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Abstract 

Heegaard Floer homology is an invariant of a compact 3-manifold equipped with 

a spirf structure. It is conjecturally equivalent to Seiberg-Witten-Floer homology. 

A knot in a three-manifold induces a filtration on the homology groups, and the 

filtered homotopy type is a powerful knot invariant, which categorifies the Alexander 

polynomial. 

It was defined and developed by Peter Ozsvath and Zoltan Szabo; the associated 

knot invariant was independently discovered by Jacob Rasmussen. 

The aim of this dissertation is to give an exposition on Heegaard Floer homology 

for compact oriented 3-manifolds. We will also discuss some applications of this 

theory by illustrating examples. 



摘要 

Heegaard F l o e r同調群是對三維緊致流形（外加s p i n �結構）的一項拓樸不變 

量，它被猜想為等價於Seiberg-Witten-Floer同調群。一個在三維緊致流形上的結 

會對Heegaard F l o e r同調群衍生一串代數過爐，而所得出的結果是一項結不變 

量，用以識別Alexander多項式。 

Heegaard F l o e r同調理論是由兩位數學家P e t e r Ozsv針h及ZoMn Szab6所創 

立，而相關的結不變量則由Jacob Rasmussen分別發現。 

本論文主要對Heegaard F l o e r同調理論作簡介。我們會列舉一些例子以作討 

論 ° 
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Chapter 1 

Introduction 

The study of Morse theory can be dated back to the last century. Before Morse, 

Arthur Cayley and James Clerk Maxwell had developed some of the ideas of Morse 

theory in the context of topography. Suppose we are given a mountainous landscape 

M. If f is the height function / : M — IR sending each point to its elevation, then 

the inverse image of a point in M is simply a contour line. Each connected component 

of a contour line can be either a single point, a simple closed curve, or a closed curve 

with a double point. Double points in contour lines occur at saddle points or passes 

(those extremurn points). Saddle points are points where the surrounding landscape 

curves up in one direction and down in the other. 

Imagine that God now pours water on this piece of landscape (i.e. flooding 

occurs). The region covered by water when the water reaches an elevation of x is 

/一i(—00,0：]. Consider how the topology of this region changes as the water rises. 

It appears, intuitively, that it does not change except when a passes the height of 

a critical point; that is, a point where the gradient of / is 0. To each critical point 

p we can associate a number called index, which counts the number of independent 

directions around p in which f decreases. By collecting data from critical points of 

/，one can roughly rebuild our original landscape. 

In a formal way, Morse theory studies the relationship between a smooth manifold 

M and those real-valued smooth functions f defined on it. Typically, one can know 

much about the topology of M by analyzing the behavior of critical points around 

some f (e.g. height function as the above example). It can help us to find the 

1 



Chapter 1. Introduction 2 

C W structures or the handle decompositions of the manifold for which to gain 

information about its homology. 

One direction of this theory is Morse homology. Basically, it is a homology theory 

defined for any smooth manifold. It is constructed using the smooth structure and 

an auxiliary metric on the manifold, but turns out to be topologically invariant, and 

is in fact isomorphic to singular homology. 

Given any smooth manifold M, let / be a Morse function (which is a real-valued 

function on M with non-degenerated critical points) and g a Riemannian metric 

on M. Such pair (/, g) gives rise to a gradient vector field • / . It is proven that 

the difference in index between any two critical points is equal to the dimension of 

the moduli space of gradient flows (with respect to the gradient vector filed) be-

tween those points. Therefore there is a one-dimensional moduli space of flows 

between a critical point of index i and one of index i — I. Each flow can be 

reparametrized by a one-dimensional translation in the domain. After modding 

out by these reparametrizations (which can be viewed as a M-action on the moduli 

space), the quotient space is zero-dimensional, that is, a collection of oriented points 

representing unparametrized flow lines. 

We are ready to define a chain complex C*(M,(J,g)) as follows. The set of 

chains is the Z-module generated by the critical points. The differential d of this 

complex sends a critical point p of index i to a sum of index (i — 1) critical points, 

with coefficients corresponding to the number of unparametrized flow lines from p to 

those index (z — 1) critical points (to be more precise we should count with signs with 

respect to orientations, but this may be avoided if one uses Z2-coefficient instead). 

By careful studying of the compactification of the moduli spaces, it can be shown 

that 炉二 0 and we get a homology group with respect to d. 

While the classical Morse homology is defined only on finite dimension manifolds, 

many mathematicians hope to generalize this theory to the infinite dimensional case 

as well. Many theories on such generalization are thus developed, and some of 

them are due directly to Andreas Floer ( [24] and [27]), while others are derived or 

inspired by his work (which is now known to be Floer homology). It studies some 

infinite-dimensional spaces where the index of critical points remains finite, such as 
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the energy functional (which resembles the role of Morse function in classical Morse 

theory) for geodesies on a Riemannian manifold. 

There are many branches on Floer homology. One is called Lagrangian Floer 

homology. The chain complex of this homology is generated by the intersection 

points of two Lagrangian submanifolds of a symplectic manifold and its differential 

counts pseudoholomorphic Whitney discs. Papers on this subject are due to Fukaya, 

Oh, Ono, and Ohta ( [21] and [22]). It is important to note that the Floer homology 

of a pair of Lagrangian submanifolds may not always exist; when it does, it provides 

an obstruction to isotoping one Lagrangian away from the other using a Hamiltonian 

isotopy. 

In 2001, Peter Ozsvath and Zoltan Szabo [2] invented a new version of Floer 

homology - the Heegaard Floer homology, which can be viewed as a variation of 

the Lagrangian Floer homology. It defines on an oriented 3-manifold V with a 

Heegaard splitting of genus g. More precisely, Y is represented by a Heegaard 

diagram where Eg is an oriented 2-manifold and a = {ai , • • • , ag} and 

(3 = {/?!, • • • are attaching circles for two handlebodies which bound E^. A 

choice of complex structure on Eg induces one on its (/-fold symmetric product 

Sym^(Eg). Moreover, we obtain a pair of tori 

Ta = ai X • • • X ag and Tp = Pi x - - • x /3g 

embedded in Sym®(Eg), which are totally real with respect to the induced complex 

structure on Sym®(Eg). 

In this set-up, one can define a new variant of Lagrangian Floer homology, with a 

chain complex whose generators are intersection points of TaflTT/^，and the boundary 

operator counts pseudoholomorphic disks (with some suitable boundary conditions) 

in Sym^(Eg) with boundary lies in TaUT". But it turns out that the resulting group 

cannot bring in anything non-trivial. So Ozsvath-Szabo include a choice of reference 

points z G Eg — ai ctg — Pi Pg which defines a pointed Heegaard diagram 

(Eg, a , z) (this is also important in associating Spin�structure over Y). This point 

z induces a subvariety {z} x in Sym®(Eg). Using this subvariety, one 

can obtain different variants of Heegaard Floer homology. For example, the simplest 

non-trivial version of Heegaard Floer homology, HF(Y), counts pseudoholomorphic 
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disks in Sym^(Eg) which are disjoint from {z} x In fact, under some 

natural filtration on the complex, one can get various complexes CF~{Y), CF'^{Y) 

and which then gives rise to homology group HF~, IIF+, HF°° and HF. 

In this paper, we would like to give an exposition on Heegaard Floer homology 

step by step. In Chapter 2, we first review the classical Morse theory and give the 

definition of Morse function. We will then discuss the application of Morse theory to 

3-manifold and see how Morse homology is defined. In Chapter 3, we will give some 

preliminaries on symplectic geometry. We then proceed to describe Lagrangian Floer 

homology, which relates to the version of Floer theory used by Ozsvdth-Szabd. We 

end this chapter with discussions on the Floer complex as well as the obstructions 

to its existence. In the last two Chapters, we will define Heegaard Floer homology 

by explaining the topological prerequisite as well as its motivation. At the end we 

illustrate some examples and report some further developments on this subject. 



Chapter 2 

Morse Homology 

2.1 Introduction 

Apart from the theory of simplicial complex, Morse homology is another way of 

computing the homology of a manifold. The techniques and step needed to set the 

Morse complex and to exhibit their independence on the choices of data (Morse func-

tion and generic metric), are exactly the same needed to define the Floer homology 

group. 

In this chapter we first review the classical Morse theory and give the definition of 

Morse function. We will then discuss the application of Morse theory to 3-manifold. 

Finally we will see how Morse homology is defined, which inspires the later discovery 

of Heegaard Floer homology. For more details refer to [16], [17], [18], [19] and [24 . 

2.2 Classical Morse Theory and Morse Functions 

Morse theory is built for understanding the topology of a space X through real 

valued valued functions / : X —> M. For the simplest case, we let X to be a smooth 

m-diinensional manifold, compact and without boundary, and f is assumed to be 

smooth and generic. 

Definition 2.2.1 A subset of a Baire topological space is called generic if it con-

tains a countable intersection of open and dense sets. 

5 
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In our setting, we equip the space of smooth functions on a differentiable manifold 

X as well as the space of Riemannian metrics on X with some C^ topology for 

sufficiently large k. So by the Morse Lemma [16], for generic f，its critical points 

p are isolated and in some suitable local coordinates Xi, • • • , x^ near p (called the 

local normal form of p), the function f may be written as 

/ W =-工？ - ... - + + ... + 

The number of negative squares occurring here is independent of the choice of local 

coordinates and is called the Morse index ind(p) of the critical point. Functions 

f : X R that satisfy these conditions are called Morse functions. Let us look 

at some examples of Morse functions. 

E x a m p l e 2.2.1 (The height function on the sphere) Consider the unit sphere S^ 

with the orthogonal coordinates {x, y, z) in M ;̂ that is, is defined by the equation 

0：2 + y + = 1 

Let / : M be a function on S"^ which assigns to each point p = (x, y, z) on S^ 

its third coordinate z. In other words, f is the “height function" for the sphere. 

It is readily to see that f has only two critical points, namely the north pole po 

二（0’ 0，1) and the south pole sq = (0，0，—1). To show that / is a Morse function, it 

suffices to prove that po and qq are both non-degenerated, which follows immediately 

by computing the Hessian of f with respect to the coordinate system (x, y). • 

Let f : X —> R be a Morse function. One examines the topological structure of 

X by looking at the family of sublevel sets 

These spaces act as the main ingredients in analyzing the topology of our ambient 

space X. The following propositions point out the usefulness of the function f. 

Proposition 2.2.1 If / has no critical value in the interval [a,b], then := 

{p 6 X\a < f{p) < b} is diffeomorphic to the product 

/-1(a) X [0,1] 
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Proof: Choose a generic metric〈.，.〉on X. By a s s u m p t i o n , � • / , / � > 0 on [a’b]， 

and hence we can define a new vector field (/? on X by 

— 1 

Consider the integral curve Cp{t) of (•p which starts at a point p of 尸 � . T h e n we 

obtain, 

i 議 = 4 ⑴ ， 7 〉 

={^c{t)J) 

二 • 则 

= 1 

Thus the integral curve Cp{t) keeps an upward climb with the constant speed 1 with 

respect to the height defined by f . Since it starts at the level / = a at the time t = 0, 

it will reach the level f = b at the time t = b — a. Define a map h : /一丄� x [0，1 

— b y 

h{p,t) = Cp{t). 

By the facts that Cp{t) depends smoothly on both p and t, and also that two distinct 

integral curves do not meet (uniqueness of intgral curves), is a diffeomorphism. 

Therefore Xia,b] = f~\a) x [0,1). Together with the observation f - \ a ) x [0,1] ^ 

/-1(a) X [0,6 — a]，we complete the proof. • 

Corollary 2.2.2 The spaces X'̂  are diffeomorphic to each other as c varies in each 

interval of regular (i.e. noncritical) values. In other words if f has no critical values 

in the interval [a,b], then ^ x^. 

Proof: It follows directly from proposition 1.1. Geometrically what we do is to let 

the manifold flow along • / . Then after a certain period of time, meets and 

conicides with X^. • 

2.3 Handlebody Decomposition for 3-manifold 

The example below shows how one can use a Morse function to give a special kind of 

decomposition of an oriented 3-manifold Y that is known as a Heegaard splitting. 
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Example 2.3.1 (Heegaard decomposition of a 3-manifold) : Choose the Morse 

function / : y — IR to be self-indexing, i.e. so that all the critical points of index 

i lie on the level Then the cut /~^(3/2) at the half way point is a Riemann 

surface Eg of genus g (here g is equal to the number of index 1 critical points of /)， 

and the sublevel set jg ^ handlebody of genus g, i.e. the union of a closed 3-ball 

D^ with g 1-handles. Before going any further let me first give the definitions for 

some terms discussed : 

Definition 2.3.1 A n-dimensional A-handle is defined to be the product D^ x 

which is homeomorphic to the closed n-ball. A handlebody of type (n,入）is 

an n-diinensional manifold that is obtained from the closed n-ball by attaching only 

A-handles. 

Proposition 2.3.1 With the notations used in Example 1.3.1’ we have oo, | ] = 

/一1[§，31. 

Proof: Without loss of generality we can assume that f has only one index 0 critical 

point and one index 3 critical point (refer to Theorem 3.35 of [1]). Then the handle 

decomposition of Y is given by 

Y = H^U{H\U---U HI) U U … U HL^) U "3 

By computing the Euler number of Y , we obtain 

= 1 — fci + /C2 — 1 二 一 h + 

Oil the other hand, the Euler number of an odd-dimensional manifold is always 0, 

thus ki = /c2. Let this value be g, and it is now readily to see that oo, |] and 

3] are both homeomorphic to the genus g 3-dimensional solid torus. • 

Therefore, Y can be built from a single copy of the surface E = /一i(3/2) by 

attaching handlebodies U。：= UP to its two sides. In other words, Y can be 

obtained by gluing the two handlebodies together along their common boundary Y,g. 

Ill symbol we write Y = Ua^J^g Up, and this is called a Heegaard decomposition 

for y . 
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Theorem 2.3.2 (refer to [13])(existence of Heegaard decomposition) Let V be an 

oriented compact 3-manifold. Then Y admits a Heegaard decomposition. 

Proof: Start with a triangulation of V. The union of the vertices and the edges 

gives a graph in Y. Let Uq be a small neighborhood of this graph. In other words 

replace each vertex by a closed ball, and each edge by a solid cylinder. By definition 

Uq is a handlebody. It is easy to see that Y - Uq is also a handlebody, given by a 

regular neighborhood of a graph on the centers of the triangles and tetrahedra in 

the triangulation. • 

The attaching map of Ua is determined by the loops in Eg that bound discs in 

Uon which are called attaching circles : 

Definition 2.3.3 A set of attaching circles { a i , . . . , ag} for a handlebody [/ is a 

collection of closed embedded curves in E^ = dU with the following properties : 

• The curves ai are disjoint from each other. 

• Eg — ai — . . . — Qig is connected. 

• The curves ai bound disjoint embedded disks in U. 

So Y can be described by two collections of attaching circles, namely A := 

{q；!, . . . , ag} and /3 := {/?i，•.. ’ “沒}’ of disjointed circles on E^. This description is 

known as the Heegaard diagram for Y. 

Definition 2.3.4 Let (Eg, Ua.Up) be a genus g Heegaard decomposition for Y. A 

Heegaard diagram is given by together with a collection of attaching circles a and 

P respectively for Ua and Up. In this case we say Y admits a Heegaard diagram 

(I：…a’"). 

Example 2.3.2 There is a well known decomposition of the 3-sphere {(^i,22): 

12 +丨2；2丨2 = 1} into two solid tori (handlebodies of genus 1), U\ := {|2i| ^ |22丨} and 

U2 '•= { l ^ ^ i l � a n d the corresponding circles in the 2-torus Ei = {|zi| = ！：之丨} 

are 

以 1 = { • ( e ' " ’ 1):没 e [0’2兀1}，"1 = : 0 e [0,27r]} 
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with a single intersection point (去，； I n this example, q;i and Pi are also called 

meridian and longitude respectively. One way to see that both U\ and U2 are 

solid tori is the following. By introducing new coordinates, Ui and U2 can be written 

as 

Ui = {(ae 仏’ 6e 幼）：a《•； [0,27r]},t/2 = { ( a e � 6 e ^ [0,27r]} 

where a,b > 0 and a^ + b^ = 1. Now consider the standard solid torus whose axial 

sections are pairs of 2-disks of radius The mapping h-)- (a, a, jd) defines 

a homeomorphism of the manifold Ui onto the standard solid torus. In a similar 

way (ae^", bê )̂ h (6, a) defines a homeomorphism of U2 onto the solid torus. 

2.4 Stable manifold and Unstable manifold 

Let Y be an oriented 3-manifold and (Eg, a, (3) be its Heegaard diagram. In [2], 

Peter Ozsvdth and Zoltdn Szabo capture information about the intersection points 

between the two families of attaching curves a and (3. To do this we need to define 

some terms. 

Definition 2.4.1 Again let X to be a smooth m-dimensional manifold, compact 

and without boundary, and / : X —> M be a Morse function. Suppose p is a critical 

point of f. The stable and unstable manifolds at p of the flow - • / are defined 

respectively as 

VK； := {p} u {u(t) eX :te R,u(t) 二 — • / ( “ � � = p } 

WJ := {p} U {u{t) eX :te R,u{t) = = p} 

Of course, the question arises whether Wf(p) and Wf(p) are indeed manifolds 

(refer to Corollary 6.3.1 in [14]). And it is readily to see that Wf{p) is diffeomorphic 

to 股“，where d = ind(p). 

So what is the relationship between unstable manifolds and handles? We ex-

plain this by using the example of Morse decomposition of the torus T=S^ x S^. 

Let T —> R be the height function, which is a Morse function. Assume that f has 

unique minimum and maximum. For c € M, if c is close to min/, then the sublevel 
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set X^ is diffeomorphic to the closed ball D"^ := {x e R^ : \x\ ^ 1} of dimen-

sion 2. When c passes a critical point p of index 1, a 1-handle (homeomorphic to 

:0，llxZ;)2-i=[o，ijxDi) is added. 

Therefore, one should think of this 1-handle as a neighborhood of the unstable 

manifold Wf{p) = R\ which is D^ x D^-i. The D^ part corresponds to the unstable 

manifold, and the boundary dD^ gives the attaching circle of this 1-handle (while 

yields the attaching belt of the handle); see [16]. 

Now we get back to our 3-manifold Y and its Heegaard diagram 

Similar to the above example, each a j e a is the intersection Wj{pj) A Sg of the 

upward gradient trajectories from some index 1 critical point pj of f with the level set 

Eg (viewing those a j as = dD^ = S^). Similarly, Pk ^ P are the intersections 

with Eg of the downward gradient trajectories from the index 2 critical points qk. 

