Part I Optimization of Palladium Catalyzed Phosphination

Part II Syntheses of Optically Active As,N Ligands and Their Metal Complexes

YU Michael

于子洋

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy in Chemistry

©The Chinese University of Hong Kong July 2003

The Chinese University of Hong Kong holds the copyright of this thesis. Any Person(s) intending to use a part or whole of the materials in the thesis in a proposed publication must seek copyright release from the Dean of the Graduate School.
To My Supervisor

Professor

Kin Shing Chan
Table of Contents

Table of Contents ... i
Acknowledgments ... iii
Abbreviations .. iv
Abstract .. v

Part I - Optimization of Palladium Catalyzed Phosphination

Chapter 1 General Introduction

1.1 Background of Phosphine Synthesis 1
1.2 Preparation of Phosphines 4

Chapter 2 Optimization of Phosphination of Aryl Bromides

2.1 Additive Effect in Phosphination of Aryl Bromides 14
2.2 Iodide Effect in Phosphination of Aryl Triflate 25
2.3 Low Temperature Phosphination 27
2.4 Conclusion ... 29

Part II - Synthesis of Optically Active As,N Ligands and Their Metal Complexes

Chapter 1 Introduction 30

Chapter 2 Synthesis of Optically Active As,N Ligands and Their Metal Complexes

4.1 Synthesis of As,N Oxazolines 39
4.2 Synthesis of As,N Oxazoline Transition Metal Complexes 41
4.3 Conclusion ... 44
Acknowledgments

I would like to express my most sincere gratitude to my dearest supervisor, Prof. Kin Shing Chan, for his invaluable advice, patient guidance and continuous encouragement throughout my research work.

Through his teaching, I have learnt chemical knowledge and cultivated the attitude to integrate chemical knowledge into daily life. Also, I have grown up to be more mature and be eager to ask questions.

I would also like to thanks Dr. Fuk Yee Kwong and Mr. Chi Wai Lai for their help. I would also like to acknowledge Mr. Siu Kwan Yeung, Mr. Chun Wah Fung, Mr. Xin Zhu Li, Mr. Ming Chun Siu, Mr. Jia Wen and Ms. Cheuk Man Lau in Prof. Chan’s group at the department of chemistry for their encouragement and useful discussion.

July 2003

Michael Yu

Department of Chemistry

The Chinese University of Hong Kong
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>chemical shift</td>
</tr>
<tr>
<td>"Bu</td>
<td>n-butyl</td>
</tr>
<tr>
<td>′Bu</td>
<td>t-butyli</td>
</tr>
<tr>
<td>Calcd.</td>
<td>calculated</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>d</td>
<td>doublet (NMR)</td>
</tr>
<tr>
<td>dba</td>
<td>(E,E)-dibenzylideneacetone</td>
</tr>
<tr>
<td>dd</td>
<td>double doublets</td>
</tr>
<tr>
<td>DME</td>
<td>dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>dppe</td>
<td>diphenylphosphinoethane</td>
</tr>
<tr>
<td>dppp</td>
<td>diphenylphosphinopropane</td>
</tr>
<tr>
<td>EI</td>
<td>electron impact (MS)</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>FG</td>
<td>functional group(s)</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant</td>
</tr>
<tr>
<td>m</td>
<td>multiplet (NMR)</td>
</tr>
<tr>
<td>M⁺</td>
<td>molecular ion</td>
</tr>
<tr>
<td>m/z</td>
<td>mass per charge ratio</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter(s)</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole(s)</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>Np</td>
<td>naphthyl</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methylpyrrolidinone</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>Py</td>
<td>pyridine</td>
</tr>
<tr>
<td>q</td>
<td>quartet (NMR)</td>
</tr>
<tr>
<td>Rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>t</td>
<td>triplet (NMR)</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>Tf</td>
<td>trifluoromethylsulfonyl</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
</tbody>
</table>
Abstract of thesis entitled:
Part I Optimization of Palladium Catalyzed Phosphination
Part II Syntheses of Optically Active As,N Ligands And Their Metal Complexes
Submitted by Michael Yu
For the degree of Master of Philosophy
at The Chinese University of Hong Kong in July 2003

Part I

The user-friendly palladium catalyzed phosphination of aryl bromides using triarylphosphines as the phosphinating reagents was successfully optimized by the addition of iodides. The added iodides enhanced both the yields and the rates of reactions.

Part II

Novel optically active As,N-oxazolines were synthesized. Palladium and platinum complexes were successfully synthesized. The palladium complexes of iso-propyl and benzyl substituted As,N-oxazolines were further characterized by single crystal X-ray crystallography.
摘要

I 鋇催化膦化反應的優化

II 砷氮類吲唑啉及其絡合物的合成

I
以三芳基膦為膦化劑，通過加入碘鹽，鉑催化的芳基溴化物膦化反應被成功優化。加入碘鹽後，反應產率和速度均得到提高。

II
新的光活性砷氮類吲唑啉被成功合成。其鈀和鈦的絡合物也被成功製備。通過 X 光單晶衍射，異構基和苯基取代的砷氮類吲唑啉鉑絡合物結構得到進一步確認。
Part I - Optimization of Palladium Catalyzed Phosphination

Chapter 1 General Introduction

1.1 Background of Phosphine Synthesis

As with much organic chemistry, organophosphorus chemistry began in the nineteenth century. The pioneers of organophosphorus chemistry are P. E. Thenard and especially A.W. von Hofmann who worked in the laboratory of Karl Arnold August Michaelis at the University of Rostock in Germany from 1874 to 1916 leading the characterization and discovery of some of the major functional groups and their synthetic methods that we still use today. Every year onwards, a large number of methods in preparation of phosphines are reported, most of them are useful improvements and extensions to some methods. However, there had been no significant addition of synthetic methods of phosphines to the list given by Maier which was published in 1972. In the list, there are three general synthetic methods which are used for the preparation of the majority of phosphorus-carbon and phosphorus-hydrogen bonds by:

i) Organometallic reagents and halogenophosphines

ii) Metal phosphides

iii) Transition metal catalyzed phosphination
The source of the phosphorus atom in the preparation of organophosphorus compounds is mostly elemental phosphorus and in other words, the lowest numbers of synthetic steps from it gives the most efficient and effective method. Unfortunately, useful synthesis of phosphines directly from elemental phosphorus is limited in scope. Therefore, most syntheses make use of commercially available derivatives like halogenophosphines. It is important to improve the phosphines and to synthesize new organophosphorus compounds since phosphines, by their lone pair electrons, can act as ligands for metal catalyzed reactions. The steric and electronic effect of phosphines can be altered by changing the substituent and therefore, the effectiveness of ligands.

The steric bulk of a phosphine can be measured by the cone angle (θ). As defined by Tolman, the cone angle is the plane angle at the apex of a cone located at the center of the central metal atom of the complex and where the surface of the cone compasses the ligand, passing at a distance from the outermost atoms of the ligand equal to the effective van der Waals radii of those atoms. The steric bulk increases with increasing cone angle as shown in Figure 1.1. The electronic effect of a phosphine can be measured by its pK_a (Table 1.1). The electron donating ability of a phosphine increases with increasing basicity or equivalently pK_a.

2
Figure 1.1 Cone angle

![Cone Angle Diagram](image)

Table 1.1 Stereoelectronic Properties of Phosphorus(III) Ligands

<table>
<thead>
<tr>
<th>No.</th>
<th>Ligands</th>
<th>Cone Angle °C</th>
<th>pKa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P(OMe)₃</td>
<td>107</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>P(OMe)₂Ph</td>
<td>120</td>
<td>2.64</td>
</tr>
<tr>
<td>3</td>
<td>P(OPh)₃</td>
<td>128</td>
<td>-2.00</td>
</tr>
<tr>
<td>4</td>
<td>P(OMe)Ph₂</td>
<td>132</td>
<td>2.69</td>
</tr>
<tr>
<td>5</td>
<td>PBu₃</td>
<td>132</td>
<td>8.43</td>
</tr>
<tr>
<td>6</td>
<td>PMePh₂</td>
<td>136</td>
<td>4.57</td>
</tr>
<tr>
<td>7</td>
<td>PEtPh₂</td>
<td>140</td>
<td>4.9</td>
</tr>
<tr>
<td>8</td>
<td>P(O-o-tol)₃</td>
<td>141</td>
<td>-1.83</td>
</tr>
<tr>
<td>9</td>
<td>PPh₃</td>
<td>145</td>
<td>2.73</td>
</tr>
<tr>
<td>10</td>
<td>P(p-MeOPh)₃</td>
<td>145</td>
<td>4.59</td>
</tr>
<tr>
<td>11</td>
<td>PCyPh₂</td>
<td>153</td>
<td>5.05</td>
</tr>
<tr>
<td>12</td>
<td>PCy₃</td>
<td>170</td>
<td>9.7</td>
</tr>
<tr>
<td>13</td>
<td>P(f-Bu)₃</td>
<td>182</td>
<td>11.4</td>
</tr>
</tbody>
</table>
1.2 Preparation of Phosphines

Preparation via Electrophilic Phosphorus And Organometallic Reagents

Organophosphines are synthesized from the reactions of electrophilic phosphorus and organometallic reagents.

\[\text{PCI}_3 + 3RM \rightarrow R_3P + 3MCI \] (1.1)

\[M = \text{Mg, Li} \]

Equation 1.1 illustrates the general chemical transformation. This method is often firstly considered due to the readily available halogenophosphines. However, the halogenophosphines are very air and moisture sensitive as well as toxic, making them difficult to handle in laboratory. This method is useful in the preparation of tertiary phosphines but not in the synthesis of primary and secondary phosphines since halophosphines of \(\text{H}_2\text{PCI} \) and \(\text{HPCI}_2 \) are not commercially available. Moreover, this method is limited to base insensitive compounds only.

