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Abstract 

This thesis addresses the commercialization aspect of the Internet and the con-

sequence of a new inter-domain routing paradigm, namely, pricing of bandwidth 

tliat depends on traditional performance metrics such as delay and throughput, 

during route computations. 

We start with a general overview of the subject on routing and the related 

issues on the Internet, especially on the inter-domain routing aspect. We will 

state our vision and objective of this thesis in chapter 2. First, we explain 

the needs for the pricing strategies on inter-domain routing protocols. Then, 

we propose a pricing scheme. Thirdly, define our problem statement of price 

constrained routing such that each individual's utility is optimized. Since, the 

problem is NP-complete, we propose to use neural networks to tackle the routing 

problem. Tlius, in chapter 3, we first have a review on the applications of neural 

networks on packet routing. Tlien following some of the major branches of 

previous neural-routing research, we discuss two neural network based routing 

strategy on chapter 4 and chapter 5 respectively. 

In chapter 4, we use a Multi-Layer Feedforward Network (MLFN) to solve 

the stated problem. We begin with some theoretical studies on the MFLN and 

then we verify the model with simulation results. Chapter 5 deals with another 
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type of neural network known as the Hopfield Neural Network and in chapter 

5 we have shown theoretically that the Hopfield NN is also capable of tackling 

this routing problem. Finally, we conclude in chapter 6. 
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Chapter 1 

Introduction 

Routing in communication networks has been an area of extensive research over 

many years. It is one of the most complex problems within the domain of com-

munication networks. Firstly, the goal of routing is not always well-defined, as 

there are too many factors, constraints to be considered, and the worse of all -

many of them are contradicting with one another. On describing such a complex 

goal, Streenstrup define it as [42] : The goal of routing in a communications net-

work is to direct user traffic from source to destination in accordance with the 

traffic's service requirements and the network's service restrictions. Its objective 

is to maximize network performance while minimize costs. Its constraints come 

from the underlying network technology and the traffic dynamics. The network 

performance includes delay, bandwidth, reliability, security and etc. The costs 

includes both the equipment cost and the operation cost. However, depending 

on the type of communication networks and the services provided on the net-

work, these objectives and constraints may liave different meanings and weights. 
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Chapter 1 Introduction 

In this thesis we shall confine the scope of the problem to Internet routing. Fur-

thermore, we shall concentrate on the inter-domain routing. We begin with a 

general overview of the routing issues and then focus on the inter-domain routing 

problem — Due to the commercialization of today's Internet, a pricing mechanism 

will be needed, but currently no routing algorithm that can support both price 
V 

and performance had been proposed yet, such that each individual's utility is 

optimized. In this thesis two different neural network based routing algorithms 

are proposed to tackle this pricing/performance routing problem. 

1.1 Routing Overview 

There are many different angles of view on the subject of routing - depending on 

the type of communication networks: (1) how to distributing basic information 

for routing decision; (2) where routing decision are being made; (3) on the 

routing constraints and objectives; (4) on the algorithms and others. If these 

topics were discussed one by one, it requires several books to cover all of them! 

Instead, a list of some common terms on this subject will be discussed below. 

Hopefully, through these descriptions, tlie reader could get an general overview 

on the subject of routing. (Generally, this thesis deals witli routing in packet 

switching networks thus more terms related to this topic would be discussed) 

1. In Centralized Routing, a centralized node is responsible for making all 

the routing decisions for the whole network. 

2. In Distributed Routing, each communication node is responsible for 

making routing decisions. 
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Chapter 1 Introduction 

3. In Source Specified Routing, the originating node is responsible for 

specifying the entire path from it to the destination node. 

4. In Hop by Hop Routing, each node will only choose a next hop node 

as its successor for a specific destination. It must be a kind of distributed 

， routing. 

5. In Packet Switching Network (PSN), data is divided into smaller unit 

known as "packets", and routing is done by the communication node which 

first stores the entire packet and then forwards it. 

6. In Circuit Switching Network ( C S N ) , a physical circuit is first setup 

and all the data is routed though this circuit to the destination. 

7. Virtual Circuit ( V C ) routing or Connection-Oriented routing on a 

PSN means that a virtual circuit was first setup and then all information 

are routed through this V C path. 

8. In Datagram routing or Connectionless routing on a PSN, each packet 

is treated independently and may route through different paths. No con-

nection setup phase is required as compared with the V C approach, but 

packet may arrive out of sequence. 

9. In Hierarchical Routing, big networks are divided into smaller net-

works known as domains. These domains may be further decomposed into 

smaller networks known as sub-domains. Routing in such hierarchical net-

work is also divided into different levels. Each node in a domain knows 

only its paths to other nodes in the same domain. For communication 

3 



Chapter 1 Introduction 

with other domains, border gateways are present on each domain which 

are responsible for these inter-domain communications. 

10. The term Routing Algorithm is usually used for describing the algo-

rithm that performs the route decisions for a communication network. 

11. In Adaptive routing, the routing algorithm will react to topology or per-

formance variation of the network, so that the network's objective can still 

be matched. 

12. In Static routing, the routes are pre-computed. These pre-defined routes 

would never change until they are intervened by the network administrator 

or by the proper authorities. 

13. Shortest Path (SP) Routing is a routing algorithm which chooses the 

paths with the least total cost from the source nodes to their destinations. 

The cost may be composed of different metrics, like delay, reliability, etc.. 

14. Vector-Distance Algorithms are a class of distributed/hop-by-hop rout-

ing algorithm, such that each node tells its neighbours the distances from 

it to other nodes. Then a node makes the routing decisions according to 

the information obtained. A well-known example of this is the Distributed 

Bellman-Ford (DBF) algorithm. 

15. Link-State Algorithm are a class of distributed/source specific routing 

algorithm, such that each node obtains the whole network information 

(link states) by a flooding or broadcasting algorithm and then computes 

the optimal paths to different destinations. 
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Chapter 1 Introduction 

16. Congestion Control by a routing algorithm means that the routing al-

gorithm tries to select the routes, such that some congested region can be 

avoided. 

17. A routing algorithm is stable if a small change in network topology would 

, not affects the routing decision to be changed greatly. 

18. A routing algorithm is fair if every node in a network receive similar 

performance/sharing on the network resources. 

In describing the above terms, we are referencing to [44], [42], [47] and various 

papers. In the next section, we would concentrate on the routing issues in the 

global Internet. 

1.2 Routing in the Internet 

Internet is the world's largest PSN, recently its growing speed is probably beyond 

the imaginations of its former A R A P A N E T developers in the 1960s. Today, 

the Internet connects multiple-administrative domains, including universities, 

government bodies, commercial bodies and etc.. 

Since the size of the Internet is so tremendous, it is not possible for each 

routing node to know the routes to every other node. Moreover, a connection 

on the Internet may span across different administrative domains (ADs), and 

each AD would like to set up its own routing policies. In order to meet with 

these two characteristics, hierarchical routing was employed in the Internet. 

The Internet is divided into different regions known as administrative domains 

(ADs). Each AD is an independent authority that control over a set of networks 
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Chapter 1 Introduction 

and gateways. A routing node within an AD knows all the details about the 

routes to each destination inside this AD, but knows nothing about the nodes 

of other ADs. We classify these connections within an AD is concerned with 

intra-domain routing. On the other hand, whenever a connection is required to 

contact the nodes of other ADs, the source node would choose a route to a Border 

Gateway (BG) of its AD, then the BG would make a connection to the BG of 

the destination domain. Finally, that foreign BG would pass the messages to the 

destination node. The BG-to-BG connection belongs to inter-domain routing, 

while the BG-to-node traffics are considered to be intra-domain traffic and would 

be handled by the corresponding intra-domain routing protocols. 

1.2.1 Inter-Domain Routing 

y ^ ^ 

^ ( ¾ ^ ^ - - ^ ^ 

do\) u ' � 
13 12 

g | ^ J | ^ Backbone Transit AD C D Stub AD 

¢ ^ ^ Regional Transit AD • Border Gateway 

Figure 1.1: An Example Domain Topology 

Inter-domain routing protocols are for routing at the domain level. Generally, 

a router known as the Border Gateway (BG) is responsible for inter domain 

routing. The BG knows the domain level network topology and makes the 
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Chapter 1 Introduction 

routing decision to the destination domain. An example of domain level topology 

is shown in Figure 1.1. There may be multiple BGs within a domain. Examples 

of inter-domain routing protocols are EGP (Exterior Gateway Protocol), B G P 

(Border Gateway Protocol) and IDPR (Inter-Domain Policy Routing). We will 

discuss each of them in details in the next chapter. > 

1.2.2 Intra-Domain Routing 

On the contrary, intra-domain routing protocols deals with the traffics within 

an administrative domain. The problem of intra-domain routing is generally 

less complicated then its inter-domain counterpart. Examples of intra-domain 

routing protocols are : OSPF and IS-IS 

1.2.3 The Future Trend 

Within a few years of time the Internet is shifting from its academic oriented 

nature into a multi-polarity and multi-functionality global wide information ex-

change backbone. The commercialization of the Internet has made many re-

searchers to ponder on new ideas on the Internet. A popular topic of research is 

on the pricing policies on the Internet [35]. Routing is directly concerned with 

the sharing of network resources as the path generated by the routing algorithm 

crosses many different components in a network. The control and sharing of 

resources have long been an economic research topic [10]. It would not be sur-

prised that routing and pricing on the Internet would be considered as the same 

problem very soon. Consider this price constrained routing, a particular impor-

tant level of routing is on the inter-domain level. In the next chapter we would 
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begin with some reviews on existing inter-domain routing protocols and then we 

would establish our problem of price constrained routing on the Internet. 

> 
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Chapter 2 

Inter-Domain Routing 

2.1 Inter-Domain Routing Protocols 

The Internet is a heterogeneous network, which consists of different intercon-

nected component networks operated and owned by different organizations. 

Each organization has its own policies and network configurations. The compo-

nent networks belong to and administrated by the same organization is called 

an Administrative Domain (AD). Inter-domain routing protocols is responsible 

for the traffic between these domains. A major difference between the Inter-

Domain routing and Intra-Domain routing is that the former is constrained by 

the policies of the interconnected ADs. In this chapter, we will go through some 

existing or proposed inter-domain routing protocols, like EGP, BGP, IDPR and 

etcs.. Finally, we will establish the need for pricing in today's heavily com-

mercialized Internet and also the needs for an Inter-Domain routing protocol 

that allows a pricing policy to be incorporated. The problem statement of price 

constrained routing is also defined in this chapter. 
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Chapter 2 Inter-Domain Routing 

2.1.1 Exterior Gateway Protocol (EGP) 

The Exterior Gateway Protocol (EGP) [38], was the first inter-domain routing 

protocol introduced in the Internet in the early 80s. The E G P was designed 

for strictly two-level hierarchical network architecture with the top-level domain 

called the core. The ADs are not allowed to overlap. E G P relies on a distance-

vector algorithm to construct the routing table. Due to its strictly two level 

architecture, the loop formation or count-to-infinity [44] [9] problem which is a 

common problem with most distance-vector algorithm would not be encountered 

in EGP. Periodic full updates are employed to exchange the routing informa-

tion. Besides, E G P messages are carried directly over IP with no transport layer 

protocols. Furthermore, policy-base routing is very limited in the E G P — Indi-

vidual ADs are allowed to hide portions of their routing database that they are 

not willing to share. Also, ADs are free to manipulate route metrics that they 

assign to other ADs in order to favour or preclude certain transit AD hops. 

Limitations of EGP 

The E G P was designed in the early 80s, although it could meet the demand at 

that time, it is no longer suitable for today's Internet. First, today's Internet is 

becoming more complex and a strictly two-level hierarchical model is no longer 

suitable for the Internet. EGP on today's Internet will bring back the count-to-

infinity problem. Second, periodic full updates of routing information use a, lot of 

bandwidth and this was exacerbated by the tremendous size of t0da3 '̂s Internet. 

Thirdly, E G P messages use IP directly, but the huge size of today's Internet 

implies very long E G P messages such that a single IP packet ma,y not hold 

the whole message. Since IP does not have fragmentation and defragmentation 

10 



Chapter 2 Inter-Domain Routing 

capability, this may cause the E G P message to be corrupted. Besides, policy 

routing is vital in today's Internet, but EGP's notion of policy is very limited, 

for instance it does not support any Type-Of-Service (TOS) based policy and 

e t c . . 

