In{S) form 
the natural basis of the vector space 严. 

The vector fe is called the global encoding kernel for edge e. 
The local encoding kernel at the node T refers to the \In{T)\ x 

matrix Kt = [kd,e]dein{neeOut{T)' 

Let the source generate a message x in the form of an uj-
dimensional row vector. A node T receives the symbols x . /山 

d G from which it calculates the symbol x . fe for sending 
onto each edge e G Out{T) via the linear formula 

X' fe = X- ^ kd,efd = kdA^.fd), 
deIn{T) deIn{T) 

where the first equality follows from (z). 
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Given the local encoding kernels at all the nodes in an acyclic 
network, the global encoding kernels can be calculated recur-
sively in any upstream-to-downstream order by (z), while ( i i ) 
provides the boundary conditions. An cj-dimensional F-valued 
linear network code can be viewed as an F-valued linear network 
code that enables the source to transmit a message consisting of 
cj data units. 

2.1.1 Linear Multicast and Linear Broadcast 

Linear multicast and linear broadcast are described in [4] and 
their definitions are stated as follows: 

Definition 2 Let vectors /g denote the global encoding kernels 
in an lu-dimensional F-valued linear network code on a single-
source finite acyclic network. Let 

Vt = span{fd : d G In{T)}. 

Then, the linear network code qualifies as a linear multicast and 
a linear broadcast respectively if the following statements hold: 

{ i ) dimiyr) = oj for every non-source node T with maxflow{T) > 

{ i i ) dim[VT) — m in {a ; , maxflow(T)} for every non-source node 
T. 

Clearly, ( i i ) (i). Thus, every linear broadcast is a lin-
ear multicast. Let p be the number of non-source node T w i th 
max flow [T) > u; in an acyclic network. Using the algorithm 
proposed in [5], we can construct an cj-dimensional linear mul-
ticast on the network if the size of the base field is larger than 
p. A slight modification of this algorithm proves the following 
theorem. 
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T h e o r e m 1 Given a single-source finite acyclic network with 
n non-source nodes and a finite field F, an uo-dimensional F-
valued linear broadcast can be constructed if 1F| > n. 

Proof: I t is similar to the proof in [5] and therefore omitted. 
• 

Generally, a larger base field is required for constructing a 
linear broadcast than a linear multicast in the same network 
because the algorithms for constructing a linear broadcast need 
to consider more nodes compared wi th the algorithms for con-
structing a linear multicast. 
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2.2 Linear Network Code with Link Failures 

In the discussion so far, a linear network code has been defined 
on a network wi th a fixed topology, where all the channels are 
assumed to be available at all times. In real life, a communica-
t ion network often suffers from link failures or traffic congestions 
from time to time. In other words, the effective configuration 
of a communication network may vary from time to time. Link 
failures need to be handled efficiently because otherwise a large 
amount of data can be lost, especially when the data rate is high. 
Consider the use of, for instance, an C(;-dimensional multicast on 
an acyclic network for multicasting a sequence of messages gen-
erated at the source node. When no channel failure occurs, a 
non-source node T wi th maxflow{T) at least equal to u would 
be able to decode the sequence of messages. In case of link fail-
ures, if max flow (T) in the resulting network is at least l j , the 
sequence of messages in principle can sti l l be received at that 
node. However, the deployment of a network code for the new 
network topology is involved, which not only is cumbersome but 
also may cause a significant loss of data during the switchover. 
In order to develop an efficient scheme for handling l ink fail-
ures, a kind of linear network code called static network code 
described in [4] is studied in this thesis, which can provide the 
network wi th maximum robustness in case of channel failures. 
The configuration formally defined in [4] and the global descrip-
t ion of static network code in [4] are stated as follows: 

Definition 3 A configuration e of a network is a mapping from 
the set of channels in the network to the set { 0 , 1 } . Channels in 
£—1(0) are idle channels with respect to this configuration, and 
the subnetwork resulting from the deletion of idle channels will 
be called the e-subnetwork. The maximum flow from the source 
S to a non-source node T over the e-subnetwork is denoted as 
maxfloWe[T). 
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Definition 4 Let F be a finite field and to be a positive integer. 
Let kd,e be the local encoding kernel for every adjacent pair {d, e) 
in an to-dimensional F-valued linear network code on an acyclic 
communication network. The e-global encoding kernel for the 
channel e, denoted by /e，£，is the u-dimensional column vector 
calculated recursively in an up stream-to-downstream order by: 

⑷ fe,e = Erfe/n(T) hefd,e, —ere e G Out{T). 

{ i i ) The £-global encoding kernel for the lu imaginary channels 
are independent of e and form the natural basis of the vector 
space F^. 

In the above definition, the local encoding kernels kd,e remain 
unchanged wi th e. Let the source generate a message x in the 
form of an a;-dimensional row vector. A node T receives the 
symbols x . fd,e, d G In{T)^ from which i t calculates the symbol 
X . fe，e for sending onto each edge e G Out[T) via the linear 
formula 

X . fe,e = e{e) ^ kd^e{x . fd,e)-
de/n(r) 

In particular, a channel e wi th £(e) = 0 has / e , = 0 according 
to (z) and transmits the symbol x . fe、e = 0. In a real network, 
whenever a symbol is not received on an input channel due to 
channel failures, the symbol is regarded as being 0. 

