香 港 中 文 大學研究院教䏍學部 －He chinese university of hong kong ；RADUATE SCHOOL ．DIVISION OF EDUCATION

哲 學 教 䏤 碩士論文 1aster of Philosophy in

Education Thesis

論 文 題 目	EFPECT OF PRACTICE SCHEDULES ON PROBLEM－SOLVING PERFORMANCE
Thesis Title	IN GENETIC KNOWLEDGE
	訓練程序對遣傳問題解難的效應

撰 作 語 言 英 文
Language Used English

研究生姓名 陳 馝 瑜
Name of Student Chan Wai Yu

專 修 範 蛋 教 㕕 心 理 學
Specialization Educational Psychology

論 文 考 試 委 員 會
Thesis Examination Committee

論 文 | 導 師 |
| :--- |
| Thesis Supervisor | Dr．SIU Ping Kee

校 内 委 員 Internal Examiner \qquad
Dr．L0 Lam Fat盧林發 博士

校 内 委 員
Internal Examiner
Dr．CHAN Wai Ock 陳維鄂 博士
校 外 委 員 External Examiner Prof．LEONG Che Kan 楽子勤 教授

學 部 主 任 Division Head \qquad

論文通過日 期
Date of Approval

$$
\text { September 2, } 1994
$$

$$
\begin{aligned}
& \text { Theas } \\
& \angle B \\
& 1060 \\
& C 38 \\
& 1 P 84
\end{aligned}
$$

EFFECT OF PRACTICE SCHEDULES
 ON PROBLEM-SOLVING PERFORMANCE IN GENETIC KNOWLEDGE

A THESIS
SUBMITTED TO THE FACULTY OF EDUCATION THE CHINESE UNIVERSITY OF HONG KONG IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN EDUCATION PSYCHOLOGY

By

Chan Wai Yu

under the Supervision of Dr. Siu Ping-Kee

```
THE CHINESE UNIVERSITY OF HONG KONG
GRADUATE SCHOOL - FACULTY OF EDUCATION
Master of Philosophy in education Psychology Thesis
\begin{tabular}{ll} 
Thesis Title & Effect of Practice Schedules on \\
& Problem-Solving Performance in \\
& Genetic Knowledge
\end{tabular}
Language Used English
Name of Student Chan Wai Yu
Specialization Educational Psychology
Thesis Examination Committee
Thesis Supervisor
Dr. Siu Ping-kee
Internal Examiner
Dr. Chan David W.O.
Internal Examiner Dr. Lo Lam Fat
External Examiner
Faculty Head
Dr. Lo Leslie
Date of Approval
```


Acknowledgements

My particular thanks must go to Dr. Siu Ping-Kee, my supervisor, who has been very supportive and encouraging throughout the course of my study. I have learnt from his stimulating ideas and insights. I must gratefully thank him for shaping my thoughts throughout the project. His detailed comments upon every draft of the work have saved me from making mistakes.

I owe a great deal to all my teachers. Any list of debts will necessarily be incomplete, but I would be remiss in failing to thank Dr. David Chan for his comments on the research proposal and the thesis, Dr. Lo Lam Fat for his comments on the thesis, Dr, Rex M. Heyworth for his kindness in sharing his experience and ideas and Mr. Chung Choi Man and Dr. Yau Chan Yuk-ping for their advice on the research proposal.

Finally, I must thank Mr. Wong Chi Fai, Miss Kong Choi Fung, Ms. Wu Lai Mee, Ms. Chiu Yin Mei, Mr. Yip Shu Wing and Mr. Cheung Wai Hung for participating in the research. Very special mention has to be made of the encouragement and help of my brothers Ka Yin and Wai Yin. Besides, the nuture of friendship from Ms. Chung Sin Ling and Ms. Law Yin Kum has also made this intellectual journey an enjoyable experience.

Abstract

The literature review shows that practice schedules may affect problemsolving performances such as acquisition, retention and transfer. In this study, the effect of two practice schedules on the problem-solving performance in high school genetic knowledge was examined. Null hypotheses were set in view of contrasting view points in the literature review. Methodology of cognitive research such as protocol analysis was adopted to investigate the problem-solving procedure in acquisition performance and the problems subjects met in transfer problems.

Two pilot studies which involved the development of practice schedules exercises and written tests were conducted. Seven Form 5 classes from five schools participated in the main study. Half of the students in each class had block practice (practising the same type of problems in each practice session) and the remaining half had random practice (practising two different types of problems randomly appeared in each practice session).

It was found that the block practice group performed better in the immediate acquisition posttests while the random practice group performed better in the immediate and delayed transfer posttest as well as the delayed acquisition posttest. A pretest had been conducted before the practice schedule experiment
and the pretest scores had been used to control initial differences among the subjects statistically. The results of statistical analysis indicated that block practice facilitated learning while random practice enhanced retention and transfer.

Protocol analysis in this study revealed that chunking of productions into macroproduction occurred in subjects of both practice groups. Higher level consistency such as consistency in "hierarchical goal structure" (Anderson, 1987) might be enough to produce learning effects that match the ACT* theory.

In this study, as revealed in the protocol, poor performance in lateral transfer was due to the fact the subjects were confined by the typical conditions they learnt during the practice. In problems for lateral transfer, Einstellung effect/ set effect (appling productions learnt in unsuitable situation) was observed in the subjects of the block group.

Table of Contents

Page
Acknowledgements ii
Abstract iii
Table of Contents v
List of Tables viii
List of Figures ix
Chapter I INTRODUCTION
1 Background to the study 1
2 Purpose of the study 3
3 Limitations of the study 4
4 Significance of the study 5
Chapter II REVIEW OF RELATED LITERATURE
1 Definitions of problem and major approaches in problem- solving research 6
2 Information-processing theory of problem solving 8
3 Cognitive theories and the acquisition of procedural knowledge in problem solving 11
(i) Anderson's ACT* theory 12
(ii) Schneider and Detweler's model 16
(iii) Research in skill acqusition 23
4 Cognitive theories and transfer of problem-solving performance 29
(i) Transfer and Anderson's ACT* theory 30
(ii) Other studies and explanation about transfer 32
(iii) Research in transfer 34
5 Research in genetic problem-solving 38
6 Brief summary of literature review 40
Chapter III RESEARCH DESIGN
1 Definition 42
2 Hypotheses 44
3 Sampling 44
4 Subjects 45
5 Materials 45
6 Procedure
(i) Pilot studies 47
(ii) The main study 48
7 Data analysis
(i) The practice schedule experiment 55
(ii) The protocol 57
Chapter IV ANALYSIS AND RESULT
1 Statistically analysis of tests scores
(i) Reliability 59
(ii) Comparison of the problem solving test scores between the two groups 61
(iii) Effects of treatment groups, test types and time conditions on the performance 65
2 Analysis of the protocols
(i) Problem-solving procedures 72
(ii) Problem-solving performance 77
3 Discussion 87
(i) Acquisition 87
(ii) Retention 89
(iii) Transfer 90
(vi) General discussion 93
Chapter V CONCLUSIONS AND SUGGESTION FOR FURTHER INVESTIGATIONS
1 Conclusions 95
2 Suggestion for further investigations 97
Bibliography 99
Appendix A The power law 111
Appendix \quad B Figure 8 112
Appendix C Supplimentary note 113
Appendix D Pretest 114
Appendix E Practice schedule exercises 115
Appendix F Posttests 125
Appendix G Problems in the second protocol interview 133
Appendix H Transcripts of the protocols 134

List of Tables

Table 1 Types and number of problems appear in the pretest. 49
Table 2 Types and number of problems appear in the practice sections and posttests of the block group. 51

Table 3 Types and number of problems appear in the practice sections and postests of the random group. 52

Table 4 Types and number of problems appear in the delayed posttest. 53
Table 5 Cronbach alpha for the reliability of the pretest, immediate acquisition posttest, immediate transfer posttest, delayed acquisition posttest and delayed transfer posttest.60

Table 6 Means and standard deviations for the acquisition posttests. 61
Table 7 Means and standard deviations for the transfer posttests.
Table 8 Means and standard deviations for pretest, immediate acquisition posttest, immediate transfer postest, delayed acquisition postest and delayed transfer posttest in each group.63

Table 9 Means and standard deviations for immediate acquisition posttest, immediate transfer postest, delayed acquisition postest and delayed transfer posttest in each group.64

Table 10 A summary of the performance of interviewed subjects in acquisition problems.79

Table 11 A summary of the performance of interviewed subjects in lengthened acquisition problems.86

List of Figures

Figure 1 General organization of problem solving with reference to the information processing model of Newell \& Simon (1972). 10

Figure 2 A system-level discription of the model with reference to Schneider \& Detweiler's architecture for working memory. Figure 2 A is a top-down view of the regions of processing within the system. Figure 2B illustrates interactions among sets of modules in the macrolevel structure (Schneider \& Detweiler, 1987; 1988). 18

Figure 3 Mean scores for immediate acquisition posttest and immediate transfer posttest in each group.67

Figure 4 Mean scores for delayed acquisition posttest and delayed transfer posttest in each group.68

Figure 5 Mean scores for immediate acquisition posttest and delayed acquisition posttest in each group. 69

Figure 6 Mean scores for immediate transfer posttest and delayed transfer posttest in each group. 70

Figure 7 Time to recognize a sentence as a function of the number of trials of practice.111

Figure $8 \quad$ Sequence of evens on each trial in memory load task in the experiment of Carlson, Sullivan and Schneider (1989b). 112

Chapter I

Introduction

1. Background to the study

Studies in cognitive psychology in the last century lead to numerous educational reforms (Glaser, 1976; White \& Tisher, 1986). There are many prominent examples, like the contribution of the learning taxonomy of Benjamin Bloom to the improvement in the areas of learning curriculum, textbook design and evaluation (Bransford \& Vye, 1989; Resnick \& Klopfer, 1989). Research focus has been on metacognition and learning strategies. Teachers are now more aware that teaching students how to learn and their instructional methods are equally important (Ahn, Brewer \& Mooney, 1992; Ayres, 1993; Barba \& Merchant, 1990; Briscoe \& LaMaster, 1991; Gagne, 1966; German, 1991; Ploger, 1991; Semb, Ellis \& Araujo, 1993; Solso, 1988; Weinstein \& Mayer, 1986; White, 1988). Recently, cognitive psychologists are concerned about how students solve problem (e.g. Anderson, 1987; Lavoie, 1991; Palmer \& Kimchi, 1986; Tallent, 1993; Wenestam. 1993).

Problem-solving research started with artificial tasks like Tower of Hanoi and games like chess playing (DeGroot, 1965; Ernst \& Newell, 1969; Simon \& Gilmartin, 1973). Domain general problem-solving strategies such as means-ends
analysis, working backward and solving by analogy were discovered. Then domain specific thinking skills, especially in areas of mathematics and physics, have received much attention (e.g. Cratsley, 1991; Gayford, 1989; Gick, 1986; Lock, 1991; Nolan, 1990; Perkins \& Salomon, 1989; Resnick \& Klopfer, 1989; Stencel, 1991). Cognitive psychologists are trying to explain the learning behaviour during the process of problem solving and there are divided viewpoints (e.g Anderson 1989; Carlson, Sullivan and Schneider, 1989b, 1989c).

In the study of problem solving, learning how to solve a problem (acquisition), remembering the skill and using it again in similar situations (retention) as well as using the skill to solve new problems (transfer) are equally important (Ennals, 1988). Researchers persist in their efforts to identify conditions that allow flexible transfer of learning. A lot of the findings were, however, very disappointing (Bassok, 1990). It was discovered that learning situations (acquisition context) can affect retention and transfer. Although there were a number of studies probing into factors facilitating acquisition as well as retention and transfer (e.g. Catrambone \& Holyoak, 1989; Kotovsky \& Fallside, 1989; Perkins \& Salomon, 1989), much research focused on the learning of motor skills (Shea \& Kohl, 1990; Shea \& Zimny, 1983); domain general area such as critical thinking skill (e.g. Riesenmy, Mitchell \& Hudgins, 1991) or artificial cognitive tasks (Carlson \& Lundy, 1992). Still, the most suitable acquisition context, such as the level of consistency during practice, in many domains awaits to be explored (Kramer, Strayer \& Buckley, 1990).

In high school biology, students' performance in problem-solving is unsatisfactory, especially in the area of genetics. In A-level Biology, students find genetics the most difficult topic (Johnstone \& Mahmound, 1980). Concepts and adequate use of methods were essential in solving genetic problems (Steward \& Dale, 1981). Studies of the learning in genetics still focus on two areas: (1) Identifying students' misconcepts and finding instructional methods to correct or avoid them (Brown, 1990; Browning \& Lehman, 1988; 1991; Kindfield, 1991; Lawson \& Weser, 1990; Macnab, Hansell \& Johnstone, 1991; Shemesh \& Lazarowitz, 1989; Smith, 1991; Stewart \& Maclin, 1990) and (2) developing a model for instruction through distinguishing the differences in thinking processes between successful and unsuccessful genetic problem-solving (Smith, 1988; Smith \& Good, 1984; Thomson \& Stewart, 1985).

2. Purpose of the study

The purpose of this study was two-fold. First, this study investigates how different levels of consistency in genetic problem-solving practice influence the process of skill acquisition and the process of retention and transfer as measured by achievement tests. Second, it investigates the thinking processes subjects employed in solving different genetic problems.

3. Limitations of the study

This study has the following limitations:
(i) The sample size (264 subjects) was not sufficient for generalization of findings beyond the target sample.
(ii) Random sampling was not possible and intact classes were used. However, subjects in each intact class were randomly assigned into the two experimental groups.
(iii) As typical among the science classes in Hong Kong high schools, it was found that 70% of the subjects were students of the high ability group and only 30% of the subjects were students of the medium and low ability groups. However, subjects in each class were similar in their learning ability.
(iv) Subjects in the protocol interviews were all girls. This further limits the generalization of findings.
(v) With regard to transfer, this study aimed to compare the transfer performance between two practice conditions. Transfer problems did not appear on the pretest of this study. There was no record on the problem solving ability about the transfer problems before the practice schedules. Analysis could not be made on the extent to which the practice affect the transfer.
(vi) Protocol interviews were performed after the practice schedules and the immediate posttest were carried out. Subjects' performance in their first trial of the problem was not known.

4. Significance of the study

High school biology students have a lot of practice on genetic problemsolving before they sit for public examinations. It is reviewed that consistent practice facilitates acquisition and random practice enhances retention and transfer. Yet, the best practice schedule for each ability group is still unknown in genetic problem-solving. This area needs exploration. In order to improve on instructional methods in genetic problem-solving, understanding how students solve genetic problems and what their problems are, will certainly be of help.

At present, the theoretical explanation with respect to the processes in the brain that bring about problem solving behaviour is still debatable. Findings of this research, though limiting in its generalization, may be of help in enriching behaviourial data for further investigations and interpretations.

Chapter II

Review of related literature

1. Definitions of problem and major approaches in problem-solving research

Psychologists have commonly agreed that problems exist in relation to the problem solver's point of view. If a person has a goal and has some obstacles to attain the goal, he is said to have a problem (Duncker, 1945; Gagne, 1985; Newell \& Simon, 1972). A problem also exists when someone figures that situation to be in a different state and has not yet found a way to change it (Mayer, 1989). If the human brain is viewed as an information-processing system, a problem can be said to exist when a goal condition in the system cannot be attained without a search process (Gilhooly, 1989). Therefore, it is all agreed that adding one to one is not a problem to a normal adult as the solution can be accessed easily. However, a little child requires cognitive search to find the solution to a simple addition question, so it is a problem to him.

In the studies of problem-solving, four major approaches have been attempted by psychologists. They are: the Gestalt approach, the behavioral (associationist) approach, the psychometric approach and the information processing approach (Greeno, 1978; Mayer, 1983; Rowe, 1985).

Gestalt psychologists like Dunker(1945), Kohler(1927) and
Wertheimer(1959) are the pioneers in this area. A problem exists when cognitive representation has gaps and problem solving is the process of cognitive organization to restructure the elements in the problem situation in order to attain the goal. Their studies provide insightful analysis of thinking processes to successors. Behavioral and associationist psychologists, on the other hand, emphasize the need for the problem solver to perform a variety of responses before the problem could be solved. Although problem solving is taken as trial-and-error activities and the behavioral approaches rarely analyze the component structure of the problem-solving performance, (see e.g., Skinner, 1966) conditions that facilitate or hinder problem solving behaviours have been identified (Greeno, 1978).

The psychometric research links problem solving behaviour to intelligence factors through correlation models (see e.g. Rowe, 1985). The information processing approach is of more recent origin. It believes that the human mind behaves as an information-processing system when engaged in problem solving. The human brain is conceptualized as capable of manipulating symbols, switching methods and representations, and making decisions (Newell \& Simon, 1972). Information-processing psychologists have taken up the detailed analysis of problem solving process that has been originated by Gestalt psychologists in a more vigorous and systemic way. Theories have been put forth in explaining the problem solving performance (Greeno, 1978).

2. Information-processing theory of problem solving

Human information-processing system is subdivided into sensory input unit, central processing unit, motor output unit and memory or storage unit which encompasses a small capacity of short-term memory for input and output and an essentially unlimited capacity of long term memory (Plamer and Kimchi, 1986). Except for the sensory inputs, the system operates serially (Simon, 1978). The problem solving processes are described as an interaction between the information processing system of the problem solver and the task environment. Problem solving processes consist of two major phases: (1) Understanding and representing the problem and (2) solving the problem. First the problem solver tries to understand the problem. This is to encode and translate the structure of the task environment into internal representations which are called problem space. The problem solver then searches for a solution from within this system. Knowledge and procedures are selected and applied adequately toward the goal of solving the problem (Simon, 1978; Mayer, 1989).

Problem space can be analyzed into three components: (1) the initial state which is the starting situation conceived by the problem solver, (2) the operators which are the methods applied in the way of removing the obstacles, and (3) finally the goal state which is the problem solver's desired condition. New problem states which are also called intermediate states may be created before reaching the goal state (Gagne, 1985; Mayer, 1989). Problem solving is a cognitive process which constructs the problem space and searches for possible
solution paths by converting the initial state to the goal state (Mayer, 1989; Newell and Simon, 1972).

Studies in problem solving have revealed that the internal representation is very important in determining the possibility of success as the internal representation influences the selection of operators. It is generally agreed that formation of internal representation and application of knowledge are not single direction processes . Each of them is an interactive process in which both the internal representation and application process are evaluated after each trial. Internal representation will be modified or rebuilt or new operations will be selected if necessary (Gagne, 1985; Mayer, 1989; Simon, 1978). Though details and steps have changed as knowledge of problem solving processes increases, the overall organization of the problem solving process is much the same as depicted in Figure 1 by Newell \& Simon in 1972.

TASK ENVIRONMENT

Note: the eye indicates that input representation is not under control of inputting process.

Figure 1. General organization of problem solving with reference to the information processing model of Newell \& Simon (1972). solving

In developing a learning theory to explain the acquisition of cognitive skills, psychologists observe and compare the problem solving processes of novices and experts in areas such as decision making, mathematics problem solving, computer programming and language generation.

Fitts (1964) distinguished three stages in skill acquisition: cognitive stage, associative stage and autonomous stage. A problem solver is in the cognitive stage when he/she encodes facts needed for solving the problem and tries to solve it when first encountering it. The associative stage designates the smoothing out of problem solving performance by practice. The problem solver detects and eliminates errors and successfully finds the way to solve the problem. At this stage, verbal rehearsal also disappears gradually. The autonomous stage denotes the continuous improvement in speed and accuracy with further practice performed by the problem solver as developed from the associative stage. Through extensive practice, direct and immediate retrieval of solution may occur (Fitts, 1964; Fitts \& Posner, 1967).

Though Fitts and Posner's interpretation is generally agreed by cognitive psychologists, arguments exist in theoretical explanation. There are different positions about the cognitive structure, in explanation for cognitive processes that bring about problem solving behaviour as well as the gradual reaching of the
autonomous stage (e.g Baddley, 1986; Clark, 1990; Fish, Oransky \& Skedsvold, 1988; Just \& Carpenter, 1992; Klapp, Marshburn \& Lester, 1983; Knapp \& Robertson, 1986; Logan, 1988, 1990; Mackay, 1982; McClelland, 1986; McClelland \& Rumelhart, 1986; Monsell, 1984). However, few have developed explanations for the complex cognitive skill of problem solving processes (Kramer et al, 1990).

Among them, Anderson's ACT* theory (1983; 1987; 1990a) and Schneider \& Detweiler's explanation of how automatic processing developed has received much attention. Anderson has put forth the ACT* theory to explain acquisition of cognitive skill. It tries to explain high level cognitive activities by sets of condition-action pairs called productions (Anderson, 1983; 1987; 1990a). Schneider \& Detweiler (1987: 1988) have been developing a skill acquisition theory to explain performance of single task as well as dual tasks.

(i) Anderson's ACT* theory

ACT* is a theory of cognitive architecture where ACT stands for Adaptive Control of Thought (Anderson, 1983; 1987). According to ACT* theory, memory can be classified into declarative memory and procedural memory (Anderson, 1983; 1990a). Besides, memory can also be classified into working memory and long term memory by two concepts: activation and strength. Activation is the transient factor that determines the momentary availability of the memory trace.

Memory in high activation can be accessed quickly and reliably. Strength is the long-term durability of the memory trace. Activation and strength have great difference in their durability. Activation can decay from high level to low level in a second while strength takes some memory years to decay. Working memory are memories that are currently active and so the knowledge can currently be worked with. Long term memory are memories which have sufficiently strong encodings that they can be reactivated or can be recalled at long delays (Anderson, 1990a; Anderson \& Pirolli, 1984).

Anderson (1987) uses ACT* production system as the framework for explaining cognitive performance. Knowledge stored in our memory is classified into declarative knowledge and procedural knowledge. Declarative knowledge is the knowledge about facts and things. For example, the knowledge about the different inheritance patterns in genetics. It can be represented in the form of temporal string, spatial image or abstract proposition. ACT* theory is based mostly on propositions. Procedural knowledge is the knowledge about how to perform cognitive activities and how to represent them in rules called productions. In the ACT^{*} theory, cognitive processing occurs as a result of firing of production. For example, Smith (1988) also thought that students had to recognize common genetic patterns or other critical cues (i.e. conditions in production rule) from the problems and make appropriate genetic inferences (cognitive action) in genetic problem-solving. Anderson's production rules are condition-action pairs. For example, one of the "Englishified" version (Anderson, 1987) of productions for solving genetic problems is: an individual is a pure breeding of a trait

Then the two allele for the trait are the same.
Productions are relatively well structured, simple and homogenous, and independent of one another. Production is interpreted as the unit of procedural knowledge in the ACT^{*} system. Productions control over all cognitive processes and activities. They are the units in which knowledge is acquired and the steps that define and determine the problem solving procedure.

When the problem solver first confronts a problem, information or instruction for solving the problem is first encoded as a set of facts in the form of declarative knowledge. ACT* system assumes that declarative knowledge is available for processing when it is activated. Main concepts in the instruction are sources of activations. Activation spread runs rapidly through the declarative network, setting up various levels of activation. The activation level determines the probability of access to memory and the rate of access. Memory which is in a high level of activation can be accessed rapidly and reliably. Thus spreading activation can be conceived as a process that identifies knowledge relevant to a current focus of attention and that favours the processing of that knowledge.

After the encoding of the information needed, knowledge is converted from declarative mode to procedural mode. This is the knowledge compilation stage in which productions are matched to the active declarative knowledge. When a novice is attempting the problem, he/she uses domain-general problem-solving productions to interpret the declarative knowledge. The declarative knowledge is
used as the source of information for identifying suitable problem solving procedures. Children are, therefore, believed to be able to bring in plenty of weak but general problem-solving methods to initiate the problem solving in new domains. Activation level will rapidly decay for the unattended items and items have to be maintained in high active state for matching to be completed. The problem solver sometimes needs to rehearse the information required verbally. Productions which are indexed by the factual part are matched and joined in a novel sequence. As matching poses a heavy workload on the working memory and there are limits on the amount of information to be maintained in a high activation level, slow and piece-meal application of problem solving method can be detected and errors can be observed in problem solving in this stage.

As all procedures are organized to reach the goal state in problem solving, there is a hierarchial goal structure. For example, the goal state in genetics problem-solving is to find out the genotype of all the individuals in a family. To solve a problem, the first subgoal is to find out the genotype of the parents. Then, what follow is getting the genotype of the progenies by making genetic cross. The stacks of goals for solving the problem are sequenced in a hierarchial goal structure. Further practice of the same problem will lead to the collapse of productions in the sequence into a single production. This chunking process which creates macroproductions is called composition. Declarative knowledge will also build into the productions to form steps for guiding how to do things and this process is called proceduralization. After compilation of the productions, the problem solver can simply retrieve the single production formed and the retrieval
of declarative knowledge is no longer needed in the execution of the production. There will be a dramatic one-trial speedup in solving the problem and verbal mediation in performing the task also disappears. As the demand on working memory is reduced, the problem solver can also perform a second concurrent task that demand attention. Problem solving performance in this stage is said to be autonomous.

Still further practice will lead to improvement in behaviour by the mechanism called strengthening. Successful applications of the new production will increase its strength which makes it easier to be retrieved when the same condition is met again. Unsuccessful applications, on the other hand, will decrease its strength which makes the production less accessible when facing the problem afresh. The whole process which enables the problem solver to recognize situations suitable for reapplying the productions is called tuning of the production. The effect is more autonomous and precise response ensure on the part of the problem solver. Anderson formulates a general equation which he calls the power law (see Appendix A for details). This equation shows how ACT* predicts a power function about the effect of practice on speed of performance (Anderson, 1976; 1982; 1983; 1984; 1987; 1990a).

(ii) Schneider \& Detweiler's Model

Architectural structure of the brain as proposed by Schneider and Detweiler

Schneider and Detweiler have proposed an architectural structure of the brain which they think is derived from the present understanding of attention literature, neurophysiology and communication theory (Schneider \& Detweiler, 1987, 1988).

Information processing is assumed to occur in networks of neural-like units. Units are organized into modules that process a particular class of inputs so each module contains a vector of output units (the micro level). The message is represented by the state of the output units of the modules. The set of activities of the output units of a module is the "message vector" (MV) for that module. Information flow (output) from a module is regulated by an "attentuation unit" (an implementation of attention, see Schneider \& Detweiler 1987 for details) within the module. Each module's activities is regulated by a control structure and module will report its activity to the control structure. There is also a control circuit which ensures messages from a set of modules to be delivered sequentially. When one module is transmitting message, neighboring modules' transmission is inhibited. This avoids interference and loss of information.

Though all modules in the brain are similar in structure, they are organized into levels and regions (the macro level) according to their functions (see Figure 2). Levels represent successive processing stages within a region. For example, in the visual module, there may be a "level one" for processing features, "level two" for characters and "level three" for words while in the motor module, there is a "level one" for processing movements, "level two' for sequences and "level
three" for tasks. Regions represent sets of levels specializing in a particular type or mode of processing, for example, "visual region" for vision inputs, "semantic region" for associative processing and "motor region" for motor outputs. The innermost levels of each region communicate with other regions by passing vector messages. Regions are connected to and communicated with one another by associative connection in such a way that each region can communicate with other regions directly. This enables faster single-message transmission and allows multiple regions to jointly activate a region. However, parallel transmission on the inner loop does not imply parallel processing.

All the message vectors coming to a module are summed and this causes intermessage interferrence. So it is the number of competing messages received that determines limits on the number of concurrent message transmissions. Control processing is the mechanism that moderates message transmission on the inner loop. Two categories of information, message and control information, flow in the system. Message flow involves the transmission of a vector representing a code from one module to another. Control flow involves exchanges of control information between the modules and the control structure of the module. Control information denotes the importance of messages waiting to be transmitted and the transmission state of any modules. So information flow is modulated at the macro level. At the system level, there is a central control structure which receives activity reports from each region and modulates the output of regions transmitting the central innerloop.

The strength of the synaptic dendrite connections between neurons is called connection weight. Connection weights operate under the influence of a variety of learning-rate constants. These constants determine the rate of change and duration of retention of the change. Knowledge or memory is stored in the connection weights between neural-like units in the system and so learning involves changing these connection weights. As Schneider and Detweiler hold a temporal point of view for working memory in the system and adapt Baddeley's saying "a system for the temporary holding and manipulation of information during the performance of a range of cognitive tasks such as comprehension, learning, and reasoning." (Baddeley, 1986). Working memory is, therefore, multifaceted in this
architecture. They include areas with fast learning, fast decay connection weights such as code maintains in module after transmission and the regional controllers in modules which hold connection weights about priority of the messages waiting to be transmitted. Besides, much of the knowledge is stored as slow rate connection weights in the network and could be considered as the long term memory of the system (Schneider and Detweiler, 1987; 1988).

Skill acquisition as explained by Schneider and Detweler's model

When a novice first confronts a problem, controlled processing is used. Controlled processing is conceived as a central processing mechanism with limited capacity. It does not directly send messages between units but regulates the transmission of messages between units. He serially compares the input pattern to a rule and to perform the appropriate response based on the match.

To solve a task, it is necessary to keep the instruction and task-relevant information in working memory. This involves loading and maintaining memory vectors in modules. To solve a genetic problem, the system must store the genetic rule, e.g., "if a third character appears between cross of two pure breedings, then it is a codominance inheritance pattern." The problem solver first rehearses the rules concerned to enable the context to load the buffers. The context would load into appropriate modules at the first hand. For example, load the target state (e.g., appearing of a third character) in the context modules, the response on a
match (e.g., judgement of codominance inheritance pattern) in the motor module.

When a problem is presented, a controlled comparison would occur between the input and the target output. To perform a comparison, two vectors are added together. If the two vectors are similar, the added vector is nearly twice as long. If the two vectors are dissimilar, a vector shorter than the sum of the two vectors is produced. Processing is serial as paired comparsion is needed for accurate result. It is effortful as many shifts of attention are needed in monitoring the process. When the matching is identified, message will be transmitted for the appropriate response. As a result of these controlled processing operations, the input pattern will be transmitted followed by the output pattern being transmitted. Connection weights in the transmitting modules will change as a consequence. So learning can be said to occur after a vector of activation is transmitted and a second vector of activation is output.

If the problem solver practises in a way that there is a consistent relationship between the message transmissions, improvement in performance will be observed. Controlled processing will shift to context-maintained controlled comparison. Information will be maintained in fast learning weights that associate vectors stored in modules to the context. Activating the context module can refresh information in modules. Further practice will develop the goal-statemaintained controlled comparison in which the goal state can reload the modules in addition to the context-base reloading. More gaining of connection weight with practice will eventually lead to automatic processing. This occurs when automatic
processing substitutes for attentional/controlled processing.