2.i .2 Border Gateway Protocol (BGP) 

B G P was first developed in the late 80s and had undergone various modifica-

tions. The most recent version of the protocol is BGP-4 [31]. B G P places no 

restriction on the inter-domain topology as opposes to the EGP's two level hi-

erarchy. It is today's standard inter-domain routing protocol on the Internet. 

The best-effort transport layer protocol T C P is employed to transmit the B G P 

messages. Although B G P still relies on a vector-distance algorithm for routing, 

a list of domains that the routing information traversed so far was kept so as 

to eliminate any loop formations. This properly causes B G P to be labelled as a 

path-vector routing protocol. Instead of periodic full updates, B G P exchanges 

the routing information via incremental updates, i.e., only the changes are ex-

changed. Besides, route aggregation is employed to reduce the volume of routing 

information that needs to be handled. In addition to route metrics, B G P allows 

a Degree of Preference to be associated with the route. A route is chosen by 

firstly consider the degree of preference and tie-breaking witli the metrics. B G P 

offers policy based routing in ways such as: resource sharing, selection among 

multiple entry/exit points of a AD and etc.. A policy language in B G P is ex-

press as: [Network-list, AD-path] 二 pre/erence , which means tliat a routing 

update for a network in Network-list is received via AD-path (i.e. the sequence 

of ADs traversed so far) and if its preference metric is better than tlia,t of a, path 

11 



Chapter 2 Inter-Domain Routing 

currently in use, then this update must be used for subsequent routing. 

Limitations of B G P 

Although B G P is far better than EGP, it still has the following shortcomings 一 

B G P provides at most one route to a destination. This lacks tlie flexibility of 

supporting multiple routes with different performance characteristics or adminis-

trative preferences. Furthermore, B G P does not support source-specific policies. 

Finally, "the degree of preference first and then the metrics" routing rule does 

not reflects the users' needs, thus limits the flexibility of routing policies. 

2.1.3 Inter-Domain Policy Routing (IDPR) 

IDPR [11] was designed as a policy-routing architecture that accommodates 

transit service provider policies as well as source-specific polices. The major 

difference of IDPR to the previous protocols is that link-state source routing 

algorithm is applied instead of vector-distance hop-by-hop routing algorithm. 

The traditional hop-by-hop routing protocols do not efficiently support the wide 

range of policies especially policies concerning types of service (TOS) that is 

anticipated in the global Internet. On the other hand, source routing com-

bined with policy advertised in routing updates allows transit ADs to apply 

source-specific polices while permitting stub ADs to select routes based on lo-

cal criteria. Besides, source routing place a relaxed consistency requirement for 

routing databases than the hop-by-hop case. 

12 
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Limitation of I D P R 

In [11], the proposed algorithm for route computation is the SPF with some 

aspects of policy are encoded in metrics before computation. As SPF only 

supports a single metric, combination of policy metrics and performance metrics 

to a single metric in a link-by-link basis is not a good idea. The policy metrics 

may lose its meaning at all. In tlie later sections of this chapter, we will discuss 

a proper way to combine this two kinds of metrics via utility functions. 

2.1.4 Other Protocols 

There is a even newer protocol known as the Inter-Domain Routing Protocol 

(IDRP) which was based on most of the B G P features but with improvements 

like — multi-protocol support and multiple routes to a destination with different 

performance characteristics. Nevertheless, it is still a path-vector algorithm 

and the support for source-specific policy is still limited. In this thesis, we are 

following the IDPR trend of link-state routing algorithm. In addition, there are 

yet some less significant proposals for inter domain routing protocols like IDPR 

II [2] and P B I R [22；. 

2.2 The Need for Pricing on Inter-Domain Rout-

ing Protocols 

The beginning of the Internet traces back to the A R P A N E T in tlie 1970s. Nowa-

days, its development is reaching its golden era. Advances in hardware and 

software technologies have made many new services which was not feasible in 

13 
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the past now becomes popular to the public. For instance, voice phone, video 

phone, multi-media web pages, web-shopping and etc.. In general, this batch of 

services requires high bandwidth, low delay and security ensured. 

In the routing aspect, this increasing variety of services not only implies 

tougher performance requirements, but also implies a more complex scenario of > 

resource sharing on the Internet. In the early days of the Internet, the traffics 

were relatively smaller and the services were mainly narrow band traffics, like 

gopher, email, telnet, and etc. At that time, the Internet users generally pos-

sessed a minimum anticipation on this "free" information medium. We may say 

that at the early stage of Internet, the supply was greater than the demand and 

the Pareto optimal was not reached. However, the rapidly growing Internet is 

becoming more attractive and people place a greater expectation on it. Now the 

paradigm is shifting, the demand is much greater than the supply. People are 

scrambling for network resources without regard that their acts would degrade 

services to other people and jams the whole network. 

In economic term this scenario is concerned with externalities : effects which 

are "external" to the decision makers [19]. The best way to solve this problem is 

to let market mechanism to work - i.e. charging a price to the end-users or the 

administrative domains. Generally, the control of resources have long been an 

economic research and there are many ways we could borrow from their results 

1.0]. On the other side, those who have taken part on the inter-domain routing 

researches have recently gone into this pricing issue [35] [32]. However, according 

to [35], the problem of "How to price" is still a controversial issue. In this thesis, 

we adapt a very simple pricing scheme, i.e. each AD setup a self-estimated cost 

for packets that use its resources. A more formal definition of our pricing scheme 
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would be discussed in the next section. 

2.3 Pricing Scheme on the Inter-Domain level 

(^^~"^(^A^~^^AD^ - > ( ^ A ^ ~ ~ " - ( ^ ^ A D ^ 

C, q Ck-1 

Total Cost Charged 二 C j + C +̂ . . . + C 让] 

Figure 2.1: Pricing scheme on tlie Inter-Domain level 

Our idea of pricing is very simple, since each AD shares some of its resources 

(e.g. single border gateway or some parts of its network) for traffics that was not 
0 

originated within the AD itself, the AD should impose a price on those traffics 

to cover its operation cost and compensate for the performance degradation 

incurred to its own users. Figure 2.1 shows this idea - an inter-domain traffic 

across several domains would be charged a cumulative price P : E L i Ci. Where 

a is the cost incurred to AD^ to handle this traffic. Concerning how the c, are 

determined, it solely depends on the policy of ADi. For instance they may 

charge according to the TOS, AD_PATH and etc. • 

If all the traffics seek their minimum cost routes with the above pricing pol-

icy, according to [32], there would be a global minimum resource consumption. 

However, what if a user requires an urgent connection, he/she is willing to pay 

a higher price to trade with the performance? In such case, the above pricing 

scheme lacks the flexibility. In fact, a good market is a market with competi-

tions, where each users' needs could be reflected. This is just what our thesis 
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concentrated. In the following sections, we will define our problem statements 

clearly. 

2.4 Routing Protocols to Support Pricing on 

the Internet 

2.4.1 Routing Towards Multiple-Additive Metrics 

Regarding the performance aspect, traditional Internet routing protocols con-

sider only one performance metrics, i.e. delay. Examples of such protocols are 

：Bellmen-Ford Algorithm that relies on a Vector-Distance Algorithm; Dijk-

stra's shortest path algorithm that rests on a Link-State Algorithm [42] and 

others [37]. Routing subject to multiple performance metrics, in most cases is 

a NP-complete problem. In the past, the services carried by the Internet is 

monotonous, thus a single metric routing was sufficient to most users. However, 

this scenario is likely to be changed and both price and performance would need 

to be considered. 

2.4.2 Network Model, Notations and Assumptions 

The Internet G is modelled as a connected graph in which tlie ADs are modelled 

as the edges of the graph and any pair of border gateways between those ADs 

as the nodes of the graph. (Refer to Figure 2 for an example of our model) 

Each edge is associated with a link cost vector V with each element of V_ 

corresponds to a link metrics. Generally, there are two kinds of link metric : i) 

non-additive link attributes e.g. bandwidth; ii) additive link metrics e.g. delay, 
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V " ^ ^ : r ^ . ^ ^ ^ 丨 》 

^ A > ' ^ 截 
3 ^ " - ^ > a _ a ^ j ^ i t � 1 � � • � : � 

x^^^ \ ^^\_^^ 

W W ^ 11 ( � D o m a i n Boundary 
13 12 、乂 

l j J f c | Backbone Transit AD C Z ) Stub AD 

C ^ Regional Transit AD • Border Gateway 

Figure 2.2: Network Model and Nodes and Edges 

reliability (loss probability), price, hop-count and etc.. Furthermore we assume 

the followings : 

1. All packets transmitted over an operational link are received correctly and 

in the proper sequence within a finite time. 

2. The node learns the network topology and link cost vectors by a reliable 

network layer protocol tliat distributes those information.(eg. link-state 

flooding algorithm) 

3. The routing information distribution protocol distributes all the routing 

information completely witliin every periodic intervals. 
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2.4.3 The Problem Statement 

Our problem is to find the maximum utility path from a source i to destination 

j. More specifically, Let N be the set of nodes in G. Let vector ^ be the vector 

of cumulative link metrics of acyclic paths from node i to j. Let vector ^ be 

the vector of cumulative link metrics of the optimal acyclic path from node i to 

j. Let U,j be the utility ofP,,. U“ 二 U{Pij) and t/*- 二 U(P*tf) where ^ > U,j 

for all Pij. 

Our problem is to determine this P-*. 

Example 

( 2 , 6 ^ ^ / ^ 0 ^ \ ^ 9 ) 

SRC C > C 3 ^ 3 DST 
( 7 ^ \ ^ ^ ^ ^ ( 4 , 4 ) 

Figure 2.3: An Example Illustrates our Problem Statement 

Refering to Figure 2.3 for a simple example, there are two routes from SRC to 

DST. Each edge is associated with two metrics and an arbitrary utility function 

is defined by U{ml,m2) = ^.mil,-m2- The utility value for the two paths are 

U"(3,15) = 20.09 and t / ( l l , 7 ) = 1076.90 respectively, therefore the upper path 

would be selected as the optimal path. 
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Finding a path subject to more than one additive metrics for non-linear 

utility function is an NP-complete problem [49] [51]. In the future Internet, 

routing will tend to be a multiple metrics problem. Since neural network has the 

potential to provide "good" solutions to NP-complete problems, it is therefore 

a good candidate for tackling tliis NP-complete problem. In the next chapter, 

we will discuss the application of Neural Networks on routing. 
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Chapter 3 

Application of Neural Nets in 

Route Selection 

3.1 Neural Network (NN) Overview 

3.1.1 Brief History on Neural Network Research 

Artificial Neural Networks (NN) were inspired by the divine creation of the bio-

logical brain which was first applied to the computing field 40 years ago (1957) 

when Frank Rosenblatt, Charles Wightman, and others developed the first suc-

cessful neurocomputer Mark I Perceptron. However, long before that time, the 

1943 paper of Warren McCullock and Walter Pitts had shown that even simple 

types of neural networks could, in principle, compute any arithmetic or logical 

function. With the early successes of NN by many researchers during tlie late 

1950s and early 1960s, people were getting proud and prophesied tliat artifi-

cial brains were just a few years away from development and other incredible 
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statements. However, most of tlie early neural researcher, generally, did not 

follow an analytical point of view but based on a qualitative and experimental 

aspect, which bothered many established scientists and engineers who observed 

the field of research. The prophecy turned out to be false, when Minsky and 

Papert's 1969 book Perceptrons proved mathematically that a perceptron could 

not implement the simple X O R logical function, nor many other such predicate 

functions. These sound facts had brought neural research into a dark age. At 

that time, as described by Hecht-Nielsen [17], NN research had to go "under-

ground". After a decade (1967-1982) of quietness, the application of NN was 

shifted to the engineering field. The quiet works of many excellent researchers 

like Stephen Grossberg, Teuvo Kohonen, John Hopfield and many others had 

put the field of NN on a firm footing and prepared the way for renaissance of 

the field. In 1987, the first open conference on neural networks, the IEEE Inter-

national Conference on Neural Networks, was held in San Diego. And the IEEE 

Transactions on Neural Networks was first published in 1990. The applications 

of NN had shown success on many engineering fields like, signal processing, pat-

tern recognition, statistical analysis, robust control, combinatorial optimization, 

and artificial intelligence. 