2.2.1 Static Linear Multicast and Static Linear Broad-
cast 

Static linear multicast and static linear broadcast are described 
in [4] and their definitions are stated as follows: 

Definition 5 Following the notation of Definition 4 and letting 

Vt,£ = span{fd,e : d G /n (T)} , 
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an uj-dimensional F-valued linear network code on a single-source 
finite acyclic network qualifies as a static linear multicast and 
a static linear broadcast respectively if the following statements 
hold: 

{ i ) dim{VT,e) = ^ for every configuration e and every non-source 
node T with maxfloWsi^T) > u; 

{ii) dim(yT,e) = min{c<;, maxfloWs{T)} for every configuration e 
and every non-source node T. 

While the configuration e varies, the local encoding kernels 
remain unchanged. Therefore, the advantage of using a static 
linear broadcast in case of link failures is that the local operation 
at any node in the network is affected only at the minimal level. 
Each receiving node in the network, however, needs to know the 
configuration e before decoding the source message correctly. 

Let p be the number of non-source node T wi th maxflow{T) > 
UJ and m be the number of configurations in an acyclic network. 
Using the algorithm proposed in [2], we can construct an o;-
dimensional static linear multicast on the network if the size of 
the base field is larger than mp. A slight modification of this 
algorithm proves the following theorem. 

Theorem 2 Given a single-source finite acyclic network with n 
non-source nodes, m configurations and a finite field F, an lu-
dimensional F-valued static linear broadcast can be constructed 
if |F| > mn. 

Proof: I t is similar to the proof of constructing a static linear 
multicast in [2] and therefore omitted. • 

• End of chapter. 



Chapter 3 

Variable-Rate Linear Network 
Coding 

Summary 

The concept of variable-rate linear network coding is 
presented and algorithms for efficient implementations 
of variable-rate linear network coding are provided. 

3.1 Variable-Rate Linear Network Coding with-
out Link Failures 

3.1.1 Problem Formulation 

In a single-source finite acyclic network, suppose the source 
wants to transmit messages at one of q possible rates wi th in 
a session. Let q be the highest among the q rates. To avoid 
tr ivial i ty, assume q < maxflow{T) for at least one non-source 
node T. We are now required to design a linear network coding 
system which enables every receiver T to decode the message 
if maxflow{T) is greater than the transmission rate in that 
session. The most effective existing solution is to use the algo-
r i thm proposed in [5] to obtain q linear multicasts of different 

11 
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dimensions for the same network. Consequently, every node is 
required to store q different copies of the local encoding kernels 
in order to apply the suitable local encoding kernel for that ses-
sion. This increases the complexity of the system considerably 
if the system is implemented in hardware. Besides, changing the 
local encoding kernels at the nodes consumes resources in the 
network. 

As an attempt to alleviate the shortcomings in the existing 
solution, a new scheme based on linear broadcast is proposed 
for more efficient implementation of variable-rate linear network 
coding. 

3.1.2 Algorithm and Analysis 

Throughout this thesis, all the networks concerned are single-
source finite acyclic networks and we let 严 denote the vector 
space of all cj-dimensional column vectors. 

L e m m a 1 An lu-dimensional F-valued linear network code is 
given on an acyclic network where u > 2. Let fe be the global 
encoding kernel for all edge e E E. Let I^j-i denote the (uj — 
1) X (cj — 1) identity matrix and let b G be any arbitrary 
(cj — 1 ) - d i m e n s i o n a l column vector. Let 

f r ' = [ 4 - 1 b ] f e (3.1) 

for all non-imaginary channel e. Then, e G E constitute 
the global encoding kernels of an {u — 1)-dimensional F-valued 
linear network code in the same base field F. In particular, the 
local encoding kernel of this {to — 1)-dimensional linear network 
code at every non-source node is the same as that of the original 
uj-dimensional linear network code. 
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Proof: Let kd,e be the local encoding kernel for every adjacent 
pair {d, e) of the given a;-dimensional i^-valued linear network 
code. We w i l l show that e e E constitute the global en-
coding kernels of an {uj — l)-dimensional F-valued linear network 
code by demonstrat ing the existence of the corresponding local 
encoding kernel A;二 for every adjacent pair {d, e). 

By convention, we assume that the global encoding kernel for 
the cj — 1 imaginary channels form the standard basis of 严—i. 
For any channel e G Out{S)^ since f 广 ! as specified in (3.1) is 
in 严-1, G In(S) can always be chosen. 