Automatic processing develops as a function of two types of learning mechanisms: Associative learning mechanism and priority learning mechanism. Associative learning mechanism modifies the unit to unit associative matrix. The association matrix encodes associations by storing the strengths of connections, i.e. the connection weights between the input and output units. In consistent practice, discriminative associations will develop in the connection weights such that a stimulus vector will evoke an appropriate response vector. Priority learning mechanism tunes the units transmission so that important messages are transmitted at high gain and unimportant messages agre transmitted at low gain. When there is a consistent relationship, the priority learning mechanism will tune the network discriminately. The target stimuli become foreground and "pop out" of the display. The distractor stimuli become background and, in a sense, disappear from the display. Automatic processing occurs when the connection weights gained from associative learning mechanism and priority learning mechanism have sufficiently developed. At this time, one vector will evoke a following-on vector without controlled processing (Schneider, 1985; Schneider \& Detweiler, 1987; 1988).
(iii) Research in skill acquisition

Criticism about composition of productions into a single production

Carlson, Sullivan and Schneider (1989b) have performed experiments to examine the acquisition of procedural skill. Digital logic gates were used as tasks. Subjects had to predict or judge the output from the inputs according to the rule about the gate. The main reason for choosing this task was that the variables describing gate type and judgement type had consistent effects on latency. This characteristic could be used to track changes in the structure of cognitive processes. More time was required for negated gate as one more step was required. Verification judgements required more time than prediction because of the same reason.

Subjects had more than 8,000 trials of practice, latency for all logic gates judgements declined with practice, following approximately the power-law function (see Appendix A). However, the effect of gate type and judgement type did not disappear. As the tasks differed in just one step and Anderson had stated that with extensive practice, composition collapsed the sequences of productions for the task into a single production. Carlson, Sullivan and Schneider expected that composition would eliminate the negation effect and judgement effect with practice. As predicted by Schneider's theory (1985), task complexity would be reflected in the autonomous stage as extended practice might simply increase the speed of a cascade of sequential processes during processing. The persisting effect
of gate and judgement type reflects that complexity of the cognitive processes remain unchanged. The explaination regarding automatic processing proposed by Schneider was more logical in interpreting the result of their study (Carlson et al., 1989b, 1989c).

Anderson explained that task complexity will not be eliminated after composition. The conditions are larger for the composed productions that deal with more a complex task. Anderson also queried whether composition had happen in the experiment of Carlson et al. and said the best experiment he knew about composition was that of McKendree and Anderson (1987). They had subjects evaluating combinations of a programming language - LISP functions for 4 days. Subjects evaluated more rapidly for the combinations which were encountered more frequently. Subjects' performance did show evidence of composing the basic LISP functions into combinations and differential strengthening of these combinations as predicted by the power law (Anderson, 1989)

Criticism about working memory as the single work place

At two points in learning (after 336 and 1,232 trails of practice per rule about logiic gate, in Carlson et al 1989b). Subjects were tested on the retention of a "memory set" while making logic gate judgements. The "memory set" was presented in three conditions: "Irrelevant", "access" and "expected" (see Appendix

B or Carlson et al 1989b for details). In both the "irrelevant" condition and "expected" condition, the clues provided were not designed helpful to solve the logic gate problem. However, in the "access" condition, the clues were designed helpful to solve the logic gate problems.

The procedures for the task was that a "memory set" was presented first. The "memory set" was presented in one of the three conditions as discussed above. After that a logic gate problem appeared. As before, subject had to tackle the logic gate problem immediately. Then a memory probe was presented and subject had to indicate whether the probe was correct or incorrect immediately. The latency and correctness of the solutions for the two tasks were recorded. Result showed that at either level of practice (after 336 or 1,232 trails of practice), short term memory loads had little effect on logic gate problem solving latency except for the "access" condition.

Carlson et al. believed that this result indicated that there were different capacities for storage and processing in the working memory as in distributed models of working memory. The single working memory as implied in Anderson's ACT* theory in 1983 was disconfirmed (Carlson et al., 1989b, 1989c). Anderson argued that the relevant factor was not how much information was maintained in working memory, differences in the level of activation of the piece of information which was used to match a condition was the major factor. So there was little effect in the "irrelevant" condition and the "expected" condition. In the "access" condition, memory load had to be maintained in high activation for
matching. The amount of activation diminished as a result of fan effect. Fan effect means the amount of activation reaching a proposition is inversely related to the number of links leading from it (Anderson, 1990a). This resulted in longer gate judgement time (Anderson, 1989).

Comments on the two divided views on acquisition of procedural knowledge

In explaining automatic processing, both Schneider \& Dentweiler's explanation and Anderson's theories can explain the improvement in performance as predicted by the power law (see Appendix A). Schneider \& Dentweiler explains the drastic speed up as input directly evokes output while Anderson attributes this fact to proceduralization and composition. In fact, Anderson's "composition" which takes productions in to a sequence is comparable to Schneider \& Dentweiler's association learning in which appropriate modules were joined by connection weight. Schneider \& Dentweiler's priority learning which "pop out" important stimuli is also in some way similar in function to Anderson's proceduralization.

The main difference between them is that Anderson's composition will finally "collapse" the sequence of productions into a single production while messages in Schneider \& Dentweiler's model have to pass through all the modules to produce the response. In other words, processing is not seen as a single production. That may be the reason why Carlson, Sullivan \& Schneider
challenged Anderson through their experiment. The interpretation of Carlson, Sullivan \& Schneider seems to be more favored in light of the evidence produced. If composition cannot eliminate the complexity difference between task to the extend it cannot reduce latency of just a single step, it is very questionable about the meaning of putting forth this idea. Besides, it is very difficult to accept that 8,000 trials of practice is not enough for composition to occur if productions can really collapse into a single production.

As Anderson has defended that ACT^{*} predicts a complexity effect before and after composition (Anderson, 1989), we can, however, accept the final single production from an abstract point of view. The meaning of putting all the conditions in the 'if' clause and all the response in the 'then' clause to construct a single production is to emphasize the one step retrieval of the rule when executed.

It is very interesting to note that as the amount of information needs to be retrieved from the different modules (Schneider \& Detweiler, 1987; 1988) increases, the latency for finishing the task will increase. It is true that memory that has to be matched with the "production" have to be kept in higher activation (Anderson, 1987). However, as the different kind of memory loads got similar result in the memory probe test that followed, difference in activation level of Anderson is adequate in explaining the result. On the other hand, behavioral data provides informations about what goes into the information processing system and what comes out ("what comes out" means behaviours like response latency or
intensity, Anderson 1990b). There is an infinite number of mechanisms that can represent the same input-output functions. Mechanistic implementations (e.g. Schneider \& Dentweiler's models) which try to find what is inside the head have identifiability problems (Anderson, 1990b; 1991; Anderson \& Milson, 1989).

An overall critique

Schneider and Detweiler are connectionists who are concerned about matching of cognitive theories with our understanding of the physiology of neural processes. Anderson holds the conventional sequential processing view in cognitive processing. In discussing skill acquisition, however, both Anderson's ACT* theory and Schneider and Detweiler's explanation are about serial processing. This is not surprising as connectionists believe that only processing that happen very quickly - less than .25 to .5 seconds - occurs essentially in parallel. Processes that take longer will have a serial component and can more readily be described in terms of sequential information-processing models (McClelland \& Rumelhart, 1986). As skill acquisition takes time, it is basically serial.

Though the two theories seem very different at first glance, they are very similar when examined in detail. While Anderson has stated the skill acquisition mechanism in abstract form, Schneider \& Dentweiler try to concretize it in their architecture of the brain. In fact, Schneider has said that the mechanism for
changing the controlled-processing gain that allocates to unit in his theory is represented as a sequence of steps of a program. This program is the series of productions in Anderson's theory (Schneider, 1985).

4. Cognitive theroy and transfer of problem solving performance

In most domains, learning which attains greater generality is more useful. As transfer has such great value in problem solving, it has received much attention and has been tackled in various domains in a number of ways (e.g. Bassok, 1990; Gick, 1990; Gick \& McGarry, 1992; Kotovsky \& Fallside, 1989; McDaniel \& Schlager, 1990; Lehrer \& Littlefield, 1993; Niedelman, 1991; Picerce, Duncan, Gholson, Ray \& Kamhi, 1993; Riesenmy, Mitchell, \& Hudgins, 1991). Transfer is the activation and application of knowledge in new situations (Gagne, 1985). Transfer is also a phenomenon involving change in the performance of a task as a result of the prior performance of a different tasks (Gick \& Holyoak, 1987). Transfer can be classified into self transfer, near transfer, far transfer, vertical transfer and lateral transfer according to the degrees and types of similarity between the learning task and the transfer task. Transfer can be either positive, nonexistent or negative depending on its direction of effect on the transfer task.

Early educational psychologist believed that the mind was composed of a collection of general faculties, such as observation, attention, discrimination and reasoning. The Doctrine of formal discipline (Angell, 1908; Pillsbury, 1908;

Woodrow, 1927) claimed that studying such esoteric subjects as Latin and geometry was of significant value because it served to discipline the mind. Transfer was, therefore, thought to be broad and across diverse disciplines. Thorndike, on the other hand, thought that transfer was very specific. In his "theory of identical elements", transfer would only occur between activities which had common situation-response elements (Thorndike, 1906). Though experimental investigations could not demonstrate the existence of general transfer, more transfers were observed than could be explained by common stimulusresponse elements alone.

(i) Transfer and Anderson's ACT* theory

Singley \& Anderson apply ACT* theory to the study of transfer. The elements of transfer are subsets of elements of learning. Single productions, being the unit of cognitive skill, serve as the identical elements in Thorndike's theory. They believe that productions have four desirable features that make them suitable for this purpose: (i) productions are learnt independently, (ii) compilation process in productions is one-trial, (iii) production rules have strength accrual upon successful application and (iv) production rules have a desired level of abstraction (Singley \& Anderson, 1989).

In the identical-productions model, transfer is a function of overlapping in productions between two tasks. Positive transfer of skill will occur when there is
overlapping in productions between two tasks. Zero or no transfer occur when there is no overlapping in productions between two tasks. While interference is well documented in declarative knowledge, it is not suggested in procedural knowledge. Negative transfer is either the transfer of nonoptimal methods or the transfer of productions whose conditions match but whose actions are completely inappropriate. For example, Einstellung effect (set effect) of Luchins (1942) is one well documented kind of negative transfer (Anderson, 1990a; Singley \& Anderson, 1989).

The condition for vertical transfer in Anderson's ACT* theory suggests the benefit of part-task practice for complex tasks. It is because compilation can only occur between the productions which are in the working memory at the same time. Complex tasks which have too many productions for them to reach high activation level at the same time will limit the chance for compilation. Part-task practice of component procedure helps to speed up the component procedure's execution, to reduce the demand of working memory capacity in running the task as well as to encapsulate the component procedures so that it is more context free. All these can facilitate composition of complex tasks. As transfer of skill will occur when there is overlapping in productions between two tasks, learning two tasks have no advantage over learning one task regarding lateral transfer. Besides, identical goal structure is not necessary for lateral transfer to occur (Anderson, 1987; Singley \& Anderson, 1989).

(ii) Other study and explanation about transfer

Gick and Holyoak (1987) believed that transfer depended on the recognition of similarity between tasks and the successful retrieval of knowledge from memory. They were interested in the conditions in which transfer could occur. The condition at encoding during training was one of the factors which was said to determine transfer. Studies from different domains have indicated that positive transfer increases with the number of instances provided during training (Weisberg, 1991; Shea \& Kohl, 1990).

In word recall, it is well known that spacing repetition (repetitive practice with another task interventing in between) is better than mass repetition (repetitive practice with no interventing task) (Jacob, 1978). Melton (1967) described the facilitating effect of spacing repetitions as phenomenon which seemed to suggest that forgetting helps memory. Cuddy and Jacoby (1982) also believed that the condition of repeating a problem in which the solution was not readily accessible would enhance mental processing. Retrieval would be easier as a result. They conducted a study using pairs of related words. When subjects had to restore the missing letters for a word twice, it was found that decreasing the similarity of the repetition enhanced learning. Similarity were reduced by having missing letters in one of the words in the pairs on its second presentation. This dissimilar repetition was said to have advantage because the subjects' had to solve problems on their first presentation as well as on their second. Cuddy and Jacoby (1982) concluded that both encoding variability and strengthening accounted for the
learning effect.

Catrambone and Holyoak (1989) performed five experiments to probe ways of overcoming the limitation of context or delay on transfer. Subjects were presented with analog stories in the treatment section. The problem solving task was given immediately or in a delayed situation. Subjects were said to have transfer if they could produce convergent solutions to solve the task. It was found that giving more examples during training facilitated transfer even in the delayed test condition. Multiple analogies might help to form general rules or form internal representation which resulted in more retrieval paths.

Experiments found that practice schedule could also affect retention and transfer. In the learning of motor skills, many studies have revealed that practice in high contextual variety facilitates retention and transfer (Lee \& Magill, 1983; Shea \& Morgan, 1979; Shea \& Zimmy, 1983; 1988). Wrisberg and Liu (1991) investigated the effect of block and varied practice on the retention and transfer in badminton tasks. The study was conducted in a physical education class and long service and short service in badminton task were examined. Students were divided into the experimental and control groups (block vs. alternating practice) according to pretest scores. After five class periods of practice, a retention test and transfer test were conducted. Alternating practice group performed better in the retention test for both the long and the short services. However, only the results in the short service were significant. In the transfer test, varied practice group was better than the block group significantly in both long and short services.

Elaboration and action plan reconstruction are enhanced in alternating or varied practice schedule. In block (same variation repeating) practice, subjects had to construct the process mentally only in the first trial. In varied practice, action plan of previous movement was more likely to be forgotten. Subjects had to reconstruct the action plan for each trial. Items of the action plan would be in the working memory and this facilitated elaboration of the items and strengthens flexibility of the memory representation concerned (Wrisberg and Liu, 1991).

(iii) Research in transfer

Transfer of part-task practice

The implication of the part-task training benefit, however, has received little experimental support. Carlson, Sullivan and Schneider (1989a) studied part-task effect in learning logic gate. Subjects had practised on the component process before solving complex problems which required the component knowledge. Even after large number of trials, there was no significant effect of component practice on the complex task. On the other hand, having learnt the complex task followed by a few trials on the complex task improved not only the performance of the complex task but the component skill as well. The difficulty level of the component process was exaggerated in performing the whole task showing that there was no encapsulating effect of the component task even after
extended practice. Elio's (1986) study on mental arithmetic procedure got similar result. It seems that cognitive context like information and workload may influence some overall problem solving strategies. Preserving this context is very important for the success of segmentation learning approach.

Acquisition context and transfer

Carlson and Yaure (1990) examined the contextual effect of practice schedules in learning cognitive procedural skill. Equation-chaining task of Boolean logic functions was used as the learning task. Three experiments were conducted. In each experiment, subjects first practised individual logic functions and then solved equation-chain problems. Presentation of the tasks and collection of responses were controlled by computers, so reaction time and accuracy could be precisely measured. In all the experiments, subjects had practice for at least eight times and there were forty-eight trials each time.

Skill acquired under random practice schedules showed superior transfer to problem solving in experiment 1 and 2 . In experiment 3, subjects practised component skills in a blocked schedule with an intervening task between each trial. Intervening tasks which required active processing, the same-different judgements and mental arithmetic tasks, produced transfer similar to random practice. Neither short-term memory nor long term memory intervening tasks which required storage demand produced transfer effect. Thus, random practice was said to
produce contextual interference effect like the spacing effect.

Two cognitive processes could be concluded from explanations which were put forth to explain how random practice facilitates transfer. One of them focused on the schema structure in the long term memory. In random practice, consecutive productions could be in the working memory at the same time. Subject could be able to contrast the productions to be learned. These interitem processings encoded the similarities and differences between the to-be-learned items, resulting in better organization of the skills in the long term memory. Recognition and retrieval of appropriate skills thus would be better (Shea \& Morgan, 1979; Shea \& Zimny, 1983, 1988).

Some cognitive psychologists thought that increase in the fluency of accessing and using component skills was more important. In block practice, productions for the execution of the task or even the solution of the task was in the working memory. The level of processing was thus reduced in block practice. In random practice, active retrieval of appropriate production for solving the problem from the long term memory was needed in every trial. Random practice had the advantage of spacing effect. It provided more practice of intraitem processing such as reconstructing the movement plan in motor skills or loading the procedures in verbal task as well as cognitive skills. Processing efficiency was increased as a result (Lee \& Magill, 1983; Cuddy \& Jacoby, 1982).

Carlson and Yaure (1990) suggested that interitem processing and intraitem
processing were both needed to account for the phenomena associated with skill acquisition in random practice. Interitem processing accounted for the slower acquisition. Acquisition of the task itself as well as tuning of the tasks occurred at the same time. Based on the fact that intervening tasks could produce learning effect as random practice, the researchers concluded that intraitem processing produced the transfer benefit.

Carlson and Schneider (1989) examined the development of procedure for using causal rules. University students learned to use causal rules describing digital logic gates. Subjects received instruction with either verbal rules or truth tables and practised either predicting or verifying logic-gate outputs. Subjects were transferred to the untrained judgement task after 200 trials of practice with each rule. It was found that judgement and prediction showed asymmetric transfer with verification judgements better transferred than prediction judgements. The acquisition context - representations used for initial instruction affected both the initial acquisition of and the procedure for using causal rules. Truth-table showed advantages especially for verification judgement. From the above result, Carlson and Schneider thought that the asymmetries observed in causal judgement might result in part from lasting effects of acquisition context, although some asymmetry might be inherent in the requirement of alternative judgement tasks.

5. Research in genetic problem solving

Genetics is a problem-solving science which is included in all high school Biology courses (Hong Kong Examination Authority, 1992a; 1992b; Okebukola, 1990; Slack \& Stewart, 1990). However, many studies review that students perform poorly in genetics (Walker, Mertens \& Hendrix, 1979; Longden, 1982; Radford \& Bird-Stewart, 1982; Pearson \& Hughes, 1986; Kindfield, 1991) or even avoid this field of biology (Johnstone \& Mahmound, 1980; Thomas, 1983). When first-year university students were asked to list out topics of A-level Biology that they found most difficult, genetics appeared high in the list (Johnstone \& Mahmound, 1980).

Genetics is a fruitful area in biology to study problem-solving performance (Simons \& Lunetta, 1993; Smith, 1992; Smith \& Sims, 1992). Steward and Dale (1981) have identified that meaningful genetic problem-solving required both procedural knowledge and conceptual knowledge. Procedural knowledge involves the strategies and specific steps concerned in attempting to solve the given problem. Conceptual knowledge is the declarative knowledge that is needed for the decision in the employment and rejection of steps. Research in genetic problem solving has identified component steps for successful solvers. It models the problem-solving procedures which help in developing effective instruction method (Smith, 1988). Analysis of the inappropriate steps in genetic problem solving can also review the misconceptions of the solvers (Borwn, 1990). With the understanding of the nature of genetic problem solving, diagnostic and tutorial
genetic computer programs may be developed to assist in teaching genetics. Research-based recommendations for teaching genetic problem solving can also be tested in the classroom.

Smith and Good (1984) had a study on expert-novice performance in genetic problem-solving. In the study, novices were undergraduate students and experts were graduate students and instructors. Problems were difficult enough to require the experts to process other than just to recall and yet simple enough to allow novices to have a chance for solution. Detailed analysis of the protocols identified 32 problem-solving tendencies used by successful problem solvers. They included: seeking a solution rather than an answer, checking for consistent logic, working forward, checking for one trait (variable) at a time and looking for evidence that would invalidate previous assumptions.

In 1988, Smith did another study. He interviewed 16 undergraduates and 11 genetics graduate students and Biology faculty members. Think-aloud techniques were used to examine the difference in cognitive processes between the successful and unsuccessful problem solvers in solving genetic pedigrees. After analysis of the protocols, fifteen distinctions which were thought to cause failure in the problem solving were listed. As pedigree problem had not been used in previous studies, this study extended researchers' understanding of genetic problem-solving performance.

Slack and Stewart (1990) had studied the problem-solving performance of

30 high school students. Subjects were students from grades 9 to 12 who had completed a three to four week genetics course. One hundred and nineteen realistic genetics problems generated by a computer program "Genetics Construction Kit developed by Jungck and Calley (1985)" were used as tasks. The think aloud protocols and the printout records of the subjects were analyzed. Three trends in general problem-solving procedures were concluded from the experiment. They were: (1) an unplanned approach, (2) working backward and (3) emphasis on quantitative level of counting number and using ratios in individual cross.

6. Brief summary of literature review

The related literature review in this chapter covered two aspects of learning: Acquisition and transfer. Anderson's ACT* theory can explain and predict learning behaviour such as acquisition of procedure knowledge. However, "overlapping in productions between two tasks" does not seem to be adequate to account for positive transfer of skill. Acquistion context (Carlson, Sullivan \& Schneider, 1989a; Carlson \& Yaure, 1990) which affects interitem processing and intraitem processing during learning have great influence on transfer.

Among variables that determine learning, consistency is one of the most widely studied ones (e.g Carlson \& Lundy, 1992; Duncan, 1986; Neves \& Anderson, 1981). In motor and verbal learning, research found out that random practice schedules produced poorer acquisition performance but superior retention
and transfer relative to block practice (e.g. Cuddy \& Jacoby, 1982; Shea \& Morgan, 1979). Recent studies have extended to the study of learning cognitive procedural skills (e.g. Carlson et al., 1989, Carlson \& Yaure, 1990). Nevertheless, the most suitable level of consistent practice in knowledge specific domains such as genetic problem solving awaits to be explored.

Chapter III

Research Design

1. Definition

Problem:

Problems exist in relation to the problem solver's point of view. If a person has a goal and has some obstacles to attain the goal, he / she is said to have a problem (Newell \& Simon, 1972).

Problem-solving:

Problem-solving is the process of assembling an appropriate sequence of component procedures (or operators) to accomplish a goal. It is said to be fluent when component skills can be accessed and used efficiently (Carlson \& Yaure, 1990).

Practice schedule:

Practice schedule means that the practice is scheduled in terms of variations both in content and sequence. In this study, there are two types of practice schedule: block practice and random practice. Block practice is the practice with
repeating practice of the same variation while varied / random practice is practising with trials of different variations (Wrisberg \& Liu, 1991).

Transfer:

Transfer is the activation and application of knowledge in new situations (Gagne, 1985). Vertical transfer is the transfer between lower-level and higherlevel skills that exist in a part-whole, prerequisite relationship to one another. Lateral transfer is the kind of transfer that spreads over a broad set of situations at roughly the same level of complexity (Gagne, 1966). Transfer can also be classified into near transfer and far transfer according to the degree of similarity between the learning task and the transfer task (Gick \& Holyoak, 1987).

Protocol:

Protocol is a record to transcribe the verbalization of a subject's thinking processes during the course of problem-solving activities. In order to increase the density of observation and to externalize the invisible thinking processes, the subject is asked to tell everything he/she is thinking of while performing a task or interviewed retrospectively (Ericsson \& Simon, 1980; Lester, 1980; Leinhardt, 1988; Miller \& Cannell, 1988; Simon, 1978).

Protocol analysis:

- Protocol analysis is the qualitative and quantitative analysis made on the think-aloud protocols transcribed from recordings of the thinking-aloud problem-solving interview (Ericsson \& Simon, 1980; Leinhardt, 1988).

2. Hypotheses
(i). There is no significant difference between the two practice schedule groups and between the immediate posttest and delayed posttest when the result of acquisition scores and transfer scores are used as dependent variables with the pretest scores as a covariate.
(ii). There is no significant interaction between the groups and posttests when the result of acquisition scores and transfer scores are used as dependent variables with the pretest scores as a covariate.

3. Sampling

In this study, five schools were selected. Different types of Anglo-Chinese grammar schools were included: a boys' school, two girls' schools and two coeducational schools. The schools' performance in the Hong Kong Certificate of Education Examination ranged from good to poor. However, only two of the seven classes from the selected schools had students whose abilities were average and below average. The other five classes had students whose abilities were above average. Hong Kong students like to study science and competition into the science classes is very keen. Average and high ability students are more likely to be found in the science classes in Hong Kong.

There were altogether 264 subjects from 7 intact classes. Half of the subjects in each intact class were randomly assigned into block group and the remaining half were in random group.

4. Subjects

The subjects were secondary 5 science students. They had just learnt the knowledge and concepts about the "simple dominance inheritance pattern in monohybrid cross" and "codominance inheritance pattern in monohybrid cross" in genetics. However, they had not applied such knowledge in solving any genetic problems.

There were 264 subjects participating in the practice schedule experiments. Six of them were selected to participate in the task-based interview for obtaining the protocol data.

5. Materials

Problems given to the subjects were constructed to be parallel with the genetic topics that they had just learnt. The researcher had meetings with each participating teacher before genetics was taught. Simple dominance inheritance pattern in monohybrid cross is the topic included in the Hong Kong Certificate of Education Examination. Consensus was made to ensure that the topics were all
taught with the same depth and width. Codominance inheritance pattern in monohybrid cross is actually not necessary for the Hong Kong Certificate of Education Examination so supplementary note (see Appendix C) was given to them.

Three types of problems were used in the pretest (see Appendix D), the exercises in the treatments (see Appendix E) and acquisition posttests (see Appendix F) of the study:
(i) Monohybrid cross with simple dominance inheritance pattern in which the type of dominance and parents' genotypes were given (MS1).
(ii) Monohybrid cross with simple dominance inheritance pattern in which parents and progenies' phenotypes were given (MS2).
(iii) Monohybrid cross with codominance inheritance pattern in which phenotypes of parents and progenies were given (MC).

Four types of problems were used in the transfer tests (see Appendix E) of the study:
(i) Monohybrid cross with codominance inheritance pattern in which only phenotypes of progenies were given (MCT).
(ii) Monohybrid cross of simple dominance inheritance pattern shown in the form of pedigree. In these questions, the type of dominance and parents' genotypes were given (MP1).
(iii) Monohybrid cross of simple dominance inheritance pattern shown in the form of pedigree. In these questions, parents and progenies' phenotypes
were given (MP2).
(iv) Monohybrid cross with inheritance patterns codominance and multiple allele (MC\&MI).

Questions from the same types of problems were constructed in a way that the same procedural knowledge was needed in solving them.
6. Procedure

This research involved two pilot studies and a main study.
(i) Pilot studies

Two pilot studies were conducted. They tried to assess: (1) the validity and appropriateness of the practice materials and the test materials. (2) the number of problems of the same type that were needed within a practice block. (3) the degree of variability of the practice schedule arrangement that should be conducted.

The pilot studies with totally 43 subjects were carried out. A-level classes from Anglo-Chinese secondary schools in Kowloon and the New territories were involved. Subjects in each intact class were randomly assigned to different practice groups. Subjects had two / three days' practice of about an hour each
day. Suggested solutions were given immediately after each practice. One day after the practice, a posttest was administered. Through these two pilot studies, six types of practice schedules and two sets of practice materials had been tried.

Two subjects were invited to participate in task-based interviews. The posttest materials were used in the interviews. They were asked to solve the problems in the "think-out-loud" mode and protocol sessions were audio-taped. The records were transcribed and analyzed.

The researcher analyzed the result of the pilot studies. The results of the pilot tests together with data gathered from the think-aloud interviews provided useful and valuable information for the design of the present research. As a result, important experimental factors such as the grade of subjects chosen, degree of randomization and length of treatment were taken into consideration in the main study
(ii) The main study

The main study began once subjects had learnt the knowledge and concepts concerned. The main study was divided into pretest, practice schedule experiment, posttests and delay posttest. All the 264 Form five students in the study had the same pretest and delay posttest. The exercises and immediate posttests for the two groups were also identical in content. The exercises and immediate posttests for the two groups were different in arrangement only.

The pretest

The pretest (see Appendix D) was given a day before the practice schedule experiment and contained problems as shown in the table below:

Table 1

Types and number of problems appeared in the pretest

type of problem	number
MS1	1
MS2	1
MC	1

[$\mathrm{M}=$ monohybrid cross; $\mathrm{S}=$ simple dominance; $\mathrm{C}=$ codominance; $1=$ question in which the type of dominance and parents' genotypes were given; $2=$ question in which parents and progenies' phenotypes were given].

The results of the pretest were used to adjust the posttest scores only.

The practice schedule experiment

Participating subjects in each class were randomly assigned into two groups: the block practice group and the random practice group. In the block practice group, similar problems appeared in sequence in each practice. In the random practice group, two types of problems appeared at a random sequence in each practice. These formed the two independent variables (see Appendix E). There were three days of practice. In each day, subjects solved five problems which required about 35 minutes. Suggested solutions for the problems were given immediately after each practice. After the first and second practice, a posttest which took about 7 minutes were given. The posttests had questions testing acquisition. After the final practice, a posttest which tapped acquisition as well as transfer was given (see Appendix F). The scores of the acquisition questions and transfer questions of the posttests formed the dependent variables. The tables below show the types and numbers of problems that appeared in the two practice groups:

Table 2

Types and number of problems appeared in the practice sections and posttest of the block group

	day 1 type	no.	day 2 type	no.	day 3 type	no.
practice	MS1	5	MS2	5	MC	5
posttest	(A)MS1	2	(A)MS2	2	(A)MC (T)MCT (T)MP1	1
(T)MP2	1					

$[\mathrm{M}=$ monohybrid cross; $\mathrm{S}=$ simple dominance; $\mathrm{C}=$ codominance; $\quad \mathrm{C} \& \mathrm{MI}=$ codominance and multiple allele; $1=$ question in which the type of dominance and parents' genotypes were given; 2 = question in which parents and progenies' phenotypes were given; T=question in which only progenies' phenotypes were given; $\mathrm{P}=$ pedigree question; $(\mathrm{A})=$ question test for acquisition; $(\mathrm{T})=$ question test for transfer].

Table 3
Types and number of problems appeared in the practice sections and posttest of the random group

	day 1 type	no.	day 2 type	no.	day 3 type	no.
practice	MS1	3	MC	3	MS2	3
	MS2	2	MS1	2	MC	2
posttest	(A)MS1	1	(A)MC	1	(A)MS2	1
	(A)MS2	1	(A)MS1	1	(A)MC	1
					(T)MCT	1
					(T)MP1	1
					(T)MP2	1
					(T)MC\&MI	1

$[\mathrm{M}=$ monohybrid cross; $\mathrm{S}=$ simple dominance; $\mathrm{C}=$ codominance; $\mathrm{C} \& \mathrm{MI}=$ codominance and multiple allele; $1=$ question in which the type of dominance and parents' genotypes were given; 2 = question in which parents and progenies' phenotypes were given; T=question in which only progenies' phenotypes were given; $\mathrm{P}=$ pedigree question; $(\mathrm{A})=$ question test for acquisition; $(\mathrm{T})=$ question test for transfer].

