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ABSTRACT 

Adipose Tissue-Derived Stem Cells (ATSCs) have multipotency and plasticity to 

be induced into mesenchymal (chondrogenic) and non-mesenchymal (neural) lineages. 

The excellent abundance, better proliferation power and comparable differentiation 

potential make ATSCs an excellent stem cell for cell therapy and tissue engineering. 

The aims of this project were to define the effect of donor's reproductive status on the 

proliferation and differentiation potential of ATSCs and then to determine if microRNA 

plays a role during the differentiation of ATSCs, using chondrogenic lineage as a model. 

We isolated ATSCs from abdominal adipose tissues of women from different 

reproductive groups and induced towards chondrogenic and neural lineages. Although 

the differentiation capacity was unaffected by the donor's reproductive status, the 

proliferation rate of ATSCs from pregnant women was significantly higher than that of 

pre-menopausal and menopausal women. Real-time quantitative PGR examined the 

expression of 157 miRNAs between differentiated and undifferentiated ATSCs. Cluster 
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analysis identified a unique miRNA profile in ATSCs. Comparing to undifferentiated 

ATSCs, miR-199 family was consistently and significantly up-regulated in 

chondrogenic-induced ATSCs. Knockdown of miR-199a during chondrogenic induction 

decreased the expression of chondrogenic markers, suggesting a positive role of 

miR-199a in chondrogenesis. Microarray gene expression data with and without in vitro 

knockdown and over-expression of miR-199a revealed that the most significantly and 

consistently altered mRNAs were mainly restricted to genes involved in the TGF-|S 

signaling pathway including TGFBl, SMAD2/3 and BMP2/6. This suggests that 

miR-199a could be a novel miRNA promoting chondrogenesis through the TGF-/3 

signaling pathway. Our study identified miR-199a as a novel regulator in ATSC 

differentiation. 
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摘要 

脂肪幹細胞（ATSCS )具有能夠被誘導成間質細胞（如成軟骨細胞）和非間 

質細胞（如神經細胞）的特性。因爲其來源豐富，以及具有較好的生長能力和分 

化潛力，使得脂肪幹細胞作爲一種非常優越的幹細胞有效地應用於細胞療法以及 

組織工程中。本課題的目的在於硏究脂肪幹細胞供者生殖狀態對脂肪幹細胞生長 

及分化潛力的影響，並且以在脂肪幹細胞分化成成軟骨細胞爲模型來檢測 

microRNA (miRNA)是否在其分化過程中起作用。我們從不同生育階段女性的腹 

部脂肪中成功地分離出脂肪幹細胞並將其誘導成成軟骨細胞和神經細胞。儘管脂 

肪幹細胞的分化能力不受其供者生殖狀態的影響，但妊娠期婦女脂肪幹細胞的生 

長能力卻顯著高於停經前和停經期後的女性。通過即時定量多聚酶鏈式反應 

(Real-time quantitative PGR)，我們在脂肪幹細胞在分化前後分別檢測了 157個 

miRNA的表達水準。通過群集分析法（Clustering analysis)，我們鑒定了脂肪幹細 

胞帶有獨特的miRNA表達圖譜。並且發現在由脂肪幹細胞誘導成的成軟骨細胞 

中 ’ miR-199家族的表達水準顯著比未分化的成軟骨細胞高。在對由脂肪幹細胞誘 

導成成軟骨細胞過程的miR-199a基因表達抑制(Knockdown)實驗中，miR-199a 

表達的降低導致了成軟骨細胞表達標誌物的降低’說明miR-199a在軟骨形成過程 

中起到了積極的作用。在miR-199a的體外基因表達抑制或過表達的實驗前後’我 

們用基因晶片分別檢測了其mRNA的表達水準，結果顯示異常變化的mRNA主要 

集中在轉化生長因子3信號途徑中’其中包括轉化生長因子B1 (TGFB1)�轉化 

生長因子胞內信號蛋白SMAD2/3以及骨形態發生蛋白2/6 (BMP2/6)等等’說明 

miR-199a可以通過轉化生長因子0信號途徑來促進軟骨形成。我們的硏究在世界 

上首次闡述了 miR-199a在脂肪幹細胞分化過程中具有調控作用。 
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CHAPTER 1 INTRODUCTION 
1.1 Stem Cells 

The stem cell is the origin of life. Understanding how to control the 

differentiation and maintain pluripotency of a stem cell is not only the key to 

discover molecular mechanisms important for cell replacement therapy for many 

genetic, metabolic, and degenerative diseases but also control cancer development. 

1.1.1 Definition of Stem Cells 

Stem cells are unspecialized cells that are capable of self-renewal for indefinite 

period. Stem cells normally remain uncommitted in the body. However, under proper 

condition(s) with specific signals, stem cells can differentiate into many different 

types of specialized cells. Their capacity to renew themselves and to give rise to 

multiple specialized cells makes stem cells unique. (Bongso, et al 2005, Department 

of Health and Human Services 2001, Marshak, et al 2001, Sell 2004) 

Stem cells can be classified by their differentiation power: 

Totipotent stem cells can differentiate into all cell types of the three germ 

layers (Ectoderm, Mesoderm and Endoderm) in the body including the placenta. A 

fertilized egg is a type of totipotent stem cell. Cells produced in the first few 

divisions of the fertilized egg are also totipotent. 

Pluripotent stem cells are descendants of the totipotent stem cells. They are 
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cells which develop about four days after fertilization. They can differentiate into all 

cell types of the three germ layers except totipotent stem cells and the cells of the 

placenta. 

Multipotent stem cells are descendents of pluripotent stem cells. They retain 

the power to differentiate into different kinds of cell but not cells of all the three 

genu layers. Hematopoietic stem cells and neural stem cells are examples of 

multipotent stem cells. 

Unipotent stem cells (or progenitor cells) can only produce one type of 

specialized cells. For example, erythroid progenitor cells differentiate into only red 

blood cells. These specialized cells produced are terminally differentiated, which are 

permanently committed to specific functions throughout the life time. 

Division of stem cells can be symmetric or asymmetric. A symmetric division 

yields two identical daughter stem cells. An asymmetric division yields a daughter 

stem cell and a terminally differentiated daughter cell which has lost its 

differentiation capacity. Symmetric divisions occur in early embryonic development 

while asymmetric divisions occur during normal tissue renewal in adult. 

1.1.2 Different Origins of Stem Cells 

Stem cells are commonly classified into three broad categories by their 
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origins. They are embryonic stem cells, fetal stem cells and adult stem cells. 

Embryonic stem cells (ESCs) 

Embryonic stem cells are derived from the inner cell mass of a blastocyst, 

which is an early embryo of 4 to 5 days. ESCs have the capability of long-term 

self-renewal that can undergo an unlimited number of symmetrical divisions without 

differentiating. They are pluripotent cells that have the ability to give rise to tissues 

of all three embryonic germ layers (mesoderm, endoderm, and ectoderm). Due to 

their pluripotency, ESCs can be widely applied in scientific researches and 

therapeutic uses. 

However, the controversy over the moral status of the embryos used has 

raised sensitive ethical and religious arguments which greatly limit the development 

of human ESCs. At this stage, any therapeutic use of human ESCs is still 

hypothetical and highly experimental. 

Fetal stem cells 

Fetal stem cells can be isolated from fetal tissues such as brain, liver, kidney, 

blood, bone marrow as well as umbilical cord blood, amniotic fluid and placenta. 

Fetal stem cells are multipotent cells that can give rise to tissues of their own origins. 
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Although embryonic stem cells have a higher differentiation potential, their ethical 

constraints have encouraged the search of alternate stem cell sources. Fetal stem cells, 

which are mainly obtained from terminated fetuses, are less ethically contentious and 

therefore may be a possible alternative to ESCs. Moreover, as they are biologically 

closer to embryonic stem cells, they appear to be more primitive with greater 

differentiation capacity than adult stem cells. A recent report showed that stem cells 

from fetal tissues are more plastic, grow faster and have longer telomeres than adult 

stem cells (Guillot, et al 2007). Therefore, fetal stem cells also act as a powerful tool 

for cell therapy (Guillot, et al 2006，O'Donoghue, et al 2004). However, fetal tissues 

are difficult to obtain and this greatly limits their therapeutic uses. 

Adult stem cells 

Adult stem cells can be derived from adult tissues of all three germ layers 

such as brain, bone marrow, fat and liver. Adult stem cells are multipotent cells 

which can differentiate into cell type of their tissue origin. Recently, the discovery of 

adult stem cell's plasticity suggests that they can transdifferentiate into cell types of 

other germ layers. Examples of adult stem cells are neural stem cells, hematopoietic 

stem cells, mesenchymal stem cells, and endodermal stem cells. 
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1.1.3 Challenges and Importance of Stem Cell Research 

Research has been done on stem cells since the discovery of the fertilized egg 

in the eighteenth century and great progress has been made in understanding the 

biological properties of stem cells. However, difficulties do exist in stem cell 

research that greatly limit its development. This is not limited to the numerous 

technical challenges needed to be overcome, such as the heterogeneity of the isolated 

stem cells, lack of specific markers for identification of different kinds of stem cells 

and long-term maintenance of stem cells in tissue culture, but also to the discovery 

and understanding the molecular mechanisms controlling the stem cell differentiation 

in vitro and in vivo. 

The ultimate goal of stem cell research is to cure disease by cell regeneration 

and tissue engineering in the human body. However, new challenges come when the 

cells are implanted into our body. What are the homing mechanisms guiding stem 

cells to a site of injury after transplantation? How can we ensure that the implanted 

cell is completely integrated into the patient's own tissues and fully functional? How 

can we prevent transplantation rejection? Will there be a risk of cancer derived from 

the implanted stem cells? However, there are two major questions which need to be 

addressed before we can achieve our goal for cell therapy: (1) Does the physiological 

status of the stem cell donor affect the differentiation and proliferation of stem cells? 
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(2) What are the molecular mechanisms guiding stem cells to differentiation?. 

Nonetheless, due to the characteristics of self-renewal and multilineage 

differentiation, stem cells offer a wide range of applications in both basic scientific 

research as well as clinical and therapeutic uses. Stem cells allow the study of 

various biological processes which are usually done in animal models. By acting as a 

powerful research tool, stem cells help identify genes, chemicals and small molecules 

involved in biological functions such as cell division and lineage differentiation. 

Moreover, drug tests are made possible on human cells which were previously not 

accessible. For example, new drugs for heart diseases, which are generally tested 

only in animal models due to absence of human heart cell lines, can now be tested on 

human cells using cardiocytes derived from human stem cells (Bremer, et al 2004). 

Most importantly, human stem cells could provide an unlimited amount of 

tissue for cell therapies and tissue engineering for the treatment of a wide range of 

degenerative diseases such as Parkinson's disease, diabetes, traumatic spinal cord 

injury, Purkinje cell degeneration, Duchenne's muscular dystrophy, heart failure, and 

osteogenesis imperfecta. By replacing the dead or injured cells with differentiated 

stem cells, these incurable disorders may have a chance to be resolved in the future. 

In addition, stem cells, by acting as vehicles for gene transfer, can eliminate diseased 

genes and restore the normal functions of the defective genes. 
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1.2 Adult Mesenchymal Stem Cells 

1.2.1 Characteristics of Adult Mesenchymal Stem Cells 

Adult mesenchymal stem cells (MSCs) are multipotent cells which produce 

progeny that can differentiate into a variety of mesenchymal cell types. As a kind of 

adult stem cell, their main role in our body is to maintain homeostasis by 

replenishing dying cells due to injury or disease and regenerating damaged tissues 

(Holtzer 1978). Like all stem cells, adults MSCs possess the two main characteristics 

of typical stem cells: self-renewal and multi-lineage differentiation. However, so far, 

little is known about the biology of endogenous stem cell populations in adults and 

their precise role in tissue repair and regeneration. 

MSCs were first identified and isolated from rat bone marrow by Friedenstein 

and colleagues in 1966. It was found that these cells have the capacity to differentiate 

into cells of connective tissue lineages, including bone, fat, cartilage and muscle. In 

bone marrow, they also act as stormal cells to support haematopoietic stem cells 

(Friedenstein, et al 1966). Later they were identified in many other tissues such as 

skeletal muscle, adipose tissue, synovium and periosteum (Cao, et al 2003, De Bari, 

et al 2001，Fukumoto, et al 2003a，Rodriguez, et al 2005a). 

Adult MSCs may not have the pluripotency of embryonic stem cells, however, 

they still arouse great interest from scientists. One of the reasons is their plasticity, 
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which is the capability of adult stem cells to differentiate into tissues other than their 

tissue of origin, even crossing germ layers. The discovery of stem cell plasticity has 

overthrown the concept of lineage restriction and greatly widened their application in 

cell therapy and tissue engineering. Furthermore, unlike embryonic stem cells, adult 

MSCs do not face any ethical problems. This allows the collection of adult stem cells 

take place at any place at any time. Both pre-clinical and clinical studies showed 

successful examples in cell therapy that illustrate the therapeutic value of MSCs 

(Barry FP 2004; Schaffler A 2007). 

However, stem cells are rare in adult tissues. For example, in bone marrow, 

MSCs only represent a very small fraction of 0.001-0.01% of total nucleated cell 

population (Pittenger, et al 1999). It will be difficult to obtain an amount of MSCs 

enough for therapeutic uses. Luckily, the recent discovery of MSCs in adipose tissue 

has introduced an excellent source of adult stem cells. As adipose tissues can be 

extracted in large volume with limited morbidity, they are an exciting alternative 

stem cell source (Zuk PA 2002; Schaffler A 2007). 

1.2.2 Adipose Tissue as an Alternate Source of MSCs 

Adipose tissue is a highly complex tissue. It consists of many kinds of cells 

including mature adipocytes, preadipocytes, fibroblasts, vascular smooth muscle 
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cells, endothelial cells, resident macrophages and lymphocytes (Caspar-Bauguil, et al 

2005，Weisberg, et al 2003，Zuk, et al 2001). Stromal vascular fraction (SVF) of the 

adipose tissue, is classically used as the source of preadipocytes. Adipose tissue has a 

remarkable ability to dynamically expand and shrink during the lifespan of an adult. 

Fat mass in human body can range from 2 to 3% of body weight in extremely well 

conditioned athletes to 60 to 70% of body weight in massively obese individuals. A 

small change in adipose tissue volume can be accommodated by changing the lipid 

stored in adipocytes. Therefore, larger changes must be achieved by the generation of 

new adipocytes by the pool of stem and progenitor cells from the vascular and 

nonvascular cells (Hausman, et al 2001, Rupnick, et al 2002). Recent studies have 

shown that cells from SVF display a large spectrum of differentiation, which 

suggests the presence of multipotent stem cells inside this tissue compartment (Zuk, 

et al 2002). There are many terms used in the literature describing these multipotent 

stem cells from adipose tissue, such as processed lipoaspirate (PLA) cells, adipose 

tissue-derived stromal cells (ADSCs), preadipocytes, and adipose stroma vascular 

cell fraction. In this thesis, the term adipose tissue-derived stem cells (ATSCs) will 

be used. 
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1.2.3 Adipose Tissue Versus Bone Marrow as a Source of MSCs 

MSCs were first identified in bone marrow, and most of the studies have 

focused on the MSCs found within the bone marrow stroma. However, the discovery 

of MSCs in adipose tissue has introduced a novel stem cell source which is believed 

to be more well-suited as a source of MSCs than bone marrow. Although bone 

marrow stem cells (BMSCs) have demonstrated great therapeutic potential, the 

procurement procedures for BMSCs are painful and frequently require general or 

spinal anesthesia. BMSCs cause donor site morbidity that limits the amount of 

marrow can be obtained, resulting in low yield of MSCs. On the other hand, adipose 

tissue is readily accessible. Using typical harvesting procedures like liposuction 

under local anesthesia, adipose tissue can be extracted in a large volume with limited 

morbidity. A higher yield upon tissue harvest therefore minimizes the time in culture 

required to generate a therapeutic cell dose (Strem, et al 2005a). Most importantly, 

ATSCs exhibit phenotypes, gene expression profiles as well as differentiation 

capabilities which are very similar to BMSCs (Lee, et al 2004). These all suggest that 

adipose tissue could be an exciting alternative stem cell source to bone marrow and a 

better candidate for cell therapy and tissue engineering. 
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1.3 Adipose Tissue-derived Stem Cells (ATSCs) 

1.3.1 Cell Surface Marker Characteristic of ATSCs 

The cell surface marker characterization of ATSCs has been well studied 

(Gronthos, et al 2001，Klyushnenkova, et al 2005, Lee, et al 2004，Mitchell, et al 

2006, Sakaguchi, et al 2005，Schaffler, et al 2007, Strem，et al 2005a) (Table 1). The 

cell surface phenotype of ATSCs is very similar to that of other MSCs, e.g. BMSCs 

(Strem, et al 2005a) (Table 2). ATSCs express CD73，CD90 and CD 105 which 

matches the minimal criteria for human MSCs proposed by the Mesenchymal and 

Tissue Stem Cell Committee of the International Society for Cellular Therapy 

(Dominici M. 2006). In addition, they express a larger number of adhesion molecules 

like CD44 (hyaluronate receptor), CD54 (ICAM-1) and CD 166 (ALCAM), as well 

as growth factors (CD 117，stem cell factor) and integrins like CD29 (beta-1 integrin), 

CD49d (alpha-4 integrin) and CD49e (alpha-5 integrin). On the other hand, ATSCs 

lack the expression of known hematopoietic and endothelial markers such as CD3, 

CD4, CDllb, CDllc, CD 14, CD16，CD 19, CD31, CD34, CD45, CD79o; CD 104, 

CD 133，CD 144 and c-kit. The absence of expression of these markers indicates that 

ATSCs are not derived from circulating bone marrow hematopoietic stem cells. 