Use of Grignard Reagents

Phosphination via Grignard reagents are often employed (Equation 1.2). One
unique example is shown in Equation 1.3 for the preparation of oxazoline phosphine.5

\[
R^1R^2PCl + 3RMgX \rightarrow R^1R^2PR + 3MgXCl \quad (1.2)
\]

\(X=\) halogen, leaving group

This organometallic approach generally suffers from poor yield if the anion is sterically hindered. The reaction of 2-oxazolinyl phenyl magnesium bromide (2) only yields the corresponding phosphine in 30\% (Equation 1.3). \('BuMgBr, even in excess, only produces the di-'butyl but not the tri-'butyl phosphine (Equation 1.4).6

\[
PCl_3 + \text{'}BuMgX \xrightarrow{\text{ether}} \text{'}Bu_2PCl \quad (1.4)
\]

Use of Organolithium Compounds

Li-C bonds are generally more ionic than Mg-C bond,7 organolithiums are
therefore more reactive than Grignard reagents. Indeed the sterically hindered tri-\(^{\text{tBu}}\)butylphosphine can be obtained from the reaction of \(^{\text{tBu}}\)Li and \(\text{PCl}_3\) in 50 % yield (Equation 1.5)\(^6\) where \(^{\text{tBu}}\)MgBr fails to give any desired product.

\[
3 ^{\text{tBu}}\text{Li} + \text{PCl}_3 \xrightarrow{\text{b}} \text{benzen} \xrightarrow{\text{reflux}} ^{\text{tBu}}_3\text{P} \\
50\%
\]

Likewise, the 2-oxazolinylphenyl lithium, generated from orthometalation of sterically hindered 2-phenyloxazoline with butyl-lithium and TMEDA in hexane, reacts with \(\text{Ph}_2\text{PCl}\) to give a higher yield of the product than 2-oxazolinylphenyl magnesium bromide (Equation 1.6)\(^9\).

Preparation via Nucleophilic Phosphorus From Metal Phosphide

Alternatively, phosphines can be prepared from nucleophilic phosphorus reagent. Primary and secondary phosphines are metallated by strong base of sodium or potassium in liquid ammonia and butyllithium (Equations 1.7-1.10)\(^2\).
\[
\begin{align*}
\text{PH}_3 + \text{K NH}_2 & \rightarrow \text{KPH}_2 + \text{NH}_3 \\
\text{Ph}_2\text{PH} + \text{NaNH}_2 & \rightarrow \text{Ph}_2\text{PNa} + \text{NH}_3 \\
\text{Ph}_2\text{PCl} + \text{LiBu} & \rightarrow \text{Ph}_2\text{PLi} + \text{BuCl} \\
\text{Ph}_2\text{PH} + \text{LiBu} & \rightarrow \text{Ph}_2\text{PLi} + \text{BuH}
\end{align*}
\]

Table 1.2 shows the results of the syntheses of ortho, meta and para isomers of diphenylphosphinobenzylamines from \(\text{Ph}_2\text{PK}^+ \) and fluorobenzylamines.\(^{10}\) Likewise, by using diphenylphosphane in superbasic conditions with DMSO as solvent, diphenylphosphinobenzonitrile can be synthesized in good yields.\(^{10}\) The para isomer gives better yield than those of ortho and meta substituted benzonitrile suggesting that the reaction is sensitive to steric hindrance (Table 1.3).

Table 1.2. Synthesis of diphenylphosphinobenzylamine

\[
\begin{align*}
\text{Ph}_2\text{PK, DME} & & \text{85°C, 1 d} \\
\text{Ph}_2\text{PPh}_2
\end{align*}
\]

<table>
<thead>
<tr>
<th>Isomer</th>
<th>Yield /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortho</td>
<td>95</td>
</tr>
<tr>
<td>Meta</td>
<td>56</td>
</tr>
<tr>
<td>Para</td>
<td>70</td>
</tr>
</tbody>
</table>
Table 1.3 Synthesis of diphenylphosphinobenzonitrile

\[
\begin{align*}
\text{CN} & \quad \text{Ph}_2\text{PH, DMSO/KOH} \\
\text{F} & \quad 20^\circ\text{C}, 10 \text{ min} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Isomer</th>
<th>Yield /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortho</td>
<td>82</td>
</tr>
<tr>
<td>Meta</td>
<td>82</td>
</tr>
<tr>
<td>Para</td>
<td>92</td>
</tr>
</tbody>
</table>

The oxazoline phosphine is also prepared in good yields from the Ph₃PLi and 2-oxazolinyl phenyl fluoride (6) (Equation 1.13).

Transition Metal Catalyzed Phosphination

The previously mentioned traditional methods of phosphine syntheses often employ very basic reagents. Recently, milder phosphination methods by transition metal catalyzed phosphinylation reactions have been developed. One example is the palladium-catalyzed phosphinylation of the biaryl triflate using air and moisture.
stable diphenylphosphine oxide as the phosphinylating reagent (Equation 1.14).11

\[
\begin{array}{c}
\text{NMe}_2 \quad \text{Ph}_2\text{P(O)}\text{H}, \\
\text{Pd(OAc)}_2, \text{dppe} \\
\text{EiNPr}_2, \text{DMSO}, \\
110^\circ\text{C}
\end{array} \quad \begin{array}{c}
\text{NMe}_2 \quad \text{P(O)}\text{Ph}_2 \\
\text{HClSi} \\
\text{Et}_3\text{N}
\end{array} \quad \begin{array}{c}
\text{NMe}_2 \quad \text{PPh}_2
\end{array}
\]

(1.14)

However, subsequent reduction of phosphine oxide is required. Therefore substrates bearing easily reducible functional groups are not compatible. Reductants such as lithium aluminium hydride, sodium borohydride, triphenyl phosphite, etc can also be used.12 So far, the most commonly employed reducing reagent is trichlorosilane because of its broader scope and mildness.13

In 1998, palladium-catalyzed P-C coupling reactions between primary or secondary phosphines and functionalized iodoarenes was developed by Herd and co-workers.14 This coupling reaction eliminates the reduction step and tolerates substituents like OH, NH\textsubscript{2} and COOH (Scheme 1.1). However, this C-P coupling reaction uses expensive, air and moisture sensitive primary and secondary phosphines. Moreover, it is limited to aryl iodides.
Scheme 1.1 Pd catalyzed P-C coupling reactions with Ph₂PH

Conditions: Pd(OAc)₂, NEt₃, CH₃CN

Another phosphinating reagent, (trimethylsilyl)diphenylphosphine, has also been developed in palladium-catalyzed phosphination reaction. It does not need further reduction and the phosphinating reagent is fairly air stable (Equation 1.15). This phosphination reaction is compatible with various of functional groups such as ketone, methyl ether and halides. However, hydroxyl, amino, nitro and aldehyde groups are not tolerated. Moreover, this reaction is limited to aryl
iodides and Ph$_2$PSiMe$_3$ is moisture sensitive and not commercially available.

\[
\begin{align*}
\text{FG} & \quad \quad \text{Pd(CH$_3$CN)$_2$Cl$_2$, Ph$_2$PSi(CH$_3$)$_3$} \\
\text{FG} & \quad \quad \text{benzene, 50-70°C} \\
\text{FG} & \quad \quad \text{PPh$_2$} \\
\end{align*}
\]

\(\text{FG = COCH$_3$, COOCH$_3$, Br, Cl, CF$_3$, OCH$_3$}\)

Instead of palladium, nickel complexes are also active phosphination catalysts.16 Air and moisture sensitive chlorodiphenylphosphine is used as the phosphinating reagent in phosphination catalyzed by NiCl$_2$(dppe), together with zinc metal functioning as the reducing agent to convert nickel(II) to nickel(0) and provide Ph$_2$PZnCl for transmetallation (Equation 1.16). This method tolerates functional groups such as methoxy, methyl ether, amine and amide but not carboxylic acid and easily reducible functional groups since zinc metal is used.

\[
\begin{align*}
\text{FG} & \quad \quad \text{PPh$_2$Cl, NiCl$_2$(dppe), Zn} \\
\text{FG} & \quad \quad \text{DMF, 110°C} \\
\text{FG} & \quad \quad \text{X = Br, OTf} \\
\text{FG} & \quad \quad \text{FG = COOCH$_3$, OCH$_3$, NH$_2$Bn} \\
\end{align*}
\]

Recently, a novel palladium catalyzed phosphination methodology of aryl triflates and bromides using economical triarylphosphines as the diaryl
phosphinating reagents and Pd(OAc)$_2$ catalyst has been developed in Chan’s group (Equation 1.17). This method is compatible with many functional groups such as ketone, aldehyde, nitrile and methoxy groups (Table 1.4).

$$\text{FG} + 2\text{PPh}_3 \rightarrow \text{FG-PPh}_2 + \text{Ph}_4\text{PBr}$$

$\text{FG = aldehyde, chloride, cyano, ester, methyl ether and ketone}$

Table 1.4 Palladium catalyzed phosphination of aryl bromides

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Time /h</th>
<th>Yield /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>38</td>
</tr>
</tbody>
</table>

Protection/deprotection steps in traditional phosphination methodology are
not required. Triarylphosphines are relatively inexpensive and readily available. Moreover, triarylphosphines are air and moisture stable. Thus, syntheses of substituted aryl phosphines are operationally simple, user-friendly and economically attractive.²⁰ However, the reaction rate and yield are not very satisfactory.

1.3 The Objective of This Work

Since phosphine derivatives are very important in fine-tuning the efficiency and effectiveness of transition metal catalysis. The previous synthetic methods of phosphines are limited in scopes.⁹-¹⁶ The method developed by Chan and et. al. suffers from low yielding and requirement of high reaction temperature, further improvement is necessary. This part of the thesis concerns the enhancement on reaction rate and yield in palladium-catalyzed phosphination of aryl bromides by the addition of additives (Equation 1.18).

```
FG·Br 10 mol% Pd(OAc)₂
2.3 eq. PPh₃
DMF, 120-125°C
additive
```

(1.18)
Chapter 2 Optimization of Phosphination of Aryl Bromides

2.1 Additive effect in phosphination reaction

It is known that in some palladium-catalyzed reactions, metal halides such as sodium iodide\(^{21}\) and copper iodide\(^ {22}\) can enhance the reaction rate and yield dramatically. Optimization of the novel palladium-catalyzed phosphination was therefore carried out using sodium iodide in the phosphination of 4-bromoacetophenone as a prototype substrate (Equation 2.1).

\[
\begin{align*}
\text{O} & \quad \text{Br} & \quad 2.3 \text{ eq. PPh}_3, 10\text{ mol\% Pd(OAc)}_2 & \quad \text{2.3 eq. PPh}_3, 10\text{ mol\% Pd(OAc)}_2 \\
10 & \quad & & \quad \rightarrow \quad \text{PPh}_2 \\
120-125^\circ \text{C}, \text{ DMF}, \text{ N}_2, \text{ Salt} & \quad & \quad & \quad \text{14}
\end{align*}
\]