The delay posttest

A delay posttest (see Appendix F) was given a week after the third posttest.
The delayed posttest contained problems as shown in the table below:
Table 4
Types and number of problems appeared in the delay posttest

type of problem	number
(A)MS1	2
(A)MS2	1
(A)MC	1
(T)MCT	1
(T)MP1	1
(T)MP2	1
(T)MC\&MI	

$[\mathrm{M}=$ monohybrid cross; $\mathrm{S}=$ simple dominance; $\mathrm{C}=$ codominance; $\quad \mathrm{C} \& \mathrm{MI}=$ codominance and multiple allele; $1=$ question in which the type of dominance and parents' genotypes were given; $2=$ question in which parents and progenies' phenotypes were given; $T=$ question in which only progenies' phenotypes were given; $\mathrm{P}=$ pedigree question; $(\mathrm{A})=$ question test for acquisition; $(\mathrm{T})=$ question test for transfer].

The experimental manipulations, therefore, resulted in a 2 (practice conditions) X 2(test types) X 2(test time) factorial design with the pretest as a covariate.

Collection of protocol data

Interviews were performed with six of the subjects. Only subjects who had tried to answer all transfer questions in the immediate posttest were considered. Three of them were selected from the block group and the remaining three were from the random groups. Owing to the administration difficulty, all subjects were girls. They were selected according to their scores in the posttests. It was expected that subjects in the block group were comparable to subjects in the random group. In each group, there were two students with high scores and a student with an average score in the acquisition tests. Their scores were either fairly good or moderately poor in the transfer tests within their group.

Two task-based interviews were held for each subject. The first interview was administered within the week just following the three-day treatments. Problems in the delay posttest were used as task in the first protocol sessions. These six subjects were not required to sit for the delay posttest. Their delay posttest scores were regarding as missing in statistical analysis. The transcripts of the think-aloud record (see Appendix H) and the worksheets used by the students were analyzed. Problems for the second interviews (see Appendix G)
were constructed to clarify the problem-solving patterns of the acquisition problems only. In the second protocol, subjects solved three lengthened questions which were similar to the acquisition problems. Their protocols were audio-taped, transcribed and analyzed as before.

The protocol analysis aimed at exploring problem-solving procedures only. Patterns of problem-solving procedures in the acquisition problems were analyzed. Effects of training on transfer performance were also examined. The problemsolving processes of subjects were analyzed in the following manner:
(i) initial data interpretation
(ii) factors in the initial data that influenced hypothesis generation
(iii) when and on what basis hypotheses were generated
(iv) the means (qualitative or quantitative) that subjects used to interpret data
(v) the inferences subjects made
(vi) the nature of the justifications and solution confirmation procedures (Slack and Steward, 1990).

7 Data analysis
(i) The practice schedule experiment

The following procedures for data analysis were taken:

1. The reliability of the pretest and the posttests were analyzed.
2. A one-way MANCOVA with treatment as between-group factor, type of tests (acquisition and transfer) and time conditions (immediate and delayed) as within-group factors was conducted using scores in the posttest as dependent variables and scores in the pretest as covariate. In view of the result, the following analyses were conducted:
(i) A one-way MANCOVA was conducted on the immediate posttests scores with treatment (block and random) as between-group factors and type of tests (acquisition and transfer) as within-group factors using the pretest scores as covariate.
(ii) A one-way MANCOVA was conducted on the delayed posttests scores with treatment (block and random) as between-group factors and type of tests (acquisition and transfer) as within-group factors using the pretest scores as covariate.
(iii) A one-way MANCOVA was conducted on the acquisition posttests scores with treatment (block and random) as between-group factors and time conditions (immediate and delayed) as within-group factors using the pretest scores as covariate.
(iv) A one-way MANCOVA was conducted on the transfer posttests
scores with treatment (block and random) as between-group factors and time conditions (immediate and delayed) as within-group factors using the pretest scores as covariate.
(v) One-way ANCOVA was conducted on the acquisition scores of the immediate posttest between the two groups using the pretest scores as covariate.
(vi) One-way ANCOVA was conducted on the transfer scores of the immediate posttest between the two groups using the pretest scores as covariate.
(vii) One-way ANCOVA was conducted on the acquisition scores of the delayed posttest between the two groups using the pretest scores as covariate.
(viii) One-way ANCOVA was conducted on the transfer scores of the delayed posttest between the two groups using the pretest scores as covariate.
(ii) The protocol

The audiotaped protocols were transcribed and the written answers were matched with the transcripts. The actions and comments generated by the subjects
were noted. Steps such as data redescription, hypothesis generation, performing cross and giving solution were identified (Collined 1986; Slack and Steward, 1990; Smith, 1988). Problem-solving procedures were examined carefully to determine whether goals or subgoals were formed in the process. Common patterns such as working forward and means-ends analysis were analyzed. Differences between subjects from the two groups were distinguished.

Chapter IV

Analysis and Result

1. Statistical analysis of tests scores

The 264 subjects from 7 intact classes were randomly assigned to the two experimental groups. The block group had 133 subjects with 61 boys and 72 girls. The random group had 131 subjects with 70 boys and 61 girls. The marks in all the tests were adjusted into percentage scores before analyzed.

(i) Reliability

The reliability of the tests was conducted to test the internal consistency of the questions. Results indicated that Cronbach alpha of pretest, acquisition posttest, transfer posttest, delayed acquisition posttest and delayed transfer posttest were consistently high (see Table 5).

Table 5
Cronbach alpha for the reliability of the pretest, immediate acquisition posttest. immediate transfer posttest, delayed acquisition posttest and delayed transfer posttest

Test	Number of	ALPHA

pretest	3	.8068
immediate acquisition posttest	6	.8025
immediate transfer posttest	4	.7010

delayed acquisition posttest
4
.8129
delayed transfer posttest 4 . 7379

(ii) Comparison of the problem solving test scores between the two groups

The first two posttests and the first two questions in the third posttests and the first four questions in the delayed posttest tested for acquisition. Subjects generally performed very well in the acquisition tests. Performance in the simple dominance monohybrid cross with parents and F1's phenotype given (MS2) were not so good as the other two types of problem (see Table 6).

Table 6

Means and standard deviations for the acquisition posttests

Question	M	SD

Immediate acquisition posttest:

MS1-Q1	8.36	2.76	256
MS1-Q2	8.92	2.13	255
MS2-Q1	7.51	2.57	258
MS2-Q2	8.20	2.32	260
MC1-Q1	8.43	3.11	262
MC1-Q2	8.46	2.76	259
Total Average	8.33	1.85	247

Delayed acquisition posttest:

MS1-Q1	8.67	2.68	246
MS1- Q2	8.80	2.45	246
MS2	6.65	2.79	246
MC1	8.68	2.82	246
Total Average	8.02	2.21	246

[^0]The last four questions in the third posttest and delayed posttest tested transfer. Question 3 and question 5 in posttest 3 B and 3 R , and question 8 and question 6 in delayed posttest were designed to test for vertical transfer. While questions 4 and 6 in posttest 3 B and 3 R , and questions 5 and 7 in delayed posttest were designed to test for lateral transfer.

Question 3 in posttest 3B and 3 R , and question 8 in delayed posttest were designed to test for near transfer. They were "monohybrid cross with codominance inheritance pattern" in which only phenotypes of progenies were given (MCT). Question 5 in posttest $3 B$ and $3 R$, and question 6 in delayed posttest were designed to test for far transfer. They were exactly the same question in both tests and the question was "monohybrid cross with inheritance patterns codominance and multiple allele" (MC\&MI).

Questions 4 and 6 in posttest 3B and 3R, and questions 5 and 7 in delayed posttest were "monohybrid cross of simple dominance inheritance pattern shown in the form of pedigree". For question 4 in posttest $3 B$ and $3 R$, and question 5 in delayed posttest, the type of dominant and parents' genotypes were given (MP1). Only parents and progenies' phenotypes were given for question 6 in posttest 3B and 3R, and question 7 in delayed posttest (MP2). It was expected that question 4 in posttest 3 B and 3 R , and question 5 in delayed posttest (MP1) were easier than question 6 in posttest 3B and 3R, and question 7 in delayed posttest (MP2).

The statistical analysis of the scores coincided with the researchers' expectation in terms of item difficulty (see Table 7).

Table 7
Means and standard deviations for the transfer posttests

Question	\underline{M}	SD	$\underline{\mathrm{N}}$

Immediate transfer posttest:

MCT	6.81	3.52	263
MP1	4.39	2.69	263
MP2	3.11	2.13	263
MC\&MI	. 94	. 92	263
Total Average	3.18	1.92	263

Delayed transfer posttest:

MCT	5.91	4.21	244
MP1	4.07	2.37	244
MP2	3.85	2.77	244
MC\&MI	. 70	. 63	244
Total Average	3.63	2.17	244

To compare the general performance of the two groups, mean and standard deviation of the percentage scores of all the tests for the two groups were computed. The results are shown in Table 8.

Table 8
Means and standard deviations for pretest, immediate acquisition posttest, immediate transfer posttest, delayed acquisition posttest and delayed transfer posttest performance in each group

Test	Group	$\underline{\mathrm{M}}$	SD	N
pretest	block	5.48	2.99	132
	random	5.59	2.65	131

immediate posttests:

acquisition	block	8.66	1.65	125
	random	7.98	1.99	122
transfer	block	3.35	1.91,	133
	random ran	4.29	1.81	130

delayed posttests:

acquisition	block	7.94	2.35	122
	random	8.10	2.06	124
transfer	block	3.19	2.07	122
	random	4.07	2.18	122

(iii) Effects of treatment groups, test types and time conditions on the performances

As mentioned earlier, the results of the pretest were used to control the initial differences statistically. A one way - Treatment groups (block and random) MANCOVA with repeated measure on the Type of tests (acquisition and transfer) and Time conditions (immediate and delayed posttests) was then conducted using scores in the posttests as dependent variables and scores in the pretest as a covariate. In the MANCOVA test, 229 cases were accepted and there were 116 cases in the block group and 113 cases in the random group.

For both groups, the immediate posttest performances were better than the delayed posttest performances and the difference was statistically significant $[\mathrm{F}(1,227)=9.76, \mathrm{p}<.005]$. Acquisition was better than transfer in the two tests for both groups and the difference was statistically significant as well $[\mathrm{F}(1,227)=36.39 \mathrm{p}<.001]$. There was significant three-way interaction $[\mathrm{F}(1,227)=15.69 \mathrm{p}<.001]$ in treatment groups (block and random) by time conditions (immediate and delayed) by type of tests (acquisition and transfer). This result indicated that the practice schedule (block and random) had different effects on different types of tests (acquisition and transfer) at different points of time (immediate and delayed) (see Table 9).

Table 9
Means and standard deviations for immediate acquisition posttest, immediate transfer posttest, delayed acquisition posttest and delayed transfer posttest in each group

immediate posttest delayed posttest

$\underline{M} \quad N \quad \underline{S D} N$

block

$$
\begin{array}{lrllllll}
\text { acquisition } 8.774 & 1.493 & 116 & \text { acquisition } \begin{array}{ll}
7.995 & 2.335
\end{array} & 116 \\
\text { transfer } & 3.568 & 1.821 & 116 & \text { transfer } & 3.258 & 2.051 & 116
\end{array}
$$

random

acquisition 8.108	1.934	113	acquisition 8.157	2.063	113		
transfer	4.369	1.789	113	transfer	4.051	2.235	113

One-way MANCOVA with repeated measure was conducted. There was no significant difference $[\mathrm{F}(1,243)=.01, \mathrm{p}>.05]$ between the two treatment groups (block and random) when the two types of tests (immediate acquisition posttest and immediate transfer posttest) were analyzed together. There was significant difference $[\mathrm{F}(1,244)=2618.84, \mathrm{p}<.001]$ between the two types of tests (immediate acquisition posttest and immediate transfer posttest) when the two treatment groups (block and random) were analyzed together. There was significant two-way interaction $[\mathrm{F}(1,244)=68.59 \mathrm{p}<.001]$ in treatment groups (block and random) by the type of tests (immediate acquisition posttest and immediate transfer posttest).

It was found that block group had higher score in the immediate acquisition posttests but got lower score in the immediate transfer posttest when compared with the random group (see Figure 3).

Figure 3. Mean scores for immediate acquisition posttest and immediate transfer posttest in each group.

There was no significant difference $[\mathrm{F}(1,240)=3.78, \mathrm{p}>.05]$ between the two treatment groups (block and random) when the two types of tests (delayed acquisition posttest and delayed transfer posttest) were analyzed together. There was significant difference $[\mathrm{F}(1,241)=1686.40, \mathrm{p}<.001]$ between the two types of tests (delayed acquisition posttest and delayed transfer posttest) when the two
treatment groups (block and random) were analyzed together. There was significant interaction $[\mathrm{F}(1,241)=12.15 \mathrm{p}<.005]$ in treatment groups (block and random) by the type of tests (delayed acquisition posttest and delayed transfer posttest). However, scores of the random group were higher than scores of the block group in both delayed tests (see Figure 4).

Figure 4. Mean scores for delayed acquisition posttest and delayed transfer posttest in each group.

There was no significant difference $[\mathrm{F}(1,228)=2.63, \mathrm{p}>.05]$ between the two treatment groups (block and random) when acquisition tests of different time conditions (immediate acquisition posttest and delayed acquisition posttest) were
analyzed together. There was significant difference $[\mathrm{F}(1,229)=14.60, \mathrm{p}<.001]$ between the two time conditions (immediate acquisition posttest and delayed acquisition posttest) when the two treatment groups (block and random) were analyzed together. There was significant interaction $[\mathrm{F}(1,229)=19.52 \mathrm{p}<.001]$ in treatment groups (block and random) by time conditions (immediate acquisition posttest and delayed acquisition posttest). The block group got higher scores than the random group in the immediate acquisition posttest. In the delayed acquisition, the random group outperformed the block group. For the random group, scores in delayed acquisition posttest were a little higher than scores in the immediate acquisition posttest (see Figure 5).

Figure 5. Mean scores for immediate acquisition posttest and delayed acquisition posttest in each group.

There was significant difference $[\mathrm{F}(1,239)=12.99, \mathrm{p}<.001]$ between the two treatment groups (block and random) when transfer tests of different time conditions (immediate transfer posttest and delayed transfer posttest) were analyzed together. There was also significant difference $[\mathrm{F}(1,240)=20.00, \mathrm{p}<.001]$ between the two time conditions (immediate transfer posttest and delayed transfer posttest) when the two treatment groups (block and random) were analyzed together. There was no significant interaction $[\mathcal{F}(1,240)=.08, \mathrm{p}>.05]$ in treatment groups (block and random) by time conditions (immediate transfer posttest and delayed transfer posttest). Scores of the random group were higher than scores of the block group in both transfer tests (see Figure 6).

Figure 6. Mean scores for immediate transfer posttest and delayed transfer posttest in each group.

One way ANCOVA was conducted to verify the above findings. The block group performed better in the immediate acquisition posttest and the difference was statistically significant $[\mathrm{F}(1,244)=11.105 \mathrm{p}<.001]$. The random group performed
better in the delayed acquisition posttest, immediate transfer posttest and delayed transfer posttest. The differences of the two transfer posttests reached the level of statistical significance $[\mathrm{F}(1,261)=15.399 \mathrm{p}<.001$ in immediate transfer posttest and $\underline{\mathrm{F}}(1,242)=9.351 \mathrm{p}<.005$ in delayed transfer posttest]. Whereas in the delay acquisition posttest, difference between the two groups did not reach the .05 alpha level of significance criterion.
2. Analysis of the protocol
(i) Problem-solving procedures
(A) in acquisition problems

In the first interview, the first four questions assessed acquisition levels. Question 1 and Question 3 were simple dominance monohybrid cross with type of dominance and parents' genotypes given (MS1). Question 1 stated the dominant character but Question 3 gave the recessive character. Question 2 was codominance monohybrid cross with parents and F1's phenotype given (MC). Question 4 was simple dominance monohybrid cross with parents and F1's phenotype given (MS2). The problem-solving procedure for these three types of problem are stated below.

1. "Simple dominance monohybrid cross" with type of dominance and parents' genotypes given (MS1):
[1] assign symbols to represent genotypes of parents.
[2] make the cross.
[3] assign phenotypes for F1.
2. "Simple dominance monohybrid cross" with parents and F1's phenotypes given (MS2):
[1] determine the dominant character.
[2] determine parents' genotypes and assign symbols to represent them.
[3] make the cross.
[4] assign phenotypes for F1.
3. "Codominance monohybrid cross" with parents and F1's phenotypes given (MC):
[1] determine parents' genotypes and assign symbols to represent them.
[2] make the cross.
[3] assign phenotypes for F1.
(B) in transfer problems

In the first interview, the last four questions tested transfer. Question 8 was the "monohybrid cross with codominance inheritance pattern" in which only phenotype of progenies were given (MCT). Question 5 and 7 were both "monohybrid cross of simple dominance inheritance pattern shown in the form of pedigree". In Question 5, the type of dominance and parents' genotypes were given (MP1). Only parents and progenies' phenotypes were given in Question 7 (MP2). Question 6 was on "monohybrid cross with inheritance patterns codominance and multiple allele" (MC\&MI). The problem-solving procedures for these four types of problems are stated below.

1. "Monohybrid cross with codominance inheritance pattern" in which
only phenotypes of progenies were given (MCT):
[1] determine genotypes of F1.
[2] determine genotypes of parents.
[3] determine phenotypes of parents and the kind of dominance.
2. "Monohybrid cross of simple dominance inheritance pattern in pedigree" with the type of dominance and parents' genotypes given (MP1):
[1] determine that genotype of 1 is Rr because 1 and 2 (rollers) produce a non-roller (recessive).
[2] determine that genotype of 3 can be RR and Rr because both can produce a roller with 4 .
[3] determine that genotype of 4 (recessive phenotype) is rr .
[4] make the cross of 1 and 2.
[5] determine the probability of 5 being heterozygote.
3. "Monohybrid cross of simple dominance inheritance pattern in pedigree" with only parents and progenies' phenotypes given (MP2):
[1] determine that normal is the dominant character because normal parent can produce short-sighted progeny.
[2] determine genotypes of 1 and 2 .
[3] make the cross of 1 and 2.
4. "Monohybrid cross with inheritance patterns codominance and multiple
allele" (MC\&MI):
[1] determine the kind of dominance.
[2] determine genotypes of parents.
[3] make the cross.
[4] determine genotypes of F1.
(C) in lengthened acquisition problems

In the second interview, the problems were lengthened acquisition problems (see Appendix G). Question 1 was simple dominance monohybrid cross with type of dominance and parents' genotypes given (MS1). However, it involved two successive generations and stated the recessive character. Question 2 was simple dominance monohybrid cross with parents and F1's phenotypes given (MS2). Again, students had to solve two successive generations. Question 3 was about codominance monohybrid cross with parents and F1's phenotypes given (MC). It also involved two successive generations. The problem-solving procedure for these three problems are stated below.

1. "Simple dominance monohybrid cross" with type of dominance and parents' genotypes given-lengthen (L-MS1):
[1] assign symbols to represent the genotypes of parents.
[2] make the cross.
[3] assign phenotypes for F1.
[4] assign symbols to represent the genotypes of parents (which are F1) in the second cross.
[5] make the cross.
[6] assign phenotypes for F2.
2. "Simple dominance monohybrid cross" with parents and F1's phenotypes given-lengthen (L-MS2):
[1] determine the dominant character.
[2] determine parents' genotypes and assign symbols to represent them.
[3] make the cross.
[4] assign phenotypes for F1.
[5] assign symbols to represent the genotypes of parents (which are F1 and a recessive) in the second cross.
[6] make the cross.
[7] assign phenotypes for F2.
3. "Codominance monohybrid cross" with parents and F1's phenotypes given-lengthen (L-MC):
[1] determine parents' genotypes and assign symbols to represent them.
[2] make the cross.
[3] assign phenotypes for F1.
[4] assign symbols to represent the genotypes of parents (which are F1) in the second cross.
[5] make the cross.
[6] assign phenotypes for F2.
(ii) Problem-solving performance
(A1) Acquisition in the block group

Parents' genotype symbol chunked well with the cross and phenotypes of F1. All 3 subjects were observed to "work forward" in solving these parts for both Question 1 and 3 (MS1). In assigning symbols to represent the genotypes of parents, subjects $<\mathrm{B} 1>$ and $<\mathrm{B} 2>$ were observed to "work forward" in Question 1 but only subject $<\mathrm{B} 3>$ worked forward in Question 3.

In Question 4 (MS2), subject $\langle\mathrm{B} 3\rangle$ worked forward for the whole problem. Subject $<\mathrm{B} 2>$ worked by "means-ends analysis" in determining the kind of dominance and the parents' genotypes. Subject $<$ B1 $>$ got the type of dominance once she read the question. However, she was considered to solve the whole problem by "means-ends analysis". She checked and copied answers from her previous work.

In Question 2 (MC), subjects $<\mathrm{B} 1>$ and $<\mathrm{B} 2>$ worked forward for the whole problem. Subject $<$ B3 $>$ showed chunking only in making the cross from parents' genotypes symbol. "Means-ends analysis" was used in deciding parents' genotypes and assigning phenotypes of F1.
(A2) Acquisition in the random group

In Questions 1 (MS1), all 3 subjects were observed to "work forward" for the whole problem. In Question 3 (MS1), only $\langle\mathrm{R} 1\rangle$ and $<\mathrm{R} 2\rangle$ worked forward for the whole problem. Subject $<$ R3 $>$ had to use "means-ends analysis" in finishing the cross.

In Question 4 (MS2), subjects $<$ R1 > was observed to "work forward" for the whole problem. Subject $<\mathrm{R} 2>$ and $<\mathrm{R} 3>$ used "means-ends analysis" to determine the dominant character but worked forward for the rest of the problem.

In Question 2 (MC), $<\mathrm{R} 1>$ worked forward while $<\mathrm{R} 2>$ and $<\mathrm{R} 3>$ had to used "means-ends analysis" in deciding the parents' genotypes. Parents' genotypes symbols chunked well with the cross and all 3 subjects were observed to "work forward" in solving this part. In assigning phenotypes of F1, < R3> worked forward while $<\mathrm{R} 1>$ and $<\mathrm{R} 2>$ used "means-ends analysis".
(A3) Overall acquisition performance

For subjects in both groups, parents' genotypes symbols seemed to chunk well with the cross for all types of problems. Subjects in the random group seemed to have greater difficulty in solving codominance problem. They were weaker in determining phenotypes from genotypes symbols for codominance problems (See Table 10).

Table 10
A summary of the performance of interviewed subjects in acquisition problems

Q1 (MS1)	B1	B2	B3	R1	R2	R3
[1] assign symbols to represent the genotypes of parents.	F	F	M	F	F	F
[2] make the cross.	F	F	F	F	F	F
[3] assign phenotypes for F1.	F	F	F	F	F	F
Solution	R	R	W	R	R	R

Q3 (MS1)		B1	B2	B3	R1	R2	R3
[1]	assign symbols to represent the genotypes of parents.	M	M	F	F	F	F
[2]	make the cross.	F	F	F	F	F	M
[3]	assign phenotypes for F1.	F	F	F	F	F	F
Solution		R	R	R	R	R	R
Q4 (MS2)		B1	B2	B3	R1	R2	R3
[1]	determine the dominant character.	M	M	F	F	M	M
	determine parents' genotype and assign symbols to represent them.		M	F	F	F	F
[3]	make the cross.	M	F	F	F	F	F
[4]	assign phenotypes for F1.	M	F	F	F	F	F
Solution		R	R	R	R	R	R
Q2 (MC)		B1	B2	B3	R1	R2	R3
[1]	determine parents' genotype and assign symbols to represent them.		F	M	F	M	M
[2]	make the cross.	F	F	F	F	F	F
[3]	assign phenotypes for F1.	F	F	M	M	M	F
	ion	R	R	P	R	R	R

Note. "F" represents "work forward". "M" represents "means-ends analysis". " R " indicates the solution is correct. " W " indicates the solution is wrong. " P " indicates part of the solution is wrong.

In Question 8 (MCT), subjects $\langle\mathrm{B} 1\rangle$ and $\langle\mathrm{B} 2\rangle$ were observed to "work forward" for the whole question. Subject \langle B3 \rangle got genotypes of parents' and F1 immediately. But subject $\langle\mathrm{B} 3>$ made mistakes in determining type of dominance and was wrong in parents' phenotypes.

In Question 5 (MP1), subjects used "means-ends analysis" in most of their problem-solving. All 3 subjects got correct genotype for 1, but explanation of subjects $\langle\mathrm{B} 1\rangle$ and $<\mathrm{B} 3\rangle$ were incomplete. In finding genotype of 3, they all got one of the 2 possible answers (RR) only. Although all three subjects' answers for 5(ii) were incorrect, subjects $\langle\mathrm{B} 1\rangle$ and $<\mathrm{B} 2\rangle$ had right concepts about the cross concerned. Generally speaking, they all seemed to be firmly restricted by the typical progeny ratio of the cross especially for subjects $<\mathrm{B} 1\rangle$ and $<\mathrm{B} 3\rangle$. Subject $<\mathrm{B} 1>$ was the weakest among the three. She was misled by the male and female symbols. She got the wrong concept that the mother had greater influence on the daughter and the father had greater influence on the son. Subject $<$ B3 $>$ was also confused when the ratio differed from the theory. She resolved this problem by avoiding using cross in her explanation.

All three subjects used "means-end analysis" in solving question 7 (MP2). They were still affected by the typical progeny ratio of the cross especially for subject $\langle\mathrm{B} 2\rangle$. They all got the right kind of dominance but their reason was not completely right. Subject $\langle\mathrm{B} 1\rangle$ referred to her previous works in the acquisition
problems in her decision. In determining genotypes of 1 and 2 , subject $<\mathrm{B} 2>$ made one correct guess in the protocol. However, she could not make the final decision because she thought that information was insufficient. Subject $<\mathrm{B} 3>$ was the best among the 3 in this problem. In addition to getting the right genotype for 1 and 2, her explanation was correct.

In Question 6 (MC\&MI), subject $<\mathrm{B} 1\rangle$ recognized the problem and retrieved the solution while subjects $\langle\mathrm{B} 2\rangle$ and $<\mathrm{B} 3\rangle$ used "means-end analysis". In the posttest, subject $\langle\mathrm{B} 1\rangle$ only knew that parents should be heterozygote and could not solve the problem. However, subject $<\mathrm{B} 1>$ had found the solution before the interview. Subject $<\mathrm{B} 2>$ also knew that parents should be heterozygote in the posttest but could not make a decision in the interview. Subject $<\mathrm{B} 3>$ was very sure that parents were heterozygote. Her answer was only partly correct as she used only 2 kinds of genes.
(B2) Transfer in the random group

In Question 8 (MCT), subjects $<\mathrm{R} 1>$ and $<\mathrm{R} 2>$ worked forward in part of their problem-solving. "Means-ends analysis" was observed when subject $<$ R1 $>$ searched for parents' genotypes and subject $<$ R2 $>$ got parents' phenotypes. Subject $<$ R3 $>$ solved the whole problem by "means-ends analysis".

In Question 5 (MP1), subjects $<$ R1 $>$ and $<$ R2 $>$ worked forward in most
of their solution, <R1> used "means-ends analysis" in finding the genotype of 3 only while $<$ R2 $>$ used "means-ends analysis" in finding the genotype of 1 . They were not restricted by the progenies' ratio. Besides getting correct genotype for individual 1, their explanation was complete. They got both two possible answers for 3 and subject $<\mathrm{R} 1\rangle$ even answered 5(ii) correctly. Subject $\langle\mathrm{R} 3\rangle$ was very weak in answering this problem. She had no idea about how to solve the problem at first. At the beginning, when finding genotype for 1 , she just guessed. Her concept in answering 5(ii) was wrong too.

In Question 7 (MP2), subject $\langle\mathrm{R} 1\rangle$ worked forward to get all the answers except explaining the dominant character. Subject $<\mathrm{R} 2>$ had to use "means-ends analysis" to find the genotype of 1 . Subject $<$ R3 $>$ found all the answers by "means-ends analysis". Besides, subjects $<\mathrm{R} 2>$ and $<\mathrm{R} 3>$'s explanation for the dominant character were not completely correct.

Subjects $<\mathrm{R} 1>$ and $<\mathrm{R} 3>$ worked forward while $<\mathrm{R} 2>$ used "meansends analysis" in solving Question 6 (MC\&MI). Subject $<\mathrm{R} 2>$ solved the problem correctly in both the posttest and interview. Subjects $<$ R1 $>$ and $<$ R3 $>$ only knew that parents should be heterozygote and could not solve the problem in the immediate posttest. But they had found the solution before the interview.
(B3) Overall transfer performance

In Question 8 (MCT), training seemed to have positive effect on transfer in both groups. The block group, however, performed better. In Question 5 (MP1) and 7 (MP2), the effect of training on transfer was not so good for the three subjects in the block group. Set effect and confusion were observed. As for the random group, positive transfer occurred in Question 5 and 7 and they performed better. In Question 6 (MC\&MI), though some subjects could not solve the problem, all six subjects knew that parents were heterozygote. Their performance could, therefore, be considered as positive transfer.
(C1) Performance of the block group in lengthened acquisition problems

Subjects $<\mathrm{B} 1>$ and $<\mathrm{B} 2>$ were observed to "work forward" in Question 1. Subject $<\mathrm{B} 3>$ had to use "means-ends analysis" in determining parents' genotypes in symbols and to decide F1's phenotypes. Subject < B3> "worked forward" in both two crosses and in determining F2's phenotypes.

In Question 2, all 3 subjects showed chunking in only part of the problem. Subject $<\mathrm{B} 1>$ had to use "means-ends analysis" in determining one of the parents' genotypes in the second cross. Subject $<$ B2 $>$ worked by "means-ends analysis" in determining the kind of dominance and also the parents' genotypes in the first cross. Subject $\langle\mathrm{B} 3\rangle$ got parents' genotypes in the first cross by
"means-ends analysis".

In Question 3, subjects $\langle\mathrm{B} 1\rangle$ and $<\mathrm{B} 3>$ worked forward for the whole problem. Subjects $<$ B2 $>$ worked forward except for assigning the phenotypes of F2.
(C2) Performance of the random group in lengthened acquisition problems

In Question 1, all 3 subjects were observed to "work forward" for the whole problem.

