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摘要 

本論文工作的主題是圖像反卷積問題。在很多實際應用，例如生物醫學成像，地震 

學，天文學，遙感和光學成像中，觀測數據經常會出現令人不愉快的退化現象，這種 

退化一般由模糊效應（例如光學衍射限條件）和噪聲汙染（比如光子計數噪聲和讀出 

噪聲）造成的，這兩者都是物理儀器自身的條件限制造成的。作為一個標准的線性反 

問題，圖像反卷積經常被用作恢複觀測到的模糊的有噪點的圖像。我們旨在基于無偏 

差風險估計准則研究新的反卷積算法。本論文工作主要分為以下兩大部分。 

首先，我們考慮在加性高斯白噪聲條件下的圖像非盲反卷積問題，即准確的點擴散 

函數已知。我們的研究准則是最小化均方誤差的無偏差估計，即SURE. SURE-LET方 

法最初被應用于圖像降噪問題。本論文工作擴展該方法至討論圖像反卷積問題：我們 

提出了一個新的SURE-LET算法，用于快速有效地實現圖像複原功能。具體而言，我 

們將反卷積過程參數化表示為有限個基本函數的線性組合，稱作LET方法。反卷積問 

題最終簡化為求解該線性組合的最優線性系數。由于SURE的二次項本質和線性參數 

化表示，求解線性系數可由求解線性方程組而得。實驗結果顯示該論文提出的方法在 

信噪比，圖像的視覺質量和運算時間等方面均優于其他迄今最優秀的算法。 

論文的第二部分討論圖像盲複原中的點擴散函數估計問題。我們提出了blur-SURE 

一 一個均方誤差修正版的無偏差估計一作為點擴散函數估計的最新准則，即點擴散 

函數由最小化這個新的目標函數獲得。然後我們利用這個估計的點擴散函數，用第 

一部分所提出的SURE-LET算法進行圖像的非盲複原。我們以一些典型的點擴散函數 

形式（高斯函數最為典型）為例詳細闡述該blur-SURE理論框架。實驗結果顯示最小 

化blur-SURE能夠更准確的估計點擴散函數，從而獲得更加優越的反卷積性能。相比 

于圖像非盲複原，盲複原所得的圖片的視覺質量損失可忽略不計。 

本論文所提出的基于無偏差估計的算法可擴展至其他噪聲模型。由于本論文 

以SURE基礎的方法在理論上並不僅限于卷積問題，該方法可用于解決數據的其他線 
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Abstract 

The subject of this thesis is image deconvolution. In many real applications, e.g. 

biomedical imaging, seismology, astronomy, remote sensing and optical imaging, unde-

sirable degradations by blurring effect (e.g. optical diffraction-limited condition) and 

noise corruption (e.g. photon-counting noise and readout noise) are inherent to any 

physical acquisition device. Image deconvolution, as a standard linear inverse problem, 

is often applied to recover the images from their blurred and noisy observations. Our 

interest lies in novel deconvolution algorithms based on unbiased risk estimate. This 

thesis is organized in two main parts as briefly summarized below. 

We first consider non-blind image deconvolution with the corruption of additive 

white Gaussian noise (AWGN), where the point spread function (PSF) is exactly known. 

Our driving principle is the minimization of an unbiased estimate of mean squared error 

(MSE) between observed and clean data, known as “Stein's unbiased risk estimate” 

(SURE). The SURE-LET approach, which was originally developed for denoising, is 

extended to the deconvolution problem: a new SURE-LET deconvolution algorithm 

for fast and efficient implementation is proposed. More specifically, we parametrize 

the deconvolution process as a linear combination of a small number of known basic 

processings, which we call the linear expansion of thresholds (LET), and then minimize 

the SURE over the unknown linear coefficients. Due to the quadratic nature of SURE 

and the linear parametrization, the optimal linear weights of the combination is finally 

achieved by solving a linear system of equations. Experiments show that the proposed 

approach outperforms other state-of-the-art methods in terms of PSNR, SSIM, visual 

quality, as well as computation time. 

The second part of this thesis is concerned with PSF estimation for blind decon-

volution. We propose a “blur-SURE” 一 an unbiased estimate of a filtered version of 

MSE 一 as a novel criterion for estimating the PSF, from the observed image only, i.e. 

the PSF is identified by minimizing this new objective functional, whose validity has 
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x ABSTRACT 

been theoretically verified. The blur-SURE framework is exemplified with a number of 

parametric forms of the PSF, most typically, the Gaussian kernel. Experiments show 

that the blur-SURE minimization yields highly accurate estimate of PSF parameters. 

We then perform non-blind deconvolution using the SURE-LET algorithm proposed 

in Part I, with the estimated PSF. Experiments show that the estimated PSF results 

in superior deconvolution performance, with a negligible quality loss, compared to the 

deconvolution with the exact PSF. 

One may extend the algorithms based on unbiased risk estimate to other noise 

model. Since the SURE-based approaches does not restrict themselves to convolution 

operation, it is possible to extend them to other distortion scenarios. 

Keywords: image, deconvolution, mean square error (MSE), Stein's 

estimate (SURE), linear expansion of thresholds (LET), blur-MSE, blur 

filtering, undecimated Haar wavelet. 

unbiased risk 

SURE, Wiener 
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Chapter 1 

Introduction 

1.1 Motivations and objectives 

In many real applications, e.g. medical imaging [14], seismology [15], astronomical 

imaging [16], remote sensing [17] and optical imaging [18], the observed images are 

often degraded during image acquisition. There are two main sources of degradation, 

described as follows. 

The first degradation is blurring effect caused by the limitations of image acquisition 

devices, e.g., the diffraction phenomenon of optical imaging system [19]. Blurring 

is often mathematically modelled by convolution, and within this model the blur is 

characterized by the point spread function (PSF) or kernel [20]. 

Another type of degradation is noise corruption introduced by the measurements, 

e.g., photon-counting noise arising from the fluctuation of the number of incoming 

photons [21], the thermal and readout noise of the electronic acquisition devices and 

the analog-to-digital conversion [22]. Although the amount of noise actually depends on 

the signal intensity, it is often modelled as an additive independent (typically Gaussian) 

random variable, especially when the magnitude of the measured signal is sufficiently 

high. 

Due to the poor visual quality of the obtained images, image deconvolution is often 

applied to remove the degrading phenomena and recover the images from their blurred 

and noisy observations [20]. This problem can be divided into two categories: non-

blind deconvolution, which assumes that the PSF is exactly known in advance, and 

blind deconvolution, where the PSF is (partially) unknown. 

1 
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1.2 Mathematical formulation for problem statement 

The degradation is formulated as the following linear model [20]: 

y = Hx + b (1.1) 

where y G R N is the observations of the original data x G R N , linearly distorted by 

convolution matrix H G R N a n d corrupted by the additive white Gaussian noise 

b G R n with variance a 2. Non-blind deconvolution is to find a good estimate of x from 

the measurements y, given exact H, whereas blind deconvolution attempts to estimate 

both x and H, from y only. 

Image deconvolution is an ill-conditioned or singular problem due to the nature of 

the PSF [20]. In particular, ill-conditioned convolution operator tends to yield highly 

noise-sensitive solutions, which makes the deconvolution problem particularly challeng-

ing [20]. 

1.3 Survey of non-blind deconvolution approaches 

Since there is no unique solution to deconvolution problem in view of ill-conditioning 

and noise, the selection of a specific solution must be guided by some criterion or a 

set of criteria [20]. A huge amount of literature is dedicated to this selection. In this 

section, we propose a formal classification of various existing deconvolution approaches, 

based on their underlying criteria. For each class, we further discuss some of its most 

popular representatives. 

1.3.1 Regularization 

Regularization is a standard technique to cope with the ill-posed nature of the decon-

volution problem, by imposing certain regularity conditions on the original image [23]. 

The principle of regularization is to find an estimate X G R N of an original x G R N by 

minimizing the regularized cost functional J(x, y), i.e. x = arg minx J(x, y), which is 

usually of the following generic form [24]: 

J(x, y) = ||Hx - y||2 + A$(x) (1.2) 

where ||Hx - y||2 is the data-fidelity term,入 is the regularization parameter, $(x) is 

the regularization term. The most commonly used regularizers are listed below. 

2 
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Wiener filtering/Tikhonov regularization [25; 26] 

Tikhonov regularization uses ^2-norm for regularization term $(x) = ||Sx||2 for some 

suitably chosen Tikhonov matrix S, which is usually chosen as the identity matrix 

to give preference to smaller norms, or high-pass operators to enforce smoothness. 

Tikhonov regularization yields the closed-form solution, given by [27]: 

X = ( H T H + ASTS) - 1HTy (1.3) 

While straightforward to implement, this type of regularization often produces over-

smoothed edges [28]. 

Transform-domain sparsity constraints [29; 30] 

The coefficients of a frame-based representation of the original image are estimated 

under a sparsity-inducing regularizer such as the ^i-norm [29], formulated as [30]: 

J (x, y) = ||Ac — y||2 + A||c||i (1.4) 

where c is the transform coefficients of the unknown image x. In particular, in wavelet-

based deconvolution methods, A is often chosen as A = H W , where W denotes 

inverse wavelet transform. The underlying philosophy in dealing with the ^i-norm 

regularization criterion is that most images have a sparse representation in the wavelet 

domain [31]. Another advantage of the £i-based regularization over the ^2-based is that 

as opposed to the latter, ^i-regularization is less sensitive to and better to preserve sharp 

edges. 

One is the most popular methods for solving problem (1.4) is in the class of iterative 

shrinkage-thresholding (IST) algorithmsi, where each iteration involves matrix-vector 

multiplication involving A and A T followed by a shrinkage/soft-threshold step [30]. 

This algorithm can be reinterpreted as the proximal forward-backward iterative scheme 

[24], expectation-minimization algorithm [34] and majorization-minimization algorithm 

[35]. More recently, fast algorithms of IST have been proposed, e.g., fast thresholded 

Landweber algorithm [36], FISTA [37], SALSA [38] and i-LET [39]. 

Total-Variation (TV) regularization [28; 40] 

The underlying principle of TV regularization is that signals with excessive and possibly 

1 Other names in the signal processing literature include, for example, thresholded Landweber 

method [32] and split Bregman method [33] 
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spurious detail have high total variation, that is, the integral of the absolute gradient 

of the signal is high. It can be formulated as [41]: 

J ( x , y ) = ||Hx - y||2 + A||X||TV (1.5) 

where || • ||TV denotes TV norm. TV regularization is remarkably effective at simul-

taneously preserving edges whilst smoothing away noise in flat regions, even at low 

signal-to-noise ratios [28]. Several recent algorithms that solves (1.5) have been pro-

posed, see [41-44] for example. 

1.3.2 Regularized inversion followed by denoising 

For further improvements of deconvolution quality, the most state-of-the-art methods 

are usually decomposed as a two-step procedure that consists of regularized inverse 

followed by noise reduction. Some representatives of this popular class of approaches 

are described below. 

F o r W a R D [45] 

This two-stage shrinkage procedure successively operates in Fourier and wavelet do-

mains with an optimal balance (in terms of an approximate MSE metric) between 

the amount of Fourier and wavelet regularization. ForWaRD also considers different 

Fourier shrinkage parameters at different DWT scales. 

More sophisticated denoising techniques [46-49] 

The recent deconvolution algorithms, e.g., the SV-GSM [46], GSM [47], SA-DCT [48] 

and BM3D [49], apply the regularized inverse followed by a more sophisticated de-

noising technique (BLS-GSM [50], SA-DCT [51] and BM3D [52], respectively). This 

strategy achieves the most state-of-the-art results, usually at the expense of a high 

computational complexity. 

1.3.3 Bayesian approach 

Another class of deconvolution algorithms are derived in a Bayesian framework, where 

some a priori statistical knowledge of the original image are assumed [5; 34; 47; 53-59] 

. The regularization approaches can be re-interpreted in this framework as maximum 

a posteriori (MAP) or penalized likelihood. We refer the interested reader to [5; 60] for 

a more detailed description of the Bayesian approach. 



§ 1.3.4. Remark 

1.3.4 Remark 

Either regularization techniques or Bayesian methods need to find a reasonable value 

of the regularization parameter, to keep a good balance between data-fidelity and reg-

ularization terms [23; 61-63], see generalized cross validation (GCV) method [63] for 

example. 

1.4 Survey of blind deconvolution approaches 

Blind deconvolution is a highly ill-posed problem, especially when no parametric form 

of the underlying PSF is provided or assumed, due to not only the ill-conditioned 

degradation operator, but also the underdetermined nature of the problem itself: the 

number of unknowns (x and H) is significantly more than that of knowns (y), and 

hence, there may exist multiple solution-pairs (original image + PSF) that produce the 

same observed image [64]. 

1.4.1 Non-parametric blind deconvolution 

To deal with the ill-posedness of the problem, most existing methods formulate the 

deconvolution process as minimization of an objective functional, by taking into account 

a certain prior knowledge or assumptions of the original image and the PSF, within 

a regularization framework or a Bayesian approach [65]. For a comprehensive review 

of the non-parametric blind deconvolution methods, refer to [66-68] and the references 

therein. 

Iterative bl ind deconvolution algorithms 

With much initial success, an iterative blind deconvolution algorithm [69] spurred a 

great deal of interest in this subject. This pioneering work essentially generalized the 

Fienup phase retrieval algorithm [70], and a priori knowledge is limited to the non-

negativity of images. In each iteration one obtains estimates of the object and the PSF 

by simple inverse filtering. 

Subsequent improvements and variants of this basis scheme [69] further impelled 

research in this field. [10; 71] proposed iterative algorithms based on Wiener-type fil-

tering [25]; [11; 72; 73] developed Bayesian-based blind deconvolution algorithms based 

on Richardson-Lucy algorithm [74; 75], which has proved to be robust in the presence 

5 
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of noise; [76-79] proposed expectation-maximization-based [80] maximum likelihood 

blind deconvolution algorithms; [9; 12] proposed multiplicative iterative algorithms to 

maximize the likelihood probability. 

Regularization technique 

It imposes certain regularity conditions (e.g. smoothness) on the original image and the 

PSF, and formulates the blind deconvolution as the following minimization problem: 

min ||Hx - y||2 + A i $ i ( x ) + 入 2 $ 2 ( h ) (1.6) 
x,h 

where $ i and $2 are the regularization terms of original image x and PSF h, respec-

tively; Ai and A2 are two positive regularization parameters which measure the trade 

off between a good fit and the regularity of the solutions x and h. The commonly used 

choices of regularizer are: 

• Tikhonov regularization [81]: 

min ||Hx - y||2 + Ai||Dx||2 + A2||Dh||2 

x, h 
(1.7) 

where D is the first-order differencing matrix. 

TV regularization [82]: 

min ||Hx 一 y||2 + AI||X||TV + A2||h||TV 
x, h 

Hybrid regularization [83]: 

min ||Hx - y||2 + AI||X||TV + A2||Sh||2 

x, h 

(1.8) 

(1.9) 

where S is the discrete Laplacian matrix. 

• Lipschitz regularization [84], anisotropic regularizations [85], and others. 

This technique can be re-interpreted as the maximum a posteriori (MAP) from 

Bayesian perspective. 

Bayesian approach 

It assumes underlying prior models on the image and the PSF, and then via Bayes' 

rule, formulates the logarithm of the posterior distribution as a cost functional to be 

optimized. It is known that the exact posterior distribution is very hard to compute. 

Variational Bayesian methods are employed to approximate the posterior via minimiz-

ing the Kullback-Leibler (KL) divergence related to the posterior distribution [86]. 
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Standard prior models for the image and blur include simultaneous autoregressive 

(SAR) [5; 87; 88], conditional autoregressive, Gaussian prior [87] and TV prior [88]. 

Notice that in [88], using a TV function as the image prior and a SAR model as the 

blur prior under the Bayesian setting is equivalent to the formulation of [83]. 

Recently, more sophisticated prior models have been proposed, e.g., Student's-t 

distribution to model the sparse kernels [89], a mixture of Gaussians for the gradient of 

the image and a mixture of exponentials for the PSF [90-92], a sparse prior to model 

the image edges [93] and a local prior of the image [91]. Moreover, the non-convex 

regularization terms have also been introduced [93; 94]. Refer to [95] for a thorough 

description of the Bayesian approach to blind deconvolution. 

Remark 

Both the original image and the PSF are often jointly estimated by minimizing an 

uniform objective functional [5; 82; 87; 88], whereas a few works separate the blur 

identification and image restoration: the original image is estimated by non-blind de-

convolution using the PSF estimated by the blur identification [90-92]. 

In all of these existing approaches, the regularization parameters must be deter-

mined properly so that the algorithm can provide good recovered images and blurs. 

The parameters can be estimated by either variational Bayesian method [88] or gen-

eralized cross validation (GCV) method [83; 96]. However, all the proposed methods 

require expensive computational cost. 

1.4.2 Parametric blind deconvolution 

Necessity of parametric bl ind deconvolution 

In several particular applications, e.g., linear motion blur [97; 98], atmospheric tur-

bulence [99], out-of-focus blur [100], astronomical imaging [101] and fluorescence mi-

croscopy [102], the parametric forms of the PSF are either theoretically available or 

practically assumed [3; 103]. In this context, the PSF is completely characterized by 

only a few parameters [102] or at least belongs to a limited space of admissible func-

tions [65]. The parametrized representation of the PSF can be considered as another 

type of regularization [65], provided that the number of the PSF parameters is not 

too large. Unlike the non-parametric blind deconvolution, parametric one has only a 
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small number of PSF parameters to estimate, which dramatically reduces the degrees 

of freedom in the problem. 

Examples in practical applications 

Examples of the parametric approach can be found in the applications of deconvolution 

microscopy [102; 104; 105] and motion deblurring [97; 98; 106], where the analytical 

models of PSF are provided in the specific contexts. Besides, [3] considered the PSF 

in a form of low-exponent Levy function with two parameters; [103] performed a soft 

combination of several typical parametric blur structures (e.g. Gaussian, uniform and 

linear blurs). Still, both the estimates of the original image and the PSF parameters 

are obtained either simultaneously [102; 105] or separately [3; 65; 97]. 

1.5 Objective assessment of the deconvolution quality 

Evaluating the deconvolution quality is essential to compare various deconvolution al-

gorithms or to validate a deconvolution procedure applied on real data. In this section, 

we discuss the most popular approaches to image quality assessment. By objective 

quality assessment, we mean a mathematical measure that quantifies the similarity 

between the deconvolved image x G R N and the original image x G R N . 

1.5.1 Peak Signal-to-Noise Ratio (PSNR) 

The mean-squared error (MSE) 

MSE 
1 1 N 

^ ||x - x||2 = - Xn)2 (1.10) 
N、、 “ N 

is the most widely used measure of quality. It is often normalized by the square of 

the maximum value of the signal and represented in a logarithmic scale yielding the 

popular peak signal-to-noise ratio (PSNR): 

PSNR = 10logi。( M l ) (1.11) 

1.5.2 Structural Similarity Index (SSIM) 

However, the MSE is considered as a poor visual quality metric, mainly due to its 

non-adaptivity to local signal specificities (intensity, correlation, ...) [107]. This has led 

some researchers to design new measures of quality that better correlate with human 

8 
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visual perception. The most popular representative of these quality metrics is probably 

the structural similarity index (SSIM) introduced in [108]. Taking into account three 

types of similarities: the luminance similarity, the contrast similarity and the structural 

similarity, the SSIM between two images x and y is defined as2: 

S S I M ( x y ) = ( 2 " x " y + C i ) ( 2 a x y + C 2 )
 ( 1 1 2 ) 

s s ^ C x , y ) = ( 始 + /4 + Ci)(始 + 两 + C2) ( 1 .1 2) 

where all the notations are described in [108]. 

1.6 Thesis contributions 

The general goal of this thesis is to design non-blind/blind deconvolution algorithms 

based on unbiased risk estimates that satisfy the following requirements: 

• Efficiency: the proposed solutions have to be competitive with the state-of-the-

art deconvolution methods, with respect to an objective measure of quality (e.g. 

PSNR and SSIM). 

• Computational cost: the proposed algorithms should be faster than (or at least 

as fast as) the most efficient deconvolution algorithms available. 

Along the lines leading to the fulfilment of the above requirements, this thesis brings 

the following contributions. 

1.6.1 Theoretical contributions 

Non-blind deconvolution 

To come up with efficient deconvolution algorithms, we need to achieve optimal perfor-

mances with respect to an objective measure of quality 一 an estimate of the MSE. For 

AWGN, such an estimate has been established by Charles Stein and is nowadays known 

as Stein's unbiased risk estimate (SURE) [109]. Since it involves only the measurements, 

we can minimize SURE instead of MSE in practice. In this work, we extended SURE 

theory to non-blind deconvolution. We derived several expressions of SURE bound to 

linear or non-linear type of processings. We applied the linear combination of multi-

ple Wiener filterings with different regularization parameters: automatically finding a 

2 A Matlab code that computes the SSIM map and SSIM index is available at: 

http://www.ece.uwaterloo.ca/-z70wang/research/ssim/. 

http://www.ece.uwaterloo.ca/-z70wang/research/ssim/
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good combination by SURE minimization enabled us to avoid to manually adjust single 

regularization parameter. 

PSF estimation for bl ind deconvolution 

To achieve superior performance to other state-of-the-art blind deconvolution methods, 

we need to find an accurate estimate of PSF, which is essential to blind deconvolution. 

In this work, we proposed a novel criterion for PSF estimation 一 blur-SURE, which is 

an unbiased estimate of a filtered version of standard MSE. We theoretically and ex-

perimentally proved that the PSF can be accurately estimated from the measurements 

only, by minimizing the blur-SURE. We exemplified the blur-SURE framework with 

several function forms of PSF in different applications. 

1.6.2 Algorithmic contributions 

Non-blind deconvolution 

Most of the existing deconvolution algorithms require the optimization of several non-

linear parameters and/or involve sophisticated redundant transforms, see [49; 61-63] 

for example. Consequently, their computational burden is usually quite heavy. 

To achieve a high-quality non-blind deconvolution in a low computation time, we 

apply the linear expansion of thresholds (LET), which was first proposed in [110], to 

the deconvolution problem. The optimal linear parameters of this expansion are then 

the ones that minimize an unbiased estimate of the MSE. Thanks to the quadratic 

form of such MSE estimates, the whole parameters optimization boils down to solving 

a linear system of equations, which is very fast and exact. In this LET strategy, fast 

deconvolution algorithms can then be devised. 

PSF estimation for bl ind deconvolution 

Most of the existing non-deconvolution methods applied alternating minimization (AM) 

algorithm between the original image and the PSF, see [5; 82; 83; 88; 91] for example. 

Each iteration requires expensive computational cost, and the AM algorithm often has 

slow convergence. 

To achieve a high-quality blind deconvolution in a low computation time, we devised 

several fast algorithms for the blur-SURE minimization in different applications. Then, 

we apply the proposed non-blind deconvolution algorithm with the estimated PSF. 
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1.7 Organization 

The Part I of this thesis is dedicated to non-blind deconvolution problem. Although 

numerous works have been already undertaken in this (yet still active) field of research, 

we present in Chapter 2 a SURE-LET framework for general linear distortion model, 

not limited to deconvolution. 

In Chapter 3, we apply the SURE-LET strategy to linear or non-linear processings, 

and arbitrary (including orthonormal and redundant) transform. We derive several 

SURE expressions in each context. 

In Part II of this thesis, we consider the blind deconvolution problem. We present 

in Chapter 4 a generic blur-SURE framework for PSF estimation. 

Chapters 5 and 6 are dedicated to several applications of parametric blind de-

convolution. Experiments show that the estimated PSF parameter by the blur-SURE 

minimization is very close to the true one, and the deconvolution performance is already 

competitive with most state-of-the-art approaches. 

Our concluding remarks, as well as some perspectives, are finally reported in Chap-

ter 7. 





Part I 

The SURE-LET Approach to 

Non-blind Deconvolution 
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Chapter 2 

The SURE-LET Framework for Deconvolution 

2.1 Motivations 

Given some blurred and noisy measurements, the goal of deconvolution task is to find 

the best estimate of the underlying original signal. The key point is then to quantify 

how close to the original signal a given estimate is. We have already discussed in 

Chapter 1 several objective measures of quality assessment. From a practical point of 

view, the mean-squared error (MSE) clearly emerges as the best candidate, due to its 

appealing mathematical properties (quadratic, symmetric, differentiable, invariant to 

unitary transforms). In this chapter, we thus propose to consider the minimization of 

the MSE as the driving principle of our deconvolution strategy. 

2.2 Related work 

This framework that will be introduced in this chapter is essentially based on Stein's 

unbiased risk estimate (SURE). In this section, we thus briefly review the SURE-based 

approaches designed for denoising and deconvolution. 

SURE — an unbiased estimate of the MSE under additive Gaussian noise assump-

tion —was first proposed by C. Stein in [109], and has been recently revitalized for 

denoising purpose. The most straightforward way of distinguishing information from 

noise in the wavelet domain consists in thresholding the wavelet coefficients. Donoho 

and Johnstone proposed SUREshrink, which chooses the optimal threshold value T by 

minimizing SURE [13]. Chang et al. proposed BayesShrink to derive their threshold 

in a Bayesian framework, assuming a generalized Gaussian distribution for the wavelet 

coefficients [111]. For computational efficiency, Linear expansion of thresholds (LET), 

a new parametrized form of thresholding function in wavelet domain, was proposed 

15 
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in [1; 110]. Aimed at the SURE minimization, the SURE-LET approach reduces the 

denoising problem to solving a simple linear system of equations. 

More recently, SURE has been extended to any linear restoration problem [112-115]. 

Since SURE depends on the observed data only, it can be practically used for the 

following purposes: 

1. To optimize the parameters of the processing, e.g., the Tikhonov regularization 

parameter [115] or the optimal parameters involved in the non-local means (NLM) 

denoising technique [116]; 

2. To monitor the PSNR improvement during the iterations of IST algorithms, 

without referring to the original unknown data, e.g., automatic determination 

of the number of iterations [112], optimal update of the parameters at each iter-

ation [115]; 

3. As a minimization criterion for designing denoising/deconvolution algorithms ex-

pressed as LET structure, the so-called SURE-LET approach [1; 113; 117]. It 

requires the basic structure or parametric form of the estimator to be determined 

in advance [1; 113; 115]. 

Our work follows the last point. Similar to the work of [113], we further extend the 

SURE-LET approach to regularized inversion followed by denoising. Note that [113] 

empirically chooses the regularization parameter of the regularized inverse filter. The 

main contribution of our work, also the major difference from [113], is that besides 

applying a linear combination of non-linear thresholding functions for the denoising 

step as in [113], we also linearly parametrize the regularized inversion into a number of 

basic Wiener filters with different (but fixed) regularization parameters. Instead of op-

timizing or empirically choosing non-linear regularization parameters [61; 62; 113; 115], 

the proposed multi-Wiener SURE-LET approach finds the best linear combination of 

multiple Wiener deconvolutions. The linear parametrization reduces the deconvolution 

problem to solving a linear system of equations. Its solution, i.e., the weights in the 

linear combination, automatically constitutes the minimum MSE/SURE combination 

as final estimate. As a result, the proposed deconvolution algorithm is fast and of low 

computational complexity1. 