3.1.2 Definition of Neural Network 

In this thesis, we define Neural Network (NN) as a network of many simple 

processors (units), each unit can be described as a multi-input single-output 

(MISO) dynamic system which is characterized by its transfer function and 

dynamic equations (learning equations). Besides, the units are connected by 
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uni-directional communication channels ("connections") which usually carry nu-

meric data, encoded by any of various means and each unit operates only ac-

cording to its local data and on its inputs received via the connections. 

3.1.3 Neural Network Architectures 

After decades of development on the NN, generally there are hundreds or even 

thousands of NN architectures developed. A conservative classification is ac-

cording to their connection topologies. Accordingly, the 3 major classes are 

1. Non-Recurrent Neural Networks - This class of NN consists of dif-

ferent "layers". A layer is a group of neuron units that do not have any 

inter-connection within the units. Connections are only allowed form lay-

ers to other layers. There is an input layer and an output layer, all other 

layers are regarded as hidden layers. The connection within layers could 

be either fully connected (i.e. each unit is connected to all units in tlie 

next layer) or partially connected. A special class of non-recurrent neural 

networks that does not have any hidden layers is known as Perceptron. 

Examples of non-recurrent NN are : Multi-Layer Feedforward Networks 

(MLFN), The Self-Organizing Maps (SOM) and etc. MLFN had shown 

success on the pattern recognition and classification fields. 

2. Recurrent Neural Netwroks - Each unit of a recurrent NN are con-

nected to all other units including itself. Generally, the concept of "layers" 

is not-applicable to this kind of NN. Examples on this kind of NN are : 

Hopfield NN, Boltzman's machine. Tliis kind of NN had been used for 

constrained optimization and content addressible memory. 
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Figure 3.1: A Non-recurrent Neural Network 
• • , > 

L9 0 0 0 0 

A Recurrent Network 、 

Figure 3.2: A Recurrent Neural Network 

3. Partial Recurrent Neural Networks - This kind of NN is a hybird of 

(1) and (2). The concept of layer still applicable, but this time interconnec-

tions within the units of the same layers are allowed. There are many NN 

architecture falls into this categories, like the ART(Adaptive Resonance 

Theory) family, Jordan NN, ELman NN, Autoassociative Memory Net-

work. This kind of NN was used for classification and pattern recognition. 
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Figure 3.3: A Partial Recurrent Neural Network 
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Figure 3.4: A Neuron 

Generally, the sigmoid function is used as the transfer function of a neuron : 

^(^) ^ r r ^ “ 2{l^tanh{u/2)) (3.1) 

where, 
n 

u — ^ Wjij — 0 (3.2) 
3 

and ij is the jth input, Wj is defined as the weight of the j t l i input and 0 is 

known as the bias or threshold of the neuron. Sometimes tlie sign function is 
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also used for simplicity or for discrete systems : 

‘ 1 , if u > 0, 
sign[u) = (3.3) 

0, if u < 0. 
、 

The Sigmoid Function 
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Figure 3.5: The Neuron Transfer Functions 

3.1.5 Learning Methods 

Again, there are many learning or training methods (Generally, each type of NN 

would have its own kind of learning method). Despite this large variety of learn-

ing methods, we could still classify them according to two learning philosophies 

：1) Supervised Learning and 2) Unsupervised Learning. 

1. Supervised Learning — Supervised learning means learning with teach-

ers, i.e. we- have a teacher who provide some solved examples to the NN. 

Then the NN learns form these examples and hopefully the NN can cap-

ture the "intelligence" within those example and produce the right re-

sponse to other samples that had not been encountered before. Exam-

ples of learning algorithm belongs to this class are : BackPropagation 
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(BP), Counter-Propagation (CP), Learning Vector Quantization (LVQ), 

Probabilistic Neural Network (PNN), General Regression Neural Network 

(GRNN) and e t c . . 

2. Unsupervised Learning - Contrary to supervised learning, unsupervised 

’ learning requires the NN dynamics to be capable of, b3, just observing the 

given samples, converging to some stable states where the objective of the 

NN is achieved. Some well-known examples are : Hopfield Network, Ko-

honen Self-Organizing Map (SOM), Adaptive Resonance Theory (ART), 

Bidirectional Associative Memory (BAM) and etc.. 

According to Masters [24], there is a third type of learning that lies between su-

pervised and unsupervised learning methods known as the Reinforcement Learn-

ing. In reinforcement learning, the neural network is allowed to react to each 

training sample. It is then told whether its reaction was good or bad. However, 

very few practical applications are known. 

3.1.6 Applications in Telecommunications 

There had been already a whole book devoted to this topic now [3]. According to 

it and various works, applications of neural networks on the telecommunications 

fields include: 

1. Traffic Control, Admission Control, Congestion Control and Cell Schedul-

ing in ATM. [3: 

2. Channel Equalization [3, 4, 5 

3. Spread Spectrum Communication Systems [3 
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4. Dynamic Channel Assignment and Mobile Communication Design [3 

5. Packet Radio and Satellite Communication [3, 20 

6. Switching, Routing and Multicast Routing [1, 13 

In the next section, we will focus on the applications of NN packet switching 

network routing. We begin with a review of previous research on this topic. 

3.2 Review on the Applications of Neural Net-

works in Packet Routing 

There had been already many works on the application of neural network in 

packet routing based on the shortest-path (SP) approach. Generally they could 

be classified into three major families. The JEB approach [6, 50, 21], the Hop-

field/Energy minimization approach [20, 1，27, 12, 7, 26, 39，23, 46，43, 14] and 

the Supervised Learning approach : [33, 8, 15]. In the following paragraphs, we 

would discuss each branch in detail and conclude about its suitability in solving 

our problem. 

3.2.1 The JEB Branch 

The JEB approach was first proposed by J.E.Jensen, M.A.Eshera and S.C.Barash 

in 1990 [21]. Wang [6] used the 3 initial letters of the authors and called it the 

JEB network. It was improved by Wang on [50]. The original JEB approach 

is a distributed routing algorithm for packet switching network which uses a 2 

layer feed-forward neural network as a routing decision maker for next hop at 
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each communication node. It uses a Hebbian learing method for training the net 

and hopefully to find the shortest path for the packets. Training and operation 

are carried out at the same time. In order for training to be achieved, each 

packet are required to include fields like : origin of the packet, destination of the 

packet, the neighboring node from which the packet was received and the cost > 

of the path that messsage was picked up. A single training update occurs when-

ever a packet arrives and using the above information as guidance for training. 

Whenever a link fails or changes its cost, it adapts the changes as the training 

information in the packets is changed. In this way, the JEB net would forget 

about its previous learned path. 

Wang [6] summarized the problems of the original JEB network as follows : 

1. Uneven training of different communication nodes. 

2. Poor response to link change . 

3. Poor response when a link is down. 

Wang then proposed some modifications to tackle the above problems, namely, 

message echoing mechanism and local link awareness. However, problem (3) is 

only partially solved [6]. Wang applied liis modified JEB net to solve a 8 nodes 

and a 27 nodes communication network. In the simulations, the JEB nets were 

trained first before actual simulation measurements were taken. Under dynamic 

network condition, the maximum percentage of optimal and near optimal paths 

formed is 77% for the 8 node network and 71% for the 27 node network (but 

20,000 actions required for the training phase). Under extreme condition, these 

percentages drop to 58% and 63% respectively. The paper did not include any 

sub-optimal path statistics. 
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3.2.2 The Hopfield/Energy Minimization Branch (HEM) 

This branch seems to be the most common approach to the neural-routing prob-

lem. The idea is to formulate an energy function E{V) such that the minimiza-

tion of E over V corresponds to solving the shortest path problem. Most of the 

approaches in this branch are based on the Hopfield and Tank's neural network 

model [45] of solving discrete combinatorial optimization problems. Hopfield and 

Tank demonstrated the computational power of their network by applying their 

model to the Traveling Salesman Problem (TSP). Since then many researchers 

have attempted to apply the Hopfield model to solve other types of combinato-

rial optimization problem. Not surprisingly the Hopfield model was becoming 

the main stream in this shortest path problem. Many previous researches are 

based on this method : [12, 23, 46, 14, 43] and with a few appearances on 

the IEEE Transactions : [20] and [1]. In [7] it was further developed to solve 

the Constrained Steiner Tree (CST) multicast routing problem. The original 

Hopfield NN is a fully connected recurrent neural network. A typical sigmoid 

function is used for the transfer function of a single neuron : 

y^=9^m = Y j ^ (3-4) 

where Û  and V̂  are the input and output to the ztli neuron respectively. 

The energy function is defined as : 

1 N N N 

E{v) 二 - - E E % v " " - E i ^ (3.5) 
i=l j=l <=1 

where 2¾ is known as the connection matrix of the network, i.e. the link weght 

from neuron i to neuron j. U is the bias or threshold of the ztli neuron. Tlie 
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dynamics of the zth neuron are described by : 

^ = ― 巧 — 些 (3.6) 
dt T 3¾ ^ 

where r is the circuit's time constant. 

Model 1 

When mapping this model to the shortest path problem for a N-communication 

node network, a commonly used approach was using a NxN Hopfield network to 

find a single source-destination path. Generally, there are two ways of knowledge 

representation of a 'path'. The first is based on Hopfield h Tank's work on 

the T S P problem : A path is denoted by a matrix K , , where : V^ 二 1 if 

communication node x is the zth node to be visited in this source-destination 

path. Vci = 0 otherwise. An example of this representation is as follows : 

Suppose we find a path from source node 1 to destination node 2 on a 4-node 

communication network, the path found is 1-4-2. We could use the following 

matrix to represent this path : 

node 1 2 3 4 

1 1 0 0 0 

2 0 0 1 0 

3 0 0 0 0 

4 0 1 0 0 

Note that the matrix representation of a path by this approach is not unique, 

since we are allowed to use 1-3-3-3-3, 1-1-1-3-3, 1-1-1-1-3, or etc. to represent 

the path 1-3. Thus a hop is clioosen whenever there is a transition between Vyi 

and Vy^i+i , Let Cij be the cost for the communication link from node i to j. 

30 



Chapter 3 Application of Neural Nets in Route Selection 

For non-exist links, a very large cost is assigned. Thompopoules et. al. [43 

formulated the energy function as : 

/ \ 2 
A n-1 n n D n n n ^ n n 

E 二 I E E E % Q v ; . , w i + f E E E W � + o E E ^ — - ( 3 " ) 
乙 k=l i=l j=l k=l i=l j=l \i=l J=1 / 

In this energy function, this first A term corresponds to the total cost of the 

path. The B and C terms are introduced to force the energy function to converge 

to a valid path. The B term is to force each column contains at most a single 1, 

while the C term enforces that there will be exactly n l 's in the final solution. 

However, Ali and Kamoun [1] criticize this model to have the following weakness 

1. It requires a prior knowledge of tlie number of nodes forming the shortest 

path. A conservative approach is to set this number equals to the total 

number of the nodes, which is the maximum number of nodes that the 

shortest path may consist. 

2. Since each neuron belonging to the first and last column has a fixed output 

voltage, the neural network is then designed to find the shortest path 

between only a given source-destination pair. The neural configuration 

has to be changed in order to find the shortest between other pairs. 

3. When mapping this model into the Hopfield circuit, the link weight would 

correspond to the resistance of the s3a1aptic connections. In a dynamic 

communication network, these resistance are to be changed continuously 

in order to adapt to the changes in link cost. 
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Model 2 

On the other side, Ali and Kamoun formulates another model to solve the short-

est path problem : They modify the path representation to : V î — 1 if the link 

from node x to i is in the path, and V^i 二 0 otherwise. Their energy function is 

given by : 

n n n n 

E 二 ^ E E .̂.K. + f E E "n.v̂ . 
a;=l i=i x=l 口 1 

{x,i)Ad,s) (x/)/(d,s) 
/ \ 2 

,, ^ / n n n n 

+ f E E V f E v A + y E E v u i - K O + ^ ( i - v y 
X=1 \*^2. = 1’!'办 l-l,Z^X / t = l X = 1,XJ^1 

(3.8) 

where 5 and d denote the source and destination node respectively. 

