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Although impressive progress has been made in improving the performance of organic 

thin film transistors (OTFTs), the high operation voltage resulting from the low gate areal 

capacitance of traditional SiO
2
 remains a severe limitation that hinders OTFTs' 

development in practical applications. In this regard, developing new materials with high-众 

characteristics at low cost is of great scientific and technological importance in the area of 

both academia and industry. 

In this thesis, we first describe a simple solution-based method to fabricate a high-众 

bilayer Al2Oy/TiO x (ATO) dielectric system at low temperature. Then the dielectric 

properties of the A T O are characterized and discussed in detail. Furthermore, by 

employing the high-众 A T O as gate dielectric, low-voltage copper phthalocyanine (CuPc) 

based OTFTs are successfully developed. Interestingly, the obtained low-voltage CuPc 

TFT exhibits outstanding electrical performance, which is even higher than the device 



fabricated on traditional low-众 SiO〗. The above results seem to be contradictory to the 

reported results due to the fact that high-众 usually shows adverse effect on the device 

performance. This abnormal phenomenon is then studied in detail. Characterization on the 

initial growth shows that the CuPc molecules assemble in a “rod-like” nano crystal with 

interconnected network on A T O , which probably promotes the charge carrier transport, 

whereas, they form isolated small islands with amorphous structure on SiO〗. In addition, a 

better metal/organic contact is observed on ATO, which benefits the charge carrier 

injection. Our studies suggest that the low-temperature, solution-processed high-众 A T O is 

a promising candidate for fabrication of high-performance, low-voltage OTFTs. 

Furthermore, it is well known that the properties of the dielectric/semi conductor and 

electrode/semiconductor interfaces are crucial in controlling the electrical properties of 

OTFTs. Hence, investigation the effects of interfaces engineering on improving the 

electrical characteristics of OTFTs is of great technological importance. For the 

dielectric/ semi conductor interface, an octadecylphosphonic acid (ODPA) self-assembled 

monolayer (SAM) is used to modify the surface of A T O (ODPA/ATO). For the 

electrode/semiconductor interface, a simple in-situ modified Cu (M-Cu) is employed as 

source-drain (S/D) electrodes in stead of commonly used Au. The electrical 

characteristics of pentacene TFT are drastically enhanced upon interfaces modification. 

Moreover, by encapsulating the M - C u with a thin layer of Au (Au/M-Cu), the device 

performance is further improved. The detailed mechanism is systematically explored. 

Finally, organic electronic devices on flexible plastic substrates have attracted much 

attention due to their low-cost, rollability, large-area processability, and so on. One of the 
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most critical issues in realization flexible OTFTs is the integration of gate dielectrics with 

flexible substrates. W e have successfully incorporated the ODPA/ATO with Au coated 

flexible polyimide (PI) substrate. By using Au/M-Cu as S/D electrode, the flexible 

pentacene TFTs show outstanding electrical performance. In addition, the mechanical 

flexibility and reliability of the devices are studied in detail. Our approach demonstrates 

an effective way to realize low-cost, high-performance flexible OTFTs. 
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論文摘要 

儘管在提高有機薄膜晶體管（OTFis)的性能方面已經取得了顯著地進步，但是 

由傳統二氧化矽介電層的低面電容密度引起的高驅動電壓一直是阻礙其在實際應用 

中發展的絆腳石。因此，開發具有低成本、高介電常數等特點的新型材料對於學術 

界和工業界都具有非常重要的意義。 

本文首先介紹了一種簡單的溶液法在低溫下制備高介電常数的Al
2
O

y
/TiOx(ATO) 

材料體系，并詳細表徵和討論了它的介電性能。通過運用ATO作為介電層，我們 

成功地製備了低電壓銅酞菁（CuPc)基OTFT。有趣的是，該低電壓器件顯示出優 

異的性能，並且遠遠超過在二氧化矽上製備的器件性能。這個結果似乎和報道的結 

果相矛盾，因為高介電常數往往對器件性能造成不利影響。本文就此异常現象進行 

了詳細研宄。基於初期生長的研宄表明，在ATO表面上，CuPc分子組裝成有利於 

載流子輸運的棒狀晶體，并形成網狀結構。相反，在SiO2表面上CuPc分子卻形成 

由無定形結構組成的孤立小島。此外，在ATO上還觀察到了更好的金屬/有機分子 

接觸，有利於載流子的注入。以上研宄表明溶液法製備的ATO在实现高性能、低電 

壓的OTFT方面有著非常實用的前景。 

此外，界面的性質對決定OTFT的電學性能非常關鍵。因此研宄界面功能化對提 

高器件性能的作用也非常重要。在應用十八烷基磷酸（ODPA)和原位改性的Cu 
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(M-Cu)分別對介電層/半導體、電極/半導體界面進行修飾后，并五苯（pentacene) 

基OTFT的電學性能得到大幅提高。此外，通過採用一薄層金覆蓋的M-Cu做電極 

(Au/M-Cu)，器件性能得到進一步提升。本文就其詳細的機理進行了討論。 

最后，由於具有低成本，可捲曲，可大面積加工等特點，柔性有機電子器件引起 

了廣汎關注。實現柔性OTFT的關鍵問題之一就是介電層同柔性襯底之間的結合。 

在此，我們成功地將ODPA和ATO集成到金覆蓋的柔性聚酰亞胺襯底上。通過使 

用Au/M-Cu做電極，柔性pentacene TFT顯現出優異的電學性能。另外，本文就器 

件的機械柔性及可靠性也做了詳細地探討，從而展示了一個實現低成本高性能柔性 

OTFT的有效途徑。 
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Chapter 1 Introduction 

Since the discovery of the photoconducting properties of anthracene in 1906, organic 

semiconductors have come into sight of scientists all over the world [1]. For a long time 

before 1970's, the main research activities were devoted to developing the application 

of organic semiconductors in the area of photocopies, i.e. photosensitive drums. In fact, 

it is the discovery of near-metallic conductivity of doped polyacetylene in 1977 that 

really stimulated intensive interest in organic semiconductors [2], and exciting progress 

had been made in both design of novel organic semiconductors and device fabrication 

techniques in the flowing decades. Notably, the Nobel Prize in Chemistry of 2000 was 

awarded to Heeger et al. for this great discovery, which had led to a booming field 

called "organic electronics". Due to unique electronic performance of organic 

semiconductors, combining with other outstanding properties, such as low cost, light 

weight, flexibility and low temperature processing, a huge market of about one billion 

dollar in organic electronics has opened up a variety of applications, such as organic 

light-emitting diode (OLED) [3, 4], organic field-effect transistors (OFETs) [5, 6], 

physical and chemical sensors [7, 8], radio-frequency tags (RFIDs) [9] and organic 

solar cells [10, 11]. 
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Organic semiconductors are in essential a class of 兀-conjugated organic materials 

with alternate C-C and C=C bonds. Conventionally, they can be categorized into two 

groups, i.e., oligomers (also called as small molecules) and polymers. Fig. 1.1 shows 

some frequently used organic semiconducting materials. Small molecules are usually 

processed by thermal evaporation in vacuum, and they tend to crystallize and exhibit 

high ordering. On the other hand, polymers have the advantage of being processed via 

solution-based techniques, such as spin-coating, drop-casting and ink-jet printing, but 

are likely to be amorphous and possess low structural regularity. 

Polyacetylene 

Polyphiophene 

R R 

a nine J J R=r.M.. 

Polymers 
(b) 

Copper hexadecafluorophthalocyanine ^ RK^jH^ 
(F16CuPc) Poly(3-hexylphiophene) (P3HT) 

Poly(2,5-bis(3-alkylthiophene-2-yl) 
thieno[3,2,-b]thiophene) (PBTTT) 

Poly(benzimidazobenzophenanthroliiie) 
(BBL) 

T X X ^ 

6 
Polytriarylamine (PTAA) 

Fig. 1.1 Some common organic semiconductors: (a) small molecules and (b) polymers. 

The concept of field-effect transistor (FET) was first proposed by Lilienfeld in his 

patent in 1930 [12]. He depicted that a FET behaved as a parallel plate capacitor which 

accumulating charge carriers controlled by a gate electrode bias, and forming 

conducting channel between source and drain electrodes. Until 1960, this fascinating 
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concept was eventually realized by Kahng et al. using a silicon-based 

metal-oxide-semiconductor (MOS) structure. And more than twenty years later, the 

first organic field-effect transistor (OFET) was reported by Ebisawa et al. using 

polyacetylene as the active channel material [13]. From the point of view of reducing 

material costs and environmental concerns, many OFETs are now designed based on 

the thin-film transistor (TFT) model, which allows the devices to use less conductive 

materials in the conducting channel region. A prototype of O T F T is shown in Fig. 1.2. 

Early studies on organic thin film transistors (OTFTs) were performed on the basis of 

thermally oxidized SiO2/highly-doped Si configuration which acting as dielectric and 

gate electrode pack, respectively, because the above system had been well-developed in 

amorphous Si TFTs industry [6]. Despite many excellent properties, such as large band 

gap (〜9 eV), high purity and low density of defects, SiO2 suffers from a relatively low 

dielectric constant (k = 3.9) [14]. A direct consequence of a low k is the low area 

capacitance density of gate dielectric (〜11 nF/cm for 300 nm SiO2), which resulting in 

a high driving voltage to operate an OTFT, in the order of several tens volts. On the 

other hand, with the development in device performance of OTFTs, the realistic 

applications are getting close to the consumers, and low operation voltage is a 

prerequisite. Moreover, SiO2 as a gate dielectric is unfortunately incompatible with 
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high-throughput production, such as roll-to-roll fabrication. So in these regards, finding 

new dielectric materials that have high-k which allowing low-operation voltage and are 

also potentially compatible with large-area production (e.g. solution-processed) is of 

great importance in both academia and industry. 

Fig. 1.2 A prototype of organic thin film transistor (OTFT). 

The main focus of this thesis is on the realization of low-voltage OTFTs basing on 

solution-processed high-k dielectric. At first, a novel and simple solution-processed 

metal-oxide dielectric system is introduced, and an exciting high-performance OTFT is 

achieved. Then, an in-depth study is pursued to discover the mechanism behind. 

Followed by this, interface engineering is employed to further improve the device 

performance. Finally, an attempt to integrate the solution-processed dielectric with 

flexible substrate is made to demonstrate its compatibility with future large scale 

application. To make it clear and logical, the thesis is organized as follows: 
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In Chapter 2, an overview of organic semiconductors and some theoretical 

background relevant to this work are provided. In particular, the working principle of 

OTFTs is introduced and explained, and the charge carrier transport in organic 

semiconductors is discussed. Methods involved in electrical parameters extraction are 

also addressed, followed by a brief review on the dielectric materials. 

In Chapter 3, we give a brief introduction on the materials, processing methods and 

characterization techniques used in the thesis. 

In Chapter 4, a detailed study on the solution-processed high-k dielectric is present, 

and a low-voltage OTFT is demonstrated. 

Chapter 5 addresses the issue of why our high-k dielectric can achieve 

high-performance of device, which seemed to be contradictory to the results reported 

by other groups, since high-k is regarded as detrimental to the device performance 

because of the energy disorder induced in the dielectric/organic interface [15]. 

Chapter 6 exhibits the effectiveness of interface engineering in the improving the 

overall device performance, which involves both of dielectric/organic interface and 

electrode/organic interface. Upon careful interface engineering, the device 

performance can be obviously enhanced. 
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In Chapter 7, an attempt of incorporation of the solution-processed dielectric with 

polyimide (PI) substrates is made to fabricate flexible OTFTs, and excellent device 

performance is achieved. Additionally, the mechanical performance including 

flexibility and reliability is examined and discussed in detail. The results in Chapter 4, 5 

and 6 are published in scientific journals (see publication list on page 171), and those in 

Chapter 7 is submitted. 

Finally, in Chapter 8, a general summary is deduced basing on this work and some 

suggestions on future research are proposed. 
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Chapter 2 Background 

This chapter provides an overview of the theoretical background for small molecule 

semiconductors and organic thin film transistors (OTFTs). It begins by describing the 

intrinsic electronic structure of small molecules, and then the working principles of 

OTFTs are addressed. Subsequently, several charge transport models in organic 

semiconductors are discussed, and followed by the introduction of electrical parameter 

extraction in OTFTs. Finally, a brief review on the gate dielectrics will be delivered. 

2.1 Intrinsic electronic structure of small molecule 

semiconductors 

t o o 

It is known to all that, for free carbon atoms, the electron configuration is 1^ 2s 2p , 

and they usually adopt sp
3

 hybridization due to the unique chemical performance, 

which is referred to as single bond. On the other hand, from the point of view of 

molecular physics, a double bond can also form between two carbon atoms resulting 

from a sp
2

 hybridization. In this configuration, the 2s, 2p
x
 and 2p,orbitals of each 
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• 2 • • 
carbon atom are combined to form the sp -hybrid orbital. The above three degenerated 

orbitals are coplanar and oriented at an angle of 120
o

 between each other, as depicted in 

Fig. 2.1a. Chemical bonds formed by these orbitals are called a bonds, which are 

localized between two adjacent carbon atoms. On the other hand, the remaining fourth 

• • • 2 • . . . 

orbital, pz, is orthogonal to the plain of sp orbitals, as shown in Fig. 2.1b. Since the 

distance between neighboring carbon atoms is small enough, the overlap between pz 

orbitals is possible. The side-by-side overlap of the pz orbitals then produces the 

so-called molecular bonding n- and antibonding n*-orbitals with delocalized density of 
2 , 

electrons above and below the sp orbital plain (i.e., molecule plane). Furthermore, 

according to the Pauli Exclusion Principle and the Hund's rule, the n and n* orbitals are 

referred to as the highest occupied molecular orbitals ( H O M O ) and lowest unoccupied 

molecular orbitals (LUMO), as illustrated in Fig. 2.1c. 

Fig. 2.1 (a) Illustration of orbitals of carbon sp -hybridization; (b) Formation of n-bond in ethylene: the pz 

orbitals overlap above and below the plane of sp
2

-orbitals; (c) Formation of molecular orbitals [1]. 
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In a n-conjugated system whose carbon atoms are connected by alternating single 

and double bonds, all carbon atoms contribute a pz orbital to construct an extended 

n-orbital with n-electrons delocalized over the entire molecule. If a large number of 

molecules are put together with high ordering and the inter-molecular orbital overlap is 

sufficient, the formation of extended electronic states in organic semiconductor appears. 

The transport of positive charge (hole) occurs through the H O M O and negative charge 

(electron) occurs through the L U M O [2]. And the energy difference between the 

H O M O and L U M O is the band gap of the organic semiconductor. 

When two molecules are put together in a coplane configuration, their interaction 

will lead to a splitting of H O M O and L U M O levels. In organic crystals, the molecules 

are closely packed, the interaction among the H O M O s and L U M O s of large number of 

molecules then give rise to the formation of valence and conduction band. Bredas et al. 

studied theoretically the effect of the intermolecular distance of cofacial dimers on the 

electronic splitting of their H O M O and L U M O levels [3], and the results are shown in 

Fig. 2.2. As can be seen, the H O M O exhibits a larger splitting than that of L U M O , and 

the amplitudes decay exponentially with increasing the intermolecular distance, which 

can be simply regarded as the decrease of intermolecular n-orbital overlap. 

Qualitatively, the larger the splitting of the H O M O in the organic crystal, the higher the 
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mobility of holes, and similarly, it is also true for L U M O and electrons. The 

Fig. 2.2 Evolution of the calculated electronic splitting of the H O M O and L U M O levels in a cofacial 

sexithienyl dimer system as a function of the intermolecular separation. 

Bao et al. calculated the variation of electronic splitting through displacing 

neighboring molecules along their long/short molecular axis involved in the cofacial 

configuration [4]. Fig. 2.3 depicts the impact of translation of the top tatracene 

molecule on the H O M O and L U M O electronic splitting (the intermolecular distance is 

kept unchanged). As seen, the molecular overlap is reduced with displacement, and as a 

result, the splitting is expected to be decreased. It is interesting to note the fact that there 

calculations confirm the crucial impact of orbital overlap on the electronic splitting and 

therefore on the intrinsic mobility. In organic crystals, the degree of orbital overlap 

varies largely with different crystallographic directions due to their highly structural 

anisotropy. 

{
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are some oscillations in the values of the splitting with different period. The different 

oscillation period gives an important consequence that small translation can result in 

larger electronic splitting in L U M O than in H O M O , and therefore, the mobility of 

electrons can be possibly higher than that of holes in this configuration. On the other 

hand, the splittings also exhibit maxima and minima, which occurs when the benzene 

rings of first molecule overlap entirely or half of the ring of the second molecules, as 

shown in Fig. 2.3. Again, this phenomenon can be explained by considering the shape 

of the H O M O and L U M O orbitals. 

Fig. 2.3 Influence of molecular displacement along its long axis (lower left) and short axis (lower right) 

on the electronic splittings of the H O M O and L U M O levels in a tetracene dimer system separated by 3.4 

A [4]. 
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2.2 Organic field-effect transistors 

Field-effect transistor (FET) is a three-end electronic device that uses gate electric 

field to modulate source/drain current through “conductive channel” formed in 

semiconducting material. A FET is constructed by three parts: an insulator (dielectric), 

a layer of semiconductor and three electrodes. The term organic field-effect transistor 

(OFET) is referred to a class of field-effect transistor whose channel is built up with an 

organic semiconductor, such as pentacene and rubrene. For the sake of environmental 

protection and saving materials, the thickness of the channel layer is reduced to several 

tens of nanometers, which then gives rise to the so-called organic thin film transistor 

(OTFT). 

2.2.1 Architecture of OTFTs 

OTFTs have been fabricated with various device architectures, as illustrated in Fig. 

2.4a-d. Due to the fragility of organic semiconductors, deposition of organic 

semiconductor on the top of insulator is much easier than the opposite. As a result, most 

of current OTFTs are fabricated adopting the bottom-gate (BG) geometry, with either 

top-contact (TC) or bottom-contact (BC). On the other hand, this configuration borrows 
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the concept of silicon TFT, using thermally grown SiO2 as gate dielectric. Because of 

commercially availability of high-quality Si/SiO2 substrate, the bottom-gate geometry 

has dominated the field. Each of these structures has its own advantages and drawbacks. 

Top contact OTFTs in general exhibit lower contact resistance than bottom contact ones. 

This is possibly due to the increased metal-semiconductor contact area in the former 

configuration. However, because the electrodes are deposited through a shadow mask, 

the dimension of the channel region is restricted by the size of mask, usually has a 

length of tens of microns. On the other hand, with bottom contact, the electrodes can be 

patterned by means of traditional micro-photolithography, which ensuring a high 

resolution. Unfortunately, devices with this configuration usually show high contact 

resistance, which are likely due to the structural disorder in the contacting area between 

the deposited organic semiconductor and the electrodes. 
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Fig. 2.4 Schematic of common architectures of organic thin film transistors (OFETs): (a) 

top-contact/bottom-gate (TCBG), (b) bottom-contact/bottom-gate (BCBG), (c) top-gate/bottom-contact 

(TGBC) and (d) top-gate/top-contact (TGTC). 

2.2.2 Operation principles of OTFTs 

The operation of OTFTs is basing the metal-insulator-semiconductor (MIS) structure 

which is designed to modulate the charge density in the device. Unlike the several 

operation modes in inorganic transistors, the OTFT is primarily operated in an 

accumulation mode [5, 6]. Since most reported high performance OTFTs are those 

fabricated with p-type organic semiconductors, the following section will focus on the 

operation of p-type devices in the accumulation mode. 

For a p-channel OTFT, the gate and the drain are both negatively biased and the 
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source is grounded, as shown in Fig. 2.5a. By applying a negative bias on the drain 

electrode (VDS), holes are injected from the source electrode into the active layer, and 

then accumulated in the interface of dielectric/semiconductor by the gate electric field 

across the insulator upon applying a negative gate bias (VGS). The accumulated holes at 

the semiconductor/insulator interface form a conducting channel between the source 

and the drain, and then move under the drive force of the source-drain electric field and 

finally enter the drain end. The accumulated charge density is proportional to the 

magnitude of VGS and the areal capacitance of dielectric (Ci), and can be simply 

calculated by VGs'Ci if we assume that the voltage drop across the dielectric and the 

accumulation layer is negligibly small. It is important to note that not all of the charges 

in accumulation layer are mobile, but only a part of them will contribute to the current 

in the transistor. Due to the presence of defects and impurities in the vicinity of the 

dielectric/organic interface region, some of these charges will be trapped. The deep 

traps must be filled at first before the current flowing through the transistor occurs. As 

a result, a more negative VGS than a certain onset voltage, i.e. the so-called threshold 

voltage (VT), must be applied to the gate electrode in order to induce a conducting 

channel in the dielectric/semiconductor interface, and the effective gate voltage reduces 

to VGS - VT accordingly. 
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Under constant VGS (| VGS | the source-drain current (IDS) is controlled by 

the VDS. For | VDS | < < | V^S-VT\ , a linear density gradient of accumulated charge is 

formed between source and drain, as shown in Fig. 2.5b. The current-voltage relations 

in a TFT can be derived basing on the gradual channel approximation [7], which 

assuming that the vertical electric field across the gate insulator is much stronger than 

the transverse electric field between source and drain. According to this assumption, 

the IDS can be calculated from two separate one-dimensional equations. Firstly, the free 

charge density at position x within the channel can be connected with the gate voltage 

through following equation: 

n(x) = C,|K
G 5
-K(x)-K

r
| (2.1) 

where n(x) is the free charge areal density, Ci is the capacitance areal density of the gate 

dielectric, VGS is the gate voltage, V(x) is the potential of semiconductor at position x 

and VT is the threshold voltage. Secondly, the current is then calculated by applying a 

one-dimensional current equation between source and drain, which can be written as: 

Ids = -Wn(x)"尝=-称- V(x)-叫尝(2.2) 

where W is the channel width, /a is the field-effect mobility and dV/dx is the lateral 

electric field. If we define x = 0 at the source contact, then we will have x = L at the 
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drain contact (L is the channel length). Therefore, V(0) = VS = 0 and V(L) = VDS = VD can 

be rationalized, where VS and VD are the source and drain voltages, respectively. 

Assuming that the /u is constant in the semiconductor, through integrating Equation 2.2 

from x = 0 to x = L, one can obtain the resulting current-voltage equation: 

Ids = [(VGS - VT)VDS - 沐 ] ( 2 . 3 ) 

Since | VDS \ << \ VGS-VT\, the quadratic term in VDS can be neglected. Therefore the 

current-voltage equation can be simplified as: 

IDs=j^Ci(GGS-VT)VDS (2.4) 

As seen, the IDS is linearly proportional to the VDS, hence, the operation of OTFTs in 

this situation is called linear region. 

When the VDS increases negatively, the voltage drop over the insulator and 

semiconductor becomes a function of the position in the channel. At the source contact, 

the voltage drop and the accumulated charge density remains unchanged. At the drain 

contact, however, the voltage drop decreases, resulting in a lower charge density as 

compared to that of the source contact, and the accumulated charge density exhibits a 

continuous decrease from source to train. At the point when | ^DS \ = \ VGS-VT\ , the 
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charge density in the drain contact decreases to zero, the so called “pinch-off’ is 

reached, as shown in Fig. 2.5c. Beyond this point, a further increase in VDS will not 

result in an increase in drain current, and the device is said to operate in the saturation 

region, i.e. | VDS \ > \ V^S-VT\ , as illustrated by Fig. 2.5d. The current is then expressed 

by: 

lDS=Y
L
^

C

i(
V

GS-y
T
)

2

 (2.5) 

(C) (d) 

Fig. 2.5 Operation principles of organic thin film transistors. 
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2.3 Charge transport mechanisms 

As having been discussed in previous section, organic semiconductors are those 

compounds made of sp hybridized carbons, which also referred to as conjugated 

organic materials. For big conjugated molecules, the p
z
 orbitals are delocalized and 

form an extended n system all over the molecule. Only the loosely bound n-electrons 

can be transferred from molecule to molecule, and they are the source of charge 

transport in organic semiconductors. Though much attention has been paid in the 

exploration of the nature of charge transport in organic semiconductors, there are still 

controversy in this field. Below, we will summarize some models proposed to explain 

the charge transport in organic semiconductors. 

