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Abstract 

Chinese herbal medicine has been shown to be a potential anti-cancer drug by inducing 

differentiation, apoptosis, inhibiting angiogenesis, reversing multi-drug resistance 

through different mechanisms. Pteris semipinnata L (PsL), a Chinese herb, was 

traditionally used to treat enteritis, hepatitis and snake bites. The natural chemical 

compound ent-11 -hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), an ethanolic extract of 

PsL, has been shown to carry anti-tumor activity by inducing apoptosis in human colon 

cancer, gastric cancer and thyroid cancer. 

In cancer chemoprevention and chemotherapy, induction of apoptosis is an attractive 

strategy by introducing the anti-cancer drug either orally or injection. Since 5F can 

induce apoptosis as shown by many evidences, it can be employed as a potential 

apoptosis induction drug in laryngeal cancer therapy. Moreover, NF-KB, one of 5F target 

in human colon cancer cells, is one of the most important apoptosis regulators. Because 

N F - K B activity was increased in laryngeal cancer, its role in 5F-induced apoptosis might 

be pivotal. On the other hand, there are growing evidences showing that HPV was 

associated with laryngeal carcinogenesis. How 5F functions in HPV positive or negative 

laryngeal cancer cells is unknown. 

In this project, three laryngeal cancer cell lines, UMSCCllA, UMSCC12 and HEp-2, 

were employed. HEp-2 is HPV 18 positive while the others are HPV 18 negative. Our 
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results demonstrated that 5F inhibited laryngeal cancer cell growth in a does-dependent 

manner. It was noticed that HEp-2 was more resistant to 5F. E6 and E7 (encoded by 

HPV18) were reported to promote cell growth; therefore, it is conceivable that the 

presence of HPV18 may account for the resistance to the anti-proliferation of 5F of the 

HEp-2. We found that 5F suppressed the expression of E7 while the expression of E6 

was not altered. Cleavage of pro-caspase 3 and poly (ADP-ribose) polymerase (PARP) 

and Annexin V assay confirmed that 5F induced apoptosis in laryngeal cancer cells. 

Moreover, 5 F suppressed the N F - K B activity, via blockage of N F - K B nuclear 

translocation, leading to inhibition of its target gene products responsible for cell 

proliferation and apoptosis. With the results shown by N F - K B specific inhibitor, Bay 

(11-7082)，we verified that N F - K B is responsible for laryngeal cancer cell survival. 

In conclusion, we demonstrated that suppression of N F - K B activity involved in 

5F-induced apoptosis in laryngeal cancer cells. This implicated that 5F may represent as 

a new potent agent, or in combination with other inhibitors, for treatment of laryngeal 

cancers by targeting N F - K B signaling pathway. 
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摘 要 

以往的硏究已經顯示，中草藥可通過不同機制導致細胞分化、调亡、抑制血管生成 

及逆轉多抗藥性，從而達到抗腫瘤作用。半邊旗是一種中草藥，一般用於治療腸炎、 

肝炎和毒蛇咬傷。硏究證實’半邊旗的乙醇提取物，對映-11a-經基-15 -氧代-貝殼 

杉-16-稀-19-酸(5F) ’可以誘導人類結腸癌、胃癌和甲狀腺癌細胞调亡。 

在防癌和化療中，不論是口服或是注射抗癌藥物，誘導腫瘤細胞调亡是一種有效的 

手段。而各種證據顯示，5F可以誘導腫瘤細胞凋亡，可能對喉癌的治療也有一定的 

作用�NF-kB是重要的调亡調節因子之一，也是5F在結腸癌細胞的結合位點。由於 

NF-kB的活性在大部份腫瘤和喉癌細胞中有所增加，所以NF-KB在5F誘導的細胞调 

亡中可能起到至關重要的作用0另外’不斷有硏究發現’人類乳頭瘤病毒(HPV)與 

喉癌的發生有關。但是’ 5F在HPV陽性和因性的喉癌細胞中的作用尙未明確。 

在目前的硏究中，我們使用三種喉癌細胞系，包括UMSCC11A�UMSCC12和 

HEp-2�後者是HPV 18陽性細胞’而前兩者都是HPV 18陰性。我們的硏究證實， 

5F可以抑制喉癌細胞生長’且呈明顯的劑量依賴性°値得注意的是’ HEp-2對5F的 

耐藥性較強。有硏究發現，由HPV 18編碼的E6和E7可促進細胞生長。因此，HPV18 

的存在可能是造成HEp-2對5F抗增殖作用耐受的原因°我們發現，5F抑制E7的表 

達，而E6的表達並不改變�caspase-3前體和多聚ADP核糖多聚酶(PARP)裂解片段 

iii 



的表達’以及Annexin V的結果也證實了5F可以誘導喉癌細胞调亡。此外，5F可以 

通過阻斷NF-KB核轉移來抑制其活性，從而抑制其細胞增殖和凋亡的目標基因產 

物。通過添加NF-kB特異性抑制劑一Bay (11-7082)的硏究結果證實，NF-kB確實與 

喉癌細胞生存率有關。 

由目前的硏究可以得知’抑制NF-KB的活性可能與5F誘導的喉癌細胞凋亡有關。 

結果表示，5F可能可以透過NF-KB通路來治療喉癌。 
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Chapter One General Introduction 

1.1 Background 

Head and neck squamous cell carcinoma (HNSCC) has high incidence and mortality rate 

particularly in Southeast Asia and Eastern Europe (Franceschi et al. 1996) while 

laryngeal squamous cell carcinoma is the most common type of HNSCC worldwide 

(Jemal et al. 2006). It is more common in men than in women. When incidence and 

mortality are compared by gender, it was found that by 2005, the worldwide incidence 

of laryngeal carcinoma in male and female was 139,230 vs. 20,011 while the mortality 

was 78,629 in male and 11,327 in female (Parkin et al. 2005). Besides, the incidence of 

laryngeal carcinoma is also increasing. The global cancer statistics for laryngeal 

carcinoma reported 159,000 new cases and estimated 90,000 deaths in 2002. The latest 

report on cancer statistics in the United States of America estimated that 9680 men and 

2570 women had laryngeal carcinoma as well as 2910 men and 760 women died due to 

the cancer in 2008 (Jemal et al. 2008). 

Hong Kong is a high risk area for laryngeal cancer in terms of the incidence rate 

(Syijanen 2005). In between 2000 and 2005, averagely 14 and 185 new cases of 

laryngeal carcinoma in women and men were reported respectively in each year 

(Hospital Authority: Hong Kong Cancer Registry). Due to the increasing incidence and 

mortality rate of laryngeal carcinoma, even though the patient population is not large 

worldwide or in Western Countries, more attention still need to paid for the development 
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of laryngeal carcinoma detection and treatment in Southeast Asia and in Hong Kong. 

Multiple causative factors have been implicated in the development of laryngeal 

squamous cell carcinoma (SCC). Most of them are related to tobacco products and 

alcohol consumption, oral hygiene, health, lifestyle, sunlight exposure, age, and gender 

(Uobe et al. 2001). Among these, tobacco smoking, alcohol consumption and betel 

chewing are major risk factors of HNSCC. Heavy smokers and drinkers have a 17.6 fold 

and a 79.6 fold increased risk of laryngeal carcinoma respectively when compared with 

non-smokers and light drinkers (Franceschi et al. 1990). 

However, a small proportion of HNSCC individuals do not have any history of tobacco 

or alcohol use, suggesting the presence of other possible causes of the cancers. One of 

the possible causes is the human papillomavirus (HPV) infection (anal, vaginal and 

vulvar), which is associated with an increased risk of developing tumours. Women with 

a history of in situ (Bjorge et al. 1995) or invasive cervical cancer (Boice et al. 1985; 

Rabkin et al. 1992) have a 2 to 4 fold increased risk of developing oral or laryngeal 

cancer. 

1.2 Human papillomavirus infection at the larynx 

Larynx is the most common site for HPV infection, which commonly causes laryngeal 

papillomatosis or recurrent respiratory papillomatosis (RRP) (Syijanen 2005). While the 

HPV viral aetiology of cervical cancer is well-characterized (Walboomers et al. 1999)， 

its role in the larynx was first described by Ullman (Ullman UV 1923). The supercoiled 

2 



viral DNA was first identified by Crawford and Crawford (Crawford and Crawford 

1963). Later, the existence of different types of HPV was demonstrated and more than 

90 HPV types have been characterized (Syijanen et al. 1987; Herrero 2003; Chen et al. 

2005). The virus types can be classified into high-risk (HPV 16，18，31 and 45), 

intermediate risk (HPV 33，35，39 and others) and low-risk (HPV 6 and 11) types, based 

on their epidemiologic association with cancer and benign epithelial hyper-proliferation 

(zur Hausen 1996). The observed roughly 80% prevalence of HPV in RRP is almost as 

high as in cervical cancer, which is a well-established HPV associated-disease (Derkay 

and Darrow 2000). While these lesions are basically benign, malignant transformation 

into laryngeal SCC does occur in a certain proportion of cases. Combining its high 

prevalence in RRP with its malignant potential, HPV may be associated with the 

development of laryngeal carcinoma. 

The role of HPV in laryngeal carcinoma has been suggested by the detection of typical 

cytopathic effects of HPV in these lesions (Syijanen and Suijanen 1981). The most 

convincing evidence that implicates HPV in laryngeal cancer is derived from studies 

demonstrating the presence of HPV DNA in cancer lesions. In a systematic review by 

Kreimer, 24% of the samples were reported to be HPV positive in 1435 larynx SCC 

specimens from 18 countries and 35 studies. Of the HPV positive larynx SCC, HPV 16 

was the most common type with a 69.2% prevalence rate while HPV 18 accounted for a 

17% prevalence rate (Kreimer et al. 2005). It is currently suggested that the high risk 

HPV 16 and 18 are responsible for a subset of laryngeal carcinoma although the reported 

HPV DNA detection rates varied widely (Syijanen and Puranen 2000; Herrero 2003). 
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1.2.1 Biology of human papillomavirus 

Human papillomavirus is a small non-enveloped DNA virus with a virion the size of 

~55nm in diameter (Zheng and Baker 2006). HPV replicates and assembles exclusively 

in the nucleus of the host cell. All HPVs contain a double-stranded, circular DNA 

genome approximately 8kb in size that can be divided into three major regions: early, 

late and a long control region (LCR, a noncoding region). The genome of the early 

region occupies over 50% of the virus genome and encodes six proteins (El, E2, E4, E5, 

E6 and E7). El and E2 are involved in the replication of the viral genome and interact 

with the host cell intermediate filament E4. The function of the E3 gene is unknown. E5, 

E6 and E7 are viral oncoproteins which induce cell immortalization and transformation. 

In particular, E6 and E7 inactivate two cellular tumor suppressor proteins p53 and pRb 

respectively (Gamett and Duerksen-Hughes 2006). Moreover, the E2 protein is a 

transcriptional repressor of E6 and E7 gene expression. As the integration of HPV DNA 

into the host genome results in deletion of part of the virus genome, loss of E2 was 

thought to result in the over-expression of E6 and E7 (Tan et al. 1994; Corden et al. 

1999). The late region covers almost 40% of the virus genome and encodes LI and L2 

open reading frame for translation of a major (LI) and minor (L2) capsid protein. The 

LCR region, a segment of about 850bp, does not encode any protein but plays a role in 

the origin of replication as well as in multiple transcription factor binding sites. As the 

E6 and E7 proteins of the high risk (HR) HPV play a pivotal role in cell proliferation, 

viral replication and circumvent host-mediated apoptosis, many studies focus on the 

roles of these two proteins in carcinogenesis. 
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1.2.2 HPV E6 protein 

E6 plays crucial roles in the HPV viral life cycle, as well as in cellular transformation 

and immortalization (Bedell et al. 1989). It is about 150 amino acids in size and is 

expressed in two forms: a flill-length version of 16kDa and a truncated form about half 

that size corresponding to the N-terminal half of the full-length protein (Mantovani and 

Banks 2001). Two zinc fingers are composed of four Cys-X-X-Cys (X representing any 

amino acid) motifs which are responsible for E6 function (Cole and Danos 1987; 

Barbosa et al. 1989). HR HPV E6 protein contains a highly conserved five amino acids 

C-terminal domain which mediates direct binding to PDZ proteins. PDZ domain 

proteins serve critical roles in various molecular processes including cell polarity and 

signal transduction. The binding of E6 and PDZ proteins is clearly important for HPV 

associated carcinogenesis, because deletion of the relevant domain inhibits E6 driven 

transformation in rodent cells (Kiyono et al. 1997) and epithelial hyperplasia in mice 

(James et al. 2006). Further, the expression of the E6 protein results in activation of the 

telomerase reverse transcriptase (TERT) promoter allowing for increased telomerase 

activity and extension of the cellular life-span through elongation of the telomeric 

repeats (Klingelhutz et al. 1996). 