In the above energy function, the [ii term minimizes the total cost of a path 

by taking into account the cost of existing links. The 灼 term is for removing the 

non-existent links from the solution. The //3 term ensures that the number of 

incoming links to a node is equal to the number of outgoing links. The "4 term 
2 

pushes the state of the neural network to converge to one of the 2^ —饥 corners 

of the solution hypercube, defined by K , G {0,1}. The /X5 term makes the final 

solution to contain the link (virtual or real) from d to 5 and therefore both the 

source and destination would be in the solution path. Note that the final solution 

would always be a loop, starting from s, goes through some intermediate nodes 

if any, then reach destination d and a single (virtual or real) link back to 3. The 

dynamic equations are given by : 

¢^¾ — Uxz _ dE 
dt T dVxi 
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^ f = - — - ^ C . . ( 1 - ^.,¾.) - ^p..{i - s^,s,s) - //3 E (K ŷ — v-"^) 
dt T 2 2 y=l,y^ 

+ " 3 E ( W - K 0 - y ( l - 2 K 0 + y<^^A, 
y=l,y^i 

, W{x,i) e N X N and x + i 

(3.9) 

Simulation Results For The Two Models 

The first model claims to converge to either optimal or valid paths when applying 

to a 9 and 16 node networks. While the second model claims to find all optimal 

paths after 3000 to 8000 iterations and 100 runs with different link weights for 

a 5 node network. Besides, two individual examples were included : i) For a 5 

node network it takes 38 iterations to converge to the optimal, ii) For a 15 node 

network it takes 91 iterations to converge to the optimal. 

Other Approaches 

There had been many attempts worked on this branch most of them are either 

modifying the above energy functions or the dynamical equations. In [27] tlie 

mean-field annealing method was applied to minimize the energy function. Tliey 

said that the mean-field annealing method could prevent local minima trapping, 

which is a common problem with the Hopfield model. Furthermore in [39, 26], 

a VLSI implementation of the Hopfiled based routing model was proposed. 
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Remarks 

1. Based on simulation results, Tsai [46] found that the convergent com-

plexity of his/her model is independent of the number of nodes in the 

communication network. 

2\ A Note on the above approach is that the setting of the coefficient pa-

rameters A, B, C in model 1 or the p，s in model 2 are very critical for the 

algorithm to converge. Ali and Kamoun had analyse this issue and given 

some guidance on choosing those parameters in their model [1]. Further-

more, Aiyer et. al. [41] applied the eigenvector analysis on the original 

Hopfield Network and gave a more analytical way of choosing those pa-

rameters. 

3. There are some critique on the Hopfield approach by Wang [6] that the 

approach does not guarantee valid solutions especially when applied to 

large systems. 

3.2.3 Supervised Learning (SL) 

The motivation under this branch is probably due to the many success of ap-

plying neural networks in the field of pattern recognition. Supervised learning 

means to provide a set of solved samples to the neural net for training. Then 

after this training phase, due to the interpolation and prediction property of 

neural networks, the NN should give a reasonable and hopefully intelligent re-

sponse to samples that was not encountered before. Generally, the multi-layer 

feed-forward network (MLFN) is most commonly used in supervised training. 

Collett and Pedrycz [8] used an 8 layer MLFN trained with B P algorithm to 
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tackle this problem and a 99 % accuracy was found for a 16 node network. How-

ever, it seemed that they were just considering the static routing problem. On 

the other hand, Cavalieri et al [33] applied the CP algorithm in solving a 10 node 

network that could adapt to different routing topologies. Their results were very 

close to the optimal one. Their way of tackling this problem is very similar to 

the pattern recognition approach, in which each communication node chooses 

the next hop successor according to the link states of the whole communication 

networks in a distributed fashion. One may consider the "link states” as the 

patterns and the next hop successor as tlie pattern identifier, then it is exactly 

the pattern recognition / classification problem. 

Apart from the above SP mainstream, Frisiani et al [15] combined team 

theory and BP on getting the optimal routing strategies. 

3.3 Discussions 

Obviously, among the three major streams, only the Hopfield/Energy Minimiza-

tion stream was based on strong analytic foundations. For the JEB and most 

of the SL streams, a rather qualitative and experimental approach was adapted. 

However, the idea of the SL is very similar to the pattern recognition or classifi-

cation problem which had already shown many successes with neural networks. 

Therefore, at this point we would continue with the HEM and the SL stream. 

We will continue to explore these streams, as our problem of multiple metrics 

routing has not yet been tackled. Thus, in the next two chapters, two algorithm 

based on these two streams would be proposed. 
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Chapter 4 

Route Selection as “Link-state” 

Classification 

A wide range of problems in signal processing belongs to the class of classification 

or recognition. In this thesis, we consider "recognition" and "classification" as 

the same word, so does "signal" and "pattern". Neural networks had been 

applied to this field for quite a long period and many architectural and training 

strategies had been developed. PNN and MLFN are the popular choices that 

had widely been applied to this problem. The two books by Timothy Masters 

'25, 24] a,re devoted to them. The advantage of MLFN over PNN is that, its 

execution speed is among the fastest of all known NN models. Thus MLFN is a 

strong candidate for solving the problem, because the speed of making routing 

decisions greatly affects the router's throughput. In this chapter we propose a 

MLFN based neural route selector. We begin with an overview of tlie MLFN, 

then we define the fuzzy utility function we used. Finally we discuss about the 

proposed NN architecture and its performance is verified with simulation results 
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and compared with previous works. 

4.1 Multi-Layer Feedforward Network (MLFN) 
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Output L a y e r 
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Hidden L a y e r 

rf^#h 
. L _ J L _ j _ J J Input L a y e r 
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MLFN 
Figure 4.1: MLFN 

MLFN is a typical non-recurrent neural network with a clear layered structure. 

The connections between the layers are fully connected. The layer that accepts 

the external inputs is known as the input layer, while the layer that produces 

the outputs is the output layer. All intermediate layers are known as hidden 

layers. Figure 4.1 shows a typical MLFN with 1 input layer, 1 output layer and 1 

hidden layer. The number of neuron units could be different for different layers. 

The whole NN can then be viewed as an MIMO (Multi-input, Multi-output) 

system. 

Considering a M layer MLFN, where layer 0 is tlie input layer and layer M 

is the output layer. Denote the system input vector space u 二 [Wi; U2；. • • ； 7̂V. 

system output vector space 0 二 [c>i;c>2;...;c>3], weight matrices wf^ where it 

connects from unit i of layer 1 — 1 to unit j of layer 1. Furthermore we denote 

the output matrix vf^ as tlie output of the unit 1 in layer 1 (Note : ”严、二 
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Oi, % = 1 ,2 , . . .，N), and the bias matrix 6 )̂ denoting the bias of unit i in layer 

1. We have the following system equations : 

0 _ ;二 / ( [ 4似— 1 )”严— 1 ) - 4似 ) ) (4.1) 

V i J 

, V? 二 f (E. 4 ~ � ” - ^ ) ) , 1 二 l，A ..., M — 1. (4.2) 

vf 二 ut (4.3) 

where f is the sigmoid function or sign function given by Eq. 3.1.and Eq. 

3.3 respectively. From the above 3 equations, we could formulate the system 

equation as : 

o^g{z,w,0) (4.4) 

Thus, the whole system is characterized by the input vector z, the weight ma-

trices w and the bias matrix i . If we denote the desire output vector by d, then 

training means to applying dynamic equations to w and 0_, such that the mean-

square error (MSE) of o and d would converge to the minimum. The detail of 

the training algorithm would be discussed in the next section. But before going 

into that, let us discuss the approximation properties of the MLFN. 

4.1.1 Function Approximation Power of MLFN 

Typically, signal classification by MLFN is usually done in the following manner 

1. The signal to be classified is encoded to an n-dimensional vector x and fed 

into the inputs of the MLFN 
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2. Each class of the signal would be encoded to a binary m-dimensional vector 

y and the number of outputs of the MLFN is m. Thus, only one output 

port is allowed to be turned on at the same time. 

3. A successful classification of an input signal is represented by turning on 

^ the corresponding output port. 

From the above, we know that signal classification is actually a function 

mapping problem such that we have to determine f : x —> y_,x G BJ\y_ G R^. 

Thus, the approximation power of a MLFN is very important factor afFecting 

its suitability for the signal classification problem. 

Theorem 4.1: Kolmogorov,s Mapping Neural Network Existence Theorem : 

Given any continous function f : [0，1广 ^ � R ^ J { x ) 二 yJ can be im-

plemented exactly by a three-layer feedforward neural network having n 

fanout processing units in the input layer, {2n + 1) processing units in the 

hidden layer and m processing units in the output layer. 

Although this is a very important theorem, it is strictly an existence theorem. 

No clue on the form of the neuron transfer function is given. But thanks to 

Hecht-Nielsen [17], who established another theorem with the sigmoid transfer 

function MLFN: 

Theorem 4.2 : Given any e > 0 and any square-integrable function f : [0,1]打 ^ ^ 

R^ (i.e. /[�i]n \g{x)\^dx exists)，there exists a three-layer MLFN with the 

sigmoid transfer function (Eq.3.1) that can approximate f to within e 

mean squared error accuracy. 
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Ensured by the above theorems, we can established that the MLFN with sig-

moid theorem can closely approximate any arbitrary linear or non-linear decision 

surface provided the number of hidden layers and hidden units are sufficient. 

4.1.2 Choosing MLFN parameters * 
The major parameters affecting the performance of a MLFN are the number of 

hidden layers, the number of hidden units and the training method. Winston 

.53] consider that choosing these parameters and training the MLFN is an art. 

Even until recently, analytical suggestion on these topics is still unavailable, 

thus we could only trust the experts' advice — Masters, in [24] gives some basic 

guidelines and they are summarized as follows : 

1. Number of Hidden Layers : Generally, only one hidden Layer is enough. 

There are only a few rare situations in which two hidden layers may be 

preferable to one. More than two hidden layers are never theoretically 

needed.( Masters said that he had never seen a real-life problem in which 

more than two are needed.) This fact is also implied by Weiss and Ku-

likowski's book [40] that additional layers (more than 2) do not add an3, 

representational power to the discrimination. 

2. Number of Hidden Units Per Layer : Use as few hidden neurons 

as possible. Start out with just two then train and test the network. 

When required, add only one more neuron at a time. Accord to Masters' 

experience, he liad never saw practical networks with more tlian 10 hidden 

units and usually about 3 to 6 are optimal. The problem of too many 

hidden units was further discussed in Winston's book [53] that too much 
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hidden units lead to "overfitting" and the NN loses its predictive power. • -

4.1.3 Traning a MLFN 

Problem of Overtraining 

Now we come to another difficult problem about training a MLFN. In the hu-

man sense, training makes perfect, however, this is not the case of training a 

MFLN. Overtraining an MLFN would make it fits well with the training samples 

supplied but lose its predictive power. To detect overtraining, a usual practice 

is to construct a training test set, which is used as an indicator for training 

termination. Ideally, the training test set should be sufficiently comprehensive 

so that if the network performs well on it then the ultimate problem could be 

considered solved. A typical training curve is given below. Finally, a validation 

set is also needed to test the final performance of the trained network. 

Error 

V t e s t set error 

^ ^ 
I training set error 

-~~~i 
I 

1 >. 
Stop training Number of 

here training cycles 

Figure 4.2: Training set error vs. training test set error 

Deterministic or Stochastic Methods 

Another problem concerns with training a MLFN is on choosing the training 

method. Deterministic Optimization methods have faster convergence speed 
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but possibly could be trapped by local minima. The only way to avoid a local 

minimum is to start with another initial state. On the other side, Stochastic 

methods are more likely to find the global minimum, but at a cost of slower 

convergence speed. Examples of deterministic optimization algorithms are, the 

classic BackPropagation and its derivatives, Conjugate Gradient Methods and 

Levenberg-Marquardt Learning. Examples of Stochastic methods are Simulated 

Annealing Methods and Monte-Carlo algorithm. There are some hybrid ap-

proaches given in [25] which should take up the advantages of the above two 

methods. 
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4.2 The Utility Function 

The utility function used is a fuzzy utility function as shown in Fig. 4.6. This 

fuzzy mapping function is produced by the following fuzzy rule-base : (The 

reader may refer to [48] h [34] for information on fuzzy logic) 

Delay \ Price Very Small Small Medium Large Very Large 

Very Small Superb Superb Very Good Good Average 

Small Superb Very Good Good Above Ave. Poor 

Medium Very Good Good Average Poor Bad 

Large Good Above Ave. Poor Very Bad Terrible 

Very Large Above Ave. Average Bad Terrible Terrible 

The normalized membership functions for the linguistic variables are shown in 

the figures 4.3 to 4.5. 

