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A B S T R A C T 

Aromatase or CYP19 is the rate limiting enzyme in converting androgen to estrogen. 

Estrogen is important in the prevention of the cardiovascular disease. Previous 

researches have shown that genistein, a dietary phytoestrogen, could increase LDL 

receptor and apolipoprotein A-1 expression, but the mechanism is unclear. This study 

investigated the relationship between genistein and estrogen synthesis in a human 

hepatic cell line. On the other hand, the female hormone is critical in the initiation 

and development of breast cancer. Environmental toxicants are thought to play a role 

in several estrogen-dependent diseases including breast cancer. Therefore, the other 

objective of this study was to determine the effect of TCDD on aromatase expression 

and activity in human breast cancer cell lines in culture. 

In this study, 0.1 )iM to lOjiM genistein could induce aromatase activity in a dose 

dependent manner in ERa-transfected HepG2 cells. The induction of aromatase 

activity was consistent with the up-regulations in aromatase protein expression, 

mRNA expression and promoter LI activity. From the promoter deletion analysis, 

we found that the sequences between -212 to -190 and -300 to -260 bp upstream of 

exon I.l might be responsible for the activity induced by genistein. Within these 

regions of promoter 1.1，several AP-1 sites can be located. Genistein also increased 

the AP-1 transactivation activity, suggesting that AP-1 might be involved in the 

induced aromatase activity in ERa-transfected HepG2 cells. Besides, inhibition of 

p38 pathway could partly abolish the genistein-induced aromatase activity. The 

possibility that genistein promotes the aromatase activity through p38 kinase 

activation and ER phosphorylation needs further investigation. 

Tritiated water release assay had shown that TCDD could increase aromatase activity 

in MCF-7, but not the other breast cancer cells. IrjM to lOrjM TCDD were found to 

increase the aromatase activity in MCF-7 cells, but not in human CYP19 

Supersomes®. These results indicated that the enzyme induction was not the result of 

a direct stimulation on the aromatase enzyme complex. TCDD could up-regulate the 

aromatase protein and mRNA expression in MCF-7 cells. However, it could not 

induce promoter 1.1，I.3/II activity and AP-1 transactivation activity. We also 
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investigated the role of ER, MAP kinase and protein kinase pathways by adding the 

corresponding inhibitors. The results showed that ER, ERK, JNK, PKA and PKC 

might be involved in the regulation process. 

Instead of regulation through typical transcriptional control, data in the present study 

suggested that TCDD could increase the half-life of CYP19 mRNA. Such induction 

can be abolished by ERK inhibitor. However, the mechanism through which TCDD 

mediated aromatase mRNA degradation was not fully understood. The aromatase 

activity, protein and mRNA expression in MCF-7 cells expressing ERK were higher 

than that of the control cells. On the other hand, TCDD could increase the active 

ERK protein in MCF-7 in a dose-dependent manner, and ERK inhibitor could block 

TCDD-induced aromatase. Combining these observations, the aromatase activity 

could be mediated by ERK. 

In the present study, we demonstrated that genistein could significantly increase the 

aromatase activity in the ERa-transfected HepG2 cells. Genistein might increase 

apoAl and LDLR by way of estrogen synthesis. This study provided a new insight 

for the gene-regulatory mechanism of genistein, or other estrogen-like compounds. 

Besides, we also demonstrated that TCDD could enhance the aromatase activity 

through a post-transcriptional stabilization of aromatase mRNA in MCF-7 cells. 

Such process could be mediated by ERK. In conclusion, genistein and TCDD could 

increase the aromatase activity through different mechanisms. 
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摘要 

芳香化酶是作爲催化類固醇向雌激素的轉化的關鍵限速酶。能引發及發展乳腺 

癌。雌激素能有效預防心血管疾病。硏究發現食品中的植物雌激素金雀異黃酮 

能有效增加低密度脂蛋白受體及載脂蛋白A1的表達，但其潛在機理尙未完全 

清楚。本項硏究主要探討在人類肝細胞中金雀異黃酮和雌激素的關係。另一方 

面，環境毒物一直被視爲在一些依賴雌激素的疾病發病機制中擔當在重要的角 

色，其中包括乳腺癌。本項硏究並就二惡英在人類乳腺癌細胞中對芳香化酶的 

表達及活性的作用進行了硏究。 

本項硏究發現在轉染雌激素受體a的HepG2細胞中，0.1至10|iM的金雀異黃 

酮以劑量遞增效應來誘導芳香化酶活性。同樣地，芳香化酶的表達、mRNA 

及啓動子P.I.1的轉錄活性均被誘導。應答金雀異黃酮誘導作用的反應應答組 

件位於外顯子1.1上游-212至-190以及-300至-260之間。若干AP-1位置被 

發現在這些應答區內。由於金雀異黃酮能增誘AP-1轉錄活性，轉錄因數AP-

1應參與了金雀異黃酮誘導芳香化酶活性中的機制。另外，p38 MAP Kinase抑 

制劑能抑制金雀異黃酮所引發的芳香化酶活性，但不能抑壓其引發的啓動子轉 

錄活動° •此，p38 MAP Kinase的調控作用機制應進行更仔細的硏究。 

氤7_K釋放檢測證實二惡英只能刺激MCF-7 ’但不能剌激其他乳腺細胞中的芳香 

化酶活性。在MCF-7細胞中，0.1至lOiiM 二惡英能增加芳香化酶活性，但 

在人類芳香化酶超載體中則不能。這結果指出二惡英不大可能直接刺激芳香化 

酶的酵素合成物來誘發芳香化酶活性。另一方面’在MCF-7細胞中二惡英能 

提升芳香化酶蛋白質及mRNA的表達。不過，二惡英不能剌激啓動子P.I.1� 

1.3瓜及AP-1的轉錄活性。因此，此機制不大可能透過典型的轉錄調控機 

制°雌激素受體洁抗劑ICI 182 780的附加能阻止二惡英對芳香化酶的誘導作 

用。這表明雌激素受體a在這機制中扮演一定的角色。我們用相應的抑制劑 

硏究促絲裂原活化蛋白激酶(MAPK)和蛋白激酶的相關信號通路的作用機制。 

結果顯示細胞外信號調節激酷(ERK)�氣基末端激酶(JNK)�蛋白激酶A和 

蛋白激酶C可能參與其調控機制。 
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以目前的資料顯示，二惡英能增加芳香化酶的mRNA的半衰期。細胞外信號 

調節激酶洁抗劑的附加能阻止二惡英增加芳香化酶的mRNA的半衰期的作 

用。然而，二惡英怎樣影響芳香化酶mRNA的半衰期仍未被完全理解。在一 

個穩定表達細胞外信號調節激酶基因的MCF-7細胞內，其芳香化酶的活性、 

蛋白質的表達及mRNA的表達均較控制細胞爲高。另一方面，在MCF-7細 

胞內，二惡英可以以劑量遞增效應來誘導細胞外信號調節激酶的蛋白質表達。 

二惡英所誘發的芳香化酶活性同時能被細胞外信號調節激酶抑制劑所抑制。綜 

觀以上的硏究，芳香化酶活性可能是被細胞外信號調節激酶所調控。 

本項硏究發現在轉染雌激素受體a的HepG2細胞中，金雀異黃酮誘導芳香化 

酶。金雀異黃酮可能誘導雌激素的表達，從而增加低密度脂蛋白受體及載脂 

蛋白A1的表達。是此硏究爲金雀異黃酮及其它類似雌激素作用機制提供一個 

新的途徑。另外，在MCF-7細胞中，二惡英能透過細胞外信號調節激酶來增 

加增加芳香化酶的mRNA的半衰期，從而刺激芳香化酶活性。 
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C H A P T E R 1 

GENERAL INTRODUCTION 

1.1 AROMATASE 

Aromatase is a cytochrome P450 superfamily enzyme, which is critical in the 

conversion of androgen into estrogen, i.e. testosterone (CI9) and androstenedione 

(CI9) to estradiol and estrone (CI8) respectively. Estone can be further processed to 

estradiol by 17p-hydroxysteroid dehydrogenase type 1 as shown in Figure 1.1 

(Simpson et al, 1994a; Labrie et al, 2000). 

Aromatase is expressed only in gonads and brain in most vertebrates. However, 

primates also express aromatase in placenta, bone and adipose tissue (Lephart & 

Simpson, 1991; Simapson et al’ 1994b). The principal estrogen source of the 

premenopausal non-pregnant woman is synthesized in the ovary. Other sites of 

estrogen biosynthesis are present throughout the body beyond menopause. The 

estrogen synthesized within these extragonadal sites is probably biologically active 

only at local tissue level (Labrie et al, 1997). These sites include osteoblasts (Bmch 

et al, 1992), aortic smooth muscle cells (Sasano et al, 1999), mesenchymal cells of 

the skin and adipose tissue (Simpson et al, 1997), chondrocytes in bone (Bayard et 

al, 1995); amygdala and the medial basal hyptothalamus in brain (Naftolin et al, 

1975). After menopause, adipose tissue becomes the main source of estrogen (Siiteri 

and MacDonald 1973; Simpson et al, 1997). For the male, estrogen play an 

important role in the lipoprotein synthesis, maintenance of bone mineralization and 

spermatogenesis (Tsai-Morris et al, 1985; Nitta et al, 1993; Morishima et al, 1995, 

Carani et al, 1997; Smith et al, 1994; Bagatell et al, 1994). The level of estrogens 

is far higher within the reproductive tract then in the general blood compartment 

(Hess 2000). It has been estimated that testes account for 15% of circulating estrogen 

(Hemsell et al, 1974). In the testis, aromatase is mainly localized in Leydig cells 

(Carreau et al, 1999). Mutation of aromatase gene causes failure of epiphysical 

fusion, osteopenia and delayed bone age in male (Morishima et al, 1995). Male mice 

with a null mutation in the aromatase gene also exhibit alterations in bone 

histomorphometry (Oz et al, 2000). 
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Estrogen plays an important role in the initiation and development of breast cancer. It 

can stimulate cancer cell growth by triggering estrogen receptor-mediated signal 

transduction, resulting in increased DNA synthesis and cell proliferation (Feigelson 

and Henderson, 1996), Estradiol would interact with plasma membrane estrogen 

receptor (ER), change the regulation of cell cycle and Bcl-2 family protein 

expression (Dickson, 1987; Watson et al, 1999; Leung & Wang, 1999). Estrogen 

metabolites formed by cytochrome P450s may also play a role in the initiation of 

cancer. CYPlAl and CYPIBI hydroxylate 17B-estradiol (E2) at the C-2 and C-4 

positions respectively to form 2-hydroxyestradio 1 (2-OHE2) and 4-hydroxyestradiol 

(4-OHE2). These hydroxylated metabolites can further be oxidized to quinones, 

which are putative tumor initiators (Yager, 2000; Zhu et al, 1998; Cavalien et al, 

1997; Cavalien et al, 2002 and Rogan et al, 2003). Some metabolites retain 

estrogenic activity and generate mutagenic free radicals and cause DNA damage 

(Zhu & Connery，1998). The DNA damaging-effects of estrogen have been observed 

in rat mammary tissues and MCF-7 cells (Zhang et al, 2001; Yared et al, 2002). 

Previously, genistein and estradiol were shown to increase LDLR and ApoAl 

expression in HepG2 cells (Yuen, 2005; Lamon-Fava et al., 1999). As aromatase is a 

critical enzyme to convert androgen into estrogen, this study investigated the effect 

of genistein on aromatase activity and its underlying mechanism in the hepatic cells 

HepG2. On the other hand, environmental toxicants, including TCDD, are thought to 

play a role in breast cancer (Mocarelli and Pocchiari, 1988). The possibility that 

TCDD possesses estrogenic effect should be considered. Due to the functional role of 

aromatase, it may play a role in the TCDD-induced breast cancer. In this study, we 

investigated the effect and the underlying mechanism of genistein and TCDD on 

aromatase activity. 
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Figure 1.1 Scheme illustrates aromatase act as the final rate-limiting enzyme in the 

conversion of estrogen 
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As aromatase is responsible for the synthesis of estrogens, abnormal expression of 

aromatase may have a significant effect in the development and progression of 

malignancy, particularly in the breast (Simpson et al, 1994a). Previous studies have 

shown that aromatase is expressed in breast cancer tissue probably at a higher level 

than in normal breast tissue (James et al, 1987; Esteban et al, 1992; Santen et al, 

1994; Sasano et al, 1994; Bulum et al, 1993 and Harada, 1997). Based on the 

studies in aromatase-transfected MCF-7 and T-47D cells in vitro and in vivo, 

cellular aromatase can affect the breast cancer maintenance and progression (Santner 

et al, 1993 and Yue et al, 1994). As reviewed by Chen and his colleagues (1999), 

aromatase is expressed mainly in adipose stromal cells and fibroblasts in normal 

breast. However, aromatase is expressed in both stromal and cancer cells, suggesting 

aromatase stimulates breast tumor growth in autocrine and paracrine actions. 

