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Abstract 

Methamphetamine (METH) is a common drug of abuse. METH induces the 

release of dopamine (DA) from presynaptic terminals and causes the decrease in the 

number of DA transporters (DAT) in human brains. Animal studies showed that 

chronic use o f M E T H results in long-lasting depletion o f D A , serotonin (5-HT) and 

their uptake sites as well as decreased in tyrosine hydroxylase (TH) activity in the 

striatum. Although the mechanism of METH-induced neurotoxicity is far from clear, 

so far, direct evidence showed that toxicity occurred mostly at the DA terminals 

where degenerating fibres and astrogliosis were observed. However, the reason for 

this regional selectivity is unknown. At present, it is unclear whether astrogliosis is a 

consequence of the degenerating dopaminergic terminals or that astrocytes actually 

act as a mediator of this toxicity. The present study therefore aims to clarify whether 

METH itselfhas a direct action on astrocytes, thus establishing a role for astrocytes in 
r 

METH-induced neurotoxicity. 

There are several established hypotheses that explain METH-induced toxicity; 

they include oxidative stress, metabolic stress and hyperthermia. Since astrocytes 

have a high content of antioxidants to protect neurons from oxidative stress, and are 

the main sites of energy metabolism in the CNS, their role in mediating METH-

induced toxicity therefore cannot be overlooked. 

To achieve this goal, primary astrocyte cultures from the striatum, 

mesencephalon (dopaminergic area) and cortex (non-dopaminergic area) were used. 

Cells were treated with 4 mM METH and were examined at different time points 

during 0 - 48 h treatment. The rationale for examining astrocytes from three different 

bram regions is to clarify whether astrocytes may be an important element governing 

the selective vulnerability of the striatum to METH treatment. 
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After METH treatment, phase contrast photomicrographs were taken to 

examine if astrogliosis occurred. In order to determine whether METH caused 

oxidative stress in astrocytes, reactive oxygen species (ROS) as well as nitric oxide 

(NO) production were examined. This was achieved using the dye '2,7'-

dichlorofluorescin diacetate, and Griess reaction respectively. In order to ascertain the 

level of metabolic stress resulting from METH treatment, mitochondrial membrane 

potential (A^m) and ATP levels were measured using the dual emission dye JC-1 and 

firefly luciferase assay respectively. Cyclooxygenase-2 (COX-2) and heme-

oxygenase-1 (H0-1) protein expression was examined in order to determine the 

hyperthermic response of astrocytes after METH treatment. Finally, CATH.a-

astrocyte cocultures were established to clarify whether astrocytic-neuronal 

interaction may play a role in the enhancement ofneuronal injury. 

The present study showed that METH could directly cause astrogliosis in the 

absence of neurons: There was an increase in ROS level in astrocytes after METH 

treatment. However, there was a differential response in ROS production with striatal 

astrocytes showing the earliest and greatest response followed by mesencephalic 

astrocytes and cortical astrocytes. Moreover, the rate of change in ROS production in 

the control as well as METH-treated striatal astrocytes was significantly greater when 

compared to that of mesencephalic and cortical astrocytes. This suggested that striatal 

astrocytes are more vulnerable to METH-induced oxidative stress. 

When ATP content was examined, astrocytes from all 3 regions showed a 

similar pattern of an initial increase followed by a decrease in ATP content. However, 

striatal astrocytes resulted in the maximum depletion (39% of control value) in ATP 

content at 48 h when compared to the astrocytes from the other two regions. When 

ATm was examined, both striatal and mesencephalic astrocytes showed a decrease in 
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A^m as early as 8 h post treatment while this decrease was only observed in cortical 

astrocytes after 12 h METH treatment. 

Significant increase in NO level in astrocytes was observed as early as 1 h 

post-treatment. When aminoguanidine (AG) was added to METH-treated astrocytes, 

there were significant reductions (40 - 70 %) in NO levels when compared with their 

respective METH-treated groups. This suggested that NO production in astrocytes 

may also play a role in METH-induced toxicity. When cells were treated with 

indomethacin (INDO) alone, there was a time-dependent increase in NO levels from 1 

to 48 h treatment. When MDO was added with METH, the increase in NO levels was 

further enhanced. This suggested that COX-2 mediated prostaglandin (PGs) release 

may have an inhibitory role in NO production. 

When COX-2 protein expression was examined, striatal astrocytes showed a 

slight increase in COX-2 levels after treatment with AG + METH suggesting that 

r 

METH-induced NO production may inhibit COX-2 expression. On the other hand, 

mesencephalic astrocytes showed a 4.2 fold increase in COX-2 expression after 

treated with M D O + METH suggesting that in this case, NO may participate in a 

positive feedback mechanism to upregulate COX-2 expression. From this study, it 

seems that there are regional selective responses in COX-2 expression after METH 

treatment. 

When HO-1 protein levels were examined, it was shown that an induction of 

HO-1 expression was cortical > mesencephalic > striatal astrocytes. Striatal and 

mesencephalic astrocytes showed that AG can partially attenuate the increase in HO-1 

levels after METH treatment, while no effect was shown for cortical astrocytes. This 

suggested that NO may mediate the effects of the heme-oxygenase system. When 

cells were treated with INDO and METH, mesencephalic astrocytes showed a 
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suppression in HO-1 expression to near control values while striatal and cortical 

astrocytes only showed a slight attenuation at 24 h post treatment. This suggested that 

PGs may have a role in stimulating HO-1 expression. 

After 4 h METH treatment, CATH.a cells showed a 3 fold increase in the 

percentage of dead CATH.a cells when compared to the control group. However, 

when CATH.a cells were co-cultured with astrocytes, the percentage of dead CATH.a 

cells was further enhanced 0.5 - 1.4 fold when compared with CATH.a cells alone. 

When CATH.a cells were cocultured with striatal astrocytes, there was a 130 and 86 

% increase in dead CATH.a cells at 4 and 48 h METH treatment respectively. 

However, when CATH.a cells were cocultured with mesencephalic astrocytes, METH 

treatment also resulted in a further increase (though not significant) in the percentage 

of dead CATH.a cells. There was no loss of cell viability in astrocytes, as shown by 

the lack of significant increases in LDH levels, suggesting that the loss of neuronal 

cell viability is due to astrocyte-neuronal interaction. 

The present study showed that there were regional differences in astrocytic 

response to oxidative and metabolic stress. Striatal astrocytes showed a significant 

difference in the rate of change in ROS production as well as an early increase in ROS 

levels after METH treatment. There was also a rapid decrease in ATP content and an 

early decrease in ATm in striatal astrocytes when compared to mesencephalic and 

then cortical astrocytes. If striatal astrocytes are more prone to oxidative and 

metabolic stress, this will make the neuronal environment in the striatum more 

susceptible to oxidative damage. The present findings showing an increase in the 

percentage of dead CATH.a cells when cocultured with striatal astrocytes further 

confirmed this hypothesis. 
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甲基苯丙胺對培養星形膠寶細胞的?_毒性作用 

甲基苯丙胺(~正顶)可引起5_刘犬體内多EM, 5卞§色胺及其運載體的耗竭和酪氨酸 

控化酶活性的降低，其主要部位作用爲多巴胺$«1末梢，可致$«^«推變性及星形 

細胞膠貿化。然而，這種區域選擇性的原因尚不明暸，而且，星开^^胞膠質化究竟 

是多2^$«§未梢變性§ I起的反應性增生，或是星形膠質細胞直接介導了河£7^的 

毒性作用也不甚淸楚，本硏究的目的旨在了解METH對星形膠質細胞是否有直接作 

用，以聞明星形膠質細胞在METH «5毒性中所起的作用。 

方法：取紋狀體，中腦和大腦皮質進行星形膠貿細胞的原代培養，Mffl4mM 
河£711處理0 - 48小時。應用DCFH-DA¾Gness反應液分别¾j定活性氧化物和一氧化氮 

的產生以確定METH對星形膠質細胞的氧化損傷；應用染液�01和螢火虫奨光素分 

别剩定線拉體膜電位和人丁？的量以確定^正™? I起的代謝損害的程度；翔定環氧 

合酶([0乂-
2
#0«工，氧合酶(80-1)蛋白的表達了解〜1£711^理後星形膠貿細胞的高 

溫反應；通》$«?元-星形膠質細胞的聯合培養了解兩種細胞的柜互作用及星形膠 

質細胞對$«§元損傷的影饗。 

桔果顯示：1，^£7^無；1^5元參與下可直接引起星开绍田胞膠貿化；2, METH可增 

加星形膠質細胞内活性氧化物的產生，其中以$文狀體的星形腰質細胞内反應最早， 

增加最明顯；
3
, METH作用早期可增加星形膠質細胞内ATP水平，後期則下降，其 

中！文狀體的星形膠質細胞内的減少最爲明顯。METH可降低星形膠S細胞線粒體膜 

’ 電位，在权狀體和中腦的星形躍質細胞，其下降出現時間早于大腦皮質。4, 
^5^可明顯增加星形膠，田胞的—氧化氮產生，氨基胍可顯著抑制其增加，而消 

炎痛可强化其產生。5，氨基胍及METH聯合使用可•g度增加|文狀體星形膠貿細胞 

COX-2^7X¥；在中腦，消炎痛與\丨£111的聯合應用導致�0乂-
2
的表^3顯增加。 

6
，METH可增加星形膠貿細胞HO-l的耒達，氨基胍可部分抑制其在中腦和紋狀體星 

形膠賛細胞中的表達；而_^炎痛可完全抑制中腦星形膠賀細胞中恥-�的耒達。7, 
METH^:i? I起培養；》^元細胞死亡，其死亡程度在聯合培養中明顯高於$«<5元單 

獨培養。 

結論：本硏究表明星形膠質細胞對氧化性及代謝性搰傷刺激具有區域性差異，|刘犬 

體星形膠«細胞易於§«並植而造成局部_§元微環境改變及_5元的氧化性損害。 
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CHAPTER ONE: INTRODUCTION 

1.1 Methamphetamine 

Methamphetamine (METH), is a common drug of abuse. The oral form of 

METH is known as "speed" or "crystal", and it is usually swallowed or sniffed. The 

intravenous form of METH is known as "crank", the inhaled form is known as "ice" 

or "glass", and this is the concentrated form of METH that resembles tiny chunks of 

translucent glass (Sekine and Nakahara, 1987). 

METH is the N-methyl homologue of amphetamine. It is a white, odourless, 

bitter, crystalline powder that is soluble in water and alcohol. The colour varies, it 

may be crystalline-white to brown depending on the process used during its 

manufacturing (MacKenzie and Heischober, 1997). The N-methyl group of METH 

allows better penetration of the blood-brain barrier. Moreover, when compared with 
r 

amphetamine, METH has a significantly higher stimulant activity in the central 

nervous system (CNS) than in the peripheral nervous system and the cardiovascular 

system (MacKenzie and Heischober, 1997). 

1.1.1 Historical Background and Epidemiology 

The roots of the current epidemic of METH abuse date back centuries. Use of 

ephedrine was documented in China more than 5,000 years ago, and cathionone was 

used in East Africa in the 14th century. Both METH and cathionone belong to a class 

of chemicals called alkaloids, which are among nature's most potent and useful 

medicines. These drugs were obtained from the plants Ephedra mahaung and Catha 

edulis, respectively. Both were recognized for their stimulant, appetite suppressant, 

and bronchodilation properties. 
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EdeIeau first synthesized amphetamine proper in 1887. In 1932, the synthetic 

ephedrine analog, amphetamine, was introduced and sold over-the-counter in the form 

of Benzedrine inhalers. Benzedrine is a type of topical decongestant and the main 

ingredient, amphetamine, contained in a cotton plug of inhaler, was often ingested 

directly or the drug was extracted from inhalers and injected. Benzedrine inhalers 

were abused by a wide segment of the population (e.g., athletes, professionals, and 

students) during the 1930s to overcome fatigue and to increase alertness (Ansis and 

Smith, 1979). During World War II, METH was used by soldiers as an aid to fight 

fatigue and to enhance performance. Millions of doses of amphetamine and METH in 

the guise of "awakening drugs" were supplied to service personnel during the war. 

After the war, surplus supplies of these drugs were dumped onto the civilian markets, 

most notably in Japan resulting in widespread abuse in Japan after World War H 

(Cho, 1990; Winger et al., 1992). Following the war, Japanese pharmaceutical 
r 

companies continued to promote the drug, leading to an epidemic of amphetamine 

abuse in which 5% of all Japanese aged 16 to 25 became physically dependent 

(Snyder, 1986). The epidemic subsided following the development and passage of an 

amendment to the Stimulants Control Law. This amendment led to greater 

enforcement of the law. However, after the latent period from 1957 to 1969, METH 

abuse again spread rapidly throughout the nation in an epidemic. To cope with this 

situation, amendments were made to the Stimulants Control Law in 1973 to introduce 

penal provisions that were equivalent to those of the Narcotics Control Law. 

Unfortunately, the effectiveness of these amendments in improving the situation was 

limited (Fukui et al., 1994). 

Over the last 50 years, epidemics of METH abuse have occurred in many 

other parts of the world, including Sweden (Inghe, 1969), the United Kingdom (Kiloh 
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and Brandon, 1962) and the United States (Kalant, 1966; Kramer et al., 1967; Miller 

and Hughes, 1994). 

In the United States, amphetamine was available in over-the-counter form 

until 1945. Its popularity has continued among students and truck drivers who want to 

stay alert, athletes who seek increased endurance, and dieters who actually use it for 

reducing weight, often in conjunction with sedatives or ethanol (Brecher, 1972; 

KaIant, 1973; Scarpino et al., 1990; Catlin and Hatton, 1991). Amphetamine began to 

be used intravenously by American service men in Korea and Japan during the early 

1950s. By the 1960s, intravenous abuse of amphetamine and METH were a well-

publicized problem in the United States. In 1965, the Federal Drug Abuse Control 

Amendments further restricted the manufacture and distribution of amphetamine, and 

supply was shifted to the illicit clandestine "speed labs". Although seemingly 

overshadowed by the cocaine epidemic of the 1980s, abuse of amphetamine and 
r 

METH has remained a major drug problem in the United States. 

Recently, increased evidence showed that METH abuse is becoming a serious 

problem in Hong Kong. According to the Central Registry of Drug Abuse 40^^ report 

in Hong Kong in 1997, METH abuse at present constitutes only 5.4 % of the 

approximately 18,000 reported drug abuse cases in 1997. However, this figure is the 

reflection of an approximately 30 fold increase in the number of reported cases of 

METH abuse in the last decade with a 10 fold increase in newly reported young 

abusers (under 21 years old) from 1995 - 1997 alone (Government Information 

Centre, 1997). In fact, most of the METH is imported from Mainland China 

(Narcotics Bureau of the Hong Kong Police, 1997) and thus there is a continuous 

supply of METH and at a relatively low cost. Ephedrine, which is the raw material for 

METH synthesis, is mainly found in China where many illicit laboratories are 
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established. All these factors contribute to the increasing number of METH abusers 

found in Hong Kong. 

1.1.2 The Physical Effects of METH 

METH's biological half-life is about 12 hours and thus its powerful psychic 

effects can usually last for 1-2 days (Cook et al., 1991) but in some instances, it could 

last for 12 days (Kramer et al., 1967). The transit time from lung to brain is shorter 

than from antecubital vein to brain, therefore the rush is more rapid and powerful 

following inhalation of METH when compared to injection. Every drug used for 

recreation may be seen as having "desirable" and "undesirable" effects. For METH, 

these "desirable" effects include the abuser experiencing feelings of euphoria, 

heightened alertness and greater energy (Caldwell, 1980). At doses resulting in the 

desired CNS effects, METH causes very few of the undesirable peripheral signs and 
r 

symptoms (Derlet and Heischober, 1990). 

Since METH initially produces physical pleasure, users will therefore often 

continue to take METH to avoid the "down" mood they experience when the drug 

wears off. However, after taking METH, a "run" will develop which means the 

subject stays continuously awake for several hours, since the half-life of METH is 

about 12 hours (Cook et al., 1991). During this "run", "undesirable" effects will 

result including increase in heart rate, in breathing and blood pressure rates and heart 

palpitations may also be experienced. Pupils will become dilated, and reflexes will be 

faster. The mouth will become dry and swallowing will be difficult. The subject will 

also experience difficulty in urination (MacKenzie and Heischober, 1997). Marked 

weight loss will result if "runs" occurs successively. Mental status will also be altered, 
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including rapid mood changes, being suspicious, being preoccupied with one's 

thoughts and having a sense of profundity (Brust, 1993). 

Acute overdose of METH causes excitement, confusion, headache, chest pain, 

hypertension, tachycardia, flushing, profuse sweating, and mydriasis, progressing to 

delirium, hallucinations, hyperpnea, cardiac arrhythmia, hyperpyrexia, seizures, 

shock, coma, and death (Zalis and Parmley, 1963; Espelin and Done, 1968; 

Ellinwood and Cohen, 1971; Edison, 1971; Kojima et al., 1984). Long-term METH 

abuse results in many damaging effects, including addiction. Addiction is a chronic, 

relapsing disease, characterized by compulsive drug-seeking and drug-use which is 

accompanied by functional and molecular changes in the brain. Following a "run", the 

subject, because of tenseness, paranoia, or exhaustion, stops taking the drug and falls 

asleep for usually 12 to 18 hours, this is known as a "crash". Longer "runs" are 

followed by more prolonged sleep, sometimes lasting several days. Psychotic 
r 

symptoms are usually absent on awakening, but there is hunger, lethargy, and 

depression. Injections are then resumed, and a new "run" begins (Bell, 1965). 

Psychosis often develops after prolonged use and this type of psychosis is commonly 

described as closely simulating paranoid schizophrenia. Within a setting of clear 

consciousness, the individual experiences delusions of persecutions plus visual, tactile 

and auditory hallucinations and may exhibit repetitious compulsive behavior (Zakhary 

et al., 1967; Cox et al., 1970). Chronic METH abusers exhibit symptoms that can 

include violent behavior, anxiety, confusion and insomnia. They can also display a 

number of psychotic features, including paranoia, auditory hallucinations, mood 

disturbances, and delusions. The paranoia can result in homicidal as well as suicidal 

thoughts. Moreover, chronic METH abusers display a variety of physiologic disorders 

such as malnutrition, skin formications, ulcers and diseases resulting from vitamin 
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deficiency. Intravenous users are at risk for serious, life-threatening diseases such as 

AE)S, lung and cardiovascular diseases (Konuma, 1994). 

METH produces physiologic dependence with evidence of withdrawal 

symptoms, drug dependence will often develop a few months after first exposure to 

METH (Kramer et al., 1967). Withdrawal from prolonged use of METH results in 

depression, fatigue, increased appetite and sleep, including time spent in the REM 

phase (Oswald and Thacore, 1963). Withdrawal symptoms are not life threatening, 

but depression, sometimes suicidal, can last for weeks, requiring hospitalization and 

treatment (Kramer et al., 1967; Angrist and Gershon, 1972). The psychosis begins to 

remit when drug use stops. Events that occurred during the psychotic state are usually 

remembered clearly thereafter (Cox et al., 1970). 

1.1.3 Neurochemical Alternation of METH 
r 

A substantial number of animal studies showed that METH causes damage to 

the dopaminergic and serotonergic systems, causing long-lasting depletion of 

dopamine (DA) and serotonin (5-HT) and their uptake sites as well as decrease in 

tyrosine hydroxylase (TH) activity in the striatum (Fibiger and McGeer, 1971; Kogan 

et al., 1976; Seiden et al., 1976; Gibb and Kogan, 1979; Hotchkiss and Gibb, l980a; 

Steranka and Sanders-Bush, 1980; Wagner et al., 1980; Bakhit and Gibb, 1981; 

Preston et al., 1985; Kovachich et al., 1989; Brunswick et al., 1992). METH causes an 

increased release of DA within the striatum (Baldwin et al., 1993; Marshall et al., 

1993; 0'Dell et al., 1993; Yamada et al., 1994) resulting from the disruption of the 

electrochemical gradient which provides energy for DA accumulation in synaptic 

vesicles (Sulzer and Rayport, 1990; Sulzer et al., 1992) and thus causes DA release 

into the synaptic cleft (Marshall et al., 1993). 
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Repeated low doses or a single large dose of METH to rat also results in the 

large decreases in 5-HT levels in several areas of the brain (Hotchkiss and Gibb, 

1980a; Hotchkiss and Gibb, 1980b; Wagner et al., 1980; Bakhit and Gibb, 1981; 

Commins and Seiden, 1986; Seiden et al., 1988) and in a subpopulation of cell bodies 

in the somatosensory cortex (Commins and Seiden, 1986). Based on measurements of 

residual levels of 5-HT in many brain areas following METH administration, it 

appears that the most profound degeneration of serotonergic terminals occurs in the 

frontal cortex, hippocampus and amygdala (Seiden et al., 1988) 

Other than the effects of DA and 5-HT release, repeated administration of high 

doses of METH in rats reduces neuronal concentrations of DA and 5-HT metabolites 

as well as the activities of their biosynthetic enzymes, TH (Fibiger and McGeer, 1971; 

Buening and Gibb, 1974; Kogan et al., 1976; Bakhit and Gibb, 1981) and tryptophan 

hydroxylase (Hotchkiss and Gibb, 1980b; Bakhit and Gibb, 1981; Peat et al., 1985; 

Johnson et al., 1988, 1991) respectively. 