Hence, each intersection point n “知 corresponds to a gradient trajectory from q̂  

to Pj. 

2.5 Trajectory flows and the Morse- S male-Witt en 

Complex 

As suggested in [17], much of the geometric information contained in a self-indexing 

Morse function f can be expressed in terms of the Morse-Smale-Witten complex 

(C八X; f),d), where X here is a closed smooth manifold of finite dimension. To 

define the complex, one needs some extra conditions on f , which is so-called Morse-

Smale-Floer conditions: 

Def ini t ion 2.5.1 An Morse function f is said to be of Morse-Smale t y p e if every 

sequence {x^} with: 

1. bounded 

2. \\df{xn)\\ 0 for n — oo 

contains a convergent subsequence. 
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Furthermore, if for every pair {x,y) of critical points of f the unstable sub-

manifold Wj{x) intersects the stable submanifold Wf(y) transversally, then f is of 

Morse-Smale-Floer type. 

Obviously, the Morse-Smale conditions are automatically satisfied if X is compact. 

It is also satisfied if f is proper, namely if for every c G M, the set 

{xeX:\f{x)\<c} 

is compact. However, the Morse-Smale conditions are more general than that and it 

holds for example for the energy functional on the space of closed curves of Sobolev 

class H�2 on a compact Riemannian manifold. 

It first appears that these conditions are somewhat restrictive on the class of 

Morse function on X. Yet according to Smale, Milnor and Witten ( [14]), at least 

if X is finite dimensional and compact, the set of all functions satisfying the Morse 

condition as well as the set of all Riemannian metrics for which a given Morse 

function satisfies the Morse-Smale-Floer condition are generic. 

From now on, unless otherwise stated, we will assume that our Morse functions 

are of Morse-Smale-Floer type. 

Now we define our trajectory space. 

Definition 2.5.2 For critical points p and q, we consider the set 

M(q’p) := {u(t) eX :te E, u(t) = -Vf(u(t)),^lim^u(t) = p = q} 

In other words, M(q,p) is the trajectory space containing flow lines flowing from 

q to p (with respect to — • / ) , i.e. M(q,p) ：二 门 Wf(p). And we define the 

relative index of q and p as 

"(g’rt := dim{Wf{q)nWf{p)). 

Recall that two submanifold Xi, X2 of X intersect transversally if for all x G 而("1X2, 

the tangent spaces T^X is the linear span of the tangent spaces T^Xi and Tx而.I f 

X is finite dimensional, then if X\ and X2 intersect transversally at x, we have 

diin(Xi) + dim(yY2) = dim(Xi n ；C2) + diin(X). 
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For finite dimensional X，the Morse index ind(p) of all critical points p of / are 

finite. Hence we have 

/i(<?,p) = ind(g)-ind(p). 

There is a group action of R on M(q,p), namely (a • u)(t) := u{t + a) for a G M 

and u G M.{q,p). We denote the quotient by M{q,p) := M{q,p)/R. And it has 

dimension 

= ind(^) — ind(p) - 1. 

From [20], it states that we can identify A4(q,p) with M{q,p) fi {z E X\f{z) = a} 

for some a between f{q) and f(p)- It follows that M{q,p) is compact. 

We first prove several lemma, which will be useful to our later context. Details 

can also be founded in [14 . 

L e m m a 2.5.3 / is decreasing along flow lines. In particular, there are no noncon-

stant flow lines with that 

a:(-oo) = a;(oo). 

P r o o f : We compute 

^/(^W) = df(x � m 

={gv^df{x{t)lx{t)) 

= � ||2. 

and the result follows. • 

L e m m a 2.5.4 For any flow line, we have grad/(a;(t)) —>• 0 or |/(a;(t))| —> oo when-

ever t —土 oo. 

P r o o f : If for example /oo = liirit一� /(a:⑴）> —oo, then for 0 < i < oo, we have 

/o ： = /(工(0)) > f[x[t)) > /oc, 

since f is decreasing. And for ti,t2 E M, 

f(x{t,)) - f(x{t,)) = - j : : p � 柳 t 

=rimw'dt 
Jtx 

Jti 
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So it implies 
roo „ 

/ ll^Wir ••= fo - foo < OO. 
Jo 

and hence limt_oo 士⑷=0. • 

L e m m a 2.5.5 Let x{t) be a flow line for which f{x{t)) is bounded. Then the limits 

a;(土OO) := limt_±oo ^(i) exist and are critical points of /. 

P r o o f : By Lemma 2.5.4, gvadf{x{t)) —> 0 for t —>• 士oo. We analyze the situation 

as t — +00 (the case for t —> —oo follows similarly). By the Morse-Smale condition, 

we can find a sequence C M with tn — +oo for n —> +oo, such that x[tn) 

converges to some critical point a;(+oo) of f . We wish to show that limf_»+oo 工⑷ 

exists, and it then has to coincide with the critical point a;(+oo). 

Notice that by the non-degeneracy of :c(+oo)’ we can find a neighborhood U 

of a:(+oo), with the property that any flow line in U containing x(+oo) as an 

accumulation point of some sequence x{tn), is contained in the stable manifold 

VF^(a;(+oo)) of a;(+oo). Obviously, x{t) satisfies the above condition and hence it 

lies in iyj(x(+oo)). This implies l imt—+ooX�=a:(+oo). • 

L e m m a 2.5.6 Suppose ||grad/(a:�)|| > e for ti < t < tj. Then 

where d(',.) is the Euclidean distance. 

P r o o f : 

d(xiU),x{t2)) < r\\x(t)\\dt 

< J rimw'dt 
£ Jti 

=l(f{x(t,))-f{x{t2))). 

• 

L e m m a 2.5.7 Suppose C X converges to XQ. Then for any T > 0, the flow 

lines Xn{t) with Xn{0) = Xn converge to the flow line Xo{t) on [—T, Tj. 
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P r o o f : This follows from the continuous dependence of solutions of ODEs on the 

initial data under the assumption of the Picard-Lindelof theorem. The proof of that 

theorem is based on the Banach fixed point theorem, and the fixed point produced 

in that theorem depends continuously on a parameter, see [15] p.129. Thus the 

curves Xn{t) converge uniformly to xo(t) on any finite interval [—T, T]. • 

Lemma 2.5.8 Let q and p be critical points of f and let be a sequence of 

flow lines in M{q,p) with limt^-oo Xn(t) = Q and limi_+oo = P for all n. Then 

after choosing a subsequence, {xn(力)} converges to some flow line x^it) on some 

compact interval in M. 

P r o o f : Let to € R. If, for some subsequence, that 

||grad/(2;„(io))|| — 0 as n — oo, 

then by the Morse-Smale condition, we may assume that Xnito) converges, and the 

convergence of the flow lines on compact intervals then follows from Lemma 2.5.7. 

So we remain to show the case that 

| | g r a d / ( x „ ( t � ) ) | | � £ 

for all n and some e > 0. Since / (工 „� is bounded between f{q) and f{p), 

I丨gTad/(a;n�)|| —̂  0 when t —> oo by Lemma 2.5.4. It implies that we can find 

tn < to with 

||grad/(a:„(tj)|| = e and ||grad/(a:,(i))|| > e 

for tn <t < to. Therefore, 

/ W O ) — / ( • ) ) = r \\gv^df{x{t))\\'dt 
Jtn 

> 广 dt 
Jtn 

二 亡几一 tol. 

and we get —亡o| < 去l/(工(亡n)) — /(工(亡0))| < 去 | / ( P ) - / � I - It implies t^ - o o . 

Since M(q, p) is compact, the sequence yn := Xn{tn) C M{q, p) converges to some Xq. 

According to Lemma 2.5.7., by choosing yn(t) = � ’ we see that Xn{t) converges 

on any compact interval towards some flow line a ; � � . • 
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L e m m a 2.5.9 Let q, p be critical points of f. For any sequence {xn(t)} C M{q,p), 

after selection of a subsequence, there exist critical points 

q = qi,q2r-- ,qk=p, 

flow lines yi € M{qi,访+i) and tn’i e R (i = 1，•. •，A: - 1，n e N) such that the flow 

lines Xn{t + 亡n’i) converge to yi for n — o o . In this case, we say that the sequence 

Xnit) converges to the broken t r a j e c t o r y ？/i#2/2# . . . iH/k-i. 

Proof: By Lemma 2.5.8.，Xn{t) converges (after selection of a subsequence if nec-

essary) to some flow line XQ{t). XQ{t) need not be in M{q,p), but the limit points 

(which exist and are critical points of f by Lemma 2.5.5.) must satisfy 

/ � > f{xo{-oo) > f{xo(oo) > f(p). 

If, for example f{q) = f(xo{—oo), then we have limf__oo = limf__oo oco{t) for 

all n, which implies q = Xo{—oo). 

If f{q) > /(工0(—oo)，we choose tn,i such that 

f{xo{-0o) > f{Xn{tn,i) > /(rf. 

By Lemma 2 . 5 . 8 .， + tn,i) converges to a limiting flow line, say yo{t). By our 

choice of tn’i, we have 

f(q) > /(yo(-oo) and /(yo(oo) > f{xo(-oo), 

since otherwise the flow line yo(t) would contain the critical point re�(一oo) in its 

interior. 

If f(p) > f{yo{-oo) or /(yo(oo) > f{xo{-oo), we repeat the same process. This 

must stop after a finite number of times, because the critical points of f are isolated 

by the non-degeneracy assumption on the critical points of f . Therefore the result 

follows. • 

L e m m a 2.5.10 In the situation of Lemma 2.5.9, we have 

k-l 
Y,fi(pi,pi+i) = fi{q,p) 
i=l 
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Sketch of proof: It suffices to prove the case when A; = 3，as the general case 

follows easily by induction. 

We want to show the following: suppose is connected to p2 and p̂  to p^ by 

the flow. Then M(Pi’P3) = lApuP2) + /̂ (P2，P3). We have that by this fact : in some 

small neighborhood U of p2 in W^^pi) A H ŝ(P3)，U can be made diffeomorphic to 

[/I X C/2, where U^ and U"̂  are some neighborhood of p2 in A and 

n respectively. 

Such local product structure is possible as one can show that W^{p2) (and re-

spectively for W^{p2)) is a leaf of the smooth stable (unstable) foliation of p2 in 

U. The stable and unstable foliations yield a local product structure in the sense 

that each point near p2 is the intersection of precisely one stable and one unstable 

leaf. In particular, by assumption, W^(pi) intersects each leaf of stable foliation of 

P2 transversally in some manifold of dimension and similarly W^{pz) inter-

sects each leaf of unstable foliation p2 transversally in some manifold of dimension 

/i(P2，P3). These altogether verifies the claim. • 

Lemma 2 .5 .11 Suppose that q,p [ q ^ p) are critical points of /，connected by the 

flow, with 

Then there exist only finitely many trajectories from q to p. 

P r o o f : For any point x on such a trajectory, we have 

f{q) > m > f{p) 

•as f IS decreasing along the flow line. We may assume that there exist £ > 0 such 

that on each flow line from q to p, we can find some x with ||grad/(x)|| = e. This 

is because otherwise we would have a sequence of flow lines {5^} from q to p with 

supa-gg. ||grad/(a;)|| —̂  0 as z — o o , by Lemma 2.5.4. And by the Morse-Smale 

condition, a subsequence of {sj} would converge to a flow line s with grad/(:r)三 0 

on s. s would then be constant, which is impossible since s connects q and p by 

Lemma 2.5.9. 

Therefore, if, contrary to our assumption, we have a sequence {si} of trajectories 

from q to p, we can select Xi G Si with ||grad/(:Ci)|| = e. By the compactness of 
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A4{q,p), we can find a convergent subsequence of {xi} which converge to some 

limiting point x, hence also of {s^} by Lemma 2.5.7. The limiting trajectory s of 

{si} also has to connect q and p, because by assumption n^q.'p) = 1 and Lemma 

2.5.10 rules out that s is a broken trajectory connecting other critical points of 

f. The Morse-Smale-Floer condition implies that s is isolated in the 1-dimensional 

manifold M{q,p). This is not compatible with the assumption that there exists a 

sequence { s j of different flow lines converging to s. • 

L e m m a 2.5.12 Let q,p be critical points of f connected by the flow with 

= 2. 

Then each component of the space of flow lines from q to p either is compact after 

including q and p (diffeomorphic to S'^), or its boundary consists of two different 

broken trajectories from q to p. 

Proof: If a component C of Ai{q,p) is compact (after including p and q), then 

it is a 2-dimensional manifold that is a smooth family of curves, flow lines from 

q to p with common end points but disjoint interiors. Thus, such a component is 

diffeomorphic to S\ 

Assume that C is not of the above case, then by Lemma 2.5.9., there exist broken 

trajectories from g to p in the boundary of C. We want to show that such trajectories 

must occur in pairs. Let Si#S2 be a trajectory in the boundary with Si(—oo) = q 

and S2(oo) = p. We put p = Si(oo) = S2(—oo). In some suitable neighborhood of p, 

we have that A4{q,p) is a smooth surface containing Si in its interior. 

M(q,p) intersects a smooth 1-dimensional family of leaves of the stable foliation 

in a 1-dimensional manifold. The family of those stable leaves intersected hy M{q,p) 

then is parameterized by a smooth curve in containing p. Therefore, M(q,p) 

contains different flow lines originating from q in opposite directions, and these flow 

lines when passing to limit would give a trajectory from to p in the boundary of 

C. We thus get another flow line corresponding to s) (similarly for Si). • 

Now we are ready to state the following compactification theorem, which is essen-

tial ill defining the boundary operator between the Morse-Smale-Witten complexes 

(refer to [14], [17] and [18]). 
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trajectories form 
M(cj.p), 

.七 

S! 
n^V) < T' Ff^ 

[ f i g u r e : Si and S2 are the l i m i t i n g f low l i n e s ] 

T h e o r e m 2.5.13 For generic Riemannian metrics, M(q,p) is a smooth manifold 

of dimension ind(g) - ind(p) - 1. Moreover, 

1. If i n d � - i n d ( p ) - 1 = 0, then M{q,p) is compact. 

2. If 'md{q) - ind(p) - 1 = 1，then M{q,p) will be a union of circles and open inter-

vals, and we have a suitable compactification of M{q,p) so that the boundary 

can be identified with the set 

U M{q,r) X M{r,p) 
ind{r)=ind{q) — l 

i.e. the set of once-broken flow lines from q to p. 

We now start to define the Morse-Smale-Witten complex. The fc-chains in this 

complex are finite sums of critical points of index k {Critk{f)) 

Ck{X-J) :={ : a , e Z}, 
x&Critkif) 

We then define the boundary operator d : Ck{X\ f) — Ck-i{X;f) of the complex 

by 

dx := — ’")" 

yeCritk-iif) 

where n{x, y) counts the number elements of M.{x, y) with the orientation or sign. 

We claim that f ) is a chain complex, i.e. d'^ = 0. To see this, we calculate 
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d'^x = n[x,y)dy 
y^Critk-iU) 

Y. Y. n(x,y)n{y,z)z 
y ^ C r i t k - i U ) z £ C r i t k - 2 { f ) 

According to the compactification theorem, the space M.{x, z) has boundary 

U X M{r,p) 
ind{r)=ind{q) — l 

which is just the set of once-broken flow lines from x to z. By choosing a suitable 

orientation of M{x,z) compatible with the compactification, ^y n{x, y)n{y, z) is 

zero since those once-broken flow lines occur in canceling pairs. 

Therefore the homology group 

kera 

of this complex is defined. It is worth to point out that although the chain complex 

depends on the choice of a generic metric g and function f (since the chain groups 

depend on f and the boundary operator depends on g), the homology group is 

independent of the choice of both g and f. (refer to [16] and [17]) 

E x a m p l e 2.5.1 (M. Akaho, [18]) Let X be a 2-sphere and f the height function as 

in the figure: 

fY) 
.�• [ f i g u r e : not ice that i t i s homeomorphic to S^l 

The indices of the critical points are ind(p) = i n d � = 2， i n d ( r ) = 1 and ind(s) 

= 0 . In this case A4{p, r) and Ai(q,r) consist of one point and A4(r, s) consists of 
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p P p 

mJ L J 
-� ^ -�• [ f i g u r e : the two f low l i n e s ] 

two points. We can identify M(p, s) with an open interval and compactify M{p, s) 

such that the boundary is M{p, r) x M{r, s), see the figure: 

Then we have 

dp = r,dq = —r, = 0,3s 二 0 

and the homology is Z[p+g]®Z[s]’ which is isomorphic to the singular homology of 

the 2-sphere. 



Chapter 3 

Lagrangian Floer Homology 

3.1 Introduction 

Floer theory can be interpreted as an infinite dimensional case for the classical Morse 

Theory. Probably inspired by the work of Witten, Conley and Gromov, Floer re-

alised that there are some interesting infinite dimensional situations in which a 

similar approach makes sense. In these cases, the ambient manifold X is infinite 

dimensional and the critical points of the function (which resembles the Morse func-

tion) 厂 R have infinite index and coindex. Therefore one usually cannot get 

much information from the sublevel sets c] of J^. Also, one may not be 

able to choose a metric on X such that the gradient flow of T is everywhere defined. 

However, Floer pointed out that in some important cases one can choose a metric 

so that the spaces y) of gradient trajectories between distinct critical points 

X, y oi have properties analogous to those in the finite dimensional case. Hence 

he defined the so-called F l o e r chain complex which will be explained below. 

In this chapter we will first give some preliminaries on symplectic geometry. We 

then proceed to describe the version of Floer theory used by Ozsvdth-Szabo. We 

end this chapter with discussions on the Floer complex as well as the obstructions 

to its existence. For more details refer to [17], [18] and [20 . 

22 
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3.2 Preliminaries on Symplectic Geometry 

3.2.1 Basic Definitions 

We need some definitions for terms in symplectics geometry (for details refer to [18]). 

We begin ourselves with finite dimensional vector space. 

Definition 3.2.1 Let V be a finite dimensional real vector space. A symplectic 

form a; is a non-degenerate anti-symmetric bilinear form on V. A symplect ic 

vector space is denoted by (V,(j). 

For example, with coordinates (xi,yi , - • • , Xn, yn) endowing with the 2-form 

LJo dXiAdyi, is a symplectic vector space. Of course the 2-form is compatible 

with the usual inner product in M "̂, namely 

(O -I \ [ o - l \ 
uJo{u, v) = Ju- V, where J := © • • • © . 