The first identified and best characterized E6 interacting partner is tumour suppressor 

p53 (Wemess et al. 1990). The p53 transcription factor is the most frequently inactivated 

tumour suppressor gene in human cancer and is involved the control of cell proliferation 

in response to stress. Under normal physiological conditions, the p53 protein level is 

very low. In the early stages of HR HPV infection, E7 oncoprotein induces a significant 
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increase in cell proliferation as a result of its interaction with the protein retinoblastoma, 

which triggers the expression of p53 (Longworth and Laimins 2004). In the absence of 

E6, the rise in p53 levels would lead to cell cycle arrest and/or apoptosis. However, the 

case is completely different in the presence of E6. E6 binds to p53 with the aid of 

E6-associated protein (E6-AP) ligase and prevents p53 from inducing growth arrest and 

apoptosis by subjecting it to ubiquitin-proteasome degradation pathway (Huibregtse et al. 

1991). Moreover, E6 also precludes the growth-suppressive activities of p53 by 

cytoplasmic sequestration and by transcriptional suppression of its target genes 

(Mantovani and Banks 2001). 

There are a number of proteins other than p53 targeted by E6. These proteins involve in 

regulation of transcription (Zimmermann et al. 1999), DNA replication (Gao et al. 1999), 

apoptosis and immune evasion (Gross-Mesilaty et al. 1998; Thomas and Banks 1998)， 

epithelial organization and differentiation (Tong and Howley 1997), cell-cell adhesion 

and proliferation control (Thomas et al. 2001), and DNA repair (Srivenugopal and 

Ali-Osman 2002). 

Of the proteins involved in apoptosis, it was found that E6 inhibits Bak-mediated 

apoptosis by directly binding to Bak, an interaction which is conserved in high risk and 

low risk HPVs (Thomas and Banks 1998; Thomas and Banks 1999). In our laboratory, 

E6 was found to inhibit TNF-mediated apoptosis by reducing the expression of Bak and 

increasing Bcl-2 expression without significantly affecting the expression of caspase-3 

and -8 in laryngeal cancer cells (Du et al. 2004). 
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1.2.3 HPV E7 protein 

HR HPV E7 protein, small dimerized phosphoprotein, is approximately 100 amino acids 

in size with three conserved regions: CRl, CR2 and CR3, which are critical for viral 

oncogenic activities (Wise-Draper and Wells 2008). There is a Leu-X-Cys-X-Glu motif 

within CR2 that mediates the binding with retinoblastoma (Rb) protein family, and is 

also necessary for viral DNA maintenance during the infectious cycle (Dyson et al. 1989; 

Munger et al. 1989; Datto et al. 1995). The CR3 region located at the C-terminus 

consists of a metal binding domain composed of two Cys-X-X-Cys motifs separated 

from each other by 29 amino acids. The C-terminal zinc-binding regions are important 

for E7 protein structure including dimerization (Clemens et al. 1995; Clements et al. 

2000), intracellular stabilization (Edmonds and Vousden 1989; Phelps et al. 1992)，as 

well as for the formation of high-molecular mass oligomers with apparent chaperone 

holdase activity (Alonso et al. 2006). Many cellular interacting partners for E7 have 

been identified, but the biological significance for most of the observed interactions 

remains to be explored. 

What have been intensively studied are the Rb, pi07 and pi30，members of the 

retinoblastoma family, which are the targets of the E7 protein (Dyson, Howley 1989; 

Berezutskaya et al. 1997). Both low and high risk E7 can interact with Rb, however, the 

relative Rb binding affinities are 10 fold higher in high risk E7 than in low risk E7 

(Munger et al. 1992). Rb has an important role in the suppression of cellular 

proliferation (Cobrinik 2005), stimulation of differentiation and senescence (Deshpande 

et al. 2005; Dimri 2005)，cell survival (Chau and Wang 2003) and the maintenance of 
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stem cell quiescence (Ruiz et al. 2004). Normally, Rb forms a complex with histone 

deacetylase (HDAC) and binds to the E2F transcription factor in the G1 phase of the cell 

cycle. This prevents E2F from transactivating genes that are necessary for proliferation 

until the cell enters the S phase. However, the mechanism is different when E7 is 

expressed in cells. E7 binds to the complex of Rb and HDAC and relieves their 

repression of E2F, resulting in the constitutive activation of repression genes. 

Consequently, E7 provokes the cell to re-enter the S phase, where cellular replication 

factors required for viral replication are activated. 

E7-Rb interactions are not sufficient for the abrogation of cell cycle arrest. Such activity 

also requires the binding of E7 and the proteins involved in cell cycle control such as 

cyclin-dependent kinase cdk2 and cyclin A (Tommasino et al. 1993)，proteins regulating 

transcription such as the TATA box-binding protein and transcription factors API 

(Antinore et al. 1996), and proteins for other cellular functions such as TAF-110 and 

TBP (Mazzarelli et al. 1995). 

In addition to its role in cell proliferation and viral replication, E7 also regulates 

apoptosis. However, it has dual effects on cellular apoptotic pathways. It was reported 

that the expression of E7 in fibroblasts delayed Fas-mediated apoptosis and prevented 

TNF-mediated apoptosis by suppression of caspase-8 activation (Thompson et al. 2001). 

On the other hand, the majority of studies suggest that E7 serves a pro-apoptotic role. In 

a recent study, E7 was shown to inhibit TNF-mediated apoptosis in keratinocytes by 

up-regulating the expression of the inhibitor of the apoptosis protein C-IAP2 (Yuan et al. 

2005). Moreover, E7 has been shown to sensitize mouse lymphoma cells (JD3) to 
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IFN-a-induced apoptosis (Thyrell et al. 2005), co-express with p21 and induce apoptosis 

in U20s osteosacroma cells (Kaznelson et al. 2004)，and over-express in genital 

keratinocytes which induces spontaneous cell death and sensitization to TTSfF-mediated 

apoptosis (Stoppler et al. 1998). 

1.3 Apoptosis 

One way to kill cancer cells is by inducing the process of programmed cell death called 

apoptosis. 

Apoptosis in cancer cells can be induced by a number of triggers as diverse as hypoxia, a 

shortage of nutrients or growth factors, and radiotherapy or chemotherapy. Apoptosis is 

different from necrosis, which is usually immunologically harmful due to the sudden 

release of proinflammatory mediators (Vakkila and Lotze 2004). Necrosis is 

morphologically characterized by swelling of the cytoplasm, leading to the rupture of the 

plasma membrane, and the release of swollen and damaged organelles. Necrotic cell 

death often causes the release of proinflammatory cytokines, such as interleukin-8, IL-10, 

TNF-a (Fadok et al. 2001), or of terminal mediators of inflammation, such as 

high-mobility group boxl (Wang et al. 1999; Scaffidi et al. 2002). 

During the early stage of apoptosis, cell shrinkage and pyknosis are the two visible 

morphological changes under the light microscopy (Kerr et al. 1972). With cell 

shrinkage, the cells become smaller in size; the cytoplasm is dense and the organelles are 

more tightly packed. Pyknosis is the result of chromatin condensation and is the most 
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characteristic feature of apoptosis. Apoptotic cell appears as a round or oval masses with 

dark eosinophilic cytoplasm and dense purple nuclear chromatin fragments. Extensive 

plasma membrane blebbing occurs followed by karyorrhexis and separation of cell 

fragments into apoptotic bodies that consist of cytoplasm with tightly packed organelles. 

Because the apoptotic bodies are subsequently phagocytosed by macrophages and 

degraded within phagolysosomes, there is no inflammatory reaction associated with the 

process of apoptosis. The cells are rapidly phagocytosed by surrounding cells, 

preventing secondary necrosis, and the engulfing cells do not produce anti-inflammatory 

cytokines (Savill and Fadok 2000; Kurosaka et al. 2003). 

Biochemically, apoptosis is initiated by the cleavage of pro-caspase-3. Cleaved 

caspase-3 induces DNA fragmentation, cross-linking of proteins, degradation of 

cytoskeletal and nuclear proteins, formation of apoptotic bodies, expression of ligands 

for phagocytic cell receptors and finally uptake by phagocytic cells (Hengartner 2000). 

In addition to two major apoptotic pathways, the extrinsic (death receptor pathway) and 

the intrinsic (mitochondrial pathway), there is another pathway induced via either 

granzyme B or granzyme A. All three pathways converge on the same terminal or 

execution pathway. The granzyme A pathway activates a parallel, caspase-independent 

cell death pathway through the damage in single stranded DNA (Martinvalet et al. 2005). 

Caspases are widely expressed in an inactive proenzyme form and have proteolytic 

activity to cleave proteins at aspartic acid residues, involving recognition of neighboring 

amino acids. Ten major caspases have been identified and are broadly categorized into 

initiators (caspase-2,-8,-9,-10), executioners (caspase-3,-6,-7) and inflammatory 
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caspases (caspase-1,-4,-5) (Cohen 1997; Rai et al. 2005). Extensive protein cross-linking 

is another characteristic, achieved through the expression and activation of tissue 

transglutaminase (Nemes et al. 1996). DNA breakdown by Ca^^-and Mg^^-dependent 

endonucleases also occurs, resulting in DNA fragments with 180 to 200 base pairs. 

Expression of cell surface markers results in the early phagocytic recognition of 

apoptotic cells by adjacent cells and phagocytosis with minimal compromise to the 

surrounding tissue. This is achieved by the movement of phosphatidylserine from the 

inner membrane to the outer layer (Bortner et al. 1995). 

1.3.1 Apoptosis signaling pathways 

Two major pathways are involved in the signaling of apoptosis: the death receptor 

mediated extrinsic pathway and the non-receptor mediated intrinsic pathway. 

The extrinsic pathway initiates apoptosis through transmembrane receptor-mediated 

interactions. These involve death receptors that are members of the TNF receptor gene 

superfamily (Locksley et al. 2001). There is a death domain, located in the cytoplasm, 

responsible for transmitting the death signal from the cell surface to the intracellular 

signaling pathways (Ashkenazi and Dixit 1998). To date, the best-characterized ligands 

and corresponding death receptors include FasL/FasR, TNF-a/TNFRl, Apo3L/DR3, 

Apo2L/DR4 and Apo2L/DR5 (Chicheportiche et al. 1997; Ashkenazi and Dixit 1998; 

Peter and Krammer 1998; Suliman et al. 2001; Rubio-Moscardo et al. 2005). FasL/FasR 

and TNF-a/TNFRl are the best characterized models to elaborate the extrinsic pathway. 

The binding of Fas ligand and receptor results in the binding of adapter protein 
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Fas-associated death domain (FADD), while the binding of TNF ligand to TNF receptor 

results in the binding of the adapter protein TNF-receptor-associated death domain 

(TRADD) with recruitment of FADD and receptor inactive protein (RIP) (Hsu et al. 

1995; Wajant 2002). After that, FADD associates with pro-caspase-8 via dimerization of 

the death effector domain, forming a death-inducing signaling complex (DISC), leading 

to the auto-catalytic activation of pro-caspase-8 and the apoptosis is triggered (Kischkel 

et al. 1995). 

The intrinsic pathway involves a variety of non-receptor-mediated stimuli, including 

growth factors, hormones, cytokine, radiation, toxins, hypoxia and viral infections, that 

produce intracellular signals targeting mitochondrial. Upon stimulation, the inner 

mitochondrial membrane is changed resulting in opening of the mitochondrial 

permeability transition (MPT) pore and loss of the mitochondrial transmembrane 

potential followed by the release of two main groups of normally sequestered 

pro-apoptotic proteins from the intermembrane space into the cytosol (Saelens et al. 

2004). The first group of proteins includes cytochrome c, second mitochondrial activator 

of caspases (Smac), direct lAP (inhibitors of apoptosis proteins) binding protein with 

low PI (DIABLO) and serine protease HtrA2/0mi, which binds and activates Apaf-1 as 

well as pro-caspase-9 and inhibits lAP activity (Du et al. 2000; Schimmer 2004; Garrido 

et al. 2006). The release of a second group of proteins is a late event that occurs after the 

cell is committed to die. It includes pro-apoptotic proteins, apoptotic inducing factor 

(AIF), endonuclease G and caspase activated DNase (CAD). AIF translocates into the 

nucleus and cleaves the DNA into 50-300kb fragments and condensates peripheral 

nuclear chromatin (Joza et al. 2001). Endonuclease G can cleave nuclear chromatin to 
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produce oligonucleosomal DNA fragments (Li et al. 2001). Both AIF and endonuclease 

G are caspase-independent while CAD is cleaved by caspase-3 in order to cut the DNA 

and condensate the chromatin (Enari et al. 1998). 