Although DA terminals in the striatum are sensitive to the toxic effects of 

METH, DA terminals in other brain areas including the nucleus accumbens are 

minimally affected by METH (Morgan and Gibb, 1980; Wagner et al., 1980; Seiden 

et al., 1988). Although METH-induced neurotoxicity within the nucleus accumbens 

has been reported to occur, a larger dose of METH is usually required to elicit these 

changes (Wagner et al., 1980; Seiden et al., 1988). Anatomical studies indicated that 

loss of the presynaptic DA and 5-HT axonal markers observed in METH treatment is 

related to damage of distal DA and 5-HT axon projections, and therefore in turn 

related to damage in the dopaminergic and serotonergic terminals (Ellison et al., 1978; 

Lorez, 1981; Nwanze and Jonsson, 1981; Ricaurte et al., 1982, 1984a，b; Fukui et al., 

1989;Axt and Molliver, 1991). 
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A recent study on human postmortem brains of both drug-free neurologicaIly 

normal controls and chronic METH users showed that chronic METH exposure does 

produce a decrease in DA, TH and dopamine transporters (DAT) (Wilson et al., 

1996). Another recent study by Villemagne et al., (1998) on baboons showed that the 

doses of METH used in the study which are the equivalent human recreational doses 

(26 to 52 mg for an individual weighing 70kg)，caused a decrease in striatal DAT 

density with larger decreases occurring after higher doses of METH. They also 

reported that reductions in striatal DAT were associated with decreases in DA and the 

DA metabolite dihydroxyphenylacetic acid (DOPAC). Therefore, these studies 

indicate that METH, at doses used by humans, produces long-term reductions in brain 

DA axonal markers in baboons. These results are consistent with those found in 

animal studies discussed earlier. 

1.2 Mechanisms'of METH Toxicity 

1.2.1 Oxidative Stress 

Free radicals are normal products of cellular aerobic metabolism (Freeman and 

Crapo, 1982; Halliwell and Gutteridge, 1985; McCord, 1985). A free radical is 

defined as any species that has one or more unpaired electrons. This definition 

includes the hydrogen atom (one unpaired electron), most transition metals and the 

oxygen molecule itself, which is a biradical. Molecular oxygen plays an essential role 

in a variety of metabolic processes invariably associated with an aerobic existence. 

Because of its oxidizing capacity, molecular oxygen acts primarily as an electron 

acceptor, which leads to the formation of a variety of oxygen-based free radicals. 

Superoxide (O2') and hydroxyl (OH) species are the predominant cellular oxygen-

based free radicals. Although hydrogen peroxide (H.Oo) itself is not a free radical, it 
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can yield a molecule of OH when one electron is being reduced. This OH is the 

strongest oxidant produced in biological systems. Together, O2' , OH and H2O2 are 

referred to as reactive oxygen species (ROS). The major source of ROS are the 

common metabolic pathways of eukaryotic cells, especially during cellular respiration 

and to a lesser extent phagocytosis (Chance et al., 1979; Cadenas, 1989). ROS may 

immediately react with cellular macromolecules and may thereby directly cause 

damage. 

Oxidative stress refers to the cytologic consequences of a mismatch between 

the production of ROS and the ability of the cell to defend against them. Oxidative 

stress can thus occur when the production of ROS increases, scavenging of ROS or 

repair of oxidatively modified macromolecules decreases, or both. This imbalance 

results in a build-up of oxidatively modified molecules that can cause cellular 

dysfunction. Every life form had to develop effective defensive systems to be able to 

deal with the toxic ROS that are constantly produced. For that reason, various 

antioxidant enzymes are present. They include superoxide dismutase, catalase and 

glutathione peroxidase, which can detoxify ROS. 

In comparison with other organs of the body, the brain may for a number of 

biochemical, physiological and anatomical reasons, be especially vulnerable to ROS-

mediated injury. The brain is an extremely active organ that consumes more than 20% 

of the total oxygen intake, although it represents only 2% of the biomass. However, it 

is probably the least protected from ROS. The brain is rich in unsaturated lipids and 

therefore is more susceptible to lipid peroxidation. ROS attack cell membranes by 

setting off free radical chain reactions in which free radicals are passed from one 

macromolecule to another. This free radical chain reaction cascade results in 

extensive damage to cell membranes and other cellular structures (Gutteridge and 
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Halliwell, 1990). The brain being a high oxygen consumption organ therefore suffers 

an increased chance of oxidative stress. In the brain, antioxidants such as superoxide 

dismutase and catalase, are at a lower concentration than that of other less aerobically 

active tissues like the heart (Marklund et al., 1982; Bondy and Lebel, 1993). This 

lower antioxidant value may imply that the brain is more susceptible to oxidative 

stress than the other organs. 

1.2.1.1 Superoxide (O2 ) and Superoxide Dismutase (SOD) 

O2" is mainly produced in biological systems through the one-electron 

reduction of oxygen. Mitochondria consume about 90% of the body's oxygen and are 

the richest source of oxygen, in which, about 1-2% of oxygen metabolized by 

mitochondria is converted to O2" at several sites in the mitochondrial respiratory chain 

(Chance et al., 1979). There are different sites at the respiratory chain in which 
r 

oxygen may be partially reduced to 63' . For example, in the ubiquinol-cytochrome c 

reductase of complex HI (Boveris and Chance, 1973; Boveris and Cadenas, 1975; 

Chance et al., 1979) and, secondarily, in the NADH dehydrogenase of complex I 

(Turrens and Boveris, 1980). Oo" that is generated can readily pass through 

membranes via an anion channel (Fridovich, 1986) and can oxidatively damage 

cellular components and can give rise to highly reactive products, such as OH and 

peroxynitrite anion ( 0 N 0 0 ) (see sections 1.2.1.2 and 1.2.1.4). 

Mitochondria normally contain high levels of antioxidants like SOD to help 

remove O2' (Jesberger and Richardson, 1991). To remove O2" , SOD metabolizes O2" 

and forms H2O2 and molecular oxygen (McCord and Fridovich, 1969). 

SOD 
2 0." + 2H+ > H . 0 . + 0 . 

— — — 一 
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There are three distinct forms of SOD in eukaryotic cells responsible for the 

conversion of O2" to H2O2. These are cytosolic copper/zinc (Cu/Zn) SOD, 

mitochondrial manganese (Mn) SOD and extracellular SOD, each encoded and 

regulated independently (Freeman and Crapo, 1982; Fridovich, 1995). 

Evidence for a role of O2' in METH-induced toxicity was provided by a study 

in which the inhibition of SOD activity by diethyldithiocarbamate resulted in an 

increased neurotoxicity (DeVito and Wagner, 1989a). Recent studies also shown that 

over-expression of (Cu/Zn) SOD in mice can attenuate METH-induced toxicity. 

These transgenic mice (SOD-Tg) expressing human (Cu/Zn) SOD gene was shown to 

attenuate the loss of dopamine terminals and the depletion of striatal dopamine and 

DOPAC caused by METH in a gene dosage-dependent fashion (Cadet et al., 1994a, 

1995; Hirata et al., 1996). It was also shown that increased SOD activity in the SOD-

Tg mice can also protect against METH-induced neurotoxicity in striatal 

serontonergic terminals (Hirata et al., 1995). These studies suggested that O2" may 

play a critical role in METH-induced oxidative stress in the striatum in mice. 

1.2.1.2 Hydrogen Peroxide (H2O2), Catalase and Glutathione (GSH) 

Apart from the dismutation of O2' by SOD to form H2O2 (Freeman and Crapo, 

1982), oxidative deamination of dopamine by monoamine oxidase B (MAO-B) or the 

auto-oxidation of dopamine can also form H2O2 (Halliwell, 1992; Chiueh et al., 

1993). 

MAO-B 
Dopamine + H2O + O2 > 3,4-dihydroxyphenylacetaldehyde + NH3 + H2O2 
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To a lesser extent, oxidation of NADH at complex I or FADH2 at complex H can also 

result in mitochondrial H2O2 generation. H2O2, an oxidizing agent, is also a precursor 

for the highly oxidizing and tissue-damaging free radical, hydroxyl (OH ). 

Most H2O2 in the brain is removed by the oxidizing of reduced glutathione 

(GSH) via the enzyme glutathione peroxidase (GSH-Px) (Sinet et al., 1980; Meister 

and Anderson, 1983; Beckman et al., 1990). GSH is the primary low-molecular-

weight thiol in the cytoplasm and is a major reservoir for cysteine. GSH in 

conjunction with the reductant NADPH can reduce lipid peroxides, free radicals, and 

H2O2. GSH is converted to glutathione disulfide (GSSG) by GSH-Px, which is in tum 

reconverted back to GSH by glutathione reductase (GSH-Red) in order to maintain a 

constant amount of cellular GSH. 

Catalase, which is found at very low levels in the brain, also removes H2O2. 

Since GSH-Px is more abundant than catalase in the brain, catalase probably plays a 

less important role tHan GSH-Px in the scavenging of H2O2 in the CNS (Marklund et 

al., 1982). 

Recently, H2O2 was also proposed to be one of the mediators of METH-

induced toxicity. PC12 rat pheochromocytoma cells over-expressing GSH-Px were 

shown to diminish the rise in ROS levels and lipid peroxidation resulting from METH 

treatment (Hom et al., 1997). This evidence further suggests that apart from 02", 

H2O2 formation also plays an important role in METH-induced neurotoxicity. 

1.2.1.3 Hydroxyl Radicals (OH ) 

H2O2 reacts with ferrous ions (Fe"^) to form OH by the Fenton reaction. 

Fe'-+ + H2O2 > Fe3+ + OH + OH-
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OH reacts at great speed with almost every molecule found in living cells. 

OH can cause DNA strand breakage and chemical alterations of the deoxyribose, 

purine and pyrimidine bases (Floyd and Carney, 1992). It is also capable of initiating 

the process of lipid peroxidation by abstracting a hydrogen atom from a 

polyunsaturated fatty acid (PUFA) side chain (lipid-H) in membrane lipids leading to 

the formation of peroxyl radicals. Lipid peroxides within a membrane can also 

severely disrupt the fluidity of the membrane and allow ions such as Ca:+ to leak 

across the membrane and result in Ca"^-dependent cytotoxicity (Borg, 1993). The 

presence of high amounts of OH is potentially dangerous to the CNS since the brain 

has a high content of PUFA. 

Previous reports indicated the possibility of measuring free radical generation 

using salicylate (Grootveld and Halliwell, 1986). Salicylate acts as an exogenous OH 

trap in vivo, forming 2,3 and 2,5-dihydroxybenzoic acid (DHBA). Using this method, 

in vivo measurements of OH on METH-administrated rats have been reported 

(Kondo et al., 1994; Giovanni et al., 1995; Wrona et al., 1995; Yang et al., 1997). 

These studies showed that METH treatment resulted in an increase in the absolute and 

relative amounts of the 2,5-DHBA present in striatum after peripheral administration 

of salicylate (Wrona et al., 1995). All these results showed that OH is also formed in 

METH-induced neurotoxicity although a detailed mechanism is still far from clear. 

1.2.1.4 Nitric Oxide (NO) 

NO is a byproduct during the synthesis of L-citrulline from L-arginine by 

nitric oxide synthase (NOS). 

NOS 
L-arginine > L-citrulline + NO 
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At least three isoforms of NOS exist: the constitutively expressed, calcium-

dependent form found in neurons (nNOS) (Janssens et al., 1992; Lamas et al., 1992; 

Sessa et al., 1992) and in endothelial cells (eNOS) (Mayer et al., 1989, 1993; Palmer 

and Moncada, 1989; Forstermann et al., 1991). An inducible, calcium-independent 

form, known as iNOS, was found in macrophages (Hevel et al., 1991; Stuehr et al., 

1991; Yui et al., 1991), astrocytes (Murphy et al., 1993) and microglia (Boje and 

Arora, 1992; Chao et al., 1992; Murphy et al., 1993). 

NO is an inorganic molecule with many physiological functions(Moncada et 

al., 1991). In the nervous system, it can regulate local cerebral blood flow and plays 

essential roles in synaptic plasticity and normal development of the brain (Moncada et 

al., 1991; Simonian and Coyle, 1996). However, in situations of excessive production, 

it may become neurotoxic (Dawson et al., 1992). NO itself is a weak oxidizing agent, 

but it can react with O2' at physiological pH which will lead to the formation of 

peroxynitrite anion ( 0 N 0 0 ' ) (Beckman et al., 1990). 

O2" + NO > 0 N 0 0 ' 

0 N 0 0 " is an extremely reactive molecule and a powerful oxidant. It is 

sufficiently stable even in the presence of physiological concentrations of glutathione 

and other cellular antioxidants. 0 N 0 0 ' can oxidize some important intracellular 

targets e.g. thiols and zinc finger (Radi et al., 1991), as well as cause DNA breakage, 

cellular energy depletion and activate poly-ADP-ribose synthetase (Salgo et al., 1995; 

Szabo et al., 1996). 0 N 0 0 ' can also decompose to form cytotoxic OH and nitrogen 

dioxide (NO2) spontaneously, which are potent activators of lipid peroxidation 

(Beckman et al., 1990; Radi et al., 1991; Crow et al., 1994). 

0 N 0 0 - + H+ < ~ > HOONO ——> HO + NO. 
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Furthermore, NO has been shown to inhibit the function of mitochondrial 

respiratory chain and disrupt normal cellular iron homeostasis (Reif and Simmons, 

1990; Bolanos et al., 1994). 

NO has recently been shown to be involved in METH-induced neurotoxicity. 

Bowyer et al., (1995) using in vivo microdialysis in rats, showed that NO generation 

in the caudate/putamen may augment the release of dopamine during METH 

exposure. In primary cultures of fetal rat mesencephalon, it was shown that the 

blockade of NO formation with several NOS blockers attenuated METH-mediated 

neurotoxicity (Sheng et al., 1996). Treatment of 7-nitroindazole (7-NI), which is a 

selective nNOS inhibitor, provided full protection against the depletion of dopamine 

and its metabolites and the loss of DAT binding sites (Itzhak and Ali, 1996). 

Moreover, Di Monte et al., (1996)，using an in vivo mouse model, demonstrated that 

treatment of mice with 7-NI almost completely counteracted the loss of DA, DOPAC, 

and TH immunoreactivity. These results indicated that NO formation is an important 

step leading to METH neurotoxicity, and suggested that the cytotoxic properties of 

NO may be directly involved in dopaminergic terminal damage. Recently, Itzhak et al. 

(1998) demonstrated that by using the nNOS deficient mice, METH administration 

affected neither the tissue content of DA and its metabolites nor the number of DAT 

binding sites. Taken together, these results indicated that nNOS deficient mice are 

protected against METH-induced dopaminergic neurotoxicity, and further proved NO 

formation is a critical step in leading to METH-induced neurotoxicity. 

On the other hand, Abekawa et al., (1996) showed that the co-administration 

of METH with N^-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, 

reduced METH-induced decreases in DA, DOPAC and homovanillic acid (HVA) 

content in the striatum. However, L-NAME did not reduce METH-induced decreases 
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in content of 5-HT in the striatum, nucleus accumbens and medial frontal cortex. This 

dose-related neuroprotective effect of L-NAME on dopaminergic toxicity in the 

striatum suggests that NO production may be related to dopaminergic damage. 

Although the detailed mechanisms by which NO-mediates METH neurotoxicity are 

not yet defined, evidence so far suggests that, apart from ROS formation, N0-

mediated oxidative stress may also play an important role. 

1.2.2 Apoptosis 

There are two modes of cell death generally referred to as "necrosis" and 

"apoptosis". Necrotic cell death is characterized by an initial loss of plasma membrane 

integrity associated with cell swelling, followed by late nuclear degeneration. DNA is 

degraded in a random fashion, which is visualized as a continuous smear on agarose 

gel electrophoresis. On the other hand, apoptosis, also termed "programmed cell 

death" is typically associated with early chromatin condensation and nuclear 

disruption, followed by a later loss of plasma membrane integrity. DNA degradation 

is highly uniform, revealed by a laddering pattern consisting of fragments that differ 

in size by 180 to 200 base pair on agarose gel electrophoresis (Stern, 1995). Apoptosis 

is believed to play a crucial role in the differentiation and organization of the 

developing nervous system. Despite the identification of several regulatory 

mechanisms of the process, the biochemical events underlying apoptosis remain 

largely unknown. 

Bcl2 and p53 have been shown to be involved extensively in the process of 

apoptotic cell death. Bcl-2 is a proto-oncogene which was first identified at the 

chromosomal breakpoint t (14;18) in B cell lymphomas (Tsujimoto et al., 1984). Bcl-

2 was shown to promote cell survival (Nunez et al., 1990), block apoptosis 
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(Hockenbery et al., 1990, 1993) and prevent cellular damage caused by oxidative 

stress (Hockenbery et al., 1993; Kane et al., 1993). On the contrary, p53 is a tumor 

suppressor gene whose activation has been associated with apoptosis (Clarke et al., 

1993; Lowe et al., 1993; Hermeking and Eick, 1994; Morgenbesser et al., 1994; 

Wagner et aI., 1994). It is widely believed that p53 accumulates when DNA is 

damaged and arrests the cell cycle at G1 phase to allow extra time for repair. 

However, if the repair process fails, p53 triggers apoptosis (Lane, 1992). 

Recent studies have led to the speculation that apoptosis also plays a role in 

METH-induced toxicity. It was reported that using immortalized neural cells obtained 

from rat mesencephalon, METH exposure can cause DNA strand breaks, chromatin 

condensation, nuclear fragmentation, and DNA laddering. This phenomenon of 

METH-induced apoptotic cell death can be prevented by the over-expression of bcl-2 

in these cells (Cadet et al., 1997). Furthermore, Hirata and Cadet (1997) using 

homozygous and heterozygous p53 knockout mice showed that METH treatment 

caused significant decreases in DAT mRNA and the number of TH-positive cells in 

both the substantia nigra pars compacta and the ventral tegmental area of wild-type 

but not the homozygous p53-knockout mice. They also found that there was an 

increase in p53-like immunoreactivity in the striata of wild type mice but not in the 

homozygous p53 knockout mice further supporting the mechanism of neuronal cell 

death via apoptosis in METH-induced neurotoxicity. However, it is still unknown 

whether the METH-mediated neuronal apoptotic cell death observed is a consequence 

or otherwise of oxidative stress. 

1-2.3 Excitotoxicity 
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Glutamate (GLU), is an excitatory amino acid (EAA) and neurotransmitter 

that is present in the brain at a high concentration and a leading endogenous toxin 

(Watkins and Evans, 1981; Fonnum, 1984). GLU is capable of exciting CNS neurons 

to such an extent as to become toxic, ultimately killing GLU-sensitive neurons 

through over-excitation. Olney in the early 1970s (Olney, 1969, 1978) introduced the 

concept and the term 'excitotoxicity' and he suggested that EAA can kill neurons in 

the CNS by prolonged, receptor-mediated depolarization, ultimately resulting in 

irreversible disturbance in ion homeostasis and other lethal sequelae (Olney, 1978, 

1994; Goldberg et al., 1987; Mayer and Westbrook, 1987; Rothman and Olney, 1987, 

1995; Choi and Rothman, 1990; Shaw, 1994). 

Using intracerebral microdialysis, Nash and Yamamoto (1992) showed an 

increase in striatal GLU release after repeated administration of METH to rats. EAA 

and their receptors also appear to play a role in METH-induced GLU neurotoxicity, 
^ 

because treatment with competitive (NPC 12626 or CGS 19755) or non-competitive 

(MK-801, phencyclidine, or ketamine) antagonists of the N-methyl-D-aspartate 

(NMDA) class of EAA receptor can prevent METH-induced striatal DA depletions 

and reductions of TH activity in mice (Sonsalla et al., 1989, 1991). Ohmori et al. 