"̂ A demo software is available at www.ee.cuhk.edu.hk/�tblu/demos/. 

http://www.ee.cuhk.edu.hk/%e3%80%9ctblu/demos/
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2.3 Problem statement 

Consider the linear model 

y = Hx + b, (2.1) 

where y = [yn]n=i...N ^ is a distorted observation of the original (unknown) data 

x = [xn]n=i...N ^ R N T h e matrix H G R N i m p l e m e n t s a linear distortion2, while 

the vector b = [6n]n=i…n G R n i s a zero-mean additive Gaussian noise corruption 

with covariance matrix C — 0. Our objective is to find an estimate x = f ( y ) = 

[/n (y )]n=i…N that minimizes the mean squared error (MSE) defined by: 

MSE 
1 1 N 

^ 2— ^ E ( X n — Xn)2 (2.2) xX x N N 

Here, we would like to insist that the estimate x = f(y) is only the outcome of the 

processing f. A key feature of our approach is to estimate the function (or processing) 

f : R n R n that transforms y into x, rather than the estimate x itself. 

2.4 Stein's Unbiased Risk Estimate (SURE) for deconvolution 

Since we do not have access to the original signal x, we cannot compute the above 

Oracle MSE as Eq.(2.2). However, without any assumptions on the original data x, we 

will see that it is possible to replace this quantity by an unbiased estimate which is a 

function of y only. This has an important consequence: contrary to what is frequently 

done in the deconvolution literature (Bayesian approaches), the original signal is not 

modelled as a random process in our framework (we do not even require x to belong 

to a specific class of signals). Thus, the observed randomness of the observed data y 

only originates from the Gaussian noise b. 

2.4.1 Original SURE 

Based on the linear model shown as Eq.(2.1) and the additive Gaussian noise assump-

tion, the MSE can be replaced by a statistical estimate, SURE, involving the measure-

ments y only. This is summarized in the following theorem [113; 115; 118]. 

2The theory that follows can be applied to rectangular matrices, but for the sake of simplicity, 

restrict ourselves to square matrices. 



18 CHAP. 2. THE SURE-LET FRAMEWORK FOR DECONVOLUTION 

Theorem 2.1 Given the linear model shown as Eq.(2.1) with any invertible matrix 

H G R n X N , the following random variable 

e = Nn (||f(y)f - 2 y T 『 T f ( y ) + 2d ivy{CH - T f (y )} ) + 去||x||2 

is an unbiased estimator of the MSE defined in Eq.(2.2); i.e., 

E{e} = -NE{||f(y) - x|2}. 

where E{•} denotes the mathematical expectation operator. 

See the proof in Appendix A.1. In particular, if the Gaussian noise b is independent 

and identically distributed (i.i.d.) with variance a2 , SURE becomes 

-N (||f(y)||2 - 2y T H - T f (y ) +2a 2 d ivy{H - T f (y )} ) + 1 

which results from specifying the covariance matrix C = a2 I . 

x (2.3) 

Corollary 2.2 In the particular case of an i.i.d. Gaussian noise with variance a2 , if 

the processing f(•) can be expressed as f(y) = HT f (y) , then SURE becomes 

N (||HTf(y)||2 - 2yTf(y) +2a2divy{f(y)}) + 去 x (2.4) 

2.4.2 Regularized approximation of SURE 

If the matrix H is ill-conditioned or singular, e in Eq.(2.3) fails to be a reliable estimate 

of the MSE. To keep the stability of e, we may intuitively replace the unstable inverse 

H - 1 by a Tikhonov regularized inverse [26] 

H - H T H + P - 1 H 丄 , 
To、一1 u T (2.5) 

for some parameter p > 0 and matrix S G R N x N . We can then approximate the 

original SURE as 

N 
f(y) 2 - 2yTH-T f (y) + 2a2div H- T f ( yU + - H- 1 Hx 

N 
(2.6) 

This approximated estimator of the MSE turns out to be an unbiased estimate of 

N f(y) - H - 1 H x ‘ ‘ 一 a modified MSE (see the proof in Appendix A.2). Hence, if 

2 

2 

1 

1 2 
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H - 1 Hx is close enough to x (hypothesis on x), then, e^, the approximated SURE, is 

a good estimate of the MSE. 

In imaging application, a good choice for S is a high-pass operator. A reason-

able value for f3 should achieve a good balance between the approximation accuracy 

and the stability of ê ； i.e., ^ should be neither too large, to avoid significant loss of 

high-frequency features, nor too small, to keep the stability of 印 . W e also define a reg-

ularized inverse for S as S - 1 = f3 (H T H + fjS^S)-1 ST , which leads to the following 

decomposition of the identity matrix: H - 1 H + S - 1S = I. 

2.5 The SURE-LET approach 

In practice, we will minimize the approximated SURE shown as Eq.(2.6) instead of 

the actual MSE in Eq.(2.2). The next question that naturally arises is: how to choose 

the function f, such that f(y) is sufficiently close to x? Here, we adopt the linear 

expansion of thresholds (LET) method [1; 110; 117], which parametrizes f(y) as a 

linear combination of a small number of pre-defined basic functions (or processing) fk 

for k = 1, 2,…，K； i.e., 

f (y) = E a fk (y) = [f1 (y) f2 (y ) . . . fx (y)] 

k = 1 f (y) 

a i 

a2 
(2.7) 

where K《N is the number of linear coefficients ak. Here, f (y) = Fa is a shorthand 

matrix notation to outline the linearity of the representation. The deconvolution prob-

lem then amounts to find the linear coefficients ak that minimize e^. This parametriza-

tion dramatically reduces the size of the estimation problem from N number of pixels 

to K number of basis functions. Note that the LET decomposition shown as Eq.(2.7) 

does not imply any hypothesis on x itself. Yet, a “bad” basis of processing fk will 

obviously lead to poorer deconvolution performances compared to a "good” basis. 

Substituting Eq.(2.7) into Eq.(2.6), and performing the differentiation of e^ with 
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respect to ak for all k = 1, 2,..., K, we obtain the linear system of equations 

K 1 1 

E NNfkT(y)fk'(y) ak - - (yTH - T fk (y) - "2div {H - T fk (y )} ) = 0, (2.8) 

for k = 1, 2, ... , K . These equations can be summarized in matrix form as M a = c, 

where M = [Mk,k']k,k'=1,2,...,K and c = [c1 C2 ... C K ] T . Due to the possible singularity 

of M , we solve the following ^2-regularized linear system of equations 

(M + ̂ I )a = c ^ a = (M + ̂ I ) - 1 c (2.9) 

instead of Eq.(2.8), where ^ > 0 is a regularization parameter. 

It is also worth noting that the corresponding MSE minimization leads to solving 

MaMSE = FTx, with the solution, namely MSE-LET, serving as a counterpart to 

SURE-LET. The accuracy of using the SURE-LET estimate can then be verified by 

comparing it with MSE-LET. 

Notice that this SURE-LET framework can be used for any linear model as Eq.(2.1), 

not limited to convolution. What this approach suggests is that the practitioner may 

choose at will a set of K different algorithms (ideally with complementary processing 

behaviors of fk(y)) and optimize a weighting of these algorithms to get the best of them 

at once. 

In the following chapter, we will further discuss the application of the SURE-LET 

paradigm to different basic processings fk(y), in the context of deconvolution. 

2.6 Summary 

In this chapter, we have devised a general procedure (SURE-LET) for the linear model 

shown as Eq.(2.1), not limited to convolution. The general procedure of the SURE-LET 

framework is summarized as Algorithm 2.1. 

There are three key ingredients of the proposed approach listed below: 

1. An unbiased estimate of the MSE, known as SURE. In particular, this statistical 

quantity only depends on the observed measurements and can thus be computed 

in practice. In contrast to the popular Bayesian approach, no prior on the un-

known original data is required to derive SURE. 
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Algor i thm 2.1: General SURE-LET Framework 

Input : distortion matrix H and observed data y; 

Outpu t : optimal estimate xX in MSE sense 

begin 

1. construct elementary functions fk for k = 1, 2,…，K； 

2. compute M and c according to Eq.(2.8); 

3. solve the linear system of equation M a = c according to Eq.(2.9); 

4. perform linear combination f(y) = E [ i akfk(y) as Eq.(2.7), to obtain 

the final estimate x. 
end 

2. An unbiased estimate of a modified MSE, known as regularized approximation of 

the SURE. There is only a weak hypothesis on the original data for this approx-

imation. 

3. A linear expansion of thresholds (LET): in image deconvolution, SURE was usu-

ally used for optimizing one or several non-linear parameters. LET was first 

proposed for image denoising. In this chapter, we have extended the LET strat-

egy to the general linear model, by building a linearly parametrized estimator 

which offers more flexibility than the standard processing functions. Thanks to 

the quadratic form of SURE, we have shown that the optimal (in the minimum 

SURE sense) parameters are simply the solution of a linear system of equations. 

From a computational point of view, this makes the SURE-LET strategy partic-

ularly attractive. 





Chapter 3 

Multi-Wiener SURE-LET Approach 

3.1 Problem statement 

Chapter 2 has described the SURE-LET framework for inverse problems with general 

linear distortion model. Figure 3.1 shows the image degradation of Eq.(2.1) in the 

context of image deconvolution, where the distortion matrix H denotes the convolution 

operation, which results in blurred observations. 

original x PSF h Gaussian noise b observed y 

convolution noise corruption 

F igure 3.1: The model of image degradation shown as Eq. (2.1): convolution (blur-

ring effect) followed by noise corruption. 

This chapter exemplifies the SURE-LET framework in the scenario of Figure 3.1, 

by showing how to construct the elementary processing fk in Eq.(2.7). 

3.2 Linear deconvolution: multi-Wiener filtering 

Beginning with the simplest case, we choose each fk(y) in Eq.(2.7) to be a Wiener filter 

with a given regularization parameter Ak: 

fk(y) = ( H T H + AkSTS)-1 H T y, for k = 1, 2,…,K. (3.1) 

H - 1 

23 
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In the standard case of a shift-invariant convolution operator, the matrix products 

with H or H T are commutative. Each elementary processing fk(y) can then be written 

as ffc(y) = HTffc(y) where fk(y) = ( H T H + AfcSTS)-1 y and Corollary 2.2 applies. 

Consequently, we do not need to use the regularized SURE e^ defined in Eq.(2.6). The 

SURE-LET method consists in finding the minimum SURE/MSE combination of these 

Wiener filters, which is achieved by solving Eq.(2.8). Finally, the SURE of Eq.(2.4) is 

simplified as: 

K  2  

"丄 H- 1y -
N 

1 

N 
2 K ( ) i 

afcyT ( H T H + AfcSTS)- y I > F C H-k1Y 
k=i 

9 K -I 

1 a 2 ^ a k ( H T H + A K S T S ) - ^ + 去 
x (3.2) 

Note that divy{fk(y)} = Tr{ ( H T H + AkSTS)-1 }. Thus, the SURE minimization 

over linear coefficients ak reduces to solving the linear system of equations M a = c 

shown as Eq.(2.8), with k-th element of c given as: 

yT ( H T H + AkSTS)-1 y - a2T^{ ( H T H + AkSTS)-1 }] . (3.3) 
1 

c k = N 

where the trace can be efficiently computed in Fourier domain, provided both H and 

S are convolution matrices. 

The flowchart of the SURE-optimized multi-Wiener deconvolution is shown in 

Fig. 3.2. We observe that different values of 入& capture different details and features of 

the image, and the optimal linear coefficients ak produce the combined estimate with 

the best balance between noise reduction and edge preservation. The key advantage 

of the multi-Wiener SURE optimization is that it avoids the empirical adjustment of a 

unique non-linear regularization parameter 入， c o n t r a r y to [61; 62; 115]. 

3.3 SURE-LET in orthonormal wavelet representation 

3.3.1 Mathematical formulation 

We now present the construction of elementary functions fk(y) for the non-linear de-

convolution approach which consists of multi-Wiener filtering followed by pointwise 

thresholding in orthonormal wavelet domain1. For LET strategy shown as Eq.(2.7), 

"By thresholding, we denote any non-linear operation (smooth or non-smooth). 

2 



Multi-Wiener Single-Wiener 
estimate F(y) = Fa estimate with_4 
with a = arg min e Aopt = 4.75 x 10 

PSNR = 23.41 dB PSNR = 23.42 dB 
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fi(y), Ai = 1 x 10 
一 4 

X tti 

H-

Figure 3.2: Example of linearly combining three Wiener filters with regularization 

parameters Ai, A2 and A3, balanced by their weights ai = 0.43, a = 0.61 and 

as = —0.04 given by Eq.(2.8). The linearly-combined estimate is equivalent to a 

single optimal Wiener filtering in terms of PSNR. 

besides from the multiple Wiener filtering, we also linearly parametrize the pointwise 

thresholding functions: 0(.) = ^ a i 9 i ( • ) , where (•) denotes any wavelet coefficient to 

be thresholded. 

For orthonormal wavelet transform, we use W and W - 1 to denote wavelet decom-

position and reconstruction. Here, W is an orthonormal matrix, such that W - 1 = W T . 

Our processing f(y) can be mathematically expressed as: 

M 

f ( y ) = E E a m , i W-101 (WH-ml y) (3.4) 

I (y) 

where H - i 

tion, which 

is defined in Eq.(3.1), denotes elementary pointwise thresholding func-

is applied to high-pass subbands only (Oi(•) is identity function for low-pass 

subbands), w ^ is the wavelet coefficients to be thresholded, for m-th Wiener filtering. 

Since Eq.(3.4) cannot be rewritten in the form of f(y) = HTf(y), we need to use the 

i 

H 一 3
1 

H 一
1 



1y)TQi(wm) - NN E am+1(WJ + 1H- 1 y)Twm+1 

wJ+1 

WH - 1 y) T Qi (wm) 

w« 

+ NN a2 EE E am Oje丨I (wm) + NN a2 E am+1am+1T1 
Qi(wm) + N a 

+ 
N E W V H x + 

N 
W J + 1 H- 1 Hx (3.6) 

where W j denotes j-th wavelet high-pass subband for j = 1, 2,..., J , w j denotes the 

wavelet coefficients in j-th subband, ain = d i a g { W j H丄H - 1 W j T } in j-th subband 

for j = 1,2,..., J, J + 1, the index J + 1 denotes the low-pass subband. Thus, the 

regularized SURE e^ can be decomposed as the sum of each wavelet subband ej for 

2 2 1 1 

2 1 
+ • N A 2 E AM,IAMQ 丨 ( W M ) + ^^ H W H ; 1 H X (3.5) 

where the vector am consists of diagonal element of matrix Pm = W H - ^ H - T W - 1 , 

denoted as am = diag{Pm},《(.)denotes the derivative of the thresholding function. 

The derivation of this expression is given in Appendix A.3. 

3.3.2 SURE minimization in orthonormal wavelet domain 

During the derivation of Eq.(3.5), the Euclidian norm is preserved in the transform 

domain, thanks to the orthonormal transformation. Thus, the regularized SURE given 

by Eq.(3.5) can be completely expressed in orthonormal wavelet domain. Using the 

notation of wavelet subbands, this expression becomes: 

1 

N E E am,i Qi(wm) + E a J+1w J+1 

m m 

2 

2 2 
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regularized SURE given by Eq.(2.6), which is further simplified 

NN E E am,i(Wj H； 

E
 

7l,i Qi(w. a e j = N 
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j = 1, 2,..., J, J + 

e« E {N11： \aLA (wm) 
2 / T T \ 1 

- ^ E a l A wj 叫 wm) - a ^ a j j e ' i i w ) ) + N 

+ 

N 
E am+lwm+l 

m m 
J+i rJ +lT wJ +l „2aJ +lT1 

� wm _ ^  am
 1 + 

N 
J + l (3.7) 

J + 1 

Finally, the SURE minimization can be performed in each wavelet subband, i.e. equiv-

alent to solving J + 1 linear systems of equations in each subband, separately: 

min es ^ ^ min ei M j a j = c j , for j = 1, 2,..., J, J + 1 (3.8) 

for j = 1, 2,..., J: the matrix M j = F j T F j G R M L X M L with 

F j 
^1(wj),..., 6 L ( W { ) , ..., 01 (wM),..., ^L(wM) E R 

N  jx ml 

where N j is the dimension of j-th wavelet subband. a j = [a^^,..., aJM,..., a\ 

G R M L ^ 1 , c j = [ci” ...,cLM, . . . ,CL,M]T G R M L ^ 1 with the element given by 

T 

j m = ws T0i(wm) _ a'aiJe'i(wm) 

for j = J + 1: the matrix M J +1 = F J + 1 TF J +1 G R M w i t h 

F
J
 +1 

w J +1, wJ+1, w 
J +1 
M 

dN j +1XM 

w here N J +1 is the dimension of (J+1)-th low-pass subband. a J +1 J +1 
me[1;M ]’ 

J+1 cJ +1 
m€[1;M ] 

with the element ^ ^十
1
 given by: 

cm = wJJ+1Twm+1 _ a 2am+1Tl 
T 

To summarize, Figure 3.3 describes the whole procedure of SURE-LET approach 

in orthonormal wavelet representation. 

3.3.3 Computational issues 

Computa t ion of noise variance in particular wavelet subband 

2 2 

j w x 

2 2 1 1 
m x 
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y 

Figure 3.3: Flowchart of the SURE-LET approach in orthonormal wavelet repre-

sentation: SURE minimization in wavelet domain. 

Generally, the thresholding function has a threshold T as its parameter, and the 

parameter is often adaptive to the noise level of particular wavelet subband for better 

performance. For example, one may choose the following thresholding functions used 

in [1]: 

01 (w j) = w j  

02 (w j ) = W j  1 _
 e x p ( _ wj )2 

(3.9) 

where T j = 3aj, aj is the noise variance of j-th wavelet subband. More specifically, 

for the m-th Wiener deconvolver and j-th wavelet subband, the n 

W j H - 1 b. The variance denoted by a'^ j is theoretically given by: 

becomes bm 

N j 
E 

-T -
b j T b j 

1 W b T H - T W j T W j H - 1 b] 
N j 

Tr W j H - 1 H - T W j T 
(3.10) 

Because of the huge size of the matrices, Eq. (3.10) cannot be computed in practice. 

Due to the easily accessible actions by these matrices on any vector, Monte-Carlo 

technique provides a good approximation of a^^ j, which is described below as Algorithm 

1 2 
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3.1. 

Algor i thm 3.1: Monte-Carlo algorithm to evaluate amin Eq.(3.10) 

Input: noise variance a2 , Wiener filtering H - 1 and orthonormal wavelet 

transform W j ； 

Output : noise variance am j 

for i — 1 to I do 

1. Generate a Gaussian white noise b^ G R N with variance a2; 

2. Apply the operator W j H;丄 to b^ to get the vector 

b j m = W j H - 1 b G R N j ； 
j，m Am ‘ 

3. Compute the noise variance according to ag，j = 务 b'^^，j bm，j. 

end 
Finally, am

2
 j is obtained by averaging the I randomizations: 

1  1 . 
am，j = amm，j

 ( 3 . 1 1 ) 

i=i 

Computa t ion of diagonal element oOm 

M-C simulation is still applied to evaluate diagonal element oOm = diag{ W j H 丄 H - 1 W j 

summarized below as Algorithm 3.2. 

Algor i thm 3.2: Monte-Carlo algorithm to evaluate oOm in Eq.(3.6) 

. .T i i 

Input: wavelet transformations W j and W j , Wiener filterings H - ^ and H - ； 

Output : diagonal element aL = d i a g { W j H - ^ H - 1 W j T } 
for i — 1 to I do 

1. Generate a normalized Gaussian white noise b^ G R N j ； 

2. Apply the operator P ' = W j H - ^ H - T W j T to b^ to get the vector 

bm，j = P ' b ^ G R n j ； 

3. Compute the component-wise product of b L j with b^ to get a vector u^, 

which is also diag{bm，jbiT}. 

end 

Finally, a ' is obtained by averaging the I randomizations: 

1 ‘ . 

am = y E u^ (3.12) 
i=1 

See [1] for the proof. 
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3.4 SURE-LET approach for redundant wavelet representation 

We now present the construction of elementary functions fk(y) for the non-linear de-

convolution approach which consists of multi-Wiener filtering followed by redundant 

transform-domain thresholding. Both steps are linearly parametrized using the LET 

strategy shown as Eq.(2.7). 

An illustrative description of the proposed non-linear deconvolution approach with 

redundant wavelet transform is shown in Figures 3.4 and 3.5. In Figure 3.4, the matrices 

D and R represent a pair of linear decomposition/reconstruction that satisfies the 

perfect reconstruction condition R D = I. Typically, D and R implement a (J+1)-band 

D T D T ... DT DT J+1 

T 
filterbank of undecimated filters. They are structured as D 

股 ( J + 1 ) N a n d R = [R1 R 2 … R j R j+1] G R N + 1 ) n , where D�G R N a n d R�G 

R n f o r j = 1,2,..., J, J + 1. We consider ( J + 1) bands for the convenience of the 

future discussion. Mathematically, the flowchart of Figure 3.4 can be described by the 

following function: 

f(y) = Re (DH- 1y) . (3.13) 

y-

Multiple 
Wiener 
Filtering 

fi(y) 

H-i1 D 
—• 

R - R e ( D H - i 1 y ) - X«1 

Thresholding 

e(.) 

ffe(y) ： 

Multi-Wiener 
SURE-LET Estimate 

K 

H-k1 D —• 

Thresholding 

e(.) —• R - R e ( D H - k 1 y ) - xak ^ f (y) = E ak fk (y) 

fK(y) : 

k=1 

with a = arg min ej 

H - 1 
D 

—• —• 

R - R e ( D H - ^ y ) - xaK — 

k=1 

with a = arg min ej 

Transform 
Domain 

Thresholding 

；Linear Combination of 
1 Elementary Functions 

Regularized 
%URE 

Minimization 

Figure 3.4: Flowchart of the proposed multi-Wiener SURE-LET approach with 

redundant wavelet transform. 

Corollary 3.1 Given the processing f(•) defined by Eq.(3.13) and considering a point-

wise function e( . ) , the regularized approximation of SURE ej introduced in Eq.(2.6) 

can be further derived as 

e j 4 (|f(y)||2 - 2y T H - T f ( y ) + 2a2aTe丨(w) ) + ^ H - 1 H X 
N N 

(3.14) 
2 
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Multi-Wiener 
SURE-LET Estimate 

f (y) = Fa. 
with a = arg min 

PSNR = 30.48 dB 

Individual ! 
^Adaptive 水 Subband r-
Thresholding : Reconstruction 

Optimal 
Linear 

Combination 

! Regularized 
1 SURE 
！ Minimization 

Figure 3.5: Illustration of the proposed multi-Wiener SURE-LET approach with 

redundant wavelet transform. Note that (1) The undecimated wavelet subbands 

and their processed reconstructions are displayed in reduced size for convenience; 

(2) The reconstruction R j is performed to the specific j-th subband only, by setting 

all the other subbands to zero [1]; (3) The thresholding function 没 ( • ） c a n also be 

linearly parametrized as 没 ( . ) = J 2 f = l aiOi(^). 

where the vector w = D H - 1 y w w T T w w J+1 
T R ( J + 1 ) N , with ws 

DjH-1y G R n for j = 1, 2, ...,J + 1, denotes the transform coefficients. The vec-

tor 0'(w) = [on(wn)]ne[1-JN] represents the first derivative of the pointwise function 6, 

which is applied to high-pass subbands only. The vector a G R ( J +1)N is defined by 

a = d iag { D H - 1 h - T ^ = [Pn,n]ne[1;(J +1)N] 

where P = D H - 1 H - T R G R ( J + 1 ) N ^ ( J + 1 ) N . Consequently, the vector a is structured 

as a t
5
 

a
 

T
J
 

.

a
 

T
2
 a

 

T
1
 

a
 

T 
where 

a j = diag { D j H - 1 H - T R J G R N (3.15) 

for j = 1, 2,…,J + 1. 

The proof of Corollary 3.1 is very similar to that of Appendix A.3 and Corollary 1 

e 
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in [1]. We thus omit it here. 

Note that for the final deconvolution results of this thesis, we confine ourselves 

to redundant wavelet transforms, due to their superior denoising abilities. Since the 

applied redundant wavelet transform is not orthogonal, the minimization of e^ has to 

be performed in the image domain to ensure a global minimum MSE optimality. 

Suppose that the decomposition D produces J highpass subbands and one lowpass 

subband (indexed as the ( J + 1)-th subband) that is not thresholded, then f(y) of 

Eq.(3.13) can be linearly parametrized as 

M L J M 

f ( y ) = 二 am,i , jR jOi (wm,j) + 二 a m , j + i R j + i w m , j + i , (3.16) 

highpass subbands lowpass subband 

where M denotes the number of Wiener filters, L the number of elementary pointwise 

thresholding functions, and J the number of highpass wavelet subbands (typically J = 9 

for three decomposition levels). 

As Eq.(3.16) shows, K = M • J • L + M weights a—j' and L thresholding function 

need to be determined. The weights a—j' are obtained by minimizing the regularized 

approximation of SURE e^, which boils down to solving a linear system of K equations 

shown as Eq.(2.9). 

3.5 Computational aspects 

Similar to Section 3.3, the proposed method of Section 3.4 also requires to compute 

several Wiener filters (3.1), the subband-dependent noise variances aj and the subband-

dependent vectors a j (3.15), listed here below: 

• Wiener filter: H一一1 = (H T H + ASTS)-1 H T ; 

• Variance aj of the colored noise b j = D j H - l b , theoretically given as 

j = N1：E { b J b j } = ^ ^ E { b T H - T D J D j H- l b } = 0- TV—广 D J D j H-1； (3.17) 

• Vector a j = d i a g |D jH - l H - T R j 

In this section, we show how to perform these computations analytically in the 

Fourier domain, for redundant wavelet transforms. For the sake of brevity of the 
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discussion and formulation, we stick to one-dimensional case. The 2-D computations 

can then be straightforwardly deduced. We define the coefficients of a 1-D filter as g(n), 

the coefficients of the input of the 1-D filter as x(n) and the coefficients of the output of 

the 1-D filter by y(n), for n = 0,1,…，N-1. All these coefficients are assumed to be zero 

outside the domain [0, N - 1]. Note that the implementation of the proposed approach 

needs the specification of boundary conditions. The most commonly used are periodic 

extensions. Yet, periodic extensions may generate unwanted artifacts (discontinuity at 

the boundaries), so symmetric boundary extensions are often preferred in practice [44; 

119; 120]. In the next two sections, we discuss the computations of the above mentioned 

terms for these two particular choices of boundary conditions. 

3.5.1 Periodic boundary extensions 

Circular convolution 

Under periodic boundary conditions, i.e. x(k) = x(k + noN) for any no G Z and 

k = 0,1,…,N - 1, the convolution is circular and reads as: 

where 

y ( n ) g ( n - k ) x ( k ) 

kez 

N - 1 

= ^ ^ g(n - k + noN) x(k -hnoN) 

no€ Z k = 0 丨 

N - 1 

= 7 g(n - k + noN) x(k) 

k=0 no€Z 

gN (n - k) 

gN(n) = E g(n + noN) 
no€Z 

(3.18) 

(3.19) 

Consequently, the matrices H - 1 , Dj, R j , and H - T are all circulant. They can thus be 

efficiently computed by discrete Fourier transform (DFT) with period N [121], where 
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the Fourier coefficients of x(n) and g(n) are given 

X{eJ N X (k) = ^ x(n)e- -tN-

N 

^ ^ x(n + noN)e 

noGZ n=0 

N - l 

y^ y^ x(n + noN) 卞 
n=0 noGZ 

XN (n) 

j 2nfe(n+noN) 
一 j N 

N 

(3.20) 

GieJ N 
def 

G(k) = E g(n)e-j ！n 

N 

[ + n 0 N ) e 

noGZ n=0 

N - i 

[ [ g ( n + n0N) e - j ^ 
n=0 no€Z 

gN (n) 

.2nk(n + noN) 

N 

(3.21) 

Note that Xn(n) = x(n) for n = 0,1,..., N — 1 due to the periodicity of x(n) and the 

interval [0,N — 1]. 