In Question 2, subject < R1> used "means-ends analysis" to determine the dominant character. Subject $<$ R2 $>$ used "means-ends analysis" to determine the dominant character and parents' genotypes. Subject $<$ R3 $>$ used "means-ends analysis" to determine parents' genotypes. They worked forward for the rest of the problem.

In Question 3, subject <R1> had to use "means-ends analysis" to decide the phenotypes of F2. Subject $<$ R2 $>$ had to use "means-ends analysis" to decide the parents' genotypes. Only subject $<\mathrm{R} 3>$ was observed to "work forward" in all her solutions.
(C3) Overall performance in lengthened acquisition problems

Question 2 was the most difficult for all the subjects. The original problem (MS2) involved the greatest number of steps among the three. Lengthening it might make it too complicated to be in the working memory at the same time. Again, parents' genotypes symbols seemed to chunk well with the cross for all subjects in all the problems. Subjects in the random group seemed to work better in Question 1 (L-MS1) but have greater difficulty in Question 3 (L-MC) (See Table 11).

Table 11
A summary of the performance of interviewed subjects in lengthen acquisition problems

Q1 (L-MS1)		B1	B2	B3	R1	R2	R3
[1]	assign symbols to represent the genotypes of parents.	F	F	M	F	F	F
[2]	make the cross.	F	F	F	F	F	F
[3]	assign phenotypes for F1.	F	F	M	F	F	F
[4]	assign symbols to represent parents' genotypes in the 2nd cross.	F	F	F	F	F	F
[5]	make the cross.	F	F	F	F	F	F
[6]	assign phenotypes for F2.	F	F	F	F	M	F
Solution		R	R	R	R	R	R
Q2 (L-MS2)		B1	B2	B3	R1	R2	R3
[1]	determine the dominant character.	F	M	M	M	M	M
[2]	determine parents' genotypes and assign symbols to represent them.	F	F	M	F	M	M
[3]	make the cross.	F	F	F	F	F	M
[4]	assign phenotypes for F1.	F	F	F	F	F	M
[5]	assign symbols to represent parents' genotypes in the 2nd cross.	M	M	M	M	M	F
[6]	make the cross.	F	F	M	F	M	F
[7]	assign phenotypes for F2.	F	F	M	F	M	F
Solution		R	R	R	R	R	R
Q3 (L-MC)		B1	B2	B3	R1	R2	R3
[1]	determine parents' genotypes and assign symbols to represent them.	F	F	M	F	M	M
[2]	make the cross.	F	F	F	F	F	F
[3]	assign phenotypes for F1.	F	F	F	F	F	F
[4]	assign symbols to represent parents' genotypes in the 2nd cross.	F	F	F	F	F	F
[5]	make the cross.	F	F	F	F	F	F
[6]	assign phenotypes for F2.	F	M	F	F	F	F
Solution		R	R	R	R	R	R

Note. "F" represents "work forward".
" M^{\prime} represents "means-ends analysis".
" R " indicates the solution is correct.

Findings of this study are consistent with the prior research on the learning of motor skill (Shea and Morgan, 1979; Wrisberg and Liu, 1991) and the learning of cognitive procedural skill (Carlson and Yaure, 1990). Block practice in genetic problems produced better acquisition in immediate posttests. However, retention and transfer were better for subjects who received random practice during training. These results generalize the findings of previous research to classroom teaching and learning environment. They demonstrate the effect of practice schedule on genetic problems which is a domain specific problem solving task.

(i) Acquisition

Acquisition performance was better in block than in random practice schedule. In the block practice, subjects had to learn just one type of problem. Problems were consistent in their structure but varies in data e.g. parents' genotypes. As they required the same problem solving procedure, this condition facilitated learning particularly in acquiring the problem solving procedures. In the random practice, subjects had to solve two types of problems. Learning how to solve the problems as well as differentiating the type of problems occurred at the same time. Acquisition was, therefore, weaker in random practice schedule (Carlson and Yaure, 1990).

Protocol analysis were used to obtain information about the problem-solving procedure of the subjects. In the protocol analysis, "working forward" was frequently observed among the good performers in both two groups. "Working forward" was the result of knowledge compilation in ACT * theory. In the ACT^{*} theory, practice will lead to proceduralization. Data in the question statement will build into the domain specific productions. After that, repeated practice of the same type will lead to collapse of productions in the sequence. Productions for solving the problem is chunked into a macroproduction (Anderson, 1987).

If a subject read "In common pea, long stem is dominant to short stem", she immediately said "Big letter 'L' for long stem and small letter ' 1 ' for short stem". After reading "A heterozygous long stem pea is crossed with short stem plant", she could decide parents' genotypes, made the cross and determined phenotypes in F1 immediately. She is said to be "working forward" for the whole problem. This showed that data in the problem had stimulated retrieval of the marcoproduction in subject's mind.

Lengthened acquisition problems were used to confirm subjects problem solving procedure in the acquisition problems. "Working forward" was observed in subjects from both groups. Evidence of "working forward" were also observed in the good performers in the random group. Higher order consistency such as consistency in hierarchical goal structure might be enough to produce learning effects that followed the ACT* theory (Anderson, 1987). The frequency of chunking also followed the amount of practice. As the same parents' genotypes
always follows the same type of cross for all problems. Chunking was most frequently observed between parents' genotypes and cross.
(ii) Retention

Performance in the delayed posttests were better in random than in block practice schedule. When delayed acquisition posttest and delayed transfer posttest was analyzed separately by ANCOVA, only the delayed transfer posttest reach the .05 alpha level of significance.

In the block practice, problems in each practice varied only in data. After the first trial, productions for solving all the problems were in the working memory. The level of processing was reduced. There was less training in distinguishing between different types of problems. Whereas in each random practice, two types of problems appeared randomly. Procedures of productions in the working memory might not be similar or suitable for solving the problems. Subjects had to retrieve appropriate productions from the long term memory for each problem encountered. This deeper processing may account for the better retention in the random group (Carlson and Yaure, 1990; Lee, 1983; Cuddy and Jacoby, 1982). Random practice also allowed the differentiated and consecutive production step to stay in the working memory at the same time. Subject could compare and contrast the productions to be learned and so advance the production organization and consolidation in the long term memory. Recognition and retrieval
of the productions would thus be facilitated (Shea \& Morgan, 1979; Shea \& Zimny, 1983, 1988).
(iii) Transfer

Transfer occurred in both groups. This result supported Anderson's ACT* theory, Anderson stated that transfer occurs when there is overlapping in productions between two tasks (Anderson, 1987). However, transfer performance of the random group was better than the block group in both the immediate transfer posttest and delayed transfer posttest. Transfer seems to be also greatly affected by the practice schedules in which component productions are acquired as discovered by Carlson and Yaure (1990).

Carlson and Yaure (1990) suggested that intraitem processing and interitem processing were both enhanced in random practice schedule. Subjects in the random group had to retrieve appropriate productions from the long term memory in every problem solving practice. Processing efficiency of component production was increased and this facilitated transfer. Subjects had to distinguish two types of problems and this resulted in the "tuning" of the productions. Besides, productions for solving two different problems might be differentiated in the working memory at the same time. Subjects were able to contrast the productions. Encoding of the similarities and differences would enhance organization and tuning of the productions during application. Recognition and retrieval of appropriate skills would be better and, as a result, transfer would be easier.

Protocol analysis were also used to reveal the differences in transfer performances. For the four transfer problems, the two pedigree problems (MP1 and MP2) were different in structure as compared with the acquisition problems while the other two differed in difficulty level (MCT) or required an additional concept while solving the problem (MC\&MI).

The strategy of "means-ends analysis" was more frequently observed for all the subjects. "Means-ends analysis" is generally applied when a subject first confronts a problem. Facts or information in the problems will act as source of activation. Subjects will try to match the facts in the problem with productions previously learnt (Anderson, 1987). "Means-ends analysis" is usually observed as subject has to restudy the problem to reconfirm facts or even compare possible answers with facts in the problem.

If, for example, a subject read the whole Question 5 (MP1), then tried to find out the genotype of individual 1 in the question. She made a few crosses to represent the possible genotypes of individuals 1,2 and their progenies. She finally chose an answer which best fit the pedigree. She is said to solve the problem by "means-ends analysis". If a subject could deduce that the genotype of individual 4 is 'rr' and genotype of individuals 1 and 2 are both ' Rr ' when she reached the pedigree. She is said to solve the problem by "working forward".

All six subjects had positive transfer in (MCT) and (MC\&MI). Subjects seemed to be less affected by the practice schedule they received. Subjects in the
block group performed better in the near transfer problem (MCT). Problems (MCT) and (MC\&MI) were designed to test for vertical transfer. When compared with the practice problems (MC), less information was given in problem (MCT) while an additional concept was required in solving problem (MC\&MI). The "critical cues" and problem-solving procedure in these two problems were, however, very similar to the acquisition problems.

Problems (MP1) and (MP2) were design for lateral transfer. In the two pedigrees (MP1 and MP2), progeny ratios are of little value because of the small sample size of the population represented in the pedigree. The "critical cues" in solving these two problems differed greatly from the acquisition problems (MS1 and MS2). Subjects in the block group were less aware of this constraint and were the weakest in solving these problems. Practice seems to produce the set effect (Einstellung effect or mechanization of thought) in them. Memory of the problem solving procedures for the acquisition problems blinded them from looking at other possibilities. On the other hand, subjects in the random group were not restricted by the progeny ratio learnt in the acquisition practice. Though $<\mathrm{R} 3>$ did not know how to solve (MP1) at first, she showed no sign of "set effect". Positive transfers could be said to observe in the three subjects from the random group.

The difference in transfer performance was a point of interest in this study. ANCOVA was ran for each transfer problem. Results showed that the block group was weaker than the random group in every transfer problem.

Repeated practice of the same type of problem did facilitate learning. Block practice in genetic problems produced better acquisition in the immediate postests. In the protocol analysis, some of the subjects "worked forward". This revealed that they simply retrieved the macroproduction in their solution. However, working forward was observed in subjects from both the block group and the random group. As Anderson's compilation of productions were also observed even in a block with two items each time, higher order consistency such as consistency in hierarchical goal structure might be enough to produce learning effects that matched the ACT* theory.

Anderson's (1987) statement that overlapping in productions between two tasks is enough for transfer to occur has been supported. Nevertheless, as Carlson and Yaure (1990) discover, processing context in which component productions are acquired is also important in affecting transfer. In genetic problems, retention and transfer were better for subjects who received random practice during acquisition. Random practice schedule increased intraitem processing and led to fluent access of component skills. Interitem processing also has the effect to prevent mechanization of processing from occurring. In the protocol analysis, subjects in the block group were more restricted by the typical conditions they learnt during training. They were unable to distinguish differences between learning tasks and transfer tasks and so applied productions which did not fit into solution. This may account for the poor transfer for the block group in the
pedigree problems.

Chapter V

Conclusions and suggestion for further investigations

1. Conclusions

In the present study, the effects of practice schedules on the problemsolving performance in genetic knowledge were investigated. Null hypotheses were set on the bases of Anderson's theory and Carlson and Yaure's orientation. As significant differences were found in treatment effects and significant interaction discovered among treatment groups, type of tests and time conditions. Anderson's theory and Carlson and Yaure's hypothesis were supported.

Effect of practice schedules on problem-solving performance in genetic knowledge.
(i) There was significant difference in the immediate acquisition score between the block and the random groups, favouring the block group.
(ii) There was significant difference in the immediate transfer score between the block and the random groups, favouring the random group.
(iii) There was significant difference in the delayed transfer score between the block and the random groups, favouring the random group.
(iv) There were significant three-way interaction effects between the two treatment groups on the immediate acquisition scores, immediate transfer scores, delayed acquisition score and delayed transfer score. The block group got highest score in the immediate acquisition posttest and lowest score in the delayed transfer posttest.
(v) There were significant two-way interaction effects between the two treatment groups on the immediate acquisition scores and immediate transfer scores. The block group got highest score in the immediate acquisition posttest and lowest score in the immediate transfer posttest.
(iv) There were significant two-way interaction effects between the two treatment groups on the delayed acquisition score and delayed transfer score. The random group outperformed the block group in both two tests and the delayed acquisition score of the random group was the highest.
(vii) There were significant two-way interaction effects between the two treatment groups on the immediate acquisition scores and delayed acquisition scores. The block group got highest score in the immediate acquisition posttest and lowest score in the delayed acquisition posttest.
(viii) In the protocol analysis, "working forward" was observed for subjects from both the block group and the random group. Higher order consistency may be enough to produce learning effects that match the ACT* theory.
(ix) In the protocol analysis, subjects in the block group were observed to be more restricted by the typical conditions they learnt. Application of productions in unsuitable situation may account for poor performance in the pedigree problems.

2. Suggestion for further investigations

(i) If another study is performed, the sample should include equal number of subjects in all the ability groups. Analysis may take the three ability groups into consideration. The same experimental procedure can have statistical manipulations resulting in a 2(practice conditions) X 3(ability groups) X 2(test types) X 2(test time) factorial design with pretest as covariate.
(ii) If there is a large sample size, the experiment may be extended to four groups. The added two groups are identical with those in this experiment except that they also tackle the transfer problems in their pretest. This enable comparison to be made on how much the practice affect performance in transfer problems.
(iii) If there is sufficient manpower, protocol analysis may also be carried out in various stages of skill acquisition. Subjects' performance in their first trial, just
after the practice schedule training as well as after seven days' delay were recorded. Comparison of problem solving performance among these three stages would be possible. Protocol interviews should have boys and girls as subjects.
(iv) One of the best performers in the protocol used the same letter, "R" and " r ", to represent any genotype she met. Further research may explore whether this would help in learning. An intervention program may be performed. Instructions may be designed to examine if consistency in the use of symbol would facilitate learning.

Bibliography

Ahn, Woo-kjoung, Brewer, W. F., \& Mooney, R. J. (1992). Schema acquisition from a single example. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(2), 391-412.

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369-406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak method problem solutions. Psychological Review, 94(2), 192-210.

Anderson, J. R. (1989). Practice, working memory, and the ACT* theory of skill acquisition: A comment on Carlson, Sullivan, and Schneider (1989). Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(3), 527-530.

Anderson, J. R. (1990a). Cognitive psychology and its implications (3rd ed.). NY: W. H. Freeman and Company.

Anderson, J. R. (1990b). The adaptive character of thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, $\underline{88}(3)$, 409-429.

Anderson, J. R., \& Milson, R. (1989). Human memory: An adaptive perspective. Psychological Review, 96(4), 703-719.

Anderson, J. R., \& Pirolli, L. P. (1984). Spread of activation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(4), 791798.

Anderson, J. R. \& Reder, L. M. (1979). An elaborative processing explanation of depth of processing. In L. S. Cermak \& F. I. M. Craik (Eds.), Levels of processing in human memory. Hillsdale, NJ: Erlbaum.

Angell, J. R. (1908). The doctrine of formal discipline in the light of principles of general psychology. Educational Review, 36, 1-14.

Ayres, P. L. (1993). Why goal-free problems can facilitate learning. Contemporary Educational Psychology, 18, 376-381.

Baddeley, A. (1986). Working memory. NY: Oxford University Press.
Barba, Robertta H., \& Merchant, L. J. (1990). The Effects of embedding generative cognitive strategeies in science software. Journal of Computers in Mathematics and Science Teaching, 10(1), 59-65.

Bassok, M. (1990). Transfer of domain-specific problem-solving procedures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(3), 522-533.

Bransford, J. D., \& Vye, N. J. (1989). A perspective on cognitive research and its implications for instruction. In L.B. Resnick \& L.E. Klopfer (Eds.), Toward the thinking curriculum: Current cognitive research (pp.173-205). Reston, VA:Association for Supervision and Curriculum Development.

Briscoe, C., \& LaMaster, S. U. (1991). Meaningful learning in college biology through concept mapping. American Biology Teacher, 53(4), 214-219.

Brown, C. R. (1990). Some misconceptions in meiosis shown by students responding to an advanced level practical examination question in biology. Journal of Biological Education, $\underline{24}(3)$, 182-185.

Browning, M. E., \& Lehman, J. D. (1988) Identification of student misconceptions in genetics problem solving via computer program. Journal of Research in Science Teaching, 25(9), 747-761.

Browning, M. E., \& Lehman, J. D. (1991) Response to Dr. Smith's comments and criticisms concerning "Identification of student misconceptions in genetics problem solving via computer program". Journal of Research in Science Teaching, 28(4), 385-386.

Carlson, R. A., \& Schneider, W. (1989). Acquisition context and the use of causal rules. Memory \& Cognition, 17, 240-248.

Carlson, R. A., Sullivan, M. A., \& Schneider, W. (1989a). Component fluency in a problem solving context. Human Factor, 31, 1-14.

Carlson, R. A., Sullivan, M. A., \& Schneider, W. (1989b). Practice and working memory effects in building procedural skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(3), 517-526.

Carlson, R. A., Sullivan, M. A., \& Schneider, W. (1989c). Practice effects and composition: A reply to Anderson. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 15(3), 531-533.
Carlson, R. A., \& Yaure, R. G. (1990). Practice schedules and the use of component skills in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 484-496.

Carlson, R. A. \& Lundy, D. H. (1992). Consistency and restructuring in learning cognitive procedural sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 127-141.

Catrambone, R., \& Holyoak, K. J. (1989). Overcoming contextual limitations io problem-solving transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1147-1156.

Clark, A. (1990). Microcognition. Cambridge: The MIT Press.
Collins, A. (1986). Problem-solving rules for genetics. Paper presented at the meeting of the American eduational research association, San Francisco, CA.

Cratsley, C. (1991). Campbell biology prize essay: How problems can help. American Biology Teacher, 53(7), 390-392.

Cuddy, L. J., \& Jacoby, L. L. (1982). When forgetting helps memory: An analysis of repetition effects. Journal of Verbal Learning and Verbal Behavior, 21, 451-467.
de Groot, A. D. (1965). Thought and choice in chess. The Hague: Mounton.
Duncan, J. (1986). Consistent and varied training in the theory of automatic and controlled information processing. Cognition, 23, 279-284.

Duncker, K. (1945). On problem solving. Psychological Monographs, $\underline{\text { 58(whole }}$ no. 270).

Elio, R. (1986). Representation of similar well-learned cognitive procedures. Cognitive Science, 10, 41-73.

Ennals, R. (1988). Can skills be transferable. In B. Goranzon \& I. Josefson (Eds.), Knowledge skill and artifical intelligence. London: SpringerVerlag.

Ernst, G., \& Newell, A. (1969). GPS:A case study in generality and problem solving. NY: Academic Press.

Ericsson, K. A., \& Simon, H. A. (1980). Verbal report as data. Psychology Review, 87(3), 215-251.

Fish, A. D., Oransky, N. A., \& Skedsvold, P. R. (1988). Examination of the role of "Higher-order" consistency in skill development. Human Factor, 30(5), 567-581.

Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.), Categories of human learning. NY: Academic Press.

Fitts, P. M., \& Ponser, M. I. (1967). Human performance. Belmont, CA: Brooks Cole.

Gagne, E. D. (1985). The cognitive psychology of school learning. Boston: Little, Brown and Company.

Gagne, R. M. (1966). The conditions of learning. NY: Holt, Rinehart, and Winston.

Gayford, C. (1989). A Contribution to a methodology for teaching and assessment of group problem-solving in biology among 15-year-old Pupils. Journal of Biological Education, 23(3), 193-198.

Germann, P. J. (1991). Developing science process skills through directed inquiry. American Biology Teacher, 53(4), 243-247.

Gick, M. L. (1986). Problem-solving strategies. Educational Psychologist, 21(1\&2), 99-120.

Gick, M. L. (1990). Transfer insight problems: The effects of different types of similarity. In K. J. Gilhooly, M. T. G. Keane, R. H. Logie, \& G. Erodes (Eds.), Lines of thinking (Vol. 1, pp. 251-265). Chichester, England: Wiley.

Gick, M. L., \& Holyoak, K. J. (1987). The cognitive basis of knowledge transfer. In S. M. Cormier \& J. D. Hagman (Eds.), Transfer of learning. NY: Academic Press.

Gick, M. L., \& McGarry, S. J. (1992). Learning from mistakes: Inducing analogous solution failures to a source problem produces later successes ni analogical transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(3), 623-639.

Gilhooly, K. J. (1989). Human and machine problem solving: Toward a comparative cognitive science. In K. J. Gilhooly (Ed.), Human and machine problem solving. NY: Plenum Press.

Glaser, R. (1976). Components of a psychology of instruction: Toward a science of design. Review of Educational Research, 46(1), 1-24.

Greeno, J. G. (1978). Nature of problem-solving abilities. In W. K. Estes (Ed.), Handbook of learning and cògnitive processes (Vol. 5, pp. 239-270). NY: John Wiley \& Sons.

Heyworth, R. M. (1988). Mental representation of knowledge for a topic in high school chemistry. Doctoral dissertation, Stanford University.

Hong Kong Examination Authority (1992a). Hong Kong advanced level examination: question papers (AL biology 1987-90). Hong Kong: Government Printer.

Hong Kong Examination Authority (1992b), Hong Kong certificate of eduation examination: question papers (CE biology 1987-90). Hong Kong: Government Printer.

Hafner, B., \& Stewart, J. (1989). Comments on predicting genetics achievement in nonmajors college biology. Journal of Research in Science Teaching, 26(6), 551-553.

Jacoby, L. L. (1978). On interpreting the effects of repetition: Solving a problem versus remembering a solution. Journal of Verbal Learning \& Verbal Behaviour, 17, 649-667.

Johnstone, A. H., \& Mahmound, N. A. (1980). Isolating topics of high perceived difficulty in secondary school biology syllabus. Journal of Biological Education, 14(2), 163-166.

Just, M. A., \& Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122-149.

Kindfield, A. C. H. (1991). Confusing chromosome number and structure: a common student error. Journal of Biological Education, 25(3), 193-200.

Klapp, S. T., Marshburn, E. A., \& Lester, P. T. (1983). Short-term memory does not involve the "working memory" of information processing: The demise of a common assumption, Journal of Experimental Psychology: General, 112(2), 240-264.

Knapp, T. J., \& Roberson, L. C. (1986). Approaches to cognition: Contrasts and controversies. Hillsdale, NJ: Lawrence Erlbaum Associates.

Kohler, W. (1927). The mentality of apes. NY: Harcourt Brace.
Kotovsky, K., \& Fallside, D. (1989). Representation and transfer in problem solving. In Klahr, D., \& Kotovsky, K. (Eds.), Complex information
processing: The impact of Herbert A. Simon. NJ: Lawrence Erlbaum Association.

Kramer, A. F., Strayer, D. L., \& Buckley, J. (1990). Development and transfer of automatic processing. Journal of Experimental Psychology:Human Perception and Performance, 16(3), 505-522.

Lavoie, D. R. (1991). The construction and application of a cognitive-network model of prediction problem solving. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Lake Geneva, WI. (ERIC Document Reproduction Service No. ED332864)

Lawson, A. E. (1988). Predicting genetics achievement in nonmajors college biology". Journal of Research in Science Teaching, 25(1), 23-37.

Lawson, A. E. (1989). A reply to Hafner and Stewart's comments on "Predicting genetics achievement in nonmajors college biology". Journal of Research in Science Teaching, 26(6), 555-556.

Lawson, A. E., \& Weser, J. (1990). The Rejection of Nonscientific Beliefs about life: Effects of Instruction and Reasoning Skills. Journal of Reasearch in Science Teaching, 27(6), 589-606.

Lee, T. D., \& Magil, R. A. (1983). The locus of contextual inference in motor skill acquisition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9, 730-746.

Lester, F. K. (1980). A procedure for studying the cognitive processes used during problem solving. Journal of Experimental Education, 48(4), 323327.

Lehrer R., \& Littlefield, J. (1993). Relationships among cognitive components in logo learning and transfer. Journal of Educational Psychology, 85(2), 317-330.

Leinhardt, G. (1988). Videotape Recording in Educational Research. In: Keeves J. P., Educational research, methodology, and measurement: An international handbook. Pergamon Press.

Longden, N. (1982). Learning difficulty in genetics. Journal of Biological Education, 15(2), 135-140.

Lock, R. (1991). Open-ended, problem-solving investigations-getting started. School Science Review, 73(262), 67-74.

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492-527.

Logan, G. D. (1990). Repetition priming and automaticity: Common underlying mechanisms?. Cognitive Psychology, 22, 1-35.

Luchins, A. S., \& Luchins, E. H. (1959). Rigidity of behavior: A variational approach to the effects of Einstellung. Eugene, OR: University of Oregon Books.

Macnab, W., Hansell, M. H., \& Johnstone, A. H. (1991) Cognitive style and analytical ability and their relationship to competence in the biological sciences. Journal of Biological Education, 25(2), 135-139.

Mayer, R. E. (1983). Thinking, problem solving, cognition. New York: W. H. Freeman.

Mayer, R. E. (1989). Human nonadversary problem solving. In K. J. Gilhooly (Ed.), Human and machine problem solving. NY \& London: Plenum Press.

MacKay, D. G. (1982). The problem of flexibility, fluency, and speed-accuracy tradeoff in skilled behavior. Psychology Review, 89, 483-506.

McClelland, J. L. (1986). On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review, 86(4), 287-330.

McClelland, J. L., \& Rumelhart, D. E. (1986). Parallel distributed processing, explorations in the microstructure of cognition (vol. 1 \& 2). Cambridge: The MIT Press.

McDaniel, M. A. \& Schlager, M.S. (1990). Discovery learning and transfer of problem-solving skill. Cognition and Instruction, 7, 129-159.

McKendree, J. E., \& Anderson, J. R. (1978). Frequency and practice working memory effects in building procedural skill. In J. M. Carroll (Ed.), Cognitive aspects of human-computer interaction (pp.236-259). Cambridge, MA.:MIT Press.

Melton, A. W. (1967). Repetition and retrieval from memory. Science, 158, 532.

Metcalfe, J. (1986a). Feeling of knowing in memory and problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12, 288-294.

Metcalfe, J., \& Weibe, D. (1987). Intuition ininsight and noninsight problem solving. Memory \& Cognition, 15, 238-246.

Miller, P. V., \& Cannell, C. F. (1988). Interviews in Sample Surveys. In J. P. Keeves, Educational research, methodology, and measurement: An international handbook. Pergamon Press.

Monsell, S. (1984). Components of working memory underlying verbal skills: A "distributed capacities" view. In H. Bouma, \& D. G. Bouwhuis (Eds.), Attention and performance x. London: Lawrence Relbaum Associates.

Neves, D. M., \& Anderson, J. R. (1981). Knowledge compliation: Mechanisms for the automatization of cognitive skills. In J. R. Anderson (Ed.), Cognitive skills and their acquisition. Hillsdale, NJ: Erlbaum.

Newell, A., \& Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Nolan, W. F. (1990). A Problem-solving approach to teaching electrochemical driving force to undergraduates. Advances in Physiology Education, 4(1), s1-s3.

Niedelman, M. (1991). Problem solving and transfer. Journal of Learning Disability, 24(6), 322-329.

Okebukola, P. A. (1990). Attaining meaningful learning of concepts in genetics and ecology: An examination of the potency of the concept-mapping technique. Journal of Reasearch in Science Teaching, 27(5), 493-504.

Pearson, J. T., \& Hughes, W. J. (1986). Designing an A-level genetics course: identifying the necessary concepts and considering their relationships. Journal of Biological Education, 20(1), 47-54.

Perkins, D. N., Salomon, G. (1989). Are cognitive skills context-bound? Educational Researcher, 47, 16-25.

Palmer, S. E., \& Kimchi, R. (1986). The information processing approach to cognition. In T. J. Knapp \& L. C. Robertson (Eds.), Approaches to cognition: Contrasts and controversies (p. 37-77). Hillsdale, NJ: Lawrence Erlbaum Associates.

Pillsbury, W. B. (1908). The effect of training on menory. Educational Review, 36, 15-27.

Pierce, K. A., Duncan, M. K., Gholson, B., Ray, G. E., \& Kamhi, A. G. (1993). Cognitive load, schema acquisition, and procedual adaptation in nonisomorphic analogical transfer. Journal of Educational Psychology, 85(1), 66-74.

Ploger, D. (1991). Reasoning and Learning about Mechanisms in Biology.

Radford, A., \& Bird-Stewart, J. A. (1982). Teaching genetics in schools. Journal of Biological Education, 16(3), 177-180.

Resnick, L. B., \& Klopfer, L. (1989). Toward the thinking curriculum: An overview. In L.B. Resnick \& L.E. Klopfer (Eds.), Toward the thinking curriculum: Current cognitive research (pp.1-3). Reston, VA:Association for Supervision and Curriculum Development.

Riesenmy, M. R., Mitchell, S., \& Hudgins, B. B. (1991). Retention and transfer of children's self-directed critical thinking skills. Journal of Educational Research, 85(1), 14-25.

Rowe, H. A. H. (1985). Problem solving and intelligence. Hillsdale, NJ: Lawrence Erlbaum Association.

Shemesh, M., \& Lazarowitz, R. (1989). Pupils' reasoning skills and their mastery of biological Concepts. Journal of Biological Education, $\underline{23}(1)$, 59-63.

Shepardson, Daniel P. (1991). Relationships among problem solving, student interactions, and thinking skills. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Lake Geneva, WI. (EDRIC Document Reproduction Service No. ED338494)

Schneider, W. (1985). Toward a model of attention and the development of automatic processing. In M. I. Posner, \& O. S. M. Marin (Eds.), Attention and performance xi. Hillsdale: Lawrence relbaum associates.

Schneider, W., Dumais, S. T., \& Shiffrin, R. M. (1984). Automatic and control processing and attention. In R. Parasuraman \& D. R. Davies (Eds.), Varieties of attention. Orlando: Academic press.

Schneider, W., \& Detweiler, M. (1987). A connectionist /control architecture for working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 21, pp.53-119). Orlando, FL: Academic Press.

Schneider, W., \& Detweiler, M. (1988). The role of practice in dual-task performance: Toward workload modeling in a connectionist/control architecture. Human Factor, 30(5), 539-566.

Semb, G. B., Ellis, J. A., \& Araujo, J. (1993). Long-term memory for knowledge learned in school. Journal of Educational Psychology, 85(2), 305-316.

Shea, C. H., \& Kohl R. M. (1990). Composition of practice: Influence on the
retention of motor skills. Research Quarterly for Exercise and Sport, 62(2), 187-195.

Shea, J. B., \& Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5, 179-187.

Shea, J. B., \& Zimny, S. T. (1983). Context effects in memory and learning movement information. In R. A. Magill (Ed.), Memory and control of action (pp.345-366). Amsterdam: North-Holland.

