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ABSTRACT 

Many underlying assets of option contracts, such as currencies, commodi-

ties, energy, temperature and even some stocks, exhibit both mean reversion and 

stochastic volatility. This thesis investigates the valuation of options when the 

underlying asset follows a mean-reverting logriormal process with two different 

stochastic volatility models. In the first case, we consider a one factor SV model 

consistent with the Heston (1993) approach. A closed-form solution is derived 

for European options by means of Fourier transform. The proposed model allows 

the option pricing formula to capture both the term structure of futures prices 

and the market implied volatility smile within a unified framework. A bivariate 

trinomial lattice approach is introduced to value path-dependent options with 

the proposed model. Numerical examples using European options, American op-

tions and barrier options demonstrate the use of the model and the quality of the 

numerical scheme. 

In the second case, the stochastic volatility is driven by two stochastic pro-

cesses with one persistent factor and one fast mean-reverting factor. Semi-

analystical pricing formulas for European option is derived by means of multiscale 

asymptotic techniques. 
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摘要 

很多期權合約的相關資産如貨幣、商品、能源、温度甚至股票均呈現平均 

數復歸及隨機波幅。本文研究當相關資産價格行為依循平均數復歸的對數常態 

過程及兩種不同的隨機波幅模型時期權的定價。其中一種研究的隨機波幅模型 

為Heston模型。歐式選擇權的定價方程式可利用傅利葉轉換從而建立。本文建 

議模型的期權定價方程式能在統一架構下同時捕捉期子價格及市場所見的波幅 

微笑。本文亦介紹如何在建議模型下利用雙變三項式的格子方法對取決於軌道 

的期權定價。利用關於歐式期權，美式期權及定界期權的數值例子,我們展示出 

本文所建議的模型的作用及所介紹的數值計算法的準確性。 

另一種隨機波幅模型為多尺度隨機波幅模型。模型内的隨機波幅由兩組隨 

機過程控制，一組為持續性的因素，另一組為快速平均數復歸的因素。利用多 

尺度漸近的技術，我們求出歐式期權的半解析定價方程式。 
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Chapter 1 

Introduction 

Evidence on mean reversion in financial assets is abundant. In particular, there 

is a census that commodity prices cannot increase exponentially but rather revert 

to their equilibrium mean levels. Supportive theoretical arguments and empirical 

evidence have been produced by Cecchetli el, al. (1990) and Bessembinder et al 

.(1995), respectivel}^. It has been documented that currency exchange rates also 

exhibit mean reversion. Jorion and Sweeney (1996) show how the real exchange 

rates revert to their mean levels and Sweeny (2006) provides empirical evidence 

of mean reversion in G-10 nominal exchange rates. More interestingly, but not 

surprisingly, mean reversion also appears in some stock prices as evidenced by 

Poterba and Summers (1988). 

Derivative pricing with mean reversion has been an important topic in finan-

cial engineering. Most of the related research has concentrated on the commodity, 

currency, energy and temperature derivatives markets. A possible reason for the 
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last market is that standardized futures contracts written on temperature in-

dices have been traded on the Chicago Mcrcantilc Exchange sincc October 2003, 

together with European call and put options written on these futures. The tem-

perature indices are based on measurement locations in the US and Europe. 

Scientists have had the idea of using mean-reverting models for average tem-

peratures, because their values should revert to deterministic mean levels that 

are trends due to global warming and obvious seasonality. Doernier and Querel 

(2000) propose an Ornstein-Uhlenbeck dynamics with a time-dependent volatility 

but only use constant parameters in their analysis of the Chicago temperature 

(lata. Alaton et al. (2002) employ a similar model for data collected from Broinma 

and Sweden. Bcnth and Saltytc-Bcnth (2007) propose a mean reverting proccss 

with a season a] volatility to fit to^mperature data and derive the corresponding 

explicit pricing formulas for temperature futures and options. 

In currency option pricing, Sorensen (1997) advocates mean reversion through 

the dynamics in the domestic and foreign term structures of interest rates. Ek-

vall et al. (1997) give several reasons for mean-reverting exchange rates using an 

equilibrium model and derive the closed-form solution of European options. One 

possible reason for mean reversion in the foreign-exchange market is the interven-

tion of central banks that keeps the exchange rates close to desired target values. 

Thus, the mean-reversion speed can be regarded as a measure for the magnitude 

of the central bank intervention. The approach of Ekvall et al. (1997) has been 

applied to path-dependent currency option pricing by Hui and Lo (2006), and 
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Wong and Lau (2008). 

Another important feature of financial assets is their stochastic volatility. A 

typical SV model assumes that volatility is driven by a. mean-reverting process. 

Hull and White (1987) examined the pricing of vanilla options with this model. 

Heston (1993) proposed a squared-root mean-reverting process for the volatility, 

and obtained analytical formulas for options on bonds and currency in terms of 

characteristic functions. Using tick-to-tick data of S&P 500’ Fouque et al. (2000) 

observed a fast timcscale volatility factor that the mean-reverting rate reached the 

order of 200. They then derived a perturbation solution for European options in 

a fast, mean-reverting SV economy. Their model lias been applied to value exotic 

options [for an example see Cotton ct al.(2004), Wong and Cheung (2004), and 

Ilhan et al. (2004)]. 

Empirical tests, however, suggest that one factor SV models are inadequate 

to either describe the evolution of financial time scries or capturc the volatility 

smile. The empirical results of Fiorentini et al. (2002) indicate that the Heston 

model has a tendency to overprice out-of-the money (underprice in-the-money) 

calls for daily data. Daniel et al. (2005) constructed a goodness-of-fit test for 

the Heston model and showed that it fails to provide a statistically acceptable 

fit to data. Andersen and Bollerslev (1997) examined the intraday periodicity 

and the volatility in foreign cxchangc and equity markets, and found that several 

distinct component processes affcctcd the volatility dynamics. In other words, 

there should be more than one factor in the SV process. When the spectral 

3 



generalized method of riiornents was applied to one-factor SV models, Chacko and 

Viccira (2003) observed that the estimate of the mcan-rcvcrting rate increased 

dramatically with the sampling frequency of the observed data. They proposed 

that the volatility was a sum of several mean-reverting processes that shared 

the same long term mean and volatility, but differed in the mean-reverting rate. 

The empirical study of Alizadeh et al. (2002) documented that there were two 

dominated stochastic factors that governed the evolution of volatility, with one 

highly persistent factor and one quickly mcan-revcrtiiig factor. Chernov et al. 

(2003) also found evidence in favor of a second volatility factor. In fact, LeBaron 

(2001) has documented that two-factor SV models can produce the kurtosis, fat-

1,ailed rot urn (Jistributioii and long memory (^ffcct that is observable in many 

financial time series. 

Recently, rrmlti-factor SV (MSV) models have generated attention from the 

option pricing literature. Duffie et al. (2000) analyzed option pricing for affine 

jump diffusions which include multi-factor affine volatility models as a special 

case. Van der Ploeg et al. (2003) attempted to estimate the multi-factor affine 

SV option pricing models with a state space approach. Fouque et al. (2003b) pro-

posed a multiscale volatility model that was based on the suggestion of Alizadeh 

et al. (2002) and others, and managed to calibrate all effective parameters from 

volatility smiles. They also obtained an analytic approximation of a European 

call option as the sum of the BS formula and the Greek correction term. The 

Greek correction term is a combination of the gamma, delta-gamma, vega, and 
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delta-vega of the option. 

This thesis combines the aforementioned indispensable features of financial as-

sets and investigates the valuation of options when the underlying asset follows a 

rnean-reverting lognormal process with two different stochastic volatility models. 

In the first ease, we consider a one factor SV model consistent with the Heston 

(1993) approach and develop a unified option pricing framework. The proposed 

model enables option prices to be simultaneously consistent with observed future 

prices and the volatility smile of the option market. Closed-form solutions for 

vanilla, call and put options are derived by means of Fourier transform. A nu-

merical method based on a bivariate trinomial lattice approach is constructed to 

value path-dcpcndcnt options, such as barrier and American options, using the 

proposed model. Numerical examples show that our model can generate realis-

tic volatility smile and the numerical method offers an efficient computation for 

exotic option prices. 

The proposed model is flexible enough for a. financial analyst to perform sce-

nario analysis with it. For instance, a currency option trader who is concerned 

about the impact of central bank intervention on option prices can examine the 

sensitivity of the option price to the change in mean-reversion speed. To allow 

seasonal volatility in temperature derivative pricing, the mean level of the volatil-

ity proccss can be postulated to be a timc-dcpcndcnt periodic function. In such 

a situation, the closed-form solutions for vanilla call and put options are still 

available. 
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A study close!}' related to this is that by Deng (1999), who presents a general 

road map for energy derivative pricing with mean reversion, jumps and spikes. 

As his model is very general, no closed-form solution can be obtained, even for 

vanilla options and the characteristics function, and all of the calculations should 

resort to numerical methods on integral differential equations. This thesis in-

troduce the mean-reverting underlying process with the Heston (1993) volatility 

model so that closed-form solutions for vanilla options become possible. This 

greatly rcduces the computational time for calibrating model parameters, retains 

analytical tractabilit.y and captures the two important features of financial as-

sets at once. Moreover, the proposed trinomial lattice approach adds negligible 

computational burden compared to the existing two-dimensional trinomial latticc 

approaches. 