The control and regulation of these apoptotic mitochondrial events occurs through 

members of the B-cell lymphoma protein 2 (Bcl-2) family proteins which are regulated 

by tumor suppressor protein p53 (Cory and Adams 2002). To date, 25 Bcl-2 family 

members, either pro-apoptotic or anti-apoptotic, govern the mitochondrial membrane 

permeability. It is believed that Bcl-2 family proteins are mainly activated through the 

regulation of cytochrome C release from the mitochondria via alteration of 

mitochondrial membrane permeability. 

Both the extrinsic and intrinsic pathways end at the point of execution, considered as the 

final pathway of apoptosis. Execution caspases activate cytoplasmic endonuclease, 

which degrades nuclear material, and proteases that degrade the nuclear and cytoskeletal 

proteins. Caspase-3, -6 and -7 function as executioner caspases responsible for cleaving 

various substrates including cytokeratins, poly(ADP-ribose) polymerase (PARP), the 

plasma membrane cytoskeletal protein alpha fodrin, the nuclear mitotic apparatus 

protein (NuMA) and others, that ultimately cause the morphological and biochemical 

changes (Slee et al. 2001). 
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1.4 Transcription factor: Nuclear factor - KB 

The nuclear factor-kappaB (NF-KB) pathway is known to be one of the most important 

cellular signaling transduction pathways involved in apoptosis. Also, N F - K B regulates 

other biological functions such as immune function, differentiation, inflammation, stress 

response, and cell survival. NF-KB is constitutively activated in many human cancer 

cells including pancreatic caner (Li et al. 2004), breast and prostate cancer (Nakshatri et 

al. 1997; Shukla et al. 2004)，gastric carcinoma and head and neck squamous cell 

carcinoma (Allen et al. 2007; Levidou et al. 2007), suggesting that N F - K B activation 

plays an important role in cancer development. Thousands of experimental studies have 

shown that down-regulation of N F - K B activity by natural and synthetic inhibitors 

suppresses the development of carcinogenesis, inhibits the growth of cancer cells, and 

induces apoptosis with alteration of gene expression which is critical for the control of 

cancer progression and cancer cell survival. Therefore, it is becoming obvious that 

inhibition of N F - K B activity is highly desirable in the prevention and treatment of cancer 

and, as such, the chemopreventive agents that are known to down-regulate the activity of 

N F - K B could potentially inhibit the development and progression of cancers. 

1.4.1 Overview of the N F - K B signaling pathway 

In mammalians, transcription factor N F - K B is a five member family consisting of homo-

and heterodimers, p65 (RelA), RelB, c-Rel，p50 and p52, and respectively encoded by 

the rela, relb, rel, nfkbl and nfkbl genes (Gilmore 2006). These proteins are 

characterized by the presence of a conserved 300 residue homologous domain near the N 
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terminus (Baldwin 1996; Ghosh et al. 1998). This domain, called the Rel Homology 

domain (RHD), is responsible for dimerization, DNA binding, inhibitor binding and 

nuclear localization (Huxford et al. 1999). On X-ray crystal structure analysis, the RHD 

is composed of two-folded domains linked by a short polypeptide (Ghosh et al. 1995). 

In the resting status, N F - K B is bound by inhibitor KB (IKB) proteins and hence 

sequestered in the cytoplasm as an inactive form. There are seven IKB family members, 

k B a , IKBP, iKBy, IKBE, BC1-3, pi05 (p50 precursor protein) and pi00 (p52 precursor 

protein), which are Ankyrin Repeat Domain (ARD) containing super-family. The IKB 

kinase (IKK) complex (containing two kinase subunits: IKKa and IKKp； one regulatory 

subunit: IKKy) is responsible for the phosphorylation of IKB proteins. Two major 

signaling pathways have been characterized for the activation of N F - K B (Bonizzi and 

Karin 2004). In the canonical (classic) pathway of N F - K B activation, for example, upon 

stimulation by the proinflammatory cytokine tumor necrosis factor a (TNFa), signaling 

pathways lead to activation of the IKB kinase P (IKK) complex, which then 

phosphorylates IKB proteins on two N-terminal serine residues. In the non-canonical 

(alternative) pathway, IKKa is activated by N F - K B inducing kinase and phosphorylates 

the p52 precursor protein pi00 (Senftleben et al. 2001). Phosphorylated IKBS are 

recognized by the ubiquitin ligase machinery, leading to the process of 

polyubiquitination and subsequent degradation, or in the case of pi00，by proteasome 

(Karin and Ben-Neriah 2000). The N F - K B dimers are free to translocate to the nucleus 

and bind to specific sequences in the promoter or enhancer regions of target genes. 

Activated N F - K B can then be down-regulated through multiple mechanisms including 

negative feedback by newly synthesized IKB proteins which bind to and export N F - K B to 
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the cytosol. 

Another pathway that can lead to N F - K B activation is based on activation of casein 

kinase 2 (CK2), instead of IKK, which induce IKB(X degradation through the 

phosphorylation of carboxy-terminal sites. However, this pathway has only a minor role 

in physiological N F - K B activation. It might contribute to skin carcinogenesis because it 

is activated by ultraviolet radiation (Kato et al. 2003). 

1.4.2 Regulation of N F - K B signaling 

Given N F - K B ' S critical involvement in so many physiological responses, the regulation 

of N F - K B signaling is extremely important in response to diverse stimuli that can trigger 

distinct cellular responses in particular physiological contexts. 

Without stimulation, N F - K B transcription factor exists in either homodimer or 

heterodimers in cytoplasm. The structure for dimerization, which is responsible for 

different stimuli, is regulated by the folding of amino acid side chains. The C-terminal 

Ig-like domain of approximately 100 amino acids within the RHD is completely 

responsible for dimer formation. In most N F - K B dimers, but not the RelB homodimer, 

each monomer contributes symmetrical P-strand elements that pack against each other to 

form a p-sheet dimer interface (Huang et al. 1997). The amino acid residues at the dimer 

interface are highly conserved and contribute to dimerization by the positive and 

negative energetic interaction across each member of N F - K B proteins (Hart et al. 2001). 

From studies of many cell types, the p50: RelA heterodimer is more abundant than the 

16 



RelA:RelA homodimer, with abundance of the cRehcRel homodimer and p50:cRel 

heterodimer being intermediate. However, relative expression levels of N F - K B proteins 

and the abundance of different dimers are dependent on the cell type and cellular context 

in history (Hoffmann et al. 2006). 

On stimulation, two major pathways are triggered, leading to different responses. There 

is a variety of stimuli that can activate the classical pathway: pro-inflammatory stimuli 

and genotoxic, including TNF and interleukin l(IL-l) (Osbom et al. 1989); bacterial 

cell-wall components, such as lipopolysaccharide (LPS) (Sen and Baltimore 1986); 

viruses, such as Rabies virus (Nakamichi et al. 2005); and DNA damaging agents, such 

as doxorubicin. On the other hand, the alternative pathway can be induced by the 

ligation of certain groups of TNF family members including LipR and B cell activating 

factor receptor (BAFFR) (Claudio et al. 2002). 

Although both pathways can affect tumor development (the role of N F - K B on tumor 

progression will be discussed in next section), most of our current knowledge relates to 

the pro-carcinogenic functions of the classical pathway. In alternative pathways, the 

IKKct subunit has a negative-regulatory role by phosphorylating the NF-KB subunits 

RelA and cRel on sites that accelerate their nuclear turnover, leading to termination of 

the NF-KB-mediated gene-induction response. (Lawrence et al. 2005) 

In response to diverse stimuli, different N F - K B dimers are activated to translocate to the 

nucleus and to bind to the specific target genes. The binding between N F - K B and target 

genes is tightly controlled since it directly links to the consequent cellular response. The 
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DNA sequences that specifically bind to N F - K B dimers are collectively known as KB 

sites. Most KB sites appear to be lObp in length with the consensus sequence 5'-GGGRN 

W YYCC-3，(where R represents a purine base, N represents any base, W represents an 

adenine or thymine and Y represents a pyrimidine base) (Sen and Baltimore 1986; Chen 

and Ghosh 1999). The conformations of the KB DNA sites exhibit global structural 

likeness in their protein-bound forms. The DNA is slightly bent towards the major 

groove and the extent of bending is directly correlated to the length of the central tract of 

AT base pairs. The AT-rich sequence is known to possess a higher propensity for 

bending, with longer stretches being more prone to bending. This region of the DNA 

also makes far fewer direct contacts with the protein and the bending seems to facilitate 

N F - K B binding at the flanking recognition sequences (Huang et al. 2005). Both 

monomers of the N F - K B dimers will bind to the D N A sequences with different numbers 

of bp. Each N F - K B has some preference for a specific set of KB sites and some N F - K B 

dimers bind to most KB sites with reasonably high affinities. Through the X-ray 

structures of the different combinations of N F - K B dimers, it is revealed that the p50 and 

p52 subunits bind to the 5bp 5'-GGGRN-3' half-site of the consensus sequence and that 

the RelA, cRel and RelB subunit prefers the 4bp 5'-YYCC-3' half-site (Chen et al. 

2000). The N F - K B interactions with its cognate D N A binding sites are very transient and 

have different affinities, implying a fast dissociation rate constant. In addition, the 

transcriptional control involves the coordinated function of many proteins, including 

DNA-bound transcription factors, co-activators and co-repressors in the context of 

nucleosomal chromatin. It has been shown that large number of proteins located on 

DNA regulatory sequences, protein-protein interactions, are likely to be as important as 

transcription factor-DNA interactions in determining transcriptional specificity. 
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The transcriptional regulation by the NF-KB signaling module is highly sophisticated 

and requires integration of different mechanisms that can generate specificity: 

dynamically control each member of the family of N F - K B dimers, interact with N F - K B 

and KB sites, and alternate conformations of the resulting NF-KB-KB DNA complex 

allowing for alternate co-activator interactions. 

1.4.3 Roles of N F - K B in cancers 

N F - K B is a key regulator for the expression and function of a number of genes involved 

in tumourigenesis. 

N F - K B has dual roles in the regulation of apoptosis in cancer cells. In RelA-/- knockout 

mice, there is massive hepatic apoptosis (Beg et al. 1995). Liver apoptosis has been 

shown to be TNF-a signal dependant in the developing liver, as crossing RelA-/- mice 

with either TNF-a-/- or TNFR-/- mice rescued this liver phenotype (Doi et al. 1999; 

Alcamo et al. 2001). Activation of N F - K B can abrogate TNF-a apoptotic activity 

because N F - K B targets genes encoding for inhibitors of caspase activation and apoptosis. 

Moreover, N F - K B also regulates the anti-apoptotic proteins including I A P I and 2 , 

X-linked lAP, survivin, cellular fas-associated death domain-like IL-1 P-converting 

enzyme inhibitory protein (cFLIP), Bcl-xL, Al , TNF receptor associated factor 1 

(TRAFl) and TRAF2 (Kucharczak et al. 2003). lAPs (c-IAPl, C-IAP2, and XIAP) 

suppress the apoptosis induced by both extrinsic and intrinsic pathways through direct 

inhibition of effector caspases (caspases-3, -6，and -7) (Deveraux et al. 1998). C-FLIP 

shares a high level of homology with pro-caspase-8 without catalytic activity. On 
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induction, c-FLIP associates with TNFR to compete with and block caspase-8 activation 

(Kreuz et al. 2001). Bcl-xL and Al prevent the release of cytochrome c and subsequent 

caspase-9 activation (Kucharczak et al. 2003). T R A P proteins serve to amplify N F - K B 

activation and to interfere with the caspase cascade at the TNFRl level (Luo et al. 2005). 

In addition, N F - K B may inhibit prolonged c-Jun-N-terminal kinases (JNK) activation 

and the accumulation of reactive oxygen species (ROS) in order to block apoptosis. In 

fact, the effect of N F - K B on apoptosis is mostly dependent on the stimulus, cell-type, 

and the involved subunits (Sharma and Narayanan 1996) . N F - K B contributes to cell 

death by transcriptionally up-regulating its pro-apoptotic target genes such as Fas/CD95, 

FasL, death receptor 4 (DR4) and DR5 (Wiener et al. 2004). Another pro-apoptotic 

mechanism involves p 100，carrying death domain in the C-terminus, which mediates the 

recruitment of pi00 to death receptors, such as TNFRl and Fas, leading to caspase-8 

activation before apoptosis (Wang et al. 2002). 