Here, J is skew-symmetric (J^ = — J) and it satisfies >P = —I. If we rewrite the 

basis of as (xi, • • • , a^n.yi, • • • , yn), then J can be written as 

(O -I \ 
J = 

W 0 ； 

where I is the n by n identity matrix. Sometime we will call ljq the standard 

symplectic form on M "̂ and is called the standard symplectic space. 

Definition 3.2.2 The cj-orthogonal complement of a linear subspace W CV is 

defined as 

丄w := {v e V\uj{v,w) = 0\fwe W} 

Definition 3.2.3 A liner subspace W of a symplectic vector space (V,a;) is called 

• symplectic if the restriction of u) to W is non-degenerate (equivalently W n 

HZ丄…=0); 
• isotropic if W C VV"丄、 

• L a g r a n g i a n if = 
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The dimension of a symplectic vector space V must be even, which follows easily 

from the non-degeneracy of u. 

P r o p o s i t i o n 3.2.1 Let (V, cj) be a symplectic vector space. Then V is even-

dirnensional, say dim(\^) = 2n. In fact, there exist a basis (ei, /i, • • • , e^, fn) for 

V such that 

a;(ei，ej) = u j { f i J j ) = 0 

0 i—j 
and Lj(ei, fj) = \/i 

1 I = J 

P r o o f : Firsr we pick a vector ei in V. Then we can find another vector v eV such 

that Ljj{ei,v) / 0, as 0； is assumed to be non-degenerate, and after normalization on 

V we can get a f i such that uj{ei,fi) = 1. Observe that ei and J\ must be linearly 

independent: if ei is some multiple of fi, since u is anti-symmetric, we then will 

get uj{ei,fi) = 0. Hence Ci and fi will span a 2-dimensional subspace Vi of V. By 

construction, Vi is a symplectic subspace of V. 

If V has dimension 2，then V = Vi and we are done. Otherwise we can consider 

the subspace 

V2 = {ve V\uj{v,u) = 0 V u g Vi} 

Now, V2 is also a symplectic subspace of V and it is a complement of Vi with 

n 二 {0}. So we can apply the same construction to V2. By induction, the 

result follows. • 

Referring to the above proposition, a basis (ei, /i, • • • , fn) which satisfies the 

suggested conditions is called a symplect ic basis of {V,uj). For example, the 

standard basis of is symplectic with respect to the standard symplectic form cjq. 

We will also study mappings between symplectic vector space. 

Def ini t ion 3.2.4 Let (\4，a;i) and be two symplectic vector spaces. A 

symplectic isomorphism from {Vi,uji) to (V^2，� is a bijection linear map : Vi —> V2 

such that (/?*0；2 = cji, meaning that 

U2{^{u),ip(v)) = uJi{u,v), \/u,V e Vi 

If (VijCJi) = (V2,'^2) then we will call (f a symplectic automorphism. 
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From the definition and proposition 3.2.1，we know that every symplectic vector 

space of dimension 2n is symplectically isomorphic to 

It is not difficult to image that the theory of symplectic geometry can be applied 

to manifolds. 

Definition 3.2.5 Let M be a /c-dimensional manifold and a uj 2-form on M. We 

call LJ a symplect ic form if and only if l j is closed and non-degenerate. If such u 

exists, (M, 0；) will be called a symplect ic manifold. From the previous proposition 

we can conclude that the dimension of M is even. We have the following examples 

of symplectic manifolds: 

• R2n with LUo := dxi A dyi 

• Kahler manifold with Kahler forms 

• Let X be a smooth manifold and (a：!,..., Xn) a local coordinate system. 

We have a local coordinate system of the cotangent bundle T*X such that 

Vidxi corresponds to (rci，yi’. •. ’ Xn, Vn)- Then the 2-form u •= dxiA 

diji is a symplectic form on T*X. 

A particular type of submanifold of a symplectic manifold is given as follow, 

which is useful for our later construction. Let L be a n-dimensional submanifold of 

If U\TL = 0, then we call L a Lagrangian submanifold. We have the 

following examples of Lagrangian submanifolds: 

• 1-dimensional submanifolds of Riemann surfaces 

• The zero-section Oy of T*Y, where y is a smooth manifold 

Let (M, ujm) and {N, uj^) be two symplectic manifolds. A smooth mapping f : li/I 

N is called symplectic if 

R^N = ^M-

If / is a symplectic diffeomorphism, then /一丄 is also symplectic. In this case f 

is called a symplectomorphism. 
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3.2.2 The Symplectic Group 

We back to our case of finite dimensional vector spaces. Now for the standard 

symplectic space the matrices A associating with those symplectic auto-

morphisms can be characterized by the equation 

A^JA 二 J 

where A^ denotes the transpose of A. We call these matrices symplectic matrices, 

and denote this set of matrices by Sp{2n). 

For a symplectic vector space (V, u) with a symplectic basis 13 = (ei, /i, • • • , e^, fn), 

by our construction, a linear automorphism of V is symplectic if and only if the 

associated matrix of tp with respect to (3 is symplectic. And the set of symplectic 

automorphism of {V,u)) (denoted by Sp{V)) forms a group, which is isomorphic to 

Sp{2n). We will pay more attention to the matrix group Sp(2n). 

First of all, observe that since symplectic automorphisms preserve o;。，they also 

preserve the 2n-form ctq == cjq 八.•.八 cjq, the n-times wedge product of luq by itself. 

But the 2n-form ctq precisely coincides with the standard volume form in E^", in 

other words, every symplectic automorphism preserves the standard volume form. 

Hence every symplectic matrix in Sp{2n) has determinant 1. Moreover, for any 

A 6 Sp(2n), its inverse is given by 

A - i = j - M 了 J 

Next, the matrix group Sp{2n) is, in fact, a Lie group. To show Sp{2n) is a smooth 

manifold, notice that 

Sp{2n) = M2nx2n(M)|0(A) = J} 

where M2nx2n{^) is the vector space of real 2n by 2n matrices and 

(f){A) := A^JA. 

We can treat 0 as a map from M2nx2n{^) to Skew{2n), the vector space of all skew-

symmetric 2n by 2n matrices. Since M2nx2n(股)and Skew{2n) are diffeomorphic 

to and respectively, (f) can be viewed as a smooth map from to 
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Rn(2n-i). If we can show that J is a regular value of cj), then we will be done because 

Sp{2n) = (f)~'^{J), which implies Sp(2n) is a smooth submanifold of 

We calculate the differential of 0 at ^ G M2nx2n(K)’ which is given by 

d(/)A{H) = H^JA + A^JH 

where H is in the tangent space of M2nx2n(R) at A. Here,邮八 is onto if A is 

invertible. More directly, ii B e Skew{2n), we can take H = \ B'^ such 

that 

dMH") = HTJA + ATJH = IB- = B. 

Since every matrix in Sp{2n) is invertible, we can deduce that d(j)A is onto whenever 

A e Sp{2n). This proves J is a regular value of • and hence Sp{2n) is a Lie group. 

The dimension of Sp{2n) is — n(2n — 1) = n(2n + 1). 

The Lie algebra of Sp{2n) is the tangent space to Sp{2n) at the identity matrix 

I, which is given by 

sp(2n) := Ker妨/ = {H e M2nx2n(M)|i/^J + Ji/ = 0} 

The matrices in sp(2n) are called infinitesimally symplectic. We know that the 

matrix defined by 
OO 1 

e " := V 

is in Sp{2n) ii H e 5p(2n). 

Example 3.2.1 We examine the group Sp{2n) for n = 1 Since det(A)=l for all 

A e Sp{2), Sp(2) C SL{2) where SL{2) is the set of matrices with determinant 1. 

And by direct computation, B'^JB 二 J for all B e SL{2). So Sp{2) = SL{2). 

For any invertible matrix A, we can decompose A into the following polar form: 

A = PO, P := O ：二 P-Iyl， 

here, P is a positive definite matrix with P^ = AAT. And from this construction, P 

is symmetric and O is orthogonal. Since A has determinant 1，P also has determinant 

1 and thus P € Sp{2). Similarly, O 6 5p(2). In particular, O G 50(2), the 

orthogonal matrices with determinant 1. 
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Let H be the set of 2 x 2 symmetric and positive definite matrices with deter-

minant 1. This set consist of matrices with the following properties: 

(a b\ 
P = where a,b,c eR and ac-b = 1 

” c ) 

Since ac — b"^ = 1 and all the entries are real, a and c are both non-zero. And because 

the matrices are positive definite, both a and c are positive real numbers. Therefore, 

H can be written as: 
(a h \ 

H = { I where a is positive and b is arbitrary any real numbers} 
V ^ a / 

Now we can identify iiT by P h (a, b) with the product space 1R+ x IR (E+ denotes 

the positive real numbers), and this space is readily seen to be homeomorphic to E^. 

From [41], we have the following result: 

Proposition 3.2.2 The map f : H x S0{2) — SL(2) defined by /(P, O) = PO is 

a homeomorphism. 

Sketch of proof: / is a bijection because the polar decomposition of an invertible 

matrix is unique. And since f is defined by matrix multiplication, it is a continuous 

map. Similarly the inverse /一i is also continuous. • 

Since S0{2) is a circle, we have proven that Sp{2) is homeomorphic to the 

product space S^ x (D^ is the open unit disk in C), which is the interior of the 

full torus. In particular, Sp{2) is homotopic equivalent to the unit circle S"(l)，and 

therefore 

7ri{Sp{2)) ^ TTiiS') = Z 

3.2.3 Maslov index for non-degenerate paths in Sp(2n) 

Although the concept of Maslov index is not used in this Chapter, it will become 

crucial in Chapter 4. Before defining the Maslov index for Sp{2n), we will first 

examine the case for Sp{2). The general case follows only with some modifications. 

We are going to define a symplectically invariant map 

p : Sp{2) S'0(2) 
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which has the property that = p(AY for every A e Sp(2) and all n e N. 

Although this map is not a group homomorphism, it turns out to be important and 

it will be called the rotation function. 

Since det(A) = 1 for ^ G Sp(2), the eigenvalues of A must be in the form of A, 

J, where A G M U 50(2). In particular, the eigenvalues 1 and -1 are always double. 

Then we consider the matrix G := —iJ, which is Hermitian with respect to 

the standard Hermitian product〈.，•〉on C. Observe that for A e Sp(2), we have 

A*GA = G, where A* is the conjugate transpose of A. 

We pick A G Sp{2). Assume that A has eigenvalues A # 土1 (i.e. A and A are 

both lying on the unit circle 50(2) excluding the point 士 1) with that ^ and f are 

the corresponding eigenvectors. Then 

= = � G T i e A O = A2�G(’<e-�. 

By assumption A 土1，so = 0. And for {G^,^), because 

therefore (G^,^) is real. Moreover, (G^,^) is non-zero, otherwise by (G^, f> = 0, 

which implies f = for some non-zero constant. Now 

= - -

< _ _ _ cAf = cAf A = A 

which is impossible since A + 土 1. By the similar reason, (Gf, is also real and 

non-zero. Moreover, by considering the real vector ^ + f , we have 

0 = (m+f) 乂 + 0 = ifli�0 + (PL i) + 恢 0 + 魄 I)=俠、0 + 魄 I) 

and hence (G^,^) = — (Gf, (f). These facts lead to the following definition. 

Definition 3.2.6 If A E 50(2) \ {—1，1} is an eigenvalue of A 6 Sp(2) and ^ is the 

corresponding eigenvector, the Krein sign of A is the sign of 

From the previous result, if the eigenvalue A E 50(2) \ { - 1 , 1 } is Krein-poistive, 

then the eigenvalue A will be negative. We can now define the rotation function 
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p : Sp{2) — 50(2): 
‘ 

A if A G 50(2) \ {—1，1} is the Krein-poistive eigenvalue of A, 

= s 1 if the eigenvalues of A are real and positive, 

—1 if the eigenvalues of A are real and negative. 

The rotation function p satisfies several properties. First of all, p is symplectically 

invariant, i.e. p{M*AM) = p{A) for all M,A e Sp{2). To prove this, suppose 

p{A) = A with A^ = X^. Then�G《乂〉> 0. If p{M*AM) = K with M M M C = 

i.e. (GC,C> > 0’ then 

M*AM(： = /< AMC = kMQ 

which implies MQ is an eigenvector of A with eigenvalue k. We either have /c = A 

or K = A. If = A, then MQ = cf for some constant c. Then 

(GMCMQ 二� c G f， c f � = | c | 2魄 f � < 0 

But 

� G M C ’ M O = (M*GMC,C> = {GCX) > 0 

which is a contradiction. Therefore we must have k =入. 

Secondly, p is continuous, because 

where A is any eigenvalue of A in the case A 6 M, and it is the Krein-poistive 

eigenvalue in the case 入 € 50(2) \ { —1,1}. 

If A is an eigenvalue of 知 with eigenvector ^ for k e N, then X'^ is an eigenvalue 

of A^ with the same eigenvector In other words, 

p � = P{ A ) K 

However, since the eigenvalues of the product of two matrices need not be the 

product of the eigenvalues, p is not a group homomorphism. 

We want to express Sp{2) in terms of p. Recall the fact that Sp{2) is homeo-

morphic to X P-. And there is a natural polar coordinates d) defined on 

S^ X ]D)2. To do this, we can associate polar coordinates (r = |z|,cr = argz) on 

and {z = 没）on S^. Sometime, for computational purpose, we will let r = tanh? r. 
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In terms of the above parametrization, for any A e Sp(2) with the decomposition 

A = PO, we have 

[ c o s h r + cos (7 sinh 丁 sin cr sinh r � ( cos 9 - s i n 0 \ P= ,0 = 
� sin cr sinh r cosh r — cos cr sinh r y � s i n 没 cos 6 ^ 

These coordinates make the calculation of the eigenvalues of A 6 Sp{2) much sim-

pler. Consider the equation: 

det(A/ - A) = Â  - (trA)A + 1 = 0, 

the discriminant A of the above polynomial is given by 

A = ( t r � 2 - 4 = 4 cosh^ r cos^ 9-4. 

So A has a double eigenvalue (A = 土1) if and only if A = 0, which is equivalent to 

r = sin^ 6. 

The set of symplectic matrices with a double eigenvalues is 

5^(2)" = {Ae 5p(2)|det(/-A) = 0 or det{I+A) = 0} = {{e,r, a) G ^ ' x P ^ = sin^^}. 

The above set 5^(2)" consists of two connected components. One component con-

tains I and thus it consists of matrices with eigenvalue 1. The other one contains 

—I with eigenvalue - 1 . 

We divide Sp{2) into three subsets: 

5p(2)+ = {Ae Sp{2)\det{I - A) > 0}’ 

Sp(2)- = {Ae 5p(2)|det(/ - A) < 0}’ 

5p(2)0 = {Ae Sp{2)\det{I - A) = 0}. 

Here, is a subset of 5^(2)", which is precisely the component of 5^(2)" con-

taining I. 

Sp{2)^ is a surface in Sp{2) with a point singularity at I. It divides Sp{2) into 

two connected components, namely 办(2)+ and Sp{2)~. Since -I G 办⑶ +，办⑵+ 

is the "upper-left" region, while Sp{2)~ is the remaining "lower-right" region. 

We want to define an integer to every continuous path 7 : [0’ 1) — 5p(2) for 

7(0) = I and 7(1) e 办⑵％ and this integer will be called the Maslov index for 
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7. Roughly speaking, one can view maslov index as the "pull back" of the winding 

number of p(7) on S^ via p. 

We first observe that the matrix —I is lying in >Sp(2)+ with p(—/) = - 1 . We fix 

a matrix W in Sp{2)~ such that p{W) = 1，say 

( 2 
W := . 

卜 I j 

For every path 7 : [0’ 1] 一 Sp{2), choose a continuous function (the angle function) 

^ : [0,1] R such that p(7(t)) = e访⑴ and define 

TT 

For each A e Sp{2y, we can take a path aA ： [0,1] —>• 5p(2)* such that = A 

and a>i(l) € { - / , W}. The real number Ai(a)=没(1)；；权�)does not depend on the 

choice of a because and Sp(2)~ are both contractible and connected. We 

thus define a continuous function f : 5p(2)* —>• M 

f{A):=八1 � . 

Finally we can have the following definition: 

Definition 3.2.7 Let 7 : [0,1] — Sp{2) be a continuous path such that 7(0) = I 

and 7 G 办(2)本.The Maslov index "(7) of 7 is the integer 

" ( 7 ) : = A i ( 7 ) + / ( 7 ( 1 ) ) . 

It is shown in [42] that /x(7) is, in fact, an integer. 

Example 3.2.2 Of course, for constant paths 7⑴三 I，"(7) = 0. 

Consider a path 7 : [0,1] —> Sp{2) defined by 

( �卜 十 t 0 ) 
[ 0 ji-J 

where 7(0) = I and 7(1) = W. Since p{'y(t)) = 1，so we take 0 : [0,1] —̂  M with 

9{t) = 0. Then A i ( 7 ) = 0 . 

-0 
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Similarly, by taking : [0,1] — 5p(2)* with a^ = 7(1) = W, we get /(7 ( 1 ) )= 

0. Again = 0. 

We look at a less trivial case. Consider another path 7 : [0,1] —>• 5p(2) defined 

by 

(e 彻 0 \ 
7 ⑷ ： = . 

\ 0 
where 7(0) = I and 7(1) = -I. We can take 0 : [0,1] E with 9{t) = tir. Then 

TT TT 

By taking 仅“⑴:[0，1] -> Sp{2y with a^ 三 7(1) = -/，we get /(7(1)) = 0. Thus 

= 1 + 0 = 1 . 

In general, for any symplectic vector space (y,a;), we can have the notion of Maslov 

index in a similar way. 

Again we first need to define the rotation function. The following is due to [40 

and [20:. 

Proposition 3.2.3 For any symplectic vector space {V,uj) with dim(V) = 2n, there 

exists a unique continuous mapping 

Pv ： Sp{V) — 

which satisfies the following conditions: 

1. If M : (Vi,a;i) — (V2,^2) is a symplectic isomorphism, then 

Pv,{MAM-') = pv,{A), A e Spiy^uJi). 

2. Define A € 5p(Vi x 1/2,̂ 100；2) to be >1(^1,6) ：= € SviVi .ui) 

and A2 € 办 的 ) . T h e n we have 

PVixV^i^) = PVMI)PV2{^2)-

3. U Ae Sp{2n) n 0(2n) ^ U{n), then 

p{A) = det{A). 
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4. li A e Sp{V) has no eigenvalue on the unit circle then 

P{A) = 土 1. 