In the second case, the evolution of stochastic volatility is driven by the afore-

mentioned two dominated stochastic factors, with one highly persistent factor 

and one quickly mean-reverting factor. Semi-analystical pricing formulas for Eu-

ropean option is derived by means of multiscale asymptotic techniques. This the-

sis contributes the literature in that asymptotic approximation and its accuracy 

to prices of European options under the two-factor SV model and mean-reverting 

logriornial uiiderlying process is derived and shown. 

The rest of this thesis is organized as follows. Chapter 2 reviews the mean 

reverting model, volatility smile and SV models. A brief introduction on the 

multiscale stochastic volatility model of Fouque et al. (2003b) is also given. 
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Chapter 3 presents the proposed mean reversion model with the Heston stochastic 

volatility, examines the corresponding distributional properties, and derives the 

characteristic function of the log-asset value. Speriafically, a closed-form solution 

is derived for general European options by means of Fourier transform. The 

effect of the proposed model to the implied volatility smile is reported. We also 

establish the two-dimensional trinomial lattice approach to valuing options with 

path-dependent features. Chapter 4 gives details of the multiscale SV model for 

a mean-reverting underlying asset. Specifically, the partial difFcrentia.l equation 

(PDE) is obtained for a European option. An asymptotic solution to the PDE 

is then established by means of singular perturbation technique of Fouqiie et 

0.1 (2003b). The accuracy of the analytic approximation is also investigated. 

Chapter 5 concludes the, thesis, 
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Chapter 2 

Literature Review 

III this chapter, we introduce the mean-reverting model, volatility smile and 

stochastic volatility (SV) models. 

2.1 Mean-reverting Model 

Mean reversion is a tendency for a stochastic process to remain near, or return 

over time to a long-run average. An example of mean reversion is illustrated in 

Figure 2.1. Mean-reverting models have long been used for modeling financial 

assets. For example, interest rate appears to be pulled back to some long-run 

average level over time. When interest rate is high, mean reversion tends to 

cause it to have a negative drift; when interest rate is low, mean reversion tends 

to cause it to have a positive drift. There are compelling economic arguments in 

favour of mean reversion. When rates are high, the economy tends to slow down 

and there is low demand for funds from borrowers. As a result, rates decline. 
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Figure 2.1: example on mean reversion 

When rates are low, there tends to be a high demand for funds on the part of 

borrowers and rate tends to rise. 

Hull and White (1990) explored extensions of the Vasicek Model that provide 

an exact fit to the initial term structure. One version of the extended Vasicek 

model that they consider is 

a 

where 1 � i s the short rate at time L Wt is the Wiener process, a and a are 

constants. This is know as the Hull-White Model. It can be characterized as the 

Vasicek model with a time-dependent reversion level. 

Scientists have also had the idea of using mean-reverting models for average 

‘ temperatures, because their values should revert to deterministic mean levels that 

are trends due to global warming and obvious seasonality. Doernier arid Querel 
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(2000) propose an Ornsteiri-Uhlenbeck dynamics with a time-dependent volatility 

but only use constant parameters in their analysis of the Chicago temperature 

data. Alaton et al. (2002) employ a similar model for da,ta collected from Brornma. 

and Sweden. Benth and Saltyte-Benth (2007) propose a mean-reverting process 

with a seasonal volatility to fit temperature data. The mean-reverting model 

proposed by Benth and Salt3,te-Benth (2007) is as follows: 

dT{t) = ds{t) 一 4T(t) - s{i))di + a(L)d\V(i), 

where k is the mean-reverting speed, W{t) is the Wiener process, s(t) is a de-

terministic function modeling the trend and seasonality of temperature and a{t) 

dcscribcs the daily volatility of temperature variations. s{t) and cr'^{t) arc of the 

form 

h .h 
s(t) = a + bt + do+ aiSin(2iTT{t - /i)/365) + ^ hjCos(2jTT{t - pj)/365), 

t=i j=i 

and 

h .h 
= c + ^ CiSin{2ini/365) + ^ djcos{2j7TL/3Qb). 

i=l j=l 

Using the aforementioned model, Benth and Saltyte-Benth (2007) derive the cor-

responding explicit pricing formulas for temperature futures and options. 

In currency option pricing, one possible reason for mean reversion in the 

forcign-cxchangc market is the intervention of ccntral banks that keeps the ex-

change rates close to desired target values. Thus, the mean-re,vp,rsiori speed can 

be regarded as a measure for the magnitude of the central bank intervention. 
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Sorensen (1997) advocates ineaii reversion through the dynamics in the domestic 

and foreign term structures of interest rates. Ekvall ct al. (1997) give several 

reasons for mean-reverting exchange rates using an equilibrium model and de-

rive the closed-form solution of European options. The approach of Ekvall et al. 

(1997) has been applied to path-dependent currenc}^ option pricing by Hui and 

Lo (2006), and Wong and Lau (2008) with the model shown as follows: 

^ = Wlog F - log Ft) + (r — rf)]dt + adW,. 

where F is the conditional mean exchange rate, k, is the speed of reversion, a is 

the volatility of the exchange rate, r is the domestic interest rate, 77 is the foreign 

interest rate, and Wt is the Wiener process. 

2.2 Volatility Smile 

Black and Scholes (1973) assume the following asset price dynamics: 

^ = (ft - q)di + adWu 

where St is the asset price at time t�Wf is the Wiener process, ji, q and o are 

constant parameters representing drift, dividend yield and volatility respectively. 

For a call option with payoff max(,SV — 0), BLack and Scholes derive the. pricing 

formula: 

VBs[t.St) = — 厂 ( 2 . 1 ) 

where d士 = h ( 綱 + ( 卜 广 " 2 ) (T - t) 
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where t is the current time, K is the strike price of the option, T is the maturity 

of the option and r is the risk free interest rate. 

In (2.1), the only parameter that is not directly observable is the volatility, 

(7. Market practitioners visually estimate it by calibrating to traded options data. 

That means they set market price to be equal to the BS price and then extract the 

volatility. The volatility obtained in this way is called the implied volatility. This 

method worked quite well in the earl)' 1980s. However, after the stock market 

crashed in Black Monday on 19 October 1987, there is an effect called volatility 

skew/smile observed in the derivatives market. 

After the market crashed, it is discovered that the implied volatility decreases 

with the moncyncss , the strike pricc over the ciin,cnt asset pricc {K/S). The 

skew effect is not compatible with the model assumption that the volatility is a 

constant. 

Rubinstein (1994) suggests that the reason for this effect may be of "crashopho-

bia", the awareness of stock crash like the Black Monday. This results in the 

market practitioners believe that returns should not follow a normal distribution, 

rather a distribution that hcos heavier tails. Therefore two classes of models are 

proposed to capture the skew effect. They are jump-diffusion models and SV 

models. In this thesis, we focus on the SV models. 
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2.3 Stochastic Volatility Model 

Stochastic volatility model is similar to the Black-Scholes model, except that the 

volatility is driven by stochastic variable(s). In 1987, Hull and White (1987) 

introduce the asset price dynamics with a stochastic volatility. They model the 

instantaneous variance as a Geometric Brownian Motion that is independent to 

the asset return arid derive the analytical solution for European options. Stein 

and Stein (1991) view the volatility itself as a mean-reverting process. Mean 

reverting process is a process that is pulled backed to the long-run average over 

time. They obtained an analytical solution by assuming the volatility process to 

be uncorrclated with the asset dynamics. 

Heston (1993) relaxed the assumption of Stein and Stein (1991) to allow cor-

relation between assets and volatility. Then, closed form solutions are derived 

for bond and currency options in terms of characteristic functions. Computation 

can be implement by using numerical Fourier inversion. 

Fouque et al. (2000) examine the S & P 500 option data and discover that one 

factor governing the volatility follows a fast mean-reverting process. It means that 

the mean-reverting rate is high. They model the volatility as a positive function 

with a latent factor, which follows a fast-mean reverting process. They perform 

perturbation techniques to obtain European and American option prices. Under 

this framework, a large number of parameters can be rcduccd into two grouped 

parameters only. Moreover, the perturbation solution solely depends on these two 
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grouped parameters, the Black-Scholes price and Greeks. The most attractive 

thing of this approach is that the two grouped parameters can be calibrated with 

a simple linear regression. 

Unfortunately their approach has its weakness. Since the skewness of the 

volatility smiles varies across maturities, a simple linear regression may not be 

able to capture the whole volatility surface. Under their approach, the implied 

volatility surface implied by European options is given by 

where a； is the implied volatility and the parameters (a, a,’ b̂ ) are used to 

obtain the two grouped parameters, a is estimated from historical daily index 

value over one month horizon. After regressing 07 on log-moncyncss to maturity 

ratio (LMMR), we can calibrate a' and Also, LMMR is defined as 

Although the approach of Fouque et al. (2000) is inadequate to capture volatil-

ity surface, many researches appeared to price exotic products under this frame-

work. For instance, pricing formulas on Asian options, barrier options, lookback 

options and interest rate derivatives are derived in Fouque and Han (2003), Cot-

ton et al. (2004), Wong and Cheung (2004) and Ilhan et al. (2004). 