Fuzzy linguistic variable: delay 
1 ^ ‘ A ‘ f. ： \ i\ / \ /\Ve�y_S>nall—/ 

\ / \ / \ i \ Small — 
\ / •', / \ i \ Medium ~4 

0 ‘ 8 . \ / \ \ I \ 一 / - . 
\ / '\ \ / Very-Large .::：… 

\ I \ . \ \ \ I 
1 \ \ ！ \ r 

: i \ V X \ \ . /\ ./ \ 
/ \ M \ / \ 

。 i 丨、 T ！ ^ ~ I 1 1 1 — — » ~ ^ i 

0 20 40 60 80 100 
<delay) 

Figure 4.3: Membership functions for “Delay” 
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Fuzzy linguistic variable： price 

if； 1 A A - 卞 - - / -
\ / \ / \ i \ L�w .-..V 
\ ！ \ j \ ! \ Medium 一 

�.8 • \ / \ j \ j \ High 丁 . 
\ i \ / \ ！ \Very.Hi9h .—. 

\ / \ / \ I \ / 
。•'. \ I / \ / \ / . 

. 1 y v Y. 
°.2. i \ \ \ h _ 

Q I ^ • ' 、 . / \ . I 1 A ™ ™ u ^ i — — 

0 20 40 GO 80 100 

<price) 

Figure 4.4: Membership functions for "Price" 
Fuzzy linguistic variable： utility 

A ^ 下\ A J\ K~'~~Te4We — j 
l \ \ f \ l \ i \ ， s = 

。'8. I \ \ I \ I \ \ I \ j;s:l' 

/ \ I \ ! W / ^ - 陶 
0.s • 1 i \ / \ I \ j \ ! \ i l V—-Good\..f.. • 

y \ I ! y I \ / 1 
y \ k i\ i \ I 

�,4.丨\ \ / A M \l \i \, 
i\ \ y /\ M V Y /\ 

— \ 丨\ I \ l \ A A V 
\ ！ \ ； \ \ / \ I \ \ 

丨 \ l \ l \ 1 \l \ M / i ^ 
0 20 40 GO 80 100 

(utility) 

Figure 4.5: Membership functions for "Utility" 
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'f+out'—— 
35+2 “—… 
90.5 —— 

1丨‘.1.‘ 85+7 —— Utility ẑ^̂^̂^̂^̂=̂===""::>̂^̂-̂  
4 = ^ ^ ^ ¾ : ¾ ^ 81 = 

1 [ ^ ^ ^ ^ ^ ^ ^ ^ . 監 三 ： - ^ ^ ^ ^ ^ ^ ^ : 、 丨 丨 : 丨 = 
20 • ^^^^^==^••^^: : :Z：：^：^^ 52+4 — 
10 • ^ ^ � S ^̂ J-->Ẑ ^̂ ^̂ _̂ _̂_̂ ^ 47.6 — 
0 • ^ . - - ^ ^ ' " ^ x � \ \ / )"^^>-.^^ 42.9 — 

^ ^ \ 、 ) ( \ \ \ \ C . ^^^"^0^8+1 —— 
^ ^ 〜 、 \ / \ \ \ \ ^ '^ -3 ,^<yO 33.3 — <<T ' � \ \ : \ \ V ' X ^ 28.6 — 

^ ^ ^ ^ ^ l r 4 ^ ^ A _ ^ � : " ^ ^ ^ > ^ ^ P - 2 3 . 8 — 

De^^^^^"^^^^^^^n>^ 1二 : 

Figure 4.6: A utility function surface with two metrics : Delay h Price 

Using mini-inference rule, center average defuzzifier and the final output 

surface was given Fig 4.6. As shown in the figure, this function is really complex. 

There are local minia, basins as well as uneven slopes. We have choose this 

special function in order to demonstrate our NN controller's ability to tackle 

arbitrary functions. 
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Figure 4.7: The Architecture 

4.3 The Neural Network Architecture 

Our proposed routing algorithm is a distributed , source specific, link-state rout-

ing algorithm as illustrated in Figure 4.3. Each node specifies the whole path 

of packets originated at that node. The source routing feature could be imple-

mented by either the virtual circuits (VC) method or putting the entire path 

information on the packets. Our method of distributed routing is superior to 

.33] in that, loops or degenerated paths can be detected without any increase in 

the bandwidth for link-state distributions. 

4.3.1 Routing Graph Representation with Successor Se-

quence Table (SST) 

Our goal is to generate a routing graph rooted at the source node and terminates 

at every other node. We call it a graph rather than a tree. It is because, the 

paths to the destinations may cross one another and it is better to use the more 

general term - graph. 
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Traditional Routing Graph Representation 

In a series of papers concerning loop-free distributed routing algorithms [30],[29],[16], 

the entire paths information to every destinations were encoded so that the 

source node can detect loops formation. They use a very clever method such 

that, for each destination node, instead of keeping a sequence of nodes to be 
'v 

visited, they only record the successor node and the second-to-last node (or the 

predecessor to the specify destination). This is equivalent of keeping a routing 

table as shown below : 

Destination Successor Second-to-last 

1 ^1 Pi 

2 S2 P2 
• • • 
• • • • • • 

N SN PN 

The idea of this representation is that if the path a to i is optimal, then the path 

a to j , where j is a one hop neighbor of z, is among the optimal set of paths. 

Which is just the essential assumption of the Dijkstra and Bellman-Ford routing 

algorithm. More specifically, let us now review the Bellman-Ford's equation : 

Let Dij represent the distance of the minimum-distance route form source 

node i to destination j, and dpg be the distance of a direct link between node p 

and q. Assuming the link distance are additive, the shortest path between i and 

j can be obtained by solving Bellman's Equation : 

Du - 0,Vz (4.5) 

D f m h i ( d A + D k : j ) , V i # j (4.6) 
k 
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When mapping to the multi-metrics utilization optimization routing, a critical 

question is whether this equation is still valid. Generalizing Eq 4.6 to the prob-

lem by denoting U{.) as the arbitrary utility function and representing D and d 

by vectors, we get the following proposition : 

Proposition 4.1 : > 

U [ R Q = max[l7 ( i , , + D , j ) l W i + j 
K 

Assume (4.7) is tme. Then consider the following scenario : 

q 

Diq=(50,15),/-_t>k^^ 
z ^^^^^ 

i ( v ' V ^ ^ J 
% =(30,20) ( ^ 7 V 

p 

Figure 4.8: 

Suppose U{D,p) > U{D,q), by proposition 4.1, we will find that U{D,^) = U { v ^ 

Dip) and the optimal route should be i — p — j. However, consider the utility 

function given in Fig. 4.6 : 

Suppose £ , , = (30,20) and R ” - (50,15) such that "(30,20) > " (50,15) . 

F u r t h e r , l e t 2 = ( 1 0 , 1 0 ) . From figure 4.6 U{D,^ + ;y) = "(50,30) < " ( 6 0 , 2 5 ) = 

U{D,q + v) which implies that U{D,^) 二 "(丛<̂  + v) = /7(60,25) which is a 

contradiction of Proposition 4.1. Therefore the above successor & second-to-

last-hop representation is not sufficient for the model. 

In fact, this representation is only good for monotonous utility functions, or 

more specifically, if U{ui) > U{u2) then ^(^i + v) > U{u^ + v). Moreover, if 

48 



Chapter 4 Route Selection as “Link-state” Classification 

the problem can be mapped by this approach, we could use the Bellman-Ford, 

Dijkstra or other shortest path based algorithm for the problem and it is not 

NP-Complete at all. In this approach the outcome is restricted to a tree not a 

graph. 

Solution Representation Using the SST 

As the above representation fails, another solution representation is adopted. 

The method is by specifying a successor sequence table (SST). The size of 

the SST is N-hy-N with N being the number of nodes on the communica-

tion network. Denote each SST entry by SSTij,i 二 0,1, • • • , {N — l ) ; j 二 

0,1, • • . ,{N - 1). The entry SSTpq 二 m means that the next hop successor 

for node p to destination q is m. We will show in the following example, how 

the SST is sufficient to represent the routing graph. 

Example 

Consider the following 6 node network : 

( 1 力 " y f ^ ) 5 

� < (14’><：̂  (1。,坊 

( 4 ， ^ ^ 於 1 ) 
1 ^ (9,3) 4 ^ 

Figure 4.9: Example network 
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We use the same utility function as shown in Figure 4.7 and find out the 

following optimal paths : 

0 - 1 0 - 2 0 - 2 - 3 

0 - 2 - 1 - 4 0 - 1 - 4 - 5 

Note that the route 0 - 2 - 1 - 4 is a violation of the basic Bellmam-Ford/Dijkstra 

assumption. If we draw the routing graph, we have the following : 

A 
0 0 
A 

Figure 4.10: The Routing Graph 

The above routing graph could be represented by the following SST : 

*̂Ŝ Destination 
^ S . Node 

Startin><^ Q 1 2 3 4 5 
Node ^ S ^ 

0 N<̂  1 2 2 2 1 � 

^ ^ x x x x z : z : 
~ ~ ^ X X X 3 1 又 

/ \Z \ / \ ,̂  / \ V Intermediate 

= 4 = | | | | | ^ = � r 
- l x l x lx lx l^^J 
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The way to understand the above SST is as follows : -

1. Our source node is 0, thus we first refer to the first row (5'5'Toa；, x — 

0 , l , 2 , . . . , 5 ) . 

2. Suppose we want to know the path from 0 to 1, we then look at the second 

column {SST^i, x = 0 , 1 , 2 , . . . , 5 ) and find SSToi to be 1, which means 

that the succesor from 0 to destination 1 for node 0 is 1. Thus we can tell 

that this path is 0 -1. 

3. Similarly, we can tell the path from 0 to 2 is 0 - 2. 

4. For the path 0 to 3, we refer to the column SST^os, x = 0,1,2, • . . , 5. We 

find the successor from 0 to destination 3 for node 0 is 2. Now our starting 

node is 2, so we look at SST23 and find out that the successor form 2 to 

destination 3 is 3. Finally, we have the whole path 0 - 2 - 3. 

5. For the path 0 to 4, again we refer to the column SST^4, x 二 0，1,2, • • . , 5. 

The successor for 0 to 4 starting on 0 is found to be 2. Then we look at 

SST24 and find out that the successor for 0 to 4 starting on 2 is 1. So, 

look at SSTi4, we have successor for 0 to 4 starting on 1 is 4. Finally we 

have to path 0 - 2 - 1 - 4. 

6. The way we find out the final 0 to 4 path is similar to the above. 

Through the above example we have observe that the routing graph may not 

look like a tree at all. It is a strange tree with some branches coming across 

others. Furthermore, we have explained how the routing graph is represented by 

the SST. In the following sections, we would discuss how this SST is represented 
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with the corresponding neural network architecture. Through out the following 

sections, we are using figure 4.9 as the example to illustrate the idea. 