5. If A € Sp{V) and n e N, then 

p � = p ( A r . 

Similar to the case in n = 1，We can divide Sp(2n) into three subsets: 

Sp{2n)+ 二 {A e 5p(2n)|det(/ - A) > 0}， 

• Sp(2n)- = {Ae Sp{2n)\det{I - A) < 0}， 

Sp{2nf = { A e Sp{2n)\det{I - A) = 0}. 

Define Sp{2ny = {A e Sp{2n)\det{I - A) 0}. From [20], 5p(2n)* has two con-

nected components, namely Sp{2n)'^ and Sp{2n)~. 

Definition 3.2.8 We call a path 7 : [0，1] — Sv{2n) admissible if 7(0) = hn and 

7(1) G 办(2n)*. 

We associate every admissible symplectic arc 7 : [0,1] — Sp{2n) the Maslov index 

with the following settings. Choose a continuous function 6 : [0,1] —̂  M such that 

p i j i t ) ) = e叫t) and set 

TT 

Then, we connect 7 G Sp�2n丫 with W+ or W' using a path f : [0’ 1] 一 Sp{2ny： 

/(o) 二 7(1)， 

where W'^ and W~ are representatives from Sp+(2n) and Sp~{2n), say 

VK+ = —hn e V " ( 2 n ) � = d i a g ( 2 , - ! , • • • , -1，全，-1，…• , - 1 ) ^ 办 _(2n) 

Definition 3.2.9 The Maslov index ；lx(7) is defined by 

"(7) = A(7) + A(/). 



3.2. Preliminaries on Symplectic Geometry 35 

3.2.4 Maslov index - the analytic aspect 

In the previous section, we define the Maslov index algebraically. Yet such index 

is closely related to the index of a certain Fredholm operator [42]. We present the 

main idea of the theorem of Salamon and Zehnder; for details we refer to [20 . 

Definition 3.2.10 Let u be locally integrable in a bounded domain ft C R"^ and 

a any multi-index. Then a locally integrable function v is called the a-th weak 

derivative of u if it satisfies 

f (f>vdx = ( - l ) H [ uDa^doc for all 0 G C f ' � ) . 

We call a function weakly differentiable if all its weak derivatives of first order 

exist and k times weakly differentiable if all its weak derivatives exist for orders 

up to and including k. 

Denote the linear space of k times weakly differentiable functions by 妒 ( Q ) . Clearly 

C W'^(n). So the concept of weak derivative can be viewed as an extension 

of the classical concept which maintains the validity of integration by parts. 

Definition 3 .2 .11 The Sobolev space //•̂ •̂ (IR x M/Z; M "̂) is the Banach space 

e L \ R X M/Z; ： 落 尝 e L ^ R X M/Z; R'^)}, 

where the partial derivatives are in the weak sense and the norm is given by 

Here, x is also a Hilbert space with the scalar product 

jRxR/Z OS OS at Ot 

Define an operator F : / / " ( R x R/Z; M n̂) — [2(股 乂 M/Z;lR2n) by 

where 5(s, t) is a real symmetric n x n matrix continuous in (s, t) and 1-periodic in 

t. We further assume that S(s, t) converges uniformly in t to the limit S'^(t) and 

S~(t) as s tends to +oo and —oo respectively. 
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Definition 3 .2 .12 A bounded linear operator F : X -^Y, where X, Y are Banach 

space, is called Fredholm if kerF and cokerF = y/image(F) are finite dimensional. 

The index of F is given by 

ind(F) = dim kerF - dim cokerF. 

The most important property of Fredholm operators is the invariance of their index 

under perturbations. Let T be the set of Fredholm operators F : X -^Y with the 

topology induced by the operator norm. From [20], we have the following theorem: 

Theorem 3 .2 .13 (Dieudonne) The index function ind: ^ —̂  Z is locally constant. 

We come back to our operator F : x R/Z; E^n)—丄2(股 乂 股/忍；脱2n) defined 

by 

Because (J5(s , 1)^3 + J ( J 5 ( s , t) = S{s, t)J^J + {-S{s, t)) = 5(s, t) - S{s, t) = 0’ 

we have JS[s,t) e 5p(2n). Therefore, we can define a path 屯(s，t) in Sp(2n) which 

is given by 

with the initial condition ^(s, 0) = I. As s tends to 士oo,屯(s,力）converges to the 

matrices 屯土u n i f o r m l y in t with 

= J 炉 ⑷ 土⑷. 

We quote the following theorem given in [20 . 

Theorem 3 .2 .14 (Salamon-Zehnder) Let the operator F : x M/Z; — 

L2(M X R / Z ; R 2 � b e given by 

Assume further that the paths 屯土(t) are admissible. Then F is Fredholm. 

After we know that F is a Fredholm operator, we can express its index in terms of 

Maslov index. By assumption, the paths 屯 a r e admissible, so we can associate 

a Maslov index each of them. The following theorem is proven in [42 . 
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T h e o r e m 3.2.15 Under the conditions of the preceding theorem the index oi F = 

£ + + 5 is given by 

3.3 Definition of Floer Homology 

Now we start to define the Lagrangian Floer Homology (basically follows from [17]). 

Let M be a 2n-dimensional manifold with symplectic form lj. Choose two La-

grangian submanifolds Lq and Li. We assume that they intersect transversally and 

also that their intersection is non-empty, since otherwise the complex we are going 

to define is trivial. Define V := V{Lo, Li), the space of paths from LQ to Li, i.e. 

= {a; : [0,1] — M : a;(0) € Lo,a;(l) G L J 

Pick a base point xq G Z/o A l a ’ consider it as a constant path in V. Let V be the 

universal cover of V based at xq, 

P := {x : [0,1] X [0,1] — M\x{0,t) = Xo,x{s,i) e Li,x{l,t) = a;(i)}/homotopy 

So elements in V are pairs, (x,[到)’ where [x] is an equivalence class of maps x : 

0,1] X [0,1] —>• M satisfying the required boundary conditions. Next we define our 

"Morse function" T . The function is the action functional ^ : P ^ E given by 

[x]) := [ f £*(cj) 
Jo Jo 

First we need to know whether T is well-defined or not. We state the following 

lemma : 

L e m m a 3.3.1 The functional T does not depend on the homotopy class of the map 

X. 
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P r o o f : For any fo, € [f], choose a homotopy F : D! x D"^ — M between them. 

Then we have 

0 = 人 1 D2 (••• ^ is a closed form) 

= f F*{uj) (By Stokes' Theorem) 
JdiD^xD^) Z 

=士（ / xYiuj) - f xVicj) + f F*{u) 一 [ F*{uj)) 
Jd2 Jd^ JdD^nLi \ ‘ JdD^nLo 

= 士 2 而 * ( … ~ 1 2 而*(…）（•.. ^ vanishes on Li) 

Hence the result follows. • 

From this lemma, we can take as a function on V, which is our "Morse function" 

on this infinite dimensional space (refer to [17] and [19] for more details). In order 

to find out those critical points of ！F, we need some more definitions. 

Def in i t ion 3.3.2 Given a path x : [0,1]—M, the tangent space Tx{t)[V) consist 

of all smooth s e c t i o n s � o f the pullback bundle x*(TM), i.e. ^{t) G 了工�(M) for all 

t e [0,1], and satisfies the boundary conditions ^{i) e Tx� i�[Li) for 2=0, 1. For two 

sections 77, we set 

� & � : = [\jm.rj{t))dt 
Jo 

where gj is a Riemannian metric on M and J : TM —>• TM is an a;-compatible 

almost complex structure in the sense gj{v, w) = uj{v, Jw) for v,w e TpM, Vp E M. 

Now the differential of T at x{t) in the direction of ^ is defined by 

圳(0 二 明乏s，0)丨s=�, where = r r � ’ 二 € 

Therefore, 

此⑷ ( G = 

= j 2 (definition of Lie derivative) 

二 j 2 x*di^uj (Cartan's Formula) 

= / dx*icuj 

= J ^ (Stokes' Theorem) 

=i:舊，力. 
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And we conclude that = 0 if and only if ^ ^ = 0，which implies that x{t) is 

a constant map to LQCI Li. In other words, the critical points of T are the lift to V 

of the points of intersection Lq fl Li. 

Just similar to the classical Morse theory, we are also interested in studying the 

^-gradient trajectories between the critical points. To achieve this aim, we need to 

know what "grad^' is. By definition, the 仏gradient of T is the unique vector field 

V T satisfying the relation — (VJ^, where ^ is any tangent vector. Then 

we calculate, 

d � ( 0 = J: 

= 、 举 厂 J ‘ � t ) ) 

= ( J 均 ) 举 識 

Hence = Now we consider the following set, for q andp e LoCiIn, 
、 

lim^^+oo 二 p 

M{q,p) := lu(s,t):Rx [0,1]-^ M — = \ = q > 

‘ ||Vu| 丨2<00 
which is the space of bounded trajectories connecting p and q. Here, Vu =(费，瓷） 

and II • II2 is the L^-norm with respect to the metric g. It thus turns out that 

the gradient flow lines are given by J-holomorphic strips in M with boundary 

conditions 

dsU + Jtdtu = 0, u{s,0) e Lo, u(s, 1) G L：. 

Here we allow Jt to vary smoothly with t e [0，1]. We quote the following proposition 

from [24 . 

Proposition 3.3.1 (A. Floer, [24]) If LQ intersects Li transversely, then for each 

p,q e LQH Z/1, there exist smooth Banach manifolds 

where V -̂ioc is given by the space of Lj-paths 

KioALo山)= {UE X M\U{R X {0} C Lo,u(R x {1} C L,} 
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so that the map F given by 

F{u)=氏 li + Jtdtu 

defines a smooth section of a smooth Banach space bundle over V{q,p) with fibers 

Cu = IJ\u*TT% and M{q,p) is the zero set of F. The linearization of F 

DF{u) : TuV 4 Lu 

are Fredholm operators for u € M{q,p). 

Applying the notion of Maslov index, we can calculate, 

Proposition 3.3.2 (A. Floer, [24]) There exist a map 

which is defined up to an additive integer, so that for u e M{q,p), 

md{DF{u)) = i^{q)-f,{p), 

which is the dimension of M(q,p) 

According to [26], the space M{q,p) has much in common with trajectory spaces 

in finite-dimensional case, the sets of trajectories connecting two critical points can 

be described as the intersection of the stable manifold of the one with the unsta-

ble manifold of the other point. This intersection is transversal in the "generic 

case" case, so that then the space of bounded trajectories decomposes into finite-

dimensional manifolds. It turns out that one can prove very similar results for the 

set M{q,p), where intersection theory of finite-dimensional manifolds is replaced by 

techniques of the theory of elliptic partial differential equations. For details, see the 

main theorem in [26 . 

Making use of the above propositions, we have the following result: 

Proposition 3.3.3 With the notation used in Proposition, M{q,p) is a manifold 

of dimension fj.{q) 一 — 1，where M{q,p) is the quotient of M{q,p) by M, with 

the action : 

{a • u){s, t) := u{s + a, t) for a e M. 

If ij,{q) 二 + 1，then M{q,p) is a finite set. 
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The above result justifies the following construction. 

Definition 3 .3.3 Let Ck be the vector space over Z generated by {x E Lq f) 

Li\fj,{x) = k} for k eN. For fi{q) = fj,{p) + 1，we define d : Ck+i — Ck by 

dq = 响，rip, 
peZ/onLi,M(p)=fc 

where n{q,p) = #X^(g，p). 

Proposition 3.3.4 (A. Floer, [24]) As defined a b o v e ,伊= 0 . 

Proof: We have for r 6 Ck-i and q e Ck+i, 

= 响’咖(P，”. 

This is the number of pairs of adjacent trajectories joining r and q with appropriate 

signs (if we are using lL.i coefficient rather than Z, the sign can be neglected). As 

similar to the case in classical Morse complex, these pairs of adjacent trajectories 

between q and r are in 1-1 correspondence with the ends of M[q’p)’ so they cancel 

each others. • 

Therefore, (C*, d) is a chain complex. Its homology 

剛二s 
is called the Floer homology of M . 

3.4 Some Remarks 

1. Apparently, the Floer homology group depends on the complex structures. 

In [24], however, Floer proved that the homology group is independent of J. 

Theorem 3.4.1 (A. Floer, [24]) There exists a natural chain homomorphism 

between two chain complexes J) and CJ^M, J')，which induces an iso-

morphism of Floer homology 

HF“M, J)芒 HFJJVI、F). 
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Moreover, there is a natural isomorphism between the Floer homology and the 

singular homology of M 

2. According to [17], one cannot always define a Floer complex in some other 

irregular cases (e.g. the trajectories do not have finite energy) because 沪 

may not always vanish. Different from the case in Morse complex, it may be 

impossible to define a good compactification of the 1-dimensional trajectory 

space M{q,p) simply by adding once-broken flow lines. (In [21], Fukaya-Oh-

Ohta-Ono sets up a framework in which to measure the obstructions to the 

existence of the Floer complex.) 

3. In the next chapter, we will see that by considering a very special case of the 

Lagrangian Floer homology construction, Ozsvdth-Szabo can be able to define 

a homology group (known as Heegaard Floer homology) for 3-manifold from 

the geometry of the Heegaard diagram. 



Chapter 4 

Heegaard Floer Homology 

4.1 Introduction 

Beginning in 2001, Ozsvdth-Szabd introduced a new version of Floer homology -

the heegaard Floer homology - based on Heegaard splittings of genus g of an ori-

ented 3-manifold Y^. With an overwhelming amount of calculational evidence, it 

is conjectured in [2] that the Seiberg-Witten theory and Ozsvdth-Szabo theory are 

isomorphic. Each theory has it own advantages and disadvantages, for example Hee-

gaard Floer homology is more combinatorial in flavor than Seiberg-Wit ten theory, 

(refer to [28]) 

In this chapter we first recall some basic topological preliminaries. Afterwards 

we define the Heegaard Floer complex. Then we briefly describe some calculations 

and applications. For details refer to [2] and [17 . 

4.2 Basic Set-Up 

Let K be a connected, compact, oriented 3-manifold. As explained in the previous 

chapter, Y is completely determined by a triple /?) (the H e e g a a r d diagram) 

where S is a Riemannian surface of genus g and a, (3 are sets of attaching circles 

for two handlebodies [/„，"" which bound S. 

The basic idea is to use this data to construct a symplectic manifold (M,LU) 

together with a pair of Lagrangian submanifolds T^, Tp and then to consider the 

43 
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corresponding Floer complex. However, as explained in [2] and [17], TQ, and T卢 

are in fact not a priori Lagrangian. Nevertheless, certain constructions from Floer 

theory can still be applied, so that one can define a chain complex CF°°(Y). 

Before we give the definition for the complex, let us recall some topological 

preliminaries which are needed in the setting. 

4.3 Topological Preliminaries 
I 

4.3.1 Symmetric Product 

Definition 4.3.1 For a topological space X , the n-fold symmetric product 

Sym"(X) is the quotient space of the product of n copies of X obtained by fac-

toring out the action of the symmetric group on n letters, i.e. 

n copies 

Sym"(X) X X X / S n 

The diagonal D in Syni"(X) consists of those 化tuples of points in X, where at 

least two entries coincide. 

Example 4 .3.1 Let's see the case for X = S'̂ . We claim that Sym"(X) 二 CP" (A. 

Hatcher, [29]). First observe that C P " can be identify with the set of nonzero polyno-

mials of degree at most n with coefficients in C, modulo scalar multiplication, i.e. we 

have a bijection CP"" ^ { a o H — — G C with aj 0 for some j}/scalar multiplication. 

And for the sphere we view it as C U {oo} by stereographic projection. 

We define $ : (5^)" — C P " by setting <l>(ai,…’ a^) = (z + ai)…（z + a„) 

with factors z + oo omitted, in particular (I>(oo, • • • , oo) = 1. To check that (I> is 

continuous, suppose for some â  approaches oo, say a^, and all other a/s are finite. 

Since 

(2 + a i ) …（ z + a„) 

二 2：" + (tti + . . . + an)^"-' + ••• + En<-<ifc O'ii-'- o^i 广 k + • • • + ai • • • an, 

We see that, dividing through by and letting approach to oo, this polyno-

mial approaches to + (ai H 1- H hai • • • an—i = (z + ai) • • • + 
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fln-i)- The same argument would still apply if several a '̂s approach oo simultane-

ously. 

The value $(ai ’ • • • , a„) is clearly unchanged under permutation of the so 

there is an induced map : Sym"(5^) — C P " which is a continuous bijection, hence 

a homeomorphism since both spaces are compact and Hausdorff. 

Example 4.3.2 The map (/? : Sym"(C) — defined by 

^il^u . . . , â x]) 二 (2； + a i ) . • • (2： + an) 

is a diffeomorphism (here we identify with the set of monic polynomials of degree 

n). This shows that for any two dimensional (oriented) manifold M (in particular 

a Riemann surface), Sym"(M) is an n-dimensional complex manifold. 

It is worth to point out that Sym"'(M) has no natural smooth structure; it 

inherits a complex structure Jj from the choice of a complex structure j on M, 

but different choices of j give rise to different smooth structures on Sym'^(M) (two 

complex structures Jĵ  and Jj^ are different in the sense that the identity map 

(Sym"(M),J jJ —^(Sym"{M),Jj^) is not smooth) . Here the Ji is specified by the 

property that the natural quotient map 

TT : M X .. • X ^f — Sym"(M) 

is holomorphic (where the product space is endowed with a product complex struc-

ture). (refer to [31]) 

Back to our case of 3-manifolds Y . For a Heegaard diagram (Eg,a,/?), we consider 

the 没-fold symmetric product Mg := Sym^(Sg) of S^. As explained in the above 

example, Mg is a complex manifold with dimc(M^) = g. 

The manifold Mg has rather simple homotopy and cohomology. We refer the 

following lemma given in [2 . 

Lemma 4.3.2 (Ozavdth-Szabc5, [2]) Let Eg be a genus g surface. Then 
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Sketch of proof: We begin by proving the isomorphism on the level of homology. 

There is a map 

induced from the inclusion E x {x} x … x {x} C Sym^(Eg). To invert this, for a 

closed curve in Sym^(Eg), by moving it to the "general position" (i.e. to miss out the 

diagonal D in Sym"(X)), we get a map of p-fold cover of S^ to Eg. This corresponds 

to a homology class in and hence a map i/i(Sym^(Eg)) — i^i(Eg). 