Shea, J. B., \& Zimny, S. T. (1988). Knowledge incorporation in motor representation. In O. G. Meijer \& K. Roth (Eds.), Complex movement behaviour (pp.289-314). Amsterdam: North-Holland.

Simmons, P. E., \& Lunetta, V. N. (1993). Problem-solving behaviors during a genetics computer simulation: Beyond the expert/novice dichotomy. Journal of Research in Science Teaching, 30(2), 153-137.

Simon, H. A. (1978). Information-processing theory of human problem solving. In W. K. Estes (Ed.), Handbook of learning and cognitive processes (Vol. 5 pp. 271-295), NY: John Wiley \& Sons.

Simon, H. A., \& Gilmartin, K. (1973). A simulation of memory for chess positions. Cognitive Psychology, 5, 29-46.

Singley, K., \& Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Havard University Press.

Skinner, B. F. (1966). An operant analysis of problem solving. In B. Kleinmuntz (Ed.), Problem solving: Research, method and theory (pp.225257). NY: John Wiley \& Sons.

Slack, S. J., \& Stewart, J. (1990). High school students' problem-solving performance on realistic genetics problems. Journal of Research in Science Teaching, 27(1), 55-67.

Smith, M. U. (1988) Successful and unsuccessful problem solving in classical genetic pedigrees. Journal of Research in Science Teaching, 25(6), 411433.

Smith, M. U. (1991). Comments on "Identification of student misconceptionsni genetics problem solving via computer program". Journal of Research in Science Teaching, 28(4), 383-384.

Smith, M. U. (1992). Expertise and the organization of knowledge: Unexpected differences among genetic counselors, faculty, and students on problem
categorization tasks. Journal of Research in Science Teaching, 29(2), 179205.

Smith, M. U., \& Good, R. (1984). Problem solving and classical genetics, successful versus unsuccessful performance. Journal of Research in Science Teaching, 2(9), 895-912.

Smith, M. U., \& Sims, O. S. (1992). Cognitive development, genetics problem solving, and genetics instruction: A critical review. Journal of Research in Science Teaching, 29(7), 701-713.

Solso, R. L. (1988). Cognitive psychology (2nd ed.). Boston: Allyn and Bacon, Inc.

Stewart, J., \& Dale, M. (1981). Solution to genetics problems: Are they the same as correct answers? The Australian Sscience Teachers Journal, 27(13), 5964.

Stewart, J., \& Maclin, R. (1990). Representing genotype-to-phenotype mappings. Journal of Biological Education, 24(2), 113-116.

Stencel, J. E. (1991). Using an Algorithm When Solving Hardy-Weinberg Problems in Biology. American Biology Teacher, 53(7), 426-427.

Tallent-Runnels M. K. (1993). The Future problem solving program: An investigation of effects on problem-solving ability. Contemporary Educational Psychology, 18, 382-388.

Thomas, I. (1983). Problems in genetics teaching in school. Journal of Biological Education, 17(1), 18-25.

Thomson, N., \& Stewart, J. (1985). Secondary school genetics instruction: Making problem solving explicit and meaningful. Journal of Biological Education, 19(1), 53-62.

Thorndike, E. L. (1906). Principle of teaching. NY: A. G. Seiler.
Walker, R., Mertens, T. R., \& Hendrix, J. R. (1979). Formal operational reasoning strategeies and scholastic achievement in genetics. Journal of College Science Teaching, 8 , 156-162.

Weinstein, C. E., \& Mayer, R. E. (1986). The teaching of learning strategies. In M. C. Wittrock (Ed.), Handbook of research on teaching. NY: Macmillan Publishing Company.

White, R. T. (1988). Matcognition. In: Keeves J. P. (Ed.), Educational research, methodology, and measurement: An international handbook. Pergamon

Press.

Weisberg, C. A. (1991). A field test of the effect of contextual variety during skill acquisition. Journal of Teaching in Physical Education, 11, 21-30.

Weisberg, R. W. (1992). Metacognition and Insight During Problem Solving: Comment on Metcalfe. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(2), 426-431.

Wenestam, C. G. (1993). A critique of research on cognition and cognitive processes. British Journal of Education Psychology, 63, 34-35.

Wertheimer, M. (1959). Productive thinking (enlarge ed.). NY: Harper \& Row.
White, R. T., \& Tisher, R. P. (1986). Research in natural science. In M. C. Wittrock (Ed.), Handbook of research on teaching. NY: Macmillan Publishing Company.

Woodrow, H. (1927). The effect of the type of training upon transference. Journal of Educational Psychology, 18, 159-172.

Wong Ka Ming (1989). The effects of structural diagrams on the acquisition of knowledge structure and problem-solving performance in mathematics. Master's thesis, The Chinese University of Hong Kong, Hong Kong.

Wrisberg, C. A., \& Liu, Z. (1991). The effect of contextual variety on the practice, retention, and transfer of an applied motor skill. Research Quarterly for Exercise and Sport, 62(4), 406-412.

Appendix A The power law

Anderson (1983) had a study on how speed of retrival varies with practice. He had subjects practice sentences and looked at the effects of the practice on the time to recognize a sentence. The result of the experiment was as Figure 7 below:

The data are nicely fit by a power function of the form

$$
\mathrm{RT}=.36+.96(\mathrm{D}-1 / 2)^{-.36}
$$

where RT is the reaction time and D is the number of days of practice.

Appendix B

Figure 8. Sequence of evens on each trial in memory load task in the experiment of Carlson, Sullivan and Schneider (1989b).

Appendix C Supplimentary note

Codominance inheritance pattern

Codominance means: A pair of genes which control the expression of a certain character are equal in their effect on expression. When a pure-breeding red flower plant (RR) cross with a pure-breeding white flower plant (rr), in this kind of dominance, all $\mathrm{F}_{1}(\mathrm{Rr})$ will have pink flower.

Appendix D Pretest

Pretest

1.In man the ability to roll the tongue is dominant to non-roller.

A pure breeding tongue roller married a non-roller. Make a diagram to show the cross and the possible phenotypic and genotypic result in the F_{1} generation.
2.A grey body fruit fly is crossed to a fruit fly with ebony colour. It was found that all the F1 generation are grey body.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{G} and \mathbf{g}, state and explain briefly the genotype of (i) the parent flys, and(ii) the flys in F1.
3.The flower color of a plant is controlled by a pair of alleles which is codominance in inheritance pattern. When a pure breeding red flowers plant is crossed with a pure breeding white flowers plant, all the F_{1} plants have pink flowers.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.

Appendix E Practice schedule exercise

There were two sets of exercise. Exercises $1 \mathrm{~B}, 2 \mathrm{~B}$ and 3 B were for students in the block group and exercises $1 \mathrm{R}, 2 \mathrm{R}$ and 3 R were for students in the random group. These exercises were given to the students in 3 sucessive day. Students in both groups solved the problems in the class. These two sets of exercise contained identical problems in different arrangements. Only suggested solutions of exercise $1 \mathrm{~B}, 2 \mathrm{~B}$ and 3 B were appended here.

Exercise.1B

1.In rabbit long hair is dominant to short hair.

A heterozygous long hair rabbit is mated with a short hair rabbit. Make a diagram to show the cross and the possible phenotypic and genotypic result in the F_{1} generation.
2. An extra finger in man is due to a dominant gene.

A man who is homozygous with an extra finger married a normal woman. Make a diagram to show the cross and the possible phenotype and genotype of their children.
3.In Dorsophila vestigial wing is recessive to long wing.

A homozygous long winged fly crosses with a heterozygous long winged fly. Make a diagram to show the cross and the result (phenotypic and genotypic) in the F_{1} generation.
4.In tomato white flower is recessive to yellow flower.

A heterozygous yellow flower plant is self-pollinated. Make a diagram to show the cross and the result (phenotypic and genotypic) in the F_{1} generation.
5.In domestic fowl short leg is dominant to long leg.

A heterozygous short leg fowl is mated with a long leg fowl. Make a diagram to show the cross and the possible phenotypic and genotypic result in the F_{1} generation.

Exercise. 2B

1.A green maize plant was pollinated with another green maize plant of the same strain. A total of 136 grains were taken and allowed to germinate in light. It was found that 100 seedlings were green 32 seedlings were white.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{G} and \mathbf{g}, state and explain briefly the genotype of (i) the parent plants, and(ii) the seedlings.
2.A black guinea pig is mated to a brown guinea pig. It was found that all the pig produced are black.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{B} and \mathbf{b}, state and explain briefly the genotype of (i) the parent pigs, and(ii) the pigs in F1.
3.A pea plant with axil flower was pollinated with a pea plant with axil flower. The grains collected were planted and it was found that 25% of the new plants have terminate flower.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{A} and a, state and explain briefly the genotype of (i) the parent plants, and(ii) the plants in F1.
4.A hornless bull is mated to a horned cow. It was found that all the cattle produced are hornless.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{H} and \mathbf{h}, state and explain briefly the genotype of (i) the parent cattle, and(ii) the cattle in F1.
5.One of the five offsprings of a pair of short leg fowl has long leg.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{L} and I, state and explain briefly the genotype of (i) the parent fowl and (ii) the short leg and long leg offsprings.

Exercise.3B

1.The coat colour of guinea pigs is controlled by a pair of alleles which are codominance in inheritance pattern. When a pure breeding yellow coloured guinea pig is crossed with a pure breeding white coloured guines pig, all the F_{1} are cream coloured guiena pigs.

Shows the phenotype and genotype of the parents and F_{1} by means of a diagram.
2. The hair length of Angora rabbits are controlled by a pair of alleles which are codominance in inheritance pattern. When two intermediate silky fur rabbits mated, one long hair, one short hair and two intermediate silky fur rabbits were produced.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
3.In a certain species of bird, colour intensity of feather are controlled by a pair of genes which are codominance in inheritance pattern. When a pure breeding pale blue bird is mated with a pure breeding purple bird, all the F_{1} have deep blue feather.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
4.In light-skinned people, hair straightness is controlled by a pair of genes which are codominance in inheritance pattern. When a man with curly hair married a woman with straight hair, all their children will have wavy hair.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
5.The flower color of a plant is controlled by a pair of alleles which is codominance in inheritance pattern. When a pink flowers plant is crossed with a pure breeding white flowers plant, there are 10 pink flower plants and 9 white
flower plants in the F_{1} generation.
Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
Exercise.1R
1.In rabbit long hair is dominant to short hair.

A heterozygous long hair rabbit is mated with a short hair rabbit. Make a diagram to show the cross and the possible phenotypic and genotypic result in the F_{1} generation.
2.A green maize plant was pollinated with another green maize plant of the same strain. A total of 136 grains were taken and allowed to germinate in light. It was found that 100 seedlings were green 32 seedlings were white.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{G} and \mathbf{g}, state and explain briefly the genotype of (i) the parent plants, and(ii) the seedlings.
3.In Dorsophila vestigial wing is recessive to long wing.

A homozygous long winged fly crosses with a heterozygous long winged fly. Make a diagram to show the cross and the result (phenotypic and genotypic) in the F_{1} generation.
4.In tomato white flower is recessive to yellow flower.

A heterozygous yellow flower plant is self-pollinated. Make a diagram to show the cross and the result (phenotypic and genotypic) in the F_{1} generation.
5.A black guinea pig is mated to a brown guinea pig. It was found that all the pig produced are black.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{B} and \mathbf{b}, state and explain briefly the genotype of (i) the parent pigs, and(ii) the pigs in F1.

Exercise. 2R

1.The coat colour of guinea pigs is controlled by a pair of alleles which are codominance in inheritance pattern. When a pure breeding yellow coloured guinea pig is crossed with a pure breeding white coloured guines pig, all the F_{1} are cream coloured guiena pigs.

Shows the phenotype and genotype of the parents and F_{1} by means of a diagram.
2.In domestic fowl short leg is dominant to long leg.

A heterozygous short leg fowl is mated with a long leg fowl. Make a diagram to show the cross and the possible phenotypic and genotypic result in the F_{1} generation.
3.The hair length of Angora rabbits are controlled by a pair of alleles which are codominance in inheritance pattern. When two intermediate silky fur rabbits mated, one long hair, one short hair and two intermediate silky fur rabbits were produced.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
4. An extra finger in man is due to a dominant gene.

A man who is homozygous with an extra finger married a normal woman. Make a diagram to show the cross and the possible phenotype and genotype of their children.
5.In a certain species of bird, colour intensity of feather are controlled by a pair of genes which are codominance in inheritance pattern. When a pure breeding pale blue bird is mated with a pure breeding purple bird, all the F_{1} have deep blue feather.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.

Exercise.3R

1.The flower color of a plant is controlled by a pair of alleles which is codominance in inheritance pattern. When a pink flowers plant is crossed with a pure breeding white flowers plant, there are 10 pink flower plants and 9 white flower plants in the F_{1} generation.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
2.A pea plant with axil flower was pollinated with a pea plant with axil flower. The grains collected were planted and it was found that 25% of the new plants have terminate flower.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{A} and a, state and explain briefly the genotype of (i) the parent plants, and(ii) the plants in F1.
3.A hornless bull is mated to a horned cow. It was found that all the cattle produced are hornless.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{H} and \mathbf{h}, state and explain briefly the genotype of (i) the parent cattle, and(ii) the cattle in F1.
4.In light-skinned people, hair straightness is controlled by a pair of genes which are codominance in inheritance pattern. When a man with curly hair married a woman with straight hair, all their children will have wavy hair.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
5.One of the five offsprings of a pair of short leg fowl has long leg.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{L} and 1, state and explain briefly the genotype of (i) the parent fowl and (ii) the short leg and long leg offsprings.

Answer.1B

1. Let L represent the dominance gene for long hair and 1 represent the recessive gene

The cross should be

Therefore, they will have long hair and short hair rabbit in the ratio $1: 1$.
2. P
G

F1
Ee (extra finger)

All children with extra finger.
3. P

G

F1

All F1 are long winged fly.

Yellow and white will be in the ratio $3: 1$ in F 1 .

$1 / 2$ of F1 will be short leg fowl and $1 / 2$ be long leg.

Answer. 2B
1.(a) Green is the dominant character as Green and white are in the ratio $3: 1$ in the F1 generation.
(b) Let G be the dominant gene for green and g be the recessive gene.
(i) parents
gametes

F1

2. (a) black, as all F1 are black.
(b) (i) homozygous black (BB) and homozygous brown (bb).
(ii) All F1 are heterozygous black (Bb).
3.(a) axil flower, as axil and terminate flower plants in F1 are in the ratio 3:1.
(b) (i) both are heterozygous axil (Aa).
(ii) homozygous axil flower (AA), heterozygous axil flower (Aa) and terminate flower (aa) are in the ratio 1:2:1.
4. (a) hornless, as all F1 are hornless.
(b) (i) homozygous hornless (HH) and homozygous horned (hh).
(ii) All F1 are heterzygous hornless (Hh)
5.(a) short, as short leg and long leg in F1 are 3:1 in ratio,
(b) (i) both are heterozygous short leg (Ss).
(ii) homozygous short leg (SS), heterozygous short leg and long leg (ss) are in the ratio 1:2:1

Answer.3B

1. Let Y represent gene for yellow coat and y represent gene for white coat.

The cross should be:

2.

3.

4.

5.

Appendix F Posttests

Posttest $1 \mathrm{~B}, 2 \mathrm{~B}$ and 3 B were for students in the block group and posttest $1 R, 2 R$ and $3 R$ were for students in the random group. They were given after the practice schedule sessions. One week after the practice schedule exercises, the delayed posttest were given to students in both groups.

Posttest. 1B

1.In common pea, long stem is dominant to short stem.

A heterozygous long stem pea is crossed with a short stem plant. Make a diagram to show the cross and the result (phenotypic and genotypic) in the F_{1} generation.
2.Blue eyes in man are recessive to brown eyes.

A heterozygous brown eyes man married a heterozygous brown eyes woman. Make a diagram to show the possible phenotype and genotype of their children.

Posttest. 2B

1. A white rabbit mates with a black rabbit are found to produce five offsprings which are all white.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{W} and \mathbf{w}, state and explain briefly the genotype of (i) the parent rabbits, and (ii) the white and black offsprings.
2.Two red-eye Dorsophila were found to produce 35 red-eye and 12 white eye flies.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{R} and \mathbf{r}, state and explain briefly the genotype of (i) the parent flies, and(ii) the flies in F1.

Posttest.3B

1. In Angora rabbit, hair length is controlled by a pair of genes which are codominance in inheritance pattern. When a long fur rabbit mates with a short fur rabbit, all their progenies have intermediate silky fur.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
2. The coat colour of guinea pigs is controlled by a pair of alleles which are codominance in inheritance pattern. When two cream coloured guiena pigs mate, 2 yellow coloured guinea pig, 2 white coloured gaines pig and 4 cream coloured guiana pigs are produced.

Shows the phenotype and genotype of the parents and F_{1} by means of a diagram.
3.A pair of rabbits produces 6 rabbits with intermediate silky fur, 2 with long fur and 3 with short fur.
(a) Explain the genotype and pheontype of the parent and the progenies with the help of diagram.
(b) What is the name of the kind of dominance in the above cross ?
4. The black hair of guinea pigs is produced by a dominant gene B and white by its recessive allele b. The following diagram shows a family tree of guinea pigs.

represent male pigs with black hair. represent male pigs with white hair.
represent female pigs with black hair.
represent female pigs with white hair.
A horizontal line is used to link up members of the same generation.

A double horizontal line indicates a mating.
The offspring of a mating are connected by a vertical line to the mating line.
Assume that individuals 3 and 6 do not carry the recessive allele.
(i) State and explain the genotypes of individuals
(a) 1 and 2 .
(b) 7 .
(ii) What is the probability that individual 5 is a heterozygote? Why?
5. A man with blood group A married a woman with blood group B. They have four children of blood group $\mathrm{A}, \mathrm{B}, \mathrm{AB}$ and O .

Show the phenotype and genotype of the parents and children by means of a diagram.
6. In human, the presence of a six finger (polydactyly) is a hereditary character. A polydactylous woman marries a normal man. The following diagram represents the resultant family tree.

O^{7}represent normal male.
\bigotimes^{7} represent polydactylous male.

\bigcircrepresent normal female.
\bigotimes represent polydactylous female.

A horizontal line is used to link up members of the same generation.
A double horizontal line indicates a marriage.
The offspring of a couple are connected to them by a vertical line.
(i) Which character is dominant? Explain your answer.
(ii) State and explain the genotype of 1 and 2 by diagram.

Posttest.1R

1. Blue eyes in man are recessive to brown eyes.

A heterozygous brown eyes man married a heterozygous brown eyes woman. Make a diagram to show the possible phenotype and genotype of their children.
2.A white rabbit mates with a black rabbit are found to produce five offsprings which are all white.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{W} and \mathbf{w}, state and explain briefly the genotype of (i) the parent rabbits, and (ii) the white offsprings.

Posttest.2R

1.In common pea, long stem is dominant to short stem.

A heterozygous long stem pea is crossed with a short stem pea. Make a diagram to show the cross and the result (phenotypic and genotypic) in the F_{1} generation.
2. The coat colour of guinea pigs is controlled by a pair of alleles which are codominance in inheritance pattern. When two cream coloured guiena pigs mate, 2 yellow coloured guinea pig, 2 white coloured guines pig and 4 cream coloured guiena pigs are produced.

Shows the phenotype and genotype of the parents and F_{1} by means of a diagram.

Posttest.3R

1.In Angora rabbit, hair length is controlled by a pair of genes which are codominance in inheritance pattern. When a long fur rabbit mates with a short fur rabbit, all their progenies have intermediate silky fur.

Show the phenotype and genotype of the parents and F_{1} by means of a diagram.
2. Two red-eye Dorsophila were found to produce 35 red-eye and 12 white eye flies.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{R} and \mathbf{r}, state and explain briefly the genotype of (i) the parent flies, and(ii) the flies in F1.
3. A pair of rabbits produces 6 rabbits with intermediate silky fur, 2 with long fur and 3 with short fur.
(a) Explain the genotype and pheontype of the parent and the progenies with the help of diagram.
(b) What is the name of the kind of dominance in the above cross ?
4. The black hair of guinea pigs is produced by a dominant gene B and white by its recessive allele b. The following diagram shows a family tree of guinea pigs.

θrepresent male pigs with black hair.
 represent male pigs with white hair.
represent female pigs with black hair.

\bigcircrepresent female pigs with white hair.
A horizontal line is used to link up members of the same generation. A double horizontal line indicates a mating. The offspring of a mating are connected by a vertical line to the mating line. Assume that individuals 3 and 6 do not carry the recessive allele.
(i) State and explain the genotypes of individuals
(a) 1 and 2 .
(b) 7 .
(ii) What is the probability that individual 5 is a heterozygote?
5. A man with blood group A married a woman with blood group B. They have four children of blood group $\mathrm{A}, \mathrm{B}, \mathrm{AB}$ and O .

Show the phenotype and genotype of the parents and children by means of a diagram.
6. In human, the presence of a six finger (polydactyly) is a hereditary character. A polydactylous woman marries a normal man. The following diagram represents the resultant family tree.

A horizontal line is used to link up members of the same generation. A double horizontal line indicates a marriage.
The offspring of a couple are connected to them by a vertical line.
(i) Which character is dominant? Explain your answer.
(ii) State and explain the genotype of 1 and 2 by diagram.

Delayed Posttest

1. In fruitflies, grey body colour is dominant to ebony body colour.

A generation of heterozygous grey body flies is crossed among themselves. Make a diagram to show the cross and the result (phenotypic and genotypic) in the F_{1} generation.
2. The flower color of a plant is controlled by a pair of alleles which is codominance in inheritance pattern. When a plant with pink flowers is selfpollinated, 5 red flower plant, 5 white flower plant and 10 pink flower plant are found in the F_{1} generation.

Show the phenotype and genotype of the parents and F_{1} progenies by means of a diagram.
3. Brown hair in man are recessive to black hair.

A brown hair man married a woman who is heterozygous black hair. Make a diagram to show the possible pheontype and genotype of their children.
4. One of the five offsprings of a pair of white rabbits is black.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{W} and \mathbf{w}, state and explain briefly the genotype of (i) the parent rabbits, and (ii) the white and black offsprings.
5. In human, tongue rolling is determined by the presence of a dominant gene (R), whose recessive allele is represented by (r). The following diagram represents a family tree for a number of individuals.

A horizontal line is used to link up members of the same generation. A double horizontal line indicates a marriage.
The offspring of a couple are connected to them by a vertical line.
(i) State and explain the genotypes of individuals
(a) 1 .
(b) 3 and 4 .
(ii) What is the probability that individual 5 is a heterozygote? Why?
6. A man with blood group A married a woman with blood group B. They have four children of blood group $\mathrm{A}, \mathrm{B}, \mathrm{AB}$ and O .

Show the phenotype and genotype of the parents and children by means of a diagram.
7. In human, the short sight is a hereditary character. A normal woman marries a short sight man. The following diagram represents the resultant family tree.

A horizontal line is used to link up members of the same generation. A double horizontal line indicates a marriage.
The offspring of a couple are connected to them by a vertical line.
(i) Which character is dominant? Explain your answer.
(ii) State and explain the genotype of 1 and 2 by diagram.
8. 21 seeds were collected from a plant and germinated. It was found that 6 of them have tall stem, 11 have stem with intermediate height and 4 with short stem.
(a) Explain the genotype and pheontype of the parent and the progenies with the help of diagram.
(b) What is the name of the kind of dominance ?

Appendix G Problems in the second protocol interviews

1.In garden pea terminal flower is recessive to axial flower.

A pure breeding pea plant with terminal flower is pollinated with a pure breeding pea plant with axial flower. The seeds resulting from this cross are collected and sown. When these plants $\left(\mathrm{F}_{1}\right)$ have flowers, they are self-pollinated. The seeds are collected and shown again and these are the $\left(\mathrm{F}_{2}\right)$.

Make diagrams to show the crosses and the possible phenotypic and genotypic results in the parents, the F1 generation and the F2 generation.
2. An red-eyed fruit fly is crossed to a fruit fly with white eyes. It was found that all the 60 fruit flies in the F1 generation were red-eyed. The red-eyed fruit flies in the F1 generation were then crossed to white-eyed fruit flies again. In the F2 generation, 178 red-eyed fruit flies and 180 white-eyed fruit flies were produced.
(a) Which is the dominant character? Explain your answer.
(b) Using symbols \mathbf{R} and \mathbf{r}, state and explain briefly the genotype of (i) the parent flies, (ii) the flies in F1 and(iii) the flies in F2.
3.The flower color of a plant is controlled by a pair of alleles which is codominance in inheritance pattern. When a pure breeding red flower plant is crossed with a pure breeding white flower plant, all the F_{1} plants have pink flowers. The pink flower plants in F_{1} is then crossed between themselves. Red flower plants, white flower plants and pink flower plants are produced in the ratio 1:1:2.

Show the phenotype and genotype of the parents, F_{1}, and F_{2} by means of diagrams.

Appendix H Transcripts of the protocols

In the task-based interviews, the verbalization made by subjects were in Cantonese together with English genetic terms. Protocols were orginally transcribed from cassette recordings in Chinese with English terms. Below are transcripts of the protocols of the six subjects. Records of two subjects (B3 and R2) were translated into English with Chinese transcribed for references.

I and S stand for the interviewer and the subjects respectively. Dots are added to indicate periods of silence. Other comments are inserted by square brackets to make these sentences more intelligible. The delayed posttest was used as tasks for the first interviews and can be found in Appendix F. The problems for the second interviews can be found in Appendix G.

Protocols of subject B1

(i) In the first interview:

Q1 MS 1

 (ross]

I：黑解你會筧得係B6呢，parents，
S：佢講明左雜種。
I：哦，雨個都係 P6嘅。
雨䀦都係。［篤埋D phenotype］

I：䵢解你會話三個都係grey 呢？
S：因禺呢個，唔，題目講明左啦，greybody係角 dominant to 僱個ebonybody bertu．

Q2 MC1
S：［看題目］．呢個係 codominance嘅 …掌植物，粉紅色，Serf pollunated 個封候呢，主是紅色，正果白色，同埋十集粒觖色就䔩産生啦。［睇完整題，做，皆 ］ ［LAC．．．B6 ．．．${ }^{2}$（ross $\left.{ }^{\text {完 }}\right]$ ．

I：墨与解你记個父母係 B6呢？
S：嘻，咁因禹佢隔頋講左係codominance 啦，啊，而呢個 plantr尼，有呢個粉等色啦，啊，西作没多㳗生個㮔呢有紅色同巨色嘅，而呢雨様都好少量啦，而反而鋉紅足作自己本身就高啦场，咁焍仅，啊，眫個图啦，咁通裳

I：咁様，噔，［再侕Dphenotype 主全題答完］

Q3 MS1
S：［看題目］呢㧽 brown hair 係rcussive 嘅，即 black hais dominance 啦。［㯊］個女人係雊雅嘅。

I：個女人你䌖㮔，個男人呢！？
S：男人任有講明，咁應該䋆純槁［跟往Let．．．童brown hain］

I：通常你跟手Let左佂好似而家咁稚嗃？
s ：你呋，好似，做數目［再做］
I：夏堌你father？
S：昵调，要嗝埋。

S：而象係black hain．

I：Hum．Hum，
 Whits哌。

I：呢個係羘吼？
s：啊，呢個你子ather（bb）呢個係 mother（Bb）．

I：潶解你會估father你畄解b呢？
s：Hum，咁佢，䛔㩤言亡 recessive 僱個brown hain， father 係 brown haic．

I：所以 recersive一妵係咁滦嗱？

 dominance［路 brown］

Q4 MS2
$\mathrm{s}:$［看完全題］其中一個係墨余嘅，即咽個係，呋，值固㖣你 dominant［覀Let而復揸］

I：你呢度係，息個你話？
s：我言古 white明固佃佟dominant．．．我类Let住ロそ，任而家

雨倜都後推禑，咁呢，因為，得一俉係黑色鲐，所製造出

咁所以我認溈係黑色reussive䊒，［堸の签案］
I：Hum．
s：［做b，Let］2b係w，係 white，細w係 black，任有一隻出目弟返前面，睇这前面咽固图［䡜前頁看自己QI的olagram］
隻係白急，区有可能有時有误差嗱，㑽使有误差嗱得一隻黑，全同作本身㧽主隻係䏝国时立。

Q5 MP1
s：Tonque rouk係因荷有dominance 椭而gene $R 大 R$ ，recssive
利，explairn㧽個一係．．．唔，1，呢個係阿空阿鳦盉嘅。究竟需味需要用呢個diagram呢？
I：你講解释需埕需要用diagram？可以用可以唔用嗮，随你啦。
s：我估一係，唔， \qquad如果一係，我估一係大R1问里䋥 r．

I＝黑上解你估一係雅㮔呢？？
s：既，Hum，因为，因高呢個項［指自己頋饭］

I：墨解你淨係睇女仔呼睇男仔呢？

s：年仔咩。

吸

1：咁吅果我要你估二呢？
呢次因為條題目呎同呢，所以就…

1：條題目㷵唔同以吅。
$\mathrm{s}=$ 问嘅咩？
I：吃。
$s:$ 我要試吓，我睬这前面先。
I：運係你佮睇返㧽D（ross叫响？
s：係呀，源兒事做出愁呋．．．［看着前间自己的（ross
以做训雨㧽，一個㧪到利，一個捲吗到利，咁的果
 erros嗱，准做到雨個係，都係与以捲到利，一個捲㕰到利，咁我漟伯都係䌖程嗱。

I：其实前面咽度，你係只郋下一代？有有郋返值個parent既phenotype，有有同呢個一焃？你會㕰會睇埋？
s：䖝様がら？
I：这，係你通労你睠这個（ross 嗱，你係成個（ross）睇，

抑或係你注意個（ross嘅邊一部份呢？
s ：我注意係呢個，D，星生出盉㧽D埌先細路個度，譬如，焍吓佢比例䱦，比例大根旡似邉咽咁就推䀦個哰。

I：可㖣可以一個图解榣晒全部？
s：因為佢，我覺得係有関速嫁，
I：哦，但每次你都要自己解鋅㗎䍜…
s ：I做（ross，做5li）a］
I：如果前面右你佮唔會劃（ross 黎䀣呢？
s：我睇吓想像想像唔到囉，如果想像枆到就會晝。
I：（代固䐉㧽度唳想像？
s：係呋。
I：所以你括住听固個就係作数倒出㴝嗰個？
s ：係呋，下面㧽個就係作本身嘅，．．．做玉，四，噢，efjlancz同埋四，正就係呢個non－roher咁就係rrof立。味脊又做番上面。