4.3.2 The Neural Network Layout 

Let ois start with the following example NN layout : 

Input Laver Hidden Laye� Output Layer 
" J 、•••_•—•» . .̂ .̂. ....... • •• . — . . — . . ". •• • •— •*. - "• ••• • • " - ••• • • - • "' -^ """ - • " - • — • • ••• •• •••• •••• • ‘ • • * •” “ • • ““ • • • 'v,̂  

• ^ ^ ^ ~ ~ T ^ ^ J & - ¾ - ¾ ^ I Functional 
0 • 0 l i p r | ^ ^ ^ ^ ^ ^ ^ g l ^ ^ 0 . 9̂ 000 Ŝ SS0 Ŝ SSS 8̂ 0SS ..'害 Ini t 
^ ^ i — i — i ^ � ^ j ^ 
T ^ m ^ ^ ^ ^ ^ ^ ^ m ! & ^ ^ Q Q 0.000 0.000 0.000 0-000 ^ > " 

H ™ ^ ^ ^ ™ ™ i - i - i ^ ^ * ^ * -
^ E S S ^ ^ I ^ 
Tm^Vm^B^B^^^^!^^^QQ 0.000 0-000 0-000 0-000 N^^^ 

U r i 9 l ^ i " i " " & " f t 
0 eee|9 eQ0||HMBpT9^?^0e 0.000 0.000 0.000 0.000 

mUK^^^ i-i-H 
e. e00|9. eeoHH^U^gOesf^es 0.009 0.000 0.000 0.000 
^ t - & - i ^ 
e.ee^.ee0^^H^^^Te9^.e0e 0.000 0.000 0-000 0-000 

m U ^ i""i""&""H 
^f^^^P|^^^^^^^^|^llI^.000 0.000 0.000 0-000 0-000 

i 8 l i l ^ ! " # " i — B 
e.2Q0m.00@H^^Hjj^pN00^.me 0.000 0.000 0.000 0.000 

1 ^ ^ H - ^ - B - ^ 
vH^^^^^^I^Hprssl^.Qse 0.900 0.000 0.000 0.000 

^ m-^-w^M 
%fflg^|^^^^HO0^.006 0.000 0.000 0.000 0.000 

^ ^ tf-*-B^' 
WSS^^^K^Bp^^^. 00@ 0.000 0.000 0.000 0.000 
1 ^ m-M-M-^ 
"î jĵ f̂ ^^^^^"!"^ !̂̂ ^^m 0.000 0.000 0.000 0.000 

1 ^ ^ i " "B""^"S 
"̂ ĵggĵ ^^^^ "̂!̂ "̂̂ ^QQ 0.000 0.000 0.000 0.000 
^ ) f f i H B H I ^ K w i S _ _ S _ _ m _ _ m 

* * * • • Clipped • • • • 

Figure 4.11: An Example Neural Layout 
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Referring to the above figure, there are three layers. Form the left to the 

right, they are the input layer, hidden layer and output layer respectively. The 

inputs are the link state information. In this example, there are a total of 9 links 

and each link has two states, namely, price and delay. Therefore, the number 

of input units is 18. The input layer and the hidden layer are fully connected, > 

which means that each unit in the input layer is connected to every unit on 

the hidden layer and vice versa. For the connections between the hidden layer 

and the output layer, it can be decomposed into smaller units known as the 

functional units as shown below : 

„ . , , T Output Layer 
、、 H idden Layer 

M 
/ z 

Figure 4.12: A Functional Unit 

Each functional unit is made up of 2 hidden units and 4 output units which 

are fully connected to each other. The funtional unit encodes a particular in-

termediate successor node which corespond to an entry in the SST. The way 

to encode this information is illustrated in the figure 4.13. The width of the 

codewords is equal to the maximun number of neighbor of the nodes of the 

communication network. The possible codewords are in the following forms 

:100 .. • 0; 0100 ... 0; 0010 ... 0; •.. ； 000 .. • 1 and also 000 . • ’ 0 which means null 

successor. Each codeword specifies a node that is directly attached to a starting 

node. 
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Inputs (Link-state Info.) Outputs (Only one unit truns ON at each time) -

1 ^ ^ ^ ^ ^ ^ • … ^ ^ ^ ^ ^ ^ ^ ^ ^~~i~^。i NodeE NodeB 

14̂^̂^̂^ ^̂  
: / / ^ \ K ：： Node B is the successor of A on 
• / / Hidden Units ^ ^ ； 為 its path to a particular destination. 

• / / ： J ： To encode this info. 0 will be ON 
1 / \ ： which correspond to the node 

• J Y attached to L ^ and the codewordd 
N ^ is 100...0 

V > 

, � .̂ . ^ . r If the codeword is found to be 010...0 
Functional Unit for A to a Specific Destination then Node E will be chosen as the 

successor of A along this path 

Figure 4.13: To Encode a SST entry by the Functional Unit 

Generally, there will be at most of N^ functional units (N is the number 

of communication node). Furthermore, the width of the codewords is at most 

JV — 1. Thus the total number of output neurons is about N^. But, usually the 

number of neurons needed is far less than this number. Consider our example on 

figure 4.9, a 4-bit codeword width is enough and the corresponding codewords 

are 1000, 0100, 0010, 0001 and 0000 (means null successor). 

54 



Chapter 4 Route Selection as “Link-state，, Classification 

To decode the codewords, there will be a lookup table like the one be lowj 

Starting Node \ Codeword 1000 0100 0010 0001 0000 

0 1 2 X X X 

1 0 2 3 4 X 

2 0 1 3 X X 

3 1 2 4 5 X 

4 1 3 5 X X 

5 3 4 X X X 

4.3.3 How the Neural Network Controller Works 

Each functional unit is a MLFN which takes all the link state (LS) information 

into account and then decides the intermediate successor which correpond to an 

entry on the SST. The SST entry SST,j 二 y means to go form the source node 

to destination j starting form i is y. During training, different combinations of 

link-state information are the inputs, while the solved and encoded SST are the 

taught outputs. And through this training process, each individual functional 

unit will learn its way to react to different link-state inputs. During the actual 

operation, each functional unit will independently, produce the proper output 

according to their "experience" for a particular input link-state pattern. (This is 

why we call this approach the pattern/link-state classfication approach) Finally, 

grouping the functional units together, we have tlie whole picture of the SST. 

With this SST, we have the routing graph. 
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4.3.4 Training 

The training algorithm cliosen is the scaled-conjugated gradient (SCG) method 

"54] developed by Moller [28] in 1993. It is one of the fastest deterministic 

training algorithms for MLFN and there is no critical parameters affecting the 

convergence speed to be set. SCG liad been shown to be considerably faster 

than the standard backpropagation and other conjugate gradient methods. The 

reader should refer to [28] for details of it. Besides, we use a route search engine 

written in C to generated solved examples (i.e. take the link state as the input, 

produce tlie SST as the teaching output) as a reference for training. Further-

more, we have adopted the training method in 4.1.3 to avoid over-training. 

4.4 Simulation 

The simulations were performed using a neural network simulation package -

SNNS (Stuttgart Neural Network Simulator). It was developed by the Institute 

for Parallel and Distributed High Performance Systems, University of Stuttgart. 

It supports over 30 learning algorithms including the SCG algorithm. 

4.4.1 Performance Parameters 

We use the following parameters as measurement of the performance of the NN 

routing algorithms : 

Percentage of Valid Paths : The NN controller sometimes may produce in-

valid paths. Invalid paths falls under the following categories : 

1. The path does not end up with the desire destination. 
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2. Loops presence in the path. , 

3. The path includes a failed link. 

Mean-Square-Error (MSE) & Root-MSE (RMSE) : This is the measure-

ment of the MSE & RMSE between the output path and the teaching path 

^ utility values. Only classified paths would be counted in the calculation. 

Mean-Absolute-Error (MAE) : This is the average deflection of the output 

paths and the teaching paths. 

Variance for M A E : The variance of M A E is given by : 

{MSE-AdAE^)i (4.7) 

Number of 100% paths <̂  the corresponding percentage : This repre-

sents the total number of optimal paths. For the calculation of the per-

centage, it is the fraction of optimal paths out of the total number of 

classified paths. 

Number of sub-optimal ( - / + 5 ) paths & the corresponding percentage 

：This represents the number and fraction of sub-optimal paths with ab-

solute difference < 5.0 (The utility is a value between 0 and 100). In 

calculating tlie fraction, again only the classified paths will be counted. 

4.4.2 Simulation Results 

For simplicity, we assume the link metrics are the same in both directions. 

Furthermore, each metric is encoded into 16 levels, with 16 meaning the link 

is dead and 1 meaning the link is at excellent condition. A breath-first-searcli 
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algorithm written in C was used to generate examples for training the NN. Three 

network models were used for the simulations, they are shown in Figure 4.12. 

The 16 levels were normalized into the range (0,1] by the equation below : 

‘冗/20 if X + 16, 
y = (4-8) 

> 1 if T = 16 

It is through this way that the effect of a dead link is magnified by the NN 

controller. 

The simulations were divided into 2 phases, the training phase and the op-

eration phase. During the training phase, randomly generated network patterns 

with solutions were provided and the NN is trained with the SCG algorithm. In 

the operation phase, randomly generated network patterns were used for testing 

the actual performance of the NN controller. We also perform simulations for 

cases of i) without any link failures, ii) with link failures. The Hop Unit pa-

rameters for the NN controller are 1 Hidden Layer with 2 Hidden Units. The 

network models used for the simulations are shown in Fig 4.12. Model (a) is 

6-node-network, model (b) is a 10-node-network, while model (c) is a 19-node-

network. The simulation details and results for each of the network models were 

as shown below. Graphical summary of some major performance parameters of 

the operational sets were presented on Fig 4.13 to 4.17. 

Model (a) - (Without link failures) 

Traning 

1. Hop Unit parameters : 1 Hidden Layer with 2 Hidden Unit. 

2. Patterns used for training = 200 (i.e. 1000 paths) 
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• 柳 
• = Source Node (b) 

<二̂^̂会8 
U^i^^J^^<^ 

j,9 

(C) 
Figure 4.14: Network Models for Simulations 
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MQdef(c) 

2_____IĤ ^̂ ^ 
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1 Model(b) Wittiout Link Failures 

_ _ 
I 1 I I 1 1 1 1 1 

0 10 20 30 40 50 60 70 80 90 100 
Classify Percentage 

Figure 4.15: Classify Percentages 

3. Patterns used for training test 二 200 

4. Number of iterations determined = 70 

5. Results after training 

For Training Set 

(a) Classify = 1000, Unclassify 二 0, Success 二 100 % 

(b) MSE for classified samples 二 5.11 (RMSE 二 2.26) 

(c) M A E = 0.53 with variance 二 2.20 

(d) Optimal paths 二 861 , percentage 二 86.1% 

(e) Sub-optimal paths = 959, percentage 二 95.9% 
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I I I ！ ! I 1 

• • ； -

M D d a i ( o ) 

2 Mode!(b} :With Link Failures _ 

iBiiiiiiiiB̂^̂^̂^̂^ : : ； 

iiiiili:piliiiiiî  
1 | | | | i M : Without Link:Failures.“..: 

iiBilpilB̂^̂^̂^̂^̂^̂  ： : ... '•• 
I I I I I I 1 

0 1 2 3 4 5 6 7 8 
RMSE 

Figure 4.16: RMSE 

For Training Test Set 

(a) Classify = 1000, Unclassify = 0, Success 二 100 % 

(b) MSE for classified samples 二 6.57 (RMSE 二 2.56) 

(c) M A E 二 0.67 with variance = 2.47 

(d) Optimal paths 二 821 , percentage = 82.1% 

(e) Sub-optimal paths = 953, percentage 二 95.3% 

Operation 

1. Patterns used 二 500 (i.e. 2500 paths) 
I 

2. Classify = 2498, Unclassify = 2, Success = 99.92 % 

3. MSE for classified samples = 11.95 (RMSE 二 3.46) 
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1 1 1 1 1 

Model(c) ； 

^ R40dei[b) With Unk Failures 

ModeHa) 

Modei(o) 

1 WithoutLinkFailures -

Model(a) 
I I I 1 1 

0 0.5 1 1.5 2 2.5 3 
MAE 

Figure 4.17: M A E 

4. M A E = 0.78 with variance = 3.37 

5. Optimal paths 二 1999 , percentage 二 80.02% 

6. Sub-optimal paths 二 2372, percentage = 94.96% 

Model (a) - (With link failures) 

Training 

1. Hop Unit parameters : 1 Hidden Layer with 2 Hidden Unit. 

2. Patterns used for training = 200 (i.e. 1000 paths) 

3. Patterns used for training test = 200 

4. Number of iterations determined 二 80 

5. Results after training 
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Figure 4.18: Sub-optimal Paths Percentages 

For Training Set 

(a) Classify 二 1000, Unclassify = 0, Success 二 100 % 

(b) MSE for classified samples 二 10.82 (RMSE 二 3.29) 

(c) M A E 二 0.50 with variance 二 3.25 

(d) Optimal paths = 868 , percentage = 86.8% 

(e) Sub-optimal paths 二 974, percentage 二 97.4% 

For Training Test Set 

(a) Classify = 999, Unclassify = 1, Success 二 99.9 % 

(b) MSE for classified samples 二 6.808 (RMSE = 2.61) 