However, STRO-1 which is a marker commonly used in the isolation of 

multipotent BMSCs (Dennis, et al 2002，Gronthos, et al 1994), is negatively or only 
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weakly detected in ATSCs (Gronthos, et al 2001，Schaffler, et al 2007). ATSCs also 

lack the expression of HLA-DR, a class II antigen of human leukocyte antigens 

(HLA) which is commonly associated with the acute rejection after transplantation. 

Lacking the HLA-DR expression allows ATSCs to escape from the immune system, 

suggesting their potential for heterologous transplantations. 

In fact, the surface protein phenotype of ATSCs changes throughout the culture 

period. A study has compared the immunophenotype of freshly isolated human 

ATSCs to serial-passaged ATSCs (Mitchell, et al 2006). They found that the 

immunophenotype of ATSCs changed progressively with adherence and passage. 

Stromal cell-associated markers like CD13, CD29, CD44，CD63, CD73, CD90， 

CD 166 were initially low in freshly isolated ATSCs but significantly increased with 

passages. On the other hand, Antigen presenting cell (APC)-associated markers such 

as CD45，CDlla, CD 14, CD86 and HLA-DR initially expressed in freshly isolated 

SVF population and ATSCs at passage 0，which were found to be immunogenic in a 

mixed lymphocyte reaction. However, in passage 1 to passage 4 populations, cells 

did not express these APC-associated markers and were not immunogenic. These 

observations may be explained by the fact that heterogeneous populations exist in 

freshly isolated ATSCs, which may contain a significant percentage of immunogenic 

hematopoietic-derived APCs. Eventually, with progressive passage and expansion 
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of the adherent ATSCs, the number of these APCs decreases leaving the majority of 

ATSCs which are immunosuppressive. 

Surface Marker Expression in ATSCs 
Positively expressed Negatively expressed 

CD9 CD3 
CD 10 CD4 
CD13 CD l i b 
CD29 CDl lc 
CD44 CD 14 
CD49d CD 19 
CD49e CD31 
CD54 CD34 
CD55 CD40 
CD59 CD45 
CD73 CD79Q： 
CD90 CD80 

CD105 CD86 
CD117 CD 104 
CD146 CD133 
CD 166 CD 144 

HLA-A/B/C STRO-1 
HLA-DR 

c-kit 

Table 1 The cell surface marker expression of ATSCs. 

13 



“ Markers ATSCs BMSCs 
CD29 + + 
CD44 + + 
CD90 + + 

CD 105 + + 
CD49d + -
CD49e + + 
CD 106 - + 
CD14 - -
CD34 - -

HLA-A/B/C + + 
HLA-DR - -

c-kit - -
STRO-1 +- + 

Table 2 Comparison of cell surface phenotype between ATSCs and BMSCs 
(+ positively express ； +- weakly express ； - negatively express) 

1.3.2 Global Gene Expression Profile of ATSCs 

The global gene expression of ATSCs was recently characterized by Wagner et 

al. (Wagner, et al 2005). In this study the expression profiles of 51,144 genes in 

human were compared in MSCs derived from adipose tissue, umbilical cord blood, 

and bone marrow to terminally differentiated human fibroblasts. Only twenty-five 

genes were identified to be overlapping and upregulated in MSCs prepared from all 

three sources when compared to fibroblasts. These genes, including fibronectin, 

ECM2, glypican-4, IDl, NFIB, H0XA5 and H0XB6, were involved in extracellular 
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matrix, morphogenesis, and development. On the other hand, several inhibitors of the 

Wnt pathway including DKKl, DKK3, SFRPl were down-regulated in all different 

MSCs compared to fibroblasts. When the gene expression profiles of MSCs from the 

three sources were compared, significant differences were found between genes 

expressed in MSCs from different sources, including genes involved in mesodermal 

differentiation and cell division. However, using a panel of 22 surface antigen 

markers, no phenotypic differences were found among the three MSG populations 

derived from different tissues. In another study by Lee and colleagues (Lee, et al 

2004)，gene expression profiles were compared between human MSCs derived from 

adipose tissue and bone marrow. They found that the gene expression profiles of the 

two MSG populations are highly similar. Less then 1% of the genes were 

differentially expressed between them. However, these studies only provide limited 

and undefined insights for deciphering exactly how "sternness" and "regulated 

differentiation" is maintained in ATSCs. Further work is required for elucidation of 

the transcriptional programming and molecular mechanisms which direct 

self-renewal and differentiation in ATSCs. 

1.3.3 Immunomodulatory Effect of ATSCs 

As ATSCs do not express major histocompatibility complex (MHC) class II 
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(HLA-DR) or co-stimulatory molecules like CD80 (B7-1)，CD86 (B7-2) and CD40 

(Klyushnenkova, et al 2005), they can escape from the immune system easily 

without inducing allospecific T cell proliferative responses. The in vitro and in vivo 

immunosuppressive properties of ATSCs have been extensively studied (Mcintosh, et 

al 2006，Puissant, et al 2005，Yanez, et al 2006). Mixed Lymphocyte Reaction (MLR) 

assay was commonly performed to assess the immunogenicity of ATSCs. When 

co-cultured with allogeneic lymphocytes e.g. peripheral blood mononuclear cells, 

ATSCs do not elicit a lymphocyte proliferative response. Interestingly, ATSCs even 

induce an in vitro immunosuppressive effect on allogeneic lymphocytes. The 

phytohemagglutinin (PHA)-mediated stimulation of T cells was significantly 

decreased with increasing proportion of ATSCs in the culture. Studies also proved 

that the direct cellular interactions between ATSCs and T cells were important, but 

not essential for the immunosuppressive effect of ATSCs. ATSCs produce 

cytokines like TGF-/3, IL-10 and hepatocyte growth factor (HGF) which has been 

suggested to be responsible for the immunosuppressive property of ATSCs. The 

immunomodulatory effect of ATSCs in vivo was also studied using a mouse model. 

Graft versus host disease (GVHD) was induced in mice after haploidentical 

hematopoietic transplantations. Infusion of ATSCs significantly increased the 

survival of transplanted mice and notably diminished the severity of tissue damage 
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by GVHD (Yanez, et al 2006). 

The remarkable immunosuppressive property of MSCs including ATSCs allows 

transplantation across classical histocompatibility barriers and makes them the best 

candidate for allogeneic transplantation by preventing the incidence of GVHD. 

Recently, reports have been published on the evaluation of use of MSCs in GVHD 

treatment and preliminary results appear to be promising (Bacigalupo 2007, Le Blanc, 

et al 2004，Ringden, et al 2006). 

1.3.4 Proliferation Capacity of ATSCs 

One of the typical characteristics of stem cells is the ability to self-renew. In a 

study by Lee (Lee, et al 2004)，the proliferation capacity of ATSCs was evaluated by 

its doubling time versus the passage number in culture. From their findings, the 

doubling time of ATSCs remained constant up to 15 passages and growth was 

stopped at 20 passages. However, in the case of BMSCs，the doubling time increases 

with the passage number and growth stopped at 15 passages. These findings are 

consistent with the microarray data in other studies (Wagner, et al 2005) that ATSCs 

has a higher expression of cell proliferation-associated genes like Ki-67, cell division 

cycle associated 8 (CDCA8) and cyclin B2 (CCNB2) than BMSCs. These all 

indicate that ATSCs has a better proliferation potential than BMSCs. 
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1.3.5 Multilineage Differentiation of ATSCs 

The abilities of ATSCs to differentiate along classic mesenchymal lineages 

into adipocytes, osteocytes，chondrocytes and myocytes have been well established 

(Dicker, et al 2005, Lee, et al 2004, Lin, et al 2006, Mizuno, et al 2003, Zuk, et al 

2002). After the introduction of adult stem cell plasticity, their abilities to cross-germ 

differentiate have also been investigated and published. ATSCs can be induced into 

non-mesodermal lineages such as neural, endothelial, epithelial, pancreatic and 

hepatic lineages (Brzoska，et al 2005，Cao, et al 2005，Kokai, et al 2005， 

Planat-Benard, et al 2004b, Safford，et al 2002a, Seo, et al 2005, Timper，et al 2006)， 

demonstrating their differentiation plasticity. In this study, we will focus on the 

chondrogenic lineage which is the most well established and widely studied to act as 

a model tool for identification of molecular pathways important for ATSC 

differentiations. 

1.3.5.1 Differentiation Capability of ATSCs : Adipogenesis 

ATSCs, which are isolated from adipose tissue, can readily differentiate 

along the adipocytic lineage. ATSCs are commonly induced in adipogenic medium 

containing isobutyl-methylxanthine (IBMX), dexamethasone, insulin, indomethacin 

and Roziglitazone (Lee, et al 2004, Lin, et al 2006, Mizuno, et al 2003, Ryden, et al 
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2003). ATSC-derived adipocytes develop lipid laden intracellular vacuoles and stain 

positive with the triglyceride specific dye Oil Red O. They express several adipocytic 

genes including lipoprotein lipase, aP2, PPARy2, leptin, Glut4 and 

glycerol-3-phosphate dehydrogenase (GPDH) (Dicker, et al 2005，Sen, et al 2001， 

Zuk, et al 2001, Zuk, et al 2002). ATSC-derived adipocytes also display lipolysis, 

which is another hallmark of adipogenesis. The lipolytic capacity, assessed by 

glycerol release in the medium after lipolytic agent stimulation, increased in 

differentiated cells compared to control (Dicker, et al 2005). Secretion of fat 

cell-specific proteins like leptin and adiponectin was also detected in adipocytes 

derived from ATSCs. 

The ability of ATSCs to differentiate into adipocytic lineage in vivo has also 

been demonstrated. In these studies, different carrier materials were used including 

cell-seeded natural scaffolds like collagen and hyaluronic acid (Halbleib, et al 2003, 

von Heimburg, et al 2001a, von Heimburg, et al 2001b) as well as synthetic 

bioresorbable grafts like polyglycolic acid and PLGA (Lee, et al 2003, Patrick, et al 

1999，Patrick, et al 2002). 

1.3.5.2 Osteogenesis 

Same as BMSCs, ATSCs have the ability to differentiate into the osteogenic 
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lineage (Dicker, et al 2005, Halvorsen, et al 2001, Lee, et al 2004, Lin, et al 2006， 

Zuk, et al 2002). In the presence of ascorbic acid, /3-glycerophosphate and 

dexamethasone, ATSCs change into an osteoblastic morphology with a cuboidal 

shaped and tightly packed arrangement and eventually form bone-like nodules. 

Deposition of a calcium-rich mineralized extracellular matrix can be identified and 

confirmed by a calcium-specific stain Alizarin Red. ATSC-derived osteocytes 

express osteogenic marker genes and proteins including alkaline phosphatase, 

collagen type I，osteopontin, osteocalcin, osteonectin, cbfa-1, bone sailo protein, 

RunX-1, BMP-2, BMP-4, BMP receptors I and II，and PTH-receptor. 

With the use of a variety of supportive 3D scaffolds such as beta-tricalcium 

phosphate (j8-TCP) and polyglycolic acid (PGA), osteocytes derived from human 

ATSCs can be tissue-engineered and implanted in immunodeficient rodent ectopic 

bone models (Dragoo，et al 2003, Hattori, et al 2006，Hicok, et al 2004，Lee, et al 

2003). The positive immuno-staiiiing of human osteocalcin, which is an indicator for 

metabolically active bone cells, in the implanted ATSC scaffolds indicated that the 

implanted human ATSCs were successfully differentiated into osteoblasts and 

promoted the bone formation in the nude mice. Overall, the rate and extent of bone 

formation in vivo of ATSCs was similar to that of BMSCs. 

More importantly, ATSCs have already been applied to clinical uses for bone 
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engineering, and the results are encouraging. In a case study of a 7-year-old girl 

suffering from widespread calvarial defects, repair was achieved by applying 

processed autologous ATSCs to the calvarial defects (Lendeckel, et al 2004). New 

bone formation and near complete calvarial continuity were detected three months 

after the reconstruction. This case report suggests the powerful therapeutic use of 

ATSCs in bone engineering as well as the clinical uses of ATSCs in human. 

1.3.5.3 Skeletal and Smooth Muscle Myogenesis 

By culturing ATSCs in the presence of hydrocortisone and horse serum, 

and/or co-culturing with myoblasts, ATSCs can be induced into myogenic lineage 

(Di Rocco，et al 2006，Lee, et al 2006, Mizuno, et al 2002，Zuk, et al 2002). 

ATSC-derived myocytes acquired a myoblast-like morphology with generation of 

long, multinucleate cells early in culture and formation of myofibrillar bundles after 

two week induction. These cells also express muscle-related genes in a 

time-dependent pattern, which is consistent with normal myogenesis. They express 

early myogenic markers MyoDl and Myf5, Myf6，Desmin，Myogenin and Myosin, 

followed by expression of late markers including Myosin Heavy Chain and 

Alpha-skeletal Actin. ATSCs can be induced into smooth muscle differentiation 

using various protocols, including induction by heparin in MCDB131 medium 
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(Rodriguez, et al 2006) or by chemicals like mercaptoethanol (BME)，ascorbic acid 

(AA) and retinoic acid (RA) (Lee, et al 2006). Differentiated cells express smooth 

muscle markers alpha-smooth muscle actin (aSMA), smoothelin, Calponin, 

Caldesmon, MHC, and SM22, that confirm the leiomyogenic lineage. 

So far, not many studies have been done on the in vivo myogenesis capacity 

of ATSCs. Bacou et al. (2004) were the first to report on the muscle regeneration 

ability of ATSCs in animal models. They demonstrated that after the transplantation 

of ATSCs into injured regions of rabbit skeletal muscle, participation of ATSCs was 

detected in regenerated fibres, followed by the increased muscle weight and fiber 

cross section area. The maximal contractile force was significantly raised when 

compared to the damaged control muscle. These results are similar to those 

previously obtained after satellite cell transplantation. Another study (Rodriguez, et 

al 2005b) demonstrated the muscle regeneration ability of ATSCs in a mouse model 

with Duchenne muscular dystrophy. After transplantation, substantial expression of 

human dystophin was detected in mice while no dystrophin-positive fibres were 

found in non-injected muscle. 

The leiomyogenic differentiation potential of ATSCs also allows their uses in 

tissue engineering of the lower urinary tract, help curing disorders like urinary 

incontinence and bladder dysfunction. In a report by Jack et al. (Jack, et al 2005), 
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human ATSCs were isolated and injected into the bladder and urethra in multiple 

animal models using both Rnu athymic rats and SCDD mice. After injection, ATSCs 

were found to incorporate into the recipient smooth muscle, followed by the in vivo 

expression of alpha-smooth muscle actin (aSMA), a smooth muscle marker, in the 

injected area. ATSCs, with their easy accessibility and ability to undergo myogenesis, 

provide a feasible and cost-effective cell source for muscle engineering and muscle 

cell-mediated therapy. 

1.3.5.4 Cardiomyogenesis 

Cardiovascular disease, which has become the leading cause of morbidity and 

mortality in the world, can also be benefited by the use of ATSCs. ATSCs had been 

successfully induced into cardiomyocytes using different differentiation protocols, 

e.g. addition of 5-azacytidine or cardiomyocytes extracts. In a compelling study by 

Planat-Bemard et al. (Planat-Benard, et al 2004a), ATSCs were cultured in a 

semisolid methylcellulose medium containing interleukin (IL) -3, IL-6 and stem cell 

factor (SCF). Colonies of spontaneously beating cells were observed and positively 

expressed cardiac specific markers such as GATA-4, Nkx2.5, Atrial/Ventricular 

Myosin Light Chain (MLC-2a/MLC-2v), Myosin-enhancing Factor 2C (MEF2C), 

13 -Myosin Heavy Chain (/3MHC) and Coimexins. The absence of the skeletal 
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muscle protein MyoD or the smooth muscle actin strongly supported that the beating 

cells identified were cardiomyocytes and not skeletal or smooth muscle cells. 

Moreover, these cells exhibited a pacemaker activity and responded to adrenergic 

and cholinergic stimuli. 

The ability of ATSCs to repair injured myocardium in vivo has been 

demonstrated (Miyahara, et al 2006, Strem, et al 2005b), and the results are 

promising. Transplantation of monolayered ATSCs onto the scarred myocardium of 

an infracted rat heart resulted in cardiomyogenesis with the expression of 

cardiomyocyte-specific markers (Miyahara, et al 2006). Angiogenesis was also 

induced in the transplanted area, with the wall thinning in scar area reversed and 

cardiac function improved. Although these data were exclusively from animal 

models, ATSCs could be a new therapeutic strategy for cardiac tissue regeneration in 

the near future. 