The reactions were monitored by GC-MS using anthracene as the internal standard. In order to investigate the optimal loading of additive, 2.5, 5 and 10 equivalents of NaI were added. The results are shown in Table 2.1.
Table 2.1 Effect of NaI loading on phosphination of 4-bromoacetophenone

\[
\begin{align*}
\text{O} & \quad \text{Br} \\
\begin{array}{c}
\text{10} \\
\text{120-125}^\circ\text{C, DMF, N}_2, \text{NaI, 18hr}
\end{array}
\end{align*}
\]

\[\overset{2.3 \text{ eq. PPh}_3, 10\text{mol}\% \text{Pd(OAc)}_2}{\longrightarrow} \]

\[
\begin{align*}
\text{O} & \quad \text{PPh}_2 \\
\begin{array}{c}
\text{14} \\
\text{(2.2)}
\end{array}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Nal (eq.)</th>
<th>GC Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>2.5</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>56</td>
</tr>
</tbody>
</table>

*SGC yield

Sodium iodide was found to increase the yield of phosphination reaction of 4-bromoacetophenone using 10 mol% of Pd(OAc)$_2$ and 2.3 equivalents of PPh$_3$ in DMF at 120-125°C in 18 hours. The optimum loading of sodium iodide was estimated to be about 5 equivalents and a good yield of 68% of the product was obtained. Higher loading of 10 equivalents of NaI, however decreased the yield. In all cases, no rate enhancement was observed. With these successful results obtained, further additives were examined and the results are listed in Table 2.2.
Table 2.2 Different Salts in Phosphination of 4-Bromoacetophenone by Pd(OAc)$_2$

![Reaction Scheme]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Salt (5eq.)</th>
<th>Time/hra</th>
<th>GC Yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>20</td>
<td>46b</td>
</tr>
<tr>
<td>2</td>
<td>NaI</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>NaBr</td>
<td>23</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>NaCl</td>
<td>23</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>NaNO$_3$</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>NaBF$_4$</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>NaOAc</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>NaPF$_6$</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>KI</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td>KBr</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>KF</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>K$_3$PO$_4$</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>CsCl</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>CsF</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Et$_4$NI</td>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>16</td>
<td>NH$_4$PF$_6$</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>LiI</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>18</td>
<td>CuI</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>BF$_3$.Et$_2$O</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>0.1eq.Cy$_3$P</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>21</td>
<td>0.2eq.Cy$_3$P</td>
<td>40</td>
<td>49</td>
</tr>
</tbody>
</table>

a) Complete disappearance of starting material and optimal amount of product.
b) Isolated yield.
Among the additives, halides gave better yields of product and enhanced the rates of reactions (Table 2.2, entry 2-4, 9-10, 17). Among the halides, sodium and potassium halides exhibited similar promoting effect. Iodides (M=Li, Na, K) were most superior. They enhanced faster reaction and higher yields of the product (Table 2.2, entry 2-5, 9-10, 15, 17). The time profiles of different salts in the reaction are shown in Graph 2.3.
Sodium iodide increased the yield from 46% (Table 2.2, entry 1) to 68% (Table 2.2, entry 2). Potassium iodide not only increased the yield of phosphination reaction to 67% but also shortened the reaction time from 20 to 10 hours (Table 2.2, entry 9). Although tetraethylammonium iodide (Table 2.2, entry 15) did not increase the yield of phosphination, however, it shortened the phosphination reaction time from 20 hours to 2 hours (Table 2.2, entry 1).

Alkali metal iodide generally showed better yields of the phosphination reaction. The best result was found to be with the addition of 5 equivalents of KI,
with the isolated yield of 4-(diphenylphosphino)acetophenone obtained in 60% in 10 hours. Non-halide salts such as, NaBF₄, NaPF₆ and NH₄PF₆ were found to be inferior both in rates and yields.

The metal halides likely play several roles in the phosphination reaction. The addition of metal halides may increase the polarity of the solvent that favors the oxidative addition and the formation of the phosphonium salt intermediate. The iodide may further assist the halide exchange of an aryl bromide to a more reactive aryl iodide.²³ The possibility of converting aryl bromide to aryl iodide by the addition of NaI or KI was supported by the observation of a trace amount (~2%) of 4-iodoacetophenone generated during the reaction of phosphination of 4-bromoacetophenone detected by GC-MS analysis (Scheme 2.1). Likely, this is formed by the reductive elimination of an Ar-Pd-I intermediate. 4-Iodoacetophenone (15) indeed was found to react about 3 times faster than 4-bromoacetophenone in the phosphination (Equation 2.3).

$$\text{15} \xrightarrow{2.3\text{eq. PPh₃, 10mol\% Pd(OAc)₂, DMF120°C, 7h}} \text{14, 44\%}$$
There are two possible ways to form 4-iodoacetophenone. The first one was that the iodide anion coordinates with Pd(OAc)$_2$ to form an active catalyst Pd(OAc)$_2$I(PPh$_3$). Further reduction by PPh$_3$ and oxidative addition of 4-bromoacetophenone generates an intermediate PdBrl(Ar)(PPh$_3$). After reductive elimination, 4-iodoacetophenone was formed (Equation 2.4).

The second way is that the Pd(OAc)$_2$, after reduction by PPh$_3$, undergoes oxidative addition of 4-bromoacetophenone. Then the iodide anion exchanged with the bromide in the resultant intermediate. 4-Iodoacetophenone finally is generated by reductive elimination (Equation 2.5).
However, aryl bromide did not undergo exchange with iodide (Equation 2.6).

The major product was found to be the coupled biaryl in 68% yield. Therefore, 4-iodoacetophenone might have been formed in a minor pathway in phosphination reactions or under high phosphine concentration.

![Reaction diagram](image)

Less coordinating anions were reported to have faster dissociation (BF₄ > I > Br > Cl). Since iodide anion is less coordinating, therefore it dissociates more rapidly than bromides and chlorides, and the concentration of coordinatively unsaturated palladium species would increase. The rate of Pd-aryl/P-aryl exchange is therefore faster (Equation 2.7). Such anion dependent exchange has been reported by Grushin.

![Reaction diagram](image)
Scheme 2.1 A Plausible Mechanism for Palladium-Catalyzed Phosphination with Added Iodides.

Scheme 2.3 illustrates a plausible mechanism for the reaction involving Pd(0)/Pd(II) cycles. Palladium(II) acetate is in situ reduced by triphenylphosphine to form acetate ligated complex A, PdL₂(OAc)⁻ (L = triphenylphosphine).²⁶,²⁷ This active anionic palladium complex A then undergoes oxidative addition with an aryl bromide to afford four-coordinated palladium complex B (Scheme 2.1).²⁸ Halide exchange by the addition of iodide ion (from NaI or KI) generated complexes C. As a trace and real amount of 4-iodoacetophenone was observed during the course of the reaction by GC-MS analysis,²⁹ the ligand substitution product from B to C is
feasible. The \textit{trans}-complex C subsequently, after isomerization to the \textit{cis}-isomer, undergoes reductive elimination with triphenylphosphine to produce a phosphonium salt D and palladium complex A'. Such Pd-catalyzed phosphonium salt formation for \textit{meta}- and \textit{para}- but not \textit{ortho}-substituted aryl bromides has been reported.30 Grushin \textit{et al.} also reported that the palladium iodide complex undergoes the Pd-aryl/P-aryl interchange faster than bromide and chloride24 through possibly the phosphonium salt pathway in the \textit{ArPdX(PPH\textsubscript{3})\textsubscript{2}} complex.25 The anionic palladium complex A then undergoes oxidative addition by carbon-phosphorus bond activation of the phosphonium salt D to generate the coordinated \textit{ArPPh\textsubscript{2}} Pd-complex (Scheme 2.1).31,32 Finally, ligand substitution by triphenylphosphine to Pd(II) complex E gives \textit{ArPPh\textsubscript{2}} and Pd-phenyl complex F. The \textit{PdL\textsubscript{2}(OAc)}+/Pd\textsubscript{L\textsubscript{2}}− species is regenerated by reductive elimination of triphenylphosphine and Pd bound phenyl group to yield the tetraphenylphosphonium iodide co-product (Scheme 2.1). The formation of tetraphenylphosphonium co-product was detected by 31P NMR (\(\delta = 24.0 \text{ ppm}\))33 in the reaction mixture. Therefore, two equivalents of PPh\textsubscript{3} were required. The first one serves as the diphenylphosphinating agent and the second one yields the phosphonium salt co-product.
The iodide enhancement effect in phosphination was found to be general in aryl bromides. With the rates increased nearly about two times and yields increased by about 10-20%. (Table 2.3)

Table 2.3 Palladium catalyzed phosphination of aryl bromides with iodide salts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>Salt</th>
<th>Time /h</th>
<th>Yield /%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>KI</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>KI</td>
<td>16</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>KI</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>KI</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>KI</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>NaI</td>
<td>48</td>
<td>52</td>
</tr>
</tbody>
</table>

*Isolated yield
Electron-poor aryl bromides (Table 2.3, entry 1, 2, 6) gave higher yields than electron-rich aryl bromides (Table 2.3, entry 3). One possible reason is the oxidation stability of electron deficient phosphines to phosphine oxide is higher than that of electron-rich phosphines.

2.2 Iodide effect in phosphination of aryl triflates

The phosphination of 4-acetylphenyl triflate (20), without any salt additive, required 2 hours to yield 4-(diphenylphosphino)acetophenone (14) in 37 % (Equation 2.7).\(^{19}\) Added iodides, however, exhibited an inferior effect in both the rates and yields of the phosphination (Table 2.4 and Table 2.5).

\[
\begin{align*}
\text{PhCO} & \xrightarrow{2.3 \text{ eq. } \text{PPh}_3, \ 10\text{mol\% } \text{Pd(OAc)}_2} \text{PhP}_{\text{Ph}}
\end{align*}
\]

\(20 \rightarrow 14, 37\%\)
Table 2.4 Palladium catalyzed phosphination of aryl triflate with KI

\[
\begin{align*}
\text{Ph}_2\text{P} & \quad \text{TfO} \\
\downarrow & \\
\text{Ph}_2\text{P} & \quad \text{Ph}_2\text{P}
\end{align*}
\]

\[
\begin{align*}
\text{2.3 eq. } & \text{PPh}_3, 10\text{mol}\% \text{ Pd(OAc)}_2, \\
& \text{5eq. KI, DMF, } 120^\circ\text{C}, \text{N}_2
\end{align*}
\]

<table>
<thead>
<tr>
<th>Time /h</th>
<th>Yield /%*</th>
<th>S.M. Consumed /%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>45</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>96</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

*GC yield

Time Profile of Phosphination of Ary Triflate with KI

![Graph showing time profile of phosphination yield and consumption over time][1]

[1]: https://example.com/graph.png
The complete consumption of 20 required 20 hours. The yield of product 14 after 96 hours was obtained in 40% GC yield. No 4-iodoacetophenone was detected by GC-MS during the reaction. The lack of promoting but rather suppressing effect is likely caused by the reduction in the rate of more coordinating iodide compared to the triflate in the Pd-aryl/P-aryl exchange step, which is very likely the rate determining step of the catalysis. The inferior effect of iodide in oxidative addition also cannot be eliminated.