For all non-imaginary channel e ^ Out(S), let = kd,e. 
We now verify the relation 

f r ' = E ^ V f r ' (3-2) 
dGln{T) 

by considering 
fe = 〉 : kd、efd, 

deIn{T) 

Mul t i p l y ing both sides by b , we obtain 

—t y^> —> 
Iu-\ h fe= y ^ kd、e Iu-1 b J fd. 

deIn{T) 

Then (3.2) immediately follows from (3.1)，since = kd̂ e 
for all non-imaginary channel e ^ Out(S). This shows that 
/广 1, e e B consti tute the global encoding kernels of an (cj — 1)-
dimensional F-valued linear network code w i th the local encod-
ing kernels In part icular, = kd̂ e for every adjacent 
pair (oJ, e) for e • Out{S). In other words, the local encoding 
kernel at every non-source node of the (a ; - l ) -d imens iona l linear 
network code specified by e G E is the same as that of the 
original a;-dimensional linear network code. • 
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Definition 6 Let an uj-dimensional F-valued linear broadcast 
on an acyclic network where to > 2 and b E 严，an {lu — 1)-
dimensional column vector, be given. Define 

f r ' = [ lu-l b ] f e 

for all non-imaginary channel e, where fe is the global encoding 
kernel for channel e. Then, b is called a reduction vector for 
the given linear broadcast if /二一G E specify an {u — 1)-
dimensional F-valued linear broadcast. 

L e m m a 2 Let F be a finite field，and u and m be integers such 
that ( j j > 2 and \ < m < UJ — 1. Let <3，...，c二 G F^ be m 
linearly independent vectors, and let 

di = y b J cl (3.3) 

for i = 1，2, . . . , m，where 

— 「 

b = bi b2 " • buj-i 
and 61，62,...，b̂j一 1 are indeterminates in F. Then, there exists 
a nonzero polynomial 

p(Jh,b2,...，buj-i) = ao + aibi + 0262 + . . . + a^j-ihu-i 
—t — 

where aj ’s are constants in F such that di, <^2，•.., are linearly 
independent whenever 

P ( 6 i ’ 6 2，…人 - 1 ) + 0. 

Proof : Cons t ruc t the m a t r i x 

Dm = di 0?2 . . . dm . 

We w i l l show t h a t there exists an m x m submat r i x A of Dm 
whose de te rm inan t is equal to a nonzero po lynomia l i n 61, 62，...， 

We w i l l f u r the r show tha t det{A) has the f o rm 

ao + aibi + + ... + â；一îo；—1 
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where a / s are constants in F. Then by lett ing 

P(6i’62,…人-1) = det(A), 

since is a submatrix of Dm, i t follows that d]_,d2,…，dm are 
l inearly independent whenever p(6i, 62,…，〜_i) is evaluated to 
a nonzero value in F . 

To faci l i tate our discussion, we wri te 
- — -

t , (3.4) 

— 1 
where hi e and ki G F for z = 1, 2 , . . . ,m . I t is readily 
seen from (3.3) that 

—• —* 

di = hi kib 

for i = 1, 2,…，m, which implies 
Dm = L + kib h2 + k2b "爪 + kmb j . (3.5) 

We first show that there exists some b e 严 such that 
d]_,d2,…，dm are linearly independent. Assume the contrary, — — — —> 
i.e., d〜,d2,... ,dm are linearly dependent for all b. We wi l l show 
that this leads to a contradiction. 

—• —> —* 

Case 1 : \span{hi, /12，…，hm}\ < to — I 

Since \ s p a n { h i , h 2 , . . . , hm} is at most a; — 2, a vector z G 严 

can always be found such that z • span{hi, /12,. . . , hm)- Then, 
by our assumption, { d ] are linearly dependent for all b, in par-
t icular for b equals z. In other words, {hi + kiz} are linearly 
dependent, i.e., 

ti{hi + kiz) + t2{h2 + k2z) 
+ . • . + 亡m("m + km^) ~ 0 
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for some 亡i,亡2，. ••力m G F where not all ti's are equal to 0. Re-
grouping the terms, we have 

{hhi + t2h2 + ... + tmhm) 

+ {tiki + t2k2 + . . . + tmkm)z = 0. 

Since z • span{hi,h2,.. •, hm}, this implies 

{tiki + 亡2 知 + .. • + tmkm = 0 
hhi + 亡2/̂2 + . . • + tmhm — 0. 

Consequently, 

tiCi + t2C2 + …tmCm = 0 

(cf.(3.4))，which contradicts the linear independence among cl , c5 , . . . , c ; . 
—t —> —* 

Case 2 : \span{hi, /12，...，hm}\ = u) — 1 
—> — —i 

Since m is at most cj — 1 and \span^hi, /i2,...，hm}\ equals u)— 
1, m equals uj — 1 and /zi, /12, • • •, /im are linearly independent. 

—* —i 

However, for b equals 0， 

di = hi 

for i = 1,2,... ,m. Then, {di} are linearly independent for b 
equals 0, which contradicts our assumption. 

— —t 

Combining the two cases, we have shown that di,d2,…，dm 
are l inearly independent for some b. For this choice of b, there 
exists a submatr ix A of Dm such that det{A) is evaluated to 
a nonzero value. Since det{A) is a polynomial in the indeter-
minates 61, 62，…人—1, this implies that det{A) is a nonzero 
polynomial in these indeterminates. Since Dm is (cj — 1) x m 
and A is an m X m submatrix of D则 we see from (3.5) that 

—^ f — f 

A = f{ + kib 7^2 + hb . • • + kmb ， 
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—f 

where n , r2,...,fVn, b E 严 are the corresponding subvectors 
—t — 

of hi, h2,... ,hm and b respectively. If ki = . . . = km = then 

det{A) = ao where ao G F. Otherwise, assume wi thout loss of 
generality that k i + 0. Then, by means of column operations 
on A, we see that det{A) can be expressed in the form 

C h+rb' I2 I: 

where C,r e F and k G 严.It then follows that in det[A), the 
—^ 

power of each component of b is at most one. Therefore, 

det{A) = ao + aibi + “262 + .. • + a^-ib^；-! 

where a / s are constants in F for j = 0,1,…，cj — 1. Let 

P(6i，62’ …人-1) = det{A) 

and this completes the proof of the lemma. • 

Lemma 3 Let n be the total number of non-source nodes in an 
acyclic network, and an uj-dimensional F-valued linear broadcast 
be given, where uj > 2. Then a reduction vector can be found if 

> n. 

