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,.、 uÂ niiirT""""̂ /M/ 

: .v.x̂ D̂RARY z m m y ^ 
^ ^ ^ ^ ^ 



摘要 

射線描緣運算法曾以組合式神經網絡作為無線電波傳送模型的執行手段，目的 

是為了建立一個神經網絡結構以取替傳統計算 °它擁有的地域識別能力能在可 

接受的限制下把不同的環境模擬出來。四個規範模擬以兩個不同方法進行及比 

較，分別為層遞式射線描緣運算法和組合式神經網絡模型。其中一些模擬更參 

考標準公式。這些模擬是用以驗註組合式神經網絡模型的精確度。其中一個模 

擬的環境是中空會堂，天花板上安裝方向性天線 °如以層遞式射線描緣運算法 

的計算結果為依握，組合式神經網絡的平均預測語差和標準偏差分別為1.57分 

貝及1.39分貝°在實際測試中’組合式神經網絡亦應用於預測中文大學工程大 

樓三樓的電磁波傳送情况°在陰影區下，組合式神經網絡的平均預測語差和標 

準偏差分別為6.93分貝及6.01分貝。在可見區下，平均預測語差和標準偏差分別 

為5.27分貝及4.63分貝。 
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Abstract 

A modular neural network approach was used to implement ray tracing algorithm 

for radio wave propagation modeling. The goal is to develop a neural network 

architecture to replace traditional calculations. This method is site-specific so that it 

can simulate different environments with some acceptable limitation in environment 

dimensions. Four canonical simulations were preformed in brute force ray tracing 

method, hybrid modular neural network and deterministic formulation in some case to 

verify the accuracy of the modular neural network model. In one canonical 

simulation, empty hall with ceiling mounted directional antenna, 1.57 dB mean 

prediction error and 1.39 dB standard deviation were obtained by modular neural 

network with reference to bmte force ray tracing method. As an actual test, modular 

neural network is used to predict propagation inside the third floor of the engineering 

building of the Chinese University of Hong Kong. The average prediction error of 

modular neural network is 6.93 dB and 6.01 dB standard deviation for shadow region, 

and 5.27 dB with 4.63 dB standard deviation for line-of-sight region. 
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1 Introduction 

1.1 Background 

Reliable and fast radio wave prediction is a critical factor in the design of mobile 

communication network. With the help of sophisticated prediction tools, network 

engineers can design an optimal cellular network at relatively low cost compared to a 

purely measurement approach. Some service providers in Hong Kong carry out large-

scale site measurement every three months to maintain substantial mobile phone 

service quality in a fast changing environment. Cellular mobile systems require good 

planning in order to optimize system performance in terms of system coverage and 

capacity. The number and placement of base stations, as well as the frequency 

allocation scheme can be optimized. Experience shows that large-scale improvement 

and adjustment is difficult to carry out just by the measurement approach. With a 

software simulation tool, network configurations can be tested and evaluated 

thoroughly before they are put into actual operation. Result can be further improved 

if the simulation and measurement are combined together as an integrated analysis. 

Additionally, radio wave prediction tool makes it possible to debug and retrofit the 

network when problems arise from regular maintenance check or customer 

complaints. 

For propagation in cities, many modeling methods have been proposed in the 

past. However, most of them are inaccurate particularly when the considered 

structures are of the same order as the wavelength of signal, and when there is large 

variation in building heights. This implies that a building or even an advertizement 

structure may need to be considered in the simulation model. Statistical 

approximation is not good enough. If one insists on statistical method, then extensive 

additional measurement needs to be carried out from time to time in order to maintain 

the network performance. Another type of modeling method, deterministic modeling, 

has been widely investigated since it provides the fundamental basis for site-specific 

simulation. Ray tracing is one example of deterministic modeling. In fact, it is an 

approximated closed form solution for electromagnetic wave problem. Ray tracing 
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approximates electromagnetic wave by optical rays and traces the propagation of all 

possible rays by considering reflection, transmission and diffraction. The receiver 

signal can be obtained by a vector sum of all multi-path signals approaching the 

receiver antenna. 

^ Penetration .Z"̂ ::'̂ *".. 

大 jm 
/ ^ y ^ S S A Diffraction 

Incident ray Reflection |jj|̂|j||̂||||̂  

Incident ray |̂ ĵ ĵ ĵ  

^^ 
Figure 1-1 : Three typical propagation mechanisms in ray tracing 

There is however one major problem of deterministic simulations. Most of these 

deterministic simulations require long computation time and massive computation 

resources. This is particularly so for complicated urban environment where multiple 

bounces from surfaces are expected. In ray tracing method, for example, large 

reflection depth implies more secondary rays will be produced in the reflection 

calculation and thus long simulation time is required to complete the process. 

Theoretically, ray tracing method can be implemented in a parallel processor. The 

simulation can be accelerated by multi-computer programming or multi-processor 

programming since the calculation between one ray and the corresponding scattering 

surface is independent from that of another ray. However, this implementation 

involves large investment in computer equipment and specific software development. 

It implies that cost-effective hardware acceleration for ray tracing method is the best 

way to speed up radio wave modeling tool for cellular network design. 
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Figure 1-2 : Typical Artifical neural network structure : multiplayer Prepertron 

There is one existing technology called artificial neural network that can be 

applied to realize cost-effective hardware acceleration. Some published work of 

neural network applications in wireless communication is described here to 

substantiate the functionality and advantages of neural network. One example is 

reflector antenna surface error compensation using neural network[l]. The authors 

use parallel neural network to emulate the Constrained Least Squares ( CLS ) 

algorithm used previously for the same purpose[2]. Computation time requirement on 

a U N D C machine for CLS method and parallel Multilayer Perceptron are compared, as 

shown in Table 1-1. Note that the neural network, after training, takes only 0.6 

second to do thejob, compared to 4 minutes for CLS without constraint and 1 hour 15 

minutes for CLS with constraint. One interesting point is the training time of neural 

network is 4 hours per network, which is quite long. It points out that one is really 

shifting the computation load to a pre-processing step. The speed in the final 

computation is earned by carrying out a long training process done beforehand. 

However, if we have a problem where the calculation has to be repeated many times, 

or if the problem can be generalized, or if the problem has to be calculated in real 

time, then the neural network approach can be quite beneficial because once we train 

it (training is done off-line，or beforehand), it can be used many times at high speed. 
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Table 1-1 : Computation time requirement for CLS and MLP method 

CLS method with constraint 1 hour and 15 minutes 

CLS method without constraint 4 minutes 

ParallelMLPNeumlNetwork 0.6 seconds 

Training Time per MLP Network 4 hours per net 

The previous example shows the speed of neural network. The next example 

shows the accuracy of neural network based on training data that comes from 

measurement. The work is a resonant frequency prediction of triangular patch 

microstrip antenna[3]. The triangular patch requires rather involved mathematics in 

the design process. Instead of using that, the authors use measurement data to train a 

neural network to do the samejob. 

Accuracy of neural network in terms of resonant frequencies predicted is 

compared with three well known methods and also the moment method. The results 

of neural network are much closer to the actual measurement then all other methods. 

The total absolute errors are shown in Table 1-2 for 5 different modes from 1.2GHz to 

4.4.GHz. Please refer to [3] for more details. 

Table 1-2 : The total absolute error for five modeling method 

Error (MHz) 23 5124 424 326 472 

The third example is an inverse problem [4] where the shape of an aperture 

antenna is designed based on a given radiation pattem requirement. Although inverse 

problem is often a one-to-many relationship, here it does not matter because all we 

want is one antenna shape that works. In this paper, the author devised a 

methodology by which the antenna can be designed using a feed-forward neural 

network. Again, the author pointed out that the training time for this neural network 

is very long, but once it is trained, the generating of output is extremely fast. This 

echoes our observation in the first example, where the learning time is also very long. 

It is effectively moving the computation load to a per-processing step. But again, if 
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the problem has to be calculated many times, or if the problem can be generalized, or 

if the problem has to be calculated in real time, then neural network will be very 

useful. The neural network is well known for performing complex non-linear 

mappings between different domains. Similar methodologies are also used by 

researchers elsewhere on radio wave propagation modeling. 

There is also some published work of neural network applications in radio wave 

propagation modeling. In early work reported in papers [5][6], authors use empirical 

formulation and height profiles as the input of the neural network to estimate 

propagation loss in rural environment. Later, some authors used measured data in 

similar approaches. Balandier and Caminada [7] got 13% gain on the standard 

deviation (0.8dB) by using neural based hybrid system compared to semi-empirical 

model in urban environment. Perrault, Rossi, Balandier and Levy [8] used neural 

network as a bias correction of ray tracing model. Their correction can improve the 

predictions up to 2dB in standard deviation. Gschwendtner, Landstorfer [9] also 

applied neuron-calibration technique to the conventional path loss model, COST. 

They achieved 0 dB mean error and 5.7 dB standard deviation in testing data. Fraile 

and Cardona [10] proposed a neural network model that can accurately predict urban 

propagation for the following configuration: antenna height 20 meters lower than 

surrounding building and 45 meters higher than surrounding building as well as 

propagation distance up to 2000 m. All these papers showed good prediction ability 

of neural network for urban environments. Recently, Wolfe and Landstorfer studied 

three implementation approaches in using neural network to predict indoor 

propagation loss [ll][12][13]. They extracted the indoor propagation characteristic as 

neural network input parameter according to the interaction between antenna and 

geometry object. Then, they use neural network to relate these parameters with the 

received power. In summary, their works suggest that the utilization of artificial 

neural network lead to more accurate radio wave propagation prediction result at 

much higher speed than other classical models. Among these works, measured data 

or empirical formulation are used to train the neural network so that it is capable of 

mapping the propagation loss to basic parameters such as antenna height, separation 

distance and simplified obstacle information. Some authors even use ray tracing 

method to describe the propagation channel characteristics between transmitter and 

receiver, although the application of modeling are limited to certain type of 
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environment where they collect the training data. When the combination of available 

input parameters cannot describe a more general environment, the ultimate goal of 

applying a fast and accurate radio wave propagation prediction tools in real cellular 

network design system cannot be reached. Therefore, a general-purpose neural 

network modeling in radio wave propagation needs to be developed for cellular 

network design system. Li fact, this is the goal of the present thesis. 

Basically, neural network models the relationship between input and output 

parameters. In radio wave propagation modeling, received signal is a function of 

topographical and morphographical data. One may think of a neural network model 

that accepts all possible parameters related to radio wave propagation including 

transmitter, receiver and geometry model. When the input data propagate through the 

network, the channel characteristics will be generated accordingly. However, in 

Judd's book [14], he pointed out that the time needed to train a network may be 

exponentially increasing as a function of size for a large neural network system. The 

author wamed that one might transform a complicated problem into a painful neural 

network training cycle. Moreover, debugging, scaling up and maintenance of the 

neural network will also be difficult because one can only quantify the model 

performance in terms of mean squared error between training and testing data, but it is 

extremely difficult to understand what is going on inside the network. As a result, 

retraining and network size tuning become the only procedures to improve and scale 

up the model. In recent years, researches are tuming to a new design methodology 

where a large neural network structure is broken down into smaller sub-nets which is 

individually trained. Thereafter, a complete radio wave propagation model is 

constructed by a collection of trained neural networks. This is the modular neural 

network concept being pursued in this thesis. 
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Figure 1-3 : Decomposition of large neural network to a collection of small neural networks 

There are two common approaches of breaking down large neural network into 

smaller sub-nets. The first approach targets the training data set. The large training 

data set is partitioned into several manageable subsets. These subset training data are 

used to train individual network and a large neural network model is formed by 

combining all these smaller modules[15][16]. The second approach uses a priori 

knowledge to define smaller sub-problems that are solved by off-line trained M L P 

neural networks. Then, these pre-trained neural networks are combined to form a 

large modular network[17][18]. The second approach can be applied to radio wave 

propagation modeling. ( Figure 1-3 ) Traditionally, deterministic solutions such as ray 

tracing are used to study radio wave propagation. The problem is that these solutions 

require large computation resources when large region of city is simulated. If one 

replaces the ray tracing algorithm by neural network model, then the computation 

reduces to addition and multiplication that can be easily handled by dedicated 

accelerator. The ray tracing algorithm is first broken down into small modules. Each 

module is replaced by a suitable neural network and individually trained. Finally, all 

these trained neural networks are combined together. This structure is referred to as 

hybrid modular neural network architecture. This is the modular neural network 

model proposed. It is used to realize ray tracing algorithm as a fast and accurate radio 

wave prediction tool. Since neural network is a collection of simple processors 

working in parallel, the actual calculation can be carried out in many processors to 
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speed up the simulation. Neural network can also be implemented in hardware 

accelerator such as digital signal processor board to further speed up the process. 

Ultimately, a near real-time simulation tool for radio wave propagation modeling can 

be developed. 

1.2 Structure of Thesis 

In this thesis, the modular neural network architecture for radio wave 

propagation model is proposed. In chapter 2, some background about radio wave 

propagation modeling, brute force ray tracing techniques and neural network are 

described. Then, in chapter 3, the novel modular neural network architecture will be 

discussed. It explains how to decompose the brute force ray tracing algorithm into 

small pieces of problem. Li chapter 4，each module is described in details and tested 

individually. The architecture, parameter definition, network restriction and data 

preparation will be presented. At the end of each module description, the 

performance of module is demonstrated. After the model is ready, in chapter 5, it is 

used to simulate some canonical geometries to verify its accuracy. Li some canonical 

geometry problem, the deterministic formulation result will also be used to study the 

accuracy of both models, brute force ray tracing model and modular neural network 

model. Li chapter 6, this novel modeling tool is used to study an indoor environment 

where the simulated result is compared with measurement result. Finally, in chapter 

7，the work of this thesis is summarized and future work is described. 

1.3 Methodology 

Modular neural network architecture for radio wave propagation modeling is 

developed in the following manner. The architecture is shown in Figure 1-4. First, 

the brute force ray tracing algorithm is divided into different sections according to 

their functions and physical relations. The original problem now becomes many 

small problems and these problems can be individually solved. A suitable neural 

network model is applied to each module. Each neural network is then trained to 

solve its corresponding problem. Finally, these neural networks are combined to form 
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a large network. The whole network may need to be trained again in terms of network 

connection, while the architecture of each module remains fixed. This methodology 

distributes the large training effect into small pieces. The training process of each 

module can be done concurrently. After training of each small module is done, the 

overall architecture is almost ready. Second round training is relatively simple since it 

consists of minor adjustments in the whole network. The network is highly testable 

because it is carrying out ray tracing: the physics of that is clearly presented at the 

output of each module and not lost in the myriad of a massive neural connections. 

Modular neural network 
architecture 
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X 為 「 Surface 
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Figure 1-4 : Modular neural network architecture 
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2 Background Theory 

2.1 Radio Wave Propagation Modeling 

In this chapter, radio wave propagation modeling methods for indoor and outdoor 

environment are reviewed. There are two categories of modeling method: 

deterministic methods and statistical methods. They are different in scale, speed, 

accuracy and applicable area. 

2.1.1 Basic Propagation Phenomena 

2.1.1.1 Propagation in Free Space 

Consider a transmitting antenna in free space (remote from earth or any other 

obstructions). If Gj is its gain in the direction to a receiving antenna and P^ is the 

transmitted power, then the power density (power per unit area) at a distance d in that 

direction is given by 

W = ? § 
Ajtd 

The power received by the receiving antenna is given by the power density 

multiplied by the effective area A. 

PR=^'A 
R And^ 

PjGj ^Gj^ 

Ajui^ An 

- 下 c 
= ^ ' ^ \ ~ ^ \ P' 

This hypothetical free space condition never exists in its absolute form on earth. 

However, its analysis does give insight of the relationship of power with distance. 
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The concept of the above Friis formulation is important for the fact that it points out 

an inverse squared relation of power with distance and frequency. Furthermore, the 

effect of antenna patterns is also shown. These concepts are directly utilized by the 

ray tracing model. 

2.1.1.2 Reflection and Transmission 

When an electromagnetic wave propagating in one medium impinges upon 

another medium with a different dielectric constant, permeability or conductivity, the 

wave is partially reflected and partially transmitted. For the purpose of this project, 

only a plane reflection boundary is examined. 

[ v̂r 
t v i \ 

^ i \ i j<r ĥr 

^ A ^ ^dium 1 

\ / Medium 2 

: V ^ . 
ĥt 

«»»纖纖结_§兹懸丨____—魏毅鐘丨丨丨凝錄̂ 鍵̂:擺丨密翅懲丨丨密趙滋;̂丨錄:_纖 

The angle of reflection is equal to the angle of incidence irrespective of the 

dielectric constants of the two media. [19] 

没厂二"， 

The angle of transmission is related to the ratio of intrinsic impedances of the 

two media, for non-magnetic media, the relationship becomes 

sin 6̂  ^ 

sin ̂ . 〜^2 

if medium 1 is air, the relationship may be approximated as 

sin(9, j_ 

sin ̂ . .yJ^ 

To find the reflected field strength, the incident wave must be resolved into a 

vertical and horizontal component because the reflection coefficients are different for 
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the two polarizations. 