Analytical computat ion of a j given in Eq.(3.17) (see also [113]) 

Theorem 3.2 Under periodic boundary conditions, given a zero-mean white Gaussian 

noise 6(n) with variance a2 and a filter g(n), the variance of p(n) = ^ g ( n — k)h(k) is 

given by 
N 一 l 2 N 一 l 

E {p(n)2} = a2 ^ gN(n)2 = N ； ^ |G(ej‘2^) 

kGZ 

for n = 0,1,..., N—1, where gN(n) and G(e j帶、are given by Eq.(3.19) and Eq. (3.21)). 

Proof The second equality comes from Parseval's theorem [121]. The i.i.d. condition 

of the zero-mean white Gaussian noise 6(n) implies that 

E {6(n)6(n')} = a 2 咖— n ' ) 
a 

2 , for n = n/ 

0 , otherwise 
(3.22) 

N 
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Thus, we obtain that the variance of the filtered noise p(n) is: 

E {p(n)2} = E E gN (n - k)gN (n - k 丨 ) E {6(k)6(k丨)} 

kez kez 

(3=2) a 2 E g(n - k)2 = a 2 E E • - k + noN)2 

k€Z no€Z k=o 

N-1 n-(N-1) 

(3=9) a 2 E E g(n - k + noN) 2 a 2 E gN(n丨)2 

k=o noeZ n丨=n 

gN (n-k) 

N-1 

= a 2 E gN(n)2 (by periodicity gN(n) = gN(n + noN)) 

Note that Theorem 3.2 is a straightforward application of the result obtained for filtered 

wide-sense stationary process (see for instance Theorem 3.14 of [122]). It is restated 

and proved here for later comparison with that obtained under symmetric boundary 

conditions. 

Analytical computat ion of a』given by Eq.(3.15) 

Theorem 3.3 Under periodic boundary conditions, the vector formed by the diagonal 

elements of the convolution matrix G G R N x N is given by 

/ 1 N-1 、 
diag{G} = gN (0) • 1 = ^ Y . G(e j ) • 1 

乂 k=o ) 

where gN(n) given by Eq.(3.19) is the filter implemented by G, G(e j带、 is given by 

Eq.(3.21). 

Proof The second equality is essentially the inverse DFT. In matrix form, each element 

of the diagonal of G can be obtained as e )̂ Gek^, where the indicator vector ey is defined 

as ek = [0 ... 0 10 ... 0]T G R N with k丨-th element 1. In convolution form, it reads as: 

N / N \ 
eT)Gek) = E 灿 - k 丨 ) E gN(k - n)5(n - k丨 ) = g N ( 0 ) 

k=1 \n=1 / 

where 5(k - k丨)is defined as in Eq.(3.22). • 
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We conclude the proof by using the fact that, under periodic boundary conditions, 

the convolution matrix G is circulant and thus its diagonal elements are all equal. 

3.5.2 Symmetric convolution 

The term "symmetric convolution" was first introduced by S. Martucci in [123], to 

describe the convolution under symmetric boundary conditions. In [123], he discussed 

64 possible types of symmetric convolutions, depending on half-point or whole-point 

symmetry. The symmetric convolution can be performed by DCT or Types I-VIII DST, 

according to specific types of symmetry. Tables 3.1 and 3.2 summarize the filtering 

under various symmetric situations. 

The following subsections will describe how to perform these computations in half-

point and whole-point symmetric boundary extensions. 

3.5.3 Half-point symmetric boundary extensions 

Formulat ion for half-point symmetric convolution 

Lemma 3.4 Given a signal x(n) and filter g(n), under half-point symmetric boundary 

condition of x(n), convolution is defined as 

N -1 

y(n) = ^ (g2N(n - k ) + g2N(n + k + 1))x(k) (3.23) 

k=o 

for n = 0,1, ...,N - 1, where g2N(n) = En。€ Z g(n + 2noN) 

Proof Since x(n) = x(n + no • 2N) for Vno G Z and x(n) = x(2N - 1 - n) by half-point 

symmetry, we have: 

2 N - 1 ( X 

y(n) = ^ g ( n - k)x(k) = ^ ( ^ g(n - k + no • 2 ^ )x(k) 

k€Z k=o ^ n o € Z ) 

g2N (n - k) 

N-1 2N-1 

= ^ g2N(n - k)x(k) ^ ^ g2N(n - k)x(k) 
k=o k=N 

N -1 N-1 

= ^ g2N(n - k)x(k) + ^ g2N(n - (2N - 1 - k')) x(2N - 1 - k )̂ 

“ “ g 2 N ( n + k ' + 1 ) (period=2N) x(k') (by symmetry) 

N-1 N-1 

Y^ g2N(n - k)x(k) + E g2N(n + k + 1)x(k) 
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filter g (n ) output signal y (n ) 

Symmetry Transform Symmetry Transform 

g ( n ) = 
g ( _ n ) 

N-dim 
D C T - I 

• even around 
n = 0 

• even around 
n = N _ 1 

N-dim 
D C T - I 

g ( n ) = 
_ g ( _ n ) 

(N _ 2)-dim 
DST-I 

• odd around 
n = 0 

• odd around 
n = N _ 1 

(N _ 2)-dim 
DST-I 

g(n) = 
g ( _ 1 _ n) 

( N _ 1)-dim 
DCT-I I 

• even around 
n = _ 2 

• even around 
n = N _ 2 

( N _ 1)-dim 
DCT-II 

g ( n ) = 
_ g ( _ 1

 _
 n ) 

(N _ 1)-dim 
DST-II 

• odd around 
n = _ 2 

• odd around 
n = N _ 2 

(N _ 1)-dim 
DST-II 

g(n) = 
g ( _ n ) 

( N + 1)-dim 
D C T - I 

• even around 
n = _ 2 

• even around 
n = N _ 2 

N-dim 
DCT-II 

g ( n ) = 
_ g ( _ n ) 

(N _ 1)-dim 
DST-I 

• odd around 
n = _ 2 

• odd around 
n = N _ 

N -dim 
DST-II 

g(n) = 
g (1 _ n ) 

N-dim 
DCT-I I 

• even around 
n = 0 

• even around 
n = N 

( N + 1)-dim 
D C T - I 

g ( n ) = 
_ g ( _ 1 _ n ) 

N -dim 
DST-II 

• odd around 
n = _ 1 

• odd around 
n = N _ 1 

( N _ 1)-dim 
DST-I 

g ( n ) = 
g ( _ n ) 

N -dim 
DCT-III 

• even around 
n = 0 

• odd around 
n = N 

N -dim 
DCT-III 

g(n) = 
_ g ( _ n ) 

N-dim 
DST-III 

• odd around 
n = 0 

• even around 
n = N 

N-dim 
DST-III 

g ( n ) = 
g ( _ 1 _ n) 

N -dim 
D C T - I V 

• even around 
n = _ 2 

• odd around 
n = N _ 2 

N -dim 
D C T - I V 

g(n) = 
_ g ( _ 1 _ n ) 

N-dim 
DST-IV 

• odd around 
n = _ 2 

• even around 
n = N _ 2 

N-dim 
D S T - I V 

g ( n ) = 
g ( _ n ) 

N -dim 
DCT-III 

• even around 
n = _ 2 

• odd around 
n = N _ 22 

N -dim 
D C T - I V 

g(n) = 
_ g ( _ n ) 

N-dim 
DST-III 

• odd around 
n = _ 2 

• even around 
n = N _ 2 

N-dim 
D S T - I V 

g(n)= 
g (1 _ n ) 

N -dim 
D C T - I V 

• even around 
n = 0 

• odd around 
n = N 

N -dim 
DCT-III 

g ( n ) = 
_ g ( _ 1 _ n ) 

N-dim 
DST-IV 

• odd around 
n = _ 1 

• even around 
n = N _ 1 

N-dim 
DST-III 

input signal x(n) 
Symmetry Transform 

around 
n = 0 

around 
n = N — 1 

N -dim 
D C T - I 

2N - • 

around 

around 
n = N _ ： 

N-dim 
DCT-I I 

2N 

around 
n=0 

around 
n=N 

N-dim 
DCT-III 

4 N 

around 
n = _ 2 

• odd 
around 

n=N 

N-dim 
D C T - I V 

4N 

Table 3.1: Filtering y ( n ) = 冗 ^ ^ g(n _ k)y(k) under symmetric extension (I) 

n= 2 
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filter g (n ) output signal y (n ) 

Symmetry Transform Symmetry Transform 

g ( n ) = 
g ( - n ) 

( N + 1)-dim 
D C T - I 

• odd around 
n = - 1 

• odd around 
n = N 

N - d i m 
DST-I 

g ( n ) = 
- g ( - n ) 

N -dim 
DST-I 

• even around 
n = - 1 

• even around 
n = N 

( N + 1)-dim 
D C T - I 

g ( n ) = 
g (1 - n ) 

( N + 1)-dim 
DCT-II 

• odd around 
n = - 2 

• odd around 
n = N + 2 

( N + 1)-dim 
DST-II 

g ( n ) = 
一 g ( 1

 —
 n ) 

( N + 1)-dim 
DST-II 

• even around 
n = - 2 

• even around 
n = N + 2 

( N + 1)-dim 
DCT-I I 

g ( n ) = 
g ( - n ) 

( N + 1)-dim 
D C T - I 

• odd around 
n = - 2 

• odd around 
n = N - 2 

N - d i m 
DST-II 

g ( n ) = 
- g ( - n ) 

( N - 1)-dim 
DST-I 

• even around 
n = - 2 

• even around 
n = N

 - 2 

N -dim 
DCT-I I 

g ( n ) = 
g ( 1

 -
 n ) 

N -dim 
DCT-II 

• odd around 
n = - 1 

• odd around 
n = N - 1 

( N - 1)-dim 
DST-I 

g ( n ) = 
- g ( 1 - n ) 

N -dim 
DST-II 

• even around 
n = 0 

• even around 
n = N 

( N + 1)-dim 
D C T - I 

g ( n ) = 
g ( - n ) 

N -dim 
DCT-III 

• odd around 
n = - 1 

• even around 
n = N - 1 

N -dim 
DST-III 

g ( n ) = 
- g ( - n ) 

N -dim 
DST-III 

• even around 
n = - 1 

• odd around 
n = N - 1 

N - d i m 
DCT-III 

g ( n ) = 
g ( 1

 -
 n ) 

N -dim 
D C T - I V 

• odd around 
n = - 2 

• even around 
n = N

 - 2 

N -dim 
DST-IV 

g ( n ) = 
- g ( 1 - n ) 

N -dim 
D S T - I V 

• even around 
n = - 2 

• odd around 
n = N - 2 

N - d i m 
D C T - I V 

g ( n ) = 
g ( - n ) 

N -dim 
DCT-III 

• odd around 
n = - 2 

• even around 
n = N

 - 2 

N -dim 
DST-IV 

g ( n ) = 
- g ( - n ) 

N -dim 
DST-III 

• even around 
n = - 2 

• odd around 
n = N - 2 

N - d i m 
D C T - I V 

g ( n ) = 
g (1 - n ) 

N -dim 
D C T - I V 

• odd around 
n = - 1 

• even around 
n = N - 1 

N -dim 
DST-III 

g ( n ) = 
一g(1

 -
 n ) 

N -dim 
D S T - I V 

• even around 
n = 0 

• odd around 
n = N 

N - d i m 
DCT-III 

input signal x (n ) 

Symmetry Transform 

around 
n = - 1 

n = N 

N -dim 2 N + 2 

N - d i m 
DST-II 

2 N 

around 
n = N - ： 

1 

around 
n = N 1 

N - d i m 
DST-III 

4 N 

around 
n = _ 1 

n = N - 2 

N - d i m 
D S T - I V 

4 N 

Table 3.2: Filtering y ( n ) = 冗 ^ ^ g(n - k)y(k) under symmetric extension (II) 

n = 

n 
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Merging the two terms completes the proof. • 

Computa t ion of filtering via transform domain 

The general computation of filtering is summarized as three steps: 

1. According to the boundary conditions of x(n) and the symmetric type of g(n), 

perform the corresponding forward transform (DCT or DST) to obtain the coef-

ficients X(k) and G(k); 

2. Perform point-wise multiplication in transform domain to obtain the coefficients 

Y (k) = G(k)X (k); 

3. Perform corresponding inverse transform to obtain y(n). 

Tables 3.1 and 3.1 list various types of transform. Taking half-symmetric boundary 

extension of x(n) and whole-point symmetric filter g(n) for example, the following 

theorem gives the detailed computation in transform domain. 

Theorem 3.5 Given x(n) with half-symmetric boundary extension and whole-point 

symmetric filter g(n), then, the DFT of x(n) and g(n) become N-dim DCT-II and 

(N + 1)-dim DCT-I, respectively. The output signal y(n) is half-point symmetric, its 

DFT becomes N-dim DCT-II. 

Proof Under this boundary condition, DFT of x(n) is: 

2N- l N - l 2N - l 

X(k) = E x(n)e- j ^v - = E x ( n ) e - j + [ x ( n ) e - j觉 

n=0 n=0 n = N 

N - i N - i 
E , , j ^ ^ / ” , j 2nk(2N-1-n) 

咖 ) e - j + L X(2N — 1 — n)e- j 丽 
n=0 n=0 

N - l 
, , / 一 j 2nkn j 2 n k ( n + 1) \ 

= 〉 ^ x(n) e - j + e j “ 丽 “ j 

N-dim DCT-II standard 

2 
n + 

N n
)
 

x
(
 

i
 

2e j 
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The whole-point symmetric filter satisfies g(n) = n^)，then, the DFT of g(n) is: 

N 

G(k) = [ g(n)e-j ̂  = [ 

n e z n=- (N-1) ^noGZ 

^ g(n + no • 2N) ) e - j 暂 

g2N (n) 

N 

^ g2N(n)e - j觉 + ^ g2N(n)e-j 

n=-(N-1) n=1 

「工 （-l)k N - 1 

2 X 2g2N (0) + ^ - 1 ^g2N(N ) + ^ g2N (n) 

+ g2N (0) + (-1)k g2N (N ) 

cos 
nkn 

(N + 1)-dim DCT-I standard 

From Eq.(3.23), we have: 

N 

y(2N - 1 - n) = ^ g2N(2N - 1 - n - k) + g2N(2N - 1 - n + k + 1) x(k) 

k=0 

N -1 

= g 2 N ( - 1 - n - k) + g2N(-n + k) x(k) (period = 2N) 

N 

= ^ g2N(n + k + 1) + g2N(n - k) x(k) (by g2N(n) = g2N(-n)) 
k=0 

= y ( n ) 

which illustrates that y(n) is half-point symmetric. Hence, the DFT of y(n) has the 

same form with that of x(n). We omit here. • 

Analytical computat ion of aj- given in Eq.(3.17) 

Theorem 3.6 Under half-point symmetric boundary conditions, given a zero-mean 

white Gaussian noise 6(n) with variance a2 and a filter g(n), the variance of p ( n ) = 

Ekez g(n - k)6(k) is given by: 

N 

E {p(n) 
2 a2 

^ g2N (n - k) + g2N (n + k + 1) 

in spatial domain, where g2N(n) is given in Eq.(3.23), and is also expressed 

2 2N-1 

E{ p(n) 
21

 a 

2N 
N—丄( • N 

^ \ |G(ejn)| + Re{(G(ejNN(2n+1)U 
u—r\ V J 

in Fourier domain, where G(ejN^) = ^ n ^ " - 1 g2N(n)e 
2N 1 j nk n 

j
 N

 n . 

2 
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See Appendix A.4 for the proof. Theorem 3.6 indicates that the variance of the 

filtered noise p(n) depends on n, which implies that filtering under periodic extension 

breaks the stationary property of 6(n). Furthermore, it can be easily generalized to two-

dimensional case, where the given Gaussian white noise 6(m, n) for m = 0,1,..., M - 1 

and n = 0,1,..., N -1 with variance a2 is two-dimensional data. According to Theorem 

3.6, applying any possible filter g(m, n) to 6(m, n) will produce the filtered noise p(m, n) 

that can be expressed as: 

2M- 12N-1 N 

p(m, n) = E ^ g2M,2N(m - k,n - 1)6(k, 1) ̂  ^ ^ u ( k ,聊 , 1 ) (3.24) 

where 

u(k, 1) = g2M,2N(m + k + 1, n - 1) + g2M,2N(m + k + 1, n + 1 + 1) 

+ g2M,2N(m - k , n - 1) + g2M,2N(m - k , n + 1 + 1) (3.25) 

and 

g2M,2N(m,n)= ^ ^ g(m + 2moM,n + 2noN) 
mo€Z no€Z 

The variance of the filtered noise p(m, n) is given in the following theorem. 

(3.26) 

Corollary 3.7 If the filtered noise p(m, n) is given by Eqs.(3.24), (3.25) and (3.26), 

its variance is written as: 

M 1 N 

E(p(m,n))2 = a ^ ^T (u(k,1^2 (3.27) 

in time domain, and is also given by 

E (p(m,n)) 
2 a 

2 2M-1 2N-1 

16MN E E |u(k ,i) (3.28) 

in Fourier domain, where 

U (k,1) 

+ 

+ 2 ( G ( Z I , Z 2 )
 2 + G(z—1,z2) 2、 (3.29) 

2 

2 
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where G is given 

G(Z1,Z2)= 
• 2M - 1 2N-1 

2^n=0 g2M,2N (m,n)Z「mZfn 

G(Z-1,Z2) 
— • 2M 
— 乙 m = 

-1 2N-
=0 2^n=0 “

1
 g2M,2N (m,n)ZmZ-n (3.30) 

G(Z1,Z-1) 
v^ 2M 

一乙 m = 

-1 2N-
=0 2^n=0 “

1
 g2M,2N (m,n)Z「mZnn 

and z1 = e j M 
j n 

e j N. 

The proof is similar to Appendix A.4 of one-dimensional case. We omit it here. 

Analytical computat ion of a j given in Eq.(3.15) 

Theorem 3.8 Under half-point symmetric boundary conditions, the vector formed by 

the diagonal elements of the convolution matrix G G R N i s given by 

diag {G} ] n = g2N (0) + g2N (2n + 1) 

for n = 0, 1, ... , N _ 1, where g2N(n) is given by Eq.(3.23). It can also be expressed in 

the Fourier domain as 

2N-1 

[diag{G}]n = • E G(e j夸)(1 + e j夸 ( 2n+1 )) 
k=0 

where G(ejN^) is given in Theorem 3.6. 

Proof The second equality in Fourier domain is essentially the forward DFT with 

period 2N of the first one. In matrix form, each element of the diagonal of G can be 

obtained as e^^Gen, where the indicator vector en is defined as en = [0 …0 10 …0]T G 

R N with n-th element 1. In the convolution form of Eq.(3.23), it reads as: 

N N 

\k' 

eTGen = E 5(k _ n) ^ g2N(k' + k + 1) + g2N(k' _ k) 6(k^ _ n) 

N 

^ ^ (k _ n ) g2N(n + k + 1) + 仍 N ( n _ k) 

k=1 

g2N (n + n + 1) + g2N (n _ n) 

g2N (2n + 1 ) + g2N (0) 

where 5(k _ k) is defined as in Eq.(3.22). 
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From this theorem, we can see that contrary to the periodic boundary conditions, 

the diagonal elements of G are not equal, as G is not a circulant matrix under symmetric 

boundary conditions. However, it is not in contradiction to the fact that if we consider 

the problem as periodic extension with period 2N, the matrix G 2 N ^ 2 N is still circulant. 

Furthermore, the results of Theorem 3.8 can be easily generalized to two-dimensional 

case, stated in the following corollary. 

Corollary 3.9 Under half-point boundary condition, the diagonal element of convo-

lution matrix G, which denotes any possible 2-D filter g(m, n), is given by: 

diag(G) = g2M,2N (0,0) + g2M,2N (2m + 1,2n + 1) 

+ g2M,2N(2m + 1, 0 )+ g2M,2N(0,2n + 1) (3.31) 

where g2M,2N(n) is defined by Eq.(3.26). It can also be expressed in Fourier domain: 

2 M - l 2 N - i 

4MN diag(G) = 4 M N I一 I一 G(zi,z2)(1 + z2 m
+

l
 + 之^几十

1
 + ^^-.^^•几十

1
) (3.32) 

where G(zi,z2) is given in Eq.(3.30). 

3.5.4 Whole-point symmetric boundary extensions 

Formulat ion for whole-point symmetric convolution 

Lemma 3.10 Given a signal x(n) and filter g(n), under whole-point symmetric bound-

ary condition of x(n), convolution can be written as anyone of the following two ex-

pressions: 

‘ y ( n ) = EN=-01 g2N-2(n — k)x(k) + EN=-i2 g2N-2(n + k)x(k) 

(3.33) 

i y(n) = EN=-i2g2N-2(n — k)x(k) + EN=-01 g2N-2(n + k)x(k) 

for n = 0,1, ...,N — 1, where g2N_2(n) = E n o e z5 (n + n。• (2N — 2)). 

Proof Under whole-point symmetric extension, the signal x(n) is with (2N — 2) period, 
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and satisfies x(n) = x(2N _ 2 _ n) for n = 0, 1, ... , N _ 1. Hence, the convolution is: 

2N-3 ( \ 

y(n) = E g ( n _ k)x(k) = E ( E gin _ k + n0 • ( 2N _ 2)) ]x(k) 

keZ k=0 ) 

g2N-2(n-k) 

N-2 

=g2N-2 (n)x(0) + g2N-2 (n _ N + 1)x(N _ 1) + E 仍 N - 2 ( n _ k)x(k) 

k=1 

2 N - 3 

+ g2N_2(n _ k)x(k) (by changing variable k = 2N _ 2 _ k) (3.34) 

k=N 

= EN=-12 g2N-2( n+k)x(k) 

Hence, we obtain: 

y(n) = g2N-2(n)对0) + 仍 N - 2 (n _ N + 1)x(N _ 1) 

N-2 

+ E (g2N-2
( n
 _ k ) + g2N-2

( n + k) x(k) 
k=1 

Merging the terms yields Eq.(3.33), and completes the proof. • 

Computa t ion of filtering via transform domain 

Again, refer to Tables 3.1 and 3.1 for various types of transform. Taking whole-

symmetric boundary extension of x(n) and whole-point symmetric filter g(n) for ex-

ample, the following theorem gives the detailed computation in transform domain. 

Theorem 3.11 Given x(n) with whole-point symmetric boundary extension and whole-

point symmetric filter g(n), then, the DFT of x(n) and g(n) become N-dim DCT-I and 

(N + 1)-dim DCT-I, respectively. The output signal y(n) is whole-point symmetric, its 

DFT is exactly the same as that of x(n). 

Proof Lemma 3.10 stated that x(n) is with period (2N _ 2) under whole-point sym-

metric extension. By changing variable n丨=2N _ 2 _ n, the frequency coefficients 
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X(k) is given as: 

2^-3 
^ ^ • 2nk 

X ( k ) = E x ( n ) e - j 2 N 

N 2 2N 3 
2nk(N-1) ^^^ _ j 2nk̂  V^v _ j 2nkn 

— J 9W-9 丄 \ /v>̂ rr>\ :̂> — j 2^-2 
一 • 2nk(N — ^ _ ^ 一 • 2nkn ^ ~ ^ 

x(0) + x(N - 1) e - j
 2

(
N — 2 ^ x ( n ) e - j 2 N — 2 + ^ x(n)e 

ejnk n=1 n=N 

, , r , ’ 2nkn 

EN=—I2 x(n)ej 

N-2 
‘_ j 2nkn ； 2nk 

~J •？.N-2 

> r — / . 2nkn • 2nkn 

x(0) + (-1)
k
x(N - 1) + E x(n) f e - j ^ ^ ^ + e j ^ ^ ^ 

n=1 
「

 1 ( 1 )k
 N - 2 

1
 x(0) + ^ ^ x ( N - 1) + E x(n) cos V # _ 工 

2 

N-dim DCT-I standard 

In this case, G(k) is given by: 

N-1 
G(k) = ^ g2N-2(n)e-j 鹤 

n= — (N-2) 

( -1 N-2 
=g2N—2(0) + (-1)

kg2N-2(N - 1 ) + ( ^ + ^ 

2 

g2N-2(n)e-j 

1 (一1)k -2
 广 nkn 、 

1 g 2 N - 2 ( 0 ) + g 2 N - 2 ( N — 1 ) ^ ^ ^ g 2 N - 2 ( n ) c o ^ 

^n=-(N-2) 
入k N -

N-dim DCT-I standard 

The output y(n) keeps the same symmetry as x(n). • 

Analytical computat ion of a^ given in Eq.(3.17) 

Theorem 3.12 Under whole-point symmetric boundary conditions, given a zero-mean 

white Gaussian noise 6(n) with variance a2 and a filter g(n), the filtered noise p(n) is 

given by: 

N - 2 

p(n) = y [g(n - k ) + g(n + k) ] b(k) + 射n)6(0) + 射n - N + 1)b(N - 1) (3.35) 

k = 1 二 
u (k ) 

where we denote g(n) = g2N_2(n) for brevity. The variance of p(n) is given by: 

2 2 2 

E{ ( p ( n ) ) 2 } = � y u(k)2 - ^ u ( 0 ) 2 - Opu(N - 1)2 (3.36) 
k€P 

in spatial domain, where P denotes any interval with period length 2N - 2, and is also 



expressed a 

k! j 2nk 

in frequency domain, where G(Z) = ^k! 9(k )Z-k with Z = e j  2 N - 2. 

See the proof in Appendix A.5. The computation of 2-D case can be naturally 

extended, refer to Appendix A.6. 

Analytical computat ion of a j given in Eq.(3.15) 

Theorem 3.13 Under half-point symmetric boundary conditions, the vector formed 

by the diagonal elements of the convolution matrix G G R N i s given by 

「 ] f g2N-2(0) for n = 0 or N _ 1 
diag { G } n = { 

[g2N-2(0) + g2N-2(2n) for n = 1, 2 ,… ,N _ 2 

where g2N_2(n) is given by Eq.(3.33). 

Proof The second equality in Fourier domain is essentially the forward DFT with 

period 2N of the first one. In matrix form, each element of the diagonal of G can be 

obtained as e^^Gen, where the indicator vector en is defined as en = [0 …0 10 …0]T G 

R N with n-th element 1. In the convolution form of Eq.(3.23), it reads as: 

N (( N N-1 、 、 
e^^Gen = ^ 5(k _ n) ( ^ 仍 N-2(n _ 左‘)+ ^ 仍 N-2(n + k')] 5{k 丨 _ n) 

^=1 V ^ k !=1 k !=2 ) / 

f 

f g2N-2(0) for n = 0 or N _ 1 

\ g2N-2(0) + g2N-2(2n) for n = 1, 2, , N _ 2 

where 5(k _ k') is defined as in Eq.(3.22). • 

3.6 Results and discussions 

3.6.1 Experimental setting 

We consider the following benchmark convolution kernels commonly used in [34; 44; 

49; 88]: 

46 CHAP. 3. MULTI-WIENER SURE-LET APPROACH 
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F i g u r e 3.6: Original images. (a) Cameraman 256 x 256; (b) Coco 256 x 256; (c) 

House 256 x 256; (d) Couple 512 x 512; (e) Crowd 512 x 512; (f) Lake 512 x 512; 

(g) Bridge 512 x 512; (h) Mixture 512 x 512. 