By similar argument, one can show 7ri(Sym®(Eg)) = //"i(Sym^(Eg)) (refer to [2] 

for the rest) • 

The cohomology of Sym®(Eg) was studied in [31] and [32]. As is usual in the 

study of Gromov invariants and Lagrangian Floer theory, we have to understand the 

holomorphic spheres (which will be discussed later) in Sym分(SJ. To do this, we 

study how the first Chern class Ci (of the tangent bundle TSym^(S^)) evaluates 

on homology classes which are representable by spheres, which provides a linkage 

between the homotopy and the cohomology of Sym®(Eg). 

We are going to state the following proposition in [2]. To this end, we introduce 

some notations. If X is a connected space endowed with a basepoint x G X , let 

(乂) denote the quotient of 7r2(X, x) by the action of 7ri(X,x). This action is 

independent of the choice of x, and the H u r e w i c z homomorphism from 兀2(义，x) 

to H'ziX) factors through ni^iX). 

Proposition 4 .3.1 (Ozavdth-Szabo, [2]) Let Eg be a Riemann surface of genus 

g > I, then 

Furthermore, if {Ai, Bi} is a symplectic basis for Hi(Eg), then there is a generator 

of 7r2(Sym^(Eg)), denoted by 5, whose image under the Hurewicz homomorphism is 

Poincare dual to 

( 1 — � “ � � 2 
i=l 

III the case where g > 2, 7ri(Sym^(Eg)) acts trivally on 7r2(Sym^(E^)) and thus 

7r2(Sym^(S,))兰 Z 
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here, (/ is a two-dimensional cohomology class which is Poincare dual to the sub-

manifold 

{x} X Sym^-^E,) C Sym^(E,) 

and fj, : Hi{Eg) 一 //^(Sym^(Eg)) is an isomorphism. 

We omit the proof. Basically, the isomorphism tt讲ym沒(Sg)) = Z is given by the 

intersection number with the submanifold {a;} x for generic x. And for 

g > 2�the generator of 5 G 7r2(Sym®(Eg)) can be constructed in the following way: 

let r : Eg —> Eg be a hyperelliptic involution with the property that S^/r = 5o, 

where ^ 5o C Sym^iEg). Then x {a;} x •.. x {a;} c Sym®(Sg) is a sphere 

representing S. 

The evaluation of the first Chern class on the generator S is given in the following: 

P r o p o s i t i o n 4.3.2 (Ozavdth-Szabo, [2]) The first Chern class of Sym"(Sg) is given 

by g 

i=l 

In particular, (ci, [5]) = 1. 

See [2] for the calculation of Ci. The rest follows from the previous proposition. 

4.3.2 The Tori T^ and T^ 

For a Heegaard diagram (E^.a,/?) of a 3-manifold Y^, since the attaching circles 

a = { a i , . . . , cvg} are mutually disjointed, it naturally induces a smoothly embedded 

^'-dimensional torus 

Ta = Qi X •. • X Qg C Sym^(Sg) 

More precisely, T^ consists of those 位-tuples of points {a；!, • • •，a;̂ } for which Xi G â  

for i = 1，... , g. Similarly, we define the torus Tp = x … x “辽 C Sym^(Eg). 

As suggested in [17], these two tori enjoy a certain compatibility with any com-

plex structure on Sym^(Eg) induced from Eg. 

D e f i n i t i o n 4.3.3 Let (Z, J) be a complex manifold, and L C Z be a submanifold. 

Then L is called tota l ly real if none of its tangent spaces contains a ./-complex 

line, i.e. TyJL Pi JT\L = {0} for each \ 6 L. 
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Notice that TxLf^JTxL = 7^’i(^nCT_x(L)，where is the antiholomorphic 

t a n g e n t v e c t o r s of Z at A and CTx{L) is the complexified tangent space of L 

at A (refer to [33]). 

L e m m a 4.3.4 (Ozavdth-Szabd, [ll])Let T^ C Sym^(Eg) be the torus induced from 

a set of attaching circles. Then Tq； is a totally real submanifold of Sym^(Eg). (for 

any complex structure induced from E^) 

P r o o f : Note that the projection map tt : S^ x • • • x S^ —» Sym^(Sg) is a holomorphic 

local diffeomorphism away from the diagonal subspace (consisting of those 分-tuples 

for which at least two of the points coincide). Since T^ C Sym^(E^) misses the 

diagonal , the l e m m a follows immediately from the fact that a i x • • • x C x 

• • • X Eg is a tota l ly real submanifold (for the product complex structure), which 

follows easily from the definitions. • 

The dimensions of these two tori are both equal to g. Note that if all the ai curves 

meet all the Pj curves transversally, then the tori T � a n d T^ meet transversally. Each 

intersection point in T^ 门 TT/j can be written as 

X : = ( 0 ； 1 ， … X k e Q;fcnA7(fc)，where k = a G Sg. 

These intersection points are important in defining the Heegaard Floer complexes. 

Similar to the Lagrangian Floer theory, we are going to study the holomorphic 

disks connecting those intersection points. 

4.3.3 Intersection Points and Disks 

Fix a complex structure j on T,g and consider the corresponding complex structure 

J on the symmetric product Sym^(Eg). For two intersection points x, yG T^ nlT/j, 

as suggested in Chapter 2，the elements in •M(x, y) are the J-holomorphic strips 

w : R X [0,1] —>• Syin®(Eg) from x to y sat is fy ing 

dsu + J^dtu = 0，u{s, 0) e u(s, 1) G 

Since the domain R x [0,1] is conformally equivalent to the closed unit disk D in C 

with the two points 土i removed’ so we can think of the strips as continuous maps 
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w h i c h take the left boundary ^ D A {沉它⑷ < 0} to T a and the right boundary 

n > 0} to T/3. More precisely, we can define: 

Definition 4.3.5 Given a pair of intersection points x, y6 T^ n T…a Whitney 

disk connecting x and y is a continuous map 

li : D Sym̂ (Eg) 

with the properties that ii(—i) = x , u(i) = y, u(ei) C w(e2) C T/3. Here ei and 

62 are the arcs in the boundary of D with D\t{z) < 0，D\z{z) > 0 respectively. Let 

兀2(x，y) denote the set of homotopy classes of Whitney disk. 

For arbitrary x , y 6 TaflTT/j，it is not always possible to find such a map u connecting 

them. To see the obstruction, we first need the following proposition. 

P r o p o s i t i o n 4.3.3 (Ozavdth-Szabd, [11]) With the same notations used, we have 

the following isomorphisms: 

Hi{Ta) e H,{Tfs) ~ ([ai],... [A],…，W) ~ ' ̂  
P r o o f : The first “三” follows directly from Lemma 3.3.2. To get the second "=", we 

first define a surjective homomorphism f : Hi{T,g) —> Hi{Y, Z). For a closed curve 7 

on Sg, it gives a closed curve in Y by inclusion (treat 7 as a curve on the Ua handle-

body). And for any curve ^ in Y , by applying homotopy o n � i f necessary, we can de-

fine another curve C lying on Eg with [C] = [C]€ Hi{Y). Passing to homology, we have 

just defined our desired surjective homomorphism f : B\(Eg) —>• B'i(V,Z). By First 

Isomorphism Theorem, it remains to show ker(/) =�[ai]，-.. ,Q;g]，["i]，--. ’ [ft]�-

This follows since each of the attaching circles 0:1’ …,a^,/?! , • • • bounds a disk 

in Y , giving trivial classes in Hi{Y\ Z). 口 

Now, let X, yG T^ H T^ be a pair of intersections. Choose a pair of paths 

a : [0，1] Ta, 6 ： [•’ 1] 4 T(3 from x to y in and Tp. The difference is a loop in 

SymnS,). 
Let £(x, y) denote the image of a — 6 in Z) under the isomorphism given 

in Proposition 3.3.3. It is clear that £(x, y) is independent of the choice of the paths 

a and b. Here e(x, y) is additive, in the sense that 

£(x:，y) + £(y, z) = £(x, z), for x ’ y，z e Ta n 
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This allows us to partition the intersection points into equivalent classes, where 

X � y iff £(x, y) = 0. 

As suggested in [11], the value of e can be calculated in Eg, using the iden-

tification between 7ri(Sym®(Eg)) and Hi{T.g). By writing x = {a；!,• • • ,Xg) and 

y = { y i , … , V g } , we can treat the path a : [0,1] —̂  as a collection of arcs in 

Q：! U • • • U C Eg, with boundary da = yi-\ VVg-Xy Xg. Similarly, the 

path b : [0,1] —> T/3 can be viewed as a collection of arcs in U • • • U C with 

boundary db = yi • - • + yg — Xi — • • • — Xg. So the difference is a closed one-cycle 

in Eg, whose image in Z) is s(x, y) as defined above. 

What is the significance of this equivalent relation? On one hand, if 7r2(x, y) 

is non-empty, then y) = 0 (i.e. x � y ) . The reason is simple: if there exist 

a Whitney disk w : D —»• Sym®(Sg) between x and y, then we can take the path 

a : [0,1] —>• Ta connecting x and y via the boundary 5D n {9̂ e(2；) < 0}. Similarly, 

we can take b : [0,1] —>• T^ connecting x and y via 5D n > 0}. Now a — b 

is just ^D, and therefore £:(x, y) = 0. So if £(x, y) + 0, then we can deduce that 

there does not exist a disk connecting x and y. 

E x a m p l e 4.3.3 We now quote the following example in [11] to illustrate the above 

construction. 

[figure : the +2-surgery on (2,3) torus knot] 

One can interpret this as the 3-manifold obtained by +2 surgery on (2,3) torus 

knot (refer to [6] for the general case). Let Y to be this 3-manifold. Here we think 

of as the plane together with the point at infinity. In the picture the two circles 

on the left are identified, or equivalently we glue a handle to along these circles. 
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Similarly we identify the two circles on the right side of the picture. After this 

identification the two horizontal lines become closed circles a i and 0:2. As for the 

two [3 curves, f5i lies in the plane and "2 goes through both handles once. 

By direct counting, 

tJ(ai n 二 3，(l(ai n J32) = 2, n A ) = 3’ (1(̂ 2 A /?2) = 4 

Sot{(Tc^nTI>) = 3 x 4 + 2 x 3 = 18. And for simplicity, we label aiA/^i = {xi,x2,x3}, 

a2 n/3i == { f i , 0:2 = {yi,y2}, 0:2 二 {wi,w2,'w3,m}-

From the picture, for some appropriate orientation of { a i ’ a 2 } and {/ î，/^，we 

have 

tti] . [A] = -1，[0；2] • [Pi] = - 1 , [ai] • [P2] = 2，[a2] • IP2] = 4 

Thus, if {[ai], Bi, [0:2], B2} is a standard symplectic basis for 丑i(£2) (for example, 

choose B i and B2 to be the classes represented by the longi tudes in E2), then 

A ] 三 - B i — B2, [/y 三 2Bi + 4J52 

in //i(E2)/([ai],[a2l). Therefore, i/i(E2)/([ai], H , [A], [A]> 二 (B,,B2)/{-Bi -
B2 三 0，2Bi + AB2 三 0}. By Proposition 3.3.3., Hi{Y) = Z/2Z, which is generated 

by Bi 二 —B2 = h. 

We can calculate, for example, ^({xi, {x2,Wi}) as follows. We choose a 

closed loop in S2 which is composed of one arc a C ai, and another in 6 C 

both of which connect Xi and X2- We then calculate the intersection number (a -

5) n a i = 0，（a - 6) n 0：2 = —1. It follows that [a - 6] = —B2 = h in Hi(Y). 

So, £({工1,秘 1}, {工2,切i}) = “ — 0 and we deduce that there is no disk connecting 

{xi,tt^i} and {2:2,t/^i}. 

R e m a r k : With the notion of S p i n � s t r u c t u r e (which will be discussed in the later 

section), the equivalent classes of the intersection points in T^ 门 TTp are determined 

by Hi(Y). In our example, the intersection points can be exactly partitioned into 2 

equivalence classes. 
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4.3.4 Domains 

In order to have a better understanding of 772 (x, y), we need to study the domain 

associated to each 0 G 7r2(x，y). 

D e f i n i t i o n 4.3.6 Let x , yG T � n i y For each point w e Eg — ai � _ _ 

…—/3g, denote 

riw ： 7r2(x, y) Z 

the algebraic intersection number 

Because Vyj = {u;} x is disjoint from T^ and T^ (by the definition of w), 

n^ is well-defined and is only dependent on the homotopy class of (j). (refer to [34]) 

There is a natural operation on 冗2(乂，y). For x , y, z e Ta A IT…if we take a 

Whitney disk connecting x to y, and another one connecting y to z, then we can 

get a Whitney disk connecting x to z by splicing. Such operation gives rise to a 

"multiplication" on 7r2(x, y), 

* : 7r2(x, y) X 7r2(y，z) 7r2(x, z) 

And this operation is readily seen to be associative. Hence for the case x = y , 

(7r2(x, X)，*) is a group. 

Now we can define the domain belonging to a Whitney disk. 

D e f i n i t i o n 4.3.7 Let Di, • • •，Dm denote the closures of the components of E^ -

a i ag -/3i (5g. Given a Whitney disk (/>: D —> Sym®(Sg), the domain 

associated to 0 is the formal linear combination of 
m 

糊 � D i 
i=l 

where Zi G Di are points in the interior of Di. 

There are several properties for domain. 

P r o p o s i t i o n 4.3.4 (Ozavdth-Szabd, [11]) Let x, y, z G T^nT/j, G 兀2(父，y) and 

<̂ 2 € 7r2(y, z). Then we have 

* = DOM + 



4.3. Topological Preliminaries 53 

Similarly, 

1=1 

where S denotes the positive generator of 7r2(Sym®(Eg)). 

Proof: These follow readily from the fact that = + where 

4>1 e 7r2(x’ y), 4)2 e 7r2(y, z) and w G - ai Qig — A Pg • 

Definition 4.3.8 For a pointed Heegaard diagram (E^, a, z) (i.e. z e — ai — 

• • • — ag — j3i — ' • • — Pg), a periodic domain is a two-chain P = a^A whose 

boundary is a sum of a— and /^-curves with nz{P) = 0. For any x e Ta 门 T/̂ , a 

class 0 G 7r2(x, x) with n：：� = 0 is called a periodic class. 

Remark: The set Fix (2:) of periodic classes is naturally a subgroup of 7:2 (x, x). And 

the domain belonging to a periodic class is a periodic domain. 

We are now readily to give the following proposition, which describes the alge-

braic topology of 7r2(x, y). 

Proposition 4.3.5 (Ozavdth-Szabo, [2]) Suppose 没〉1. For all x G TaHTT"，there 

is an isomorphism 

which identifies the subgroup of periodic classes 

In general, for each x, y e T a n T " , if £:(x, y) + 0，then 7:2(x, y) is empty; otherwise 

7r2(x, y )三 Z � / 

S k e t c h of proof : Fix x E TaflT/j. We can identify 7r2(x, x) with the fundamental 

group of based at the constant (x) path, i.e. 7ri(P(Ta,T^)). Moreover, 

observe that we have a natural Serre fibmtion: 

Q(Sym^(E^)) — — T � x 

where ri(Sym"(Sg)) denotes the loop-spaces of Sym"(i;g) and P ( T a ’ l > ) denotes the 

space of paths in joining T^ and T/j. The short exact sequence gives rise 
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to a homotopy long exact sequence: 

0 — 7r2(Sym夕(ig) — 7ri(P(T«,T^)) — 7ri(T, x T々）—7ri(Sym^(EJ). 

Compare with the Mayer-Vietoris sequence of Y , 

——.H\Y)—丑E H'IUP) — —… 

where C/q 门 … = ^ g and U a U U p = Y , we get the following commutative diagram: 

0 ^ 7r2(Sym^(E,)) 一 兀2(乂，x ) — 7ri(TJ x 7ri(T^) 一 7ri(Sym^(E,))——^ • •. 

/l !2 h /4 

昨 g ) ^ H'(V)—昨a) e ^ ^ ... 

Under the identification 7ri(Sym^(Eg)) ^ Hi{Eg) ^ H\T,g) (Lemma 3.3.2)，the 

images of 7ri(Ta) and T^iiTp) corresponds to H^{Ua) and respectively. So / ‘ 

is an isomorphism and fz is surjective. And by Proposition 3.3.1, 7r2(Sym^(Eg))= 

Z = so f i is an isomorphism too. Therefore, by straightforward diagram 

chasing, we can conclude that f ) is a surjective homomorphism and we get a short 

exact sequence: 

0 — Z 4 7r2(x, X) — H\V;Z) — 0 

which implies 冗2 (乂， x ) = Z © Z). And because the homomorphism n^ : 

7r2(x, x) —> Z is surjective, so 7r2(x，x) = Z © ker(n2)’ i.e. 7r2(x, x) = Z © nx(2：). 

Hence nx(2) = Z). The proposition for ^ > 2 thus follows. The case for 

g = 2 follows similarly, only now one must divide by the action of 7ri(Sym"(Sg)). 

For X ^ y and £(x, y) = 0, 7r2(x，y) is non-empty. By similar arguments as the 

above, the remaining part follows. 口 

4.3.5 Spin�Structures 

T h e reason for introducing the notion of Spin�structures is to refine the discussion 

about the equivalence classes on T^ fl T/j. To do this we need some definitions. 
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Definition 4.3.9 Let K be a smooth manifold of dimension n. A frame at a point 

X e Y is -A basis of the tangent space at x. The frame bundle is the fibre bundle 

consisting of all frames on Y. This fibre bundle is a principal bundle under the 

action of the general linear group GL(n). 

Definition 4.3.10 Let y be a closed oriented 3-manifold with a Riemannian metric 

g. We can consider the associated principal S'0(3)-bundle Fr on Y (the oriented 

orthonormal frames) 

50(3) F r ^ Y 

A S p i n �structure on Y can be viewed as a lift of the structure group 50(3) of 

the tangent bundle TY to the group Spin'^(3), where 

Spin^(3) := Spin(3) Xz/2z S' = SU{2) Xz/2Z = U � . 

So it gives us a principal t/(2)-bundle on Y, say F — Y. We get the following 

commutative diagram: 

4)' 

F~~-~~-y 

FT 

here, tt : F — Fr gives a f/(l)-buridle on Fr, and there is an isomorphism a between 

the two 50(3)-bunclles on Y, namely F//7(l) 一 Y and (f)： Fr -^Y. In other words, 

each Spin�structure corresponds to an isomorphism class (F —> "K, a). 