1.3.5.5 Chondrogenesis 

To induce ATSCs into chondrogenic lineage, the cells are cultured in a very 

high density to mimic the prechondrogenic cellular condensation, which is a critical 

first event of chondrogenesis in vivo (Ede 1983). Two culture techniques, called 

micromass culture (Ahrens, et al 1977) and pellet culture (Mackay, et al 1998), are 
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commonly used to create a high cell density culture of ATSCs for chondrogenic 

induction. Together with the supplement of chondrogenic induction agents such as 

transforming growth factor-/?, ascorbic acid and dexamethasone，ATSCs form a three 

dimensional spheroid structure (Dicker, et al 2005, Dragoo, et al 2003, Lee, et al 

• 2004，Ogawa, et al 2004, Zuk, et al 2001, Zuk，et al 2002). A proteoglycan-rich 

extracellular matrix form around the spheroid and the cells express chondrogenic 

markers including collagen type II, aggrecan, collagen type X，as well as sulfated 

proteoglycans such as keratan sulfate and chondroitin sulfate. Apart from the high 

density culture methods, chondrogenesis of ATSCs can also be induced by 

suspending cells in spherical alginate beads in chondrogenic medium (Awad，et al 

2003, Estes，et al 2006). By maintaining the cells in a three dimensional environment, 

expression of the chondrocytic phenotype can also be significantly promoted. 

Due to the poor regenerative capacity and inferior repair of the cartilage, 

treatment of cartilage pathology and trauma faces great challenges. Current 

treatments for articular cartilage reconstruction include arthrodesis and arthroplasty, 

which are joint fusion and joint replacement respectively (Hunziker 2002). However, 

these synthetic implants may lead to problems like infection, rejection, poor 

longevity and unsatisfactory scarring. The recent discovery of the potential of adult 

stem cells in cartilage tissue engineering have provided a novel therapeutic approach 
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to cartilage repair. 

Implantation of stem cell-derived chondrocytes requires scaffolds which can 

provide biodegradable and porous, mechanical support. Both natural (e.g. agarose, 

alginate, hyaluronic acid, gelatin) and synthetic biomaterials (e.g. polyglycolic acid) 

have been used in the in vivo studies of cartilage tissue engineering using human 

MSCs. In a study by Erickson et al. (Erickson, et al 2002)，ATSCs were seeded onto 

alginate discs for 2 weeks in vitro and were implanted into nude mice for another 4 

to 12 weeks. The implanted cells exhibited significant production of cartilage matrix 

molecules including collgen type II，VI and aggrecan. A recent study also evaluated 

the potential of ATSCs as a source for flill-thickness cartilage repair in a rabbit 

model (Dragoo, et al 2007). Autologous ATSCs seeded in a fibrin glue scaffold were 

implanted into rabbits with chondral defects. Defects in articular surface were healed 

in 100% (12 of 12) implanted rabbits while only 1 of 12 healed in the control group. 

In addition, aggrecan, superficial zone protein and collagen type II messenger 

ribonucleic acid were identified in all implanted rabbits, with the exhibition of a 

collagen type II:I protein ratio similar to that of normal rabbit cartilage. 

The ability to produce characteristic cartilage matrix molecules in both in 

vitro and in vivo models, as well as to repair cartilage defects in vivo, suggests 

ATSCs as a promising cell source for cartilage tissue engineering. However, further 

26 



work should still be done on the optimization of the culture and engineering 

procedures before ATSCs can be successfully applied in human clinical trials. 

1.3.5.6 Neurogenesis 

Lacking the ability of mature neurons to regenerate and repair in respond to 

injury, tissue damage in the central nervous system is incapable of self-repair. Loss 

of neurons due to aging, neurodegenerative diseases, stroke or injury cannot be 

corrected by ordinary therapies such as organ transplantation. Grafting neural 

precursor cells may be one possible strategy to solve this problem of regenerating 

damaged nervous tissues. 

Having the plasticity to trandifferentiate, ATSCs have been shown to acquire 

the potential to undergo neural differentiation. Even before any induction, 

undifferentiated MSCs, including ATSCs, already express neural progenitor markers 

such as Nestin, neuron-specific enolase (NSE) and Tuj-1 (Tondreau, et al 2004，Yang, 

et al 2004). To induce ATSCs into neurons, various protocols have been used, most 

involving the use of chemicals as induction agents. Similar to BMSCs (Woodbury, et 

al 2000)，treatment of ATSCs with beta-mercaptoethanol (BME) resulted in rapid 

transition (in 30 minutes) of cells to a neuronal morphology with spherical cell 

bodies with multiple extensions (Zuk, et al 2002). The induced cells expressed early 
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neuronal markers including Nestin, neuron-specific enolase (NSE) and 

neuron-specific protein (NeuN). Similar results were also obtained using other 

inductive conditions such as indomethacin and isobutylmethylxanthine (Ashjian, et 

al 2003) or butylated hydroxyanisole (BHA) and forskolin (Safford, et al 2002b, 

Safford, et al 2004). In addition to Nestin, NSE and NeuN, expression of other neural 

markers such as Vimentin and Trk-A (a receptor of neural growth factor, NGF), 

GFAP, S-100，MAP2, Tau, h-III Tubulin were also detected or upregulated in the 

neural-induced ATSCs. Immunohistochemical analysis also revealed the presence of 

g-Aminobutyric acid (GABA), the NR-1 and NR-2 subunits of the glutamate 

receptor, GAP-43, synapsin I, and voltage-gated calcium channels in the induced 

ATSCs, raising the possibility of producing functional, mature neuronal cells 

(Safford, et al 2004). 

Neural induction conditions using chemicals such as BME and BHA have 

been challenged by some reports (Bertani, et al 2005, Lu, et al 2004) suggesting that 

these rapid inductions (within minutes to hours) into neurons were likely due to 

cellular toxicity, cell shrinkage and changes in the cytoskeleton instead of a 

complicated cellular differentiation process. This was supported by the fact that 

time-lapse microscopy of the induced MSCs showed no new neurite growth but 

rather cellular shrinkage and retraction of the majority of existing cell extensions. 
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Besides, the neuronal induction using these protocols could also be reproduced in 

normal primary fibroblasts as well as mimicked by addition of drugs that elicit 

cytoskeletal collapse and disruption of focal adhesion contacts (Bertani, et al 2005). 

In fact, neuronal differentiation cannot be concluded merely with neural-like 

morphology and the expression of some neural or glial markers. To confirm the 

genuine neuronal differentiation of adult stem cells, a demonstration of full neuronal 

functions through electrophysiology and complete neuronal gene expression is 

required. So far, all reports on in vitro neuronal differentiation of MSCs can only 

confirm the potential of these cells into neuronal progenitor cells. No group has 

succeeded in inducing MSCs, including ATSCs and BMSCs, into mature, functional 

neuronal cells in vitro. However, recent studies with ATSCs on their potential in in 

vivo neural repair are promising. 

Several in vivo studies done by Kang et al. (Kang, et al 2003a, Kang, et al 

2003b, Kang, et al 2006) suggested the clinical relevance and application for ATSCs. 

They first showed that human ATSCs may provide a supportive role for endogenous 

neural stem cells by co-culturing human ATSCs with mouse neural stem cells (NSCs) 

in vitro, supported by the result that the percentage of neurons in culture was 

significantly increased when compared to culture of NSCs alone. In another study 

they demonstrated that intracerebroventricular administration of neurally induced 
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human ATSC into rat brains resulted in cell migration to areas of ischemic injury. 

Significant recovery of motor and somatosensory behavior was found in transplanted 

animals, especially those with BDNF-transduced ATSCs. In their recent study (Kang, 

et al 2006), they confirmed the therapeutic effect of ATSC infusion in rat models of 

spinal cord injury. Intravenous infusion of the oligodendrocyte precursor cells 

derived from autologous rat ATSC improved the motor function in rats with spinal 

cord injury. 

An in vivo study by another group (Jun, et al 2004) also showed that 

intraventicular injection of human ATSCs transfected with a retrovirus 

overexpressing the human telomerase gene, in ischemic rat brain, resulted in 

enhancement of functional recovery in these animals. In all these in vivo studies, 

significant functional recovery was exhibited after ATSC infusion in animal models. 

However, these functional improvements may be due to the release of trophic factors 

or cytokines by ATSCs instead of neuron formation. Nevertheless, these promising 

results strongly suggest the use of ATSCs as an alternative source of neuronal cells 

for treating disorders with neuronal function defects or neuron loss. Genetically 

engineered hATSCs expressing biologically active gene products can also act as 

effective vehicles for therapeutic gene transfer to the brain. 
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1.4 Signaling Pathways in Stem Cells 

Inside the stem cell niche, multipotent stem cells are kept alive and 

undifferentiated by the physical contact between stem cells and their non-stem cell 

neighbors. The neighboring differentiated cell types form an extracellular matrix that 

secretes factors and support stem cells by keeping the balance between quiescence, 

self-renewal and cell commitment. Stem cell fates are regulated in a signal-dependent 

manner. To control the sternness and differentiation of stem cells, these growth 

factors act through multiple signaling pathways, including Wnt, Notch, transforming 

growth factor (TGF/5) and bone morphogenetic proteins (BMPs) signaling 

(Paratore, et al 2006). 

1.4.1 Wnt Signaling 

Wnt proteins play an important role in regulation of stem cell and 

differentiation (Cadigan, et al 1997). There are totally nineteen Wnt genes in 

mammalian genomes, and they give rise to proteins that participate in both gene 

transcription and cell adhesion. When Wnt signals bind the Frizzled receptors, the 

downstream signals lead to the accumulation of /3-catenin. j(3-catenin is the central 

player of the canonical Wnt signaling pathway, and it is normally degraded in the 

absence of Wnt. The stabilization and accumulation of /3-catenin results in the 
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formation of complex with TCF (T cell factor) and LEF (lymphoid enhancer factor). 

This complex activates many different target genes involved in cell development, 

maintenance of sternness in stem cells, as well as carcinogenesis. Cross-talk also 

occurs in the Wnt//3-catenin signaling with various other signaling pathways such as 

Notch, TGF/5, FGFs ans Shh (De Strooper, et al 2001, Hecht, et al 2000, Nelson, et al 

2004). 

In undifferentiated ESCs, large-scale gene expression profiling revealed the 

expression of the main components of the canonical Wnt signaling pathway, which 

suggest a role of Wnt signaling in regulating stem cell sternness (Aubert, et al 2002, 

Sato, et al 2003). This was supported by an in vitro experiment that treatment of 

ESCs with GSK3|S inhibitor that activated the canonical Wnt pathway and kept both 

mouse and human ESCs remain undifferentiated (Sato, et al 2004). Moreover, 

overexpression of Wntl or stabilized |(3-catenin in ESCs resulted in the inhibition of 

neural differentiation (Aubert, et al 2002，Haegele, et al 2003). Apart from ESCs, 

Wnt signaling is also important in other stem cells such as hematopoietic stem cells 

(HSCs) (Austin, et al 1997，Reya，et al 2003). Activation of the Wnt signal promotes 

HSC proliferation and limits their differentiation potential. This sustains the 

self-renewal of HSCs in long-term culture inside the bone marrow for later 

functional reconstitution of hematopoietic lineages in vivo. 
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1.4.2 Notch Signaling 

The Notch signaling pathway is a highly conserved cell signaling system 

which is present in most multicellular organisms (Artavanis-Tsakonas, et al 1999， 

Harper, et al 2003, Lai 2004). In mammals, Notch possesses four receptors and is 

involved in various processes ranging from cell-fate specification, cell lineage 

descision to pattern formation. Once the notch receptors are activated by Delta-like 

ligands and Serrate-like ligands from neighboring cells, the pathway is initiated 

through the proteolytic cleavage of the Notch intracellular domain (NICD), 

recruitment of co-activators and expression of members of the Hairy enhancer of 

Split (HES) and HES-related (HERP) genes. These HES proteins participate in 

several lineage-specification processes by inhibiting the expression of 

lineage-specifying bHLH genes such as Neurogenins, MyoD and E2A (Iso, et al 

2003). Cross-talk between Notch and TGF-|3 signaling is common, by direct 

protein-protein interactions between the signal-transducing intracellular elements 

from both pathways such as Hes-1 and Smad3 (Blokzijl, et al 2003). The converge of 

the two pathways occurs in differentiation of many cell types including myogenic, 

endothelial, pancreas and neural development (Blokzijl, et al 2003, Goumans, et al 

2002，Kim, et al 2001，Shah, et al 1996a). 

Like Wnt signaling, Notch signaling also has a role in maintaining sternness 
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of stem cells. In the central nervous system, reports have shown that activation of 

Notch signaling is associated with the inhibition of neuronal differentiation, whereas 

repression of Notch activity promotes neurogenesis (Artavanis-Tsakonas, et al 1999， 

Beatus, et al 1998). Similarly, interference with Notch signaling leads to premature 

neurogenesis and a depletion of the neural stem cell pool (Ishibashi, et al 1995， 

Lutolf, et al 2002, Nakamura, et al 2000). 

1.4.3 Signaling Pathway of the TGF-/3 Superfamily 

The TGF/3 superfamily including TGF-jS isoforms, bone morphogenetic 

proteins (BMPs), activins and growth and differentiation factors (GDFs) are involved 

in many aspects of embryonic and adult development by regulating cell proliferation, 

differentiation and migration. They are also well-known for their capability to induce 

cartilage and bone formation in mammals (Wozney, et al 1988b). Activation of the 

TGF-/3 receptors triggers the heterodimerization of type I and type II receptors and 

subsequent phosphorylation of specific SMAD proteins. These proteins then 

translocate into the nucleus and regulate the transcription of target genes (Shi, et al 

2003，Zwijsen, et al 2003). Although there are only few receptors and SMADs in the 

TGFjS pathway, different combinatorial interactions between them can give rise to a 

great versatility of signaling. 
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In MSCs, members of TGFjS superfamily play an important role in 

regulating their differentiation. Extensive studies have been done on BMPs and 

shown that BMPs, including BMP2, BMP6 and BMP7, initiate, promote, and 

maintain chondrogenesis and osteogenesis in mesenchymal stem cells (Estes, et al 

2006，Knippenberg, et al 2006). They induce specific transcription factors such as 

Sox9, Dlx5 and c-fos that regulate the cell commitment into chondrogenic or 

osteogenic lineages (Shea, et al 2003). 

In addition to cartilage and bone formation, BMPs are also involved in 

multiple processes during neural development in the CNS, including lineage 

commitment, proliferation, survival, apoptosis, differentiation and morphogenesis 

(Hogan 1996，Mehler, et al 1997). For example, BMP2, 4 and 7 are found to promote 

autonomic neurogenesis, both in vitro and in vivo, during the later stages of 

peripheral nervous system (PNS) development (Reissmann, et al 1996, Schneider, et 

al 1999，Shah, et al 1996b). 

Like Wnt signaling, a recent study suggested that BMP4 might also 

support ESC self-renewal, probably through the MAPK pathways (Qi, et al 2004). It 

was supported by an experiment that introduced an inhibitor of the SMAD family 

members Smad6 and Smad7 and antagonized BMP signaling. This resulted in a 

decrease of self-renewal capacity of ESCs and induced differentiation (Ying, et al 
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2003). 

1.5 Pathways Controlling Chondrogenesis 

Extensive studies have been done on the cellular and molecular mechanisms 

of chondrogenesis regulation. Many growth factors and cytokines are involved in 

cartilage development. Among them, the transforming growth factor-beta (TGF-|S) 

superfamily is most widely studied (Centrella, et al 1991). BMPs, which are 

members of the TGF-/3 superfamily, have proved to be important in chondrogenesis 

(Celeste, et al 1990, Wozney, et al 1988a). BMP-6 strongly upregulates the primary 

chondrogenie markers Aggrecan and Collagen Type 11 and, acting in a synergistic 

manner with TGF-i33, promotes chondrogenesis in MSCs (Estes, et al 2006， 

Indrawattana, et al 2004). BMP-7, which was found to have strong anabolic activity 

in young and adult cartilage (Chubinskaya, et al 2003), is also known to induce 

chondrogenesis in human and goat perichondrium tissue in vitro (Klein-Nulend, et al 

1998，Nishihara, et al 2003). Treating ATSCs with recombinant BMP-7 upregulated 

important cartilage extracellular matrix proteoglycans aggrecan and biglycan and 

promoted chondrogenesis in the cells (Knippenberg, et al 2006). BMP-2 is identified 

in reports as an important regulator in osteogenesis (Knippenberg, et al 2006). 

However, many other reports have also demonstrated its role in the regulation and 
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promotion of chondrogenesis (Kim, et al 2003, Wei, et al 2006). In the TGF-/3 

signaling pathway, chondrogenic differentiation and maturation are mainly regulated 

through two pathways: TGF-/3 signaling and BMP signaling (Chen, et al 1991， 

Fromigue, et al 1998, Suzuki 1992). Interplay of these two pathways determines the 

chondrocyte fate. TGF-jS promotes chondrogenesis by stimulating cell proliferation 

and matrix synthesis, but reversibly inhibits terminal differentiation of chondrocytes 

(Bohme, et al 1995, Kato, et al 1988，Serra, et al 1997). On the other hand, BMP 

stimulates DNA synthesis of chondrocytes and induces rapid maturation (Li, et al 

2003, Nishihara, et al 2003). For both pathways, their effects on chondrogenesis 

involve SMAD activation. SMADs are a family of intracellular proteins that consist 

of three classes of signaling molecules: receptor-associated SMADs, the cofactor 

SMAD4 and the inhibitory SMADs (Heldin, et al 1997, Massague, et al 2000a, 

Massague, et al 2000b). Previous work has demonstrated that TGF-|8-related SMADs 

(SMAD2/3) inhibit chondrocyte maturation, whereas BMP-related SMADs 

(SMAD 1/5/8) stimulate maturation (Ferguson, et al 2004，Li, et al 2003). 