• Rat ional filter: h( i , j ) = (1 + i2 + j 2 ) - 1 for i , j = —7,..., 7; 

• Separable filter: 5 x 5 filter with weights [1, 4, 6, 4,1]/16 along both horizontal 

and vertical directions; 

• 5 x 5 uniform blur; 

• 9 x 9 uniform blur; 

• Gaussian blur with standard deviation (std) 3. 

The blurred images are subsequently contaminated by i.i.d Gaussian noise with various 

variance a2 . The test dataset contains eight 8-bit images of size 256 x 256 or 512 x 512 

displayed in Figure 3.62, covering a wide range of natural images. The experimental 

performance is measured by PSNR defined as Eq.(1.11) and SSIM defined as Eq.(1.12). 

Note that all the PSNR results (in dB) and the SSIM results reported in this section 

have been averaged over 10 noise realizations. 

3.6.2 Influence of the number of Wiener filters 

Our multi-Wiener SURE-LET approach involves several Wiener filters as elementary 

processing in the linear combination. In this section, we evaluate the influence of 

2 All 512 X 512 images are available at http://decsai.ugr.es/cvg/CG/base.htr 
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Case 

House, Separable 

a = 1 

Input: 30.92dB 

BM3D: 35.80dB 

Cameraman, Gaussian 

a = 10 

Input: 20.22dB 

BM3D: 22.60dB 

Coco, Gaussian 

a = 1 

Input: 26.45dB 

BM3D: 31.27dB 

Number of 

deconvolutions 
SURE-LET MSE-LET SURE-LET MSE-LET SURE-LET MSE-LET 

one 1 34.33 34.59 22.30 22.47 31.02 31.20 
two 2 35.78 36.04 22.37 22.65 31.40 31.68 

three 3 36.31 36.47 22.52 22.70 31.70 32.00 
four 4 36.27 36.51 22.54 22.74 31.70 32.03 

1 one deconvolution: A = 10—4a2; 
2 two deconvolutions: Ai = 10- 4a2 and A2 = 10—2a2; 
3 three deconvolutions: Ai = 10—4a2, A2 = 10—3a2 and A3 = 10—2a2; 
4 four deconvolutions: Ai = 10—5a2, A2 = 10—4a2, A3 = 10—3a2 and A4 = 10—2a2. 

Table 3.3: PSNR results of our multi-Wiener SURE-LET for various number of 

Wiener filters. 

the retained number of Wiener filters on the deconvolution performance. Based on 

the observation that a reasonable value of the regularization parameter 入 should be 

proportional to the noise variance a2 [43; 49], we focus on the ratio A/a2. Table 3.3 

shows the results obtained when considering one to four Wiener filters for various 

images, blur kernels and noise levels. We observe that one or two Wiener filters may 

not always produce the best performance, whereas three or four are able to cope with 

various scenarios (different images and different blur kernels). Moreover, using four 

Wiener filterings does not bring any significant performance improvement, compared 

to using three. Besides, we also found that for one Wiener filter, the optimal value 

of A/a2 typically varies in the range 2 x 10-4 to 2 x 10-3. For these reasons, in the 

following sections, we use three Wiener filters (i.e. M = 3) with 入1 = 1 x 10-4a2, 

入2 = 1 X 10-3a2 and 入3 = 1 x 10-2a2. Extensive tests show that the deconvolution 

performance is largely insensitive to the actual choice of A,s. 

3.6.3 Influence of the parameters on the deconvolution performance 

Apart from the case of A1, A2 and A3 already discussed above (Section 3.6.2), we report 

the following experimental observations, based on extensive tests with various images, 

blur types and noise levels. We consider the following two experimental scenarios for 

typical examples. 

Scenario A: House, 9 9 uniform blur, 2 
variance a2 = 1. 



Figure 3.7: The relationship between (3, ^ and PSNR performance under two 

particular degradation scenarios. (a): 3 vs. PSNR loss, compared to maximum 

PSNR with optimal 3; (b): ^ vs. PSNR loss, compared to maximum PSNR with 

optimal 

Scenario B: Crowd, Gaussian kernel with variance 9.0, 

10.0 

variance a 
2 

Influence of 3 in Eq.(3.14) and ^ in Eq.(2.9) Figure 3.7 shows the relationship 

between 3, ^ and PSNR performance under two particular degradation scenarios. From 

it, we can see that choosing 3 in [5 x 10-6a2, 5 x 10-5a2] and ^ in [0.01, 0.1] yields very 

similar deconvolution results with PSNR loss within 0.05dB, compared to the maximum 

PSNR with optimal values. 

Regarding the choice of the thresholding functions 0i and 02 To be efficient, the 

pointwise thresholding functions have to satisfy some desirable properties that are 

discussed in [1; 110]. We empirically found that a linear combination of the following 

two functions (see Figure 3.8) 

4\ 

01 (w) 

02(w) 

1 - exp 

� 

/ w y 
w 1 - exp 

� 1 V T i ) \ 

/ 

1 - exp 
v 

((w\4\ 
\ \ 

w 

/ 

1 - exp 
v V T2y 

(3.39) 

with Ti = 4aj and 72 = 9aj yields satisfactory results. We compare our choice shown 

as Eq.(3.39) with other two alternatives, reported in [1; 113]: 

Choice A (in [1]): 0i(w) = w, 02(w) 1 - exp 、3aj , 

Choice B (in [113]): 0i(w) = w, 02(w) = w( tanh 2.2 tanh 
3.5 

8 w 
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(a): the choice of 3 (b): the choice of ^ 

丨cei 
；cei 

Seer 
Seer 



-Eq.(15)s 

F igure 3.9: Choice of thresholding functions and 0- vs. PSNR loss, compared 

to PSNR obtained using Eq.(3.39). 

Figure 3.9 shows the comparison curves between the three options with Eq.(3.39) 

as the benchmark: the comparison is evaluated as the PSNR loss between Choice A, 

B and Eq.(3.39), respectively. From the curves in Figure 3.9, we can see that the the 

two alternatives yield the PSNR loss within 0.2dB. 

Regarding the choice of the thresholds Ti and 72 In the preceding paragraph, 

we choose Ti = 4aj and 72 = 9aj. We may vary the values of Ti and 72 to see the 

PSNR performance: Figure 3.10 shows the relationship between Ti, and PSNR loss, 

compared to maximum PSNR with optimal Ti and T2. 

We found that any combinations of Ti in [3a, 6a] and 72 in [7a, 10a] achieve very 

similar PSNR performance (the PSNR variations are generally within 0.1dB). It im-

plies that We empirically found that the proposed algorithm is able to keep similar 

deconvolution quality for a wide range of value and 72. 
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Two elementary thresholding functions 
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(a): Scenario A (b): Scenario B 

9.5 、 

90 

F igure 3.10: The relationship between Ti, T2 and PSNR performance under two 

particular degradation scenarios: Ti and T2 vs. PSNR loss, compared to maximum 

PSNR with optimal Ti and T2. 

Choice of wavelet basis In this thesis, we apply an undecimated Haar wavelet to 

perform wavelet-domain thresholding, since the redundant Haar substantially outper-

forms other types of redundant wavelets for image denoising [1]. This observation is 

also true for image deconvolution. 

Concluding remarks Based on these observations, all the parameters involved in the 

proposed multi-Wiener SURE-LET algorithm are specified in Table 3.4. According to 

this table, we have K = M J L + M = 6J + 3 elementary functions, which yields K 

weights to be optimized using Eq. (2.9). Typically, J = 9 or 12, for three or four levels 

of an undecimated Haar wavelet decomposition, and hence, we have K = 6 • 9 + 3 = 57 

linear coefficients to be optimized for J = 9. Table 3.4 shows that only 7 parameters 

involved in our algorithm need to be manually tuned, whereas we have typically up to 

K = 75 (for 4 wavelet iterations) parameters that are automatically adjusted to the 

image. By comparison, BM3D [49; 52] has more than 60 non-linear parameters to be 

manually determined for an efficient block matching and collaborative filtering. 

S in Eqs.(3.1) and (2.5) Discrete Laplacian operator 

卢 in Eq.(2.5) 卢 = 1 x 10-5a2 

Ak in Eq.(3.1) A1 = 1 x 10-4a2; A2 = 1 x 10-3a2; A3 = 1 x 10-2a2 

Ti in Eq.(3.39) T1 = 4aj ； T2 = 9aj 

Transforms D and R Undecimated Haar wavelet transform 

^ in Eq.(2.9) ^ = 5 x 10-2 

Table 3. 

rithm. 

Parameters setting of the proposed multi-Wiener SURE-LET algo-
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Finally, we would like to note that the preceding observations strongly implies that 

the proposed algorithm is very robust and largely insensitive to the parameters. No 

optimization is needed here. The main reason for the robustness is that any changes on 

the parameters or functions (从叫 O1, O2, T1 and T2) are eventually counterbalanced by 

an (optimal) adaptation of the (at least 57) LET coefficients ak (final PSNR variations 

of 0.1 � 0 . 2 d B ) . For this reason, the proposed algorithm becomes highly adaptive to 

various scenarios, even if the parameters in Table 3.4 are not well-tuned. 

3.6.4 Influence of the boundary conditions: periodic vs symmetric 

Table 3.5 displays the PSNR results obtained for different boundary conditions (peri-

odic, half-point symmetric or whole-point symmetric). As observed, the type of bound-

ary conditions has an impact on the deconvolution performance. From the results, we 

can conclude that symmetric boundary conditions perform uniformly better than pe-

riodic. This is mainly because symmetric boundary conditions ensure slowly-varying 

changes at the boundaries, unlike periodic conditions which may introduce discontinu-

ities. The deconvolution gain obtained by symmetric boundary conditions over periodic 

ones depends on the image and blur scenario. Table 3.5 reports the PSNR results ob-

tained on House and Cameraman as two extreme cases: for Cameraman, the boundary 

conditions have almost no influence on the deconvolution performance, whereas signif-

icant differences are noticed for House. 

3.6.5 Comparison with the state-of-the-art 

In Tables 3.6-3.11, we present several comparisons between the proposed multi-Wiener 

SURE-LET method and some state-of-the-art deconvolution techniques whose soft-

wares are available online, in terms of PSNR and SSIM. Various degradation scenarios 

have been considered. In order to compare with other methods in exactly the same 

experimental situations, we have considered only periodic boundary condition. The 
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Boundary periodic 
symmetric 

• periodic 
symmetric 

conditions 
periodic 

half-point whole-point 
• periodic 

half-point whole-point 

Image House 2, 56 X 256 

Blur kernel Rational filter Separable filter 

Input 25.64 26.30 26.29 30.92 31.83 31.82 

SURE-LET 35.33 35.50 35.46 36.40 36.51 36.47 

MSE-LET 35.48 35.61 35.58 36.58 36.82 36.77 

Blur kernel 9 X 9 uniform Gaussian blur with std 3 

Input 24.09 24.75 24.75 24.22 24.86 24.86 

SURE-LET 32.97 32.98 32.97 29.37 30.03 30.01 

MSE-LET 33.19 33.26 33.20 29.74 30.32 30.32 

Image Camerama n 256 X 25( 

Blur kernel Rational filter Separable filter 

Input 22.24 22.37 22.36 25.67 25.79 25.79 

SURE-LET 30.91 30.97 30.96 30.83 30.93 30.90 

MSE-LET 31.12 31.17 31.16 31.10 31.17 31.16 

Blur kernel 9 X 9 uniform Gaussian blur with std 3 

Input 20.76 20.89 20.89 20.97 21.10 21.10 

SURE-LET 27.40 27.47 27.46 23.97 24.14 24.14 

MSE-LET 27.75 27.77 27.76 24.25 24.41 24.40 

Table 3.5: PSNR results of our multi-Wiener SURE-LET for different boundary 

conditions (a2 = 1). 

state-of-the-art methods include ForWaRD3 [45], SA-DCT4 [48], BM3D5 [49], TV-

MM6 [43], C-SALSA7 [38] and Pesquet's et al. work8 [113]. We have run all the 

source codes by default throughout all the experiments performed. For TV-MM [43] 

and C-SALSA [38], we used the default stopping criteria suggested by their respective 

authors. For [113], we used symlet-8 translation invariant wavelet, as it gives slightly 

better performance than using Haar undecimated wavelet (generally by 0.2�0.3dB). 

The "MSE-LET" rows of Tables Tables 3.6-3.11 are the results of minimizing the 

actual MSE in lieu of the SURE, demonstrating that the latter is a good substitute to 

the MSE minimization. 

It can be seen from the reported PSNR and SSIM scores that the proposed SURE-

LET algorithm uniformly achieves the highest performance. Also note that the higher 

PSNR usually yields higher SSIM. Although TV-MM is well-known for its outstanding 

3The source code of ForWaRD is available at http://dsp.rice.edu/software/forward 
4The source code of SA-DCT is available at http://www.cs.tut.fi/�foi/SA-DCT/#ref_software 
5The source code of BM3D is available at http://www.cs.tut.fi/~foi/GCF-BM3D/ 
6The source code of TV-MM is available at http://www.lx.it.pt/~bioucas/code.htm 
7The source code of C-SALSA is available at http://cascais.lx.it.pt/~mafonso/salsa.html 
8 The source code of [113] is available at http://www-syscom.univ-

mlv.fr/�chaux/toolbox/T00LB0X_Surelet_deconvolution_v1.0.zip 

http://dsp.rice.edu/software/forward
http://www.cs.tut.fi/%e3%80%9cfoi/SA-DCT/%23ref_software
http://www.cs.tut.fi/~foi/GCF-BM3D/
http://www.lx.it.pt/~bioucas/code.htm
http://cascais.lx.it.pt/~mafonso/salsa.html
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a 1 5 10 30 50 100 1 5 10 30 50 100 

Image Cameraman 256 x 256 Coco 256 x 256 

Input 20.97 20.78 20.22 16.61 13.33 7.91 26.45 25.78 24.19 17.92 13.89 8.06 

ForWaRD 23.76 22.88 22.40 21.18 20.35 18.79 31.18 29.48 28.51 25.91 24.22 20.80 

SA-DCT 23.73 23.10 22.50 20.80 19.39 16.86 31.27 29.82 28.58 24.76 22.16 18.09 

BM3D 24.05 23.10 22.61 21.46 20.78 19.74 31.27 29.70 28.72 26.61 25.48 23.80 

TV-MM 23.93 22.80 22.06 21.10 20.24 18.65 31.65 29.59 28.56 26.30 24.75 21.81 

C-SALSA 23.75 22.81 22.26 21.27 20.47 18.95 31.35 29.07 28.47 26.13 24.31 21.50 

[113] 23.32 22.44 21.83 20.78 20.25 18.95 30.39 28.58 27.70 25.81 24.82 16.88 

SURE-LET 23.97 23.02 22.52 21.50 20.91 19.80 31.57 29.80 28.80 26.95 25.78 24.02 

MSE-LET 20.08 31.88 30.10 29.12 27.28 26.10 24.46 

Image House 256 x 256 Couple 512 x 512 

Input 24.22 23.81 22.73 17.52 13.73 8.02 23.55 23.20 22.26 17.39 13.68 8.01 

ForWaRD 28.87 27.43 26.63 24.27 22.87 20.23 26.40 25.25 24.62 23.12 22.25 19.64 

SA-DCT 28.94 27.86 26.75 23.51 21.32 17.69 26.43 25.35 24.62 22.75 21.20 18.04 

BM3D 29.19 27.90 27.10 25.17 23.98 22.32 26.60 25.39 24.76 23.42 22.72 21.37 

TV-MM 29.35 27.50 26.72 24.60 23.08 20.63 26.12 24.92 24.20 23.02 21.79 19.53 

C-SALSA 29.25 27.46 26.55 24.51 22.97 20.50 26.36 25.20 24.59 23.30 22.04 19.91 

[113] 28.19 26.64 25.90 23.93 22.72 15.57 26.29 25.06 24.49 23.20 22.44 21.48 

SURE-LET 29.27 27.81 27.00 25.20 24.10 22.35 26.56 25.40 24.80 23.59 22.90 21.88 

MSE-LET 29.62 28.01 27.24 25.54 24.33 22.62 26.64 25.47 24.88 23.68 22.99 21.96 

Image Crowd 512 x 512 Lake 512 x 512 

Input 16.56 16.49 16.27 14.45 12.19 7.55 22.98 22.67 21.83 17.24 13.61 7.99 

ForWaRD 19.97 18.83 18.22 17.21 16.57 15.25 26.80 25.39 24.65 22.94 21.72 18.84 

SA-DCT 19.87 18.97 18.33 17.02 16.30 14.97 26.82 25.49 24.57 22.44 20.97 18.05 

BM3D 20.01 18.80 18.15 16.83 16.15 14.93 26.90 25.48 24.68 22.97 22.10 20.42 

TV-MM 19.43 18.77 18.17 17.10 16.18 14.87 26.58 25.25 24.38 22.83 21.46 19.12 

C-SALSA 19.92 18.88 18.31 17.33 16.73 15.65 26.74 25.40 24.67 23.05 21.73 19.50 

[113] 19.80 18.61 18.04 16.91 16.36 15.55 26.67 25.20 24.44 22.89 22.04 20.74 

SURE-LET 20.05 18.90 18.30 17.25 16.67 15.79 26.90 25.48 24.80 23.33 22.48 21.18 

MSE-LET 20.21 19.06 18.48 17.40 16.81 15.89 26.97 25.62 24.92 23.49 22.64 21.32 

Image Bridge 512 x 512 Mixture 512 x 512 

Input 21.39 21.18 20.57 16.77 13.41 7.94 14.84 14.79 14.64 13.31 11.46 7.29 

ForWaRD 23.73 22.79 22.28 21.32 20.53 18.41 16.63 15.94 15.72 15.15 14.77 14.08 

SA-DCT 22.84 21.27 20.50 18.63 16.64 16.13 15.80 15.19 14.75 13.64 

BM3D 23.85 22.88 22.38 21.38 20.78 19.61 16.74 15.95 15.59 14.91 14.60 14.02 

TV-MM 23.56 22.69 21.99 20.51 19.80 18.12 16.37 15.69 15.20 14.72 14.46 13.52 

C-SALSA 23.78 22.87 22.09 21.38 20.52 18.89 16.52 15.96 15.65 15.07 14.70 13.92 

[113] 23.70 22.73 22.24 21.27 20.71 19.87 16.56 15.88 15.57 14.98 14.67 14.27 

SURE-LET 23.90 22.95 22.44 21.54 20.95 20.01 16.70 16.07 15.74 15.15 14.80 14.43 

MSE-LET 23.97 23.01 22.53 21.61 21.05 20.14 16.78 16.12 15.81 15.28 14.93 14.53 

*Best PSNR results within a 

over 10 noise realizations. 

margin are highlighted. The results have been averaged 

Table 3.6: PSNR Comparison of some state-of-the-art deconvolution methods 

under Gaussian blur with variance 9*. 

performance on regularly-structured images such as House, Coco, and the left-bottom 

of Mixture, it is substantially outperformed by the proposed algorithm. For more 

complicated images like Crowd with lots of irregular edges and disordered features, the 

proposed method also shows better PSNR results than the other techniques. ForWaRD 

is more effective for these less structured images than for cartoon-like images. BM3D, 

which achieves the best performance among the other techniques on average, is not as 

efficient on these irregular structures. Note that the proposed multi-Wiener SURE-LET 

algorithm is very robust to a wide range of noise levels from a2 = 1 to a2 = 1 x 104. In 
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a 1 5 10 30 50 100 1 5 10 30 50 100 

Image Cameraman 256 x 256 Coco 256 x 256 

Input 0.64 0.51 0.34 0.11 0.06 0.02 0.83 0.65 0.42 0.11 0.05 0.02 

ForWaRD 0.73 0.66 0.60 0.56 0.43 0.37 0.85 0.78 0.79 0.66 0.60 0.48 

SA-DCT 0.72 0.69 0.61 0.51 0.35 0.30 0.85 0.87 0.83 0.53 0.48 0.41 

BM3D 0.73 0.69 0.66 0.59 0.56 0.50 0.86 0.82 0.80 0.75 0.72 0.69 

TV-MM 0.74 0.67 0.68 0.55 0.42 0.36 0.90 0.80 0.83 0.73 0.65 0.53 

C-SALSA 0.73 0.69 0.66 0.56 0.48 0.38 0.89 0.86 0.83 0.72 0.63 0.50 

[113] 0.68 0.63 0.56 0.51 0.43 0.38 0.84 0.75 0.74 0.65 0.63 0.22 

SURE-LET 0.76 0.71 0.67 0.62 0.58 0.53 0.90 0.87 0.85 0.81 0.78 0.73 

MSE-LET 0.77 0.73 0.70 0.65 0.62 0.57 0.91 0.88 0.86 0.82 0.80 0.75 
Image House 256 x 256 Couple 512 x 512 

Input 0.71 0.57 0.38 0.12 0.06 0.02 0.70 0.67 0.62 0.38 0.24 0.10 

ForWaRD 0.75 0.76 0.71 0.60 0.55 0.41 0.88 0.80 0.75 0.62 0.60 0.38 

SA-DCT 0.76 0.78 0.73 0.54 0.48 0.36 0.88 0.81 0.75 0.58 0.45 0.38 

BM3D 0.78 0.76 0.73 0.67 0.64 0.59 0.88 0.81 0.77 0.66 0.60 0.50 

TV-MM 0.83 0.77 0.72 0.63 0.60 0.44 0.84 0.73 0.72 0.62 0.49 0.38 

C-SALSA 0.81 0.77 0.74 0.63 0.55 0.44 0.87 0.80 0.75 0.65 0.52 0.38 

[113] 0.73 0.71 0.67 0.57 0.54 0.31 0.86 0.77 0.75 0.62 0.58 0.51 

SURE-LET 0.81 0.78 0.76 0.72 0.68 0.63 0.88 0.81 0.77 0.67 0.61 0.53 

MSE-LET 0.83 0.80 0.78 0.73 0.70 0.65 0.88 0.81 0.77 0.68 0.62 0.54 
Image Crowd 512 x 512 Lake 512 x 512 

Input 0.61 0.60 0.59 0.50 0.41 0.26 0.78 0.75 0.68 0.42 0.28 0.13 

ForWaRD 0.86 0.80 0.76 0.68 0.59 0.45 0.91 0.84 0.81 0.73 0.56 0.52 

SA-DCT 0.86 0.81 0.77 0.64 0.57 0.40 0.91 0.87 0.80 0.67 0.48 0.52 

BM3D 0.88 0.81 0.76 0.63 0.55 0.40 0.92 0.87 0.83 0.73 0.67 0.58 

TV-MM 0.85 0.81 0.76 0.65 0.55 0.40 0.88 0.84 0.79 0.68 0.53 0.39 

C-SALSA 0.88 0.82 0.77 0.68 0.61 0.51 0.91 0.86 0.81 0.67 0.56 0.42 

[113] 0.88 0.78 0.75 0.63 0.57 0.51 0.87 0.83 0.81 0.66 0.67 0.59 

SURE-LET 0.88 0.81 0.77 0.67 0.61 0.50 0.92 0.87 0.84 0.75 0.70 0.61 

MSE-LET 0.89 0.82 0.78 0.68 0.62 0.52 0.92 0.87 0.84 0.76 0.70 0.61 
Image Bridge 512 x 512 Mixture 512 x 512 

Input 0.61 0.60 0.57 0.40 0.28 0.12 0.56 0.53 0.46 0.26 0.17 0.09 

ForWaRD 0.84 0.74 0.68 0.60 0.53 0.38 0.71 0.68 0.64 0.54 0.49 0.35 

SA-DCT 0.84 0.75 0.68 0.60 0.53 0.38 0.71 0.68 0.64 0.54 0.49 0.37 

BM3D 0.84 0.75 0.70 0.59 0.52 0.40 0.74 0.67 0.62 0.53 0.48 0.43 

TV-MM 0.80 0.70 0.64 0.53 0.42 0.35 0.67 0.59 0.54 0.47 0.33 0.22 

C-SALSA 0.84 0.76 0.67 0.60 0.53 0.40 0.69 0.62 0.57 0.44 0.35 0.25 

[113] 0.82 0.72 0.68 0.59 0.53 0.42 0.69 0.62 0.57 0.53 0.39 0.40 

SURE-LET 0.84 0.75 0.70 0.60 0.54 0.44 0.74 0.68 0.64 0.54 0.49 0.44 

MSE-LET 0.84 0.76 0.71 0.60 0.54 0.45 0.75 0.68 0.64 0.54 0.49 0.44 

—The results have been averaged over 10 noise realizations. 

Tab l e 3.7: SSIM Comparison of some state-of-the-art deconvolution methods un-

der Gaussian blur with variance 9*. 

particular, significant improvements over other deconvolution algorithms are frequently 

observed for large noise variance. 

Regarding the subjective visual quality (see Figures. 3.11-3.13), the proposed decon-

volution algorithm preserves various image details, while introducing very few artifacts. 