For vertical polarization 

E -cos0| +^jsr2 - sin^ 0-

Fv — ~ “ = 1 . 
V ^vi COS 6. + ^J£r2 - sin^ 0. 

and for horizontal polarization 

Ehr cos(9rV。_sin2《 
F" = = 1 . 

Ehi cos 6i + • £̂ 2 — sin̂  6̂  

The transmission coefficients are also deduced similarly. For the vertical 

polarization, 

E^ 2cos^. 

^^=瓦= r ^ i 7 ^ 厂 ^ 
^ l - ^ ^ + V ^ . 2 COS^, 

for the horizontal polarization, 

一五似 2cos6>. 

“Ehi cos ̂ . + 如「2 -sin^ ̂ i 

For a special incident angle, the Brewster angle, the reflection coefficient T^ is 

equal to zero. This angle 6- is given by 

. . ^ ^ ^ ^  

一—-巧 

2.1.2 Practical Propagation Models 

Propagation models have been introduced to study propagation loss. These 

models may be conveniently classified either by the environmental domain being 

addressed or by the method being used. There are models which address either the 

outdoor or indoor environment. Outdoor models are mainly concerned with wave 

propagation in urban or suburb areas. Lidoor models address propagation within a 

building. In terms of the methods used, there are two major approaches: statistical 
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and deterministic approach. 

The statistical approach essentially makes use of measured data from a similar 

environment to make prediction. It requires extensive measurement and its accuracy 

is highly questionable from case to case [21]. The deterministic approach is also 

known as the site-specific method. It is based on applying basic phenomena (line-of-

sight, reflection, diffraction, etc.) to the specific site physical layout. It does not 

require extensive measurement. However, a large database of the environment and 

long computational time are required. Its result is generally more accurate than other 

approaches [24], [25], [26]. Models which address the outdoor and indoor 

environment will be introduced briefly. 

Two of the most common outdoor models will be examined in brief to provide 

some idea of the modeling process. The Longley-Rice Model is a deterministic 

model, though a very primitive one. The Okumura model and its variants are 

statistical or empirical models. 

2.1.2.1 Longley-Rice Model 

The Longley-Rice model (1968) was developed to determine propagation loss 

for paths with limited available information defining the terrain. This formulation 

includes a terrain profile of the propagation path, transmitter and receiver antenna 

heights, frequency, distance, polarization, and surface reflectivity. The model is 

applicable to point-to-point communication systems with frequency ranging from 

40MHz to 100GHz[20]. It is basically a deterministic approach. It includes the effect 

of the direct ray, single ground reflected ray, as well as single and double diffracted 

rays. The diffractions considered are only knife-edge diffractions without taking into 

account the actual edge profile. Other geometrical approximations include neglecting 

the terrain height in calculating the single ground reflection point. Such inherent 

approximations deny Longley-Rice model good accuracy even if a more detailed 

terrain database is supplied. Therefore it is not suitable for complicated terrain like 

the urban (outdoor) or the indoor environment. 

2.1.2.2 The Okumura Model 
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Okumura published an empirical prediction model for signal strength prediction 

following an extensive series of measurements in and around Tokyo. The basic 

formulation may be expressed as 

L5o = LF + A ^ ( f , d ) + G(hJ + G(hJ 

L50 is the median propagation loss in dB. L^ is the free space propagation loss. 

A ^ is the median attenuation relative to free space. G(/î J is the base station antenna 

height gain factor. G(/î J is the mobile antenna gain factor. His measurements led to 

a set of curves A^^ versus frequency from 100 to 3000 M H z (after interpolation). 

G(",J and G(/i,J versus antenna heights curves are also available. The primary 

limitation of all empirical models is their limited valid parameter ranges. It is also not 

applicable to transmission range less than 3 km. For this, although it is often 

employed as a prediction tool in the urban environment, it does not appear to be 

applicable to the Hong Kong environment. 

Hata modified the graphical results of Okumura and provide an empirical 

formulation[20]. Akeyama proposed another modification to account for different 

degree of urbanization of the environment. In short, statistical models need 

modifications for different circumstances. 

2.1.3 Indoor Propagation Models 

The development of indoor models started much later than their outdoor 

counterparts. 

2.1,3,1 Alexander Distance/Power Laws 

The first major effort appeared in 1983 when Alexander[27] performed a 

series of measurements to characterize buildings at 900Mhz. It emerged with the new 

cordless phone at that frequency. It is a statistical model that considers only two 

parameters: distance and construction type. The path loss s in dB is given by 

s{dB) = -mXogD 
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D is the distance of the receiver from the source, m is a loss gradient found by 

curve fitting from the measured data. For example m=2 for free space (same as the 

Friis' formula). Some examples are shown in Table 2-1: 

Table 2-1 : Gradient of different building 

Office 1 Brick 3.9 

Office 2 ground floor brick/plasterboard 5.3 

Office 2 f^floor bricky'plasterboard 4.3 

Office2 2"dfloor bricky'plasterboard 4.8 

Offlce3 Plasterboard 2.8 

Offlce4 Plasterboard 3.7 

It can be seen that the gradient m does not show consistent values from building 

to building and even within a building. This model does not try to distinguish the 

difference between different kinds of brick or plasterboard. Indeed not even 

deterministic models try to do this. Yet the major cause of the variation is the 

difference in geometrical layout. This model only considers distance from the 

transmitter. Later statistical models try to improve on this point by considering the 

number of structures as well. 

2.1.3,2 Saleh Model 

In 1987, Saleh and Valenzuela presented their results of multipath delay spread 

and attenuation measurements at 1.5GHz within a medium-sized two-storey office 

building[28]. Li that same paper, they also presented a statistical model to study the 

impulse response. The central idea of the model assumes that received power 

decreases with time. The model starts with assuming cluster arrival of rays. The 

cluster arrival time is the arrival time of the first ray in the cluster. It is modeled as a 

double Poisson arrival process with some fixed rate. Within each cluster, subsequent 

rays arrive with another fixed rate. The amplitude of the rays has a Rayleigh 

distribution. It decreases exponentially with arrival time. 
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The amplitude ofthe first ray of the first cluster G(0,0) is first estimated using 

Friis' free space equation 

PjGj j^Gj^ 
G(lm) = -~~jY • ~A  

47ld^ 47T 
d=lm 

and G(0,0) = G(lm)r"" 

a is similar both in nature and value to the loss gradient proposed by Alexander. 

The value of a was found using line matching approach. For the transmitter in the 

hallway and receiver inside office rooms, a is found as 3.0. With both antennas in the 

hallway, a is 1.5. 

A choice of ray arrival rate (per 5ns) was based solely on a statistics of measured 

power profile. Similarly, the power decay time constants of rays and clusters were 

found by curve fitting. 

Their measured results showed that the indoor channel is quasi-static (very 

slowly time varying due to people's movements). Also the impulse response profile is 

virtually independent of the states of polarization of the antennas, providing there is 

no line-of-sight between them. This model is successful for office environment 

application but it has been shown unsuccessful in factory environments. [29] 

2.1.3.3 Hashemi Experiments 

In 1993, Hashemi performed a series of experiment[30]. He summarized some 

previous contradictions and suggested that these results (including Saleh's) need to be 

verified. First, some authors suggested root mean square delay spread dependence 

upon transmitter and receiver separation while others, like Saleh[28], did not suggest 

the dependence. Hashemi found out an obvious dependence. Second, the distribution 

of the arrival times of individual multipath components was shown to be either a 

modified Poisson process or a double Poisson model (Saleh). Hashemi 's results 

agreed with the modified Poisson process. Third, both Rayleigh (Saleh) and log-

normal distribution of the amplitude of individual multipath components had been 
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reported. Hashemi supported the log-normal fit. Hashemi did not provide an entirely 

novel way of impulse response modeling. His work is similar to Saleh's model. 

However, one important implication is that statistical modeling of impulse response 

may have to be varied from building to building. 

2.1.3.4 Path Loss Models 

In 1992，Seidel and Rappaport proposed a path loss model based on a series of 

measurements at 914 M H z in different environments including stores and offices.[21] 

As distinguished from the impulse response models of Saleh and Hashemi, this model 

is similar to Alexander's more primitive treatment of the mean power of received 

signal. This model tried to improve the inaccuracy by including more site-specific 

information. 

The mean path loss is given by 

—— (A7d^ 
PL(d)[dB] = 20.0'log^Q — + p.AF(soft partition)[JB] + q -AF(concrete 

V 几 J 
w a l l ) _ 

where d is the distance between the transmitter and receiver, p is the number of soft 

partitions and q is the number of concrete walls in the between the transmitter and 

receiver. AF(soft partition) and AF(concrete wall) are the attenuation factor in dB 

introduced by each soft partition and concrete wall respectively. From their 

measurement results, AF(soft-partition)= 1.39dB and AF(concrete wall)=2.38dB. This 

model also tried to deal with multi-floor attenuation, but not successful in reducing 

the results (between 12.9 to 16.2dB per floor) down to a simple floor attenuation 

factor. 

It must be pointed out that this model was not an invention by Seidel and 

Rappaport. As early as 1986, similar measurements had been performed at 1290 

MHz[31]. At that frequency, the attenuation loss of each concrete wall was found to 

be 8.5dB. Some similar path loss models have been developed after the 

SedeyRappaport model. Vallejo-Cabrejas and Batolome-Pascual[32] virtually 

borrowed the model and applied it to 1.8 GHz. Sheikh et al.[33] added the effect of 

antenna height for a breakpoint separation of greater than 17m. Rappaport et al. also 
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proceeded with another model for the factory environment. It was also available in a 

computer code called Simulation of Indoor Radio Channel Lnpulse-response Models 

(SmOM)[20]. 

2.1.3.5 Ray Optical Models 

A major breakthrough in indoor propagation prediction is the introduction of the 

ray-tracing method in 1991 by M c K o w n and Hamilton [34]. This method rigorously 

determines propagation paths along which the electromagnetic wave reaches the 

receiver from the transmitter. The model begins with the assumption that at high 

frequencies, where wavelength is much smaller than dimensions of environment 

features, electromagnetic wave propagation resembles that of optical light. Reflecting 

planes are modeled as mirrors. Rays reaching the reception point after a number of 

reflections are added to the received field strength. An impulse response prediction 

may also be made by tracking the path length and hence the delay of each arrival ray. 

There are two major approaches of tracing the reflected rays: the image 

method and the brute-force approach [29]. The original M c K o w n approach is now 

known as the image method. Rays are traced one after another following a queue of 

predestined reflection sequence. For each ray, the mirror image of the last reflection 

generates a new mirror image after reflecting from another surface. After a specific 

number of reflections are reached, the validity of the reflection sequence is 

determined by whether the point of reflection actually lies on the presumed reflection 

plane. The number of reflections experienced by a ray can be zero (line of sight) up 

to a specified number. The effects of rays with reflection number ‘0，up to a number 

"n" are added to give the final picture. Based on this approach Valenzuela developed 

his simulator and achieved a mean error of less than 5dB[35]. In 1995, an even more 

powerful simulator called WISE was developed at A T & T Bell Laboratories[36]. 

Besides predicting field strength at different locations, it is capable of optimizing the 

transmitting antenna placement to maximize the coverage area. In all of these 

programs, a detailed map of the environment is required. Wall and partition types and 

their physical layouts are crucial while fumiture may be neglected. 
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Another approach of tracing reflected ray is known as the brute-force 

approach. In this approach, there will not be a reflection sequence that govems the 

trace. Rays are emitted from the transmitting antenna in all possible directions. Each 

ray is checked whether it intersects with a reflection surface. If the answer is positive, 

the reflection point is found and the original ray is split into a reflected ray and a 

transmitted ray. Each ray individually repeats the same intersection trace and 

splitting. A ray that finally arrives at a spherical region around the receiving antenna 

is considered as being successfully received. The radius of this sphere is not fixed but 

depends upon the total path length. The correct radius of sphere should be about 9d/2 

in two-dimensional space where d is the total path length (not the distance). 

Schaubach et. al chose the radius to be 0 d / V ^ in three dimensional space[24]. If the 

radius is too large, the same path may be counted twice. If the radius is too small, the 

valid ray may not fall into the sphere. 

adjacent ray \ j/^ 

^ \ y< received 

Z^^s?^^ 
/ y ^ j< \ reception， 

y d j/^ • sphere 
A j ^ receiver j 

< A ^ ^ ^ ^ ^ 
^^y"^ 8 adjacent ray , 

ânsmitter 
Figure 2-1 : Reception sphere illustration figure 

The iterative nature of this technique poses a problem. When does the tracing 

of a ray stops? There are two rules which tell it to stop: (1) when the power already 

falls below certain threshold; (2) when it has already gone through a certain number 

of reflections and transmissions. One of the difficulties of this method is to maintain 

a constant spatial resolution. As the path length increases, the spatial resolution 

decreases because the angle 9 is constant. That means reflecting surfaces that 

unfortunately fall between adjacent rays will be missed. Kreuzgruber et al. tries to 

ameliorate the problem by introducing a ray splitting model that splits a ray into finer 

rays after some additional path length[37]. However, this intrinsic problem cannot be 
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entirely solved as long as discrete rays are used to simulate a continuous plane of 

wave. 

Although bmte force approach has these theoretical problems, it is superior to image 

method when the simulation domain is very complicated, especially when large 

number of reflections is required to reach the receiving location. In image method, 

the propagation sequence from transmitter to receiver is exponentially increased in 

terms of the number of scattering surfaces in the simulation domain. This is in 

contrast to ray launching that is not dependent on the number of scattering surface to 

be considered, although the method itself may be less accurate. Also, brute force 

approach shows more of a modular characteristic that is very suitable for modular 

neural network implementation. Thus, the brute force approach is chosen in this 

thesis. 

2,2 Ray Tracing: Brute Force approach 

2.2.1 Physical Layout 

The ray tracing model requires detailed description of the propagation 

environment. The accuracy of the prediction is highly dependent on the degree of 

accuracy of features like room dimensions, wall materials and fumishing that can be 

specified in detail. The algorithm makes no distinction between a piece of fumiture 

or a wall or a partition. All reflecting objects are modeled as a combination of one or 

more reflecting surfaces. For each surface, its position and dimensions expressed in 

terms of relative coordinates are given. Moreover, the type of material must also be 

specified. Since different types of materials have very different electromagnetic 

properties, they have to be characterized beforehand. Notice that ideally, each of the 

reflecting surfaces should be characterized separately to obtain its dielectric properties 

such as effective dielectric constant, etc. 

2.2.2 Antenna Information 
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Besides information of the environment, the model also requires knowledge of 

the transmitting and receiving antennas. The position (including height) of them must 

be specified. The antenna field pattem (far field) and polarization may also be 

specified. It is known that when no line of sight exists between the transmitting and 

receiving antennas, antenna polarization does not have much significance[28]. 

Nevertheless, both antenna far field pattem as well as polarization have been included 

in the simulator model for better accuracy. Another parameter for field strength 

prediction is the transmission power of the antenna. 

2.2.3 Source Ray Directions 

In a ray launching scheme, ray emanates from a unit sphere centered at the 

transmitter location. Launch points around this sphere follow a regular, computer-

generated geometry. The geodesic sphere arises by tessellating on the faces of a 

regular polyhedron and extrapolating the intersection points to the surface of a sphere. 

Figure 2-2b depicts the geodesic vertices that result when the sides of an icosahedron 

are subdivided into smaller equilateral triangles. The geodesic vertices provide ray 

launching points with even angular separation around the entire sphere. Moreover, 

each ray will have exactly six neighboring rays that surround the original in a 

predictable hexagonal pattem. The reception sphere is a simple implementation for 

receiver-ray intersection test. 

imiF ，：遵 
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Figure 2-2(a) An icosahedron is tessellated to produce a geodesic sphere, (b) The vertices of 
geodesic sphere 
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2.2.4 Formulation 

2.2.4.1 Formula ofAmplitude 

In ray Tracing method, all possible paths from the transmitter to each receiver 

will be traced and then the receiving signal can be calculated by the following 

equation: 

E,-EJJ,LXd)Y[T[e^)Y[T{e^) 
i k 

The symbols of equation are defined in Table 2-2. 

Table 2-2 Summary of the variables used to describe the ray tracing propagation model 

VarlaWe Bescriptiott [wmfe] 
, ' '. ._ : : : ^ : 

f(i Field amplitude radiation pattern of the transmitter antenna 

fri Field amplitude radiation pattem of the receiver antenna 
™ I 丨丨丨丨 ‘ ii'''| |||'||'出1 “ ‘ ^           

Li(d) Path loss for the i multipath component 

r(6ji) Reflection coefficient 

T ( 0 k i ) Transmission coefficient 

~Ei Fieid strength of the 产 multipath component [V/m] 

Eo Reference filed strength [V/m] 

Ray tracing determines all ray paths along which significant levels of energy 

radiated from the transmitting location reaches the receiving location. Multiple 

receiving locations can be defined, so the procedure described here can be applied to 

each receiving location. Ray tracing is accomplished by an exhaustive search of a ray 

tree accounting for the decomposition of the ray at each planar intersection. The 

method traces a ray from the source in a predetermined direction and detects if an 

object interaction occurs. When an interaction has occurred, it divides the source ray 

into a transmitted and reflected ray, which are then treated in a similar fashion. This 

recursion continues until a maximum number of tree levels is exceeded or the energy 

in the ray falls below a user-specified threshold. After each interaction calculation, a 

segment of ray starting from the primary ray position and ending at the interaction 

point will be checked to see if this segment intersect with any receiving sphere. If it 
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does, this ray segment will be added to the receiving signal of that location. 