Empirical studies also suggest that stochastic volatility should consist of two 

factors, a slow timescale factor and a fast timescale factor. Alizeth ei al. (2002) 

perform an empirical study on stochastic volatility model to show the mentioned 

result empirically. This motivates people to explore the effect of miiltiscale SV 
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on derivatives pricing. 

2.4 Multiscale Stochastic Volatility Model 

Fouque et al. (2004) develop a framework to price European options under the 

multiscale SV environment. Similarly, the advantage of their approach is that 

grouped parameters can be calibrated easily. They model the volatility as a pos-

itive function of two latent variables, one follows a fast mean-reverting process 

and the other one follows a slow mean-reverting process. They derive analytical 

formulas for European option priccs by using perturbation tcchniquc. The so-

lution is expressed in terms of four grouped parameters, the Black-Scholes price 

and Greeks. The four grouped parameters can be calibrated through multiple 

linear regression. 

The approach of Fouque et al. (2004) outperforms that of Fouque et al. 

(2000) on capturing volatility surface. Under their approach, the volatility surface 

implied by European option data is given by 

a! - a(z) + + — /,)] + [a^ + - t)]。？"?), 
I — t 

where the parameters (a(2；), a^, b )̂ are related to the four effective grouped 

parameters. a(z) is estimated from historical daily index value over one month 

horizon. After regressing erf on time to maturity, log-moncyncss and the interac-

tion term, LMMR, we obtain a(, I f , a^ and lA This approach has been applied 

to Lookback options, dynamic fund protection and turbo warrants by Wong and 
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Chan (2007, 2008). 

In this thesis, wc not only discuss Heston type stochastic volatility model with 

mean-reverting asset dynamic but also investigate the impact of multiscale SV 

by using Fouque et al. (2004) approach. 
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Chapter 3 

The Heston Stochastic Volatility 

In this chapter, we introduces the. proposed mean reversion rnociel with stochastic 

volatility following heston model. The corresponding distributional properties is 

examined and the characteristic function of the log-asset value is also derived. A 

closed-form solution is derived for general European options by means of Fourier 

transform. The effect of the proposed model to the implied volatility smile is 

reported. We also establishes the two-dimensional trinomial lattice approach to 

valuing options with path-dependent features. 

3.1 The Model 

The proposed model assumes that the underlying asset, St, has the following 

dynamics, under risk-neutral measure, 

St = exp(Xt), 
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dXt = \9(t) - fOCt -^]dt + (3.1) 
- ZJ 一 

diJt = (a⑴ 一 bvt)dt + 

where the constant K. is the mean-reversion speed for the asset; the constant 

b is the mean-reversion speed of the volatility; the deterministic function 0{i) 

represents the equilibrium mean level of the asset against time; the function a(t) 

is the equilibrium mean level of the volatility against time; the process Vt is 

the volatility of the underlying asset, which follows the Heston (1993) stochastic 

volatility model; the constant a is the volatility coefficient of the volatility process; 

and Mzf) and M � � are correlated Wiener processes with correlation coefficient p. 

This proposed model is reduced to the Heston model if the mean-reversion speed, 

K., is equal to zero. 

3.1.1 The Characteristic Function 

Given the dynamic of the underlying asset, it is possible to obtain the charac-

teristic function for the log-asset value Xi. Denote the characteristic function 

as 

f{x,vJ-4>) = = x,v{t)=外 (3.2) 

where T > t and i = Then, the following lemma holds. 

Lemma 3.1.1. Suppose that Xt follows the dynamics in (3.1). Then, the char-

acteristic function for XT defined in (3.2) is given by 

/(.X, L\ 0) = exp [B{T - t) + C{T — t)x + D[T - i)v + i4x\, 
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where 

T RP 

B{T) = I(J) [ 议 f a{s)DiT-s)ds, 
JT-T JT-T 

C{T) = i4e一�icf), 

D{T) = + " "二 , 

� — 2 哪 ( x / W - I ) + 告否(a* + 1,6* + 1, f ) 

二 作*’"*])身了乃 x A ^ , 

. - + +云 
(X —— , 

b* = 1 - A 二 -广 , T = T - t , 
acpy/l -

and (!>(.，•,•) is the degenerated hypergeometric function. 

Proof. See Appendix , where basic properties of the degenerated hypergeometric 

function are also introduced. • 

The degenerated hypergeometric functions arc also known as the confluent 

hypergeometric functions or Whittaker functions available in the Mathema.tica. 

and Ivlatlab soft,ware packages. These mathematical functions are widely applied 

ill mathematics, physics and engineering. In finance, these appear in, but are not 

limited to, Davydov and Linetsky (2001)，Cadenillas et al. (2007), Wong and 

Chan (2008), arid Wong and Lau (2008). 

The probability density function of the log-return can be obtained through 

inverting the Fourier transform on the characteristic function. Here, we examine 

the distributional properties of the proposed model. Figure 3.1 shows how a 
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Figure 3.1: Probability density function of the log-return over a 1-year horizon 

with different correlations. Parameter values are: k, = 10,6{L)三 4.0647, ^̂  = 

2’ a � 三 0.()l/>,cr = 0.1,t.'o = 0.01’ 5*0 = 1.3. 

positive correlation of volatility with the spot return creates a fat right tail and 

a thin left tail distribution of the log-return. As a positive correlation results 

in high variance when the spot asset rises, and this fattens the right tail of the 

density function. That effect is consistent with the Hoston (1993) model, which 

only considers geometric Brownian motion for the underlying asset. 

Figure 3.2 shows how the mean-reversion rate of the underlying asset pushes 

the distribution more towards the equilibrium mean level 9{t). If we interpret 

the underlying asset as an exchange rate, then the mean-reversion rate can be 

regarded as an indicator of the magnitude of central bank intervention, which 

drives the exchange rate back to the level specified by the central bank. Thus, 

an increase in the magnitude of central bank intervention on the exchange rate 

results in a deer ease of the variance of the log-return. 
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Figure 3.2: Probability density function for different values of k： Parameter values 

are: 0{1)三 k. lii(1.5), f) 二— 3.33，a⑴=0.16b,a = 0.04, VQ = 0.18； p = 0.9, So = 1.3. 

Figure 3.3 shows how the mean-reversion rate of the volatility process affects 

the log-return distribution. As the equilibrium variance level is lower than cur-

rent variance in our example, a large value of b quickly pushes the variance to the 

equilibrium variance level and hence makes both tails thin. However, if the equi-

librium variance level is higher than the realized variance, then the distribution 

should have a fatter tail. 

As pointed out by Heston (1993) and many others, the characteristic function 

is not only useful for examining distributional properties but also for deriving 

formulas for standard derivative products. An obvious application is to derive a 

closed-form solution for forward (future) prices. 

Under the risk-netrual dynamics (3.1), a forward price of the underlying asset 
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Figure 3.3: Probability density function for different values of b. Parameter values 

are: 6 * � = 4 . 0 6 4 7 , K = 1 0 , a � 三 0.166，a = 0.04,”o = 0.18,,) = 0.9, So = 1.3. 
ST with maturity T is given by 

where J{x, v, /-； (f)) is defined in (3.2). Lemma 3.1.1 immediately gives the follow-

ing-

Corollary 3.1.1. The forward price of an asset following MRSV (3.1) is given 

by, 

FRIT) = exp [BF{T) + CF(T)X + Dr(r)v + r ] , 
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where x = lu S, 丁 = T — t) 

Br{r) = I [ a(s)Dp{T — s)ds� 
JT-T JT-T 

Cpir ) = e — - 1, 

/ M t ) = 家 ” + , … 二 ( T 二 M /， 
- i m + kJi y- My)dy 

“ ( � 2 明 + P ) 少 K + 壳 ( i ) ( � * + 1 ’ + 1 , x^) 
糊 = 7 ^ a ^ J f . t ) , 

(aM,’"X^) o小- 1 

Let us imagine a situation in which the term structure of forward (future) 

prices is observed at time t. In practice, it is often useful to express the char-

acteristic function in terms of the observed term structure of forward prices. 

More prcciscly, wc would like to calibrate the characteristic function to observed 

forward prices. This is important for deriving option pricing fonnula.s that a.re 

consistent with the observed forward prices in the next section. 

Wc now carry out the super-calibration by directly expressing the character-

istic function in terms of observed market forward (future) prices. There is a 

common term in B{T) of Lemma 3.1.1 and BP{T) of Corollary 3.1.1, which is 

JT E � S � E - 町 = INIFRIT)) 一 CV(T):r — DP{T)V - X — CL(S)DP(T — s)ds. 

Substituting it into Lemma, 3.1.1, we obtain the following proposition. 

Proposit ion 3.1.1. If the underlying asset, follows the MRSV process (3.1), then 

the characteristic function calibrated to the term structure of future prices is given 
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by 

fix, V, t- Frit)) = Fjit)坤 exp T) + AD{t, T)v], 

where 

* 丁 

A 卯 ’ T) = jt a{s)AD{s,T)ds, 

二 D(T) - Z0D厂(T), 

with T 二 T - I, D{T) defined in Lemma. 3.1.1, and DP[T) defined in Corollary 

3.1.1. 