Proof: Let fe be the global encoding kernel of the given linear 
broadcast for all edge e e E. Let 

—「 
b = 61 62 • • • K-i 

be an {uj — l)-dimensional column vector where all bfs are in-

determinates in F, and let 

f r ' [ lu-l h]fe 

for all non-imaginary channel e. The existence of a reduc-
—> 

t ion vector is proved by showing that by suitably choosing b, 
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/广 i , e E E specify an (cj — l)-dimensional F-valued linear 

broadcast. 

For each non-source node T , let 

m = min{a; — \,maxflow[T)}. 

Then, m l inearly independent vectors /g can always be chosen 
f rom the set of incoming edge e G In{T) since the given linear 
network code is a linear broadcast. Denote these m vectors by 
ci , C2, . . . , Cm and let 

；r* U；—1 r L 
Ci = lu-i b Ci 

for i = 1, 2 , . . . , 772，where is an {u — l)-dimensional column 
vectors. Note that m as well as the vectors c1,c"̂ ，…，c工 and 
《 … 1 ’ 《 - 1 , . . . ， d e p e n d on node T although this is not 
expl ic i t ly indicated in order to keep the notat ion simple. Let 
QT be the nonzero polynomial p(6i ’ 6 2 ,…人— i ) in Lemma 2, 
which exists because c"!，dj，...，c; are linearly independent. Let 
Nt denote the solution space of 

"r(6i ’62，…人 -1) = 0. 

Since QT is a nonzero polynomial in u; — 1 variables, \NT\ < 
We now consider 

产 1 n (IJ Â t ) 
T 

in order to find a reduction vector 
� "jT 

V = ？;1 7；2 . . . Vu-l . 

By the union bound, 

F ^ - i n ( l j A ^ T ) g …1 门 A V ) . 
T T 
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Since |Â r| < and n < \F\, this implies 

< ^ I F T"' 
T T 

= n I F 

< 

Therefore, 

1 n ( I J iVr ) < 1 1 
T 

and we can find v G such that ^ UT ^t- In other words, 
V can be obtained such that 

for each non-source node T, which implies , . . . , 
are linearly independent for each non-source node T when b = v 
by Lemma 2. Consequently, e G E specify an (uj — 1)-
dimensional F-valued linear network code that 

d i m i y r ) = 爪 

= m i n { a ; — l,maxflow{T)} 

for each non-source node T when 石二 v. Therefore, f 广 i , e E E 
specify an {to — 1)-dimensional F-valued linear broadcast for 
h = V. I t then follows from Definition 6 that V is & reduction 
vector for the given linear broadcast. • 

Lemma 3 provides an algorithm to find a reduction vector 
and an application of Lemma 3 is illustrated by the following 
simple example. 

E x a m p l e 2 An acyclic network with 7 non-source nodes and 
a 3-dimensional GF{11) linear broadcast on the network are 
shown in Fig. 3.1. The local encoding kernels at the non-
source nodes of the linear broadcast are shown in Fig. 3.2. Since 
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n^i roM roM 
0 I 1 i 0 j 

co=3 1。小。」丄⑴丄 

s 
fi) fo) 

働 
Figure 3.1: A 3-dimensional GF{11) linear broadcast 

Kp Kq KR KA 

[丨1丨】[丨I] [1 >丨]p] 

Figure 3.2: The local encoding kernels at the non-source nodes 

G F ( 1 1 ) | > 7, a reduction vector can be found by Lemma 3 and 
「 "[T 

1 2 is found to be a reduction vector. The corresponding 
2-dimensional G F ( l l ) linear broadcast constructed by the reduc-
tion vector is shown in Fig. 3.3. It can be easily observed that 
the two linear broadcasts have the same local encoding kernels at 
all the non-source nodes. 

T h e o r e m 3 Let n be the total number of non-source nodes in an 
acyclic network. An uj-dimensional F-valued linear broadcast is 
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roy 
0 丨 1 ; co=2 y^ l、々 

儘 
Figure 3.3: A 2-dimensional GF{11) linear broadcast 

given on the network where to > 2 and |F| > n. Then，for every 
h = 1, 2 , . . . , cj — 1, an h-dimensional F-valued linear broadcast 
can be constructed such that these linear broadcasts have the 
same local encoding kernels at all the non-source nodes. 