1.2 TISSUE SPECIFIC PROMOTER FOR AROMATASE 

EXPRESSION 

Aromatase is encoded by a single copy of CYP19 gene, localized at chromosome 

15q21.2 (Simpson et al； 1994a; Chen, 1988). Transcriptional regulation of the 

CYP19 gene is complex and tissue specific. In human, the expression of CYP19 is 

regulated by alternative splicing (Harada et al, 1993; Mahendroo et al, 1993; 

Simpson et al., 1994a). Each exon I is flanked by its own unique promoter region 

and is spliced onto a common splice junction immediately upstream of the start of 

translation. Hence, the opening reading frame of each transcript (exon II to X)，as 

well as the CYP19 protein, is identical irrespective of the promoter used and site of 

expression (Figure 1.2 B). Up to this date, CYP19 is the only member of the 

cytochrome P450 gene superfamily. A schematic representation of the aromatase 

gene is shown in Figure 1.2. A. 

In CYP19, there are ten distinct tissue-specific promoters: PI.l (placenta, major), 

PL2 (placenta, minor), PI.3 (adipose/ breast cancer), PI.4 (skin and adipose), PI.5 

(fetal tissue), PL6 (bone), PI.7 (endothelial), Pl.f (brain), PII (ovary/breast 

cancer/endometriosis) and P2a (placenta, minor) (Shozu et al., 1998; Sebastian et al.’ 

2001; Sebastian et al, 2002) (Figure 1.2 A). In breast cancer, exons 1.3 and II are the 

most frequently used, suggesting the promoter 1.3 and II are the major promoters 
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directing aromatase expression in the malignant and surrounding tissue (Zhou C., et 

al, 1996). This is different from exon 1.4 used by the adipose stromal cells and 

fibroblasts in normal breast (Harada, 1993; Mahendroo et cd” 1993). 
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(A) 
Exon(s) I II III IV V VI VII VIII IX X 

- ^ — S I I [ J E ~ ~ 一•^捕LJ-
Tissue specific AATAA 

U 2a 1.4 1.5 1.7 l.f 1.2 1.6 1.3 Pll Exonll 

Common SpHceSitein Exon II start of translation (Avj/GAO I) 

(B) 丨5’-UTf̂  Identical coding region ^ 
AATAA 

Exon(s) 1 II III IV V VI VII VIII IX X ^ 

Tissue CYP19 Transcripts Detected 

Figure 1.2. A. A schematic representation of the aromatase gene. A CYP19 overview 

shows the exons and multiple sub regions of exon I. Figure B illustrates that the 

coding region and the translated protein product are identical in all tissues, even 

though each tissue expresses a unique untranslated first exon 5'UTR. Dark gray 

shading, translated region; light gray shading, untranslated region; Black shading, 

common untranslated region. (Modified from Sebastian et al, 2001 and Ellem et al, 

2004) 
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1.3 SIGNALING PATHWAY 

MAP kinase is involved in the regulation of diverse processes ranging from 

transcription of protooncogenes to programmed cell death (Cobb, 1999). The MAPK 

cascade is generally sub-classified into three main branches: p38 kinases, c-Jun N-

terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs) 

(Garrington and Johnson, 1999; Torres, 2003). Upon activation, a series of 

successively acting kinase would amplify signals that regulate diverse biologic 

functions, including cell growth, differentiation, proliferation and apoptosis 

(Molkentin, 2004). Generally, JNK and p38 kinase pathways may serve as 

transducers for injury or stress responses, whereas ERK pathways are more 

specialized for growth and mitogenic factor stimulation (Garrington and Johnson, 

1999). Figure 1.3 illustrates a simplified scheme of MAPK signaling pathway. After 

signal coming at the cell membrane activates the Ras protein, Ras would directly 

couple to Raf and phosphorylates MEKl/2. These two proteins act as dual specificity 

kinases and directly phosphorylate the TEY motif in ERK 1/2 kinases. Similar 

cascades have been observed in JNK and p38 kinase pathways. MKK4/7 can be 

activated by MEKK and then phosphorylate JNKl/2/3’ while MKK 3/6 directly 

activate the genes, p38a, p38p, p38S, andp38y (Garrington and Johnson, 1999). 

cAMP-dependent protein kinase, which is also known as protein kinase A (PKA), is 

allosterically activated by cAMP. The inactive form of PKA consists of two 

regulatory and two catalytic subunits. When cAMP binds to the regulatory subunit, 

the regulatory subunit would undergo conformational changes and yield two catalytic 

subunits. They in turn phosphorylate many enzymes at Ser or Thr sites, including 

CREB, glycogen synthase, phosphorylase b kinase and tyroine hydroxylase. Protein 

kinase C (PKC) is activated by elevated concentration of calcium. Phorbol esters, 

which are tumor promoters, are potent activators of PKC and affect the normal 

regulation of cell growth and division. Similar to PKA, PKC phosphorylates Ser or 

Thr residues of specific target protein and alters its catalytic activities (David, 2000). 
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Figure 1.3 A simplified scheme illustrates MAPKs signaling pathway. 

(Modified from Garrington and Johnson, 1999) 
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C H A P T E R 2 

MATERIALS AND METHODS 

2.1 CHEMICALS AND MATERIALS 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was purchased from Supelco. The mitogen-

activated protein (MAP) kinase inhibitor U0126, p38 MAP kinase inhibitor SB203580, 

the protein kinase A (PKA) inhibitor myristoylated 14-22 amide and the protein kinase 

C (PKC) inhibitor bisindolylmaleimide I were obtained from Calbiochem (San Diego, 

CA). 

ICI 182 780 was a gift from Dr. Y. Huang (Physiology Department, the Chinese 

University of Hong Kong, HKSAR, China). All other chemicals, if not stated, were 

acquired from Sigma Chemical. 

2.2 MAMMALIAN CELL CULTURE 

Two ER-positive human breast cancer cell lines MCF-7 and T47D, two ER-negative 

breast cancer cell lines SK-BR-3 and MDA-MB-231, a ER-negative hepatocellular 

carcinoma cell line HepG2 and a non-tumorigenic breast cell line MCFIOA were used in 

the present study. SK-BR-3 cells were generously given by Dr. Richard K.W. Choy 

(Department of Obstetrics & Gynaecology，the Chinese University of Hong Kong, 

HKSAR, China). MCF-7 cells stably transfected with human CYP19 (MCF-7aro) or 

empty vector (MCF-7vec) were kindly provided by Dr. S. Chen (Department of Surgical 

Research, Beckman Research Institute of the City of Hope, Duarte, CA91010, U.S.A.). 

MCF-7 cells stably transfected with ERK (MCF-7ERK) were prepared in our lab by other 

postgraduate student. All other cell lines were purchased from American Type Cell 

Collection (Rockville, MD，USA) 

9 



2.2.1 Maintenance of cells 

MCF-7, MDA-MB-231, T47D, MCF-7aro, MCF-7ERK and MCF-7vec were maintained in 

RPMI 1640 media, and the later two medium contained 500|a.g/ml selection antibiotics 

G418 (USB, Cleveland, OH, USA). HepG2 and MCFIOA cells were maintained in 

phenol red free RPMI 1640 media and DMEM/F12 media (Gibco BRL, Rockville, MD, 

USA) respectively. All media were supplemented with 2 mol/L L-glutamine (Gibco 

BRL, Rockville, MD, USA), 1% Penicillin-Streptomycin (P/S) (Gibco BRL, Rockville, 

MD，U.S.A) and 10% fetal bovine serum (FBS) (Hyclone). SK-BR-3 cells were 

maintained in McCoy's 5A medium with 2 mol/L L-glutamine and 12.5% FBS. All the 

cell lines were incubated at 37°C, 5% carbon dioxide. 

When cells reached about 80% confluence，the medium was discarded. The cell was 

washed with PBS and was trypsinized with trypsin-EDTA (Invitrogen) for 5 minutes. 10 

minutes trypsinization was required in MCFIOA cells. The cell suspension was 

transferred to a 15ml centrifuge tube containing 7ml PBS and centrifuged at 1,000 rpm 

at room temperature for 5 minutes. The cell pellet was resuspended with fresh growth 

medium, added in aliquot into new culture flasks and incubated as described above. 

Phenol red is known to contain an estrogenic contaminant. Starting from the beginning 

of each assay, the cells were seeded with phenol-red free RPMI 1640 with 2 mol/L L-

glutamine，1% Penicillin-Streptomycin (P/S) and 5% charcoal/dextran treated fetal 

bovine serum (FBS) (Hyclone). 

2.2.2 Preparation of cells stock 

Semi-confluent cells in culture flask were rinsed with PBS and trypsinized as described 

above. After the centrifugation, the cell pellet was resuspended in 500|al of growth 

medium and transferred into a 2m 1 freezing tube containing 500|il of FBS and 200|j.l 

DMSO. The tubes were put inside an isopropanol filled freezing pot (Nalgene, USA). 

The pot was put into a -80 freezer so that the cell stock was frozen at a constant rate 

of nearly 1 °C / min. The frozen vials were stocked into liquid nitrogen for permanent 

storage. 
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2.2.3 Cell recovery from liquid nitrogen stock 

The cell stock was taken out from the liquid nitrogen tank and thawed at once in a 37°C 

water bath. The cells were plated on a 60mm dish or a 25cm^ culture flask with 

appropriate fresh growth medium. The cells were incubated at 37°C, 5% carbon dioxide. 

Due to the toxicity of DMSO, fresh medium was replaced after 6 hours incubation. 

2.3 TRITIATED WATER RELEASE ASSAY 

The aromatase enzyme activity was measured based on the tritiated water release assay, 

which measured the amount of tritiated water produced during the conversion of 

androstenedione to estrone by aromatase. As shown in the Figure 2.1, three molecules of 

NADPH and oxygen were required for each estrogen formed during the process. The 

final hydroxylation resulted in a loss of Ip-^H of the androstenedione into the aqueous 

phase of the reaction. Then, it generated the tritiated water. The conversion rate 

determined by the isolation and the quantification of tritiated water represented the 

aromatase activity (Lephart & Simpson, 1991). 

2.3.1 Aromatase Activity in Intact Cell 

Cellular aromatase assays were performed as previously described (Ciolino et al., 2000). 

In short, cells were seeded in 6-well plates at a density of 5 x 10̂  per well for 24 hours. 

Tested compounds were administered with appropriate time points. The substrate [ip-

^H(N)]-androst-4-ene-3,17-dione (23.5 Ci/mmol, Perkin Elmer, Boston, MA, USA) in 

1ml of serum-free medium after cells were rinsed with PBS. The final concentration of 

substrate was controlled at 25riM. The reaction was incubated for 1 day at 37°C. Similar 

protocol was applied to assays performed on SK-BR-3, MCF-7aro and MCF-7vec cells, 

except that they were incubated with the substrate for 3 hours. 

The medium was then removed and mixed with 1ml of chloroform. The mixture was 

then centrifuged at 10,000 x g at 4°C for 10 minutes to remove the unreacted substrate. 

500|j.l of aqueous phase, which containing the tritiated water, was removed into a new 

eppendorf containing 500}j.l of 5% activated charcoal suspension. After 30 minutes 

incubation at room temperature, it was centrifuged at 15, 000 x g for 15 minutes. 625fil 
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of the supernatant fraction was transferred into vial with 2.5ml scnillation cocktail 

(Perkin Elmer) for the counting (Beckman，Fullerton, CA, USA). 

On the other hand, the protein content of the cells was determined by using BCA kit 

after dissolving the cells in 300)J.1 of O.5mol/L NaOH. Results were expressed as 

radioactive counting recorded per hour per mg protein. 

2.3.2 Aromatase assay on recombinant supersomes 

In addition to the "in-cell" assay, aromatase assay was also performed on recombinant 

aromatase expressed in insect microsomes (human CYP 19 Supersomes®，Gentest Corp, 

Woburn, MA, USA). Similar experimental procedures were applied except that the cells 

were replaced by the recombinant protein (Ciolino et al, 2000). The assay performed in 

a total volume of 250|il with the following additions: 25riM [ 1 p-^H(N)]-androst-4-ene-

3,17-dione, 2pmol Supersomes®, 3.3mM MgCb, lOOmM KH2PO4 (pH 7.4)，2.5|LI1 of 

testing compounds and 1.3mM NADPH. The reaction was initiated by adding NADPH 

and incubated at 37�C for 15 minutes. The reaction was stopped by adding 1.4ml of 

chloroform and 0.35ml 0.9% NaCl. After vortexing and centrifugation at 10,000 x g for 

10 minutes, 400|il of the aqueous phase was removed and mixed with 400}aJ 5% 

activated charcoal in a new eppendorf tube. The charcoal-contacting aqueous extract 

was then vortex and incubated for 30 minutes at room temperature. The tubes were 

centrifuged at 15，000 x g at at 4°C for 15 minutes. 625p-l of the supernatant fraction was 

transferred into vial with 2.5ml scnillation cocktail for the counting. 
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2.4 R N A ISOLATION AND CDNA SYNTHESIS 

Total RNA was isolated from cells grown in 12-well plates by TRIzol Reagent as 

directed by manufactures (Invitrogen Corp., California, USA). The concentration and 

purity of RNA were determined by spectrophotometry at 260/280nm. The integrity of 

RNA was assessed by agarose gel. 