(1996) showed that METH treatment did not increase GLU release in the nucleus 

accumbens, a region where no dopaminergic damage was observed. These findings 

suggest that striatal DA neurotoxicity is mediated, in part, by an increase in 

extracellular concentration of GLU. It may be that enhanced release in GLU and DA 

worked synergistically in presynaptic DA terminals to cause the METH-induced 

striatal dopaminergic neurotoxicity. 

1.2.4 Mitochondrial Dysfunction 
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Mitochondria are traditionally described as the "power plants" of the cell. 

Mitochondrial size, shape and number varies widely amongst the different cell types. 

Each mitochondrion has an outer membrane that is freely permeable to large 

molecules and an inner membrane that is relativeiy impermeable and contains the 

electron transport enzyme complexes. The inner compartment of the mitochondrion, 

enclosed by the inner membrane, is the matrix in which the Krebs cycle takes place. 

NADH and FADH2 generated from the Krebs cycle act as electron donors to the 

series of transport enzymes of the inner mitochondrial membrane (Beal et al., 1993). 

Concomitantly, ejection of protons across the inner mitochondrial membrane results 

in an electrochemical proton gradient, which stores potential energy. Oxidative 

phosphorylation is the process by which the transfer of reducing equivalents 

(electrons) to oxygen is coupled to the synthesis of ATP by ATP synthase. The 

electron transport chain consists of a complex array of enzymes. They are assigned as 

r 

complexes I，II，HI and rV (Wallace, 1992). They catalyze the transport of electrons to 

molecular oxygen and thereby create an electrochemical proton motive force, whereas 

the complex V uses this force to form ATP from ADP and inorganic phosphate. 

Complex I (NADH dehydrogenase, consisting of > 30 polypeptides) oxidizes NADH. 

Complex n (succinate dehydrogenase, built from 4 polypeptides) receives electrons 

from succinate and subsequently donates them to ubiquinone to form ubiquinol. This 

small, lipid-soluble and mobile compound then reduces complex ffl 

(ubiquinol:cytochrome c oxidoreductase, consisting of 10 polypeptides), from where 

the electrons flow via cytochrome c to complex IV (cytochrome oxidase, comprising 

13 polypeptides). There, most of the molecular oxygen consumed by mitochondria 

during respiration is reduced with four electrons to water without the liberation of 

partially reduced oxygen species. The protons that are expelled during electron 
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transport over complex I - FV from the mitochondrial matrix into the intermembrane 

space flow back into the matrix via complex V (ATPase, formed by 12 polypeptides). 

Since ATP is required for most of the cellular reactions, any means of interference 

with this process will greatly affect normal cellular function and may finally cause 

cell death. 

Mitochondria are known to have a proton electrochemical gradient generated 

by proton pumps which is in turn driven by respiratory electron transport chains 

utilizing NADH and succinate (Mitchell, 1979). According to Mitchell (1966), energy 

stored in this gradient is primarily responsible for the conversion of ADP + P, to ATP 

by ATPase. This gradient has two components: the electric component (the 

mitochondrial membrane potential, A4^m) and the chemical component (the pH 

gradient). In order to support a high rate of ATP synthesis, mitochondria must 

maintain a relatively high electrochemical gradient. Although both A ^ m and pH 

T 
gradient drive the synthesis of ATP, each is involved in additional biochemical 

events. For example, the uptake of pyruvate and GLU by mitochondria is proportional 

to the pH gradient, whereas the import of mitochondrial enzymes from the cytoplasm, 

the uptake of calcium, and the maintenance of mitochondrial protein synthesis are 

dependent upon A4^m. Therefore, adequate ATP production is reliant on a steady 

A^m and pH gradient. 

The effects of METH on brain energy metabolism were first studied in the 

early 1960s and 1970s (Lewis and Van Petten, 1962; Nahorski and Rogers, 1973; 

Sylvia et al., 1977) but the results were conflicting due to the change in the levels of 

high-energy phosphate compounds which were only measured in either the cerebral 

cortex or the whole brain after METH injection. Chan et al. (1994) was the first to 

demonstrate that during METH-induced depletion of striatal DA, there was a 
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significant and rapid decrease in striatal ATP concentrations. Furthermore, the ATP-

depleting effects of METH appeared to be selective because they were observed only 

in the striatum and not in the cerebellar cortex and hippocampus. Moreover, Chan et 

al. (1994) also showed that 2-deoxyglucose, an inhibitor of glucose metabolism, 

significantly potentiated both METH-induced striatal DA depletion and ATP loss. 

Together with an earlier report showing an association between the METH-induced 

early increase in the regional cerebral glucose consumption and long-lasting 

dopaminergic neurotoxicity (Pontieri et al., 1990), Chan et al. (1994) suggested a 

correlation between METH-induced perturbations of energy metabolism and 

dopaminergic neurotoxicity. It was suggested that one possible mechanism is that 

METH directly inhibits the mitochondrial respiratory chain, thus reducing cellular 

energy production. Alternatively, the ATP depletion observed could be a consequence 

of "metabolic stress" caused by METH on dopaminergic neurons. However, the 

precise sequence of events that result in dopaminergic terminal damage and its 

association with metabolic stress is still far from clear. Furthermore, since there was 

evidence of oxidative stress contributing to this injury, the relationship between 

metabolic stress and oxidative stress also needs further clarification. 

1.2.5 Hyperthermia 

Homeotherms generally resist cold better than heat. Heat is one of the best 

known stressors to mankind. A variety of disorders can elevate body temperature; 

those resulting from thermoregulatory failure are properly called hyperthermia. Body 

temperature increases when the rate of heat production exceeds the rate of heat 

dissipation. Hyperthermia occurs when thermoregulatory mechanisms are 

overwhelmed by excessive metabolic production of heat, excessive environmental 
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heat, or impaired heat dissipation. Hyperthermia is the most severe illness caused by 

high ambient temperature to the human population and is the third largest killer in the 

world after cardiovascular diseases and traumatic injuries to the CNS (Ellis, 1972; 

Sminiaet al., 1994; Ellisand Wendon, 1996). 

Many METH abusers have been reported to die as a result of hyperthermia 

with body temperature reaching over 4 T C (Clark et al., 1967; Zalis et al., 1967; 

Kojima et al., 1984; Imanishi et al., 1997). However, the mechanism underlying 

hyperthermia induced by METH is still unknown. 

Animals studies also showed that METH treatment produced hyperthermia in 

rats (Bowyer et al., 1995; Fleckenstein, 1997; Eisch and Marshall, 1998; Fukumura et 

al., 1998) and in mice (Funahashi et al., 1990; Ali et al., 1994a; Miller and 

0'Callaghan, 1994，1995; 0'Callaghan and Miller, 1994; Kuperman et al., 1997; 

Itzhak et al., 1998; Makisumi et al., 1998; Sonsalla et al., 1998; Yu et al., 1999). 
r 

Several studies have documented a relationship between METH-induced 

hyperthermia and neurotoxicity. It was demonstrated that an increase in ambient 

temperature increased METH-induced neurotoxicity while a decrease in the ambient 

temperature reduced METH neurotoxicity (Bowyer et al., 1992; Ali et al., 1994b; 

Miller and 0'Callaghan, 1994). Furthermore, several pharmacoiogicai agents were 

shown to attenuate METH-induced neurotoxicity. It was shown that the 

administration of DA receptor antagonists fenfluramine, dizocilpine, alpha-methyl-p-

tyrosine, phenytoin, aminooxyacetic acid and propranol prevented METH-induced 

hyperthermic effects (Albers and Sonsalla, 1995). Moreover, concurrent treatment of 

METH and pharmacological agents such as haloperidol (Bowyer et al., 1994), 

diazepam (Bowyer et al., 1994) and MK801 (Bowyer et al., 1994; Miller and 

0'Callaghan, 1994) reduced METH induced striatal DA depletion to a degree 
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predicted by their inhibition of hyperthermia. Melatonin, which is a natural hormone 

produced by the pineal gland and was recently suggested to act also as free radical 

scavenger and antioxidant (Reiter et al., 1997), was also shown to significantly 

diminish METH-induced hyperthermia (Itzhak et al., 1998). Moreover, pretreatment 

with ibogaine, which is a naturally occurring alkaloid derived from the root of the 

African shrub Tabernanthe iboga, can completely block METH-induced 

hyperthermia (Yu et al., 1999). These results demonstrated that hyperthermia may 

also be part of a complex array of mechanisms that are responsible for METH-

induced neurotoxicity. • 

In association with this, the involvement of inducible enzymes, 

cyclooxygenase-2 (COX-2) (see review, Rothwell, 1992; Herschman, 1996) and heme 

oxygenase-1 (H0-1) (see review, Ewing and Maines, 1991; Choi and Alam, 1996) 

had been shown to be involved in the process of hyperthermia. 

r 

1.2.5.1 Cyclooxygenase-2 (COX-2) 

Cyclooxygenase (COX) is a rate-limiting enzyme catalyzing the synthesis of 

prostaglandins (PGs) from arachidonic acid (Smith et al., 1989). PGs in humans are 

the predominant prostanoid detected in inflammatory conditions ranging from 

experimental acute edema and hyperthermia to chronic arthritis and certain 

neurological disorders (see review, Herschman, 1996). Since inflammation is one of 

the conditions in which PGs is a major product of COX activity, it is entirely 

conceivable that the inflammatory process itself directs the enzymatic pathway 

towards the generation of PGs. 

COX is an integral membrane protein that sits within the inner leaflet of the 

lipid bilayer of the plasma membrane. It has 2 enzymatic functions: a cyclooxygenase 
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activity that converts arachidonic acid to prostaglandin G2 (PGG2) and a peroxidase 

activity that converts PGG2 to prostaglandin H2 (PGH2). Moreover, COX has putative 

heme binding regions where the iron heme-mediated peroxidase activity take place 

(Smith et al., 1996). There are 2 known COX isoforms, COX-1 and COX-2. Both 

isoforms are similar in amino-acid sequence and enzymatic functions although they 

have distinct physiological and pathological roles. 

COX-1 is constitutively expressed and is responsible for the physiologic 

production of PGs. It plays an important role in maintaining normal vascular, gastric, 

renal and hemostatic functions. Therefore, it is considered to play physiological roles 

rather than pathological ones (Goppelt-Struebe, 1995). This constitutive isoform can 

be found in nearly all cell types at a constant level (Vane et al., 1998). 

The second isoform is COX-2, a highly inducible enzyme which is under the 

strict regulation of different cytokines (Nam et al., 1995), mitogen (Kujubu et al., 

1991), ROS (Gunasekar et al., 1998)，endotoxins (Minghetti et al., 1997) and 

hyperthermia (Okamoto et al., 1997). It is responsible for the increased production of 

PGs during inflammation (Feng et al., 1995; Porreca et al., 1996; Cao et al., 1997). In 

the CNS, COX-2 expression has been reported in astrocytes (0'Banion et al., 1996), 

microglia (Trocino et al., 1995) and neurons (Yamagata et al., 1993). Previous studies 

have shown that cultured astrocytes are capable of PGs synthesis and release (Seregi 

et al., 1987; Murphy et al., 1988; Marriott et al., 1991; Brenner et al., 1992; Boneh et 

al., 1993; Wilkin and Marriott, 1993; Nam et al., 1995). A comparison on the abilities 

of cultured astrocytes and neurons to synthesize PGs led to the suggestion that 

astrocytes might be the synthetically more active compartment in vivo (Keller et al., 

1985; Bruner and Simmons, 1993). In distinction to peripheral tissues, COX-2 is 
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expressed at relatively high levels in normal brain (Yainagata el al., 1993; Breder et 

ai., 1995; Kaufmann et al.. 1996). 

The best known role of PGs in the CNS is in hyperthermia, where 

prostaglandin E2 (PGE2) is an extremely potent pyretic agent in eliciting fever (Milton 

and Wendlandt, 1970). Pyrogens such as interleukin-1 are thought to act via 

hypothalamic release of PGs (Bernheim et al., 1980; Coceani et al., 1988). 

It was shown that indomethacin (Hs^DO), a COX inhibitor (Asano et al., 1989), 

was able to ameliorate hyperthermia-induced brain edema, extravasation of plasma 

protein, and neuronal and glial damage (Sharma et al., 1994). These results suggest 

that PGs are involved in the development of pathological changes associated with 

hyperthermia. Other than hyperthermia, PGs may also be key molecules in other 

pathological conditions of the CNS. For example, the release of PGs was sharply 
• 

increased during brain ischemia / reperfusion or in traumatic injuries to the CNS 

(Bazan et al., 1995). Furthermore, treatment with COX-2 inhibitors were shown to 

attenuate hyperthermia-, glutamate- and ischemia-induced neuronal injury (Sasaki et 

al.’ 1988; Sharma et al., 1995; Beasley et al., 1998; Hara et al., 1998). Therefore, the 

production of PGs seems to play a key role in the development of pathological 

changes in CNS injuries. 

1-2.5.2 Heme-oxygenase-1 (HO-1) 

The term "heat shock protein" (HSP) was derived from the fact that these 

proteins were initially discovered to be induced by hyperthermic conditions (Anathan 

et al., 1986; Welch, 1992; Craig and White, 1993). HSP response is a universal 

response of all prokaryotic and eukaryotic species when subjected to noxious stressful 

situations (Hightower, 1980; Anathan et al., 1986; Barbe et al., 1988; Kaufmann, 
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1992; Welch, 1992). Members of the HSP family have several features in common, 

such as, i) they are preferentially expressed following hyperthermia; ii) they are found 

in all living cells; iii) their amino sequences are highly conserved throughout 

evolution; and iv) they have a specific DNA motif (heat shock element) in the 

promoter region of their genes which is activated by specific heat shock transcription 

factor known as heat shock factor (Sarge and Morimoto, 1991; Sorger, 1991; Sarge et 

al., 1993;Prehn et al., 1994). 

Most cells within the normal CNS express constitutive forms of HSP (Brown 

and Rush, 1990; Birnbaum et al., 1991). Moreover, increasing evidence suggests that 

HSP may play an important role during nervous system development and this was 

demonstrated in both the drosophila and mammalian systems (Walsh et al., 1989, 

1993; Pauli et al., 1990; Chopp, 1993; Marin et al., 1993). The patterns of HSP 
> 

mRNA and protein expression during the ontogeny of vertebrate and invertebrate 

nervous systems suggest that HSP have important functions in regulation of cell 

cycles, cellular differentiation, and cell maintenance at critical stages of organ 

development. However, HSP expression has also been used as a marker to define the 

extent of injury caused by particular experimental or natural disease processes. 

Several different families of HSP proteins are seen in areas of abnormal tissue. 

Expression of HSP in several experimental systems were used to define regions of 

hyperthermia (Brown and Rush, 1990; Marini et al., 1990; Harrison et al., 1993; 

Higashi et al., 1994), ischemia (Vass et al., 1988; Brown and Rush, 1990; Ferriero et 

al., 1990; Chopp, 1993; Higashi et al., 1994), and trauma (Brown and Rush, 1990; 

Xue and Grossfeld, 1993). Expression of HSP in affected cells frequently occurred in 

the absence of other anatomic changes, suggesting that HSP expression may be a 

sensitive marker of cell injury. The functions of HSP in the injured nervous system 
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are not clear but they have been suggested to play a protective role during injury 

(Lowenstein etal., 1991; Mailhos et al.. 1993). 

Heme-oxygenase-1 (HO-1) is a 32 kDa HSP (HSP32). The HO-1 gene has a 

heat shock element in its proinotor region (Maines, 1988; Keyse and Tyrrell, 1989) 

(Donati et al., 1990; Applegate et al., 1991). It is also the rate-limiting enzyme which 

converts heme to bilirubin, releasing Fe"^ and carbon monoxide (CO) (Maines, 1988, 

1996). Although described as a marker of oxidative stress (Prehn et al., 1994; 

Westman and Sharma, 1999), HO-1 can be induced by numerous stressors including 

hyperthermia (Ewing and Maines, 1991) exposure- to heavy metals (Applegate et al., 

1991), and NO (Kim et al., 1996; Takahashi et al., 1996). 

Total HO-1 activity in the brain is high and comparable to that in the spleen 

(Maines, 1988). Dwyer et al., (1995) suggested that the high level of HO-1 activity in 
> 

the brain, an organ not actively involved in red blood cell degradation and 

hemoglobin disposition vis a vis the spleen, suggests that this enzyme is of 

physiological importance in the CNS. In pathological conditions, HO-1 had been 

shown to be expressed in the brains of some neurodegenerative disorders such as 

Alzheimer's and Parkinson's diseases (Schipper et al., 1995, 1998). 

Kuperman et al., (1997) showed that a single injection of METH resulted in a 

biphasic induction of HSP-72 and that this induction can be blocked by ibogaine (Yu 

et al., 1999). This study illustrated that the induction of HSP is associated with 

METH-induced toxicity. 

1-2.5.3 The Effects of Nitric Oxide (NO) on COX-2 and HO-1 Expressions 

It was recently reported that excessive NO production is associated with heat 

stroke in patients, and the magnitude of NO production is proportional to the severity 

27 



of the illness (Alzeer et al., 1999). It was suggested that NO maybe an important 

mediator and integral part of the pathophysiological process resulting in heat stroke. 

Previous studies on thermal injury have shown that NO is increased in a posl-

burn state in humans (Preiser et al., 1996) and heat-stressed rats (Hall et al., 1994; 

Carter et aI., 1994; Canini et al., 1997). Although the exact mechanism of NO 

induction in heatstroke has not been entirely defined, increased NO formation from 

iNOS under the action of various proinflammatory cytokines has been described 

(Moncada and Higgs, 1991). Proinflammatory cytokines have been reported to be 

released in large amounts in heatstroke patients (Bouchama et al., 1991). Furthermore, 

thermal injury to rats also showed an increase in NO production (Carter et al., 1994). 

Recently, Sharma et al., (1997) reported that heat-stress induced a marked up-

regulation of nNOS in the cerebral cortex and hippocampus. An increase in nNOS 
> 

immunoreactivity was found to be in distorted neurons located in the edematous 

regions where it was normally nNOS-negative. This suggested that hyperthermia can 

induce up-regulation of nNOS activity in the brain of hyperthermic rats. It had been 

suggested that hyperthermia-induction of NOS up-regulation may be due to the 

formation of free radicals (Hall et al., 1994; Goode et al., 1995). Other than nNOS 

upregulation, one would expect there should be also an upregulation of iNOS that can 

be highly induced during hyperthermic conditions. Indeed, several groups were able 

to demonstrate using selective nNOS inhibitors like 7-NI (Di Monte et al., 1996), and 

the non-selective NOS inhibitor like L-NAME (Abekawa et aL, 1996)，can also 

attenuate METH-induced hyperthermia and toxicity. Further to this, Itzhak et al., 

(1996, 1998) demonstrated that nNOS knockout mice were resistant to METH-

induced hyperthermia and toxicity. Recently it was shown that iNOS knock out mice 

were also resistant to METH-induced hyperthermia (Ali and Itzhak, 1998). These 
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results indicated that NO formation in both neuronal and glial cells is an important 

step associated with METH-induced hyperthermia. 

Cross talk between NO and COX is extensively documented and it was shown 

that COX-2 activity can be stimulated or inhibited by NO (see review, Appleton et al., 

1996; Di Rosa et al., 1996; Salvemini and Masferrer, 1996). Recently, it was shown 

that hypoxia induced an increase in NO release and iNOS activity, this increase was 

accompanied by the sustained release of PGE2 (Mollace et al., 1997). This effect was 

antagonized by COX inhibitor INDO and partially by L-NAME suggesting that NO 

may play a role in PGs release. 

A recent study showed that the induction of HO-1 protein in astrocytes was 

mediated by endogenous NO production through the activation of iNOS (Takahashi et 

al., 1996; Kitamura et al., 1998) raising the possibility that the CO/HO system may 
> 

function in concert with the NO/NOS system in the brain. Moreover, some authors 

also speculated that NOS upregulation is accompanied by HO-1 expression in order to 

counterbalance the harmful effects of NO (Vincent et al., 1994). 

1.3 Astrocytes 

1.3.1 Characteristics of Astrocytes 

Neuroglia form about half the volume of the human brain. They are divided 

into two categories: macroglia and microglia. Macroglia are composed of astrocytes 

and oligodendrocytes. Astrocytes are the most abundant cell type in the CNS (Kuffler 

et al., 1984). The ratio of astrocytes to neurons in the CNS is about 10:1 (Pope, 1978). 