3.2 European Option Pricing 

Once the characteristic function is found, European options can be valued using 

Fourier inversion. C a n and Mad an (1999) advocate the Fast Fourier Transform 

(FFT) to compute vanilla call and put; options based on the characteristic function 

of the log-asset value. Lewis (2001) presents a method to compute European 

options with arbitrary payoff functions. This section demonstrates how these 

methods can be applied to our ease, and it also examines the shape of the Black-

Scholes implied volatilities given by the proposed model. We attempt to show 

numerically that the proposed model not only fits the term structure of future 

prices but also generates a realistic volatility smile consistent with the market. 
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3.2.1 Plain Vanilla Options 

The plain vanilla call option has the payoff: 

— K , 0)， 

where K is the strike price and T is the option's maturity. Let k denote the 

log of the strike price A", 6t(/c) be the desired value of a T-inaturity call option 

with strike exp(/c), and qris) be the risk-neutral density of the log-asset price 

ST = In ST-

Following Carr arid Madan (1999), the modified call price cxik) is defined by: 

Ct(A:) = exp(a/c)CV(A;), for some constant a > 0， 

where CV(/r) = J ^ — e^)qT(s)ds. As CV(fc) is not square integrable over 

(—00,00), the introduction of a (lamping factor exp{ak) aims at removing this 

problem. This makes the Fourier transform of crik) exist: 

where f is the characteristic function defined in Proposition 3.1.1. 

Call priccs can then be numerically obtained by using the inverse transform: 

p-ak I'oo p-ctk 广 00 
CAk) = V - / e-妙Mm = — / (3.4) 

^TT ./-OO TT JQ 

More prcciscly, the call price is determined by substituting (3.3) into (3.4) and 

performing the required integration. Integration (3.4) is a direct Fourier trans-

form and lends itself to an application of the FFT. 
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Using the Trapezoid rule for the integral in (3.4) and setting ( j 二 ”(J — 1), 

the value of C(k) is approximated as 

p-ak -ak ^ 
Crik) ^ — ( M � 1 + e-秘MMri) + — E 广 � " ^ " V . ’ r ( 3 . 5 ) 

‘ J = 2 

The FFT returns N values of k for a regular spacing size of A where lofj^N G N. 

The FFT requires that Ar/ 二 努.Hence, the values of /c's are: 

ku = -h + X(u - 1), for u = 1 , T V , (3.6) 

which corresponds to log strike prices ranging from -h to b, where 6 = 学 . 

Substituting (3.6) into (3.5) yields 

厂 ak�, N 
Criku) ^ - ^ 咖(•^-”("-”e爛)V^rte.h. (3.7) 

TT ^ 

The FFT is an efficient algorithm for computing the sum: 

N 

w(k) = ^ e - . 增 ( 卜 f o r A— 1 , . . . , /V, 

and produces call prices efficiently and accurately. The major advantage of the 

approach of Carr and Madaii (1999) is that it produces call prices for N different-

strike prices at once. Thus, it facilitates the pracitcal use of calibrating the model 

to the implied volatilities, which are quoted against strike prices. 

It would be interesting to see the performance of FFT implemented to our 

model. Our numerical example uses 77 = 0.25 and N = 128’ which lead to the log 

strike price space of A = 87t/128. The damping coefficient is set at q;=1.5. Other 

parameter values are: 0 = 4.0339, n = 10, a = 0.5328, b = 3.33, a = 0.04, p = 

26 



Strike Pricc FFT Monte Carlo % Diff. 

0.3747 1.0661 1.0658 0.028 

0.4559 0.9888 0.9889 -0.01 

0.5549 0.8947 0.8958 -0.12 

0.6752 0.7802 0.7798 0.05 

0.8217 0.6409 0.6413 -0.06 

1 0.4713 0.4719 -0.12 

1.2170 0.2653 0.2660 -0.26 

1.4810 0.0578 0.0583 -0.86 

1.8023 0.0011 0.0011 0.94 

Table 3.1: Call option prices: FFT vs. Monte Carlo. 

0.9, r = 0.05, So 二 1.3, i)o = 0.18, T 二 1 ， = 1.4954. Wc compute the 1 

3^ear maturity call options by FFT and compare the results with Monte Carlo 

simulation with 50,000 sample paths. 

The FFT takes around 9 seconds to producc 128 option prices corresponding 

to different strike prices. The Monte Carlo simulation takes around 50 seconds 

for each option price. Table 3.1 compares their pricing accuracy. It can be seen 

that the absolute percentage difference in prices are less than 1% for all cases. If 

we regard the Monte Carlo price as the benchmark, then this numerical example 
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confirms that our analytical solution is correct and the FFT is very accurate and 

efficient. 

3.2.2 Implied Volatility 

0,81 . 

r \ _ 
\ \ k=0.05 \ 

k=0 

°-0.5 0 0.5 Strike/Fjj (in log-scale) 

Figure 3.4: Implied volatility for different values of k. Parameters are 9 = 

/^ln(1.2),6= l , a 三 a = 0.35,7�= = 0’'i;o = 0.152, S"�= 1. 

The accurate FFT option pricing framework enables us to further investigate 

the volatility smile implied by the proposed model. Figure 3.4 shows that the 

left-tail skewness of the volatility smile increases with K,. Consider the case of 

an exchange rate. If the mean-reversion rate K, represents the forcc of central 

bank intervention, then the proposed model implies that the higher the left-tail 

skewness, the more that the market expects the central bank to intervene. When 

K, = 0, it rcdiiccs to the Hcston model in which a symmetric smile is observed. 
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Figure 3.5: Implied volality for different values of 9. Other parameters are: 

K, = 0.005,6 = l , a 三 0.22’ CT = 0.35, r = 0,p = 0,vo = 0.152,.9o = 1. 

Figure 3.5 showy the effect of the long-term mean level, 6, to the volatility 

smile. Although the increase in 0 leads to an increase in the left-tail of the smile, 

the ofi'oct is much less than that of Hi. The overall shape of the smile does not 

change significantly. 

Figure 3.6 shows that a positive correlation raises the right tail and shifts 

the smile to the left; whereas a negative correlation lowers the right tail, raises 

the left tail and shifts the curve to the right. This feature is consistent with the 

Heston model without mean reversion in asset, values. Thus, the proposed model 

maintains some properties of the Heston model. We stress, however, that our 

model enables option prices to fit. the forward piicc term structure cxactly. 
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Figure 3.6: Implied volality for different values of p. Other parameters are 9 三 

0, K. = 0.005,6 = 1’ a 三 0.22, ^ = o . 3 5 , r = 0, o = O.IS^, SQ = 1. 

3.2.3 Other Payoff Functions 

Lewis (2001) shows that the characteristic function can be used to price European 

options with any payoff function. Denote IU{XT) to be the payoff function, where 

XT = log(.SV). Assume that, V)(XT) is bounded for \XT\ < oo and its generalized 

Fourier transform 
roo 
/ exp {'lzxt) w (x t ) dx-T 

J —DO 

exists and is regular. Then, the option value is given by: 

p-rT riu+oo 
y{So) = — / f{xo.vA-z)w{z)dz, 

Z 兀 Jiy-oo 

where XQ = log(60) and is the Fourier transform of the payoff function: 

poo 

w(z) = / ex\:){izxT)w{xT)dxT-
. / - o o 
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Consider the call payoff W{XT) = (e打—/0+ 朋 an example. Simple integration 

shows that w { z ) = - a n d iD(z) exists in the region \Im.{z)\ > 1. Oncc the 

Fouri(ir transform of the payoff function is available, the option price can be 

iiimierically obtained via a Fourier inversion algorithm such as FFT. Although 

the Lewis (2001) approach is more flexible for different payoffs, the approach of 

CaiT and Mad an (1999) can give many useful plain vanilla option prices at once. 

These two approaches serve different needs. 

3.3 Trinomial Tree: Exotic Option Pricing 

It is most interesting to apply the proposed model to pricing exotic options. The 

closcd-form solutions for European options mainly serve to calibrate the model 

parameters. The calibrated parameters are then used to price exotic options 

or structure products for which closed-form pricing formulas are impossible or 

not readily available. Cert.ainly, Monte Carlo simulation is always a possible 

alternative valuation approach given the set of calibrated parameters and the 

stochaytic differential equation (3.1). However, simulation is less efficient than a 

latticc method if the number of factors is small, Our model has only two factors 

and hence the corresponding tree method is worth considering. 

The proposed tree method involves super-calibration to the term structure of 

forward (futures) prices. Similar to Hull and White (1993), we define a deter-

ministic function g such that dg = — Kg{t)]dt and ^(0) = XQ. Then, a. new 
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stochastic variable XI is introduced such that X* = Xt — g{t), where the process 

of Xt is given in (3.1). It is easy to vcrifj•‘ that the proccss of X* is given by 

dX； = -/cA7 - dt + s/FtdWfl, X； = 0, 

dvt = {a - bvt)dt + (3.8) 

Hilliard and Schwartz (1996) propose a combining tree method for a lognormal 

process with the volatility following an 0rnstein-Uhlenbeck process: 

d.u.T = (a — but)dL + auUfdW}^\ UQ = VQ, 

where the constant ay, is the volatility of volatility. As we consider a model 

consistent with that of Heston (1993)，the volatility Vt follows a CIR process. 