3|j.g of total RNA was denatured at 70°C for 5 minutes with 0 . 0 2 5 o l i g o - d T 

(Invitrogen). The samples were chilled on ice quickly. Complementary DNA (cDNA) 

was synthesized by using 100 units M-MLV Reverse Transcriptase (USB Corporation), 

IX M-MLV reaction buffer and 0.5mM dNTP mixture in a total volume of 20ul. The 

contents was mixed and incubated at 37°C for 60 minutes and consequently inactivated 

at 70°C for 10 minutes. The cDNA generated was used as a template in PCR and real-

time PCR. 

2.5 SEMI-QUANTITATIVE P C R REACTION 

The reaction mixture was set up as follows: 

Sterile dUjO (16-x) |il 

lOX PCR reaction buffer with 50mM MgCh ^ 

lOmM dNTP 0.4^1 

10|xM Forward primer 0.4|4,1 

lOjiM Reverse primer 0.4fjJ 

Template cDNA x |il 

Taq DNA polymerase (5U/)il) 0.2)il 

Total 20\x\ 

The primer sequences are listed in Table 2.1. 20 PCR cycles were performed for p actin 

and 40 cycles for aromatase exon I of amplification were performed with a denaturation 

temperature 94°C for 30 second. The annealing temperatures for p actin and aromatase 

exons were 60°C and 55°C respectively, followed by extension temperature of 72°C for 

30 seconds. When the reaction was completed, the reaction mixture was analyzed by 

1.5% agarose gel electrophoresis. 
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A Gene and oligonucleotide Sequence 

P actin forward TCA CCC ACA CTG TGC CCA TGT ACG A 

(3 actin reverse CAG CGG AAC CGC TCA TTG CCA ATG G 

CYP 19 reverse CTG ACA GAG CTT TCA TAA AGA AGG G 

(common antisense primer) 

B Gene and oligonucleotide Sequence 

1.1 forward TGT GCT CGG GAT CTT CCA GAC 

1.2 forward TTC CAT TTC AGA TAT TCC CA 

1.2 reverse ATC CAT GGC TTG CTT GA 

1.3 forward GGG CTT CCT TGT TTT GAC TTG TAA 

1.4 forward AAC GTG ACC AAC TGG AGC CTG 

1.5 forward TTT GGA CAG TGG GCA CAG AG 

1.6 forward AGA CTA CCT ACC ATC CCT GAA A 

1.7 forward GGC TCC ATC TAG AAG GAT GA 

I.f forward TTA TAA AAG ATG GCA CAC GAA 

2a forward TGA AAT TCA GCC TGT GGA TT 

II forward CTC TGA AGC AAC AGG AGC TAT AGA T 

Table 2.1 Primer sequences for (A) p actin and CYP 19; (B) CYP 19 multiple exon I 
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2.6 QUANTITATIVE REAL TIME P C R USING TAQMAN 

PROBE 

The target mRNA levels were determined by real-time PCR using the OpticonTM 2 

System (MJ research, Waltham, MA, USA). The primers and FAM-labelled probes of 

CYP19, four CYP19 exons and internal control GADPH were all purchased from 

Applied Biosystems (Table 2.2). 

The reaction mixture consisted of lOjoi Taqman Universal PCR Master Mix (EastWin), 

lul FAM-labelled probe and 2|il cDNA in a final volume of 20|xl. The thermocycling 

profile was 5(fC for 2 minutes, 95°C for 10 minutes and 45 cycles of 95�C for 15 second 

and 60°C for 1 minute. The target and reference genes were amplified in separate wells. 

All samples were run in triplicate. 

The gene expression of samples relative to control is determined by method 

(Livak & Schmittgen，2001). The mean fold change in expression of target gene 

compared with control was calculated with the equation: 

Relative target gene expression = 2'道丁 

where A A C T = (CTtarget — C T house keeping) sample “ (CTtarget 一 C T house keeping) control 
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Assay No CYP19-F165 

Forward primer~~GGAGAATTCATGCGAGTCTGGAT 
CYP19 

Reverse primer GGAACATACTTGAGGACTTGCTGAT 

Reporter TCTGGAGAGGAAACACTC 

Assay No EXONIA.l-JUN 

Forward primerCTGTGCTCGGGATCTTCCA 
Exon LI 

Reverse primer CATCTTGTGTTCCTTGACCTCAGA 

Reporter ACGTCGCGACTCTAAAT 

Assay No EXONI3-J68 

Forward primerAAATTAGTCTTGCCTAAATGTCTGATCACA 
Exon 1.3 

Reverse primer CCAAAACCATCTTGTGTTCCTTGAC 

Reporter TTATAAAACAGACTCTAAATTGCC 

Assay No EXONI4-J60 

Forward primerGTCCCTGGCACTGGTCAG 
Exon 1.4 

Reverse primer CATCTTGTGTTCCTTGACCTCAGA 

Reporter CCCATCAAACCAGGACTC 

Assay No EXONII-J79 

Forward primer~~GCAACAGGAGCTATAGATGAACCTT 
Exon II 

Reverse primer CATCTTGTGTTCCTTGACCTCAGA 

Reporter CCACAGGACTCTAAATTG 

Assay No EXONIA-J212 

Forward primer~~CCGCACACACAAAGCAACATTT 
Exon 2a 

Reverse primer CATCTTGTGTTCCTTGACCTCAGA 

Reporter CCTGTGGACTCTAAATTG 

Table 2.2 The forward primer, reverse primer and reporter sequences of CYP19 Taqman 

probes (Applied Biosystems). 
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2.7 WESTERN BLOTTING 

5 X 10̂  cells per well in a 6-well plate were seeded in RPMI 1640medium containing 5% 

charcoal/dextran treated FBS. After transfection of 0.7|xg of expression vectors 

(pcDNA3.1 or pcDNA3.1- ERa) and/ or drug treatment for 2 days, the cells were 

harvested. Cells were rinsed with PBS and lysed by 50|il RIPA lysis buffer (25mM Tris-

HCl pH 8.8, 50mM NaCl, 0.5% NP40, 0.5% Deoxycholate, 0.1% SDS). Then, the cells 

were scraped off with a cell disrupter. The lysates were then sonicated by a cell disrupter 

(Branson Ultrasonics Corp., Danbury, CT, USA) on ice for 10 seconds. It was then 

centrifuged at 4°C for 5 minutes. The supernatants were transferred into a new 1.5ml 

eppendorf for immediately use or storing at -80�C for long term storage. 

Protein concentration of the supernatant was determined by Bicinochonic Acid Assay 

with bovine serum albumin (BSA) as standard. 50ug of sample protein was separated on 

12.5% SDS-PAGE and transferred to an Immobilon PVDF membrane (Millipore, 

Bedford, MA, USA) for 90 minutes at 15V. The membrane was incubated in 5% non-fat 

milk powder in PBS for at least one hour at room temperature. Then, it was incubated in 

primary antibody overnight at 4°C. The membrane was washed three times with TBS/T. 

Then, the membrane was incubated with secondary antibodies conjugated with 

horseradish (Armoracia rusticana) peroxidase (Santa Cruz Biotechnology, Inc.) for at 

least one hour at room temperature. The Westsave Up™ (Labfrontier, Ewha University, 

Seoul, Korea) provided the chemi-luminence substrate for horseradish peroxidase. The 

targeted protein was visualized by exposure to X-ray film (Kodak, Rochester, NY, USA), 

p-actin was used for protein normalization. 

Primary Antibody Working dilution Purchased by 

P actin 1:5000 Sigma Chemical Co 

Aromatase 1:400 Abeam, Cambridge, UK 

pERX 1/2 1:250 Santa Cruz Biotechnology, Inc. 

ERK 1/2 1:1000 Zymed Laboratories, South San Fransicso 
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2.8 MEASUREMENT OF PROMOTER ACTIVITY 

2.8.1 Plasmid Preparation 

The human ERa expression vector (pcDNA3.1-ERa), reporter plasmids for 

apolipoprotein A1 promoter, aromatase promoter I.l and I.3/II were made in our lab by 

other postgraduate student. The pGL-3 basic reporter vector and AP-1 luciferase reporter 

plasmid were purchased from Promega and Clontech (Palo Alto, California, USA) 

respectively. ERE-luciferase reporter plasmid C3-LUC was a gift from Dr. Donald 

McDonnell (Duke University, NC, USA). 

2.8.2 Transient Transfection and Dual Luciferase Assay 

1 X 10̂  cells were seeded in 24 well plate in RPMI 1640medium containing 5% 

charcoal/dextran treated FBS. In MCF-7, 0.2ug reporter plasmid (containing DNA 

fragments derived from aromatase promoter region) were pre-complexed with 2.5|a,l 

PLUS reagent and diluted into 25|il serum-free medium. The Renilla luciferase vector 

pRL-CMV (Promega) was cotransfected as an internal correction for transfection 

efficiency. Similar components are found in the transfection of HepG2 cells, except 

0.2|ig expression vectors (pcDNAS.l or pcDNA3.1- ERa) and l.S^il PLUS reagent were 

added in the reaction. The mixture was incubated at room temperature for 15 minutes. In 

a second tube, \\i\ of LIPOFECTAMINE Reagent was diluted into 25|̂ 1 medium without 

serum. It was mixed and incubated at room temperature for further 15 minutes. The cells 

were replaced with 200|LI1 erum free RPMI 1640 medium. The DNAs-PLUS-

LIOPFECTAMINE Reagent complexes were added into each well medium. After 4 

hours incubation, cells were cultured in RPMI 1640medium containing 5% 

charcoal/dextran treated FBS. After one day, various concentration of testing 

compounds were added and incubated for 48 hours. The cells were lysed in 100|il lysis 

buffer (Promega). The cell lysates were stored at -80°C until assay. Dual Luciferase 

assays were performed according to manufacturer's instruction (Promega). By using a 

FLUOstar Galaxy plate reader (BMG Labtechnologies, Offenburg, Germany), the 

luciferase activity was read and expressed as relative light units of firefly/renilla. 
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2.9 STATISTICAL METHODS 

A Prism® 3.0 (GraphPad Software, Inc., CA, USA) software package was utilized for 

statistical analysis. The results, whenever applicable, were analyzed by two-tailed 

Student's t-test to determine if significant (P<0.05) difference observed. 

The results were expressed as means 士SEM. 
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C H A P T E R 3 

GENISTEIN UP-REGULATES AROMATASE IN ESTROGEN 

RECEPTOR ALPHA-TRANSFECTED HEPG2 CELLS 

3.1 INTRODUCTION 

3.1.1 Cardiovascular diseases (CVD) 

Diseases of the heart and blood vessel are collectively known as cardiovascular 

disease (CVD). CVD has been a leading cause of global morbidity and mortality and 

is responsible for one-in-three deaths. Recent projections suggest that CVD will be 

the leading cause of death in both developed and developing regions of the world by 

2020 (Murray and Lopez, 1996). From 1981 to 2006，diseases of the heart were the 

second killer disease in Hong Kong (Department of Health, 2007). Epidemiologic 

studies have connected the consumption of an isoflavonoids-rich diet with a lower 

incidence of CVD (Adlercreutz, 2002). In normal postmenopausal women, dietary 

inclusion of whole soy foods containing 60 mg/d of isoflavones results in reductions 

in several key clinical risk factors for CVD (Scheiber et al, 2001). Japanese men 

who consume large amounts of soy have nearly one-six the risk of CVD as their 

counterparts in America (Beaglehole, 1990). Other research group has also illustrated 

the inverse association between soy product intake and heart disease in Japan 

(Nagata, 2000). 

3.1.2 Phytoestrogen 

Phytoestrogens are widely studied in the mechanism in the prevention of cancers, 

heart disease, menopausal symptoms and osteoporosis (Setchell, 1998; Adlercreutz, 

2002; Kronenberg and Fugh-Berman, 2002). High intake of dietary phytoestrogen 

may account for the lower rate of CVD in Asia than that in other Western country 

(Tikkanen and Adlercreutz, 2000; Tham et al, 1998). Phytoestrogens are plant-

derived chemicals, which have chemical structures similar to the mammalian 

estrogen 17P-estradiol (E2) (Price and Fenwick，1985; Knight and Eden, 1996; 

Mazur, 1998). They can be classified according to their differences in structure and 

functional group. One of the major classes of phytoestrogen is isoflavone, which has 

been the focus of many in vitro, in vivo and clinical research studies in relation to 

their health effects (Kingsbury, 1969). 

21 



The aromatic ring and the hydroxyl group of phytoestrogens are important for the 

binding to the estrogen receptors (ER) (Anstead et al, 1997). The A and C rings of 

the isoflavones are similar to the A and H rings of estrogen (Figure 3.1.1). The 

phytoestrogens trigger both anti-estrogenic and estrogenic activities in the body. As 

estrogen antagonists, they may block or alter the ER binding and thus abolish 

estrogenic activity. On the other hand, they can mimic the effect of endogenous 

estrogen (Brzezinski and Debi, 1999). Based on their binding affinities to ER, the 

estrogenic activities of phytoestrogens are around 1/500 to 1/1000 of that of estrogen 

(Jefferson et al, 2002; Joung et al, 2003). Due to the slight structural differences 

among various phytoestrogens, the binding affinities towards isoforms of ER are also 

different. Among the soy isoflavones, genistein has the greatest binding affinitiy to 

ERa (Latonnelle et al, 2002). 