N F - K B plays an important role in tumor invasion and metastasis by regulating 

angiogenic factors such as matrix metalloproteinase 2 (MMP2), MMP9 and serine 

protease urokinase-type plasminogen activator (uPA) (Novak et al. 1991; Rangaswami 

et al. 2004). Transfection of high metastatic human melanoma variant cells with a 

dominant-negative mutant IicBa shows inhibition of tumor growth and prevents lung 

metastasis in nude mice (Huang et al. 2000). In addition, N F - K B also regulates the 

expression of intercellular adhesion molecule 1 and vascular cell-adhesion molecule 1, 

the secretion of chemokines (monocyte chemoattractant protein-1, IL-8), growth factors 

(TNF, VEGF) and cyclooxygenase 2 (COX-2) and epidermal growth factor receptor 

(EGFR) (Loch et al. 2001). 
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N F - K B promotes cell cycle progression by regulating the expression of target genes 

involved in the cell cycle machinery such as cyclin Dl，D2, D3, E and c-myc. The D 

family of cyclins in complexes with the catalytic subunits cyclin-dependent kinases 

(CDK4) and CEK6 are the main regulators required for entry and passage through G1 

phase (Guttridge et al. 2000; Hinz et al. 2001; Hsia et al. 2002). 

1.5 Pteris semipinnata L extract: ent-ll-hydroxy-15-oxo-kaur-16-en-19-oic-acid 

(5F) 

Natural product is an infinite source for remedies for long time and certain diet-derived 

substances can be used to prevent cancer or delay its onset has currently elicited 

considerable interest. 

Many evidences have shown Chinese herbal medicine could be a potential anti-cancer 

drug by inducing differentiation, apoptosis, inhibiting angiogenesis, reversing multi-drug 

resistance through different mechanism (Ruan et al. 2006). Pteris semipinnata L, a 

Chinese traditional herb, was traditionally used to treat enteritis, hepatitis and snake 

bites. The natural chemical compound ent-11 -hydroxy-15-oxo-kaur-16-en-19-oic-acid 

(5F), an ethanolic extract of PsL, has been shown to carry anti-tumor activity by 

inducing apoptosis. 

In human gastric cancer, 5F induced DNA fragmentation and reduction of mitochondrial 

membrane potential, resulting in cell apoptosis through the translocation of Bax from 

cytosol to mitochondria in a p53-dependent manner (Liu et al. 2005A). In addition, it 
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was found that 5F induced thyroid cancer cell apoptosis in time- and dose- dependent 

manner by the activation of c-Jun N-terminal kinase and the rapid increase in 

intracellular reactive oxygen species levels (Liu et al. 2005B). Moreover, 5F could also 

induce apoptosis in human colon cancer HT-29 cells. It was demonstrated that B-cell 

lymphoma protein 2 (Bcl-2) or Bcl-xL were over-expressed in HT-29 cells leading to 

promotion of NF-KB activity and reduction of 5F-induced apoptosis. Furthermore, IKBCX 

supper repressor, an NF-KB inhibitor, restored the apoptosis inducing ability of 5 F even 

cells transfected with Bcl-2 (Chen et al. 2004). Such finding indicated NF-KB related 

pathway could be one of the apoptosis mechanism induced by 5F. 

In cancer chemoprevention and chemotherapy, induction of apoptosis is a popular 

strategy by introducing the cancer drug either orally or injection. Since 5F can induce 

apoptosis as shown by many evidences, it can be employed as a potential apoptosis 

inducting drug in laryngeal cancer therapy. As mentioned in the previous section (1.2), 

HPV could promote anti-apoptosis. How 5F functions in HPV positive or negative 

laryngeal cancer cells is unknown. Moreover, NF-KB, one of 5F target in human colon 

cancer cells, is one of the most important apoptosis regulators. Because NF-KB activity 

was increased in laryngeal cancer (Du et al. 2003), its role in 5F-induced apoptosis 

might be pivotal. 

1.6 Objectives 

In this project, three laryngeal cancer cell lines, UMSCCl 1 A, UMSCC 12 and HEp-2, 

were employed. HEp-2 is HPV 18 positive while the others are HPV 18 negative. By 
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using these three cancer cell lines as models, two major objectives were investigated, 

including analysis of the apoptosis inducing effect of 5F in human laryngeal cancer cells 

with or without HPV 18 infection and study the role of N F - K B in 5F-induced apoptosis in 

laryngeal cancer cells accompanied with the evidence shown by N F - K B specific 

inhibitor, Bay (11-7082) (Chopra et al. 2008). 
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Chapter Two Materials and Methods 

2.1 Cell culture 

Two human laryngeal cancer cell lines (UMSCCllA and UMSCC12) were kindly 

provided by T Carey from the University of Michigan. They were cultured in Minimum 

Essential Medium (MEM, GIBCO-BRL, Carlsbad, CA) supplemented with 10% fetal 

bovine serum, lOOU/ml penicillin (GIBCO-BRL, Carlsbad, CA), lOO^g/ml streptomycin 

(GIBCO-BRL, Carlsbad, CA), at 37�C in a humidified atmosphere of 5% CO2 and 95% 

CO2. The culture medium was changed once every two days. 

Human laryngeal cancer cells, HEp-2 (American Type Culture Collection, ATCC), 

containing an integrated HPV 18 genome, were cultured in Dulbecco's Modified Eagle's 

Medium (DMEM, GIBCO-BRL, Carlsbad, CA) supplemented with 10% fetal bovine 

serum, lOOU/ml penicillin, 100|Lig/ml streptomycin at 37°C in humidified atmosphere of 

5% CO2 and 95% CO2. The culture medium was changed once every three days. 

2.3 Cell proliferation analysis 

3-(4，5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay is a 

colorimetric assay that measures the cell growth and determines the cytotoxicity of a 

toxic agent. The assay is based on the reduction of yellow MTT that is converted into 

deep blue formazan crystals by mitochondrial reductase from viable cells. The crystals 
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are impermeable to the cell membrane and so accumulate in viable cells. A 

solubilization solution, such as dimethylsulphoxide (DMSO), is added to dissolve the 

insoluble purple crystal solution. The absorbance of this colored solution is quantified by 

measuring its absorbance at a wavelength of 570nm by spectrophotometer. The 

absorption maximum depends on the solvent employed. 

The reducing reaction takes place in mitochondria when reductase is active. Therefore, 

the number of viable cells is directly proportional to the conversion of yellow MTT. By 

comparing the amount of formazan between the treatment group and control group, the 

effectiveness (and hence cytotoxicity) of an agent in causing cell death can be 

determined by generating a dose-response curve. 

In our experiment, cells (UMSCCllA, UMSCC12 and Hep-2) were seeded at the 

density of 5 x 10Vl00|Lil/welI in 96-well microtitration plates (NUNC) for 18 hours. A 

variety of concentrations of 5F (0.1% Dimethyl Sulphoxide (DMSO) (D2650, Sigma), 

3.125, 6.25, 12.5, 25, 50, 100 and 200)ig/ml), diluted by medium, were added and 

incubated for 24 or 48 hours after aspirating the old medium. Each group of 

concentrations were performed in triplicate wells and repeated three times. After 

different periods of incubation, the medium was aspirated, and then 100|il MTT (Sigma, 

St. Louis, MO) (diluted by phosphate buffered saline (PBS)) was added. The diluted 

MTT was added in each well and incubated for 3 hours at 37°C to allow viable cells to 

metabolize the MTT. The MTT was aspirated and the formazan crystals were dissolved 

by adding 1 OOfil/well DMSO. The absorbance was measured at a wavelength of 570nm 

with reference to a wavelength of 630nm with a spectrophotometer (VICTOR^TM 
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Multilabel Counter, PerkinElmer). Cell viability was presented as a percentage of the 

control group. 

2.3 Western Blotting 

Western Blotting involves several steps including protein extraction, protein 

quantification, gel electrophoresis, transferring protein, immunoblotting and developing. 

2.3.1 Total protein extraction 

Cells (5 X 105) were detached by warm Trypsin-EDTA (GIBCO-BRL, Carlsbad, CA) 

from the culture dish and washed twice with ice-cold PBS, then resuspended in 100)LI1 

radioimmunoprecipitation buffer (RIPA buffer: IX PBS, 1% Nonident P-40 (NP-40), 

0.5% sodium deoxycholate, 0.1% Sodium dodecyl sulfate (SDS), pH7.6) together with 

the protease inhibitor cocktail (Roche) and lOOjiig/ml phenyl-methy-sulphonyl-fluoride 

(PMSF). The cells were then further disrupted and homogenized by passing them 20 

times through a 21 gauge needle and then incubating them at 4°C for 45 minutes. After 

centrifugation for 10 minutes at lOOOOrpm at 4°C, the supernatant was recovered and 

stored at 4°C. 

2.3.2 Nuclear and cytoplasmic protein extraction 

Cells (10^) were detached by warm Trypsin-EDTA from the culture dish and washed 

twice with ice-cold PBS. They were resuspended by up-and-down pipetting several 
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times with lOOjul IX Buffer A (10 x Buffer A stock: lOOmM 

'^-(2-hydroxyethyl)-1 -piperazineethanesulfonic acid (HEPES), pH7.9，lOOmM KCl, 

lOOmM (ethylene diamine tetraacetic acid) EDTA; 1ml IX Buffer A adding lO îl 

lOOmM Dithiothreitol (DTT), lO îl protease inhibitor cocktail, 40^1 10% NP-40) in a 

1.5ml eppendorf tube that was fixed in a rocking platform and shaken at ISOrpm for 10 

minutes in a cold room. After centrifugation for 3 minutes at 4°C at 15000 g, the 

supernatant (cytosolic fraction) was collected. The pellet was resuspended in 60|LI1 IX 

Buffer B (5X Buffer B stock: lOOmM HEPES, pH7.9，2M NaCl, 5mM EDTA, 50% 

glycerol; 147|il IX Buffer B adding 1.5)LI1 protease inhibitor cocktail and 1.5|LI1 lOOmM 

DTT) by vortexing it at the highest setting for 10 seconds or by using a Dounce 

homogenizer. Then the eppendorf tube was laid horizontally on the rocking platform and 

shaken at 200rpm for an hour. Finally, the nuclear fraction was obtained from the 

supernatant after centrifugation at 15000 g for 10 minutes at 4°C. 

2.3.3 Quantification of protein concentration 

The extracted protein (total protein, cytosolic protein and nuclear protein) was quantified 

by Bio-Rad Protein Assay (Bio-Rad, Hercules, CA). A standard curve was generated by 

serial dilution of bovine serum albumin (BSA, R396E, Promega, Madison WI, USA) 

with different lysis buffer (total protein: RIP A, Cytosolic fraction: Buffer A, Nuclear 

fraction: Buffer B) ranging from 0 — 1.4|j.g/ml. The assay was performed in a 96-well 

plate (Nunc, Denmark) by adding 5|al of standard and sample proteins into each well 

with a triplicate setting. After pre-treatment of 25^1 Reagent A’ (1ml Reagent A and 

20|xl Reagent S) for about 20 seconds, each standard and sample protein was added to 
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200|xl Buffer B (dye reagent). After 15 minutes of incubation at room temperature, the 

protein concentration was determined by measuring the absorbance at a wavelength of 

595nm with a spectrophotometer (Fluo Star Galaxy, BMG Labtechnologies Pty. Ltd). 

2.3.4 Sodium dodecyl sulfate - polyacylamide gel electrophoresis (SDS-PAGE) 

and protein transfer 

An aliquot of 25|Lig total protein (cytosolic protein: 30|Lig, nuclear protein: 10|Lig) was 

mixed with 6X SDS loading buffer (350mM Tris-HCl pH6.8, 600mM DTT, 30% 

glycerol, 0.012% bromophenol blue) and denatured by boiling for 5 minutes at 99°C. 

The denatured protein and protein marker (Full Range Rainbow Recombinant Protein 

Molecular Weight Marker, GE Healthcare) were resolved by SDS-PAGE 

electrophoresis. 

After electrophoresis, the gel was equilibrated for 5 minutes with cold transfer buffer 

(25mM Tris，192 mM Glycine, 20% methanol, pH8.3). The proteins were then 

transferred onto a Nitrocellulose membrane by using a Bio-Rad Mini Trans-Blot cell. 