They are derived from the neuroectoderm of the neural tube. They are star-shaped 

cells and their processes radiate from the perikaryon and can often be traced as far as 

the walls of blood vessels or to the subpial surface of the CNS (Pannese, 1994). 
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Morphologically, astrocytes can be classified into 2 types: protoplasmic and 

fibrous. Fibrous astrocytes occur mainly in the white matter, and have 10-30 long, 

thin, smooth-surfaced, poorly branched processes. In contrast, the protoplasmic 

astrocytes occur mainly in the gray matter. They exhibit many processes, with respect 

to fibrous astrocytes, their processes are more numerous, thicker, shorter, and more 

extensively branched and have an irregular surface. It should be noted that 

protoplasmic astrocytes can transform into fibrous form following injury (Pannese, 

1994). Various biochemical markers can be used to identify astrocytes. For example, 

glial fibrillary acidic protein (GFAP), are subunits of glial-specific intermediate 

filaments (Eng et al., 1971; Dahl and Bignami, 1973; Bignami and Dahl, 1974) and is 

an astrocyte marker commonly used for both in vivo and in vitro studies. Other than 

GFAP, the enriched S-100 (Hyden and McEwen, 1966; Hansson et al., 1980) and 
>• 

glutamine synthetase (GS) (Martinez-Hernandez et al., 1977; Hallermayer et al., 

1981) are also markers for astrocytes. 

1.3.2 Astrocyte Functions 

Astrocytes have previously been assigned the passive role of protecting and 

supporting neurons (Barres, 1991). However, with the increase in biochemical and 

physiological knowledge of astrocytes, and given their close relation with neurons, 

astrocytes have been shown to participate more actively in the process of 

neuroprotection and neurodegeneration than previously thought. 

Biochemically, astrocytes regulate the concentration of extracellular potassium 

(K+) (Hounsgaard and Nicholson, 1983; Walz, 1989)，GLU (Schousboe, 1981; 

Schousboe et al., 1993), GABA (Larsson et al., 1986) and other biogenic amines 

(Pelton et al., 1981; Kimelberg and Pelton, 1983; Semenoff and Kimelberg, 1985). 
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Furthermore, astrocytes contain GS (Martinez-Hernandez et al., 1977), an enzyme 

which converts GLU to glutamine using ammonia and ATP, via a high-affinity uptake 

system (Hertz, 1979). This represents an important mechanism for ammonia and GLU 

detoxification in the brain (Sugiyama et al., 1989). 

Physically, the end feet of astrocytes are a major component that contributes to 

the formation of the blood-brain barrier (BBB), by inducing the formation of tight 

junctions between endothelial cells (Janzer and Raff, 1987). The BBB serves to 

maintain a stable microenvironment in the CNS by restricting and regulating the 

passage of different substances between the blood .vessels and the cerebral interstitial 

space (Cancilla et al., 1993). 

Astrocytes are the major sites of energy metabolism in the CNS (Hamprecht 

and Dringen, 1995). Glycogen, a storage form of glucose, is mainly found in 
> 

astrocytes (Cataldo and Broadwell, 1986a; Cataldo and Broadwell, 1986b). The 

breakdown of glycogen can be induced by hormones such as noradrenaline. 

Astrocytes have also been shown to metabolize the medium chain fatty acids like 

octanoic acids to ketone bodies, which are the dominant energy resources of the brain 

when undergoing starvation (Geiger, 1958). Moreover, the cytosolic form of malic 

enzyme appears to be prominent in astrocytes. Malic enzymes can convert the Kreb's 

cycle intermediate malate to pyruvate, which can then be used locally or transported 

to other cells for energy production. It appears that astrocytes can function as a 

processing plant, forming energy rich compounds such as fatty acids and amino acids 

for the utilization of neighbouring cells (Magistretti, 1988; Dringen and Hamprecht, 

1992). 

Astrocytes have been demonstrated to possess receptors for neurotransmitters 

such as GLU (Backus et al., 1989; Cull-Candy and Wyllie, 1991; Matute et al., 1994) 
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GABA (Hosli and Hosli, 1990; Fraser et al., 1994; Bureau el al.. 1995) and serotonin 

(Hosli and Hosli, 1987; Whitaker-Azmitia et al., 1990). They are also believed to 

participate in immunological responses in the CNS (Fontana and Fierz, 1985; Fontana 

et al., 1986; Prochiantz and Mallat, 1988). Certain experiments have shown that 

astrocytes may perform immunologicai functions in vitro; more precisely, they are 

able to present antigens to T-lymphocytes. Moreover, astrocytes are believed to 

participate in the establishment of neuronal circuits (Denis-Donini et al., 1984). 

Astrocytes are known to contain MAO-B (Levitt et al., 1982) which is the 

major enzyme responsible for the degradation of DA in the CNS (Gaal and Hermecz, 

1993). Furthermore, astrocytes contain a large amount of antioxidants such as GSH, 

Cu/Zn-SOD, Mn-SOD and catalase (Hirsch, 1992). Therefore, astrocytes have an 

important role to play in the defense mechanism against oxidative stress in the CNS. 
> 

Astrocytes are not structurally independent cells but rather are organized into a 

syncytium that is mediated by gap junctions (Kettenmann et al., 1983). These 

junctions are vital for intercellular communication and cellular homeostasis. Thus, 

one can conceptualize the potential for an enormous recruitment of astrocytes in 

response to physiologic or pathological stimuli. 

pH regulation in the nervous system is an essential homeostatic function. 

Significant effects of pH on astrocytes are the closure of the intercellular gap 

junctions (Bennett et al., 1991)，which are the likely molecular basis of the astrocyte 

syncytium. Other more general effects will be the change of pH on enzyme activities 

and ion channels. It has been shown that the control of pH in the mammalian CNS is 

independent of that of the systemic pH (Katzman and Pappius, 1973). Among their 

other homeostatic functions, astrocytes may also play a key role in such pH 

regulation. In agreement with this, significant pH changes have been shown recently 
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in mammalian astroglial cells during intense neuronal activity that paralleled opposite 

changes in extracellular pH (Chesler and Kraig, 1987, 1989; Chesler, 1990). 

Furthermore, astrocytes are not morphologically static as their shape can be 

transformed during neuronal injury (Hatten, 1985), change in neurotransmitter levels 

(Cornell-Bell et al., 1990) or various physiologic states (Hatton, 1990). During CNS 

injury, one of the most characteristic astrocytic responses is termed ‘reactive 

astrogliosis' (gliosis, reactive gliosis or astrocytosis). Reactive astrogliosis can occur 

either adjacent to the site of injury or it can extend far beyond it. It is characterized by 

astrocyte proliferation and extensive hypertrophy of the cell body and cytoplasmic 

processes (Eng and Ghirnikar, 1994). Activated, reactive astrocytes exhibit 

cytological, biochemical and histological transformations which include increases in 

nuclear diameter, elevated DNA levels, heightened oxidoreductive enzymes activity, 
^ 

and increased synthesis of GFAP, vimentin, GS and glycogen (Eng and Shiurba, 

1988). Moreover, ultrastructural studies have shown that there is an increase in the 

numbers of mitochondria, Golgi complexes, endoplasmic reticulum, lysosomes, 

vesicles, microtubules, dense bodies and lipofuscin pigment in reactive astrocytes. 

The most striking finding is the presence of bundles of intermediate filaments like 

GFAP and vimentin, which at times appear to fill the entire cytoplasmic compartment 

(Nathaniel and Nathaniel, 1981). However, the biochemical events that precede and 

trigger astrocyte activation are unknown. 

Reactive astrogliosis is thought to play a role in the healing phase following 

CNS injury by actively monitoring and controlling the molecular and ionic contents of 

the extracellular space of the CNS. These important extracellular constituents that 

may be regulated by reactive astrocytes include potassium ions, neurotransmitters, 

trophic factors, nutrients and metabolic waste products (Kimelberg and Ransom, 

3 3 

^ ^ 



1986; Reier, 1986; Walicke et al., 1986). ln contrast to a role in healing CNS injury, 

astrogliosis may produce pathological effects by interfering with the function of 

residual neuronal circuits, by preventing remyelination, or by inhibiting axonal 

regeneration (Reier et al., 1983; Reier, 1986). 

1.3.3 The Role of Astrocytes in METH-induced Neurotoxicity 

Previous studies have shown the presence of reactive astrogliosis in the 

striatum of METH-treated mice and rats in vivo (Hess et al., 1990; Pu and Vorhees, 

1993’ 1995; Pu et al., 1994; Broening et al., 1997) and in vitro (Sheng et al., 1994; 

Stadlin et al., 1998). Since reactive astrogliosis is often associated with neuronal 

damage (Eng, 1988; 0'Callaghan, 1991)，a close relationship between METH-induced 

degeneration of dopaminergic terminals in the striatum and reactive astrogliosis may 
> 

also exist. 

Astrocytes are situated in a key position between the microvessels and the 

other cell types like neurons and oligodendrocytes. Glucose and oxygen, which are 

the most important substrates for the generation of energy, must pass through the 

astrocytes to reach their metabolic destination in the neurons and oligodendrocytes. 

Therefore, this strategic location of astrocytes in the CNS may p laya balancing role 

in controlling energy metabolism of the brain. In fact, one may speculate that 

astrocytes are probably more resistant to METH than neurons since astrocytes have an 

alternative pathway of energy production. 1 -methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) is a compound which is used as a Parkinson's disease 

model and was shown to damage both the dopaminergic terminals and cell bodies. In 

MPTP-induced toxicity in astrocytes, Di Monte et al. (1992) showed that an increase 

in consumption of glucose and lactate production, with a glucose/lactate ratio of 
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1.85:1 was an early event suggesting that glycogenolysis had taken place, leading to 

the anaerobic formation of ATP. Astrocytes can utilize the accumulated energy 

reservoir, glycogen (Guth and Watson, 1968; Cataldo and Broadwell, 1986a)’ in 

conditions of energy crisis. Alternative mechanisms explaining the increased 

resistance of astrocytes may lie in the adaptive mechanisms available to astrocytes in 

response to adverse conditions. Activated glycogenolysis in astrocytes after MPTP 

treatment suggested that there was an energy demand during cytotoxicity (Magistretti 

et al., 1986). It is unclear whether glycogenolysis occurs during METH-induced 

neurotoxicity, investigation into the energy status of astrocytes during METH 

treatment will further clarify this phenomenon. 

The repeated continuous administration of a higher dose of METH to mice has 

been shown to produce a degenerative change in nigral dopaminergic neurons and 
> 

their axon terminals (Sonsalla et al., 1989), which is related to an increase in 

extracellular concentration of GLU (Abekawa et al., 1994). Since METH-mediated 

toxicity has been implicated to be related to an increased release of GLU andA)r an 

increased sensitivity of NMDA receptors to GLU, the effects of METH-induced 

neurotoxicity may depend on the ability of astrocytes to remove the extracellular 

GLU. Astrocytes contain GS (Martinez-Hernandez et al., 1977) which converts GLU 

to glutamine via a high-affinity uptake system (Hertz, 1979), therefore they may have 

a protective role against METH-induced excitotoxic injury. Low GS levels in 

astrocytes can result in the insufficient removal of extracellular GLU and therefore 

will lead to the activation of NMDA receptors on neurons, or increase in neuronal 

intracellular Ca�+ thus resulting in neuronal cell death. Stadlin et al (Stadlin et al., 

1998) reported that, after METH administration, a rapid decline in GS was observed 

in striatal as well as mesencephalic astrocytes. Astrocytes in the dopaminergic areas 
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may be more susceptible to METH-induced toxicity due to their inability to remove 

excess GLU. This reduced detoxification capability of striatal astrocytes will further 

increase the vulnerability of surrounding neuronal terminals to METH-induced 

injuries. Increased extracellular amount of GLU as well as depleted astrocytic GS 

content in the striatum may account for the regional selectivity in METH injuries. 

However, the precise sequence of events is still far from clear. 

Astrocytes also contain relatively high concentrations of GSH and GSH-Px 

when compared to neurons (Slivka et al., 1987; Raps et al., 1989). The presence of 

high GSH levels in these cells suggested that astrocytes are the major site for H2O2 

detoxification in the CNS and thus protecting them as well as neighbouring neurons 

from oxidative-induced injury. Neurons that lack GSH must therefore rely on nearby 

astrocytes to offer protection against H2O2-induced toxicity. Studies showed that the 
> 

generation of ROS is one of the mechanisms of METH neurotoxicity (Seiden and 

Vosmer, 1984; Wagner et al., 1985; DeVito and Wagner, 198%; Cadet et al., 1994b; 

Cubells et al., 1994; Giovanni et al., 1995). Astrocytes therefore may play an 

important role in protecting the neurons against oxidative stress. However, the role of 

astrocytes in METH-induced oxidative stress has yet to be elucidated. 

It has been shown that when astrocytes become reactive, the number of 

mitochondria (see review, Norenberg, 1994) and the glycogen content (see review, 

Haymaker et al., 1970) are increased. This modification may imply that the astrocytes 
^ 

are well prepared to generate more energy for the combating of injury. Since it was 

shown that METH causes astrogliosis in vivo (Hess et al., 1990;Pu and Vorhees, 

1993’ 1995; Pu et al., 1994; Broening et al., 1997) and in vitro (Sheng et al., 1994; 

Stadlin et al., 1998)，this may reflect an increase in energy demands by the astrocytes 

to compensate for the ATP loss (Chan et al., 1994) caused by METH. However, how 
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astrocytes react to METH-induced ROS production and subsequent neuronal injury 

awaits further elucidation. 

Cerv6s-Navarro et al., (1998) demonstrated that the GFAP immunoreactivity 

was remarkably increased in animals subjected to a 4 h heat stress at 38°C. This 

staining was more intense in brain stem (pons, medulla), cerebellum, thalamus and 

hypothalamus, striatum and parts of the hippocampus. Moreover, selective 

upregulation of vimentin expression was also observed. This study clearly 

demonstrated that astrocytes are also involved in the pathological mechanisms of 

hyperthermic brain injury. Since altered expressions of GFAP and vimentin were both 

observed in cultured astrocytes after METH treatment (Stadlin et al., 1998), it could 

therefore be speculated that astrocytes may also participate in mediating the METH-

induced hyperthermic response. 
> 

1.4 Aim of Project 

Although evidence so far has shown that oxidative stress, GLU excitotoxicity 

and metabolic stress participate in METH-induced neurotoxicity, the mechanism and 

the sequence of events whereby such neurotoxicity occurs is still far from clear. It was 

demonstrated that METH has deleterious effects on the dopaminergic (Fibiger and 

McGeer, 1971; Buening and Gibb, 1974; Wagner et al., 1980; Ricaurte et al., 1982; 

Seiden et al., 1988) and serotonergic system (Hotchkiss and Gibb, 1980a, b; Wagner 

et al., 1980; Bakhit et al., 1981; Commins and Seiden, 1986; Seiden et al., 1988) in 

the mammalian brain. Evidence so far showed that the dopaminergic terminals at the 

striatum are most severely affected with pronounced D A depletion in the striatum 

(Seiden et al., 1975, 1988; Ellison et al., 1978; Wagner et aI., 1980; Finnegan et al., 

1982; Preston et al., 1985). It remains unclear why dopaminergic terminals are more 
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vulnerable to METH-induced metabolic and oxidative stress. Apart from 

dopaminergic terminal damage, prominent astrogliosis was also observed in the 

striatum (Hess et al., 1990: Pu and Vorhees, 1993. 1995; Pu et al., 1994; Broening et 

al_, 1997) suggesting that astrocytes may also play a role in this toxicity. Astrocytes 

are the main sites of energy metabolism and GLU removal in the CNS and therefore 

play an important role in maintaining a balanced microenvironment. Furthermore, 

astrocytes also contain a large amount of antioxidants in the CNS, thus protecting the 

neurons from oxidative stress. Given the important functional role of astrocytes in the 

CNS, their role in mediating METH-induced oxidative and metabolic stress therefore 

cannot be overlooked. 

At present, it is unclear whether astrogliosis is a result of the degenerating 

dopaminergic terminals or a mediator of this event. Although 0'Callaghan and Miller 
> 

(1994) speculated that this astrocytic response is a consequence of the degenerating 

dopaminergic terminals, there is no direct evidence to date to suggest that this is the 

case. The aim of the project is therefore to clarify the role of astrocytes in contributing 

to METH-induced neurotoxicity. 

To achieve this goal, astrocytes were cultured from the cortex (with the 

removal of frontal cortex), striatum and ventral mesencephalon of neonatal C57/BL6 

mice and then treated with 4 mM METH and examined at different time points during 

48 h of treatment. Striatum was selected because this is the region where the 

dopaminergic axon terminals are situated. Ventral mesencephalon is the location of 

the dopaminergic cell bodies and the cortex was selected to serve as a non-

dopaminergic control. The rationale for examining astrocytes from three different 

brain regions is to clarify whether astrocytes may be an important element governing 

the selective vulnerability of the striatum to METH treatment. 

38 



In order to establish the sublethal dosage of METH, a dose dependent study 

was conducted. Different doses of METH was dissolved in the culture medium and 

added to the cultured astrocytes for 48 h. The effects of METH on cell viability was 

then assessed using the lactate dehydrogenase (LDH) assay. A dose response curve 

was constructed to establish the LD50 and the appropriate concentration that was 

below the LD50 was chosen. 

METH-induced astrogliosis was observed using phase contrast 

photomicroscopy. Since it was reported that METH caused ATP depletion in the rat 

striatum in vivo (Chan et al.，1994), it was pertinent to examine whether astrocytes 

contribute to the energy depletion observed in vivo. ATP content of astrocytes from 

striatum, mesencephalon and cortex was therefore measured in order to ascertain the 

effects of METH on astrocytic energy status. To further assess metabolic changes 
^ 

resulting from METH treatment, mitochondrial function measured as change of A4^m 

levels in living astrocytes was examined using a J-aggregate-forming dye, 5,5',6,6'— 

tetrachloro-l,r,3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1, Molecular 

Probes, Inc. USA). 

It has been shown that oxidative stress plays an important role in mediating 

METH-induced toxicity. Since astrocytes contain a large amount of antioxidants, it is 

pertinent also to study whether astrocytes participate, and to what extent, in the 

generation of ROS after METH treatment. To achieve this goal, the level of ROS 

production in the cultured astrocytes was measured using the non-fluorescent probe 

2',7'-dihydrodichlorofluorescein diacetate (DCFH2-DA). DCFH2-DA readily crosses 

cell membrane and is hydrolyzed by intracellular esterase to form 2',7'-

dichlorofluorescin (DCFH), which is another non-fluorescent species. In the presence 

of ROS, DCFH will be oxidized to highly fluorescent 2',7'-dichlorofluorescein (DCF) 
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and can be detected spectrofluoroinetrically. DCFH2-DA was shown to mainly detect 

H2O2 production (LeBel ei al., 1992; Hockberger et al., 1996). NO has also been 

shown to be involved in METH-induced oxidative stress due to its reaction with O2" 

to form the powerful oxidant 0 N 0 0 (see Section 1.2.1.4). The astrocytic production 

o f N O after METH-treatment was examined. Extracellular nitrite and nitrate levels, an 

index of NO generated, were measured by the Griess reaction. The selective iNOS 

inhibitor, aminoguanidine (AG), was added to confirm whether astrocytic NO 

production was due to iNOS activation. 

METH treatment induces hyperthermia (see Section 1.2.5). At present, it is 

unclear that whether astrocytes are also involved in the mediation of METH-induced 

hyperthermia. To investigate whether the presence of PGs would alter METH-

mediated NO production, COX-2 inhibitor indomethacin (]NDO) (Asano et al., 1989) 
> 

was used. Moreover, the METH-induced COX-2 and HO-1 protein expression were 

also examined using Wesiern blot analysis. Astrocytes were further treated with AG 

and INDO to examine whether inhibiting iNOS and COX-2 respectively can block the 

alternation of COX-2 and HO-1 protein expression. 

After establishing the effects of METH on astrocytic energy metabolism and 

ROS production, a co-culture system was employed to further establish whether this 

change in astrocytic function is responsible for mediating neuronal cell death. In 

METH-induced neurotoxicity, it is still unclear whether the astrocytes or the neurons 

take an initiative role in causing oxidative stress. To clarify this astrocytic-neuronal 

interaction, neurons was first cultured alone and treated with METH in order to 

establish a baseline for comparison. Due to the difficulties in obtaining a pure DA 

neuronal culture, a catecholaminergic cell line was used. The use of a homogeneous 
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population of neuronal cells would enable a clear elucidation of how astrocytes may 

contribute to METH-induced neuronal toxicity. 