For House, it achieves good preservation of uniform areas and regularly-sharp edges, 
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a 1 5 10 30 50 100 1 5 10 30 50 100 

Blur Ra t iona l filter Separable filter 

Input 22.60 22.33 21.55 17.15 13.58 7.98 25.78 25.22 23.82 17.85 13.88 8.06 

ForWaRD 28.32 24.65 23.37 21.48 20.20 18.60 29.09 26.47 25.04 22.77 21.74 19.75 

SA-DCT 28.94 25.00 23.74 21.99 20.99 19.02 29.23 26.97 25.68 23.43 22.40 20.77 

BM3D 28.95 25.12 23.70 21.87 21.05 19.67 29.40 27.00 25.72 23.37 22.36 20.43 

TV-MM 28.64 25.10 23.42 20.16 18.71 17.32 28.95 26.93 25.70 22.98 20.87 19.28 

C-SALSA 28.63 24.90 23.49 20.45 18.82 18.31 28.96 26.57 25.34 22.44 20.46 16.46 

[113] 28.44 24.87 23.53 21.71 20.91 19.92 29.03 26.70 25.48 23.25 22.16 20.61 

SURE-LET 28.87 25.10 23.81 22.12 21.32 20.19 29.37 27.00 25.70 23.50 22.52 21.04 

MSE-LET 28.94 25.23 23.95 22 22 21.44 20.32 29.48 27.07 25.80 23.58 22.59 21.16 

Blur 5 X 5 un i form b lur 9 X 9 un i form b lur 

Input 23.24 22.92 22.04 17.33 13.66 8.01 21.16 20.96 20.38 16.69 13.37 7.93 

ForWaRD 28.31 25.15 23.89 22.06 20.11 18.82 25.77 23.48 22.65 21.21 20.08 18.63 

SA-DCT 27.96 24.76 23.82 22.32 21.43 19.86 25.83 23.31 22.48 20.82 19.71 18.23 

BM3D 28.57 25.50 24.46 22.65 21.88 20.21 26.12 23.75 22.82 21.50 20.90 19.70 

TV-MM 28.31 25.52 24.41 21.74 19.97 18.24 25.85 23.57 22.43 19.95 18.39 16.44 

C-SALSA 28.36 25.16 24.15 21.78 18.59 17.48 25.74 23.42 22.58 20.67 19.52 18.00 

[113] 28.25 25.20 24.17 22.52 21.74 20.41 25.82 23.39 22.47 21.32 20.83 19.96 

SURE-LET 28.65 25.55 24.43 22.78 22.00 20.78 26.10 23.79 22.95 21.71 21.10 20.13 

MSE-LET 28.69 25.64 24.56 22.90 22.11 20.88 26.17 23.88 23.05 21.81 21.19 20.24 

*Bes t P S N R resu l ts w i t h i n 

over 10 no ise rea l i z a t i ons . 

m a r g i n are h i g h l i g h t e d . T h e resu l ts h ave b e e n averaged 

T a b l e 3 . 8 : PSNR performance of Bridge image for various blurs and noise levels*. 

a 1 5 10 30 50 100 1 5 10 30 50 100 

B lur R a t i o n a l filter S e p a r a b l e filter 

I n p u t 0.73 0.72 0.69 0.49 0.34 0.15 0.93 0.91 0.88 0.65 0.46 0.22 

F o r W a R D 0 . 9 7 0.86 0.78 0.60 0.50 0.41 0.97 0.93 0.90 0.74 0.64 0.51 

SA-DCT 0 . 9 7 0.86 0.79 0.62 0.53 0.40 0 . 9 9 0 . 95 0 .91 0 . 76 0.66 0.50 

B M 3 D 0 . 9 7 0.87 0.79 0.62 0.54 0.40 0 . 9 9 0 . 95 0 .91 0 . 76 0.66 0.49 

T V - M M 0 . 9 7 0.87 0.78 0.58 0.46 0.42 0 . 9 9 0 . 95 0 .91 0 . 76 0.65 0.48 

C-SALSA 0 . 9 7 0 . 8 8 0.80 0.58 0.46 0.43 0 . 9 9 0.94 0.90 0.74 0.65 0.47 

[113] 0.96 0 . 8 8 0.78 0.60 0.52 0.43 0 . 9 9 0.94 0.90 0.75 0.66 0.51 

S U R E - L E T 0 . 9 7 0 . 8 8 0 . 80 0 . 64 0 . 5 7 0 . 4 6 0 . 9 9 0 . 95 0 .91 0 . 76 0 . 6 8 0 . 5 4 

MSE-LET 0.97 0.88 0.80 0.65 0.58 0.47 0.99 0.95 0.91 0.77 0.68 0.56 

Blur 5 X 5 u n i f o r m b l u r 9 X 9 u n i f o r m b l u r 

I n p u t 0.81 0.80 0.77 0.56 0.40 0.18 0.81 0.72 0.67 0.51 0.40 0.18 

F o r W a R D 0 . 9 6 0.88 0.83 0.70 0.61 0.44 0 . 90 0.78 0 .72 0.58 0.51 0.39 

SA-DCT 0.95 0.86 0.83 0.71 0.60 0.45 0 . 90 0.77 0 .72 0.58 0.49 0.39 

B M 3 D 0 . 9 6 0 . 90 0 . 85 0.71 0.62 0.46 0 . 90 0.78 0 .72 0.60 0.53 0.41 

T V - M M 0 . 9 6 0 . 90 0 . 85 0.69 0.58 0.44 0 . 90 0.78 0 .72 0.56 0.47 0.33 

C-SALSA 0 . 9 6 0.88 0 . 85 0.69 0.53 0.49 0 . 90 0.78 0 .72 0.58 0.49 0.38 

[113] 0 . 9 6 0.88 0 . 85 0.71 0.62 0.50 0 . 90 0.78 0 .72 0.60 0.52 0.43 

S U R E - L E T 0 . 9 6 0 . 90 0 . 85 0 .72 0 . 64 0 . 52 0 . 90 0 . 7 9 0 .72 0 .61 0 . 55 0 . 45 

MSE-LET 0.96 0.90 0.85 0.72 0.65 0.53 0.91 0.79 0.73 0.62 0.56 0.46 

* T h e resu l ts h ave b e e n averaged over 10 no ise rea l i z a t i ons . 

T a b l e 3 . 9 : SSIM performance of Bridge image for various blurs and noise levels*. 

while for Crowd, it preserves the finer details of the irregularities. In Figure 3.13, the 

differences between the various algorithms are clearly visible: the proposed algorithm 

introduces fewer artifacts than the other techniques. In particular, the text part of 
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a 1 5 10 30 50 100 1 5 10 30 50 100 

Blur Ra t iona l filter Separable filter 

Input 15.96 15.89 15.70 14.07 11.95 7.47 18.38 18.27 17.94 15.47 12.76 7.74 

ForWaRD 27.67 19.95 17.77 15.76 15.01 13.99 26.01 22.03 20.42 17.50 16.30 14.96 

SA-DCT 28.54 20.64 18.20 15.99 15.32 14.40 24.35 22.25 20.95 17.93 16.70 15.46 

BM3D 28.53 19.24 17.25 15.45 14.85 14.10 26.54 22.26 20.04 17.14 16.15 14.86 

TVMM 28.28 20.40 17.30 14.41 13.78 13.18 27.17 22.80 20.64 17.15 15.25 13.80 

C-SALSA 27.26 20.14 18.04 15.80 15.02 13.99 26.58 21.75 20.16 17.51 16.19 13.80 

[113] 25.92 19.52 17.74 15.77 15.12 14.42 24.67 21.40 20.01 17.67 16.67 15.41 

SURE-LET 29.90 21.10 18.53 16.12 15.50 14.71 27.80 23.13 21.08 18.05 16.94 15.70 

MSE-LET 30.28 21.34 18.70 16.27 15.58 14.78 28.11 23.40 21.43 18.21 17.06 15.79 

Blur 5 x 5 un i form b lur 9 x 9 un i form b lur 

Input 15.92 15.86 15.67 14.04 11.94 7.46 14.58 14.54 14.40 13.13 11.35 7.24 

ForWaRD 24.76 19.80 18.26 16.29 15.58 14.42 20.42 17.21 16.16 15.20 14.68 13.79 

SA-DCT 25.35 19.40 17.57 16.03 15.48 14.74 21.29 17.10 16.13 15.06 14.60 13.93 

BM3D 25.53 19.78 17.90 16.18 15.56 14.58 20.66 17.07 16.01 15.00 14.68 14.09 

TVMM 25.70 20.39 18.31 15.66 14.52 13.64 20.70 17.02 15.65 14.23 13.66 12.87 

C-SALSA 24.29 19.67 18.15 15.77 15.37 14.00 20.24 17.23 16.30 14.95 14.29 13.30 

[113] 23.19 19.14 17.83 16.37 15.78 15.00 19.39 16.67 15.92 14.99 14.70 14.36 

SURE-LET 26.34 20.75 18.90 16.74 16.04 15.25 21.60 17.75 16.65 15.32 15.01 14.52 

MSE-LET 26.60 21.00 19.06 16.85 16.13 15.35 21.90 17.89 16.76 15.42 15.07 14.60 

本 Best PSNR results within a 

over 10 noise realizations. 

margin are highlighted. The results have been averaged 

Table 3. PSNR performance of Mixture image . blurs and noise levels*. 

a 1 5 10 30 50 100 1 5 10 30 50 100 

Blur Rational filter Separable filter 

Input 0.66 0.63 0.57 0.35 0.26 0.15 0.84 0.81 0.74 0.51 0.40 0.26 

ForWaRD 0.94 0.86 0.75 0.54 0.48 0.40 0.98 0.94 0.88 0.67 0.64 0.48 

SA-DCT 0.98 0.87 0.77 0.53 0.50 0.43 0.98 0.94 0.90 0.69 0.64 0.50 

BM3D 0.98 0.86 0.75 0.59 0.52 0.45 0.99 0.95 0.90 0.73 0.64 0.51 

TV-MM 0.98 0.80 0.75 0.45 0.36 0.36 0.98 0.95 0.90 0.66 0.58 0.45 

C-SALSA 0.92 0.75 0.63 0.49 0.40 0.28 0.98 0.90 0.86 0.66 0.54 0.37 

[113] 0.89 0.86 0.75 0.49 0.45 0.42 0.98 0.92 0.88 0.66 0.65 0.50 

SURE-LET 0.98 0.89 0.80 0.61 0.53 0.45 0.99 0.95 0.91 0.77 0.67 0.53 

MSE-LET 0.98 0.89 0.79 0.59 0.51 0.44 0.99 0.95 0.91 0.77 0.66 0.52 
Blur 5 x 5 uniform blur 9 x 9 uniform blur 

Input 0.68 0.65 0.58 0.36 0.27 0.16 0.53 0.51 0.44 0.24 0.16 0.08 

ForWaRD 0.95 0.88 0.78 0.67 0.59 0.48 0.88 0.74 0.67 0.55 0.48 0.43 

SA-DCT 0.95 0.88 0.80 0.67 0.59 0.48 0.88 0.74 0.67 0.55 0.48 0.43 

BM3D 0.97 0.88 0.80 0.67 0.59 0.49 0.89 0.74 0.66 0.55 0.50 0.44 

TV-MM 0.95 0.88 0.73 0.67 0.45 0.44 0.88 0.74 0.65 0.45 0.44 0.38 

C-SALSA 0.95 0.81 0.70 0.57 0.49 0.34 0.80 0.65 0.56 0.38 0.30 0.22 

[113] 0.95 0.86 0.77 0.67 0.60 0.48 0.86 0.67 0.67 0.47 0.48 0.43 

SURE-LET 0.97 0.89 0.83 0.69 0.61 0.50 0.89 0.76 0.68 0.55 0.50 0.44 

MSE-LET 0.97 0.89 0.82 0.68 0.60 0.49 0.89 0.75 0.68 0.54 0.49 0.44 

—The results have been averaged over 10 noise realizations. 

Table 3.11: SSIM performance of Mixture image for various blurs and noise levels*. 

Mixture is easier to read in the image restored by the proposed multi-Wiener SURE-

LET. 
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Blurred noisy SA-DCT: BM3D: 29 

1 ^ I 
I ^ 

...I 

C-SALSA: 

M I 

H I 

F igure 3.11: Restoration of House degraded by Gaussian blur of ‘ 

noise std a = 1. 

9 with 

Blurred noisy: 7.55dB BM3D: 14.93dB 

ForWaRD: 15.25dB C-SALSA: 15.65dB SURE-LET: 15.79dB 

F igure 3.12: Restoration of Crowd degraded by Gaussian blur of variance 9 with 

noise std a = 100. 
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DCT: 13.93dB 

Figure 3.13: Restoration of Mixture degraded by 9 x 9 uniform blur with noise 

std a = 100 

3.6.6 Analysis of computational complexity 

The most computationally-intensive part of the proposed algorithm is the construction 

of the elementary functions fk(y), due to the computation of the thresholding 0(.) and of 

its first-order derivative, as well as the independent reconstructions of all the processed 

subbands. Compared to these steps, the construction and resolution of the linear system 

of equations shown as Eq.(2.9) of low order K has a negligible computational cost. 

Based on these observations, the computational complexity of the proposed multi-

Wiener SURE-LET is roughly evaluated as K N , which is linearly proportional to both 

the number of basis functions K and pixel number N. Since the processing time of 

the proposed deconvolution algorithm is independent of the content of the input data, 

it grows linearly with the data size. Tables 3.12 and 3.13 report the execution time 

of the various algorithms, measured on two hardware environments. As expected, the 

processing time of a 512 x 512 image is roughly four times that of a 256 x 256 image 

for the proposed algorithm. 

Finally, we would like to emphasize the low complexity of the proposed algorithm. 
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Since our deconvolution approach merely boils down to solving a linear system of equa-

tions, it is substantially faster than other state-of-the-art techniques, as confirmed in 

Tables 3.12 and 3.13. We would also like to stress that our implementation uses stan-

dard Matlab code only, without any compiled routines, and can be easily parallelized 

for even faster processing. 

Degradation 

scenario 

ForWaRD 

[45] 

SA-DCT 

[48] 

BM3D 

[49] 

TV-MM 

[43] 

C-SALSA 

[38] 

Pesquet 

[113] 

SURE-LET 

(our work) 

Cameraman 
Gauss ian b l u r 

a = 1 

4.73 3.70 2.96 156.13 55.04 177.32 1.36 

Mixture 
Ra t i o n a l filter 

a = 10 

41.03 16.18 13.65 289.14 55.72 540.22 5.34 

Crowd 
9 x 9 un i f o rm 

a = 50 

59.95 16.13 12.37 202.89 42.03 513.68 5.34 

* Hardware environment used: Intel(R) Core(TM)2 Duo C P U E7400 @2.80GHz, memory size: 

3GB. 

Tab l e 3 .12: Comparison of the computational time of various deconvolution tech-

niques (units: sec.)*. 

Degradation 

scenario 

ForWaRD 

[45] 

SA-DCT 

[48] 

BM3D 

[49] 

TV-MM 

[43] 

C-SALSA 

[38] 

Pesquet 

[113] 

SURE-LET 

(our work) 

Cameraman 
Gauss ian b l u r 

a=1 

3.62 2.81 1.90 103.91 33.52 114.12 0.69 

Mixture 
Ra t i o n a l filter 

a = 10 

31.11 12.28 8.00 93.50 34.32 375.74 2.69 

Crowd 
9 x 9 un i f o rm 

a = 50 

45.53 12.33 7.80 59.08 25.18 353.52 2.69 

Hardware environment used: Intel(R) Core(TM) i3-2100 C P U @3.10GHz, memory size: 2GB. 

Tab l e 3 .13: Comparison of the computational time of various deconvolution tech-

niques (units: sec.)*. 

3.7 Conclusion 

In this chapter, we have presented a new image deconvolution method based on the 

SURE-LET approach initially developed for image denoising applications. The main 

originality of the proposed deconvolution approach is the use of multiple Wiener filters 

with different but fixed regularization parameters, to avoid the empirical and fastidious 

adjustment of the non-linear regularization parameter. 
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Although the proposed multi-Wiener SURE-LET deconvolution algorithm has low 

complexity, its performances are already quite competitive with the state-of-the-art 

deconvolution techniques, both quantitatively and visually. The great flexibility and 

the limited computational cost of the proposed approach suggest that it is possible to 

develop more sophisticated forms of basic processings; e.g., performing a multivariate 

thresholding by taking into account inter-scale and/or intra-scale dependencies between 

the wavelet coefficients as in [110]. Electing more directional deconvolutions instead of 

using classic Wiener filters might also lead to improved performances. There is thus a 

substantial margin of improvement for SURE-LET type deconvolution algorithms. 
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The SURE-based Approach to Blind 

Deconvolution 
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Chapter 4 

The Blur-SURE Framework to PSF Estimation 

4.1 Introduction 

As mentioned in Chapter 1, there are two categories of approaches to tackle blind image 

deconvolution. The first class performs joint estimation of original image and the point 

spread function (PSF), by minimizing an uniform objective functional [5; 82; 87; 88; 91; 

124-126], whereas another category of approaches separate the blur identification and 

image restoration: the original image is estimated by non-blind deconvolution using 

the PSF estimated by the blur identification [90; 92; 127-130]. 

Recently, the separate estimation receives more attention, due to its several advan-

tages over the joint estimation. As reported in [64], simultaneous MAP estimation of 

both latent image and blur kernel is guaranteed to fail even with infinitely large images 

sampled from the prior. On the other hand, a MAP estimation of the kernel alone 

is well constrained and is guaranteed to succeed to recover the true blur, because the 

number of parameters to estimate (i.e. kernel size) is small relative to the number 

of the image pixels measured. Another merit of separate estimation is that it allows 

to apply any developed high-quality deconvolution algorithm to estimate the original 

image, once the PSF is estimated. For these reasons, we choose to separately estimate 

the kernel and the image. Note that the PSF estimation is extremely significant for 

the deconvolution performance, as an inaccurately estimated kernel definitely results 

in great quality loss of the restored image, and many existing deconvolution algorithms 

are very sensitive to the accuracy of PSF estimation. 

For the kernel estimation, it is often to formulate an objective functional, by incor-

porating prior knowledge of the natural image statistics and the blur kernel characteris-

tics [64], and then perform alternating minimization. Regarding the image prior, due to 

the expected sparsity of the derivatives of the latent images [90; 91; 126], [90; 92] model 

65 
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the image gradient by a mixture of Gaussian distributions, [91] uses both global prior 

to model gradient density and local prior to suppress ringing artifacts, [126] utilizes 

a non-convex quasi norm with 0 < p < 1 to better model the heavy tail of image 

gradient [131]. Since the motion kernel tends to be sparse, it is often characterized 

by a sparsity prior and enforced to be non-negative: [90; 91] assume the blur kernel 

to follow a mixture of exponential distributions, [82; 125; 126] use the totoal-variation 

prior for the blur kernel. In addition, kernel can also be estimated using the sharp edge 

prediction [129; 130]. 

4.2 Problem statement 

Consider the linear observation model 

y = H0x + b (4.1) 

where y G R N is the observed data of the original (unknown) x G R N , the latent true 

(unknown) matrix H0 denotes a linear distortion, the vector b G R N is a zero-mean 

additive Gaussian noise corruption with covariance matrix C 0. The objective is to 

find a good estimate of x. As mentioned in Section 4.1, our basic procedure consists of 

first estimating the distortion matrix H0, and then finding the estimate of x with the 

estimated H. 

In this chapter, our focus is to estimate the matrix H0, such that the estimated H 

is as close to the true H0 as possible, from the observed data y only. Note that our 

proposed theoretical framework is not limited to convolution operation: the approach 

is applicable for any distortion matrix H0. 

4.3 The blur-SURE framework for general linear model 

4.3.1 Blur-MSE: a modified version of MSE 

Denoting a function (or processing) by f : R N R N , applied to the observed data y, 

the standard MSE is defined as Eq.(2.2) [1; 110; 112; 115]. To estimate the matrix H。， 

instead of the standard MSE, we consider the following blurred (filtered or distorted) 

version: 

blur-MSE = 去 《 { ||Hf (y) — H0x||2} (4.2) 
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as the objective functional, which measures the difference between two distorted (blurred) 

data: Hf(y) and Hox. Our approach, to be described below, consists in restricting f 

to a subclass of processings — typically, Wiener filterings — that depend on H, and 

then minimizing an estimate of this blur-MSE over H. 

4.3.2 Blur-MSE minimization 

We are now going to restrict ourselves to the linear processing denoted by f (y) = W n y , 

where the notation W H emphasizes that the matrix W is related to the matrix H. It 

is well-known that for the linear model denoted by (2.1) with the known matrix H, the 

ideal linear processing W H that minimizes the standard MSE given as W H y - x 2 

is Wiener filtering, expressed as [25]: 

W H = S H T ( H S H T + C ) - 1 = ( H T H + H T C H - T S - 1 ) - 1 H T (4.3) 

in matrix notation, where the covariance matrices S = E{xxT}, C = E{bbT}. Now, 

if we base our processing on Wiener filtering, then the following theorem shows that 

the matrix H that minimizes the blur-MSE is related in a simple way to the original 

matrix Ho. 

Theorem 4.1 Consider only linear processings of the form f(y) = WHy , where W H 

is defined as Eq.(4.3). The minimization of the blur-MSE defined by (4.2) over H: 

mHn N E { ||HWHy - Hox||2}, (4.4) 

yields the solution H to Eq.(4.4), which satisfies H S H T = HoSH f . 

See Appendix A.7 for the proof, which is similar to Wiener theory for performing 

denoising/deconvolution [25]. Note that Theorem 4.1 is valid for any linear distortion 

H, not limited to convolution operation. This statement is also valid for rectangular 

matrices H G R N . For the sake of brevity, the following discussions are restricted 

to square matrix. 

4.3.3 Blur-SURE: an unbiased estimate of the blur-MSE 

Notice that we cannot directly minimize the blur-MSE, as Hox is unknown in practice. 

However, based on the linear model given by Eq.(4.1), the quantity of blur-MSE can 
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be replaced by a statistical estimate 一 blur-SURE, involving only the measurements 

y, as summarized in the following theorem. 

Theorem 4.2 Given the linear model as Eq.(4.1), the following random variable: 

1 

N 
Hf(y) - y 『 + 2divy (CHf(y)) - C) (4.5) 

is an unbiased estimator of the blur-MSE denoted by Eq.(4.2), i.e. E{e} = N ^ H f (y)-

Hox 21, where Tr denotes matrix trace, C is covariance matrix of noise b, the diver-

gence divy v = fe for Vv G R n . 

See Appendix A.8 for the proof, which is similar to the proofs of Stein's lemma [109] 

and the standard SURE for the linear model [115]. Note that as same as Theorem 4.1, 

this theorem is also valid for any linear distortion H (rectangular or square matrix) and 

any processing f , under the assumption of additive Gaussian noise b. In particular, if 

the Gaussian noise b is independent and identically distributed (i.i.d.) with variance 

a2 , the blur-SURE becomes: 

1 2a2 ( ) 
^ ||Hf (y) - y||2 + I divy (Hf (y)) - a2 (4.6) 

which results from specifying the covariance matrix C = a21 in Eq.(4.5). 

As blur-SURE involves only the known measurements y, we can directly minimize 

blur-SURE instead of minimizing blur-MSE in practice. 

4.4 Application of blur-SURE framework for PSF estimation 

4.4.1 Problem statement in the context of convolution 

In the context of image deconvolution, Figure 4.1 shows an example of image degra-

dation shown as Eq.(4.1), where the distortion matrix Ho denotes the convolution 

operation performed by point spread function (PSF) or kernel, which results in blurred 

observations. It also shows our basic procedure of blind deconvolution: PSF estimation 

followed by non-blind deconvolution. Now, we can apply the blur-SURE framework to 

estimate the unknown PSF. 
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original x Gaussian noise b 

convolution 

2: Deconvolution ‘ ̂  

noise corruption 
• 1 

1 Stage 1: PSF estimation — 

observed y 

丨 Observed data ' 

F igure 4.1: The convolution example of the linear distortion model shown as 

Eq.(4.1) and the basic procedure of blind deconvolution: PSF estimation followed 

by non-blind deconvolution. 

4.4.2 -MSE minimization for P S F estimation 

Section 4.3.2 has presented the concept of blur-MSE, and Theorem 4.1 has shown 

that the blur-MSE minimization with Wiener filtering yields a very simple relation 

H S H = H Q S H Q . In the case of convolution matrix H Q , Theorem 4.1 can be further 

simplified as the following corollary 一 a Fourier description of Theorem 4.1. 

Corollary 4.3 If both the signal x and the noise b are stationary, the square matrix 

H denotes convolution, the Wiener filtering W H defined as Eq.(4.3) can be rewritten 

as: 

WH M 
H 

(4.7) 
|H ⑷ I2 + C (u)/S (u) 

in Fourier domain, where H(u) is the Fourier representation of H, S(u) and C(u) 

are the mean power spectral densities of signal x and noise b, respectively. Thus, the 

minimization of the blur-MSE denoted by Eq.(4.4) yields the solution H(u), which 

satisfies: 

WH (W) WHO (W) 

H * ( u ) ‘ 
H (u) 

H(u) 2 + C(u)/S(u) 
H Q (u) 

HQ (u) 

HQ(U) 2 + C(u)/S(u) 
for Vu (4.8) 

U (W) 

which implies that H(u) 

U O ( W ) 

HQ(U) for V u . 

This corollary is easily proved by the fact that under convolution operation and 

the assumption of stationary process [25], all the matrices involved in the blur-MSE 
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(1) correct | H = |Ho(w)| (2) incorrect | H = |Ho(w)| (3) 

min blur-MSE = 0.12 blur-MSE = 0.17 

ncorrect |H(w)| = |Ho(w)| 

blur-MSE = 0.79 

I~C( r I—in 

t 

I 
F igure 4.2: The behaviours of band-indicator U(w) in (4.8): correct |H(w)| 

|Ho(w)| yields the minimum blur-MSE, shown in (1). 

become circulant, thus can be diagonalized by Fourier transform. 

Let us call U(w) = H(W)WH(w) in Eq.(4.8) as frequency-band indicator or band 

indicator for short1, as it marks a certain frequency band as 0 or 1 with a narrow 

transition between the two values (see Figure 4.2 for example). Corollary 4.3 states that: 

(1) the blur-MSE minimization is essentially equivalent to matching the band indicator 

U(w) to the true Uo(w) in Fourier domain; (2) the blur-MSE minimization can only 

derives the equality of magnitude frequency response of the PSF: |H(w)| = |Ho(w)|, 

which is irrelevant to the phase response. Hence, if the frequency response of the PSF 

has positive value with zero phase shift at any frequency w, the blur-MSE minimization 

succeeds in estimating accurate PSF, by seeking its frequency response. 

To exemplify this corollary, Figure 4.2 shows the band-indicator matching as Eq.(4.8). 

We can see that the minimum blur-MSE is reached as the two band-indicators match 

perfectly U(w) = Uo(w), and the derived equality |H(w)| = |Ho(w)| holds, as shown in 

Figure 4.2-(1). If |H(w)| = |Ho(w)|, the corresponding band-indicator U(w) does not 

match the exact Uo(w) well, and the blur-MSE does not reach its minimum, as shown 

in Figure 4.2-(2,3). 

4.4.3 Approximation of exact Wiener filtering 

The blur-MSE, incorporating the exact Wiener filtering as the processing f, has been 

justified as a reliable objective functional both theoretically and experimentally. How-

ever, note that the exact Wiener filtering cannot be used in practice, since the signal-

to-noise ratio (SNR) S(w)/C(w) is unknown. Consider the basic observation that for 

1 Regarding the terminology of U(w), refer to [132], where the authors named U(w) as combined 
response. 
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natural images with strong low frequencies and weak high frequencies, C(w)/S(w) in-

creases as the frequency w goes up, since the noise content is often relatively flat with 

frequency. We replace C(w)/S(w) by 入||… l l2 , where the parameter 入 needs to be opti-

mized, such that C(w)/S(w)紀入||…||2. Thus, we summarize the notations of exact and 

approximated Wiener filterings as Table 4.1. 

Notations Exact Approximation 

Matrix W H = ( H T H + H T C H - T S - 1 ) - 1 H T 
WH,A = ( H T H + AR) - 1 H T 

Frequency 
TTT / 、 H*(w) 

( w ) |H (^)|2+C(^)/S(^) 
W H A ( w ) | H M P U ) I M | 2 

Table 4.1: Notations of exact and approximated Wiener filterings: AR is a circu-

lant matrix with eigenvalues A||w||2，to approximate the matrix H T C H - T S - 1 in 

exact Wiener filtering Eqs.(4.3) and (4.7). 

Due to the regularization parameter 入 introduced, we formulate the PSF estimation 

H W H x y -as joint minimization of the blur-MSE 

H o x 2 

‘both H and A, i.e. minH 入-NE\ 

Ho(w) , and also, with . By Corollary 4.3, the solution H(w) satisfies H(w) 

the obtained 入， con s t i t u t e s the best approximation of the exact band indicator f/o(w), 

shown as Eq.(4.9). Table 4.2 lists all the notations of band indicators. 

2 

UH,A(W) 
|H (w)|2 Ho(w) 

|ff(w)|2 + A|w|2 Ho(w) 2 + C(w)/S(w) 

approximated band-indicator 

Uo(w) (4.9) 

exact -indicator 

Notations Exact Approximation 

Matrix U H = H ( H t H + H t C H - T S - i ) - " H T Uh,A = H ( H t H + A R ) - ' H T 

Frequency 
( w ) = | H M | 2 + y L ) / S M 

U H , A ( w ) = | H ( 丄 ) | ‘ ) 丄 | | ^ 2 

Table 4.2: Notations of exact and approximated band indicators. 