2.3 Low Temperature Phosphination

In an attempt to lower the reaction temperature so as to avoid any undesirable competitive thermal decomposition, reduction or secondary phosphination, the
effect of temperature of phosphination was investigated.

Without any additive, the phosphination at 100°C required 3 days to give a very low yield of 14. Addition of 5 equivalents of KI shortened the reaction time to 2.5 days and a higher yield of 58% was obtained. Et₄NI behaved similarly with KI but NaBF₄ exhibited a poorer promoting effect. At 80°C, KI did not show any promoting effect. Et₄NI, however, showed only a slightly enhancing effect but synthetically unfruitful (Table 2.6). Therefore, the minimal temperature for the phosphination even with the addition of 5 equivalents of KI or Et₄NI required 100°C.

Table 2.6 Low Temperature Phosphination of 4-Bromoacetophenone

<table>
<thead>
<tr>
<th>Additive</th>
<th>Temp /°C</th>
<th>Time /d</th>
<th>Yield /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>115</td>
<td>1</td>
<td>40¹⁶</td>
</tr>
<tr>
<td>—</td>
<td>100</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>KI</td>
<td>100</td>
<td>2.5</td>
<td>58</td>
</tr>
<tr>
<td>KI</td>
<td>80</td>
<td>3</td>
<td>no reaction</td>
</tr>
<tr>
<td>NaBF₄</td>
<td>100</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>NaBF₄</td>
<td>80</td>
<td>5</td>
<td>no reaction</td>
</tr>
<tr>
<td>Et₄NI</td>
<td>80</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>Et₄NI</td>
<td>100</td>
<td>2.5</td>
<td>58</td>
</tr>
</tbody>
</table>
2.4 Conclusion

The catalytic user-friendly palladium-catalyzed phosphination of aryl bromides using triphenylphosphines as the phosphinating reagents was successfully optimized by addition of iodides. This carbon-phosphorus bond formation was compatible with a number of functional groups, including aldehyde, ketone, ester and nitrile group.
Part II - Syntheses of optically active As, N ligands and their metal complexes

Chapter 1 Introduction

Arsines, analogues of phosphines, are also useful ligands. However, the chemistry of phosphines is much better developed than that of arsines. This may be due to the fact that phosphines can form more stable bondings with transition metals and is much less toxic.\(^{34,35}\) Similar to the preparation of phosphines, arsines compounds can be synthesized via electrophilic arsinic reagents (Equation 3.1 and 3.2)\(^{36,37}\) and nucleophilic arsinic reagents (Equation 3.3).\(^{38}\)

\[\begin{align*}
\text{ArCH}_2\text{MgBr} + \text{AsCl}_3 & \rightarrow \text{Ar}_{3}\text{As} \quad \text{THF} \quad \text{-78°C} \quad 60\% \\
2\text{PhLi} + \text{PhAsCl}_2 & \rightarrow \text{PhAs}_{2}\text{Ph} \quad \text{THF} \quad \text{-78°C} \quad 55\%
\end{align*}\]
In catalysis, weaker metal-ligand bond may be beneficial to facilitate the formation of coordinatively unsaturated active catalyst. Examples of arsine ligands in enhancing the reaction yields and rates are reported in Stille, Heck, hydroformylation, carbonylation, epoxidation and olefination reactions.

The Stille coupling reaction is one of the most familiarized palladium catalyzed coupling reactions. It is widely used in the total synthesis of large molecules in coupling of complex subunits. Recently, studies have revealed that ligand effect and co-catalyst by copper(I) salt improve Stille reactions both in reaction rate and yield.

In one case, the addition of triphenylarsine as a ligand in a Stille reaction gives higher yields of biaryl 22 with much less undesirable homocoupling product, 23, than the addition of triphenylphosphine as a ligand (Table 3.1).
The addition of triphenylphosphine suppresses the Stille coupling reaction and gives biphenyl as the major product by palladium catalyzed aryl/aryl exchange. It is suggested that the transmetalation from tin to copper is blocked by triphenylphosphine but not triphenylarsine.49

The enhancing effect of AsPh\textsubscript{3} in Stille reactions can also be observed in alkyl-alkyl cross coupling (Table 3.2).50 The addition of phosphine as ligand only gives the reduced product. Amatore has recently revealed that Pd(AsPh\textsubscript{3}) and Pd(PPh\textsubscript{3})\textsubscript{2} are the major species in solution. Therefore, the higher activity of Pd-arsine catalyst is ascribed to the lower coordination number.51
In the palladium catalyzed asymmetric Heck reaction, the use of optically active biarylphosphine ligand, 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), proves to be effective in most cases.\cite{52} However, the low reaction rate and high catalyst loading are still often associated with. Recently, the use of new optically active arsine ligand (BINAs, 29) has been discovered to be a much more effective ligand in Heck reactions. The use of BINAs in asymmetric Heck reaction of alkenyl iodide not only increases the reaction yield significantly, but also more than twice the enantiomeric excess (Table 3.3).\cite{53}
Table 3.3 Asymmetric Heck Reaction of Alkenyl iodide

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Pd(0)-ligand</th>
<th>Time /h</th>
<th>Yield /%</th>
<th>ee /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mol% Pd$_2$(dba)$_3$ + 15 mol% (R)-BINAs</td>
<td>24</td>
<td>90</td>
<td>82</td>
</tr>
<tr>
<td>5 mol% Pd$_2$(dba)$_3$ + 15 mol% (R)-BINAP</td>
<td>24</td>
<td>55</td>
<td>32</td>
</tr>
<tr>
<td>10 mol% Cl$_2$Pd[(R)-BINAP]</td>
<td>84</td>
<td>67</td>
<td>30</td>
</tr>
</tbody>
</table>

The arsine effect is also operating in another Heck reaction. A mixed donor ligand, 2-diphenylarsino-2'-diphenylphosphino-1,1'-binaphthyl (BINAPAs, 33) increases the reaction yield but lower the % ee value compared to the use of BINAP (30) in THF. However, when the solvent is either toluene or 1,2-dichloroethane, the yields improve significantly with little effect on the enantiomeric excess. (Table 3.4).
Table 3.4: Asymmetric Heck reaction Using BINAPAs and BINAP

![Chemical structure and reaction diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>ligand</th>
<th>solvent</th>
<th>temp /°C</th>
<th>Yield /%</th>
<th>ee /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 mol% (R)-BINAP</td>
<td>THF</td>
<td>60</td>
<td>60</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>20 mol% (R)-BINAPAs</td>
<td>THF</td>
<td>60</td>
<td>86</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>20 mol% (R)-BINAP</td>
<td>toluene</td>
<td>40</td>
<td>74</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>20 mol% (R)-BINAPAs</td>
<td>toluene</td>
<td>40</td>
<td>91</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>30 mol% (R)-BINAP</td>
<td>CH2CH2Cl</td>
<td>40</td>
<td>73</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>30 mol% (R)-BINAPAs</td>
<td>CH2CH2Cl</td>
<td>40</td>
<td>88</td>
<td>81</td>
</tr>
</tbody>
</table>

Besides the biaryl ligands, a common ligand type is the phosphinooxazolines. Metal complexes of phosphinooxazolines such as palladium, platinum, copper, rhodium, ruthenium, iridium, molybdenum and tungsten have been used in asymmetric allylic alkylations, 1,4 additions, hydrogenation and Diels-Alder reaction, etc.
Optically active phosphinooxazoline-chiral ligands (37) in metal catalyzed allylic alkylation have been pioneered by Plaftz. The palladium catalyzed allylic alkylation is carried out in mild conditions and compatible with many functional groups. Therefore, it is one of the most efficient and versatile methods of enantioselective carbon-carbon bond and carbon-heteroatom bond formation. The platinum-phosphinooxazoline complex is also shown to be efficient catalyst in allylic alkylation (Table 3.6).
Table 3.6 Enantioselective allylic alkylation with Pt complex

<table>
<thead>
<tr>
<th>Additive</th>
<th>temp., °C</th>
<th>time /h</th>
<th>Yield /%</th>
<th>ee /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>65</td>
<td>44</td>
<td>65</td>
<td>77</td>
</tr>
<tr>
<td>5% L</td>
<td>65</td>
<td>35</td>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>10% L</td>
<td>65</td>
<td>44</td>
<td>100</td>
<td>61</td>
</tr>
<tr>
<td>5% PPh₃</td>
<td>20</td>
<td>16</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

Modification of this versatile P,N ligand to As,N ligand would provide a novel type of ligand for further application in asymmetric catalysis. A survey of literature reveals that only one reported optically active As,N ligand was synthesized.

In 1999, Namyslo and co-workers reported a As,N mixed donor ligand (43) giving better yield than the use of triphenylphosphine and triphenylarsine as ligands in the preparation of N-protected Epibatidine (42) via a Heck type hydroarylation. However, the asymmetric induction was poor.⁷⁹
Table 3.7 Heck Type Hydroarylation with Different Ligands.

\[
\begin{align*}
\text{COOMe} & \quad \text{N}^\text{Cl} \\
\text{Pd(OAc)₂L₂} & \quad \text{COOMe} \\
\text{Et₃N, HCOOH} & \quad \text{DMSO} \\
\text{L} & \quad \text{Yield /%} \\
PPh₃ & \quad 45 \\
\text{AsPh₃} & \quad 81 \\
43 & \quad 92
\end{align*}
\]

3.2 The Objective of This Work

Given the unexplored chemistry of optically active As₃N ligands, this part of the thesis concerns the syntheses of optically active As, N ligands and their metal complexes.
Part II

Chapter 2 Synthesis of optically active As, N ligands and their metal complexes

4.1 Synthesis of As, N oxazoline

The extension of palladium catalyzed phosphination to arsination has been reported by Chan’s group in 2001. The same synthetic route was adapted to access two derivatives of arsinooxazolines, (S)-2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline (47) and (S)-2-(2-(diphenylarsino)phenyl)-4-(benzyl)oxazoline (48). Firstly, 2-cyanophenyl trifluoromethanesulfonate (45) (Scheme 4.1.1) was prepared from 2-cyanophenol in the presence of pyridine and trifluoromethanesulfonic anhydride in 86% yield. The arsination of 2-cyanophenyl trifluoromethanesulfonate with triphenylarsine serving as the diphenyl arsinating reagent using Pd(OAc)$_2$ or Pd/C catalyst in DMF gave an air stable 2-(diphenylarsino)benzonitrile (46) in 52 % and 49 % yield respectively. Finally, the optically active ligands, (S)-(+)2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline (47) and (S)-(+)2-(2-(diphenylarsino)phenyl)-4-(benzyl)oxazoline (48), were obtained by reacting 2-(diphenylarsino)benzonitrile with (S)-(+)2-amino-3-methyl-1-butanol and
2-amino-3-phenyl-1-propanol in the presence of anhydrous ZnCl₂ in chlorobenzene in 54 % and 31 % respectively (Scheme 4.1). 48 might need further optimization.