Proof: Using Lemma 3, a reduction vector for the given lin-
ear broadcast can be found and an {u - l )-dimensional linear 
broadcast is obtained. By Lemma 1，the local encoding kernel 
of th is (cj — l)-dimensional linear broadcast at every non-source 
node is the same as that of the original w-dimensional linear 
broadcast. By repeating this procedure, each t ime reducing the 
dimension of the linear broadcast by one, the desired set of linear 
broadcasts can be obtained. • 

The proof of Theorem 3 renders an efficient implementat ion 
of linear broadcasts of different dimensions on the same network. 
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A proposed solution to the problem in Section 3.1.1 consists of 
two steps. 

Step 1 : Let n be the number of non-source node in the network 
and a g-dimensional F-valued linear broadcast where |F| > 
n is constructed by Theorem 1. 

Step 2 : Lower-dimension linear broadcasts are obtained from the 
f dimensional broadcast by Theorem 3. 

This solution provides an efficient implementation of the prob-
lem in Section 3.1.1 since each non-source node is only required 
to store one copy of the local encoding kernel. 
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3.2 Variable-Rate Linear Network Coding with 
Link Failures 

3.2.1 Problem Formulation 

I n a single-source finite acyclic network w i th possible con-
figurations, suppose the source wants to transmit messages to 
receivers 了i, T2，...，7}. For each configuration £, let 

Ce = mm{maxfloWe{Ti) | i = 1, 2 , . . . , j } . 

I n any t ime period w i th a certain configuration e, the source 
t ransmits messages at rate = c^ so that all the receivers Ti can 
always decode the message. Let eci denote the configuration w i th 
no link failure, i.e., £n(e) = 1 for all non-imaginary channel e E 

E. I f we want to minimize the complexity of the local operation 
at al l the nodes, an existing solution is to use the algori thm 
proposed in [2] to construct a static linear multicast for each 
rate = 1，2, . . . ’ c 阶 Consequently, every node is required to 
store c^^ different copies of the local encoding kernels in order 
to apply the suitable local encoding kernel for the configuration 
e at tha t t ime. 

As an at tempt to alleviate the shortcomings in the existing 
solution, a new scheme based on static linear broadcast is pro-
posed for more efficient implementation of variable-rate linear 
network coding. 

3.2.2 Algorithm and Analysis 

Similar to the case of linear broadcast, we have the following 
def ini t ion, lemmas and theorem for static linear broadcast using 
the same scheme. 

Lemma 4 (counterpart of Lemma 1) An u-dimensional F-valued 
linear network code is given on an acyclic network. Let fe,e be 
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the £-global encoding kernel for all edge e ^ E and every config-
uration £. Let denote the {u — 1) x {u — 1) identity matrix 
and let b € be any arbitrary {to — 1)-dimensional column 
vector. Let 

fe；' = [ L-l b ] fe,e (3.6) 

for all non-imaginary channel e and every configuration e. Then, 
/ � f 1, e 6 E constitute the e-global encoding kernels of an (a; —1)-
dimensional F-valued linear network code in the same base field 
F. In particular, the local encoding kernel of this {UJ — 1)-
dimensional linear network code at every non-source node is the 
same as that of the original u-dimensional linear network code. 

Proof: I t is similar to the proof in Lemma 1 and therefore 
omitted. • 

Definition 7 (counterpart of Definition 6) Let an uu-dimensional 
F-valued static linear broadcast on an acyclic network where 
u) > 2, and b E , an {LJ — 1)-dimensional column vector, he 
given. Define 

fe,e = Iuj-1 b fe,£ 

for all non-imaginary channel e and every configuration e, where 
fe,e is the global encoding kernel for channel e under config-
uration e. Then, b is called a static reduction vector for the 
given static linear broadcast if f^J^^e G E specify an {u — 1)-
dimensional F-valued linear broadcast for every configuration s. 

L e m m a 5 (counterpart of Lemma 3) Let n be the total num-
ber of non-source nodes in an acyclic network and m be the 
total number of configurations e in the network. For any u-
dimensional F-valued static linear broadcast where u) > 2, a 
static reduction vector can be found if |F| > mn. 
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Proof: Let fe,e be the global encoding kernel of the given 
static linear broadcast for all edge e E E and every possible 
configuration e. Let 

— 「 
b = 6i 62 . . . bu;-i 

be an (cj — l)-dimensional column vector where all 6^'s are in-
determinates in F, and let 

fe,£ ~ b / e , £ 

for all non-imaginary channel e and every configuration e. The 
existence of a static reduction vector is proved by showing that 
by suitably choosing e G E specify an (a;—l)-dimensional 

F-va lued linear broadcast for every configuration e. 

For each configuration e, the network code on the e-subnetwork 
is a linear broadcast. Therefore, we let a nonzero polynomial 
gT,e(fi\,b2, • • •, buj-i) be q t in the proof of Lemma 3 for each non-
source node T under each e. Let Nt,£ denote the solution space 
of ‘ 

耽 £(石 lA，..•人一 1) = 0. 

Since gr^e is a nonzero polynomial in cj — 1 variables, |A^t.e| < 
i ^ l 一 W e now consider 

£ T 

in order to find a static reduction vector 

— 「 "jT 
V = Vl V2 ' " Vu-l • 

By the union bound, 

广—1 n ( U ( U NT、e )) < I ( 广 - 1 门 ). 
£ T € T 
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Since < |F广—2 and mn < |F| , this implies 

£ T £ T 
T-, u-2 

=mn r 
< I F ^ I . 