Besides BMPs, there are also other regulators that promote chondrogenesis, 

including fibroblast growth factors (FGF) (Awad, et al 2003, Stevens, et al 2004) and 

insulin-like growth factors (IGF) (Fukumoto, et al 2003b, Longobardi, et al 2006). In 

ATSCs, treatment of FGF-2 significantly upregulated Sox9, the critical transcription 
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factor for chondrogenesis, as well as two early mesenchymal condensation markers 

FGF-receptor 2 and N-Cadherin (Chiou, et al 2006). Expanding MSCs in the 

presence of FGF-2 enhanced the later chondrogenesis, possibly by selecting specific 

chondro-progenitors within the heterogeneous population of isolated MSCs (Chiou, 

et al 2006; Solchaga, et al 2005). IGF-1 has also been shown to significantly increase 

chondrogenesis in MSCs from bone marrow and periosteum (Fukumoto, et al 2003b, 

Longobardi, et al 2006). Both FGF-2 and IGF-1 most likely play supportive roles in 

chondrogenesis by acting in conjunction with TGF-jS (Centrella, et al 1994). 

Although many pathways involved in chondrogenesis have been identified, 

there are more and more novel pathways and mediators being continually discovered. 

In fact, the control of chondrogenesis involves the interplay of complex gene 

networks. To control the rate and progression of the differentiation process, surely 

more than a single pathway is needed. A great interest has been aroused to 

completely dissect how all these networks interact but it will be a huge challenge. 

The recent discovery of a new gene regulator, microRNA, has suggested a novel 

mechanism to control chondrogenesis which allows previous questions to be 

answered. 
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1.6 MicroRNA 

1.6.1 MicroRNA - A Novel Gene Regulator 

MicroRNA (miRNA) is a novel class of small, non-coding RNAs of -22 

nucleotides. Although it was discovered just over a decade ago, miRNA has been 

recognized as one of the major regulatory gene families in eukaryotic cells. Nearly 

1% of the predicted mammalian genes encode miRNAs (Lim, et al 2003). The first 

publication on miRNA appeared fourteen years ago by Victor Ambros and 

colleagues (Lee, et al 1993) in a screen for developmental timing mutants in C. 

elegans. They discovered that lin-4, a gene known to control the timing of C. elegans 

development, did not code for a protein but instead produced a pair of small 

non-coding RNAs, which were found later to be the first miRNA. Hundreds of 

miRNAs have been found in animals, plants and viruses. In humans, over 500 

miRNAs have been identified, and certainly there are more to come. MicroRNAs 

regulate gene expression by mRNA degradation, or translational repression, or both. 

A miRNA can target numerous mRNAs. Several miRNAs can also act in 

combination on a specific target. Because of this, miRNAs offer a regulatory 

network with extremely high complexity. 
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1.6.2 Biogenesis of MicroRNAs 

The maturation of miRNAs in animals is carried out in two steps, (i) the 

production of the miRNA precursors (pre-miRNAs) from the miRNA transcripts 

(pri-miRNAs), (ii) processing of pre-miRNAs to mature miRNAs (Fig. 1). 

In the first step, miRNA genes are transcribed by RNA polymerase II (Pol II) 

to give long primary miRNA transcripts (pri-miRNAs) (Lee, et al 2004). The 

pri-miRNAs contain 7-methylguanosine caps and poly(A) tails, which are the unique 

properties of class II gene transcripts. They also contain a stem-loop structure which 

is then cleaved by the nuclear RNase III Drosha to give the precurosor of miRNA 

(pre-miRNAs) (Lee, et al 2003). In the second step, the pre-miRNAs are exported 

out of the nucleus to the cytoplasm by exportin-5 (Exp5), which is a 

RanGTP-dependent dsRNA-binding protein which binds pre-miRNAs specifically in 

the presence of the Ran-GTP cofactor (Bolinsack, et al 2004，Kim 2004, Lund, et al 

2004，Yi，et al 2003). 

In cytoplasm, pre-miRNAs are then processed into ~22-nt miRNA duplexes 

by the cytoplasmic RNase III Dicer (Bernstein, et al 2001，Hutvagner, et al 2001, 

Ketting, et al 2001). The miRNA duplex will then quickly unwind and separate into 

two fragments. Usually only one strand of the duplex remains as the mature miRNAs, 

whereas the strand from the opposing arm, miRNA*, disappears. The stabilities of 
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the two strands differ greatly that the recovery rate of miRNA*s from endogenous 

tissues is �100-fold lower than that of miRNAs (Schwarz, et al 2003). 
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Fig. 1 Biogenesis of MicroRNA (modified from Chen 2005). The long 
primary miRNAs (pri-miRNAs) transcribed from the miRNA genes are 
processed in the nucleus into stem-loop precursors (pre-miRNA). The 
pre-miRNAs are then actively transported into the cytoplasm by exportin 5 
and Ran-GTP and further processed into small RNA duplexes of 
approximately 22 nucleotides. The functional strand of the miRNA duplex 
is then loaded into the RNA-induced silencing complex (RISC) and the 
miRNA guides the RISC to the cognate mRNA target and regulates through 
translational repression, mRNA cleavage and mRNA deadenylation. 
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1.6.3 Post-transcriptional Repression by MicroRNAs 

In similar fashion to small interfering RNAs (siRNAs), the mature miRNAs 

released are incorporated into an effector complex called RNA-induced silencing 

complex (RISC) and guide the complex to the 3'UTR of target mRNAs (Khvorova, 

et al 2003，Schwarz, et al 2003). For miRNAs to carry out their functions, a key issue 

is the specificity of their interactions with their target mRNAs and how interactions 

lead to different downstream consequences. In animals，miRNAs usually base pair 

with target mRNAs with imperfect complementarity. Reports have showed that the 

nucleotides 2 to 7 of the miRNA, called the seed region, is critical for target 

recognition and silencing (Doench, et al 2004，Lewis, et al 2005). The precise 

molecular mechanisms underlying miRNA post-transcriptional repression still 

remain largely unknown. However, miRNAs regulate genes by three main 

mechanisms: translational repression, mRNA cleavage and mRNA decay initiated by 

rapid deadenylation of mRNA. 

Translational repression is the predominate mechanism in animals by which 

miRNAs negatively regulate their targets. It was first suggested by the observation 

that the lin-4 miRNA reduced the amount of lin-14 protein, without reducing the 

amount of the lin-14 mRNA (Lee, et al 1993，Wightman, et al 1993). Several reports 

have suggested that miRNAs may repress the mRNA translation by inhibition of 

43 



translation initiation, mainly supported by the accumulation of Argonaute proteins, 

miRNAs, and mRNA targets of miRNAs in P-bodies in a miRNA-dependent maimer 

(Jakymiw, et al 2005，Liu, et al 2005, Pillai, et al 2005). 

MicroRNAs can also control gene expression post-transcriptionally by 

directing endonuclease cleavage of the target mRNAs. The RISC identifies target 

mRNAs based on perfect or nearly perfect complementarity between the miRNAs, 

and the endonuclease of the RISC cleaves the mRNAs at a site near the middle of the 

miRNA complementarity (Elbashir, et al 2001a, Elbashir, et al 2001b). However, 

some reports have shown that extensive base-pairing between miRNAs and mRNAs 

may not always be sufficient to induce cleavage, suggesting other additional 

requirements for the endonucleolytic cleavage of the RISC complex, such as the 

presence of a specific Argonaute protein within RISC (Chen 2004, Liu, et al 2004). 

Apart from the two well known mechanisms, translational repression and 

mRNA cleavage, recently a third mechanism of miRNA-directed gene regulation 

was proposed, namely mRNA deadenylation (Giraldez, et al 2006, Wu, et al 2006). 

A poly(A) tail is added to the 3’ of the mRNA after mRNA transcription to enhance 

the stability mRNA and prevent mRNA deacay (Coller, et al 2004). A report by Wu 

and colleagues, using miR-125b and let-7 as representative miRNAs, showed that 

miRNAs can reduce the concentration of mRNAs by accelerating mRNA 
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deadenylation, which leads to rapid mRNA decay (Wu, et al 2006). Through this 

mechanism, miRNA can regulate gene expression by reducing the concentration of 

target mRNA which is not perfectly or nearly-perfectly complementary to it (Wu, et 

al 2006). 

1.6.4 Role of MicroRNAs in Development 

Since the first discovery of miRNAs and their roles in gene regulation, 

researchers are eager to know the biological functions of miRNAs. MicroRNAs have 

been shown to play an important role in a wide variety of biological processes 

including cell cycle regulation, cell differentiation, apoptosis, maintenance of 

sternness and imprinting (Ambros 2004). Distinctive expression profiles of miRNAs 

were identified in different kinds of cells and tissue (Chen, et al 2007，Krichevsky, et 

al 2006a，Lee, et al 2007，Ryan, et al 2006，Sempere, et al 2004a，Suh, et al 2004， 

Tang, et al 2006，Tuddenham, et al 2006). These findings suggest that the expression 

of miRNAs is, not only spatiotemporal, but also tissue or cell-type specific, which 

imply their essential roles in developmental biology. 
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1.6.5 MicroRNAs in Stem Cell Differentiation 

1.6.5.1 MicroRNA Expression Profile in ESCs 

The miRNA expression profile of human and mouse ES cells have been well 

studied and unique sets of expressed miRNAs have been identified (Strauss, et al 

2006，Suh, et al 2004，Tang, et al 2006). A study by Suh et al. describe 36 miRNAs 

identified by cDNA cloning in human ES cells (Suh, et al 2004). Most of them are 

specifically expressed in human ES cells and downregulated during embryoid body 

development. Some ES-specific miRNA genes are even organized as clusters and 

transcribed as polycistronic primary transcripts. These miRNA gene families have 

homologues in the mouse with similar genomic organizations and expression 

patterns, which suggests a conserved key regulatory network in mammalian 

pluripotent stem cells. 

Dicer mutants have been commonly used in the study of miRNA functions in 

stem cells. Several studies have demonstrated the importance of dicer in ES cell 

differentiation. As demonstrated by three independent studies (Bernstein, et al 2003， 

Kanellopoulou, et al 2005, Murchison, et al 2005), dicer-null mice failed to process 

endogenous miRNAs and resulted in lethality in early mouse development as well as 

depletion of stem cells in mouse embryos. In dicer-deficient ES cells, severe defects 
I 

were displayed in both proliferation and differentiation. These cells failed to 
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differentiate but only formed cell aggregates. These results strongly suggest a key 

role of endogenous miRNA processed by dicer in maintenance of embryonic 

development. 

1.6.5.2 Lineage Differentiation 

Involvement of miRNAs has been identified in different lineage 

differentiation, such as neurogenesis, myogenesis，chondrogenesis，adipogenesis, 

angiogenesis, hematopoiesis and development of limb and epithelial cells (Chen, et 

al 2004，Chen, et al 2006, Esau, et al 2004, Harris, et al 2006，Homstein, et al 2005, 

Krichevsky, et al 2006b, Naguibneva, et al 2006, Rao, et al 2006，Smimova, et al 

2005，Tuddenham, et al 2006，Yi，et al 2006). Here we focus on the differentiation of 

the neural, chondrogenic, myogenic and adiposal cell lineages. 

Neurogenesis 

The expression profile of miRNAs in mammalian brain has been fully studied. 

A number of miRNAs are exclusively detected (miR-9, -124a, -124b, -135, -153, 

-219) or highly expressed (miR-9*, -125a, -125b, -128，-132，-137，-139) in both 

human and mouse brain (Sempere, et al 2004b). These brain-specific and 

brain-enriched miRNAs are highly conserved in human and mouse, which suggest 
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their important role in mammalian neurogenesis. 

Gain-of-function and loss-of-function approaches are commonly used to 

study the biological functions of these brain-specific miRNAs. A study showed that 

early overexpression of five brain-enrich miRNAs (miR-9, -9*，-22, -124a, and -125b) 

in neural precursors reduced the number of Glial Fibrillary Acidic Protain (GFAP) 

positive cells (i.e. astrocytes) and slightly increased the number of Tujl+cells (i.e. 

neurons) differentiated in culture. On the other hand, inhibition of miR-9 alone or in 

combination with miR-124a reduced the number of Tujl+cells (neurons) in neural 

precursors (Krichevsky, et al 2006b). These results suggest a possible role of these 

miRNAs in neurogenesis and prevention of gliogenesis. 

MicroRNA can also regulate dendritic spine development. A brain-specific 

miRNA, miR-134, negatively regulates the size of dentritic spines-postsynaptic sites 

of excitatory synaptic transmission, probably by translation suppression of Limkl, 

which is a protein kinase that controls spine development (Schratt, et al 2006). 

Ch o n drogen esis 

Not many studies have been done on the role of miRNAs in chondrogenesis. 

MicroRNA-140 was found to be specifically expressed in cartilagenous tissue using 

microarray and in situ hybridization in zebrafish embryos (Ason, et al 2006, 
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Wieiiholds, et al 2005). Based on these findings, the expression pattern of miR-140 

was further studied in mouse embryo. Similarly, miR-140 is also specifically 

expressed in cartilage tissues in mouse embryos during both long and flat bone 

development (Tuddenham, et al 2006). A regulator of chondrocyte hypertrophy, 

histone deacetylase 4 (HDAC4), was identified as a potential target of miR-140. 

After transfecting mouse 3T3 cells with siRNA-140 which targeting miR-140, the 

level of HDAC4 protein was found to be significantly down-regulated, while the 

level of HDAC4 protein remained unchanged for cells transfected with non-specific 

siRNA. Luciferase reporter assay also showed that a marked decrease in reporter 

activity occurred in mouse cells after siRNA-140 transfection (Tuddenham, et al 

2006). 

Myogenesis 

Using northern blot and microarray, three microRNAs, miR-1, miR-133 and 

miR-206 were found to be enriched and specific in skeletal muscle and cardiac 

muscle of both human and mouse (Baskerville, et al 2005, Lagos-Quintana, et al 

2002，Sempere, et al 2004c). Based on these findings, further studies were done to 

investigate the biological roles of these miRNAs. Using a gain-of-flinction approach, 

miR-1 (miR-1-1 and miR-1-2) was found to play a regulatory role in cardiomyocyte 
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proliferation in mouse (Zhao, et al 2005). Over-expression of miR-1 leaded to a 

significant decrease in the number of proliferating ventricular cardiomyocytes. In 

addition, over-expression of miR-1 also down-regulated Hand2 protein, which is a 

transcription factor that promotes ventricular cardiomyocyte expansion. This 

indicated that Hand2 was probably a target of miR-1. In the same study, a deletion 

assay showed that miR-1 genes are direct transcriptional targets of muscle 

differentiation regulators serum response factor, MyoD and Mef2, which further 

confirm the involvement of miR-1 in cardiogenesis. 

MiR-1 and miR-133 are found to have distinct roles in proliferation and 

differentiation of skeletal muscle even though they are clustered on the same 

chromosomal loci and transcribed together (Chen, et al 2006). MiR-1 promotes 

myogenesis by targeting a transcriptional repressor of muscle gene expression 

histone deacetylase 4 (HDAC4), while miR-133 promotes myoblast proliferation by 

targeting serum response factor (SRF). 

Another study by Rao et al. showed that the muscle-specific miRNAs: miR-1, 

miR-133 and miR-206 are significantly and specifically induced during 

myoblast-myotube transition, in both primary human myoblast and mouse 

mesenchymal stem cell line (Rao, et al 2006). Moreover, CHIP assay also 

demonstrated the activation of these miRNAs by the binding of the myogenic factors 
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Myogenin and MyoD to the upstream regions of the miRNA genes. 

MiR-181 was also discovered to be involved in mammalian myoblast 

differentiation (Naguibneva, et al 2006). miR-181 is weakly expressed in adult 

muscle but is strongly upregulated in terminal muscle differentiation. In addition, 

knock down of miR-181 led to complete abolishment of myoblast differentiation. 

Hox-All, which is a repressor of the myogenic differentiation process, was found to 

be the possible target of miR-181, based on the results that the protein level of 

Hox-Al 1 is inversely correlated to miR-181 expression. 

Adipogenesis 

By combination of data from loss-of-function assay and miRNA microarray 

using cultured human pre-adipocytes, miR-143 was identified to participate in 

adipogenesis (Esau, et al 2004). Its expression was found to be increased in 

differentiating adipocytes. Inhibition of miR-143 significantly inhibited adipocyte 

differentiation. ERK5 protein was induced in adipocytes treated with antisense 

oligonucleotides (ASOs) complementary to miR-143, suggesting ERK5 as a possible 

target of miR-143. 
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1.7 Project Aims 

Extensive studies have been done on the molecular characterization, 
proliferation capacity, multilineage differentiation potential and the immunogenicity 
of ATSCs. Promising results from the in vivo and pre-clinical studies have suggested 
that ATSCs represent one of the key stem cell types for tissue genesis, regeneration, 
and turnover. This notion has spawned the concept of regenerative medicine, or stem 
cell based therapies to supplement degenerating or damaged tissues. To ensure 
consistency of the stem cell's performance across different donors during future 
therapeutic uses, it is important to investigate factors influencing the yield or 
differentiation potential of the isolated ATSCs. Factors like age, region of adipose 
tissue used and tissue-harvesting procedure have been examined. However, the effect 
of the donor's reproductive and physiological status on the ATSCs performance has 
not been studied. Therefore, in this project, we first investigated the reproductive 
status and hormonal effect on the stem cell performance by comparing the cell yield 
and growth characteristics of ATSCs from donors at different reproductive status 
(pregnancy, pre-menopause and menopause). 