2.2.4.2 Power Reference E� 

It is easy to understand that the received power is the transmitter power 

attenuated by the path loss. Finding the transmitter power by measurement at zero 

distance from the antenna is not practical. Instead a power reference at lm is chosen. 

It is the power received by the transmitting antenna placed lm from the transmitting 

antenna with an unobstructed line of sight path that coincides with the antenna 

patterns and polarization giving the highest power. This value corresponds to power 

given by one 'ray' received at a distance of lm. 

2.2.4.3 Power spreading with path length 1/d 

The inverse relationship between the amplitude E^ and path length d comes from 

Friis' free space formula. It is stated that for free space the received power is 

inversely proportional to the square of path length. This may be understood as a 

result of the uniform spherical spreading of the transmitted power. The area of the 

spherical wavefront is proportional to the distance from the center that is the 

transmitter. The same power spreading may be inferred for a ray that is no more than 

a tube of wave defined by the receiver antenna area. 

2.2.4.4 Antenna Patterns 

The type of antennas used for transmission greatly affects the received signal 

strength. This is due to the fact that different antennas have different directive gains. 

A three-dimensional map of the far field directive gain forms the antenna pattem or 

far field radiation pattem. The pattem is normalized with the peak being ‘unity，. For 

most practical antennas, the pattem is the same for the transmission mode and the 

reception mode. The pattem is said to be reciprocal[24]. The far field is the region 

where the path length separation between the transmitting and receiving antennas 

exceed 2D^/X. 1 is the largest dimension of the antenna. For indoor propagation 

considerations, the receiving antenna is usually in the far field region. For example, if 
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monopoles 5 cm long are used in the measurements, free space and the wavelength 

Ao at 1.8 G H z is 16.7cm, then a distance of 3 cm from the transmitting antenna is the 

far field region. For this reason, the far field antenna pattem is used. The 

transmitting and receiving antennas are modeled as two discrete points. The rays 

going in and out of these two ‘point，antennas are then examined to determine its 

direction. Its amplitude is then weighted for that ray direction. The directive gain is 

normalized with the peak being unity. Therefore the values of G, and G^ are less than 

1. 

2.2.4.5 Reflection and Transmission Coefficients 

At each reflection surface, two phenomena take place: reflection and 

transmission. The reflection and transmission coefficients are functions of both the 

surface dielectric constant and the incident angle. Since reflection surfaces in reality 

are usually multi-layer slabs, their dielectric constants are usually given as effective 

values that are found experimentally. Alternatively, for each surface material, a look-

up table may be created with one reflection and transmission coefficient 

corresponding to each incidence angle. This second method may save computational 

time. 

The values of reflection and transmission coefficients are less than or equal to 1. 

For each ray, all the coefficients of reflections and transmissions it has undergone are 

multiplied together. The value is equal to the total path loss (attenuation factor) due to 

the effect of dielectric surfaces. 
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The angle of reflection is equal to the angle of incidence irrespective of the 
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dielectric constants of the two media. [4] 

G = e . 
r ^1 

The angle of transmission is related to the ratio of intrinsic impedance of the two 

media, and non-magnetic media, the relationship becomes 

sin 6̂  [ ^ 

sin (9. y ̂ 2 

if medium 1 is air, the relationship may be approximated as 

sin<9, 1_ 

sin", 7 ^ 

To find the reflected field strength, the incident wave must be resolved into a 

parallel (vertical) and perpendicular (horizontal) component because the reflection 

coefficients are different for the two polarizations. 

For parallel polarization 

E||r - cos (9- + 批2 — sin̂  0. 
F" 二 ̂  ~ = I • 2 

^ni cos^- +^|Sr2 "Sin 6-

and for perpendicular polarization 

Eir COS0- - ^|^- sin^ 0. 
1 、 — — 一 

丄 五丄/ cos ̂ . + ̂ £^2 — sin̂  0-

The transmission coefficients are also deduced similarly. For parallel 

polarization, 

£•/" 2cos^. 
T*" 一 一 ~ I -

E/ii sin̂  ̂ . I~~ 
f - ~ ^ + ^ / � 2 cos(9, 

and for perpendicular polarization, 

Ejj 2cos^. 
T_L = -77- = 1 ^ == 

E±i cos 0- + ̂ Je^2 一 sin2 0-

For a discrete incident angle, the Brewster angle, the reflection coefficient F^ is 
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equal to zero. This angle 6̂  is given by 

..V^.2-1 

岭 巧 

2.2.4.6 Polarization 

The polarization describes the time-varying behavior of the electric filed intensity 

vector at a given point in space. Reflection and transmission coefficients have 

different values for different polarization. Throughout all the propagation 

mechanisms, the polarization vector will change as it interacts with obstacles. As the 

ray finally reaches the receiver, the resultant signal energy going into the receiver is 

the inner product of the polarization vector of incoming signal and the receiver 

antenna. Unmatched polarization reception may cause large power loss. 

2.2.5 Mean Received Power 

The primary goal of radio wave propagation model is to predict the received 

field strength at different reception points. Although phase does not affect the power 

received due to a single ray, it is important when more than one ray arrives at a single 

point and the difference in phase will either lead to constructive or destructive 

interference. The final amplitude is therefore smaller than or equal to the sum of the 

magnitude of all individual rays. This phenomenon is what is known as fast fading. 

However, in some cases, the effect of phase interference is not included for each 

individual point for two reasons. First, the spatial resolution of the model is not 

enough to accurately define variation within such a small spatial difference. Second, 

in practice, the receiving antenna has finite dimensions; the effect of fast fading is not 

as conspicuous as that for discrete points used in the simulation. Therefore the model 

uses a root mean square value for the mean field strength (amplitude) received to 

average out the effect of phase. The mean field strength E^ is the square root of the 

sum of power of all individual rays E^. 

5 = J^ 
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2.2.6 Effect of Thickness 

Theoretically, when a wave travels through a wall in transmission, the direction 

of the transmitted wave remains the same as the incident wave except for a lateral 

position shift. This lateral shift is neglected here because otherwise the process of 

determining the reflecting paths will be unnecessarily complicated. A time 

consuming iterative algorithm may have to be introduced with exponential increase of 

computational time. This seemingly casual negligence may be justified by the simple 

calculation below: 

For example, a 10cm thick concrete wall with a typical effective relative dielectric 

constant of 5 is considered. 

sina r T " 

~ ^ = J——=0.447 
sm(9, ]|ê ^ 

For an incidence angle of 0,=45°, the transmission angle inside the slab is 

6^,=18.4° 

the lateral shift is 

A = lOcm(tan6>.-tan6>^) 

=6.7cm 

For ten such consecutive transmissions, the shift is still much less than lm. Note 

that the ray that has propagated through ten such thick concrete walls is already 

attenuated by about 80 dB and usually does not contribute much to the total power. 

Another reason is that reflection tends to level out the lateral shift. Therefore it is 

assumed that transmission only affects the ray amplitude without disturbing its 

propagation path. 

2.3 Neural Network 

Basically, neural network is formed by simple elements called neurons connected 

by weights. Each neuron performs a weighted sum of all input signals and put the 
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value through a nonlinear transfer function. These operations including 

multiplication, summation and transfer function, can be performed most efficiently in 

digital signal processor or ASIC. Moreover, the massively parallel nature of neural 

network allows great parallelism in operation. 

The main idea of neural network is that local connection achieves global 

activities. The signal passing through the network may undergo activation or 

suppression. Radio wave propagation has the characteristics that local propagation 

mechanism achieves global radio distribution. The signal in radio wave propagation 

is an electromagnetic wave. Therefore neural network is quite similar to radio wave 

propagation in this sense. However, this similarity is not enough to allow us to easily 

set up a neural network to model radio wave propagation. 

The neuron model of most networks is a simple processor, which calculates 

the weighted sum of input real numbers and passes it through a differentiable 

activation function. Apart from real number calculation, complex number or vector 

number can be implemented in the neuron model to handle even higher dimensions 

problem. Recently, fuzzy neuron has been used as a basic element of neural network 

to construct a fuzzy neural network. 

2.3.1 Architecture 

Although neural network is constructed by simple elements called neurons, there 

are many different types of neural network architecture. They are introduced, for 

different purposes and they need specific training methods. Some typical architecture 

are describing here: 

1. Multilayer Feedforward Network - Multilayer Perceptron, Radial Basis Network 

2. Recurrent Network 

3. Self Organization Map 

4. FuzzyARTMAP 

5. Modular Neural network 

2.3.1.1 MultiUiyer feedforward network 

28 



Multilayer feedforward network is a universal function approximation that can 

model any non-linear function as well as linear function. Propagation itself is a linear 

problem that is easily implemented by Multilayer feedforward network. There are 

many different kind of feedforward network available for modeling such as Multilayer 

Feedforward Perceptron and Radial Basis Network. When the input parameters that 

the problem depends on are clearly defined, existing electromagnetic wave techniques 

or physical propagation measurement can be used to collect the training data. By 

training the network with a set of input-output pair, a model can be made to simulate 

the mapping from the input parameters to the output parameters that are desired in the 

propagation problem. 

2.3.1.2 Recurrent Network 

Recurrent Network is a dynamic non-linear network that can model time domain 

phenomenon. It is similar to the multilayer feedforward network except there is some 

feedback paths from the output or the hidden layers to input layer. Time domain 

response is another important information used in electromagnetic wave propagation. 

For example, It is useful if impulse response of any location can be modeled when the 

transmitter location and the propagation environment are known. For a static 

environment, the impulse response is the accumulated multi-path effect of the 

propagation channel. Therefore, the configuration of environment and transmitter can 

be input to the recurrent network and it will then provide the impulse response of the 

required receiver location. In most cases, the valid solution will be available when the 

recurrent network reaches an equilibrium state. The dynamic nature of recurrent 

network can then be used to provide time series result of a dynamic environment. 

2.3.1.3 FuzzyARTMAP 

Fuzzy A R T M A P is a hybrid model that combines A R T M A P network and fuzzy 

logic control. A R T M A P network is a clustering tool to divide the input and output 

domain into different regions so that each input region is mapped to a particular 

output region. The division process is controlled by the fuzzy logic control. It 

requires only one training epoch to obtain the configuration of network in terms of 
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connections weights. Therefore, the training of Fuzzy A R T M A P is very fast 

compared to the standard backpropagation network. Also, the retraining process or 

the process of adding additional training data into network is very convenient. In 

propagation modeling, if the existing simulation modeling is used to generate the 

training data, plenty of training data is available for network training. The question is 

how to choose a set of suitable training data for problem modeling. Extra training 

data can be easily added when the network model cannot fulfill the specification. 

2.3.1.4 Self organization map 

Self organization map is a different kind of neural network from the previous 

ones. It is an unsupervised network that can self-organize in such a way that they 

compete to one another for limited resources. For examples, if a fixed number of base 

stations available in the simulation domain is defined and the element of self 

organization map represent a grid in the simulation domain, they will compete to 

become the member of the available base stations according to a pre-defined rule. 

After the network reaches a stable state, the location of base station can be obtained 

from the self organization map. Here, the propagation result of each element in a self 

organization map should be calculated from the propagation model that may be 

existing propagation prediction techniques or the above neural network models. 

2.3.1.5 ModuUir Neural network 

Modular Neural network is a combination of neural networks. A neural network 

can be decomposed into different modules according to the input domain and inner 

function. If the neural network is decomposed by input domain, each neural network 

handles a subset of input data and one specific neural network module only maps the 

corresponding input region to the respective output region by a specific mapping 

function. The overall neural network will actually contain modules of different 

mapping functions for their respective regions. 

The other way to decompose a neural network is in terms of inner function. 

Therefore, the connection of each member neural network module is according to 

functions. This method actually inserts engineering knowledge or a priori knowledge 
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into the development of neural network model. Although the running time of the 

whole neural network may be longer than a simple single neural network since the 

connection may contain not only parallel function but also sequential one, each 

module can be individually trained and debugged. The implementation of each 

member neural network is easy since it just handles a simple task that is a subset of 

the whole problem. Thus, a solution can be found even when the problem is very 

complicated. Another advantage is the maintenance of neural network. The network 

can be upgraded when the accuracy and speed of one part of algorithm is improved. 

Just replace the old member neural network and the whole network does not need the 

retaining process that cost much in the development of model. 

In handling connection between member neural network, one operation that needs 

to be implemented is pattem rejection. Since there are some cases where the signal of 

one member network should not pass into the next stage. Since there is a physical 

connection between two member networks, even zero set is one kind of signal that 

can propagate through the network and the result is that the bandwidth of the whole 

network will be reduced. Wastebasket concept should be implemented to avoid 

invalid signal propagating through the network by removing it from the main path. 

The method is to create some terminated connection for the member neural network 

to throw out these invalid signals. Since the connection is physically isolated without 

any connection to other network, the signal can be totally discarded. 

Availability of inside probing and easy development being the advantages of 

modular neural network, the next job is to make use of neural network concept in 

radio wave propagation modeling. Here, a novel modular neural network architecture 

has been proposed. Basically, it is a hybrid model between neural network and ray 

tracing model. The concept is described briefly in the following: First, bmte force ray 

tracing algorithm is divided into different modules according to the function and 

physical relationship. The original problem now becomes many small modules and 

these modules can be individually solved. For each module, a suitable neural network 

model is chosen. After training and confirming that each neural network can model 

the sub-problem with an acceptable error, they are connected together to form the total 

network, which may be trained again in terms of network connection, while fixing the 

architecture and weights of each module. Using this methodology, the large training 
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effort is broken up into small pieces so that the training process of each module can be 

done in a concurrently fashion. After preparing different modules by individual 

training, the basic architecture is almost completed. Second round training is 

relatively simple since it just involves minor adjustment in the overall network. A 

large training process is now broken down into small training processes. Moreover, 

the network is an alternative way of performing brute force ray tracing so that the 

different steps of network operation can be clearly identified instead of just a chain of 

multiplication and summation that cannot be understood physically. In other words, 

having a meaningful interpretation at each part of the network implies inaccurate 

prediction result can be debugged and traced back to each block of the whole 

network. This is testability. Without debugging inside the neural network, inaccurate 

result can only be improved by extremely long retraining process. In the modular 

neural network, result can be improved by replacing incorrect block of neural network 

from the modular neural network. 

iIfiii 
Figure 2-3 DSP dedicated neural network hardware. 

2.3.2 Training Method 

There is no universal training method for all kinds of neural network architecture. 

Even in Multilayer Perceptron, several training algorithms are available to balance 

between fast training and good network performance. Li multilayer perceptron, 

backpropagation is a standard training method and there are many variations of 

backpropagation algorithm. Fast training algorithms are used in this thesis. There are 

two main categories of training algorithm. The first category uses heuristic 

techniques, which are developed from an analysis of the performance of the standard 

steepest decent algorithm. The second category uses standard numerical optimization 
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techniques by manipulating the Hessian matrix or approximate form of Hessian 

matrix. Hessian matrix is the second derivative of the performance index for the 

current values of weights and biases. One typical algorithm using an approximate 

form of Hessian matrix is Levenberg-Marquardt algorithm. The update equation is 

• ^ =〜 - [ , / + " / ] - i , e 

where Xk is the network parameters at k iteration, J is the Jacobian matrix containing 

first derivative of the network error with respect to the weight and biases, e is a vector 

of network errors, \i is a controlling scale value and I is the identity matrix. In this 
• 丁 

update equation, J J is the approximate form of Hessian matrix. 

There is one common problem in neural network training called overfitting. The 

error between desired output and network output for the training set is driven to a very 

small value. However, when a new data is presented to the network, this error is 

large. The network has memorized the training examples, but it has not learned to 

generalize to new situations. Therefore, besides using training method to update the 

weights and biases in the network, generalization improvement techniques are also 

used in the training process. For example, the performance, which is normally chosen 

to be the sum of squares of the network errors on the training set, can be modified by 

adding a term that consists of the mean of the sum of squares of the network weights 

and biases. The performance function becomes: 

F = ̂ i>,-",)2+(i-r)l:iX 
A^M nt:' 

where N is the number of training data, ti is output of i^ training data, aj is network 

output of îh training data, n is number of network parameter, wj is ĵ ^ network 

parameter and y is the performance ratio. Using this performance function the 

network will have smaller weights and biases, and this will force the network 

response to be smoother and less likely to overfit. 

2.3.3 Advantages 

There are many advantages of using neural network. First, neural network is a 

nonlinear system. Basically, a neuron is a nonlinear device. Hence, neural network is 
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capable of modeling nonlinear physical phenomena. Although electromagnetic wave 

propagation is a linear problem, nonlinear effect exists once the microwave circuits 

are included in the analysis. Secondly, It is a universal approximators. Neural 

networks are able to approximate with arbitrary accuracy any continuous function. 