The transfer sandwich was packed with sponge on the bottom half of a plastic cassette 

using filter paper, protein gel, filter paper and sponge again. Protein larger than 65kDa 

was transferred for 120 minutes, while protein smaller than 65kDa was transferred for 

90 minutes at 1OOV at room temperature. To optimize the transfer condition, the transfer 

tank was surrounded by ice to slow down the increase of current. After transfer, the 

membrane with proteins was washed with TBST (20mM Tris-Cl, 137mM NaCl, 0.1% 

Tween-20, pH7.6) buffer for 5 minutes before immunoblotting. 
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2.3.5 Immunoblotting 

Membranes were incubated with 5% non-fat milk in TBST for 2 hours at room 

temperature prior the incubation with diluted primary antibodies at 4°C overnight. After 

washing with TBST three times in 1 Ominutes, the membranes were incubated with 

corresponding secondary antibodies diluted with 2% non-fat milk in TBST for 2 hours at 

room temperature. Once again, the membranes were washed with TBST three times in 

1 Ominutes. Chemiluminescent was developed by adding ECL or ECL plus reagent kit 

(Amersham Life Science Ltd., Buckinghamshire, UK) and exposed to X-ray films. 

2.4 N F - K B Luciferase Assay 

To study the transcriptional activity of NF-KB, a genetic reporter assay was applied in 

our model. Firefly Luciferase assay was employed, firstly because its reporter activity is 

available immediately on translation. Secondly, the assay sensitivity is high due to its 

light production having the highest quantum efficiency for chemiluminescent reaction 

with no background luminescence is found in the host cells. Thirdly, the measurement 

can be done within a few seconds. 

In our experiment, pNF-icB Luciferase plasmid (generously provided by Professor 

Vivian Lui, Department of Clinical Oncology, the Chinese University of Hong Kong) 

was transiently transfected into three laryngeal cancer cell lines: UMSCCl lA, 

UMSCC12 and HEp-2. In the pNF-KB Luciferase plasmid (clone map attached in 

appendix), 5 times repeat NF-KB responsive elements (GGGGACTTTCC) were cloned 
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into a pLuc-MCS vector which encodes Firefly Luciferase. Once N F - K B was activated 

by TNF-a, it translocates into the nucleus and binds to N F - K B responsive elements on 

the vector. The translated Firefly Luciferase protein, a monomeric 61kDa protein, 

catalyzes luciferin oxidation which generates high intensity light that is constant and 

stable for at least 1 minute. 

To perform the transient transfection, Lipofectamine 2000 (Invitrogen，Carlsbad, CA) 

was employed and the experimental procedures were followed according to the protocol 

recommended by the manufacturer. Briefly, cells (cell no. of UMSCCl 1A:1.8 x 

lOVml/well, UMSCCl2: 2 x lOVml/well, Hep-2: 1.5 x lOVml/well) were seeded in a 

12-well culture plate (Coming, USA) for 18hrs before transfection. Ijig pNF-icB 

Luciferase plasmid and Lipofectamine 2000 in an optimized ratio (plasmid to 

Lipofectamine 2000 ratio: UMSCCl lA: 1:1.5，UMSCC12: 1:2, HEp-2: 1:3) were mixed 

with OPTI-MEM (Sigma, St. Louis, MO) for 5 minutes separately. The plasmid and 

Lipofectamine 2000 were then mixed by pipetting up-and-down and then incubated for 

20 minutes prior to being added to each well. After incubation for 5 hours, the cells were 

recovered and the transfection mixture replaced with by fresh medium (with 10% FBS). 

24 hours later, cells were treated with different concentrations of 5F in serum free 

medium for 2 hours. 20ng/ml TNF-a was added into the medium for 6hrs in an attempt 

to stimulate the N F - K B transcription activity. The reaction was stopped by removing the 

medium and washing the cells twice with ice cold PBS. 120|il lysis buffer (0.05% Triton 

X-100, lOOmM Tris-HCl，pH7.8，2mM EDTA, buffer components following the 

protocol of Professor Vivian Lui) was added into each well and the cells were extracted 
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by a cell scraper. After vortexing for 15 seconds, the lysate was stored at -80°C 

overnight for higher lysis efficiency. After centrifuging at 13000 rpm for 10 minutes at 

4•，the supematants were aspirated into a new tube. 20(il cell lysate together with 50|j.l 

Luciferase assay reagent (Promega, USA) were mixed in a 96-well plate and the light 

intensity was measured by a spectrophotometer (VICTOR^TM Multilabel Counter, 

PerkinElmer). To normalize the Luciferase assay, the cell lysate was subjected to protein 

quantification as mentioned in the previous part. Each assay was performed in triplicate 

in each experiment and repeated three times. 

2.5 Annexin V apoptosis assay 

In an attempt to detect 5F-induced apoptosis, Vybrant^'^ Annexin V- fluorescein kit 

(Molecular Probes, Eugene, OR) was employed in our study. 

Apoptosis, or programmed cell death, is controlled by an internally encoded suicide 

program, representing a critical role in normal development. Apoptosis is distinguished 

from necrosis by distinct morphological and biochemical features, including shrinkage 

of the cytoplasm and loss of membrane asymmetry, condensation and fragmentation of 

the nuclear chromatin. In normal viable cells, phophatidylserine (PS) is located on the 

cytoplasmic surface of the cell membrane. If the cell undergoes apoptosis, PS 

translocates from the inner plasma membrane to the outer leaflet, leading to the exposure 

of PS on to the external cellular environment. Such a characteristic feature provides us 

with a specific way to label an apoptotic cell and to determine the number of apoptotic 

cells. 
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Annexin V，a human anticoagulant, is a 35-36kDa Ca2+-depenclent phospholipid-binding 

protein that has a high affinity for PS. Annexin V labeled with a fluorophore or biotin 

can identify apoptotic cells by binding to PS exposed on the outer the leaflet. The 

V y b r a n t ™ Annexin V- fluorescein kit contains recombinant annexin V conjugated to 

Alexa Fluor 488 dye (a good spectral to fluorescein - FITC) and the red-fluorescent 

propidium iodide (PI) nucleic acid binding dye. PI cannot permeate viable and apoptotic 

cells, but can however stain necrotic cells with a red fluorescence by binding tightly to 

the nucleic acids in the cell. After staining a population of cells with annexin V and PI, 

apoptotic cells show green fluorescence (FITC) while dead cells show red (PI) and green 

fluorescence, and viable cells show little or no fluorescence. 

In this project, three laryngeal cancer cell lines (UMSCCl lA, UMSCC12, HEp-2) were 

treated with different concentrations of 5F (0.1% DMSO，50，75，lOO îg/ml) for 16 or 24 

hours. Cells (UMSCCllA: 3.7 x 10^ UMSCCl2: 3.8 x 10^ HEp-2: 3 x 10^) were 

seeded in 6-well plates for 18 hours before treatment with 5F. After incubation for 

different periods, both detached and attached cells were collected by trypsization and 

centrifuged for 5 minutes at 2000 rpm. The cell pellet was then resuspended and washed 

three times with ice-cold PBS. For each sample, a master-mix solution, including lOOfil 

binding buffer (lOmM HEPES, 140mM NaCl，2.5mM CaCh, pH7.4)，5^1 Alexa Fluor 

488 Annexin V，2^1 of 100一ml PI working solution, was added to resuspend the cell 

pellet and then incubated for 15mins in the dark at room temperature. After the 

incubation period, 400fil of binding buffer was added and the sample kept on ice in the 

dark and analyzed by flow cytometry (FACScalibur, Becton Dickson, CA) and using 

Cell Quest software (Becton Dickinson, CA). 

3 2 



2.6 mRNA expression analysis 

To perform mRNA expression analysis, three steps were involved, including RNA 

extraction, reverse transcription (RT), and polymerase chain reaction (PGR). 

2.6.1 RNA extraction 

Total RNA of 1 x 10̂  cells were extracted and purified by using PureLink™ 

Micro-to-Midi Total RNA Purification System (Invitrogen, CA). After the incubation 

period, the cells, either detached or attached to the culture plate, were collected by 

trypsinization and washed three times with ice-cold PBS. Cell pellets were then 

resuspended in 300fxl RNA lysis solution (1ml lysis solution added 10|li1 

2-mercaptoethanol) and mixed thoroughly with one volume of 70% ethanol by vortexing. 

All the samples were then transferred to the RNA Spin Cartridge and purified by 

following the protocol of the kit. The concentration and quality of the extracted RNA 

was determined by using a UV- spectrophotometer (Beckman Instruments, Inc., 

Fullerton, CA). 

2.6.2 Reverse Transcription 

Reverse transcription was performed according to the protocol of a Reverse 

Transcription System (Promega, Madison, WI). l|ig RNA was diluted into lOjul by 

adding RNase-free water and incubated at 70°C for 10 minutes and then placed on ice to 

cool down. 10|Lil of reagent from a master-mix solution was added into to each RNA 

3 3 



sample. For each reaction, the components of the master-mix solution include: 2\i\ 

Reverse Transcription lOX Buffer, 2[i\ dNTP mixture (lOmM), 4\i\ MgCh (25mM), l^il 

Random Primer, 0.5}xl Recombinant RNasin Ribonuclease Inhibitor (lu/fxl), 0.5 \i\ AMV 

Reverse Transcriptase (25u/|al). The reaction mixture was incubated at room temperature 

for 10 minutes before performing the RT reaction: 42°C for 60 minutes, 95°C for 5 

minutes. The cDNA product was incubated at 4°C. Through out the whole experiment, 

the cDNA and RNA stock was kept at -80°C. 

2.6.3 Polymerase Chain Reaction 

For each sample used to perform PGR, 2\x\ cDNA was added to \S\i\ master-mix 

solution which contains the following reagents: l.Sfil MgCl2 (25mM)(Promega), 0.5|al 

dNTP (lOmM), 1^1 Forward and Reverse Primer (lOpg/^il), 0.5|il Go Taq Fexi DNA 

Polymerase (Promega’USA)，2|xl 5X Green Go Taq Fexi Buffer (Promega，USA), ll.S^il 

dH20. The PGR mixture was firstly denatured by undergoing incubation at 94°C for 5 

minutes, and then 25 cycles were performed under the following cycling conditions: 

94°C for 30 sec, 55°C for 30 sec, ITC for 45 sec; extra time for extension: 72°C for 

10 minutes, and incubated at 4°C. The sequences of the primers that we used are listed 

below: 

Primer sequence of HPV 18 E6; 

Sense: 5' ATGGCGCGCTTTGAGGATCCA 3’ 

Anti-sense: 5' TTATACTTGTGTTTCTCTGCGTCG 3， 

Primer sequence of HPV 18 E7: 

Sense: 5' ATGTATGGACCTAAGGCACACT 3， 
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Anti-sense: 5' TTACTGCTGGGATGCACACCA 3’ 

The PGR products were separated by 2% agarose gel and calibrated by running with 

DNA MW marker lOObp ladder (Promega, Madison, WI). The ethidium bromide stained 

DNA was visualized by Gel Doc XR (Bio-Rad, Italy) and software Quality One. 

2.7 Antibodies 

Antibodies that were used are listed below: 

Antibody Manufacturer 

P65 Santa Cruz Biotechnology, USA 

P50 Santa Cruz Biotechnology, USA 

Lamin B Santa Cruz Biotechnology, USA 

P-tubulin Santa Cruz Biotechnology, USA 

p-actin Santa Cruz Biotechnology, USA 

Bax Santa Cruz Biotechnology, USA 

IKBCX Cell Signaling Technology, USA 

COX-2 Cayman, USA (kindly provided by prof. Lui) 

Thermo Scientific, USA 
Cyclin Dl (SP-4) 

(kindly provided by prof. Lui) 

BD, Bioscience, USA 
EGFR (activated) 

(kindly provided by prof. Lui) 
. . Cell Signaling Technology, USA 

Survivin 
(kindly provided by prof. Lui) 

Mouse IgG-HRP Santa Cruz Biotechnology, USA 

Goat IgG-HRP Santa Cruz Biotechnology, USA 

Rabbit IgG-HRP Santa Cruz Biotechnology, USA 
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Chapter Three Results 

3.1 Anti-proliferation effect of 5F on laryngeal cancer cells UMSCCl 1 A, 

UMSCC12 and HEp-2 cells 

We first investigated the effect of 5F on the growth of three laryngeal cancer cell lines: 

UMSCCl 1 A, UMSCC12, and HEp-2 (HPV 18 positive). Cell proliferation was 

measured by MTT assay after 24 and 48 hours of treatment. 