In this study, genistein, which is a major isoflavone isolated from soy bean, was 

investigated (Cheng E et al； 1953). Soy beans have been reported in ancient Chinese 

herbals for the healthy functioning of the heart, kidneys, liver and stomach (Duke 

and Ayensu, 1985). Its structure is shown in Figure 3.1.1 C. Genistein is found as its 

glycosides in plants (Ibarreta et al, 2001). They are readily degraded by gut enzymes 

to form aglycone and absorbed to the bloodstream. The plasma level of genistein in 

individuals consuming a high soy-containing diet was estimated as to be l-4|xmol/l 

(Adlercreutz et al., 1995)，or 0.1|xmol/l in vegetarian women (Adlercreutz et al, 

1993). Though there has not been an extensive examination, the concentration of soy 

isoflavone in our body fluids is likely in the micromolar range. 
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Figure 3.1.1 Structure of 17p-estradiol and isoflavones 
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3.1.3 Estrogen receptor 

Estrogen receptor (ER) is a ligand-dependent nuclear receptor which involves in 

transcriptional regulation. There are two isoforms of ER: ERa and ERp (Kong et al, 

2003). The three-dimensional arrangements of these isoforms are identical. However, 

in ERp, 96% of DNA binding domain and 58% of ligand binding domain are similar 

with those in ERa (Mosselman et al, 1996). ERa is found in various tissues, 

including bone, breast, heart and central nervous system. Both receptors are 

expressed in liver, but ERa is expressed more than ERP (Gustafsson, 1999). 

ERa is a member of nuclear hormone receptor which may bind a wide range of 

hydrophobic molecules, including steroid hormone, phytoestrogens and tamoxifen. 

The most common ligand is estrogen. Originally, more than 80% of ERa is localized 

in the nucleus. Upon estrogen stimulation, ERa is increasingly localized in the 

nucleus (Ylikomi et al, 1992). The activation of ER depends on the ligand, dosage 

and tissue type. Raloxifene has shown an antiestrogenic effect in breast cancer tissue 

and the brain. On the other hand, it shows estrogen-like actions in bone and 

cardiovascular system. 

Before being activated, heat shock proteins in dimeric forms block the DNA-binding 

domain of ERa so as to prevent the association of the receptor with DNA. Once the 

ligands bind to C-terminal domain of ERa, there is a conformational change of the 

receptor. The heat shock proteins would be released. The activated ERa, which is in 

its dimerized state, is translocated through nuclear pore into nucleus. After binding to 

estrogen response element (ERE), transcriptional coactivators (SRC-1) and 

cointegrators (p300/CBP) also interact with the complex. Transcription is activated 

and mRNA encoded by the gene is expressed (Parker et al, 1993; Klinge, 2001). 

ER can also activate gene transcription indirectly with promoter specific elements 

(Pettersson and Gustafsson, 2001). In some genes, estrogen has been shown to 

promote transcription through AP-1, a binding site for Fos and Jun (Webb et al., 

1995). In addition, ERa interacts with Spl and binds to Spl sites in LDLR promoter 

to enhance the transcription and translation of LDLR (Yien et al, 1995). The 

interaction between ERa and Spl does not require the DNA-binding domain of ERa. 
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ER can also regulate gene expression in a ligand-independent manner by modulating 

several secondary signaling pathways. ICI 182 780, an estrogen antagonist, can 

abolish the 17p-estradiol-stimulated c-fos expression through the MAPK pathway 

(Hennessy et al, 2005). Some non-genomic pathways can be activated by MAP 

kinase and PKA (Klinge et al, 2005; Katzenellenbogen, 1996; Weigel and Zhang, 

1997). Hence, the latter mechanisms of ER action enable a broader range of genes to 

be regulated other than the classical ER action. 

3.1.4 Protective mechanism against CVD protective 

Reducing platelet aggregation, inhibiting expression of tissue factor gene and 

lowering serum cholesterol would help to protect our bodies from getting CVD. High 

density lipoprotein (HDL) cholesterol lowers the serum cholesterol by reverse 

cholesterol transport (Mayne and Mayne, 1994; Fielding and Fielding, 1995; 

Breslow, 1995). Low density lipoprotein (LDL) cholesterol accounts for about 70% 

of the total cholesterol in plasma. It is regarded as bad cholesterol as it increases the 

serum cholesterol (Mayne and Mayne, 1994). Hence, increased HDL cholesterol and 

decreased LDL cholesterol are believed to lower the CVD risk. Serum LDL-

cholesterol and HDL-cholesterol can be regulated by LDL receptor (LDLR) and 

apolipoprotein A-I (apoAl) respectively (Cortese et al, 1983; Zabalawi et al,, 2003). 

LDL is taken up by specific LDL receptors (LDLR), which are most abundant in the 

liver cell surface. LDLR recognizes apoB and apoE on LDL. The receptor-LDL 

complex would be internalized by endocytosis. The LDL particles would be broken 

down by lysosome after entering the cells. LDLR would return to plasma membrane 

and bind to another LDL. Hence, increasing the rate of LDLR synthesis would 

reduce the amount of intracellular cholesterol. 

ApoAl is the major protein of HDL. ApoAl plays an important role in the reverse 

cholesterol transport pathway by activating LCAT for cholesterol esterification. It 

also interacts with ATP binding cassette transporter Al cell membrane receptor and 

thus promotes cell cholesterol efflux. It carries the excess esterified cholesterol back 

to the liver for excretion (Rader，2002). 
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3.1.5 Effects of genistein on LDL Receptor and Apolipoprotein A-I 
Many research groups have studied the relationship between phytoestrogens and 

LDLR. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in 

C57BL/6 mice but not LDL receptor-deficient mice (Kirk et al, 1998). Soy protein 

with intact isoflavones has shown to increase serum HDL concentration (Sanders et 

al, 2002). 

Our group has investigated the effect of genistein on LDLR and apoAl. Similar to 

previous findings (Borradaile et al, 2002; Lamon-Fava et cd., 2004; Lamon-Fava, 

2000), genistein was shown to up-regulate LDLR and ApoAl expression through an 

ERa-dependent transcriptional control in HepG2 cells (Yuen, 2005). Lamon-Fava's 

group (2000, 2004) have suggested that the increase of apoAl gene expression is 

probably not through the classical ER/ligand genomic activation. It may be due to the 

binding of transcriptional factors to -256 to -41 region of the apoAl promoter. 

However, the underlying mechanism has not been fully elucidated. 

3.1.6 Effects of estradiol on LDL Receptor and Apolipoprotein A-I 

It is widely accepted that estrogen is critical in the prevention of CVD. According to 

a recent statistical figure from American Heart Association (2004), males have a 

higher rate of prevalence of CVD than females. Postmenopausal women have 2 

times higher CVD incidence rate than premenopausal women at the same age in 

another study (Kannel et al, 1976). The serum LDL-cholesterol levels decrease after 

treatment of aromatase inhibitor in men (Bagatell et al., 1994). 

17p-estradiol (E2) is the major form of estrogen, and has been shown to up-regulate 

apoAl and LDLR in HepG2 cells. ApoAl promoter transcription can be induced by 

4-fold in the presence of 10p,M E2 in HepG2 cells (Lamon-Fava et al, 1999). 

Previously, our group has demonstrated that ERa is important in the gene regulation 

of LDLR and apoAl under the physiological level of E2 in HepG2 cells (Yuen, 

2005). Incubation of HepG2 with E2 increases cell surface LDLR activity 

significantly in vitro (Semenkovich and Ostlund, 1987; Owen et al., 2004). The 

mechanism could be upregulated through ERa (Bruning et al, 2003) and tyrosine 

kinase (Distefano et al, 2002) in these cells. 
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3.1.7 Aim of study and hypothesis 

Though the interaction between genistein and LDLR or apoAI has been widely 

studied, the mechanism has not been fully elucidated. A schematic representation of 

the effect of genistein is shown in Figure 3.1.2. Genistein and estradiol were shown 

to increase LDLR and ApoAl expression in HepG2 cells (Yuen, 2005; Lamon-Fava 

et al, 1999). On the other hand, aromatase is a critical enzyme to convert androgen 

into estrogen in the body. Many researches have studied the effect of genistein on 

aromatase activity in other tissues, especially breast cancer tissue. lOjiM genistein is 

found to inhibit aromatase in MCF-7 cells (Brooks and Thompson, 2005). Hence, 

this study investigated the effect of genistein on aromatase activity and its underlying 

mechanism in the hepatic cells HepG2. If genistein could regulate aromatase in 

HepG2 cells, it might alter the amount of E2, and consequently affected LDLR and 

apoAl expression. The current objective was concentrated on the effect of 

ER/genistein on the transcriptional control of aromatase. 
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Figure 3.1.2 Schematic representation of the hypothesis on the estrogenic effect of 

genistein. 
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3 . 2 RESULT 

3.2.1 ERa increased Aromatase Activity in HepG2 cells 

Aromatase activity in the untreated cells was 10.315 士 2.9628 cpm/ |ag protein/ hour, 

and the activity was elevated to 386.445 士 10.3733 cpm/ fig protein/ hour after 

transfected with ERa. Figure 3.2.1 showed that the activity in cells transfected with 

empty vector had no difference compared to the untreated one. The activity in ERa-

transfected cells elevated significantly, approximately 37 times higher than that in 

the untreated cells. 

3.2.2 Genistein increased aromatase activity in HepG2 cells 

To determine the regulation of aromatase activity in HepG2 cells, we transfected the 

cells with ERa, and incubated the cells with various time points and concentrations 

of genistein. Aromatase activity was assessed using the tritiated H2O release method 

(Lephart & Simpson, 1991). Effect of lOjiM genistein on the aromatase activity in 

HepG2 cells was investigated over a 48 hour period (Figure 3.2.2). lOjiM genistein 

would increase the aromatase activity after more than 24 hours. In the presence of 

ERa, the aromatase activity was induced significantly, nearly 10 fold higher than that 

in the absence of ERa. Aromatase activity was significantly induced as early as 6 

hours and reached a maximum at 48 hours after the addition of genistein. Hence, in 

the following experimental design, the cells would be treated with genistein for 48 

hours. 

Genistein could induce the aromatase activity in a dose-dependent manner in HepG2 

cells (Figure 3.2.3). It induced the activity by 50% at lOjiM and such induction could 

be abolished by estrogen antagonists ICI 182 780. In the presence of ERa, genistein 

could increase aromatase activity in a dose-dependent manner. Genistein induced the 

activity by 200% at 0.1 |iM while over 3-fold increase was observed at 10|iM (Figure 

3.2.4). Such induction could be suppressed by ICI 182 780 (Figure 3.2.5). 
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Figure 3.2.1 Aromatase activity in HepG2 cells. HepG2 cells were transfected with 

ERa expression vector and control plasmid pcDNAS.l. The cells were further 

incubated with 25r|M [lp-^H(N)]-androst-4-ene-3,17-dione for 24 hours. Aromatase 

activity was determined by using tritiated water release assay. Values are means 

士SEM, n=3. (***P<0.0005) 
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Figure 3.2.2 Time course of genistein stimulation of the aromatase activity in 

cultured HepG2 cells. Cells were transfected with ERa expression vector and control 

plasmid pcDNAS.l, and treated with \0\iM genistein for 6, 24 and 48 hours. The 

cells were further incubated with 25r|M [lp-^H(N)]-androst-4-ene-3,17-dione for 24 

hours. Aromatase activity was determined by using tritiated water release assay. 

Values are means 士SEM，n=3. Symbols a to e are used for the lOjiM genistein group 

and the order is e > d >c >b > a. Symbols x and y are used for the DMSO group and 

the order is y > x. (*/ # P<0.05; **P<0.005) 
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Figure 3.2.3 Dose-dependent elevation of aromatase activity induced by genistein in 

HepG2 cells. The cells were pretreated with l|xM ICI 182 780 for 3 hours before 

adding genistein for further 48 hours. The cells were further incubated with 25r|M 

[1 p-^H(N)]-androst-4-ene-3,17-dione for 24 hours. Aromatase activity was 

determined by using tritiated water release assay. Values are means 士SEM, n=3. * 

represents values different from control; # represents values different from lO îM 

genistein. (*P<0.05; **P<0.005; ###P<0.0005) 
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Figure 3.2.4 Dose-dependent elevation of aromatase activity induced by genistein in 

ERa-transfected HepG2 cells. Cells were transfected with ERa expression vector and 

control plasmid pcDNAS.l, and treated with lOjiM genistein for 48 hour. The cells 

were further incubated with 25riM [ 1 p-^H(N)]-androst-4-ene-3,17-dione for 24 hours. 