This makes them suitable for solving a wide variety of computational tasks. Besides 

the ability to model propagation, the massively parallel nature of neural network, and 

the simplicity of their processors make them well suited for VLSI implementation. 

That is why neural network is used to emulate ray launching algorithms. Finally, the 

uniformity of analysis and design makes all sub-net design relatively easy. 

2.3.4 Definition 

A neural network is a dense interconnection of computationally simple processor ( 

i.e., neurons ) that is based on the anatomy of the brain. It resembles the functionality 

of the brain in the following two ways: 

1. Knowledge is stored in a distributed fashion as connection strengths ( i.e., 

synaptic weights ) between processors. 

2. Knowledge is acquired through a learning processor that involves modification of 

the connection strengths between processors. 

2.3.5 Software 

Developing neural network model requires tools to describe and train the neural 

network in a logical and flexible sense. There are many programs that are available as 

freeware, shareware and commercial products. In fact, any computer language can be 

used to program neural network development. In this thesis, Matlab© neural network 

toolbox is used to develop all modular neural network modules. Matlab© is a 

common tool in engineering field to build up a mathematical prototype. With the help 

of neural network toolbox 3.0，individual neural network with different training 

methods is available in the toolbox for easy training. Also, neural network in Matlab 

environment is constructed as an object with flexible architecture description. 

Therefore, any network size and architecture can be easily constructed. 
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3 Hybrid Modular Neural network 

Modular neural network is constructed by decomposing the brute force ray tracing 

algorithm into small modules. The decomposition process is possible since brute 

force ray tracing algorithm involves a series of sequential process for every individual 

ray. These sequential processes include surface-ray hit checking, surface selection 

with minimum distance criteria, reflection-transmission calculation and update of the 

received signal in each receiver. The mentioned process is just the first step for the 

decomposition process. Repeating the task in each process can further reduce the 

system into small modules. Besides the construction of each module, the limitation 

needs to be defined so that all the network designs can follow the same rule and fewer 

problems will be introduced when they are finally combined. In other words, the 

ranges of parameters used in the simulation need to be designed. 

3.1 Input and Output Parameters 

Suppose a scattering surfaces exists completely within a simulation domain of 

50 m X 50 m x 50 m in dimension with six absorbing boundary surfaces at the far end 

to stop rays coming from any position in any direction. The boundary surfaces are 

chosen because there is no master control unit that monitors outgoing ray in the 

system. In this distributed system, a boundary surface can be used to absorb any ray 

that leaves the simulation region. The maximum dimensions of the scattering surface 

are limited by the environmental dimensions and the range of surface thickness is 

between 0.02 m and 0.1 m . Also, the dielectric constant of surface material ranges 

from 2 to 6. The allowable range should be defined before building the neural 

network model since extrapolation is a well-known weakness of multi-layer 

perceptron. The ranges of all parameters are listed in Table 3-1. The ranges of these 

parameters define the physical limitation of the modular neural network model. 

However, it is not a complete list. When going into each sub-network design, other 

parameters will be included to describe the problem in more detail. For example, a 

logical parameter should be used to describe whether an incident ray hit the scattering 

surface or not. Li this case, 0 and 1 are used to represent hit or not hit status. Li later 
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chapters that talks about the detail of each sub-network design, a complete description 

of all the network architectures as well as input and output parameters will be given. 

Table 3-1 Modeling Parameter and Their Range 

Aspect Variable Range 
Domain Size X 0 m-50 m 

Y 0 m-50 m 
Z 0 m-50 m 

Tx Location X 0 m-50 m 

Y 0 ra-50 m 
Z 0 m-50 m 

Rx Position X 0 m-50m 
Y 0 m-50 m 
Z 0 m-50 m 

Propagation vector 0^ 0° - 180° 

0d 0。- 360。 
Polarization vector 0p 0° - 180° 

<t>p 0。- 360。 
Amplitude A -120 dB - 0 dB 
Propagation Distance D 4500 m 
Surface Center X 0 m-50 m 

Y 0 m-50 m 
Z 0 m-50 m 

Surface Dimension Sx 0.2 m — 50 m 
(Two of Sx，Sy and Sz 

are nonzero at a time) 
Sy 0.2 m - 50 m 
Sz 0 . 2 m - 5 0 m 
Thickness 0.02m-0.1 m 

Surface Characteristics er 2 -6 

Although the simulation domain is fixed after the ranges of parameters are set in 

the modular neural network, not all networks need to be redesigned if another large 

environment is simulated. Later some neural network design that is invariant to the 

dimensions of simulation domain will be pointed out. Therefore, a new set of neural 

networks for a larger simulation domain can be constructed with some modules 

trained previously reused. 

3.2 Architecture 
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Suppose the transmitter emits N rays in all directions with vertical polarization. 

First, the separation distance matrix between all the scattering surfaces and N rays is 

calculated as shown in Figure 3-1. If a ray hits a surface, dij represents the separation 

distance between hitting point on scattering surface i and source position of ray j. 

Otherwise, dij is zero. 

Rl ^2 R3 K R5 ^6 : 

^1 1̂1 1̂2 1̂3 1̂4 1̂5 1̂6 

^2 ^21 ^22 ^23 ^24 ^25 ^26 

^3 ^31 ^32 ^33 ^34 3̂5 ^36 

^4 ^41 ^42 ^43 ^44 4̂5 ^46 

^5 5̂1 5̂2 "53 5̂4 5̂5 5̂6 

^6 ^61 ^62 ^63 6̂4 ^65 ^66 
• • 

Figure 3-1 Separation distance matrix between surfaces and rays 

The calculation procedure is: 

1. Center transformation - translates the surface center to origin and carries out the 

same translation to any incident ray 

2. Orientation transformation — rotates any surface normal to positive y-axis and 

carries out the same rotation to any incident ray 

3. Checks if the ray hits the surface and calculates the separation distance between 

source position and hitting point. (the separation distance may be wrong but the 

calculation will be rejected by the result of hit checking network) 

4. Multiplies the hit check status and separation distance in step 3. Since hit status 

is represented by binary value, the resultant value represents the separation 

distance if it is greater than or equal to the resolution threshold. Otherwise, the 

resultant value represents not hit if it is smaller than the resolution threshold. 
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Calculate Nearest 
Distance ** 

f ^ ~~~̂  

^ ^ ^ ^ ^ ^ ^ 
Ray Buffer 厂 . p u r f a c e 

*-̂ --,__ _ _ ^ Information 

> z ^ 
/Transform rays^ , ,. . 

‘ ， ‘ x-z plane aligned 
Y-r-t-zp^ane ^surface 
l̂igned surfaĉ  ^̂ 7 

ycoordinateofA fCalculateabsolute\ 
propagationvector) valueofy 

^ \^ordinate of r a ^ >< 
/ Calculate \ 

� separation � 
\ distance / 

Figure 3-2 Sub-net layout in calculating nearest distance 

Hit Check * 
广^"-“ ~ " ^ ^ 

F = ^ _ - ^ 
Raybuffer 「.‘Surface 

v....__ __^ information 
> 2 ^ 

Transform rays \ _ ,. 」 
w.r.tx-zplane x-zplaneal,gned 
•• . ^, surface 

l̂igned surfaĉ  

^ ^ ¾ ^ 
Calculate x̂ ^「Calculate z ̂  \ 

coordinate of hit coordinate of hit \ 
^ point y ^ point J ‘ 

了 了 j 
X check if \ / check i f \ X / 

/ coordinates \ / coordinates X y 
Vbeyondsurface/^^ beyondsurface X \ S ^ ^ 

hit status 

vZy 
Figure 3-3 Sub-net Layout in hit checking 
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Then, reset any value that is smaller than the resolution threshold to maximum 

separation distance in that simulation domain. Select the surface for each ray if the 

separation distance between that surface and that ray is minimum and collect N 

surfaces (they may be repeated ) for N rays for the next calculation. 

Slect Nearest surface *** 

^ ^ ^ ^ 

1 Hitstatus 厂 S e p , t i o n 
distance 

^ ^ 
ZDistance / 

Matrix / 

y_  
Reset zero 
distance to 

^^aximum valu^ 
Y  <select surface \ 

for each ray \ 
with smallest / 

distance / 

Figure 3-4 Sub-net layout in selecting nearest surface 

These N rays and N corresponding scattering surfaces will be presented to the 

reflection and transmission ray calculation network. The following procedure is used 

to find out the two secondary rays ( Figure 3-6 ): 

1. Center transformation (same as previous description) 

2. Orientation transformation (same as previous description) 

3. Calculates the position and direction of the reflection ray and transmission ray 

4. Calculates the polarization vector direction, additional amplitude loss and 

additional phase. The vertical and horizontal polarization coefficient will be 

considered in terms of the additional amplitude loss and additional phase. The 

resultant amplitude and phase is that of incident ray and the additional one due to 

reflection or transmission. 
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5. Calculates the propagation distance between source position and hitting position 

and add the propagation distance to that total distance of the reflection ray and 

transmission ray 

6. There are 2N secondary rays to be generated 

When 2N rays are obtained from the primary N rays, all receivers will be updated 

if the receiver interacts with the primary rays. Also, the secondary rays are filtered 

out if their amplitudes are smaller than the antenna-receiving threshold. The left ray 

will be placed in the ray buffer for next iteration. Four basic procedures will be 

repeated until the ray buffer is exhausted. The modular neural network architecture is 

shown in Figure 3-5. 

Modular neural network 
architecture 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^^^^^^^ 
X ^ Surface 

广 ^ I Ray buffer 1 information 
Calculate reflection\ ^^~~^^____^__-^^ ^ ^ | 
and transmission L / ^ - ^ ^ ^ / 

^ 卞 \ - 乂 ， ^ ^ ^ ^ ^ 

ym Selected/^ *^ 广 \ 
r \ Surface Hit Check * Calculate nearest 
Cacluate received \ 1 ) 1 distance 

signal ^ y V , ^ 

^S:^-^ 
!々•少丨 ^•"""" ~ ~ ~ ^ . �Z \ 

I ^̂ ::::r~~~ _ _ _ ^ / Select \ 
• Q ^^^::mr~ ^m^^^^4__/ nearest \ 

Received Corresponding \ su〔，e / 
r signal l^surface for N r a y s ^ \ *** / 

Figure 3-5 : Modular neural network architecture 
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Calculate reflection and 
transmission ray **** 

i i i 广 ^ i 
i I I ^ r r ^ ^ ^ ^ ^ ^ I 

I ^ ^ ^ ^ ^ _ - - ^ Raybuffer f ^ ^ ^ ^ f 
^ _ - - - ' ' ^ V _ _ ^ information 

Raybuffer | ^ . f u r f a c e ~ ^ ^ ^ ^ 7 
^ _ _ _ ^ information \ / 

I ̂ ~"^^ 7 ^ XuZ 
^ ^ ^ X ^ ^ / - ^ ^ ^ X ^ ^ r a n s f o r m R a y ^ 

广 X to x-z plane 

( ~ ： % 1 x - z p = a _ e d I I — ; ; : 。 • 
,. , , surface  

\^ l ignecl surfaceJ ” 
/ \ ^ ~ ^ ^ j / Reverse y \ 

/ ^'^^^^^^y-^'^^^ / / coordinate of \ 
/ J ^ ^ / \ propagation / 

广——*^^ ^ ^ ~ ^ 、 \ v“r / 
[ Calculate x ] f Calculate z ] | 

coordinate of hit coordinate of hit 广 X 
1 point J 1 point J f Covert to 
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y ^ c o o r d i n a t e � 

‘ 

/

Propagation / 
vector of / 
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Raybuffer . ^ … “ … : — ~ ~ ^ 
V ^ _ ^ ^ information i  

^ < ^ X i I - .^^^ .  
^ ^ ^ n N = H . ^ ^ ^ 
fTransform raysto^ Ravh"ffPr | Surface 

, x - z p l a n e aligned \ ： ^ a y b u f f e ^ information 

I ^ ^ ^ : ^ ^ g ： ^ j i ^ C ^ ： 
I 广 ^ fAdd 180。to phase^ 广"~Transform~"^ | 广 ^ 
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positive axis position pointing negative pointing to positive distance ** 

i \ ^ ^ 1^ axis j ^ axis y \ \ J 

I ~^^^"^^=^i^^^^^~ II / ^ ^ ^ " 7 
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->"-"̂ - ' / ^—_______^ / time to reflection/ / 
i , 4 — ‘ ^ - , i ^ ^P~~~~'—» ^ / transmission ray / 
I ( Calculate � ( \ f �I [ / 

polarization vector Calculate reflection/ ^aicul^e phase ot  
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Figure 3-6 Sub-net Layout in calculating secondary ray 

41 



3.3 Data Preparation 

All the training data for each module should be prepared in terms of input and 

output parameters. Since the model is an alternative form of brute force ray tracing 

method, the data preparation can be extracted from the traditional ray tracing method. 

Matrix generation and mapping function table look-up is written to generate the 

required training data. The number of input parameters and data range is specified in 

matrix generation configuration file. The program will first generate a set of input 

parameters based on n-dimensions matrix generation where n is the number of input 

parameters. Then, each input vector will pass through the specific function and the 

output vector will be calculated and written to the output file. Once the training data 

is prepared, the training process is ready to proceed. 

After obtaining the input and output pairs for each neural network, the data 

needs to be normalized so that the nonlinear transfer function can operate without 

saturation. In one training data set, the maximum and minimum value of all input and 

output parameters are sorted out. Each parameter has its own boundary values. Then, 

linear normalization to transform the data into 0.1 to 0.9 range is carried out. Since 

the input range of all transfer functions is limited from 0 tol, the neural network will 

not go into saturation where the output of the transfer functions is constant. Training 

process will becomes very slow if neural network enters that region. However, such 

normalization generates some defects in network performance. Since the desired 

output range is exactly equal to the range of transfer functions output, the actual 

network output may be within the uncovered region, i.e., smaller than 0.1 and larger 

than 0.9. After de-normalization, this output will be out of the physical range and 

propagate to another stage in the modular neural network. Therefore, in some cases, 

another layer needs to be added after the output layer to remove these network output 

that is beyond the desired range. 

3-4 Advantages 
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As each network has its position and meaning in the modular neural network 

architecture, inaccurate prediction can be back traced module by module in order to 

find out which one contributes to the incorrect prediction. This is testability. Without 

debugging inside the neural network, inaccurate result can only be improved by 

extremely long retraining process. In the modular neural network, result can be 

improved by replacing incorrect block of neural network from the modular neural 

network. 

Immediate solution can be obtained for debugging and development during the 

simulation process. Each module can be trained individually so that handling large 

network structure and long training process can be avoided. Each module can be 

optimized according to the characteristics of the modeling task. For example, 

functional mapping and classification requires different type of network architecture. 

3.5 Limitation 

As the training data for neural network training is prepared by ray tracing, the 

performance of modular neural network is limited by the accuracy of the ray tracing 

algorithms that is being used for data preparation. 

The range of input parameters or the applicable environment is fixed and 

limited after the modular neural network architecture design. The reason to limit the 

range of input parameters is that neural network can only operate inside the designed 

range. It is rather weak in extrapolation. Therefore, the training environment 

dimensions limit the size of environment that the neural network can handle. 

However, multi-session simulation is possible when the model is cascaded in a grid-

based manner. 

3.6 Applicable Environment 

The training environment of the modular neural network in this thesis is large 

enough to handle most indoor environment. For example, a single floor of 
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engineering building in C U H K is 22 m x 25 m x 4 m. Jn this thesis, 8 to 10 floors 

indoor coverage can be simulated. However, modular neural network is not limited to 

this kind of simulation. There are two possible approaches to simulate larger 

environment. First, some neural network modules can be re-constructed that are 

domain dimension dependent. In the modular neural network design, two modules 

are domain dimensions dependent: the hit point calculation and the propagation 

distance calculation. The input and output parameters of these modules should be 

adjusted according to the maximum simulation dimensions. One point should be 

noted here. When the range of input and output parameters is enlarged, higher 

accuracy in network performance is needed to maintain the modeling resolution. 

Since all the data in the modular neural network is normalized from 0 to 1 no matter 

how large the parameter represent, the effective resolution will be lower down for the 

same prediction performance in terms of mean testing error. The second approach is 

Multi-session modular neural network. Since there are six absorbing boundary 

surfaces to define the simulation region in one modular neural network, larger 

environment can be represented by multi-session of modular neural network and their 

connection is the common absorbing boundary surfaces. By using ray routing 

mechanism between two successive modular neural networks, the large environment 

can be divided into several blocks. Thus, modular neural network can be extended to 

larger environment simulation. 
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4 Individual Modules in Hybrid Modular Neural Network 

There are all together 18 neural network sub-nets in this modeling. All of them 

are Multilayer Perceptron. Apart from input and output layers, there are at most two 

hidden layers in all neural network sub-nets. Their sizes are not fixed but depend on 

their respective functions. In some cases such as absolute function modeling, the 

network parameters are calculated so their sizes are minimal. Jn another case, training 

process is needed to prepare the neural network. When the networks are trained and 

tested, these networks can be minimized by applying some advanced techniques to 

eliminate the redundant weights and hidden neurons. However, in this thesis, the 

sizes of networks have not been optimized. When the networks require training, 

Levenberg-Marquardt algorithm with bayesian regularization is mainly used since the 

trained network has better generalization capacity than other algorithms[38]. A 

detailed discussion of the use of Bayesian regularization, in combination with 

Levenberg-Marquardt training can be found in [39]. 