Thus, the proccss of i)t can be approximated by that of Ui by niathcing the first 

two moments. A simple calculation shows that 

v a r ( i 卞 ) = ！ ^ ( e - 以 ， — e - 肌 ’ ) + 一 6 - 辽 

v a r (财） = u o ( e ( � - 寧 - e " - ) - ^^ ‘ 一 測 ) + 如”。） 

卜 - T ) ^ b K - b ) + • 卜 6 ) ) . 

The value of a j can then be solved from the equation var(WT) = var('ar), with any 

numerical root finding procedure. Once the a'̂  is obtained, we have the following 

dynamics approximating (3.8): 

dX* = -k,A7 - ^ut dt + 
/MI 

dut = (a - but)dt + auUtdWl;^\ (3.9) 

The proposed trinomial tree method is based on this approximate dynamic. 
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3.3.1 Sub-tree for the volatility 

According to Hilliard and Schwartz (1996), let y = ^ Inzi, which follows a unit 

volatility process: 

令)也 ⑴ (3.10) 
“ V cr̂ ey-" 2 ) t. � ‘ 

A trinomial tree is coiitructed for y. Consider the discrete time points 0 =艺o < 

/-i < ... < = T, where the time step size A/,j = U — is not necessarily equal 

for each i. Denote the tree nodes by (i, j ) , where the time index i ranges from 0 

to N and the y-state index j ranges from some ji to some ji, and hence yjj as 

the proccss value at the node (i, j ) . Noticc that yo,o = (ln".o)/(Ju is known. Wc 

then set = ；</o,o + j細 i � w h e r e Ay^ = y/3Ati. 

At the node the y i j can move to yi+i,k or yi+i,k-i with probabil-

ities , p^f and j / f , respectively. From (3.10), it is easy to deduce the expected 

value of y{ti+i) conditional on y{ti) and the corresponding conditional variance: 

/ Q, — bey'-^^" au\ 
E [y{ti \-i)\y{ti)] ：二 Vij + Mi,j = Vuj + ' 作 , 丨 ， — - f 八亡iH 1， 

var [y{ti+i)\y(ti)] := K j = ^U+i-

Matching the first two moments between the diffusion process and the branching 

process gives 

< r 2 I 

— 4 . a + a -J — _ fy J J — 1 一 n^d — ri^'j Pu — 2 ，厂d — , — Pu Pd , 

where 

j^Vi + Mj- - /cAy^+i a = . 

•yi+i 
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The central node is thus the k-th node at time t-i+i, where k == roimd(】&:+:;，.•?). 

This guarantees that all the branching probabilities arc non-ncgativc. The tree 

for the process of Ut is then obtained as Uf — e"'�". Thus, the value of Ut is always 

positive even though the value of y can reach negative. 

3.3.2 Sub-tree for the asset 

The tree for X* is considered next. Let H{X*,iit) = X*j^/ut. Applying Ito's 

lemma on H yields, 

(IH = rnndt + andWH, 

where 

(h 3al au-'\ ^ 1 " � � 
rriH = [2 ~ 付一 +/)〜)， 

an 二（1 - , W'^^'HdMf^) = P — dt. 
\ 2 / (7H 

We suppose for the moment that the correlation between dWn and cH'tz/i) 

zero. This should not be true because the constant p cannot make the correlation 

P一二"2 zero for all time points. However, the tree incorporating the correlation 

that will be developed in the next subsection requires a tree with zero correlation 

•as an input. 

Consider the transformation: 

Q = A i n / ' l ^ ^ / Z - p + crn) . (3.11) 
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All application of Ito's lemma shows that 

dQ = F2(U., Q)dt + dWH, (3.12) 

where 

= — + n - ^ ^ ^ H = i • 
印 2 a 片“ （1 一 , J / + (I � / / ) 2 ” 

As (3.11) implies that 

H = F,(Q) = a：' [2p 一（ 1 — + , 

we have 

F2M) = ^ )- 5——• 

Hcnce, Q follows a unit volatility process. The corresponding value of X* is then 

given by the inverse transform: 

= ?x^Fi(g). (3.13) 

Given the discrete time points 0 = f-o < t] < … < IN 二 T � t h e tree for the 

process of Q is investigated. Other than the time space aiici the y-space, the tree 

should be expanded to incorporate the Q-space. Hence, the tree nodes can be 

labeled as £) where the additional Q-space index i ranges from some ^ to 

some Ci. Note that the ranges for i and j have been specified early. Hence, we have 

Qi,j,e representing the value of Q at the node (i, j , i) where = + 

The initial value Qo.o.o is a known quantity and AQ^ = The conditional 
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mean and variance of Q{ti+i) can be easily deduced from (3.12): 

E lQ{U+i)\Q(U),u{ti)] ：= Qi丄e + M j / 二 Qi,j,e + [尸2(叫丄£ , Qij,e)]Ati+i 

var [ 卯 � � ] = ^U+i (3.14) 

From time point t?: to time point there are nine possibilities for the value 

of Q at time Li+i given that Q 二 Qi’j.，f at time t � . Specifically, the value of 

can move up to Qi+i^k+i^n+i or or with total probability qi;̂ '̂ , 

or move down to Qi+i,fc+i,n-i or Qi+i,k,n-i or Qi+i,fc-i,n-i with total probability 

( f f ' ^ or move to Qt+i,k+i,n or Qi+i^n or Qi+i,k-i,n with total probability q'^'^. 

These probabilities can be derived by matching the mean and variance between 

the diffusion process (3.12) with the corresponding branching process. A simple 

calculation, similar to that of Hull and White (1993), shows that 

where 

In this two-dimensional trinomial tree, there arc nine branches emanating from 

the (z, j , i) node. The probabilities associated with the nine branches are: 

Q-Move 

Lower Middle Upper 

Upper p j ; � 

n-Move Middle pi 胁' 

Lower p^fcff^' P：^^' 
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3.3.3 Non-zero Correlation 

As the tree for X ; developed in the last subsection assumes zero correlation 

bel.ween dWu and this subsection relaxes tiiat assumption. We recall that 

= dt = P 々 测 ,dt. (3.15) 

Thus, the correlation at each node depends on the value of Q at that node and 

the correlation is non-zero in general for a constant p. 

Similar U) Hilliard and Schwartz (1996), wc define 

,� 二 P- ^(^uF八Qi,j�e) 

(1 - P 〜 F i ( Q 说 ) + 

which measures the correlation coefficient between AWniti+i) and A W � 

at the node ( i , j�£) . If T\j,e is indeed zero, then no adjustment is required and the 

tree developed in the last subsection is applied. 

Q-Move 

Lower Middle Upper 

Upper - e p^qi^i'' - 4e p^qtf'^ + 5c 

?/-Move Middle - Ae + Se — 4s 

Lower p'^Wf + Se 一 As p^C'^ _ e 

Table 3.2: Adjustment with positive correlation 

If the correlation ri�j�亿 is positive, then the adjustment coiTesponding to Table 

3.2 can be made to obtain a set of transition probabilities, p{i + 1,/c,n|z, j , 
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Q-Movc 

Lower Middle Upper 

Upper pifq'f'^ + 5£ p I ; 喻 � - £ 

u-Move Middle j^cff'^ - Ac p + 8£ f^lqif^^ - Ae 

Lower i ^ q y � ' - e f f q ^ ' ' - As 彻、[+ 

Table 3.3: Adjustment with negative correlation 

which represents the probability of moving from the node £) to the node 

{i + 1, A'；, n). This adjustment does not change the means and variances of the 

unconditional movements in u and Q. Alternatively, if is negative, then the 

adjustinent corresponding to Table 3.3 is applied to the transition probabilities. 

In both Tables 3.2 and 3.3, e = rij^i/36. Once the two-dimensional tree of (Q/a) 

is available, it can be transformed back to that of (X*,u) by using the inverse 

transformation (3.13). 

3.3.4 Calibration to Future prices 

Suppose that future priccs with maturities tj arc observed at 力==0. Wc now 

explain how gi = g(ii) can be calibrated to the observed future prices. Note that 

go = XQ = In .9o. The future price with maturity 1�has the expression 

FU = E{ST,\ ^o) = E [ e � i + 叫 , (3.16) 
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where Tt is the market information (or filtration) accAimulated up to time t. 

Formula (3.16) implies that 

/ 1 r 1 \ 
g-i = In — B e'Xt'i � , (3.17) 

L ” 

where the expectation in right-hand side can be effectively computed with the 

{X*,u)-tTee for all i = 1, • • • , N. After ^i, • • •,仏v have been calculated from 

(3.17), the {X, ?/)-tree is established by setting Xjj^^ = X*j f + gi with the tran-

sition probabilities p{i + 1, k, t) obtained in the last subsection. 

3.3.5 Numerical Examples 

The accuracy and efficiency of the proposed lattice approach are examined using 

numerical examples. As the numerical scheme is designed for pricing exotic op-

tions with no closcd-form solution available, the examples use barrier and Amer-

ican options. The prices obtained from Monte Carlo simulation are regarded as 

benchmarks for the accuracy of the proposed scheme, where the simulation is 

based on the dynamics (3.1). This simulation of barrier options is clear but that 

of American options requires the least-squared regression for estimating the con-

ditional expectation of the option value of continuation. The regression is based 

on an order three polynomial. The Monte Carlo simulation uses 50,000 sample 

paths and a time-step of 1/500. 