The unique ability of ATSCs to self-renew and differentiate into multiple 
phenotypes implies that all stem cells might share a common transcriptional and 
miRNA signature. A better knowledge of the ATSC miRNA appears to be 
fundamental to fully achieve the potential of regenerative medicine. MiRNAs, 
though small, are recently found to be involved in the regulation of numerous 
biological processes including cell differentiation, cell proliferation and apoptosis. 
Elucidation of the microRNA expression profile and its molecular mechanisms 
which direct stem cell self-renewal and differentiation should provide key insights 
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into deciphering exactly how "sternness" is maintained, as well as the molecular 
basis of cell plasticity. Therefore, another aim of our project is, using ATSC-derived 
chondrocytes as a model, to investigate the involvement of miRNAs in stem cell 
differentiation. Candidate miRNAs identified were further investigated by functional 
studies using in vitro knock down and over-expression approaches. 

1.8 Significance of Study 

This remarkable proliferation and differentiation capacity as well as their 

immunosuppressive property make ATSCs an excellent candidate for future 

regenerative medicine. Maintaining the consistency of the stem cell's performance 

across different donors will be an important concern for clinicians. By demonstrating 

the effect of donor's reproductive status on the differentiation power of ATSCs, the 

therapeutic uses of ATSCs can be further facilitated. Identifying miRNAs that are 

differentially expressed during stem cell differentiation provides new understanding 

of the molecular aspects and mechanisms regulating stem cell. The findings of 

miRNAs important in regulating chondrocyte differentiation and the identification of 

key pathways miRNAs act on give novel insights for stem cell research and cell 

therapy. 
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CHAPTER 2 MATERIALS AND METHODS 

2.1 Sample Collection 
Adipose tissue samples were obtained from abdomen of 15 women 

undergoing Caesarean section, vaginal hysterectomy (VH) and total abdominal 
hysterectomy (TAH). These 15 donors were divided into three groups according to 
their reproductive states: pregnancy, pre-menopause and menopause. Subjects with 
malignant tumors were excluded from this study. 

2.2 Isolation and Culture of ATSCs 
To isolate human adipose tissue-derived stem cells (ATSCs), adipose tissues 

were washed extensively with sterile phosphate-buffered saline (PBS) to remove 
contaminants. Then the tissues were digested at 37°C for 1 hour with 0.075% type IV 
collagenase in plain Dulbecco's Modified Eagle MediumiNutrient Mix F-12 
(DMEM/F12). After digestion, cells released from the adipose tissues were collected 
by centrifugation at 1200g for 10 minutes. Then the pellet was resuspended with 
plain DMEM/F12 and centrifuged for another 10 minutes. Finally, the cells in pellet 
were seeded on 100mm plastic tissue culture dishes in control medium containing 
DMEM/F12, 10% fetal bovine serum (FBS), 100 units/ml penicillin, and lOO/ig/ml 
streptomycin. The cells were incubated in a humidified atmosphere of 5% CO2 at 
37°C. New control medium was replaced after 24 hours to remove residual non-
adherent red blood cells. ATSCs were passaged five times prior to differentiation. 
All culture mediums and reagents were purchased from Gibco BRL Life 
Technologies, Inc. (Carlsbad, CA，USA). 
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2.3 Measurement of Cell Growth 
ATSCs were seeded in 6-well-plates at cell density of 2.5x1 O* cells/well. 

Cells were counted every 3 or 4 days using a histocytometer for 2 weeks. A growth 
curve (cell numbers versus time) was plotted and the growth rate was the slope of the 
growth curve. 

2.4 Effect of Estrogen Treatment on ATSC Proliferation 
ATSCs at passage 5 were seeded in 24-well-plate at a density of 1x10^ 

cells/well in DMEM/F12 medium plus 10% charcoal-treated FBS (Gibco). Before 
treatment, they were serum-starved for 24 hours. Then the cells were treated with 0 
or 10-8 moi/i of 17/?-estradiol (or E2) (Sigma, St. Louis, MO, USA) in DMEM/F12 
medium with 2% charcoal-treated FBS for 9 days. 

The proliferation rates of ATSCs with and without E2 treatment were 
compared. The cell proliferation was monitored by MTT assay at day 1 (1 day after 
plating), day 3，day 6 and day 9. At each timepoint，300jLtl/well MTT reagent (Sigma) 
were added to cells from each well, 2 hours prior to harvest. The supernatant in all 
wells was removed, and the cells were treated with 400/>tl/well dimethylsulphoxide 
for 10 minutes. Reabsorbance at 570 nm, which is proportional to the number of 
living cells in each well, was recorded using an enzyme-linked immunosorbent assay 
plate reader and a growth curve of reabsorbance against day was plotted. 

2.5 Multilineage Differentiation of ATSCs 
At passage 4 (one passage before induction), ATSCs were pretreated with 

5ng/ml fibroblast growth factor-basic (bFGF) (Invitrogen, Carlsbad, CA, USA). 
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2.5.1 Chondrogenic Differentiation 
Chondrogenic differentiation was induced using the micromass culture 

technique (Ahrens, et al 1977). Ten microlitres of a concentrated ATSC suspension 
at concentration of 1x10^ cells/ml was plated into the center of each well and 
allowed to attach at 37°C for 3 hours. Chondrogenic medium containing DMEM/F12, 
10% FBS，10 ng/ml transforming growth factor-/31 (TGF-/?!) (Sigma), 100 nM 
dexamethasone (Sigma), 6.25 |ig/ml insulin (Sigma), 50 nM ascorbate-2-phosphate 
(Sigma), 110 mg/1 sodium pyruvate (Gibco) and 1 % P/S was added gently on the cell 
nodules and the cells were collected after 3，7，14，21 and 28 days of culturing. 

2.5.2 Neural Differentiation 
To induce neural differentiation, plates and coverslips were first pre-coated 

with poly-L-lysine (0.01% w/v) (Sigma) for 2 hours then laminin (lOng/ml) 
overnight before cell seeding. Then ATSCs at passage 5 were seeded in 24-well-
plates with coverslips at cell density of IxlO"̂  cells/well (for immunocytochemistry) 
and 6-well-plates with coverslips at cell density of 3.5x1 Ô  cells/well (for RNA 
extraction) in control medium. On the next day, the control medium was replaced 
with neural medium containing ce-MEM, 2% FBS, 20ng/ml NGF (Nerve Growth 
Factor) 2.5S (Invitrogen), 50ng/ml NGF 7S (Invitrogen), lOng/ml BDNF (Brain-
derived Neurotrophic Factor) (Invitrogen), 1% P/S and collected on day 3，7, 10 and 
14. On day 7, the neurally differentiating ATSCs were split in a ratio of 1:3 and 
seeded again in pre-coated plates in neural medium for another 7 days. 
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2.6 Immunocytochemical Analysis of Surface Markers and Lineage Specific 
Markers 

After differentiation, non-induced or induced cell, which are seeded in 
monolayer on coverslips, were collected and fixed in 4% buffered paraformaldehyde 
for 3 hours. Then they can be used directly for the immunostaining. 
For ATSCs induced into the chondrogenic lineage, spheroids were formed during the 
micromass culture. Therefore, after they were fixed in 4% buffered 
paraformaldehyde overnight, the spheroids first needed to be dehydrated, embedded 
in parafilm blocks and cut into sections of 5iim before they were ready for 
immunostaining. 
To perform the immunostaining, the monolayered cells on coverslips were 
permeabilized in 2.5% Triton X in PBS.T for lOmins; while sections of the spheroids 
had their antigens retrieved by microwaving at high power for 4 minutes in citrate 
buffer (pH 6.0). Then the cells were blocked in 3% bovine serum albumin at room 
temperature for 30 minutes. Then they were incubated at room temperature for 2 
hours with the following antibodies. 

• CD44 [BD Biosciences, mouse IgG, dilution 1:100] 
• CD90 [BD Biosciences, mouse IgG, dilution 1:100] 
• Anti-glial Fibrillary Acidic Protein (GFAP) [DAKO Corp., mouse IgG, 

dilution 1:100] 
• Neuron-Specific Enolase (NSE) [Dako Corp., mouse IgG, dilution 1:100] 
• Nestin [Chemicon International, Inc., rabbit IgG, dilution 1:500] 
• Tau [Chemicon International, Inc., goat IgG, dilution 1:300] 
• S0X9 [Chemicon International, Inc., rabbit IgG, dilution 1:130] 
• Aggrecan [Santa Cruz Biotechnology, Inc., goat IgG, dilution 1:80] 
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• Collagen Type II [MP Biomedicals, Inc. mouse IgG, dilution 1:80] 

Sequentially, the cells were then incubated for 1 hour with either anti-mouse 
Alexa 555 (Ex 555/Em 565, Invitrogen), anti-rabbit Alexa 488 (Ex 495/Em 519， 

Invitrogen) or anti-goat Alexa 555 (Ex 555/Em 565, Invitrogen) for 
immunofluorescent labeling. Sections were then mounted with ProLong Gold 
antifade mount with DAPI (Ex 358/Em 461, Invitrogen) and kept in 4°C for 
microscopy. 

2.7 Aldan Blue Staining 
Cells after chondrogenic differentiation was first fixed with 4% buffered 

paraformaldehyde. Then they were stained in 1% aqueous Alcian Blue solution 
(Sigma) for 30 mins and washed in distilled water. After washing, the cells were 
dehydrated, cleared and mounted for microscopy. Non-induced ATSCs were used as 
control. 

2.8 RNA Extraction 
Total RNA was extracted from differentiated ATSCs by Trizol Reagent 

(Molecular Research Center Inc, Cincinnati, Ohio). Cells were homogenized by 
adding 250p.l Trizol Reagent per well and were frozen at -20°C overnight to ensure 
complete lysis. Next, the homogenate was thawed at room temperature for 5 minutes 
and 200jLil of chloroform was added, followed by vigorous shaking for 15 seconds. 
The mixture was centrifuged at 12，000g for 15 minutes at 4°C. After the 

centrifugation, the aqueous phase (about ISO/xl) was transferred to a fresh tube and 
mixed with 125|il of isopropanol. It was left at room temperature for 10 minutes and 
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centrifuged at 12,000g for 10 minutes at 4°C. The RNA pellet was then washed with 

250|il of 75% ethanol and subsequently centrifuged at 7，500g for 5 minutes at 4°C. 

The RNA pellet was air-dried for 15 minutes and the RNA was dissolved in 20 jxl of 
DEPC-treated water. 

The yield and purity of RNA were determined by spectrophotometry. An 
absorbance of 1 unit at 260 run corresponds to 40 fig of RNA per ml of distilled 
water. The ratio between the absorbance values at 260 and 280 nm gives an estimate 
of RNA purity. For pure RNA, the A260/A280 ratio should be close to 2.0. 

2.9 Reverse Transcription 
Extracted RNA was reverse-transcribed to cDNA by SuperScripF^ First-

Strand Synthesis Kit (Invitrogen Life Technology, Carlsbad, California). For each 
sample, 100 ng total RNA, 100 ng random primers, and Ifil lOmM dNTP in 12 /xl 
reaction mixture were first heated at 65°C for 5 minutes and quickly chilled in ice for 
1 minute. 4 /zl SXFirst-Strand Buffer, Ifxi O.IM DTT，and 40 lU RNaseOUT and 200 
lU superscript III reverse transcriptase were added to the reaction mixture. The 
reaction mixture was heated to 25°C for 5 minutes, 50°C for 50 minutes, and 70°C 
for 15 minutes. 

2.10 Quantitative Real-time Polymerase Chain Reaction 
Primers for 6 lineage marker genes and a house-keeping gene were self-

designed and purchased from Invitrogen Life Technology (Carlsbad, California) The 
primer sequences are summarized in the following table. 
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Table 3 Primer sequences for lineage marker genes 
Tm Product Marker Genes Primer set CO Size (bp) 

Sox9 Forward: 5'- TGC TCA AAG GCT ^ m 
(SRY (sex ACG ACT GG -3， 

determining region Reverse: 5'- GCG GCT GGT ACT 
Y)-box 9) TGT AAT CC -3， 
C0L2A1 Forward: 5'- TGG TGG AGC AGC S 
(Collagen type II， AAG AGC -3 ’ 
alpha 1) Reverse: 5'- CAG GCG TAG GAA 

GGT CAT -3' 
COLlOAl Forward: 5'- CAC AGT TCT TCA ^ 254 
(Collagen type X, TTC CCT AC -3 ’ 
alpha 1) Reverse: 5，- CTG GTC CAA CAT 

CTC CTT T -3' 
NEF3 Forward: 5'-TGG GAA ATG GCT ^ m 
(Neurofilament CGT CAT TT-3 ’ 
triplet M protein) Reverse: 5'-CTT CAT GGA AGC 

GGC CAA TT-3' 
TUBB3 Forward: 5，- CAT GGA CAG TGT ^ 175 
(Beta Tubulin III) CCG CTC AG -3 ’ 

Reverse: 5'- CAG GCA GTC GCA 
GTT TTC AC -3’ 

MAP2 Forward: 5'- AGT CAG GGT CCC ^ ^ 
(Microtubule- AC A GCG -3 ’ 
associated protein 2) Reverse: 5'- ATG CTC CTA TCA 

TCA TCT TGA G -3' 
GAPDH Forward: 5'- GAA GGT GAA GGT S ^ 
-House Keeping CGG AGT C -3 ’ 
Gene Reverse: 5'- GAA GAT GGT GAT 

GGG ATT TC -3' 
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To check the transcript expression of the candidate genes and GAPDH, real-time 
PCR was performed thereafter in a 5 volume of the final reaction solution 
containing 2 fil of the RT reaction product (diluted atl :20X), 2.5 ix\ of 2X Power 
SYBR® Green PCR Master Mix (Applied Biosystems，Foster City, California), 0.25 
jLil each of forward and reverse primers. The amplification conditions were: 95°C for 
10 minutes, 45 cycles of 94°C for 30 seconds, 55-62°C for 1 minute, and 72°C for 30 
seconds. The fluorescence signal emitted was collected by ABI PRISM® 7900HT 
Sequence Detection System and the signal was converted into numerical values by 
SDS 2.1 software (Applied Biosystems). 

2.11 Statistical Analysis of Real-time PCR Data 
The expression level of a gene was first calculated from the Relative 

Standard Curve Method by the SDS 2.1 software. The threshold cycle (CT) value, 
which represents the relative expression of each target gene, was determined from 
the corresponding curve. Then the relative expression of each target gene was 
determined by dividing the target amount by GAPDH amount to obtain a normalized 
target value. Then the normalized values of the target genes were compared between 
induced and non-induced cells and across time points. 

2.12 MicroRNA Profiling 
TaqMan® MicroRNA Assays, Human Panel Early Access Kit from Applied 

Biosystems was used in the microRNA profiling. The kit contains reverse 
transcription primers and TaqMan probes specific for 157 miRNAs. 
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2.12.1 Reverse Transcription 
Total RNA of the samples extracted by TRIZOL Reagent reverse-transcribed 

to cDNA using High Capacity cDNA archive kit (Applied Biosystems) following the 
manufacturer's protocol with little modification. One to five nanogram of the total 
RNA was used as the starting material according to manufacturer's protocol, but a 
total 5-jLtl reaction volume protocol was applied, instead of a 15-/xl reaction volume 
protocol suggested by the manufacturer. The reverse transcription reaction mixture 
contain O.OSjLil dNTP (lOOmM with dTTP), O.SSjitl Reverse Transcriptase, O.SjLtl 
Reverse Transcription Buffer, 0.063jLil RNase Inhibitor (20U/pil), l-5ng of extracted 
total RNA in 3.037/xl DEPC-treated H2O and IjLtl specific miRNA primer from the 
microRNA assay kit. The reaction condition for the reverse transcription was as 
follows: 16�C for 30 minutes, 42°C for 30 minutes, and 85°C for 5 minutes. cDNA 
products were then be diluted 3 fold by nuclease-free water. 

2.12.2 Quantitative Real-time Polymerase Chain Reaction 
Transcript expressions of the miRNAs were quantified by performing real 

time PCR. The 5jLtl reaction mixture contained 1.4jLtl cDNA, 2.5jLil TaqMan 2X 
Universal PCR Master Mix (Applied Biosystems), O.Sjul TaqMan probes from the 
microRNA assay kit and 0.6/xl nuclease-free water. The amplification conditions 
were: 50°C for 2 minutes, 95°C for 10 minutes, 45 cycles of 95°C for 15 seconds, 
60°C for 1 minute. 
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2.13 mRNA Target Prediction of MicroRNAs 
A web-based database called miRGen Targets was used 

(http://www.diana.pcbi.upenn.edu/cgi-biii/niiRGen/v3/Targets.cgi) to predict the 
potential mRNA targets of any miRNA. 