Problem transformation technology has been widely applied in modular neural 

network design. There are two reasons to apply problem transformation: 

• simplify the structure of the required model 

• avoid discontinuity in the underlying function since discontinuity may cause 

defects in neural network approximation of the function 

By using suitable problem transformation, the required neural network can be 

simplified and the training process can be minimized. 

There are three techniques used in neural network design. First, position 

parameters are in Cartesian coordinate system while direction parameters are in 

spherical coordinate system with unit radius. Spherical coordinate system with unit 

radius is used to reduce the necessary domain in vector direction modeling. Secondly, 

modeling domain should be reduced as small as possible by transformation and 

reducing redundant input parameters so that the performance of neural network can be 

improved. For example, in modeling the phi parameter in spherical coordinate from x 

and y in Cartesian coordinate, considering the first quarter is easier than considering 
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all quarters at the same time. Finally, additional constraints can be applied in 

individual neural network to reduce the domain size and complexity. In the hit point 

calculation, the possible valid positions are found on the maximum dimension 

surface. Any hit points outside this range are classified as invalid hit point location. 

When this restriction is applied, hit point can be limited within a certain value even if 

the ray does not hit the surface or hit at a point that is far away from the surface. 

Thus, the dynamic range of neural network output will not be too large. 

These 18 neural network sub-nets are then used to construct nine different modules 

that are the basis of hybrid modular neural network model. Some neural network sub-

net may be used in several modules while some of them are unique components in 

particular module. In the following sections, these nine modules will be described in 

detail. All neural network sub-nets in each module will be described as a whole 

module so that a clear picture will be given. The input and output design of each 

individual sub-nets will be stated for reference. 

4,1 Conversion between spherical coordinate and Cartesian coordinate 

Spherical coordinate is chosen to represent all direction parameters in order to 

reduce the modeling domain. However, cartesian coordinate is still used in some 

neural network design because they perform better in modeling. Neural network 

"tools" to convert between spherical and cartesian coordinate is necessary. 

4.1.1 Architecture 

There are five neural networks involved in coordinate transformation. Three 

of them are used to calculate the phi value in spherical coordinate from cartesian 

coordinate. Two of them are used to calculate the cartesian coordinate ( x, y, z ) from 

spherical coordinate. The last one is used to calculate the theta value in spherical 

from cartesian coordinate. In phi calculation, the phi angle in the first quarter is first 

calculated by using the absolute x and y coordinates. At the same time, another 

neural network is used to determine the actual quarter of the x and y value. This 
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network contains four-output signals that represent the quarters that the phi coordinate 

belonging to. One of the outputs will be 1 and the others will be 0. Finally, the last 

network will use the quarter information and the equivalent phi angle in first quarter 

to construct the actual phi angle. There are two reasons to implement such 

complicated structure. First, phi angle is calculated from x and y value which are the 

coordinates of any point in the unit circle. One phi angle can be equivalent to multi-

pair of X any y value (they are different in radius ). This input domain is so large that 

a single network cannot perform well. Second, phi angle varies from 0° to 360° but 

the region near to 360° is neighborhood to the region near to 0°. Therefore, similar x 

and y value may map to totally different phi angle and single network is difficult to 

model such large nonlinear effect. As a result, the region is divided into quarters and 

a common neural network is used to find out the equivalent phi angle in the first 

quarter. Then, the corresponding phi can be easily found with the quarter 

information. 

4.1.2 Input and Output Parameters 

Li Table 4-1, The input and output parameters as well as the ranges of all 

neural network modules in coordinate conversion are shown. 

Table 4-1 Input and output parameters of sub-nets in cartesian to spherical coordinate 
conversion 

Input Parameters Range Output Parameters Range 

Z -1 ~ 1 Theta 0° 〜180。 ^ 

Input Parameters Range Output Parameters Range 

X -1 ~ 1 Phi value in first 0° 〜90。 

quarter 

Y -1 〜1 W K W \ 
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Input Parameters Range Output Parameters Range 

X -1 〜1 Li first quarter 0 /1 

Y -1 ~ 1 Jn second quarter 0 / 1 

N/A N/A M third quarter ^71 

N/A N/A Jn forth quarter o71 

Input Parameters Range Output Parameters Range 

X -1〜1 Actualphi 0° ~ 360。 

Y -1 〜1 Li second quarter 0 / 1 

Li first quarter 0 / 1 Li third quarter 0 /1 

M second quarter 0 /1 In forth quarter 0 /1 

Li third quarter 0/1 W K m K 

ln forth quarter 0/1 W A N ^ 

Table 4-2 : Input and output parameter of cartesian to spherical coordinate conversion module 

Input Parameters Range Output Parameters Range 

X -1 〜1 Theta 0° 〜180。 

Y -1 ~ 1 Phi 0° 〜360。 

飞 -1 - 1 Wk Wk 

Table 4-3 : Input and output parameter of spherical to cartesian coordinate conversion module 

tiput Parameters Range Output Parameters Range 

Theta 0° ~ 180。 X -1 〜1 

Phi 0° 〜360。 Y -1 〜1 

N/A W k Z -1 〜1 

4.1.3 Testing result 

80601 testing data is generated to test the performance of these neural 

networks. Since four neural networks are used in converting cartesian coordinate to 

spherical coordinate, they are combined for evaluation. In spherical to cartesian 

coordinate, Figure 4-1 shows the modeling error of x, y and z coordinate distributed 

on their desired output. The overall maximum error is le-3 for all cartesian 
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coordinate. Basically, good approximation can be achieved in this conversion except 

those testing data that has 0 output for x and y coordinate. In that case, testing data is 

located along the axis and the other coordinate has maximum absolute value ( for 

example, when x = 0，absolute y and/or z is 1 ). Thus, this exceptional case affects the 

conversion a little bit. 

X 10一5 X coordinate calculation : error distribution on x coordinate 
11 r : .: - �. 

o mean value 

10」 未 standard deviation . 

； 丨 i 丨 ： o° 
9 - •• • : \. 

:o ; o o ： o : 
0 / ¾ 。 ： 

8^ ；^；..m.<#。ci»^Cf&...:……o: 
0 do* • ^ 来 �� ĉ  
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X 10_4 y coordinate calculation : error distribution on y coordinate 
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X icf5 z coordinate calculation : error distribution on z coordinate 
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Figure 4-1 Network performance in converting spherical coordinate to cartesian coordinate for 
testing data, a) x coordinate b) y coordinate c) z coordinate 
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theta coordinate : error distribution on theta coordinate 
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phi coordinate : error distribution on phi 
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Figure 4-2 Network performance in converting cartesian coordinate to spherical coordinate for 
testing data, a) theta coordinate b) phi coordinate 
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phi coordinate : error distribution on x 
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Figure 4-3 The error in calculating phi coordinate from cartesian coordinate is plotted against (a) 
X coordinate of cartesian (b) y coordinate of cartesian 
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theta coordinate : error distribution on z coordinate 
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Figure 4-4 The error in calculating theta coordinate from cartesian coordinate are plotted 
against z coordinate 

In reverse conversion, neural network cannot perfectly model the calculation, 

although the error is not too high. The error in theta coordinate calculation is 

acceptable, as the average mean error is 0.39 degree. Typically, in ray launching 

method, 1-degree angular separation distance is used and 40000 rays will be 

performed in ray tracing simulation. In phi calculation, major error occurs when the 

absolute value of x and y coordinates are smaller. In those situations, direction vector 

is pointing to positive or negative z-axis and the error in phi calculation causes little 

variation in the resultant direction. In fact, the phi value is a redundant parameter in 

the extreme case when the theta coordinate is equal to 0° or 180°. 

4.2 Performing Rotation and translation transformation 

Given a surface centering at Xo , yo, zo and surface normal pointing to N 

direction, the scattering surface and all incident ray pointing to this surface need to be 

transformed in such a way that the transformed surface is aligned on the X-Z plan 

with origin at the center. The center and orientation transformation for an incident ray 
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starting at Xr, yr, Zr position with ray direction R are: 

Transformation Matrix r ^ 

sin ̂ Q cos 0^ cos ¢^ + cos p。sin 0。 sin P^ cos 0^ sin 各-cos y^ cos 略 -sin y^ sin 0^ 

= sin6>ocos^o sini9。sin̂  cos(9o 

_— cos ŷ o COS 6^ COS 0。+ sin P^ sin 0。一 cos fi^ cos 0^ sin 外-sin p^ cos 爽 cos P^ sin 6^ 

Center Transformation 

[^n y” ^n] = ( K Jo ^ o ] " K Jr ^AYrot 

Orientation Transformation 

p^ Py p^ = [sin 6^ cos ¢^ sin 6^ sin (j)̂  cos6^ 

Px Py p J = k Py PzYrot 
� f M 

/ ， \ / ， \ ， 

r̂ ) 人 1 Py . Py ^ -1 P, 
-"n Yn\- COS ~ ^ sin ~ ^ tan , , 。 ^ 

V^"J l ^ V [^[p-^Py) 
匕 \ J-

Since direction information is stored in spherical coordinate and they need to be 

converted into cartesian coordinate first and multiply it with the rotation matrix. The 

rotation matrix is calculated before the start of simulation since it is fixed once the 

location and orientation of scattering surface is specified. Since the rotation matrix is 

not calculated at runtime, special neural network module is not required. In the 

rotation matrix, transformation involves addition and multiplication that is similar to 

neuron-operation. 

4.3 Calculating a hit point 

Suppose there is a pair of scattering surfaces and an incident ray. The scattering 

surfaces in this section are assumed to be of maximum size. First, they are 

transformed into a new coordinate in such a way that the surface is aligned with X-Z 

plane and the center of surface is at the original. At the same, the incident ray 
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undergoes the same translation and rotation accordingly. Although the hit point on 

the transformed surface does not change with respect to the ray-surface configuration, 

the allowable coordinate range is changed. Therefore, the range of parameters in this 

module is different from the simulation environment definition. For example, the 

coordinate of the source position of an incident ray should be limited from 0 m to 50 

m . After transformation, the allowable coordinate of the source position will be 

expended to -90 m and 90 m that the absolute value is approximately equal to VSD 

where D is the maximum coordinate. These change affect surface dimensions too and 

more detail can be found in section 4.1. 

4.3.1 Architecture 

The calculation of x and z coordinate of hit point is separate. Since they are more 

or less equal to each other, there are two identical neural networks to perform 

coordinate calculation. First of all, the y-axis projection of the source point is 

obtained. Then, the hit point is calculated from the perpendicular separation distance, 

y coordinate and x/z coordinates of propagation vector. X and z coordinates of 

propagation vector are chosen as input in calculating x and z coordinates separately. 

A neural network module is trained to perform this operation. After the hit point 

coordinate is calculated for the projection case, the actual hit point coordinate is the 

summation of the network result and coordinate of source position. 

One point should be mentioned here. The designed deflected length is extended 

up to 120 m instead of 90 m and any calculated deflected length beyond 90 m will be 

squeezed into 90 m and 120 m by an exponential function. This extension will not 

affect the calculation of hit point but it can be used in ray-surface hit checking. More 

details can be found in section 4.4. 

4.3.2 Input and Output Parameters 

The input and output configuration of two neural networks are listed in Table 

4-4. 
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Table 4-4 The input and output parameters of sub-net in hit check module 

iiput Parameters Range Output Parameters Range 

Xŷ Z component in -1 〜1 Shift distance from 0 m 〜50 m 

cartesian of ray original 

direction 

Y component in -1 ~ 1 N/A N/A 

cartesian of ray 

direction 

Perpendicular 0.05 m 〜90 m W A N?A 

separation distance 

Table 4-5 The input and output parameters of hit check module 

Input Parameters Range Output Parameters~~ Range 

XJZ component in -1〜1 Xcoordinate -90m〜90m 

cartesian of ray 

direction 

Y component in -1 〜1 Z coordintae -90 m ~ 90 m 

cartesian of ray 

direction 

Perpendicular 0.05 m 〜90 m ^ N?A 

separation distance 

4.3.3 Testing result 

In verification, 1318761 rays will be generated from the designed range and they 

will propagate to a X-Z plane aligned surface with maximum dimensions ( 50 m x 50 

m ). By using the above mentioned neural networks and transformation techniques, 

the hit point can be calculated. The calculation of deflected distance is shown in 

Figure 4-5 and the error distributions on input parameters are shown in Figure 4-6. 

The error distributions show that deflected distance calculation has 1 m mean error 

when the perpendicular separation distance between source position and surface is 

smaller than 5 m as well as the y coordinate of propagation direction is smaller than 

0.1. It is acceptable since the neural network cannot model such large variation of 

deflected distance in that region. 
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deflected distanec in hit point calculation : error distribution on deflected distance 
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Figure 4-5 The error of calculating deflected distance are plotted against desired output 
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deflected distanec in hit point calculation : error distribution on y coordinate of propagation vector 
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deflected distanec in hit point calculation : error distribution on x or z coordinte of propagation vector 
3.5r ： ； ； • • -• 

0 mean value 

：^ 来 standard deviation 

3 - : ； r : : ； : ； 

2.5 - : i : : I ;. 

£ 
0) 

i 2- \ :. : i : ； 
> : 米 : : : 

1 ：米 \ 
CD 
3 

1 1.5 - ： •： ； : : 
§ 来 
o> ： 
E 

1一....来…: ； ； ； : : ： : :. 
* ： : : : ： ： ： ： 

: ** : ; : : ： '.. \ : :> 

。.5—。….…丨、..%̂........；………丨………；……….：………丨.；.̂’.一.一.一:. 
； % ； ；、锋 ^ ^ ^ ^ ^ ^甸輸輸纖禱 . - - - ； 

Q I ^̂ *̂ *™poaoooa3jipooDoai)oooocoi)oooooDcboa3Da3dDOOODoocpoooooocpcBODqxfi  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

X or z coordinte of propagation vector 

(c) 

Figure 4-6 The error of calculating deflected distance are plotted against (a) the perpendicular 
separation distance between source position and surface (b) y coordinate of propagation vector 

(c) X or z coordinate of proapgation vector 
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4-4 Checking if an incident ray hits a Scattering Surface 

There is no special module check if an incident ray hits a scattering surface but 

the modified hit point calculation module is utilized to do this task. When an X-Z 

aligned surface is considered, a ray will hit on the surface under two conditions. The 

first condition is that an incident ray should point toward the scattering surface. In hit 

point calculation, the y coordinate will not be calculated and set to be zero for all 

cases. The effect is that a virtual hit point on X-Z plan will be generated even if the 

incident ray is pointing away from the scattering surface but the x and z value of 

virtual point may still be inside the surface boundary. The simple method is to check 

if the transformed y coordinate of ray position and the y coordinate in cartesian form 

of ray direction vector are different in sign. In the second criteria, the calculated hit 

point should be within the surface boundary if an incident ray hit the scattering 

surface. However, hit point calculation may need to handle some coordinate output 

that is far away from the original. Therefore, a trick is used to avoid this difficulty by 

limiting the calculated coordinate that is beyond ±90 m to be within ±120 m even if 

the actual coordinate is much larger. Since 90 m in deflected length is the maximum 

case for all possible rays and surface configurations, larger deflected length does not 

contribute much in hit point calculation but hit check is still valid if the generated hit 

point coordinate is beyond the possible maximum surface dimensions. After the 

actual hit point coordinate is generated in transformed domain, hit status can be 

obtained by testing if the absolute value of hit point coordinate is smaller than the 

surface boundary dimensions. Based on these two conditions, an incident ray with 

arbitrary direction at any position inside the simulation can be checked whether it hits 

on a scattering surface with arbitrary orientation and surface dimensions. 

4.5 Calculating separation distance between source point and hitting 

point 

Separation distance calculation is similar to the hit point calculation. If a 

triangle with three vertexes is considered with the vertexes of the y-axis projection of 

ray position, original point of scattering surface and hit point, then two sides of that 

triangle are the required result in previous section, hit point calculation, and 
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separation distance. Therefore, same approach is applied in calculating separation 

distance between ray position and hit point. However, one restriction can be released 

in this network design, all hit points coming from maximum surface in the designed 

domain will be considered. Any surface-ray configuration that generates larger 

separation distance will be ignored in this network. Therefore, the separation distance 

may be wrong if the data is out of the region that is considered in the training. The 

correctness of this separation distance is validated by hit checking result. In the real 

operation, surface is first aligned with X-Z plan after the standard transformation. 

Then, the separation distance can be calculated from the y coordinate of propagation 

vector and perpendicular separation distance between ray position and surface, i.e. 

absolute value of y coordinate of ray position. 

4.5.1 Input and Output Parameters 

The input and output configurations of two neural networks are listed in Table 

4-6. 