The numerical results are displayed in Table 3,4. The percentage differences 

between the latticc approach and the simulation arc consistently less than 1% 
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for both barrier and American options. As the lattice approach is constructed 

from the approximate processes (3.9), the numerical results indicate that the ap-

proximation does not lead to significant error for path-dependent option pricing. 

However, the lattice approach is much more efficient than the Monte Carlo simu-

lation because it takes less than 18 seconds to compute an option price, regardless 

of whether it is a barrier or an American option, but the Monte Carlo simulation 

takes more than 2 minutes. Although the simulation may be improved by vising 

some variance reduction techniques, it is still impossible to price an exotic option 

within 20 seconds with the MRSV model. Another nice feature of the lattice 

approach is that it allows calibration to future prices within the tree building 

procedure. 
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Down and Out Call Option American Call Option 

Strike Monte Carlo LaUicc Abs DilT. Monl,c Carlo Latticc Abs DifT. 

0.2 0.7903 0.7854 0.62% 0.9416 0,9417 0.01% 

0.3 0.6908 0.6866 0.61% 0.8417 0.8417 0.06% 

0.4 0.591G 0.5877 0.66% 0.7417 0.7437 0.27% 

0.5 0.4920 0.4927 0.14% 0.6425 0.6417 0.12% 

0.6 0.3923 0,3901 0.56% 0.5425 0.5417 0.15% 

0.7 0.2931 0.2913 0.61% 0.4416 0.4417 0.03% 

0.8 0.1943 0.1928 0.77% 0.3417 0.3418 0.02% 

Table 3.4: Option price comparison between simulation and proposed trinomial 

tree method. The value of the barrier is set to 0.7 for the barrier option. The 

parameters are 沒=0, k.= 10, a=2, 6二 10’（7=0.2’ a.“=0.445，p=0.8, r=0, ‘9o二 1, 

？,0=0.2 and T二 1. 
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Chapter 4 

Multiscale Stochastic Volatility 

In this chapter, we detail the multiscale SV model with mean reversion under-

lying process. Specifically, we derive the partial differential equation (PDE) for 

European option. An asymptotic solution to the PDE is then established by 

means of singular perturbation technique of Foiique eL al. (2003b). The accuracy 

of the analytic approximation is presented in the last part. 

4.1 Model Settings 

Let Ft denote the underlying exchange rate at time t. Under the risk neutral 

probability measure, 

^ = [/c(log F - log F,) + r - 77].//. + / ( n , 
卜t 

dYt = (4.1) 

dZ, = [5c{Z,) - ^r6g{Z,)V{Yu Zt)] dt + V~Sg{Z,)dVVf\ 
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where m, e, aiici 6 are constant parameters, r is the domestic interest rate, 77 

is the foreign interest rate, M//1)’ and H f ) 

arc Wiener processes, / () , , Z) 

is a positive function representing the volatility of the stock and A arid P are the 

functional forms reflect the risk-neutral measure that used by the market. 

The first factor Yt represents fast scale volatility factor driving the volatility. 

It is a. fast mean reverting diffusion process corresponding to a Gaussian Ornstein-

Uhlenbeck process, j is the rate of mean reversion of this process, with 6 > 0 

being a small parameter which corresponds to the time scale of this process. 

The second factor Zt driving the volatility is a slowly varying diffusion pro-

cess. When we explicitly specify the functions: c(Z<) = 777,2 — and = 

wc rccognizc that h is the mean-reverting rate for the proccss of Z, . How-

ever, we will see shortly that the functional forms of c(Z) and g(Z) do not affect 

the structure of option pricing formulas if both 6 and e. are. small parameters. 

This assumption is supported by empirical evidence that Alizadeh et al. (2002) 

observed 6 � 0 . 0 5 and Fouque et al. (2000) obtained e �0.005. When both e and 

h are small, the stochastic variable Yt stands for a fast mean-reverting factor and 

the stochastic variable Zt is a persistent factor. We allow a general correlation 
structure among three Wiener processes VV"/�), and wj;'̂ ^ so that 

( \ ( \ 
V|/(o) \ 1 0 0 

M / � 二 Pi y r ^ 0 W, , (4.2) 

� M / � y y p2 pu \ / l - P 2 - P 1 2 J 

where W t is a standard independent three-dimensional Brownian motion, and 
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the constant coefficients pi, p2, and pi2 satisfy \pi\ < 1 and + 苑 < 1. 

4.2 Pricing 

Let F, y, z) be the price function for a European call option. The corre-

sponding payoff function is denoted as H{F) = F - K. Denote be the 

expectation with respect to the risk-neutral measure described above, the price 

of a European option with payoff function H (F) is given by: 

P , ' , F\ y � = e-八T-t�H[FT) = = y, Z, = z^ ’ 

where Q is the risk-neutral measure under which the processes of (4.1) are de-

fined. By application of the. Feynman-Kac formula, we obtain F, ？/, z) as 

the solution of the partial differential equation (PDE) with a terminal boundary 

value problem 

乙6,<5 pe,6 = 0 , 0 < < T , 

R气T,LT,y,z) 二 I N L T � = eLTe kT (4.3) 

where 

LT = E^^- In FT, 0 = /clogF + r - r ； 

= -Co + -^Ci + £2 + V6M1 + 6M2 + \ e y/e. V c 
产 , \D 2 D^ 
乙 。 = — + ' 伊 

Q2 Q 
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- - - l A 嫌 备 一 - ( 4 . 4 ) 
F) F)2 

M, = -y{z)r{y^ z ) - + P29{z)!{y. 

从2 = 石 + ? ⑷ 寂 ’ 

/ J \ 
-Ms = P\P2 + P\2\J^ - p\ 

\ V 乂 dydz 

The governing equation is the consequence of the Fcynman-Kac formula that is 

followed by the transformation of variables. 

In this section, we give a formal derivation of the price approximation by 

solving (4.3) in asymptotic expansions when 5 and e are small independent pa-

rameters. Consider the pricing formula of the form 

P = Po + V^Pi.o + v^^o.i + + e/̂ 2,0 + + • • • , (4.5) 

where (or Po,o) and P i j arc functions of [t, L, y, z) that will be solved in 

succession until certain accuracy is attained. 

We insert the expansion (4.5) in the equation (4.3) and find that equations 

associated with the first two leading terms which are respectively 0 ( l / e ) terms 

and (9(1 / ^ e ) terms. We end up with 

CoPo = 0’ 

CoPi,o + CiPo = 0. 

These are two ordinary differential equations in y. PQ can be confirmed to be a. 

function that is independent of y and Pi,o is also a function that is independent 
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of y. Contimiing the process, we obtain the 0{1) term as 

C0P2.Q + + £2^0 = 0=> 尸2,0 + C2P0 = 0. (4.6) 

Given the function PQ�equation (4.6) is a Poisson equation on 尸2,0. There is a 

unique solution at most polynomially going to infinity if 

Ey{C2Po) = 0, y �M{xn�iJ% 

where the distribution of y is the invariant distribution of the operator CQ. This 

fact is known as the Fredholm solvability for Poisson equations. As PQ is a function 

that is independent of y, the expectation only t.a.kes effect on the operator L�i 

through the function / (y , 2). Tims, 

EyifiiPo) = = 0<t<T, (4.7) 

PO{T,LT) = H[LT)： 

A more explicit expression of (4.7) can be obtained through denoting 

E y { f ( y , z f ) = a{z)\ (4.8) 

It follows that the ^^(£2) in (4.7) is the following operator with a volatility a{z) 

that is independent of y. Hence, we define 

G S = 聊 = I + 一 基 + 卜 - - l - R . . (4.9) 

In fact, the parameter a(z) is the short-term realized volatility of the underlying 

value because the distribution of y is the invariant distribution of Yt, with Zt 
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being fixed. An explanation of this interpretation is provided by Fouqiie et al. 

(2003b). This observation together with (4.7) leads to the following conscqucncc. 

The zeroth order approximation for the call option is the pricing formula of 

that option corresponding to operator in (4.9) with a short-term volatility, 

o(z), defined in (4.8). 

1)0 = IAT八T-t�N� 一 I<e-�T-t�N(^d2)� (4.10) 

where 

— 2k � ）’ 

d, = + d2 = ch —.u, 
V 

In the following, we use perturbation methods to derive the first order cor-

rection term by separating it into IAVO parts: fast timesale and slow iimescale 

asymptotics. The fast (slow) timescale asymptotic solution corresponds to the 

correction term due to the fast (slow) timescale factor. 

Consider O(v^) terms in (4.3), 

that lead to the result 

Ey{CiP2,o) + EyiC.) Pi,0 = 0, 

after applying the Fredholm solvability and recognizing f\’o to be independent 

of y. To solve J\�Q from the above equation, we express /)2’o in terms of PQ by 
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equation (4.6) to yield 

ChsPi.o = Ey{£iC^'C2Po). 0 < i < r , (4.11) 

Pi,o(T, L t . z ) = 0. 