Aromatase activity was determined by using tritiated water release assay. Values are 

means 土SEM，n=3. (*P<0.05; **P<0.005) 
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Figure 3.2.5 Effect of l|xM ICI 182 780 on genistein-induced aromatase activity in 

ERa transfected HepG2 cells. HepG2 cells were transfected with ERa expression 

vector for 24 hours. The cells were pretreated with l|iM ICI 182 780 for 3 hours 

before adding 10|j,M genistein for further 48 hours. The cells were incubated with 

[1 p-^H(N)] -androst-4-ene-3,17-dione for 1 day. Aromatase activity was determined 

by using tritiated water release assay. Values are means 土SEM, n=3. *** P<0.0005 

vs. cells treated with 10|aM genistein only. 
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3.2.3 Differential effect of MAP kinase inhibitors 

U0126 and PD98059 are specific inhibitors of MAP kinase kinase (MEK). They both 

block phosphorylation and activation of ERK 1/2. A research group has shown that 

PD98059 would stimulate the ERE transcription, displaced radiolabeled estradiol 

from receptor and stimulate ERa- coactivator interactions (Long X. et al, 2001). 

PD98059 exhibit estrogenic activity. 

In the present study, we found out that U0126 and PD98059 exert differential effect 

on apolipoprotein Al promoter activity in ERa-transfected HepG2 cells. \\xM 

PD98059 would increase the apoAl promoter activity. lO îM PD98059 would 

double the promoter activity, nearly to the same extent as IrjM estradiol (Figure 3.2.6 

A). However, U0126 would not show any inductive in apoAl promoter activity 

(Figure 3.2.6 B). At high concentration (10|iM), the promoter activity was even 

suppressed. As PD98059 consists of a flavonoid backbone, it might interact with ER 

to increase the apoAl promoter activity. To prevent confounding interpretation by 

the estrogenicity of PD98059, U0126 was chosen as the inhibitor of MAP kinase in 

this project. 

3.2.4 Role of MAP Kinase, PKA and PKC in genistein induced aromatase 

activity in ERa-transfected HepG2 cells 

To investigate the possible involvement of signal transduction pathway on aromatase 

activity, ERK (U0126), JNK (JNK inhibitor), p38 (SB203580), PKA (14,22-amide) 

and PKC (BI) inhibitors were used. None of the inhibitors tested, except SB203580, 

showed reduced aromatase activity in the presence of ERa (Figure 3.2.7 A). The 

genistein-induced aromatase activity could be suppressed by l|ig/|il SB203580 

(Figure 3.2.7 B). This result suggested that genistein could up-regulate aromatase 

activity through p38 pathway. 
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Figure 3.2.6 apoAl promoter activity in ERa-transfected HepG2 cells, treated with 

(A) PD98059; (B) U0126. Cells were transfected with apoAl reporter plasmid, PRL-

CMV control vector and ERa expression plasmid. Then the cells were incubated 

with different concentration of (A) PD98059 and (B) U0126 for 1 day and dual-

luciferase activity was measured. The relative luciferase activity was calculated by 

normalizing the light unit of firefly by that of renilla. Values are means 土SEM, n=3. 

(*P<0.05; **P<0.005; •**p<0 0005) 
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Fig 3.2.7 Effect of secondary messenger inhibitors on genistein-induced aromatase 

activity in ERa-transfected HepG2 cells. HepG2 cells were transfected with ER 

alpha expression vector for 24 hours. The cells were pretreated with different 

inhibitors for 3 hours before adding lOjiM genistein for further 48 hours. The cells 

were further incubated with [lp-^H(N)]-androst-4-ene-3,l7-dione for 1 day. 

Aromatase activity was determined by using tritiated water release assay. Values are 

means 士SEM，n=3. (* P< 0.05) 
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3.2.5 Genistein increased aromatase protein expression in ERa-transfected 

HepG2 cells 

To investigate the role of genistein on aromatase expression, western blot was carried 

out. It was found that ERa could induce aromatase expression in HepG2 cells. With 

genistein treatment, the aromatase protein expression was further elevated (Figure 

3.2.8). 

These results suggested that genistein could up-regulate aromatase protein expression 

through ER alpha in HepG2 cells. 
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Figure 3.2.8 Detection of aromatase protein In HepG2 cells. HepG2 cells were 

transfected with ERa expression vector and incubated with genistein for 2 days. 

Total protein was collected and the amount of aromatase was detected using Western 

Blot. The molecular weight of aromatase and p-actin was 55kDa and 42kDa 

respectively. 
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3.2.6 Genistein induced aromatase mRNA expression attributed to induction of 

exon I.l expression 

By using real time RT-PCR with probes constructed within the aromatase coding 

region, we found that the aromatase mRNA expression was elevated in a dose-

dependent manner in the presence of ERa (Figure 3.2.9). The aromatase mRNA 

expression was increased by about 3 times and 16 times with 0.1 |iM and lOjiM 

genistein treatment, respectively. Slight inductions were also observed in high 

dosages of genistein in the absence of ERa. 

The expression of aromatase is regulated by alternate splicing. To characterize the 

regulation of gene expression in HepG2, we first determined its promoter specificity 

by real time PCR using Taqman probing. In the absence and presence of ERa, the 

dominant usage was exon II. Only in the presence of ERa and lOjiM genistein, the 

mRNA expression of exon I.l was increased, while that of exon II decreased 

significantly (Figure 3.2.10). As mention in the general introduction, there are ten 

distinct tissue-specific promoters in the exons I of aromatase gene. To further 

confirm that the other promoters would not participate strongly in the regulation of 

gene expression in HepG2, we further determined its promoter specificity by RT-

PCR using various sense primers located in exon I and a common antisense primer in 

coding region of aromatase gene. From figure 3.2.11, the PCR products 

corresponding to exon I.l and II were relatively abundant in HepG2 cells, while there 

was no band detected in the other eight exons. The real time RT-PCR suggested that 

exons 1.3 and PII were the two major mRNA species present in ERa positive or 

negative HepG2 cells. After the addition of genistein in ERa-transfected HepG2 cells, 

there was a switch of the regulatory mechanism of aromatase expression from exons 

1.3 and PII to exon la. 

The aromatase activity and protein expression, induced by genistein in the presence 

of ERa was consistent with the abundance of mRNA, which was mainly driven by 

promoter I.l. 
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Figure 3.2.9 Effect of genistein on CYP 19 mRNA expression in HepG2 cells. HepG2 

cells were transfected with ERa expression vector and control plasmid pcDNA3.1, 

and treated with 10|j,M genistein for 48 hour. The amount of CYP 19 mRNA was 

determined by relative quantitative real time PGR. The expression of CYP 19 mRNA 

was normalized by GAPDH. Values are means 士SEM，n=3. * or # represents values 

different from control. (*/# P< 0.05) 
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Figure 3.2.10 Exon I-specific real time PGR in HepG2 cells transfected with control 

plasmid (A) and ERa-transfected HepG2 cells (B). Cells were treated with lO îM 

genistein for 48 hours. Then total RNA was extracted and reverse transcripted. Real 

time PGR was performed using Taqman probe (Table 2.2). GAPDH was amplified as 

a house keeping gene. Promoter usage levels were calculated by using method 

and expressed as percentage of total CYP19 expression. Values are means 士SEM, 

n=3. 
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Figure 3.2.11 RT-PCR amplification of alternate sites in exon I of aromatase gene 

from HepG2 cells. Cells were transiently transfected with ERa expression plasmid 

and treated with lOjiM genistein for 48 hours. Then total RNA was extracted and 

RT-PCR was carried out. The spliced exons were amplified using sense primers 

specific to exon I.l, 1.2, 1.3, 1.4，1.5，1.6，1.7 Lf, II or 2a and a common antisense 

primer located in the coding region of aromatase gene (Table 2.1). The PGR products 

were amplified for 40 cycles and separated on 1.5% agarose gel and stained with 

ethidium bromide. 
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3.2.7 Genistein induced promoter I.l transcriptional activity in ERa-transfected 

HepG2 cells 

We determined that exon I.l mRNA was elevated by genistein in ERa-transfected 

HepG2 cells. Next, we investigated whether genistein could up-regulate the 

transcriptional activity of promoter I.l. As shown in Figure 3.2.12, the result 

paralleled the mRNA data. However, genistein could not change the promoter 

activity in the absence of ERa. Such induction could be suppressed by estrogen 

antagonists ICI 182 780 (Figure 3.2.13). These results were consistent with the 

results of aromatase activity. 

To locate the sequence responsible for the induction, a series of truncate promoters 

were generated from the -700bp of promoter I.l, and inserted into the pGL3-basic 

reporter plasmid (Figure 3.2.14 A). These constructs were co-transfected into HepG2 

cells with ERa and control plasmid. Transfected cells were treated with or without 

lOjj-M genistein for two days and cell lysates were prepared for assay of luciferase 

activity assay. As shown in Figure 3.2.14 B, significant decreases in promoter 

activity in the -190 to -212, -260 to -280 and -280 to -300 deletions were observed. 

Hence, the response regions of promoter 1.1 induced by genistein could be located in 

these three sequences. 
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Figure 3.2.12 Transcriptional activity of aromatase promoter I.l in HepG2 cells. 

Cells were transfected with promoter 1.1 reporter plasmid, PRL-CMV control vector 

and ERa or pcDNA3.1 expression plasmid. Then the cells were incubated with 

10|iM genistein for 48 hours and dual-luciferase activity was measured. The relative 

luciferase activity was calculated by normalizing the light unit of firefly by that of 

renilla. Values are means 士SEM，n=3. (*P<0.05; **P<0.005) 

45 



0 3-1 

•2 圓 DMSO 
^ _ 1|aMICI 182 780 

1 2- _ 

1 , - i = 爹 A 
10 h l d b 1’:画 

DMSO 10|iM genistein 

Figure 3.2.13 Effect of l|xM ICI 182 780 on genistein-induced aromatase promoter 

I.l activity in ERa-transfected HepG2 cells. HepG2 cells were transfected with ER 

alpha expression vector for 24 hours. The cells were pretreated with l|iM ICI 182 

780 for 3 hours before adding 10|iM genistein for further 48 hours and dual-

luciferase activity was measured. The relative luciferase activity was calculated by 

normalizing the light unit of firefly by that of renilla. Values are means 士SEM，n=3. 

(*P<0.05; **P<0.005) 
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Figure 3.2.14 (A) A schematic diagram of the 5,-deleted mutants used in this 

experiment. (B) Transcriptional activity of a series of 5'-deleted promoter fragments 

in ERa-transfected HepG2 cells. Cells were transfected with pGL3-luciferase 

reporter constructs of promoter 1.1，ERa expression vector and PRL-CMV control 

vector for 24 hours. Then the cells were incubated with 10|iM genistein for further 

48 hours and dual-luciferase activity was measured. The results of genistein group 

were normalized by the corresponding results of DMSO group. Values are means 

土SEM, n=3. (*P<0.05; **P<0.005) 
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3.2.8 Genistein increased ERE and AP-1 reporter activity through interaction 

with ERa 

Genistein is an estrogen agonist, which can increase the aromatase promoter I.l 

activity in ERa-transfected HepG2 cells. The effect of genistein on ERE 

transactivation activity was also investigated. Figure 3.2.15 showed that ERa alone 

could not increase ERE transactivation activity. However, the activity would increase 

in the presence of ligand. Even 0.1 |xM genistein could induce ERE transactivation 

activity in ERa-transfected HepG2 cells by about 2 fold. The transactivation activity 

was further increased when the cells treated with 1 |iM and 1 OjiM genistein. 

It has been reported that ERa can interact with some transcription factors，including 

AP-1 (Cheung et al, 2005). We also investigated the effect of genistein on AP-1 in 

HepG2 cells. Even without genistein, ERa alone could induce AP-1 binding (Figure 

3.2.16). After treating with \\iM and 10|iM genistein, AP-1 binding transactivation 

activity had doubled. Hence, the result suggested that genistein induced promoter I.l 

transcriptional activity might be associated with interaction of ERa and AP-1. 
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Figure 3.2.15 Effect of genistein on ERE promoter transcription activity in HepG2 

cells. Cells were transfected with ERE reporter plasmid, PRL-CMV control vector 

and ERa or pcDNA3.1 expression plasmid. Then the cells were incubated with 

10|j.M genistein for 48 hours and dual-luciferase activity was measured. The relative 

luciferase activity was calculated by normalizing the light unit of firefly by that of 

renilla. Values are means 士SEM，n=3. (** P< 0.005; *** P<0.0005) 
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Figure 3.2.16 Effect of genistein on AP-1 promoter transcription activity in HepG2 

cells. Cells were transfected with AP-1 reporter plasmid, PRL-CMV control vector 

and ERa or pcDNA3.1 expression plasmid. Then the cells were incubated with 

10|iM genistein for 48 hours and dual-luciferase activity was measured. The relative 

luciferase activity was calculated by normalizing the light unit of firefly by that of 

renilla. Values are means 士SEM, n=3. (#) represents value different from cells with 

control vector; (*) represents value different from cells with ERa and without 

genistein treatment. (*/# P< 0.05; ** P<0.005) 
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3.3 DISCUSSION 

The hepatocarcinoma cell line, HepG2, is a widely accepted model for studying 

human hepatic lipoprotein metabolism (Javitt, 1990). It has been reported that 

HepG2 cells is ER-negative (Hamish et al, 1998). Hence, they can be used for 

investigating differential pathways controlled by ER. 

Previous study has shown that ERa expression is increased in the mammary tissue of 

mice over-expressing aromatase (Kirma et al, 2001). Our data indicated that over-

expressing ERa in HepG2 cells would significantly increase the aromatase activity. 