More viable cells were found in HEp2 cells (10% higher) than in UMSCCl 1A and 

UMSCCl2 cells after 24 hours of treatment at different 5F concentrations (Figure 1). 

The percentage of viable cells in UMSCCl lA was 65% at 50|ag/ml 5F and decreased 

sharply to 28% at 100|ig/ml. In UMSCCl2, the viable cell percentage was 65% at 

50|xg/ml and 36% at 100|ig/ml, while that in HEp-2 cells was 76% at SO îg/ml and 45% 

at 100|ig/ml. After 48 hours of treatment, 5F showed a stronger inhibitory effect on the 

laryngeal cancer cells. But still, HEp2 was less susceptible to 5F, while UMSCCl lA 

and UMSCCl2 responded similarly to 5F. The percentage of viable cells in 

UMSCCl lA was significantly (P<0.05) lower than in UMSCCl2 and HEp-2 cells at 

50|ig/ml 5F at 48 hours. Our results show that 5F elicited a dose-dependent growth 

inhibition on all laryngeal cancer cell lines tested at 24 and 48 hours when compared to 

the control (0.1% DMSO). Through the dose-response curves at 24 and 48 hours, IC50 

values of laryngeal cancer cells were determined: 50|ig/ml for UMSCCl 1A and 

UMSCCl2, and 75ng/ml for HEp-2. 
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Figure 1. 
5F inhibits cell proliferation in laryngeal cancer cell lines. UMSCCllA, UMSCC12 
and HEp-2 were treated with different concentrations of 5F (0.1% DMSO, 3.125, 6.25， 
12.5’ 25, 50, 100，200叩/ml) for 24 hours (A) or 48 hours (B). The MTT assay was 
performed as described in materials and methods. Values shown represent the mean of 
three separate experiments with each experiment performed in triplicate (* P < 0.05). 
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3.2 Suppression by 5F in HEp-2 of mRNA and protein expression levels in HPV 18 

E7 while the expression levels of HPV 18 E6 was not altered. 

Since HEp-2 carries HPV18, which promotes cell growth in cervical cancer (Fujii et al. 

2006), HPV 18 may account for the resistance to the anti-proliferation effect of 5F on 

HEp-2. HPV 18 encodes oncoproteins E6 and E7, which are responsible for viral 

replication, cell proliferation and for the prevention of host cell-mediated apoptosis. We 

postulated E6 and E7 may be responsible for the HEp-2 resistance to the 

anti-proliferation effect of 5F. Therefore, we investigated their steady-state mRNA and 

protein levels by semi-quantitative RT-PCR and Western blotting respectively after 5F 

treatment. It was found that neither the mRNA nor protein expression levels of E6 were 

altered after 5F treatment (Figure 2). In contrast, 5F suppressed both mRNA and protein 

expression levels of E7 in a time-dependent manner. Therefore, we suggest that the 

altered E7 oncoprotein levels in response to 5F may not be responsible for the HEp-2 

resistance to 5F. 
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Figure 2. 
5F down-regulated the mRNA and protein expression of HPV18 E7 but not the 
mRNA and protein expression of E6. HEp2 cells, which are positive for HPVl8, were 
exposed to 75|ig/ml 5F for different periods (0，12, 24，36 and 48 hours). Total RNA was 
extracted from 5F-treated cells and the full length of HPV 18 E6 and E7 were amplified. 
The HPV 18 E6 and E7 proteins were detected by Western blotting. The mRNA and 
protein expression levels of E6 were not altered, while that of E7 was down-regulated by 
5F in a time-dependent manner (A). The relative expression level of E7 mRNA and 
protein were quantified by densitometer (B) (* P < 0.05). 
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3.3 Quantification of 5F-induced apoptosis in laryngeal cancer cells by Annexin V 

assay 

It has been shown that 5F induces apoptosis in various cancers including colon cancer 

cells, thyroid cancer cells and gastric cancer cells (Chen, Liang 2004; Liu, Ng 2005; Liu, 

Chen 2005). Therefore, we further investigated whether apoptosis contributed to the 

5F-induced growth inhibition of laryngeal cancer cells. Annexin V-PI co-labeling assay 

was used to quantify the apoptotic cells induced by 5F in UMSCCl lA, UMSCC12 and 

HEp-2 cells. In the flow cytometry data obtained after the Annexin V labeling assay, the 

lower right quadrant (Ann V +ve/PI —ve) represents the distribution of early apoptotic 

cells (Figure 3，4 and 5) while the upper right quadrant (Ann V +ve/PI +ve) represents 

the late apoptotic and dead cells. In this experiment, only the early apoptotic cells in the 

lower right quadrant were counted. The apoptotic cells in the upper right quadrant were 

excluded because they may include necrotic cells. 

Following 5F treatments, apoptosis occurred in a dose-dependent manner in all the cell 

lines tested (Figure 3，4 and 5). After 16 hours of treatment with 50, 75 and 100|ig/ml, 

the corresponding percentages of apoptotic cells in UMSCCl lA were 9.05%, 10.16% 

and 11.11% respectively. Similarly, after 24 hours treatment, the percentage of apoptotic 

cells increased from 16%, 17.64% to 22.44% under the same concentration at 16hrs, 

indicating that the degree of apoptosis was more significant with longer incubation time. 

However, in HEp-2, the apoptotic cells induced by 16 hours treatment of 100|Lig/ml 5F 

were only 2% higher than the vehicle control. Although more cells underwent apoptosis 

following a prolonged incubation time (24 hours), the level of apoptosis in HEp-2 was 
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significantly lower than that of UMSCCllA (P<0.01) and UMSCCl2 under the same 

concentrations of 5F (Figure 6). Such differences might be due to the anti-apoptotic 

characteristic of HPV 18 in HEp2. Comparing the two HPV 18 negative cells, the 

percentage of apoptosis in UMSCCl lA was statistically higher (P<0.05) than that in 

UMSCCl2 when the dosage of 5F was 50 |xg/ml at either 16 or 24 hours. Our results 

demonstrated that apoptosis is induced by 5F in laryngeal cancer cells UMSCCl lA and 

UMSCCl2，but at a lower degree in HEp-2. 

3.4 Morphological changes in laryngeal cancer cells induced by 5F 

Changes in cell morphology by 5F were observed under the microscope. When 

compared with the control group, 5F caused more shrinkage and detachment of the 

laryngeal cancer cells (Figure 7). Such morphological changes represented some of the 

apoptotic characteristics in laryngeal cancer cells. The degree of such morphological 

variations was proportional to the concentrations of 5F added to the cells. The scale of 

cell shrinkage and detachment was again smaller in HEp-2 than UMSCCllA or 

UMSCCl 2. 
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Figure 3. 
5F induced apoptosis of UMSCCllA cells in dose-dependent manner. UMSCCl 1A 
cells were exposed to 5F (0，50，75 and 100 ^ig/ml) for 16 or 24hrs, and then subjected to 
Annexin V flow cytometry analysis to determine apoptosis. 
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Figure 4. 
5F induced apoptosis of UMSCC12 cells in dose-dependent manner. UMSCC12 
cells were exposed to 5F (0，50，75 and 100 |xg/ml) for 16 or 24hrs, and then subjected to 
Annexin V flow cytometry analysis to determine apoptosis. 

4 3 



16hrs 24hrs 
、！ 、！ 
« ： . . ； ,:、<•:,; ‘ ； 缺 V�� : :‘ CO ’ • 

A 1 0 / ： •-.•••、：•.- • • ‘ • ： \ •：••： ... ‘ 

U.1/0 矜 .、：;•.工,.,,....~“ - -U' V-：-. 

”…̂？̂“̂广…，、》…,卜丨….•,_‘b ^^o O1 10̂  10̂  10" 10̂  loZ 10̂  10̂  FLI FL1 
、1 ： - 、 ！ 

“ 10̂  10̂  ° 10̂  10̂  10̂  10̂  FLI FLI 

、！ 1 • 、！ r 

75ug/ml�‘~•聰.._::,，..： ：〔參、::�::::.纏 

10° ；o2 io3 10° 10̂  10̂  10" CI 1 Fl 1 

、！ —̂— 、1 

looug/mi ： •.,〜.•., - ^ . ^ m m m 

° 10̂  10^ 10-̂  10'* ° 10̂  10^ 10^ 10"* FLI FLI 

Figure 5. 
5F induced apoptosis of HEp-2 cells in dose-dependent manner. HEp-2 cells were 
exposed to 5F (0，50，75 and 100 |xg/ml) for 16 or 24hrs, and then subjected to Annexin 
V flow cytometry analysis to determine apoptosis. 

4 4 



A 

16「 

o 14 - I • UMSCCllA I 
S •UMSCC12 T 
^ 12 - I •Hep-2 P I 

p f e 
g 10 - _ ：：：：：：：：：：： 

¥ ::::::::::: :::::::::::: 
g o ：：：：：：：：：：：： ：：：：：；：：：；： 一 ：：：；：：：：：：： 

:=3 i：：：：：；： ：!：：：：：：；：； ：：；：：：：：；：： 
8 6 - ：；：；:：;：：：：： • ：：：：：：：：：：： ；：：!：!：!：：： o -J. T ：：：：：；：：：：： ::::::::::: 
§ 4 — TI 丨 lilil ill： • ill； * 

< 2 - l i i T A _ 
“ H I I I I I t ^ P W 

iis： _ iiiliiii 
0 ~ ^ ^ ‘ ' • • • • • • ^ I ‘ ^ • • • • • • ‘ ~ ~ ~ ‘ 

DMSO 50 75 100 

5F concentration (ug/ml) 
B 

3 0 厂 

o I •UMSCCllA I 
S 25 - n u M s c c n 
^ • HEp-2 I piOT 
•B 20 - T ：議顏 
B ^ T ：丨:丨丨丨丨丨丨丨丨丨T 
s ii 黎 _ 

^ 15 - _ ；丨丨理 雜教 

1 1 � — I I I门 III T 
S ：：：：：：：：：：：： *T ** H 
g ：：：；：：：;：：：：—H ~ 
< 5 “ J ** 圓 

••..•....•. ’ ............ .:.:•:.:•:• ............ 

Q 丨 I I 1.丨::::个:1 I I I F::v;;: i 1 1 _ J — — l i v l v i v l 1 1——) 

DMSO 50 75 100 

5F concentration (ug/ml) 

Figure 6. 
Comparison of 5F-induced apoptosis in cell line UMSCCllA, UMSCC12 and 
HEp-2. After exposure to different doses of 5F (0，50，75 and 100 }ig/ml) for 16hrs (A) 
or 24hrs (B), apoptosis was induced at different rates and magnitudes in the three cell 
lines (* P < 0.05, * * P < 0.01). 
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Figure 7. 
5F induced cell morphology changes in UMSCCllA, UMSCC12 and HEp-2 cell 
lines. The cells were incubated with different concentrations of 5F (0.1% DMSO, 50’ 75 
and 100|Lig/ml) for 24hrs. Cell morphology was observed by a Nikon OPTIPHOT-2 
fluorescence microscope at 200X magnification (Nikon, Tokyo, Japan) 
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3.5 Cleavage of poly (ADP-ribose) polymerase (PART) and pro-caspase-3 induced 

by 5F in UMSCCllA, UMSCC12 and HEp-2 cell lines 

To further investigate 5F-induced apoptosis in laryngeal cancer cells, Western Blotting 

was used to detect the cleavage of pro-caspase-3 and PARP, which are the hallmarks of 

apoptosis. On apoptosis, pro-caspase-3 is activated in order to cleave PARP, facilitating 

cellular disassembly. Cleavage of pro-caspase-3 and PARP appeared at 12 hours in 

UMSCCl lA (Figure 8). In UMSCCl2 and HEp-2 the activated caspase-3 and cleaved 

PARP were also detected at 24 hours. This indicates that 5F induced apoptosis as early 

as 12 hours in UMSCCl lA, 24 hours in UMSCCl2 and HEp-2. Densitometry analysis 

(Figure 9) showed that the relative level of cleaved caspase-3 and PARP increased with 

the 5F incubation time and peaked at 36 hours. 

3.6 Down-regulation of TNF-A-induced N F - K B subunit p65 and p50 nuclear 

translocations in UMSCCllA, UMSCC12 and HEp-2 by 5F 

The apoptosis inducing effect of 5F is known to be associated with the inhibition of 

N F - K B signaling in human colon cancers (Chen, Liang 2004) and the activity of N F - K B 

has been reported to be increased in laryngeal cancer tissue (Du, Chen 2003; Pan et al. 