I：䏝需要，你用文字解釈都得㗎，四黑占解你焉定係rr呢？
指王，四生的女］．．．．．五Rr，第二嘅［指仔受二影响］．．．

I：．．．旦色係rover．
側面晝小图］，如果係雨固RR1同rr，只可以出倒一個，如果係 Rr出倒雨固，咽雨個都㕵同，咁鷹該後，大R啦，雨個都係，伯红系出倒一個。

I：而家作係生一個，任生完唔生的麻。
$s:$ 佂生完味生，但係．．．．．响］．．．．．咁眻下先吓［再做雨個
過，話咩身体色排斥㧽個咩，䟚同傊㧽咩身吓，個gene味同，唔呢好似男女，排斥棝㧽咩，比較reussive，这…… Hum，呢個［指系］唔係好绩楚，我断估嗱。

I：迢，你決定㕵到，但係你都估任係大R大R。
s ：係呫。［做正式answer 個個（ross）．．．［再看題目］ probability of rharvidual B．．．噫，咋個又要䙵图？
I：你想㕵劃嘅你喽係返息個图你味指。
s：P等旅呢個2over 3 先，眻返呢度先，都係劃还。雜住重係 $1 / 2$ ，因减㕰係目兼呢度［据刚刂完成的不合用］

I：黑解你亚兒得係 $1 / 2$ 呢？
s：因为我眻返呢個图啦，我初時唸往2over3嘅，咁家尤睇呢㧽图啦，咁有三個拈吻，即係一直唔係， Am，noh－roller，咁我初頋係睄呢個但徐我而家兒
種配兮係味同啦，所以探呢個。

s：咁呢度有四個機佮，咁間，如果要佢架隹㮔就係大R配䋥r吆晽，咁咪2OVer 4 雌。

I：Hum．
s：［窝餘下的，即固 cross］．

Q6 MC\＆MI
 A，B0係bloodB．．．．2做完］

1：你今坎係認得调題目？
s ：你呀，上次我喼得好辛苦，上次唔係唸得等子贲，係唸

I：黑上解你佮俔覧守有 10 呢？
s：良厸因滈有 0 章生，阿 0 …

I：即因為䋑路仔有個 0 。
s：因為復㕰氞庶過，且我輯応人謁過話明 O係reussive良，

Q7 MP2
s：Short sight，normal womanmanies－個short sight 既 man．．．Which character你呢個dominant

1：Hum．
s：Normal，唔係normal，應該係normal 嘅克。

I：你黑䁠啦今次係，

嘅，咁潅該係有 shont sight㧽個reussive 湬嘅。

I：如果係咁你佮黚睇，淨係睇一，二，淨係生呢個［遮住

一，二和早了
如果佢係dominant嘅話呢，一同二都係有近視咑，即係有啦，因满如果佢係dom：nant 嘅话呢，作係雜種

I：咁呢個同呢個比較，息個 Sure D呀？

I：墨解呢？
s：既，因為一眻落夫呢，呢個diminant D．因為佢所有出個個都係呢個［指normal］．．．㕰我要目单这前面D［翻看自己的作答］

I：你多数目兼前面而你留得ratiot子重要。
s：係㷙［青前面］［然後做answer］
I：你解檩呢個family本講。
s：我喻推哏個［捍最初的］
I ：黑解泺？

［做ii］

I：一你保估偪黑占呢？

呡係呢個，如果雨固係Bb……咁㕍該雨個都係Bb啦，［做個（ross］
仅你㣢前題目所做嘅 cooss，對的下作似邊個，然工役有 phenotype，咁根住你先劃。

Q8 MCT
s：［看題目］辰係長，十一係䌖嘅，正係短嘅，

I：Hum．Hum．
s：parent叫這係有［不清楚］progency墨解。
I：即下一代，相堂族辰咁解潍。
s：［灯刻Let．．．．．．．shont］［学gamete］

I：你咁快夫到gamete 㘈？
S：呅吔，做兑娇［揸gamete，改parent，接着窵Bb，Bb．至完成］
s：找返前面抄 cod ominance．．．．．．唔，大功告成。

$s:$［加有在调（ross及補parentBb等］．
（ii）In the second interview：

Q1 MS1－LONG
好阴。

I：係呋。
s：喺第三次跟往又䕌左D seed 然後再番種，又再生到 D（野出

係 F_{1} ，parents［補窝 parents gamete 等有人借剱書機］佢末必裁用㗎，［䋛緽做］再橎種，呢度出 A a Aa呢個 parents，gamete［简至（ross）二完］［呢度呢就倹呢の字頭㧽

I：你呢個保第幾代呋？
s：［補瓷F1在（rose 2 的 parento］
I：你做完嗱？
s：係叫。

s：吗，因為，伝話左咋個recessive to．咁运係呎個dominant。
I：哦，所以你就Let值axial係A，因為伍系dominant，㧫解你弇琵任係大月大日泥？
s：任話pure的晽㾁，
得下就係咁啦，咁所以就係axial嘅，咁跟往，呢度墨哃呢個你都僧大A維の呢。

雨㧽雞。

Q2 MS2－LONG
係，咁这係紅色係dominant啦，因羞全扞都係，Let左
咁有given呢，係佢地一半一半嘅，所 出愁叫固D，咁即

I＝哦。
s：式し下先。
I：你生parent䀦隻做越境。
s：［做］．

I：你依家做緊鼻個味？
s：第二題，自色呢係雇該係recessve 㗎㛦。

I：Hum．Hum．

跟住所産生的固Dい甘既，㢳，咽D……，这係学用（ross㧽D parent［目弟題目］genotype of parent Hies，in Fi and F_{2} ．

I：Hum，Hum．
保大R，咁出黎先至有可能，咁至可能全异都係，出左柅

s：呢個係紅，我都惊駜explain。
r：Hum．Hum．跟往你要做群呢？
s：好似要做下呀，我係倿捻緊既， \qquad

I：F2作依度話點呀？

I：咁估活下，同物嘢（Dos）嫁？
$s: F_{1}$ ，叫呀！同た足做到一半米的拉。

I $=1$ F．
s ：做到一半半啦，呀，做究啦！
I：咁你窟䭪作個phenotype！
s：哦
1：個比例泥？
s：しヒビ，值都湢騍你做！

Q3 MC－LONG

I：Hum．Hum．
 cross，咁白色，Let redflower 係呢個。

I：呵拟

S：叶我Le土左作呢图係有夏個係dominant6然い拉，

I：ロFっった。

I：Parent 都管暂䖯列。

I＝Hum，Humn．
s：［窵pink］唭呢個就F，啦咁下作自己coss㧽倳佂2nd cross 厂佟狁左い压D嶂。

I：口我，

I：哦好快呵联。

Protocols of subject B2
（i）In the first interview：

 b度，reussive 就係細e哳。

I：経l，哦，咁dominant 係边隻咬）

啦，咁這，第一隻就有大L同䋥し，咁跟住（ross左工後，就出左大L同埋……大L細l，大L絓l，跟住高尤係肉图䋥l，咁，Hum，所以所以，婟侹……其实我呢度有口涫題，呢，咾咁個，即，係味parents係呎㪉史語㗎？

I：DF 度話：Make a diagram to show the croee and the usultant phenotypic and genotypri in the FI．

I：你喺個图有右啚じ＂。

就係雨固大L経民，既，咁個ratio就係1比1比2，所以就係呢，陼，
一，我做究啦。
Q2 MC
s：［整題看一次，然後做及講］因为呢雨隻花係codominant据，

1：哣，如果两個都係，依家係味吼？
s：保的，應该係［nead the sentenes concern to the interview］．Both

颜色你咋，駛吨駛再窵多次㗎？因为便又阿，安㗎可？

I：吗，你ち以箴係F D genotype下面。

Q3 MSI
s：［整題看一次，然後做倩講］吃，棕色既頋髮係reussive咁

男人，咁就係啡色頋髮嘅男人，咁就愿該係一個大上同一個細已，新咁，就咁，定倸䟚一定係，与以咁，可以咁味架呵，因为作布講清楚，可以一個大上一個絽e，reussive．．．．．．brown hair man，限咁

㖘，就谏啦。

I：Hum．
該既既有一半像，有一半係既黑忿顾筑啦，就有個gene 係

Q4 MS2
s：第四題呢就係証，唔，其中五個OAppring 有一個係的色，埕係，有

I $=6\}, 3\}$ ．
作互份一冲只有一对係墨色啦，咁所以白色係dominant，既，

I：你係诀定dominant 封，你有有考虑作 parentst嫁？
色咁 6 保保色係 dominant？

I：哦，我织係阳你考虑洔有有唸过parents 啷。
係䀦個dominant

I：唫，㕵。

咁，芽怪菈［指住個 White］

I：䵭与解你挂住個白色？

I：b固度你自己唸葀你笕得佂係純种定䊒种的了。
s：咥…唫……應該係，既，雜种，既，因为女婐吗係吨出得個黑色，雨隻都係分别有大W䋥的，萑該雨隻都係一样……唔．．．．．．因为既，佢，如果佂雨调都下係觗种，就出吗到黑，色

好似埕係呀，照做啦，咁呢既，出黎個dogram紌㴔該係。

1：墨匕能你照做远？
s ：困为我唸反起屋，該係，純果，頋先我做过呢，㢈該係，一隻係

的果隐部。

I：部，吰．

䋥し，
Q5 MP1
$s:$［春題目］Human，tongue rolling，dominant［ 21 看完］．．．狍

 non－roller，所以就应該係 roller dominant roller dominance，所以一姻调就应該郎係空個佂有dom：nant

I：出左hon－roher，仕作係䌖种。

䌖种。

I溃に解泥！？

I ：都可以。
都係dominant．．．．．．係吻，应該全坏都脌domenant，有，应該

I：点阿年行变家做返一，二？

I：你正話堂試用一，二来检五。

I：ら車做第こD。

Q6MC\＆MI

佃（roso ］［做完然得抹末L和に］

$s=$ 异。

$s_{6} \neq$

$s=b \bar{p}$.

$s: \quad b\}$.
$I: v\}$.

I：Codominance，都䍐唓到。

Q7 MP2
s：［看题目 然看看图］ghont sightishout sight．

雨個了。

I：係，斜縖係 shout squt．

I：㥪解账？

s：1．甘dominance 埌该係，dominance 应該係 normalbith．

 normal 都係dominance 算，L户。

I：你收弥度

一個絀种，normal据，既有一调係雜衶，shortsight，咁都

I：你認会 shontsight 係新住放。
行］normal．
s：bin shont sight．
I：你依家睇縣边度 Shont Srght？

I：饿，作既下一代，Hum．Hum．

好。

I：知点飡れ子？
虾［敃一的父母］

S：㜔．传，

I：织係你双注㝜过作改下一代，係惏。
s：䛨㴃

I：1，等你覚得有物可能性呢？
就LL。

I＝目弟另一值可能比尼？

I：你好似在䏚寅做繁DCWOS．

S：你，促係对故好等到。

Q8 MCT

I：b我因有有intermed．ate，所以你筧得係 Codominanes．

 phenotype］．
冻？

I：仯し可！以下！你管得有有影垧？
理 tall：inter：shout＝122：1］［看完（b）題］应該係 codominant L拉．
s：Terminalofe，就recessive 垃，攺み。你粎，axial 。

I：Ha．
 tower is，b甘就，Let．

s：Pure breeding terminal flower v pollinated with．Hun，

 When thee plants have flower，seff－polsinated，what is F_{2} ．

I：Hum．Hums．
s：Make diagram to show the．．．．b昌因为们何论下係自己
好。

I：Hum．Hum．
 F，㧢phewotype 就係全导虍都你，Axial 既。

I：L⿻⿱㇒扌\zh20女。

s：Hum．
的裡？
s：因為任reussive 的维林。
大qと品。

样怅！

I：哦，好いう。

Q2 MS2－LONG

I：你剽花作都呵緊要岈！
s：［試Dgenotype 在題目紙 J

 Fr．Am． 60 ．

I：所以或見你係 all the 60调度焍左好多次。
s：Hum，Hum．Hum．
I：起䲽眻左 次。
得嘠，次崖。

I：b余哈，捄，原来你正話眻漏左個 Mitceyc，这青你估面埝極都冷咥倒，你紤会睇文前面啦吻。

呢下，咽D紌监該係有既recessive 既野，但係，係下度
係哏，Ned㕸［做］becaner［做］Ham 做J 下工看題目］ explam the phenotype，the parent，b甘调 parcut 5 就係．

I： $1, \frac{1}{7}$ 䏝.
s：哏㧽要分开作出第。

I：に帯れた参牙？
s：－rt．

战。
s：Hum．
色係紀种呢？
色㖟。

I：点解你会觉得紅色你 doninartb？
紅白，咁pvoluce 左同既顔色出裂，高一样顔色，础，喤又眻训，咁我初初以苏任展骇係初初以为佢䧽种，咁下存

Q3 MC－LONG

 white flower to be 絡r，因为作 codominant．

I：Co－dominance 低係点怩？

s：咁万就自己croes themselver，咁這话，同番自己croes新。
I：Hum．

 genotypl侐］．

住你就滈証情做左呢個啦，係惏。
s：Hum．
坜或要䏲仅題目怩？

題目。
s：
I：係封。
$s: \quad$ 伴．

s：弶．
（i）In the first interview：

Q1 MS
Guy body，咁大势得㗎啦可？
S ：Grey body．Is my voice loud enough？

得，得，得，
I：OK．
Grey body，唔．［関题一次］
開坮斒detb．．．
S：Grey body，hum．．．．．．［read the whole question for one time］let B be．．．．．［write ［然後再看題日］
置，then read the question again］

你依家係留意緊D物嘢字呢？

I：Which words are you reading？

S：［point to heterozygous grey body］Here．

Heterozygous grey body，郎倸點解呵？
I：Heterozygous grey body，what does that mean？

郎係，greybody 唔係純稿。
S ：That means，the grey body is not pure．［write down grey body＇s genotype， make the cross and finish the cross of Bb Xbb ］

想知道你係夏度㛺倒你個 ebony body fuss？點
 I：Where do you see it＇s ebony？［point to＂ebony bb＂in subject＇s answer］How

樣决定佢係大階B細階呢？點解呢？
do you know whether this one［grey body］is big B small b ？
因為佢係呢度一隔始講左個greybody唔係純種囉。
S ：Because here it said that，at the beginning that grey body was not pure咁，就應該，唔，produce一個大階B同埋一個細階b breeding，that should be，hum，a big letter B and a small letter b ．

咁於是你決定其中一個係大B細b啦。咁另外一個呢？

I：So you think that one is big B small b．Then，how about the other one？
啊，另外一個呢，我就估啦唔，估嫁咋，哈，
S：Ai，the other are，I，guess．Hum．．．then，just guess，Ha．

咁呀！黑解你估呢？

I：Why do you make such a guess ？
啊，咁佢話，grey既顔色泺係主要吅牙晽，即係属於主要， $\mathrm{S}: \mathrm{Ai}$ ，it said this grey color，is the main color．That is belonged to the main．係涞主要，即係，顯示呀！係啦，dominant啦，咁，我就会估伯 Is it main？That is，dominant！Yes，it＇s dominant．Then I guess it＇s so．［I］咁，估一估佢，堂佢係一個細階，㘗 但係，我就睇㖔倒 make a guess＇［and］suppose it is a small letter $\mathrm{b}(\mathrm{s})$ ．But by no mean do I read係邊度話佢係一個純㮔。躍。 such statement from the question．

唔，唔，呢個你估任係一個純種，但你係跟䡟夏度話佢係 I：Hum，hum．You guess its a pure breeding．But base on what do you make this一個純㮔呢？ guess？

我就係跟據伯係第一行話grey body 係dominant．
S：I base on the 1st line，it said grey body is dominance．
［write］．．．．．．then，．．small letter f．．．．．be white．［after finish the beginning let ［再看題目一次］
statements，read the question again］
你䀢聚口物嘢呀？
I：What are you looking for？

S：I am looking at something like the result，then，I will read［it］more carefully，吟吓，佢鹰該係，佢会黚出踓。
Think about how it should be，how it is produced．
即係話，你見到係result你会比心機睇。
I：You mean you would study attentively when reading something like result．
係呀，係呀，即係。再唸吓，再生底推翻上去上面，睇吓應該係點 S：Yes，yes，that is，I think again，then deduce the top from the bottom，see how様蟭。
it should be．

你係話由下，推翻上去？

I：You mean［you］think from F1 upwards？
係呀，咁跟住再睇仅前面呢D，就会唸吓佢邉雨個進行
S：Yes，then，read these from the very beginning，then，think about which 2 reproduction． ［parents］carry out reproduction．

然工後你睇仅前面，你即係話，通常你「立山一次，然之後再做。
I：Then you read the former part，you mean，you usually glance once then do it after that？

[^1]哦原来咁．
I：I see．
［估攵，斒完 genotype，做 cross］咁．．．咁愿尤係雨䧋 S：［write the parents genotype and perform the cross］then．．．then it＇s 2 pink pink flower．．．呢個倞大階下大階下，咁庣尤㧤個 F_{1}
flower．．．this is big letter F big letter F．．．．then this is the F1［finish the cross］．
 Then，decide their ratio［write］then it is，it is，it is a red，a white， 2 pink．［read有雨個pink［目弟反題目，写窵phenotype］ the question again，then write down the phenotype of F1．］
red 比 white係3比1？
I ：Red to white is 3 to 1 ？

係呀，因為，啊，佢呢個，我牌pink 入埋去 ued 啦，因为佢有一個 S：Yes，because，Ai，this one，I＇take the pink into the red，becaues it has one big大階下，呢就係 dominant。 letter F ，which is dominant．

墨占解你靕pink λ 埋去redor ？

I：Why do you take pink as red ？
D阿，因若，啊，我呢，當伍係一個dominant 歀睇呀嘛。 S ：Ai，because，Ai，I，take［red］as a dominant．

墨解你以为佢係 dominant 呢？

I：Why do you think it＇s dominant ？

因为呢，睇仅任啦，五個白色，五個紅色同十個粉紅色呀觡，咁紅

S：Because，look at this， 5 white， 5 red and 10 pink，then，red plus white and you色加埋白色話呢，咁就唸佢会係粉紅色唼，咁限係一比二比一囉，咁 will think it＇s pink．Then its＇［ratio is］ 1 to 2 to 1 ．Then，thinking back，then，跟住再推翻上越旡話，咁就因為佢紅全所以就pink囉，所以紅色 it＇s pink because it［has］red．So red is dominant．．．I don＇t know，Ha．
係dominant．．．㛺知墨占拒，嘻。
帓上拉，継緽很拉。
I：O．K．，let＇s continue．

Brown hain 係 reussive，咁即係 black hair 俟 dominant．brown S：Brown hair is recessive，then it means black hair is dominant ．．．．．brown hair hair man married a woman black hair係雜種 咁佢 man married a woman，black hair is heterozygous［write the let statements］then，有指明佢係純種定雜㮔所以堂何係純㮔。 it hasn＇t stated whether it＇s pure or hybrid，so take it as pure．

```
唔,㖣。
```

I：Hum，hum．

咁再 show 埋佢地個ratio 咁就鷹該 S：．．．．．．［finish the cross］then，show their ratio．．［write conclusion］then it should係一個blackhain，比，一個 brown hair be 1 black hair to 1 ＇brown hair［finish the question］．

即係話，堂你睇题目個時，你䧋得佢有指明伯係純種定雜 I：That means，when you study the question．When you think it has not indicate程㧽時，你通常掌伯係純㮔时立晹。
whether it＇s pure or not，you usually take it as pure．

係呀。

S：Yes．

郎係有時你会自己估嘅，去 determine 個parent 嗰時。
I：That means，sometimes you make a guess，to determine the parents．

如果佢有result嘅話呢，咁就再係result 推反上去噞，但係
S ：If it has a result，then，［I will］deduce from the result．But，if it hasn＇t state，如果佢有聲明嘅話，好似話，比如佢話係一個normal 嘅，normal like，for example，it said a normal，normal man or normal woman，then，I take man或者normal woman 嘅話，我就党佢係純種㗱。
it as pure．

哦，咁様様好啦，継緽啦：
I：O，I see，let＇s continue．

Q4 MS2

One of the five offspring of a pain of white rabbit is black，咁狺 S ：One of the five offspring of a pair of white rabbit is black，then，that is 5 with話隻有四隻係白色，一隻黑色，呾即係話白色係佢嘅dominant 4 white and $1^{\text {b black，then，that is white is it＇s dominant character．}}$ character．
 I：That means，you find that it has 4 white and 1 black，then you think white is character． the dominant character．

你呀！

S：Yes．

哦。
I：I see．
因禹佢個比例上係大D。
S ：Because it has a larger ratio．

哦 你依家做緊D物の野？
I：I see．．．．．What are you doing now？

S：Ai，explaining．

I：You are writing what you have just told me．
 S：Yes，［write answer 4（a）］．．．then，it is［write parents＇phenotype and the cross］售自同白急跳。
then，parent is 2 ，white with white

Hum．Hum．
I：Hum，hum．
 S ：Then，it should be，both 2 ，are not pure，because there is 1 ，they produce one既BB有一隻係少足溉。 baby which is black．

個parent係区运你係邊度柕倒口柴？
I：From what resources do you know that parents are white？

因谝位言干，a pain of white rabbits咁应紌有こ倿条
then，it has S ：Because it said，a pair of white rabbits．．．．．［write conclusion］then，it has 3仁芑一位该黑争 white， 1 ，hum，is black．
 S ：Tongue rolling，produce a big R．Both two can，both two can roll［their］
 tongue．They produced with 2 ［progenies］，both 2 can roll their tongue．The
 2 ［progeny］can ．．．．then ．．．state and explain ．．．parent，then ．．．the ．．．．the
 ［individual］ 1 ．．．the ratio is ．．．．the 2 ［parents］have genes ．．．both are，a big R and a small r ，that means they are not pure．Yes．

Hum，Hum．
I：Hum，Hum．
［做］
S：［write her answer］．．．．

I：You think that genotype of［individual］ 1 is a big R and a small r ？
$12 F$
S：Yes．

黑に閏至你咁估吃无？
I：Why do you make such a guess ？
 S ：Because，［progenies］she produced with 1 cannot roll tongue， 2 can roll
 tongue．That means，roller has larger ratio than non－roller．If both 2 ［parents］
 are pure，every person［they produced］will be roller．That means there should
 be a non－roller，not pure，that is oith 2 pparents）are not pure．Both 2 ［parents］

are not pure，so［they］will be able to produce a non－roller．
 I：If 1 and 2 produce 4 ，the non－roller，only．What will you conclude ？ 1 and 2
 only produce one［progeny］，they stop to have baby after having 4 ？

I：You need the［typical progenies＇］ratio？

係斿。
S：Yes．

I：You can＇t get the answer when there is no［typical progenies＇］ratio．

I：I see．You may continue with your work．
 S：Then，explain ．．because ．．．．ratio ．．．is the roller［finish part a］．Then
 ［individualsl 3 and 4，they are ．．．［I］guess 3 and 4 are，their，they both are pure．事個都潐該係䖻出里。

I：Why do you think that 4 is pure ？
 S：Ai，because he，produces a，roller．That means，his ．．．．Aín．．．Hum．Ya，呀，咁再眸仅一，こ，既封候呢，咁吞落愁啹，咁区呢，既係，响個 Looking back at［individuals］ 1 and 2 ，follow＇［the pedigree］downward，
 ［individuals］ 4 is at the bottom［of the pedigree］，a non－roler，that means，it＇s，絓r唯锥。
should be 2 small r．

Hum．Hhm．
I：Hum，Hum．
 S：So［1］think she is pure．And［individuals］ 3 is， 1 with him，Ai，．．．．should
 also be pure．If he is not［pure］，their progeny will．That is after reproduction，個識捲，一個埕誐替濰。 should have a roller and a non－roller．

> 但係依家生一個咋䎊!

I：But they have one［baby］only ！

```
10喜! ........12甘
既
S: Ha! .......... then, .............. Ai
```



```
S: If............Hum ........... 3 is, 3 ... He may be, and may not be tpure].
踓, 但, 唔, 但响呢度䀣就党价係嚁。
Hum, but, from here, take it as [pure].
```


I：Well，［what is your decision ？］you think he may be，may not be［pure］or you you think he must be［pure］？

剆，可能係可能暲係嗱 因为，Hum，吨可以知道作究竟 S：Ai，［3］may be and may not be［pure］．Because，Hum，I am not sure what he

is，as he only has one son ．．．．．．．［write down the explanation］

I：Why don＇t you use cross in explainifg the answer in question 5 ？How is your
method of thinking in this［kind of question］？
 S：I，that is，Ai，The questions here $[Q 1$ to Q4］，I will be easier to get the呢口呢，我就，呡係好梳得含嗓嗱
answer．But once meeting this［Q5］，I will be，at a lost and do not know how to
solve it．

Hum．Hum．通常你䀰㧽時有有用（ross 咁㗎）
I：Hum，hum．Will you use the cross in thinking［about the answer］？
 S ：Ai，looking at，yes，yes．I will draw the cross in my brain．But，it＇s，［I］think就，覚得み子似，同呢D有口出入潞
there is differences between these［pedigree and the practiced problems］．
 I：So you don＇t use cross．You explain in words．
 S：Yes，but then，Ai，［I］tind it difficult to solve．However，［when thinking

about］drawing cross，［1］don＇t know how to express．［I］have a sense that it＇s
very incomplete．

好喇。
I：O．K．
 S ：［I］think what the cross is，that is，think about them，a pure and a hybride，ai，
 what＇s produce will be，two，one is a big R and a small r ，and one is 2 small r ．

 differences between them？If she is a roller，that means，she will have a big R
 and a small r．

咁呢度你吨隔嗱？
I：Why don＇t you write anything ？

我に我識再表達嗱！
S：I don＇t know how to express ！

$$
\begin{aligned}
& \text { I: Hum, Hum. O.K. [Let's do] the next part. }
\end{aligned}
$$

竤又係呢個…
S ：Ai，this［question］again．．．．．

I：What are you thinking about ？
 S：［I］guess，he，he should be．．．He can be a pure or a Kybríde．Because，Ai，
 When I look at［individuall＇ 1 ，I guess it should be，he should be one，hybride．
 That means，she［1］produces 2 hybride，she produces 1 pure， 2 has 3 ，that is， Ai ，
 one is pure and can roll torigue，the other 2 are hybride and can roll tongue．And
 now， 1 ，that is，Ai，these 2 are rollers，that is the one in the middle and 5 are
 rollers．Then， 1 am not sure whether he＇s pure or not．

Hum，Hum，呢度係綡阿你物嘢呀？
I：Hum，Hum．What does the question ask you ？

Probability．
S：Probability

係嗱佢係润你個probability 好将痢，吓？ I：Yes．It asks about probability，right ？
 S：Well，it＇s probability，Ai，I believe，should be high．Because he，looking at目弟佢再結左坦生出葪咽D都係向以捲利雉。 the progenies he produced after marriage are all rollers．

> 吓咁作ら能注係咪高埕？
> I：He＇s probability is high for what？
 S ：Ai，he is，the probabiltiy for being pure is high．Probability for hybride is係低D。
low．

I：Hum，hum．But now it asks about what kind of probability？

S：Hybride．

你請㒳下一代都有影响？
I：You think his progenies is also significant，do you？

哣，都有
S：Hum，yes．

Q6 MC\＆MI

 S：Hum．．．has one．．．that way，that way．That means，the man with blood group
 A and the womar with blood group B，should be，both are not，pure．Because

their，the 4 children，are of different blood groups．

I：Because the 4 ［progenies］are of different blood groups．
 S ：［They］should be hybride．Because they have 2 children with $\frac{1}{\mathrm{AB}}$［blood
 group］，O！No！［I］mean，two of them，one child is［blood］group A，one child is［blood］group B．
bま，しま．
I：Hum，Hum．
 S ：Then，Ai，then，that means they should，if I let the dominant be B，big letter
 B ，and small letter b is recessive．Then blood group A should be 2 big letter B ，
 and blood group B should be 2 small letter b ，and $A B$ should be a big letter B and a small letter b．

Hum．Hum．
I：Hum，Hum．
咁就試け港反佃diagram先。
S：［I］try to draw the diagram now．l．．．．．．［finish the cross］
 I：Why do blood group A and blood group B have the same kind of genotype？

S：Hum，．．．．Then …… I haven＇t thought about that，I can＇t think about that ．．．

試的ち いろ！
I：Just try ！

Q7 MP2

S：［after reading the question］Then，it should be，Hum，should be，that normal
 is the dominant character．Because，their 4 children， Ai ，all normal．
 $\mathrm{S}: 1,2,3,4, \mathrm{Ai}$ ，yes，yes．That means，the 2 children are normal．So it should
 ［be dominant］and this one is，that is，short sighted is hybride．

Normalí系 dominant？
I：Normal is dominant？

S ：Yes，because their 2 children are normal．

I：Why do you think that short sighted is hybride ？

因為作，既呢度，書唧
S：Because hè，Ai，here，it said［point to the word＂heredity＂in the question］．

I：This is heredity．It means character that can be pass to progeny．So ？

我他normal 保dominant．
S ：I think normal is dominant．

黑解军你估nonmal 你dominant 呢？
I：Why do you think normal is dominant ？
 S：Ai，［answering part a］．．look at their，the 2 children are normal，so，then，
 ．．．Ai I guess，this normal，take it as a pure，then，$A i$ i，Ai if I take it as a pure，
 then，if it＇s also a dominant，then the baby she produced with this short sight
 ［man］，should be a normal one too．．．．！fimish answering part（i），then read part
 （ii）］then， Ai ，［I］guess［that］she， $\mathrm{Ai}, 1$ and．For $1, I$ guess she is，that is，not
 pure．Because［I］can see from her daddy and mommy．Then，look at，Ai，what
 she produce with［individual］2，the children are，well，with one is short sighted．
 I guess［individual］ 2 is also hybride．Then it is possible to produce，Ai，one

Hum，Hum．
I：Hum，Hum．

Q8 MCT
 S：［read the question once］That means，［I］guess it，guess it，Ai，both 2 ［flower］都係雜程咁P…［做個cros．］咁就，既，估作個dominant are not pure，that is both of them are hybride，then， P ．．．．．．［writing the answer］
 then， Ai ，［］］guess their dominant character is high．and the recessive［character］
 should be short．That is［observed］from the，the result given，and also， 11
 intermediate in height，［So I］guess they are，that is，they，as both $\frac{2}{2}$ are not pure．

That is，there should produce，Ai，a pure tall，a pure short and with 2 ［of them］ are，not pure．