2.14 MicroRNA Knockdown Assay 
The anti-miR™ miRNA inhibitor against hsa-miR-199a was purchased from 

Ambion (Austin, TX, USA). Transfection of the microRNA inhibitor into ATSCs 
was performed using Lipofectamine™ 2000. 5x10)4 cells/well were seeded in a 6-
well plate and allowed overnight attachment. For each well of transfection, 1 p,! of 
20|j,M miRNA inhibitor and 7.5 |al of Lipofectamine'^^ 2000 reagent were diluted in 
0.5ml of plain DMEMF12 separately and mixed gently. Stealth™ RNAi negative 
control (Invitrogen) or lipofectamine alone were used as controls. After 5 minutes of 
incubation at room temperature, the diluted plasmid and Lipofectamine™ 2000 
reagent were mixed and allowed to stand for 20 minutes at room temperature. Then 
growth media in the 6-well plate were aspirated and each well was replaced with 1 
ml of DMEM/F12 containing the LipofectamineTM 2000-DNA complex. After 8-
hour incubation at 37°C，the Lipofectamine™ 2000-DNA complex was removed and 
replaced with fresh growth DMEM/F12 with the selection antibiotics Zeocin. The 
cells were then maintained overnight at 37°C. 

To perform the microRNA knockdown assay during chondrogenic 
differentiation of ATSCs, similar protocols were used. However, before transfection, 
cells were first seeded in micromass culture and incubated at 37°C for 2 hours. Then 
the cells were transfected with the same protocols as previously mentioned. The cells 
were harvested at day 2, 3，7 and 14 and the protein and mRNA expression level of 
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chondrogenic markers were assessed by immunostainig and real-time PCR 
respectively. 

2.15 MicroRNA Over-expression Assay 
2.15.1 Vector Amplification 
2.15.1.1 Transformation 

^ 51TR 

/ Mi? ^CMV 
pucoRi|f| pMIF-cGFP-Zeo-mIR * 

义 Cat.#MI301A-l - m \ MI341A-1 #copGFP SV40 ORI >IL J 
SV40 Poly-A ^ 

Pre-miRNA WPRE 

Fig 2 The lentiviral vector containing the miR-199a-l precursor 

The construct pMIF-cGFP-Zeo-miR expressing precursor of has-miR-199a-l 
(Fig.2) was purchased from System Biosciences (Mountain View, CA). To amplify 
the plasmid, they were first transformed into competent E. coli DH5a strain by 
transient period of heat shock. 2jil of the purchased constructs were first mixed with 
30|j.l of competent cells and incubated on ice for 30 minutes allowing the plasmids to 
attach on the competent cells. The mixture was then introduced to a heat shock 
period of 45 seconds at 42°C in which the extracellular plasmids rapidly influx into 
the bacterium. After the heat shock period, the mixture was stood on ice for another 2 
minutes before recovery. 30}a.l of SOC medium (Invitrogen) was added to the 
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bacterium and the suspension mixture was allowed to recover at 37°C for 60 minutes 
with shaking. Then the transformed bacteria were plated onto LB agar plate (with 
100 i^g/ml ampicillin) and incubated at 37°C overnight. Single bacterial colony was 
then picked and inoculated in LB broth, with 100 )ag/ml ampicillin at 37°C overnight 
for plasmid production. 

2.15.1.2 Purification of Plasmid DNA 
Plasmids were purified from bacteria using QIAfilter Plasmid Midi Kits 

(Qiagen, Valencia, CA). The bacterial cells in the overnight culture were harvested 
by centrifugation at 6000g for 15 minutes at 4°C. The pellet was then resuspended in 
4ml Buffer PI. 4ml Buffer P2 was added to the mixture and incubated at room 
temperature for 5 minutes. Next, 4ml chilled Buffer P3 was added to the lysate and 
the mixture was mixed thoroughly. The lysate was then poured into the barrel of the 
QIAfilter Cartridge and was incubated at room temperature for 10 minutes. A 
plunger was gently inserted into the QIAfilter Cartridge and the cell lysate was 
filtered into a QBT-equilibrated QIAGEN-tip 100. The cleared lysate was allowed to 
enter the resin by gravity flow and the QIAGEN-tip was washed with 10ml Buffer 
QC twice. The purified DNA was then eluted with 5ml Buffer QF and precipitated 
with 3.5ml isopropanol. The mixture was mixed and centrifuged immediately at 
15,000g for 30 minutes at 4°C. The supernatant was carefully decanted and the DNA 
pellet was washed with 2ml 70% ethanol followed by centrifugation at 15,000g for 
10 minutes. After the supernatant was carefully decanted, the DNA was allowed to 
air-dry for 10 minutes and redissolved in lOOjil sterilized water. 
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2.15.1.3 Confirmation of Construct Insertion 
Restriction enzyme digestion was performed to confirm the presence of 

construct in the plasmid. The reaction mixture contained Ijil restriction enzyme Nhel 
(5U/^1) (New England Biolabs, Beverly, MA, USA)，\\i\ lOx Buffer2, 1.357jig 
purified plasmid, Ijil BSA(lOx), 6\i\ sterilzed water in a total volume of lOjil. The 
mixture was incubated at 37°C overnight. And the length of the linear construct was 
determined by gel electrophoresis. A band around 7300bp confirmed the presence of 
has-miR-199a-l precursor constructs. 

2.15.2 Transfection of Plasmid and Establishment of MicroRNA Precursor 
Expressing Cell Lines 

To establish an ATSC cell line expressing the miR-199a-1 precursor, the 
plasmid were transfected into ATSCs using Lipofectamine™ 2000. 5x10)4 cells/well 
were seeded in a 6-well plate and allowed overnight attachment. For each well of 
transfection, 5 of plasmid and 7.5 p-l of L i p o f e c t a m i n e T M 2000 reagent were 
diluted in 0.5ml of plain DMEMF12 separately and mixed gently. After 5 minutes of 
incubation at room temperature, the diluted plasmid and Lipofectamine™ 2000 
reagent were mixed and allowed to stand for 20 minutes at room temperature. Then 
growth media in the 6-well plate were aspirated and each well was replaced with 1 
ml of DMEM/F12 containing the Lipofectamine™ 2000-DNA complex. After 8-
hour incubation at 37°C, the Lipofectamine™ 2000-DNA complex was removed and 
replaced with fresh growth DMEM/F12 containing the selection antibiotics Zeocin 
(Invivogen, San Diego, CA) in a concentration of 150|_ig/ml. The cells were then 
maintained overnight at a 37°C incubator. After 24hours of recovery, the transfection 
efficiency was checked by the presence of green fluorescent signal from the 
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transfected cells under microscopy. The cells were cultured with necessary passage 
so as to select out the transfected cells. 

2.16 Gene Expression Microarry 
To study the effect of miR-199a in gene expression of ATSCs, the cells were 

first transfected with anti-miR-199a inhibitor or miR-199a precursor construct for 
miR-199a knockdown or overexpression respectively. They were harvested 48 hours 
after transfection and their total RNAs were extracted using Trizol Reagent. And a 
microarray was performed to study the gene expression profiles of these samples, 
using the protocol of One-Color Microarray-Based Gene Expression Analysis by 
Agilent Technologies (Santa Clara，CA 95051, USA) 

2.16.1 Preparation of Amplication and Labeling Reaction 
For each sample, 500ng of total RNA extracted by Trizol Reagent was used. 

1.2[i\ of T7 Promoter Primer was added to the RNA and the mixture was topped up 
to 11.5jj.l using nuclease-free water. Then the RNA template and primer in the 
mixture were denatured at 65 °C for 10 minutes followed by quick chill on ice for 5 
minutes. A cDNA Master Mix with total volume of 8.5jil containing 4|il of 5X First 
Strand Buffer, 2^1 of O.IM DTT, l|al of lOmM dNTP mix, l|il of MMLV-RT and 
0.5jj.l of RNaseOut was added to the each sample and mixed gently. Then the 
samples were incubated at 40°C for 2 hours, 65 °C for 15 minutes and cooled in ice 

for another 5 minutes. Next, a Transcription Master Mix with total volume of 60|a.l 
containing 20jil of 4X Transcription Buffer, 6|xl of O.IM DTT, 8|al ofNTP mix, 6.4|il 
of PEG, 0.5^1 of RNaseOut, 0.6^1 of inorganic pyrophosphatase, 0.8^1 of T7 RNA 
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Polymerase, 2.4^1 of Cyanine 3-CTP and 15.3^1 of nuclease-free water was added to 
each sample and the mixture was incubated at 40°C for 2 hours. 

2.16.2 Purification of the Labeled/Amplified RNA 
For each cRNA sample prepared from the previous step, 20jil of nuclease-

free water was added to a total volume of lOOjal. Then 350|j,l of Buffer RLT and 
250jil of ethanol (96-100%) was added to the sample and they were mixed gently. 
The sample was then applied to an RNeasy® Mini column and centrifuged at 4°C for 
30 seconds at 13,000rpm. 500|il of buffer RPE was added to the column and 
centrifuged at 4°C for 30 seconds at 13,000rpm for RNA washing. Another 500 [i\ of 

buffer RPE was added to the column and centrifuged at 4°C for 60 seconds at 
13,000rpm. To elute the cleaned cRNA sample, 30|J.1 of RNase-free water was 
applied directly onto the RNeasy filter membrane and centrifuged at 4°C for 30 

seconds at 13,000rpm. The cRNA yield was determined by measuring the 
absorbance at 260mn using NanoDrop® ND-1000 UV-Vis Spectrophotometer. The 
quality of purified and labeled cRNA was checked by 2100 Bioanalyzer RNA 6000 
Series II Pico kits. 

2.16.3 RNA Fragmentation 
For a 4x44K microarray, the fragmentation mix was prepared from 1.65|ig 

cyanine 3-labeled, linearly amplified cRNA, l l | i l lOX blocking agent, 2.2^1 25X 
Fragmentation Buffer and nuclease-free water to a final volume of 55|J1 The reaction 
mixture was incubated at 60°C for 30 minutes. After the fragmentation, 55|̂ 1 of 2X 
GX Hybridization Buffer HI-RPM was added to stop the reaction. 
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2.16.4 Hybridization 
For the hybridization, the Agilent SureHyb chamber was used. 100|il of the 

hybridization sample was slowly dispensed onto the gasket well and the 4x44K 
microarray was gently placed on the gasket slide and was tightened on the chamber. 
The array was slowly rotated at lOrpm and allowed to hybridize at 65 °C for 17 hours 
in the Hybridization Oven. 

2.16.5 Array Washing and Scanning 
After hybridization, the slide was first washed with Gene Expression Wash 

Buffer 1 at room temperature for 1 minute and then with Gene Expression Wash 
Buffer 2 at 37°C for another minute. Then the slide was washed in acetonitrile at 
room temperature for 1 minute followed by stabilization and drying solution for 30 
seconds. The slide was removed from the final wash slowly to prevent water droplet 
retention on the array. Finally the slide was spun at 400 x g for 3 minutes to further 
removed water droplets from the slide. 

After the washing, the array was scanned by Agilent DNA Microarray 
Scanner, Model G2565BA, at 5|am. The intensities of the scanned images were 
digitized into numerical values by using Agilent Feature Extraction Software Version 
9.5.3. 

2.16.6 Statistical Analysis of Microarray Data 
The microarray data was analyzed by the software Genespring GX version 

7.3.1 (http://www.chem.agilentxom/scripts/pds.asp?lpage=27881). The data was 
normalized by intensity dependent (Lowess) normalization and statistically 
significant genes were determined using parametric test in Colvano plot, with 2-fold 
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cut off (for over-expression) or 0.5-fold cut off (for knockdown) and p-value equal to 
0.05. KEGG pathway imported into the Genespring software was used to study the 
pathways involved by those differentially expressed genes. 
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CHAPTER 3 RESULTS 

3.1 Isolation and Characterization of ATSCs 

In total 15 adipose samples were collected from 15 un-related women 

undergoing Caesarean section, VH and TAH. Among the 15 donors, four were 

menopausal, five were pregnant and six were pre-menopausal (Table 4). ATSCs from 

the human adipose tissues were successfully isolated and cultured. On the day after 

isolation, approximately 1x10^ nucleated cells were yielded from each fat sample, 

but the yield varied with the size of tissue collected. The cells were maintained in 

DMEM/F12 growth medium with 10% FBS and could be expanded easily in vitro. 

Isolated ATSCs exhibited a fibroblast-like morphology (Fig.3A), which is 

similar to mesenchymal stem cells from other tissues previously reported. However, 

their morphology may change along passage. Some of the cells may exhibit a flatter, 

bigger, squamous morphology with obvious cytoskeleton (Fig. 3B). 

Immunocytochemistry was performed against two mesenchymal stem cell markers, 

CD44 and CD90, to confirm the MSG nature of the isolated cells. All of the cells 

expressed CD44 (Fig. 4A). Most of the cells also expressed CD90, but their 

expression intensity was lower and varied in different samples (Fig. 4B). 
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Groups Pregnancy Pre-menopause Menopause 

# of sample 5 6 4 
collected 

Average Age (yr) 38.7 (士 0.6) 35.3 (± 15.5) 59.25 (± 12.01) 

Table 4 Summary of adipose tissue samples collected from three 
groups of individuals. 
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Fig. 3 (A) Morphology of ATSCs derived from human adipose tissue 
under light microscopy (x100) is fibroblast-like. (B) Some ATSCs may 
exhibit a flatter, bigger, squamous morphology with cytoskeleton 
obviously seen (arrow). (C) Hematoxylin and eosin staining of ATSCs 
(Scale = 100;tzm) 

73 



Fig. 4 Positive immunostaining of mesenchymal stem cell markers (A) 
CD44 and (B) CD90 of ATSCs. All ATSCs expressed CD44. Most of 
them also expressed CD90 but in a lower intensity. (Scale = 100/zm) 
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3.2 ATSCs Exhibited Multilineage Differentiation 

To examine the multilineage differentiation capacity of ATSCs, the cells were 

induced towards chondrogenic or neural differentiation. 

3.2.1 Chondrogenic Differentiation 

For chondrogenic differentiation, ATSCs were induced in Micromass Culture 

with chondrogenic medium containing TGF- ^ and dexamethasone for 28 days. As 

soon as one day after cell seeding, the cells started to aggregate into a 

three-dimensional spherical structure (Fig. 5B). The spheroids formed, which were 

about 1mm in diameter, were clearly visible to the naked eye in the tissue culture 

dish. Each sample was performed in duplicate; they all appeared identical in shape 

and size within the same sample. In each well, only one spheroid was formed, 

regardless of the length of treatment time. 

In the control set, cells were also seeded in micromass culture, but they were 

grown in ATSC growth medium instead of chondrogenic medium. A multilayer, 

three-dimensional structure was also formed in the control cells. However, they 

could only form a semi-spheroid structure (Fig. 5A). Cells were loosely packed and 

the semi-spheroid formed was flatter and spread out. Outside the spheroid, 

monolayer cells attached on the wells continued to grow and confluence was reached 
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after one week. In contrast, ATSC induced into chondrogenic lineage proliferated at a 

much slower rate than control and histological examination showed that inside the 

spheroid, chondrogenic differentiating cells were more densely packed (Fig.5). Light 

microscope examination revealed that as ATSCs continued to differentiate, the 

spheroid contracted and was more firmly packed. In addition, cells on the outer edge 

of the induced spheroid acquired a more elongated, bipolar shape (Fig.5 C & D). 

3.2.2 Expression of Chondrogenic Markers 

To confirm the success of chondrogenic differentiation, quantitative real-time 

PGR and immunohistochemical analysis were performed to assess the expression of 

lineage specific markers. Immunostaining against chondrogenic markers revealed the 

translocation of S0X9 in the nuclei and the accumulation of Collagen Type II and 

Aggrecan on the outer edge of the spheroids (Fig. 6). Chondrogenic differentiated 

ATSCs have a significantly higher (7 to 15 folds increment) mRNA expression of 

chondrogenic markers S0X9, C0L2A1 and COLl OAl compared to controls (Fig. 7). 

The results of real-time PGR also showed a time-dependent manner in the expression 

profile of these markers. The S0X9 and C0L2A1 transcripts were expressed in the 

early stage and peaked at Day 14 of the differentiation while COLl OAl was 

expressed highly in the later stage (Day 28). Alcian Blue staining was also performed 
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Fig. 5 Morphology of spheroids formed in micromass culture in (A) 
normal growth medium and (B) chondrogenic medium. Spheroids 
formed in chondrogenic medium were firmly packed and exhibited a 
perfect spherical shape. Hematoxylin staining of (C) non-induced 
spheroid and (D) chondrogenic induced-spheroid. (Scale = 100//m) 
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Fig. 6 Immunostaining of spheroids in control and chondrogenic medium 
against chondrogenic markers (A) Aggrecan, (B) Collagen Type II and 
(C) Sox9 as well as (D) nucleus staining DAP I. Chondrogenic markers 
expressed in chondrogenic induced-spheroid but weakly or not expressed 
in control. (Scale = lOOpm) 
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Fig. 7 Expression of chondrogenic markers (A) S0X9, (B) Collagen 
Type 11 and (C) Collagen Type X during chondrogenic 
differentiation of ATSCs normalized with GAPDH. Their 
expressions were time-dependent. S0X9 and C0L2A1, which are 
early chondrogenic markers, expressed in the middle of the 
differentiation. COL10A1, which is a late marker, expressed in the 
late stage of the differentiation. 
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to test the presence of proteoglycans, which is normally secreted in the extracellular 

matrix of the cartilage (Fig. 8). ATSCs differentiated into chondrocytes were stained 

positive with Alcian Blue with a higher intensity than control. 