2.3.1 Band transport 

Band transport originates from the mechanism involved in inorganic crystals. The 

energy levels of individual atoms widen into bonding and anti-bonding orbitals, which 

then forms the valence band and conduction band. At T = 0, the valence band is 

completely filled while the conduction band is empty. Injection of electrons into the 

valence band can occur either by thermal excitation with intrinsic semiconductor or 
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through doping with extrinsic semiconductor. The movement of the delocalized 

electrons in the conduction band are scattered by phonons. The macroscopic mobility 

can be approximately expressed by following equation [8]: 

ero W2a2
 ( 

"o 冗
( 2 6 ) 

where W is a measure of the bandwidth, a is related to the lattice constant and r
0
 is the 

mean lifetime of the Bloch states. Form the above equation it is clear that in the band 

transport mechanism, the mobility decreases with increasing temperature. 

In a conjugated molecule crystal, both the van-der-Waals force between molecules 

and the intermolecular electronic coupling through n-n-interactions are very weak, and 

the weak electronic coupling is easily broken by phonons and lattice disorder, resulting 

in localized states. Band-like transport has been reported in high purity organic single 

crystals at low temperatures, such as anthracene [9] and pentacene [10]. However, for 

most organic semiconductors, due to the existence of grain boundaries and impurities, a 

high degree of disorder is often observed, which will lead to the ruling out of band-like 

transport. 
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2.3.2 Polaron transport 

The main reason for the band transport model fails to explain the charge transport in 

organic semiconductors is that it cannot account for the critical polarization 

phenomenon in these materials. The detailed mechanism of polarization in organic 

solids has been discussed in depth by Silinsh et al. [11]. Briefly, due to the weak 

coupling between neighboring molecules in organic semiconductors, a strong 

localization of excess charge carrier is often observed, which can result in the 

polarization of their surroundings. Consequently, the whole entity is not a naked charge 

any more, but a "dressed charge" formed by polarization cloud containing a charge in 

its center. The quasi-particle is called "polaron". Basing on the origin of polarization, 

polaron can be divided into three categories, as illustrated in Fig. 2.6. In the first type, 

the polarization originates from the interaction between a charge carrier and electrons 

of surrounding molecules in organic semiconductors. The process is called electronic 

polarization and the resulting quasi-particle is called "electronic polaron", as shown in 

Fig. 2.6a. The second type is called "molecular polaron". The molecular polaron is 

arisen from interaction between excess charge carrier and molecular phonons, see Fig. 

2.6b. Such interaction can also take place between excess charge carriers and lattice of 

organic semiconductors, resulting in displacement of atomic nuclei. This is referred to 
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the third type, the so-called “lattice polaron”, as can be seen from Fig. 2.6c. 

� • _ <5> 綱 ( o > <o> 

• <©> 腿 ⑨ ^)(0)^)(0) 

• •垂 <o> 嚇 © (o> 
(a) (b) (C) 

Fig. 2.6 Schematics of different polarization: (a) electronic polarization, (b) molecular polarization and 

(c) lattice polarization. 

One can estimate the stability of the polaron by defining two typical times: the 

residence time (r
r
es) and polarization time (ip). The former defines the average time that 

a charge will reside on a molecule, and the later corresponds to the time involved in the 

formation of electronic cloud around the charge. The magnitude of both typical times 

can be estimated through Heisenberg's uncertainty principle expressed by following 

equation: 

4 (
2

.
7

) 

where A E is a characteristic energy. The typical value for Tres is on the order of 10
-14

 s 

for organic semiconductors. In case of electronic polaron, the Tp ranges between 10
-16

 s 
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to 10
-15

 s, which is much smaller than Tres. And the A E is in the range of 1.5 to 2 eV. As 

for molecular polaron, the Tp increases to about 10
-14

 s, and the characteristic energy 

involved is on the order of 10 m V to 100 meV. On the other hand, for the lattice polaron, 

12 11 
the Tp and AE are estimated to be 10

-

 -10
-

 s and 〜10 meV, respectively. 

2.3.3 Hopping transport 

In organic semiconductors, due to the localization of the charge carriers on defect 

sites, the charge transport mechanism is mainly based on phonon-assisted hopping from 

one localized site to another [2, 12, 13]. Such a hopping transport occurs near the Fermi 

energy and generally leads to low charge carrier mobility. Under zero electric field, the 

charge carrier transfer rates between sites i and j will reach a thermal equilibrium. The 

process can be expressed by following equation: 

where e is the energy level of the site, v” is the transfer rate from site i to site j, while Vji 

refers to the reverse transfer, and f is the Fermi-Dirac distribution. And we have: 

ij “ 
f ( e j ) ( l - f ( e i ) ) v j i (2.8) 

.kT 
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The equilibrium condition can then be expressed as: 

(
2

.
1 0

) 

To date, dozens of different hopping transport models have been proposed basing on 

varied physical principles and approximations. One of the most commonly used 

hopping models is that developed by Bassler [14]. It relies on the following 

assumptions: (1) the electronic polarization energy of a charge carrier on a molecule is 

subject to fluctuations; (2) transport occurs through hopping among localized states 

whose density of states (DOS) is described by a Gaussian distribution of variance a; (3) 

charge transport is random walk described by a generalized master question of the 

Miller-Abrahams form [15]: 

Vij = v0exp(-Y\Rij\){exp{-l-J') ; (2.11) 

where v
0
 is the hopping attempt frequency, y is the inverse localization length and R” is 

the intersite distance; and (4) position disorder with a Gaussian distribution of variance 

E is existed in addition to the energetic disorder. From a Monte Carlo simulation, 

Bassler finally derives a universal law that relating the mobility to the E through: 

2l 2 
“=此 e x p 卜 g^：) ] exp C - 2

2

 V F (2.12) 
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where C is an empirical constant and F is the electric field. The main feature of hopping 

mechanism is the temperature dependence of the mobility, which increases with 

increasing the temperature. 

2.3.4 Multiple trapping and thermal release (MTR) model 

The multiple trapping and thermal release (MTR) model was developed by Comber 

et al. to account for the mobility in hydrogenated amorphous silicon [16]. The model is 

built up based on the assumption that charge carrier transport occurs in extended states, 

but the majority of the injected carriers in the semiconductor are trapped in states 

localized in the forbidden gap. These traps can be deep or shallow, depending on the 

position of their energy level, as described in Fig. 2.7. 

Fig. 2.7 Distribution of trap states in the band gap. Taking p-type semiconductor as an example, shallow 

traps energy is just few kT above the valence band. 
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Later, it was further developed by Horowitz et al. to understand the charge transport 

in well-ordered OFETs [17]. It differentiates the energy levels into localized levels and 

transport band which are separated by a mobility edge that represents the boundary 

between them. The model also assumes that the majority of the carriers injected into the 

semiconductor are immediately trapped by trap levels with a probability close to one. 

These trapped charge carriers then undergo thermally detrapping and are released to 

transport band where they can move freely and contribute to the conduction, until they 

are trapped again by other trap levels [4]. Fig. 2.8 gives a brief illustration on the 

mechanism. The drift mobility in organic semiconductor can be described as: 

" D =解 e x p ⑶ （2.13) 

where a is the ratio between the effective density of states at the transport band edge 

and the density of traps, £r is the energy of the trap state and /a
0
 is the mobility at the 

band edge. 
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Fig. 2.8 Illustration of charge transport mechanism of multiple trapping and thermal release [4]. 

On the other hand, the conductivity of the organic semiconductor can be calculated 

by following equation: 

g = e - Uf • (2.14) 

where nf is the concentration of free carriers, /o is the microscopic mobility and e 

represents the electronic charge. Here we introduce a new parameter, 6, which 

represents the fraction of free charges: 

0 ； ntot =nf + nt (2.15) 
^tot J 

where ntot is the concentration of total charges and n is the concentration of trapped 

charges. Equation 2.15 can be rewritten as: 

a = e - ntot - 9 •叫 (2.16) 

Equation 2.16 reveals that a thermally-activated conductivity can be interpreted 
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either by a thermally activated mobility /a that equals 6 ̂ 0 and a constant charge density 

ntot, or by a thermally activated charge density nf that equals 6-̂ tot and a constant 

mobility /0. In this case, the field-effect mobility at low-gate bias equals the effective 

mobility /, and is therefore thermally activated, whereas it approaches the slow 

variation of the mobility /0 at high VG. 

The success of the M T R model relies on its ability to account for temperature and 

gate voltage dependent mobility. However it often gives abnormally high density of 

trap states. This is due to the fact that the M T R model is valid only for a trap 

distribution consisting of a shallow distinct energy level close to the main transport 

band. 

2.4 Parameters extraction 

The electrical performance of an OTFT is characterized by parameters including 

field-effect mobility (/), threshold voltage (VT), on/off current ratio and subthreshold 

swing (SS). The contact resistance (RC) is another important parameter in OTFTs. In 

this section, we will give a brief discussion on the extraction of these parameters. 
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2.4.1 Current-voltage (Î V) characteristics 

Because the drain current (IDS) is modulated by two independent voltages, i.e., the 

drain voltage (VDS) and the gate voltage (VQS), current-voltage (I-V) characteristics can 

be represented by two ways. In the first way, the VDS is set as constant, we can get the 

relationship of IDS versus VGS, and the resulting curve is called transfer curve. In the 

second way, we can obtain a set of curves of IDS against VDS at several discrete VGS 

values, and the obtained curves are called output curves. Fig. 2.9 exhibits representative 

transfer curve and output curves of a pentacene TFT. From the output curves, the linear 

region and saturation region can be clearly observed. 

Fig. 2.9 Representative transfer curve (a) and output curves (b) of a pentacene TFT. 
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2.4.2 Field-effect mobility (p) and threshold voltage (VT) 

As having been discussed in Section 2.2.1, there are two different working regions in 

an OTFT, i.e., linear region (small VDS) and saturation region (high VDS). In linear 

region, the current-voltage (I-V) relationship can be expressed by the following 

equation: 

Ids = j^Ci(VGS - VT)VDS (2.17) 

By analyzing the above equation, it is clear that the field-effect mobility in the linear 

region can be extracted from the transconductance (gm) (defined by the change of IDS 

with VGS) at constant VDS. Through conducting such manipulation, we can obtain: 

如 = - 铲 | (2.18) 
OVGS VDS=constant L 

Therefore, the linear mobility ̂  deduced from Equation 2.18 is given by: 

^ = (2.19) 
w VDS VDS=constant 

The VT in linear region can be obtained by fitting the transfer curve to a linear curve, 

and the intercept in the horizontal axis gives the value of VT, as depicted in Fig. 2.10a. 

In saturation region, on the other hand, the I-V relationship is described by: 
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bs = - VT)2 (2.20) 

The above equation reveals that the square root of | IDS | is linearly dependent on the 

VGS. Therefore, if we plot (| IDS | )
1/2

 as a function of VGS, M can be extracted from the 

slope of the curve (K) as shown in Fig. 2.10b. As a result, /u can be calculated through 

following equation: 

^ = - - K
2

 (2.21) 
^ w ct

 v 7 

In saturation region, VT can be obtained by extrapolating the linear fit of (| IDS | )
1 2 

versus VGS curve to the horizontal axis, as described in Fig. 2.10b. Considering the 

realistic application of OTFTs, it is desirable to keep the VT close to 0 V. VT can 

originate from several effects, such as built-in dipoles, impurities, interface states and 

in particular, charge traps in semiconductors and dielectric layers also contribute to the 

VT [18]. VT can be reduced by increasing the gate capacitance and, as a result, induces 

more charges at lower applied gate voltages. 
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Fig. 2.10 Representative transfer curves of O T F T in (a) linear region and (b) saturation region. 

2.4.3 On/off current ratio and subthershold swing (SIS) 

On/off current ratio, also referred to on/off ratio for short, is an important parameter 

that characterizes the ability of a transistor to switch a signal from “off，to “on". It can 

be extracted from the transfer curve of an OTFT, and equals to the ratio between the 

on-state current (Ion) and the off-state current (Ioff), as shown in Fig. 2.11. The on/off 

ratio is thus defined by: 

on/off ratio = (2.22) 
JOff 

Generally, on/off ratio should be as large as possible in order to get a nice switching 

behavior. Typical values of on/off ratio for OTFTs range from10
3

 to 10
8

. 
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Fig. 2.11 Schematic of determining on/off state current and the subthreshold swing (SS) from transfer 

curve. 

Subthreshold swing (SS) characterizes the speed of a transistor switches from the 

off-state to the on-state. SS can be extracted from the transfer curve by fitting a straight 

line to the steepest part in the subthreshold region and calculating its reciprocal, as 

illustrated in Fig. 2.11, and is therefore defined as: 

SS = , ,、 (2.23) 
d(log\IDS\) V } 

The lower limit of SS is about 60 mV/dec [19]. The smaller the value of SS is, the 

better the switching property an OTFT has. 
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2.4.4 Contact resistance (RC) 

Unlike the above parameters that can be extracted directly from the transfer curve, the 

contact resistance (RC) of an OTFT is an implicit parameter which cannot be obtained 

from simple I-V curve. The I-V characteristics discussed in previous sections are based 

on the assumption that the contacts at source and drain are ohmic, meaning negligible 

resistance as compared to the channel. However, this is not fulfilled in a realistic 

transistor. In general, the typical contact resistances in OTFTs are in the range of 10 

kQcm -10 M Q c m [20, 21], which are significantly larger than those found in inorganic 

counterpart. High contact resistance generally leads to a considerable voltage drop at 

the source-drain contacts, resulting in a decrease of the apparent field-effect mobility 

and an increase of the threshold voltage. Such effects are often observed in short 

channel devices. 

2.1.1.1 Origin of contact resistance 

When travelling from the source to drain, the movement of charge carriers will be 

blocked by several resources. Taking a bottom-gate top-contact pentacene TFT as an 

example (as shown in Fig. 2.5a), the blocking resources include: (1) the injection 

barrier in the source electrode/pentacene interface, (2) resistance arises from the 
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thickness of pentacene film, referred to access resistance, (3) resistance corresponds to 

the length of the channel, (4) resistance again comes from the access resistance and (5) 

extraction barrier in the drain electrode/pentacene interface. These resources can be 

simply regarded as three transistors in series. The resistances caused by the carrier 

injection and the access to channel in the source contact can be grouped into source 

contact resistance (RS), and the resistance associated with crossing the channel is called 

channel resistance (Rchannei), and the third resistance resulted from the opposite process 

as the source contact is termed drain contact resistance (RD). In convention, the term 

contact resistance (RC) is always used, and it represents the sum of RS and RD. To realize 

ohmic contact in OTFTs, it is crucial to make sure that the RC is much smaller when 

compared to Rchannel. 

From modern semiconductor physics, it is known that creating an ohmic contact 

requires a perfect band alignment between the metal work function (WF) and the energy 

levels of the semiconductor, which follows the Mott-Schottky rule [19]. Thus, the 

electronic structure at the metal/organic semiconductor interface plays an important 

role in determining the charge injection and extraction characteristics of the contact. 

However, even though good alignment in energy level, many metal-organic 

semiconductor interfaces do not follow the Mott-Schottky rule, which is mainly due to 
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the interface dipole induced in the interface during the fabrication of devices, and such 

dipole is commonly observed in Au/pentacene interface [22, 23]. The interface dipole 

(A) will shift the vacuum level of the semiconductor with respect to the metal, thus 

resulting in an increase in the injection energy barrier. To solve this problem, interface 

engineering, such as self-assembled monolayer (SAM) modification [24], inserting a 

buffer layer between contact and semiconductor [25, 26] or using metal-oxide with 

preferred energy bands [27], have been used to optimize the metal/organic 

semiconductor interface properties, and many promising results have been achieved. 

The access resistance can be simply minimized by optimizing the device structure. 

The deposition of metal on organic semiconductor usually gives rise to a much lower 

contact resistance than expectation, which can be ascribed to the penetration of metal 

atoms into the organic semiconductor, and sometimes even extends to the channel 

region [28]. This can be regard as a reduction in access resistance. On the other hand, 

deposition of organic semiconductor on metal surface often exhibits high disorder in 

film structure in the vicinity of the contacts, which then leads to an increase in access 

resistance [29]. The channel dimension also plays an important part in influencing the 

contact resistance. As discussed previously, in ohmic contact, the contact resistance is 

much smaller as compared to the channel resistance. To ensure this condition, one must 
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be careful when scaling the device, because the contact resistance in short-channel 

devices can quickly become the dominating resistance. In addition, to avoid the 

fringing field effect at the edges of the channel, the W / L of a transistor should always be 

> 10. 

2.1.1.2 Extraction of contact resistance 

In general, there are three methods that most commonly used to extract the contact 

resistance. W e will give a brief introduction of these methods in this section. 

2.1.1.2.1 Transfer line method (TLM) 

A key feature of the contact resistance is the superlinear output characteristics at low 

drain voltages. At this region, the total resistance Rtotai for a given channel length L can 

be expressed as: 

Rtotai 
dVDS 

dlDS 
=R 

VDS^O 
channel + Rc (2.24) 

In the above equation, Rchannei is positively proportional to the channel length. As a 

result, one can quantitatively measure the contact resistance of O T F T by extrapolation, 

and further differentiate these two resistances. The first step is to fabricate a series of 
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devices with different channel length (the channel width is unchanged) on the same 

semiconductor film, then measure the total resistance in linear region (small VDS) and 

plot the resistance against channel length. By linear extrapolating the obtained plot to L 

= 0 which eliminates the channel resistance, one can estimate the contact resistance 

directly from the intercept of vertical axis. This method is known as the transmission 

line method (TLM) [30, 31]. Because the contact resistance is closely connected with 

the channel width, it is more practical to use channel width normalized resistance 

(defined by R W) instead [32, 33]. Fig. 2.12 shows an example of a normalized 

resistance (R W) versus channel length (L) plot, and the RC W can be determined by 

extrapolating the fitted line to L = 0. In addition, the linear region mobility can be 

calculated from the slop of the fitting line [32]. 
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Fig. 2.12 Illustration of transfer line method (TLM). 
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This method has been widely used to extract the contact resistances in OTFTs 

because of its simplicity. However, it has its own disadvantages. On one hand, a lot 

work needs to be done in order to fabricate and test a series of transistors with different 

channel length. On the other hand, it cannot be taken for granted that all the transistors 

have similar channel and contact characteristics, such as, morphology, defects density 

and crystal orientation, even if they are fabricated in the same run. Finally, it cannot 

separate the contact resistances at the source and the drain electrodes individually. 

2.1.1.2.2 Gated four-probe technique 

As mentioned in the previous section, the T L M method cannot give the respective 

value of source and drain contact resistance. An alternative method to T L M is the gated 

four-probe technique, which consists of introducing two additional narrow, voltage 

sensing electrodes that slightly protruding into the channel, as depicted in Fig. 2.13 [28]. 

Electrical characterization is then carried out by sweeping the drain voltage VDS at a 

constant gate voltage VGS or sweeping VGS at a constant VDS while monitoring the drain 

current IDS and probe potentials Vi and V2. In the linear region of O T F T operation 

(I VDS I << I VGS - VT\ ), the charge carrier density in the channel is assumed to be 

40 



uniform and exhibits a linear drop with electrostatic potential along L from source to 

drain. Therefore, with the values of V1 and V2, a linear extrapolation of the potential 

profile to each contact is performed, and the potential drops at each contact, AVS and 

AVD, can be calculated by following equations: 

AVs = 2Vi - V2 (2.25) 

AV
D
 = V

D
- (2V2 - Vi) (2.26) 

With the known IDS, hence, the contact resistance at each contact can be directly 

calculated through equations: 

R s = f (2.27) 
i DS 

(2.28) 
D S 

where RS and RD are the contact resistance at the source and drain electrode, 

respectively. 

As seen, the gated four-probe technique can isolate the contribution of source and 

drain contact from the total contact resistance, and it is relatively simpler than the T L M 

method since it can determine the RC using only one device. However, it is important to 

keep in mind that a crucial limitation for the gated four-probe technique is that the 
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validity of the extrapolated channel potential profile will be restricted in the linear 

region of O T F T operation, where the channel potential drop can be expected to be 

linear along the channel. 

Gate 
1

 l>l> 

Fig. 2.13 Illustration of gated four-probe technique. 

2.1.1.2.3 Kelvin probe force microscopy (KPFM) 

In the previously described techniques, extrapolation of measured data is required in 

order to obtain the contact resistance. An even more powerful method that uses an 

atomic force microscope (AFM) tip to probe the potential along the channel of the 

transistor is develop, which is called Kelvin probe force microscopy (KPFM) [34, 35]. 

Fig. 2.14 shows the experimental setup of K P F M . During experiment, a conductive 

A F M tip scans over the working O T F T channel twice. On the first run, the surface 

morphology of the device is recorded; on the second run, the tip is pulled a small 
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distance (〜10 nm) away from the device and then retraces the channel while recording 

the electrostatic potential simultaneously. The electrostatic potential data are then 

converted into the surface potential profile of device, as shown in Fig. 2.14. Through 

the potential drops AVS and AVD at source and drain interfaces, one can calculate the 

respective contact resistance by the following equations: 

R
S
= ， (2.29) 

〜 =戶 ( 2 . 3 0 ) 

Fig. 2.14 (a) Schematic diagram of the experimental setup and the TFT structure, (b) topographic profile 

of the device along the channel direction and (c) plots of potential profiles as a function of drain voltage 

[34]. 
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It is clear that the K P F M has an obvious advantage over the gated four-probe 

technique because it can record the entire channel potential profile in time instead of 

extrapolating a linear profile through only two points (see Fig. 2.13 and Fig. 2.14 as a 

comparison). In addition, more detailed information about the potential variations at 

grain boundaries in the channel can also be obtained by this technique. 

2.5 Gate dielectrics 

The operation of OTFTs is based on the well-known “metal-oxide-semiconductor” 

(MOS) structure which has been extensively studied in Si based electronics [19]. In this 

structure, the oxide serves as an insulating layer, i.e., dielectric layer, which controls the 

formation of conducting channel in the organic semiconductor. As a result, the 

properties of the dielectric layer are of great importance in influencing the device 

performance. 

Due to the inherently low mobility of organic semiconductors, the S/D current in 

OTFTs is usually in the order of < 10
-4

 A. As a result, to make the device working 

properly, the dielectric layer must show a low leakage, which is required to be at least 

one order of magnitude lower than that of S/D current. Defects, pinholes and cracks in 
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the dielectric layer can lead to a severe leakage and dielectric breakdown. In addition, 

the surface roughness of dielectrics also plays an important role in influencing the 

device electrical characteristics [36-38]. Initial studies of OTFTs are based on thermally 

oxidized SiO2/highly doped Si as dielectric/gate electrode pair, mainly due to the fact 

that they are well established in amorphous Si TFTs, and they are commercially 

available with high quality, including low leakage, high breakdown voltage and low 

roughness. However, with the impressive development of the OTFTs achieved in recent 

years, drawbacks of this system have been increasingly revealed. On one hand, the 

fabrication of thermally oxidized SiO2 requires high temperature, which is energy 

consuming and incompatible with flexible plastic substrate. On the other hand, due to 

the low dielectric constant of SiO2, the capacitance density is usually very small. 

Consequently, a high voltage, typically larger than 30 V is needed to drive the device, 

which is unacceptable for low-end applications, such as RF-ID cards, potable sensors, 

e-papers, and so on. 

Achieving high capacitance density in OTFTs is of great importance, considering the 

low intrinsic mobilities of the organic semiconductors and the requirements in the 

low-end applications in which low driving voltage is a prerequisite. At the same time, 

keeping the leakage currents as low as possible can reduce the power consumption in 
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devices [39], and easy processing of dielectric materials is of technical importance 

when planning the commercialization in real world. In these regards, convenient, 

low-cost solution-based methods to produce novel gate dielectrics are highly desired, 

especially in high throughput fabrication, such as ink-jet printing and role-to-role 

production. 