2005; Kourelis et al. 2007). However, whether 5 F in laryngeal cancer acts on N F - K B is 

unknown. As N F - K B nuclear translocation is a crucial step for its signaling pathway, we 

analyzed the nuclear levels of N F - K B subunits p65 and p50 in 5F-treated UMSCCllA, 

UMSCCl2 and HEp-2. TNF-a was used to stimulate the cellular translocation of 

p65/p50. Western Blotting for Lamin B and p-tubulin were used as a reference indicator 
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of equal loading of the nucleus and cytoplasm protein fraction. The levels of Lamin B 

and p-tubulin were almost undetectable in the cytoplasm and nucleus indicating that 

there was no contamination in the fractions. In the absence of the stimulus, the basal 

levels of nuclear p65/p50 were reduced to 0.2 fold in the presence of 50|Lig/ml 5F in all 

laryngeal cancer cells (Figure 10). On stimulation by 20ng/ml TNF-a, the levels of 

nuclear p65 and p50 greatly enhanced in the nucleus but their levels in the cytoplasm 

were reduced, indicating the nuclear translocation of the two proteins. In UMSCCl 1 A, 

1.5 and 3 folds increase of nucleus p65 and p50 occurred respectively after TNF-a 

activation. In UMSCCl2，the level of nuclear p65 and p50 was drastically increased by 

3.2 and 4.5 folds respectively. In HEp-2, 6 and 26 folds of nuclear p65 and p50 

increments were observed. When cells were co-treated with TNF-a and different 

dosages of 5F, the p65 and p50 nuclear translocation was reduced by 5F in a 

dose-dependent manner. Interestingly, the reduced effect of p65 and p50 translocation 

by 5F in HEp-2 was weaker than in UMSCCl 1A and UMSCC12. 
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Figure 8. 
5F induced cleavage of pro-caspase-3 and poly (ADP-ribose) polymerase in 
UMSCCllA，UMSCC12 and HEp-2 cell lines. UMSCCllA and UMSCC12 were 
treated with 50|ig/ml 5F and HEp-2 with 75\xg/m\ 5F for different periods (0，12’ 24’ 36 
and 48 hours). Both attached and floating cells were collected and lysed to detect the 
apoptosis hallmarks, caspase-3 and poly (ADP-ribose) polymerase, by Western Blotting. 
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Figure 9. 
Densitometry analysis of cleaved caspase-3 and PARP in UMSCCllA, UMSCC12 
and HEp-2 cell lines. Table A, B and C respectively represent cleavage of PARP in 
UMSCCllA, UMSCCl2 and HEp-2. Table D, E and F represent cleavage of 
pro-caspase-3 in UMSCCl 1A，UMSCCl2 and HEp-2 respectively. 
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Figure 10.5F inhibits the TNF-a-mediated translocation of N F - K B subunits p65 and 
p50. UMSCCl 1 A, UMSCCl2 and HEp-2 cells were pre-treated with different dosages 
of 5F (50, 75 and 100 ^ig/ml) in serum free medium for 2 hours. Cells were then 
stimulated with 20ng/ml TNF-a for 20 min. The nuclear and cytoplasm proteins were 
isolated to detect p65 and p50 proteins. The relative expression level of the nuclear p65 
and p50 proteins in UMSCCl 1A (A), UMSCCl2 (B) and HEp-2 (C) are represented by 
the bar chart. (* P < 0.05) 
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3 .7 Dose-dependent inhibition of 5 F on NF-KB transcriptional activity measured 

by luciferase assay 

The effect of 5F on the N F - K B transcriptional activity was examined by luciferase assay. 

Laryngeal cancer cells were transiently transfected with pLuc-MCS plasmid (control 

vector containing minimal TATA box) or pLuc-NF-KB plasmid (containing five repeats 

of N F - K B response element in the promoter). The signal generated from the pLuc-MCS 

transfection was regarded as the background of the assay (Figure 11). Without any 

treatment, transfection of pLuc-NF-KB in laryngeal cancer cells generated higher 

luciferase activity than pLuc-MCS, indicating the basal NF-KB activation status in 

different laryngeal cancer cells. The luciferase activity generated by the basal N F - K B 

activity was regarded as a reference value for the other treatment. In the presence of 5F 

alone, the luciferase activity due to basal NF-KB activation was suppressed 0.2 fold. On 

stimulation by TNF-a, the luciferase activity was increased 3 folds, 16 folds and 2 folds 

in UMSCCllA, UMSCC12 and HEp-2 respectively. With 50|Lig/ml 5F pre-treatment, 

the TNF-a induced luciferase activity was significantly inhibited 3 folds in UMSCCl lA 

(P<0.05), 7 folds in UMSCCl2 (P<0.05), and 1.4 fold in HEp-2. Our results 

demonstrate that 5F inhibits TNF-a-induced N F - K B transcriptional activation in a 

dose-dependent manner. 
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Figure 11. 
5 F inhibited N F - K B luciferase activity in a dose-dependent manner in UMSCCllA 
(A), UMSCC 12 (B) and HEp-2 (C) cells. N F - K B responsive elements were cloned into 
a pLucMCS plasmid, which was transiently transfected into the cells for 24 hours. The 
transfected cells were cultured in serum free medium in the presence or absence of 5F 
for 2 hours, followed by 20ng/ml TNF-a for another 6hrs. On stimulation by TNF-a, 
p65/p50 bound to responsive elements on the plasmid and triggered the expression of 
luciferase which generated luminescence. The luciferase activity reflected the N F - K B 
transcriptional activity (* P < 0.05，** P < 0.01). 
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3.8 Partial inhibition of TNF-a induced IicBa degradation by 5F in UMSCCllA 

but not in UMSCC12 and HEp-2 

The induction of p65 and p50 nuclear translocation by TNF-a is known to involve the 

degradation of IicBa. We thus investigated whether 5F suppressed the degradation of 

IKBCC induced by TNF-a. We found that 50^g/ml 5F did not alter the basal expression 

level of IKBOI and that TNF-a stimulated the degradation of k B a (Figure 12) in 

laryngeal caner cells. When UMSCCl 1A cells were pre-treated with 5F for 2 hours, the 

level of iKBa was higher than that with TNF-a only. In contrast, the levels of IicBa in 

UMSCCl2 and HEp2 in response to TNF-a were not altered by pre-treatment with 5F. 

Our finding showed that 5 F suppressed TNF-a-induced NF-KB translocation by 

retardation of IicBa degradation in UMSCCllA, but not in UMSCCl2 or Hep-2. This 

suggests that 5 F can affect TNF-a-induced NF-KB translocation in laryngeal cancer cells 

through different mechanisms. 

3.9 Cell proliferation inhibition and apoptosis induction by Bay (11-7082) in 

laryngeal cancer cells 

Our results demonstrated 5F induced apoptosis and inhibited the nuclear translocation 

and transcription activity of NF-KB. However, whether the suppressed NF-KB activity in 

laryngeal cancer cells could result in apoptosis is unknown. To address this point, we 

used specific N F - K B inhibitor Bay (11-7082) to verify the effect of NF-KB inhibition on 

apoptosis induction in laryngeal cancers. 
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We found that Bay (11-7082) slowed down the cell proliferation rate of laryngeal cancer 

cells in a dose-dependent manner (Figure 13) after 24 and 48 hours of treatment. This 

confirmed that the inhibition of the NF-KB pathway by Bay (11 -7082) led to the 

retardation of cell proliferation. In the Annexin V assay, 26.05% (士 3%) UMSCCllA 

cells, 2% (±0.40/0) UMSCCl2 and 2% (士 0.8%) HEp-2 underwent apoptosis after 24 

hours of treatment with 10|aM Bay (11-7082) (Figure 14). Our results from Annexin V 

assay confirmed that inhibition of NF-KB activity resulted in laryngeal cancer cell 

apoptosis. However, the inhibition of the NF-KB activation induced a high level of 

apoptosis only in UMSCCl 1A cells, but not in UMSCCl2 or HEp-2 cells. 

3.10 Differential basal nuclear translocation of p65 and p50 in laryngeal cancer cell 

lines 

UMSCCllA showed a higher sensitivity to 5F or Bay (11-7082) treatments than 

UMSCCl2 and HEp-2. We believe that this could be due to the different basal levels of 

nuclear p65 and p50 in various laryngeal cancer cell lines. By Western blotting, both 

nuclear p65 and p50 were found to be diminished by the action of 5F. Even though the 

nuclear levels of p65 and p50 were decreased by about 20% in all laryngeal cancer cells 

tested after the 2-hour 5F treatment, the basal levels of nuclear p65 in the UMSCCl lA 

cell line was higher than that in UMSCCl2 and HEp-2 while the levels of p50 were 

similar in all three cell lines (Figure3.15). This difference indicates that the inhibition of 

N F - K B plays a more important role in apoptosis induction in UMSCCllA than in 

UMSCCl2 and HEp-2. Consistent with this idea, we have shown that 5F induces a 

higher degree of apoptosis and that Bay (11-7082) only induces apoptosis in 
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UMSCCl lA but not in UMSCC 12 or HEp-2. 

3 .11 5F regulation of N F - K B target gene expression 

N F - K B activation exerts its carcinogenic effects via transcriptional activation of its target 

genes. Cylin D1 is over-expressed in a variety of cancers and is responsible for the 

progress of the cell cycle from the G1 to the S phase (Polsky and Cordon-Cardo 2003). 

Similarly, COX-2 is also over-expressed in cancer cells and mediates cell proliferation 

(Chun and Surh 2004). The role of EGFR is important in cell proliferation and DNA 

synthesis (Nishi et al. 2003). Survivin, which belongs to the inhibitor of apoptosis 

protein (lAP) family, is a negative regulator of apoptosis by inhibiting caspase activation 

(Zucchini et al. 2008). Bax is a pro-apoptotic regulator and responsible for the 

permeabilization of the outer mitochondrial membrane (van Delft and Huang 2006). We 

thus examined the effects of 5F on the expression of these NF-KB-regulated gene 

products in laryngeal cancer cells by Western blotting. We successfully identified a 

number of N F - K B target genes that were altered by 5F in a time-dependent manner 

(Figure 16). These include proliferation-related genes (COX-2, EGFR and cyclin Dl), 

anti-apoptotic gene (survivin), and pro-apoptotic gene (Bax). 
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Figure 12. 
5F inhibited TNF-a-induced IicBa degradation in UMSCCl 1A but not in 
UMSCC12 or HEp-2 cells. UMSCCl lA (A), UMSCCL2 (B) and HEp-2 (C) cells were 
pre-treated with 50)a.g/ml 5F in serum free medium for 2 hours, and then stimulated by 
20ng/ml TNF-a for 15min. The protein was isolated and subjected to Western blotting 
analysis for IKBCX ( P < 0.05). 
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Figure 13. 
Anti-proliferation effect of Bay (11-7082) in UMSCCllA, UMSCC12 and HEp-2 
cell lines. UMSCCl lA, UMSCCl2 and HEp-2 cells were treated with different dosages 
of Bay (0.1% DMSO, 1.5625, 3.125, 6.25，12.5, 25 and 50uM) for 24 (A) or 48 (B) 
hours. Cell proliferation was determined by MTT assay. The MTT assay was performed 
as described in materials and methods. Values shown represent the mean of three 
separate experiments with each experiment performed in triplicate. (P < 0.05) 

6 0 



control 10uMBay(ll-7082) 
O - J - ••丨•• ‘― — ••丨 - • —： 

- 着 ： -

U M S C C l l A。； . . : ; : • � # : . � _ P 

3 . 1 5 1 0 . 5 % 、 丨 識 : _ 誦 % 
g Winvn... • •.. •••• ；/..,̂-；-；；, -,, • • .-•• ..i- . 

FL1 FLI 

, ' 2 1 
O -J 

" o . . . . : . . L . . .. 

： v i J ^， . "o-〒-：丨嫌：―。 

S • 、 一 ‘ . " . . - 丨 • _ , _ • , , 0 2 。 ’ 。 ’ 。 

10° 1o1 ,o2 lo3 10" FLI 
FLt 

、！ 、！ 

HEp-2 ：—•：. . / . ' � � ^ ^ ^ ： ~ . .. . 