The right-hand side of (4.11) is a known quantity as PQ has been obtained by 

the early steps. Therefore, the PDE (4.11) becomes a equation for European call 

options with a source term — the function in the right hand side of (4.11). 

By recognizing that /̂ 2尸O = {^2 一 Ey (£2)) PQ SO that 

C p / f a , 矛 - 对 力 y e 虹 行 乃 2 〉 

Let 4>(y, z) be the solution of the ODE: 

= f ( y , z f - d [ z ) \ 

As the term £2-^0 depends on y only through / (y , 2), we have 

r-lr P - 公 ^ ( J't ^ 4. 淨 \ p 

which implies that 

where 

餘-•^A樂—腿 1 刚 = 笑 ， 

V2(z) and V^i^) are effective parameters to be calibrated. It is clear that 

functions of the form, d'^Po/dU\ are homogeneous solutions to the PDE (4.11), 
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i.e., 

已:[作]-0 

Hence, the source term is actually a linear combination of homogeneous solu-

tions of (4.11). 

To obtain }\Q analytically, we solve (4.11) in closed form. 

Theorem 4.2.1. Consider the PDE: 

n 
CbsF = Y . Lt, z)., 0<t<T, 

i=l 

F(T, Lt .z) = 0, 

If •= 0 for all i — 1, 2, • • • , n, then the solution is given by 
n � f T -

F{t,Luz) = / ki{e,z)de C7,(/�L�z), 
1 J t 

A direct consequence of Theorem 4.2.1 is that 

Ŝkr — 2̂kT _ g2fct 
P u ) = - 剛 （ 3 k ‘ ^ 

T , , < 9 2 e)T - e少t d ,, ^ 
— — ( 4 . 1 2 ) 

Here also explain the necessity of transform Ft into Lt so that solution of (4.11) 

can be solved by Theorem 4.2.1. 

By collecting (9(\/^/c) terms, we have 

CoPoA = 0. 

This implies Po’i does not depend of y. Collect 0[\/IJl) terms: 

r o A . i + A P o . i + MsVb^O. 

49 



We ensure that 

A)P�’i =0， 

because /)• and f)i’o are functions that are independent of y and both operators 

of Ci and Mn involve a y differential. Thus, Pi’], also does not depend on y. 

To determine the slowscale correction term v^Po.i, collect O ( v ^ ) terms from 

equation (4.3): 

A)尸2,1 + APi. i + 广2 尸0,1 + MLPO + MSPIFI = 0. 

As Fi,i and f\’o are functions that are independent of y, the above governing 

equation is reduced to 

COP2,I + ^2PO,I + MIPO = 0, 

which is a Poisson equation on P2�\ given the functions Po,i and PQ. Applying 

Frcdholm solvability and recognizing 尸o’i to be a function independent of y, wc 

obtain a PDE for the slowscale correction term: 

= -Ey{M,)Fo： 0 < /. < T, (4.13) 

“ = 0. 

It can be shown that the source term of PDE (4.13) is: 

where 

50 



Voiz) and are effective parameters to be calibrated, and dPo/da is known as 

the vega of the option. Hencc, the first order slow timescale corrcction is related 

to the vega and delta-vega of the option. 

To solve (4.13) analytically, we connect the vega and delta-vega to homoge-

neous solutions of (4.13) so that Theorem 4.2.1 can be applied. Consider that PQ 

satisfies 

二 0. 

By differentiating both sides with respect to 厅(2)，we have 

叫 i j - n dL^ ‘ a z j 尸。. 

Therefore, the option vega is the unique solution to the following PDE: 

二 -十 -基 - e " " i ) "。， （4.15) 

u{T�L, z) = ^ . 

By verifying that satisfies the governing equation 

of (4.15), we conclude that 

dPo 一 广 _ e 2 V 2 p KT —一 QP 
二 = 、 丽 — 瓦 + （4.16) 

where Uh is a homogeneous solution, i.e., C%gUh = 0. 

Therefore, the vega is a linear combination of homogeneous solutions with 

time-dependent coefficients. The same conclusion applies to the delta-vega be-

cause the .T—differential of a homogeneous solution is also a homogeneous solution 

due to the linearity of the operator C^g in x. 
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Substituting (4.16) into (4.14) yields 

-mns-彻⑩） 
\ k J \ dL dL? / 

+ 2 酵 叫 广 e 些 〜 . 
[(f{z) '' 7f{z) dL 

By Theorem 4.2.1, we have 

Po，i = —Vo � L K w r I ) 

广 - 一) - X ( e � 抓 - e ’ a^Po 平(E权-一)-^^ D�O\ 
+ 1 ⑷（ K ' M K J I ? ) 

Using (4.16), we eliminate u^ from the above expression and obtain: 

尸(U 

= 糊 ^̂  -K 丽 K i 
2(T - t) dPo (T - t) ^^ikt.d'Po 2(T - t)丄T .t.dPo. 

斥(e盯-e奴）-去(e縦-e:淑）d'Pp 竿(e肝-e权)-^^^ d'P, 
+ k - di/ k ^ w 

- d-Pp (已⑶-ek”(e'“权-e�似）d''Po - e^'^ Pp 
+ J ^ I Z ^ ~MJ + ^ W ] 
,,,、[去(e2权-e2” -(T-加.d''Po 一 e ” 一 2(T - dP, 

= 副 H 1 丽 1 

2(T - t) dPo 
a da 

^ ( ^ f e T _ ^ — 辦 权 - e 3 ” 炉尸。学 ( e盯-E K T ) _ ^ ！ ^ 

+ “項 K 面 K 

2(e盯—eh) 尸。1 , 、 
+ 涵 ] (4.18) 
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Hence, the slow timescale asymptotic solution, Po.i, is a linear combination of 

gamma, delta-gamma, vcga, dclta-vcga, and a boundary corrcction term. 

The first order approximation for P is now clear to be 

P = + +v^Po . i , (4.19) 

where J)Q�Pi’。，and Fo,i can be found in Theorem 4.2.1, (4.12), and (4.18), re-

spectively. 

To interpret the pricing formula, we inverse the transformation to have the 

price function in terms of F instead of L and we have the following proposition. 

Propos i t ion 4.2.1. The first order approximation P for P is 

where, 

^1.0 
= 酬 F 尿 + 亚） 

� , 2 E 账 - + 1 BFO 2 e 3 拟 ’ — e � 叩 ’ - 1 .D'PO 
-叫谓 ^ + F 
,e圳T-t) - 1 d 护 /)o� 

+ 3 K W ^ ) � 

尸0,1 

2(c 町-t) 一 1) op e 零 ( T o2p 
- 2 f c + T - t - , dFo 2/c - [ T - T ) d FQ 

2{T-t)dPo 
a da 

t)-i ê fcCr t)一 1 ek(丁 t)一】 

+ V U州—~~ ~ + ^ ^ 
e專 t)_i I e寧 t)一 1 '丨 efc(T 0_i p 

I K H H ^ 

K W ^ 
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k dF3 kU dFda] 

and Pn is shown in (4.10). 

4.3 Simulat ion studies 

Wc simulate the asset, pricc proccss using a fully spccificd SV model under risk-

neutral measure: 

dFt = [/c(log F — log Ft) + r - rf}Ft.dt + eYt+ZtFtdWt
{0)\ 

dYt = [l(mi _ y t) _ dt + (4.20) 
t \ / t J yjt 

dZt = \6(m2 - ZL) - x/^^r] dt + ^6^(1¼ 

Here wc assume / ( 7 , Z) 二 e � ' + z , c{Zt) = (m2 - Zt) and g{Zt) = in (4.1) 

in our simulation. All other parameters are constants. We use a time-space of 

1/250 to generate 80,000 sample paths with the Euler method. 

Given that f ( y , z) = ey+z, it is easy to express effective parameters Vo, Vi, V2, 

V3, and a in terms of the original set of model parameters. Specifically, 

Vo =去…为+一 l 2 ) , Vi = (4.21) 

V\v'2 L � 

仏 = |"c3r+3mi + §i/i2 c3;+3m, + §t/, 2 j - = ez+rm+^ 
U\\/2 L J ' 

The regularity condition for / ( x , y) is violated with this choice of volatility func-

tion and we put ourselves in a theoretically weaker condition. Our approximation 
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is expected to performs better for a regulated volatility function. Even in this 

case, our simulation shows that this choice still offers a high quality of estima-

tion of option prices. Setting the volatility function to an exponential function is 

solely for computational convenience. 

Wc evaluate the accuracy of the price approximation for the European call 

option. We allow 6 and e to change but fix the parameters: k = 0.05%, r = 

5%, Vf = 0%,A = 0 ’ r = -0.2,7^1 = -0.8,777.2 = -1.8, z/i = 0.5, i/2 = 1.13,pi = 

P2 = —0.2, pv2 = 0,),() = - l , Z o = - l , F o - F = 100 and T = 3. Most 

parameters are used in Fouque and Han (2004). 

Ill Table 4.1, we present the simulation results with setting 6 to zero and 

varying the c. This consideration corresponds to the onc-factor SV model of 

Fouque et al. (2000) that the mean-reverting rate, 1/e, of the volatility is assumed 

to be fast. 

As the fast mean-reverting SV model is nested in our framework by setting 6 

to zero, we also examine the accuracy of our price approximation for this model. 