Table 4-6 : The input and output parameters of sub-net in separation distance calculation 
module 

Liput Parameters Range Output Parameters Range 

Y component in -1 〜1 Separation distance 0 m 〜100 m 

cartesian of ray 

direction 

Perpendicular 0.05 m 〜90 m W K N^A 

separation distance 

* The input and output parameters of this module is the same as that in sub-net 

4.5.2 Data Preparation 

Li separation distance calculation, all incident rays will be considered to hit 

the scattering surface with maximum dimensions. Li data preparation, all possible 

combinations between perpendicular separation distance and y coordinate of 

propagation vector are generated. The corresponding separation distance is also 
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calculated. Then, all separation distance results that are larger than 90 m will be 

filtered out. Apart from this normal sampling, the sample data should be increased 

when the perpendicular separation distance is smaller than 10 m because the required 

result is changing rapidly in term of the y coordinate of propagation vector. 

Consequently, not all propagation direction will be considered in training and even 

testing data. Li real simulation, input data that is out of these ranges will possibly be 

input to the network and thus unpredictable result will be generated. However, this 

unstable result is expected and hit check sub-net is used to validate the result of 

separation distance calculation. This simplification reduces the dynamic range of 

output parameter and non-linear effect ( if the squeezing techniques described in 

section 4.3 is used ) without loss in generalization capability. 

4.5.3 Testing result 

37901 pairs of testing data are generated to verify the trained network. The 

target surface is also a X-Z plane aligned surface with maximum dimensions ( 50 

m X 50 m ). Similar to hit point calculation, large error is expected when the 

perpendicular separation distance is smaller than 5 m while the y coordinate of 

propagation direction is smaller than 0.1. 
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1 4 separation distance between source and hit point: error distribution on separation distance 
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Figure 4-7 : The error of calculating separation distance is plotted against the desired output 
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separation distance between source and hit point: error distribution on y coordinate of propagation vector 
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Figure 4-8 : The error of calculating separation distance is plotted against a) the perpendicular 
separation distance between source position and surface b) y coordinate of propagation vector 

4.6 Calculating propagation vector of secondary ray 

There is no special neural network module to calculate propagation vector of 

secondary ray. For transmission ray, propagation vector is the same as that of incident 

ray. For reflection ray, propagation vector is simply calculated by reversing the sign 

of y coordinate of the incident ray. 

4.7 Calculating polarization vector of secondary ray 

When an incident ray does hit on the scattering surface, the calculation of the 

polarization vector of secondary ray is independent of ray position and surface 

dimensions. Li this sub-net architecture, translation and rotation transformations are 

still applied to simplify the problem complexity for neural network. However, the 

calculated polarization direction is the result in transformed domain and de-

transformation is needed to obtain the final result. A question in the efficiency of 
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calculating polarization vector and neural network training should be considered now 

to justify the necessity of transformation. The amount of training data is compared in 

two cases: training data with and without transformation. Then, the training time is 

estimated for both cases so that it is a successful training. As a result, it is 20 times 

larger in training data if the neural network is constructed without transformation. 

This suggests that 20 times more training is needed if the relationship is linear. In 

conclusion, although transformation creates extra workload in simulation, it can 

simplify the training process and also makes training more easily successful. This 

argument can be applied to all network construction for secondary ray calculation. 

Apart from standard transformation, another transformation is applied so that 

modeling can be further reduced. The incident ray will be transformed so that all 

incident ray is coming from positive Y-axis. At the same time, the polarization vector 

is modified by manipulating the phase of incident ray so that the phi coordinate of 

polarization vector will be less than 180°. The former transformation affects the 

propagation direction. The later modification is done as follows: if the phi coordinate 

of polarization vector is larger than 180°, 180° is added into the phase and the 

polarization vector is flipped. This transformation will not affect the representation 

since the original one and transformed one is equivalent. 

4.7.1 Architecture 

The formulation of polarization calculation involves several procedures. First 

of all, the polarization vector is decomposed into parallel polarization and vertical 

polarization according to the surface normal and propagation vector of the incident 

ray. Then, the reflection or transmission coefficients will be multiplied to the 

polarization vector. Finally, the resultant polarization of secondary ray is the 

summation of parallel and vertical polarization. However, in modular neural network 

architecture, it is difficult to decompose the polarization calculation into these three 

steps. The data conversion and auxiliary modules will overload the system. 

Therefore, a “single，，neural network is developed for this task but the least number of 

input parameters is used to reduce the network complexity. Here, the "single" neural 

network means single network is used to map from incident ray information directly 

to the polarization vector of secondary ray without decomposition. Each output 
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utilizes one single network in order to reduce the network complexity. Single network 

for single output doesn't break down the parallelism but increases the network size. 

Further reduction in network size is possible afterward. There are nine network 

outputs in section. Six of them are polarization vector direction. These six neural 

networks can be divided into three categories: dielectric surface reflection, dielectric 

surface transmission and metal surface reflection. Three of them are the loss in 

amplitude and additional phase due to reflection or transmission. Since metal surface 

will reflect all signals back, it is not necessary to specifically calculate the reflection 

loss and additional phase. The amplitude will convert in dB. Finally, the amplitude 

and phase of secondary rays are the summation of that in the incident rays and the 

calculated amplitude loss and additional phase respectively. 

4.7.2 Input and Output Parameters 

The related parameters are propagation direction of incident ray, scattering 

surface thickness, dielectric constant of surface material and, of course, polarization 

vector of incident ray. Besides these parameters, the amplitude and phase of incident 

ray are considered as well. However, the loss and additional phase are calculated 

instead of actual amplitude and phase of secondary ray. By using this approach, two 

input parameters can be saved. Also, scattering surface dimensions are not included 

since it has already been used in the previous section in testing whether the incident 

ray hit the scattering surface or not. 

Table 4-7 The input and output parameters of polarization vector calculation sub-net 

Input Parameters Range Output Parameters Range 

Propagation direction 0° 〜180° Polarization theta 0° ~ 180° 

theta value value 

Propagation direction 0° 〜360° Polarization phi value 0° ~ 180° 

phi value 

Polarization theta 0。〜180° N/A N/A 

value 
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Polarization phi value 0° 〜360° |N/A |N/A 

Dielectric constant of 2 〜6 N/A N/A 

surface material 

Biput Parameters Range Output Parameters Range 

Propagation direction 0° 〜180° Polarization theta 0° 〜180° 

theta value value 

Propagation direction 0° 〜360° Polarization phi value 0° 〜180° 

phi value 

Polarization theta 0° 〜180。 i ^ '^[k 

value 

Polarization phi value 0° 〜360。 N/A N/A 

Input Parameters Range Output Parameters Range 

Propagation direction 0° ~ 180° Additional loss in 0 〜1 

theta value amplitude 

Propagation direction 0° ~ 360° W A N ^ 

phi value 

Polarization theta 0° ~ 180。 NZS W ^ 

value 

Polarization phi value 0° ~ 360° N/A N/A 

Dielectric constant of 2 ~ 6 N/A N/A 

surface material 

Jnput Parameters Range Output Parameters Range 

Propagation direction 0° ~ 180° Additional phase 0° or 180° 

theta value 

Propagation direction 0° ~ 360° N/A N/A 

phi value 

Dielectric constant of 2 〜6 N/A N/A 

surface material 
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Table 4-8 The input and output parameters of polarization vector in dielectric reflection 

Input Parameters Range Output Parameters~~ Range 

Propagation 0° 〜180。 Polarization theta 0° ~ 180。 

direction theta value value 

Propagation 0。〜360。 Polarization phi 0° 〜360。 

direction phi value value 

Polarization theta 0° ~ 180。 Amplitude -80 dB ~ 0 dB 

value 

Polarization phi 0°~360° Phase 0° 〜360。 

value 

Dielectric constant 2 〜6 N/A N/A 

of surface material 

Table 4-9 The input and output parameters of polarization vector in dielectric transmission 

Input Parameters Range Output Parameters Range 

Propagation 0° 〜180° Polarization theta 0° 〜180° 

direction theta value value 

Propagation 0。~ 360° Polarization phi 0° ~ 360。 

direction phi value value 

Polarization theta 0。〜180。 Amplitude -80 dB 〜0 dB 

value 

Polarization phi 0° ~ 360° Phase 0° ~ 360° 

value 

Table 4-10 The input and output parameters of polarization vector in metal reflection 

Input Parameters Range Output Parameters Range 

Propagation 0°~180° Polarization theta 0° 〜180。 

direction theta value value 

Propagation 0° ~ 360° Polarization phi 0° 〜360。 

direction phi value value 

Polarization theta 0° ~ 180° Amplitude -80 dB 〜0 dB 

value 

Polarization phi 0° ~ 360° Phase 0° 〜360。 

value 
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4.7.3 Testing result 

570834 testing data is generated to validate the trained neural network. 

theta of reflected polarization vector from metal surface : error distribution on theta of polarization vector 
0 . 3 5 厂 、•     

o mean value 
米 standard deviation 

0.3 - ： i i : 

0̂.25- i : ； : 
Q> 
2 o> � 
TD 
^ 0.2 - : : :• •: : : : 

3 
15 
I 糸 

w 0 
f0.15-O…… : 
CO > c ¢0 ^ 
① 常 

^ 0.1-.0......: i : : : : 0 

m ^ : : ® + 

005 去‘* ;o \ * 

^ " ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 镇 舞 场 , 朵 
o ' 1 1 1 1 I I I I  

20 40 60 80 100 120 140 160 
theta of polarization vector (degree) 

Figure 4-9 : Network performance of calculating theta coordinate in reflection polarization 
vector from metal surface 
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phi of reflected polarization vector from metal surface : error distribution on phi of polarization vector 
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Figure 4-10 : Network performance of calculating phi coordinate of reflection polarization vector 
from metal surface 

theta of reflected polarization vector from dielectric surface : error distribution on theta of polarization vector 
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Figure 4-11: Network performance of calculating theta coordinate of reflection polarization 
vector from dielectric surface 
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phi of reflected polarization vector from dielectric surface : error distribution on phi of polarization vector 
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Figure 4-12 : Network performance of calculating phi coordinate of reflection polarization vector 
from dielectric surface 

amplitude loss in reflected polarization vector from dielectric surface : error distribution on amplitude loss 
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Figure 4-13 : Network performance of calculating amplitude loss of reflection polarization vector 
from dielectric surface 
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theta of transmitted polarization vector through dielectric surface : error distribution on theta of polarization vector 
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Figure 4-14 : Network performance of calculating theta coordinate of transmission polarization 
vector through dielectric surface 

phi of transmitted polarization vector through dielectric surface : error distribution on phi of polarization vector 
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Figure 4-15 : Network performance of calculating phi coordinate of transmission polarization 
vector through dielectric surface 
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amplitude loss of transmitted polarization vector through dielectric surface : error distribution on amplitude loss 
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Figure 4-16 : Network performance of calculating amplitude loss of transmission polarization 
vector through dielectric surface 

4.8 Rejecting ray from simulation 

There are two criteria to reject a ray from simulation. The first is the absorbing 

boundary rejection. If a ray reaches an absorbing boundary surface, it means that this 

ray is going outside the simulation environment and it should be rejected from the ray 

tracing iteration. A simple method to detect which ray belongs to this criterion is to 

check whether the coordinate value of the ray position is near to the environment 

limits no matter it is pointing outwards and inwards. When a ray is positioned on the 

absorbing surface and pointing inwards, it should be the reflected ray from the 

absorbing surface and rejected from ray tracing iteration, ln other words, if the ray is 

positioned within (0 m + T H R E S H O L D ) and (50 m - THRESHOLD), this ray will be 

retrieved in the ray buffer for the next iteration. Another criterion is low amplitude 

rejection. If the energy in the ray falls below a user-specified threshold, this ray is 

also rejected. These two criteria are easy to implement through hard-limited function 

and suitable threshold. Therefore, these neural network modules can be constructed 

without training. 
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4.9 Calculating receiver signal 

In most ray tracing program, received signal calculation is classified as a post-

processing step. In the ray tracing simulation, all multi-path information at all 

receiver locations will be printed to an output file. After the simulation is completed, 

the multi-path information is processed to generate particular analysis indicator for 

evaluation such as received power, delay-spread profile, and angle of arrival. 

Traditional method can be used to calculate these analysis parameters. 

In post-processing, brute force checking method is used to eliminate double 

count problem that is commonly found in ray launching method. Double count error 

is caused by the reception sphere model. In two dimensions, reception spheres work 

perfectly but it generates double count error in three dimensions. The angular 

separation of geodesic sphere (Figure 2-2) is not absolutely constant over the 

geodesic surface. A constant angular separation is used in the calculation of the 

radius of reception sphere. The minimum radius for a reception sphere to guarantee 

the collection of at least one ray from a wavefront is i/Vsthe distance between rays. 

Sometimes, this reception method causes two rays to be received. However, since 

modular neural network is just a approximation of ray tracing method, opposites 

problem may happen that ray miss is possible due to the calculation error in ray 

direction. The equivalent error in simulation result due to ray missing is much larger 

than that for double count error. Therefore, the biggest angular separation is chosen to 

ensure less ray miss in modular neural network. 

Brute force checking is used to eliminate such double count error by removing a 

ray if it is similar to another ray in the same reception sphere. Since the considered 

ray is compared to all other rays in the same reception sphere, the process should be 

worked out after the simulation is completed. Several criteria are used to define the 

similarity of two rays. These criteria include propagation profile, unfold separation 

distance，arrival direction and last interaction position. Propagation profile is the 

number of reflection and transmission when the ray propagates from transmitter to 

receiver. Unfold separation distance is the total propagation distance from transmitter 
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to receiver. Arrival direction is the direction where the signal arrives at the receiver. 

Finally, last interaction position is the last hit point if the ray propagates with 

reflection or transmission, or the transmitter position if it is a line-of-sight signal. If a 

weighted sum of the difference of these parameters in two rays is bounded within a 

defined threshold, these two rays are classified as the same and one of them can be 

ignored in the received signal calculation. 

4.10 Further comment on preparing neural network 

4.10.1 Data preparation 

In the preparation of training data in most modules, an evenly distributed 

sampling method is used to generate the required training data. The method has the 

advantage that the generation is simple to implement. When there are N input 

parameters available in a certain module, the interval of each parameter is first 

determined. Then, sample is taken from that N dimensions space and compiled to 

form the training data set. Since the range of each parameter is known before the 

generation of training data, evenly distributed sampling can cover all possible values 

if the interval of each parameter is fine enough. A problem arises: H o w to determine 

the suitable size of interval for different parameters? If the interval size is too small, 

the number of training data will be exponentially large with reference to the sampling 

frequency of each parameter. If the interval size is too large, the number of samples 

may not be enough to represent the variation of multi-dimensional function that is 

described by the relationship between input and output parameters. In this research, 

the interval size is decided by exploring the variation of that multi-dimensions 

function. Then, a slightly smaller interval size is used so that the underlying function 

can be described by the sample data itself. 

Li some cases, even distributed sampling is not applicable since the 

corresponding output space is dominated by certain range of values. Li the evenly 

distributed sampling method, the corresponding output space is supposed to be 

similarly distributed. Therefore, the output data in training data set can cover the 
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entire possible output domain. The assumption will be violated when the output 

always has a similar value for most input combination but a great variation occur in a 

small region of the input space. In such cases, sampling data seems to be not enough 

for that particular region where the output has great variation. As a result, neural 

network will be often trained to be biased to the dominant value and the neural 

network cannot model the variation. In some extreme case, the network output is 

constant for all possible input combination. There is one possible solution to ease the 

problem. In the first stage, using even distribution method generates sufficient sample 

data. Then, the training data is filtered by considering the distribution of output 

parameters so that the sampling data will be reduced or determinated in over-sampling 

region while maintain the sampling data where the output variation is large. 

4.10.2 Batch training 

Almost all the training data sets in this research are very large in order to 

adequately describe the underlying functions. For example, if a training set contains 

10000 sample, it is impossible to consider all the training data in one epoch especially 

when second order training method is used to speed up the process. These methods 

mostly manipulate Hessian matrix and find out the optimal searching direction so that 

the minimum point can be reached speedily. However, the calculation of Hessian 

matrix is a third-order computation in terms of the number of training data. 

Therefore, large training data in one epoch results in large memory requirement in the 

training process. An alternative method is to use batch training. In batch training, 

part of the training set will be used to train the network in each epoch. The selection 

of partial data in each epoch is randomly chosen so that all the training data has equal 

chance for presentation to the neural network. 

Batch training has disadvantages. One problem is oscillation in the network 

performance. Batch size cannot fully represent the whole training set. Smaller 

training size can be used without reducing the performance. Little variation is 

expected between one batch and another. This difference in batch set will disturb the 

training and artificial oscillation will be added. The consequence is that the network 

cannot reach the truly minimal that can be reached by using total training data in one 
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epoch. The second problem is that additional training time is required. As batch data 

can only represent part of underlying function characteristics, there will be some error 

in the training process due to the wrong search direction. Oscillation may happen and 

long search path is expected. Therefore, more training cycle is needed to reach the 

goal. 