Figure 4.3 shows the different approximations of the band-indicator. We can see 

that only both the H and A obtained by minimizing the blur-MSE yield the best 

approximation. 
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(1) optimal H and A 
min blur-MSE = 0.14 

(2) non-opt. H and opt. A (3) opt. H and non-opt. A 
blur-MSE = 0.18 blur-MSE = 0.30 

I ~ a i 

F igure 4.3: The approximation of band-indicator as Eq. (4.9): the blur-MSE min-

imization yields the best approximation of band-indicator. 

4.4.4 Blur-SURE minimization for P S F estimation 

Recalling the blur-SURE formulation given by Eq.(4.6), if the processing f is the ap-

proximated Wiener filtering specified in Table 4.1, we obtain the objective functional: 

1 

N 

2a 2 

H W H A y — y||2 + 1 H W H — a 
2 

(4.10) 

as the unbiased estimate of the blur-MSE, given as N HWH,Ay — HQX 2. Note that 

divy(HWH,Ay) = Tr(HWH,A). Taking three filters for example: 

• finite rational filter "0(i, j ) = (1 + i2 + j 2 ) - 1 for i, j = —7,..., 0,..., 7; 

• separable filter with filter [1, 4, 6, 4,1]/16 along both horizontal and vertical 

directions; 

• 9 x 9 uni form filter. 

Figure 4.4 shows the curves of the blur-MSE and the blur-SURE under different noise 

variance. It demonstrates that the blur-SURE is very close to the blur-MSE in various 

situations. 

4.5 Concluding remarks 

Since the blur-SURE depends on the observed data y only, it is a good substitute for 

the blur-MSE in practice. Also, it has been justified that minimization of the blur-MSE 

yields the accurate estimate of PSF. Therefore, we formulate the PSF estimation as 

joint minimization of the blur-SURE over both H and 入 . T h e flowchart shown in Figure 

4.5 summarizes the blur-SURE framework. Also note that the blur-MSE minimization 

serves as an oracle counterpart of the blur-SURE minimization. 
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(1) finite ra t iona l filter 

I——b 

(2) separable filter 

I——bi 

(3) 9 x 9 u n i f o rm filter 

I--*- blur-MSE I 
I blur-SURE| 

Figure 4.4: The blur-MSE and blur-SURE denoted by 

ization parameter 入 = 1 x 1 0 -V 2 : example of Ca 

under various noise variances a^. 

Eq.(4.10) with the regular-

blurred by three filters, 

H 

tentativeH 

入 
compute WH,a 

define in Table 4.1 

minimize e(H, A) 

defined in Eq.(4.10) 

H 

tentativeH 

入 
compute WH,a 

define in Table 4.1 

minimize e(H, A) 

defined in Eq.(4.10) 
} 

to_be_estimated Wiene^filtering blur-SURE minimizatjon 

Stage 1: PSF estimation (Part II) 

perform non-blind 
deconvolution with 

estimated H 

Stage 2: (Part I) 
Deconvolution 

Figure 4.5: The procedure of PSF estimation: joint minimization of the blur-

SURE over H and 入 , a s shown in Eq.(4.10). 

In this chapter, we proposed a new approach to estimate the distortion matrix, 

more specifically, the PSF, based on a new criterion — blur-SURE: a statistical esti-

mate of blur-MSE. The simple Wiener filtering, as the linear solution of the blur-MSE 

minimization, can be well approximated using an optimal regularization parameter 入, 

which is jointly estimated by minimizing blur-SURE, along with the PSF. 





Chapter 5 

The Blur-SURE Approach to Parametric PSF 
Estimation 

5.1 Introduction 

5.1.1 Overview of parametric P S F estimation 

Chapter 1 has described the necessity and advantage of parametric estimation of PSF in 

real applications, compared to non-parametric one. A great number of applications have 

also been listed, ranging from astronomical imaging to biomedical imaging, where the 

reliable parametric form of PSF is available: experimentally measured [133], practically 

assumed [17] or mathematically derived [134]. 

Given the parametric form of PSF, the PSF estimation problem boils down to 

estimate the small number of involved parameters, instead of estimate the pixels in the 

finite support of PSF. The most commonly used approach to PSF parameter estimation 

is to establish a certain objective functional, and perform alternating minimization 

between original image and PSF parameters, see [102; 105] for example. More recently, 

learning-based approach has been proposed to this parametric estimation [65]. 

5.1.2 Gaussian PSF as a typical example 

Among all the parametric forms of the PSF shown in [3; 97; 102; 104], of particular 

interest is the Gaussian function, which can be used for modelling many degradation 

scenarios in real applications: [135; 136] studied the possibility of Gaussian approxi-

mation to microscopy PSF; [17; 22] used the Gaussian function to approximate the 

PSF of electro-optical systems under various imaging conditions; [99; 101; 137] used a 

Gaussian function to approximate the PSF caused by the atmospheric turbulence in 

astronomical imaging; [138-141] used the Gaussian function to model the defocus blur 

75 
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in photography. Thus, the estimation of Gaussian blur variance becomes particularly 

interesting. 

Note that Gaussian blur size is difficult to estimate using traditional blur identifi-

cation approach [93; 103], especially for those approaches relying on edge recognition, 

e.g. [93] fails to recover the image, since the frequency response of Gaussian blur de-

cays so fast that all the high frequency content of the original image is eliminated. 

Despite of the difficulty, [138; 140; 141] tried to estimate the blur variance based on 

edge-based parametric representation [142]. [138] obtained the second derivative of a 

blurred edge by applying a steerable second derivative of Gaussian operator to the 

edge, thus, the distance between its extrema provides a measure of blur scale. Based 

on the work of [138], [140] improved the estimation results, by removing the estimate 

outliers and performing the blur propagation. Furthermore, [141] derived a closed-

form solution of the edge blurriness based on [140]. However, these methods are very 

sensitive to the noise corruption: the edge localization and measurement become less 

accurate under higher noise level. In addition, the blur variance can also be estimated 

in regularization framework, e.g. [105; 143] uses Richardson-Lucy algorithm [74; 75] 

with TV regularization to perform joint estimation of the object and Gaussian blur 

variance; Wiener-based [10] or Richardson-Lucy-based [11] iterative methods project 

the updated PSF into the Gaussian family during each iterative step. Moreover, [3] 

detects the blur size by appropriate 1-D Fourier analysis of the observed image. 

5.1.3 Outline of this chapter 

Taking several typical parametric forms of PSF (including Gaussian kernel) for example, 

this chapter will exemplify and demonstrate the blur-SURE framework proposed in 

Chapter 4 in the following lines: 

• to show the closeness of the blur-SURE to blur-MSE (as its oracle version); 

• to demonstrate the high accuracy of the parametric estimation of PSF, under 

various blur types and noise levels; 

• to develop a fast algorithm of the blur-SURE minimization. 
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5.2 Parametric estimation: problem formulation 

Suppose the PSF is of known parametric form, such that the PSF is completely repre-

sented by only a few parameters s = [si,s2,…,sp]T involved in the function form [65; 

102]. Denote the latent true parameter by SQ . Therefore, the blur-SURE minimization 

is performed over the PSF parameters SQ and 入: 

1 2 2a 2 

mm — 
s,. N … �" N 

HsWs ,Ay - y 2 + i T V ( H s W s , A ) - a 2 (5.1) 

blur-SURE: e(s, A) 

where the notations of the convolution matrix Hs and the Wiener filtering WS,a indicate 

their dependences on the parameters s. Again, the solution pair (s,入)constitutes the 

best approximation of band-indicator, shown as Eq.(4.9). 

5.3 Examples of PSF parameter estimation 

We consider the following typical types of PSF. 

5.3.1 Gaussian kernel 

The most typical PSF form denoted by: 

hs(i,j) = C • exp ( - (5.2) 

with variance s2, where (i,j) denotes the 2-D coordinates, C is normalization coefficient 

such that E i , j hs ( i , j ) = 1. s is the unknown PSF parameter to be estimated. 

To experimentally justify Corollary 4.3, we use the exact Wiener filtering (Eqs.(4.3) 

and (4.7)) in the blur-MSE and blur-SURE minimizations, Figure 5.1 demonstrates 

that the estimated s = SQ with zero error. If we apply the approximated Wiener 

filtering, Figure 5.2 shows that: (1) the blur-SURE is a reliable estimator of blur-MSE, 

and the estimated s 紀 SQ, as shown in Figure 5.2-(a); (2) the band-indicator is well 

approximated with the optimal 入 and s obtained by minimizing the blur-SURE, as 

shown in Figure 5.2-(b). 
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(1) true So = 1.0 (2) true So = 2.0 (3) true So = 3.0 

F igure 5.1: The relationship between s and blur-SURE with exact Wiener filtering 

(Eqs.(4.3) and (4.7)) (also the blur-MSE as the oracle counterpart of e(s)): example 

of Cameraman blurred by true Gaussian kernel with standard deviations SQ = 

1.0, 2.0, 3.0 and noise variance a 2 = 1.0. 

(a-1) true So = 1.0 (a-2) true So = 2.0 (a-3) true So = 3.0 

standard deviation 

(b-1) opt. A = 5.43 X 10-4 (b-2) opt. A = 4.50 X 10 一 4 (b-3) opt. A = 6.55 X 10 4 

F igure 5.2: Example of Cameraman blurred by true Gaussian kernel with stan-

dard deviation SQ = 1.0, 2.0, 3.0 and noise variance a 2 = 1.0. Fig.(a) show the re-

lationship between s and blur-SURE (also the blur-MSE as the oracle counterpart 

of e(s, A)). Fig.(b) show the corresponding approximations of the band-indicator 

Eq.(4.9), with the estimated s and A, where the red dashed curve represents the 

exact UQ(W) and the blue curve is the approximated UH,a(W). 

5.3.2 Non-Gaussian PSF with scaling factor s 

It is also possible to estimate the scaling factor of any PSF-type function within the blur-

SURE framework, where the scaling factor controls the blur size. Here, we consider 

the following three typical non-Gaussian functions with scaling factor s, which are 

also circularly symmetric functions of radius r = \/i2 + j2, where (i, j ) is the 2-D 

coordinates: 
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exponential function given as: 

hs(r) = C • exp 
r \ 3 

s 
(5.3) 

jinc function1, which is frequently used for describing the optical diffraction [19], 

given as: 

hs(r) = C 
2Ji(r/s) ] 2 

r/s 

where Ji(.) is first-kind Bessel function of first-order [19]. 

(5.4) 

rational function given as: 

hs (r) = C 
i + ( D 4 

i 

(5.5) 

Figure 5.3 shows 

also yields highly 

where C is the normalization coefficient, such that E h s ( i , j ) = 1. 

that for the non-Gaussian kernel case, the blur-SURE minimization 

accurate estimate of the scaling factor s 紀 S0. 

5.4 Minimization via the approximated function A = A(S) 

Considering the blur-SURE minimization over two scalar variables 一 PSF parameter s 

and regularization parameter 入，the most straitforward way to perform the minimiza-

tion is to do exhaustive search over all the possible values of s and 入 in a certain range. 

If we take 50 sampling points for s and 入 to process the image of size 256 x 256, it costs 

22.55sec for 50 x 50 = 2500 times of computing blur-SURE2. Another possibility is to 

use alternating minimization of the blur-SURE between s and 入 . S o m e t i m e s , however, 

the convergence might be quite slow. 

Here, we introduce a more efficient method: establishing the relationship between 

s and 入，and inserting the function 入 = 入 ( s ) into the blur-SURE denoted by Eq.(5.1). 

Thus, the simplified minimization is performed over only one variable s without alter-

nation. 

Experimentally, we found that the function 入 = 入 ( s ) can be well approximated 

1 The terminology jinc comes from optics, due to the structural similarity to sine function, e.g. 

see [144]. 
2Hardware environment: Inter(R) Core(TM)2 Duo CPU E7400@2.80GHz, memory size: 3.25GB. 
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(a-1) exp. func t ion (5.3) (a-2) jinc f unc t ion (5.4) (a-3) ra t iona l func t ion (5.5) 

(b-1) opt. A = 7.91 x 10-4 

' 。 聽 

(b-2) opt. A = 5.43 x 10-4 

, ^ -咖 ct I 
I approx.l 

(b-3) opt. A 10 4 

P 
F igure 5.3: Example of Cameraman blurred by three blur functions with true 

scaling factor so = 2.0 and noise variance a 2 = 1.0. Fig.(a) show the relation-

ship between the scaling factor s and blur-SURE (also the blur-MSE as the oracle 

counterpart of e(s, A)). Fig.(b) show the corresponding approximations of the band-

indicator (4.9). 

using the following simple polynomial of order 2: 

-log1o 入 & Ois2 + a2S + as 

where the linear coefficients a1, a2 

of tentative Sk for k = 1, 2,..., K, 

the minimum blur-SURE for each 

and as can be obtained as follows. 

there always exists an optimal Xk 

Sk, that are fitted by Eq.(5.6). 

(5.6) 

Given a sequence 

corresponding to 

-log1o A1 " s F 
s1 1 

- l o g 1 o A2 
K, a1 

s2 
+a2 

s2 
+as 

1 

-log1o AK_ A _ _SK_ 1 

S1 82 1 

a 1 

a2 

a s 

(5.7) 

S2 

with the coefficients a G RS to be determined. The optimal coefficients a can be found 

by minimizing the least square error: 

min ||A - Sa|p a = ( S T S ) - 1 S T A (5.8) 
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(1) true SQ = 1.0 

-log 10 A 记 

2.50s2 - 0.83s + 0.69 

(2) true SQ = 2.0 

-logio A 记 

0.47s2 + 0.91s - 0.41 

(3) true SQ = 3.0 

-logio A ： 
0.19s2 + 0.98s - 0.95 

F igure 5.4: The function A = A ( s ) (blue curve) and its approxima 

example of Cameraman blurred by Gaussian functions with s0 = 1 

noise level a = 1. 0. 

ion (red curve): 

0, 2.0, 3.0 and 

Experimentally, we found that six sample-points (s^,\k) are sufficient to obtain the 

optimal a that produces the good approximation of the function 入 = 入 ( s ) . Figure 5.4 

shows the approximation of 入 = 入 ( s ) using Eq.(5.7), by taking six sample values of 

sk = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and the corresponding 入&, to obtain the polynomial 

coefficients a using Eq.(5.8). 

The algorithm is summarized as Algorithm 5.1. Figure 5.5 shows line search for s 

of the blur-SURE e(s,入(s)), where the approximated 入 = 入 ( s ) is given in Figure 5.4. 

Algor i thm 5.1: Algorithm by approximated function 入 = 入 ( s ) 

Input : e(s, A): objective function given as Eq.(5.1); 

Output : optimal 入 and s 

in 
1. take six sample-values = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 for k = 1, 2,..., 6; 

2. for each sk, find the optimal 入& corresponding to the minimum e: 

minAk e(sk,入k); 

3. use polynomial (5.7) to approximate 入 = 入 ( s ) , with the coefficients a 

obtained by (5.8); 

4. incorporate Eq.(5.6) into e(s, A), thus, e(s,入(s)) becomes a function of 

single variable s; 

5. minimize 入 ( s ) ) over s. 

end 
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(1) true s0 = 1.0 (2) true s0 = 2.0 (3) true s0 = 3.0 

F i g u r e 5.5: Minimization of e(s, A(s)) over s , where the function A = A(s) is ap-

proximated using Figure 5.4: example of Cameraman blurred by Gaussian functions 

with so = 1.0, 2.0, 3.0 and noise level a 2 = 1.0. 

5.5 Results and discussions 

5.5.1 Experimental setting 

We consider the following convolution kernels described above, with scaling factor s: 

• Gaussian function by Eq.(5.2); 

• Non-Gaussian functions: exponential function by Eq.(5.3), jinc function by 

Eq.(5.4), and rational function by Eq.(5.5). 

The blurred images are subsequently contaminated by i.i.d Gaussian noise with var-

ious variance a2 , which is measured by blur signal-to-noise ratio (BSNR), defined as 

BSNR = 10logi0 
||Hox-mean(Hox)||2 

.The test dataset contains six 8-bit images of size 

256 x 256 or 512 x 512 displayed in Figure 5.63, covering a wide range of natural im-

ages (people, animal, building, remote sensing, etc.). As emphasized above, our blind 

deconvolution approach consists of two steps: we firstly estimate the PSF parameter 

from the observed image by the blur-SURE minimization, and then use our recently 

proposed non-blind deconvolution algorithm [6] to perform deconvolution, with the es-

timated PSF. For the first step, we present our estimated PSF parameter, compared 

to the latent true parameter SQ; for the second step, the deconvolution performance 

is measured by PSNR defined as Eq.(1.11). Note that all the results reported in this 

section have been averaged over 10 noise realizations. 

3All 512 X 512 images are available at http://decsai.ugr.es/cvg/CG/base.htm 
3/ 

http://decsai.ugr.es/cvg/CG/base.htm
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(a) (b) (c) (d) (e) 

F i g u r e 5 . 6 : Original images. ( a ) Cameraman 256 X 256; (b) Lena 256 X 256; 

(c) House 256 X 256; (d) Bridge 512 X 512; (e) Mandrill 512 X 512; (f) California 

512 512. 

5.5.2 Non-Gaussian functions: estimation of scaling factor s 

Table 5.1 shows the estimation of scaling factor of the non-Gaussian blur functions by 

minimizing blur-SURE, where the italic numbers stand for the oracle results of mini-

mizing blur-MSE. We can see that: (1) the estimated s by the blur-SURE minimization 

is very close to the latent true so for a wide range of images and various noise levels; (2) 

the blur-SURE minimization yields very close estimated s to that by minimizing the 

blur-MSE, which demonstrates that blur-SURE is an accurate estimate of blur-MSE. 

true So so = 1.0 so = 2.0 so = 3.0 

BSNR (in dB) 40 30 20 10 40 30 20 10 40 30 20 10 

blur type exponen t i a l f unc t i on (5.3) 

Cameraman 
blur-SURE 1.01 1.02 1.03 1.05 1.97 2.00 2.03 2.04 2.99 2.95 2.96 3.03 

Cameraman 
blur-MSE 1.00 1.02 1.03 1.06 1.97 2.00 2.03 2.07 3.00 3.00 3.05 3.10 

Mandrill 
blur-SURE 0.99 1.00 1.02 0.98 2.00 1.99 1.98 1.95 3.00 3.00 2.97 2.94 

Mandrill 
blur-MSE 0.99 1.00 1.02 0.98 2.00 1.99 1.98 1.96 3.00 3.00 2.97 2.91 

California 
blur-SURE 1.00 1.02 1.05 1.08 1.99 2.01 2.07 2.07 3.00 3.00 3.02 3.03 

California 
blur-MSE 0.99 1.02 1.05 1.13 1.99 2.00 2.06 2.13 3.00 2.98 3.02 3.00 

blur type jinc f unc t ion (5.4) 

Cameraman 
blur-SURE 1.00 1.01 1.04 1.02 1.98 2.02 2.05 2.00 3.01 3.04 3.06 3.10 

Cameraman 
blur-MSE 1.00 1.00 1.04 1.10 2.00 2.00 2.05 2.06 2.98 3.02 3.04 3.12 

Mandrill 
blur-SURE 1.00 1.00 0.99 0.94 2.00 2.00 1.96 1.96 3.00 3.01 2.99 3.01 

Mandrill 
blur-MSE 1.00 1.00 0.99 0.92 1.99 2.00 1.98 1.95 3.00 3.01 3.01 2.98 

California 
blur-SURE 1.00 1.01 1.03 1.03 2.00 2.00 2.00 2.00 3.00 3.00 2.98 3.04 

California 
blur-MSE 1.00 1.01 1.03 1.07 2.00 2.01 2.00 2.00 3.00 3.00 3.01 3.02 

blur type ra t iona l f unc t i on (5.5) 

Cameraman 
blur-SURE 1.00 1.03 1.06 1.11 1.98 2.06 2.04 2.02 2.98 2.98 2.95 3.12 

Cameraman 
blur-MSE 1.00 1.03 1.06 1.13 1.98 2.03 2.07 2.05 2.98 3.04 3.01 3.15 

Mandrill 
blur-SURE 0.99 1.00 0.99 0.94 1.99 1.99 1.94 1.92 3.01 3.00 2.93 2.91 

Mandrill 
blur-MSE 0.99 1.00 0.99 0.94 1.99 1.98 1.90 1.91 3.01 3.00 2.93 2.91 

California 
blur-SURE 1.00 1.04 1.07 1.11 1.97 2.06 2.10 2.12 2.99 2.98 3.02 3.02 

California 
blur-MSE 1.00 1.04 1.10 1.15 1.97 2.02 2.10 2.10 2.99 2.98 3.00 3.00 

T a b l e 5 . 

BSNR 

Estimation of scaling factor s of non-Gaussian functions under different 
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5.5.3 Gaussian function: estimation of standard deviation s 

Tables 5.2, 5.3 and 5.4 report the estimated s of Gaussian blur under three true 

so = 1.0, 2.0, 3.0. We also compare our estimation results with other state-of-the-

art methods, including APEX [3], Wiener iterative method [10] and Richardson-Lucy 

method [11]. Note that [138; 140; 141] try to estimate the local blur variance by detect-

ing and measuring the edges, and obtain the focus map, where each pixel is assigned 

with quite different estimated blur variance. It is difficult to obtain a number to rep-

resent the blurriness of the whole image from the focus map. Hence, we do not include 

their results here. From Tables 5.2, 5.3 and 5.4, we can see that: (1) our approach 

generally yields more accurate estimation of blur size s than other methods, in terms 

of error defined as e = |s - so|; (2) minimizations of blur-SURE and blur-MSE produce 

very similar estimation results. 

Note that PSF estimation is used for non-blind deconvolution step. It is also impor-

tant to study the influence of the PSF accuracy upon the deconvolution performance. 

BSNR (in dB) 40 30 20 10 40 30 20 10 40 30 20 10 

Image Cameraman 256 x 256 Lena 256 x 256 House 256 x 256 

A P E X [3] 0.91 0.91 0.91 0.91 1.23 1.21 1.17 1.16 1.28 1.28 1.28 1.23 

Wiener iterative [10] 1.08 1.09 0.75 0.68 1.17 1.10 0.85 0.66 1.39 1.27 0.93 0.66 

Richardson-Lucy [11] 0.87 0.66 一 一 0.93 0.73 一 一 0.95 0.77 一 一 

blur-SURE 1.00 1.06 1.07 1.05 1.03 1.02 1.06 1.10 0.98 0.99 1.02 1.17 

blur-MSE 1.00 1.06 1.04 1.13 1.04 1.01 1.07 1.12 0.94 0.99 1.03 1.26 

Image Bridge 512 x 512 Mandrill 512 x 512 California 512 x 512 

A P E X [3] 1.14 1.09 0.98 0.77 1.14 1.14 1.03 0.85 1.57 0.98 0.91 0.77 

Wiener iterative [10] 0.89 0.81 0.64 0.50 0.85 0.81 0.69 0.52 0.85 0.79 0.62 0.51 

Richardson-Lucy [11] 0.89 0.78 0.68 一 0.85 0.78 一 一 0.78 0.77 0.63 一 

blur-SURE 1.01 1.02 1.05 1.10 1.00 1.01 1.00 0.95 1.00 1.07 1.07 1.11 

blur-MSE 1.01 1.03 1.05 1.10 1.00 1.01 1.00 0.94 1.00 1.08 1.07 1.11 

Table 5.2: Estimation of std s of Gaussian function under true so = 1.0 and BSNR 

5.5.4 Comparison of deconvolution performance with the state-of-the-art 

We use the SURE-LET algorithm [6] to perform deconvolution with the blur-SURE 

estimated PSF. We compare our results with other state-of-the-art methods. APEX [3] 

use SECB method [2; 3] to perform deconvolution. SeDDaRA has two versions: with 

constant parameter [7] and with frequency-dependent parameter [4]. For the first ver-

sion, we use an approach proposed in [8] to optimize the result, denoted by [7]+ [8]. 

For the second version, we use the unknown original image x to obtain the involved 
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BSNR (in dB) 40 30 20 10 40 30 20 10 40 30 20 10 

Image Cameraman 256 x 256 Lena 256 x 256 House 256 x 256 

A P E X [3] 1.94 1.97 1.91 1.65 2.12 2.08 2.02 1.76 2.15 2.15 2.05 1.76 

Wiener iterative [10] 2.02 1.97 1.59 0.90 2.16 2.17 1.86 0.83 2.29 2.29 1.92 0.87 

Richardson-Lucy [11] 1.87 1.50 0.83 — 1.94 1.81 0.70 — 1.91 1.85 0.93 — 

blur-SURE 2.08 1.99 1.97 2.09 2.07 2.05 2.04 2.20 2.06 2.02 2.12 2.18 

blur-MSE 2.04 2.00 2.09 2.15 2.11 2.13 2.11 2.29 2.13 2.10 2.18 2.27 

Image Bridge 512 x 512 Mandrill 512 x 512 California 512 x 512 

A P E X [3] 1.84 1.80 1.72 1.61 1.98 1.98 1.84 1.51 2.60 2.52 2.35 2.12 

Wiener iterative [10] 1.90 1.78 1.06 0.92 1.90 1.90 1.35 0.94 1.90 1.66 1.02 0.84 

Richardson-Lucy [11] 1.81 1.79 0.62 — 2.00 1.92 1.16 — 1.86 1.65 1.44 — 

blur-SURE 2.02 2.02 2.06 2.09 1.97 1.97 1.93 1.90 2.05 2.06 2.06 2.01 

blur-MSE 2.02 2.02 2.06 2.07 1.97 1.96 1.93 1.91 2.05 2.05 2.05 2.00 

T a b l e 5 . 3 : Estimation of std s of Gaussian function under true ； so = 2.0 and BSNR 

BSNR (in dB) 40 30 20 10 40 30 20 10 40 30 20 10 

Image Lena 256 x 256 House 256 x 256 

A P E X [3] 2.82 2.64 3.27 3.16 2.91 2.72 2.37 2.26 2.91 2.72 2.40 2.26 

Wiener iterative [10] 3.21 3.21 3.08 1.77 3.21 3.31 3.33 2.44 3.21 3.40 3.35 2.50 

Richardson-Lucy [11] 2.97 2.84 — — 2.99 2.84 1.78 — 2.97 2.84 1.96 — 

blur-SURE 2.95 3.09 3.04 3.23 2.93 3.15 3.28 3.25 3.03 3.22 3.16 3.09 

blur-MSE 3.02 3.11 3.20 3.29 3.07 3.12 3.31 3.29 3.17 3.12 3.15 3.14 

Image Bridge 512 x 512 Mandrill 512 x 512 California 512 x 512 

A P E X [3] 2.79 2.61 3.14 3.07 2.86 2.69 2.45 3.10 3.36 3.30 3.17 3.05 

Wiener iterative [10] 3.19 3.19 2.69 1.83 3.19 3.19 3.04 1.68 3.19 3.19 2.58 1.75 

Richardson-Lucy [11] 2.94 2.56 1.48 — 2.99 2.89 2.21 — 2.94 2.87 2.14 — 

blur-SURE 3.04 3.01 3.07 3.14 2.92 2.93 2.94 2.96 3.04 3.05 3.01 2.93 

blur-MSE 3.04 3.04 3.12 3.22 2.92 2.92 2.93 2.95 3.03 3.04 2.99 3.01 

T a b l e 5 . 4 : Estimation of std s of Gaussian function under tn 
s0 3.0 and BSNR 

frequency-dependent parameter to optimize [4] in synthetic experiments, denoted by 

oracle SeDDaRA [4]. Molina et al. work [5] has BR and BD modes, for which we use 

the parameters as recommended in this paper. Besides, we also compare our results 

with two multiplicative iterative algorithms [9; 12]. The deconvolution performance is 

measured by PSNR. We experimentally found that the PSNR performances of SeD-

DaRA [4; 7] and multiplicative iterative algorithms [9; 12] are poor, but the visual 

quality is reasonably good. For this reason, we linearly rescale the restored image a to 

ax + b, where a and b optimize the PSNR, i.e. mina,6 ||aX + b - x||2. 