CATH.a is a catecholaminergic cell line (kindly provided by Dr D.M. 

Chikaraishi, Duke University Medical Center, USA) that synthesizes abundant DA 

and norephinephrine and expresses TH, dopamine P-hydroxylase and DAT. It exhibits 

neuronal properties such as neurofilaments and synaptophysin but lack glial 

intermediate filaments. This cell line was derived from TH-positive tumors in 

transgenic mice carrying the SV40 T antigen oncogene under the transcriptional 

control of 773 base pairs of 5' flanking sequences from the rat TH gene (Suri et al., 

1993; Lazaroff et al., 1996). Mesencephalic, striatal and cortical astrocytes were 

cocultured with CATH.a cells for 1 day and then harvested at 4, 24, 48 h after METH 

treatment in order to examine the percentage of dead CATH.a cells. Neuronal cell 
>. 

death was then examined using a Live/Dead cell kit (Molecular Probe, USA). Pure 

CATH.a cells were also treated with the same dose and time point of METH to act as 

a comparison with the results obtained from CATH.a-astrocyte cocultures. These 

results not only enable us to ascertain the role of astrocytes in mediating METH-

induced toxicity, but also to further clarify the astrocytic-neuronal interaction 

associated with this injury process. 
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CHAPTER TWO: MATERIALS AND METHODS 

2.1 Cell Cultures 

2.1.1 Astrocyte Cultures 

Astrocytes were cultured from newborn C57 BL/6 mice provided by the 

animal house of the Chinese University of Hong Kong. All the procedures were done 

in strict sterile conditions. Animals were killed by decapitation and their heads were 

rinsed immediately with 70% alcohol. Cerebral cortices (without frontal cortices), 

striatum and ventral mesencephalon were isolated and minced in cold sterile Ca�+ and 

Mg2+ free Hanks balanced salt solution (HBSS, supplemented with 15mM HEPES 

and 0.35g sodium bicarbonate in lL, pH 7.4，Gibco). The tissues were dissociated in 

0.125% trypsin solution (1:1 vol./vol. ofO.25% trypsin solution: HBSS) for 10 min at 
> 

37°C. The trypsinization process was terminated by the addition of an equal volume 

of serum-containing medium. The mixture was centrifuged at 1800rpm for 5 min, 

resuspended and mechanically dissociated with an 18.5 gauge needle. The mixture 

was further dissociated through 70 ^m pore size sterile nylon Nitex mesh (Spectrum 

Medical Industries Inc.). Cell viability was estimated using trypan blue (Sigma) and 

the total number of cells were calculated on a haemocytometer. The mixture was 

diluted to give a seeding density of 1 x 10^ cells per 75cm" poly-L-lysine-coated 

culture flask (Falcon, Becton Dickinson and Company). After seeding, the cells were 

kept in a humidified incubator at 5% C 0 2 / 95% air, 37"C. The culture medium was 

changed after 3 days of seeding and thereafter, it was changed twice a week. The 

culture medium was composed of Dulbecco's modified Eagle's medium containing 

Ham's nutrient mixture F-12 (DMEM/F12, Gibco), supplemented with 10% heat 

inactivated fetal bovine serum (FBS, Gibco), 1.2g sodium bicarbonate, 1% penicillin 
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(lOOOunit/inl, Gibco) and 1% strepiomycin (l()()Oug/ml. Gibco). When the cells 

became confluent after 10-14 days of incubation, non-astrocytic cells were removed 

by shaking at 260rpin for 18-20 h at 3 7 � C (Lab-Line Orbit Environ-shaker). After 

shaking, the non-adhereni cells were removed and the intact cells were rinsed twice 

with HBSS. The cultures contained over 95% astrocytes on the basis of staining for 

glial fibrillary acidic protein (GFAP) (results not shown). 

Prior to the biochemical assays, subcultures were obtained first by trypsinizing 

the astrocytes with 6ml of 0.05% trypsin and EDTA for 10 min. Serum-containing 

medium was then added to stop the reaction. Astrocytes were then centrifuged, 

resuspended in serum-containing medium and viability obtained. The cells were then 

diluted to give a seeding density of 4 x 10'̂  cells per 35mm poly-L-lysine-coated 

culture dish (Corning, USA) and further cultured for another 3 days. 
• 

2.1.2 CATH.a Cell line and Astrocytes Co-cultures 

CATH.a cells were grown in medium containing RPMI 1640 supplemented 

with 8 % horse serum (Gibco), 4 % FBS (Gibco), 1% penicillin (lOOOunit/ml, Gibco) 

and 1% streptomycin (lOOOp.g/ml, Gibco). The cells were passaged twice a week 

using 0.25% trypsin without EDTA (Gibco). CATH.a cells of 20-40 passages were 

used in this experiment. 

To establish the CATH.a-astrocyte cocultures, astrocytes were first 

subcultured onto poly-L-lysine-coated 13mm-diameter round glass coverslips placed 

onto a 24-well plate (1 x 10'̂  cells per well; Nunclon™, Nunc) and grown for 5 days 

in DMyP12 medium with 10% FBS. Then the CATH.a cells were seeded on top with a 

seeding density of 3.2 x 10^ per well and were grown in 1 ml of RPMI 1640 medium 

supplemented with 8 % horse serum and 4 % FBS for another 1 day. CATH.a cell 
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lines and CATH.a-astrocyte cocultures were all cultured in this condition for 1 day 

prior to 4 mM METH treatment. Cells were harvested at 4，24 and 48 h after METH 

treatment. Cells cultured in medium only was used as controls. 

2.1 Treatment 

2.2.1 METH Treatment 

Astrocytes obtained from cortex, mesencephalon and striatum were initially 

treated with 0，0.5’ 1, 2, 3, 4，6mM METH for 48 h to establish the LD50 for METH 

on astrocytes. Results showed lliat the LD50 for METH on astrocytes was 6mM 

(results not shown), therefore in the present study, a sub-lethal dose of 4mM METH 

was used. 

At time intervals of 0, 4, 8, 12, 24, 48 h of METH treatment, cells were 

collected for biochemical assays. Thc culture media was collected for either lactate 

dehydrogenase (LDH) assay to assess cell viability or for nitrite and nitrate 

ineasurements. 

For the CATH.a-astrocyte cocultures, 4 mM METH was dissolved in 4% FBS 

and 2% horse serum in RPMI 1640 medium. 

2.2.2 Inhibition of Cyclooxygenase-2 (COX-2) and Inducible Nitric Oxide 

Synthase (iNOS) 

300 ^,M of aminoguanidine (AG), the iNOS inhibitor, was added together with 

4 mM METH in seium free DM/F12 medium to determine whether the blocking of 

iNOS was able to attenuate METH-induced NO formation (Section 2.7). At the same 

time, COX-2 aiid HO-1 prolcin expression was also cxaniincd by Western blot 

analysis and thc addition of AG was to determine whether the blocking of iNOS-
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stimulated NO release could suppress or enhance the activation of these 2 inducible 

enzymes after METH treatment (Section 2.8.1). 

Similarly, 10 îM indomethacin (lNDO) was added together with 4 mM 

METH in serum free DM/F12 medium to examine whether the blocking of COX-2 

activity can attenuate or enhance METH-induced NO production. Similarly, in 

examining COX-2 and HO-1 protein expression using Western blot analysis, the 

addition of INDO was used to determine whether thc blocking of COX-2 activity will 

suppress or enhance the activity of COX-2 and HO-1 expression after METH 

treatment. (Scction 2.8.1). • 

2.3 Lactate Dehydrogenase (LDH) Assay 

The cytotoxicity of METH on astrocytes was determined from the release of 

LDH into the culture medium. LDH is released when the cells undergo increased 

activities of glycolysis due to the failure of mitochondrial ATP formation. The 

measurement of thc LDM activity was carricd out according to the method of Amador 

et al. (Amador E et al., 1963). The principle of the assay is based on LDH catalyzing 

the oxidation of lactate to pyruvate with simultaneous reduction of nicotinamide 

adenine dinucleotide (NAD) and is shown as follows: 

LDH 
Lactate + NAD > Pyruvate + NADH + H^ 

The formation of the reduced nicotinamide adenine dinucleotide (NADH) 

results in an increase in absorbance at 340nm which is directly proportional to LDH 

activity in the sample. At 0, 4’ 8，12, 24, 48 h after METH treatment, the culture 

media were collected, and 50 ^1 of medium from each sample were mixed with 1 ml 

pre-warmccl (30�C) LD-L reagent (Sigma Diagnostics, LDH-L 50 kit; Sigina, USA) 

4 5 



The reaction was left to stand for 30 seconds and the initial reading was recorded 

spectrophotometrically (Beckman DU-7500) at 340 nm at 30�C. The reaction mixture 

was further incubated for 60 seconds and the final reading was recorded. The change 

of absorbance (AA) per minute (AAnin) was obtained by subtracting the initial reading 

from the final reading. The determination of the LDH activity (U/L) is according to 

the following equation: 

AA per min x total reaction volume x 1000 
LDH Activity (U/L)= 

6.22 X sample volume x light path 

where "AA per miii" represent the change in absorbance per minute at 340 nm; total 

reaction volume is equal to 1.05 ml; sample volume is 0.05ml; coefficient of 

extinction of NADH is 6.22; light path is lcm; and 1000 is the factor to convert units 

per ml to units per liter. 

AA per min x 1.05 x 1000 
LDH Activity (U/L) 二 

6.22 X 0.05 

One unit of LDH activity is defined as the amount of enzyme that will catalyze the 

formation of 1 ^inol of NADH per minute under the conditions of the assay 

procedure. 

LDH released into the culture medium was assayed as an index for astrocytic 

viability during thc 48 h METH treatment. For each time point studied, media from 3 

dishes were obtained. Three independent experiments were performed for the entire 

study. 

2.4 Assay for Reactive Oxygen Species (ROS) Formation 
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ROS was measured according to LeBel and Bondy (LeBel and Bondy, 1990) 

using the non-fluorescent probe '2,7'-dichlorofluorescin diacetate (DCFH-DA, 

Molecular Probes Inc. USA). DCFH-DA readily crosses cell membranes and is 

hydrolyzed by intracellular esterase to form non-fluorescent 2',7'-dichlorofluorescin 

(DCFH). In the presence of ROS, DCFH will be oxidized to the highly fluorescent 

2',7‘-dichlorofluorescein (DCF). 

To perform this assay, astrocytes were subcultured onto poly-L-lysine-coated 

24-well plates (Nunclon™, Nunc) at a seeding density of 1 x 10^ cells per well. At 0, 

4，8, 12，24，48 h of METH treatment, the culture mcdia were removed and cells 

gently washed once with phosphate buffer saline (PBS, pH 7.4). The cells were then 

incubated in 480 [i\ 40 mM Tris buffer (Sigma, pH 7.4) with the addition of 20 [i] of 

DCFH-DA (2.5 mg/ml; final concentration = 10 |ig/ml) in methanol"and incubated for 

15 min at 37°C. The same volume of methanol (without DCFH-DA) was added to 

another cell sample to correct for aiitofluorescence generated by the cells. The 

correction for autofliiorescence was less than 10% of the total. Fluorescence was then 

ineasured wilh a fluoresccnt spcclrophotonietcr (excitation al 488 nin, emission at 525 

nm, 37"C; Cytofluor 2350, Millipore). The reading was expressed as DCF 

fluorescence per dish. Six independent experiments were performed for each time 

point, and for each treatment and coiitiol group. 

To determine the rate of change of ROS production in astrocytes during 

METH treatment, a similar experiment was performed but with some minor 

modifications. Cultured medium was removed and the cells were gently washed twice 

with PBS. The cells were lhen incubated in 480 jil 40 mM Tris buffer with the 

addition of 20 [i\ of DCFH-DA (2.5 mg/ml; final concentration = lO^ig/ml) in 

methanol and incubated for 15 min at 37°C. The same volume of methanol without 
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DCFH-DA was added to correct for autofluorescence generated by the cells. Cell 

sample measurement of DCF commenced after 15 min of DCFH-DA pre-incubation 

(t=0). At this tiine point, 50 ^1 of 44 mM METH (4 mM final concentration) was 

added in 40 mM Tris buffer. The same volume of 40 mM Tris buffer was added for 

the control. Fluorescence was monitored every 15 min for both the METH-treated and 

control samples for 120 min. Trypan blue (0.2%) was added at t=120 to ascertain cell 

viability. Since the astrocytes were incubated only in Tris buffer during the course of 

this experiment, it was not possible to measure the ROS formation beyond 120 min 

without affecting the viability of the cells, therefore DCF fluorescence was not 

measured beyond 120 min treatment. Four independent experiments were performed 

for each treatment and control group. 

V 

2.5 Assay for Adenosine Triphosphate (ATP) Content 

The firefly luciferase assay (Leinasters and Hackenbrock, 1979) was used to 

measure the ATP content in astrocytes. Crude cxlract of firefly luciferase (E) contains 

luciferin (LH2) which in presence of ATP can undergo a luminescence reaction based 

on the following Iuciferase-catalyzed reactions: 

Mg2+ 
E + LH2 + ATP < > E. LH2AMP + PPi (1) 

E- LH2AMP + O2 > E + CO2 + AMP + oxyluciferin + light (2) 

The initial activation step, Reaclion (1), is the formation of enzyme-bound 

luciferyl adenylate (E. LH2AMP) and pyrophosphate (PPi) from LII2 and ATP. 

Reaction (1) is reversible and requires a divalent cation such as Mg2+. The luciferyl 

adenylatc-enzyme complex lhcn reacts irreversibly wilh molccular oxygen [Reaclion 
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(2)] to produce AMP, CO2 and oxyluciferin, and a concomitant emission of light 

which can be captured by a luininoineter. 

At 4，8，12, 24 and 48 h incubation with 4mM METH, culture media were 

removed and cells were washed twice with PBS (pH 7.4). The astrocytes were then 

scraped off in 1 ml 5% perchloric acid (PCA) with a rubber policeman and transferred 

to individual eppendorf lubes. The tubes were ccntrifuged and 20 |il of the 

supernatant was mixed with 505 îl 5% PCA. 188 … 2 N NaOH was added to 

neutralise PCA. 20^1 of the mixture was again taken from the final solution to mix 

with 180 …glycylglycine (GG) buffer (75 mM glycylglycine + 15 mM MgCl2, pH 

7.8). 10ml of GG buffer was added to each vial to dissolve the crude extract of firefly 

luciferase (Sigma). 200 îl of the enzyme solution was then added to each control and 
V 

METH-treated tubes and the luminescence was recorded by the luminometer 

(AutoLumat LB953, Berthold). The ATP content for each sample was calculated froni 

the standard curves, which was constructed by reading the luminescence of different 

concentrations of ATP (0, 50, 100, 150, 250 and 500 pmol). Since ATP is hydrolyzed 

during the course of measurement, a correction factor for the standard was obtained 

by measuring the absorbance of 0.05 mM ATP with the spectrophotometer at 254 nm. 

This absorbance of the standard was then divided by 15.4 (extinction coefficient for 

ATP) and multiply by 200 (to give final concentration of 10 mM). The ATP content 

of each sample was read from the standard curve constructed. The control group 

consists of astrocytes without METH trealment and was designated as 0 h. The 

experiment was repeated 5 times for each time point studied. 
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2.6 Determination of Mitochondrial Membrane Potential (A^m) 

JC-1 is a ratiometric, dual emission fluorescent dye lhat reflects changes in 

A4^m in living cells. JC-1 forms J-aggregates that is a de-localized lipophilic calion 

with positive charges and is taken up by mitochondria in accordance to the Nernst 

equation, without the complication of pH and ionic strength. JC-1 has 2 emission 

wavelengths, 527 nin (green) for the monomer form and 590 nm (red) for the J-

aggregate form. The red fluorescence is only predominant when A4^m is high and 

during cell injury when there is a decrease in AH^m, there will be an increase in green 

fluorescence. The examination of red and green fluorescent signals will reflect how 

the AHKm was being affected under METH-induced metabolic stress. 

Astrocytes were subcullured onto poly-L-lysine-coated 25inm-diameter round 
V 

glass coverslips (VWR Scientific) and grown for 5 days in DMEM/F12 medium (with 

10% FBS) prior to the determination of ATm. After the cells were treated with 1ml 

of 4 mM METH in serum free DMEM/F12 medium for 0, 4’ 8，12, 24 and 48 h, they 

were washed briefly with pre-warnied HBSS and incubated with JC-1 at 10 P-g/ml in 

HBSS at room temperature for 20 min. The cells were subsequently washed twice 

with dye-free HBSS and then mounted onto a living cell chamber (Autofluor® Cell 

Chamber, Molecular Probes) containing HBSS. The results were captured with a 

BIO-RAD MRC 1024 laser confocal scanner (BIO-RAD Corp., Hercules, CA) on a 

Zeiss Axiophot inverted microscope (Zeiss, Germany). A Nikon 63x oil immersion 

objective was used and the optimal optical signals were obtained by averaging 8 - 10 

successive scans using Kalman filtering. The 488 nm argon ion laser and fluorescence 

emissions at 522 土 30 nm and 585 nm for peak fluorescence for the monomer (527 

nm) and J-aggregate (590 nm) of JC-1 respectively was used. The results were 

analyzed using the Confocal Assistant 4.2 (BIO-RAD). 
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2.7 Determination of Nitrite Levels in Cultured Astrocytes 

Nitric oxide (NO) will degrade rapidly (half-life ~ 5 seconds) (Dawson and 

Snyder, 1994) to fonn nitrite (NO2") and nitrate (NO^') when reacting with oxygen 

(Schmidt and Kelm, 1996). NO activity was therefore indirectly measured by the 

accumulation of NO2' in the culture medium froin 1 - 48 h after METH treatment. The 

supernatant of the astrocyte cultures were collected and the total level of NO2' was 

determined spcctrophotometrically using the Griess rcaction according to Schmidt et 

al (Schmidt and Kelm, 1996). Prior to this, NO3' was first reduced to NO2" by nitrate 

reductase (0.1 unit/ml; Bochringer Mannheim). Firstly, the supernatant was 

centrifuged at 1000 x g for 15 inin at room temperature to remove residual cells and 

debris. All subsequent steps were done in red polypropylene tubes to protect against 

light-sensitive nitrate reductase. NO3" was reduced stoichiometrk:ally to NO2' by 

incubating 150 îl of sample aliquots for 15 min at 37°C in the presence of 0.1 U/ml 

nitrate reductase, 50 |iM NADPH, and 5 ^M FAD in a final volume of 160 \i\. When 

nitrate reduction is completcd, NADPH was thcn oxidized with 10 U/ml lactate 

reductase dehydrogenase (raised from rabbit muscle; Boehringer Mannheim) and 10 

mM sodium pyruvate to avoid interference with NO2' determination. Samples were 

incubated for 5 min at 37°C in a final volume of 170 pJ. 

When nitrate reduction was complete, samples were cooled down to 4°C. 1 

mM sulfanilamide and lhen 0.1 M HC1 was added to a final volume of 200 ^1 

(diazotization). This was followed by centrifuging samples at 1000 x g for 15 min at 

4°C. An aliquot of 150 fjJ of each supernatant fraction was transferred to 96-well 

microliter plates, and were read at 540 nm using a microplate reader (Nunc 269620). 

From the absorbance of each well containing the sample, the average absorbance of a 

row of wclls containing 150 …wa(cr was sublraclcd to give absorbancc value A| 
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(blank). 10 fjJ of 1 mM naphthylethyIene-diamine was added to all the sample wells 

including the blank, and incubated at room temperature for 10 min before the plates 

were read again (to let the product of diazotization react with naphthylethylene-

diamine to fonn an azo derivative), subtracting the blanks (Ai) to give the absorbance 

value (A2). The level of NO2' formation was signified as the change in absorbance of 

A2-A1 and results were plotted against a nitrate/nitrite standard curve. The detection 

limit was 30 pmol/50 pJ sample and results were expressed as p,M NO2". The data 

from 4 - 6 independent experiments were expressed as the mean 土 standard error of 

mean. 