3.2.3 Neural Differentiation 

ATSCs could differentiate into neural cell by inducing in neural medium for 14 

days. Compared to control, cell proliferation rate was slowed down in the neural 

medium. About one week after induction, the induced cells started to exhibit a neural 

appearance. They acquired a more fibroblast-like morphology with cytoplasmic 

retraction towards the nucleus (Fig. 9B). With increased time, the cell bodies became 

increasingly spherical and refractile, and multiple neurite-like cytoplasmic extensions 

extending outwards were observed. We monitored the induced cells until 24 days 

after induction, and they remained vital. In the control group, cells grew in ATSC 

growth medium instead of neural medium. They proliferated at a much faster speed 

and acquired a bigger, flatter morphology without any neural characteristics (Fig. 

9A). 
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Fig. 8 Alcian Blue staining of spheroids in (A) non-induced and (B) 
chondrogenic medium. Chondrogenic induced-spheroids were stained 
positive with Alcian Blue with a higher intensity then control. (Scale = 100/z 
m) 
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Fig. 9 Morphology of (A) non-induced and (B) neurally induced ATSCs in 
culture. Neurally induced ATSCs (arrow) acquired a typical neural 
morphology with small, round cell bodies and multiple cytoplasmic 
extensions. (Scale = 100 以 m) 
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3.2.4 Expression of Neural Markers 

Immunohistochemistry and real-time PGR against neural markers were 

performed to confirm the establishment of neurons differentiated from ATSCs (Fig. 

10 & 11). After neural differentiation, the cells express neuronal progenitor markers 

Nestin and GFAP, early markers NSE, NEF3 and TUBB3, and late markers MAP2 

and TAU. Real-time PGR revealed an increasing trend of NEF3 and TUBB3 mRNA 

expression along the induction and highest expression levels were reached on Day 14. 

Undifferentiated ATSCs also expressed progenitor markers and some early markers 

at a lower level, but they lacked the expression of late neuronal markers. 

3.3 Effect of Donor's Reproductive Status on the Proliferation and 

Differentiation Capacity of ATSCs 

The ATSCs from the 15 samples were classified into three different groups 

according to their respective reproductive states (pregnancy, pre-menopause and 

menopause). We further compared their proliferation and differentiation capacities 

using chondrogenic lineage differentiation as a model. 
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Fig. 11 Real-time PCR revealed a higher expression of early 
neural markers (A) NEF3, (B) TUBB3 and (C) late neural markers 
MAP2 in neurally induced ATSCs compared to control. Data was 
normalized with GAPDH. 
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3.3.1 Expression of Stem Cell Markers 

Their stem cell characteristics were first compared in terms of their morphology 

and surface marker expression (Table 5). Their morphologies were scored from 1 to 5 

(1 is most fibroblast-like and 5 is most squamous). The 15 samples exhibited 

different morphologies. However, no obvious difference in morphology was found 

between the three groups. Their expression of surface protein CD90, the 

mesenchymal stem cell marker，was also assessed. Their expression levels were 

scored according to their flourescence intensities after immunostaining. No 

significant difference was found in CD90 expression level between the three groups. 

3.3.2 Cell Proliferation Assay 

The proliferation rates of the three groups were compared by cell count to 

investigate the total number of surviving ATSCs. The cell proliferation was 

monitored every alternative day from Day 1 (one day after plating) to Day 21. Using 

non-parametric Kruskal-Wallis test, the proliferation rate of the pregnancy group was 

significantly higher than the other two groups (p<0.05) (Fig. 12). 
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Fig. 12 Boxplot comparing the growth rates of ATSCs derived from the 
three reproductive groups. Growth rate of the pregnancy group is 
significantly higher than the other two groups (Kruskal-Wallis Test, 
p<0.05). 
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3.3.3 Differentiation Capacity of ATSCs 

To study the effect of donor's reproductive status on the differentiation potential 

of ATSCs, their differentiation potentials towards the chondrogenic lineage were 

compared. Expression levels of three chondrogenic markers S0X9, Aggrecan and 

Collagen Type II were studied by real-time PGR and immunostaining. The presence 

of proteoglycans was studied by Alcian blue staining. The expression level of the 

three markers and the staining intensity were scored and summarized in Table 6. 

From the table, no obvious difference can be seen in their differentiation potential 

among the three groups. In addition, due to the small sample size, no statistical test 

was significant for their comparison. 

3.4 Effect of E2 Treatment on the Proliferation Rate of ATSCs 

To determine whether the higher proliferation rate in the pregnancy group was 

due to the higher level of estrogen in pregnant women, the effect of E2 treatment on 

the ATSC proliferation was studied by MTT assay. The growth rates of ATSCs with 

and without E2 treatment were compared. By comparing the slope of the growth 

curve, our result showed that there was no significant difference between the two 

groups of samples (data not shown). In addition, no significant up-regulations of 

ERalpha and ERbeta were found in either E2-treated or control ATSCs (data not shown). 
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3.5 MicroRNA 

3.5.1 MicroRNA Expression Profile of Undifferentiated and Chondrogenic 

Differentiated ATSCs 

A quantitative real-time PGR based assay was used to establish the expression 

profiles of 157 miRNAs in 3 ATSC samples subjected to chondrogenic differentiated 

or left undifferentiated. Their miRNA expression levels were normalized by three 

endogenous control miRNAs hsa-let-7a, hsa-miR-16 and small nuclear RNA U6 (Fig. 

13). Among the 157 miRNAs, 104 and 95 miRNAs were consistently expressed in 

undifferentiated and differentiated ATSCs respectively. Overall, the miRNA 

expression profiles between the differentiated and undifferentiated ATSCs of the 

same individuals were similar. 

3.5.2 Clustering Analysis Identified MicroRNAs Segregate with ATSCs 

To assess whether the expression patterns of the 157 miRNAs characterize 

ATSCs from other cell types, a bootstrap resampling analysis was conducted 

comparing undifferentiated and chondrogenic differentiated ATSCs with microRNA 

data generated in our lab by other team member (Tang Tao) including two normal 

cervix epithelium samples (L226 and L229) and 5 cervical cancer cell lines (C33A, 

Hela, CC3, ME 180 and Siha) (Fig. 14). Using data after global median-normalization, 
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hierarchical clustering successfully discriminated the ATSC samples from the cervix 

tissues and cervical cancer cell lines. The ATSCs were clustered into an independent 

terminal branch. These results confirm that ATSCs displayed unique miRNA 

expression profiles that can be successfully distinguished from other tissues and 

cancer cell lines. 
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3.5.3 Identification of Differentially Expressed MiRNAs in 

Chondrogenic-induced ATSCs 

We used a threshold of > 2-fold changes in all three samples after normalization 

with the endogenous controls, to identify miRNAs that were uniquely expressed in 

chondrogenic differentiated ATSCs. Based on these criteria, 11 aberrantly 

expressed miRNAs (miR-30c, 30e, 34a, 124b, 191，197, 199a，199a*，199b, 199s and 

328) were identified among the 157 miRNAs. Their average fold changes and 

expression levels are summarized in Fig. 15. We have identified the miRNA-199 

family which consists of four miRNAs: miR-199a, 199a*, 199b and 199-s. They 

were highly expressed and consistently up-regulated in all differentiated ATSCs. 

Therefore, we suspect that they may play a role in the .chondrogenesis of ATSCs. 

Although miRNAs like miR-197 and miR-124b showed large fold changes (>25) in 

differentiated ATSCs than controls, the difference is not trustworthy, since their 

endogenous expression levels are very low (Fig. 15). 
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Fig. 15 (A) Average fold change and (B) expression level of 11 
aberrantly expressed miRNAs in ATSCs after chondrogenic induction. 
Data was normalized with endogenous controls let-7a, miR-16 and U6. 
MicroRNA-199 families, which expressed in a relatively high level, were 
selected for further investigation. 
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3.5.4 mRNA Target Prediction for miR-199a 

To prediction the potential targets of miRNAs, miRGen Targets, a web-based 

database, was used. It is an integrated database of animal miRNA targets combined 

with 4 widely used target prediction programs including DIANA-microT, 

TargetScanS, miRanda and PicTar. After the search, totally 1275 predicted targets 

were found for miR-199a in human. 

3.6 Correlating MiRNA Expression and mRNA Levels: Clues to MiRNA 

Function 

3.6.1 Effect of miR-199a RNAi in Phenotypic Changes of Chondrogenic-induced 

ATSCs. 

Due to the limited availability of reagents, among the four members of the 

miR-199 family, we chose miR-199a for further study. We knockdowned the 

endogenous miR-199a in ATSCs during chondrogenic differentiation using RNAi, an 

anti-miR199a specific miRNA inhibitor, to investigate the biological role of 

miR-199a in chondrogenic differentiation of ATSCs. Knockdown of the miR-199a 

was confirmed by real-time PCR. In monolayered ATSCs, the miRNA inhibitor 

knockdowned miR-199a effectively (knockdown by >85%) (Fig. 16A). However, in 

micromass culture during chondrogenic differentiation, knockdown of miR-199a was 
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reduced to 18-30% on D2, D3 and D7. And the knockdown effect was diminished on 

D14 (Fig. 16B). 

Both protein and mRNA expression levels of chondrogenic markers were 

accessed by immunostaining and real-time PGR respectively. Compared to control 

(without knockdown), miR-199a knockdown greatly reduced the expression of 

chondrogenic markers {S0X9, C0L2A1 and COLlOAl) in D2, D3, and D7 spheroids 

(Fig. 17). Immunostaining against the chondrogenic markers also showed a lower 

expression in spheroids with miR-199a knockdown including Aggrecan (Fig. 18). 

However, their expressions re-gained greatly on D14. The cell culture model 

revealed a direct correlation between expressions of miR-199a and increased 

expression of chondrogenic markers. Consistently, in samples with lower 

(knockdowned) miR-199a expression, chondrogenic markers were also expressed in 

a lower level. These results suggested a positive role of miR-199a in regulation of 

chondrogenic marker expression. 
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Fig. 16 Change in miR-199a expression (normalized with U6) (A) in 
monolayer undifferentiated ATSCs (B) during chondrogenic 
differentiation of ATSCs with and without miR-199a knockdown. 
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Fig. 17 Real-time PCR results showing the change in expressions of 
three chondrogenic markers (A)S0X9, (B) Collagen Type II and (C) 
Collagen Type X during ATSC chondrogenic differentiation. Marker 
expressions were suppressed in the first week (D2-D7) but 
re-expressed on D14, which is consistent with the high expression of 
miR-199a in the sample. 
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Fig. 18 Immunostaining of chondrogenic markers (A) Aggrecan, (B) 
S0X9 and (C) Collagen Type II in ATSCs induced in chondrogenic 
medium for 7 days, with and without miR-199a knockdown. ATSCs 
with miR-199a knockdown showed a decrease in expression of all 
three chondrogenic markers. (Scale = 100//m) 
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3.6.2 Identification of Potential Target Genes by Microarray Analysis of ATSCs 

with miR-199a Over-expression and Knockdown 

The global gene expression profiles of ATSCs with miR-199a over-expression 

and knockdown for 48 hours as well as untreated ATSCs were studied by the 

microarray analysis. Each Agilent gene expression array contains approximately 

41,000 features with unique human genes and transcripts. To identify differentially 

expressed genes, data was compared between samples with miR-199a 

over-expression and knockdown treatment, using stealth RNAi as negative control. 

By using a parametric test in Volcano plot with 2-fold and p-value equal to 0.05 as 

cutoff, totally 9611 transcripts (2614 up-regulated and 6997 down-regulated) were 

significantly altered and were identified in the "Over-expression" sample. For the 

"Knockdown" sample, a lower fold change cutoff value, 0.5-fold, was used as a 

lower change in miR-199a expression was obtained in the knockdown (decreased by 

85%) than the over-expression treatment (increased by 6489%). A total of 1215 

differentially expressed transcripts (710 up-regulated and 505 down-regulated) were 

identified in the "Knockdown" sample. 

By importing the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

database into GeneSpring GX 7.3.1, differentially expressed genes overlapping with 

members of any signaling pathway were identified. Among all the differentially 
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expressed genes, genes were mostly involved in cell biological processes such as cell 

cycle (3.0% of genes in Overexpression/2.7% of genes in Knockdown), 

cytokine-cytokine receptor interaction (2.3%/3.3%), cell communication (1.1%/1.9%) 

as well as various signaling pathways including MAPK signaling pathway 

(3.4%/4.7%), Wnt signaling pathway (2.1%/2.1%), Jak-STAT signaling pathway 

(1.5%/1.9%) and TGF-beta signaling pathway (1.2%/2.2%). 

As the TGF-p signaling pathway is known to be important for chondrogenic 

condensation and differentiation, we further investigated the possible involvement of 

genes participating in the TGF-P pathways. Among all differential expressed genes, 

36 genes in "Over-expression" and 15 genes in "Knockdown" were identified that 

involved in the TGF-[3 pathways (Appendix 1). These genes in the TGF-p signaling 

pathway showed varied expression changes after altered miR-199a level in ATSCs. 

Over-expression of miR-199a resulted in a down-regulation of important mediators 

in TGF-P signaling pathway including SMAD2, SMAD3, THBSl and MAPK3 by at 

least two folds. On the other hand, other key genes in chondrocyte differentiation 

including TGFB3, BMP2 and BMP6 were up-regulated (from three to eleven folds). 

Consistently, the expression changes of most of these genes were found opposite in 

ATSCs with miR-199a knockdown. Expression of TGFBl was also up-regulated (1.6 

folds). 
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CHAPTER 4 DISCUSSION 

Recently, the multipotent MSCs isolated from adipose tissue have shown great 

ability to differentiate into a variety of cell types across all three germ layers. In our 

project, we have demonstrated that MSCs can be successfully isolated from human 

adipose tissues. Similar to BMSCs, ATSCs show a fibroblastic morphology with 

self-renewing ability. Almost all of the cultured ATSCs expressed mesenchymal stem 

cell markers CD44 and CD90, indicating that the cell population we isolated were 

mostly mesenchymal stem cells. Most importantly, this study showed the ability of 

ATSCs to differentiate into chondrocytes as well as transdifferentiate into neurons. 

This confirms the multipotent nature of ATSCs. We used this model to study the 

effect of the donor's physiological status on ATSCs, establishing the first miRNA 

profile in ATSCs and identifying microRNAs important for ATSC differentiation. 

Effect of Donor's Reproductive Status on the Proliferation and Differentiation 

Capacity of ATSCs 

To determine the effect of donor's reproductive status on the performance of 

ATSCs, we divided the samples into three groups according to their physiological 

status: pregnancy, pre-menopause and menopause and their isolated ATSC 
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phenotypes, proliferation and differentiation capacities were compared. Although the 

morphology and the MSG marker expression varied in different samples, no obvious 

difference was found between the three sample groups. We have also compared their 

differentiation capacities towards the chondrogenic lineage in terms of their abilities 

to form spheroids as well as the expression level of chondrogenic markers after the 

induction. Similarly, no obvious difference was found between the three groups. 

These results provide important information for future therapeutic uses as they 

suggest that ATSCs can be isolated from different individuals of different 

reproductive status without affecting their stem cell nature. As ATSCs acquired 

similar differentiation power regardless of the donor's reproductive status, cell 

therapies or transplantations involving the use of ATSCs can be applied in any 

individual without the concern of individual variation, although we haven't 

confirmed our findings between male and female yet. 

Interestingly, we found that the proliferation rate of ATSCs in the pregnancy 

group was significantly higher than the other two groups. There are reports showing 

that estrogen can stimulate proliferation in mouse ESCs as well as affecting the 

differentiation capacities of human MSCs (Han, et al 2006, Hong, et al 2006). 

Therefore, we hypothesized that it might be the difference in the estrogen level in the 

pregnancy group that accounts for the variation. To verify our hypothesis, ATSCs 
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were treated with estrogen (17/5-Estradiol) and their proliferation rates were 

compared with untreated ATSCs. However, no significant difference was found 

between the two groups. This suggested that the variation of the estrogen level 

among the three sample groups may not be the cause of their difference in the 

proliferation rate. Other possibilities might be the involvement of hormones other 

than estrogen, or other factors that are still unknown which require further 

investigation. 

Unique MicroRNA Expression Profile in ATSCs 

The miRNA expression assay revealed a unique miRNA expression profile in 

ATSCs that can be easily distinguished from that of other tissues and cancer cell lines, 

using cluster analysis. To identify specific miRNAs that are involved in the 

chondrogenic differentiation of ATSCs, the miRNA expression profiles of 

undifferentiated ATSCs and chondrogenic-induced ATSCs were further studied and 

compared. Overall, they displayed similar expression profiles. For example, they 

both highly expressed miR-21, which has been reported to be an anti-apoptotic factor 

in human glioblastoma cells as well as tumor cells (Chan, et al 2005). Among the 157 

miRNAs studied in the assay, we have identified 11 aberrantly expressed miRNAs 

that were up-regulated folds) after chondrogenic differentiation. Among them, 
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miRNA-140, which is the only miRNA so far reported as being involved in 

chondrogenesis (Tuddenham, et al 2006), was also found to be up-regulated in 

chondrogenic differentiated ATSCs. However, it is not included in the list of 

aberrantly expressed miRNAs as it had a fold change less than two. 