From Tables 5.5 and 5.6, we can observe that our proposed method outperforms the 

other methods on average. By comparing our proposed method with non-blind SURE-

LET algorithm [6], we would also like to note that in most cases, our blind Gaussian 

deconvolution could achieve the PSNR loss within 0.1dB, compared to the results of 

non-blind algorithm [6] (reported in italic number in Tables 5.5 and 5.6, where the 

PSF is exactly known. Figures 5.7 and 5.8 show two visual comparisons between the 
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existing methods. We can see that: (1) our resulting restorations are shaper and most 

of the blur is removed; (2) the proposed method achieves similar visual quality with 

non-blind algorithm [6], shown in Figure 5.7. 

BSNR (in dB) 40 30 20 10 40 30 20 10 

Image Cameraman 256 x 256 Lena 256 x 256 

APEX with SECB [2; 3] 30.13 28.06 25.68 _•_• 77 29.44 30.08 28.97 

Wiener iterative 10 28.29 26.99 24.11 22.13 28.51 29.38 26.58 23.61 

R-L iterative [11] 28.90 25.04 21.14 12.24 30.62 25.75 23.75 17.49 

SeDDaRA 
[7]+ [8] 26.84 26.61 25.30 21.15 31.33 30.91 28.91 23.92 

SeDDaRA oracle 4 30.99 28.06 25.63 23.17 36.03 32.78 29.78 26.86 

[5] 
BR mode 30.17 27.68 25.84 23.10 35.33 32.77 30.15 26.86 

[5] BD mode 30.42 27.79 25.65 17.87 35.07 32.53 29.84 22.65 

sparse prior 92 ]+ [94 25.64 15.72 12.44 12.27 29.77 16.58 14.99 14.65 

MIA [12] 28.33 27.74 25.38 21.06 32.65 31.56 28.96 23.82 

AMIA [9] 29.55 28.85 25.44 21.06 34.70 33.41 29.01 23.82 

Xu [145] 26.70 26.52 22.55 一 27.67 27.73 25.23 一 

blur-SURE 
with SURE-LET [6] 33.10 30.40 27.87 25.35 37.70 34.97 31.90 28.66 

blur-SURE 
non-blind [6] 33.10 30.49 27.91 25.35 37.79 34.97 31.95 28.66 

Image House 256 x 256 Bridge 512 x 512 

APEX with SECB [2; 3] 28.91 30.24 29.49 」，89 28.63 28.34 26.15 22.36 

Wiener iterative 10] 24.63 28.95 27.66 23.91 27.79 25.75 23.84 21.25 

R-L iterative [11] 35.87 25.50 24.13 17.65 18.48 13.60 13.47 14.48 

SeDDaRA 
[7]+ [8] 32.39 32.00 29.92 24.40 26.86 26.68 25.61 21.97 

SeDDaRA oracle 4 38.20 34.50 31.36 28.51 30.64 27.80 25.50 23.31 

[5] 
BR mode 32.86 29.64 28.20 27.98 29.70 27.91 25.94 23.15 

[5] 
BD mode 33.96 31.45 30.76 21.39 29.16 27.71 25.74 18.33 

sparse prior 92 ]+ [94 27.90 19.24 15.94 14.88 27.78 16.19 13.49 13.40 

MIA [12] 33.93 32.76 29.97 24.29 27.73 27.43 25.75 21.95 

AMIA [9] 35.91 34.36 29.99 24.29 28.20 28.00 26.17 21.95 

Xu 145] 27.46 27.43 25.06 一 26.76 26.55 24.04 一 

blur-SURE 
with SURE-LET [6] 38.57 36.17 33.33 30.62 31.68 29.35 27.20 24.83 

blur-SURE 
non-blind [6] 38.70 36.21 33.33 30.74 31.70 29.38 27.22 24.84 

Image Mandrill 512 x 512 California 512 x 512 

APEX with SECB 2; 3 26.79 26.17 25.08 22.42 18.96 28.10 25.34 J|8| 

Wiener iterative 10] 26.67 24.90 23.04 21.18 27.11 25.13 23.13 20.57 

R-L iterative [11] 15.62 23.70 22.47 18.00 13.01 12.96 13.10 12.95 

SeDDaRA [7]+ [8] 24.66 24.54 23.91 21.97 25.71 25.52 24.44 21.13 
SeDDaRA oracle 4 30.28 26.87 24.17 21.94 30.39 27.26 24.71 22.23 

[5] 
BR mode 27.32 25.77 24.10 21.92 29.05 27.05 24.82 21.57 

[5] 
BD mode 26.22 24.26 23.98 19.50 28.33 26.73 24.61 16.76 

sparse prior 92 ]+ [94 20.15 21.81 16.85 15 6 2 21.43 19.56 13.63 12.97 

MIA [12] 25.14 25.05 24.18 21.97 26.55 26.29 24.66 21.12 

AMIA [9] 25.39 25.34 24.40 21.97 27.11 26.94 25.18 21.12 

Xu 145] 24.52 24.43 23.97 21.95 26.07 25.88 23.49 一 

blur-SURE 
with SURE-LET [6] 30.68 27.86 25.49 23.20 31.43 28.63 26.16 23.60 

blur-SURE 
non-blind [6] 30.68 27.87 25.49 23.22 31.43 28.73 26.25 23.61 

T a b l e 5.5: 

BSNR 

PSNR (in dB) of Gaussian deconvolution under true so = 1.0 and 
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BSNR (in dB) 40 30 20 10 40 30 20 10 

Image Cameraman 256 x 2 >56 Lena 256 x 256 

APEX with SECB 2; 3 25.60 24.72 23.78 22.41 29.54 28.65 27.35 25.56 

Wiener ite rati ve [10] 23.21 22.61 20.77 16.73 24.94 24.74 23.45 17.94 

R-L iter itive [11] 24.96 21.92 12.26 12.30 29.76 27.52 19.89 17.18 

SeDDaRA 
7 + 8 23.15 23.00 22.26 19.79 26.69 26.37 25.25 22.43 

SeDDaRA 
oracle [4] 24.47 23.00 21.86 20.72 28.59 26.97 25.54 24.01 

[5] 
BR mode 22.54 23.74 22.96 21.71 25.52 27.15 26.29 24.77 

[5] BD mode 23.86 23.39 22.38 17.85 27.04 26.76 25.77 21.87 

sparse prior [92]+ [94] 23.90 16.60 12.61 12.30 16.72 19.53 15.19 14.68 

MIA [12] 22.79 22.68 22.15 19.72 25.86 25.73 25.08 22.36 

AMIA [9] 23.30 23.08 22.15 19.72 26.53 26.26 25.09 22.36 

Xu 145 23.71 23.78 19.82 一 25.44 24.52 23.23 一 

blur-SURE 
with SURE-LET [6] 26.19 25.44 24.44 23.20 30.40 29.41 28.01 26.33 

blur-SURE 
non-blind [6] 26.28 25.45 24.47 23.22 30.59 29.47 28.01 26.40 

Image House 256 x 256 Bridge 5 12 x 512 

APEX with SECB 2; 3 30.70 29.97 28.84 J6 72 25.59 24.84 23.95 22.61 

Wiener ite rati ve [10] 24.87 25.02 24.02 18.23 22.75 21.95 18.58 17.11 

R-L : iter tive [11] 30.72 28.11 19.61 17.42 25.18 24.84 19.77 15.90 

SeDDaRA [7]+ [8] 27.84 27.57 26.37 23.10 23.39 23.27 22.67 20.53 
SeDDaRA 

oracle [4] 30.23 28.63 27.23 25.66 24.52 23.17 22.10 21.05 

[5] 
BR mode 26.78 29.30 27.99 25.84 22.86 23.67 23.02 21.74 

[5] BD mode 26.78 28.60 27.04 21.23 22.86 23.37 22.64 18.08 

sparse prior [92]+ [94] 20.15 19.24 15.24 II 89 23.91 16.60 13.56 13.42 

MIA [12] 27.16 27.01 26.21 23.01 23.10 23.02 22.57 20.51 

AMIA [9] 27.89 27.54 26.22 23.01 23.47 23.41 22.65 20.51 

Xu 145 25.29 25.01 22.48 一 23.78 23.63 21.08 一 

blur-SURE 
with SURE-LET [6] 31.85 31.06 29.75 28.10 26.09 25.29 24.31 23.12 

blur-SURE 
non-blind [6] 31.97 31.08 29.89 28.21 26.10 25.29 24.31 23.12 

Image Mandrill 512 x 512 California 512 x 512 

APEX with SECB 2; 3 23.27 22.64 22.00 21.17 20.37 21.65 21.84 21.03 

Wiener ite rati ve [10] 21.57 21.26 19.19 17.43 22.12 20.53 17.61 16.43 

R-L : iter tive [11] 23.39 22.71 19.17 17.40 23.59 22.94 13.03 13.10 

SeDDaRA 
[7]+ [8] 21.56 21.48 21.17 20.22 21.72 21.58 20.98 19.25 

SeDDaRA oracle [4] 22.65 21.26 20.21 19.42 23.38 21.85 20.63 19.46 

[5] 
BR mode 21.14 21.59 21.23 20.56 20.99 21.92 21.26 19.95 

[5] BD mode 21.14 21.46 21.07 19.26 20.99 21.60 20.89 17.22 

sparse prior [92]+ [94] 21.78 19.42 16.02 15.63 22.63 16.98 13.51 12.99 

MIA [12 21.29 21.26 21.07 20.22 21.24 21.18 20.81 19.24 

AMIA [9] 21.52 21.50 21.15 20.22 21.65 21.60 20.94 19.24 

Xu 145 21.80 21.77 21.29 16 70 22.42 22.33 20.14 一 

blur-SURE 
with SURE-LET [6] 23.56 22.87 22.12 21.30 24.72 23.83 22.76 21.42 

blur-SURE 
no n-blind [ 6 23.59 22.88 22.14 21.31 24.81 23.88 22.76 21.42 

Tab l e 5. 

BSNR 

PSNR (in dB) of Gaussian deconvolution under true so = 2.0 and 

5.5.5 Application to real images 

In our last set of experiments, the method is applied to real images: 

• Astronomical image: Jupiter, shown in Figure 5.9; 

• Text image: Text, shown in Figure 5.10. 
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Lena blurred by SQ 

BSNR = 30dB 

APEX-SECB [2; 3] 

PSNR = 26.16dB 

Oracle SeDDaRA [4] 

PSNR = 24.71dB 

B R mode of [5] 

PSNR = 24.7MB 

blur-SURE with SURE-LET 

PSNR = 26.83dB 

non-blind SURE-LET [6] 

P S N R = 26.96dB • • • 
F igure 5.7: Restoration of Lena: visual comparison between APEX-SECB [2; 3], 

oracle SeDDaRA [4], Molina et al. work [5], our proposed blur-SURE method, and 

non-blind SURE-LET method [6]. (Note that the blurred PSNR = 23.20dB.) 

• Biosample image: Biosample, shown in Figure 5.11. 

There are no exact expressions of the PSFs for the images. However, as suggested 

in [5; 17; 88; 101], the PSF of astronomical imaging can be well approximated by 

Gaussian function. Figure 5.9 shows the restored images by various state-of-the-art 

methods. Note that for Wiener iterative method [10] and MIA [12], we optimized 

the initial guess according to the visual quality. We can easily see that our proposed 

approach have restored a great amount of clarity, especially, revealed the clear stripes 

on Jupiter. 

The Text images with different blurriness were captured by digital camera, due to 

out-of-focus. The out-of-focus blur can also be approximated by Gaussian function. 

Figure 5.10 shows the visual comparison of the restored images by various deblurring 

algorithms. We can see our results are better than the works of [5] and [145]: especially 

for the second and third cases, it is difficult to recognize most characters from the 



BD mode of [5] 

PSNR = 30.76dB 

AMIA [9] 

PSNR = 29.99dB 

blur-SURE with SURE-LET 

PSNR = 33.33dB 

F igure 5.8: Restoration of House: visual comparison between SeDDaRA [7; 8], 

oracle SeDDaRA [4], Molina et al. work [5], AMIA [9] and our proposed blur-SURE 

method. (Note that the blurred PSNR = 29.81dB.) 

observed images, whereas most characters become recognizable in our restored images. 

The Biosample images were recorded by confocal microscopy. As suggested in [105; 

136], the PSF of microscopy imaging can be well approximated by Gaussian function. 

Figure 5.11 shows the restored images. For the biologists, the first and third restorations 

have the big visual improvements. 
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House blurred by s0 

BSNR = 20dB 

1.0 opt. SeDDaRA [7; 8] 

PSNR = 29.92dB 

Oracle SeDDaRA [4] 

PSNR = 31.36dB 



Observed Jupiter Wiener iteration [10] SeDDaRA [7] 

R-L iteration [11] 

F igure 5.9: Restoration of Jupiter: visual comparison between Wiener iterative 

method [10], R-L iterative method [11], SeDDaRA [7], Molina et al. work [5], MIA 

[12], APEX-SECB [2; 3] and our proposed blur-SURE method. The estimated noise 

standard deviation is a = 4.68 by using MAD (median absolute deviation) [13], the 

estimated standard deviation of Gaussian blur is s = 2.30 and s = 2.41, by APEX 

and blur-SURE, respectively. 

.6 Conclusion 

In this chapter, we exemplified the blur-SURE framework with estimating scaling factor 

involved in the function forms of PSF, most typically, the variance of Gaussian blur. 
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observed text 1 observed text 2 observed text 3 

restored 1 by [5] restored 2 by [5] restored 3 by [5] 

restored 1 by [145] restored 2 by [145] restored 3 by [145] 

restored 1 by blur-SURE 

Sitcfi a ivond 
restored 2 by blur-SURE restored 3 by blur-SURE 

Richard Feynman - U 
possessed an unque 
gift for telling the ex I 
In this collection of sf 

frnm htg tn 

Figure 5.10: Restorations of Text. 

We also proposed an efficient minimization method to perform the blur-SURE mini-

mization, by expressing the regularization paramter A in terms of the PSF paramter. 
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(1-a) observed biosample 1 (1-b) blur-SURE minimization (1-c) restored 1 

F igure 5.11: Restorations of Biosample. 

Results obtained show that the proposed method has significant improvement of 

quality both numerically and visually. The examples of the blur kernel function listed 

in this chapter are but the exemplifications of blur-SURE framework for PSF estima-

tion problem. It is worth noting that SURE-type minimization itself does not specify 

any particular parametric form of PSF. There is huge potential to develop specific algo-

rithms for various application, e.g. fluorescence microscopy [102; 105; 136] and motion 

deblurring [90; 124; 129; 130], based on the SURE-type principle. 



Chapter 6 

The Blur-SURE Approach to Motion Deblurring 

6.1 Introduction 

6.1.1 Background of motion deblurring 

As one of the most common blur types, motion blur frequently occurs in real applica-

tions, e.g. camera shake [90; 91] and sports photography [64], when there is relative 

motion between the camera and the object being captured. Hence, motion deblur-

ring, which aims at recovering a visually sharp image from a single, motion-blurred 

photograph, has attracted considerable attention in recent years. If one assumes that 

the underlying unknown blur kernel, describing the motion blur, is shift-invariant, the 

problem reduces to that of image blind deconvolution. 

As same as the discussion in Chapter 4, we tackle the motion deblurring problem 

by first estimating the kernel, and then performing non-blind deconvolution with the 

estimated blur kernel [90; 92; 127-130], where the kernel estimation is essential to blind 

deconvolution. 

6.1.2 Related work: parametric estimation of motion blur 

For simplicity, motion blur is usually considered as one-dimensional, i.e. unidirectional 

with constant speed. Thus, motion blur is completely characterized by blur orientation 

and blur length. In this context, the blur identification reduces to estimate the two blur 

parameters. Refer to [97] for a systematic review of parametric estimation of motion 

blur. 

[98; 106] uses Radon transform taken along different angles to detect the motion 

direction. [97] applies the steerable filter [146] to the power spectrum of the blurred 

image, and then, detect the maximum response value. [97; 106; 147] compute the 2-D 
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cepstrum of the blurred image to find the two pronounced negative peaks in the cep-

strum. The cepstral analysis has been further studied by [148-150], based on image 

gradients. Recently, more models and criteria for kernel estimation have been proposed, 

e.g. a-motion blur constraint model [151] and generalized cross-validation (GCV) crite-

rion [152]. [153; 154] employ a high-pass filter (e.g. derivative operation) to the blurred 

image, and estimate the blur parameters based on the statistics of the image gradients. 

6.1.3 Outline of this chapter 

Taking linear motion blur for example, this chapter will exemplify and demonstrate the 

blur-SURE framework proposed in Chapter 4, to estimate the blur direction and blur 

length, in the following lines: 

• to show the closeness of the blur-SURE to blur-MSE (as its oracle version), in 

the context of motion deblurring; 

• to demonstrate the high accuracy of the estimation of blur direction and blur 

length, under various noise levels; 

• to develop a fast algorithm of the blur-SURE minimization, in the context of 

motion deblurring. 

6.2 Parametric estimation of motion blur: problem formulation 

6.2.1 Parametrized form of linear motion blur 

If the motion blur is linearly constant, the blur kernel h(u, v) can be expressed as [97; 

106]: 

, L if Vu2 + v2 < L and u = - tan 9 
h ( u , v ) H < 2 v (6.1) 

0 otherwise 

with two key parameters: (1) blur length L measured by the pixel number; (2) blur 

orientation 9 evaluated by the angle w.r.t. the horizontal direction in degrees. Thus, 

the blur identification problem boils down to estimating the two parameters: L and 9, 

from the observation y [97; 98; 106; 149]. 

6.2.2 The blur-SURE framework to motion blur estimation 

Recalling Eq.(6.1), we denote the motion-blur kernel with blur length L and angle 9 

by , and the corresponding convolution matrix by HL,^. Thus, we formulate the 
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parameters to 

be estimated 
approximated 

Wiener filtering 
blur-SURE 

minimization 

Stage 1: kernel estimation (Part II) 

perform non-blind 
deconvolution 
with estimated 

HA 

Stage 2: (Part I) 
Deconvolution 

Figure 6.1: The procedure of motion blur estimation: joint minimization of the 

blur-SURE over L , 0 and A, as shown in (6.2). 

motion blur estimation as the following joint minimization problem: 

mm -— 
LAX N 

2 2 a 2  

HL,OWL,o,AY - y II2 + ITR(HL,oWL,O,A) - A (6.2) 

blur-SURE: €(L,0,A) 

over three decision variables: L, 0 and 入,where the notations are explained in Table 

6.1. Figure 6.1 summarizes the blur-SURE approach to parametric estimation of motion 

blur. 

Expressions Exact Approximation 

Notations Wiener filtering 

Matrix W L , 9 = ( H T , , H L , 9 + H T , , S - 1 ) - 1 H T , , W 认 A = ( H T , , H L , 9 + A R ) - 1 H T , , 

Frequency W ( ) HL’0(W) 
W L , , , A ( ^ ) = |Hl,(H)’|2+A IMI2 

Notations Frequency-band indicator 

Matrix U L , , = H L , , ( H T , , H L , , + HT , ,CH-TT S - 1 ) - 1 H T , , UL,9,A = H L , , ( H T , , H L , , + A R ) - 1 H T , , 

Frequency 丁丁 / X 
U l 々 州 = ( 多 M U L 凡 剩 = I H L I (。)|2+A|M|2 

Table 6.1: Notations of exact and approximated Wiener filterings and frequency-

band indicators, in the context of motion deblurring. 

6.3 An example of the blur-SURE approach to motion blur estimation 

Figure 6.2 shows an example of minimizing blur-SURE to estimate the blur direction 

and length. Figure 6.2-(3-4) show that 

• the very accurate estimates of 0 and L by minimizing the blur-SURE, as shown 

in Corollary 4.3; 

• the closeness of blur-SURE to blur-MSE, which indicates that blur-SURE is a 

reliable estimator of blur-MSE, as stated in Theorem 4.2. 

We can see that the blur-SURE minimization shown in Eq.(6.2) may have multiple 

local minima of blur length L. However, it does not affect the validity of the conclusion 

1 2 
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(1) blur kernel (2) blurred image (3) blur-SURE vs. 6 (4) blur-SURE vs. L 

L = 1 5 

(5) exact (6) approx. (7) 1-D slice of band-indicator 
band-indicator band-indicator motion direction perpendicular 

ex 

F igure 6.2: Example of Cameraman, blurred by linear motion kernel with 60 = 50° 

and Lo = 15pixels, corrupted by noise with BSNR=30dB. 

that the global minimum is always consistent with the latent true value. To show 

the validity of Corollary 4.3, Figure 6.2-(5-6) demonstrate that the band-indicator 

computed by the estimated L, 6 and 入 is a good approximation to exact one. Figure 6.2-

(7) clearly shows the 1-D curve comparisons, by selecting two representative directions 

from the 2-D images (5-6). 

Addit ional remark From the discussions mentioned above, we found many similari-

ties between the proposed blur-SURE and GCV criterion introduced in [152]: (1) both 

blur-SURE and GCV deals only with the magnitude of Fourier coefficients, whereas the 

phase cannot be identified; (2) both of them may have many local minima. However, 

the proposed blur-SURE is easier to minimize than GCV, as it has a smaller number 

of parameters need to be optimized than GCV. Also, it has been justified that the 

global minimum of blur-SURE corresponds to the accurate estimates of the parame-

ters. Therefore, we need to investigate and develop a safe and efficient minimization 

algorithm, which guarantees that the global minimum is reached at a faster speed. 

6.4 Implementation issues 

For motion blur estimation, we experimentally obtained the following observations, 

which may dramatically simplify the minimization procedure of Eq.(6.2). 
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(1) L = 5 pixels, A = 0.1 (2) L = 20 pixels, A (3) L = 30 pixels, A = 1 

motion directoin (in degrees) 

Figure 6.3: Example of Cameraman blurred by true motion kernel with 9Q 

50 °and LQ = 15 pixels, corrupted by noise with BSNR=30dB. 

6.4.1 Estimation of motion direction 

Firstly, we found that the accuracy of direction estimation does not strongly depend 

on the tentative values of L and A. In other words, the blur-SURE minimization is 

significantly more sensitive to 9 than to L and A, and therefore, this criterion is not 

demanding in finding "optimal" L and 入，at the first stage of estimating the angle 9. 

It is probably because that the band-indicator of Eq.(4.8) is prominently directional 

in Fourier domain, as shown in Figure 6.2-(5-6). Thus, 9, as the parameter describing 

the directionality, is the most dominant factor of the band-indicator. Consequently, 

the blur-SURE minimization behaves more like finding 9 to match the two directional 

band-indicators (i.e. both sides of Eq.(4.8)), rather than optimizing L and A. 

Figure 6.3 shows three examples to empirically verify the first claim: minimizing 

blur-SURE could always accurately detect the blur angle, even with arbitrary (non-

optimal) values of L and A. 

6.4.2 Estimation of blur length 

It is highly preferred to estimate the blur direction first, and then, use the estimated 9 

to estimate blur length. At the second stage, we have to perform joint minimization of 

both L and A, since unlike 9, the tentative value of 入 affects the length estimation. The 

exhaustive search for L can be performed as follows: considering a certain range of L, 

for each tentative value of L, we can find an optimal 入 by minimizing the blur-SURE. 

Thus, the optimal function 入 = 入 ( L ) is established, and inserted into the blur-SURE. 

Finally, we minimize the blur-SURE over L only. Figure 6.4 shows the three examples 

of minimizing the blur-SURE over L (line search), incorporating the function 入 = 入 ( L ) . 
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(1) Lo = 15, 60 = 50° 

^ - M 

(2) Lo = 9, 60 = 10° 

F igure 6.4: Example of C 

with BSNR=30dB. 

(3) Lo = 30, 60 = 140° 

^ - M 

L = 30 

blur length (in pixels) 

blurred by motion kernel, corrupted by noise 

6. Short summary 

Based on all the discussions mentioned above, the blur-SURE minimization is summa-

rized as the following Algorithm 6.1. 

Algor i thm 6.1: Blur-SURE Minimization Algorithm For Motion Kernel Estima-

tion 

Input : e(L, 6, A) 一 objective function given as Eq.(6.2); 

Outpu t : optimal 6 and L 

begin 

1. line search for optimal 6 = arg min^ e(L, A), with tentative L = 20 and 

入 = 0 . 1 ; 

2. exhaustive search for optimal L and A, with estimated 6: 

begin 

1. take sample-values Lk within a certain range of L, for k = 1, 2,..., K； 

2. for each Lk, find the optimal 入& = argmin^ e(6, Lk), and establish 

入 = A ( L ) ; 

3. incorporate 入 = 入 ⑷ into e(L,入)； 

4. line search for optimal L = arg min^ e(L,入(L)). 
end 

end 

6.5 Results and discussions 

6.5.1 Experimental setting 

We consider the following two motion blur kernels: 

• 6o = 40°, Lo = 15 pixels; 

• 6o = 140°, Lo = 35 pixels; 
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The blurred images are subsequently contaminated by i.i.d Gaussian noise with various 

variance a2 , which is measured by blur signal-to-noise ratio (BSNR), defined as BSNR = 

101ogi。(llH�x-me二(H�x)ll2). We use Cameraman, House and Mandrill shown in Figure 

5.6 as the test images. 

6.5.2 Estimations of blur direction and length 

Now, we compare our estimated kernel parameters to that 

methods, including Cepstral method [150], Radon method 

method [98]. The estimation performance is evaluated by 

and eL = L - Lo. 