The areal capacitance of gate dielectric can be simply expressed by: 

c尸竽 ( 2 . 3 1 ) 

where £o is the permittivity of vacuum, k is the relative permittivity of the gate dielectric 

and d is the thickness of gate dielectric. As seen, by either decreasing d or increasing k, 

one can get an increased Ci. For the former approach, researchers have used very thin 

organic dielectrics, including self-assembled monolayers (SAMs) and polymers to 

realize high areal capacitance [40-43]. The advantages of using organic dielectrics are 

that they can be processed through solution based technology at low temperature. 

However, they also show some inherent drawbacks. For SAMs, because they are 

sensible to the processing environment, especially water vapor, peculiar carefulness 

must be paid in producing this kind of dielectrics. On the other hand, due to the 

extremely thin thickness of S A M s (typically 2〜3 nm), it is hard to control the quality, 
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because a single defect can leak to a direct leakage. In addition, they have difficulties in 

integration with large area flexible substrates. For polymers, because the low dielectric 

constants they have (usually < 3), the thickness of this layer must be controlled in 

precision in order to decrease the leakage current. At the same time, to obtain high 

quality thin film, extra polymerization is usually needed [44]. 

On the other hand, the application of high-众 dielectrics, such as TiO2 [45], A^Os [46], 

HfO2 [47] and ZrO2 [48], is a promising alternative to achieve high gate capacitance, 

since they can easily maintain low leakage with a moderate thickness. More 

importantly, they can be solution-processible [49, 50], which is highly desired for high 

throughput fabrication. In addition, the unfavorable hydroxyl groups (OH
-

) present in 

the surface of native oxides can be easily passivated by introducing S A M s or thin layers 

of polymers [51, 52]. 
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Chapter 3 Materials and Experimental Techniques 

This chapter will introduce the materials, device fabrication details and 

characterization methods used in this thesis. 

3.1 Materials 

All the materials used in this thesis are bought from Sigma-Aldrich. 

Fig. 3.1 Chemical structures, full names and abbreviations of organic semiconductors used in this thesis. 

CopF 
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The chemical structures, full names and abbreviations of the organic semiconducting 

materials used in this thesis are shown in Fig. 3.1. Copper phthalocyanine (CuPc) (80%) 

and copper hexadecafluorophthalocyanine (F^CuPc) (80%) are purified twice by 

gradient temperature sublimation under a high vacuum (<10
-4

 Pa) before use. 

Pentacene (>99.9%), rubrene (>98%), C60 (>99%) are used as received without further 

purification. 

The TiOx precursor is titanium(IV) isopropoxide (TIP), Ti(OC3H7)4, with a 

molecular weight of 284.22 and a purity of 99.999%. The A^Oy precursor is aluminum 

nitrate nonahydrate, Al(NO3)3.9H2〇，with a molecular weight of 375.13 and a purity of 

99.997%. 

Solvents, including 2-methoxyethanol, acetic acid, acetone, ethanol, isopropanol, 

and methanol, are used as received. The detailed information of these solvents is 

summarized in Table 3.1. 

Table 3.1 List of physical properties of solvents used in this thesis. 

Name Molecular formula Molecular weight Assay (%) Boiling point (°C) 

2-methoxyethanol CH3OCH2CH2OH 76.09 99.8 124 

Acetone CH3COCH3 58.08 99.9 56 

Acetic acid C H 3 C O O H 60.02 99.7 117 

Ethanol CH3CH2OH 46.07 99.9 78 

Isopropanol (CH3)2CHOH 60.1 99.5 82 

Methanol C H 3 O H 32.04 99.8 65 
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Heavily n-doped Si wafers with 300 n m thermally oxidized SiO2 (n
++

-Si/SiO2) on 

surface are used as the substrates for ordinary devices. 125 |im thick polyimide (PI) 

membranes are used as substrates for flexible devices. 

The electrodes materials, including gate electrodes and source-drain (S/D) electrodes, 

are Al, Ag, Au, Cr and Cu. Assays of these metals are 99.99%. 

Octadecylphosphonic acid (ODPA) serves as a self-assembled monolayer (SAM) 

chemistry with an assay of 98%. Its molecule structure is given in Fig. 3.2. 

°\\ ̂ 0 H 

“ 'OH 

Fig. 3.2 Molecule structure of octadecylphosphonic acid (ODPA). 

3.2 Device fabrication procedures 

TiOx sol is prepared by solving TIP in a mixture of methanol and acetic acid with a 

typical volume ratio of 1:30:1 for TIP:methanol:acetic acid. The solution is sealed and 

then vigorously stirred by magnetic stirrer for 12hrs before use. 
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Al〗Oy sol is prepared by solving aluminum nitrate nonahydrate in 2-methoxyethanol 

with a typical concentration of about 0.5 Mol/L. The sol is then sealed and stirred for 

12hrs before use. 

n++-Si/SiO2 wafers are firstly cut into small pieces with size of 1.25 cm x 1.25 cm, 

and then cleaned by acetone, isopropanol and ethanol successively in ultrasonic bath 

for 10 min in each round, followed by blowing dry with N2 before use. 

Metal-oxide dielectric is fabricated by a two-step procedure. At first, the TiOx sol is 

spin coated onto n++-Si/SiO2 substrates at 5000 r/min for 40 s, and then baked at 200 士 5 

o

C for 〜3 min on a hotplate. Secondly, the A ^ O y sol is then spin coated onto the above 

substrates and then baked at the same condition as that of TiOx. The obtained dielectric 

layer is constructed by a double layer system, i.e., Al2Oy/TiOx, and it is referred to A T O 

for short thereafter. For S A M modification, the A T O substrates is immersed into an 

ODPA-isopropanol solution (〜5 mMol/L) for 17 hrs under sealed condition, and then 

washed by isopropanol ultrasonically for 6 min. After washing, the substrates are then 

blown dry with N2. The S A M modified A T O substrates are referred to ODPA/ATO for 

short thereafter. 

PI substrates are cut into pieces with dimension of 2 cm x 2 cm and then cleaned by 
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isopropanol and ethanol ultrasonically for 10 min in each round before use. 5nm Cr and 

30 nm Au are deposited onto the substrates via thermal evaporation under vacuum (5 x 

10
-4

 Pa) with a rate of 0.3 A/s. After that, the ODPA/ATO is fabricated by the same 

method introduced previously, the only difference is that Al2Oy sol is spin-coated at 

4000r/min for 20s. 

Thin film devices are fabricated by thermally evaporation of organic semiconductors 

(CuPc, F16CuPc, pentacene and C60) and the S/D electrodes onto the substrates and 

detailed experimental parameters will be discussed in the corresponding chapters. 

Rubrene single crystal are grown on the substrates by a physical vapor transportation 

(PVT) method [1]. The S/D electrodes are defined by placing two Au film onto the 

rubrene single crystal [2]. 

3.3 Characterization 

3.3.1 Electrical performance testing 

Both the leakage and capacitance of the devices are tested based on the 

n++-Si/dielectric/Au (MIM) structure. The leakage is examined by Keithley 4200 SCS, 

and the capacitance is obtained by H P 4284A in a frequency range from 20 Hz to 1 M 
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Hz. 

The electrical characteristics of the transistors are tested by the Keithley 4200 SCS on 

a probe station. The gate electrode of the device fabricated on n++-Si substrate is 

defined by scribing the substrate with a diamond pen. The transfer curves are obtained 

by sweeping VGS at a constant VDS, and the output curves are obtained by sweeping VDS 

at a set of different VGS values. 

3.3.2 Atomic force microscope (AFM) 

The morphology of the dielectrics and the organic semiconductors are characterized 

by atomic force microscope (AFM, Nanoscope IIIa). 

Fig. 3.3 Working principle of atomic force microscopy (AFM) [3]. 

The working principle of A F M is measuring a deformation of a cantilever while 
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scanning over a sample surface. A sharp tip, with radius of usually less than 10 nm, is 

mounted at the end of the cantilever, whose length ranges between 100 ̂ m and 200 ^m. 

An incident laser beam is reflected to a position-sensitive photodetector (4-field diode) 

by the cantilever, and consequently, the deformation can be measured by the detector, 

as illustrated in Fig. 3.3 [3, 4]. In order to increase the laser reflection yield, the 

cantilever backside is usually coated with Au or Pt. Static deformation of the cantilever 

due to the interaction between the tip and the sample surface can therefore be used for 

the surface investigation [5]. The photodetector allows us to measure the sample 

surface normal force by analyzing the current difference in the vertical segments and 

parallel force through the horizontal segments. A piezoelectric dynamic feed-back 

system allows not only the height measurements but also constant-height scanning with 

pm accuracy. 

The most commonly used A F M operation modes are tapping mode and contact 

mode. In tapping mode, the cantilever oscillates at its resonance frequency and bounces 

up and down on the sample surface. And the photodetector records the signal of 

cantilever deformation caused by the attractive interaction between tip and sample 

surface. This mode is relatively slow in getting the surface information, but it can 

protect the sample against destroying by the tip. While in contact mode, the tip is placed 
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near to the sample surface with distance of sub-nanometer, and the photodetector 

records the deformation of the cantilever caused by the repulsive force between tip and 

sample surface. A severe drawback of contact mode is that the sample surface is easily 

damaged. 

3.3.3 Kelvin probe force microscopy (KPFM) 

Kelvin probe force microscopy (KPFM) is a well-established technique to measure 

the contact potential differences (CPDs) between a reference electrode and a sample 

[6-8]. The K P F M technique is developed on the basis of A F M . In K P F M , two 

conductors (the cantilever tip and sample) placing in a small distance can be simply 

viewed as a parallel plate capacitor. The contact potential difference between the two 

materials is expressed by the following equation [9]: 

V
C P D

 = _ m (3.1) 

where 01 and 02 are the work functions of the tips and samples, respectively, e is the 

electron charge. The mechanical oscillation of cantilever, at frequency will induce 

changes in the distance between the two materials, and hence the capacitance is 
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changed accordingly. Consequently, the periodic vibration of the distance between the 

tip and sample at ① will induce an alternating current i(t) given by: 

i(t) = VCPD�AC cos �t (3.2) 

where AC is the variation in capacitance. W e can apply an external bias (VBIAS) to 

neutralize this current, as can be seen form the following equation: 

i(t) = (Vbias + Vcp
D
>AC cos ̂ t = 0 (3.3) 

The K P F M technique depends on measuring zero i(t) with the application of external 

VBIAS between the two plates to eliminate the electric field. Thus, C P D can be 

determined by VCPD = -VBIAS. 

K P F M has been widely used in studying the electrical properties of organic 

electronic devices, e.g., contact resistance and defects in grain boundary. Despite the 

superior spatial resolution with relatively high energy sensitivity as compared with 

other techniques, K P F M still has some disadvantages. First, before measuring the 

absolute surface potential of a sample by K P F M , the work function of the probe must 

be known ahead. Second, it can only give the variations of molecularly averaged 

surface potential when absorbents present in a semiconductor sample surface. Third, an 
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abrupt morphological height change can disturb the precision of K P F M . Fourth, a 

relatively long time, usually one or two hours, is needed to acquire a surface potential 

image of the sample [8]. 

3.3.4 X-ray diffraction (XRD) 

Many materials are assembled in crystallized structure, which means their atoms are 

arranged in periodical 3-dimensional (3D) arrays. These crystals are constructed by 

unit cells through which the smallest number of atoms repeats to form the whole 3D 

array. Depending on their symmetry, the unit cells can be cubic, triclinic, monoclinic, 

hexagonal, or some other types. The sizes of these unit cells are called the lattice 

constants. Taking cubic cell as an example, the structure can be clearly defined just by 

one parameter, i.e., the distance between two nearest atoms, we refer it as ag. There 

exists a series of parallel plains containing atoms with different areal density in the 3D 

cubic system. Each set of parallel plains can be labeled by a unique Miller index, (h k I). 

The distance (dhki) between a certain (h k I) plain can be calculated by the following 

equation [10]: 

dhki = ^h2+a02+l2
 ( 3 4 )  

60 



Early in 1913, Bragg et al. developed a theory to explain why the cleavage faces of 

crystals appear to reflect X-ray beams at certain angles of incidence (0) [11], as given 

in: 

nX = 2dsind (3.5) 

where d is the distance between the parallel atomic layers in a crystal, X is the 

wavelength of the incident X-ray beam, and n is an integer. This observation is an 

example of X-ray wave interference, which is known as "Bragg's law". By combining 

the above two equations, one can see that the X-ray diffraction technique can be used to 

determine the lattice parameters of a crystal. 

Two theories are involved in using Bragg's law to determine the lattice parameters. 

The first theory is the interference of waves. When two waves, whose wavelength and 

frequency are the same, propagate in parallel, the resulting wave is the superposition of 

the two waves. If the two waves are in phase, the amplitude of the resultant wave will 

be the sum of the two amplitudes. On the contrary, if they are 180° out of phase, the 

resultant amplitude is the difference between the two amplitudes, i.e., they would 

cancel each other out. The other theory is the simple trigonometry, as depicted in Fig. 

3.4. When two waves are reflected by two parallel lattice planes, one wave will travel a 
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longer distance (2/) than the other. The distance 21 can be related to the space between 

the two planes (d), and the angle between the incident wave and lattice plane (6). As can 

be seen from Fig. 3.4, the relationship between /, d and 6 can be expressed by: 

I = ds\n6 (3.6) 

Fig. 3.4 Illustration of determining lattice plane space through Bragg's law. 

In case of 2/ is exactly equal to one wavelength (义）or any integral multiples of X (i.e. 

n^), the two waves will propagate parallelly in phase again, and accordingly a 

constructive interference occurs. As a result, the above equation can be changed to: 

d=2sTo (
3
.

7
) 
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The most common mode used in X-ray diffraction techniques in the 6-26 geometry. 

From the peaks of the X-ray diffraction pattern, one can easily identify the compound 

species, the crystal phases and the lattice constants. At the same time, it allows one to 

estimate the average volume crystallite size (D) through Scherrer equation [12]: 

(3.8) 
PsinO v ， 

where K is a particle shape-related constant and equals to 0.9 by convention, and P is 

the full width at half maximum ( F W H M ) of the diffraction peak. 

3.3.5 Grazing incidence X-ray diffraction (GIXD) 

Traditional X-ray diffraction has been used for decades to characterize the structure 

of bulk crystalline materials due to the weak interaction between X-ray and matter, 

negligible multiple scattering and long penetration depth (typically on the order of 0.1 -

10 m m ) [13]. However, this technique is not sensitive to the surface structure of the 

materials. Recently, take the advantage of very intense X-ray sources such as 

synchrotron radiations, the structural analysis on the surface and/or interface of 

crystallite materials has become possible. One experimental strategy is to use the 
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so-called grazing incidence geometry, in which total reflection of X-rays by a surface 

can be achieved when the incident angle is less than a critical angle of the surface. The 

typical grazing angle is in the range of 0.05-1.5
o

, dependent on the electron density of 

the substrate and the energy of the X-rays. At this situation, the sample interacts weakly 

with the X-rays, and only an evanescent wave can penetrate into and then scatter in it. 

Therefore, the X-ray intensity is highest at the surface. In addition, it is possible to 

further increase the surface selectivity by decreasing the incident angle in order to 

induce faster attenuation of the evanescent wave. Basing on this total reflection 

phenomenon, Murra et al. have develop a new technique for studying the structures of 

crystal surfaces as well as overplayed interfaces [14], and it is known as grazing 

incidence X-ray diffraction (GIXD), which is also referred to as grazing incidence 

x-ray scattering (GIXS). GIXD has been commonly used to characterize “in-plane” 

crystal structures in the surface region, ranging from a few nanometers to several 

hundred nanometers below the sample surface. 

Fig. 3.5 shows the most commonly used geometry setup in GIXD characterization, 

where a two-dimensional detector is used to record the diffraction of X-ray. The 

advantage of this geometry is that it allows measuring the “in-plane” and “out-of-plane” 

crystal structures of the sample at the same time. The analysis of GIXD is based on the 
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kinetic theory, which is based on two simplified assumptions: (1) the scattering electron 

density of atoms is spherically symmetrical and (2) the contribution from multiple 

scattering events is negligible. For two dimensional crystals, condition for diffraction 

appears in the xy plane is that the horizontal component of the scattering vector, labeled 

as qxy (qxy =…^ ~ sin Ohor, where 26hor is the in-plane angle between the incident 

beam and the diffracted beam), must be consistent with a reciprocal lattice, as 

expressed by [15]: 

qxy = Rhk = 2n(ha" + kb” (3.9) 

* ^ ^ * 
where a and b are the reciprocal in-plane lattice vectors, h and k are the indexes of the 

reciprocal lattice point. On the other hand, no such restriction exists for the vertical 

component (labeled as qz in Fig. 3.10) along the surface normal of the scattering vector, 

which is defined by: 

2n 
Qz = Q丄=Tsin a (3.10) 

A 

where a refers to the angle between the diffracted beam and the substrate surface. 

Consequently, the GIXD patterns obtained from two-dimensional crystals are 

composed of two-dimensional array of rods, called Bragg rods (BRs), which extend 

parallel to qz. 
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Fig. 3.5 Geometrical illustration of 2-D GIXD [15]. 

3.3.6 X-ray photoelectron spectroscopy (XPS) 

Photoelectron spectroscopy is a widely used technique that usually employed to 

explore the electronic state and chemical composition of samples. The technique is 

based on the well-known photoelectric effect first discovered by Hertz in 1887, and 

then theoretically studied by Einstein in 1905 who for the first time introduced the 

concept of photon to explain the ejection of electrons from a material surface when 

exposed to light with certain wavelength. Fig. 3.6 shows the structure of a typical 

photoelectron spectroscopy experimental setup. 
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Fig. 3.6 Simplified schematic of photoelectron spectroscopy experimental setup [16]. 

Photons with energy hv irradiate on a sample surface will cause emission of electrons. 

These electrons with different kinetic energies are collected by an electron lens system 

and then analyzed by a detector. Conventionally, this technique can be subdivided into 

ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy 

(XPS) depending on the excitation irradiation source and the excited electron energy. 

For UPS, UV-light is used as the excitation source, and the resulting emitted valence 

electron has a kinetic energy of < 40 eV. On the other hand, in XPS, core level electrons 

with energy > 40 eV are excited by soft X-ray radiation. Generally, a dual anode X-ray 

gun (Al Ka and M g Ka) is used as the source of XPS in common laboratory equipment. 

Although the X-ray has a strong penetration effect into the sample (typically several 

microns), due to the strong interaction between electrons and matter, only those 
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electrons with high kinetic energy in the very near surface region (less than 10 nm) can 

escape from the sample [17]. Such characteristics make XPS a suitable method to 

explore the surface electronic states of a sample. 

Fig. 3.7 shows a schematic illustration on the principle of photoelectron emission. At 

first, an incident X-ray with energy hv collides with a core electron, and then results in 

the electron to be released from the electronic shell. The kinetic energy (KE) of the 

released electron is directly related to the binding energy (BE) of the electron to the 

nucleus. On the other hand, due to the ejection of electron, there is an unfilled hole in 

the position of the missing electron. The hole is unstable, as a result, electron from the 

outer valence shell will fill this unstable hole, leading to emission of a Auger electron in 

order to conserve the whole energy [18]. Similarly, the kinetic energy of Auger electron 

is again directly related to the binding energy of the electron to the nucleus. Basing on 

the fact that each element has a unique set of electron binding energies, the above two 

processes can therefore be used to identify the elements. By collecting the kinetic 

energies of electrons, one can calculate the binding energies of electrons through the 

following equation [19]: 

BE = hv — KE — ^svec (3.11) 
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where (pspec is a correction factor that is dependent on the spectrometer itself. 

Theoretically, the above equation can be used to calculate the binding energy of emitted 

electrons. However, this equation varies slightly depending on the conductivity of the 

samples. For a conducting sample, the calculation of binding energy is exactly the one 

presented above because the Fermi levels of the sample surface and spectrometer are 

equivalent. On the other hand, for insulating samples, the above case is no longer true, 

because a difference in Fermi levels exists between sample surface and spectrometer. 

As a result, charge accumulation occurs above the sample surface, which results in an 

upward shift in spectrometer's Fermi level. To correct this phenomenon, the obtained 

XPS data need to be calibrated to other peaks. The most commonly used calibration 

peak is Carbon 1s (C1s) at a binding energy of 285.1 V. 

Fig. 3.7 Illustration of principle of photoelectron process [20]. 
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An important issue of analyzing the XPS data is how to determine the composition of 

the sample. Noting that the integral area of binding energy curve is proportional to the 

number of atoms emit electrons at that binding energy, therefore, one can determine the 

composition of the sample surface by calculating the ratio of each integral area. 

However, for each element, a unique sensitive factor must be introduced in calculating 

this ratio. Because every XPS system has its own sensitive factor, it is difficult to obtain 

a precise composition unless the exact factors are given. 

In addition to analytical information about the surface, it is also highly demanded to 

obtain information about the distribution of chemical composition with depths which is 

considerably larger than the escape length of electrons. Nondestructive methods, 

including variation of emission angle and variation of exciting photon energy are 

proposed, but in practice the chemical composition obtained are limited within depth of 

only approximately 5 nm. To obtain information about the deeper inner part of sample, 

destructive methods are required, and ion bombardment is one of the most universally 

used techniques. To avoid chemical effects, depth profiling in XPS is usually performed 

with a noble gas. Chemical information as a function of depth is acquired by using 

alternate cycles of sputtering and analysis. 
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Chapter 4 Solution-processed High-A: Gate Dielectric 

In this chapter, a low-temperature solution-processed high-k dielectric system is 

introduced. The physical and chemical properties of the dielectric system are 

characterized and analyzed in detail. A model is proposed to account for the relationship 

between capacitance and frequency. Finally, low-voltage CuPc based OTFTs are 

demonstrated by using the high-k dielectric system. 

4.1 Introduction 

A great deal of research interest has been devoted to organic thin film transistors 

(OTFTs) during the past decades, as they have many advantages such as light weight, 

flexibility, and low temperature and solution processibility [1]. Much progress has been 

made in improving the performance of OTFTs, however, high operation voltage resulting 

from intrinsically low charge carrier mobility of organic semiconductors remains a severe 

limitation that hinders their development in practical applications [2]. For low-power 

applications, such as RFID tags, flat panel displayers, and portable electronics, it is a 

prerequisite to achieve high device performance at acceptably low voltage. Typically, this 

issue can be addressed through increasing the capacitance density of the gate dielectrics 

(Ci) by means of either increasing the dielectric constant (k) or decreasing the thickness 

(d) (Ci=sok/d). The latter approach has been demonstrated by utilizing self-assembled 
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monolayers (SAMs) and multilayers (SAMTs) [3-5], as well as polymers [6, 7]. However, 

due to the low dielectric constants (typically < 3) of organic materials, an extremely thin 

dielectric thickness is required. This demands a particularly careful preparation of the 

dielectric layer (as a very small amount of defects can already cause high leakage current) 

and makes the scale-up of OTFT fabrication difficult. 

Application of high-k inorganic metal-oxides, such as TiO2, HfO2, ZrO2 and Al2〇3, 

instead of organic dielectrics, offers a promising alternative. Among these binary 

metal-oxides, TiO2 is known to have the highest k value, but has the disadvantage of a 

negligible band offset against Si [8] and the easy formation of an interface layer even at 

low temperature [9]. Moreover, a higher permittivity value is usually accompanied by a 

smaller band gap, resulting in larger leakage currents through the gate dielectric. On the 

other hand, HfO2 and ZrO2 tend to form polycrystalline phases at relatively low 

temperature, resulting in the formation of grain boundaries that will degrade the dielectric 

performances [10]. In comparison, the merits of Al2O3 are its large band gap and band 

offset with Si [8] and excellent thermal stability [11]. Although the k value of Al2O3 is 

moderate, it can be used in combination with TiO2 considering the fact that they have 

characteristics complementary to each other. On the other hand, typical processing routes 

for metal-oxide dielectrics, including chemical vapor deposition (CVD) [12], atomic 

layer deposition (ALD) [13] and radio-frequency (rf) magnetron sputtering [14] are often 

associated with high temperature, require expensive, high vacuum equipment, and are 

time consuming to produce. To achieve roll-to-roll metal-oxide fabrication and to make it 

compatible with large area flexible substrates, it is crucial to develop low-temperature, 

solution-processed routings for the fabrication of metal-oxides as gate dielectrics. 
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Here, we describe a novel solution-processed method to fabricate a 45 n m thick, 

bilayer AbO/TiOx (ATO) dielectric system at low temperature (200 士 5 °C). The 

obtained dielectric system exhibits a very smooth surface (RMS=0.22 nm), a low leakage 

5 2 9 

current density (10
-

 A/cm ), and a high capacitance density of 250 nF/cm . By applying 

such a system as the gate dielectric, we achieve high performance of copper 

phthalocyanine (CuPc) based OTFTs at a driving voltage as low as -1.5 V, and the hole 

mobility (^), threshold voltage (VT), on/off ratio, and subthreshold swing (SS) are 
2 3 

determined to be 0.06 cm /Vs, -0.5 V, 2x10，and 160 mV/dec, respectively. Our 

approach demonstrates a low-temperature, scalable process for fabrication of 

high-capacitance gate dielectric, which is a key step towards the realization of 

low-voltage O T F T circuits. 