MicroRNA-199a Does Play a Role in Chondrogenesis of ATSCs 

The 11 aberrantly expressed miRNAs include miR-SOc, 30e, 34a, 124b, 191, 

197, 199a, J99a*, 199b, 199s and 328 and they are possibly involved in the 

chondrogenic differentiation of ATSCs. To further our investigation, we selected the 

miR-199 family (199a, 199a*, 199b，199s)，particularly miR-199a as the candidate 

miRNA as they were highly expressed and consistently up-regulated in chondrogenic 

differentiated ATSCs. Other aberrantly expressed miRNAs such as miR-197 and 

miR-124b also showed large fold changes; however, their endogenous expression 

level was relatively low which made them a difficult candidate target for the RNAi 

knockdown approach. 

Using RNAi knockdown assay, a correlation was observed between the 

expression of miR-199a and the expression of chondrogenic markers in ATSCs. The 

result suggests that miR-199a may participate in the chondrogenesis of ATSCs. Using 

real-time PGR, we confirmed that the knockdown of miR-199a was successful and 
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lasted until Day 7 of the in vitro induction of ATSCs into chondrocytes. 

Immunohistochemical analysis and real-time PCR demonstrated a decrease in the 

expression level of various chondrogenic markers among mzi?-7PP<2-knockdowned 

ATSCs. However, on Day 14 when the knockdown effect was diminished, the 

expression level of the chondrogenic markers started to rise. This correlation 

suggests that miR-199a does play a positive role in the chondrogenic differentiation 

ofATSCs. 

MiR-199a Promotes Chondrogenesis Through TGF-i3 Signaling Pathway 

The fate of a chondrocyte greatly depends on the interplay of the TGF-|8 

signaling and BMP signaling (Chen, et al 1991，Fromigue, et al 1998，Suzuki 1992). 

TGF-jS promotes chondrocyte proliferation while BMP induces its maturation. For 

both pathways, SMAD proteins participate as the key mediators. From the miRNA 

expression profiling, miR-199a was consistently up-regulated in 

chondrogenic-induced ATSCs. Moreover, the knockdown of miR-199a partially 

inhibited the chondrogenic differentiation of ATSCs, evidenced by the reduced 

expression of chondrogenic markers. In our microarray results, over-expression of 

miR-199a in ATSCs significantly down-regulated the expression of TGF-/3 signaling 

genes including SMAD2, SMADS, TGFB3 and TGFBR2 and significantly 

108 



up-regulated BMP signaling genes such as BMP2 and BMP6. In contrast, knockdown 

of miR-199a significantly up-regulated TGF-jS signaling genes and down-regulated 

BMP signaling genes. Both results suggest a stimulatory effect of miR-199a on the 

chondrogenesis of ATSCs, probably through targeting an inhibitor in the 

differentiation pathways. These strongly suggest that miR-199a promotes 

chondrogenic differentiation and maturation by inhibiting TGF-/? and stimulating 

BMP signaling. 

In fact, the inhibitory effect of TGF-/3 on chondrocyte maturation is mainly 

mediated by SMAD2 and SMAD3 as has been suggested by others (Ferguson, et al 

2000，Li, et al 2006). In the report by Li et al., chondrocytes isolated from Smad3"̂ " 

mice exhibited accelerated differentiation and maturation compared to the wild type. 

A shift from TGF-jS towards BMP signaling was observed, supported by the 

increased expression of SMADl, SMAD5, BMP2, BMP6 and decreased expression 

of TGFBl and TGFBRl. Similarly, our microarray data of 夕夕a-overexpressed 

ATSCs also showed an up-regulation in BMP signaling genes {BMP2, BMP6) and 

down-regulation in TGF-jS signaling genes {SMAD2, SMADS), suggesting that 

miR-199a may promote chondrogenesis by targeting and suppressing SMAD2 or 

SMADS. Interestingly, SMADS was one of the predicted targets of miR-199a 

(Appendix 2). This further supports the hypothesis that miR-199a promote 
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chondrocyte differentiation and maturation by suppressing SMAD3. 

To verify the microarray data, quantitative real-time PGR will be done to 

confirm the aberrant expression of those genes in TGF-jS signaling pathway. Western 

blotting will also be done to confirm the changes in expression of potential target 

genes in protein level as well. To validate the hypothesis that SMAD3 is the direct 

target of miR-199a, functional assays such as luciferase reporter assay will be done 

to determine if there is any interaction between them. 

Chondrogenic Differentiation of ATSCs 

In a highly dense environment with the supplement of appropriate growth 

factors, ATSCs are readily induced into chondrocytes. We showed that using 

supplements such as TGF-|8, dexamethasone, insulin and ascorbic acid in a 

micromass culture, ATSCs can be induced into chondrocytes exhibiting 

three-dimensional cellular structures with cartilaginous characteristics. The TGF-jS 

signaling pathway is well known for its important role in bone and cartilage 

formation. The addition of TGF-jS in ATSC micromass culture can certainly trigger 

the chondrogenic differentiation process (Lee, et al 2004，Zuk, et al 2002). 

Furthermore, the addition of insulin and ascorbic acid accelerated the growth of the 

ATSCs and further supported the condensation process. 
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The chondrogenic nature of differentiated ATSCs was supported by various 

features from mRNA expression to biochemical findings. Three-dimensional 

spheroids, which were condensed as early chondrogenesis proceeded, were formed 

soon after the induction (Fig. 3). Expressions of cartilaginous matrix, such as 

collagens and proteoglycans, were identified within the spheroids, using histological 

staining with Alcian blue and immunohistochemical analyses. Expressions of mRNA 

of various chondrogenic marker genes were detected in the spheroids using reverse 

transcription PCR assays. 

The immunohistochemical analyses showed the expression of matrix proteins 

Collagen Type II and Aggrecan throughout the spheroids. Their expressions were 

found to be concentrated along the outer layer of the spheroids. This may be due to 

the higher differentiation rate of the cells in the outer layer as they had more contact 

with the differentiation medium. Therefore, they expressed these matrix proteins in a 

higher level than cells in the inner part of the spheroids (Fig 6 & 16). In addition, 

Alcian blue staining also confirmed the presence of sulfated proteoglycans within the 

spheroids. Similar to Collagen Type II and Aggrecan, a higher level of sulfated 

proteoglycans was also shown along the outer layer of the spheroids. 

In the reverse transcription PCR assays, we observed a time-dependent 

increment of mRNA expression of chondrogenic markers (Fig. 5). The mRNAs of 
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S0X9 and C0L2A1 appeared after 2 weeks of induction, while the mRNA of 

COLl OAl appeared in the last week of the 4-week induction. These findings were in 

accordance with the in vivo expression patterns of these markers in real cartilage. 

S0X9 is a key nuclear transcription factor which expresses early during 

chondrogenesis (Goldring, et al 2006). Its expression is required for the trigger of 

chondrogenesis as well as for the expression of some cartilage-specific matrix 

proteins including Collagen Type II and Aggrecan. In our samples, S0X9 expressed 

in the highest level on Day 14 and its expression started to decline afterwards, as its 

expression was no longer needed in the later stage. In similar fashion to S0X9, the 

mRNA of Collagen Type II also appeared on Day 14, which supported that its 

expression being triggered by the expression of S0X9. Collagen Type X is a marker 

for chondrocyte hypertrophy which often expresses in the terminal stage of 

chondrogenesis. Consistently, in our samples, it expressed in the last week of the 

differentiation. 

We have noticed that even in control medium without the addition of growth 

factors, ATSCs cultured in micromass were also able to form spheroids, although in a 

lower frequency. Moreover, they also showed some expression of chondrogenic 

markers. This result suggests that, although in a lower rate, ATCSs have the potential 

to undergo spontaneous differentiation towards chondrogenic lineages in a cell dense 
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environment. 

Neural Differentiation of ATSCs 

The introduction of adult stem cell plasticity suggests that ATSCs are not 

restricted to differentiation along lineages of their tissue origin and can also be 

induced into non-mesenchymal lineages. Previous studies suggested the induction of 

ATSCs into neurons using chemical such as BME and BHA (Zuk, et al 2002). 

However, these rapid inductions of ATSCs into neurons were likely due to cellular 

toxicity causing shrinkage of cytoplasm instead of a real neurogenesis (Lu, et al 

2004). In our project, we demonstrated that ATSCs were capable of differentiating 

into neural cells when stimulated by neural growth factors including bFGF, NGF and 

BNGF. The differentiated cells exhibited a neural appearance with cytoplasmic 

extensions and spherical cell bodies, and their neural lineage was confirmed by the 

expressions of several specific, both early and late, neural markers. 

In undifferentiated ATSCs cultured in control medium, expression of some 

neural markers including Nestin, NEF3, NSE and TUBB3 was already detected. This 

finding is consistent with previous studies that undifferentiated ATSCs and BMSCs 

already express specific neural proteins before any differentiation (Tondreau, et al 

2004, Yang, et al 2004)，suggesting that these undifferentiated stem cells may already 
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acquire some characteristics of neural progenitor cells. They are ready to differentiate 

into neural lineage, once they are cultured with appropriate neural growth factors. 

After neural induction for 2 weeks, the expression of NSE remained high in the 

cells while that of other markers such as Nestin and TUBB3 increased significantly 

after differentiation. The induced cells expressed late neural markers TAU and MAP2 

as well. As ATSCs contain a highly heterogeneous population, their differentiation 

power may vary. It is difficult to obtain a 100% differentiation towards a specific 

lineage. The immunohistochemical analyses showed that, among the differentiated 

cells, most of them (>90%) expressed early neural markers Nestin and NSE. 

However, for the late neural marker TAU, expression was found only in � 5 0 % of the 

induced cells, and was mainly expressed in cells with elongated cytoplasm with 

neuron-like morphology instead of those with squamous morphology. 
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CHAPTER 5 CONCLUSION 

In this study, we have successfully replicated previous in vitro studies to induce 

ATSCs into chondrogenic and neural lineages in four and two weeks respectively. By 

investigating the mRNA and protein expression of differentiated lineage markers, we 

compared the proliferation and differentiation capacity of ATSCs isolated from three 

reproductive groups (pregnancy, pre-menopause and menopause). We found that the 

differentiation capacity towards chondrogenic lineage was totally unaffected by the 

donor's reproductive status. However, the proliferation rate of ATSCs from pregnant 

women was significantly higher than the other two groups. By treating ATSCs with 

estrogen in vitro, we further concluded that the difference in proliferation were due to 

unknown factors other than the difference in estrogen level in pregnant women. 

By quantifying the expression of 157 miRNAs between differentiated and 

undifferentiated ATSCs, this study clearly shows that a unique miRNA profile was 

identified in ATSCs comparing to other normal or cancerous tissues. Most 

significantly a group of miRNAs belonging to the miR-199 family (miR-199a, 

-199a*, -199b, -199s) was identified to be important for ATSC differentiated into 

chondrogenic lineage. Further investigations by in vitro knockdown and 

over-expression of miR-199a during chondrogenic induction indicate that miR-199a 
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influenced the expression of chondrogenic markers, suggesting a positive role of 

miR-199a in chondrogenesis of ATSC. Although miRNAs might have many 

predicted targets, studies by gene expression array identified genes (SMAD2/3, and 

BMP2/6) that are involved in the TGF-j(3 signaling pathway were differentially 

regulated in response to miR-199a, particularly down-regulated in TGF-/5 and 

up-regulated BMP signaling. These indicated that miRNAs, in particular miR-199a, 

may play important roles in the differentiation process of human ATSC cells. This 

study shows that miR-199a could be a novel regulator in ATSC chondrogenesis by 

shifting the balance towards BMP signaling which stimulates chondrocyte 

differentiation and maturation. 
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APPENDICES 
Appendix 1 Predicted Targets of MiR-199a Involved in TGF-8 Signaling 
Pathway 

Gene Name Symbol Accession 

Bone morphogenetic protein 7 precursor BMP7 NM_001719 

DNA-binding protein inhibitor ID-1 IDl NM_002165 

Mitogen-activated protein kinase kinase kinase 
MAP3K7IP1 NM_153497 

7-interacting protein 1 (TAKl-binding protein 1) 

Transforming growth factor beta-2 precursor TGFB2 NM_003238 

Growth/differentiation factor 2 precursor GDF2 NM_016204 

Mothers against decapentaplegic homolog 3 SMAD3 NM_005902 

Appendix 2 Differentially Expressed Genes Involved in TGF-i8 Signaling 
Pathway in ATSCs after MiR-199a Over-expression and Knockdown 

Overexpression 
Expression 

Gene Name Symbol Accession Fold 
Change 

Homo sapiens latent transforming growth ^ LTBPl NM_206943 0.208 factor beta binding protein 1 (LTBPl) -
Homo sapiens cartilage oligomeric matrix ^ COMP NM_000095 2.518 protein 
Homo sapiens thrombospondin 1 THBSl NM一003246 0.341 
Homo sapiens SMAD, mothers against ^ SMAD2 NM 005901 0.479 DPP homolog 2 — 
Homo sapiens SMAD, mothers against ^ ^ ^ , SMAD3 NM 005902 0.398 DPP homolog 3 一 
Homo sapiens El A binding protein p3Q0 EP3Q0 NM—001429 2.554 
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Homo sapiens cyclin-dependent kinase . , . _ CDKN2B NM 004936 3.425 inhibitor 2B _ 
Homo sapiens v-myc myelocytomatosis . 1 , , MYC NM_002467 2.362 viral oncogene homolog _ 
Homo sapiens inhibitor ofDNA binding 1 IDl NM_002165 |o.l9 一 
Homo sapiens inhibitor ofDNA binding 2 ID2 NM_QQ2166 0.175 
Homo sapiens inhibitor ofDNA binding 3 ID3 NM—002167 0.271 
Homo sapiens Rho-associated, coiled-coil ^ P ROCKl NM—005406 0.287 containing protein kinase 1 
Homo sapiens Rho-associated, coiled-coil . . . , . ^ R0CK2 NM_004850 0.204 containing protein kinase 2 
Homo sapiens zinc finger, FYVE domain ” � ,八八…八八 八 

. P ^ ZFYVE9 NM_004799 0.128 containing 9 
Homo sapiens mitogen-activated pro te in^^p^^ 丽 002746 0.464 
kinase 3 
Homo sapiens SMAD specific SMURF2 NM 022739 0.125 
ubiquitin protein ligase 2 
Homo sapiens transforming growth factor, NM_00102484 TGFBR2 0.182 beta receptor II 7 
Homo sapiens transforming growth factor, 應 003239 3.208 
beta 3 “ 
Homo sapiens bone morphogenetic ^̂^作 . . . , 八 

^ ^ ^ BMPR2 NM_001204 0.406 protein receptor, type II 
Homo sapiens bone morphogenetic ^ y 3 BMPRIA NM—004329 0.237 protein receptor, type lA — 
Homo sapiens bone morphogenetic ^ ^ ^ ^ BMP8A NM_181809 2.079 protein 8a 
Homo sapiens bone morphogenetic P ^ ^ BMP2 NM_001200 11.31 
protein 2 
Homo sapiens bone morphogenetic P ^ BMP6 NM_001718 8.707 
protein 6 
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Knockdown 
Expression 

Gene Name Symbol Accession Fold 
Change 

Homo sapiens thrombospondin 1 THBSl NM_003246 1.365 
Homo sapiens SMAD, mothers against ^ 色 SMAD4 NM 005359 1.375 DPP homolog 4 — 
Homo sapiens SMAD, mothers against ^ ^ SMAD2 NM 005901 0.873 DPP homolog 2 “ 
Homo sapiens SMAD, mothers against P 5 SMAD3 NM 005902 1.343 DPP homolog 3 “ 
Homo sapiens Spl transcription factor SPl NM_138473 0.79 
Homo sapiens CREB binding protein CREBBP NM一004380 1.32 
Homo sapiens El A binding protein p300 EP3Q0 NM—001429 1.425 
Homo sapiens cyclin-dependent kinase ^ ^ ^ … ^ ^ ^ CDKN2B NM 078487 1.875 inhibitor 2B " 
Homo sapiens v-myc myelocytomatosis _ ,产,„ 

^ � � � MYC NM_002467 1.518 viral oncogene homolog 
Homo sapiens inhibitor of DNA binding 
2, dominant negative helix-loop-helix ID2 NM—002166 0.534 
protein 
Homo sapiens protein phosphatase 2 NM 00100955 ^ ^ ^ ^ PPP2CB 一 2.071 catalytic subunit, beta isoform 2 
Homo sapiens zinc finger, FYYE domain … … ^ 

P 5 ZFYVE9 NM_004799 1.927 containing 9 
Homo sapiens mitogen-activated p r o t e i n ^ ^ ^ ^ 丽 002746 1.354 
kinase 3 
Hamo sapiens transforming growth factor, 丁 ^ 刚 腿 000660 1.645 
betal “ 
Homo sapiens bone morphogenetic ^ ^ 

. P BMP6 NM_001718 2.033 protein 6 
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