(c) M A E 二 0.72 with variance = 2.51 

(d) Optimal paths 二 819 , percentage 二 81.98% 
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Figure 4.19: Optimal Paths Percentages 

(e) Sub-optimal paths 二 954, percentage = 95.5% 

Operation 

1. Patterns used 二 500 (i.e. 2500 paths) 

2. Classify = 2495, Unclassify 二 5, Success 二 99.80 % 

3. MSE for classified samples 二 11.99 (RMSE 二 3.46) 

4. M A E = 0.76 with variance 二 3.38 

5. Optimal paths 二 2034，percentage 二 81.52% 

6. Sub-optimal paths = 2377, percentage = 95.27% 
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Model (b) - (Without link failures) -

Traning 

1. Hop Unit parameters : 1 Hidden Layer with 2 Hidden Unit. 

2. Patterns used for training = 200 (i.e. 1800 paths) 
V 

3. Patterns used for training test 二 200 

4. Number of iterations determined 二 50 

5. Results after training 

For Training Set 

(a) Classify = 1800, Unclassify 二 0, Success = 100 % 

(b) MSE for classified samples 二 2.52 (RMSE 二 1.59) 

(c) M A E 二 0.44 with variance = 1.53 

(d) Optimal paths 二 1483 , percentage = 82.39% 

(e) Sub-optimal paths 二 1753, percentage = 97.39% 

For Training Test Set 

(a) Classify 二 1800, Unclassify = 0, Success = 100 % 

(b) MSE for classified samples 二 4.50 (RMSE = 2.12) 

(c) M A E 二 0.79 with variance 二 1.97 

(d) Optimal paths = 1326 , percentage = 73.67% 

(e) Sub-optimal paths = 1629, percentage 二 94.00% 
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Operation , 

1. Patterns used = 500 (i.e. 4500 paths) 

2. Classify = 4500, Unclassify = 0, Success 二 100.00 % 

3. MSE for classified samples = 4.49 (RMSE = 2.12) 

4. M A E = 0.80 with variance = 1.96 

5. Optimal paths = 3273 , percentage 二 72.73% 

6. Sub-optimal paths = 4217, percentage 二 93.71% 

Model (b) - (With link failures) 

Traning 

1. Hop Unit parameters : 1 Hidden Layer with 2 Hidden Unit. 

2. Patterns used for training = 300 (i.e. 2700 paths) 

3. Patterns used for training test = 300 

4. Number of iterations determined : 100 

5. Results after training 

For Training Set 

(a) Classify 二 2653, Unclassify 二 47, Success = 98.26 % 

(b) MSE for classified samples = 12.90 (RMSE 二 3.59) 

(c) M A E = 1.22 with variance = 3.38 
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(d) Optimal paths = 1909 , percentage 二 71.96% -

(e) Sub-optimal paths : 2404, percentage = 90.61% 

For Training Test Set 

� ( a ) Classify = 2650，Unclassify = 50, Success 二 98.15 % 

(b) MSE for classified samples = 12.46 (RMSE 二 3.53) 

(c) M A E 二 1.21 with variance 二 3.32 

(d) Optimal paths = 1857 , percentage = 70.08% 

(e) Sub-optimal paths == 2410, percentage 二 90.94% 

Operation 

1. Patterns used = 500 (i.e. 4500 paths) 

2. Classify = 4410, Unclassify = 90, Success = 98.00 % 

3. MSE for classified samples 二 11.80 (RMSE = 3.43) 

4. M A E 二 1.23 with variance 二 3.21 

5. Optimal paths 二 3013 , percentage 二 68.32% 

6. Sub-optimal paths 二 3995, percentage = 90.59% 

Model (c) - (Without link failures) 

Traning 

1. Hop Unit parameters : 1 Hidden Layer with 2 Hidden Unit. 
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2. Patterns used for training = 500 (i.e. 9000 paths) , 

3. Patterns used for training test 二 500 

4. Number of iterations determined = 90 

5. Results after training 

For Training Set 

(a) Classify 二 8994, Unclassify 二 6, Success = 99.93 % 

(b) MSE for classified samples = 55.68 (RMSE 二 7.46) 

(c) M A E 二 3.02 with variance = 6.82 

(d) Optimal paths = 6205 , percentage 二 68.99% 

(e) Sub-optimal paths 二 7341, percentage 二 81.62% 

For Training Test Set 

(a) Classify = 8986, Unclassify 二 14, Success 二 99.84 % 

(b) MSE for classified samples = 55.51 (RMSE 二 7.45) 

(c) M A E = 3.03 with variance = 6.80 

(d) Optimal paths = 6173 , percentage 二 68.70% 

(e) Sub-optimal paths = 7327, percentage 二 81.54% 

Operation 

1. Patterns used 二 700 (i.e. 12600 paths) 
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2. Classify = 12586, Unclassify = 14, Success 二 99.89 % . 

3. MSE for classified samples = 51.32 (RMSE = 7.16) 

4. M A E = 2.91 with variance 二 6.55 

5. Optimal paths = 8635 , percentage 二 68.61% 

6. Sub-optimal paths = 10306, percentage 二 81.88% 

Model (c) - (With link failures) 

Traning 

1. Hop Unit parameters : 1 Hidden Layer with 2 Hidden Unit. 

2. Patterns used for training 二 500 (i.e. 9000 paths) 

3. Patterns used for training test = 500 

4. Number of iterations determined 二 150 

5. Results after training 

For Training Set 

(a) Classify 二 8401, Unclassify 二 499, Success = 93.34 % 

(b) MSE for classified samples 二 21.30 (RMSE 二 4.62) 

(c) M A E 二 1.52 with variance 二 4.36 

(d) Optimal paths = 6499 , percentage = 77.36% 

(e) Sub-optimal paths = 7514, percentage 二 89.44% 
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For Training Test Set . 

(a) Classify 二 8421, Unclassify = 579, Success 二 93.57 % 

(b) MSE for classified samples = 23.36 (RMSE 二 4.83) 

(c) M A E 二 1.62 with variance 二 4.55 

(d) Optimal paths = 6473 , percentage 二 76.86%) 

(e) Sub-optimal paths = 7522, percentage = 89.32% 

Operation 

1. Patterns used = 700 (i.e. 12600 paths) 

2. Classify 二 11724，Unclassify = 876, Success 二 93.05 % 

3. MSE for classified samples 二 24.22 (RMSE 二 4.92) 

4. M A E 二 1.71 with variance = 4.61 

5. Optimal paths 二 8897 , percentage = 75.89% 

6. Sub-optimal paths = 10349, percentage 二 88.27% 

4.5 Conclusions and Discussions 

Form the simulation results, we observe much better percentages than any other 

works from the JEB branch. Besides, the JEB branch does not adapt well 

with link failures, the percentage of sub-optimal paths drop to around sixty. 

But the model still maintains an overall sub-optimal percentage of over eighty. 

Furthermore, we are solving the multiple metrics utility optimization routing, 
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but the JEB branch is only designed for single metric shortest path routing. 

Thus the result is significantly better than the JEB approach. 

When compared to Cavalieri et al. [33]'s Counter-Propagation NN, the model 

has the following advantages: Firstly, the model is a source routing algorithm 

such that loops or invalid paths can be detected first, while [33] uses a distributed 

hop-by-hop routing strategy, thus some packets may get lost or trapped by loops. 

Secondly, the model produces a routing graph to every destination at a time, 

but in [33] the desired destination is also one of the inputs to the NN controller, 

which means that it only produces a next hop successor at a time. Consider the 

training aspect, one training sample in the model could provide information to a 

routing graph to every destinations, but in [33], one training sample could only 

provide the next-hop successor to a specific destination. Therefore, the training 

samples are much more "condensed" and the model requires much less samples 

for training the NN controller. Thirdly, again the problem we are solving is much 

more complex than in [33], where only the shortest path routing is considered. 

Although we cannot achieve a 100 % results, which means that in actual 

practices, the algorithm had to be hybrid with a fallback routing strategy [51. 

This fallback algorithm could be some heuristic algorithms like the one proposed 

in [18]. As only 10 % to 20 % of the workload requires tlie fallback algorithm 

to work, the algorithm is still efficient and reduces a lot of CPU resources. 

Furthermore, the NN controller once trained does not need any routing table 

at all 一 due to its 3 layered parallel structure, obtaining a route through direct 

computation is as fast as looking through a routing table from the memory. 

Finally, we observe that the iterations needed for training seemed to be linearly 

related, which means that algorithm is suitable for even larger networks. 
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However, one major weakness of supervised learning is that if the network 

is too large, it would be very difficult to generate the teaching samples. Thus 

the pattern recognition approach is superb for small or medium networks but 

not suitable for large networks (number of nodes > 100). For larger networks, 

the Hopfield approach should be more applicable, the author had developed the 
Y 

theories of applying the Hopfield NN to tackle this problem. 
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Chapter 5 

Route Selection as Energy 

Minimization - A Theoretical 

Study 

The idea of this energy minimization approach is to derive an enegry function, 

and then model a NN controller such that the dynamics of the NN controller 

would converge towards lower energy level and at last obtain the minimum at 

which the routing objective is achieved. The Hopfield/Tank NN model [45] is the 

most popular choice for this purpose. We have reviewed the history in Chapter 

3, now let us take a more detailed look at the Hopfield/Tank NN model. 

5.1 The Hopfield/Tank NN Model 

The Hopfield NN is a kind of typical recurrent NN, it is a fully connected recur-

rent network with "self-loops" eliminated as shown below : 
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Figure 5.1: A Hopfield Network 

The transfer function of neuron unit i is given by : 

% . 二 鋼 = 7 ? ^ ^ (5.1) 

where Ui and Vi is the input and output to the zth neuron respectively. 

The energy funcion is defined as : 

1 N M M 

權 = - ^ E E ^ v V . v , - j : m . (5.2) 
i=l j=l i—1 

Where Tij is known as the connection matrix of the network, i.e. the link weght 

from neuron i to neuron j. Ii is the bias of the zth neuron. The dynamics of the 

zth neuron are described by : 

^ — _ ^ (5 3) 
dt 一 dVt (&句 

M 

= E A K + 二. (5-4) 
J:1 

T is the circuit's time constant. 

74 



、 

Chapter 5 Route Selection as Energy Minimization - A Theoretical Study 

Theorem 5.1 For symmetric Tij (i.e Tij = T)i ) witli zero diagonal, one can 

show that the system described by Eq 5.2 is a Lyapunov function (refer to 

36] for a introduction of that), which decreases in times. 

Proof : Our proof is based similar to tlie proof on [52 

dE — ^ dE dVk 

I 二 hWk~^ 
M Q ( 1 M M M \ j y 

二 E ^ - E E W . - E / . v ^ 
k=i u “ \ 口 1 j=i 口 1 / 

M 「 f ) ( 1 M 1 M 1 \ 1 J U 

二 E 嘉 - 这 口 九 - 这 仏 训 - 力 力 - i * ^ 
A;=1 L ^ \ i^k 3神 / _ 
M「/ 1 M 1 M \ 1 ^y 

二 Z - ; ^ ¾ % . ] ¾ ¾ - ¾ ¼ —h ^ 
k=i L V � � + � ^ 3# / �肌 

Since T]j = J)i and Tkk = 0, applying Eq. 5.4. we have : 

f = i ( - l - ) ^ 
二 ^ ( _ ^ ] MUk) 
二 h \ ^ ) 办 

二 — { ( d ^ � ^ m 
二 —h[ \~^) dUk dt 

二 _ ^ ( d ^ y ^ 

二 ‘ h V ^ ) 孤 

As (警 ) 2 > 0 and from Eq 5 . 1 , 鼓 > 0, tlius 尝 < 0 and thus E decreases in 

times with stationary points when 警 二 0. QED 

This theorem guarantees that tlie Energy function can be minimized by this 

network. 
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Although generalizing this Hopfield NN model to cope with the utility func-

tion is not difficult (which would be disscussed in the last section of this Chap-

ter) , a major weakness of tlie Hopfield NN is that it is likely to be trapped by 

local minima. Furthermore, the above equations are for continuous system which 

means that it is difficult to simulate them. Although there are many algorithms » 

for simulating continous system, like Gear, Rk45, and etc. , some studies show 

that the convergence is strongly afFected by the parameters of these algorithms. 