In Levenberg-Marquardt training method, one useful parameter can be used to 

evaluate how well the training is progressing. This is the number of parameters out of 

the total network parameters that are effective in the training cycle. Although this 

indicator will be reset to maximum network parameters when a new batch of training 

data is presented in the next batch training epochs, it will come to a stable value after 

the end of one batch training cycle. Therefore, if the number of effective parameters 

versus the training process is plotted, an interesting figure can be obtained to illustrate 

the training process. A good or normal training process will lead to an increase in the 

number of effective parameters. The "good" conditions somehow relate to the 

training data preparation, batch size, randomization of batch training data. Three 

different kinds of training is plotted in terms of effective parameters. In Figure 4-17, 

the number of effective parameters at the end of the batch training is steadily 

increasing when more and more training data is presented. This shows that the 

network can capture the underlying function and effectively transform it into its 

network weight parameters. In Figure 4-18, the number of effective parameters at the 

end of each batch cycle is constant throughout the training. This shows that the 

network is capable of modeling the problem and it should be reflected from the sum 

squared error of training and testing data. However, the network cannot further 

improve the modeling performance even when more new training data is presented. 

This may be caused by the training data preparation and the number of training data in 

each batch training. In the last case, Figure 4-19, the number of effective parameters 

is equal to an unreasonable level: one. As a result, the network is expectedly unable 

to model the relationship between input and output parameters. Experience indicates 

that this situation happens, the network output is always equal to a constant value no 

matter what input data is presented to the network. 
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Figure 4-17: Variation of effective parameter throughout the training when network is capable of 
modeling the problem 
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Figure 4-18: Variation of effective parameters throughout the training when the network cannot 
further improve the overall performance 
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Figure 4-19: Variation of effective parameters when the network cannot model the problem 

4.10.3 Batch size 

When batch training is used, the amount of training data presented to the 

network at each epoch has to be decided. Result shows that this factor is critical. For 

example, in the same problem, if two different batch sizes are used in its training, the i 

number of effective parameters is only slightly different in value. According to the 

previous discussion, these effective parameters can illustrate how well the network 

training is processing. The smaller batch size will reduce the speed of training. This 

is reasonable since the data in smaller batch size may represent different information 

from that of the total original training data set. Therefore, batch size should be 

carefully chosen. 
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Figure 4-20 : Variation of effective parameters when a sufficient large batch size of training data 
is used in training process 
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Figure 4-21 : Variation of effective parameters when a small batch size of training data is used in 
training process. 
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5 Canonical Evaluation of modular neural network 

5.1 Typical environment simulation compared with ray launching 

In this section, the modular neural network model and the brute force ray 

tracing method are used to simulate some canonical environment. Based on the 

comparison between the two simulated results as well as deterministic calculations, 

the modular neural network approach is verified in accuracy. These typical 

environment simulations are chosen because they can show different simulation 

characteristics and thus a complete verification can be achieved. 

5.1.1 Free space 

In this free space example, the path loss along path A is simulated while an 

isotopic vertical polarization source is placed at ( 5 m，25 m , 18 m) location. The 

path A starts from ( 6 m，25 m ,12 m ) and ends at ( 40 m ,25 m ,12 m) with 0.1 m 

sampling distance. The simulation configuration is shown in Figure 5-1. 

Isotropic vertical 
polarization source 

- r ^ ^ ^ 
^ ^ Path A ( 34 m long with 0.1 m 
1 m sampling distance ) 

Figure 5-1 Free space simulation configuration 

In reception, dipole antenna is used as receiver so polarization effect will be 

considered. In Figure 5-2, the result of calculation and simulations are compared in 

terms of path loss. The dash-dotted line with star marker is deterministic Frii's 

formulation result. The dash line with circle marker is simulation result of brute force 

ray tracing method. The solid line with cross marker is simulation result of modular 
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neural network. The result is expectedly good with all three lines in the graph 

overlapping. Looking at the result, the higher path loss in the beginning of path A is 

caused by the far field pattem of the dipole. When the separation distance increases, 

the effect of far field pattem of the receiver becomes minor while the distance 

dependent factor dominant the path loss result. Propagation distance, polarization 

vector, amplitude and phase are used in this simulation. 

simulation and deterministic calculation comparison in freespace 
- 2 0 | i 1 1 I I I ~ ~ 

! 丨 I \ deterministic Frii's formulation 
^^^^ 丨 ： G> e brute force ray tracing 

_22 : ^^^^^^ H I- _ -^^ modular neural network _ 

广 長 - 哥 - + - — … 

[ 2 6 - 1 -—十 - - - - - - : -——卞 - \ - -——-十 - - - - - 1  

i I ： ； ： ^ ： ： 
^ •• ； ； ； 1 ^ ^ ； ； 

_28--, I - ； 「 … ^ ^ ‘ 

？ i ； I i ^ V J 
1 I I I I ^ ^ j 

- 3 0 - - l - - - - - | -； ； ; - i - - - - ^ ^ - - - -

f ^ ^ 
i ； ； 丨 i i i ， 

- 3 2 ' ‘ ‘ ‘ ‘ ‘ ‘ 

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 

path ( m ) 

Figure 5-2 Comparison between simulations and calculation in free space 

5.1.2 Metal ground reflection 

After the line of sight calculation is verified, ground plane reflection is 

simulated by adding a metal surface 8 meters below the transmitter. Li this 

simulation, single reflection is expected from the metal surface and all locations will 

receive two signals: line of sight signal and ground reflection signal. The simulation 

configuration is the same as that in free space model but a metal surface is added. 

The height between transmitter and ground is 8 m while the height between all 

receivers and ground is 2 m. Deterministic two ray model is also provided to verify 

81 



the simulation. Li Figure 5-3, the dash-dotted line with star marker is calculation 

result of deterministic two ray model. The dash line with circle marker is simulation 

result of brute force ray tracing method. The solid line with cross marker is 

simulation result of modular neural network. The figure shows that ray tracing 

simulation result follows the calculation very well and modular neural network can 

model the problem except there are some error when the receiver locations is far away 

from the transmitter. The fading depth and fading width of both brute force ray 

tracing method and modular neural network are similar to deterministic two ray model 

result along the path especially the increasing fading depth can be modeled in two 

simulations. At the receiver locations where are far away from the transmitter, three 

aspects in modular neural network simulation cause the prediction error. The first 

aspect is ray missing due to the error in hit point calculation along the path. When the 

propagation vector of the incident ray is parallel to either one of axis, the deflected 

distance is very small. Referring to section 4.3.3, the modeling error in hit point 

modules is relatively large when the deflected distance is smaller. Therefore, some 

rays that are supposed to be reflected at the path locus now are reflected with position 

shift and they will not enter the reception sphere. The second aspect is the calculation 

error in separation distance. Since the total propagation distance will affect the exact 

phase when the ray reach the receiver. Also, the calculation in polarization is not 

prefect and the wrong polarization vector direction will directly affect the partial of 

energy to be received when the polarization of receiver is considered. In two ray 

model, the two possible rays are line-of-sight and reflected ray from the ground. They 

have different phase and different polarization vector direction and therefore, fading 

occurs in the simulations and calculation. The last two aspects mainly affect the 

vector summation of two signal in two ray model and thus an incorrect prediction 

result is generated. In Figure 5-4 ( Figure 5-5 is the close up of the hit point near to 

transmitter on the surface ), the hit points calculation of ray tracing and modular 

neural network are plotted for comparison. The calculation of hit point in far away 

region and near region with respect to the transmitter shows good accuracy. 
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comparison between simulations in two ray model with metal ground 
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Figure 5-4 : The interaction points of ground reflection in modular neural network and ray 
tracing: brute force approach 
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comparison between simulations in two ray model with dielectric ground 
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Figure 5-6 Comparison between ray tracing: brute force approach and modular neural network 
simulation result in two ray model over a dielectric surface ground, (dielectric constant is equal 

t o 4 ) 

comparison between simulations in dielectric ground penetration 
-32| 1 1 ^； 1 1 , 1  

； ^ ^ ^ ^ ^ ^ ^ ; 1 ； 
_34 i^^^&^4^^^^^^^^^^^^^^^^^^^^^ ； 

； … 类 … - 丨 … … - 丨 … … ? ^ ^ ^ ’ 

3 - 4 0 - - 寺 - : -； 1 ； ； - T ^ [ -

^ • < ； ； ； ； ； ； ^ ¾ ^ 

8 f 丨 ！ 丨 丨 ！ ！ 

I "42---?.----; ^ ! ； ； ] 
i # ； ； ； : ； : 

4 I I I I I I 

-44 --# 丨 1 + 丨 i t  
>$iA I ‘ ‘ ‘ I I 
资 ！ ； 丨 I 
拳 

-46 --【 1 n T , 丨 7  
.4 I I I I ！ ! 

f I I I ^ deterministic penetration 
-48 - _ 1 1 T --e- brute force ray tracing -— 

i 1 丨 I :, modular neural network 
‘ I I I ——, r ^ , 

-50' ‘ ‘ ‘ ‘ ‘ ‘ 
5 10 15 20 25 30 35 40 

path ( m ) 

Figure 5-7 Comparison between ray tracing: brute force approach and modular neural network 
simulation result in underground reception. ( dielectric constant is equal to 4 ) 
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Table 5-2 : Modular neural network prediction error in two ray model and ground penetration 
simulation 

Mean error(dB) 0.98 1.67 

Standard deviation (dB) 0.78 0.47 

5.1.4 Empty Hall 

In this section, a simple indoor environment is considered. It is a rectangular 

hall. The four vertical walls and the ceiling of this rectangular hall are dielectric slab 

while the ground is made of metal. On two opposite sides, one door each is created to 

allow energy to go outside so that the number of reflection can be reduced. Thus, 

there are a total of ten surfaces in this model. The dimensions of the room are 22 m x 

26 m X 8 m . A single transmitter is mounted on the ceiling (the top dielectric slab ) 

and the signal at 1.5 m above the floor ( the bottom dielectric slab ) is considered. 

This is the average level for a person holding a mobile device. The transmitter is a 

directional antenna that radiates downward. The geometry model of this empty hall is 

shown in Figure 5-8. In this figure, ceiling surface and floor surface are removed to 

illustrate the configuration of antenna location as well as receiver locations. Red dot 

represents the transmitter position while the blue dots represent the receiver location. 
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geometry model of empty hall 
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Figure 5-8 : Geometry model of empty hall. 

path loss calculation along path A in empty hall simulation 
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Figure 5-9 : Path loss along Path A in ray tracing: brute force approach and modular neural 
network simulation result. 
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path loss calculation along path B in empty hall simulation 
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Figure 5-10 : Path loss along Path B in ray tracing: brute force approach and modular neural 
network simulation result. 
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Figure 5-11: Path loss along Path C in ray tracing: brute force approach and modular neural 
network simulation result. 

In the simulations, 2009 samples are considered. They are evenly distributed 

with 0.5 m separation distance. Three simulation paths are chosen to compare the 
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simulation results graphically. Path A is the collection of locations where y 

coordinate is 11.7 m . (Figure 5-9) Path B is the collection of locations where y 

coordinate is 17.5 m . (Figure 5-10) Similarly, Path C is that where x coordinate is 23 

m . (Figure 5-11) In these three figures, the solid line is the simulation result of brute 

force ray tracing method while the dotted line with star mark represents the simulation 

result of modular neural network. In path B and path C, the large path loss at the 

center of the path is caused by the far field pattem of the dipolar receiver antenna 

because that region is the bottom of the transmitter. This large variation in path loss 

can be modeled by both simulation methods. Along path A, the signal characteristic 

is very different from the previous two paths. The incoming signal has similar signal 

level, so the path loss at all location is around -22 dB. Both simulations has quite 

equal result especially, there are some locations where the simulation results of both 

simulation overlaps each other. The overall error in different between two 

simulations are shown in Table 5-3. 

In the next chapter, the two simulation models will be compared, with indoor 

measurement results to further verify the models. 

Table 5-3 : Statistics of prediction error of modular neural network in empty hall with reference 
to the simulation result of brute force ray tracing model 

Mean error 1.57dB 

Standard Deviation 1.39 dB 

Maximum error 10.37 dB 
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6 Indoor Propagation Environment Application 

6.1 Introduction 

In the previous chapter, four canonical geometries were simulated using brute 

force ray tracing method as well as hybrid modular neural network. Good agreement 

between the two methods was observed. In this chapter, the techniques were applied 

to a real environment, namely, third floor of the Ho Sin Hang Engineering Building of 

the Chinese University of Hong Kong. In this chapter, the simulation is shown to 

agree reasonably well with measurement and the accuracy of the hybrid neural 

network is confirmed. 

In both simulation methods, there are 29 surfaces in the geometry model and 

20000 rays are launched from the transmitter. The maximum angular separation 

between rays is 1.68° at the source. Both simulations calculate the path loss with 

reference to the electric field strength at a 1-meter reference point from the 

transmitter. 

6.2 Indoor measurement on the Third Floor of Engineering Building 

The third floor of the Engineering Building at the Chinese University of Hong 

Kong was modeled and shown in Figure 6-1. Each of the four corridors is about 20 

meters in length. They form a rectangle embracing some laboratories and soft-

partitioned offices. For each measurement point, 200 samples were taken randomly 

over a circle of 1-meter diameter around the measurement point. There were 

altogether 89 measurement points along four paths, one along each corridor. A dipole 

antenna connected to an HP-8594EM spectmm analyzer was used to pick up the 

signal. In Figure 6-2, the path loss of all the measured locations along the four paths 

are plotted. More details can be found in [40] 
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6.3 Comparison between simulation and measurement result 

In this section, the simulation results of brute force ray tracing method and 

hybrid modular neural network method are compared with measurement for the third 

floor of engineering building. The measurement and simulation results of four 

measurement paths are plotted separately in Figure 6-4, Figure 6-6, Figure 6-8 and 

Figure 6-10. The solid line is the measurement result. The solid line with triangle 

marker is brute force ray tracing simulation result and the dotted line with plus marker 

is the modular neural network simulation result. In these four figures, the x-axis is the 

position coordinate of the measurement locations along the path. The statistical 

information of prediction error for both simulations with reference to measurement 

result is summarized in Table 6-1. 

i 

Table 6-1 ： The statistics of the prediction result of both modular neural network and 

brute force ray tracing simulation with reference to the measurement result 
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6.3.1 Path 1 

The transmitter was placed in Path 1. The location in the map marked with star 

or the antenna symbol on the path loss diagram represents the transmitter location. 

All the measurement or simulation points along this path were in the line-of-sight 

region of the transmitter. In this set of measurement or simulation, both the 

transmitting and receiving antennas were kept at the same height of 1.15m above the 

floor. The transmitting antenna is a monopole. The receiving antenna is a dipole. 

Their corresponding theoretical antenna patterns were modeled in the simulation. All 

together 21 positions were taken within a length of 21 meter. 
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Figure 6-3 : The coordinate of the two ends of path 1 

The path loss measurement result ranges from -1 dB to —20 dB. The simulation 

result of bmte force ray tracing ranges from 0 dB to -29 dB while that of modular 

neural network is between 0 dB and -33 dB. The dynamic range of measured result 

and simulated result is similar. Since there is a strong line-of-sight signal existing in 

path 1, the received signal decreases steadily as a function of the separation distance 

between transmitter and receiver. On the side of the transmitter where the coordinate 

values of locations are larger than that of transmitter, both bmte force ray tracing and 

modular neural network can predict the trend in path loss. When the coordinate value 

is larger than 27 meters, there are two slight increase in the received signal found in 

measurement. It is reasonable since the corridor is so narrow that the channeling 
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effect is significant. However, both simulations cannot capture such variations. It is 

caused by the over simplification in the geometry model. Modular neural network has 

two locations where the signal drop suddenly while bmte force ray tracing has one 

locations where the signal drop suddenly. Modular neural network has large 

fluctuation in path loss compared with brute force ray tracing. On the left side of the 

transmitter, since this part of path 1 is relatively short, it is difficult to compare both 

simulations. One contrast can be found is the sudden drop in simulated received 

signal of modular neural network when the coordinate value is smaller than 17 meters. 

Li the overall results, modular neural network can still provide acceptably accurate 

prediction of the path loss in path 1 compared with brute force ray tracing. As 

modular neural network is the approximation of brute force ray tracing, this prediction 

performance is good. 
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6.3.1 Path 1 

The measurement locus of path 2 is shown in Figure 6-5. It is a shadow region 

with respect to the source. The locations of large coordinate value ( value in x-axis ) 

are near to the path where the transmitter is located. 

/ x = 23 m J X = 42 m 

/ 

Path2 / 

/ y 
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Figure 6-5 : The coordinate of the two ends of path 2 

The ranges of measurement result is between -39 dB and ~48 dB. The 

simulation result of bmte force ray tracing ranges from -28 dB to -58 dB while that 

of modular neural network ranges from -32 dB to -61 dB. The dynamic range of 

modular neural network is similar to that of measurement result, especially the right 

part where the coordinate value is large. When the locations are moving far away 

from the transmitter, the measured path loss is gradually increasing without large 

variation. It shows that a relatively strong signal still exists in this path so that multi-

path effect is not dominated. Both simulations can predict the decay trend of the path 

loss along the path when the locations move from large coordinate to smaller 

coordinate. There are four fading locations in brute force ray tracing when the 

coordinate is 43 meters, 34 meters, 29 meters and 24 meters. These fading locations 

have similar separation distance between them. Bmte force ray tracing predicts a 

periodical fading along path 2 and two to three significant signals exist in this region. 