Definition 4 . 3 . 1 1 We can have an equivalent definition of Spin�structure in terms 

of cohomology: a Spin^ structure on Y is an element of H~{Fr) whose restriction on 

every fiber is the non-zero element of H'^{S0{3)) = Z/2Z. To show that the 

two definitions are indeed equivalent, recall that the isomorphism classes of circle 

bundles over a manifold X are in one-to-one correspondence with the elements of 

H'^(X). And now, it is sufficient to associate with any pair (F —> Y, a) the element 

of H'^{Fr) corresponding to the circle bundle ao亓：F — F/U(l) = Fr. The set of 

S p i n � s t r u c t u r e on V is denoted by SpinC(Y') ’ and SpinC("K)C H'^(Fr). 
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One can define a group action of Hi[Y) = H'^{Y) on H^{Fr) via the pull-back 

homomorphism (p* : H^{Y) —> H'^{Fr) and addition, i.e. 

where g G H^{Y) and a G H'^{Fr). From the definition of Spin'^(Y), we can see 

that this action preserves SpinC(Y)C H^{Fr). And that induced action of Hi{Y) 

on SpinC(Y) is in fact free and transitive. The action is free follows readily from 

its definition, that ii g - a = a then ^ = 0 € H'^iY). To show that the action is 

also transitive, observe that because Y is parallelisable, so Fr = Y x 50(3). By 

Kiinneth formula, H^{Fr) = H^{Y) 0 (Z/2Z), and therefore Spin^(Y) consists of 

only one orbit with respect to the group action. 

According to [35], in order to study the Spinc structure on Y we need to have a 

better understanding of the "non-vanishing vector fields" on Y (in [36] it is called 

Euler structure). We are going to explain it in detail. 

Definition 4 .3 .12 By the Poincare-Hopf theorem, for a connected closed smooth 

manifold Y with xi^) = 0, there exists a non-vanishing vector field on Y. Since 

we are working on 3-dimensional Y , the condition xO^) = 0 is satisfied and it is 

reasonable to deal with non-vanishing fields. 

Vector fields u and v on Y are called homologous if they are homotopic in the 

complement of finitely many disjoint 3-balls in Y. It is clear that being homologous 

is an equivalence relation, and the class of a vector field n on "K is denoted by [u 

and called an Euler structure on Y . 

Definition 4 .3 .13 An equivalent definition of Euler structures on Y is given in 

terms of the S^ fiber bundle of unit tangent vectors, say 

S'' SY ~~^^ y 

This 5^-bimdle is defined as below. For any Euler structure [u] on Y, we can consider 

the 2-dimeiisional vector space 丄 formed by the tangent vectors orthogonal to u, 

i.e. TxV = u{x) © for any x e Y. This gives a sphere S'^ at each x e Y 

containing vectors ei and 6-2, where ei and 62 lie in u^ with lengths both equal 

to 1. 
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An Euler structure on V is an element of H'^{SY) whose restriction on every 

fiber SxY{= Y) is the generator of = Z determined by the orientation of Y 

at X. 

To establish the equivalence, for any non-vanishing vector field u on Y", we define 

a map f : Y — SY with f{x) = This f gives a 3-cycle in SY, i.e. an 

element in H3{SY) (we can treat it as a section on SY). We orient SY so that 

the intersection number of this cycle with every oriented fiber equals +1. Thus the 

element of H'^{SY) = Hz{SY) represented by this cycle is an Euler structure on Y 

in the sense of the second definition. We denote the set of Euler structures on Y by 

Vect(y), and V e c t ( r )c H'^[SY). 

Similar to Spin'^(y), we can also define a group action of Hi iY) = 

on Vect(y) via the pull-back homomorphism 妒 : 一 and 

addition, i.e. 

g-h\= + b 

where g e H爪-乂Y) and b e By the same argument as for Spin^(y), 

this action is free and transitive and preserves Vect(y). 

Example 4.3.4 For n being odd, = •，and it is easy to give an example of a 

continuous non-vanishing vector field on S'̂ , simply take 

u{xi, • • • .Xn+l) 二（一工2，工1’-2̂ 4’ a；；}，…,-Xn+i.Xn) 

Let's see the associated Euler structures on By Adams' theorem [38], the tangent 

bundle of 5 " is trivial if and only if n = 0,1,3, 7, corresponding to the unit spheres 

in the 4 real division algebras. Therefore, SS^ = S^ x By Kiinneth formula, 

X Ŝ ) = (g) e 0 e 0 H'̂ iŜ ) = Z 

We choose the standard orientation on S^ (which is compatible to the orientation 

+ 1 6 = Z). Hence from the above definition, we know that there are exactly 

one Euler structure on S^ corresponding to the generators +1 G In fact, it 

is just [u], where w : —> is given by 

u{XuX2,Xs,X4) = ( 一 — 0： 4， 0； 3 ) . 
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R e m a r k : The other one [—w] corresponds to - 1 G which is the opposite 

orientation of S'̂  (compatible to the opposite orientation of S^). 

The next lemma will illustrate the relation between Spin''(y) and Vect(y). 

L e m m a 4.3 .14 (Turaev, [36]) For a closed oriented 3-manifold Y , there is a canon-

ical bijection Spiii^(y)t->Vect(y). 

P r o o f : Notice that we have a natural map p : 50(3) —»• S"^ sending an orthonormal 

triple (ei,62,63) to its first vector ei G Now, 

p- i (e i ) 二 {(62，e3) ： 62,63 G and (61,62,63) G 50(3)}, 

which can be identified with 50(2) = S^. So p can be viewed as a circle fiber 

bundle. Each fiber represents a 1-cycle in 50(3), and its homology class is the 

non-zero element of HI{SO{3)) = Z/2Z. 

We examine the pull-back homomorphism p* : — H'^{S0{3)). For each 

generator g G = Z, its Poincare dual is represented by a point x e S"̂ . So 

the Poincare dual of p*{g) is represented by the circle In other words, p* 

sends any generator of to the non-zero element of H'^{S0{3)). 

By endowing Y with a Riemannian metric, we can consider the principal 50(3)-

bundle Fr Y and the bundle SY —> Y. Let p be the bundle morphism Fr —> 

SY sending an orthonormal frame (61,62,63) at some point x G ^ to ei G 炉 . I t 

follows from the previous paragraph and the definitions of Vect(y) and Spin^(y) that 

the pull-back homomorphism p* : H - ( S Y ) — H ^ F r ) sends Vect(y) to Spin^(y). 

To show that the resulting map p* : Vect(y) —> Spin'^(y) is a bijection, it 

suffices to prove that it is Hi ( y )-equivariant. By definition, we have the following 

commutative diagram: 

(h 
FR~~-~~ 

passing to the pull-back maps, we get 小* = p* o (f*. Since for any a 6 Vect(y), 

g-p*{a) = (l>%g)-\-p*{a) 
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Therefore 

V*{9-0i) = 

= p V ⑷ ⑷ 

= 9 ' V \ O L ) 

and the result follows • 

Now we are ready to make use of the Spirit-structure to refine our notion of 

equivalence classes in T � H T^. The main idea is given in [2]. To do this we define 

a map: 

: T« n T ” SpinC(:K) 

where z E. T,g — oci — — ctg — Pi — - • - — Pg. We choose a Morse function f on Y 

which is compatible with the attaching circles (i.e. f induces the pointed Heegaard 

diagram (Eg, a, P, z) for F) , and assume that f has only one maximum point and 

one minimum point. As suggested in Chapter 1，each x G Ta A determines a 

tuple of trajectories with respect to the negative gradient flow of / connecting the 

index two critical points to index one critical points. Similarly, we can treat the 

point z as a trajectory connecting the index three critical point to the index zero 

critical point. 

Next, we delete the tubular neighborhoods of these g+l trajectories, and it gives 

a subset of Y (the complement of disjoint union of 3-balls in Y) where the negative 

gradient vector field — V / does not vanish. 

Because x and z altogether pass through all critical points, - • / has index zero 

on all the boundary spheres, so — V / can be extended to a nowhere vanishing vector 

field <7x on Y . Now (Jx = — • / outside a union of 3-ball, and thus 

ax] = [ - • / ] e Vect(y) = Spin^(y). 

Finally, we set 

Sr(x) = [cTx；. 
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P r o p o s i t i o n 4.3.6 (Ozavdth-Szabo, [11]) For any x , y G Tq, A T " , 

s : ( Y ) - s “ x ) = P D [ £ ( X , y ) ] , 

where PD[£(x:, y)] = Poincare dual of [£(x’ y)]. In particular, s j x ) = S2(y) if and 

only if 7r2(x, y) is non-empty. 

P r o o f : For each x e Ta 门 Tyg’ we can get the g trajectories 7x for 一 • / connecting 

the index 2 to the index 1 critical points which contain the 以-tuple x. And let to 

be the corresponding trajectory from the index 0 to the index 3 critical point. 

So 7x — 7y is a closed loop in Y . As previously stated, we obtain Sz(x) = [crj by 

modifying — V / in a neighborhood of 7x U 7z. Since 

CTx = - • / = (Ty 

outside some neighborhoods of 7xU7z and 7y U7z，sjx) — s j y ) can be represented 

by a cohomology class, namely [ctx — cTy], which is compactly supported in a neigh-

borhood of 7x — 7y. Therefore, S2(x) — S2(y) is just some multiple of the Poincare 

dual of 7x — 7y, say 

s , ( x ) - 5 , ( y ) = C - P D [ 7 x - 7 y ] 

for some constant C. 

Next we want to show that C = 1. To do this we try to find a disk DQ such that 

it is transverse to 7x — 7y. To find such Dq, we first take some Xi 6 x which xi ^y 

(if no such Xi exists then x = y and the lemma follows trivially), and let Dq to be 

a small neighborhood of Xi in Eg which y n L>o = 0. So we can pick a^ which is 

equal to - • / near dDo, and pick Oy which is equal to - • / over Dq (here, we can 

choose the tubular neighborhood of 7y U which is disjointed from Dq). 

Since the Poincare dual of 7x - 7y and the Thorn class of the normal bundle of 

7x — 7y can be represented by the same forms (see [30]), by viewing Dq as & fiber of 

the normal bundle of 7x — 7y at the point Xi, we have 

- s,(y))(Do) = C • PD[7x - 7yl(^o) 二 C 
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Because <7x1 Do and CTyluo are both maps from the disk Dq to S^, so we get 

C = (s,(x)-s,(y))(Do) 
二 f - f 

J Do JDq � 

=degD�((7x)-degD�(t7y) 

where /x is the generator of Therefore, 

s之(X) - s^(y) = ( d e g 伪 - deg^„(c7y)). PD[£(x’ y)] 

We calculate the value of — degQ^{ay). Take another disk Di with the 

same boundary of Dq, such that Dq U Di bounds a 3-ball B containing the index 1 

critical point p, of — • / corresponding to Xi (i.e. pi and Xi lie on the same trajectory 

line in 7x) and no other critical point. So we can assume a^ 三 - • / over Di (here 

we can choose Di to be disjointed from 7x U 7z). Now, 

0 = / da^ifz) 
J B 

=f <(") + / <(") - / 
J DQ J DX JDQDDX 

= d e g D � ( a x ) + degj5j (cr̂ ) - 0 

二 deg£)Q(crx) — degDi(V/) 

and hence 

degD�(crx) - degDo(ay) = deg队（•/) + deg 

Because the winding number of • / around pi is —1, so 

degz)i(V/) + degD�(V/) = - l . 

Finally, it remains to show PD[7x — 7y] = PD[e(x, y)]. Let a C o：! U • • • U a" be 

a collection of arcs with 5a = y - x , and b C Pi U ••• U Pg he such collection with 

db = y — X. By the definition of £(x, y), we know that a — b gives a representative 

for e(x, y). 

Define XI e C 7x to be the trajectory line in Y joining some index 2 critical 

point QI to an index 1 critical point PI (similar for 7y‘）. For each AI C A which 

connects Xi to yi, we have a homotopy (relative to the end points Xi and yi) between 
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CLi a n d 7 y . —、工。w h e r e is the segment in 7̂；. jo ining Xi to pi (similar for 

Such homotopy exists because a^ and - %. bound a triangle (with vertices i/i, 

Xi and Pi) in the s table manifold W^{pi). Similarly, each bi C b is homotopic to 

7y, — where is the segment in j^i joining qi to Xi (similar for with bi and 

7y. — 7xi bound a triangle in the unstable manifold W^[qi). 

Pi 
the whilTity disk 

[figure : the shaded region refers to the Whitney disk] 

Therefore, a — b is homologous to 7x — 7y and the result follows. • 

R e m a r k : In calculating the value of deg/？^ (ô x) — degĵ g (cy), other than using the 

index 1 critical point, one can also use index 2 critical point. In this case, DQ U DI 

will bound a three-ball in Y containing the index 2 critical point qi corresponding 

to Xi. Because now the direction of — V / is reversed (compare with the previous 

case) with respect to both DQ and DI, we get 

Sz(x) - = ( 一 d e g D � ( a x ) + . PD[£(x’ y)] 

Following the previous steps, 

degD�(〜）-degj3�(ay) = deg仏（•/) + degj5�(V/). 

Now the winding number of V / around Qi is +1 , so 

and the same result follows. 

According to the above proposition, we deduce that for x, y 6 Ta 门 T/3, x � y 

if and only if s j x ) = s j y ) . 
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4.3.6 Holomorphic Disks and Maslov Index 

Recall that a complex structure on S^ induces a complex structure on Sym^(Eg). 

Given a homotopy class 小 e 772(x, y), let M{(f)) be the moduli space of holomorphic 

representatives of (f). To be precise, we have 

• V 

w ( { l } x l R ) c T a 

7i({0} X M) c T/3 

_M(x，y) = [0’1] — SymYSg) I limt^—oo + 均 = x ‘ 

linii^+oo u[s + it) =y 
dsU + J{s)dtu = 0 ^ > 

where we treat the unit disk D in C as the infinite strip E x [0’ 1] by using Riemann 

mapping theorem, and J{s) is a one-parameter family of almost-complex structure. 

For (p 6 7r2(x, y), the space M{(f)) is defined to be the subset of y) consisting 

of maps which represent the given homotopy class 0. 

Consider the group of complex automorphism of the unit disk D which preserve 

i and —i. By continuity we know that these automorphism must also preserve 

ei and 62, where ei and 63 are the arcs in the boundary of P with < 0, 

> 0 respectively. By viewing D) as E x [0,1], the automorphisms preserving 

ei and 62 correspond to the vertical translation, which is isomorphic to M. Now 

for any u G •M (</>)’ we can precompose u with any of these automorphisms and 

get another holomorphic disk. By dividing the above M-action, the unparametrized 

modul i s p a c e IS given by 

Elements in M{(l)) are called holomorphic disks. The word "disk" is used is simply 

because of the the identification between E x [0，1] and D. 

To calculate the dimension of the moduli space •M(0)，we need to apply the 

Fredholm theory. 

Definition 4.3.15 Let E be a vector bundle over [0,1] x M equipped with a metric 

and compatible connection V , p, S be positive real numbers, and /c be a non-negative 

integer. The d-weighted Sobolev space of sections of E, denoted by lj x 
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IR, E) , is the space of sections a for which the norm 

’ 1=0 •'lO.ilxR 

is finite. Here, r : IR —̂  R is a smooth function with r(t) = \t\ provided that \t\ > 1. 

Now we fix some p � 2 ， a n d consider the case when 二Sym�(Eg). Let (x, y) be 

the space of maps 

？i : [0,1] X E Sym^iTsg) 

satisfying the boundary conditions 

w({l} x R ) c Ta,u({0} X M) c T^ 

with limits x and y as t —>• —00 and +00 respectively. By equipping ^̂ (̂x, y) 

with the norm given in the above definition, ^5(x，y) is a Banach manifold, whose 

tangent space at any u € ^^(x, y) is 

f 、 
e T n̂ e E 

L l s M 1] X | ，乂 "( i ’ ”� ’ 

which consists of all smooth sections ^ of the pullback bundle u*{TSym^(T,g))) (refer 

to the Definition 3.3.2). And we have the space of sections 

Clearly Lf^s(u) C 1/�,5(八o’i(ti)). For each u G B<5(x’ y), we define 召 j�：氏(x, y )— 

似 八 o ’ i M ) by 
Fi du T/ 
dj,s)U = - + J{s)-. 

Note that 如过）is zero exactly when w is a holomorphic disk. 

We linearize the above equations. For a curve u e y) and a section 1/ G 

乙？ (J ⑷，the linearization is 

•4s “ ( 4 ) = 刷•"盒 + (• "刷 )去 
diy .diy �\ d 

二 瓦 + • ) 瓦 + (•"外))瓦. 

So we get a map 

Du ： Llsiu) — L?’“八0,1 ⑷） 
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which is given by the formula 

According to [20] and [2]，since the intersection of T^ and T/j is transverse, Du is 

a Fredholm operator for all sufficiently small non-negative 5. This defines a map 

/i : (X, y) Z given by 

= indDu 

and this fi is nothing other than the Maslov index of u (see [25] and [20]). The index 

descends to 7r2(x, y), and for each 小 e 7r2(x, y) with = n, the dimension of 

M{(p) is equal to n (=indZ)<^). Therefore, 

dim(A4(0)) = n — 1 for each 0 G 7r2(x’ y) with = n. 

We quote the following lemma which we will use it later 

L e m m a 4.3 .16 (from [2]) Let S G 7r2(Sym^(Eg)) be the positive generator. Then 

for any 小 G 冗2(乂，y), 

/j,{(i)klS]) = /i((/)) + 2k. 

Proof: (also from [2]) It follows from the excision principle for the index that 

attaching a topological sphere Z to a disk changes the Maslov index by 2(ci, [Z]), 

where Ci is the first Chern Class of TSym^(Sg). On the other hand for the positive 

generator we have (ci, [S]) = 1. 口 

4.4 Definition of Heegaard Floer Homology 

We are ready to define various Heegaard Floer chain complexes, namely C F , CF+, 

CF- and CF°°. 

We assume that our ambient 3-manifold "K is a homology three sphere with 

bi{Y) 二 0. Let (Sg，ai，... ‘ • • be a pointed Heegaard diagram of 

genus g > 0 ioT Y. Fix a spin*̂  structure t 6 Spin'^(y). 
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4.4.1 The chain complex CF ‘ 

Let t) be the free Abelian group generated by the points in x e Ta AT卢 

with S2(x) = t. We introduce a relat ive grading on this group, which is defined 

by 

gr(x，y) = iLi(0) -2n,{(f)), 

where (j) is any element in 7r2(x, y) and /i is the Maslov index. 