Monte Carlo simulation is regarded as the benchmark to compute the percentage 

error. Although both Black-Scholes price and asymptotic prices deviate from the 

benchmark option price, we see from Table 4.1 that the errors generated by the 

asymptotic approximation are smaller. Comparing with the Black-Scholes price, 

our approximation has an obvious improvement on pricing. Wc can also observe 

that the pricing error is decreasing with the value of c and () which supports the 

convergence of the model. On the other hand, the asymptotic approximation is 
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much more efficient than the Monte Carlo simulation. In fact, the Monte Carlo 

simulation takes more than 20 minutes to obtain an option pricc, whereas the 

a.syinptotic formula takes less than 1 second. 

Strike Price (K) Monte Carlo Black-Scholes price Asymptotic price 

simiila.tion (error) (error) 

f. = 0.02,5 = 0.00 

80 31.7901 31.7653(0.08%) 31.7864 (0.01%) 

90 25.5098 25.2466(1.03%) 25.2707 (0.08%) 

100 19.7487 19.6882(0.31%) 19.7155 (0.17%) 

e = 0.1,(5 = 0.00 

80 31.5903 31.8125 (0.70%) 31.7653(0.55%) 

90 25.1987 25.3006 (0.40%) 25.2466(0.19%) 

100 19.5603 19.7492 (0.97%) 19.6882(0.65%) 

Table 4.1: Fast mean-reverting SV 

We report the accuracy of the price approximation with the two-factor SV 

model in Table 4.2 where we carry out simulations with different combinations 

of 6 and e. As our asymptotic solution involves two approximation steps on the 

processes of V and Z respectively, its accuracy is expected not to be as good 

as the fast mean-reverting case. Fortunately, it turns out that the asymptotic 

approximation still provides a high quality of estimation of option price. Once 
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Strike Price {K) Monte Carlo Black-Scholes price Asymptotic price 

simulation (error) (error) 

£ = 0.02,5 = 0.02 

80 32.4396 31.7653(2.08%) 32.2932(0.45%) 

90 25.8177 25.2466(2.21%) 25.8729(0.21%) 

100 20.3592 19.6882(3.30%) 20.4181(0.29%) 

t = 0.1,5 = 0.1 

80 32.4987 31.7653(2.26%) 32.9457(1.38%) 

90 26.2629 25.2466(3.87%) 26.6470(1.40%) 

100 20.5634 19.6882(4.26%) 21.3202(3.68%) 

Table 4.2: Miiltiscale mean-reverting SV 

again, we regard the Monte Carlo simulation as the benchmark to compute the 

percentage error. 

From Table 4.2, we see that the pricing errors are no greater than 0.5% when 

the 6 is set to 0.02. Empirical studies report that <5 is of this order of magnitude. 

The BS price generates an absolute pricing error over 2% even for a small value 

of 6. In case the 6 is getting larger to reach the value of 0.1, the percentage error 

of the asymptotic formula is getting poor, whereas the BS price is getting more 

terribly poor. Therefore, the asymptotic, formula consistently outperforms the 

BS price. 
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All in all, we learn that the asymptotic formula outperforms the BS approach 

under both fast mean-reverting SV and multiscalc volatility models when underly-

ing asset follows the mean-reverting lognomial process. The asymptotic approach 

is less accurate, but still improves the BS formula, if either e or 6 is larger than 

0.1. 
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Chapter 5 

Conclusion 

This thesis has proposed a new asset, price dynamics to accommodate both mean 

reversion and stochastic volatility for many financial assets. The proposed model 

with mean-reverting underlying process and stochastic volatility following He-

ston Model has been applied to pricing European options and exotic options. 

Specifically, analytical solutions are derived for the characteristic function and 

the European options. The proposed model can fit the observed future prices 

of the underlying assets and the volatility smile within a unified framework. A 

trinomial tree lattice approach was developed to value barrier and American 

options. Numerical examples show that the lattice approach is accurate and ef-

ficient. Furthermore, Multiscale stochastic volatility model is also investigated. 

The underlying asset price is assumed to follow mean-reverting lognormal process 

with a stochastic volatility driven by two stochastic processes with one persistent, 

factor and one fast mean-reverting factor. Semi-analytical pricing formulas for 
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European option is derived by means of nmltiscale asymptotic techniques. Nu-

merical examples show that the pricc approximation is accuratc. 
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Appendix 

A Verifications 

A . l Proof of Lemma 3.1.1 

Feynirian-Kac formula gives the following PDE for the characteristic function. 

^fxx + pcTvU,, + ^Uv + Wt) — KX- + (a{t) 一 bv)f,, + f t = (I 

/ ( : rv"’T;0) = e _ . (1) 

To see this, we apply Ito Lemma, to {f(:r,y,s;(/))}i<s<T, and obtain 

f{XT,VT,T](f)) 
丁 rp 

=！(Xu Vu 力；利 + / V^/x—s(� ) + I " N / ^ W对） 

+ 乂 (^^/xx + p(^yfxv + ^ f v v + 剛 - f ^ , 工 - + (a(0 - bv)f, + f t ) (is 

Taking expectation both sides and recognizing the fact that / ( x t , vt,T; (p)= 

e",打 would then give the result. Consider an exponential affiiie form for the 

characterisitic function: 

f(x, V, /; 0) = exp (B(T) + C(T)X + D(T)V + icpx), 
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where T = T - t and B{T = 0) = C(j = 0) = D ( t = 0) = 0. Subsitutiiig it into 

(1) yields 

+ i(j> - 6D(r)) - D ' l + . x - [ - k , ( C ( t ) + - C ] + 

[e(T - T)(C(T) + I(L>) + a(L)D[T) — B'I 

where the differentiations are taken with respect to r. This leads to the following 

system of ODEs: 

0 = HC{R) + + PGD(T){C{T) + i(P) 
Li 

+ - \ { C { t ) + ？ - 6 D ( T ) - D ' , ( 2 ) 

0 二 - / ^ ( C ( T ) + ic/O - ( 3 ) 

0 二 B{i)[C{T)^i4>)-\-aD{T)-B'. (4) 

It is clear from (3) and C(0) = 0 that 

C(r) = i 如 - i ( p . (5) 

Subsitiiting (5) into (2), we have 

-D' 二 一 + (J) - ixri4e-lD + \{i(t>e-” + (6) 
Z 」 

Using the transformation of independent variable y = e一" and defining D{y)= 

D(T), (6) becomes a Ricatti equation 

学 = - 一 + ( 上 ) 5 + “ “ 祝 5⑴ =。•⑵ 
dy 2/cy hiy Zk, 
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To solve (7), we need a particular solution from which the general solution 

can be derived for the Ricatti equation. Consider the transformation: 

(8) 

Hence, 

—[(^ - 1 ) — . ( ^ ) l - ' ( y ) — + • • � = 0 . (9) 

The ODE (9) has a general solution of the form, see Zwillinger (1992), 

w[y) = ⑷ 结 兄 f ) + - / , + 1, 2 - 6*,零)](10) 

A 入 

where a*, b* and A are defined in the Lemma, C： and C2 are two constants to be 

determined from boundary conditions, and <3>(a, 6,2) is the degenerated hyper ge-

ometric function which has Kummcr's series expression: 
00 / \ /. 

巾(a, b, z) 二 1 + Wfc = a(a + 1)…(a +/c - 1). 

By letting Ci = 1 and C2 = 0 in (10)，we obtain a particular solution for (9) as 
L A -

Using (8), a particular solution for (7) is obtained as C/(y) which is defined in the 

Lemma. Therefore, the general solution for (7) is, see Zwillinger (1992), 

� e . 丨 � + - - ， 办 

- � + __ l_ + £i 厂巾2(0,’6.,圭)告_ 2(^/117)敏—1)办. 
"(1)十 2k 4>2(a.’6*’長)（、e V ai； 
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From (4)，we obtain 

B{T) = f 0{T){C{T) + i<p) + a{t)D{T)dT 
Jo 
/•了 T 

= / e(t)i(Pe-町-t�dt+ I a � D ( T -
JT-T JT-T 

B Black-Scholes Greeks 

Black-Scholes Formula for call Option with mean reversion underlying process 

Po 二 Le-八T-t)N(d：} 一 Ke-八T-t、N⑷、 

where 

I = — t e “ - 7 � + i ! z ^ ( l _ e - 即 ’ - = 尸 厂 町 - ( 了 - ] ) ) + 峻 ’ 

” 2 = 刚 1)， 

� I n ( 奏 4 � � 
d 飞 = d 2 = d�一 V, 

V 
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Greeks for the Call Option with mean reversion underlying process 

^ = e-厂"V''(了⑷）L 
BLt 

孔 t V ^ / 

/ A A \ 

^ = + 2N'{d,)- + N(d,)L 
礼i \ 化 ‘‘ / 

糊 = W = 

糊 - - 響 = 

Dp 11 - e--2k{T-t) 
尝 二 Le-八 

/ I _ pr^KT't) 1 _ p-HT-t)\ 

+ 2 e • 一 叫 

炉 Po - L e - 料 、 峰 哩 、 

du^ V 2/c V y J 
+ 9 丄 - — 卜 ) + 
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