There is another Hopfield based discrete NN model known as the Boltzman's 

Machine, which is less likely to be trapped by local minima and also easier to 

be simulated as it is a discrete system. Therefore, in the following studies, we 

would use this kind of Boltzman's Machine NN. 

5.2 Boltzman's Machine 

De Wilde [52] defined the Boltzman's Machine as the neural network operating 

with noise. The neurons in a Boltzman's Machine do not have a determinis-

tic transfer functions, instead they have probabilistic transfer functions : Let 

Xi e {1, —1}, Ui and Oi be the output, input and threshold of neuron unit i re-

spectively. Applying the Hopfield NN configuration and with some modifications 

to the transfer function, we have : 

^ = £ 7 ¾ ¾ ^ - ^ (5.5) 
i=i 

M is the total number of neuron units and T,j is both symmetric and zero-

diagonaL 

叫足= 1 ] 二 i T ^ (5-6) 

76 



Chapter 5 Route Selection as Energy Minimization - A Theoretical Study 

户収广 — 1 ] = r r W ‘ （5-.7) 

One may checked that : 

2 _L e ^ + e — ^ R 
P r [ X , = 1] + P r [ X , 二 - 1 ] = ( 〜 - 风 仏 ) ( 1 + 6 风 巧 ) 二 1 . ( 5 . 8 ) 

Pi > 0, is the inverse "Temperature" of the system. Let /¾ 二 1/T where T 

denotes the "Temperature" of the system. From (5.6), (5.7), we may observed 

that for very low Temperatures (or /¾ ~^ oo ) 

‘ 1 if JM > 0 -

Pr[X^ = 1] = 0 if U^ < 0 (5.9) 

0.5 if U\ 二 0 

‘ 0 if V, > 0 

Pr{X, 二 —1] 二 1 if 仏 < 0 (5.10) 

0.5 if 认 = 0 
V 

When the Temperature is very high (or /¾ — 0 ) 

Pv{X, 二 1] 二 Pr{X, - - 1 ] = 0.5 (5.11) 

Intutively, we may say that at high temperatures, the neuron transfer functions 

behaves less predictable and at low temperatures, the neuron transfer functions 

cools down to a more deterministic way. A deterministic equivalent of (5.6), 

(5.7) could be formulate as : 

X,(t + r) 二 sz^n([/,(t)) (5.12) 

X.(t + r) = 3z^n ( ^ T . , M ^ - ^ , ) (5.13) 

w 乙 

(dE\ 
X,{t^r) 二 « s z p n [ — ^ ) (5.14) 
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The corresponding energy function is : -

E{m) = - E E 了/“《广秘9) + 1 + E Mm. (5.15) 
i=l j=l 乙 ^ i=l 

Theorem 5.2 The above energy function (5.15) decreases during the operation 

of the network when (5.14) is used as the transfer function if Tij = Tji 

Proof: Consider the partial derivative 

dE 1 ^ ^ fX, + l\ 1 ^ /A-, + n 
m 二 -2 g ^- [ - ^ ) - 2 S ^- [ - ^ ) + ^̂‘ (5.16) 

= = £ 『 4 ^ ^ ) — 氏 1 . (5.17) 
_j=i \ ^ ) _ 

Tij is symmetric with zero diagonal. Switching to finite differences, this formula 

becomes: 
( n V 1 1 、 

A ^ = - A X , [ A " ^ — ^ • (5.18) 
W ^ / 

When the term inside the E j ^ i ^ ^ ¾ ^ — î > •, then according to (5.14) 

A X , > 0 and AE < 0. Similarly, if this E]=i ^ ¾ ^ —氏 < 0，AX, < 0 

and AE < 0. Thus, the energy E decreases during the operation of the net-

work. QED 

In the actual simulations, we start with a high temperature and then allows 

it to cool down gradually. This is actually the idea of Simulated Annealing. It is 

by this mechanism, the local minima may be avoided and the global minimum 

is more likely to be found. 
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5.3 Boltzman’s Machine Model for Multiple-

Metrices Routing 

Here, back to tlie multiple-metrices routing problem. The following is a general-

ized energy function for multiple metrics routing, which has not been discussed 

else where. 

E = - E E ^ 4 ^ ) ( ^ ) 
j=ik=i \ z / V z / 

‘ m ^ j � f , ( 棚 + 1�1 f , f M l + i ) 

-_E4^^)J-sn""^) 
(5.19) 

Where Util(X) : X G ^^ ^ Y G 於 is the utility function. The following neuron 

transfer functions was choosen : 
/ Q p \ 

A , # + T ) = ^ " n _ F (5.20) 
V OAi/ 

Theorem 5.3 Tlie energy function (5.19) decreases during the operation of the 

network when (5.20) is used as the transfer function ifT”. 二 T)i and Util{-) 

, is differentiable. 

Proof: Consider the partial derivative 

dE — _ i ^ ^ /x, + n 1^ /x,- + n 

面 二 _ g M " ^ r 3 & M " ^ y . 
� f , ( n ) d{UtzI(E'J=lI^^)} l j 

2 . ¾ ^ 3 ( E l i / i r ) Y ) r 

(5.21) 
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Since Tij is symmetric with zero diagonal, thus we have -

d E [ f ^ ^ + l l ^ , ( n ) d m K ^ ^ = i I _ ^ ^ ) } , 1 J ( „ ? � 

面 二 — 、 『 ” . ^ ^ + 豆 、 人 ’ • o ( y M j i n ) x , ^ ^ 2 ^ ^ ( 5 . 2 2 ) 

‘ b=l 几=1 。\2^m=l 丄饥 2 J . 

where C is the number of metrics on a communication link, Util is the utility 

function, and /}— is the n-th element of the vector /•. Note that the second 

summation term and the Ji term inside sign[-] is correspond to the 6i in (5.6), 

(5.7) In discrete form : 

, A P A Y [ f ^ T ; + l + l f , ( " ) 8{UtU{j:==iI!Y)) 1 , 1 
么 丑 二 — / \ 入 , . ^ T , , - ^ ^ - ^ I , • ( ( n ) L . + l ) + 9 ^ - . 

j=l 乙 ^ n^l Cl�l^m=llm~"^) ^ _ 
(5.23) 

When the term inside the [.] > 0, tlien according to (5.20) A X , > 0 and AE < 0. 

Similarly, if this [•] < 0, A X , < 0 and AE < 0. Thus, the energy E decreases 

during the operation of the network. Q E D 

In the probabilistic situation, we would have a probabilistic version of (5.20), 

and AX^ may sometimes (especially at high temperatures) in the opposite way 

and causing AE to increase. It is by this way tlie local minima may be avoided 

and the global minimum is more likely to be found. 

Base on Ali's [1] energy function, we derive a similar function as below : 

N N N N 
E = 一 ^ . utii Y. Y1 c^,v^^ + fi2 J2 J2 pnVzt 

x=l 1=1 x;-l i = l 
_ (a:,̂ )/(d,s) J {x/)/{d,s) 

N ( N N \ 2 

+ M s E E V - - E ^-- + " 4 ( i - v y 
a:=l y=l,i7 r̂c i=l,i#x / 

(5.24) 

80 



Chapter 5 Route Selection as Energy Minimization - A Theoretical Study 

where , 
X • 4- 1 

K . = ^ ^ ^ (5.25) 

with V^i = 1, if the link form node x to i is in the path and T4̂ - = 0 otherwise. 

The index xi is an uni-dimensional index, the actual index should be given by 

j =^x * N + z, where N is the number of communication nodes considered. This 

way of indexing had been widely used since JJ Hopfield's TSP formulation [45 . 

The physical meaning of this equation is similar to (3.8) - /Xi term maximizes the 

total utility of a path by taking into account the metrics of existing links. The 

fj,2 term is for removing the nonexistent links from the solution. The fi3 term is 

to ensure that the number of incoming links to a node is equal to the number 

of outgoing links. The original |M term is used to push the state of the neural 

network to converge to one of the 2几、几 corners of the solution hypercube, defined 

by Vj,i G {0,1} . In the Boltzman's machine the results are always in {0,1}, thus 

it is omitted in here. Instead, the ^4 term here is equivalent to the original "5 

term which makes the final solution to contain tlie link (virtual or real) from 

d to 5 and therefore both the source and destination would be in the solution 

path. Note that the final is always a loop, starting from 5, goes through some 

intermediate nodes if any, then reach destination d and a single (virtual or real) 

link back to 5. Implied from (5.20), the neuron dymanic equations are given by 

“ 一 盖 （ 5 . 2 6 ) 

Uxi^ 二 令 Z1 Ĉ f(l — ÂJ ( pv̂ i(nuL+T 
乙 n=l \Z^ 2̂  ^xi ~2~~ / 

-^Pxt[^ - ^xd^is) 
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^3 ^ ( Xxy + 1 Xyx + 1 \ /̂ 3 ^ ( Xiy + 1 Xyi + 1\ -

—1 h V 2 厂)+ T u \~^ ^ ) 
y^x: y^x 

丄 " 4 入 . ^—^xdOis-

(5.27) 

wliere, 

1 if i = j , � 
� = . . (5.28) 

0 if otherwise 

Comparing the coefficients of (5.27) to the 2-D version of (5.22) as shown below: 

dE r ^ ^ T Xy] + 1 丨 1 f 一) d { U t U { T . Z = l Y . U . i . r r . l ^ ^ ) ^ , ^J ‘ 
'^X~. ~ ~ 1^ 2^ 丄工旧3 2 + 5 2 j 7 m . o ( ^ N ^ N j{n)X^,+l\ 十 3 饥• 

UA^ Ly=lj=l,j7^y ri=l 0 y2^rn=l 2i^j=l,j^m ^mj 2 J � 
(5.29) 

we have tlie following relations: 

T^,yi = — " 3 � - "3<¾ + f̂ 3̂ jx + f̂ 38iy (5.30) 

4 ? ) = " i C i ? ) ( l — 6 - f c ) (5.31) 

Jxt = P^2Pxt{^ - ^xd^is) + fJ'4^xd^zs (5.32) 

5.4 Conclusions 

So far we have discuss the theoretical feasibility of solving the multiple mer-

ics utility optimization routing problem with the Hopfield NN. From the above 

analytical results, it is clear that the problem can be modelled within the Hop-

field NN framework. Theoretical studies show that the modified Hopfield NN 

converges during the operation of tlie network. And the concept of the energy 

function is a clone of Ali's work [1] which had been proved to be successful both 
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analytically and via simulations. It is likely that the model will also produce 

such results, provided that the fx parameters are chosen properly. Again, we 

may refer to [1] about the ways of choosing those parameters. 

>• 
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Chapter 6 

Conclusions 

In this thesis, we have discussed the trend towards a commercialized global 

Internet. As such commercialization does not favour an administrative domain 

to carry transit domain traffics without placing a proper charge for them. This is 

because tlie volume of such kind of transit traffics may cause a great degradation 

to the domain's intra-domain and inter-domain services. The emerging high 

bandwidth services on the Internet would also make this problem even worse. 

Tliis is concerned witli the well-known economic issue known as externalities, 

where market mechanism fails. In order to restore the market, price strategies 

should be employed. Our thesis has proposed a simple yet efficient and practical 

pricing scheme, namely, each domain imposes a price for every transit domain 

traffics. If every route uses its least-cost route, a global minimum of resource 

consumption would be resulted. But in this thesis, we have done more than 

that. We adapted the concept of utility function, by which each person's needs 

about the Internet services can be reflected. For instance, some people want 

high quality services with higher prices, while some others may just want the 
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least costv services. -

In the technology aspect, although some inter-domain routing protocols like 

BGP-4 allows multiple link attributes to be considered in route decision, the 

current practices with multiple link attributes are either combining them to 

a single metric, then applies the shortest path algorithms, or consider one of 

metrics as the dominant factor applies the shortest path algorithms, and then 

tie-breaking by the secondary metrics. However, both approaches do not satisfy 

our needs. Thus, our thesis has proposed two neural network framework to 

‘ solve our unique routing problem. In chapter 4, we have used a MLFN based 

neural network to solve this problem and simulation results have been presented 

to support the algorithm. This MLFN is potentially VLSI implementable. In 

chapter 5, we have shown theoretically that the Hopfield NN can also be applied 

to this problem. 
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