We show that the grading is, in fact, independent of the homotopy class of 

(f> e 7^2(X，y). It suffices to show 

+ k[S]) 一 2n八(j) + k[S]) = 一 2n,{(f)) 

for [S] € 7r2(Sym^(Eg)) and /c e N (here [S] represents a topological 2-sphere, and 

two homotopic elements in 772(x, y) only differ by some number of spheres). By 

Lemma 4.3.16, we calculate 

/i(0 + k[S]) - 2n,{(f) + k[S]) = _ + 2k- 2{n,{(j)) + k) 

= f i { ( f ) ) + 2/c - 2n^{(f)) - 2k 
= 一 

Moreover, for x，y，z e T � A TI>，G 兀2(乂’ y) and 0 e 7r2(y，z), 

gr(j:,?/) + gr(y,z) 二 - 2n“0) + - 2 n “ ^ 

= f i { ( f ) * 4>) — '^rLz{4> * 

=gr{cc,z) 

as 0 * 0 G 7r2(x, z) and * 0) = /i(0) + (see [11]). 

Now, for for x ’ y e Ta n T卢 and (p e 7r2(x’ y), we define n(x, y;0) to be the 

number of points (of appropriate signs with respect to orientation, see [23] and [22]) 

in MW if fiW = 1’ and n(x, y\(f)) = 0 if + 0 (recall that MW is just 

0-dimerisiorial for = 1). 

Let d : CF{a,l3,t) be the map defined by 

<9x = 几(X，y; 0)y. 
{yeToHT山0€7r2(x，y)|si(y)=t,;i(<̂ )=l,n,((/))=0} 
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In this way, we are counting those 0 which do not meet {z} x (recall 

that 71^(0) is the intersection number between 小 and {z} x Note that 

for X, y in this boundary map, gr(x, y) 二 1. 

The following theorem is proven in [2]. 

Theorem 4.4.1 (Ozsvath-Szabo, [2]) When 6i(y) = 0, the pair is 

a chain complex; i.e. d^ = 0. 

Sketch of proof: (From [2]) Basically, the idea of the proof is to analyze the 

Gromov compactification of M{(f)) for r i z � = 0 and /i((/>) = 2. To do this, we 

study the "en ds" of M{(t)), and there are three possible cases: 

1. those corresponding to "broken flow-lines", i.e. a pair u e y) and 

V e M{y, w) with fi{u) = ii{y) = 1’ 

2. those which correspond to a sphere "bubbling off”，i.e. another v e M(x, w) 

and a holomorphic sphere S E Sym^(Eg) which meets v, 

3. those which correspond to "boundary bubbling", i.e. there are a v e w), 

and a holomorphic map u from the disk, whose boundary is mapped into T^ 

or T/3, which meet in a point on the boundary. 

Because nz{(f)) = 0, counting those holomorphic disks in Sym®(Sg) is equivalent 

to counting holomorphic disks in Sym^{T,g — z). Since there are no spheres in 

Sym^{T,g — z) or degenerate holomorphic disks, so the cases (2) and (3) can be 

eliminated and the only boundary components in the compactification consist of 

broken flow lines. The remaining case reduces to the usual Floer's compactness 

argument, and 炉 vanishes accordingly. • 

Hence we get the following: 

Definition 4.4.2 The Heegaard Floer homology group HF{Y, t) is the homology 

group of the complex {CF{a, P,t),d). 

4.4.2 The chain complex C T � 

In the last section we only count holomorphic disks which are disjoint from {z} x 

Sym"—i(Sg). Now define another complex where all the holomorphic disks are used. 
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Let CF°°(a,j3,t) be the free abelian group generated by pairs [x’i]’ where x G 

Ta n T/3 and i eZ. We define a grading on the generators by 

gi'([x,2], [y,j]) = gr(x, y) + 2z - 2j. 

Of course, this grading is independent of the homotopy class of (/> E 兀2(乂，y). Let 

: — CF°°(a,j3,t) be the map defined by 

[X，i] = 几(X, y; 
{y€TanT ,̂.̂ e7r2(x, y ) | s “ y ) = � ) = l } 

where 7i(x, y; 0) is the number of points in M((P) for = 1. And for x, y in 

沪’ gr(x, y) = 1. 

Again we have the following theorem proven in [2 . 

Theorem 4.4.3 (Ozsvath-Szabo, [2]) When bi(Y) = 0’ the pair (CF°°{a,t), 

is a chain complex; i.e. = 0. 

Sketch of proof: Similar to the case in ( ^ ( a , /?, t),d), we also have three possible 

kinds of "ends" for the moduli space A4((j)). 

Although the situation becomes much more complicated (see [2])) the cases (2) 

and (3) can still be eliminated by dimension counts and transversality theorem. 

So finally it reduces to the remaining case (1), which again by the usual Floer's 

compactness argument, vanishes accordingly. 口 

The following is a consequence: 

Definition 4.4.4 The Heegaard Floer homology group HFoo{Y, t) is the homology 

group of the complex {CF°°{a, 

4.4.3 The chain complexes CF+ and CF一 

Ozsvath-Szabo discover that there is a chain map 

which lowers the grading by two, defined by 

f/[x，i] = [x,i - 1]. 
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Let CF~ be the subgroup of CF°° which is freely generated by pairs [x, i] with 

i < 0. Let C F + be the quotient group CF°°/CF-. 

Lemma 4.4.5 The group CF-{a,/3,t) is a subcomplex of so there 

is a short exact sequnece of chain complexes: 

0 ^ CF-{a,p,t) 二 CF°°(a;，t) : CF+{a,p,t) ^ 0 

P r o o f : If [y, j] appears in 8°°([x，i]), then there is a homotopy class cj) with 

non-empty, and = i - j by the definition of d°°. Since {z} x is a 

subvariety, the holomorphic disk 小 is either contained in {z} x (which is 

excluded by the boundary condition of M[(F))), or it must meet the subvariety non-

negatively. In other words, n : � > 0 and thus i > j. It implies d°°{CF~{a, j3,t)) c 

CF~{A, and the result follows. • 

By the definition of U, we easily see that U restricts to a endomorphism of 

CF~{a, /?, t), and hence it descends to an endomorphism of the quotient jS, t). 

We denote the induced action of U on CF-{a,P,t) and CF+{a,P,t) to be U- and 

U+ respectively. 

Ill view of the action U, there is a short exact sequence 

^ TJ+ 

0 ^ CF[aJ,t)丄 CF+(a，/M) — CF+�c^,M ^ 0 

where j(x) = [x, 0] (here it means that the action of U on CF is trivial). 

Since OF一(a ," ’ 力）and CF+{a,f3,t) are just subcomplexes of we 

have: 

Definition 4.4.6 The Heegaard Floer homology group HF-{Y,t) and HF+{Y,t) 

are the homology group of the complex { C F - ( a , and {CF+{a, 

respectively. 

Because of the short exact sequences as given above, the Heegaard Floer homol-

ogy groups are related by the exact sequences 

HF-{Y,t) 二 HF°°{Y,t)丄 HF+(Y,t) ••• 

HF{Y, t)丄 t) ^ HF+iX, t)——-• •. 
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As induced by the relative Z-grading on the chain groups, it is clear that HF°{Y, t) is 

a relatively Z-graded abelian group (here HF°[Y, t) is any of HF_(Y, t), HF°°(Y, t), 

HF+{Y,t) or IfF{Y,t)). In [4], Ozsvath-Szabo showed that when Y is an oriented 

rational homology three-sphere and t is a Spin^-structure over Y , the relative Z-

grading on the Heegaard Floer homology can be lift to an absolute Q-grading. 

Theorem 4.4.7 (Ozsvath-Szabo, [4]) Let i be a torsion Spin'^-structure. Then, the 

homology groups HF°{Y, t) can be endowed with an absolute grading 

gf ： Ta n T/3 ̂  Q 

satisfying the following properties: 

1. the homogeneous elements of least grading in s) have absolute grad-

ing zero (here s is the unique Spin^-structure on S^) 

2. the absolute grading lifts the relative grading, in the sense that if x, y G 

Ta nT/3, then 

gr(x’ y) = gr(x) - gf(y) 

3. the natural maps i and IT in the above long exact sequence preserve the absolute 

grading, while the coboundary map decreases absolute degree by one, and the 

U action decreases it by two. 

Roughly speaking, the term "leasting grading" in property 1 means the least k in 

HFj^ (S\ s) such that HFj^ s) is non-trivial (in [8], it is proven that this least 

value is well-defined, i.e. it gives a lower bounded on k for HF^{Y,s) being non-

trivial) .Therefore, we can write 

d£Q 

while in each grading, d eQ, t) is a finitely generated abelian group. 

4.4.4 Some Remarks 

1. At first, it seems not very clear why one needs such a variety of homology. 

However, as Ozsvath-Szabo have shown in [2], if we ignore the action of U and 
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consider only HF°°(X,t), we get very little information (In the next' chapter, 

we will try to see that if Y is just a rational homology 3-sphere, then HF°°{Y, t) 

has a rather simple structure). 

2. It is proven in [2] that the homology groups as defined are all independent of 

the Heegaard splitting, the choice of attaching circles, the base point z and 

the complex structures used in the definitions. This can be summarized in the 

following theorem: 

Theorem 4.4.8 (Ozsvath-Szabo, [2]) The homology groups ！ T P i y , t), t), 

HF-(Y,t) and HF+(X,t) are topological invariants of the 3-manifold {Y,t), 

where t is a, Spin*̂  structure on Y. 

3. For 3-manifold Y with bi{Y) > 0，there is a technical problem due to the fact 

that 7r2(x, y) is large. In the definition of the boundary map, we then have 

infinity many homotopy classes with Maslov index 1. In order to get a finite 

sum, Ozsvath-Szabo prove that only finitely many of these homotopy classes 

support holomorphic disks. They do this by using some "special" Heegaard 

diagrams, and with the constructions from the previous section, it also gives 

those similar Heegaard Floer homology groups. We refer [2] for details. 

4. The action U on the complex CF°°{Y,t) (for Y being a homology sphere) is 

an isomorphism, that when decends to the homology groups, yields an isomor-

phism 

for k e Z . 

5. In fact, with respect to Theorem 4.4.7, there is one further property of the 

absolute grading of the homology group, which concerns cobordism between 

manifolds. We postpone this property to the next Chapter. 



Chapter 5 

Examples and Applications 

5.1 Introduction 

There are many uses of Heegaard Floer theory. On one side, it is well adapted 

to certain natural geometric constructions in 3-manifold theory, such as adding a 

handle or performing a Dehn surgery on a knot. It is mainly because all these have 

descriptions in terms of Heegaard diagrams. 

In this chapter, we will first examine the case when a 3-manifold Y is homology 

three-sphere. We define a large class of homology three-spheres and try to calculate 

the absolutely graded Heegaard Floer homology groups of them. Lastly, we will 

quote the recent developments and applications of the theory to different aspects. 

5.2 The homology three-spheres 

5.2.1 The sphere S^ 

A homology three sphere y is a 3-manifold having the homology groups of the 

3-sphere S^. So we have 

Z i 二 0’ 3 
H,(Y;Z)= I 

0 otherwise 

Therefore, V is a connected space with bi(V) = 0. 

72 
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The simplest example of a homology three sphere V is, of course, V = S^. We 

will now calculate the Heegaard Floer homology of S'̂ . As we saw in Chapter 2, S^ 

has a Heegaard Splitting consisting of a torus T^, with a single a and a single j3 

curve intersecting once transversally at a single point x. Let t be the unique Spin� 

structure on S^ (recall the example given in Chapter 3) and pick z e E — a — p. 

We are going to define the Heegaard Floer chain complexes for S^. For simplicity, 

we assume that all chain groups have coefficients in Z, although one may choose some 

other ring as coefficient. 

Now, the chain group CF{S\ t) has a single generator, so CF{S^, t) = Z. Choose 

4> to be the constant disk connecting x itself. Since {z} x Sym^(E) = E for (/ = 1, 

we have n j j ) ) = 1 (the intersection is just x). Therefore, 5 is a trivial map, and 

hence HF{S\t)^Z. 

For t), it has the generator [x, 2] where i e Z. Since gr(x,x) = 0，we 

have = 2. Hence d°° 二 0. Correspondingly, the induced boundary map on 

CF-{S^,t) and CF+{S'\t) are all trivial. So we get the following identification: 

gz[[/，f/-i: 

HF-{S\t)^ZlU] 

HF-{S\t)^Z[U,U-l]/Z[Ul 

where all three groups are viewed as Z-module. Here, is the inverse map of U 

(as we have seen in Chapter 4), 

[/-I : — CT°°(a，/M)， 

which increases the grading by two, defined by 

/7[x，i] = [x，i + 1 . 

What happens if we "move" the Heegaard diagram a little bit (more precisely, we 

move the Heegaard diagram isotopically, see [3])? 

In this Heegaard diagram of there are three intersections between a and (3, 

namely Xi, X2 and X3. By the Riemann mapping theorem, we can see that there 

exists holomorphic disks connecting rri to X2 and X2 to X3. So with respect to the 

chain complex t), we have 彻 1 = X2 = dx-^. Hence, + 2:3) = 2x2 = 0 
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M 

¥ 
hi this diagram； the two 
shaded circles are to he 
identified. 

[figure : after an isotopic move of the Heegaard diagram of 

in Z2 coefficient, and xi + x^ generates the group HF[S\t). So HF{S^,t) remains 

unchanged and so as the all other Heegaard Floer homology groups. 

5.2.2 The Poincare sphere and the Brieskorn spheres 

Yet there are a lot of examples of homology spheres other than S^. These can be 

obtained by an intersecting method, namely the rational surgery of S^. 

We can obtain the standard 3-sphere S^ by gluing two solid torus together with 

the identification between a (the meridian curve) and (3 (the longitude curve). So 

if we remove a tubular e-neighborhood of the trivial knot (which is just a solid 

torus) from we will get another solid torus correspondingly. 

We shall agree that the orientation of the meridian and longitude are chosen as 

shown in the figure. 

We perform a surgery on S^ by removing a tubular neighborhood of the trivial 

knot and re-pasting it back with the identification between a and pa + q(3, where 

p, q are integers. 

We quote the following proposition. The first part asserts that in this case the 

integers p and q have no common divisors, while the second part asserts that the 
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[figure : how to orient the meridian and the longitude] 

numbers p and q determine the curve pa + q(3 uniquely up to isotopy (see [13] for 

the details and proof). 

Proposition 5.2.1 With the same notations as above, we have the following: 

1. If the curve pa + qP is closed and has no self-intersections, then either the 

integers p and q are co-prime, or one of them is 0 and the other is 士1. 

2. If two closed curves without self-intersections on the torus are homotopic, then 

they are isotopic. 

Now from the above proposition, it follows that the surgery of S^ is totally 

determined by the rational number r = 2. We call this number the framing index 

(or just f r a m i n g ) of the trivial knot, and the corresponding operation the r a t i o n a l 

surgery with framing index r. 

Example 5 .2.1 For identical surgery, we have T 二 吉 二 oo, while for rational 

surgery of index r = 0, we have a "torus switch" (interchanging the longitudes and 

meridians). The manifold obtained after performing a torus switch will be equal to 

S^ X To see this observe that such surgery is same as gluing two solid tori 7\ 

and T<i together along the identical homeoinorphism of their boundaries. Since 7\ is 

homeomorphic to S^ x D"̂  is the 2-dimensional closed disk) and gluing together 

D2 and D"̂  along the identity map of their boundary circle produces S^, gluing 

together and T2 along the identity map of their boundaries produces S^ x S"̂ . 

Example 5.2.2 For r = where p 土 1 and 0，the resulting manifold after 

performing the surgery is the lens space L(p, q). The lens space L{p, q) is obtained 
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by gluing together two solid tori along the homeomorphism of the boundaries which 

takes the meridian a of one torus to the curve qa + p/? on the other torus. On the 

other hand, S^ can be obtained by identifying the boundaries of these tori along the 

homeomorphism take takes a to ^ and (3 to a. Hence the result follows. 

Example 5.2.3 For r =where n 0, the resulting manifold is just S^. To see 

this, note that L(p, q) can be defined as the quotient of the unit sphere S^ in C^ by 

the equivalence relation: 

{z, w)�{exp{2iTi/p)z, ex.p{2'Kiq/p)w). 

This definition implies that for p = 土1，no identifications of points occur, so 

J：(土 l , n ) = 

Apart from the trivial knot, we can also do surgery on S^ along some nontrivial 

knots. In fact, there is a theorem relating surgeries and homology sphere. 

Theorem 5.2.1 (From [13]) Surgery of S^ along any knot with framing 土 1 always 

produces a homology sphere. 

Hence it is not surprising to see that there are infinitely many non-homeomorphic 

homology spheres, despite of the fact that surgery along different knots with framing 

土 1 may produce the same homology sphere. 

The manifold obtained by surgery on the sphere S^ along the right trefoil with 

framing + 1 is called the Poincare homology sphere. 

To prove that the Poincare sphere is not we can compute its fundamental 

group. Assume the base point O is at infinity, and we denote the right trefoil by K. 

Any loop from O m S^ - K can be represented as the composition of the loops x, 

y and 2 and their inverses. 

By studying the relation between x, y and z at each crossings of K, the funda-

mental group of S^ — K is given by 

7ri(5^ - K) = {x,y,z : xy = yz = za;} = {x,ij : xyx = yxy). 

When we perform surgery on S^ along the right trefoil with framing +1 to the curve 

CV + /5, we identify a-\-(5 with the boundary of the meridional disk of the solid torus. 
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^ ‘ [figure : the right-handed trefoil] 

So the fundamental group of the Poincare sphere is obtained from the group 

7ri(5^ — K) by adding the relation a + (5 = I Thus the fundamental group of the 

Poincare sphere is isomorphic to the group 

I = {x,y \ xyx = yxy, yx^y = x^}. 

which is the group of self-isometries of the icosahedron. 

Remark: We recall the example 4.3.3. in Chapter 4. This time we can define 

a one-parameter family of Heegaard diagrams by changing the right side of the 

diagram. For n > 0, instead of twisting around the right circle twice as in the 

picture, twist n times. When n < 0, twist —n times in the opposite direction. 

When n = 3, it gives a 3-manifold (denoted by S(2,3，5))，which turns out to be 

the Poincare sphere. 

In fact, we can define a larger class of homology spheres in the following setting. 

We consider the locus V{j), q, r) defined by 

V(p, q, r) = {(a;, y, z) e : x^ ^ y'^ + = 0} 

where p, q, r are pairwise relatively prime integers. Note that q,r) is a codi-

mension 2 subset in C^. 