Tables 6.2 and 6.3 show the comparisons. We can see that: (1) the proposed blur-

SURE method consistently outperforms the other methods, and is quite robust to high 

noise levels; (2) the results by the blur-MSE minimization is exactly the same with that 

by minimizing blur-SURE. 

by other state-of-the-art 

[97] and refined Radon 

the error: ê  = Q - 0o 

BSNR (in dB) 40 30 20 10 40 30 20 10 40 30 20 10 

Image Cameraman House Mandrill 

blur type Qo =40° , Lo = 15 pixels 

Cepstral [150] -1 -1 -5 -9 5 5 0 -4 -5 3 -10 

Radon [97] 3 5 9 11 3 -4 -10 -15 2 3 -8 -12 

refined Radon [98] 1 1 5 6 -1 -1 -2 -13 1 0 -2 -4 

blur-SURE 1 1 1 0 1 1 0 -1 -1 -1 -1 

blur-MSE 1 1 1 0 1 1 0 -1 -1 -1 -1 

blur type Qo =140°, Lo = 35 pixels 

Cepstral [150] 1° 1 5 -5 3 4 3 -11 2 2 2 -4 

Radon [97] -4 -5 -5 -6 -3 -5 -6 0 -1 -3 -4 

refined Radon [98] 0 0 0 1 0 0 1 1 0 0 0 0 

blur-SURE 0 0 0 0 1 1 1 0 0 0 0 

blur-MSE 0 0 0 0 1 1 1 0 0 0 0 0 

Table 6.2: Estimation error of blur orientation Q under different BSNR 

6.5.3 Motion deblurring: the synthetic experiments 

In this subsection, we present the motion deblurring results and compare them with 

the following state-of-the-art methods: J.Oliveira, et al,s work [98], Taeg Cho, et al,s 

work [155], Sungh Cho, et al's work [129], Q.Shan, et als work [91] and L.Xu, et als 

work [145]. For [91; 129; 145; 155], we use the parameters by default or by the authors' 
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B S N R (in dB) 40 30 20 10 40 30 20 10 40 30 20 10 

Image Cameraman House Mandrill 

blur type 6o = 4 0 。， L 0 = -15 pixels 

Cepstral [150] 1 1 1 7 2 2 1 4 1 0 1 23 

[98] -2 -2 -2 -2 -2 -2 -2 0 -2 -2 -2 -1 

blur-SURE 0 0 0 0 0 0 0 -1 0 0 0 0 

blur-MSE 0 0 0 0 0 0 0 -1 0 0 0 0 

blur type 6o: =140° , Lo = 35 pixels 

Cepstral [150] -7 -7 -8 -9 -6 -6 -16 -12 -2 -2 -2 -6 

[98] -2 -2 -2 -2 -2 -2 -2 -2 -5 -5 -5 -5 

blur-SURE 0 0 0 0 0 0 0 0 0 0 0 0 

blur-MSE 0 0 0 0 0 0 0 0 0 0 0 0 

Table 6.3: Estimation of blur length L under different BSNR 

recommendations. For [98] and our work (denoted by 'blur-SURE' in Table 6.4), we 

perform motion deblurring using our recently proposed SURE-LET algorithm [6], with 

the estimated kernel by [98] and blur-SURE, respectively. 

The deconvolution performance is measured by PSNR defined as Eq.(1.11). Table 

6.4 shows PSNR results of the existing methods, Figure 6.5 shows an example of visual 

comparison. From the results, we can see that our deblurring results outperform the 

others significantly, both numerically and visually. 

BSNR (in dB) 40 30 20 10 40 30 20 10 40 30 20 10 
Image Cameraman House Mandrill 

blur type 6o = 40°, Lo = 15 pixels 

input 20.53 20.51 20.31 18.68 23.17 23.15 22.95 21.38 20.41 20.40 20.33 19.68 

[98] 22.31 22.01 21.79 21.34 25.76 25.46 25.39 24.41 21.92 21.52 21.18 20.69 

[155] 22.45 22.10 21.86 20.73 23.45 23.30 23.27 22.93 21.67 21.55 21.33 20.81 

[129] 22.31 22.25 22.76 19.74 25.17 25.73 24.16 23.31 23.33 22.87 22.31 20.58 

[91] 24.51 23.69 22.35 一 22.61 23.03 23.04 20.01 21.51 21.52 21.06 18.74 

[145] 25.28 25.02 21.39 一 23.92 24.24 23.01 一 21.74 21.89 20.71 18.85 

blur-SURE 27.36 26.59 24.62 22.43 31.53 31.07 29.33 26.67 26.01 24.83 22.74 21.13 

blur type 6o = 140°, L 0 = 35 pixels 

input 17.87 17.86 17.76 16.94 20.54 20.53 20.44 19.64 19.18 19.18 19.13 18.72 

[98] 21.18 21.05 20.89 20.31 24.27 24.16 24.12 23.65 20.02 19.82 19.79 19.78 

[155] 20.56 20.52 20.34 20.04 25.56 25.40 25.32 24.34 20.51 20.44 20.34 20.00 

[129] 18.33 17.89 17.40 18.78 21.02 21.06 24.73 18.39 20.79 19.60 18.96 20.72 

[91] 21.48 21.37 19.14 一 20.91 20.94 20.79 14.86 20.35 20.30 19.57 17.15 

[145] 22.54 22.40 19.26 一 23.31 23.31 21.44 一 19.94 19.57 19.30 一 

blur-SURE 29.74 26.22 23.27 21.08 34.15 30.84 27.97 24.78 27.76 24.26 21.91 20.45 

Table 6.4: PSNR (in dB) of motion deblurring by several state-of-the-art methods 
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(1) motion blurred (2) restored by [91] (3) restored by [145] (4) blur-SURE 

F igure 6.5: An example of visual comparison. 

6. Motion deblurring: the real experiment 

In our last set of experiments, we test the proposed algorithms on the benchmark 

data in a real-world database, established by [156]: Church shown in Figure 6.6, Clock 

shown in Figure 6.7 and Backyard shown in Figure 6.8. The authors of [156] recorded 

and analysed real camera motion on a robot platform, which allows them to record a 

sequence of sharp images and the unconstrained camera motion with full 6-D degree of 

freedom at micrometer accuracy. Refer to [156] for the detailed procedure of the robotic 

setup. The dataset contains both uniform and non-uniform blurs: the underlying blurs 

in Figure 6.6 and Figure 6.8 are approximately uniform, whereas the blur of Figure 

6.7 is non-uniform across the image [156]. We compare our results with the following 

recently proposed works: 

• Fergus [90]: pioneering work of motion deblurring, which combines variational 

approach [157] with natural image statistics [158]. 

• Shan [91]: MAP formulation, where the kernel is assumed to follow exponentially 

distribution. The image prior combines natural image statistics and constraints 

of image gradients. 

• X u [145]: assuming uniform blur, refined the work of [91], by introducing new 

inference strategies and fast optimization technique [129]. 

• Cho [129]: assuming uniform blur, predicted strong edges from an estimated 

latent image. This work accelarated the computation by introducing a number 

of techniques. 

• Hirsch [159]: assuming the underlying blur is non-uniform, deduced a fast for-

ward model for camera shake. 
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• Whyte [128]: assuming the underlying blur is non-uniform, derived the geomet-

ric properties of camera shake. 

For deblurring color images, all the works mentioned above except for [159] dealt 

with three color channels independently. The work of [159] has special handling which 

enforces constraints in YUV space. For our algorithm, we transform the color image into 

the YUV space, and then estimate the PSF parameters from the Y channel, perform 

deconvolution on Y, U and V channels with the estimated kernel from the Y channel. 

Finally, we transform YUV back to RGB representation. We also applied our deblurring 

algorithm to RGB channels independently, using the estimated kernel from Y channel. 

We found that working in the YUV space yields very similar visual results than in 

RGB. 

From the three figures, we can see that our restored image is comparable to other 

results, in terms of visual quality. Notice that our result in Figure 6.7 is not very 

satisfactory. There are two main reasons: (1) the underlying blur is spatially varying 

across the image [156], however, our approach assumed uniform blur; (2) the underlying 

blur is not simple linear motion blur, which cannot be accurately expressed by our two 

parameters L and 9. 

In addition to the benchmark test data, we also apply the method to a real motion-

blurred image Pavilion captured by a digital camera, shown in Figure 6.9-(1). The 

estimated parameters of the motion blur from Figure 6.9-(1) are 9 = 0°and L = 15 

pixels, obtained by our approach. We use our developed SURE-LET approach to 

perform the non-blind deconvolution with the estimated blur kernel [6]. Figure 6.9-

(2-6) show the restored images by various methods. Figure 6.10 shows two zoom-in 

parts for better comparison. Regarding the computational time, the work of [145], as 

the most efficient algorithm to our best knowledge, takes around 37 seconds. For our 

method, notice that the blur-SURE can be completely computed in Fourier domain 

only: there is no need to perform inverse Fourier transform. By this technique, the 

running time of our algorithm is around 33 seconds, where finding PSF parameters takes 

15 seconds, and SURE-LET deconvolution takes another 18 seconds. Furthermore, we 

experimentally found that it is not necessary to optimize the value of 入 in Eq.(6.2) 

when estimating the PSF parameters, since any value of 入 between 10-4 and 10-1 

could yield accurate estimate of motion length. Based on this empirical observation, 
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⑴ ground-truth 
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(2) observed (3) restored by [129] 

(4) restored by [159] (5) restored by [145] (6) blur-SURE 

F i g u r e 6 .6: Restoration of Church: visual comparison between various motion 

deblurring approaches. 

the computation time of our algorithm is further reduced to 24 seconds, where finding 

PSF parameters takes around 6 seconds1. 

6.6 Conclusion 

Results obtained show that the proposed method has significant improvement of quality 

both numerically and visually. Compared to the other methods, the main advantage of 

our approach is that 1) the estimation of both blur angle and length is performed in a 

unified framework, instead of individually applying Radon and cepstral methods; 2) it 

does not need to analyze 2-D cepstrum and measure the prominent peaks [97; 98; 106; 

149], which is easily affected by the severe noise corruption. 

1 All the computation time was recorded in the same hardware environment: Pentium(R) 4 CPU 

3.00GHz, memory size 3.50GB. 



(1) ground-truth (2) observed (3) restored by [129] 

F i g u r e 6 .7: Restoration of Clock: visual comparison between various motion de-

blurring approaches. 
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(1) ground-truth (2) observed (3) restored by [129] 

Figure 6.8: Restoration of Backyard: visual comparison between various motion 

deblurring approaches. 
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(1) observed (2) restored by [91] (3) lestoied by [145] 

(4) restored by [155] (5) restored by [129] (6) blur-SURE 

F igure 6.9: Restoration of image Pavilion: visual comparison between various 

motion deblurring approaches. 

observed [911 

F igure 6.10: Zoom-in parts of the restorations of Pavilion. 



Chapter 7 

Epilogue 

In this chapter, we will conclude our work in Section 7.1. And the future work will be 

discussed in Section 7.2. 

7.1 Summary 

This thesis mainly discusses image deconvolution, which has arisen in a great many 

applications, for example, photography, biomedical imaging, astronomical imaging and 

remote sensing. A successful deconvolution algorithm restores the observed images 

of poor visual quality to clearer image details and lesser noise corruption, such that 

the practitioners are able to easily identify the contents and objects involved in the 

observations. 

In Part I, we tackled the classical non-blind image deconvolution problem, and pro-

posed a new objective functional: Stein's unbiased risk estimate (SURE) — an unbiased 

estimate of mean squared error (MSE). Instead of the estimate itself, we parametrized 

the whole deconvolution processing as a linear combination of several given elementary 

functions. In this way, the deconvolution problem becomes to find the optimal linear 

coefficients, which constitute the best combination of the basic processings. The lin-

ear parametrization leads to a direct (i.e. non-iterative) parameters optimization. We 

worked out several SURE-based estimators based on multiple Wiener filterings, appli-

cable in arbitrary linear transformed domains. The SURE optimization automatically 

finds the best combination of several Wiener filterings with different but fixed regular-

ization parameters, which is nearly equivalent to single Wiener filtering with optimal 

regularization parameter, in terms of deconvolution performance. 

In Part II, we considered blind image deconvolution problem. We first estimate the 

point spread function (PSF) or blur kernel, and then, with the estimated PSF, apply 

107 
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our proposed SURE-LET algorithm to perform non-blind deconvolution. For the PSF 

estimation, we proposed a new criterion: a modified version of standard SURE, called 

blur-SURE. We showed that by incorporating a simple Wiener filtering, the blur-SURE 

minimization yields very accurate estimate of the PSF. We exemplified the blur-SURE 

framework with two typical applications: Gaussian kernel and motion blur. 

7.2 Perspectives 

We believe that the SURE-based approaches presented in this thesis could be extended 

along the following directions. 

Other noise models We only derived the unbiased estimates of the MSE for Gaussian 

noise. In fact, it is possible to find unbiased estimates of the MSE for a much broader 

class of noise statistics. 

Other inverse problems We restricted our investigations to deconvolution problem. 

However, the SURE theory and the blur-SURE framework are valid for any distortion 

matrix, which may arise in other real applications. 

Other applications of blind deconvolution In this thesis, we discussed the two 

important applications only: Gaussian kernel and linear motion blur. Note that the 

blur-SURE framework itself does not specify any particular type of blur kernel, for 

example, one may apply the blur-SURE approach to fluorescence microscopy, where 

the function form of PSF has been thoroughly investigated [102; 134; 136]. It is also 

possible to incorporate the blur-SURE technique into learning-based deconvolution 

approach [65; 160]. 



Appendix A 

Proof 

A.1 Proof of Theorem 2.1 

Proof Expanding the MSE (2.2) and using x = H - 1 ( y - b), we obtain 
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叫 | | f ( y ) | | 2 } - 2 E { x T f ( y ) } + E-
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b T C 一 l b 、 Consider the multivariate Gaussian probability density function q(b) a exp(- 2 
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Substituting (A.22) into (A.21) completes the proof. 

(A.3) 
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A.2 Proof of Eq.(2.6) in Section 2.4.2 

Proof Similar to Appendix A.1, using Hx = y - b, we expand the modified MSE as 

N 
f(y) - H-^Hx 

+ 

1 

N 
1 

N 
1 

N E 

f(y) 

f(y) 

[-^Hx 

-2E 

- 2 E 

x T H T H - T f ( y ) } + E { | H - 1 H x 

y T H - T f (yU + 2E bT f(y) 

(A.4) 

According to Appendix A. have 

b T H - T f (y) d i v J CH- T f ( y ) (A.5) 

Substituting (A.5) into (A.4) completes the proof. 

A.3 Proof of Eq.(3.5) in Section 3.3. 

Proof Consider the regularized SURE, given as Eq.(2.6), and apply the orthogonality 

of W . Ignoring the constant coefficients -N, -2 and Na2 , the first term is: 

f(y) 

N, N 

2 

u T W - T W - 1 u = uT 
W W - ^ u ^ a m , i Q i ( w m ) (A.6) 

the second term is: 

y T H - T f (y) = a„ , i y T H - T W - 1 Qi (w„ ) = [ a—y T H - T W T Q i (w„ ) 

] ra „ , i (WH - 1 y ) T Q i (w„ ) (A.7) 

The third term is 

G 

divy{ H - T f (y [ a — d i v y { H - T W - 1 Qi(wm) } 

m,i � 
g(y) 

(A.8) 

1 2 

2 
2 

2 
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where divy{g(y)} can be further developed 

N 

I
 

=
 

_
—
>
—
^
.
 

、—
)
 

g
(
 

.
—
<
—
 

y
 

i

v
 N 

dgn(y) 

dyn 

N 

I
 

r
，
 

G
"
 

I
 

I
 

E E G n , ， E 
d[6i(wm)]， 

dwk 

N 

d[6；(wm)]，dwk 

一丄 dyn 

W H - 1 “ 

y y d [ 6 l l w m ) ] ^ [WH一i]k Gn 
/ ^ / ^ d r . Z j L Am�、<n ‘ 

y y d[6;(wm)]， 

W H T I G 

W H - 1 H - T W - 1 

y y 

Tr 

W H - 1 H - T W - 1 

WH-^i H；一tW-1 J 的 ( w m ) 

J 01 (wm) 
，,k 

(A.9) 

where Tr denotes the matrix trace. 

In particular, ignoring the subscript l and m, if the thresholding function 6(w) is 

. Thus, pointwise processing, i.e. [6(w)]， = 6 

d [6(w)]， d6(u 

dwk dwk 

6'(wk) if k = r 

0 otherwise 

Consequently, the matrix J^(w) becomes diagonal matrix in this case. Thus, Eq.(A.8) 

is simplified as: 

d ivy{g(y)} = y [ P ]k , k [J0(w)]k,k = a T 6 ' (w ) (A.10) 

where a = diag{P} = [Pk,k]ke[i;N], 6'(w) = [6'(wk)]k印;n]. 

The last term is: 

H一1Hx|2 = ||W-1 WH一1 Hx ||2 = uT WWW-^u = ||WH一1 Hx (A.11) 

Combining Eq.(A.6)-Eq.(A.11) obtains Eq.(3.5) and thus, completes the proof. 

k 

k 

k 

， 

2 



where U(k) is the DFT of u(k'): 

2W-1 

U (k) E u(k')e 

A 2冗kk' 

2N-1 

^ g2N(n - k ' ) e - j 警 + L g2N(n + k + 1)e-j 

2N-1 
Tkk 

e 一 � 

1 1 

, E g2N(k')ej^f- + e j N g 2 N ( k ' ) e - j ^ (A.14) 

Recalling G ( e j 替 ) = 一 “ 1 g2N(n)e - j节 ,and combining with (A.14), U(k) is related 

to G(e j替)through: 

rrkn 

U (k) = e- j 夸 G ( e - j fk ) + ej 替(n+1)G (ej 
； n k 、 

f (A.15) 

Substituting (A.15) into (A.13), and combining with (A.12) complete the proof. 

A.5 Proof of Theorem 3.12 

Proof Under whole-point symmetric boundary extension, Eq.(3.35) can be directly 

obtained by rewriting (3.33). Note that p(n) is also periodic with period (2N - 2). 

However, p(n) is not symmetric, if the filter g(n) is not symmetric. From Eq.(3.35), 

f 
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A.4 Proof of Theorem 3.6 

Proof From Lemma 3.4, p(n) can be expressed as: 

N-1 

p(n) = [ [g2N(n - k) + g2N(n + k + 1)]h(k) 

k=0 、 ；^ ‘ 

then, using the i.i.d. condition of h(n) as in (3.22), the variance of p(n) is 

N 

S{p(n)2} = E { u(k)h(k) 

\k=0 , 

N 

a E u(k)2 (A.12) 

Due to the fact that wf-k) = u(k - 1) and u(k + 2N) = u(k), by change of variable 

and Parseval's theorem, we have 

2 

(A.13) U(k) 

N 

N 
k
)
 

1
 -1

 

N-1 

E u(k)2
 = 



2N-3 

^ g(n - k,)e-3一 + [ g(n + k丨)e 

2N-3 
j •？.N-2 

2N-3 2N-3 

e - j 2N一 
nkn ^—> 書 • 2nkk • 2nkn ^—> 書 • 2nf 

N一2 L g(k')ej 2N-2 +ej2N一2 L g(k')e-j丽 

G z-1 G z 

by denoting 

have: 

2nk 
ej2N一2 and G(z) = E k ' g(k')z-k'. Thus, using G(z-1) = (G(z))*, we 

U (k)|2 = 2|G(z)|2 + 2Ee{ (G ( z ) )V 

M n - k ' )+ g(n + k ) e 
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for n = 0,1,..., 2N - 3, the variance of p(n) is: 

、 (/ N-2 
1=4 (g 叫 ( p ( n ) ) 2 [ = ^ f g [ g(n - k)4- g(n + k) ]b(k) + g/(n) b(0) + 、 咖 - N + 1)b(N - 1)、 

u(fc) 1 u (0 ) 2 u ( N - 1 ) 

Due to the whiteness of the noise b(n), we obtain: 

E\(p(n))^ = a 2 g 2 u ( k ) 2 + ^^u(0)2 + ^ ^ u ( N - 1) 
4 4 

(A.16) 

Now, observe that u(k) satisfies u(k) = k) and u(k) = u(k + 2N - 2). We consider 

the following formula over a particular interval of period [- (N - 2), N - 1]: 

N-2 

^ u(k)2 = ^ u(k)2 + g u(k)2 + u(0)2 + u(N - 1)2 

k€P k=-(N-2) k=1 

N-2 

= 2 g u(k)2 + u(0)2 + u(N - 1)2 

Hence, 
N - 2 1 1 1 g u(k)2 = 2 g u(k)2

 - 1 u(0)2
 - 2u(N - 1)2 

2 L " 2 " 2 
kGP 

(A.17) 

Thus, combining (A.16) with (A.17) obtains Eq.(3.36), where the first term is: 

2N-3 1 2N-3 

g u ( k ) 2 = g u(k)2 = ^ 3 ^ g |U(k) 
keP k=0 k=0 

by Parseval's theorem, where 

2 

U(k) 
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also, the last two terms in (3.36) are given by: 

g(n) = 士 2 Ek=o-3 G(z)zn 

g(n - N + 1) = 2N^^Ek=o-3 G(z)zn-N+1 = ^NL^E 2=o-3(-1)k G(z)z 

Finally, Eq.(3.36) becomes (3.37) in frequency domain. I 

A.6 Derivation of noise variance in 2-D case (Section 3.5.4) 

Under whole-point symmetric boundary condition of x(m, n), denoting g(m, n ) = 

g2M一2,2N一2(m,n), the convolution formula is given as: 

p ( m , n ) = g(rn,n) 6(0，0) + g(rn,n — N + 1) 6(0, N — 1) (four corners) 

1 u(0,0) 1 u ( 0 , N - l ) 

十 g (m — M + 1，n) 6 ( M — 1，0) + g(m — M + 1，n — N + 1) b(M — 1，N — 1) 

4 u ( M - 1 , 0 ) 4 u ( M - 1 , N - 1 ) 

M - 2 

十 ^ ^ g (m — k，n)十 g (m 十 k，n) x(k，0) (sum over first column l = 0) 

k = i 、 ^ ‘ 

2 u(k ,0) 

M-2 

十 [g(m — k，n — N 十 1)十 g (m 十 k，n — N 十 1) ] x(k，N — 1) (last col. l = N — 1) 
‘ “ V J I 
k = 1 ； ^ 

2 u ( k , N - 1 ) 
N-2 

十 g(m，n — l )十 g(m，n 十 l) x(0，l) (sum over first row k = 0) ‘ “ V J I 
i = 1 r ^ 

2u ( 0 ’ G 
N-2 

十 g (m — M 十 1，n — l )十 g (m — M 十 1，n 十 l) x ( M — 1，/) (last row k = M — 1) ‘ “ V J I 
1 = 1 ; ^ 

1 u(M-\,X) 

M - 2 N-2 

十 ^ ^ (^g(m — k，n — /)十 g (m — k，n 十/)十 g (m 十 k，n — /)十 g (m 十 k，n 十/) )b(k，/) 

k = 1 i = 1
 V

 二 ‘ 

Thus, due to the whiteness of the noise 6(m, n), the variance of p(m, n) is: 

{p(m，n) 2} = u(0，0)
2
 十 u(0，N — 1)

2
 十 u ( M — 1，0)

2
 十 u ( M — 1，N — 1)

2 

C = 2 [ A ( 0 ) + A ( M — 1 ) + B ( 0 ) + B ( W - 1 ) ] 

2 M - 2 2 N - 2 

十 [ (u(k，0)
2
 十 u(k，N — 1广 )十 [ (u(0，/)2 十 u ( M — 1，/f 

V 4 

A(k) 

十 。 2 E E u ( k，/) 2 
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Considering the summation of l)2 over a whole interval of period (2M — 2, 2N — 2), 

we have: 

/ - 1 N - 2 X 
= ^ ( ^ u{k,lf ^ Y . u (k , / ) 2 十 u(k, 0) 2

 十 u ( k , N - 1)
2 

fceP l e ^ k e ^ ^ i = - ( N - 2 ) i = i 
N _ 2 

= ^ (u(k, 0)
2
 十 u(k, N - 1 )

2
)十 2 E E u(k, l)2 

fist 1 

where 

first term = u(0, 0)2 十 u(0, N - 1)2 十 u(M - 1, 0)2 十 u(M - 1,N - 1)2 

M-2 

十 2 E (u (k , 0) 2
 十 u ( k , N - 1)

2
) 

and 

N - 2 / - 1 M -
2 

second term = 2 ^ ( ^ u (k , l ) 2 十 ^ u (k , l ) 2 十 u (0 , l ) 2 十 u(M - 1, l)2 

l = 1 �k = — (M-2) k = 1 , 

N-2 N-2 M - 2 

= 2 E (u(0, l)2 十 u ( M - 1 , 0 2
)十 4 E E u(k, l)2 

l=1 l=1 k=1 

and hence, 

E E u (k , l ) 2 = u(0, 0) 2
 十 u ( 0 , N - 1) 2

 十 u(M - 1, 0)
2
 十 u(M - 1,N - 1)

2 

k e P l e P 

M - 2 N-2 

十 2 E ( u ( k , 0) 2
 十 u ( k , N - 1广 )十 2 E ( u ( 0 , l ) 2 十 u(M - 1,lf 

k = 1 � A k ‘ l = 1 � 

N-2 M-2 

十 4 E E u (k , l ) 2 

l=1 k=1 

Thus, using E(k,i)eF u(k, l)2, the variance of p(n) becomes: 

2 2 M-2 2 N-2 

4 P ( m ’ 《 ) 2 } = C 十 E A(k)十 E B(l) 
k = 1 l = 1 

M-2 N-2 
E E u (k , l ) 2 - C - 2 E A(k) - 2 E B ( l ) 

keP leP k=1 l=1 

‘ M - 2 N-2 

4 E E u(k, l)2 - 3C - 4 E A(k) - 4 E B ( l ) 

十 T 

16 

2 

( M - 1 ) (N - 1) 

a 

16 E E | U (k，0|2 - 3 C - 4 E A ( k ) - 4 E B(l) 

where U(k, l), C, A(k) and B(l) can be directly computed from G(zi,z2). 

term 
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A.7 Proof of Theorem 4.1 

Proof In Eq.(4.4), denoting H W H by U, and replacing y by H o x + b, the blur-MSE 

becomes: 

blur-MSE = • E 
N 
1 

Uy - Hox||2} = NN||U(Hox + b) - Hox|2} 

(U - I)Hox + Ub||2} = N | | ( U - I)Hox 
N 

•T r fCU - I ) H O S H T ( U 

+ N E 

、” + N T r ( U C U T ) 

U b 

(A.18) 

where Tr denotes matrix trace, I is identity matrix, S = E{xx }, the covariance 

matrix C = E{bbT}. Thus, the minimization of the blur-MSE over U yields that 

(U - I ) H O S H T + U C = 0, which implies that: 

、一1 
U = H O S H T ( H O S H T + C ) “ 

On the other hand, from (4.4) and (4.3), we obtain: 

U = H W H = H S H T ( H S H T + C ) - 1 

(A.19) 

(A.20) 

Combining Eq.(A.19) with Eq.(A.20) obtains HSH^ = HoSH,|, which completes the 

proof. • 

A.8 Proof of Theorem 4.2 

Proof In Eq.(4.2), substituting y - b for H ox, and expanding the blur-MSE, we obtain: 

blur-MSE = N | | H f ( y ) - Hox 
|2 = 1 

| = N n 

N 
1 

N 

E Hf(y) - y 2 + 2E b T Hf(y ) - 2E bTy + E ||b|p 

Hf(y) - y H + 2 ^ b T H f ( y ) } - b 2 } ) (A.21) 

Consider the multivariate Gaussian probability density function q(b) a exp ( - ^ ^C^- 1 ^ ) . 

It satisfies q(b)b = -CVbq (b) , where Vb is the gradient operator w.r.t. b. Hence, 

b T H f (y)} = J b T H f (y)q(b)db = 一 | (Vbq(b))T C H f y ) d b = 一 ] r J ^ ^ v„(y)db 

v ( y ) 

2 

2 

1 
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Noting that f - ^ d̂̂ bb) y^dbn = - J:⑴ fb^Q{b)dbn, which follows from integration by 

parts, and the fact that |vnq(b)| 0 as |bn| oo, we have: 

( y ) } = t J : d v n 仰 b
 iidvn}=^ 

^ divyv^ (A.22) 

The last term in (A.21) is: 

El b E b 、 } = e | T r ( b b T ^ = Tr( E { b b T ^ = Tr(C) (A.23) 

Substituting (A.22) and (A.23) into (A.21) completes the proof. 

2 
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