Therefore, 

F - - ' n { [ j { ] J N t , ) ) 
E T 

and we can find v e 严一工 such that v 朱 L U U r ^ ^ ^ V ) . In other 
words, V can be obtained such that 

for each non-source node T under every configuration e. By the 
similar arguments as the proof in Lemma 3, e G E specify 

an (cj — l)-dimensional F-valued linear broadcast forb = v under 
every configuration e. I t then follows from Definit ion 7 that v 
is a static reduction vector. 

Theorem 4 (counterpart of Theorem 3) Let n be the total num-
ber of non-source nodes in an acyclic network and m be the total 
number of configurations. An UJ-dimensional F-valued static lin-
ear broadcast is given on the network where uo >2 and |F| > mn. 
Then, for every h = 1 , 2 , . . . , cj — 1, an h-dimensional F-valued 
static linear broadcast can be constructed such that these static 
linear broadcasts have the same local encoding kernels at all the 
non-source nodes. 

Proof: Using Lemma 5, a static reduction vector for the given 
static linear broadcast can be found and an (cj — l)-dimensional 
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static linear broadcast is obtained. By Lemma 4, the local en-
coding kernel of this {lj - l)-dimensional static linear broadcast 
at every non-source node is the same as that of the original 
u;-dimensional static linear broadcast. By repeating this pro-
cedure, each t ime reducing the dimension of the static linear 
broadcast by one, the desired set of static linear broadcasts can 
be obtained. • 

The proof of Theorem 4 renders an efficient implementation 
of static linear broadcasts of different dimensions on the same 
network. The problem in Section 3.2.1 can be efficiently solved 
in two steps. 

Step 1 : Let n be the number of non-source nodes in the net-
work and a c印-dimensional F-valued static linear broadcast 
where |F | > is constructed by Theorem 2. 

Step 2 : Lower-dimension static linear broadcasts are obtained 
f rom the C£。-dimensional static linear broadcast by The-
orem 4. 

The static linear broadcasts constructed have the same local 
encoding kernels at all the non-source nodes. Therefore, each 
non-source node is only required to store one copy of the local 
encoding kernel, which implies that only a small storage space 
at non-source nodes is needed and no switching of the local 
encoding kernel at non-source nodes is required. In addit ion, the 
source S only needs to store about c^^ different static reduction 
vectors, each vector corresponding to one rate, for t ransmit t ing 
messages in any possible configuration. 

In the proof of Theorem 4，it is required that 

|F| > 2阅n. 

However, if |F| satisfies only 

n < |F| S 2阅n, 
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an alternative solution to the problem is proposed as follows. 

Step 1 : A c印-dimensional F-valued static linear broadcast where 
几 < S 2丨丑丨n is constructed. 

Step 2 : Since the network code for each configuration e is an F-
valued linear broadcast where |F| > n, we can obtain all 
lower-dimension linear broadcasts by Theorem 3 for each e. 

Since all linear broadcasts constructed have the same local en-
coding kernels at every non-source node, every non-source node 
is st i l l only required to store one copy of the local encoding ker-
nel. Th is alternative solution, however, increases the complexity 
of encoding messages at the source S, because unlike the previ-
ous solution, the source may need to use different local encoding 
kernels for the same transmission rate. Consequently, the source 
S needs to store about 丑In different reduction vectors, each of 
them corresponding to one (rate, configuration) pair, for trans-
m i t t i ng messages in any possible configuration. 

3.3 The Maximum Broadcast Rate of Linear 
Network Code 

I n the rest of this chapter, a simple scheme that determines the 
max imum rate at which a given linear network code can quali fy 
as a linear broadcast is proposed. 

Definition 8 Let LJ and k be integers such that UJ > 2 and 1 < 
k < LO. Suppose an lu-dimensional F-valued linear network code 
where 

dim{VT) > m i n {A ; , m a x f l o w { T ) } 

for all non-source node T is given on an acyclic network. Let 
b G be an (UJ — 1)-dimensional column vector and let 

f r ' = [lu-l b]fe 
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—t 

for all non-imaginary channel e. Then, b is called a k-reduction 
vector for the given linear network code if G E specify an 
{uj — 1)-dimensional F-valued linear network code where 

d i m i y r ) > m i n { A ; , m a x f l o w { T ) } 

for all non-source node T. 

L e m m a 6 Let n be the total number of non-source nodes in 
an acyclic network, lj and k be integers such that u > 2 and 
1 < k < LU. For any uj-dimensional F-valued linear network 
code where 

d i m i y r ) > m i n { / c , m a x f l o w { T ) } 

for all non-source node T, a k-reduction vector exists if |F| > n. 