2.8 Western Blot Analysis 

After removal of culture medium, intact cells were first washed twice with 

cold PBS and then scraped with a rubber policeman using 80 \i\ lysis buffer (20 mM 

Pipes, 0.25 M Sucrose, 1 mM EDTA, 1 mM EGTA, 10 mM monothioglycerol, 5 ^iM 

leupeptin, 1 mM phcnylmethancsulonyl fluoride, 0.1% SDS, (all from Sigma, pH 

7.4). Cells were then sonicated for 5 min and 10 |il of cell extracts were used for the 

measurement of protein contenl (Lowry et al., 1951). Thc dclermined amount of 

protein was then electrophoresed in SDS-polyacrylamide gel (acrylamide, Sigma) in a 

Mini Protean II Electrophoresis Cell (BIO-RAD). After electrophoresis, the proteins 

were transferred to a 0.45 jiM nitrocellulose membrane (Hybond, Amersham) by the 

Trans-Blot SD Semi-Dry Transfer Cell. The membrane was then blocked with 1 % 

Tween-20 (USB, Amersham) in PBS at room temperature for 1 h. After blocking, the 

membrane was then incubated overnight with the primary antibody, then washed with 

0.05% Tween-20 and incubated with horseradish peroxidase-conjugated secondary 

antibody (Amersham) for 1 h. Thc mcmbraiic was again rinscd wilh 0.05% Tween-20 
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for 30 min and incubated with reagents from the Enhanced Chemiluminescent Kit 

Plus (Amersham) for 1 min for the development of fluorescence. The membrane was 

then placed on the X-ray film (Boehringer Mannheim) and the film was developed by 

a film processor (X-OMAT, Kodak). The relative density of the bands was measured 

by a densitometer (GS-750, B10-RAD) and analyzed by Molecular Analysts (version 

1.4,BIO-RAD). 

2.8.1 COX-2 

COX-2 protein content was determined in astrocytes that are classified into i) 

control, ii) METH-treated, iii) AG, iv) AG + METH, v) COX-2 and vi) COX-2 + 

METH groups. 20 îg of protein from each group was electrophoresed in 10% SDS_ 

polyacrylamide gel. Goat anti-COX-2 (1:500, Santa Cruz) primary antibody and 

horseradish peroxidase-conjugatcd rabbit anti-goat IgG (1:1,500, Santa Cruz) 

secondary antibody was used. 

2.8.2 HO-1 

HO-1 protein content was determined in astrocytes that are classified into i) 

control, ii) METH-treated, iii) AG, iv) AG + METH, v) COX-2 and vi) COX-2 + 

METH groups. 20 [ig of protein from each group was electrophoresed in 12% SDS-

polyacrylamide gel. Rabbit anti-HO-1 (1:2,000, StressGen) primary antibody and 

horseradish peroxidase-conjugated hamster anli-rabbit IgG (1:2,000, Amersham) 

secondary antibody was used. 
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2.9 Viability Assay for CATH.a Cell Line 

To determine the viability of CATH.a cclls as well as CATH.a-astrocyte 

cocultures after METH treatment, a Live/Dead® Viability/Cytotoxicity Kit (Molecular 

Probes, USA) was employed. This kit provides a two-color fluorescence cell viability 

assay based on the simultaneous determination of live and dead cells with two probes 

that measure two recognized parameters of cell viability — intracellular esterase 

activity and plasma membrane integrity. Live cells are distinguished by the presence 

of ubiquitous intracellular esterase activity, determined by the enzymatic conversion 

of the non-fluoiesceiit cell permeable calcein AM to the intensely fluorescent calcein. 

The polyanionic calcein is well retained within live cells, which produces an intense 

uniform green fluorcscence in live cclls with excitation al 495 nm and emission at 515 

nm. Ethidium homodimer (EthD-1) enters cells with damaged*' membranes and 

undergoes a 40-fold enhancemcnt of fiuorcscencc upon binding to nucleic acids, 

thereby producing a bright red fluorescence in dead cells when undergoing excitation 

at 495 nm and emission at 635 nm. ElhD-1 is excluded by the intact plasma 

membrane in live cells thus is specific to only damaged plasma membranes. 

CATH.a cells and CATH.a-astrocyte cocultures were harvested at 4，24 and 48 

h after METH treatment. Cells were gently washed once with sterile, tissue-culture 

grade PBS. Cells were then incubated with 200 îl of combined LIVE/DEAD assay 

reagents (4 ^iM EthD-1 and 2 [iM calcein AM in sterile, tissue-culture grade PBS) per 

well for 30 min at rooin temperature. 10 |il of fresh combined LIVEA3EAD assay 

reagents was added to a microscope slide and the coverslip containing the cultured 

cells was then inverted and mounted onto the slide. The number of live and dead 

CATH.a cells were counted under a fluoresccncc microscope (Zciss, Germany) with 
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filters having wavelength of 485 nm for calcein (which labels the live cells) and 

wavelength of 530 nm for EthD-1 (which labels the dcad cells). 

2.10 Statistics 

All the data are expressed as the mean 土 standard error (SEM). One-way 

ANOVA was used for ROS (time course), ATP, NO2" measurements as well as 

CATH.a-astrocyte cocultures. This was followed by post-hoc Bonferroni test for 

ROS, ATP and NO2' and indcpcndcnl t-lest belwecn control and METH treatment in 

the coculture system. P values < 0.05 are considered as significant. 

For the rate of change in ROS assay, linear regression lines were fitted to the 

time points studied and the equality of slopes (rate of change) was then compared. 

Significant trend differences among the groups were tested with a F-test, p values < 

0.001 was considered as significant. 
V 

For LDH assay, an independent t-test was used to compare the difference 

between control and METH-treated groups. 
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CHAPTER THREE: RESULTS 

3.1 The Effects of METH Treatment on Cultured Astrocytes 

3.1.1 Lactate Dehydrogenase (LDH) Activities 

Table 1 showed the results of LDH activity at 0 and 48 h after 4 mM METH 

lrcaliiicnt. 4mM METH lrcalmcnl on culturcd aslrocy(cs rcsullccl in no significant 

differences in LDH activities during the 48 h incubation period. In striatal astrocytes, 

LDH activities were 3.44 士 1.50 to 6.22 土 0.06 U/L from 0 — 48 h treatment. In 

mesencephalic astrocytes, LDH activities were 2.10 土 0.56 to 1.77± 0.21 V/L from 0 

- 4 8 h METH treatment. LDH activity in cortical astrocytes was shown to be 2.39 士 

0.80 U/L at 0 h, reaching a maximum of 4.23 土 0.8 U/L at 48 h. Since there was no 

significant increase in LDH activity from 0 to 48 h signifying minimal loss of cell 

viability. Results from other time points were not shown. 

3.1.2 Morphological Changes 

Figures 1 to 3 showed the morphology changes in astrocytes after 48 h of 

METH treatment. Prior to METH treatment, astrocytes showed a protoplasmic 

appearance (Fig.la-c). After 48 h 4 mM METH exposure, striatal astrocytes and 

mesencephalic astrocytes showed considerable astrogliosis when compared with their 

control groups (Fig. 3a,b). Fibrous astrocytes with slender processes were more 

prominent in these 2 regions when compared to cortical astrocytes (Fig. 3c). A large 

amount of vacuoles were also shown to be present in the cytoplasm of astrocytes 

cultured from all 3 regions (Fig. 2a-c). Thesc vacuoles were visible in all METH-

treated astrocytes as earlier as 8 h post-treatment. 
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Table 1 Data are expressed as means (UA.) 士 S.E. from four separate 

experiments. Values in the treated groups at 48 h were not significantly 

different from control (0 h) after comparisons using independent t test. 

^ 
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LDH activity 

U ^ 

0_h 48h 

Striatum 3.44 土 1.50 6.22 土 0.06 

Mesencephalon 2.10 土 0.56 1.77 ± 0.21 

Cortex 2.39 土 0.80 4.23 ± 0.80 



Fig. 1 Phase contrast micrographs of control astrocytes cultured from (a) 

striatum (St), (b) mesencephalon (Me) and (c) cortex (Co). Cells were 

without METH treatment and incubated in culture medium for 48 h. 

(xlOO magnification) 
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Fig. 2 Phase contrast micrographs of cultured astrocytes from (a) striatum 

(St), (b) mesencephalon (Me) and (c) cortex (Co) after 8 h METH 

treatment. Arrows indicate the presence o f vacuoles. (xlOO 

magnification) 
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Fig. 3 Phase contrast micrographs of cultured astrocytes from (a) striatum 

(St), (b) mesencephalon (Me), and (c) cortex (Co) after 48 h METH 

treatment. Intense astrogliosis was observed with St > Me > Co. (xlOO 

magnification) 
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3.1.3 The Production of Reactive Oxygen Species (ROS) 

3.1.3.1 Rate of change (0 - 120niin) 

The rates of ROS production in striatal, mesencephalic and cortical astrocytes 

were shown to be different during the 120 min of METH treatment. In control striatal 

astrocytes, the rate of change (slope coefficient = 25.43; 2144.54 土 34.03 to 5099.65 土 

263.48 U from 0 to 120 min) is significantly (p<0.001) higher than that of control 

cortical (slope coefficient = 20.73; 2118.63 士 127.72 to 4520.96 土 445.61 U from 0 to 

120 min) and nicscnccpluilic (slope cocfficicnl = 19.61; 2127 .17 i 46.86 to 4404.48 土 

182.65 U from 0 to 120 min) astrocytes (Fig. 4). 

In METH-treated striatal astrocytes, thc rate of change (slope coefficient = 

31.96; 2019.42 士 89.84 to 5768.83 土 724.64 U from 0 to 120 min) was significantly 

(p<0.001) greater than that of its control group (slope coefficient = 25.43) (Fig. 5a). 

In METH-treated mescncephalic astrocytes, there was no significant difference in the 

rate of change (slope coclTiciciU = 23.81; 2128.17 土 60.82 lo 4970.67 土 414.38 U 

from 0 to 120 min) when compared with the controls (slope coefficient = 19.61)(Fig. 

5b). There was also no significant difference between the rate of change in METH-

treated cortical astrocytes (slope coefficient = 23.85; 2216.81 士 83.18 to 5026.54 土 

182.62 U from 0 to 120 min) and controls (slope coefficient = 20.73)(Fig. 5c). 

3.1.3.2 Time course (0 - 48 h) 

After 4 mM METH treatment, striatal astrocytes (Fig 6a) showed a significant 

increasc (p < 0.05) in ROS formation from 8 h onwards when compared lo 

mesencephalic and cortical astrocytes (Fig. 6b, c). In striatal astrocytes (Fig. 6a)’ a 20 

and 55 % increasc in ROS formation was reached at 8 h (p < 0.05; 1318 土 45.26 U to 
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Fig. 4 The amount of DCF formed in control striatal (St), mesencephalic 

(Me), and cortical (Co) astrocytes during 120 min ofMETH treatment. 

Data were obtained from 4 independent experiments and are expressed 

as mean DCF fluorescence units. Regression analysis showed that the 

rate of change of striatal astrocytes was significantly (F-test, p value < 

0.001) greater than that of mesencephalic and cortical astrocytes. 
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Fig. 5 The amount of DCF formed in striatal (a), mesencephalic (b) and 

cortical (c) astrocytes during 120 min ofMETH treatment. Data were 

obtained from four independent experiments and are expressed as 

mean DCF fluorescence units 士 S.E. Regression analyses showed that 

there is a significant (F-test, p value < 0.001) increase in the rate of 

change in METH-treated striatal astrocytes when compared to control 

cells. No significant rate of change was observed in METH-treated 

mesencephalic nor cortical astrocytes. 
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Fig. 6 The amount of DCF formed in striatal (a), mesencephalic (b) and 

cortical (c) astrocytes after 0 - 48 h of 4 mM METH treatment. Data 

were obtained from six independent experiments and are expressed as 

mean DCF fluorescence units 土 S.E. 

* Statistically different (p <0.05) from the values obtained from 

astrocytes with no METH treatment (0 h). 
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1580 土 49.95 U at 0 to 8 h) cincl 48 h (p < 0.05; 1318 土 54.26 U to 2042 土 73.80 U at 0 

to 48 h) respectively. 

Mesencephalic astrocytes showed a significant increase in ROS formation 

from 12 h METH treatment (Fig. 6b). At 12 h METH treatment, a 33 % increase (p < 

0.05; 1299 土 20.34 to 1727 土 72.10 U at 0 to 12 h) was reached, by 48 h, a 53% 

increase (p < 0.05; 1299 士 20.34 to 1990 士 102.16 U at 0 to 48 h) was shown. For 

cortical astrocytes (Fig. 6c), there was no significant increase in ROS formation 

during 0 to 48 h METH treatment (Fig. 6c). The ROS levels reached a maximum of 

25% increase from 0 (1415± 9.77 U) to 48 (1772 土 30.11 U) h treatment. 

3.1.4 Change in ATP Content 

During the course of the 48 h METH treatment, astrocytes from all three 

regions showed a similar pattern of an initial increase followed by a decrease in ATP 

levels. Striatal astrocytes showed a significant (p < 0.05) increase in ATP levels at 4 h 

(49.41 士 3.69 nmol/nig) METH trealmcnt when compared wilh controls at 0 h (31.21 

土 2.44 nmol/ing protein) (Fig. 7a). This was followed by a slight decline in ATP 

levels at 8 and 12 h followed by a significant increase at 24 h (50.56 土 3.32 nmol/mg 

protein) METH treatment. These increases at 4 and 24 h were 58 and 62% 

respectively to that of controls. However, by 48 h METH treatment, ATP levels 

reached a significant decrcase (19.15 土 4.98 nmol/mg protein) of 39% to that of 

control values. 

Mesencephalic astrocytes showed a significant (p < 0.05) increase in ATP 

levels at 12 h (54.03 土 3.70 nmol/mg protein) with a 50% increase when compared to 

controls at 0 h (36.06 土 1.88 nmol/mg protein) (Fig. 7b). From 12 h onward, ATP 

levels declined gradually reaching near the control values (33.11 土 1 . 8 6 nmol/mg 

58 



Fig. 7 The effects of 4 mM METH treatment on ATP content in striatal (a), 

mesencephalic (b) and cortical (c) astrocytes. Values are expressed as 

means (nmoI ATP/mg protein) 士 S.E. (n = 6) 

* Statistically different (p <0.05) from the values obtained from 

astrocytes with no METH treatment (0 h). 
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protein) at 48 h treatment. For cortical astrocytes, at 24 h METH treatment, a 78% 

increase (p < 0.05; 32.56 土 1.11 to 58.10 土 10.43 nmol/mg protein at 0 to 24 h) in 

ATP levels was observed (Fig. 7c). By 48 h METH treatment, ATP levels were 36% 

(44.30 土 4.03 nmol/mg protein) higher than that of controls. 

3.1.5 Change in Mitochondrial Membrane Potential (ANKm) 

JC-1, a A4^m-sensitive dye was used to assess the change in ATm after METH 

treatment. Hyperpolarized mitochondria (JC-1 -red fluorescence) were exclusively and 

prominently present in the cytoplasm of ail untreated astrocytes (Fig. 8a, 9a, lOa). On 

the other hand, depolarized mitochondria (JC-l-green fluorescence) were found in 

astrocytes treated with METH (Fig.8b,c, 9b,c, lOb,c). 

V 

In both striatal and mesencephalic astrocytes, the drop in A4^m occurred as 

early as 8 h after METH treatment (Fig. 8b, 9b). However, lhis drop in AH^m was only 

observed in cortical astrocytes after 12 h of METH treatment (Fig. IOb). 

By 48 h of METH treatment, astrocytic A4^m for all three regions were mostly 

depolarized, they were characterized by the abundant green fluorescence observed iii 

the cytoplasm. (Fig. 8c, 9c, lOc). Vacuoles were also observed in the cytoplasm of 

these cells. This phenomenon was also described (Section 3.1.2) when observed under 

phase contrast microscopy. 

3.1.6 Nitrite levels after METH treatment 

(a) Striatal astrocytes (Fig. 1 la) 

Striatal astrocytes showed lhat there was an increase in nitrite level in the 

control group during 48 h of incubation. The nitrite level reached a significant 

increase at 24 h (2.71 ±0.21 îM at 1 h to4.21 ± 0 . 1 4 p M a t 2 4 h; p < 0.05). By 48 h 
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Fig. 8 Confocal microscopy images of striatal astrocytes showing the control 

(a), 8 h METH-treated (b), and 48 h METH-treated (c) groups. Red 

fluorescence indicates mitochondria with a high A ^ m while green 

fluorescence indicates mitochondria with a low A^m. 

Arrows indicate the presence of vacuoles, (x 630 magnification) 
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Fig. 9 Confocal microscopy images of mesencephalic astrocytes showing the 

control (a), 8 h METH-treated (b), and 48 h METH-treated (c) groups. 

Red fluorescence indicates mitochondria with a high A^m while green 

fluorescence indicates mitochondria with a low A4^m. 

Arrows indicate the presence of vacuoles, (x 630 magnification) 
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Fig. 10 Confocal microscopy images of cortical astrocytes showing the control 

(a), 12 h METH-treated (b), and 48 h METH-treated (c) groups. Red 

fluorescence indicates mitochondria with a high A^m while green 

fluorescence indicates mitochondria with a low A^m. 

Arrows indicate the presence ofvacuoles. (x 630 magnification) 
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Fig. 11 Amount of nitrite released into the medium from striatal (a), 

mesencephalic (b) and cortical (c) astrocytes cultured in control (Ctrl), 

4 mM METH (METH), 300 ^iM aminoguanidine (AG) or 300 ^iM AG 

with 4 mM METH (AG + METH) media. Values are expressed as 

means (^iM) 土 S.E. (n=4). 

# &atistically different (p<0.05) between the METH or AG with the 

control. 

* Statistically different (p<0.05) between AG + METH and METH. 

§ Statistically different (p<0.05) between the time points. 
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incubation, it reached a 71 % increase (4.64 土 0.09 ^iM; p < 0.05). After 4mM METH 

treatment, striatal astrocytes showed a rapid increase in nitrite levels from 1 h (5.63 土 

0.41 fxM) onwards. This represents a one fold significant (p < 0.05) increase when 

compared to the control. By 48 h treatment, a maximum of 1.7 fold (12.52 土 0.52 |iM; 

p < 0.05) increase in nitrite level was reached when compared with the control. 

(b) Mesencephalic astrocytes (Fig. 1 lb) 

Unlike striatal astrocytes, control mesencephalic astrocytes only showed a 

slight increase (not significant) in nitrite levels during 48 h of incubation. However, 

the overall basal nitrite levels of mesencephalic'astrocytes (3.85 士 0.24 |j,M at 1 h and 

5.32 士 0.15 ^iM at 48 h) were higher than that of striatal astrocytes. 

At 1 h after METH treatment, mesencephalic astrocytes showed a 60% 
V 

increase (6.14 土 0.20 ^iM; p < 0.05) in nitrite level when compared with the control. 

Significant increases in nitrite levels were observed from 4 h onwards, reaching a 

maximum of 1.6 fold at 48 h (13.94 土 0.51 ^iM; p < 0.05). 

(c) Cortical astrocytes (Fig. 1 lc) 

Control cortical astrocytes showed a slight increase (not significant) in nitrite 

levels that were similar to those of control mesencephalic astrocytes. A 27% increase 

in nitrite level was observed at 48 h (4.27 土 0.39 ^iM) when compared with 1 h (3.38 

土 0.28 p.M) of incubation. After METH treatment, there was a gradual increase in 

nitrite level and this increase was also significant at 1 h post-treatment. Significant 

increases were observed from 4 h onwards reaching a 1.86 fold increase (12.21 土 0.71 

^lM) at 48 h treatment. 
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3.1.7 The Effects of Aminoguanidine (AG) on Nitrite levels 

In this experiment, astrocytes were treated with either AG + METH or AG 

only. When astrocytes were treated with AG alone, there were significant reductions 

in nitrite levels in astrocytes from all three regions when compared with their 

respective controls (Fig. 11). When AG was added with METH, there were also 

significant reductions in nitrite levels when compared with their respective METH-

treated groups. 