4.2 Experimental details 

Titanium oxide (TiOx) sol was prepared by dissolving titanium (IV) isopropoxide (TIP) 

(Ti(OC3H7)4, 99.99%, Aldrich) into a mixture of methanol and acetic acid in a 

concentration of about 0.1 Mol/L, and then vigorously stirred for 24 h in ambient 

conditions. Aluminum oxide (Al2Oy) sol was prepared by dissolving aluminum nitrate 

nonahydrate (Al(NO3)3.9H2〇，99.99%, Aldrich) into 2-methoxylethanol in a 

concentration of about 0.5 Mol/L and then stirred for 12 h in ambient conditions. 

Prior to dielectric layer deposition, heavily n-doped Si wafers (n++-Si) (acting as gate 

electrodes) were ultrasonically cleaned by acetone, isopropanol and ethanol, in 
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succession, and then used immediately for spin-coating after blown dry with N2 gas. The 

TiOx layer was deposited by spin-coating the TiOx sol onto the cleaned n++-Si substrates 

at 5000 r/min for 40 s, followed by baking at 200 ±5 °C for 5 min to ensure the 

hydrolyzation and decomposition of the precursor. Subsequently, the Al2Oy layer was 

deposited by spin-coating the A^Oy sol onto the cooled TiOx-coated substrates and then 

baked at the same condition as that of TiOx. 

After deposition of the dielectric layers, bottom gate, top contact (BGTC) OTFTs were 

fabricated by vacuum deposition of CuPc (30 nm, 3^10
-4

 Pa, 0.01 nm/s growth rate) onto 

the substrates at the substrate temperature of 180 °C, followed by vacuum deposition of 

gold as source (S)-drain (D) electrodes (30 nm, 3^10
-4

 Pa, 0.03 nm/s growth rate) through 

a shadow mask with dimensions of L (channel length) = 70 陣 and W (channel width)= 

2500 jam. As for leakage and capacitance characterization, a metal-insulator-metal (MIM) 

structure was fabricated by direct deposition of 30 nm-thick gold dots with diameter of 

1000 jam onto the single layer TiOx and bilayer A T O dielectric system through a shadow 

mask. 

The surface morphology of the solution-processed dielectric and CuPc film was 

characterized by atomic force microscopy (AFM, Nanoscope IIIa Vecco) in tapping 

mode. The elemental analysis of the spin-coated metal-oxides were characterized by XPS 

spectrometer (VG Scientific E S C A L A B 250, equipped with two ultra-high vacuum 

(UHV) chambers) measurements and all binding energies were referenced to the C 1s 

peak at 284.6 eV of the surface adventitious carbon, the depth profiling was performed by 

Ar+ etching with an EX05 argon gun at ion beam voltage of 3 keV and emission current 
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of 2 |aA. The frequency-dependent capacitance of the M I M structure was measured by 

H P 4284A in a frequency range of 20 Hz-1M Hz. The electrical performances of the 

OTFTs were measured in ambient conditions using Keithley 4200 SCS. 

4.3 Results and discussion 

4.3.1 Structure of dielectric film 

The X-ray diffraction (XRD) characterization is conducted on the solution-processed 

single layer TiOx and A T O system, and the results is shown in Fig. 4.1. The absence of 

diffraction peaks in the X R D patterns reveals the amorphous nature of the oxides 

obtained at low processing temperature. Fig. 4.2a shows the tapping mode A F M image of 

the A T O system. As seen, the A T O exhibits a homogenous and smooth surface with a 

root mean square (RMS) roughness value of 〜0.22 nm in an area of 5 |im x 5 陣 .In 

addition, as shown in Figure 1b, no surface defects and pinholes are observed in the 

higher resolution A F M image. The cross-sectional analysis along a scan line (Fig. 4.2c) 

further confirms the high quality of the solution-processed film with a surface height 

fluctuation within 0.6 nm. The single TiOx layer (AFM image not shown here) also 

shows similar structure, and has a considerably lower roughness than the reported TiO2 

dielectric layer which is obtained from a sol-gel and has a roughness value of 4 nm [15]. 

The dielectric surface roughness is an important factor that can influence the performance 

of OTFTs. A rough dielectric surface has been proven to be harmful to charge carrier 

transport in organic semiconductors. It can induce physical traps and barriers [16], or 
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Fig. 4.1 X-ray diffraction (XRD) patterns of (a) single layer TiOx and (b) A T O system. 
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Fig. 4.2 A F M images of A T O system in an area of (a) 5 ^ m x 5 |xm, (b) 1 陣 乂 1 陣 and (c) 

Cross-sectional height profile obtained from the black solid line in (b). 

disturb the growth of the semiconductor layer [17]. Therefore the smooth surface of our 

A T O system is an ideal property for high performance OTFTs. 
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4.3.2 XPS characterization 

In order to investigate the chemical structure of the spin-coated dielectric films, XPS 

measurements are conducted. Fig. 4.3 shows the atomic composition profiles of O, Al, C, 

Ti, and Si as a function of etching time obtained from the A T O system. W e note that no 

N atom is detected in the film, indicating completely decomposition of Al precursor 

(Al(NO3)3'9H2O). As can be seen in region I, the stoichiometry of the top AhOy layer 

remains unchanged throughout the thickness of the layer, and no Si and Ti are detected in 

this region. The atomic ratio of Al to O in region I is about 2:2.7, giving an y value of 2.7. 

With increasing etching time, the intermixing layer containing Al〗Oy and TiOx, which 

can be observed in region II, manifests a continuous change of the relative atomic ratios 

of Al, Ti, and O. Beneath region II is a more complex intermediate layer containing Al, 

Ti, Si, and O, marked as region III. The Si in region III should originate from the native 

SiO2 layer on the surface of n++-Si substrates. The total thickness of the A T O system is 

estimated to be 45 nm (measured by AFM). The inset of Fig. 4.3 shows the depth profiles 

of atomic composition obtained from a 15 nm thick, single layer TiOx. There exists a 

transition layer consisting of TiOx and native SiO2 in the spin-coated TiOx film, as noted 

by the changes in the composition of the film. Interestingly, as observed in both A T O 

system and single layer TiOx, the C atom percentage at the surface is high and then 

decreases drastically as the etching depth increases. The high C concentration at the 

surface is usually attributed to contamination during sample handling; on the other hand, 

the absence of C atoms in the inner part of the oxide layer reveals that the Ti precursor 

(Ti(OC3H7)4) is also completely decomposed. In the case of single layer TiOx, the atomic 

ratio of Ti and Si to O is smaller than 2, suggesting that some oxygen vacancies exist in 
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Fig. 4.3 Atomic composition profile of A T O system as a function of etch time; inset: Atomic composition 

profile of single layer TiOx. 

4.3.3 Leakage current and capacitance 

To characterize the electrical properties of the solution-processed dielectric, we 

fabricate an Au/Metal-oxides/n++-Si (MIM) sandwiched structure and test its 

current-voltage characteristics. Fig. 4.4a shows the typical leakage current density versus 

bias voltage plots of a single layer TiOx and A T O system. As can be seen from Fig. 4.4, 

the single layer TiOx exhibits an asymmetrical curve shape, with current density of 〜 

the transition layer. The impact of these oxygen vacancies on the electronic properties of 

the oxide layer will be discussed later. The atomic concentration obtained here is 

meaningful in the relative values, because of the low accuracy of XPS itself. To get a 

more precise atomic concentration, one can use other techniques, such as inductively 

coupled plasma-atomic emission spectrometry (ICP-AES) and secondary ion mass 

spectrometry (SIMS). 
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10
-5

 A/cm
2

 at - 2 V and nearly 0.1 A/cm
2

 at + 2 V (electric field strength:〜1.7 MV/cm). 

This is likely due to the zero conduction band offset at the Si/TiOx interface [8] and the 

different work function of Si and Au, making electron injection from one electrode easier 

than the other, as shown in left side of Fig. 4.4b. W e also note that the dip of the leakage 

current is shifted away from the zero bias; this might be caused by the charge trapping at 

the defects (e.g. oxygen vacancies) within the amorphous TiOx/SiO2 transition layer. 

After deposition of the Al2Oy layer, the leakage current is reduced by 4 orders of 

magnitude under positive bias of + 2 V (electric field strength:〜0.5 MV/cm). The 

reduction of leakage is due to the blocking of electron conduction path by the Al2Oy layer, 

as can be seen from the right side of Fig. 4.4b. For both the single layer and bilayer 

devices we observe an abrupt slope change of the leakage current at high positive bias as 

indicated by the transition from region A to B as shown in Fig. 4.4a. Similar phenomenon 

has also been observed by Mahapatra et al. and studied in detail [18]. According to their 

analysis, the conduction in region A is governed by a charge hopping process and the 

conduction in region B is dominated by both Proole-Frenkel emission and trap assisted 

tunneling processes [18]. Detailed characterization and modeling of the voltage and 

temperature dependences of the leakage current is needed to verify if the above 

explanation fits our system, and will be carried out in our future work. 
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Fig. 4.4 (a) Band structures of single layer TiOx and bilyer A T O with n -Si and Au as electrodes and (b) 

leakage current density versus bias voltage characteristics of M I M structures. 

Fig. 4.5a exhibits the frequency dependence of capacitance density for the 

Au/ATO/n++-Si (MIM) structure measured under different bias voltages. The inset 

corresponds to that of the single layer TiOx under 0 V bias. During the measurements, 

bias voltage is applied to the top Au electrode, while the bottom Si substrate is grounded. 

For single layer TiOx, under a bias voltage of 0 V, the total capacitance density is 〜850 

nF/cm at 20 Hz. As shown in Fig. 4.3, as the TiOx/SiO2 transition layer is present in the 

spin-coated film in the case of single layer TiOx, it is appropriate to calculate the 

equivalent permittivity of this transition layer instead of that of TiOx. Using the thickness 

value of 15 nm, an equivalent k value of about 15 can be extracted. As for the A T O 

system, capacitance density is reduced owing to the introduction of another capacitor (i.e. 

A b O y ) in series. As can be seen in Fig. 4.5a, application of a forward bias (biasing 

positively on the Au electrode) results in higher capacitance of the M I M structure, 

compared to zero or reverse bias. Similar bias dependent capacitance has been observed 

by Yarmarkin et al. in the Au/Ti〇2/Pt resistive switching device [19]. They attribute this 

phenomenon to the variation of space charge distribution, i.e., the redistribution of 

J 
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oxygen vacancies in the film driven by the applied voltages. This may also explain our 

A T O system, because our XPS results suggest the existence of oxygen vacancies in the 

vicinity of the TiOx/SiO2 transition layer. The oxygen vacancies in TiO2 are known to be 

positively charged and mobile [20]. The formation mechanism of positively charged 

oxygen vacancies is as follows [21]: 

Ox
0^V0 + ef + 1/202(g) (4.1) 

0^^V()+2ef + 1/202(g) (4.2) 

where V0 is the single positively charged oxygen vacancy and V'0 is the double 

positively charged vacancy. The formation energy of oxygen vacancy with various 

charge stages has been fully studied by some theoretical works. For TiO2, the transition 

energy levels of 2+/1+ and 1+/0 oxygen vacancies are located in the band gap around 0.7 

eV and 0.5 eV, respectively below the conduction band minimum, as depicted in the Fig. 

4.6a. The relatively low formation energy of positively charged vacancy is the reason of 

commonly observed n-type semiconducting behavior in TiO2 [22]. On the other hand, 

oxygen vacancies can also exist in Al2。3 by the same mechanism. However, for Al2〇3, 

the transition energy levels are located at 3.1 eV and 2.7 eV for 2+/1+ and 1+/0 oxygen 

vacancies, respectively, which are much larger than that of TiO2 [23]. At the same time, 

the ionization energy of oxygen vacancy is almost proportional to the band gap of oxide 

semiconductors, larger band gap results in higher formation energy of positively charge 

oxygen vacancies, as deduces from literature [23]. The corresponding band structure of 

Al2。3 associated with oxygen vacancies is given in Fig. 4.6b. The high formation energy 

of positively charged oxygen vacancies accounts for the excellent insulating performance 
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of Al2〇3. As a result, in bilayer A T O , we attribute the positively charged oxygen 

vacancies to the TiOx layer other than the Al2Oy layer. 

Fig. 4.5 Capacitance density versus frequency plots of M I M structures; (b) Schematic view of the A T O 

capacitor and the equivalent circuit (lower part). 

Fig. 4.6 Illustration of energy transition levels of oxygen vacancies in (a) Ti〇2 and (b) Al2〇3. 

Having this in mind, one can infer that under forward bias, the oxygen vacancies will 

be repelled away from the mixing layer and accumulate close to the bottom Si substrate. 

This positively charged oxygen vacancy accumulation layer induces additional electrons 
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at the bottom electrode, forming an “electric double-layer” (EDL) capacitor. The 

capacitance of such an E D L could be enlarged due to its thickness (a few nanometers) 

[24]. On the other hand, in the situation of reverse bias, the oxygen vacancies will be 

attracted towards the Au electrode, and then blocked at Al2Oy/TiOx interface (as shown in 

Fig. 4.5b), resulting in a larger thickness of the E D L capacitance. This explains the bias 

voltage dependence of the capacitance of A T O system observed in Fig. 4.5a. Similar 

results have also been reported by other groups [25, 26]. 

Besides the bias dependence, we also observe a slight increase of capacitance density 

at low frequencies. The increase of capacitance at low frequency is often related to the 

Maxwell-Wagner space charge polarization which is inherently a nonuniform charge 

accumulation [27, 28]. This process is also referred to as electrode polarization according 

to Gonon et al., in which the mobile charges form an E D L against the electrodes resulting 

in a bias modulated E D L capacitance [29]. As discussed previously, in the intermixing 

layer of A T O system, oxygen vacancies are positively charged and mobile. Under an A C 

bias with sufficiently low frequencies, the oxygen vacancies will have enough time to 

respond to the bias change and go back and forth in the vicinity of the space charge layer, 

which can be viewed as a macroscopic dipole oscillating with the field. The lower the 

frequency is, the larger the distance of oscillation, and ultimately the larger the 

capacitance density. To illustrate the mechanism for the voltage and frequency dependent 

capacitance, a simple model with an equivalent circuit is proposed in Fig. 4.5b. To 

calculate the equivalent dielectric constant of the A T O system, the low frequency (20 Hz) 

capacitance value of 250 nF/cm under zero bias is considered. Using the thickness of 45 

nm, an equivalent dielectric constant of about 13.3 is expected. 
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4.3.4 Low-voltage CuPc TFTs 

To demonstrate the effectiveness of our A T O system, bottom-gate, top-contact (BGTC) 

CuPc TFTs with gold source-drain electrodes are fabricated using the bilayer system as 

the gate dielectric. More than 5 A T O substrates are used, and 4 devices on each substrate 

are fabricated and tested. The device yield is about 90%. Fig. 4.7a shows the output 

curves of a representative CuPc TFT. Due to the high capacitance of our A T O system, 

the device can work effectively at operation voltages as low as -1.5 V. The output curves 

exhibit clear linear and saturation regions. Though moderate leakage current still exists at 

zero drain voltage, its magnitude is much smaller than the corresponding saturated 

channel current at respective gate voltages. Fig. 4.6b shows the corresponding transfer 

curve in the saturation region and (-IDS) versus VGS plot. By using a linear fit of the plot 

in Fig. 4.7b, VT in the saturation region can be determined from the following equation: 

lDS=Y
L

C

i^(
V

GS-VT)
2

 (4.1) 

where Wis the channel width, L is the channel length, VT is the threshold voltage, ̂  is the 

hole mobility, and Ci is the capacitance density of the gate dielectric. To extract the hole 

mobility of CuPc TFTs, the Ci value of the A T O system under zero bias of 250 nF/cm
2

 at 

20 Hz is considered. From Fig. 4.6b, the hole mobility (^), threshold voltage (VT), on/off 

2 3 

ratio, and subthreshold swing (SS) are determined to be 0.06 cm /Vs, -0.5 V, 2x10 , and 

160 mV/dec, respectively. Interestingly, the properties of the low-voltage CuPc TFTs 

using A T O system as the gate dielectric are better than those prepared on various high-k 
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metal-oxide thin films, such as Z r O 2 [30], Al2O3, Ta2O5 [31], and H f O 2 [32], and even 

higher than the value reported by Wang et al.(〜0.04 cm /Vs) [33], which is the highest 

mobility for CuPc thin film transistors so far to the best of our knowledge. Noting that the 

capacitance density of the A T O system in steady-state condition is a little bit larger than 

that measured at 20 Hz (as inferred from Fig. 4.5a), we may have overestimated our 

mobility by a factor of 1.5. As discussed previously, the low atomic scale roughness of 

our A T O system may benefit charge carrier transport in the channel, resulting in 

improved performance. In addition, it is worth noting that a SS value of only 160 mV/dec 

is remarkably small. SS determines the voltage swing required for a transistor to turn 

from “off’ to “on”，and should be as low as possible, with a theoretical limit of about 60 

mV/dec at room temperature [34]. Fabrication of OTFTs with SS smaller than 180 

mV/dec is thought to be a significant leap forward [35, 36]. 

V

0S (
V

)
 V

OS (
V

) 

Fig. 4.7 (a) Output curves and (b) Transfer curve of CuPc TFT using A T O system as dielectric. 
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4.4 Conclusion 

In summary, w e have successfully achieved low-voltage OTFTs by introducing a 

solution-processed, low-temperature cured high-众 A T O system as the gate dielectric. The 

bilayer dielectric system exhibits a very smooth surface with R M S of about 0.22 nm, an 

equivalent k value of 13.3, a high capacitance of 250 nF/cm and a low leakage current 

5 9 

density of 10
-5

 A/cm
2

. Upon using the high-k A T O as the gate dielectric, CuPc based 

OTFTs exhibit hole mobility as high as 0.06 cm /Vs and SS value of only 160 mV/dec 

under an operation voltage as low as -1.5 V. Our low-temperature, solution-processed 

method for fabrication of high-k gate dielectric provides a feasible approach to realize 

low-voltage circuits. 

References 

1

 Z. Liu, J. H. Oh, M . E. Roberts, P. Wei, B. C. Paul, M . Okajima, Y. Nishi, Z. Bao, Appl. 

Phys. Lett. 94, 203301 (2009). 

V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Bredas, 

Chem. Rev. 107, 926 (2007). 
3

 C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99 (2002). 
4

 H. Klauk, U. Zschieschang, J. Pflaum, M . Halik, Nature 445, 745 (2007). 
5

 M . H. Yoon, Proc. Natl. Acad. Sci. 102, 4678 (2005). 
6

 H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M . Kastler, A. Facchetti, 

Nature 457, 679 (2009). 
7

 M . H. Yoon, H. Yan, A. Facchetti, T. J. Marks, J. A m . Chem. Soc. 127, 10388 (2005). 
8

 J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004). 
9

 V. Mikhelashvili, G. Eisenstein, Thin Solid Films 515, 346 (2006). 

88 



10

 C. L. Dezelah, J. Niinisto, K. Kukli, F. Munnik, J. Lu, M . Ritala, M . Leskela, L. 

Niinisto, Chem. Vap. Depos. 14, 358 (2008). 
11

 S. Duenas, H. Castan, H. Garcia, A. de Castro, L. Bailon, K. Kukli, A. Aidla, J. Aarik, 

H. Mandar, T. Uustare, J. Lu, A. Harsta, J. Appl. Phys. 99, 054902 (2006). 

12 

C. Maunoury, K. Dabertrand, E. Martinez, M . Saadoune, D. Lafond, F. Pierre, O. 

Renault, S. Lhostis, P. Bailey, T. C. Q. Noakes, D. Jalabert, J. Appl. Phys. 101, 034112 

(2007). 
13

 W . Li, O. Auciello, R. N. Premnath, B. Kabius, Appl. Phys. Lett. 96, 162907 (2010). 
14

 J. Lee, J. H. Kim, S. Im, Appl. Phys. Lett. 83, 2689 (2003). 
15

 J. Ramajothi, S. Ochiai, K. Kojima, T. Mizutani, Jpn. J. Appl. Phys. 47, 8279 (2008). 
16

 J. Park, S. Y. Park, S. O. Shim, H. Kang, H. H. Lee, Appl. Phys. Lett. 85, 3283 (2004). 
17

 S. E. Fritz, T. W . Kelley, C. D. Frisbie, J. Phys. Chem. B 109, 10574 (2005). 
18 

R. Mahapatra, A. K. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay, N. G. 

Wright, K. S. Coleman, P. G. Coleman, C. P. Burrows, J. Vac. Sci. Technol. B 25, 217 

(2007). 
19

 V. K. Yarmarkin, S. G. Shul'man, V. V. Lemanov, Phys. Sol. State 50, 1841 (2008). 
2 0

 A. Weibel, R. Bouchet, P. Knauth, Solid State Ionics 177, 229 (2006). 
2 1

 K. Zakrzewska, Adv Mater Sci Eng (2012). 
22 

S. G. Park, Resistance switching mechanism in TiO2, (2011). 
23 

I. Tanaka, F. Oba, K. Tatsumi, M . Kunisu, M . Nakano, H. Adachi, Mater. Trans. 43, 

1426 (2002). 
2 4

 P. Gonon, F. El Kamel, Appl. Phys. Lett. 90, 232902 (2007). 
25 
2 5

 A. Paskaleva, M . Lemberger, A. J. Bauer, W . Weinreich, J. Heitmann, E. Erben, U. 

Schroder, L. Oberbeck, J. Appl. Phys. 106, 054107 (2009). 
2 6

 F. El Kamel, P. Gonon, C. Vallee, Appl. Phys. Lett. 91, 172909 (2007). 
2 7

 S. Blonkowski, M . Regache, A. Halimaoui, J. Appl. Phys. 90, 1501 (2001). 
2 8

 S. Ramanathan, C. M . Park, P. C. McIntyre, J. Appl. Phys. 91, 4521 (2002). 
2 9

 P. Gonon, F. El Kamel, J. Appl. Phys. 101, 073901 (2007). 
3 0

 L. W . Shang, M . Liu, D. Y. Tu, G. Liu, X. H. Liu, Z. Y. Ji, IEEE Trans. Electron Dev. 

56, 370 (2009). 
3 1

 T. Higuchi, T. Murayama, E. Itoh, K. Miyairi, Thin Solid Films 499, 374 (2006). 

89 



3 2

 W . M . Tang, M . G. Helander, M . T. Greiner, G. Dong, W . T. Ng, Z. H. Lu, IEEE 

International Conference of Electron Devices and Solid-State Circuits (Edssc) 513 

(2009). 
3 3

 J. Wang, H. B. Wang, X. J. Yan, H. C. Huang, D. Jin, J. W . Shi, Y. H. Tang, D. H. Yan, 

Adv. Funct. Mater. 16, 824 (2006). 
3 4

 S. M . Sze, K. K. Ng, Physics of Semiconductor Devices, Wiley-Interscience, Hoboken, 

N.J. (2007). 
3 5

 Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M . Hwang, K. Cho, Appl. Phys. Lett. 88, 

072101 (2006). 
3 6

 L. A. Majewski, R. Schroeder, M . Grell, Adv. Mater. 17, 192 (2005). 

90 



Chapter 5 Study of CuPc OTFT with High-众 Gate 

Dielectric 

In this chapter, we will present at first that the solution-processed high-k A T O 

based low-voltage CuPc TFTs can result in a much higher device performance as 

compared to traditional SiO2 based devices. However, our findings seem 

contradictory to the reported results of other groups, because the high-k is usually 

detrimental to the field-effect mobility due to the carrier localization caused by high 

dipolar disorder in the interface of dielectric and organic semicondcutor. The 

mechanism behind is studied in detail in this chapter. 