Scheme 4.1

\[
\begin{align*}
\text{CN} & \xrightarrow{\text{Pd}(\text{OAc})_2, \text{ClCH}_2\text{C}l, r.t.} \text{CN} & \xrightarrow{\text{Ph}_3\text{As, 10 mol\% Pd(\text{OAc})}_2, \text{DMF, 120-125 }^\circ\text{C, N}_2, 5 \text{ d}} \text{CN} \\
\text{CN} & \xrightarrow{\text{AsPh}_3, 10 \text{ mol\% Pd (10\% Pd/C), DMF, N}_2, 165-170^\circ\text{C, 12 d}} \text{CN} \\
\text{CN} & \xrightarrow{5\% \text{ZnCl}_2, \text{C}_6\text{H}_5\text{Cl, reflux 18 h}} \text{CN}
\end{align*}
\]

44 45 46 47 R = 'Pr, 54% 48 R = Benzyl, 31%
4.2 Synthesis of As,N-oxazoline transition metal complexes

With the As,N ligands prepared successfully, the As,N oxazolines palladium complexes were synthesized from the reactions of the corresponding As,N oxazolines with 1 equivalent PdCl₂ in acetonitrile (Equation 4.4). The products were further purified by recrystallization from CH₂Cl₂/hexane.

![Chemical reaction diagram]

Equation 4.4:

\[
\text{Ph₂As} \text{N} \bigtriangleup \text{R} + \text{PdCl₂} \xrightarrow{\text{MeCN, 60°C, N₂, 10 min}} \text{Ph₂As} \text{Pd} \text{N} \bigtriangleup \text{Cl} \bigtriangleup \text{Cl} \bigtriangleup \text{R} \]

49 R = 4°Pr, 75%
50 R = Benzyl, 76%

The palladium complexes were further characterized by single crystal X-ray crystallography (Figure 4.1). The selected bond lengths and bond angles are listed in Table 4.1 and 4.2.
Figure 4.1

Complex 49

Complex 50
Table 4.1 Selected bond lengths and bond angles of complex 49

<table>
<thead>
<tr>
<th>Bond lengths (Å)</th>
<th>Bond angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd (1)—N (1)</td>
<td>2.040 (2)</td>
</tr>
<tr>
<td>Pd (1)—As (1)</td>
<td>2.312 (3)</td>
</tr>
<tr>
<td>Pd (1)—Cl (1)</td>
<td>2.289 (8)</td>
</tr>
<tr>
<td>Pd (1)—Cl (2)</td>
<td>2.370 (9)</td>
</tr>
</tbody>
</table>

Table 4.2 Selected bond lengths and bond angles of complex 50

<table>
<thead>
<tr>
<th>Bond lengths (Å)</th>
<th>Bond angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd (1)—N (1)</td>
<td>2.040 (6)</td>
</tr>
<tr>
<td>Pd (1)—As (1)</td>
<td>2.334 (8)</td>
</tr>
<tr>
<td>Pd (1)—Cl (1)</td>
<td>2.359 (17)</td>
</tr>
<tr>
<td>Pd (1)—Cl (2)</td>
<td>2.279 (18)</td>
</tr>
</tbody>
</table>

The X-ray crystal structure analyses of 49 and 50 reveal that the coordination geometry around the palladium(II) center are slightly distorted square-planar in geometry. The As-Pd-N bite angle of complex of 50 (84.83°) is smaller than that of 49 (88.36°). The Pd-As bond length of both complexes exhibit normal As-metal bond length of about 2.3-2.5 Å. However, the bond lengths of Pd-Cl bond cis to the substitutient on the oxazoline ring in both complexes are longer than that of the Pd-Cl bond where the Cl atom is trans to the substitutient on the oxazoline ring. This may
due to the larger trans-directing influence of aryl arsine than the imino group.75

4.4 Synthesis of Pt-As,N oxazoline complex

The Pt-As,N oxazoline complex was synthesized in a modified procedure. As PtCl\textsubscript{2} is not very soluble in acetonitrile, it did not react with 47. Instead K\textsubscript{2}PtCl\textsubscript{4} was dissolved in refluxing acetonitrile and then reacted with 47 under N\textsubscript{2} at 81 \textdegree C for 16 hours to give 51 in 75\%.76

4.5 Conclusion

Novel optically active As,N oxazolines, and their palladium and platinum complexes were synthesized. The palladium complexes of iso-propyl (49) and benzyl (50) substituted As, N oxazoline were characterized by single crystal X-ray crystallography. The platinum complex of As, N oxazoline, dichloro[(S)-2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline]platinum(II) (51) was synthesized.
Experimental

General Procedures

All materials were obtained from commercial suppliers and used without further purification unless otherwise specified. Toluene was distilled from sodium under N₂. Chloroform was distilled from calcium chloride under N₂. Hexanes were distilled from calcium chloride. Tetrahydrofuran (THF) and diethyl ether were freshly distilled from sodium benzophenone ketyl under N₂. Dimethyformamide was distilled from magnesium sulfate under N₂. Acetonitrile was distilled with P₂O₅ under N₂.

Thin layer chromatography was performed on Merck precoated silica gel 60 F₂₅₄ plates. Column chromatography was performed on silica gel (70-230) or neutral aluminum oxide (activity I, 70-230 mesh).

Anhydrous salts were prepared by heating the salt at 100 °C under vacuum for overnight.

Physical and Analytical Measurements

¹H NMR spectra were recorded on a Bruker DPX-300 (300 MHz). Chemical shifts were referenced with the residual solvent protons in CDCl₃ (δ 7.26 ppm) or with tetramethylsilane (δ 0.00 ppm) as the internal standard.

Optical rotation was measured on a Perkin Elmer PE-341 polarimeter at 20 °C.

Mass spectra were recorded on Hewlett Packard 5989B mass spectrometer (FAB
modes and E.I.) modes at 70 eV or Themo Finnigan MAT 95XL mass spectrometer (FAB mode).

Gas chromatography was performed on a HP G1800 GCD system using a HP5MS column (30 m x 0.25 mm x 0.25 μm), temperature programming: initial temperature 100 °C, duration 2 min.; increment rate 20 °C/min.; final temperature 280 °C, duration 15 min.

4-(Diphenylphosphino)acetophenone (14). 4-Bromoacetophenone (50.0 mg, 0.25 mmol), Pd(OAc)₂ (5.6 mg, 0.03 mmol), triphenylphosphine (151.0 mg, 0.58 mmol) and anhydrous NaI (187.4 mg, 1.25 mmol) were dissolved in dry DMF (1.0 mL) under nitrogen in a Teflon Stopcock flask. The solution was degassed and heated to 120-125 °C for 20 hours to yield 4-(diphenylphosphin)acetophenone (14) (50.0 mg, 0.15 mmol, 60 %) as a white solid after purification by column chromatography on silica gel eluting with ethyl acetate/hexane (1/20). Rf = 0.22 in ethyl acetate/hexane (1/20); m.p. = 118-120 °C (Lit77 118-120 °C); ¹H NMR (300 MHz, CDCl₃) δ 2.59 (s, 3 H), 7.31-7.38 (m, 12 H), 7.87 (d, 2 H, J = 8.1 Hz); MS (EI): m/z (relative intensity) 304 (M⁺, 100), 289 (10), 261 (12), 227 (11), 183 (90), 152 (30).

4-(Diphenylphosphino)benzonitrile (16). 4-Bromobenzonitrile (185.0 mg, 1.0
mmol), Pd(OAc)_2 (22.4 mg, 0.1 mmol), triphenylphosphine (603.0 mg, 2.3 mmol) and anhydrous NaI (750.0 mg, 5.0 mmol) were dissolved in dry DMF (4.0 mL) under nitrogen in a Teflon Stopcock flask. The solution was degassed and heated to 120-125 °C for 48 hours to yield 4-(diphenylphosphino)benzonitrile (2) (149.0 mg, 0.52 mmol, 52 %) as a white solid after purification by column chromatography on silica gel eluting with ethyl acetate/hexane (1/10). R_f = 0.60 ethyl acetate/hexane (1/10); m.p. = 86-87 °C (Lit^78 86-87 °C); ^1H NMR (300 MHz, CDCl_3) δ 7.31-7.39 (m, 12 H), 7.56 (d, 2 H, J = 7.2 Hz). MS (EI): m/z (relative intensity) 287 (M^+, 100), 208 (55), 195 (8), 183 (62), 177 (12).

4-(Diphenylphosphino)anisole (17).^77 4-Bromoanisole (94.0 mg, 0.5 mmol), Pd(OAc)_2 (11.2 mg, 0.05 mmol), triphenylphosphine (301.0 mg, 1.15 mmol) and anhydrous KI (415.0 mg, 2.5 mmol) were dissolved in dry DMF (2.0 mL) under nitrogen in a Teflon Stopcock flask. The solution was degassed and heated to 120-125 °C for 15 hours to yield 4-(diphenylphosphino)anisole (17) (43.0 mg, 0.15 mmol, 29 %) as a white solid after purification by column chromatography on silica gel eluting with ethyl acetate/hexane (1/20). R_f = 0.40 ethyl acetate/hexane (1/20); m.p. = 64.5-65.5 °C (Lit^77 63-65 °C); ^1H NMR (300 MHz, CDCl_3) δ 3.81 (s, 3 H), 6.90 (d, 2 H, J = 8.1 Hz), 7.25-7.33 (m, 12 H); MS (EI): m/z (relative intensity) 292 (M^+, 100),
4-(Diphenylphosphino)benzaldehyde (18). 4-Bromobenzoaldehyde (185.0 mg, 1.0 mmol), Pd(OAc)₂ (22.4 mg, 0.1 mmol), triphenylphosphine (602.0 mg, 2.3 mmol) and anhydrous KI (830.0 mg, 5.0 mmol) were dissolved in dry DMF (4.0 mL) under nitrogen in a Teflon Stopcock flask. The solution was degassed and heated to 120-125 °C for 40 hours to yield the 4-(diphenylphosphino)benzaldehyde (18) (100.0 mg, 0.34 mmol, 34 %) as a white solid after purification by column chromatography on silica gel eluting with ethyl acetate/hexane (1/10); Rf = 0.60 ethyl acetate/hexane (1/10); m.p. = 75.5-77 °C (Lit 69-71 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.43 (m, 12 H), 7.80 (d, 2 H, J = 8.1 Hz), 10.00 (s, 1 H); MS (EI): m/z (relative intensity) 290 (M⁺, 100), 261 (8), 211 (9), 183 (95), 165 (12), 152 (20).