 I：That means what kind of dominance is this？

Am，．．．．我估應镸侅係．．．．

Hum．Hum．
I：Hum，Hum．

我，我代，硓，因為一高一矮，綜合左，我估伱味應該，既，作地， $\mathrm{S}: \mathrm{I}$ ，I guess，Ai，because one tall［gene］one short［gene］，they［have］mix运，綜和左，綜和咱国隻。
［phenotype］．＇I guess that is，they are，that is，mixing，the mixing type．

綜和的固隻，咁嗰隻，既，言己呎記得我謂過叫群dominance？ I：The mixing type，then，that type，Ai，Can＇t［you］remember what is the kind of dominant I called？

吗記得啦。嬉，憘。
S：I can＇t remember．На，На．

I：What do you think about the parents ？［As she has written＂seed＂to represent the parents in the cross］

改我估…雨個…雨䀦都保高，
S ：Ai，I guess ．．．Both 2 ［parents］are tall．

咁係純定雜嘫？
I：Then，pure or hybride？
 S：Hybride．Well，if［they］are not hybride，it is impossible to have short，that
 means，I guess both of them are tall．［she then rub off＂seed＂and replaces with the word＂tall＂］

I：Hum，fum
（ii）In the second interview：

Q1 MS1－LONG

阿や能。
I：Start．

㢮！
S：Ai！

唔島失驚！
I：Don＇t be afraid！

S：Hum，terminal flower is recessive to，this，＂something＂flower，then
［a
very long pause］

尔目兼训息信泺？
I：Where are you reading？
瞵利恨度㖟。
S：Here．

```
哦,吓。
I：I see．
```

result trin this cross are conected and sown．When these S：．．．result from this cross are collected and sown．When these plants，F1，have plants Fi，have Howers，they are self polunated，sud are wliected flowers，they are self－pollinated．Seeds are collected and shown again and these
\＄shownogain and these are the F_{2} ．．．make diagram to show the are the F2 ．．．make diagram to show the crosses the possible phenotype and
 genotype，then，in the parent， F 1 genetation qud F 2 generation，A Ya，

Hum．
I：Hum．
 S ；Then，it is known at the beginning， $\mathrm{Ai} . . . \mathrm{Ai}$ ，both 2 flowers are pure breeding，咁，車係純解咁运話佢地，而terminal Hower争先係呢 breeding，then，that is pure breeding，that means they are，and terminal flower個［再着題目］roussive to 呢個既Hower，其中一個佮伱大，雨间固都 is，let me see［read the question again］Is this，recessive to this，flower？One
 of them will be big， 2 big R．The other will be 2 small r ．

Hum，邉堌係大叫？
I：Hum，which is the big one ？

既．．．．reussiveto．．．｜應该係．．．．terminal Hower 伤雨個都係細 $\mathrm{S}: \mathrm{Ai} \ldots .$. recessive to \ldots. should be．．．terminal flower is 2 small r ．Then，the
 other is，should be 2 big R．Then，Can I write it down ？得嗱。
 I：You may write it down if you can．
 S：I see，then，one is，this flower，it is 2 big R ，this with 2 small r．Then it gets
 one oig R one small r ，the big R small r produced is F1．This is parent．This哏㑑就係parent。咋個係G，咁跟住侸地再去自己同自己，咁追話，都 is G ．Then，they do it by themselves，then，it is both ．．．．係

你酸得另一個係咩呋？
I：What do you think the other one is？

係一個大R同一個経口嚾。
S ：It＇s a big R and a small r ．

I：It＇s［writing this way］O．K．，you don＇t need to

咁就再，．．．［輱cross 2］．．．咁様呢，出左個大R一個経r，而另外一 S ：Then，it，again ．．．．this way，it gives a big R a small r ，the other side is the
 same．．．big R．．smali r，then，again，one another，this way．．．．then it＇s F2
 produced．Then，look at their phenotype and genotype got．｜F1 is，．．．Ai，the
 phenotype is，only one，that is，should be，this one［［point tf the axial］ha．一個，咁就係愿譙，衣㧽。㖣［指題目的axial］

哦，axial。

I：Ho，axial．
 S ：and genotype［writing the conclusion］a big R and a small r ．For F2，the，the phenotype 就係，三盾係axial，而係，得，一個係terminal，咁而 phenotype is， 3 axial，and，have，one terminal．Then，for genotype，it is，is 2 big genotypeb快，就係雨個大R比大R䋥r再比兩個䋥r等乵っ比2比1， R ，to，a big R and a small r ，to， 2 small r ，equal to 1 to 2 to 1 ．Yes，it is．吓，係㗆力。

Q2 MS2－LONG

12甘，就 red ey efruit flycross to fritt fly with whide eye．运紋同埋 S：Then，it＇s red eye fruit fly cross to fruit fly with white eye．That is red and任口咁就，係 F_{1} 有就60個紅色眼睛。 white．Then，in F1，have 60，red eyed

呢度根亮思係下綗共有60個，都係炡眼 I：It means，there are totally 60 progeny in F1，all of them are red eyed．

[^2] fruit again．That is F2 generation，there are 178 red eyed fruit flies and 180
 white eyed fruit flies．In this way t．hum ．．．let＇see ．．．．that means，we can see，
 as in F1，see that all produced are red eyed，SO，Ai，that is dominant character
 should be red eyed．Then it should be red eyed［answering 2 （a）］．．．and because
 in F1，all 60 generation，are red eyed ．．．［answering 2（a）］．．．Then，then in F2，
 it can be seen that，Ai， 178 ［are］red eyed，［yes it］is red， 180 are white eyed．
 That is，guess about the parents flies ．．．．［read the question］then it is，because
 red，which I guess is dominant character，then it will，Ai，yes？Hum ．．．．．．．．it
 will，I guess，one of them，［I］guess［the］red eyed，may be a，should，A1．．．．
 pure．

I：Are you talking about the parent？你係蹱 pareut
 S ：Yes，because，if both of them are pure，then it will produce，may be，a big R
 and a small r ，and then again，it ．．．

你嘅意退逗話呢下，係大下同細口嚾。
I：You mean，F1 is a big R and a small r．

係吼，係口孔。
S：Yes，yes．

I：Why do think that F1 is a big R and a small r ？
 S ：Because，it said，it said in F1 generation，all are red eyed．And then，I said
 red eyed is a dominant character，then，［I］think it is［a］big R and［a］small r．佢係大々同䋑雌。

I：Then，you can continue．

跟住就作再同白色，咁郎係話…依…咁再同白色，再生嘅話舌… S ：Then，with white again，that means．．．Ye ．．．．then white again，produce ．．．咁郎係…㖵估攵左下，先据 that means \ldots ．better to complete F1 first．

I：O．K．，O．K．，you may solve F1 first．
 S：F1 is，then，F1 ．．．．．．．．this way．Then it produces these 2，then，after that，it 1可 White eye trust fres 血生 pritu 㪣．．．． crosses with white eyed again，may be ．．．．

I ：Why do you think that this is 2 big R ？
 S ：Ai，because it ．．．．if it is，Ai，a big R and a small r ，then，with white eyed
 again，will produce white eyed．

民喺記，一個大R一调細々就會出現有任色踓啨？
I ：That means，a big R and a small r will produce white eyed ？

咹，係呀。
S ：Yes，it is．

I：Then，why do you think this one is a big R and a small r ？

既…因为，因為呢，既，因為呢，既，佢再咁様呀嘲，喺下，嗰 $\mathrm{S}: \mathrm{Ai} . .$. ．because，because， Ai ，because，Ai，it does this again．In F ，with the
 white＇again，then，if I take this as a big R and a small r ，then it produces，will
 fit into this result ．．．．Ye ．．［make F2 cross］．．．．．．then it is ．．．．F2 ．．．．．let me咁就……F2．．．．睇先。
see ．．．．

I：What are you thinking now？

嗄？
S：What？

理与辟你又睇仅佟題目？
I：Why do you read the question again？

因為発覞，好似，唔棌路，嘻。
S：Because，I find out that，may be，something is wrong，Ha．
哦，墨上捸吗瑴呢？
I：Ho，what＇s wrong ？
 S ：Because，here R ，that is，hum big R ，one with 2 big R ，and 3 with big R
 smail r ，then，normally it should be more red than white．

即你你言主兩個大R， 16 埋 大 R_{n} 䋊r個 D 教係紅色。
I：You mean both， 2 big R，and a big R a small r ，are red．
 S ：Yes，then，Ha，there is some differences，it is．Because here ．．．and the other is 180 ．

I：So when you look back，you feel that something is wrong．

S：仯豑．．．．［look at the question and think again］

I：What are you thinking now，which generation？

S：［I］am thinking［of］，this one．

12豖。
I：I see．

咁就…。
S：Then ．．．．．

I：You are thinking about F1？

S ：Yes，then thinking back．
雨個大R社年。
R ？

咁呎但啒？
I：Then，how about this one ？

昍倛係呢度
S ：This is here．

I：You mean，as you think this has 2 possibilitites，so，you make 2 cross to study． （ross 聚睠作啦。
虽呀

I：Then，［you tinkt adding up the number of progenies in］these 2 crosses should be the same［as the result in this question］．

S ：Then，now I know that I have made a wrong guess．

bF，逪䧄全著味？

I：Ha，what is wrong？
 S ：I guess，here it is，Ai，this white eyed，I take it as［a］big R and［a］small r ．
 Then，now，if I take it as 2 smaill r ，deducing downward，then it should fit in that
 one．

你依易就再化過啦。
I：So you are doing it again now．

你呀。
S：Yes．

I：If you feel rubbing off is more convenient，just rub it off and do it again，as强要D，吃 time is precious， Ha ．

 I：Usually after you have finished，you look at the ratio of the result．You will deduce upwards when you feel something wrong．

你呀係呀。
S：Yes，yes．
lay．
 S：．．．．and this should be both are pure，then，it produces $F 1$ with a big R and a
 small r ，then ateret that，it does with white again，in $\mathrm{F} 2 \ldots$
 I：Hum，hum．You can just do it after this cross，just a little bit further inward，接 $\boldsymbol{T}^{\prime} \Gamma_{1}$ 以 to show it＇s different．
 $S: \ldots$ then here，it produces a big R and a small r ，and the white produce only
 a small r ．$F 2$ will have a big R and a small，r ，a_{3} with a 2 small r ，then it
 will with a similiar ratio，because it is one 178 ＇and the o other 18 ．
一值係 180.
大約伱幾侈哦便？
I：About how much？

1比1度，所以就出左に甘椓时拉。
S：About 1 to 1 ．So its＇what produced．

I：I see．Why do you think these two are 2 big R？
 S ：Hum，because if it is a big R and a small r ，things will happen as I just said，
 it produces white．

I：What about the white，why do you think it＇s 2 small r now？

S ：Because，if take it as a big R and a small r ．It will produce a different ratio．

S ：This is red．

I：You write it［red］next to it．

哦。
S：Yes．

咁妮度你都富多個 phenotype 係度啹。
I：You write its＇phenotype hefe also fl．．．So，it is．

即係你做究呢題？

I：Is that mean you have finished this question？
 S ：Then，it said，red flower and white flower，that means pure，in F 1 it is，it gets䘤夆生左枌紅诜嘅。
pink．

佢有樭B月佢係純俵？
I：Does it tell you it＇s pure？
 S ：Yes，it stated out ．．．and then，the pink flower then，［cross］among themselyes
 again，A $\overline{1}$ ，produces $\overline{\text { red }}$ flower，white flower and pink flower．The ratio is 1 to
 1 to 2 ．

唳， $1, \vec{B}$
I：Hum，hum，

S ：That is，because it said that its＇pure，then let its＇dominant be， $\mathrm{Ai}, \mathrm{big} \mathrm{R}$ ，and
 the recessive be small r, \ldots then ．．．Ya，
12t。

I：Why do you say＂YA＂？

倳梌学。
 S：［I＇ve made a］wrong spelling ．．．．then，suppose，Ai，red flower and white
 flower are pure．One is big， 2 big，is big R．The other is 2 small r ，then．．． r，咁紌…

I：I observed that you read the question after writing the let statement，is it true

S ：I don＇t know，may be it＇s my habit，so I don＇t notice it \ldots one is，red \ldots and
 I guess red is，take it as dominant，because it gives out pink．That is，should
 have a big R and a small r ，should be，half haif．．．．then this is pink，then atter
 that，it said pink with pink，gives out ．．．．it gives a big R ［and］a small r ，and the
 other side is the same．Then，it said in F ，there is red，white and pink flower
 ．then ．．then it＇s．．the ratio is， 1 ，red to white and to pink，is，＂ 1 to 1 to 2 ．I
 said 2 big R is red，that meeans it produce only one red，it has 2 ，$A 1$ ，big R and
 small r ，that is pink，and this 2 small r is white．That means，Ai，fits the ratio．
 That means it， Ai ，is right．
既，係㗆力。
即係你做密与拉？
I：Have you finished？

係呀。

S：Yes．

Protocols of subject R1
（i）In the first interview：

Q1 MS1

S：毫呢個fruitflies，grey colour係dominant，咁即係grey
牙㱏就係経r啦。跟住脏，generation of heteroz y gous grey
一個経r啦。

I：${ }^{2}$ he＂ KP 係 heteroyygms？

分㸷时应。

I：b物㧹予呀？

I：䨋商迆D phenotypebtiz．
s ：唉，即保等抄岁次，唤，呢口实識㗎啦。
I：㕰得㗎，我㕵锇嘫。
個象牙，係咁様，窟埋三比一。

Q2 MC1
s：Codominanc，䬣倅一様一様，．．．plant withprikflower， Self－pollinated［臱看臱請鼻做］咁様個pink好憵該
 poll：nated，即係又係食自己啦，郎係大R細r，踉往呢出左，分㮦啦，gamete啦，［做完個cross，重看題目］B，五，十．．．．跟住呢，phenotype．．．．genotype of．．．．唉，呢個係red，呢雨值係pink，呢個 codominance，㛐係pink．．．係啦得啦。

I：Hum，Hum．

Q3 MS1
S：你咪严猛咁諹嘢呀？Brown hain，reussive，Letb拉，唤，箴笔啦．．．．．．．brown hair man嗗，brown hair reussive 㗎咻， man郎係雨個䋊r，woman he，即係一個大R一個䋥r啦， heterozygms呀，．．．．．make diagram，即係cross 啦．．． genotype呀，大R綪r，咁black has dominant，即是 blackhain啦，PR個brown啦1比1。

Q4 MS2
s：One of the five offyprings of．．．a pain of white，a pain
個黑色嘅，即係雨個都吗係純種啦，跟往樶，which 的 the dominant characteristic，咁实係住色时立，一隻係墨 2 麻，是

 rabbit 呢個経W，䬦係reussive嘅呢，recessive雇該係
 …跟住呢，．吗多回紙，．．搌個墨謮呀！

I：phenotype．
s：phenotype，咁楾呢，报番出数先，大W大W，呢個white係

 Parent，知，再踇多次，做番一先呢度，雨隻白色，哣係純邪重，咁即係大W経家，大W経w，genotype 黎，phenotyper尼，咁就一早俘左你嘫啦，可两固都係white。

I：如果這雨隻经係生一隻那隻係黑的出本，你售估佢是物嘢？
s：只係生一隻係墨色的，我合䁈得作呢，係，你話加果呢個有変呀？

I：哴。

咁作地雨個都不是純雅的踓，就你咁様踓。
I：墨与解呢？
呢，咁即係大R大R，同大R絓，咁作地得出来嗰㧽結果鷹该呢，全䂛你白急，咁佢地依家有隻黑胥的嫲，咁任地雨隻都要吸係純䅲，先有黑企架怜木，

Q5 MP1
s：哦，呢個捲利呢，咁 obominantgene 操縱嘅，咁呢就係杓，俆啦，你啦，reussive 就係紬r，咁就Diagram——二呢一，2，呢，白色嘅呢，就係棬得利嘅，捲得利同棬得利生出标，有的值捲得利，一個吃捲得利，咁即係一，二，不是純種啦，又係し甘比立，［再看P．2題目的接緽］．．．．．。 State and explain，genotykes，a part，第一调㧽qenotype，

 her．．．．．．．简恣］

I：作自己捲到利，生左不捲利的仔，你估她R ？
s：係跟往z，四呢，四捲不到利捲䛠到利即肯定是純

全即係tongne roller，tonque roler 1 同－個non－tongne noller待出一個tongue coller，捲得利同唁捲得利，呢個吅捲得利肯定係rr，生左一個，生左一個捲到利娘先……䏝呢三呢

昰佂啦！．．．．跟往（ii），5（ii）what is the probability that

呢之個与能性啦，呢三個可能性書面呢，有一個係純雅，雨個係雜程，运係子份江䧽，

I：咁你験啫駐考虑通同六媒？

㖼及有的能係純㮔，不又係有可能係純检，女如足同六都係

做咩呀，2／3啦，哠定錯呀，錯左你珠呀！
I：我都話我䏝䉓講比你俯㗎佲。
S：你係味咁呀，哎吸，唤，我上次都係咁癹，
I：哦．

I：唔。

Q6 MC\＆MI
s：A man with blood group。哦，呢條好難答，我上次都喛隹幾識登，．．．A man，bloodgroup A_{1} manied 周 blood

随過，A有雨種 A 和 $A O$ 雨種，咁一定有一個gene，係 $A 0$ 。咁我Let左先，Let A 係 dominance gene，gre group A blood，B係dominant gene greegrowp 3 blood，経b係

 Genotype，你明啦．
s：Human，shortsiqht，遺傅character，normal woman manied shont sight man，有講邉個dominant bab．．．．

 normal（5］hormal 主出承多數都係hormal，應該估都

I：悉5每年hormal 多，normal dom：nance ${ }^{\circ}{ }^{2}$ C！？
s：因为，账個，近不見同normall主雨個都係 hormal．跟往

辝。

 bydiagram，bydiagram，parenta－［突 $]_{\text {genotype，short }}$

I：b
吽和以前的一様嘅［做（ross］呀，得枱完在。

Q8 MCT

跟呢，叫你explam b拉parant，parent，咁parentrititit．好啦，纾啦，㟄樣，咁我首先践近作咁我衣度呢就

 genotype育扎係呢個准准，pro．咩。

I：progency．
s：哈，progency，跟住，phenotype A progency［ 鋶phenotype
郎然㖁啦，跟往呢，我再推翻上共，咁咩parent。 p我，with the help of diagram，parent bit 样，parent

 2完］．
（ii）In the second interview：

Q1 MS1－LONG

跟往呢，phrebreeding，塱し．．．

I：你姡識解邊度ぶ？

I：い我，
s：Pollinated with a pure breeding 呢個！妮個，咁雨個 pure breading，咁椄作跟住㩆 The seeds resulting from this cross are collected and sown when these plant，目弟吓先，${ }^{12}$ 甘呢，雨個phrebreeding 抆咻木，b甘加果一隻係reuss：ve。姏第一個叹调调purebrecoling breed plant b 艮，係terminal flowerb勒，reussive． recessive 就郎細r絓上㗆勒，踉往 pollinated with pure brecoling，pea plant with axial Howe，就這係大R
跟住呢［再看題目］thescplantire京尤有flower，when these plants have flowers they are seff－polunated，seeds
咑［両看題日］show the crosses the possible，parents．．．．．
 210

I：Genotype．係．

I：櫋個12东？
s：㴭㧽？
I：大R大R定細……

I：但係呢调，係．．．
s：哎吅，咁，調軖々捬木。

I：後。
s：咁都算，咁清楚幏，要咁清楚十家，唤，terminal Hower，細r経r，跟往呢，axial Hower［咳一䧉，因嵐R3不舒服］Ham，就大R大R axial flower 疒跟往 parent
呢，呢㧽parentb尼，就，大R $+R$ ，経人綪r，跟往呢，就，咁様

gamete［継続筫］得出，係味咁嫁，是但嗱，咁运咁，大R紝

I：咁，佢個phenotype係纆ちら？

I：咁係隔離托住窟落去就得柆。

I：哦，㕰洗。

自己同自己拿，呢個大R同絊r，又分隔嗱唃，咁呢，唉，大R大R，経経r，旗個又gamete，咁又出左個 F_{2} 嗱呴。

I：Hum．
s：咁 $F_{2} L P_{c}$ 度椨，qenotype，係呢度先，genotype 㩆係
 phenotype，phenotype 恑，係，Ham．．．．

I：你想揾tissnes？
s：你，嘻㯭，我有。

I：喊。

Q2 MS2－LONG
 fruit fy，white eye，第一個就係紅眼同件眼䩜力，榴埋
隻，跟住紅眼峎柅，紅眼嘅鳥蝘响干，個度高尤任眼嘅又㨨過，衣，咁深娘无，日弟下先，F2178隻紅眼，180隻白眼，which dominant character．咪，charactel explainymor
隻Hies in the F，就係紅眼，全番干者下紅眼，㖼味，red

图嫁，全部都紅眼咁都吗得榢，係将，得导得咁，白
 dominant 峰力，所以呢敲話作係domivant㗆力．．．．
哎晝图咁麻煩嘅 ．．．．嗱，［一路窵］red eye 就係 dominant character，becanee in Fi all truitflies are red lye．得唔得嫁。

I：得唔得嫁！
s：哦andby，and the parents，Ham，ave，娮u，red eye Hies．redeye Hies，redeya fles．咁但係編，伍侗

就你大R大R，絓r経r啦。

I：Hum．

I：都府咁多秝長㷧。
$s:$ 诶。

I：拧，．．．间埋知，．．

I：\square 令。

S：婙？

I：有野，你継続拉。

 Sheet］．

I：你噛邉個becahee 呀！
s：呝個将

I：险，婕得媬。

S：你朋知我誐啋啉，

I：係呼？

S：黑爅解哏？

I：你做出黎啦！
 genotype 絾係大R大R，䋥䋥r，即如果我頑先話五偅你

I：知，是但㖣。

I：最後三頟咋，小十且。

I：Hum．
阴岈？

I：哦，明啦。
 F，未阿年，Figenotype 大R䋥r，你都䏲到还，跟住phenotype，

I： 6 ₹，

晫 cross with white eye，white eye 䟥係経r細r拉， domble recessive 㗎時寺．

I：Hume．

比1，phenotyper品［咳］就係redeye比 White eye 就係し比し，唏晒。

I：Hum．

Q3 MC－LONG
s：跟住第三題，揬瀜張紙，．．．flower wlor of plant control by pais of alleus，哦，wincident， 2 个㖣係，吗係呢㧽， codominance．Codominance，a pure bleuding red flower plant cross with a pure breeding white，win，㕬，Wodomin－ ance，抾輔左 codomince，咁様號，all F，arepink color，The pink Hower plant in Fi cross betweun themselves，ned
作首先就话 codominanc 拉，㠿我一様要Let作，咁我
係genotype 咁大R大R，Let任係，Let佂係 reaflower b拉。

I：Hum Hum．

就係pink桩，作泥條題目比左你か口将。

I：Hum．
s：咁伯 codominance 㗎㯲，咁跟 F_{2} 啦呴，左呢，跟住咋，啌，呢D F_{1} 呢，then cross among themselves，哦，即
 F_{2} 啦，F_{2} 伹genotype，就係，睇圷先［互禾题目］produce red flower．White flower，in the natio genotype b展，就

I：Hum．

I：1哦，
s：係吹，息機係味呋。

Protocols of subject R2

（i）In the first interview：

Q1 MS1

> Guey body color, 咁就dominant 拿哨.

S：［Reading the question．］Grey body color，that is dominant．Ebony color that ebouy color，咁尤治．．．generation of heterozygous grey body is cross is．．．．generation of heterozygous grey body is cross among themselves，that is
 ［writing the solution．］grey body．．．Ya，．．thes is grey，and this is ebeny．．．［the呢個係ebouy．．．［管完整題］
cross is finished and phenotypes are determined．］

S ：Well，I see this word［point to heterozygote］that＇s it．

呢度到口展度都後grey？
I：Are these all grey［point to GG and Gg in the F1 genotype as subject＇s answer is not very clear．］？

係呀
S：Yes．

I：O．K．

Hower color of a plant is controlled by a paic S：［Reading the question．］flower color of a plant is controlled by a pair of allele， of allelb，when a plant with pink Hower is sur pollinated，B 個 red of anellirn plant with pink flower is self pollinated， 5 reds（stress）， 5 white（stress）， 10
 pink（stress）flower plant，found in F1 generation．．．that is．．． plant，found in Figeneration．．．咁床发．．．．．

I：What are you thinking about？
 S：I am thinking：What should the parents be ？The parent，should be，I am not
 sure，［let me］think about it．．．．．．

你根扮か时物嘢数唸個parent 嫁？
I：What do you base on when thinking about the parent？

S：The question itself！It＇s codominance！

即係揾吓口字眼有布䛔嚾？
I：That means［finding）the key words［which］gives you the hints？

係呀！
S：Yes．．．．．．［a very long pause］

唸邵喼到？
I：Can you think a little further？

S：A little bit．

唋到扬哩予？
I：What can you think about ？
Codominance 囉．
S ：Codominance．

I：Do you think it gives you some information？
係呀
S ：Yes，it does．
熏有呢？

根住 唭，睇埋涙度囄，個 plant with pink flower 的 sers S ：Then．．．．look at this，a plant with pink flower is self pollinated．Ha，there poninated．依，咁又好似唔国啦磵．．．。咁個prant with pink seems to be some differences．．．．that＇s a plant with pink flowers．That means Howers，即係
［write the genotype and made the cross for the problem］

I：Why do you solve it this way？
我都㖟知呀！呛！呛！
S：I don＇t know，Ha！Ha！

唔知呀！
I：You don＇t know！

Codominance D乡口将，跟住作言字据個 plant with pink Howers 呀
S ：It＇s codominance，and then，it said that a plant with pink flowers，it produces
 $\operatorname{big} \dot{R}$ and small r ．No．Pink plant，that is，yes，fed and white，that means嚾 halinh both wo genes．Yees！That means It contains these 2 genes．呢雨隻gen都有囉。

㖣，唔，好呀，咁構
I：Hum，hum，O．K．so you do it．
［找题目的 phenotype 抄落 Figenotype 度］
S ：［Look at the question to find F1 phenotype for copying］

I：You have to find it（phenotype）for copying．

係呀
S：Yes［writing］．

個parent 呢！你又唔窟B月係物［右 phenotype］？
I：What about the parents！You haven＇t written it［phenotype］？
呀！係嗄。
$\mathrm{S}: \mathrm{O}$ ！yes［writing the parent＇s phenotype］．
$\triangleright \frac{8}{6}$ ．
I：Hum，hum．

喏啧榢㗎？
S ：Is it correct？

OF？
I：Ha？

这，腹唔㖁呀？
S ：Is it right or wrong？

I：Ha！I won＇t tell you whether it＇s correct or not．As I want to know your own opinion．
 S：But actually，it＇s different，［performance］depends on whether you have or haven＇t revised it．

2F

你有有温做起箓善好遠
S ：There is a big difference if you haven＇t revised it before doing the exercise．

你，但，我想䁠…你継緽做落去啦！诗嘫啦。我知㗎 I：Yes，but，what I want to see．．．you just keep on trying and that＇s O．K．I＇ll拈，
know：

Q3 MS1
［関讀］brownhain係 recessive，brown haid，．，married woman S ：［Read］brown hair is recessive，brown hair ．．．married woman．．．．black
 hair．．．O．K．The woman is＇，black hair［write parents，black hair］，and then this
 man，is，brown hair［write brown and also write bb under brown hair］ b6在下面了。
Brown hair 你就即刻編経b細b哏先？
I ：You immediately write bb for brown hair ？

I：Hum，hum．

S ：And then，this black hair must have B and b ．．．．［continue to finish the cross］做叫の哩野？
Anything wrong ？

To 影呀
Nothing．
 S ：［doing the solution］Ha，yes，I made a mistake［she has given 2 b genes for bb ．
 She rubs it off，and continues the cross as 1 b gene for bb ．Then assigning根個高尤係 brown hair，呢個哏，就会係black phenotype by recalling This is brown hair，this one，is black hair，I guess．This
 is genes．This is F1．［read the next question］

I：You have to fill this in［the rubbed off part］．
未乾哦！
符踷…
S：It＇s［the correction fluid］still wet．The 4th question．．．．

Q4 MS

沓四題咑．One of the five offspring of apain．．．．．
s ：4th question now．One of the five offsprings of a pair．．．．．．

你唸寚口扬䧉予呀？
I：What are you thinking of ？

S ：I am thinking about the meaning of the question．

I：Are you reading the questions one by one ？

哣係呀，我筃到作黑占解先，
S ：No，I think of the meaning of the question first．

你睇緊息度呼？
I：What are you reading？
睇媇題目
S ：The question．

㖕。唔。
I：Hum，hum．

駊哣馬史講㗎，目弟題目
S：Do I have to read out loud while I am reading the question？
得最吇，我知你睇到邊呀啉，呢行？
I；If you can，it＇ll be good，so that I know where you are reading．This line ？
 S ：Yes，I am thinking，a pair of white，then it asks me about the dominant．呢個dominant．
你正話眻咽行，你你到D物嘢呀？
I：And what do you grasp from that line？
 s ：Not much，let me read it one more time．One of the five offsprings of a pair of a pain o white rabbit is black．咁傊個dominant character of white rabbit is black．Then，the dominant character is，white［her voice is係White［致肯定咁玍］． loud and firm］！

哦，係依様呀？
I：Is that what you get？

等我念多次先。
S：Let me think about it again．

I：I am not saying that you are wrong．I just want to reconfirm your answer．

咩係，唸孚次，oneq the frus，有五個 ofsprings，㖼有其中 S：No，let me think again，one of the five．Five offsprings，one of them is，no，
 two white rabbits， O ，no，what is it writing about？Ye， 2 white rabbits are black，完你黑余嘅，of a pain of whitc，物嘢呀！哦，媢固隻有一隻 of a pair of white；what＇s that Ha，one of them，one of the offsprings，no， 5
 offsprings and bne of them is black．They were born by 2 white．Yes！So it
 is white．
 I：Hum，why you think it should be white？
 S：As it has only one．Only one out of the five．Yes，and their mother is white，
 therr parents．．．．［write down the answer for 4（a）and read question 4（b）］big W細 ω ，State and explain briefly the genotype．．．据個 parent small w．．．state and explain briefly the genotype．．．．Find genotype of the parent
 rabbit．．That is It is ${ }_{\text {w }}$ write the answer $b(1)$ ］big w and small w ，yes，it is，both
 of them are．Theh the white and＇black offspring（write the cross and the answer
 of $\mathrm{b}(\mathrm{ii)}$ ）that is，yes，it＇s，it should be big W big W，big W small w ，big W small诌 ω ，大W細紋細い，啦！ w，small w small w．Yes ！