5.1 Introduction 

Organic thin film transistors (OTFTs) have spurred tremendous interest in recent 

years because of their low manufacturing costs and potential applications in various 

state-of-art electronics, such as flexible displays [1, 2], electronic papers [3], and 

sensors [4, 5]. Although impressive progress in the electrical performance has been 

steadily achieved over the past decades, one of the major obstacles that hamper the 

development and realistic applications of OTFTs is the rather high voltage that is 

frequently in the order of tens of volts for device operation. One promising method to 

solve this critical issue is to increase the gate capacitance, which can induce a high 

charge carrier density at the conducting channel under a low gate voltage [6]. 
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Successes have been realized for low-voltage OTFTs by utilizing very thin organic 

layers and high-众 materials as gate dielectrics [7-10]. A lot of research work has 

regarded insulating metal-oxides as favorable high-众 materials that can be used for 

these applications in organic field-effect transistors (OFETs). In practical, typical 

fabrication routes for high-众 metal-oxide dielectrics, such as atomic layer deposition 

[11], radio-frequency magnetron sputtering [12] and chemical vapor deposition [13], 

require expensive, high-vacuum equipments, and are time consuming to produce 

functioning layers. Besides, solution-assisted techniques, such as spin-coating and 

ink-jet printing, are basically applied for polymeric dielectrics that, on the other hand, 

possess low values of capacitance. Consequently, it is of significant importance to 

develop a solution-based technique for the fabrication of high-众 metal-oxides as gate 

dielectrics, in order to turn OTFTs into more reliable applications for low-cost, 

large-area devices. 

In general, the electrical parameters of OTFTs, such as field-effect mobility (w), 

threshold voltage (VT) and subthreshold swing (SS), are mainly dependent on the 

molecular structure of the semiconducting film [14-17]. It has been proven that the 

mobility of OTFTs is mainly dependent on the layer-by-layer growth and structural 

ordering of the active layer [14]. Therefore, control over the initial growth of an 

organic semiconductor layer is of considerable importance since the charge transport 

in the channel of OTFTs is mainly restricted to the first several monolayers in the 

vicinity of semiconductor-dielectric interface [18, 19]. In a vacuum deposition 

condition, the structure of the organic semiconductor thin film is influenced by the 

growth conditions, e.g. substrates temperature, deposition rate, surface properties of 

the dielectrics and so on. Among various factors, the surface energy of dielectrics 

shows significant impact on the initial growth of the organic layers. High surface 
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energy will result in stronger interaction between molecular and the substrate, and 

then decrease the 兀-兀 stacking of organic molecules paralleling to the dielectric 

surface. 

In this section, the solution-processed high-k A T O is used as gate dielectric for 

low-voltage OTFTs, and the result show that the resultant CuPc based devices exhibit 

superior performance. The low-voltage TFTs present highly improved electrical 

characteristics as compared to those of high-voltage (-40 V) devices based on 

traditional SiO2. Studies on the microstructure of CuPc thin films reveal that the 

enhancement of performance is attributed to the interconnected "rod-like" crystallized 

structure in the initial growth stage, which results from the relatively low surface 

energy of the solution-processed high-k dielectrics. Furthermore, Kelvin probe force 

microscopy (KPFM) characterization reveals a preferred energy band alignment at the 

CuPc/ATO interface. The presented results imply that the solution-processed high-k 

dielectrics can be used effectively in high-performance, low-voltage OTFTs. 

5.2 Experimental details 

n++-Si wafers with thermally grown 300 nm SiO2 layer were firstly cleaned with 

acetone, isopropanol and ethanol successively by ultrasonic, and further cleaned by 

O2 plasma for 3 min before use; solution-processed high-k A T O is fabricated by the 

same procedure introduced in Chapter 4. 

CuPc TFTs were fabricated by vacuum deposition of CuPc molecules onto the 

above two types of substrates under a pressure of about 3 x 10
-4

 Pa and a deposition 

rate of about 0.1 A/s with substrates temperatures of 180
 o

C. Then 30 nm gold 
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source-drain (S/D) electrodes were deposited onto the organic layer through a shadow 

mask under a pressure of about 3 x 10
-4

 Pa and a deposition rate of about 0.3 A/s. The 

channel length (L) and width (W) are 56 陣 and 1500 陣，respectively. Pentacene, 

copper hexadecafluorophthalocyanine (F^CuPc) and C60 TFTs were prepared by the 

same procedure but with the substrates temperature of 60
 o

C, 180
 o

C and 110
 o

C, 

respectively, and the S/D electrodes are Au for pentacene and F^CuPc, and Ag for 

C60. Single crystals of rubrene were grown onto the substrates by physical vapor 

transportation (PVT) method at sublimation temperature of 245
 o

C in Ar atmosphere 

with a flow rate of 100 sccm. Then devices were fabricated by placing Au-films onto 

the rubrene single crystals as the source and drain electrodes [20]. 

The electrical characteristics of the devices were measured in ambient condition 

using Keithley 4200 SCS. The morphologies of the CuPc thin films were 

characterized by atomic force microscopy (AFM, Nanoscope IIIa Vecco) in tapping 

mode. The X-ray diffraction (XRD) patterns of CuPc layer were obtained on an X-ray 

diffractometer (Simens, D5000) using Cu Ka radiation (^=0.154 nm) at a scan rate of 

0.02
o

 20/s, and the average crystallite sizes of CuPc were determined by the Scherrer 

equation using the F W H M (full width at the half maximum) data of the diffraction 

peak [21]. The two-dimensional grazing incidence X-ray diffraction (GIXD) patterns 

were obtained at beamline BL14B1 (^=1.24 A) of the Shanghai Synchrotron 

Radiation Facility with an incident angle of 0.06
o

. The surface potential of the CuPc 

film was measured in air using Kelvin probe force microscopy (KPFM) method. A 

goniometer from Solon Tech. (Shanghai) Co. Ltd. with a SimpleCAST software was 

used to measure contact angles. Deionized water (凡=72.8 mN/m, yL = 21.8 mN/m, 

YL
P

 = 51.0mN/m) and ethylene glycol (JL= 48.3 mN/m, y^ = 29.3 mN/m, yL = 

19.0mN/m) were chosen as the probing liquids. The contact angles were measured for 
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three times and the average values were used to evaluate the surface energy of the 

dielectrics according to the following equations [22, 23]: 

YL(1 + cos e) = + (5.1) 

Ys = YS+YS^ (5.2) 

where 6 was the contact angle between dielectrics and the probing liquids; ys and YL 

were the surface energy of the dielectric and the probing liquid, respectively, and the 

superscripts d and p referred to the dispersive and polar components of the surface 

energy, respectively. 

5.3 Results and discussion 

5.3.1 Devices electrical characteristics 

CuPc TFTs with bottom-gate top-contact geometry are fabricated on SiO2 and A T O 

using Au as the S/D electrodes. 6 devices on each substrate are fabricated and then 

tested in ambient condition. Fig. 5.1a shows a representative output characteristics of 

the CuPc TFTs on SiO2. With increasing VDS, the output curves exhibit clear linear 

and saturation behavior. Fig. 5.1b gives the corresponding transfer curves in the 

saturation region. The device possesses a moderate on/off ratio on the order of 10 

and a subthreshold swing (SS) of 5.9 V/dec. SS is defined by ^VG^/^log \ I
D
s \ in the 

subthreshold region, and should be as low as possible since a small OVGS can turn the 

transistor from fully “off’ to fully “on” state, which is crucial for low-power 

application. In general, OFETs possess relatively large SS due to the localized 

hole-trapping states near the highest occupied molecular orbital ( H O M O ) or 
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electron-trapping states near the lowest occupied molecular orbital ( L U M O ) levels of 

organic semiconductors [24]. The high SS value is a shortcoming of OFETs, and 

results from a combination of factors, such as low gate dielectric capacitance density, 

low breakdown voltage, and high parasitic capacitances at insulator-semiconductor 

interface. On the other hand, the SS can also be used to estimate the maximum density 

of interface traps (Ntrap) at the semiconductor/dielectric interface through the 

following equation [25, 26]: 

N ̂  = ( ^ ^ ^ ^ - 1 ) ^ (5.3) 

where q is the electronic charge, SS is the subthreshold swing, e is the Euler's number, 

k is Boltzmann's constant, T is the absolute temperature and Ci is the gate dielectric 

12 9 

capacitance density. For SiO2, the estimated maximum trap density is 6.7 x 10 cm
-

. 

Other figures-of-merit of OTFTs can be obtained from the plot of (-IDS) versus VGS 

by fitting the data to the following equation: 

lDS=Y
L

C

i^(
V

GS-y
T
)

2

 (5.4) 

where W is the channel width, L is the channel length, Ci is the capacitance density of 

the gate dielectrics, VT is the threshold voltage, and /u is the mobility. For traditional 

300 nm SiO2 (k = 3.9), the capacitance density is about 11 nF/cm . Data in the region 

of VGS form -25 to -40 V are taken for this fitting, and the obtained / and VT are 2.8 x 
3 9 

10
-

 cm /V s and -6.0 V, respectively. 
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Fig. 5.1 (a) Output curves and (b) Transfer curve of CuPc T F T on Si〇2; (c) Output curves and (d) 

Transfer curve of CuPc T F T on A T O . 

Table 5.1 Summary of the electrical characteristics of devices on different dielectrics as well as the 

corresponding dielectric surface properties. 

Dielectrics 

Electric performance Surface properties 

Dielectrics 

(cm2/Vs) 

VT 

(V) 
on/off 
ration 

SS 
(mV/dec) 

RMS 
(nm) 

Contact angle (Degree) Surface 
energy 

(mJ/m2) 

Dielectrics 

(cm2/Vs) 

VT 

(V) 
on/off 
ration 

SS 
(mV/dec) 

RMS 
(nm) DI water Ethylene 

glycol 

Surface 
energy 

(mJ/m2) 

ATO 

CuPc 0.15 -1.1 5 x 10
3 

232 

0.22 35.5 28.3 71.3 ATO Pentacene 1.1 -0.99 3 x 10
3 

256 0.22 35.5 28.3 71.3 ATO 

Rubrene 7.0 -0.08 10
4 

101 

0.22 35.5 28.3 71.3 

SiO2 

CuPc 2.8 x 10
-3 

-6.0 10
3 

5.9 x 10
3 

0.21 <5 <1 >87 SiO2 Pentacene 0.12 -2.3 10
4 

5.1 x 10
3 

0.21 <5 <1 >87 SiO2 

Rubrene 2.5 4.9 10
5 

1.1 x 10
3 

0.21 <5 <1 >87 

Fig. 5.1c shows the output curves of a representative CuPc TFTs on A T O . Due to 

• • • • • 2 . 
the high capacitance density of the gate dielectric (250 nF/cm

2

) [27], the device works 

effectively at an operation voltage as small as -2 V. Clear linear and saturation regions 

can be observed from the output curves. Fig. 5.1d exhibits the corresponding transfer 

curves in the saturation region. The VT, on/off ratio, and SS are determined to be 

0.15 cm
2

/Vs, -1.1 V, 5 x 10
3

, and 232 mV/dec, respectively. Notably, the SS is 

effectively decreased due to high capacitance density of ATO which improving the coupling 
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between the gate and the conducting channel [24]. The estimated interface trap density is 

about 4.5 x 10
12

 cm
-2

 for ATO, which is obviously lower than that of SiO2. It is interesting 

to note that the mobility of the low-voltage CuPc device gated with 

solution-processed high-k A T O is superior to those prepared on other high-k 

dielectrics, such as SrTiO3 [28], Al2O3, Ta2O5 [29], and ZrO2 [30], and can even be 

comparable to that of CuPc single crystal nano-wires based transistors with mobility 

of 0.2〜0.4 cm
2

/Vs, which 

is believed to possess higher mobility than the counterpart 

thin film devices because of the stronger overlap and intermolecular coupling between 

兀-orbits of adjacent molecules in single crystal structure [16]. The origin of the 

outstanding performance of our devices will be further discussed in detail in following 

part. The gate electric field of A T O is about 0.44 M V / c m under a gate voltage of -2 V. 

This value is similar to that of 300 n m SiO2 when VGS = -13 V, and the 
3 9 

corresponding /u estimated from Fig. 5.1b is approximately 1.7 x 10
-

 cm /Vs. The 

electrical characteristics for both SiO2 and A T O based OTFTs are summarized in 

Table 5.1. The results clearly show that the electrical properties of the device on A T O 

were much higher than that on SiO2. However, as reported by many groups, the use of 

high-k gate dielectrics can lead to a declining of mobility due to the carrier 

localization caused by high dipolar disorder at the interface between high-众 dielectrics 

and organic semiconductor [31, 32]. Interestingly, our present results exhibit a 

converse trend, i.e., higher mobility is obtained on high-众 dielectrics. This 

phenomenon must be studied in detail. 
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5.3.2 Morphologies of dielectrics and CuPc fims 

The electrical property of OTFTs can be influenced by several aspects, such as 

dielectric surface property, organic layer structures, and semiconductor-dielectric 

interface characteristics. Therefore, we firstly carried out the atomic force microscopy 

(AFM) investigations to explore the morphological properties, and the results are 

exhibited in Fig. 5.2. It is shown that both surfaces of SiO2 and A T O are very smooth 

with similar root-mean-square (RMS) roughness of 0.21-0.22 nm. Hence, the 

influence of dielectric surface roughness on the electrical performance of CuPc TFTs 

can be excluded. 

1 0 n m (b) 

lo 

1 n m 

Fig. 5.2 A F M images of (a) traditional thermally oxidized SiO
2
 and (b) solution-processed ATO. 
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r35)nm-、^vm® 

Fig. 5.3 A F M images of 25 n m CuPc film deposited on (a) SiO2 and (b) A T O in an area of 5 ̂ m 乂 5 ̂ m; 

(c) and (d) are the respective high-resolution images (1 |xm 乂 1 |xm), insets are the corresponding 

cross-sectional analysis along the dash lines. 

Then the morphology of CuPc films deposited on the above two substrates are also 

characterized to investigate its influence on the devices performance. Fig. 5.3a and b 

show the A F M images of 25 nm CuPc thin films deposited onto SiO2 and A T O , 

respectively. The CuPc film deposited on SiO2 is composed of high-density small 

dendritic clusters packing in a homogenous structure. Similar morphology is also 

observed for CuPc deposited on A T O , but with a higher structural ordering and a 

slightly larger feature size. Besides, the CuPc films on the two dielectrics exhibit 

nearly identical surface roughness with an R M S value of approximately 1.8 nm. 

Moreover, layer-by-layer structures are observed from the high-resolution A F M 

images for the CuPc layers on both dielectrics (Fig. 5.3c and d). A terrace height of 

1.2 nm is estimated from the cross-sectional profile along the dash line (insets of Fig. 
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5.3c and 2), which is in good agreement with a molecular layer height of CuPc 

deposited on oxide substrates [19, 33, 34]. 

5.3.3 Crystal structure of CuPc films 

On the other hand, the crystallographic structure of the CuPc films also plays an 

important role in determining the device performance. Depending on the processing 

condition, CuPc films may exhibit single phase or mixed phases. For vacuum 

deposited CuPc thin films, the metastable a-phase and thermally stable ̂ -phase are 

two most commonly observed crystalline phases [35]. Both a and P phases possess 

monoclinic structure, which differ only in the tilt angle of the molecule plane with 

respect to the intermolecular stacking direction [16]. However, the a-phase has a 

smaller tilter angle than that of 々 -phase, suggesting better 兀-electron overlap in 

a-CuPc versus 々 -CuPc. Fig. 5.4 shows the X-ray diffraction (XRD) patterns of 25 n m 

CuPc thin films deposited on SiO2 and A T O at substrates temperature of 180
 o

C. A 

single sharp reflection peak at 20 of 6.9
o

 assigned to the (200) plane of a-phase CuPc 

can be observed from both patterns [28]. This peak corresponds to an interplanar 

distance of about 1.3nm, which is good agreement with the previous A F M results. 

The full-width at half-maximum ( F W H M ) of the (200) diffraction peak of CuPc films 

deposited on SiO2 and the solution-processed high-众 dielectrics are estimated to be 

0.34
o

 and 0.30
o

, respectively. The average crystallite sizes of CuPc are calculated 

using the Scherrer equation, and the results are listed in Table 5.1. As seen, the 

average crystallite size of CuPc on the solution-processed high-众 dielectrics (26.7 nm) 

is a little bit larger than that on SiO2 (23.5 nm). Noting that the conventional X R D 
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characterization can only give us the information of structural ordering in the 

direction perpendicular to the substrates, the lower intensity of the diffraction peak 

with CuPc on A T O may result from the loosened packing of CuPc crystals within the 

thin film as compared to SiO2, other than the lower crystallization, which will be 

discussed in detail later 

o 

10 20 30 40 
2 Theta (Degree) 

Fig. 5.4 X R D patterns of 25 n m CuPc film on the two types of dielectrics. 

5.3.4 Initial growth study 

The above results indicate similar properties of the two dielectric surface and the 

corresponding organic layers. As having been discussed previously, the charge carrier 

transport is primarily confined to the interface between the gate dielectrics and the 

organic semiconductors [19, 22], it is then of great importance to study the initial 

growth of the CuPc films on both dielectrics. As shown in Fig. 5.5a, the CuPc 

molecules aggregate together and form isolated small islands with an average size of 

approximately 50 nm when deposited on SiO2 with a thickness of 1.2 nm. When the 

thickness further increases to 2.4 nm, the nucleation of the subsequent isolated 

multilayer islands occur on the top of the bottom layer, although a continuous bottom 

(
n
e
)
 A
J
I
S
U
^
U
I
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layer is not complete yet (Fig 5.5b). More CuPc molecules depositing onto the surface 

Fig. 5.5 A F M images of CuPc deposited on SiO2 with nominal thicknesses of (a) 1.2 nm, (b) 2.4 n m 

and (c) 3.6 nm; A F M images of the CuPc deposited on A T O with nominal thicknesses of (d) 1.2 nm, (e) 

2.4 n m and (f) 3.6 nm. 

In contrast, CuPc exhibits a completely different growth mode when deposited on 

A T O . At the beginning, the CuPc molecules assemble in randomly oriented rod-like 

crystals with an average size of approximately 30 x 150 nm (Fig. 5.5d). These 

result in lateral growth of the islands. Then, the islands merge together to form a flat 

layer with some small voids, and new islands start to grow at the same time (Fig. 

5.5c). This kind of initial growth can be assigned to the Stranski-Krastanov mode [36], 

which occurs when the interaction between the molecules and the substrates are 

stronger than that between the molecules [37]. Further deposition of CuPc molecules 

forms incomplete subsequent layers that limiting the transport of charge carriers and 

causing decreased mobility, which is in accordance with the device performance 

obtained from our devices. 

•0 nm 

500 

rod-like crystals are highly interconnected, constructing a "net" on the surface of 
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A T O . When the thickness is increased to 2.4 nm and 3.6 nm, the CuPc films grow 

vertically, and form more densified “nets” with much larger feature sizes on top of the 

underneath “net” (Fig. 5.5e and f). This initial growth can be described by the 

Volmer-Veber growth mode [36], in which the deposited molecules are more strongly 

bonded to each other than to the substrate [37]. These highly interconnected “nets” 

can provide sufficient paths for the flow of charges, benefit the charge transport at the 

interface, and thus enhance the mobility. 

5.3.5 Surface energy characterization 

Generally, the initial nucleation process of organic molecules under the same 

deposition condition is mainly affected by the surface energy of the substrates [17, 38]. 

In other words, the initial growth of organic molecules is dependent on two competing 

interactions, i.e., molecule-substrate interaction and molecule-molecule interaction. 

For instance, lower surface energy with weak interaction between the molecule and 

the substrate will result in a favorable columnar stacking for molecules (rod-like 

crystals of CuPc), while higher surface energy will induce horizontal alignment of the 

molecules that tend to cover the substrate surface to reduce the total free energy [39]. 

In order to clarify the correlation between the dielectric surface properties and the 

initial growth of CuPc on different dielectrics, the contact angles of DI water and 

ethylene glycol on the dielectric surfaces are measured to estimate the surface energy 

[23], and the results are summarized in Table 5.1. SiO2 substrates are tested 

immediately after O2 plasma treatment, and the A T O substrates are examined 

instantly after fabrication. As can be seen from Table 5.1, A T O has a lower surface 

energy than SiO2. Since the surface roughness of the two dielectrics is similar and the 
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deposition condition of CuPc is the same, we infer that the difference in the dielectric 

surface energy determines the different initial growth characteristics of CuPc. That is, 

lower surface energy of the solution-processed high-k dielectrics leads to weaker 

interaction between the organic molecules and the dielectrics, so the deposited CuPc 

molecules have a longer migration distance on the dielectric surface to form oriented 

rod-like CuPc crystals, resulting in a lowered nucleation density, 

5.3.6 In-plane structure of CuPc films 

The CuPc molecules can present a closer packing structure with higher structural 

ordering in the direction parallel to the substrate at the semiconductor-dielectric 

interface on those substrates with lower surface energy than that on higher surface 

energy substrate [17]. To further verify our arguments, the in-plane structures of very 

thin CuPc films (2.4 nm) on SiO2 and A T O were investigated using the GIXD 

measurements. As shown in Fig. 5.6a, no diffraction peak is found from the pattern. It 

indicates that, for the first several monolayers, the in-plane structure of CuPc 

molecules on SiO2 was amorphous. On the other hand, a clear diffraction peak can be 

observed from the pattern of the CuPc film on A T O (indicated by the red arrow in Fig. 

5.6b), revealing a crystalline structure of the first several monolayers of CuPc. 

Furthermore, the observed diffraction peak, which can be indexed to (1,0) [40], also 

discloses ordered stacking of CuPc molecules at the CuPc/ATO interface. The ordered 

in-plane structure and the interconnected “net” structure of CuPc on A T O thus 

account for the highly enhanced electrical characteristics of our devices, because the 

charge transport at the conducting channel is mainly located at the first several 

monolayers at the interface. Moreover, devices with very thin film of CuPc (5 nm) as 
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active layer are fabricated on both substrates, and the transfer curves are shown in Fig. 

5.7. Due to the ordered structure of CuPc in the interface region of CuPc/ATO, the 

resultant device exhibits much higher electrical properties than that on SiO2 as 

expected, and the estimated ̂  for A T O and SiO2 are 1.0 x 10
-2

 cm
2

/Vs and 1.0 x 10
-3 

2 • • • . 
cm

2

/Vs, respectively. The obtained results give an extra confirmation on the previous 

arguments. 

Fig. 5.6 2-dimentional GIXD patterns of CuPc thin film on (a) Si〇2 and (b) A T O with nominal 

thickness of 2.4 n m 

Fig. 5.7 Transfer curves of 5 n m CuPc devices on (a) SiO2 and (b) A T O 
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5.3.7 XPS characterization 

It is well known that metal oxide dielectrics often contain surfaces with dangling 

bonds that can influence negatively on the transistor performance. However, our 

devices based on the solution-processed A T O exhibit excellent performance. This 

interesting advantage of A T O is revealed by using the X-ray photoelectronic 

spectroscopy (XPS) characterizations, as shown in Fig. 5.8. As seen, no N atom is 

detected in the film, and the C atom percentage decreases drastically as the etching 

depth increases, indicating that the A T O precursors are completely decomposed [27]. 

In addition, the substrates are baked at 180
 o

C under high vacuum (3 x 10
-4

 Pa) during 

the deposition of CuPc molecules, therefore, it is not likely that the low surface 

energy of A T O results from the residual organic species or the absorbents in air. 