(a) Striatal astrocytes (Fig. 11 a) 

When striatal astrocytes were treated with AG alone, there were marked 

reductions in nitrite levels reaching lower than control levels for all the time points 

studied. At 1 h to 48 h after AG treatment, a 59 to 69 % decrease^ (1.10 土 0.06 and 

1.45 土 0.15 \ M respectively; p < 0.05) in nitrite levels was observed when compared 

with their corresponding controls. When the striatal astrocytes were treated with AG + 

METH, the nitrite levels were also decreased along all the time points studied. These 

decreases were significant (p < 0.05) along all the time points studied, with the 

exception at 2 h, when coinparcd with METH treatment alone. A 45 (3.09 土 0.18 p,M) 

and 70 % (3.71 土 0.44 ^iM) decrease at 1 and 48 h respectively were observed when 

compared with the corresponding METH treatment groups. When compared to the 

control groups at 1 h treatment, the nitrite level was reduced to near control value 

(3.09 土 0.18 ^iM in AG + METH vs 2.71 土 0.21 ^iM in control). Similarly, at 48 h of 

AG + METH treatment, the nitrite level was 3.71 土 0.44 \LM, which is near the 

control value (4.64 土 0.09 |iM). 
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(b) Mesencephalic astrocytes (Fig. 1 lb) 

Similar to that observed for striatal astrocytes, AG treatment alone in 

mesencephalic astrocytes, also showed a marked reduction in nitrite levels. There was 

a 71 (1.13 土 0.81 |_iM) and a 74% (1.38 土 0.22 ^iM) decrease in nitrite levels at 1 and 

48 h respectively when compared to their corresponding controls. There were 

significant differences (p < 0.05) between the AG treatment group and the control 

group at all time points studied. 

When the mesencephalic astrocytes were treated with AG + METH, the nitrite 

levels were also reduced along all the time points studied. These decreases were 

significant (p < 0.05) along all the time points studied, with the exception at 2 h, when 

compared to METH treatment alone. A 61 (2.41 土 0.08 ^^M) and 73% (3.79 土 0.36 

y 

jjM) decrease at 1 and 48 h respectively were observed when compared with the 

corresponding METH treatment groups. When compared to the control groups, at 1 h 

AG + METH treatment, nitrite levels was reduced to near control values (2.41 士 0.08 

^M in AG + METH vs 3.85 土 0.24 in control). Al 48 h treatment, the nitrite level 

(3.79 土 0.36 ^iM) was also near the control value (5.32 土 0.15 ^iM). 

(c) Cortical astrocytes (Fig. 1 lc) 

Similar to that shown in striatal and mesencephalic astrocytes, cortical 

astrocytes also showed a decrease in nitrite levels when treated with AG alone. A 76 

(0.81 士 0.14 ^iM) and 82% (0.76 土 0.17 p.M) decrease in nitrite levels were observed 

at I and 48 h respectively when compared lo their corresponding controls. There were 

significant differences (p < 0.05) between the AG treatment group and the control 

group at all time points studied. 

When the cortical astrocytes were treated with AG + METH, the nitrite levels 

were also reduced along all the time points studied. This decrease was significant (p < 
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0.05) along all the time points with the exception of 2 h post-treatment when 

compared to the METH treated group. A 43 % (3.24 土 0.12 |nM) and 70 % (3.68 土 

0.07 ^lM) decrease at 1 and 48 h respectively were observed when compared with 

their corresponding METH treatment groups. When compared to the control groups, 

nitrite levels of the AG + METH groups were reduced to near control values (3.24 土 

0.12 ^iM in AG + METH vs 3.38 土 0.28 |iM in control) at 1 h and (3.68 土 0.07 ^M in 

AG + METH vs 4.27 士 0.39 |iiM in control) at 48 h. 

3.1.8 The Effects of Indomethacin (INDO) on Nitrite levels 

Results from this study showed that when cells were treated with ESfDO alone, 

there was a time-dependent increase in nitrite levels from 1 to 48 h treatment. When 

w 

UvfDO was added with METH, the increase in nitrite levels was further enhanced (Fig. 

12). 

(a) Striatal astrocytes (Fig. 12a) 

When these cells were treated with INDO aIone, there was a gradual increase 

in nitrite levels from 1 (4.05 士 0.26 ^iM) to 48 h (9.82 士 0.54 ^M) treatment. This 

increase was significant (p < 0.05) at 48 h E^DO treatment in which a 110 % increase 

was observed when compared with the control. 

When cells were treated with INDO + METH, a further increase in nitrite 

levels was observed. Nitrite levels ranged from 8.07 土 0.12 to 17.22 土 1.34 |iM froni 

1 - 48 h respectively. This increase in nitrite levels was significantly (p < 0.05) 

higher than that of METH treatment only for all the time points studied. A 43 and 

38% increase at 1 and 48 h respectively were observed when compared to METH-

treated groups. 
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Fig. 12 Amount of nitrite released into the medium from striatal (a), 

mesencephalic (b) and cortical (c) astrocytes cultured in control (Ctrl), 

4 mM METH (METH), 10 ^M indomethacin (EsfDO) and 10 îM 

ESroO with 4 mM METH (ESfDO + METH) media. Values are 

expressed as means (^iM) 土 S.E. (n=4). 

# &atistically different (p<0.05) between the METH or JNDO with the 

control. 
* Statistically different (p<0.05) between ESfDO + METH and METH. 
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(b) Mesencephalic astrocytes (Fig. 12b) 

Cells treated with INDO alone also showed a gradual increase in nitrite levels 

when compared with the control group. The levels of nitrite ranged from 3.06 士 0.37 

to 10.79 土 1.29 îM at 1 — 48 h treatment. This increase was significant (p < 0.05) at 2， 

8, 24 and 48 h treatment when compared with the corresponding control groups. At 48 

li INDO treatment, the nitrite level was 1 fold greater than that of the control. 

When mesencephalic astrocytes were treated with EvIDO + METH, there was a 

further increase in nitrite levels when compared with the METH-treated group. The 

level of nitrite ranged from 7.98 土 0.70 to 18.12 士 1.17 îM at 1 - 48 h treatment. This 

increase was significant (p < 0.05) at 4, 8，24 h treatment when compared with their 

corresponding METH-treatcd groups. This represented an approximate 35 - 45 % 

increase in nitrite levels at these significant time points studied. ^ 

(c) Cortical astrocytes (Fig. 12c) 

INDO treatment alone also caused an increase in nitrite levels in cortical 

astrocytes from 24 h treatment. Thc lcvcl of nitrite ranged from 4.15 土 0.71 to 11.94 

士 0.93 ^M at 1 一 48 h treatment. At 24 and 48 h treatment, the increase in nitrite level 

reached a 87 % and 180 % significant (p < 0.05) increase respectively. 

When treated with INDO + METH, the level of nitrite was also further 

enhanced. The level of nitrite ranged from 7.68 士 0.63 to 16.93 土 1.24 ^iM at 1 — 48 h 

incubation. At 48 h treatment, the level of nitrite was 39% (p < 0.05) greater than that 

of METH treatment only. 
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3.1.9 Change in Cyclooxygenase-2 (COX-2) Protein Levels 

The present study examined the change in COX-2 levels after the METH 

treatment. Changes in COX-2 expression were further examined using the iNOS 

inhibitor AG (Fig. 13a) as well as the COX-2 inhibitor INDO (Fig. 13b). 

(a) Striatal astrocytes (Fig. 13a(i) & Fig. 13b (i)) 

Striatal astrocytes treated with METH resulted in a 40% (Fig. 13a(i)) to 60% 

(Fig. 13b(i)) decrease in COX-2 protein expression at 48 h when compared to the 

control. At 24 and 48 li METH treatment, a breakdown product of approximately 47 

kDa was observed. The co-adniinistralion af 300 p,M AG and METH did block the 

slight decrease in COX-2 expression, however, it did not block the appearance of the 

-47kDa breakdown product (Fig. 13a(i)). 

However, the treatment of cells with METH and 10 pM ][NDO did not alter 

the pattern of COX-2 expression (Fig. 13b(i)). Similar to that observed for AG + 

METH, INDO + METH also did not ameliorate the protein breakdown product 

observed at 24 and 48 h treatment. 

(b) Mesencephalic astrocytes (Fig. 13 a(ii) & Fig. 13b(ii)) 

There was minimal changc in COX-2 protein levels in cells treated with 

METH when compared to their controls (Fig. 13a(ii) and Fig. 13b(ii)). Similar to that 

observed in striatal astrocytes, a � 4 7 kDa breakdown product was observed at 24 and 

48 h METH treatment. When cells were treated wilh AG and METH, there was no 

change in COX-2 protein levels (Fig. 13a(ii)). However, when cells were treated with 

ESfDO and METH, there was a 4 - 5 fold increase in COX-2 protein levels that was 

observed from 1 to 48 h trealinent (Fig. 13b(ii)). The ~ 47kDa breakdown product that 

was commonly observed after METH treatment could be observed as early at 4 post 

treatment. 
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Fig. 13a A representative Western blot of cyclooxygenase-2 (COX-2) protein 

expression in striatal (i), mesencephalic (ii) and cortical (iii) astrocytes 

cultured in control, 4 mM METH, 300 ^M AG or 300 ^iM AG + 4 mM 

METH media. Change in the relative levels of COX-2 expression from 

1 to 48 h was expressed as a percentage of the control. 
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Fig. 13b A representative Western blot of cyclooxygenase-2 (COX-2) protein 

expression in striatal (i), mesencephalic (ii) and cortical (iii) astrocytes 

cultured in control, 4 mM METH, 10 îM mDO or 10 [iM JNDO + 4 

mM METH media. Change in the relative levels of COX-2 expression 

from 1 to 48 h was expressed as a percentage ofthe control. 
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(c) Cortical astrocytes (Fig. 13a(iii) & Fig. 13b(iii)) 

In METH-treated cortical astrocytes, thc COX-2 level was 10 — 50% below 

that of control values (Fig. 13a(iii) & Fig. 13b(iii)). When cells were treated with AG 

and METH, there were minimal changes in COX-2 levels although the breakdown 

product could be readily observed (Fig. 13a(iii)). Similarly, after INDO and METH 

treatment, there were also minimal changes in the COX-2 levels and that the treatment 

of INDO did not ameliorate the presence of the breakdown product (Fig. 13b(iii)). 

3.1.10 Change in Heme-oxygenase-l (HO-1) Protein Levels 

The present study showed that METH treatment result in the elevation of HO-

1 levels in astrocytes cultured from all three regions. Cells were further treated with 

AG (Fig. 14a) as well as INDO (Fig. 14b) to examine whether inhibiting iNOS and 

COX-2 respectively can block the elevation of HO-1 protein expression. 

(a) Striatal astrocytes (Fig. 14a(i) & Fig. 14b(i)) 

111 METH-treatcd striatal astrocylcs, thcrc was an increasc in HO-1 level from 

8 — 48 h post treatment, reaching a maximum of 1.85 (Fig. 14b(i)) - 3 (Fig. 14a(i)) 

fold increase by 48 h treatment. The addition of 300 îM AG with METH partially 

blocked the METH-induced HO-1 expression. At 48 h post-treatment, AG was shown 

to block HO-1 expression by approximately 50% (Fig. 14a(i)). When cells were 

treated with EMDO and METH, there was no change in the HO-1 level at 24 h 

treatment. However, at 48 h treatment, there was a partial effect (Fig. 14b(i)). 

(b) Mesencephalic astrocytes (Fig. 14a(ii) & Fig. 14b(ii)) 

When mesencephalic astrocytes were treated with METH, there were sharp 

and rapid elevations in HO-1 levels from 2 h onwards (Fig. 14a(ii) and Fig. 14b(ii)). 

A 5 fold increase at 2 li was observed. Cclls treated with AG alone also showed an 
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Fig. 14a A representative Western blot of heme-oxygenase-1 (H0-1) protein 

expression in striatal (i), mesencephalic (ii) and cortical (iii) astrocytes 

cultured in control, 4 mM METH, 300 ^M AG or 300 pM AG + 4 mM 

METH media. Change in the relative levels ofHO-1 expression from 1 

to 48 h was expressed as a percentage of the control. 
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Fig 14b A representative Western blot of HO-1 protein expression in striatal 

(i)，mesencephalic (ii) and cortical (iii) astrocytes cultured in control, 4 

mM METH, 10 îM mDO or 10 pM mDO + 4 mM METH media. 

Change in the relative levels ofHO-1 expression from 1 to 48 h was 

expressed as a percentage of the control. 
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increase in HO-1 levels at 24 and 48 h (Fig. 14a(ii)). Addition of AG to METH 

partially attenuates METH-induced increase in HO-1 levels. When cells were treated 

with lNDO and METH, there was also a suppression of HO-1 levels to near control 

levels (Fig. 14b(ii)). 

(c) Cortical astrocytes (Fig. 14a(iii) & Fig. 14b(iii)) 

Cortical astrocytes showed an approximately 3 (Fig. 14b(iii)) to 5 fold (Fig. 

14a(iii)) increase in HO-1 protein content at 24 h after METH treatment. Although to 

a lesser extent, this increase was sustained till 48 h post-treatment. When cells were 

treated with AG and METH, AG cannot block the METH-induced HO-1 increase 

(Fig. 14a(iii)). When treated with INDO and METH, there was a slight attenuation in 

METH-induced HO-1 expression at 24 h treatment (Fig. 14b(iii)). 

V 

3.2 Cell Viability on CATH.a-Astrocyte Cocultures After METH Treatment 

Figure 15 showed the percentage of dead cells in CATH.a cell line as well as 

CATH.a-astrocyte cocultures with or without METH treatment. The percentage of 

dead CATH.a cells without METH treatment increased from 3.1 土 0.8 to 13.4 土 2.3% 

at 4 to 48 h. METH treatment resulted in an increase of 12.4 土 1.5 to 17.4 土 1.7% 

dead cells at 4 to 48 h. There was a significant increase (p < 0.05) at 4 h between the 

control and the METH-treated group. 

Control CATH.a-striatal astrocyte cocultures showed the percentage of cleacl 

CATH.a cells ranging from 11.1 土 2.3 to 18.6 土 0.9% at 4 to 48 h. There was a 

significant difference (p < 0.05) at 4 h between the CATH.a-astrocyte cocultures and 

that ofCATH.accll line. 

METH treatment enhanced the percentage of CATH.a dead cells from 29.2 士 

0.8 to 32.5 土 4.2% at 4 to 48 h. This increase was significant (p < 0.05) at 4 and 48 h 
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Fig. 15 The percentage of dead CATH.a cells observed in CATH.a cells alone 

(CL), CATH.a cells cocuItured with astrocytes from the striatum (ST + 

CL), mesencephalon (ME + CL) and cortex (CO + CL) before and 

after METH treatment. Values are expressed as means (% of dead 

CATH.a cells) 士 S.E. (n=8). 

* Statistically different (p<0.05) between the METH and control 

groups at each time point studied 

# Statistically different (p<0.05) between the cell line and the 

cocultures. 
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when compared with their corresponding controls. When compared to CATH.a cell 

line only, a significant difference (p < 0.05) at 48 h was observed. 

In CATH.a-mesencephalic astrocyte cocultures, the percentage of dead 

CATH.a control cells ranged from 9.3 土 1.5 to 12.7 士 2.8% at 4 to 48 h. When 

compared to CATH.a cell line only, there was a significant increase (p < 0.05) at 4 h. 

METH treatment also resulted in a further increase (not significant) in the 

percentage of dead cells (16.9 土 2.3 to 18.8 土 4.7% at 4 to 48 h). 

In CATH.a~cortical astrocytes cocultures, the percentage of dead CATH.a 

control cells ranged from 9.3 土 1.0 to 14.1 土 0.0% at 4 to 48 h. When compared to 

CATH.a cell line only, there was a significant increase (p < 0.05) at 4 h incubation. 

METH treatment caused an increase to approximately 28.4 土 3.8% percentage 

of dead CATH.a cells at 4 - 48 h. This increase was significant (p < 0.05) at 24 and 

48 h post-treatment when compared to their corresponding controls. 
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CHAPTER FOUR: DISCUSSION AND CONCLUSION 

The present study showed that METH can induce astrogliosis without any 

neuronal influence. Astrocytes from striatum, mesencephalon and cortex were shown 

to change from a protoplasmic (inactive) to a fibrous (reactive) form during 48 h of 

METH treatment. Striatal and mesencephalic astrocytes showed a greater extent in 

astrogliosis when compared to cortical astrocytes. 

Astrogliosis had been suggested to be a useful marker of neurotoxicity given 

that astrocytes become reactive in response to diverse neurotoxic insults in the CNS 

(Eng, 1988; 0,Callaghan, 1991; Norenberg, 1994) and this is governed by the rate of 

astrocytic proliferation and hypertrophy (Eng and Ghirnikar, 1994). Other than 

morphological changes, activated, reactive astrocytes also exhibit numerous 

cytological and biochemical changes, including increase in cytoskeletal intermediate 

filament proteins GFAP, vimentin, glutamine synthetase (GS) and oxidoreductive 

enzyme activities(Eng and Shiurba, 1988). 

Earlier results from our laboratory reported that METH-induced astrogliosis in 

vitro resulted in the change in GFAP, vimentin levels and GS levels (Stadlin et al., 

1998). This study demonstrated that when astrocytes were treated with METH, there 

was a biphasic response in GFAP levels. Striatal astrocytes demonstrated an initial 

decrease in GFAP levels at 8 h prior to a marked increase at 48 h. There was also a 

concomitant increase and decrease in vimentin levels at these time points 

respectively. On the contrary, mesencephalic and cortical astrocytes responded with 

an initial increase in GFAP content at 8 h post-treatment, followed by a decrease at 48 

h METH treatment. Similarly, vimentin levels were contrasting to that of GFAP 

levels. It was suggested that this may be reflective of vimentin levels pertaining to the 
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active proliferating pool, whereas the declined GFAP levels observed from 8 h 

onwards were reflective of the morphologically differentiated pool (Stadlin et al., 

1998). It had also been suggested that the inhibition of GFAP synthesis immediately 

following injury is a protective mechanism whereby astrogliosis is a delayed response 

(Eng and Shiurba, 1988). 

In previous in vivo studies of METH-induced neurotoxicity, reactive 

astrogliosis were shown to be present in the striatum after 3 days of METH treatment 

(Hess et al., 1990; Pu et al., 1994; Pu and Vorhees, 1995; Broening et al., 1997). An 

in vitro study on rat fetal mesencephalic cells showed that astrogliosis occurred 24 h 

after METH treatment (Sheng et al., 1994). The present study showed that astrogliosis 

occurred as early as 8 h post-treatment. Although 0'Callaghan and Miller (1994) 

suggested that astrogliosis is the result of METH-induced neuronal injury, the present 

study however showed that METH can induce astrogliosis in the absence of neurons. 

Therefore, astrogliosis after METH treatment is not just a marker for neuronal 

toxicity, but that reactive astrocytcs may have an important role in mediating METH-

induced neurotoxicity as well. 

VacuoIation was observed in astrocytes from all three regions by 8 h METH 

treatment. Vacuole formation was also observed in cultured ventral midbrain neurons 

after METH treatment (Cubells et al., 1994). This suggested lhat vacuole formation is 

not a cell-type specific phenomenon. METH is a wcak base that alkalized acidic 

intracellular organelles like lysosomes, endosoines and synaptic vesicles (Sulzer and 

Rayport, 1990). Astrocytic swelling represents one of the earliest pathological 

features of most CNS injuries, in which adaptive responses to ionic, pH and 

osmolarity changes were made in order lo maintain homeostasis for the neuronal 

environment (Kimelberg and Ransom, 1986). Since METH will result in the change 
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in intracellular pH, vacuolation may be an early response to such a change. The 

further examination of pH changes using an pH indicator fluorescent probe, 2',7'-

(bis-carboxyethyl)-5,6-carboxylfIuorescein (BCECF) may elicit this association. 

In a previous study of our laboratory, another astrogliosis marker, GS, was 

also examined. GS catalyzes the conversion of glutamine from GLU and ammonia in 

astrocytes (Martinez-Hernandez et al., 1977) and therefore, is a pivotal enzyme in 

disposing the neurotoxic effects of GLU and ammonia and also in providing 

glutamine for oxidative stress. It was shown that the amount of GS were depleted 

more rapidly in striatal astrocytes followed by mesencephalic astrocytes reaching 10% 

of control by 48 h, whereas cortical astrocytes showed only a 50% depletion by 48 h 

treatment (Stadlin et al., 1998). GS is an enzyme known to be inactivated by metal-

catalyzed oxidation reactions, and it had been shown that the decffease in GS activity 

observed in Alzheimer's disease is a result of cumulative oxidative damage (Carney 
» 

and Floyd, 1991; Floyd, 1991; Smith et al., 1 9 9 1 ) . It had been reported that there was 

a rapid depletion of GS obtained in striatal and mcsencephalic astrocytes, suggesting 

that astrocytes of the dopaminergic system are more sensitive to METH-induced 

oxidative injury. Therefore METH can act directly on astrocytes in vitro to induce 

oxidative injury to these cells, this may in turn contribute to METH-induced neuronal 

injury. In the present study, it was demonstrated lhat METH induced ROS production 

in astrocytes during the 48 h of METH treatment. The order of response time and the 

amount of ROS production afler METH treatment is striatal > mesencephalic > 

cortical astrocytes. When the rate of change in ROS production was examined in 

astrocytes with or without METH treatment, it was shown that, control striatal 

astrocytes showed a significant increase in rate of change when compared to 

astrocytes from the other 2 regions. When striatal astrocytes were treated with METH 
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for 120 min, the rate of change of ROS production was significantly higher than its 

control group. From the present study, it seemed that striatal astrocytes are more 

prone to ROS production and that they are the most sensitive to METH toxicity. 