Recently, genistein was found to increase aromatase activity in endometrial stromal 

cells via increased enzyme expression (Edmunds et al, 2005). In the present study, 

genistein exhibited estrogen-like activity and induced aromatase activity in dose and 

time-dependent manner. 0.1 }xM to lOjiM genistein could up-regulate the aromatase 

activity in the presence of ERa. Hence, ERa played a critical role in genistein-

mediated aromatase activity. The induction of aromatase activity was consistent with 

the up-regulations in aromatase protein expression, mRNA expression and promoter 

activity. 

Previously, Chen and Kinoshita (2003) have found that E2 induces aromatase 

expression in ER-positive SK-BR-3 cells through binding to the region of -300 and -

280 bp. Though promoter I.l was regarded as placenta-specific promoter, we 

identified this promoter usage was dominant in genistein-treated ERa positive 

HepG2 cells. From the promoter deletion analysis, we found that the sequences 

between -212 to -190 and -300 to -260 bp upstream of exon I.l might be responsible 

for the activity induced by genistein. These two regions might account for the 

increase of promoter I.l activity in ERa-transfected HepG2 cells. 

The classical mechanism of ER involves ligand binding to receptors in the nucleus, 

after which the receptors dimerize and bind to specific response elements (ERE) 

located in the promoter of target gene. The estrogen antagonist ICI 182 780 blocks 

the activation of AF-1 and AF-2 domain in ERa (Lu et al, 2002). ICI 182 780 

completely abolished the genistein-induced aromatase activity and promoter activity, 

indicating that ERa activation regulated the gene transcription. Though the addition 
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of genistein could increase the ERE transactivation activity, there was no ERE 

consensus sequence found within promoter LI. Previous findings suggested that ERa 

can regulate the gene expression without binding to the DNA directly. Instead, it can 

interact with other transcription factors, including AP-1, Spl, NF-KB. The 

transcription factors would bind to their corresponding response element to trigger 

the gene transcription, instead of binding to ERE (Paech et al, 1997; Porter et al, 

1997; Ray et al, 1997; Webb et al, 1999; Bjornstrom & Sjoberg, 2005). Our lab 

previously has demonstrated that genistein would not affect Spl mRNA expression 

in ERa-transfected HepG2 cells (Yuen, 2005). In the present study, the results 

suggested that genistein would up-regulate the AP-1 site in a dose dependent manner. 

Within the regions of promoter 1.1，several AP-1 sites are detected, including -498 

and -935 in promoter II and 1.3 (Zhou et al, 1996). Two putative AP-1 sites have 

been found between -70 bp and the start site of exon I.l (Chen and Kinoshita, 2003). 

-212 to -190 region of exon I.l was important in the genistein-mediated aromatase 

activity. It may due to an AP-1 binding site (TGTGGGTCATA) located in -211 to-

201 of this region. 

Emerging evidence indicated the importance of signaling pathway in the actions of 

ER. The extracellular-regulated kinase (ERK) and p38 MAPK pathways are shown 

to initiate ER phosphorylation at key positions (McClelland et al, 2001; Knowiden 

et al, 2003). Other research groups have shown that MAPK mediated cross talk 

occurs between growth factor and estrogen receptor (Bunone et al, 1996; Font de 

Mora and Brown, 2000). Estrogen can activate the MAPK pathway in mammalian 

cells by interacting with membrane or cytosol ER (Migliaccio et al, 1996; Walters et 

al, 1997; Manolagas & Kousteni，2001; Lu et al, 2004). On the other hand, 

genistein can inhibit protein tyrosine kinase (Akiyama et al., 1987 ； Barnes et al., 

2000). It inhibits the nongenomic effect of estradiol on protein kinase C (PKC) 

activity in chondrocytes isolated from female rats (Sylvia et al, 2000). However, 

ERK, JNK, PKA and PKC pathways were not involved in the genistein-induced 

aromatase activity in the present study. Only inhibition of p38 MAPK pathway could 

partly abolish the induction. Lee and Bai (2002) have suggested that the kinase 

responsible for phosphorylating ER at Thupn may be a member of the p38 family. 

Genistein rapidly and significantly activates p38 in immortalized human mammary 

epithelial cells (Frey and Singletary, 2003). The possibility that genistein 
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phosphorylates ER through p38 and promotes aromatase activity needs further 

investigation. 

In the present study, we demonstrated that genistein could significantly increase the 

aromatase activity in the ERa-transfected HepG2 cells. Genistein could increase the 

promoter activity, mRNA and protein expression of aromatase in ERa-transfected 

HepG2 cells. -300 to -260 and -212 to -190 regions in promoter I.l were critical in 

the up-regulation of aromatase activity. Such induction was possibly mediated 

through AP-1 activation pathway. As estrogen can trigger a wide-range of gene 

transcriptions in liver, this study provided a new insight for the gene-regulatory 

mechanism of genistein. 

i 

I 
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C H A P T E R 4 

EFFECT OF 2,3,7,8-TETRACHLORODIBENZO-IMIL4-

T C D D ( T C D D ) ON AROMATASE IN M C F - 7 CELLS 

4.1 INTRODUCTION 

4.1.1 Breast Cancer 

In Hong Kong, breast cancer is the most common cancer affecting female. It is 

ranked the third major cause of cancer death (Hong Kong Cancer Registry, 2004). 

There are several risk factors which contribute to the etiology of breast cancer, 

including age, race, genetic, physical activity and diet (American Cancer Society). 

Nearly 60% of pre-menopausal and 75% of postmenopausal breast cancer patients 

have hormone-dependent tumors. Lifetime exposure to estrogens is a major risk 

factor for both breast and endometrial cancer in women (Hulka, 1997; Hulka et al, 

1994). The positive correlation between estrogen exposure and breast cancer has 

been demonstrated in cell and animal models (Colditz, 1999; Yoshidome et al., 

2000). 

4.1.2 TCDD 

Environmental pollution is getting increasingly serious nowadays. Poly cyclic 

aromatic hydrocarbons (PAHs) belong to a class of environmental contaminants that 

could be found in diesel exhaust, tobacco smoke and over-heated cooking oil (lARC, 

1983; EPC, 1990). PAHs have been widely studied on the effect of DNA adduct 

formation and carcinogensis. The compound 2,3，7,8-tetrachlorodibenzo-/7ara-TCDD 

(TCDD) is considered to be the most toxic member of a class of planar, halogenated 

aromatic hydrocarbons (Bimbaum, 1994; Birnbaum, 1995). Its chemical structure is 

contains two aromatic rings connected through a pair of oxygen atoms. Four chlorine 

atoms, two on each aromatic ring, are attached at positions 2, 3, 7 and 8. 

TCDD is a widespread environmental contaminant produced by different chemical 

reactions, waste incineration and incidental formation in pesticides producing plants 

(Zook et al, 2003; Tuppurainen et al, 2003). As TCDD is extremely stable and 

highly lipophilic, it can accumulate in the food chain (Birnbaum, 1994). The half life 
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of TCDD in human is about 7-9 years (Pirkle et al., 1989). Animal products in our 

diet account for 90% of our TCDD exposure (Baars et al., 2004). The persistence and 

ubiquity in the environment make it difficult to determine the pollutant's impact on 

human health. In 1997, the International Agency for Research on Cancer (lARC) 

classified TCDD as a Group I carcinogen, which can increase the mortality for all 

cancers. It is shown that TCDD is a multi-site carcinogen in both animal and human 

studies (lARC, 1997). Moreover, TCDD affects the male and female reproductive 

system and on sexual and learning behavior in rats and monkeys (Peterson et al, 

1993; Kociba et al.’ 1976; Mably et al, 1992a,b). 

4.1.3 CYP enzymes 

There are at least 25 distinct classes of CYP enzymes identified (Guengerich, 1994). 

Based on the similarities in the amino acid sequences, CYP enzymes are divided into 

families and subfamilies. Generally, CYP 1 to 4 families are responsible for the 

metabolism of xenobiotics. CYP 5 to 27 families are involved in endogenous 

substrates synthesis and metabolism (Nelson et al, 1993). Most researches of TCDD 

are concentrated on the effect on certain aryl hydrocarbon receptor (AhR) activated 

CYP enzyme, including CYPlAl, CYP1A2 and CYPIBI, which catalyze the 

activation of a wide range of chemical carcinogens (Chen et al, 2004; Bofinger et al’ 

2001; Safe, 1994). Upon TCDD binding, HSP90 will be released from AhR. The 

activated AhR will then translocate to the nucleus. AhR forms heterodimer complex 

with the structurally related AhR nuclear translocator protein (ARNT). The activated 

complex binds to specific gene regulatory sequences, known as xenobiotic response 

element (XRE). This binding activates transcription of several genes, especially 

CYPs which are involved in xenobiotic compound metabolism (Schrenk, 1998; 

Whitlock, 1990; Swanson and Bradfield, 1993; Whitlock, 1993; Hankinson, 1995; 

Whitlock et al., 1997). However, the effect of TCDD on aromatase activity is 

seldomly investigated in human breast cancer cells. 
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4.1.4 TCDD and breast cancer 

TCDD is involved in the modulation of estrogen in many paradigms. In rats, 17 p-

estradiol-induced uterine responses, uterine weight, peroxidase activity, estrogen 

receptor, and progesterone receptor were decreased after the treatment of TCDD 

(Astroff and Safe, 1990; Romkes and Safe, 1988). Several studies have shown that 

TCDD inhibits diverse E2-induced responses (Safe, 1995). TCDD acts as an 

antiestrogen by suppressing estrogen-stimulated growth of human MCF-7 breast 

cancer xenografts (Gierthy et al, 1993). It also reduces the level of estrogen receptor 

in MCF-7 (Harris et al’ 1990). However, other group has indicated that TCDD does 

not affect the total estrogen receptor levels (Gierthy et al., 1987). 

Environmental toxicants are thought to play a role in several estrogen-dependent 

diseases including breast cancer. In 1976，an industrial explosion in Seveso, Italy, 

resulted in high TCDD exposure to the residential populations (Mocarelli and 

Pocchiari, 1988). In the Seveso Women's Health study, individual's serum TCDD 

level was associated with breast cancer risk, contrasting to its antiestrogenic effect in 

breast cancer cells (Warner et al, 2002). The anti-estrogenic activity of TCDD could 

not account for the increased breast cancer risk. The possibility that TCDD possesses 

estrogenic effect should be considered. Due to the functional role of aromatase to 

convert androgen into estrogen, it may play a role in the TCDD-induced breast 

cancer. 

4.1.5 Aim of study 

The aim of the present study was to examine whether TCDD could increase 

aromatase activity in human breast cells and might therefore increase the risk of 

breast cancer. In our experiment design, we employed different human breast cancer 

cell models for this purpose. 
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4 .2 RESULT 

4.2.1 Effect of TCDD on aromatase activity in different cell lines 

In the present study, six breast cancer cell lines (MCF-7, T47D, MCF-lOA, MDA-

MB-231and SK-BR-3) and one liver cancer cell line (HepG2) were screened for the 

aromatase induction by lOrjM TCDD. As shown in figure 4.2.1, lOrjM TCDD could 

not induce aromatase activity in T47D, MCF-lOA and MDA-MB-231cell lines. 

Aromatase activity of untreated SK-BR-3 cells was 10.450 士 0.2828 cpm/ jig protein/ 

hour, and the activity was elevated to 2204.603 士 527.3202 cpm/ |ig protein/ hour 

after transfected with ERa (Figure 4.2.2). The activity of ERa-transfected cells 

elevated significantly, nearly 220 times higher than that in the untreated cells. 

Similar to HepG2 cells, ERa transfection increased aromatase activity in SK-BR-3 

cells. However, 10r|M TCDD could not further induce the aromatase activity in the 

presence or absence of ERa (Figure 4.2.3). 

In the absence of ERa, lOrjM TCDD would not increase the aromatase activity in 

HepG2 cells. In the presence of ERa , lOriM TCDD elevated the activity by 2-fold 

and such induction could be suppressed by ICI 182 780 (Figure 4.2.4). Hence, TCDD 

could induce aromatase activity via ERa in HepG2 cells. 

57 



A 10.0-| B 75n 

L. W 

i: _ 
… _ • • _ J r M 

control lOriMTCDD 
control lOriMTCDD 

C 

_ 
O O-I Iw'ww^^ ^ 

control 10iiM TCDD 

Figure 4.2.1 Aromatase activity in (A) T47D，(B)MCFIOA and (C) MDA-MB-231. 

Cells were treated for 48 hour lOrjM TCDD and were then further incubated with 

[1 p-^H(N)]-androst-4-ene-3,17-dione for 1 day. Aromatase activity was determined 

by using tritiated water release assay. Values are means 士SEM, n=3. 
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Figure 4.2.2 Aromatase activity in SK-BR-3 cells. SK-BR-3 cells were transfected 

with ER alpha expression vector and control plasmid pcDNA3.1. The cells were 

further incubated with 25r|M [ 1 p-^H(N)]-androst-4-ene-3,17-dione for 3 hours. 