Instead, it reveals an oxygen deficient nature of the top layer AhOx (x = 2.7) layer 

existing in ATO. The low O concentration in AbOx can lower the density of surface 

dangling hydroxyl group, decreasing the surface energy, and subsequently benefiting 

the device performance. Consequently, we attribute our high mobility to the low 

oxygen concentration in our aluminum oxide, which will result in a low surface 

energy as discussed previously. 

| a o | H I 
l 4 — = ^  

i : r = 1 
^ • • I • I • I • I 

50 100 150 200 
Etching Time (s) 

Fig. 5.8 X P S depth profile of ATO. 
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5.3.8 KPFM study 

Furthermore, it is a common consideration that metal/organic contact is also a key 

factor that determines the device performance [41]. Tremendous research work has 

been devoted to the optimization of the energy alignment between metal electrodes 

and organic semiconductors, typically by inserting a modifying thin layer for better 

charge injection. To investigate the contact property in our devices, we applied K P F M 

to study the interface band structures of CuPc on different dielectrics. As shown in 

Fig. 5.9, the vacuum level is bending up near the CuPc/SiO2 interface, while it keeps 

unchanged for the CuPc/ATO one. It implies that there are more interfacial electron 

traps at the CuPc/SiO2 interface. Moreover, a negative gate voltage is applied to the 5 

nm thick CuPc sample (VDS = 0) to investigate the interfacial energy level shifting. For 

the CuPc on SiO2, the vacuum level moves to -56 m e V and is pinned, while for CuPc 

on A T O it moves to 81 meV. Therefore, from the movement of vacuum level, we can 

conclude that when the CuPc molecules deposited on A T O subsrate, the Fermi level 

aligns around 137 m e V deeper to the center of H O M O than that on SiO2 substrate. 

Such a deep alignment of Fermi level against the H O M O of the CuPc on A T O can 

improve the metal/organic contact, and benefit the charge carrier injection. 
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Fig. 5.9 The band diagram of vacuum level of CuPc thin films with thickness of 25 nm, 20 nm, 10 n m 

and 5 n m at VGS = VDS = 0 V (Zero bias), the positions of vacuum level of 5nm CuPc films under 

saturated condition ( V G S = -2 V for A T O and VGS = -40 V for Si〇2, VDS = 0V) are also shown in the blue 

square. The insets give the schematic energy level alignment under zero bias and saturated conditions 

(Black solid line for CuPc on SiO2, and red dash line for CuPc on ATO). The surface potential of the 

Au electrode is used as a reference. 

To further study the mechanism of charge carrier transport in CuPc TFTs with the 

solution-processed high-k A T O as dielectric, we measure the temperature dependence 

of mobility. Fig. 5.10 shows the plot of pT as a function of 1000/T. As seen, the 

relationship between juT and 1/T can be approximately fitted into a straight line. 

Accordingly, the mechanism of charge carrier transport of CuPc on A T O is related to 

the Frohlich polaron model, with expression of temperature-dependent mobility [42]: 

(5.5) 

where h is the reduced Planck's constant and a is the hopping length, determined by 

the distance between neighboring molecules. Generally speaking, the higher the 

dielectric constant is, the large the polarity of dielectric possesses. In organic 

transistors, due to the weak van der Waals force between molecules, the use of gate 

dielectrics with increasing polarizabilities transits the strength of interaction to be 
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tuned from the weak to the strong coupling regime, and the charge carriers form 

dielectric polarons on the surface of high-k dielectrics. Therefore, the charge carrier 

transport in the CuPc TFT on A T O mainly occurs through incoherent hopping 

between neighboring molecules. 

1 « 1 r-
1 

3 4 5 
1 0 0 0 / T 

Fig. 5.10 Relationship between juT as a function of 1000/T. The dash line gives the fitting of plot. 

5.3.9 Extended application to other materials 

To verify the effectiveness and universality of our findings, pentacene and rubrene 

single crystal based devices are also studied, which have received much research 

interest in recent years due to their high mobility. Fig. 5.10a and b show the transfer 

curves of pentacene transistors on SiO2 and ATO, respectively. As can be seen from 

Fig. 5.10a, the device on SiO2 exhibits a high channel current of about 4 x 10
-5

 A with 

VGS = VDS = -40 V, and the on/off ration is on the order of 10
4

. The VT, and SS are 

• 2 . determined to be 0.12 c m / V s, -2.3 V, and 5.1 V/dec, respectively. The above 

• • • • • . 2 obtained mobility value is in accordance with the reported one (0.11 cm
2

/V s) under 

similar conditions [43]. As a comparison, the device on solution-processed high-k 

dielectrics can work efficiently in an operation voltage as low as -2 V (Fig. 5.10b). 
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2 The low-voltage device possesses a quite high / of 1.1 cm /V s, a small VT of -0.99 V, 

an excellent SS of 256 mV/dec. On the other hand, the relatively low on-state current 

of about 4 x 10
-6

 A can be attributed to the low VDS (-2 V), and results in a reduced 

on/off ration of 3 x 10 . The electric characteristics of the pentacene base TFTs on 

high-k A T O still outperform those on SiO2 to a large extend. Furthermore, the 

observed mobility of 1.1 cm /V s is much higher than those fabricated on alumina 

prepared by sol-gel [44] and sputtering [12]. Fig. 5.10c and d give the transfer 

characteristics of Rubrene single crystal FETs on the two types of dielectrics, and the 

insets show the structure of the corresponding devices. When gated with traditional 

low-k SiO2 and under an operation voltage of -30 V, the /, VT, SS and on/off ratio are 

2 5 

determined to be 2.5 cm /V s, 4.9 V, 1.1 V/dec and 10 , respectively. However, for 

device on solution-processed high-k dielectrics, the device exhibits excellent electrical 

characteristics under an operation voltage of only -1.5 V with /, VT, SS and on/off 
2 4 

ratio values to be 7.0 cm /V s, -0.08 V, 101 mV/dec and 10 , respectively. As 

anticipated, the solution-processed high-k dielectrics based rubrene single crystal 

device again possess much better performance than that of SiO2 based device. 
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Fig. 5.11 Transfer curves of pentacene TFTs on (a) 

crystal FETs on (c) Si〇2 and (d) ATO. 

SiO2 and (b) ATO; transfer curves of rubrene single 

The application of our solution-processed A T O can also be extended to n-type 

organic semiconductors. Fig. 5.11a and b shows the transfer curves of FmCUPC 

devices on SiO2 and ATO, respectively. For SiO2 based device, the / is determined to 

2 . 
be 0.011 cm /Vs. However, for A T O based device, a much higher / is obtained, with 

2 • . 
a value of 0.13 cm /Vs. Fig. 5.11c and d shows the transfer curves of C60 transistors 

• . 2 
on SiO2 and A T O , respectively. The estimated mobility values are 0.051 cm /Vs for 

SiOs and 0.11 cm
2

/Vs for ATO. As 

seen, our A T O can be used effectively as a gate 

dielectric for low-voltage high-performance OTFTs. 
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Fig. 5.12 Transfer curves of F1
6
CuPc based transistors on (a) Si〇2 and (b) ATO; transfer curves of C60 

based transistors on (c) SiO2 and (d) A T O . 

5.4 Conclusion 

In summary, we demonstrate that the low-temperature, solution-processed high-众 

A T O can be a promising choice for fabricating low-voltage OTFTs with high 

performance. Detailed studies based on CuPc OTFTs reveal that the high performance 

is attributed to the low surface energy of A T O , which leading to an initial growth of 

the organic semiconductor that is favorable for the charge carrier transport. In 

addition, the K P F M results indicate a preferable metal/organic contact, which benefits 

the charge carrier injection. Moreover, the application of A T O as effective gate 

dielectric can also be extended to other organic materials, including both p-type and 

n-type ones. Our findings suggest that the low-temperature, solution-processed high-众 

A T O is applicable in fabrication of high-performance, low-voltage OFETs. In 
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addition, the present results may provide some clues in designing of high-k gate 

dielectrics in future low-end circuits. 
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Chapter 6 Interface Engineering for 

High-performance Pentacene OTFTs 

In this chapter, we demonstrate that by using appropriate interface engineering, the 

electrical performance of low-voltage pentacene TFTs can be drastically improved. 

The detailed studies on the effects of interface engineering are carried out, and the 

mechanisms behind are discussed. 

6.1 Introduction 

Electronics based on organic semiconductors have received much research interest 

in recent years [1]. As one of the most important components in organic electronics, 

the large area applications of organic thin film transistors (OTFTs), covering the 

fields of displays, sensors and radio frequency identification (RFID) tags [2-4], can be 

realized if the device performance can be further improved and the fabrication costs 

can be reduced. Great progress has been made in both design of novel organic 

semiconductors and device fabrication techniques in the past decades [5-8]. Among 

various organic semiconductors, pentacene has been one of the most intensively 

studied materials due to its prefered properties, i.e., good electrical properties, low 

processing temperature and relatively low cost. Pentacene TFTs with mobility larger 

than 1 cm
2

/Vs have been demonstrated by several groups [9-11]. However, most of 

the reported high performance pentacene TFTs were fabricated by ultilizing Au as 
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source and drain (S/D) electrodes because of its inherently high work function (WF), 

good conductivity and environmental stability. Unfortunately, the high cost of Au 

hampers its use in realistic applications. Consequently, finding low cost electrode 

materials as substitutes of Au is of great technical significance. Several research 

groups have already successfully used Cu as S/D electrodes in OTFTs and some 

promising results have been obtained [12-14]. Meanwhile, the integration of Cu is 

well-developed in the silicon industry. Therefore, using low-cost Cu as the S/D 

electrodes will further promote the development of OTFTs. However, Cu is generally 

believed to be unsuitable as the S/D electrodes material due to its low work function 

(4.2 eV) [15], which results in large hole-injection barrier when contacting with most 

p-type organic semiconductors, thus deteriorating device performance. As an effective 

solution to this issue, chemical modifications of Cu electrodes have attracted much 

attention in order to improve the device performance [16-18]. 

Another challenge for traditional OTFTs is the high gate voltages required to turn 

on the devices. For instance, pentacene TFTs based on SiO2 gate dielectric usually 

needs an operation voltage as high as -60 V. To achieve lower driving voltage, one 

must increase the gate areal capacitance. Various types of dielectric materials have 

been explored for this purpose. Recently, we successfully demonstrated a 

low-temperature (〜200
 o

C) solution-processed high-众 A T O dielectric system, and the 

CuPc TFTs with this gate dielectric material showed good electrical performance 

under an operation voltage as low as -1.5 V [19]. However, native oxide dielectric 

surface usually contains hydroxyl groups (OH
-

), which act as defect sites, trapping 

charge carriers in the channel or inducing undesired charge carriers into the channel 

[20-22]. This issue can be resolved by introducing a self-assembled monolayer (SAM) 
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at the interface between dielectrics and organic semiconductors. The S A M can 

simultaneously passivate the defects and modify the oxide surface, resulting in 

enhanced device performance [23-25]. Among diverse SAMs, phosphonic acid 

headed alkylate has shown great advantages of readily chemisorbed onto metal-oxide 

surface [26-28] with high thermal stability (〜400
 o

C) [29], and other unique merits 

including better stability to moisture, less tendency of self-aggregation and unlimited 

by the densed surface hydroxyl groups [30]. Especially, as demonstrated previously, 

octadecylphosphonic acid (ODPA) can be easily self-assembled on the surface of 

aluminum oxide with high quality [2, 31]. 

Here we employ O D P A (as shown in the inset of Fig. 6.1a) modified 

solution-processed A T O (referred to as ODPA/ATO for short) as gate dielectric to 

fabricate low-voltage pentacene TFTs. After O D P A modification, the leakage of the 

dielectric layer can be effectively suppressed by more than one order of magnitude as 

compared to that of pristine ATO, while preserving a high capacitance density of 200 

nF/cm . By utilizing in-situ modified Cu (M-Cu) as source-drain (S/D) electrodes via 

simple gradated vacuum (from 5 x 10
-3

 Pa to 3 x 10
-4

 Pa) evaporation, the resultant 

pentacene TFT shows an apparent mobility as high as 1.0 cm
2

/Vs and a 

transconductance of 12 |aS under an operation voltage of -3 V. On the other hand, 

device with conventional Au S/D electrodes possesses an apparent mobility of only 

0.71 cm
2

/Vs, and 

a markedly lower transconductance of 5.7 | S. The enhancement in 

device performance is thought to be arising from the optimized electrodes/pentacene 

interface properties. At the same time, by encapsulating the M-Cu with a thin layer of 

Au, the apparent mobility and the transconductance of pentacene TFTs further 

increases to 2.3 cm /Vs and 19 |S, respectively, which can be ascribed to the 119 



increased conductivity of the electrode itself. Our present studies demonstrate a 

simple and low-cost route to realize high-performance low-voltage pentacene TFTs. It 

is expected that the results will shed light on the large scale implementation of OTFTs 

in low-end electronics in the near future. 

6.2 Experimental details 

Titanium oxide (TiOx) sol (0.1 mol/L) was prepared by dissolving titanium (IV) 

isopropoxide (TIP) (Ti(OC3H?)4，99.99%, Aldrich) into a mixture of methanol and 

acetic acid, and aluminum oxide (Al〗Oy) sol (0.5 mol/L) was prepared by dissolving 

aluminum nitrate nonahydrate (Al(NO3)3.9H2〇， 99.99%, Aldrich) into 

2-methoxylethanol. Heavily n-doped Si wafers (n
++

-Si), acting as substrates and gate 

electrodes, were successively cleaned by acetone, isopropanol and ethanol in ultrasonic 

for 10 min, and then blown dry with N2 gas and used immediately for depostion of A T O 

dielectric. A T O were fabricated by spin coating TiOx sol and AbOy sol onto n++-Si 

substrates in sequence at 5000 r/min for 40 s. After each spin coating, the substrates 

were baked at 200 ±5 °C for 5 min to ensure the hydrolyzation and decomposition of 

the precursor and then cooled to room temperature. The as-prepared A T O substrates 

were immediately immersed in an O D P A (5 mmol/L in isopropanol) for 20 h, followed 

by a 48 h curing at 145
 o

C under vacuum. After that, the O D P A / A T O substrates were 

then cleaned by isopropanol ultrasonically for 6 min. 

OTFTs were fabricated by vacuum deposition of 30-nm thick pentacene film onto the 

O D P A / A T O substrates at a rate of 0.1 A/s and a pressure of 3 x 10
-4

 Pa. During 
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pentacene deposition, the substrates temperature was kept at 60
 o

C. Following that, 

40-nm thick S/D electrodes were deposited onto pentacene layer in vacuum through a 

shadow mask at a rate of 0.3 A/s. The channel length (L) and width (W) were 56 ̂ m and 

1500 陣，respectively. For Au and Cu electrodes, the deposition pressure was about 5 x 

10
-4

 Pa. For M-Cu electrodes, a gradient deposition pressure from 5 x10
-3

 Pa to about 3 

x 10
-4

 Pa was chosen. As for Au/M-Cu electrodes, a 10-nm thick Au layer was 

subsequently deposited onto the 30-nm thick M-Cu electrodes without breaking the 

chamber vacuum. 

The leakage of the dielectrics and the electrical characteristics of the pentacene 

TFTs were measured in ambient conditions using Keithley 4200 SCS. The frequency-

dependent capacitance of the dielectrics was measured by H P 4284A in a frequency 

range of 20 Hz-1M Hz. The depth profile analysis of the electrodes on pentacene were 

characterized by XPS spectrometer (VG Scientific E S C A L A B 250) through Ar+ 

etching with an EX05 argon gun at ion beam voltage of 3 keV and emission current of 

2 ^A. 

6.3 Results and discussion 

6.3.1 Leakage and capacitance of dielectric 

To characterize the electrical properties of the gate dielectric, n++-Si/insulator/Au 

(MIM) sandwiched structures (inset of Fig. 6.1a) were fabricated to test the leakage 

current density-voltage and capacitance density (Ci)-frequency characteristics, and the 

results are plotted in Fig. 6.1. As shown in Fig. 6.1a, after O D P A modification, the 
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Bias (V) 

Fig. 6.1 (a) Leakage current density versus bias voltage characteristics of A T O and ODPA/ATO gate 

dielectrics, the inset shows the molecular structure of O D P A and the M I M device structure; (b) 

Capacitance density versus frequency plots of A T O and ODPA/ATO gate dielectrics. 

leakage current density can be significantly suppressed by more than one order of 

magnitude, from 5 x 10
-6

 A/cm
2

 to 4 x 10
-7

 A/cm
2

 under a bias of 2 V. The decrease 

in leakage current density indicates the formation of densely packed O D P A molecules 

on the surface of alumina in A T O . The static contact angle of DI water on 

O D P A / A T O is about 110
o

, while that on bare A T O is about 35
o

, further confirming 

the formation of high quality S A M [32]. The high hydrophobicity of O D P A / A T O 

surface also signifies its low surface energy, which is believed to be critical to the 

enhancement of device properties [26, 33, 34]. The capacitance density (Ci) of the 

dielectric is measured as a function of frequency from 20 Hz to 1 M Hz, as shown in 

Fig. 6.1b. The C
1
 of O D P A / A T O is 200 nF/cm

2

, while that of bare A T O is 250 nF/cm
2

. 

The measured value of Ci for O D P A / A T O is in good agreement with the calculated 

one by assuming k = 2.5 and the monolayer thickness of 2.1 n m for O D P A S A M [31], 

using the equation 1 / C她 , = 1 / C A T O + 1/CODPA. The low leakage, low surface energy, 

and high capacitance density of the O D P A / A T O system endows it with suitability for 

high-performance low-voltage OTFTs. 

•
 
.
 I

 .
 

_
 

.
 i
 

•
 

I
 .

 i
 

«

 
r
4
 

o
 o

 o

 o

 o

 o

 o
 

g

2

5

2

0

5
 o
 

5
 

(
E
o
/
J
s
S
1
u
.
-
2
1
0
e
d
e
0
 

-
5
6
 

7

 8
 

A
^
 o
 

川

 
b
 b

 
b

1

0

0

-

1
 

广
 
§
/
v
)

 e
6
5
e

 ①

-

J

1
 

122 



6.3.2 Devices electrical characteristics 

Fig. 6.2 shows the electrical characteristics of top-contact pentacene TFTs with A u 

and M-Cu S/D electrodes based on O D P A / A T O gate direlectrics. Owing to the high 

capacitance density of the O D P A / A T O (200 nF/cm
2

), the devices worked very well 

under a low gate voltage of -3 V. All output curves exhibit clear linear and saturation 

regions with typical p-channel characteristics, and the S/D electrodes materials show a 

remarkable influence on the device performance, as shown in Fig. 6.2a. Device with 

Au S/D electrodes exhibits a saturation current of -7.5 |iA. Interestingly, the device 

with M-Cu electrodes shows a much higher saturation current of -18 |A, which is 

about 1.5 times larger than that of the device with Au electrodes. Fig. 6.2b exhibits 

the transfer curves of the corresponding device in saturation region. For the device 

with Au electrodes, the on/off ratio is found to be as high as 3 x 10
5

 due to the low 

leakage of the O D P A / A T O gate dieletric, and the subthreshold slop (SS) is 107 

1/2 

mV/dec. By linearly fitting the curve of (--IDS) vs VGS in the saturation region, one 

can calculate the field-effect mobility (w) and threshold voltage (VT). The estimated 

W and VT are 0.71 cm /Vs and -1.4 V, respectively. Noting that this mobility is 

calculated without considering the parasitic resistance in the S/D contact region, 

therefore, it is actually referred to the apparent mobility (Wapp). Interestingly, as 

compared with those values of pentacene TFTs previously reported by other groups, 

also using similar ODPA/AlOx gate dielectrics and Au as S/D electrodes [28, 35, 36], 

the performance of our device is significantly higher. The improved performance may 

be due to the smaller roughness of the O D P A / A T O surface, with a value of root mean 

square (RMS) roughness of about 0.4 nm, while those reported values are in the range 

of 0.75 to 2.1 nm [28, 35]. Transconductance (gm) is another important parameter of 
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OFETs, which is defined by dlDs/dVGs at constant VDS. The estimated gm in the 

saturation region of the device with Au electrodes is about 5.7 |iS. On the other hand, 

for the device with M-Cu electrodes, the on/off ratio, SS, 〜pp, VT and gm are estimated 

to be 3 x 10
5

, 156 mV/dec, 1.0 cm
2

/Vs, -0.62 V and 12 |S, respectively. The device 

parameters of our pentacene TFTs are listed in Table 6.1. As clearly seen, the device 

with M-Cu electrodes exhibits a larger on-state current, higher ̂ app and gm, and a 

reduced VT, as compared to that with Au electrodes. Because both devices were 

fabricated under the same condition, excepting the S/D electrodes, it is plausibly to 

ascribe the above observations to the interaction between electrode and organic 

semiconductor and/or the properties of the electrode itself. 

Fig. 6.2 (a) Output curves and (b) Transfer curves of devices with Au and M-Cu electrodes. 
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Table 6.1 Summary of electrical characteristics of pentacene TFTs with different S/D electrodes. 

S/D Saturation on/off SS VT gm Contact 

electrodes current (|jA) (cm2/Vs) ratio (mV/dec) (V) (卟） resistance (MQ) 

Au -7.5 0.71 3 x 10
5 

107 -1.4 5.7 0.41 

M-Cu -18 1.0 3 x 10
5 

156 -0.62 12 0.11 

Cu -13 0.85 5 x 10
5 

117 -0.77 7.8 0.26 

Au/M-Cu -28 2.0 3 x 10
5 

73 -1.0 19 0.02 

Because of its high work function, Au is the most widely used S/D electrode 

materials for pentacene TFTs. However, during thermal deposition, hot Au atoms 

usually diffuse into the pentacene film, thus resulting in high resistive grain 

boundaries and forming interface dipoles by doping the upper layer pentacene. Kim et 

al. have studied the behavior of contact resistance of Au electrodes at different 

substrate temperatures in pentacene TFTs, and the results show that Au deposited at 

room temperature (18
 o

C) exhibits a higher contact resistance than that at low 

temperature (-150
 o

C), which they ascribed to Au penetration induced degradation in 

pentacene films [37]. Similar results were also reported by Nakamura et al. who 

found that the degradation could even extend into the channel region [38]. The 

penetration of Au into pentacene also generates the deep trap states which trap charge 

carriers and lead to a decreased device performance [39]. On the other hand, interface 

dipoles between Au and pentacene were also observed by several groups [40-42]. The 

unfavorable interface dipoles increase the injection barrier height between Au and 

pentacene, giving rise to an increased contact resistance. When M-Cu as S/D 

electrodes used, Cu atoms are naturally oxidized by residual oxygen species in the 

chamber due to the low vacuum atmosphere (a typical base pressure of 5 x 10
-3

 Pa). 

As a result, a thin layer of CuOx is in-situ formed at the initial stage of thermal 
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deposition instead of pure Cu. Cu2O is a widely studied p-type semiconductor with 

valence band (VB) position locating around 5.4 eV [43], which is well aligned with 

the highest occupied molecular orbital ( H O M O ) of pentacene (5.0 eV) [44]. 

Meanwhile, as previously demonstrated by Yun et al., the CuO layer between Cu and 

pentacene can facilitate the hole injection because of its low barrier height with 

pentancene [14]. Consequently, the in-situ oxidized CuOx layer can act as an effective 

hole-injection layer, resulting in optimized electrode/pentacene contact, and hence 

improving the device performance. 

6.3.3 Contact resistance 

To quantify the relationship between electrical performance of devices and S/D 

electrodes, we estimate the contact resistance (RC) with the transfer line method 

(TLM) in the linear region [45]. Fig. 6.3 shows the dependence of total resistance on 

channel length of devices with different electrodes, and RC is obtained from the 

intercept by extrapolating the resistance line to the zero channel length. For Au 

electrodes, the RC is estimated to be about 0.41 M Q . For M-Cu electrodes, on the 

other hand, the RC is drastically reduced, estimated to be about 0.11 M Q . As 

discussed previously, when M-Cu is used as S/D electrodes, an efficient hole-injection 

interface can be created between the electrode and pentacene, which is responsible for 

the observed low contact resistance. 
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Fig. 6.3 Transfer line method (TLM) polts of pentancene TFTs with different S/D electrodes. 