0 - , .i..*!' ； i ‘ g - • . ....•.'i \ • • "Mil . • I ..I.. 
I0» ；0' W^ 10" � to' ,o3 

FLI FLI 

Figure 14 
Bay (11-7082) induced apoptosis in UMSCCllA. UMSCCllA, UMSCC12 and 
HEp-2 were exposed to lOuM Bay for 24 hours, and subjected to Annexin V flow 
cytometry analysis to determine apoptosis. Values shown represent the mean of three 
separate experiments. 
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Figure 16. 
5 F down-regulated the expression level of NF-KB target genes. UMSCCllA and 
UMSCC 12 were exposed to 50jLig/ml 5F and HEp-2 was exposed to 75|ig/ml 5F for 
different periods (0，12，24，36 and 48hrs). Identifiable NF-KB target genes were 
detected by Western blotting (A) Expression of cell proliferation regulators: cyclinDl, 
COX-2 and EGFR; (B) Expression of anti-apoptotic regulator: survivin and (C) 
Expression of pro-apoptotic regulator: Bax. 
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Chapter Four Discussion 

Herbal extract 5F is known to inhibit cell growth in several types of tumor. However, its 

effect on human laryngeal cancer cells has not been studied yet. Our results 

demonstrated that 5F can effectively retard the proliferation of laryngeal cancer cells in a 

does-dependent manner. And this inhibitory effect on proliferation was attributed to the 

5F-induced apoptosis. Furthermore, we demonstrated that 5F significantly suppressed 

the transcription activity of N F - K B via the blockage of N F - K B nuclear translocation. 

Specific N F - K B inhibitor, Bay (11-7082)，also gave similar effects on laryngeal cancer 

cell growth inhibition and apoptosis induction. In response to the 5F-suppressed N F - K B 

activity, the expression levels of NF-KB target gene products were also down-regulated. 

Herein, we showed that the down-regulation of N F - K B transcription activity was 

involved in 5F-induced apoptosis in laryngeal cancer cells. Our study provides evidence 

for 5F as an effective therapeutic agent for targeted therapy in laryngeal cancer cells. 

As apoptosis inactivation is common in tumors and contributes to carcinogenesis, 

apoptosis induction is thus one of the most obvious strategies for cancer therapy. It has 

been shown that the N F - K B signaling pathway and its downstream gene products are 

critical regulators of the apoptotic responses (Karin and Lin 2002). Constitutive 

activation of N F - K B is found to be a common feature in various human cancer cells 

including laryngeal cancer cells (Du, Chen 2003; Pan, Tao 2005; Pacifico and Leonardi 

2006). Nevertheless, the functional role of N F - K B in laryngeal cancer remains to be 

investigated. Here, through direct inhibition of N F - K B nuclear translocation by 5F, we 
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demonstrated that constitutive N F - K B activation is required for laryngeal cancer cell 

growth and apoptosis inhibition. 

5F induced apoptosis has been shown in human colon cells via down-regulation of the 

N F - K B activity (Chen, Liang 2004). Our results are consistent with previous findings in 

which 5 F suppressed the basal and TNF-a-induced NF-KB activity in laryngeal cancer 

cells (Figure 11). In the absence of stimulus, N F - K B is sequestered into the cytoplasm by 

binding with IicBa in the classical pathway. Therefore, the basal N F - K B activity 

observed in our luciferase assays was due to the constitutive basal activation of N F - K B 

in laryngeal cancer cells. This was further confirmed by the presence of nuclear p65 and 

p50 protein in the absence of stimulus (Figure 15). Upon stimulation with TNF-a, IKBCI 

is phosphorylated by the IKK complex and then degraded subsequently. Since nuclear 

translocation is the last step of the NF-KB activation cascade preceding 

NF-KB-dependent transcription, blocking of N F - K B nuclear translocation is a major 

target for N F - K B inhibitors. IKBCI is the commonest targets of numerous N F - K B 

inhibitors acting on N F - K B or its up-stream signaling pathway. The inhibitory action of 

these inhibitors on IKBCI degradation often results in an increase in the level of IKBOL 

Bay (11-7082) is an irreversible inhibitor of IKBCX phosphorylation and the subsequent 

proteasomal degradation. Thereby, Bay (11-7082) sequesters N F - K B in its inactive state 

in the cytoplasm and prevents the activation of N F - K B downstream signaling. We 

demonstrated that 5 F inhibited the activation of N F - K B by partially suppressing the 

degradation of IicBa in UMSCCl lA. The inactivation of N F - K B by 5 F was independent 

of iKBa degradation in UMSCCl2 and HEp-2 (Figure 12). Rather 5F might inhibit 

N F - K B activation in UMSCCl2 and HEp-2 by masking its nuclear translocation signal 
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or blocking the nuclear transporter of NF-KB. In fact, there are evidences showing that 

same NF-KB inhibitors can act on different points along the NF-KB pathway in different 

cells (Karin et al. 2004). Sulphasalazine, a non-steroid anti-inflammatory drug, 

suppresses NF-KB activation via blocking the phosphorylation and degradation of IicBa 

in response to stimuli. However, 5-amino-salicylic acid, an oral administrated derivative 

of sulphasalazine, was shown to block NF-KB activation through inhibiting IKK-A and 

IKK-P kinase activity (Wahl et al. 1998; Yan and Polk 1999). Since the permeability or 

uptake of 5F may be cell line specific, its inhibition mechanism in UMSCCl2 and 

HEp-2 needs to be further investigated. 

Our experiments showed that 5 F induced apoptosis and inhibited the NF-KB activity in 

laryngeal cancer cells. However, this did not mean that NF-KB inhibition in laryngeal 

cancer cells induced apoptosis. To address this, we studied the effects of Bay (11-7082) 

on the N F - K B activation and the apoptosis induction in laryngeal cancer. Our MTT 

assays showed that the cell proliferation rate was retarded in the presence of 10|j,M of 

Bay (11-7082). Annexin V assay showed that apoptosis was induced by Bay (11-7082) 

(10|LIM) in U M S C C L L A . Given that Bay ( 11 -7082) specifically inhibits the NF-KB 

activity, these results indicated that the effects of Bay (11-7082) in laryngeal cancer cells 

were attributed to the inhibition of NF-KB function. Therefore, we conclude that NF-KB 

is involved in the 5F-induced apoptosis in laryngeal cancer cells. Since NF-KB is a 

multi-fiinctional regulator for cell proliferation and apoptosis, our findings further 

support that the perturbation of NF-KB function is a potentially useful therapeutic 

strategy for laryngeal cancer treatments. 
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We also found it interesting that Bay (11-7082) only significantly induced apoptosis in 

UMSCCl lA but not in UMSCCl2 and HEp-2. Indeed, in other cancers, mere inhibition 

of N F - K B is insufficient for inducing apoptosis (Karin 2006). We believe that the 

differential levels of basal NF-KB activation in various laryngeal cancer cells may 

contribute to the response differences to 5F in UMSCCllA, UMSCC12, and HEp-2. 

UMSCCl 1A exhibited a relatively higher constitutive N F - K B activity than that in HEp-2 

and UMSCCl2 (Figure 15). This indicated that N F - K B played a more important role in 

cell survival in UMSCCllA than that in UMSCCl2 and HEp-2. Similar situation has 

been reported by Angela A et al (Van Waes et al. 2005). Bortezomib, a novel 

proteasome inhibitor, suppresses a panel of HNSCC cell lines (including UMSCCllA, 

-1 IB) via inhibiting N F - K B activation with different sensitivity. However, the cell lines 

with low constitutive N F - K B activity were more resistant to bortezomib while those with 

high activity such as UMSCCllA and UMSCC 1 IB are more sensitive to bortezomib. 

On the other hand, it is noticeable that the higher constitutive N F - K B activity in 

UMSCCl 1A might be due to the relatively lower expression level of IKBCX (Figure 12). 

By comparing the finding from the treatment of 5F and Bay (11-7082)，we suggested 

that 5F induced apoptosis in laryngeal cancer cells involving other mechanisms in 

addition to N F - K B signaling pathway. 

Other than low constitutive N F - K B activity, the presence of HPV 18 may also contribute 

to the resistance to 5F for inducing apoptosis in laryngeal cancers. We found that HEp-2 

was more resistant to 5F than that in UMSCC 12. Hep2 is a HPV 18 positive cell line. 

Two cooperative oncoproteins E6 and E7 are encoded in the genome of HPV 18. E6 is 

responsible for cancer progression whereas the function of E7 is primarily for inducing 
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transformation (Song et al. 2000; Scheffner and Whitaker 2003). The small interfering 

RNAs (siRNAs) targeting E6 and E7 inhibits the growth of cervical cancer cells (Fujii et 

al. 2006). Suppression of E6 and E7 by antisense RNAs also significantly induces 

apoptosis in HeLa cells (Sima et al. 2007). Therefore, E6 and E7 are essential to the 

growth of human HPV-positive laryngeal cancers. Furthermore, the complex 

cooperation between E6 and E7 is essential for malignant transformation (von Knebel 

Doeberitz et al. 1988; zur Hansen 1994). Yamato et al reported that E6-specific 

suppression alone induced more apoptosis than the E6 and E7 co-suppression in HPV 18 

positive cervical cancer cells (Yamato et al. 2006). It is known that E7 inactivates cell 

cycle regulators like pRb in order to up-regulate genes for Gl/S transition and DNA 

synthesis. Moreover, E7 also causes the up-regulation of pro-apoptotic genes, such as 

c-Myc, Bak and p53 (Askew et al. 1991). However, in HEp-2, the E6 can rescue the 

cells from cell death by binding with these pro-apoptotic proteins for subsequent 

degradation (Gross-Mesilaty et al. 1998; Thomas and Banks 1998). Therefore, it is 

conceivable that without E6 co-expression, E7 can induce cell death by activating 

pro-apoptotic genes. On the other hand, suppression of E7 may induce cell growth arrest 

rather than cell death. Here, we demonstrated that 5F suppressed the mRNA and protein 

expressions of E7 whereas the expression of E6 was not altered. However, the reduced 

E7 expression by 5F did not enhance apoptosis significantly in HEp-2, when comparing 

with UMSCC 12. This might be due to the fact that the SF-induced E7 reduction was too 

subtle and the unaltered E6 level still exerted a significant anti-apoptotic effect. To 

address the apoptotic roles of E6 and E7 in laryngeal cancer cells, we suggest to evaluate 

the effects on apoptosis after silenting both genes in HEp-2, or introducing them into 

HPV-negative laryngeal cancer cells like UMSCCl 1A and UMSCC 12 in future. 
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NF-KB regulates both cell proliferation and apoptosis via its different target genes. After 

addressing the inhibitory effect of 5F on the NF-KB nuclear translocation, we then 

showed that 5F down-regulated a number of NF-KB known target genes in laryngeal 

cancer cells such as proliferation-related (COX-2, EGFR and cyclin Dl), anti-apoptotic 

(survivin), as well as pro-apoptotic genes (Bax). Expression of COX-2, EGFR and 

survivin has been shown to have value in predicting prognosis in laryngeal squamous 

cell carcinoma (Pan, Tao 2005; Marioni et al 2006; Wei et al. 2008). Increasing 

expression of survivin accompanied with laryngeal papilloma malignancy (Poetker et al. 

2002). The cell cycle and differentiation regulator EGFR is over-expressed in laryngeal 

papillomas and cultured papilloma cells (Johnston et al. 1999). Constitutive activation of 

NF-KB has also been shown in laryngeal papillomas and HPV-positive laryngeal cancers 

(Vancurova et al. 2002; Du，Chen 2003). Up-regulation both of COX-2 and NF-KB has 

been shown to be a feature of laryngeal carcinogenesis (Pan et al. 2005; Kourelis et al. 

2007). Given that NF-KB up-regulates COX-2, which then activates EGFR signaling 

(Sarkar and Li 2008), down-regulation of COX-2 and inactivation of EGFR via NF-KB 

inhibition can be used synergistically for killing cancer cells. Also, inhibition of NF-KB 

can lead to the suppression of survivin and EGFR and then prevents the malignant 

transformation of laryngeal papillomas. Therefore, our observation of the C0X2, 

survivin and EGFR down-regulation by 5F may be worthy for future development of 

laryngeal papilloma treatments. 

NF-KB signaling pathways have various effects on laryngeal carcinogenesis. It becomes 

one of the most attractive targets for cancer prevention and therapy. Here, we have 
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demonstrated that an herbal extract 5F effectively inhibits the growth of laryngeal cancer 

cells via induction of apoptosis. Moreover, the suppression of N F - K B activity by 5 F 

subsequently inhibits the expression of the NF-KB target genes responsible for cell 

proliferation and apoptosis. Our results implicate that 5F is a new potent anti-tumor 

agent for laryngeal cancers by targeting its N F - K B signaling pathway. 
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Appendix 

Appendix 1 Map of pLuc- N F - K B plasmid: 
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