作要你諎栶genotype 闹埋吽嘢呀？ ：It asks you about genotype and what else？

布呀，explain briefly the genotype，有呀！
S ：Nothing else．Only explain briefly the genotype！

搼下先，explain㭻，䍐上解呀？
I：Let＇s see，explain，so why it＇s like that？

點上解！因為，因為伍地係 White 又 produce black唯！
S：Why ！．．．．because，because they are both white and produce black

They are white and produce black，so you think they are big W small w ？色田 ω 。

S：係负呀，It is．
 I：Then look at this，why do you think it this way？［point to F1］How about

progeny，why do you make such a decision？

I：That means，as they are heterozygdus，with big W small w，so you．．．Then，
 which of the 4 progeny is white，which is black！

我揬土里，倞下用检
S ：I write it down，under here．
ta子呀！
I：O．K．

鶷係咴崣唯
I：Write it down，here．［the student has finished the solution］

第互题．Tonghe rolling．．．．dominant gene．．．係13\}, Toughe S ：The fifth question．Tongue tolling ．．．．dominant gene ．．．Yes，tongue rolling
 is the dominant gene．Then，state and explain the genotype of individual $1 \& 2$ ．
 ［1］have to read the question again．Tongue rolling，determine by the present of determine by the presend of a dominant gene t R．．．．．。咁样 a dominant gene big R ．．．．．．that way ．．．．．It asks about the genotype of 1 ．
 Then，it would be，this，this big R small r．．．［write the answer］．

黑上弱年呢？

I：Why？
 S：Because，because［1 cross］with another parent produce one［progeny］that EP hon－rover 0 朗．
cannot roll tongue，that is non－roller．

呾你咪即号外一個remala吼。
S ：No，another one，the female．

即話任同2。
I：［You］mean［individual］ 2.
 S ：Yes， 1 and 2 produce，that is produce one non－roller，Yi，No，no．I make a係呀，金吉左侰。 mistake．

I：Why？

因為作话呢调大R係dominant呋咐木，係㘗，女婐一個大R— S ：Because it state that the big R is dominant．That is，if［one has］a big R a
 smail r ，［he is］also a roller．So two small r ．．．．．．．No，it is，it is，is big R and呀竍大R同紐 r ，係叫，跟往 b 。
small r ．Then［come to question］

I：You have to explain．Here［stated that］slate and explain．
哣依，三係non－Noller。
Yi， 3 is non－roller．

I： 4 married 3 ，what are 3 and 4 ？
 S：Husband and wife．Let me see，now 4 is small r small r ， 3 will be ．．．．．．It就命係……唸下先……唸下先……衣，呢度生左個喎，又係 should be ．．．．．．．［let me］think about it ．．．．．［let me］think about it ．．．．．Yi，here
 ［they］produce a roller，then ．．． R is dominant，that means，Hi，［let me］answer

$4 \ldots$ ． write the answer of 4］．．．． 4 is small r small r ．What about 3 ，should be， ［I］don＇t know．

墨解䏝知し 。

I：Why you don＇t know？

S ：Yi，What should［I］do as she has two possibility ？

I：Why do you think that］she have two possibility？

咁因為大R係 dominance 叫嘛咁如果任一個大R一個細r咁， S ：As big R is dominant，if she has 1 big R and I small \bar{r} ，then，she can still

S．图里？

係から，你要解釋㗎嘛，State and explainbと啉木。Ha． I：Yes，you have to explain，［It requires you to］state and explain．

S：．．．．．［write the answer］Then it should be like this．

所以有雨個甹能性。

I：So［you believe］there is two possibility．

S：Yes，［I try］problem（ii）now．

依家得一個运磵？

I：But here they have only one［progeny］？
㗱
diagram］，well，it＇s just because they don＇t produce．They can produce more．

I：O．K．

咁追墨呀？
S ：What do that mean？

継公兄毫
I：You may continue．

What is individual $5, ~$ 依，呢個份黑倜年？
S ：What is individual 5 ，Yi，this one is，what does that mean ？

What is the probability that
I：［read the question statement］What is the probability that individual 5 is individual 5 is heterozyg ote． heterozygote．

咁要自己副图？
S ：Then I have to draw the diagram？

得。
I：It＇s O．K．

S ：Let me see， 1,1 is with 2 ，then it is．Take 2 as big R small r ．That means ［踚個cross 在 answer，金召筆個2，完］
big R small r，big R small r ．．．．small r small r［finish the cross which is correct］有…有咪， $1 / 2$ 踓。 have ．．．have $1 / 2$ ．

I：Why［it is］ $1 / 2$ ？

咁作有见個，咁佢得雨個係呋咐
S：They have 4，with 2 of them is［heterozygous］．

哦
I：I see．

跟任，a man with bloodgroup A married a woman with
S ：Then，a man with blood group Almarified a woman with blood group B，then blood group B，咁有海闾細路和，blood group AB，show the， ［they］have 4 dhildren，blood group $A B$ ，show the，．．． Ka Ha ， bケHa，這話。
＂b\} $\mathrm{Ha}^{\text {＂}} \mathrm{D}$ 㫾叫飞？
I：What make you said＂Ya Ha＂？

I：What are you thinking about？What make you said＂Yi＂？

S：［My brain is］empty，let me try ．．．Could it be，Would there be more than 2有布得咁や榢？
gene？Is that possible？
有布得咁，你估踓，表象要你自己估叫麻。
I：Is that possible ！You guess．It＇s you who have to think about it．

我估，有吅乐。
S：I guess，there is［such possibility］！

黑上场弗你估有呢？
I：Why do you think so ？
咁，又可能有烸。
S：It may not has such possibility．

咁，你估有嘅原因係邊度呢？
I：Then，what is your reason for has［such possibility］？

因高佢有個。係度囉
S ：Because there is a［person with blood group］ O ．

哦，黑占解合有呢？
I：Then，what is your reason for not having［such possibility］？

S ：The reason for not having［such possibility］，may be there are only A and B ．梦吆，做左先踓。
That means ．．［I am］not sure，［I＇ll try to］do it first．

墨与解你佮有大A経a，一個大B敌b㕰？
I：Why do you think that one is big A small a，and［the other］one is big B small b？

唔係吸流係？
S ：It is not so？

I：Why it is not？Why are you rubbing it ？I am not saying that you are wrong
！

既因為我覺得銷左
S ：Because I think that it is wrong．

I：Why do you think that it is wrong ？

因為如果一個大A一個大B，咁，都，［做］．．．咁味摱咈到 S ：Because，if a big A and a big B，then，it still＇．．．．try to make the cross ．．．．有個A有個B唯
Yi ．．then［i］can＇t find a［blood group］A and a［blood group］B ．．．．

你依象想尌会試？
I：What are you doing now？

我应家，咶知㗎……我都唔知．．．．．．．．．硈，又碦
S：I am doing，［I］don＇t know，I also don＇t know ．．．．．．．．．．Ha！It＇s correct！
徜。

I：Yes？Why you thínk it＇s correct？
 S ：Then，adding them［together］，then this one will have blood A，this one is $A B$ 哈，吓，真係好，
blood O＇，this one is blood AB ，Ha！It＇s wonderful［she have given a correct answer］！

I：Why did you say that［the person with］small ab is blood O ？

口甘雨個都係尔 雨估都唔係 dominant 唯
S：They both are，both of them are not dominant．

I：That means，you think σ appear when there are two recessive genes．

S：It is not．Let me think［about it］．．．．．．think ．．．．．how to think［about it］？姩gene［做］依，又得昭
Will there be an gene O？．．．．．［write another cross］Yi，It＇s also O．K．！

A係Olominant 1磁住。
S ： A is dominant．
$B r P^{2}$ ？
I：What about B ？
dominant 嚾． 0 係recessive．
S ：Also dominant． O is recessive［gene］．
咁呢個呢？$A B$ 呢？
I：Then［how about］this？This［blood group］ AB ？
$A B$ ，雨固都係 又好似呼係䕎，好似有得咁焗。 $\mathrm{S}: \mathrm{AB}$ ，they both are［dominant］．It also seems not［possible］．There seems no such way．

哦，有有得㖼嘫？
I：Ha，Ha．Is there such possibility ？
好似友㗎，又好似有㗎，砗，係咁㗎，係咁㗎嗱，作你哣係 S ：There seems no，there also seems to have［such possibility］．Ya，that is it，it＇s

that way．It will somehow has such possibility ！Ya，take it as［the answer］！
O．K．！？

Q7 MP2

第七倈，inhuman，依咪做過，呢份嘢依shout sight— S：Question＇7，in human，Yi，［I］have done this before，Yi，short sight．A個正常女人，就坦左㿟個 shortsight man 等我睇下先，有斜線 normal woman，married a short sight man！．Let me see，［those］having shaded序尤shortsight，呢D正常㗎焗，笽該係正常個D係 line are shotl sight．These are normal．It should be ．．．．．．normal is the dominant． dominant．

䵢战呢？

I：Why？

因為，位 Produce 嗰D都係normal 嘅，
S ：Because，what they produce are all normal．

作produce 转多個？
I：What is the number of their progenies？

雨個。
S： 2.

所以你沗尤塯得伍 no mal㗎哈。
I：So you think it＇s［the dominant gene］normal．

所以我偐䧋得咁。
S：Yes，I think so．

加杲佂只係生一周咁墨算以く？
I ：What will you do if they have only one progeny？

生一個？咁都係normal 㗎鿟，咁佢生㧽D都正常娃林 S：One progeny？It＇s still normal．［As］their progeny is normal．

咁や果我捊係嚊呢個，咁你點睇？
I：Then，what if it has only this part ？［left only the part with two normal parents and one short sight progeny］

呢雨㧽都有唁正常嘅gene，這，shortsightgene．
S：They both carry gene that are not normal，I mean，shorl sight．
 the cross］．．Yi，＇so strange，better finish reading the question first ．．．．．．＇Then this
 must be big R small r ，then， 11 have to］explain，because．．．．because可以咁請㗎，因為椨度有［做i门］The genotypen［［害（ross］ explain this way ．．．．．Because there is ．．．．．．the genotype of $1 \uparrow$ ．．．．．．Yi，Yi．It is依，［做cross 2］依，原本呼係呋，佢翚係呢㧽咋。 not so，He only has this ．．．．

咩 10% ？
I：What？

係吼，係吼。
S：Yes，Yes．

墨解嘅？

I：Why？

s ：Because，if it is，if that is，they couldn＇t have this［progeny with rr］．
［提細rr］
鲐，鲐
I：Hum，hum．

所以［自做究调（ross）］
S：So！［she has answered Q7］

Q8 MCT

跟往第八題， 21 sud．It was 子ound that 6 of them have fall S ：Then it follow Q8， 21 seed．It was found that 6 of them have tall stem， 11 are stem． 11 個係stem with intermediate height and 4 with snortstem， stem with intermediate hight and 4 with short stem．Then，［I have to］explain咁様哏就lxphain作嗱，咁就要建嗱嗗，首先，佢有 6 個tall， 11 them，［］］have to draw，first of all，first of all，they have 6 tall， 11 intermediate，
intermedate，4個係short，通係呢，parent呢，就鷹耖係，大上同 4 are short．That means，parents are，should be，big L and smaff 1，is that so，yes

 then this one，this one will be short！Is it this way？It seems not correct？咟嘅。

黑占解情似喓你泥？
I：Why do［you］think that＇s wrong ？
 S ：I am not sure which of them is dominant，may be tall，may be short．

S：Phenotype？Should be，should be intermediate．

I：Why do you think they should be intermediate？
因皮，因為，佢producet工個intermedate踓，任有6個
S：Because，because they produce 11 intermediate， 6 tall， 4 short．
tall． 4 估shont．
跟往呢牙重 omominance 叫做物嚸呀？
I：What do we call this kind of dominance ？

呚吔，你味咋個呀？［指住個Leintermedate］你味呀 S：Ya！Will it be this？Is it so ？she point to the word intermediate in the question］

Ha，侮味呀？
I：Is it？
［再看题目一次］What is the name A the kind of Cominance， S：［read the question again］What is the name of the kind of dominance．I don＇t我都味知叫，我係識呢個咋。 know，I only know that［intermediate］：

即你唔镜佂個名？

I：You can＇t remenber the name？
係味呢個吆？
S ：Will it be that［intermediate］？
 I：You can＇t remenber the name ？Will you remenber the characteristic of that 12 ？？
［kind of dominance］？

S ：I can＇t remenber．It＇s，It＇s．I can＇t，really don＇t know．

咁點解你俭訐大L結e你intermediate？
I：Why do you say that big L small 1 is intermediate ？

因風，因为好似紅花溝白花出個pink 咁
S ：Because，because it＇s like［crossing red flbwer with white flower produce pink ［flower］．
（ii）In the second interview：

Q1 MS1－LONG

In garden pea，turminalfower，recessive to 咩吆，咩影呀？我睇下 S ：In garden pea，terminal flower，recessive to what，Ai，what＇s that？Let me先，teminal hower，a pure breding plant with rerminal Hower，哦！咁 see，terminal flower，a pure breeding plant with terminal ．．．．．．Ho！Then the
the suds usult from this cross are are whected，咁橲啦，When seeds result from this cross are collected．［It appears］that way．When this plants this plant have Howers，they are self＂哦＂poninated．咁様㣌．The have flowers，they are self Ho！pollinated．［It appears］that way．The seed are suds are corlected and shown again，F2，咁就劃图咑，咁我 collected and shown again and this are F2．Then［I have to］draw diagram，［I舞㗎啦？䨋m going to draw，I draw diagram？

Hum Hum
I：Hum，Hum．

馬琼鳥我しet？
S：Do I have to［write the］let［statement］？

随你啦。
I：As you like．
 S ：Well，I won＇t do［the let statement］．That means，let the flower be＇．．．AA，咁様呢大AA同経aa就一弯啦，咁呢個呢就係，parents，跟往有 then，the other flower，is aa．Then，big AA and small ad come together，and
 these are the parents．Then，there is a［gene］ A ，there is a［gene］a，these are跟住 有作自己㧮黎啦响，咁作自己又再桷啦！？
 again，it will be．They［cross with］themselves again ！？

Hum．
I：Hum．

咁我喺則息劃？

S：［May］I draw beside it ？

好味好叫。
I：It＇s O．K．

I．Hum
I：Hum．

大A細Q大A紬A……genes E_{2} 跟住，呢個大AA，呢個大 A 経 S：Big A［gene］small a［gene］，Big A［gene］small a［gene］．．．．．genes．．．F2．．，
 then this is big AA，this is big A small a，this is big A small a，this is small＇ $1 a$

and］small a，these are F2．Affer that it ask ．．．．．What＇s that？Is the genotype
．．Ho，no！［May I］write it here ？

好呀！
：It＇s O．K．

衣 我有哩予講々乡。
S：．．．．．．Yi ．．．．I have nothing to say．

點獬有嘢㗕嘅？

I：Why？

咁衣家䀂反呢Dそ咋林
S：Well，I am just writing all this down．

哦。
I：I see．

馬连哈鳥まPanRe左伯呀？
S ：Do［we］have to pause it［the recorder］？

语䲩生啦大把带
I：No need，there＇s lot of tape．

aa．Yes，then，Yi，Ho No！

I：What［made you say］Ho No ？

喂，恠偑同呢個有物分别？唔妃得左呀，呀！記得啦，味咪口米， S ： Hi ，what are the different of these two ？［I］can＇t remenber．．．Ha！I remenber
 now，no，it＇s not correct，no，I mixed them up．

Hum，Hum
I：Hum，Hum．

$\mathrm{S}: \ldots \mathrm{F} 2$ is，this one and this one．Is that so ？

哈！检！你最錞意阿＂係咪十家？＂。
I：Ha！Ha！You like to ask＂Is that so ？＂．

咁穻喼吓㗎时林
S：Well，［］have to think about it．

I：Are you thinking when asking＂Is that so ？＂？

倸时立。
S ：Yes．

に我。
I：I see．

寝住㕰［做］㗛：得啦，第一题做完。
S：Then it follow ．．．．．．．Ho，it＇s O．K．，finish Q1．

好呀
O．K．

你吃好等住我做啦
S：［Please］don＇t look at me while I am solving［the problem］！［I will be］ nervous ！

I：It doesn＇t matter！．．．You will be more carefull then．

我好認真。

S：I am very careful．

倸彩。
I：Really．

A red eye truit fly is cross to a thit fly with white eys 叶様口尼 S：A red eye fruit fly is cross to a fruit fly with white eye，then it follow，［it］
 discover， 60 fruit fly，are all red eyed，．．．．．．in the F2 generation， 178 red eyed，
 180 are white eyed，［they］were＇［the progenies］produced．Which is the dominant

？Are［you］recording？

係的
I：Yes．

S ：Which is the dominant？Wa！Let me see，all the 60 fruit fly in F1 generation
嵐，因為啊，all the 60 truit thies in the Figeneration． because，Ai，all the 60 fruit fly in the F 1 generation．．．red eyed．
［阅題目］b！using symbots，Randr，CAath and Acplain S：［read the question］b！using symbols，R and r ，state and explain briefly the brictly the genotype of the parent fies，the flies in FI and the His genotype of the parent flies，the flies in F 1 and the flies in F 2 ，Hum，symbols R in F_{2} ，Hum，symbns Randr，咁様呢，等我㖨吓先，red eye and $\mathrm{r} . .$. that is，let me think about it．Red eyed fruit flies，all，Ai，Ya，let me truit frrs，all，皮吔，等我喼吓先，咁樣，咁様，吨様，咐個 think about it，．．．this way，this way，this way，this one，all，this one is white，that all，呢调，white，咁嵄呢，等我唸吓先，呢個憵該係大R大R响， is，let me think about it．This one should be big R big R，red eyed，Hum，big
 R small r ，this is the gene，$F 1$ is big R small r ，then all are red eyed．Then，the red eye，踉住，咁㧽 Frgeneration 呢，就cross to the white eye F1 geneation is cross to the white eyed fruit flies again．That means this big R， tmitflies again，至你呢個大R，呢個F：呢個大R，就 whitrens， this F1，this big R．Then，white eyed［fruit fly］will，Ai Ya，then it＇s F2，this blg
 R small r ，this small［r］small r ，then，it asks，the genotype of the parent flies．呢，作就问呢，蝈 genotype of the parent flies，咁做 cross］，就

 ．．．）parents is ．．．．．．．．．bie R small r ，big R small r ．is that so ？turn to look R細r，睇吓係咪先［看前面］得啦，做完啦第工題。 at previous solution］Yes，fimsh question 2 ．

I：In question 2，I observed，you are，is that you go through the whole question
first？

係䟥。
S ：Yes．

但係呢，我欵兒呢，你後尾呢，又画睇反呢计 was found that all I：But，I find out，after that，you study＂it was found that all the 60 fruit flies in
the 60 fruit Hics in generation係red eye 嘅，墨解？ the F1 generation are red eyed＂again．Why ？
 S：Well，I have to know what this is，Ai，well，if it has some white，then，there

 I：Hum，so after first glance，when you have to decide what the red eyed［fruit又朋睇区下個genotyre。 fly］is，you will confirm about the F1［phenotype］again？

係吅。
S：Yes．

6我，咁様，呾様
I：I see．I see．

係咁㴔勒，第3題，
S：It＇s like that．＇Question 3.

Q3 MC－LONG

值個 Hlower color ot a plant，control by a pain foules，which is， S ：The flower color of a plant，control by a pair of allele，which is，codominant！ codominant in inheritance patiern．When a pure breed red in inheritance pattern．When a pure breed［ing］red flower plant，is cross，with Hower plant，is croses，with a pure bruding white Hower plant，all a pure breeding white flower plart，all the F1 plant are pink！flower，the pink the F_{1} ，plant are pink！tiwee，the pink Hower plant in F_{1} is flower plant is cross between themselves ．．．．．．．．．．．Then，show the phenotype and
cross between themselves．．．．．．．．．．．跟住 show the phenotyped genotype of the parents，F1 and F2．O！！ï have to］draw again，how？［Let me］
 read one more time．．．．．．．Yi［start to write the answer］let the red，Yi，gene＇of＇

化。［降怡鶴答案］Let the red，衣gene of red flowet be RR
red flower be RR．It＇s correct．This white flower is small r small r ．

> 哦哦。

I：Hum，Hum．
parento 呢，衣等我喼吓先伱榢啗，有個大R大R，呢個rea S ：As for the parent，let me think about it，that is．［The one］with the big R big

R is the red［The one］with the small r small r is the white［eyed fruit fly］．

Hum．Hum．
I：Hum，Hum．
 S ：［There］is a big R a small r ，this are the genes．Then，this big R small r pink 既下，跟住呢！自己效多次。
［flower］，is pink ！Pink［are the］F1．Then，they［cross］again，among themselves．

Hum．
I：Hum，Hum．

象，咁有 genes据，咁呢個qenes呢就係，大R細r，大R䋥r S ：Yi，then，there are genes，this genes are，big R small r ，big R small r ，big R
 big R ，smal！r small r ．This is red，this is pink，this is white！This is $F 2$ ．I have bink，呢個就係white！1re個就F2，我Show完啦。 shown all［the answer］．
做完曋嗱呵?

I：Finish ？

$$
\begin{aligned}
& \text { 係呋. } \\
& \text { S: Yes. }
\end{aligned}
$$

I：Yes．When you are doing the let［statement］，you seems to be thinking．What are you thinking of ？

S：I am thinking about what symbols are the most suitable．

I：What are you doing when you said＂let me see＂？

日弟多次䱦
S：Read［the question］one more time．

I：You will read it one more time．O！Will that help？
 S ：I am not reading．I look at the beginning and start to write．Well，［I］have い米加架咻木。 to be sure．

哦我子啗，得时立。
I：I see．It＇s O．K．

Protocols of subject R3
（i）In the first interview：

Q1 MSI
s：Grey boay既colon 係 dominant．．．．．唔．generation of netero3ygms body Hies，郎係雨個唁同，雨涸骓程既挡埋一落……睇吓先……堂grey body 係GG，啁個＂郘知物影＂係el．

I：你口 4 调调 reussive做 ee？

 Co．，㭏係，dominant既野，一固係recssive施野，咁样婵力。

I：咁嗰三個會係點战羊样？

I：Hum，Hum．
s：咁，得味架

I：得㗎啦，不過你排明邊個你下，啦。

S：哦，哦，呢個係 F_{1} ，呢個係gamete，呢個係parent．

Q2 MC
s：Flower color of．．．whtroued by．．．paic of．．．codominance，即係，

做泎。

I： 10 ？

S：呢題啷琙做添，嘻。

I：式式吓啦。
s：餏，嘅，．．．pinkfower，0，我知啦，知啦，矢啦，
I：唔．
埋RW嘅嘢啦，咁样整出揫啦……变左咁样．．．区個［做竞（ross］

 Clominant 嚾。咁．．．咁要左呢有，一個紅急，一個白急，雨個粉紅急。

咁样嘞。phenotype．．．璌左啦，点有左。

Q3 MSI
s：Brown hair reussive to black hair，得ut立，black hair 係 dominant啦咁，black hair BB 啦，咁絊b 啦，㧽㧽browh就浻下］咁 brown hair 同一個椎程嘅black hair一唯，咁，即係一個大B一

I：唁恠。

I：邊個 black，邊個 brown？
s：大B経b係black嚾，因高大B你dominant，呢固，兩㧽都係紐

Q4 MS2
s：One of the five oftsprings of a pain．．．white rabbit，咁蔦之一個，一垩符，作，一靶 parent 就出左一隻，有之隻就有一隻係墨㱏，唤！．正隻有一隻係黑色。

I：㖣。
s：咁即係白岜係dominant，係咪，如果黑色，就㷳該出黑色啦，咁雇皱係白忩嘞。

黑色踓。

I：你即係话你睇progency 個比例踓响？
s：［黑占領］

I：咁你睇吃焍文母像？
s：我多數䁠F，個㪙目。

I：好少考虑安母？
係dominant，有黑胥既，即係，即係及母都可以有個大W，細
堂大W係白急経w係黑色，咁個parents就係一個大W一個䋥的出左呢口，正個，一大一小，一大一小，雨小，咁变左呢，有三隻

S：咁第正题，咬，最唈店呢佔，family tru！呅吗．．．哈，tongue rolling is dominantgene．．．reussivegene．．．dominanu係大R，reussive係䋥r响，咁样样就，睇先．．．state and explarn genotype of individual－發一值 female roner，roher

唯㕵，genotype．

I；黑占解你估价係 RRDP？

後注㧽R。

I：哦，roh tongne 就出大R gamete，所以就係大R？

I：結婚，唔係生落去，唯。

杪估作管案设受咁样苒估落去。

I：既你袋得呢？

[$\left.x_{2} x, y, 4\right]$:s

咁出左雨個，得三個出沓。

s：係呀，我係咁唸，唔 \qquad依 \qquad ．哴得．．．呢個係 female，
㧽咁样。［噦 $\underset{R r}{r r} \operatorname{RR}]$
 Rr，所以就一個？

I：㰻ち下い拉。
s：哦．．．．．．坭度有．．．．．．

I：的。

s：既，出三個有雨個係roher．．．．．．．roller 有可能係大R，咁唸囄，墅時性係，［斒2／3］

I：呢度要脃要你解釋？

Q6 MC\＆MI
S：一個A型既同個B型溉有……哦，呢题依家知哳，．．．咁作有一定有A啦，一定有B啦，咁寉該係有個O啦，味墨喼有 O型嫁妮。庶該係AO，BO，因為，O5j以，口米，O係recessive，即， ［做個（ross］咁变左出愁，有 $A B, A O, B O, 00, ~$ 咁 AO，因滈 0 係 recessive，良 $P_{1} A, B O$ 即 B, 咁就有呢1週啦，咁所以AO同BO係系parent。

Q 7 MP2
s：唉！目弟先，一個正常既結焝，咁就呢個，咁係邉個character
多数都 hormal 潍。

I：澏解多数都係 normal 呢？
s：情，作D F_{1} 係normal，即係，郎係［指雨個後代］

I：郎係任四固雨個下係normal，所以多数都係normal 系 dominaht．
 genes．
或你眻佢䆘䆔，䛿媽。

＊㓆绿咁默解係 nommal恢？
咁㕍該係normal dominance D㒕，守尤算1文母有，父母有D係 Shout sight，都会要左做hormal准，咁样。

I：好啦。
s：唉。

s：唔係呀，我係透吃到氣吼，［原来R3鼻塞］呀．．．．．．explain genotyper－， $2, ~$ ，时样，雨调，一個scont sight，一個womal，

既，睇下先啦，大N，shont sight 系，s啦［䆝］咁样，即係—手比急

I：咁異䵢解抳？
S：咁绀依家都係normal雏，咁佢有可能係大N細S ，因为如果係大N細S都会係normal锥，因䔍N係，dominant 既。既。

I：咁溸解毞係雨固大N呢？
 \qquad ．呀你咪先，parent，睇隔…睇下先，係個parent 睇起，咁其中一倜係，
 Sight係雨個教SS，咁如果有個N係度，咁作一定係hormal䖻，咁即係堂啁倜係Ss先［開始做第一固（ross］咁hormal咱㧽，有可能係NN，有可的係NS。女稌係NS，郎係变左呢 D出現拉［做cross］．如果佢係NN，如果佢係SS。就，即［做
样，吼，咁應該係NS啦，如果我用呢一個，咁一係NS啦。依家一係知道NS，咁係睇．．．同二所出慨下怩就有 short sight 嘅，郎係無訜管占都係要有個SS的系度，係係侸地两個其中㧽度。

I：喺佢地雨固其中㧽度你個意思係。
S：即作地两㧽是挐一個，都要有㧽S嘅gene 啦，

I：哦，即係晕一個有。
两個都係NS［做3への的cross］．．．如果一個NN，一個NS庐係咁术准，咁就会出，咁样，［做4th 的cooss］咁呢個䟣

I：你誦一半机会係し羊とう？
S：即一半机会係hormal，一半係近視［指四（ross］L 尼個㩆促份一机会係，近視［损こ（ross］，咁即係，我估会係NS
嘅。［瓷に：NS］

Q8 MCT
s：6倜係taustem，6個係 intemediate stem，4倜係shout Stem，郎係話主要係有 taustem 欮ogene 同埋shont stem 既genes，咁其中，咁一個极高，一個校矮，加埋有 D medium 既野唯，咁我……我辉，個佃，parent，
講到tall 是 shont，要自己唸。

I：但應該係右講。
s：味，如果parent係tall，一個漛tal嘅，TT，SS 先拉 当 佢 ［做個1stcross］吃咁味出晒所有都伱TS．．．．．咁㰙，．．．．如果一㧽係．．．T．．．，TS，Hum，肉個都係TS就会有D咁

 tall呢個係Short啦，咁呢個可以堂佢係，如果我堂TS
該會成题㘈，因為雨個都係Codominant 就变左会，变在係合 intemediate high掹，但女子似要揾一個dominant响。

I：係咩。
s：What is the name of the kind．．．．．．
I：呢题其实就係间你依象呢度所䠗現的dominant其实係咩名。
s：哦！！！！！哦！咁，即係，應該係呢個啦［抬TS，Ts咽㧽

 b，癷案］［ \times K $\mathrm{K}+\mathrm{cos} s$ ］．

Q1 MSI-LONG

I: Hum.

Q2 MS2-LONG

係

 Ai，紅它眼，咁，而所以当哏個parent有一個係大R大R，有一個就

如果作個大R大R俗柑样，做則経個個（ros）］

I：Hum，Hum．

呢，咁，撚理一敦係，凊会下，全钚都係紅色眼闰，所以係教得䖵

I：Humbinm．

I：Hum．Hum．

I：你解殕左未？

算啦，故り，有位剽添［增，不弜位］

I：b？，嘻扁D6罟

I：Hum．
s：［看题目］genotype 运，得啦，做完，有有陶題呀，Ha．Ha．

Q3 MC－LONG
s：The flower color of a pant os controned by a painof allele

 brecding red flowercs croeesed with a pure breeding white flover，
粉紅色，Ai ，between themselves，䊉色再加D粉㐬色，粉鲜色自己Serf－pousuated．

I：Hum．Hum．
s：咁样样就会有紅色，后色，粉紅念㧧充 flower，show the phenotype， qenotype，parento．咕样样，＂当pure breeding 身固個 redflower

咁样啦，因为雨個都係 dominaut既character 啦，咁客左既

I：Hum，Hum，
 White flower．即雨個大R国雨個大 W ．

I：Hum．Hum．

 ［做個Croes］RR，RW，WR，WW苃左呢，就会有眼，係呢，一個隹工

[^0]:

[^1]: 係呵，係呀。
 S ：Yes，yes．

[^2]: S ：Then，fruit fl in in Fl ，after that，the red eyed fruit flies cross with white eyed