Definition 5.2.2 The Brieskorn sphere q, r) is the homology sphere ob-

tained by V(p, q, r) n <55，where S^ C C^ is the standard 5-sphere. 

One can show that the Poincare sphere is just S(2，3，5). 
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5.2.3 Long exact surgery sequence and the absolutely graded 

Heegaard Floer homology 

We can now try to compute the Heegaard Floer homology for these homology 

spheres. However, if one gets starts from the very beginning definition of the homol-

ogy groups, it will be a very difficult task. So we introduce some long exact sequences 

of homology group (the long exact surgery sequence) which will facilitate our 

work. 

To this end, we first give some definitions: 

Def ini t ion 5.2.3 We say that two manifolds M and N are cobordant if their 

union is the complete boundary of a third manifold X ; X is then called a cobordism 

between M and N. 

Following from [17], we make use of the idea of cobordism to relate 3-manifolds 

and 4-manifolds via Heegaard diagram. Suppose we are given three sets a, (3, 7 of 

g disjoint curves on the Riemann surface E^ that are the attaching circles for the 

handlebodies Up and Ûy respectively. Then there are three associated manifolds: 

二 UaU Up, Ya,̂  二 /7a u U ,̂ Y/3,̂  = f / - Û . 

We want to find a cobordism between Ya,f3, Va’）and Yp，’. In other words, we con-

struct a 4-manifold X = with these three manifolds as boundary components. 

Let A be triangle with vertices v^, vp, v^ and edges e卢，e) (ê  lies opposite vi for � 

i = We form X by the identification as the following: 

X = (A X Eg) U (e^ X Ua) U {e^ x [/") U (e^ x U^)/ � 

w h e r e e � x H � � ( e � x dUa) , e卢 x Hg � ( e 0 x dU^) and e) x Hg � ( e ) x dUy). 

Over the vertices of A , this space has corners, which can be naturally smoothed 

out. The resulting manifold X has three boundary components, one corresponds to 

each vertex, with lying over 二 e � n e/3 for example. We orient X so that 

dX = —Ya,(3 + Ya,y — Yp，T 
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This cobordism is called a pair of pants cobordism (imagine the shape of X). In 

this case, we can define a map 

by counting holomorphic triangles in Sym辽(Sg) on the three tori 1 « ， T 卢 and T^ 

given by: 

/ ° ° ( [ x , z ] 0 [ y , i ] , t ) = ^ E (#MO/;)).[w，i + j- — 
yGT̂ nT̂  {i/>e7r2(x’y，w)|tj(i/0=*,"(V0=O} 

Here we assume that there is a Spin'^-structure t on X and 亡a,7 are respec-

tively the restricted Spin^-structure on Va’）’ Yi3n, Under suitable hypothesis on 

the Heegaard diagrams, the above is finite. And the precise definition of holomorphic 

triangle is as follows. 

D e f i n i t i o n 5.2.4 Fix x 6 Ta D y G n and w e H T^. Consider the 

map 

u •上— S y m ^ ( S , ) 

w i t h the boundary conditions u{v^) 二 x ， — a ) = Y, = w and u{e^) c T T � 

li(e^) c Tp, u{e^) C T). Such a map is called a Whitney triangle connecting x, y 

and w. We let 7r2(x，y，w) denote the space of homotopy classes of Whitney triangles 

connecting x , y and w. 

We back to our situation of knot surgeries in 3-manifolds. Let Yi and Y2 be two closed 

oriented 3-manifolds. Suppose that Yi is obtained from Yi by doing a 0-surgery 

along a knot K (not necessary trivial). This means we choose an identification 

of a neighborhood N{K) of K with S^ x D�’ attach one part of x D^) (the 

boundary of the 4-ball D^ x D^), via the map 

= N(K) C Y I . 

Now Y2 is defined to be the smoothed union 

Y飞=(Y, - interior of N{K)) U^ x 

where (p identifies the boundary torus S^ x S^ in D^ x S^ with dN{K). 
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We can find a cobordism between Yi and Y2 explicitly. The 4-manifold X defined 

by 

is a cobordism from Yi to Y2, as we can check that the boundary of X are exactly Yi 

and Y2. Geometrically, X is constructed by adding a 2-handle D"^ x D"^ to [0，1] x Yi 

along N{K) C {1} x 

How are the Heegaard diagrams of Yi and Y2 related to each other? In fact, 

there is a nice interpretation of knot surgery in terms of Heegaard diagrams. Given 

a knot K in Yi, we can choose a Heegaard diagram (Eg,Q；,/?) for Yi, in such a way 

that K lies in the surface — P2 — Pg and intersects once transversely. By-

pushing K into we see that K is disjointed from the discs Dj (with boundary 

(3j for j = 2，3，•.. ,g) and meets Di transversely at a single point. 

In this case, when we do 0-surgery along a knot K on Yi, we are, in fact, changing 

the Heegaard diagram of Yi. To obtain Y2, we attach ai to K on Up. So the Heegaard 

diagram of Y2 becomes ( S � ’ a, 7) where 7 is given by 7 = {K,p2： • • • ,Pg}. And we 

write 

What about the 3-manifold Y^^^l Since U’ is the same as U/3, the identification 

between U，and Up is just identity, so Yp�is a connected sum of p-copies of S"^ x S^, 

and its Heegaard Floer homology can be calculated in a comparatively easier way. 

Here we outline the calculation of x S^)). In [4], the Heegaard Floer 

groups are given by: 

where is a Spin'^-structure over x and increases the grading 

by 2. 

To get the above result, we consider the pointed Heegaard diagram (S^, a , 2 ; ) , 

where each a^ meets each (3i in exactly two canceling transverse intersection points 

(such Heegaard diagram is called the standard Heegaard diagram of 伊 、 S ‘ 之 x 

5^)). To such a Heegaard diagram of 乂 â)，（he tori T ,̂ A meet in 
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intersection points, which correspond to the generators of 

HF+奶X S\t)) ^ 八 * 丑 X Z)) Z[U-']. 

By pairing the map with a canonical element in tp^), we get the map 

where ti are the restriction of t G Spin^(X). There are also corresponding maps for 

the groups like //F土 and HF. In fact, this is the main result in [7] which gives us 

surgery long exact sequences. 

Theorem 5.2.5 (Ozsvath-Szabo, [7]) Let y be a homology three-sphere, and let 

K C Y he a. knot. Let Ŷo be the manifold obtained by 0-surgery on K, and Yi be 

obtained by (+l)-surgery. Then there is a [/-equivariant exact sequence of relatively 

Z-graded complexes: 

HF+(Y,t) ^ HF+{Yo,to) — HF+iYuh)——^ ... 

The maps Fi and F2 are constructed in the same way as F°° (induced on IIF+). 

More precisely, these maps are defined by counting holomorphic triangles on a com-

patible Heegaard diagram for all three manifolds Y , YQ and YI. 

In order to get a better understanding of the Heegaard Floer homology groups 

of these 3-manifolds, it is important to associate an absolute grading on the groups 

(see Chapter 4). In fact, there is a relation between those Fi and the grading. We 

give the following refined version of Theorem 4.4.7: 

Theorem 5.2.6 (Ozsvath-Szabo, [4]) Let t be a torsion Spin^'-structure. Then, the 

homology groups HF°{Y, t) can be endowed with an absolute grading 

gf : T � n i > —Q 

satisfying the following properties: 

1. the homogeneous elements of least grading in s) have absolute grad-

ing zero (here s is the unique Spin'^-structure on S^) 
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2. the absolute grading lifts the relative grading, in the sense that if x , y E 

Ta n T", then 

gr(x, y ) =函 ( X ) - gf(y) 

3. the natural maps i and tt in the above long exact sequence preserve the absolute 

grading, while the coboundary map decreases absolute degree by one, and the 

U action decreases it by two. 

4. if is a cobordism from Yi to Y2 endowed with a Spin'^-structure whose 

restriction U to Yi is torsion for i = 1,2, then 

� r ( 尸 则 ⑷ 2 - 2 乂 ( 4 ^ 0 - 八 ， 

where ^ G HF°(Yi,t i) , F ‘ is the map induced by the cobordism map 

and ti = s|yi for i — 1,2. 

Although the term A seems complicated, yet it is simple enough for us to deal with 

the case of homology three-sphere. The result is proven in [8 • 

Theorem 5.2.7 (Ozsvath-Szabo, [8]) Let K C y be a knot in an integral homology 

three-sphere, and let YQ and YI be the three-manifolds obtained by 0-surgery and 

+l-surgery on Y along K. In the exact sequence 

HF^[Y,t) — HF+(Yo,to) — HF+{YuU)——^ … 

the component of Fi mapping into 丑F+(Yo, to) (thought of as absolutely Q-graded) 

has degree -1/2, the restriction of F2 to HF^{Yq, to) has degree -1/2. In other words, 

we get exact sequences 

HF^{Y,t) ^ HF^iYoM — ~ 

for k eQ. 

Let's back to our case of Brieskorn sphere E(p, q, r). It is known that the Poincare 

sphere —E(2,3,5) can be obtained by doing +l-surgery on the right-handed trefoil 
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knot (the (2,3)-torus knot) in S^ (the orientation of E(2,3,5) is inherited from the 

boundary of 1/(2,3,5)门 B^). To calculate //尸广(-1](2’ 3，5)山)，we need to find 

i/Ffc+(S3，t) and HFi:{Yo,to). 

For / / i ^ ( 5 ^ 0，w e know that 丑厂�+(5 ̂力）=Z and HF+{S\t) = 0 ior k < 0 

by Theorem 5.2.6. In view of the isomorphism 

we have that 
( 

, � k is even and k > 0 
卿 力 ) = — 

0 otherwise 

For HFj^{Yo,to), in general it is hard to calculate explicitly. Luckily, under some 

assumptions, the group H F + has rather simple structure. 

Theorem 5.2.8 (Ozsvath-Szabo, [8]) Suppose that K C S^ is a. knot with the 

property that surgery on K gives the lens space L(p, 1) for some p. Then 

HF°°{YQ) ̂  HF°°{S'^ X S^) as absolutely graded group. In particular, 

Z if 1/2 (mod 2) and k > - 3 / 2 

HFf^{Yo,to) 二 Z if A :三 - 1 / 2 (mod 2) and k > - 1 / 2 

0 otherwise 

Now, it is easy to calculate the group H F i l { - E { 2 , 3 , 5 ) with the above results. For 

each k E Q, we have exact sequence 

p{k) F � 

HF^iS^t) ^ HF^{Yo,to)三 i / F + _ i ( - S ( 2 , 3 , 5 ) , t O ——^ . . . 

which immediately implies that 

Z k is even and k > - 2 

0 otherwise 

This suggests that as a relatively graded Z[f/]-module, E(2,3,5)) is isomor-

phic to but the absolute grading still distinguishes them. 

We do one more example about Brieskorn sphere. For the Brieskorn sphere 

E(2,3, 7), it is obtained as —1 surgery on the right-handed trefoil. The exact se-

quence for —1 surgery is given by 

p � pm 
i/F+(E(2,3,7),^_i) HF^_,(Vo,to) HF^ 耽 t) ~ ^ ..• 
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Since = 0 for all /c < 0, the generator of must come from a 

generator of 3,7), So we get 

‘ 

Z k is even and A; > 0 

//Ffc+(-E(2，3，7)，t_i) 二 j Z if A; = - l 

0 otherwise. 

5.3 More Application 

5.3.1 Knot Floer homology 

As we may guess, that there is a close relationship 'between Heegaard Floer theory 

and knot theory. In [6], Ozsvath-Szabo give another version of Heegaard Floer ho-

mology that can be applied to knots in three-manifolds. Here we give an introduction 

to this theory. 

Definition 5.3.1 From now on, a knot will consist of a pair (Y, K), where Y is 

an oriented three-manifold, and X C K is an embedded, oriented, null-homologous 

circle. 

For simplicity, we restrict ourselves to y = S^. And we can associate a knot K) 

a Heegaard diagram in the following sense. Let's consider the Heegaard diagram for 

(S, ’a，A)U{7}) 

where a is an unordered p-tuple of pairwise disjoint attaching circles a = {o；!, • • •，cvg}， 

Po is a. {g — l)-tuple of pairwise disjoint attaching circles {/?2, •. • ,Pg}, 7 is an em-

bedded, oriented circle in S^ which is disjoint from PQ. This data is chosen so that 

(Eg, a , po) specifies the knot-complement S'^-N{K) {N{K) is some e-neighborhood 

of K)�in other words if we attach disks (1-handles and 2-handles) to along a 

and /?o, and then add a three-ball (the 3-handle), we obtain — N(K) (7 can be 

viewed as the "meridian" for the knot in S^). 

We fix two base point 2： and w from T,g — a - Po — j. We call the data 

(Eg, a , Po, 7, 2, w) a two pointed Heegaard diagram compatible with the knot 

K (for simplicity we write = /5o U 7). 
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In a similar way, we can define a chain complex for a knot K. Details can be 

found in [6 . 

Definition 5.3.2 Let be a knot in S^ and (E^, o；,/?, z,-u;) be a compatible two-

pointed Heegaard diagram. Let C{K) be the free abelian group generated by the 

intersection points x G Ta A IT义 For a generic choice of almost-complex structure 

J, let Sk ： C{K) — C{K) be given by 

M^) = E E nMm • y 

where M[(f)) denote the quotient of the moduli space of J-holomorphic disks repre-

senting the homotopy type of divided by the natural action of R on this space. 

Similar to the previous Heegaard Floer homology theory, we can also define those 

corresponding chain groups C~{K) and C~{K). Specifically, we let C°°{K) 

to be the free abelian group generated by triples [x,2, j] with x G T^ AT/j, i,j e Z, 

with the differential 

= E E • [y，S — n 編 一 n^m. 
y {<I>£TT2{X, y)|M(<W=l} 

Moreover, we can endow the chain group with the structure of a Z-module, by 

defining 

U • [x’i，j] = [x，i 一 l,j — 1]. 

And the following is the main result in [6 

T h e o r e m 5.3.3 The above chain groups with the corresponding differentials are all 

chain complexes. The homology groups as obtained are independent of the choice 

of the two-pointed Heegaard diagrams and the almost-complex structures. 

As an example, for the case when K is unknotted, we can use the standard genus 

1 Heegaard diagram of S^, and get HF{K) = Z. 

There are many ways to refine the notion of Knot Floer homology. For example, 

we can associate Spirit-structure and absolute gradings on the homology groups. 

And of course, other than just considering knots in S^, one can also give similar 

definitions on knots in an arbitrary oriented three-manifold Y . All these details can 

be found in [6 . 
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5.3.2 Invariants on 4-manifolds 

As we have seen, Heegaard Floer homology invariants can be associated to cobordism 

between 3-manifolds. Such connection can be used to construct an invariant for 

smooth, closed 4-manifolds. 

Suppose X is a 4-manifold with (X) > 0. We can delete 4-ball neighborhoods 

of two points in X. It gives us a 4-manifold X' which is a cobordism from S^ to S^. 

We further subdivide X' along a separating hypersiirface N into a union Wi Ujv W2, 

with the properties that 

1. is a cobordism from S^ to N with > 0 

2. W2 is a cobordism from N to S^ with b}(W2) > 0 

3. restriction map H^{Wi LW W2) — © H''{W2) is injective. 

In this case, we call the hypersurface N an admissible cut for X. 

Recall that for a smooth cobordism W from YQ to Yi，we have the commutative 

diagram: 

H F - ( Y o , t o )丄 HF^iYo.to)—丑F+O^o’力0) . . . 

Fiv’t 

HF-{Y,,t,)丄 • •. 

Let HF~^{Y) denote the kernel of i, and be the cokernel of tt. By Propo-

sition 4.8 in [2], there is an isomorphism 

: HFUY) — HFUY). 

induced by 6 from the exact sequence. 

Back to our case, since 时(Wi) > 0, by Lemma 8.2 in [4], the maps on HF°° 

induced by cobordism are trivial. Our aim is to define a map 

to be the composite: 
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To do this, observe that 

so the image of ^w.^tii^, lies in the kernel of i, hence in HF~^(N,t\N). Moreover, 

o 兀=兀 o F'W.mwi = 0 

so maps the image of tt to 0, which means F̂ .̂tiv̂ a factors through the 

projection of HF+{N,t\N) to HF+^{N,t\N). 

Therefore, the map is well-defined. From [4], this map is independent of 

the choice of N, giving a well-defined 4-manifold invariant. For more details please 

refer to [3], [4] and [7 . 

5.4 Further developments 

We end this Chapter by quoting some problems and developments as suggested by 

Ozsvath-Szabo in [4 . 

1. Can one establish the conjectured relationship between Heegaard Floer ho-

mology and Seiberg-Witten theory? 

There are two approaches one might take to this problem. One direct, analyt-

ical approach would be to analyze moduli spaces of solutions to the Seiberg-

Witten equations over a three-manifold equipped with a Heegaard decomposi-

tion. There is also a branch of Heegaard Floer theory which gives invariants on 

symplectic 4-manifolds (see [5]), and the technique of plumbing can be used 

to calculate the Heegaard Floer homology of some class of rational spheres 

(see [9] and [12]). And many mathematicians are giving efforts to relate the 4-

manifold invariant as suggested in the previous section to the Seiberg-Witten 

invariant. 

Another approach leads to the next question: 

2. Is there an axiomatic characterization of Heegaard Floer homology? 
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A Floer functor is a map which associates to any closed, oriented three-

manifold Y a Z2-graded abelian group 'H{Y) and to any cobordisrn W from 

Yi to Y2 a homomorphism V w ： H{Yi) — H(y^2)，which is natural under 

composition of cobordisms, and which induce exact sequences for triples of 

three-manifolds It is "interesting" to observe that if T is a nat-

ural transformation between Floer functors H and V to H! and T>', then if 

T induces an isomorphism T(S^) : n(S^) — 'H'(S^), then T induces iso-

morphisms for all 3-manifolds Y, T{Y) : 'H{Y) 7-C'(Y). This can be proved 

from Kir by calculus, see [43]. Unfortunately, this still falls short of giving an 

axiomatic characterization: one needs axioms which are sufficient to assemble 

a natural transformation T . 

3. For a given 3-manifold, is there an explicit relationship between the Heegaard 

Floer homology and the fundamental group of Y? 

This question is co-related to the question: 

U K C S^ is EL knot, is there an explicit relationship between the fundamental 

group of S^ - K and the knot Floer homology HF(K)? 

These questions are studied specifically by knot theorists, such as [10], [44 

and [45 . 
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