6.3.4 Electrode/pentacene interface structure 

To verify the effect of low vacuum on the formation of modified Cu electrodes, 

devices with Cu S/D electrodes deposited under a higher vacuum level of 5 x 10
-4

 Pa 

are also fabricated for comparison. The obtained 〜pp and gm are estimated to be 0.85 

2 . . . 
cm /Vs and 7.8 |iS, respectively, which are obviously lower than those of the device 

using M-Cu electrodes. The RC of Cu electrodes is also studied by T L M and the 

obtained value is 0.26 M Q (shown in Fig. 6.3), which is about two times as large as 

that using M-Cu electrodes. Therefore, it is obvious that the in-situ modification of Cu 

is of great importance for enhancing the performance of pentacene TFTs. It is 

interesting to note that, on the other hand, the contact resistance of the Cu electrodes 

is even lower than that of Au electrodes, which is paradoxical becasue of the lower 

work function of Cu than Au. Similar results are also observed by other groups [39, 

46]. Ultraviolet photoelectron spectroscopy (UPS) studies reveal that the hole 

injection barrier in Cu/pentacene interface is about 0.95 eV [47], which is higher than 

1

-

-
 

)

 
c
-
l
o
 

.
o
c
q
 

c

\

j

.

8

4

.

o
 

2

.

L

1

.

0

.

0

.

0

.
 

a
I
A
I
)

①
o
u
e
l
s
!
s
a
)
c
c
:
 

127 



that of Au/pentacene interface (about 0.5 eV) [41]. As a result, our observed 

phenomenon suggests that the contact resistance is not dominated by the hole 

injection barrier, but dominated by the interface defects caused by severe Au 

penetration into pentacene. 

To investigate the influence of electrode deposition on the structure of pentacene 

layer, very thin layers (5 nm) of Au and Cu are deposited onto the pentacene film, and 

Fig. 6.4 shows the correspondig A F M images. Fig. 6.4a exhitits the A F M image of 30 

nm pentacene on ODPA/ATO. As seen, typical herringbone structure with terrace-like 

grains can be clearly observed. However, after 5 nm Au is deposited (0.2 A/s, 5 x 10
-4 

Pa), the herringbone structure is decomposed, and a lot of small aggregates can be 

found in the interstice of grains, as shown in Fig. 6.4b. In the magnified A F M iamge 

given in Fig. 6.4c, no terrace is observed, further comfirming the heavy structural 

damage caused by Au deposition. On the other hand, under the same condition, 5 nm 

Cu can conformally deposite onto the the pentacene surface, and the terrace structure 

can be clearly discerned from the high-resolution A F M image, as shown in Fig. 6.4d 

and e, suggesting a much slighter structural damage caused as compared to Au. At the 

same time, the root mean square (RMS) roughness are 10. 8 nm, 15.8 nm and 11.6 nm 

for pristin pentacene, Au/pentacene and Cu/pentacene, respectively, giving additional 

evidence of severe stuctural damage cuased by Au deposition. 
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Fig. 6.4 A F M images of (a) 30 n m pentacene on ODPA/ATO; (b & c) 5nm Au and (d & e) 5 n m Cu 

deposited on pentacene. 

6.3.5 XPS characterization 

The above results clearly demonstrate that the use of M-Cu as S/D electrodes can 

effectively improve the device characteristics. In order to understand the mechanism 

behind, XPS depth profiles of different electrodes are characterized and the results are 

shown in Fig. 6.5. It is found from Fig. 6.5a that, when Au is deposited onto 

pentacene, a severe inter-diffusion between Au and pentacene is observed. For clarity, 

we define the region with carbon (C) signal varying form 15% to 85% as the interface 

region between electrode and pure pentancene layer. As seen from Fig. 4a, the 

interface has a wide range of about 25 nm in the device with Au electrodes. The 

severe interdiffusion usually cause structural damage to pentacene in the interface, 

thus give rise to a highly resistive region and generate deep trapping sites [37, 39, 48], 

129 



Fig. 6.5 XPS depth profiles of (a) Au, (b) M-Cu, and (c) Cu electrodes on pentacene. The insets plot the 

comparison of C1s X P S spectra obtained in interface between electrode and pentacene and in pure 

pentacene layer. 

To give additional evidence of the high-performance of devices with M-Cu 

electrodes, the interface regions of M-Cu/pentacene and Cu/pentacene are studied by 

XPS. Fig. 6.6 shows representative high-resolution XPS spectra of Cu L M M Auger 

peak taken from M-Cu/pentacne and Au/pentacene interfaces. As can be seen from Fig. 

6.6a, at the interface of M-Cu/pentacene, the Cu L M M Auger peak can be fitted by two 

peaks. The main peak at around 918.5 eV can be ascribed to Cu
0

 from metallic Cu. The 

small peak at around 916 eV corresponds to the Cu+ from Cu2O, revealing the existence 

of Cu2O at the interface of M-Cu/pentacene. Therefore, the observed sharp interface in 

and consequently, a lowered electrical performance of the device is expected [38, 40, 

46]. On the other hand, in the case of M-Cu electrodes (Fig. 6.5b), a relative pure Cu 

layer is observed in the inner part of electrode, and the diffusion of Cu into pentacne 

layer is obviously suppressed. A sharp interface layer with thickness of about 10 nm 

can be observed beneath the pure Cu layer, as shown in Fig. 6.4b. By contrast, when 

Cu is used as S/D electrodes (Fig. 6.5c), a slightly wider inter-diffusion layer is 

observed (13 nm) as compared to the case of M-Cu, indicating a stronger diffusion of 

Cu into pentacene. 
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Fig. 6.6 Representative high-resolution XPS spectra of Cu L M M Auger peak taken form the interface of 

(a) M-Cu/pentacene and (b) Cu/pentacene. 

Fig. 6.4b may arise from the fact that, at the initial stage of the low vacuum deposition, 

a thin layer of CuOx is firstly produced on the surface of pentacene by thermal 

oxidation of Cu with the residual oxygen species in the chamber. The observed 

oxidation of Cu is in accordance with that reported by others [49]. This thin layer of 

CuOx provides a protection against the diffusion of Cu atoms into the pentacene layer, 

and suppresses the unfavorable structural degradation as well as the formation of 

interface dipoles. At the same time, the CuOx layer can also act as a hole-injection 

layer due to its high work function [15, 50]. On the other hand, as shown in Fig. 6.6b, 

the only peak at around 918.5 eV can be ascribed to Cu
0

 from metallic Cu, obvious 

signal of CuOx is detected in the interface region of Cu and pentacene, indicating 

negligible oxidation of Cu when deposited at a higher vacuum condition of 3 x 10
-4 

Pa. Consequently, a lower density of interface defects is expected. 
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6.3.6 Proposed band diagram 

On the other hand, although good band alignment between Au and pentacene, 

interface dipoles are commonly observed phenomenon at their interface as evidenced 

by UPS studies [51-53]. As shown in previous studies, interface dipoles can cause a 

down shift of vacuum level (VL) of pentacene and redistribution of electrons from 

pentacene to electrode, thus acting as an opposite electric field to the charge injection, 

and negatively shifting the VT of device. Owing to the higher density of interface 

defects and dipoles between Au and pentacene, a negatively shifted VT is therefore 

anticipated, which is in good agreement with the experiment results. To better 

understand the mechanism, the band diagram of different electrode materials are 

given in Fig. 6.7. For Au electrodes (Fig. 6.7a), an typical value of interface dipole (A) 

of 0.5 eV is adopted [41]. Due to the physical and chemical damage caused in the 

interface of Au/pentacene, some deep trap sites are induced. As for Cu electrode (Fig. 

6.7b), an interface dipole of 0.15 eV can be estimated according to the reported 

hole-injection barrier height of 0.95 eV [39, 47]. When M-Cu is used as the S/D 

electrodes (Fig. 6.7c), the thin layer of Cu2O in the interface serves as a effective 

hole-injection layer. At the same time, as discussed previously, the interface dipole is 

suppressed. 
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Fig. 6.8 High-resolution X P S spectra of Cu L M M Auger peak obtained from the top surface of M-Cu 

electrodes. 

6.3.7 Au encapsulation 

In addition to the interfacial properties of S/D electrodes and organic 

semiconductor, the electric conductivity of the electrode itself is another concern 

which can also influence the performance of OTFTs drastically [54, 55]. One major 

drawback associated with the use of Cu as S/D electrodes is the inevitable oxidation 

of Cu by oxygen species and water in air, which can be evidenced from the 

high-resolution XPS spectra of Cu Auger peak taken from the top surface of M-Cu 

electrodes shown in Fig. 6.8. As seen, the only peak located at around 916 eV can be 

assigned to Cu+, indicating that the surface of M-Cu is totally oxidized to Cu2O. The 

surface oxidized layer on Cu will result in the increased electrode resistivity over time, 

and hence deteriorate the device performance [56, 57]. This issue can be overcome by 

depositing a thin layer of Au on the top of Cu electrode, functioning as an 

encapsulation layer to prevent the oxidation of Cu and improve the conductivity of the 

Fig. 6.7 Schematic energy diagrams of (a) Au/pentacne, (b) Cu/pentacene and (c) M-Cu/pentacene. 
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electrode. Fig. 6.9 shows the electrical characteristics of representative pentacene TFT 

using 10 nm Au encapsulated 30 nm M-Cu (Au/M-Cu) as S/D electrodes. As shown 

in Fig. 6.9a, the output curves exhibit typical p-channel feature, with a saturation 

current of -28 |iA under VGS = VDS of -3 V, which is about 1.5 times as large as that 

with M-Cu electrodes. Fig. 6.9b gives the corresponding transfer curves. The on/off 

ratio, SS, /Uapp, VT and g
m
 are estimated to be 1x10

6

, 73 mV/dec, 2.0 cm
2

/Vs, -1.0 V 

• .
 #

 2 
and 19 |S, respectively, and the highest 〜p achieved is about 2.3 cm /Vs. As seen, 

the electrical properties of the device are markedly improved after Au encapsulation. 

Fig. 6.9 (a) Output curves and (b) Transfer curve of device with Au/M-Cu electrodes. 

To verify the effect of Au encapsulation on preventing the oxidation of Cu, XPS 

depth profiles of Au/M-Cu electrodes is recorded and the result is given in Fig. 6.10. 

The carbon concentration is high and then decreases drastically with prolonging the 

etching time, which is most probably due to the adventitious surface contamination, as 

can be seen from Fig. 6.10. The Au and Cu show a strong inter-diffusion, indicating 

good electric contact. In addition, nearly no diffusion of Au into pentacene is detected. 

The inset of Fig. 6.10 shows the variation of O concentration with etching time of 

different electrodes. As clearly seen, with the encapsulation of Au, the diffusion of O 
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into the electrode is effectively suppressed in Au/M-Cu electrode, and the surface 

oxidation of the underneath Cu is then prevented. As a result, the conductivity of the 

Au/M-Cu is expected to be enhanced as compared to that of M-Cu. Accordingly, the RC 

obtained by T L M (shown in Fig. 6.3) of the device with Au/M-Cu electrodes is 

significally reduced to only 0.02 M Q , which is much smaller than that of M-Cu. The 

reduced contact resistance is sensibly assigned to the increase in the conductivity of 

electrode itself. As a result, this contributes to the improved electrical performance of 

the obtained device. To make it more clear, we can also calculate the intrinsic 

mobility (从）of the devices from the slop of each line in Fig. 6.3, and the calculated 队 

are 1.8 cm
2

/Vs, 2.0 cm
2

/Vs and 2.3 cm
2

/Vs for Au, M-Cu and Au/M-Cu based divices, 

respectively. As expected, these values are higher than their corresponding ̂ app. 

Fig. 6.10 X P S depth profiles of Au/M-Cu electrodes on pentacene; the inset compares the variation of 

O percentage with etching time on different electrodes. 
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6.4 Conclution 

In conclusion, we have successfully demonstrated high-performance low-voltage 

pentacene TFTs using M-Cu as S/D electrodes and solution-processed O D P A / A T O 

gate dielectric. The fabricated devices show a significant improvement in device 

performance as compared with that of the devices having Au electrodes. This is 

plausibly ascribed to more efficient hole injection, smaller density of interface defects, 

consequently reduced contact resistance between the M-Cu electrodes and pentacene 

thin film. Upon encapsulation of M-Cu electrodes with a thin layer of Au, the 

electrical characteristics are further enhanced due to the suppression of the oxidation 

of Cu in ambient, leading to increase in the conductivity of the electrode itself. Our 

investigation heralds a simple and effective way to realize high-performance 

low-voltage OTFTs. The use of low-cost metal electrodes instead of Au can greatly 

faciliate the realistic applications of OTFTs in large area. 
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Chapter 7 Flexible Pentacene OTFTs 

Low-voltage, flexibility and low-cost are essential prerequisites for large scale 

application of organic thin film transistors (OTFTs) in future low-end electronics. In 

this chapter, low-voltage flexible pentacene OTFTs are demonstrated by using 

O D P A / A T O as gate dielectric and Au/M-Cu as S/D electrodes. At the same time, the 

mechanical flexibility and reliability of the pentacene OTFTs are also studied and 

discussed in detail, and the observed degradation of the device performance under 

strains is attributed to the damage induced in the electrodes giving rise to increased 

contact resistance and the phase transition from thin film phase to bulk phase of the 

pentacene films. 

7.1 Introduction 

Organic thin film transistors (OTFTs) have attracted considerable research interest 

over the past decades due to their potential applications in low-end electronics, such 

as displays, smart cards and disposable sensors [1-5]. In addition, the inherent 
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mechanical flexibility and low-temperature processibility of organic semiconductors 

stimulate the attempts of integration of OTFTs with bendable substrates, which is of 

great technical significance because they are fundamental building blocks of most 

practical electronic devices. Among various organic semiconductors, pentacene has 

been one of the most promising candidates due to its high field-effect mobility and 

good environmental stability, at the same time, flexible pentacene OTFTs have been 

successfully demonstrated by many groups [6-10]. Unfortunately, most of the 

reported devices with high performance utilize Au as source-drain (S/D) electrodes, 

which hampering the large scale applications of OTFTs because of the high cost of 

Au. Therefore, researches have been driven by the attempts in finding other low cost 

electrode materials, such as Cu, to replace Au. However, OTFTs with Cu as S/D 

electrodes usually suffer from deteriorated device properties due to its low work 

function (4.2 eV) [11], which resulting in large hole-injection barrier. To solve this 

critical issue, chemical modification of Cu electrodes have attracted much attention in 

order to improve the device performance [12-14]. 

In parallel to continual efforts in finding low-cost S/D electrode materials, the 

exploring of high-capacitance gate dielectrics with acceptable mechanical reliability 

which allowing low driving voltage of flexible OTFTs is also a key challenge to be 
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overcome. Furthermore, to realize printability in future organic electronic industry, it 

is necessary to develop low-temperature, solution-processible dielectric materials that 

can be compatible with the high-throughput production, such as roll-to-roll processing. 

The use of polymer dielectrics may achieve good mechanical flexibility and 

solution-processibility, however, the device performance are usually limited by the 

high leakage current and high driving voltage due to the low gate capacitance [7, 

15-18]. In contrast, the choice of high-众 inorganic dielectrics seems to be a promising 

way. Recently, we have introduced a solution-processed high-k A T O dielectric system, 

and the resultant CuPc O T F T exhibits excellent electrical characteristics under an 

operation voltage of -1.5 V [19]. More importantly, this dielectric material can be 

processed at a low temperature of 〜200
 o

C, which is compatible with some flexible 

plastic substrates, such as polyimide (PI). At the same time, the unfavorable hydroxyl 

groups (OH
-

) on the surface of native oxide dielectric can be easily passivated by 

introducing a self-assembled monolayer (SAM), which is also solution-processible 

[20, 21]. 

In this paper, w e use octadecylphosphonic acid (ODPA) self-assembled onto a 

low-temperature, solution-processed A T O (ODPA/ATO) as gate dielectric to 

fabricate flexible OTFTs. The solution-processed O D P A / A T O system exhibits 
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excellent dielectric characteristics, with a leakage current density lower than 10
-6 

2 9 

A/cm under bias voltages of ±3 V, and a high capacitance density of 180 nF/cm . By 

employing Au encapsulated in-situ modified low-cost Cu (Au/M-Cu) as S/D 

electrodes, the resultant flexible pentacene OTFT shows superior electrical 

performance with field effect mobility (^) of 1.5 cm /Vs, threshold voltage (VT) of 

-0.4 V, on/off ratio of 2 x 10
4

 and subthreshold swing (SS) of 161 mV/dec under an 

operation voltage of only -2 V. The device characteristics under different mechanical 

strains are also examined and discussed in detail. Our results demonstrate a simple 

and feasible route to fabricate high-performance flexible OTFTs with 

solution-processed dielectric at low-cost, which is of technical importance to realize 

large-scale application of organic electronics. 

7.2 Experimental details 

125 jam polyimide substrates (provided by C E N Electronic Material Co., Ltd.) were 

successively cleaned by isopropanol and ethanol in ultrasonic for 10 min, and then 

blown dry with N2 gas and used immediately for deposition of gate electrode. 5 nm Cr 

was deposited onto the PI substrates under a vacuum of 3 x 10
-4

 Pa, followed by 
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deposition of 20 nm Au without breaking the chamber vacuum. After that, the 

substrates were cured at 200
 o

C for 30 min in vacuum. 

Titanium oxide (TiOx) sol (0.1 mol/L) was prepared by dissolving titanium (IV) 

isopropoxide (TIP) (Ti(OC3H7)4, 99.99%, Aldrich) into a mixture of methanol and 

acetic, and aluminum oxide (A^Oy) sol (0.5 mol/L) was prepared by dissolving 

aluminum nitrate nonahydrate (Al(N〇3)3.9H2O， 99.99%, Aldrich) into 

2-methoxylethanol. A T O were fabricated by spin coating TiOx sol (5000 r/min, 40 s) 

and AhOy sol (4000 r/min, 20 s) onto the above flexible substrates in sequence. After 

each spin coating, the substrates were baked at 200 ±5 for 3 min to ensure the 

hydrolyzation and decomposition of the precursor and then cooled to room temperature. 

The as-prepared flexible A T O substrates were then immediately immersed in an 

octadecylphosphonic acid (ODPA) solution (5 mmol/L in isopropanol) for 20 h, 

followed by a 48 h curing at 145
 o

C in vacuum. Finally, the flexible O D P A / A T O 

substrates were washed by isopropanol ultrasonically for 6 min and blown dry by N2 

gas for use. 

OTFTs were fabricated by vacuum deposition of 30 nm pentacene film onto the 

above flexible substrates at a rate of 0.1 A/s and a pressure of 3 x 10
-4

 Pa. During 

pentacene deposition, the substrates temperature was kept at 60
 o

C. Following that, 30 

144 



nm in-situ modified Cu (M-Cu) S/D electrodes were firstly deposited onto the 

pentacene layer under a gradient deposition pressure from 5 x10
-3

 Pa to about 3 x10
-4 

Pa through a shadow mask at a rate of 0.3 A/s, and then 10 nm Au was deposited onto 

the 30 nm M-Cu electrodes without breaking the chamber vacuum. In order to 

investigate the capacitance and leakage current, parallel-plate capacitors are fabricated 

by depositing Au electrodes on n++-Si substrates with ODPA/ATO fabricated by the 

same procedure as that of flexible substrates. 

The frequency-dependent capacitance of the dielectrics was measured by H P 

4284A in a frequency range of 20 Hz-100k Hz. The leakage of the dielectrics and the 

electrical characteristics of the pentacene OTFTs were measured in ambient 

conditions using Keithley 4200 SCS. The morphologies of the pentacene thin film 

was characterized by atomic force microscopy (AFM, Nanoscope IIIa) in tapping 

mode. The two-dimensional grazing incidence X-ray diffraction (GIXD) pattern was 

obtained at beamline BL14B1 (入=1.24 A) of the Shanghai Synchrotron Radiation 

Facility with an incident angle of 0.15
o

. The bending tests are conducted by placing 

the flexible pentacene OTFTs on glass tubes with different diameters to achieve a 

concave or a convex bending. 
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7.3 Results and discussion 

7.3.1 Leakage and capacitance characterization 

To characterize the electrical property of the solution-processed dielectrics, parallel 

plate capacitors with n
++

-Si/insulator/Au sandwiched structure are fabricated to test 

the leakage current density and the capacitance density (Ci), and the representative 

results are plotted in Fig. 7.1. As can be seen form Fig. 7.1a, after O D P A modification, 

the leakage current density can be effectively suppressed by one order of magnitude 

under bias voltages of ±3V, indicating that the O D P A molecules assemble densely on 

the surface of alumina in A T O . The static DI water contact angle increases form about 

35
o

 to about 110
o

 upon O D P A modification, further confirming the formation of high 

quality S A M [22]. The high hydrophobicity of the O D P A / A T O system also signifies 

its low surface energy, which is believed to be critical in enhancing the device 

properties [23-25]. Fig. 7.1b shows the frequency dependent capacitance density of 

the capacitor. A slight increase in capacitance density with decreasing frequency is 

observed in both A T O and ODPA/ATO, which can be due to the Maxwell-Wagner 

space charge polarization in the A T O layer [19, 26, 27]. The obtained Ci value is 180 

nF/cm
2

 for O D P A / A T O at 20 Hz, which 

is in good agreement with the calculated one 

by using the equation 1/Ctotai= 1 / C A T O + 1/CODPA [28]. Such a high capacitance density is 146 



sufficient to induce adequate charge carriers at a low voltage. By taking the 

Fig. 7.1 (a) Leakage current density versus bias voltage and (b) capacitance density versus frequency 

characteristics of A T O and ODPA/ATO gate dielectrics. 

7.3.2 Structure of pentacene thin film 

Fig. 7.2a exhibits the atomic force microscopy (AFM) image of 30 nm pentacene 

film deposited on flexible substrate, and typical herringbone structure with feature 

size of 〜2 陣 can be clearly observed. In addition, in magnified image, terraces can 

be clearly observed, as shown in the upper right one. A step height of 〜1.5 nm is 

estimated from the cross-sectional profile along the dark dash line, as shown in the 

advantages of its low leakage, low surface energy and high capacitance density, the 

O D P A / A T O is expected to be a promising candidate for low-voltage 

high-performance OTFTs. 
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lower right image in Fig. 7.2a. This step height suggests that the pentacene molecules 

are oriented in an edge-on configuration with the long molecular axis parallel to the 

substrate normal. To further explore the crystalline structure and molecular ordering 

of the deposited pentacene film, the corresponding two-dimensional grazing incidence 

X-ray diffraction (2D GIXD) pattern is recorded and the result is given in Fig. 7.2b. 

As seen, the (001) reflection peak along the Qz (out of plain) axis can be assigned to 

the "thin film phase" with a layer spacing of 〜1.54 nm, which is approximately equal 

to the up-right standing molecular height [29]. Additionally, the {1, ±1}, {0, 2} and 

{1, ±2} in plane Bragg rod reflections at Qxy (in plain) positions indicate that the 

pentacene crystal has a highly oriented 3D herringbone packing structure, as 

evidenced by many groups [29-31]. The above GIXD results are in good agreement 

with the A F M observations. At the same time, the "thin film phase" is believed to 

benefit the charge carrier transport, due to the preferred n-orbital overlap [32]. 
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Fig. 7.2 (a) A F M images of 30 nm pentacene film deposited on ODPA/ATO and the cross-sectional 

profile along the dark line; (b) the corresponding 2-D GIXD pattern. 