3-(Diphenylphosphino)anisole (19). 3-Bromoanisole (94.0 mg, 0.5 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol), triphenylphosphine (301.0 mg, 1.15 mmol) and anhydrous KI (415.0 mg, 2.5 mmol) were dissolved in dry DMF (2.0 mL) under nitrogen in a Teflon Stopcock flask. The solution was degassed and heated to 120-125 °C for 12 hours to yield 3-(diphenylphosphino)anisole (5) (62.0 mg, 0.21 mmol, 42 %) as a colorless liquid after purification by column chromatography on silica gel.
eluting with ethyl acetate/hexane (1/20); \(R_f = 0.40 \) ethyl acetate/hexane (1/20); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \ 3.72 \) (s, 3 H), 6.85-6.89 (m, 3 H), 7.23-7.35 (m, 11 H); MS (EI): \(m/z \) (relative intensity) 292 (M\(^+\), 100), 213 (22), 259 (10), 199 (20), 183 (48).

4-Acetylphenyltrifluoromethanesulfonate (20).\(^{72}\) 4-Hydroxyacetophenone (2.7 g, 20.0 mmol) was dissolved in dry CH\(_2\)Cl\(_2\) (100.0 mL) under nitrogen at room temperature followed by the addition of dry pyridine (4.8 mL, 40.0 mmol). Trifluoromethanesulfonic anhydride (3.7 mL, 22.0 mmol) in dry CH\(_2\)Cl\(_2\) was then added dropwise. The color of the solution changed from orange to brown with white fume evolved. The reaction mixture was then stirred at room temperature for 1 hour. Water (50 mL) was then added and the reaction mixture was extracted with CH\(_2\)Cl\(_2\) (3 x 50 mL). The combined organic phase was washed with dilute hydrochloric acid, water, brine and dried over MgSO\(_4\). The solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel eluting with ethyl acetate/hexane (1/10) to yield 4-acetylphenyltrifluoromethanesulfonate (20) (4.6 g, 17.4 mmol, 87 %) as a colorless liquid; \(R_f = 0.41 \) ethyl acetate/hexane (1/5); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \ 2.65 \) (s, 3 H), 7.43 (d, 2 H, \(J = 8.7 \) Hz), 8.00 (d, 2 H, \(J = 8.4 \) Hz). MS (EI): \(m/z \) (relative intensity) 268 (M\(^+\), 48), 189 (100), 161 (42).
2-Cyanophenyl trifluoromethanesulfonate (45).71 2-Cyanophenol (0.6 g, 5.0 mmol) was dissolved in dry CH\textsubscript{2}Cl\textsubscript{2} (20.0 mL) under nitrogen at room temperature followed by the addition of dry pyridine (1.2 mL, 15.0 mmol). Trifluoromethanesulfonic anhydride (1.0 mL, 5.5 mmol) in dry CH\textsubscript{2}Cl\textsubscript{2} (10.0 mL) was then added dropwisely. The color of the solution changed from orange to brown with white fume evolved. The reaction mixture was then stirred at room temperature for 1 hour. Water (20 mL) was then added and the reaction mixture was extracted with dichloromethane (3 x 15 mL). The combined organic phase was washed with dilute hydrochloric acid, water, brine and dried over MgSO\textsubscript{4}. The solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel eluting with ethyl acetate/hexane (1/10) to yield 2-Cyanophenyl trifluoromethanesulfonate (45) (1.1 g, 4.3 mmol, 86%) as a pale yellow liquid. R\textsubscript{f} = 0.61 ethyl acetate/hexane (1/5); 1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.50 (d, 1 H, J = 8.7 Hz), 7.56 (dd, 2 H, J = 0.9, 7.7 Hz), 7.74 (dd, 1 H, J = 1.7, 8.1 Hz), 7.79 (dd, 1 H, J = 1.6, 6.7 Hz).

2-(Diphenylarsino)benzonitrile (46).71 \textit{Method A} 2-Cyanophenyl trifluoromethanesulfonate (251.0 mg, 1.0 mmol), triphenylarsine (706.0 mg, 2.3 mmol) and Pd(OAc)\textsubscript{2} (22.0 mg, 0.1 mmol) were dissolved in dry DMF (4.0 mL) under nitrogen in a Teflon Stopcock flask. The solution was degassed and heated to
120-125 °C for 5 days to yield 2-(diphenylarsino)benzonitrile (46) (172.0 mg, 0.52 mmol, 52 %) as a white solid after purification by column chromatography on silica gel eluting with ethyl acetate/hexane (1/5). \(R_f = 0.51 \) ethyl acetate/hexane (1/5); m.p. = 112-113 °C (Lit72 = 111.5-112.5 °C); \(^1H\) NMR (300 MHz, CDCl\textsubscript{3}) \(\delta \) 7.11 (d, 1 H, \(J \) = 6.5 Hz), 7.31-7.47 (m, 12 H), 7.69 (d, 1 H, \(J = 6.7 \) Hz); MS (EI): \(m/z \) (relative intensity) 331 (M+, 20), 252 (12), 227 (17), 177 (21), 152 (100).

Method B 2-Cyanophenyl trifluoromethanesulfonate (251.0 mg, 1.0 mmol), triphenylarsine (706.0 mg, 2.3 mmol) and 10 % Pd/C (106.0 mg, 0.1 mmol) were suspended in dry DMF (4.0 mL) under nitrogen in a Teflon Stopcock flask. The solution was degassed and heated to 120-125 °C for 12 days to yield 2-(diphenylarsino)benzonitrile (46) (162 mg, 0.49 mmol, 49 %) as a white solid after purification by column chromatography on silica gel eluting with ethyl acetate/hexane (1/5).

\[(S)\text{-}(-)\text{-}2\text{-}((2\text{-}(diphenylarsino)phenyl)\text{-}4\text{-}(isopropyl)oxazoline} \quad (47).\]

2-(Diphenylarsino)benzonitrile (25.0 mg, 0.08 mmol), anhydrous zinc(II) chloride (11.7 mg, 0.11 mmol) and \((S)\text{-}(+)\text{-}2\text{-}amino\text{-}3\text{-}methyl\text{-}1\text{-}butanol (11.7 mg, 0.11 mmol) were dissolved in dry chlorobenzene (0.5 mL) and heated to reflux at 140 °C under \(N_2 \) for 18 hours to yield \((S)\text{-}(+)\text{-}2\text{-}((2\text{-}(diphenylarsino)phenyl)\text{-}4\text{-}(isopropyl)oxazoline} (47)
(17 mg, 0.04 mmol, 54%) as a white solid after purification by column chromatography on silica gel eluting with hexane/CH₂Cl₂ (1/1). It was further recrystallized from CH₂Cl₂/hexane; Rf = 0.43 hexane/CH₂Cl₂ (1/1); m.p. = 140-141 °C (Lit.⁷² = 140-141.5 °C). ¹H NMR (300 MHz, CDCl₃) δ 0.71 (d, 3 H, J = 6.6 Hz), 0.82 (d, 3 H, J = 6.6 Hz), 1.21 (s, 1 H), 3.84-3.90 (m, 2 H), 4.16 (p, 1 H, 6.3 Hz), 6.99 (dd, 1 H, J = 1.2, 7.5 Hz), 7.28-7.39 (m, 12 H), 7.91 (dd, 1 H, J = 1.2, 7.5 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 18.3, 18.8, 32.6, 70.4, 128.1, 128.2, 128.5, 129.8, 131.0, 131.5, 133.7, 134.0, 134.5, 141.1, 141.5; MS (EI); m/z (relative intensity) 418 (M⁺, 50), 340 (100), 254 (20); HRMS (ESIMS) Calcd for C₂₄H₂₄AsNOH⁺, 418.1147; Found 418.1143; [α]₂⁰ = -33.6 (c = 0.06, MeCN).

(S)-2-(2-(diphenylarsino)phenyl)-4-(benzyl)oxazoline

(48).

2-(Diphenylarsino)benzonitrile (25.0 mg, 0.08 mmol), anhydrous zinc(II) chloride (11.7 mg, 0.11 mmol) and (S)-(−)-2-amino-3-phenyl-1-propanol (16.6 mg, 0.11 mmol) were dissolved in chlorobenzene (0.5 mL) and heated to reflux at 140 °C under N₂ for 18 hours to yield (S)-2-(2-(diphenylarsino)phenyl)-4-(benzyl)oxazoline (48) (10.6 mg, 0.02 mmol, 31%) as a white solid after purification by column chromatography on silica gel eluting with hexane/CH₂Cl₂ (1/1); It was further recrystallized from CH₂Cl₂/hexane; Rf=0.34 CH₂Cl₂/hexane (1/1); m.p. = 153-154 °C; ¹H NMR (300
MHz, CDCl₃) δ 2.11 (dd, 1 H, J = 9.0, 13.8 Hz), 2.86 (dd, 1 H, J = 5.4, 13.8 Hz), 3.78 (t, 1 H, J = 8.4 Hz), 4.05 (t, 1 H, J = 8.4 Hz), 4.31 (−quint, 1 H, J = 5.4 Hz), 7.00 (d, 1 H, J = 7.5 Hz), 7.06 (d, 2 H, J = 6.6 Hz), 7.18−7.25 (m, 4 H), 7.28−7.39 (m, 11 H), 7.89 (d, 1 H, J = 7.5 Hz); ¹³C NMR (75MHz, CDCl₃) δ 29.7, 41.1, 68.0, 71.5, 126.3, 128.0, 128.2, 128.3, 128.4, 128.5, 128.6, 129.1, 129.7, 130.8, 131.8, 133.7, 134.2, 134.4, 138.2, 141.2, 141.3, 141.8; MS (EI): m/z (relative intensity) 466 (M⁺, 30), 388 (100), 256 (15); HRMS (ESIMS) Calcd for C₂₈H₂₄ASNOH⁺, 466.1147; Found 466.1147; Elemental Analysis: Calcd for %C 72.26, %H 5.20, %N 3.01; Found %C 72.18, %H 5.55, %N 2.82; [α]D₂⁰ = 12.5 (c = 0.20, MeCN).