Although the cellular and molecular events involved in METH-induced 

neurotoxicity remains to be elucidated, oxidative stress has been suggested to be one 

of the prime candidates (Wagner et al., 1980; Seiden and Vosiner, 1984; DeVito and 

Wagner, 1989a; Cubells et al., 1994; Giovanni et al., 1995; Cadet and Brannock, 

1998; Moszczynska et al., 1998; Yamamoto and Zhu, 1998; LaVoie and Hastings, 

1999). 

In the present study, it was shown that astrocytes were also subjected to 

oxidative stress after METH administration. Astrocytes from the dopaminergic areas 

seemed to be most vulnerable since the highest amount of ROS was generated from 

thesc cells. Given that DA neurons arc the mosl vulnerable to METH-induced 

toxicity, the release of ROS from astrocytes may further enhance neuronal toxicity. 

Indeed this was the case, in the astrocyte-neuronal cocultures, it was demonstrated the 

percentage of neuronal cell death was increased approximately 2 fold when 

cocultured with astrocytes and in particular, striatal astrocytes. Reccntly, it was shown 

that striatal astrocytes participated in the deamination of DA via monoamine oxidase 

B, a process that can be inhibited by METH resulting in increased intracellular DA 

formation (Kita et al., 1998). This increase in DA content may lead to further 

autoxiclation of DA resulting in increase free radicals production. Given that there is 

an increase in ROS production in striatal astrocytes as demonstrated in the present 

study, as well as METH's ability to inhibit its role in DA deamination, striatal 

astrocytes may play an important role in the enhancement of dopaminergic nerve 

terminals to oxidative damage after METH treatment 
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It seemed therefore astrocytes may mediate METH-induced neurotoxicity via 

oxidative stress with regional selcctivity. 

Furthermore, Moszczynska et aI., (1998) showed that levels of glutathione 

(GSH) are selectively decreased in striatum of rodents exposed to high neurotoxic 

doses of METH. It is well known that astrocytes contain relatively high 

concentrations of GSH and glutathione peroxidase (GSH-Px) when compared with 

neurons (Slivka et al., 1987; Raps el al., 1989). The presence of high GSH levels in 

these cells suggested that astrocytes are the major site for H2O2 detoxification in the 

CNS and thus protecting them as well as neighboring neurons from oxidative-induced 

injury. Therefore, depleted striatal GSH content may indicate that striatal astrocytes 

are less capable to removing ROS thus making the striatal region more prone to 

METH-induced oxidative stress. »• 

Mitochondrial electron transport has long been recognized as a major 

intracellular source of ATP production. In addition, mitochondria is one of the key 

targets for the toxic actions of ROS. ROS themselves may have deleterious effect on 

respiratory chain function. Studies on isolated mitochondria suggest that oxidative 

damage to the respiratory chain results in deficiencies of complexes I and II followed 

by complex III and then, in some systems, complex IV (Narabayashi et al., 1982; 

Hillered and Ernster, 1983; Zhang et al., 1990), and therefore, interfering with ATP 

production. 

In the present study, METH caused the most rapid ATP depletion in striatal 

astrocytes when compared to mesencephalic and cortical astrocytes. Striatal astrocytes 

seemed to be less capable in maintaining a high ATP content during METH treatment. 

This present result clearly demonstrated that astrocytes from non-dopaminergic areas, 

for example, the cerebral cortex, are less affected after METH treatment Cortical 
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astrocytes maintain almost the same ATP level after 48 h METH treatment as 

untreated control. 

Chan et al., (1994) showed that doses of METH that depleted striatal DA also 

caused a significant and rapid decrease in striatal ATP concentrations. The ATP-

depleting effects of METH appear to be selective because they were observed only in 

the striatum and not in the cerebellar cortex and hippocampus. The results here are in 

line with this in vivo study where ATP depletion was also shown to be selectively in 

the striatal region but not in cortex. Pontieri et al. (1990) also showed that there was 

an association between the METH-induced early increase in the regional cerebral 

glucose consumption and long-lasting dopaminergic neurotoxicity (Pontieri et al., 

1990). More recently, it was reported that exposure to METH or prolonged 

hyperpyrexia decreased mitochondrial iininunoreactivity (Burrows and Meshul, 

1999). All these findings plus the present results suggested a correlation between 

METH-induced perturbations of energy metabolism and dopaminergic neurotoxicity. 

The present study also showed that lherc was a reduction in mitochondrial 

membrane potential (A4^m) after METH treatment in all astrocytes. A4^m were shown 

to decrease at 8 - 12 h post treatment in which striatal astrocytes showed a decrease in 

A^m at 8 h treatment whereas cortical and mesencephalic showed a decrease at 12 h 

post-treatment. It is known that marked increases in mitochondrial Ca^+, increased in 

ROS levels, or partial failure of the respiratory complexes, acting either individually 

or together, can induce a decrease in A4^m (Richter and Schlegel, 1993). Therefore, 

disruption of this electric potential may be another marker for the indication of 

astrocytcs' energy status. The earlier reduction in A^Fm that was observed in striatal 

astrocytes (8 h post-treatment) may be related to the its rapid loss in ATP suggesting 

that METH alters the energy status of astrocytes. This earlier disruption of A4^m and 
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mpid depletion of ATP production may render lhese cells having an additive effect in 

METH-induced neuronal injury. 

The present study clearly demonstrated that METH alone can stimulate the 

production of NO from astrocytes cultured from all three regions from 1 h post 

treatment. nNOS had been suggested to play an important role in METH-induced 

dopaminergic neurotoxicity as demonstrated in nNOS knockout mice (Itzhak et al., 

1998) and other in vivo (Abekawa et al., 1996; Di Monte et al., 1996; Itzhak and Ali, 

1996) and in vitro (Sheng et al., 1996) studies where neuroprotection can be observed 

if nNOS was suppressed. It was proposed from these studies that one of the 

mechanisms of METH-induced toxicity may be due to the release of GLU (Nash and 

Yamamoto, 1992), resulting iii a sustained activation of NMDA receptors. This will 

result in increased NO formation, Ca^^ influx and stimulation of nNOS (Di Monte et 

aI., 1996;Itzhak et al., 1998). This tenet was also supported by either the NMDA 

receptor antagonist dizocilpine (MK-801) (Sonsalla et al., 1989，1991) in the 

protection against METH-induced DA depletion or the use o f N O S inhibitor ^ - n i t r o -

arginine (NNA) and L-NAME in the protection against METH-induced DA release in 

the striatum (Bowyer et al., 1995). 

The role of astrocytes and iNOS stimulation and NO production were recently 

reported to be also involved in METH-induced toxicity. iNOS knockout mice can 

attenuate METH-induced neurotoxicity (Ali and Itzhak, 1998) and therefore it was 

believed that iNOS, which located mainly in astrocytes (Park et al., 1994), are 

involved in METH-induced injury as well. 

From the present study, it is clear that in the absence of neurons or high GLU 

content, METH can also stimulale NO production in astrocytes. This release was 

suggested to be due to the induction of iNOS since the addition of selective iNOS 
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inhibitor, aminoguanidine (AG), attenuated NO production. It had been shown that 

astrocytes in culture do not express NMDA receptors (Backus et al., 1989; Cornell-

Bell et al., 1990) although astrocytes in situ can express NMDA receptors in some 

brain regions like cortex, thalamus, hippocampus, olfactory bulb, amygdala, but not in 

the striatum and mesencephalon (Porter and McCarthy, 1997). Given that the 

astrocytes cultured from all three regions had a similar increase in NO formation, in 

this case, it is unlikely that the stimulation of NMDA receptors participated in the 

release of NO. This implied that the mechanisms of neuronal and astrocytic NO 

release might bc different. 

Another role of NO in association with METH-induced toxicity may be 

related to the effects of METH-induced hyperthermia as it was observed in nNOS 

knockout mice where METH had no significant effect on body temperature in these 

mice (Itzhak et al., 1998) or where L-NAME was able to antagonize the hyperthermic 

effects of METH (Taraska and Finnegan, 1997). On the other hand, PGE2 is a major 

putative pyrogenic substance in the CNS lhat regulated by its rate-limiting enzyme 

COX-2 (Kluger, 1991). Incrcasing evidence suggests that there is considerable "cross-

talk" between COX and NOS (Appleton et al., 1996; Di Rosa et al., 1996; Salvemini 

and Masferrer, 1996). Therefore, a COX-2 inhibitor indomethacin (INDO) was also 

added to examine the interaction of PGE2 with METH-induced NO release. The 

current results showed that INDO not only unable to inhibit the METH-induced NO 

release, but rather increased NO release instead. When INDO was added with METH, 

the level of NO was further enhanced. Based on these findings, one could speculate 

that in the pathway of METH-induced NO release, PGE2 may take an inhibitory role 

since the blocking of COX-2 activity resulted in an increase in NO production in the 

control group. METH treatment further enhanced this release of NO levels. An 
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inhibitory action of PGs on NO production had been illustrated in J774.2 

macrophages in which cxogcnously added PGI2 (iloprost) and PGE2, both al 

nanomolar concentrations, inhibited the LPS-stimulated induction of iNOS (Marotta 

et al., 1992). A similar role for PGs on the NO pathway has also been demonstrated in 

murine peritoneal macrophages primed in vivo and activated in vitro with LPS 

(Raddassi et al., 1993). PGE2 added during the transition froin primed to activated 

state, i.e. at the same time as LPS, decreased, while INDO increased, both NO 

production and cytostatic activity suggesting an inhibitory action of PGs on iNOS 

induction in these cells. 

To further examine METH-induced hyperthermic effects on astrocytes, COX-

2 protein expression was also investigated using Western blot analysis. There was 

minimal change in COX-2 expression after METH treatment suggesting that PGE2 

mediated hyperthermic effects in astrocytes may not be the main pathway in METH-

induced neurotoxicity. 

However, striatal astrocytes showed a slight increase in COX-2 levels after co-

administration of AG + METH suggesting that METH-induced NO production may 

inhibit COX-2 expression. This relationship was also reported in fetal ovine astrocytes 

in which application of sodium nitroprusside (SNP), which is an exogenous N0-

donor, reduced basal production of PGs (Busija and Thore, 1997). In other cell 

models, the SNP has been found to inhibit both the expression of COX-2 and the 

activity of this enzyme in J774.2 macrophages challenged with LPS (Swierkosz et al., 

1995). Moreover, L-NMMA caused a significant increase in PGI2 release and 

increased COX-2 protein expression suggesting that endogenous NO had a similar 

inhibitory role. Therefore, METH-induced NO release may exert an inhibitory effect 
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on COX-2 expression in striatal astrocytes, although cells from other 2 regions 

showed minimal response. 

On the other hand, mesencephalic astrocytes showed a 4.2 fold increase of 

COX-2 protein expression after co-administration of D^DO and METH. As 

mentioned earlier, INDO alone or together with METH was shown to enhance NO 

release in control or METH-treated astrocytes. It seems quite likely that METH-

stimulated massive NO release after removal of PGE2 may be the cmcial factor in 

eliciting the COX-2 protein expression. It can be speculated that NO may participate 

in a positive feedback mechanism to upregulate COX-2-expression once after the 

blocking of PGE2 synthesis was initiated. This may explain the increase in COX-2 

protein observed in mesencephalic astrocytes. Thus, in this case, NO may possibly 

take a stimulatory role in mesencephalic astrocytes to produce more COX protein, 

restoring PG2 synthesis. Previous studies have shown that NO was found to activate 

PGs production in murine astroglia (Molina-Holgado et al., 1995). One possible 

interaction has been suggested to be at the level of lhe enzyme, since the COX-2 

enzyme is a potential target for NO because it contains an iron-heme center at its 

active site (Yonetani et al., 1972). However, at present it is unclear whether the COX-

2 activities are also being upregulated. Further study in measuring PGE2 levels would 

further clarify this point. Moreover, it is of interest that there is an opposite role in 

modulating COX-2 by NO between striatal and mesencephalic astrocytes. This may 

be one of the reasons for regional selectivity of METH-induccd neurotoxicity. 

Cortical astrocytes showed a lesser extent in pyrogenic effects suggested lhat 

astrocytes in this region may provide better protection against METH toxicity. 
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COX-2 breakdown products wcre observed in astrocytes of all 3 regions after 

METH treatment. It seemed that METH destroys COX-2 protein integrity, however, 

how this may affect PGE2 activity in the cascade of events awaits further studies. 

The degree in which hyperthermia contributes to METH-induced neurotoxicity is 

not fully understood, numerous reports showed that both lowering of the ambient 

temperature (Bowyer et al., 1992; Ali et al., 1994a) or the administration of various 

pharmacological agents like MK-801, dopamine receptor antagonists, fenfluramine, 

propranolol, etc (Miller and 0'Callaghan, 1994; Albers and Sonsalla, 1995; Farfel and 

Seiden, 1995) protected against METH-induced toxicity. Albers and Sonsalla (1995) 

however argued that hyperthermia may not be required for METH-induced 

neurotoxicity based on the evidence that reserpine, a compound that lowers core 

temperature, did not provide protection against METH-induced toxicity. In contrast, 

Cappon et al. (1997) showed that the administration of METH together with elevated 

ambient temperature induced hyperthermia, reduced striatal DA level and increased 

GFAP expression. These effects were not evident if ambient temperature was not 

increased. This study not only suggested that hyperthermia was necessary to produce 

METH-induccd neurotoxicity, but that reaclive astrocytes also played a role in this 

hyperthermic response. 

The present study showed lhat thcre was an induction of HO-1 protein 

expression with the level of expression being cortical > mesencephalic > slriatal 

astrocytes. HO-1 is a HSP (Shibahara et al., 1987) and was shown to bc induced in the 

brain by hyperthermia (Ewing and Maines, 1991). HSP production as a conscquencc 

of METH treatment has also been demonstrated, lt was shown that there was an 

increased expression in 72-kDa HSP (HSP72) in the hippocampus and striatum after 

an acute dose of METH (Goto et al., 1993; Kuperman et al., 1997). Since HO-1 is 
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rarely induced in neuronal cells (Ewing and Maines, 1991; Dwyer et al., 1995), it thus 

seemed possible that astrocytes may also participalc in the heat shock response to 

METH treatment. 

The present study showed that there was METH-induced HO-1 expression in 

astrocytes cultured from all 3 regions. This effect was partially inhibited by the 

addition of iNOS inhibitor, AG, in striatal and mesencephalic astrocytes suggesting 

that NO may mediate the effects of the heme-oxygenase system. The effects of NO on 

the heme-oxygenase system was also demonstrated in human glioblastoma cell line 

T98G where the addition of NO donors induced HO-1 expression (Takahashi et al., 

1996). Furthermore, it was also known in astrocytes that LPS- or SNAP- induced 

enhancement of NO2" and HO-1 levels could be inhibited by NOS inhibitor such as 

NNA suggesting NO and iNOS production by astrocytes may cau{>fe the autocrine and 

paracrine induction of HO-1 (Kitaniura et al., 1998). These authors suggested that NO 

induced HO-1 expression may be mediated by the activation of activator protein-1 

(AP-1) and/or the metal-responsive transcription factor-1 (MTF-1) site on the 

promoter region of HO-1 gene. 

However, the lack of effect by AG in suppressing HO-1 expression in cortical 

astrocytes suggested that there may be other factors apart from NO that is involved in 

HO-1 induction. HO-1 gene has a heat-shock element in its promoter that can be 

upregulated not only by hyperthermia but by other factors including oxidative stress 

(Dalton et al., 1996). Oxidative stress associated HO-1 induction had been 

demonstrated in glutathione depletion or exposure to hydrogen peroxide (H2O2) in the 

brain (Dwyer et al., 1992; Ewing and Maines, 1993) and other mammalian cells 

(Applegate et al., 1991; Bauer et al., 1998). There was an increase in ROS level in 

cortical astrocytes although it was relatively lower than that of striatal and 
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mesencephalic astrocytes, however, it may be sufficient to induce HO-1 expression. 

Therefore, cortical astrocytes may offer better protection to nearby neurons and thus 

indicating that this non-dopaminergic area is the least affected under METH toxicity. 

The present study demonstrated that PGE2 would also be involved in METH-

induced neurotoxicity. It was shown that HO-1 level in mesencephalic astrocytes was 

fully attenuated whereas in striatal and cortical astrocytes, HO-1 level was only 

partially attenuated. Previous studies showed that in porcine aortic endothelial cells, 

'^A-PGJ2, metabolite of PGs, stimulated HO-1 activity. Therefore, in this case, it is 

not surprising that suppression of PGs synthesis can attenuate the METH-induced 

HO-1 expression. However, the detailed mechanism behind is still far from clear. 

The present result demonstrated that NO, COX-2 and HO-1 are involved in 

METH-mediated hyperthermic effects. ^ 

In METH-induced ncurotoxicity, it is still unclear whether the astrocytes or 

the neurons take an initiative role in mediating this toxic cascade. In the present study, 

CATH.a-astrocyte cocultures were established to examine this interaction. Results 

indicated that when CATH.a cells were cocultured with astrocytes, there was a 

decrease in CATH.a cell viability. When treated with METH, this loss of cell viability 

was further decreased. This decrease in CATH.a cell viability was evident as early as 

4 h incubation. Since there was no significant increase in LDH activity in astrocytes 

during the 48 h of METH treatment, it can be assumed that the decrease in CATH.a 

cell viability is a result of astrocytic oxidative and metabolic stress and not loss in 

astrocytic cell viability. Results from METH-treated CATH.a-astrocytes cocultures 

suggested that astrocytes may exert adverse influences to neurons. When CATH.a 

cells were cocultured with striatal astrocytes, the percentage of dead cells observed at 

4 h METH treatment increased 5 and 1.5 fold in cocultures and CATH.a cells 
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respectively. In this case, it seems that striatal astrocytes further enhanced METH-

induced neuronal toxicity. In vivo studies showed that METH causes a massive 

dopaminergic terminal damages in the striatum (Fibiger and McGeer, 1971; Kogan et 

al., 1976; Seiden et al., 1976; Gibb and Kogan, 1979; Hotchkiss and Gibb, 1980b; 

Steranka and Sanders-Bush, 1980; Wagner et al., 1980; Kovachich et al., 1989; 

Brunswick et al., 1992). lf striatal astrocytes in this region produced the highest 

amount of ROS and suffer the most severe loss of ATP afler METH injury, this may 

in turn produce further damage to the nearby neuronal terminals which are also under 

the toxic influcnce of METH. 

CATH.a cells cocultuied with mesencephalic astrocytes although showed an 

increased in the percentage of dead CATH.a cells, this increase was not significant 

and to a lesser extent when compared to striatal astrocytes. It may^robably due to the 

fact that astrocytes from mesencephalon offcr better protection to the neuronal cell 

bodies since mesencephalic astrocytes showed the earliest response (2 h) in increased 

HO-1 levels after METH treatment. This increase in HO-1 level may provide an 

earlier protection to nearby neurons to combat against METH-induced oxidative 

stress. Therefore, it is not surprising lhat although METH attack the dopaminergic 

system, mesencephalon is not as severely damaged when compared to the striatum. 

In conclusion, the present study showed that astrocytes cultured from different 

regions of the brain showed differential responses to METH-induced oxidative and 

metabolic stress, in which, the striatal astrocytes were the most severely affected. 

Moreover, NO and ROS production are also shown to mediate METH-induced 

hyperthermic responses. Il secms that if striatal astrocytes are more prone to oxidative 

and metabolic stress, this will make the neuronal environment in the striatum more 

susceptible to oxidative damage. The present findings showing an increase in the 
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percentage of dead CATH.a cells when cocultured with striatal astrocytes further 

confirmed this hypothesis. Striatal astrocytes seemed less adaptive in providing 

protection to nearby terminals against METH-induced oxidative stress. This study 

implied that astrocytes may play a key role in mediating METH-induced 

neurotoxicity. 

V 
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