However, modular neural network does not show this characteristics. Although there 

are two minor fading locations, simulated path loss is decreasing gradually in contrast 

to brute force ray tracing that predicts a similar signal level but with fading. When 

the coordinate of the location is smaller than 35 meters, the metal-liked pillar near to 

the transmitter and part of metal chamber in the laboratory block the signal. It can be 
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shown in the measurement result where the path loss is 5 dB larger than that of the 

locations near to transmitter. Modular neural network over-estimates the effect of 

metal chamber blockage while bmte force ray tracing has large variation over the 

measurement result. In this path, modular neural network has slightly lower 

prediction error than that of brute force ray tracing method. 

simulations and measurement comparison in path 2 
I 1 I I ~ 

0 I ！ » + » modular neural network __ 
I 丨 measurement 

. . ! I » A ~ brute force ray tracing 
-10 1 1 , 1 —— 

- 2 0 I I r I  

! i : : s g e S ; : : 
- 6 0 - ^ ^ - [ : :— ； 

-70 ；- ； [ ； 

-8o' ‘ ‘ ‘ ‘ 
2 0 2 5 3 0 35 4 0 4 5 

path (m ) 

Figure 6-6 : Measured and simulated result of path loss in path 2 
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6.3.1 Path 1 

The third path is the longest of all. It measures 27 meters and 27 locations were 

measured. In path 3，the environment is a deep shadow region and multi-reflection 

signal is expected in most locations. Also, in our geometry model, all rooms between 

the transmitter and path 3 are empty except the metal chamber in the room beside the 

transmitter. Therefore, the simulated path loss is lower than measurement. 
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Figure 6-7 : The coordinate of the two ends of path 3 

For the locations in the middle of path 3, the metal chamber exactly blocks the 

LOS path. Therefore, those locations will receive signals lower in amplitude. The 

range of measurement result is between ~49 dB and -63 dB. The dynamic range of 

measurement result is 14 dB, that is the largest dynamic ranges among four paths. 

The simulation result of brute force ray tracing ranges from -24 dB to -72 dB while 

that of modular neural network ranges from -24 dB to -72 dB. Apart from the left 

part where the coordinate value is 20 meters, the dynamic range of modular neural 

network simulation is closer to that of measurement compared with bmte force ray 

tracing. On average, brute force ray tracing under-estimate the path loss by 15 dB. In 

the part where the coordinate value is smaller than 20 meters, both simulations cannot 

predict the measurement and the prediction error is 20 dB. Again, the over 

simplification of geometry model causes large prediction error in simulations since 

the modeling does not include any fumiture of these rooms in the middle of the third 
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floor. 
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Figure 6-8 ； Measured and simulated result of path loss in path 3 
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6.3.1 Path 1 

Path 4 has no line-of-sight signal from the transmitter but the separation distance 

between the tuming comer and transmitter is the shortest among the four paths. As a 

result, the signal can reach receivers with less reflection processes. Also, path 4 is 

near to the concrete outer wall of the building. The reflected signal from the outer 

wall causes higher amplitude. There is no major metal object between transmitter and 

path 4. The transmitted signal that passes through the room containing metal chamber 

and the reflected signal that comes from the outer wall have similar amplitude. 

Therefore, the received signal in path 4 has more fluctuation than path 2 where is also 

a shadow region. There is a decrease in received power in measurement at the 

locations where the coordinate values are 31 meters, 37 meters and 42 meters 
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Figure 6-9 : The coordinate of the two ends of path 4 

The range of measurement result is between -29 dB and -35 dB. The simulation 

result of brute force ray tracing ranges from -20 dB to -33 dB while that of modular 

neural network ranges from -24 dB to ~44 dB. The simulation result of brute force 

ray tracing is higher on average compared with measurement but the trend is very 

similar. There is a 10 dB difference between measurement and brute force ray tracing 

simulation on average. Modular neural network provides better prediction than bmte 

force ray tracing especially when the coordinates of locations are larger than 37 

meters. 
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simulations and measurement comparison in path 4 
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Figure 6-10 : Measured and simulated result of path loss in path 4 

6.3.5 Overall Performance 

From the above comparison of four different paths, bmte force ray tracing under-

estimates the path loss in general. This is caused by an over simplified geometry 

model that has not included the fumiture inside in the laboratories in the middle of the 

floor and the some metal-liked pillar around all the rooms in the middle of the third 

floor. Modular neural network generates better prediction than bmte force ray tracing 

method. Table 6-1 summarizes the prediction error of both simulations with reference 

to measurement result. When line-of-sight conditions exists, the prediction is much 

better. In the deep shadow region especially in path 3，the prediction error is 

relatively large. Modular neural network has higher prediction accuracy than bmte 

force ray tracing method in path 3 and the overall average prediction error of modular 

neural network is 4 dB better than that of bmte force ray tracing. 
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6.4 Delay Spread Analysis 

In the previous section, received power is analyzed. In this section, the 

simulation result of brute force ray tracing and hybrid modular neural network are 

used to analyze the power delay spread of the third floor of engineering building. The 

purpose of this section is to study the effect of multi-path. In delay spread analysis, 

the multi-path effect can be clearly analyzed using the power delay profile to calculate 

mean excess delay, root-mean squared excess delay and maximum excess delay. 

These parameters are then used to quality and quantify the data rate permissible in this 

environment. 

Three basic time dispersion parameters were calculated to describe the power 

delay profile statistically. They were the mean excess delay, root-mean-squared delay 

spread and excess delay spread with threshold -10 dB. Five locations were chosen to 

study the power delay profile. The five locations are marked with square in the 

Figure 6-11. 
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6.4.1 Location 1 

The coordinate of location 1 is ( 43.6 meters, 16 meters, 21.15 meters ). The 

separation distance from transmitter is 6 meters. Location 1 is in the line-of-sight 

region of the source so the first approaching signal should be line-of-sight signal. It 

can be shown in the power delay profile that the first approaching signal with 20 ns 

delay corresponds to the line of sight path between transmitter and receiver. Since the 

receiver is located at the comer region, the three surrounding walls provide sufficient 

reflection surface reflecting the signal back to the receiver. Multi-path signal with 

substantial amplitude lasts for longer period than other locations that are also in the 

line-of-sight region. The power delay profile is plotted in Figure 6-1. The simulated 

delay spread in modular neural network and brute force ray tracing are 11.4 ns 9.79 ns 

separately. Significant signals still reach the receiver long after the first approaching 

signal. That is why the rms excess delay is half of the value of mean excess delay. 

The simulation result of modular neural network matches that of brute force ray 

tracing very well. The first approaching signal and the time dispersion statistics are 

similar in both simulations. The coherence bandwidth is defined as the bandwidth 

over which the frequency correlation function is above 0.5, then the coherence 

bandwidth is approximately equal to - ^ where Cx is the rms excess delay. In 

5cr, 

location 1，if the data in modular neural network is used, the coherence bandwidth is 

17.54 MHz. So, in the line-of-sight region, equalizer is not necessary if a data rate of 

2 Mbps is required. The supported data rate is 8.77 Mbps even if ten times of rms 

excess delay time is used as the symbol period. 
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power delay profile at location 1 
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Figure 6-12 : Power delay profile at location 1 
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6.4.1 Location 1 

The coordinate of location 2 is ( 43.6 meters, 28 meters, 21.15 meters ). The 

separation distance from transmitter is 6 meters that is the same as that in location 1. 

Location 2 is in the line-of-sight region of the source but not at the comer region. 

Apart from line-of-sight signal, the secondary strongest signal is one reflection from 

walls besides the receiver. In contrast to location 1, the signal propagating to the end 

of the corridor and backing to receiver is relatively lower in amplitude. Therefore, the 

rms excess delay in location 2 is slightly smaller than that at location 1. The mean 

excess delay in location 1 and location 2 is the same, so the simulator can correctly 

capture the line-of-sight signal. The delay spread in modular neural network and 

brute force ray tracing are 8.51 ns and 12.49 ns separately. Again, both simulations 

result are similar although there is one missing signal that has lower in amplitude in 

modular neural network simulation compared to that of bmte force ray tracing. The 

coherence bandwidth is equal to 23.5 M H z that is slightly larger than that in location 

1. Also, the supported data rate is 11.75 Mbps. From these two locations illustration, 

higher data rate can be supported by the system when the receiver exists in the line-

of-sight region. These are still substantially higher than the 2 Mbps requirement. 
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power delay profile at location 2 
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Figure 6-13 : Power delay profile at location 2 
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6.4.1 Location 1 

The coordinate of location 3 is ( 33.1 meters, 37 meters, 21.15 meters ). The 

separation distance from transmitter is 18.31 meters. Location 3 is positioned at the 

shadow region with reference to the source. The first approaching signal is expected 

to be low in amplitude since there is a metal-liked pillar between the transmitter and 

location 3. The first approaching signal is a direct path since the delay time is 60 ns, 

exactly the time for a ray propagating from transmitter to receiver directly. In the 

power delay profile, the first approaching signal is the strongest signal. It shows that 

the metal-liked pillar cannot block the signal significantly in the simulation. Multi-

path effect is more severe compared with the previous locations since it is located at 

the shadow region. Also, the multi-path signal after the first approaching signal is 

clearly separated because location 3 is at the middle of path 3 and it is located within 

a large empty soft-partitioned office. All four significant signals can be accurately 

predicted by both modular neural network and brute force ray tracing. The coherence 

bandwidth is 3.91 M H z and the supported data rate is 1.96 Mbps. This is significantly 

lower than the previous two locations. 
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power delay profile at location 3 
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Figure 6-14 : Power delay profile at location 3 
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6.4.1 Location 1 

The coordinate of location 4 is ( 21.5 meters, 22 meters, 21.15 meters ). The 

separation distance from the transmitter is 22.1 meters. The metal chamber exactly 

blocks the signal from the transmitter. It is expected that the mean excess delay is 

relatively large since the first approaching signal will pass through substantial 

reflection processes. This is confirmed in the power delay profile，since the first 

approaching signal has a 110 ns delay. If signal came from the transmitter directly, 

the delay should be 73.67 ns. The situation of location 4 is different from that of 

location 3 since it is located in the deep shadow region. Apart from the blockage of 

metal chamber, signal has to undergo multiple reflections and transmissions before it 

can reach the receiver at location 4. The dynamic range of the predicted data from the 

modular neural network is only 10 dB while that of brute force ray tracing is 20 dB. 

All signals are low in amplitude. The primary and secondary signal comes with large 

difference in delay. The difference in delay time is 50 ns, three to five times of the 

rms excess delay in locationl and location 2 where line-of-sight exists. The 

coherence bandwidth is 1.628 M H z and the supported data rate is 814 kbps. The 

supported data rate is much smaller than that of other locations. 
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power delay profile at location 4 
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Figure 6-15 : Power delay profile at location 4 
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6.4.1 Location 1 

The coordinate of location 5 is ( 21.5 meters, 41 meters, 21.15 meters ). The 

separation distance from the transmitter is 29.14 meters. It is the longest distance from 

the transmitter in all measurement locations. Since there is no metal object between 

location 5 and transmitter, the first approaching path is the transmitted signal coming 

from the transmitter directly. The delay time for a ray from transmitter to this location 

is 97.13 ns. Jn the modular neural network results, there are two dominant signals in 

the first detectable region but only one dominant signal exists in brute force ray 

tracing. Moreover, the power of the first approaching signal in the modular neural 

network result is not the largest of all and there is another major signal arriving 10 ns 

later. As the separation distance between location 5 and the transmitter is very long, 

many possible ray paths are available. Also, the rms excess delay in modular neural 

network is much larger than that of brute force ray tracing. From the simulations, 

multi-path effect of location 5 is the worst among all five locations. The rms excess 

delay is the largest value if the simulation of modular neural network is used. The 

coherence bandwidth is 1.30 M H z and the supported data rate is 648 kbps. 

111 



power delay profile at location 5 
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Figure 6-16 : Power delay profile at location 5 

6.5 Summary 

In this chapter, modular neural network results are compared with brute force ray 

tracing and measurement, confirming its usefulness and accuracy. It is then used to 

calculate the multi-path effects and the resulting acceptable data rate. It shows that a 

large variation of acceptable data rate exists in the environment tested. 
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7 Conclusion 

7.1 Summary 

Advanced mobile communications system requires site-specific radio wave 

propagation prediction tool to optimize the network in terms of base station locations 

and the frequency allocation scheme. Applying deterministic modeling in network 

optimization in urban environment is not practical because of their large computation 

resource requirement. Recently, some researchers used neural network architecture to 

model radio propagation. However, their models are not tmly general for all kinds of 

environment due to the limitation of their defined model and training data collection 

methods. Li this thesis, function-based and physics-based hybrid modular neural 

network architecture with tme generalization capability was developed for radio wave 

propagation prediction. 

Modular neural network architecture for radio wave propagation modeling is 

developed in the following manner. The architecture is shown in Figure 7-1. First, 

the brute force ray tracing algorithm is divided into different sections according to 

their functions and physical relations. The original problem now becomes many 

small problems and these problems can be individually solved. A suitable neural 

network model is applied to each module. Each neural network is then trained to 

solve its corresponding problem. Finally, these neural networks are combined to form 

a large network. The whole network may need to be trained again in terms of network 

connection, while the architecture of each module remains fixed. This methodology 

distributes the large training effect into small pieces. The training process of each 

module can be done concurrently. After training of each small module is done, the 

overall architecture is almost ready. Second round training is relatively simple since it 

consists of minor adjustments in the whole network. The network is highly testable 

because it is carrying out ray tracing: the physics of that is clearly presented at the 

output of each module and not lost in the myriad of a massive neural connections. 
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Modular neural network 
architecture 
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Figure 7-1 : Modular neural network architecture 

In this architecture, there are 18 neural network modules that are prepared 

individually. These 18 neural network modules include coordinate conversion, hit 

point calculation, hit check, separation distance calculation, polarization vector of 

secondary ray calculation, lower amplitude ray rejection. Each module may contain 

more than one neural network sub-net. They are connected together to form the final 

model. Multilayer Perceptron was used in all the neural network models and 

deterministic calculation result was used to train the neural network. All individual 

network was evaluated by using testing data generated from the designed ranges. 

As each network has its position and meaning in the modular neural network 

architecture, inaccurate prediction can be back traced module by module in order to 

find out which one contributes to the incorrect prediction. This is testability. Also, 

immediate solution can be obtained for debugging and development during the 

simulation process. Each module can be trained individually so that handling large 

network structure and long training process can be avoided. Each module can be 

optimized according to the characteristics of the modeling task. 
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The first version of modular neural network can simulate 50 m x 50 m x 50 m 

environment and the allowable surface dimension is 50 m x 50 m with 0.1 m in 

thickness. Also, the dielectric constant of surface material ranges from 2 to 6. The 

training environment of the modular neural network in this thesis is large enough to 

handle most indoor environment. 

Four canonical geometries were studied using brute force ray tracing method, 

modular neural network and deterministic method. These four geometries were: free 

space, ground earth, ground penetration and empty hall. The result shows that 

modular neural network can generate accurate prediction results. In empty hall 

simulation, modular neural network has 1.57 dB mean error and 1.39 dB standard 

deviation with reference to the simulation result of brute force ray tracing model. 

As an actual test, modular neural network is used to predict propagation inside the 

third floor of the engineering building of the Chinese University of Hong Kong. The 

average prediction error of modular neural network is 6.93 dB and 6.01 dB standard 

deviation for shadow region, and 5.27 dB with 4.63 dB standard deviation for line-of-

sight region. 

7.2 Recommendations for Future Work 

For future work, the network needs to be trained and tested in more 

environments. In the process of further training and perfecting of the proposed 

model, various important properties of the neural network predictor should be 

addressed, including speed of solution, uniqueness and repeatability of solution, 

generalization of solution, convergence and stability. The size and number of 

modules should be reduced in modular neural network in order to optimize the 

performance in hardware acceleration. A DSP based neural network accelerator 

should be developed to realize the model described in this thesis so that the true speed 

up advantage can be realized. 

Another interesting topic is to compensate the lack of geometry details by actual 
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measurement. In the calculation of ray tracing, accuracy of the geometry model will 

affect the accuracy of prediction. If a good geometry database is not available for 

simulation, large prediction error is inevitable. Although digital map is available from 

Hong Kong Government as well as other countries, some important information is 

still missing, such as fumiture and office layout inside the buildings. Therefore, a 

geometry inverse process is needed to determine effects of these hidden objects and 

include them in the simulation model to improve the prediction accuracy. For 

example, an unknown object neural network module can be developed to represent 

any undetermined object. However, its reflection and transmission characteristics are 

leamed from measurement result that is obtained in the testing environment 
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