7.3.3 Electrical properties of flexible OTFTs 

Besides the dielectric properties and the pentacene thin film microstructures, the 

choices of S/D electrode materials are also crucial in achieving high-performance 

devices. Au has been the most widely used S/D electrode material for pentacene 

OTFTs because of its inherently high work function, good conductivity and 

environmental stability. However, the high cost of Au hinders its use in realistic 

applications. Furthermore, during thermal deposition, hot Au atoms usually diffuse 

into the pentacene film, thus resulting in high resistive grain boundaries and forming 

interface dipoles by doping the upper layer pentacene, and deteriorating the device 

perofrmance [33-36]. In Chapter 6, we have successfully introduced the An/M-Cu 

system that can be used effectrively as the S/D electrodes to obtain high-perforamnce 
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pentacne OTFTs. Here, take the advantages of this system, we also employ it to 

fabricate flexible OTFTs. Fig. 7.3 shows the electrical characteristics of flexible 

pentacene OTFT using Au/M-Cu as S/D electrodes. Due to the high capacitance 

density (180 nF/cm ) of the O D P A / A T O system, the device can work perfectly under 

a low operating voltage of only -2 V. As shown in Fig. 7.3a, the output curves exhibit 

distinct linear and saturation regions of a typical p-type feature, with a high saturation 

current on the order of 10
-5

 A under VGS = VDS = -2 V. N o obvious leakage can be 

observed at zero VDS due to the high quality of the O D P A / A T O system. Fig. 7.3b 

plots the corresponding transfer curve in saturation region, from which the electrical 

parameters can be extracted. The device possesses outstanding electrical 

4 9 

characteristics, with on/off ratio of 2 x 10 , field effect mobility (JJ) of 1.5 cm /Vs, 

threshold voltage (VT) of -0.4 V and subthreshold swing (SS) of 161 mV/dec. To the 

best of our knowledge, this obtained mobility value is among the highest ones 

achieved in flexible pentacene OTFTs. In comtrast, the device with 40 nm Au S/D 

electrodes is also fabricated and tested, and the electrical characteristics are given in 

Fig. 7.3c and d. As shown in Fig. 7.4c, due to the high quality of the ODPA/ATO system, 

no obvious leakage is detected near zero V
D
s from the output curves of the device with Au 

S/D electrodes. The saturation current is about 3.6 x 

10
-6

 A at Vds = V
G
s = -2 V. However, the 
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curves exhibit apparent “S” shape at low V
DS
, which is an indication of contact effect, 

resulting from the high contact resistance. Fig.7.4d gives the corresponding transfer curve. 

The extracted on/off ratio, V
T
 and SS are estimated to be 10

4

, 0.6 cm
2

/Vs, -0.7 V and 182 

mV/dec, respectively. Clearly, the obtained electrical characteristics of device with Au 

electrodes are much lower as compared to the device with Au/M-Cu electrodes. At the 

same time, the Au/M-Cu can offer a hole-injection perferred interface between 

electrodes and pentacene, as dicussed in Chapter 6. Therefore, the high performance 

of our flexible pentacene OTFT with Au/M-Cu S/D electrodes can be ascribed to the 

“thin film pahse” of the deposited pentacene film and the potimized 

electrode/pentacene interface property. 
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Fig. 7.3 (a) Output curves and (b) Transfer curve of flexible pentacene O T F T with Au/M-Cu S/D 

electrodes; (c) output curves and (d) Transfer curve of flexible pentacene O T F T with 40 n m Au S/D 

electrodes. The inset in figure (a) show the structure of the flexible device. 

7.3.4 Mechanical performance characterization 

To test the mechanical flexibility, another two different devices (I and II) are 

fabricated. The mechanical flexibility of the devices is investigated at controlled 

bending radii along the channel length direction, under either compressive or tensile 

condition. Fig. 7.4 shows the relative variation in the normalized /u and VT of the 

devices as a function of strain, which defined as dJIR, where d
s
 is the substrate 

thickness and R is the bending radius [7], as illustrated in Fig. 7.4c. By convention, 

the values are positive with compressive strain and negative with tensile strain. As can 
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be seen form Fig. 7.4a, in case of compressive strains (device I), the mobility 

decreases gradually with increasing the strain at first, and then a rapid degradation is 

observed. The /u decreases to about 60% of its original value at strain of 2.7%, and the 

VT shifts in a small range from -0.55 V to -0.58 V. On the other hand, as shown in Fig. 

7.4b, in case of tensile strains (device II), a more drastic degradation of the mobility is 

observed and only about 10% is preserved at strain of -2.7%, and the VT shifts in a 

larger range from -0.46 V to -0.68 V. The gate leakage current keeps almost 

unchanged after bending test indicating the robust integration of the O D P A / A T O with 

flexible substrates, and the performance of the devices can be more or less recovered 

after relaxation. In principle, the compressive strain may lead to smaller spacing 

between pentacene crystals and the tensile strain may cause larger spacing, hence the 

mobility is expected to increase in compressive strain and decrease in tensile strain, as 

having been observed by other groups [7, 37]. However, our results of compressive 

strain exhibit an opposite trend, and the device in compressive strain shows better 

mechanical stability than in tensile strain. These phenomena are worthy of studying in 

detail. 
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Fig. 7.4 Relative changes in the normalized mobility of the flexible pentacene OTFTs as a function of 

(a) compressive and (b) tensile strains; (c) gives an illustration of the testing setup. 

Yang et al. have reported that the mechanical strain can induce phase transitions of 

pentacene between thin film phase and bulk phase [38]. To investigate the crystal 

structure variation, X R D patterns of 30 nm pentacene on flexible substrates are 

recorded under strains of 士 2.7
0

%, and the results are shown in Fig. 7.5. The substrate 

background has been removed from the original X R D data. For the as-deposited 

pentacene film, the only peak indexed as (001)T can be assigned to the thin film phase 

of pentacene, with interlayer spacing of about 1.54 nm, which is in good agreement 

with the previous GIXD result [39]. However, under both compressive and tensile 
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strains, another peak shows up, which corresponds to the bulk phase of pentacene with 

interlayer spacing of 1.45 nm as denoted by (001)B in Fig. 7.5, indicating a phase 

transition occurs. Further investigations show that the mass fraction of the thin film 

phase is about 20 % in compressive strain (2.7 %), while about 14 % in tensile strain 

(-2.7 %). Because the bulk phase is reported to possess lower intrinsic mobility than 

the thin film phase [39], the remained higher thin film phase mass fraction may partly 

account for the better mechanical flexibility of the OTFTs under compressive strains. 

On the other hand, during the examination of the mechanical flexibility, in both 

compressive and tensile strains, some cracks along the channel width direction can be 

found in the S/D electrodes under magnifier, and the number of cracks increases with 

the absolute value of strains (not shown here). The cracks may deteriorate the contact 

between the S/D electrodes and the underneath pentacene, which also contribute to 

the decreased electrical performance of the devices with increasing the strains. 
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Fig. 7.5 Changes in X R D patterns of 30 n m pentacene film with different strains. 

To further investigate the mechanical reliability, cyclic bending test based on the 

above two devices are performed in both compressive (device I) and tensile (device II) 

bending at a radius of 4 m m . The electric characteristics of the devices are measured 

in flat state immediately after bending. Fig. 7.6 shows the changes in normalized / 

and VT as a function of bending times. As can be seen from Fig. 7.6a, under a 

compressive strain, / decreases drastically to about 50% of its original value with the 

first 500 bending cycles, and then gradually to about 40% after 2000 bending cycles. 

Similar trends can be observed in the variation of VT with the bending cycles. On the 

other hand, under a tensile strain, both / and VT change gradually with bending times, 

as shown in Fig. 7.6b. Notably, the device performance with tensile strain shows a 
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lower reliability as compared to that with compressive strain, and w decreases to about 

Fig. 7.6 Relative changes in normalized mobility and threshold voltage as a function of bending cycles 

under (a) compressive and (b) tensile strain. 

Fig. 7.7 shows the evolution of the crystal structure with the bending cycles of the 

30 nm pentacene film on flexible substrates under either compressive strain or tensile 

strain. Obvious phase transition from thin film phase to bulk phase can be observed in 

both strain conditions with increasing the bending cycles. In particular, as shown in 

the inset of Fig. 7.7a, the mass fraction of the thin film phase decreases monotonously 

to about 20 % with the first 500 bending cycles, and then keeps almost unchanged up 

to 2000 bending cycles. On the other hand, under tensile bending condition, a 

continuous decrease in the mass fraction of the thin film phase is observed with 

increasing the bending cycles, as can be seen from the inset of Fig. 7.7b. The bulk 

15% of its original value after 2000 bending times. 
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phase has proven to show a lower mobility than the thin film phase [39], therefore, the 

degradation in the performance of flexible devices with bending cycles is attributed 

partly to the phase transition from thin film phase to bulk phase in the pentacene film. 

Fig. 7.7 Variation of X R D patterns of 30 n m pentacene on flexible substrates with bending cycles under 

(a) compressive strain and (b) tensile strain; the insets exhibit the changes of mass fraction of the thin 

film phase in the respective pentacene film. 

7.3.5 Ambient stability study 

Furthermore, as discussed previously, both compressive and tensile strains will 

induce cracks in the S/D electrodes, and the cracking density is believed to increase 

with bending cycles. As a result, the oxygen and water molecules in ambient 

atmosphere might be absorbed through the cracked S/D electrodes and diffuse into the 
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underneath pentacene film. Hu et al. have studied the effect of oxygen concentration 

to the performance of pentacene OTFTs, and they found that the charge transfer 

complex formed between oxygen and pentacene can lead to a decrease in mobility 

[40]. The polar water molecules diffused into the pentacene grain boundaries usually 

act as charge trapping centers, and thus reducing the mobility [41]. To quantify the 

effect of oxygen and water in ambient to the electrical performance of flexible 

pentacene devices, one control device are fabricated and stored in the ambient 

atmosphere for 12 h, which is much longer than the time required to test the 

mechanical reliability of device I and II, and the electrical performance of the control 

sample is given in Fig. 7.8. The obtained /u for the as-prepared control sample is about 

2 9 

1.1 cm
2

/Vs, and after stored for 12 h, the / increases to about 1.2 cm
2

/Vs. The 

increased / can be due to the further oxidation of Cu in the interface of S/D electrode 

and pentacene in the ambient atmosphere, which acting as a hole-injection layer, thus 

enhancing the performance of the device [42]. Form the above results, it is clear that 

the degradation of the device performance under strains is not caused by the 

absorption and diffusion of oxygen and water molecules through the cracks in the 

electrodes. 
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Fig. 7.8 Transfer curves of the control sample stored in ambient atmosphere for (a) 0 h and (b) 12 h. 

7.3.6 Study on the electrode structure 

Fig. 7.9 shows the microscopic images of the S/D electrodes during the compressive 

bending cycling test. From Fig. 7.9, it is clear that the cracking density increases mainly 

in the first 500 bending cycles, and then keeps almost unchanged up to 2000 bending 

cycles. The cracks in the electrodes can deteriorate the contact with the pentacene 

layer, and consequently, an increased contact resistance with cracking density can be 

expected. As a result, together with the variation of phase structure of pentacene film 

with compressive bending cycles, it is easy to understand the degradation of device 

performance. In order to quantify the contribution from the two parts, S/D electrodes 

are deposited after 1000 compressive bending cycles of the 30 nm pentacene film on 

flexible substrates, and the results show that only 30% degradation on the mobility is 
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obtained. Therefore, the cracks in the electrodes are responsible for the 200 

degradation in mobility of the device with 1000 bending cycles under compressive 

strain. 

I I 1 1 
a • 1 l i 

d e f 

Fig. 7.9 A series of microscopic images of the S/D electrodes during the cyclic bending test under 

compressive stress: (a) before bending, (b) 10, (c) 100, (d) 500, (e) 1000 and (f) 2000 cycles. 

Because the Young's moduli of Au (〜80 GPa) and Cu (〜135 GPa) are much larger 

than that of pentacene (〜15 GPa) [7, 43], the strain of the Au/M-Cu film is smaller 

than that of the underneath pentacene layer under a tensile stress. The unmatched 

Young's moduli will induce a delamination of the electrodes form the pentacene layer 

during bending cycles, thus causing a poor contact. As a result, except for the cracks 

in the S/D electrodes and the pentacene film, the delamination of electrodes from 
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pentacene layer also contributes to the degradation of device performance. 

Furthermore, the cracks in the S/D electrodes will accelerate the delamination, and the 

delamination is thought to extend with bending cycles. Our proposed mechanism is 

well proven by the microscopic images taken on the S/D electrodes with tensile 

bending cycles, as shown in Fig. 6.10. As seen, the density of cracks increases with 

bending times. In addition, the gap in the crack area also increases with bending cycles, which 

can be due to the delamination of the electrodes from pentacene layer along the crack. 

Therefore, the device is expected to show lower reliability under tensile strain than 

compressive strain. At the same time, one can differentiate the contribution of each 

part by deposition of S/D electrodes after bending cycles, and the results reveal that, 

with 1000 bending cycles in tensile strains, the phase transition causes a 50% 

degradation of the mobility, and the damage in electrodes is responsible for the other 

20%. Encapsulation of the flexible OTFTs with protection layers is proven to be an 

effective way to enhance their flexibility and reliability [29]. The relevant research is 

in progress, and the results will be reported elsewhere. 
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a • • 
d e f 

Fig. 7.10 A series of microscopic images of the S/D electrodes during the cyclic bending test under 

compressive stress: (a) before bending, (b) 10, (c) 100, (d) 500, (e) 1000 and (f) 2000 cycles. 

7.3.7 Study on the operational stability and lifetime 

The operational stability of flexible OTFTs is of great importance for their realistic 

applications. To evaluate such characteristics, of the, it is necessary to investigate the 

cyclic sweeping and bias-stress effects of our device. Fig. 7.11a shows the influence 

of cyclic sweeping on the electronic characteristics of flexible pentacene OTFT with 

Au/M-Cu S/D electrodes. As shown, with increasing the sweeping cycle to 100 times 

(due to the limit of the testing program in our equipment), the transfer curves nearly 

overlap with each other. The inset of Fig. 7.11a shows the change in normalized ̂  and 

VT as a function of cycling times. As seen, the mobility shows a slightly variation of 
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less than 5%, and the threshold exhibits a negative shift of about -0.02 V, indicating a 

good cycle sweeping stability of the flexible pentacene OTFT. Fig. 7.11b shows the 

evolution of transfer characteristics of the flexible device stressed at VDS = -1 V and 

VGS = -2 V in ambient. The devices are measured at VDS = VGS = -2 V. It can be found 

from Fig. 7.11b that the on state currents decrease gradually upon prolonging the 

stress time, and degradation up to 60% of its original value is observed after 1000 s 

stress. The inset of Fig. 7.11b plots the changes of normalized j as a function of bias 

time of the device. As shown in the inset, the mobility decreases monotonously to 

about 70% of its original value with prolonging bias time, and the VT increase 

negatively from 〜0.4 V to 〜0.47 V. The degradation in device performance can be 

due to the fact that the bias stress will lead to increased defect states and 

time-dependent charge trapping in the channel of OTFTs, which has been well 

documented by other groups [44-47]. 
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v G S (v) 

Fig. 7.11 (a) Cyclic sweeping stability and (b) bias stress stability of flexible pentacene devices; the 

insets give the variations of normalized mobility and threshold voltage. 

The ambient lifetime of the device is also critical in the practical applications. Due 

to the strain induced degradation in flexible pentacene TFT performance as having 

been discussed in previous section, it is inappropriate to study the lifetime of flexible 

device. Instead, the lifetime study is conducted based on the device fabricated on 

n++-Si substrate by the procedures as that of flexible device, and the results is given in 

Fig. 7.12. As seen, the mobility decreases monotonously with storing time and 

2 • 
degrades from about 2.1 cm

2

/Vs to about 0.5 cm2/Vs after 50 days. The decrease in 

device performance can be combination effects of O2, H2O [40, 41] and the oxidation 

of Cu in the interface region of Cu/pentacene, which resulting in an increase in 

electrode resistivity[48]. Interestingly, the threshold voltage shift drastically from -1.5 

V to about -1.1 V in the first week, and then keeps almost unchanged with time, 

0 0.0 
(V) GS V 

- 2 . 0 
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indicating a good VT stability of our device. 

Fig. 7.12 Variation of mobility and threshold voltage as a function of storing time in ambient. 

7.4 Conclusion 

Low-temperature, solution-processed gate dielectric system (ODPA/ATO) has been 

successfully integrated onto flexible PI substrates. The high quality ODPA/ATO 

system shows a low leakage current density of 10
-6

 A/cm
2

 and a high capacitance 

• 2 . 
density of 180 nF/cm . Pentacene film grown on the flexible substrates possesses a 

highly ordered "thin film phase", which is benefit to the charge carrier transport. By 

using Au/M-Cu as S/D electrodes, the resultant flexible pentacene OTFT exhibits an 

• • . . . . A 2 

outstanding electrical characteristics, with on/off ratio of 2 x 10 , / of 1.5 cm /Vs, VT 

of -0.4 V and ss of 161 mV/dec, under an operation voltage of only -2 V. The 166 



mechanical flexibility and reliability of the devices are also studied and discussed in 

detail. The degradation of the device performance with strains can be assigned to the 

damage induced in the electrodes resulting in increased contact resistance and the 

phase transition from thin film phase to bulk phase of the pentacene films. Our 

present study suggests a simple and effective way to fabricate low-voltage, 

high-performance flexible OTFTs at low-cost, which is of technical importance in the 

large scale application of the organic electronics. Future work will focus on the 

improvement of the device mechanical flexibility and the reliability. 
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Chapter 8 Summary and Perspectives 

8.1 Summary 

The low-voltage operation of OTFTs is a prerequisite for OTFTs in future large 

scale low-end applications. Therefore, the exploration of new dielectric materials that 

can be used effectively as gate dielectrics and allow low-voltage operation of OTFTs 

is of great scientific and technological importance. This thesis focuses on fabrication 

and characterization of low-voltage OTFTs based on a newly developed dielectric 

material, and improved the device performance through interface engineering. A brief 

summary is given below. 

In Chapter 4, a low-temperature, solution-processed high-k A T O system was 

introduced. The A T O exhibited excellent dielectric properties, including low leakage, 

smooth surface and high dielectric constant (k). It was found that the capacitance of 

A T O increased with decreasing the frequency, which could be explained by an electric 

double layer model. Upon using the A T O as gate dielectric, CuPc based OTFTs 

showed outstanding electrical performance under an operation voltage of only -1.5 V. 

The above results suggested that the low-temperature, solution-processed high-k A T O 
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could be used as an effective dielectric to realize low-voltage circuits. 

In Chapter 5, we showed that, when compared with traditional low-k SiO2, the 

CuPc OTFTs on high-众 ATO exhibited even better electrical characteristics, which 

was contradictory to the previously reported results by other groups due to the 

commonly observed broadening of density of states (DOS) at the interface of high-k 

dielectric and organic semiconductor [1]. Characterization on the CuPc film 

morphologies and crystal structures revealed that both ATO and SiO2 gave similar 

results. However, the initial growth of CuPc exhibited obvious difference. When 

deposited on ATO, the CuPc showed a Volmer-Veber growth mode with an 

interconnected rod-like structure. On the other hand, a Stranski-Krastanov mode with 

small isolated islands structure was observed when deposited on SiO2. W e proposed 

that the above distinctions resulted from the different surface energies of dielectrics. 

In addition, GIXD study revealed that, in the initial growth stage, the CuPc tended to 

form a crystallized structure on ATO, whereas an amorphous CuPc appears on SiO2. 

Furthermore, by using the K P F M technology, we were able to observe a preferable 

metal/organic contact on the ATO, which benefits the charge carrier injection at the 

contact. At the same time, the application of ATO as an effective gate dielectric could 

also be extended to other organic semiconductors, including both p-type and n-type 
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ones. Our findings suggested that the high-k A T O is applicable in fabrication of 

high-performance, low-voltage OTFTs. 

Following the detailed characterization of A T O dielectric layer and the resultant 

device performance, Chapter 6 dedicated to improving the OTFTs properties through 

interface engineering. For the dielectric/organic semiconductor interface, it was 

shown that, by modifying the surface of A T O using O D P A S A M , the leakage of 

dielectric was obviously suppressed by more than one order of magnitude without 

sacrificing the high gate capacitance, and a highly hydrophobic ODPA/ATO surface 

was obtained. At the same time, for the S/D electrode/organic semiconductor interface, 

we showed that by using low cost M-Cu as S/D electrodes as a substitute of high cost 

Au, a significantly enhanced device performance of pentacne OTFT was observed. 

The above results could be ascribed to more efficient hole injection, smaller density of 

interface defects, resulting in the reduced contact resistance between the M-Cu 

electrode and pentacene thin film. On the other hand, upon encapsulation of the M-Cu 

electrodes with a capping layer of Au in the aim of suppressing unfavorable surface 

oxidation of copper, the electrical characteristics of the pentacene OTFT were further 

improved, which was thought to result from the increased conductivity of the 

electrode itself. Our investigation suggested a facile and effective way to realize 
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high-performance low-voltage OTFTs, and the use of low-cost metal electrodes 

instead of Au could also greatly promote the realistic applications of OTFTs in the 

near future. 

Basing on the encouraging results achieved in previous chapters, we finally took a 

step forward to fabricate low-voltage flexible OTFTs, as demonstrated in Chapter 7. 

The O D P A / A T O showed good compatibility with Au coated flexible PI substrate. It 

was shown that the pentacene film deposited on the flexible substrate possessed a 

charge carrier transport favored thin film phase, as evidenced from the GIXD results. 

By employing Au/M-Cu as S/D electrodes, the obtained flexible pentacene OTFT 

showed excellent electrical characteristics under an operation voltage of -2 V. In 

addition, the mechanical flexibility was studied, and the electrical performance 

showed decreases under both compressive and tensile strains. The degradation of the 

device performance was ascribed to the phase transition from thin film phase to bulk 

phase of the pentacene films, as revealed by X R D characterization, and the damage 

induced in the electrodes resulting in the increased contact resistance. Our present 

studies suggested a promissing way to fabricate low-voltage flexible OTFTs at low 

cost, which is of technical importance in the large scale application of the organic 

electronics. 
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8.2 Future work 

Following up the work presented in this thesis and the exciting results reported by 

other research groups, there are a few feasible research directions that can be done in 

the near future work. 

In Chapters 6 and 7, we have achieved high-performance, low-voltage pentacene 

OTFTs. However, for practical applications, the reliability of OTFTs should be 

sufficient. On the one hand, organic semiconductors usually suffer from 

environmental instabilities when exposed to atmospheric species and light, which will 

result in degradation in device performance. On the other hand, after a prolonged 

working period, a shift of the threshold voltage is commonly observed, which can be 

attributed to the trapping of charge carriers in localized states in the gate dielectric, in 

the organic semiconductor, or at the dielectric/semiconductor interface [2]. Therefore, 

systematic studies should be conducted to probe the reliability of our fabricated 

devices, including bias stability and ambient lifetime, and then find ways to improve 

the reliability. 

At the same time, we have shown that the M-Cu can effectively enhance the device 
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performance, which can be ascribed to the existence of a thin layer Cu2O at the 

interface of Cu and pentacene. Hence, there should be a critical thickness of the Cu2O 

layer that can make the device work efficiently. Such issue should also be clarified in 

the future work. 

In Chapter 7, we showed that the electrical performance of our flexible pentacene 

OTFTs suffered from degradation under stress, which is due to the phase transition 

occurred in pentacene film and damage in S/D electrodes. Encapsulation of the 

flexible OTFTs with protection layers is proven to be an effective way to enhance 

their flexibility and reliability [3]. Accordingly, future work should focus on 

improving the flexible device mechanical stability through encapsulation. 

In this thesis, the work is mainly focused on p-channel OTFTs. In order to realize 

complementary logic circuits, both p- and n-channel OTFTs are required. In particular, 

ambipolar OTFTs can simplify the design of such logic circuits [4]. Therefore, it is 

important to fabricate high-performance, low-voltage n-channel OTFTs as a first step. 

Secondly, high performance ambipolar OTFTs are expected to be demonstrated by 

combining the obtained n- and p-channel devices, as well as through optimizing the 

fabrication procedure and the device structure. 
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On the other hand, most reported n-type organic semiconductors are usually found 

to exhibit either low mobility and/or poor ambient stability. Fortunately, 

solution-processed metal oxide semiconductors, such as Al-doped zinc tin oxide 

(AZTO) [5], gallium tin zinc oxide (GSZO) [6] and indium oxide [7] exhibit mostly 

n-type semiconducting behavior with the advantages of high electron mobility and 

excellent environmental stability. Therefore, by integrating p-type organic 

semiconductor with n-type metal oxide semiconductors, fabrication of 

high-performance ambipolar transistors will show a bright future. 
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