Dichloro[(5)-2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline]palladium(II) (49). A solution of (5)-(±)-2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline (15.0 mg, 0.04 mmol) in acetonitrile (0.5 mL) was added to a clear orange mixture of PdCl₂ (6.4 mg, 0.04 mmol) in acetonitrile (0.5 mL) at 60 °C and stirred for 10 minutes. The color changed from orange to yellow. The solution mixture was then cooled to room temperature. Yellow precipitate was formed and was collected by filtration, washed with cold acetonitrile and then diethyl ether to give dichloro[(5)-2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline]palladium(II) (49) (16.1 mg, 0.03 mmol, 75 %) as a yellow solid. Single crystals were grown from
CHCl₃/hexane for X-ray crystallographic analysis. 1H NMR (300 MHz, CDCl₃) δ 0.13 (d, 3 H, $J = 6.9$ Hz), 0.83 (d, 3 H, $J = 6.9$ Hz), 2.76 (dt, 1 H, $J = 2.7$, 7.0 Hz), 4.33 (dd, 1 H, $J = 5.1$, 9.2 Hz), 4.44 (t, 1 H, $J = 9.2$ Hz) 5.51 (--dquint, 1 H, $J = 1.8$, 5.2 Hz), 7.10 (d, 1 H, $J = 7.6$ Hz), 7.43-7.68 (m, 12 H), 8.11 (d, 1 H, $J = 7.9$ Hz); 13C NMR (75 MHz, CDCl₃) δ 13.3, 18.6, 30.8, 68.7, 71.7, 128.7, 128.8, 128.9, 129.2, 129.7, 131.6, 132.0, 132.7, 133.0, 133.5, 133.7,133.8; MS (EI): m/z (relative intensity) 593 (M⁺, 5), 558 (100), 523 (20), 460 (20); HRMS (ESIMS) Calcd for C₂₄H₂₄AsNOPdCr, 557.9792; Found 557.9804; Elemental Analysis: Calcd for %C 48.47, %H 4.07, %N 2.36; Found %C 47.96, %H 3.86, %N 2.10; $[\alpha]_{D}^{20} = 290.5$ (c = 0.07, MeCN).

Dichloro[(S)-2-(2-(diphenylarsino)phenyl)-4-(benzyl)oxazoline]palladium(II) (50)

A solution of (S)-(+-)2-(2-(diphenylarsino)phenyl)-4-(benzyl)oxazoline (15.0 mg, 0.03 mmol) in acetonitrile (0.5 mL) was added to a clear orange mixture of PdCl₂ (5.7 mg, 0.03 mmol) in acetonitrile (0.5 mL) at 60 °C and stirred for 5 minutes. The color changed from orange to yellow. Yellow precipitate formed and the reaction mixture was cooled to room temperature. The yellow precipitate was collected by filtration, washed with cold acetonitrile and then diethyl ether to give dichloro[(S)-2-(2-(diphenylarsino)phenyl)-4-(benzyl)oxazoline]palladium(II) (50)
(15.7 mg, 0.02 mmol, 76 %) as a yellow solid. Single crystals were grown from
CHCl₃/hexane for X-ray crystallography analysis. ¹H NMR (300 MHz, CDCl₃) δ 1.82
t (1 H, J = 11.1 Hz), 3.95 (dd, 1 H, J = 3.8, 13.2 Hz), 4.26 (dd, 1 H, J = 4.8, 8.9 Hz),
4.34 (t, 1 H, J = 9.4 Hz), 5.72 (¬d quint, 1 H, J = 2.1, 3.9 Hz), 7.14 (d, 1 H, J = 7.0
Hz), 7.20 (s, 5 H), 7.68-7.44 (m, 12 H), 8.09 (d, 1 H, J = 7.8 Hz); ¹³C NMR (75MHz,
CDCl₃) δ 41.0, 68.3, 72.0, 125.9, 127.1, 128.5, 128.7, 129.4, 129.9, 131.8, 132.0,
132.5, 133.1, 133.2, 133.8, 133.9, 135.6; MS (EI): m/z (relative intensity) 641 (M⁺, 2),
606 (100), 573 (50), 530 (50); HRMS (ESIMS) Caled for C₂₈H₂₄AsNOPdCl⁺, 605.9792; Found 605.9802; Elemental Analysis: Caled for %C 52.32, %H 3.76, %N
2.18; Found %C 52.39, %H 3.53, %N 1.98; [α]d²⁰ = 215.1 (c = 0.015, CH₂Cl₂).

Dichloro[(S)-2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline]platinum(II)

(51). A solution of (S)-(+) 2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline (15.0
mg, 0.04 mmol) in acetonitrile (0.5 mL) was added to a mixture of potassium
tetrachloroplatinate(II) (15.0 mg, 0.04 mmol) in acetonitrile (0.5 mL). The solution
was heated to reflux at 85 °C under N₂. After 16 hours, a mixture of yellowish and
white precipitate formed and the reaction mixture was cooled to room temperature.
The yellow precipitate was collected by filtration, washed with cold acetonitrile and
then diethyl ether to give
dichloro[(S)-2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline]platinum(II) \((51) \)

(17.9 mg, 0.03 mmol, 73 %). The product was further recrystallized from CH\(_2\)Cl\(_2\)/hexane. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 0.10 (d, 3 H, \(J = 6.9 \) Hz), 0.84 (d, 3 H, \(J = 6.9 \) Hz), 2.86 (dt, 1 H, \(J = 3.6, 9.7 \) Hz), 4.34 (dd, 1 H, \(J = 4.9, 9.2 \) Hz), 4.43 (t, 1 H, \(J = 9.96 \) Hz), 5.71 (~dquint, 1 H, \(J = 2.3, 5.1 \) Hz), 7.15 (d, 1 H, \(J = 7.4 \) Hz), 7.40-7.80 (m, 12 H), 8.10 (d, 1 H, \(J = 7.8 \) Hz); \(^1^3\)C NMR (75MHz, CDCl\(_3\)) \(\delta \) 12.9, 18.4, 18.5, 30.5, 129.1, 129.6, 131.5, 131.8, 132.9, 133.4, 133.5, 133.6; MS (EI): \(m/z \) (relative intensity) 682 (M\(^+\), 5), 646 (100), 534 (50), 457 (50); HRMS (ESIMS) Caled for C\(_{24}\)H\(_{24}\)AsNOPtCl\(^+\), 647.0405; Found 647.0405; Elemental Analysis: Caled for %C 42.18, %H 3.54, %N 2.05; Found %C 42.08, %H 3.84, %N 1.86; \([\alpha]_D^{20} = 217.9 \) (c = 0.015, CH\(_2\)Cl\(_2\)).
References

14. Herd, O.; Hebler, A.; Hingst, M.; Machnitzki, P.; Tepper, M.; Stelzer, O.

34. McAuliffe, C. A. Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands, Macmillan: London, **1973**.

35. Norman, N. C. *Chemistry of Arsinic, Antimony and Bismuth*, Thomson Science, **1998**.

38. McAuliffe, C. A.; Levason, W. Phosphine, Arsine and Stibine Complexes of the Transition Elements, Studies in Inorganic Chemistry 1, Elsevier, **1979**.

Appendix

Dichloro\{(S)-2-(2-(diphenylarsino)phenyl)-4-(isopropyl)oxazoline\}palladium(II) (49)

Table 1. Crystal data and structure refinement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>p21</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{25}H_{26}AsCl_{4}Pd_{1}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>675.59</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 10.3397(5) Å</td>
</tr>
<tr>
<td></td>
<td>b = 12.3518(6) Å</td>
</tr>
<tr>
<td></td>
<td>c = 10.3073(5) Å</td>
</tr>
<tr>
<td>Volume, Z</td>
<td>1335.4(1) Å^3, 2</td>
</tr>
<tr>
<td>Density [calculated]</td>
<td>1.690 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>2.344 mm^-1</td>
</tr>
<tr>
<td>F(000)</td>
<td>476</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.64 x 0.69 x 0.52 mm</td>
</tr>
<tr>
<td>9 range for data collection</td>
<td>2.03 to 27.99°</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-13 ≤ h ≤ 13, -17 ≤ k ≤ 16, -14 ≤ l ≤ 6</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>8883</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6067 (R_int = 0.0258)</td>
</tr>
<tr>
<td>Completeness to θ = 27.99°</td>
<td>99.6 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>SADABS</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.000 and 0.7604</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5067 / 1 / 299</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.056</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.0256, wR2 = 0.0592</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0266, wR2 = 0.0596</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.224(7)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.0012(5)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths (Å) and angles (°)

N(1)-C(7)	1.293(4)	N(1)-C(5)	1.493(4)
N(1)-Pd(1)	2.040(2)	Pd(1)-Cl(1)	2.2891(8)
Pd(1)-As(1)	2.3122(3)	Pd(1)-Cl(2)	2.1697(9)
As(1)-As(2)	1.935(3)	As(1)-C(6)	1.986(8)
C(3)-C(4)	1.381(6)	C(2)-C(3)	1.565(6)
C(5)-C(6)	1.401(4)	C(6)-C(7)	1.405(4)
C(7)-O(3)	1.333(4)	C(8)-O(1)	1.461(5)
C(8)-C(9)	1.524(5)	C(9)-C(10)	1.528(5)
C(10)-C(11)	1.521(7)	C(10)-C(12)	1.544(6)
C(11)-C(12)	1.534(5)	C(12)-C(14)	1.48(5)
C(12)-As(1)	1.395(6)	C(13)-C(15)	1.401(7)
C(13)-As(1)	1.376(7)	C(14)-C(17)	1.385(5)
C(14)-C(17)	1.377(5)	C(19)-C(20)	1.396(5)
C(20)-C(21)	1.389(5)	C(21)-C(22)	1.378(6)
C(21)-C(22)	1.376(5)	C(22)-C(24)	1.381(5)
C(24)-C(25)	1.751(7)	C(24)-C(25)	1.733(7)

Symmetry transformations used to generate equivalent atoms:

C(7) = -N(1) - C(9)
C(9) = -C(1) + Pd(1)
N(1) = -Pd(1) - As(1)
N(1) = -Pd(1) + C(1)
As(1) = -Pd(1) + C(1)
As(1) = -Pd(1) + C(1)
C(12) = -As(1) - C(13)
C(13) = -As(1) + C(12)
As(1) = -As(1) + C(12)
As(1) = -As(1) + C(12)
C(1) = -As(1) - Pd(1)
C(1) = -As(1) - Pd(1)
C(6) = -C(1) - As(1)
C(6) = -C(1) - As(1)
C(3) = -C(2) + C(1)
C(5) = -C(4) + C(3)
C(5) = -C(4) + C(3)
C(5) = -C(4) + C(3)
C(1) = -C(7) - C(6)
C(1) = -C(7) - C(6)
O(1) = -C(8) - C(9)
O(1) = -C(8) - C(9)
N(1) = -C(9) - C(10)
N(1) = -C(9) - C(10)
C(12) = -C(10) - C(9)
C(12) = -C(10) - C(9)
C(5) = -C(10) - C(12)
C(5) = -C(10) - C(12)
C(14) = -C(13) - As(1)
C(13) = -C(14) - C(15)
C(15) = -C(16) - C(17)
C(17) = -C(16) - C(18)
C(24) = -C(19) - As(1)
C(23) = -C(22) - C(21)
C(29) = -C(24) - C(23)
Cl(4) = -C(25) - C(13)
Cl(4) = -C(25) - C(13)

Symmetry transformations used to generate equivalent atoms:
Table 1. Crystal data and structure refinement for P.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>my175</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C${26}$H${24}$AsCl$_2$NOPd</td>
</tr>
<tr>
<td>Formula weight</td>
<td>642.70</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>MONOCLINIC</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1$</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 8.9267(18)$ Å, $\alpha = 90^\circ$</td>
</tr>
<tr>
<td></td>
<td>$b = 10.333(2)$ Å, $\beta = 105.58(3)^\circ$</td>
</tr>
<tr>
<td></td>
<td>$c = 14.669(3)$ Å, $\gamma = 90^\circ$</td>
</tr>
<tr>
<td>Volume, Z</td>
<td>1303.3(5) Å3, 2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.636 Mg/m3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>2.198 mm$^{-1}$</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>640</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.35 x 0.20 x 0.10 mm</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.44 to 25.71$^\circ$</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>$0 \leq h \leq 10$, $-12 \leq k \leq 12$, $-17 \leq l \leq 17$</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>4061</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3940 ($R_{int} = 0.0501$)</td>
</tr>
<tr>
<td>Completeness to $\theta = 25.71^\circ$</td>
<td>95.4 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>ABSCOR</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.000 and 0.876</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3940 / 1 / 310</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>0.984</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>$R_1 = 0.0416$, $wR_2 = 0.1152$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.0419$, $wR_2 = 0.1183$</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.357(15)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.404 and -0.978 eÅ$^{-3}$</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for Pd(1)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/∠</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)-N(1)</td>
<td>2.040(6)</td>
</tr>
<tr>
<td>Pd(1)-As(1)</td>
<td>2.3342(7)</td>
</tr>
<tr>
<td>As(1)-C(1)</td>
<td>1.922(6)</td>
</tr>
<tr>
<td>As(1)-C(2)</td>
<td>1.942(6)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.387(9)</td>
</tr>
<tr>
<td>C(1)-C(11)</td>
<td>1.340(9)</td>
</tr>
<tr>
<td>C(1)-C(12)</td>
<td>1.392(9)</td>
</tr>
<tr>
<td>C(1)-C(13)</td>
<td>1.397(10)</td>
</tr>
<tr>
<td>C(2)-C(21)</td>
<td>1.415(9)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.365(12)</td>
</tr>
<tr>
<td>C(2)-C(22)</td>
<td>1.309(21)</td>
</tr>
<tr>
<td>C(2)-C(23)</td>
<td>1.356(14)</td>
</tr>
<tr>
<td>C(2)-C(24)</td>
<td>1.392(14)</td>
</tr>
<tr>
<td>C(2)-C(25)</td>
<td>1.505(2)</td>
</tr>
<tr>
<td>C(2)-C(33)</td>
<td>1.363(3)</td>
</tr>
<tr>
<td>N(1)-Pd(1)-Cl(2)</td>
<td>44.83(16)</td>
</tr>
<tr>
<td>Cl(2)-Pd(1)-As(1)</td>
<td>50.22(17)</td>
</tr>
<tr>
<td>Cl(2)-Pd(1)-Cl(1)</td>
<td>172.71(19)</td>
</tr>
<tr>
<td>C(11)-As(1)-C(21)</td>
<td>113.79(19)</td>
</tr>
<tr>
<td>C(21)-As(1)-Pd(1)</td>
<td>112.1(2)</td>
</tr>
<tr>
<td>C(21)-As(1)-C(1)</td>
<td>119.9(5)</td>
</tr>
<tr>
<td>C(27)-O(1)-C(28)</td>
<td>120.9(5)</td>
</tr>
<tr>
<td>N(1)-C(29)-C(28)</td>
<td>116.0(7)</td>
</tr>
<tr>
<td>C(27)-N(1)-C(29)</td>
<td>130.3(5)</td>
</tr>
<tr>
<td>C(29)-N(1)-Pd(1)</td>
<td>116.8(7)</td>
</tr>
<tr>
<td>N(1)-C(27)-C(26)</td>
<td>125.5(6)</td>
</tr>
<tr>
<td>O(1)-C(26)-C(29)</td>
<td>120.5(7)</td>
</tr>
<tr>
<td>C(26)-C(27)-C(29)</td>
<td>112.2(6)</td>
</tr>
<tr>
<td>N(1)-C(6)-C(5)</td>
<td>120.7(8)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>118.8(7)</td>
</tr>
<tr>
<td>C(22)-C(21)-As(1)</td>
<td>119.9(5)</td>
</tr>
<tr>
<td>C(22)-C(23)-C(24)</td>
<td>118.0(5)</td>
</tr>
<tr>
<td>C(23)-C(22)-C(21)</td>
<td>120.7(7)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(16)</td>
<td>119.5(5)</td>
</tr>
<tr>
<td>C(16)-C(11)-As(1)</td>
<td>120.0(9)</td>
</tr>
<tr>
<td>C(36)-C(32)-C(30)</td>
<td>121.1(6)</td>
</tr>
<tr>
<td>C(34)-C(15)-C(16)</td>
<td>112.0(6)</td>
</tr>
<tr>
<td>C(33)-C(12)-C(11)</td>
<td>119.9(8)</td>
</tr>
<tr>
<td>C(32)-C(26)-C(31)</td>
<td>110.5(13)</td>
</tr>
<tr>
<td>C(34)-C(35)-C(36)</td>
<td>121.5(13)</td>
</tr>
<tr>
<td>C(15)-C(14)-C(13)</td>
<td>120.5(12)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
Current Data Parameters
NAME my 76.1
EXPHO 1
PROCND 1

F2 - Acquisition Parameters
Date_ 20020205
Time_ 12.24
INSTRM dpx300
PROBHD 5 mm Dual 13
PULPROG 70
TD 32768
SOLVENT CDC13
NS 16
DS 0
SNM 8092.806 Hz
FIDRES 0.274439 Hz
A0 1024
DN 55.600 usec
DE 6.60 usec
TE 300.0 K
DI 1.00000000 sec

---------- CHANNEL #1 ----------
NH1 1H
P1 4 50 usec
PI -2.00 dB
SF01 300.1312000 MHz

F2 - Processing parameters
SI 32768
SF 300.1300065 MHz
SWM E0
SSG 0
LB 0.30 Hz
GB 0
PC 1.00

ID NMR plot parameters
EX 23.00 cm
F1P 10.000 ppm
F1 3001.30 Hz
F2P -0.500 ppm
F2 -150.07 Hz
PPMCH 0.4565 ppm/cm
NZCH 137.01507 Hz/cm
Current Data Parameters
NAME my132
EXPND 1
PROCD 1

F2 - Acquisition Parameters
Date 20020725
Time 18.23
INSTRUM dpx 300
PROBHO 5 mm Dual 13
PULPROG TD 32768
SOLVENT CDC13
NS 16
DS 0
SWH 8992.806 Hz
FIDRES 0.274439 Hz
AG 1.8219508 sec
RG 181
DW 55.600 usec
DE 6.00 usec
TE 300.0 K
DT 1.00000000 sec

********** CHANNEL 11 **********
NUC1 1H
PL1 4.50 usec
PL2 -2.00 usec
SF01 300.1310000 MHz

F2 - Processing parameters
SI 32768
SF 300.1300095 MHz
WDM EM
SNB 0
LB 0.30 Hz
GB 0
PC 1.00

ID NMR pilot parameters
CX 23.00 cm
FP1 10 000 ppm
FT 3001.30 Hz
FP2 - 0.500 ppm
F2 - 150.72 Hz
PPMCH 0.45652 ppm/cm
HZCM 137.01587 Hz/cm
Current Data Parameters

NAME: my163
EXPD: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20020907
Time: 23.30
INSTRUM: dpx300
PROBHD: 5 mm Dual 13
PULPMG: 9
TD: 32768
SOLVENT: CDC13
NS: 32
DS: 0
SNH: 8992.806 Hz
FIDRES: 0.274439 Hz
AD: 1.8219508 sec
RG: 1290.2
DN: 55.600 usec
DE: 6.00 usec
IE: 300.0 K
DI: 1.0000000 sec

---------- CHANNEL 1 ----------
NUC1: 1H
F1: 4.50 usec
PL1: -2.00 dB
SF1: 300.1312000 MHz

F2 - Processing parameters
SI: 32768
SF: 300.130054 MHz
MDM: EM
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 1.00

1D NMR plot parameters
CX: 23.00 cm
F1P: 10.000 ppm
F1: 3001.30 Hz
F2P: -0.500 ppm
F2: -150.07 Hz
PPMCH: 0.45652 ppm/cm
HZCH: 137.01507 Hz/cm
Current Data Parameters
NAME my177
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 00020925
Time 10.35
INSTRUM dpx300
PROCNO 5 nm Dual 13
PULPROG z9
TD 22756B
SOLVENT CDCl3
NS 32
DS 0
SNI 8992.806 Hz
FIQRES 0.274439 Hz
AQ 1.8219508 sec
AQ 1629.5
QW 55.500 usec
QD 6.00 usec
TE 300.0 X
Q1 1.000000 sec

******* CHANNEL 11 ******
NUE1 1 MHz
P1 4.50 usec
PL1 -2.00 dB
SFQ1 300.1312000 MHz

F2 - Processing parameters
SI 3276B
SF 300.1300054 MHz
WIN EM
SSB 0
LB 0.30 Hz
GD 0
PC 1.00

1D NMR plot parameters
CX 23.00 cm
F1P 18.000 ppm
F2P 3001.30 Hz
F3P -0.500 ppm
F4P -150.07 Hz
PPMCH 0.4562 ppm/cm
HZCM 137.01587 Hz/cm