Proof : Le t /e be the global encoding kernel of an cj-dimensional 
F - v a l u e d l inear network code for al l edge e ^ E where 

d i m i Y T ) > m i n { A ; , m a x f l o w { T ) } 

for al l non-source node T . Let 

b = 6i 62 . . . buj-i 

be an (cj — l ) -d imens iona l co lumn vector where al l b《,s are in-
determinates i n F , and let 

f r ' = [ I.-l b ] f e 

for a l l non- imag inary channel e. The existence of a k - reduc t ion — -

vector is proved by showing that by suitably choosing b, f广,e G 

E specify an (a; — l ) -d imens iona l F -va lued l inear network code 
where 

d im{VT) > m i n { A ; , m a x f l o w { T ) } 
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for al l non-source node T. 

For each non-source node T , let 

m = min{A;, maxflow{T)}. 

Then, m l inearly independent vectors fe can always be chosen 
from the set of incoming edge e G In(T) since 

dimiyr) > m i n { / c , m a x f l o w { T ) } . 

Denote these m vectors by cl, c j , . . . , c^ , and let 

[/c^-l b]cl 

for i = 1, 2 , . . . , m. Let qt be the nonzero polynomial p{bi, 62 , . . . ,〜 -1 ) 
in Lemma 2, which exists because 惑，...，4 are linearly in-
dependent. Let Nt denote the solution space of 

卯(61，62，...人-1) = 0. 

Since GR is a nonzero polynomial in cj — 1 variables, \NT\ < 
F 广2. We now consider 

产 1 n ( y A^t ) 
T 

in order to find a /c-reduction vector 
r 

y= Vl V2 Vu-l . 

By the union bound, 

n ( y a^t ) < . 
T T 

Since I^VtI S l ^ r " ^ and n < |F| , this implies 

T T 

= n I F 
< i F ^ - i . 
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Therefore , 

F^-^ n { [ j N T ) <|广-1 

T 

and we can find v G such t h a t v 车 I J r NT , I n other words, 
V can be ob ta ined such t ha t 

for each non-source node T , wh ich i m p l i e s 《 … i，《 — i , . . . , 
are l inear ly independent for each non-source node T when b = v 
by L e m m a 2. Consequently, e G E specify an {UJ - 1)-
d imens iona l F - v a l u e d l inear ne twork code t ha t 

dimiyr) > m 
= m i n { / c , maxflow{T)} 

for each non-source node T when b = v. I t t hen fol lows f r o m 
De f i n i t i on 8 t h a t 

� i T 
Vi V2 ... Vu-1 

is a /c-reduct ion vector for the given l inear ne twork code. • 

L e m m a 7 Suppose a finite field F and the local encoding ker-
nel at every non-source node are given in an acyclic network. 
Let I\OUT{S)\ denote the \Out{S)\ x \Out{S)\ identity matrix. An 
Out{S) I-dimensional F-valued linear network code is constructed 
by setting the local encoding kernel at the source S 

KS = ^\OUT(S)I-

For any non-source node T, let x be an \Out[S)\-dimensional 
row vector representing the message outgoing from S and yx 
be an \In(^T)\-dimensional row vector representing the received 
symbols of T. Then, there exists a unique \Out{S)\ x \In{T) 
matrix FT such that 

yT = x- FT 
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for all X and 
dimiyr) = rank (FT). 

Proof: Let be an ⑶卜dimensional row vector repre-
senting the message incoming to S in the ⑶卜dimensional 
F-valued linear network code. Let F!^ be an \Out{S)\ x | / n ( T ) 
mat r ix that 

yT = x'' Ffr 

for all f . Since Ks is equal to I\out{S)\^ 玄 is equal to x ' and F t 
is equal to F^. By [2], 

F^ = -

where I is the \E\ x \E\ identi ty matr ix , K is & unique |五| x \E 
matr ix depending on the local encoding kernels at all the non-
source nodes and B is a unique | / n (T ) | x matr ix depending 
on T. Since the dimension of the constructed code is \Out{S) 
and 

Ks = ^\Out{S)\^ 

the dimension of A is 力 x and A is a constant. There-
fore, F^ is a unique \Out{S)\ x \In{T)\ mat r ix , which implies FT 
is also a unique \Out{S) \ x | / n (T ) | matr ix. Due to the fact that 

dimiYr) — rank{F^), 

we have 
dimiyr) = rank (FT). • 

Theorem 5 Suppose a finite field F and the local encoding ker-
nel at every non-source node are given in an acyclic network 
with \Out{S)\ > 1. Let n be the number of non-source nodes in 
the network. An \Out[S)\-dimensional F-valued linear network 
code is then constructed by setting the local encoding kernel at 
the source S 

Ks = I\Out{S)\' 
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Let k be the maximum non-negative integer such that 

dim{VT) > min{k^ maxflow{T)} 

for all non-source node T. If |F| > n； an h-dimensional F-
valued linear broadcast can be constructed for every positive in-
teger h less than or equal to k using the given local encoding 
kernels at all the non-source nodes. 

Conversely, a v-dimensional F-valued linear broadcast can 
never be constructed using the given local encoding kernels where 
k<v< \Out{S). 