Aromatase activity was determined by using tritiated water release assay. Values are 

means 士SEM，n=3. *P<0.05 vs. control plasmid cells. 
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Figure 4.2.3 Aromatase activity in SK-BR-3 cells. SK-BR-3 cells were transfected 

with ER alpha expression vector and control plasmid pcDNA3.1, and treated with 

lOrjM TCDD for 48 hour. The cells were further incubated with 25r|M [ip-^H(N)]-

androst-4-ene-3,17-dione for 3 hours. Aromatase activity was determined by using 

tritiated water release assay. Values are means 士SEM，n=3. 
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Figure 4.2.4 Effect of lOriM TCDD on aromatase activity in HepG2 cells. HepG2 

cells were transfected with ERa expression vector for 24 hours. The cells were 

pretreated with \\iM ICI 182 780 for 3 hours before adding 10r|M TCDD for further 

48 hours. The cells were further incubated with [ 1 P-^H(N)]-androst-4-ene-3,17-dione 

for 1 day. Aromatase activity was determined by using tritiated water release assay. 

Values are means 士SEM, n=3. * P<0.05 vs. cells transfected with ERa only; • 

P<0.005 vs. cells treated with TCDD in the presence of ERa. 
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4.2.2 TCDD increased aromatase activity in MCF-7celIs 

The regulation of aromatase activity in MCF-7 cells was determined by titrated water 

release assay. The cells were incubated with various concentration of TCDD. 

Aromatase activity was assessed using the release of [^H]H20 into media. The time 

course of the effect of lOrjM TCDD on the aromatase activity in MCF-7 cells was 

investigated over a 48 hour period (Figure 4.2.5). TCDD could not induce aromatase 

activity in both 6 hours and 24 hours. However, incubating the cells with TCDD for 

48 hours increased the aromatase activity nearly by two times. Hence, the cells 

would be incubated in TCDD for 48 hours in the following experimental design. 

The dose-dependent effect was studied by culturing the cells with various 

concentration of TCDD for 48 hours. TCDD could induce aromatase activity in a 
f 

dose-dependent manner. TCDD increased the activity slightly at 0.1r|M while about : 

2-fold increase was observed at lOrjM (Figure 4.2.6). Such induction could be \ 

suppressed by estrogen antagonists ICI 182 780 (Figure 4.2.7). j 

¥ 

I 
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Figure 4.2.5 Time course of TCDD stimulation of the aromatase activity in cultured 

MCF-7 cells. MCF-7 cells were treated for various time periods with TCDD at 10r|M. 

Values are means 士SEM，n=3. **P<0.005 vs. control cells treated with DMSO. 
V t-
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Figure 4.2.6 Dose-response of TCDD stimulation of the aromatase activity in 

cultured MCF-7. MCF-7 cells were treated for 48 hour with different concentration 

of TCDD and were then further incubated with [ 1 p-^H(N)] -androst-4-ene-3,17-dione 

for 1 day. Aromatase activity was determined by using tritiated water release assay. 

Values the means 土SEM, n=3. * P<0.05 vs. control cells treated with DMSO. 
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Figure 4.2.7 Effect of l|iM ICI 182 780 on TCDD-induced aromatase activity in 

MCF-7 cells. The cells were pretreated with l^iM ICI 182 780 for 3 hours before 

adding 10r|M TCDD for further 48 hours. The cells were further incubated with [Ip-

^H(N)]-androst-4-ene-3,17-dione for 1 day. Aromatase activity was determined by 

using tritiated water release assay. Values are means 士SEM, n=3. *** P<0.005 vs. 

cells treated with 10r|M TCDD. 
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4.2.3 Effect of TCDD on human CYP19 recombinant Supersomes® and MCF-7 
aro cells 

The effect of TCDD on aromatase activity was also determined using CYP 19 

recombinant protein (Supersomes®). Incubation of 2 pmol Supersomes® with 25nM 

of the radioactive substrate for 15 minutes resulted in an activity of 14607.51 士 

613.65 cpm/ pmol. However, addition of TCDD did not show any effect on the 

aromatase activity (Figure 4.2.8). 

We have also tested the effect of TCDD on MCF-7 cells stably transfected with 

aromatase. The aromatase activity in MCF-7aro cells was about 40 times higher than 

that assayed in the control MCF-7vec cells (Wang, 2005). Upon TCDD treatment, 

there was neither stimulatory nor inhibitory effect on aromatase activity. The 

aromatase activity remained at around 3, 300 cpm/|j.g protein/ hour (Figure 4.2.9). 

Hence, TCDD did not directly stimulate aromatase enzyme complex. Other possible 

factors and mechanisms should be considered. 

4.2.4 TCDD increase aromatase protein expression in MCF-7 cells 

To investigate the role of TCDD on aromatase expression, western blot was carried 

out. It was found that TCDD could dose-dependently induce aromatase expression in 

MCF-7 cells (Figure 4.2.10). These results suggested that TCDD could up-regulate 

aromatase protein expression, so as to increase the aromatase activity in MCF-7 cells. 
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Figure 4.2.8 aromatase enzyme assay performed on hCYP19 Supersomes®. 

Incubation of 2pmol hCYP19 Supersomes® with 25 r|M of the substrate [ip-^H(N)]-

androst-4-ene-3,17-dione and different concentration of TCDD for 15mins. 

Aromatase activity was determined by using tritiated water release assay. Values are 

means 士SEM, n=3. 
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Figure 4.2.9 Aromatase activity in MCF-7 aro cells. Cells were treated for 48 hour f 
I' 

lOrjM TCDD and were then further incubated with [ 1 P-^H(N)] -androst-4-ene-3,17-

dione for 1 day. Aromatase activity was determined by using tritiated water release 

assay. Values are means 士SEM，n=3. | 
j 
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Figure 4.2.10 Effect of TCDD on aromatase protein expression in MCF-7 cells. 

MCF-7 cells were incubated with TCDD for 2 days. Total protein was collected and 

the amount of aromatase was detected using Western Blot. The molecular weight of 

aromatase and p-actin were 55kDa and 42kDa respectively. 
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4.2.5 Effect of TCDD in aromatase mRNA expression in MCF-7 cells 

By using Taqman probing within the aromatase coding region, there was no 

significantly change in the aromatase mRNA expression after treatment of 0.1 and 

lr|M TCDD in MCF-7 cells. However, the mRNA expression was increased by 

roughly 300% at IOTIM TCDD (Figure 4.2.11). 

By performing real time PCR, we noticed that the dominant promoter usage in MCF-

7 were exons II and 1.3, contributing for 90% and 6% of total transcriptional activity 

respectively. Exons I.l contributed for only 4%. After the addition of TCDD, the 

promoter usage did not show any significant changes (Figure 4.2.12). 

！ 

4.2.6 Effect of TCDD in CYP19 promoter and AP-1 promoter activity in MCF-7 | 

cells 
丨丨' 

The proximal promoter II located in the immediate upstream region of the translation 

start site, while promoter 1.3 is about 200bp proximal to promoter II (Sebastian and 

Bulun, 2001). They share common regulatory elements (Mahendroo et al, 1993). As ‘ 
I 

the dominant promoters in MCF-7 are I.l, 1.3 and II，we further investigated the ； 
effect of TCDD on promoters I.l and I.3/II. As shown in figure 4.2.13，treatment , 

丨丨 
j； 

with lOriM TCDD for 2 days would not change the promoter activities. ：;, 
j . 

I' 

AP-1 is another response element that ER could interact with (Cheung et. al, 2005). | 
i: 

Previous finding has shown that promoter I.3/II bears the consensus sequences of ！ 

AP-1 at -498 and -935 (Zhou D.，et al., 1996). Effect of TCDD on AP-1 interaction 

was investigated in the present study. Figure 4.2.14 showed that various 

concentrations of TCDD could not change the reporter activity of AP-1 in MCF-7 

cells. This result suggested that TCDD-induced aromatase activity was not associated 

with interaction of AP-1. Hence, the induction of aromatase activity and protein 

expression by TCDD might not be mediated through transcriptional control. 
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Figure 4.2.11 Effect of TCDD on CYP 19 mRNA expression in MCF-7 cells. Cells | 

were treated with TCDD for 48 hours. The amount of CYP 19 mRNA was 
i 

determined by relative quantitative real time PGR. The expression of CYP 19 mRNA ‘ 

was normalized by GAPDH. Values are means 土SEM, n=3. *P<0.05 
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Figure 4.2.12 Exon I-specific real time PGR in MCF-7 cells. Cells were treated with 

lOrjM TCDD for 48 hours. Then total RNA was extracted and reverse transcribed. 

Real time PGR was performed using Taqman probe (Table 2.2). GAPDH was 

amplified as a house keeping gene. Promoter usage levels were calculated by using 2" 

••CT method and expressed as percentage of total CYP 19 expression. Values are 

means 士SEM, n=3. 
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Figure 4.2.13 Effect of TCDD on (A) CYP19 promoter I.3/II and (B) CYP19 

promoter I.l activity in MCF-7 cells. Cells were transfect with (A) promoter I.3/II 

and (B) promoter I.l reporter plasmid, control vector PRL-CMV and treated with 

10r|M TCDD for 48 hours. Then cells were lysed and dual luciferase assay was 

performed. Values are means 士SEM，n=3. 
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Figure 4.2.14 Effect of TCDD AP-1 promoter activity in MCF-7 cells. Cells were 

transfect with AP-1 reporter plasmid, control vector PRL-CMV and treated with 

10r|M TCDD for 48 hours. Then cells were lysed and dual luciferase assay was 

performed. Values are means 土SEM，n=3. 
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4.2.7 Effect of TCDD in CYP19 mRNA Half-life 

To investigate the mechanism of post-transcriptional regulation, the half-life of the 

CYP 19 mRNA was determined. The cells were treated with TCDD for 2 days before 

addition of actinomycin D. Actinomycin D intercalates into DNA to immobilize the 

complex and interfere the elongation of growing RNA chains. Thus, the progression 

of RNA polymerases, especially for the RNA polymerases I，would be inhibited 

(Sobell 1985; Perry and Kelley, 1970). The data presented in Figure 4.2.15 show that 

TCDD double the half-life of the CYP 19 mRNA by approximately 5 hours to 10 

hours. The addition of ERK inhibitor, U0126, could successfully abolish the TCDD-

induced CYP 19 mRNA expression (Figure 4.2.16). These data suggested that the 

increase in CYP 19 mRNA was caused by a post-transcriptional effect of TCDD on 

the stability of CYP 19 mRNA, possibly was mediated by ERK. 
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Figure 4.2.15 Effect of TCDD on CYP 19 mRNA half-life. MCF-7 cells were seeded 

in 6-well plates. After 48-hour treatment with lOrjM TCDD, transcription was 

stopped by 4|iM actinomycin D. Total RNA was isolated and analyzed by real time 

PGR as described in Figure 4.2.11. Values are presented as percentage of RNA at 0 

hour. Values are means 士SEM，n=3. 
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Figure 4.2.16 Effect of U0126 on TCDD-induced CYP 19 mRNA half-life. MCF-7 

cells were seeded in 6-well plates. The cells were pretreated with 10|iM U0126 for 3 

hours before adding lOrjM TCDD for further 48 hours. The transcription was 

stopped by 4|iM actinomycin D. Total RNA was isolated and analyzed by real time 

PGR as described in Figure 4.2.11. Values are presented as percentage of RNA at 0 

hour. Values are means 士SEM, n=3. 
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4.2.8 Role of MAP Kinase, PKA and PKC in genistein induced aromatase 

activity in MCF-7 Cells 

To investigate the role of TCDD signaling pathway on aromatase activity, MAP 

kinase, PKA and PKC pathways were studied. SB203580, a p38 pathway inhibitor, 

did not suppress the induction of aromatase by TCDD (Figure 4.2.17 B). In contrast, 

JNK inhibitor II and U0126 would suppress the induction back to the original level 

(Figure 4.2.17 A). Similar trend can be observed in figure 4.2.18, the increased 

aromatase activity returned to the original level after the pre-treatment of PKA or 

PKC inhibitor. The induction of aromatase activity by TCDD could be mediated, at 

least partly, via ERK, JNK, PKA and PKC pathways. 

4.2.9 TCDD induced ERKl/2 Activation 

To further study the role of TCDD in ERK signaling pathway, ERK 1/2 

phosphorylation was studied. It was found that TCDD could not induce the inactive 

form of ERK, but increase the phosphorylation of ERK 1/2 in a dose dependent 

manner in MCF-7 cells (Figure 4.2.19). This suggested that TCDD might up-regulate 

aromatase expression through of ERK 1/2 pathway. 

4.2.10 Induction of aromatase activity in MCF-7ERK cells 

To investigate the relationship between ERK and aromatase, ERK over-expressing 

MCF-7 cells (MCF-7ERK) and the vector control cells (MCF-7vec) had been studied. 