Proof: We wi l l first show that there exists a /c-dimensional 
F-va lued linear broadcast on the network using the given lo-
cal encoding kernels. I t then follows that given the condit ion 
F\ > n, an /i-dimensional F-valued linear broadcast can be 

constructed by Theorem 3 for every positive integer h less than 
or equal to k using the given local encoding kernels. Under the 
condit ion \Out{S)\ = 1 or A; = 0, i t is t r iv ia l that a /c-dimensional 
F-valued linear broadcast exists on the network using the given 
local encoding kernels. Therefore, we consider the case for A; > 1 
and > 2. U k = \Out{S)\, the |-dimensional 
F-valued linear network code is the desired A;-dimensional F-
valued linear broadcast. I f /c < \Out{S)\, a k-reduction vector 
for the I Oti亡⑶卜dimensional F-valued linear network code can 
be found by Lemma 6 and an — l)-dimensional F-
valued linear network code where 

d i m i y r ) > m i n { A : , m a x f l o w { T ) } 

for all non-source node T is obtained. This procedure can be re-
peated unt i l we obtain a /c-dimensional F-valued linear network 
code where 

dimiyr) > m i n { A ; , m a x f l o w { T ) } 
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for all non-source node T. Since 

dimiyr) < m i n { A : , m a x f l o w { T ) } 

for al l non-source node T in a /c-dimensional F-valued linear 
network code, 

dimiyr) = min{/c, maxflow{T)} 

for all non-source node T, which implies this network code is a 
/c-dimensional F-valued linear broadcast. 

Next , we w i l l prove the converse part of the theorem. For a 
fixed positive integer v where k < v < there exists a 
non-source node T where 

dim(VT) < miniL',maxflow{T)} (3.7) 

in the |Oiz《<S)卜dimensional F-valued linear network code. Let 
Ft be the unique x \In{T)\ matr ix in Lemma 7. Using 
Lemma 7, 

dim{VT) = rank (Ft), 

which implies 

rank (FT) < min{ i ; , max f l o w { T ) } 

by (3.7). Consider any local encoding kernel at the source K g 
and the corresponding i;-dimensional F-valued linear network 
code having the given local encoding kernel at every non-source 
node. Since the f-dimensional linear network code and the 
Out{S) |-dimensional linear network code have the same local 

encoding kernel at every non-source node, they have the same 
F t in Lemma 7. In addit ion, the columns of K g F t consist of 
/e, e G In{T), which implies 

dimiyr) =rank{KsFT). 
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Consequently, in the f-dimensional F-valued linear network code, 

dimiyr) = rankiK'sFr) 
< rank(Ft) 
< m i n { i ; , m a x f l o w ( T ) } . 

Therefore, a ^-dimensional F-valued linear broadcast can 
never be constructed using the given local encoding kernels. • 

s 

fC7 > 
® / 

Figure 3.4: A single-source finite acyclic network 

Kp KR KA Kg Kc KD 

[1 1] [1 1] 「1"! [I 1] 「1"! [1 1] [ij |_0� 

Figure 3.5: The local encoding kernels at the non-source nodes 
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Figure 3.6: A 3-dimensional G F ( l l ) linear network code 

Theorem 5 is i l lus t ra ted by the fo l lowing example. 

Example 3 An acyclic network with \Out{S)\ = 3 is shown in 
Fig. 3.4 and the corresponding local encoding kernels at the non-
source nodes are given in Fig. 3.5. Since \Out{S)\ = 3 and the 
number of non-source nodes is 8，a 3-dimensional linear network 
code with Ks = h is constructed and F is chosen to be GF(11). 
The constructed ？)-dimensional G F ( l l ) linear network code is 
shown in Fig. 3.6. From this network code, k in Theorem 5 is 
equal to 2. Therefore, an h-dimensional linear broadcast can be 
derived from the 3-dimensional linear network code by Theorem 
5 for h = 1,2. The derived 2-dimensional linear broadcast is 
shown in Fig. 3.7. 

Given the local encoding kernels at al l the non-source nodes 
in a network , a set of l inear network codes L can be derived. 
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； © 〜 / 

/〔；V 
Figure 3.7: A 2-dimensional G F ( l l ) linear broadcast 

Theorem 5 suggests a quick way to find the maximum rate k 
such that for at least one I e L, I qualifies as a A:-dimensional 
linear broadcast on the network. In addition, Theorem 5 can be 
extended to find the maximum rate k' such that for at least one 
I' G I/, I' qualifies as a /(/-dimensional static linear broadcast on 
the network. 

• End of chapter. 



Chapter 4 

Conclusion 

Summary 

Conclusion of this thesis is given. 

A scheme that enables efficient implementation of variable-
rate linear network coding in a single-source finite acyclic net-
work is developed. In our scheme, the same local encoding ker-
nel at every non-source node can be used for different transmis-
sion rates. In addition, two efficient algorithms are proposed 
for implementing variable-rate linear network coding in differ-
ent situations. Compared wi th existing solutions, our scheme 
is simpler and requires less storage space. Last but not least, 
a simple scheme that determines the maximum rate at which a 
given linear network code can qualify as a linear broadcast is 
presented. 

Further research includes the complexity analysis of our al-
gorithms that enable efficient implementation of variable-rate 
linear network coding. The performance analysis of randomly 
designed codes for variable-rate linear network coding is also 
interesting for future research. Since l i t t le research has been 
undertaken to investigate into the possible relationships among 
codes wi th different rates, efficient network code construction 

38 
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algorithms may evolve by exploring variable-rate linear network 
coding. 

• End of chapter. 
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