When MCF-7ERK cells were incubated with [ 1 p-^H(N)]-androst-4-ene-3,17-dione for 

1 day, the aromatase activity was around 1.5 times higher than the control vector 

cells (Figure 4.2.20). The aromatase protein expression (Figure 4.2.21) and mRNA 

expression (Figure 4.2.22) in MCF-7ERK cells were higher than those in the MCF-7vec 

cells. The mRNA expression in MCF-7ERK cells was nearly 5 times higher than the 

control. However, the aromatase promoter activities in MCF-7ERK and MCF-7VEC 

cells are nearly the same (Figure 4.2.23). The half life of CYP 19 mRNA in MCF-

7ERK cells was slightly higher than the control cells (Figure 4.2.24). The induction 

mechanism would be through post-transcriptional control. Hence, over-expressing 

ERK in MCF-7 cells would induce the expression of aromatase. This implicated that 

ERK played an important role in the regulation of aromatase in MCF-7 cells. 
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Figure 4.2.17 Inhibition of TCDD-mediated induction of aromatase activity in MCF-

7 cells by (A) U0126 and JNK inhibitor II; (B) 1 昭/|il SB203580. Pre-treatment the 

cells with (A) l|iM U0126 and l^M JNK inhibitor II; (B) 1 昭尔 1 SB203580 for 3 

hours before adding 10r|M TCDD for further 48 hours. The cells were further 

incubated with [ 1 P-^H(N)]-androst-4-ene-3,17-dione for 1 day. Aromatase activity 

was determined by using tritiated water release assay. Values are means 土SEM，n=3. 

(**P<0.005) 
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Figure 4.2.18 Inhibition of TCDD-mediated induction of aromatase activity in MCF-

7 cells by l|iM bisindolylmaleimide I (BI) and 1 |ig/|il myristoylated 14-22 amide 

(amide). Pre-treatment the cells with l|iM BI and 1 lag/p-l amide for 3 hours before 

adding lOriM TCDD for further 48 hours. The cells were further incubated with [ip-

^H(N)]-androst-4-ene-3,l7-dione for 1 day. Aromatase activity was determined by 

using tritiated water release assay. Values are means 士SEM，n=3. **P<0.005; 

*P<0.05 vs TCDD treated MCF7 cells. 
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Figure 4.2.19 Effect of TCDD on phospho-ERKl/2 expression. MCF-7 cells were 

treated with various concentration of TCDD for 48 hours. Total protein was collected 

and the amount of phospho-ERKl/2 was detected using Western Blot. The molecular 

weight of phospho-ERKl/2, ERKl/2 and P-actin were 44/42kDa, 44kDa and 42kDa 

respectively. 
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Figure 4.2.20 Aromatase activity in MCF-7vec and MCF-7ERK cells. Cells were 

maintained in RPMI medium and switch to charcoal treated RPMI medium one day 

before doing the assay. In the next day, the cells would incubate in serum-free 

medium with the addition of [ 1 p-^H(N)]-androst-4-ene-3,17-dione for 1 day. The 

activity was determined by tritiated water release assay. Values are the means 士SEM， 

n=3. (* P<0.05) 
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Figure 4.2.21 Aromatase protein expression in MCF-7vec and MCF-7ERK cells. Cells 

were maintained in RPMI medium and switch to charcoal treated RPMI medium one 

day before lysate. Total protein was collected and the amount of aromatase was 

detected using Western Blot. The molecular weights of aromatase and p-actin are 

55kDa and 42kDa respectively. 
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Figure 4.2.22 CYP19 mRNA expression in MCF-7ERK cells. mRNA were extracted 

in MCF-7vec and MCF-7ERK cells. The amount of CYP19 mRNA was determined by 

relative quantitative real time PCR. The expression of CYP19 mRNA was 

normalized by GAPDH. Values are means 士SEM, n=3. 

84 



750"! 
CI3 MCF-7erk 

一 • MCF-7vec 

I 5 � � - _ 

^ 250-

J 圓 ii Itl 
pGL3 basic Promoter 1.1 Promoter 1.3/11 

Figure 4.2.23 CYP19 promoter activities in M C F - 7 v e c and MCF-7ERK cells. Cells 

were transfect with promoter I.3/II, promoter I.l reporter plasmid and control vector 

PRL-CMV. After 24 hours, the cells were lysed and dual luciferase assay was 

performed. Values are means 士SEM，n=3. 
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Figure 4 .2 .24 The C Y P 1 9 mRNA half-life in MCF-7ERK cells. MCF-7vec and M C F -

7ERK cells were seeded in 6-well plates for 24 hours. The transcription was stopped 

by actinomycin D. Total RNA was isolated and analyzed by real time PGR as 

described in Figure 4.2.11. Values are presented as percentage of RNA at 0 hour. 

Values are means 士SEM，n=3. 
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4 .3 DISCUSSION 

Results of the present study showed that TCDD could increase aromatase activity in 

MCF-7, ER-positive HepG2 cells, but not MCF-lOA，T47D and MB-MDA-231 cells. 

It was indicated that over-expression of ERa in SK-BR-3 cells would increase the 

aromatase expression. Addition of estrogen could induce the aromatase activity in 

ERa-transfected SK-BR-3 cells (Kinoshita and Chen, 2003; Wang, 2005). Though 

we also found that over-expressing ERa in SK-BR-3 cells elevated the aromatase 

activity dramatically, addition of TCDD could not show further induction of 

aromatase activity both in the absence and presence of ERa. Surprisingly, addition of 

TCDD in the presence of ERa could induce aromatase activity in the human liver 

cancer cell line HepG2. Such induction was suppressed by estrogen antagonist, ICI 

182 780. 

Most researches, both in vitro and in vivo studies, showed the anti-estrogenicity of 

TCDD (Safe et al, 1991; Gallo et al, 1986; Gierthy et al, 1987). It has been 

documented that TCDD decreases aromatase activity in human choriocarcinoman 

cells (Drenth et al, 1998). However, the estrogenic effect of TCDD has seldomly 

been reported. Recently, an environmental toxicants 2,2-bis(p-chlorophenyl)ethylene 

(p,p'-DDE) and TCDD have been shown to increase aromatase activity in cultures of 

endometrial stromal cells (Holloway et al., 2005; Stys et al, 2005). Results in this 

study showed that TCDD could also induce aromatase activity in MCF-7 cells. The 

cells treated with 10r|M TCDD for two days had double or triple aromatase activity 

than the control. Induction of aromatase expression by TCDD occurred within the 

same concentration range. Additional experiments performed with human CYP 19 

Supersomes® indicated that this induction was unlikely a direct stimulatory effect of 

TCDD on the aromatase enzyme complex. This result is similar to the one performed 

in microsomal fractions of human placental tissue (Drenth et al, 1998). 

TCDD has previously been found to increase aromatase mRNA expression in 

endometrial stromal cells (Stys et al” 2005). In this study, we observed comparable 

results in MCF-7 cells. It is demonstrated that promoters II and 1.3 are the major 

promoters driving aromatase expression in MCF-7 cells (Mu et al, 2000), bearing 

consensus sequences of AP-1 at -498 and -935 (Zhou D et al, 1996). In our study, 
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MCF-7 was shown to use promoter II, 1.3 and I.l. However, the exon 1.1，II and 1.3 

expressions surprisingly were not up-regulated. There was no induction observed in 

promoters I.l; L3/II activities nor AP-1 transactivation activity after the treatment of 

TCDD. Hence, it appeared that TCDD mediated aromatase activity through an 

atypical transcriptional control in MCF-7 cells. 

Post transcriptional regulations, which encompass nuclear RNA processing, 

exporting RNA from the nucleus and mRNA degradation, have become increasingly 

important in the regulation of cytoplasmic mRNA levels. 12-0-

tetradecanoylphorbol-13-acetate (TPA) decreases ER levels through a post-

transcriptional destabilization of the ER mRNA (Saceda et al, 1991). Estradiol 

decreases ER expression in MCF-7 cells predominantly by a post-transcriptional 

mechanism (Saceda et al, 1998). The data in present study suggested that TCDD 

could increase the half-life of CYP19 mRNA. The mechanism of CYP19 mRNA 

decay needs further investigation. 

MCF-7 is a ER-positive cell line derived from a metastatic adenocarcinoma of 

human breast, which is widely used for studying estrogen-dependent mechanism. 

Addition of estrogen antagonist ICI 182 780 could abolish the induction of aromatase 

by TCDD. This suggested ERa might play an important role in the induction 

mechanism. However, TCDD could not show induce the activity in T47D, which is 

also a ERa-positive breast cancer cell line. Hence, ERa alone could not give a whole 

picture of the story. It is widely accepted that the major effect of TCDD is mediated 

through the activation of aryl hydrocarbon receptor (AhR) (Nebert et al, 1993; Okey 

et al, 1994; Chen et al, 2004). Wild-type MCF-7 and Hepa/lclc7 cells are Ah-

responsive. TCDD decreases ER levels in these cells, but not in two mutant Ah non-

responsive Hepa lclc7 cell lines (Harris et al, 1990; Zacharewski et al, 1991). Baba 

et al (2005) has demonstrated that AhR is crucial in female reproduction by 

regulating the expression of ovarian aromatase. AhR cooperates with an orphan 

nuclear receptor, Ad4BP/SF-l, to activate aromatase gene transcription in ovarian 

granulosa cells. Functional cross talk between AhR and ER has been reported 

(Wormke et al, 2000; Ohtake et al, 2003). The ligand-bound AhR activates the 

ligand-less ER to interact with ERE in target gene promoter (Ohtake et al, 2003). By 
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studying the role of AhR in TCDD-induced aromatase might give us some clues in 

the complex mechanism in the future. 

ERa is phosphorylated and activated by several signaling kinases, including ERK 1/2, 

p38 and PKA (Kato et al, 1995; Lee and Bai, 2002; Cho and Katzenellenbogen, 

1993; Chen D. et al, 1999; Loven et al, 2004). Estrogen can cause rapid activation 

of MAPK pathway in mammalian cells through ligand-binding with ER (Lu et al, 

2004). Our lab also reported that estrogen could induce the phosphorylation of ERK 

1/2 in ERa-transfected SK-BR 3 cells (Wang, 2005). Hence, the importance of 

signaling kinase should not be ignored. Previous studies on interaction of TCDD 

with aromatase have not investigated the involvement of signaling pathways (Drenth 

et al, 1998; Stys et al, 2005). In this project, we investigated the MAP kinase and 

protein kinase pathways by adding the corresponding inhibitors. The results showed 

that ERK, JNK, PKA and PKC could take part in the regulation process. 

Brodie et al. (2005) have implanted aromatase over-expressing MCF-7 cells into 

ovariectomized and nude mice. They found that tumor cells adapt to estrogen 

deprivation during letrozole treatment by activation of p-Raf, p-MEKl/2 and p-

MAPK. Previously, our lab successfully established an ERK over-expressing MCF-

7 cell line. The aromatase activity, protein, mRNA expression and mRNA stability in 

MCF-7ERK cells were higher than that of the control cells. Hence, ERK is a 

regulatory factor of aromatase in MCF-7 cells. TCDD could increase the ERK 

protein expression in MCF-7 in a dose-dependent manner. Addition of ERK 

inhibitors would abolish the TCDD-induced aromatase activity in MCF-7 cells. 

Hence, the observed modulation of the aromatase activity could be ERK-mediated. 

To summarize, TCDD could increase the aromatase activity in MCF-7 cells. Though 

TCDD could not up-regulate CYP 19 transcriptional activity, it increased the mRNA 

stability by way of ERK activation. Hence, the aromatase mRNA, protein expression 

and enzyme activities were increased. Further investigation should be carried out in 

order to elucidate the mechanism. 
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C H A P T E R 5 SUMMARY 

Aromatase catalyzes the hydroxylation reactions converting androstenedione and 

testosterone into estrone and estradiol respectively (Simpson et al, 1994). It is 

generally accepted that estrogen is important in the prevention of the cardiovascular 

disease. 17p-estradiol (E2) has been shown to up-regulate apoAl and LDLR in 

HepG2 cells (Yuen, 2005; Lamon-Fava et al, 1999). In the present study, we 

demonstrated that genistein could significantly increase the aromatase activity in the 

ERa-transfected HepG2 cells. AP-1 and p38 pathway might be involved in the 

induced aromatase activity in ERa-transfected HepG2 cells (Figure 5.1.A). As 

estrogen can trigger a wide-range of gene transcriptions in liver, including apoAl 

and LDLR, this study provided a new insight for the gene-regulatory mechanism of 

genistein. 

On the other hand, estrogen exposure has been proven to be a negative component in 

breast cancers. In the present study, effect of TCDD on aromatase was evaluated. 

Among all the breast cancer cells tested, TCDD could only increase the aromatase 

activity in MCF-7 cells possibly through a post-transcriptional regulation (Figure 

5.LB). The mRNA degradation results showed that TCDD could increase the 

aromatase mRNA stability. In studying the ERK over-expressing MCF-7 cells, there 

was a close relationship between ERK and aromatase activity. The observed 

modulation of the aromatase activity by TCDD could be ERK-mediated. 

To conclude, genistein and TCDD could mediate the aromatase activities in HepG2 

and MCF-7 cells respectively. The results obtained provide a better insight of the 

genistein and TCDD induced aromatase mechanisms. The findings could better our 

understanding of the estrogenic effect of genistein and the pathway involved in 

TCDD-induced breast cancer. These may rationalize the use of genistein for post-

menopausal application. 
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Figure 5.1 Schematic representation of the effect of (A) genistein and (B) TCDD on 

aromatase. 
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