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ABSTRACT 

The basic principle of inverse sampling is that one continues to sample subjects 

until a predetermined number of index subjects with certain attribute is observed. 

It has been proposed as an alternative to the commonly used binomial sampling 

when the subjects arrive sequentially, when the studied subjects are rare, and 

when the niaximiini likelihood estimators of some epidemiologic indices are un-

defined. In this thesis, large sample behaviors of two statistics for the risk ratio 

under inverse sampling are considered. The asymptotic distributions of the two 

statistics are derived on the basis of Fieller's Theorem and the delta method with 

the logarithmic transformation respectively. Then the confidence interval of the 

risk ratio is constructed. Sample-based estimates and restricted inaximiim likeli-

hood estimates are used for the confidence interval construction. To evaluate the 

performance of these methods, simulation is used to compare the actual coverage 

probability with the confidence level for each method and to estimate the expected 

length of the corresponding coiifidonco interval in a variety of situations. 
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摘要 

逆抽樣方法的基本原理是一直抽樣，直到有某種特徵的樣本達到預定的數 

目。在以下三種情況，逆抽樣方法被提議為代替普遍使用的二項抽樣方法： 

一、樣本是順序出現；二、有某種特徵的樣本是稀有的；三、沒有定義流行病 

學指數的極大概似估計量。在這篇論文中，考慮了兩個關於風險比率（Risk 

Ratio)的統計量。這兩個統計量的漸近分佈分別由菲勒爾定理及使用b法的 

對數變換所推導出來。接著，我們計算了風險比率的置信區間。置信區間的計 

算使用了基於樣本的估計值及約束極大概似估計值。為了評價這些方法，我們 

使用了模擬方法，根據不同情況，比較實際範圍概率與置信區間的分別。另 

外，也估計置信區間的期望長度。 
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Chapter 1 

Introduction 

1.1 Introduction 

Inverse sampling is a sampling method that we continue to collect samples until 

a predetermined number of cases r are obtained. By using inverse sampling, we 

can collect appropriate number of cases in our samples. It is used when an event 

is rare because it is quite difficult to obtain enough samples by using binomial 

sampling. 

1.2 Background 

Chi (1980) has developed different procedures for testing homogeneity for more 

than two comparison groups under negative binomial distribution. 

George and Elstori (1993) found that using the inverse sampling instead of 

binomial sampling could shorten the length of the confidence interval. They de-

rived tho ronficlcncc limits which leased on the geometric distribution and based 

on the binomial distribution respectively. Although the lower limits are the same, 

the upper limits are smaller for the geometric distribution. 
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Lui (1995) dicussecl three simple interval estimates for the risk ratio under 

inverse sampling. The estimates are derived on the basis of Fieller's Theorem, 

the delta method with the logarithmic transformation and an F-test statistic 

proposed by Bennett (1981). He found that the method with the logarithmic 

transformation is better than or eqiiivalenct to the other two methods in terms 

of coverage probability and expected length. 

Lui (1997) established equivalence with respect to the risk ratio under inverse 

sampling. An exact and two asymptotic procedures for sample size determination 

are derived. 

Newconibe (1998) evaluated several existing unconditional methods for setting 

confidence intervals for the difference between binomial proportions and found 

that, roiifidonco intervals constructed by sainpkvbasod tost statistics poiform un-

satisfactorily. 

Lui (1999) discusscd on iiitoi val cstiiiititioii of simple diffcrciicc under inverse 

sampling. He developed three asymptotic interval estimators on the basis of the 

maximum likelihood estimator, the uniformly niinimum variance unbiased esti-

mator and the asymptotic likelihood ratio test. All the three methods perform 

well even when the predetermined number of cases r is small and when r is large, 

three methods are essentially equivalent. 
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Tang, Tang, Chan and Chan (2002) discussed sample size determination for 

establishing equivalence or non-inferiority of two proportions in match-pairs de-

sign. They derived sample size formulas for hypothesis testing and confidence 

interval estimation. 

1.3 Objective 

In this thesis, we follow Lui's work (1995, 1997) to perform equivalence/non-

inferiority testing between a standard procedure and a new procedure. We are 

going to derive reliable test statistics for risk ratio R under inverse sampling. 

These test statistics may possess reliable asymptotic properties. By using these 

tost statistics, coiifidoncr; intervals are ronstnictod with sainplo-basod estimates 

and restricted maximum likelihood estimates respectively. By using simulation, 

we are going to compare the difference between using sample-based estimates and 

restricted niaxiiiiuni likelihood estimates. 

1.4 Scope of the thesis 

The thesis is organized as follow. In Chapter 2，we will have a more details de-

scription on inverse sampling and will introduce non-inferiority hypothesis. In 

Chapter 3，we will discuss two test statistics. One is dervied on the basis of 

Fieller's Theorem. The other one is derived on the basis of delta method with 

logarithm transformation. In Chapter 4, we will construct the test based con-

fidence interval for risk ratio R by using sample-based estimates and restricted 
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maximum likelihood estimates respectively. In Chapter 5，we will use simulation 

to evaluate the performance of the test based confidence interval by using cover-

age probability and expected length. Chapter 6 is the conclusion of this thesis. 
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Chapter 2 

Basic Concepts 

2.1 Inverse Sampling 

Sometimes: when an event is rare, it is quite difficult to obtain enough cases 

by using binomial sampling. In this situation, we may employ inverse sampling 

instead of binomial sampling. Inverse sampling is a sampling method that we 

continue to collect samples until a predetermined number of cases r are obtained. 

By using inverse sampling, we ensure an appropriate number of cases included in 

the sample. We are going to observe the number of noii cases, Y. Let tt be the 

probability that it is a case in a trial. Then the random quantity Y is well known 

to be negative binomial distributed with probability mass function. 

P{y = ？/k) = " M 7r',(l — TT)"，y = 0,l,2,… 
\ y / 

111 this thesis, we attempt to extend the work of Lui (1995, 1997) to study the 

equivalence/ non-inferiority tests between a standard procedure and a new pro-

cedure. 
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2.2 Equivalence/ Non-inferiority Testing 

Lui (1997) proposed the utility of inverse sampling in establishing equivalence/ 

non-inferiority with respect to the risk ratio. He suggested his proposed niethod-

ology to be used in health care studies in order to establish equivalence between 

two study groups. The purpose was to examine whether a less toxic, easier to 

administer, or less expensive procedure is medically non-inferior to a standard 

procedure. 

Suppose TTs and ttn are the probability for a randomly selected subject from 

the standard procedure and the new procedure respectively, for which have the 

disease of interest. For each procedure i {i = S, N), independent inverse sampling 

is employed. The following table suinniarizes the result of the samples. 

Procedure New Standard 
Non cases jjm Vs 

Predetermined number of cases r^ vs 
Total tiN tls 

After collecting the samples, in order to compare these two procedures, we focus 

on the risk ratio, which is the ratio between new procedure and standard proce-

dure, it is denoted as i? = We want to test the non-inferiority hypothesis: 

HQ : R < RQ 

versus the atternative hypothesis 

HI： R> RO 

where 0 < /?o < 1, is a pre-specified quantity. In medical study, non-inferiority 

means that the new procedure is not worse than the standard procedure. For 
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example, Liii (1997) described a health care trials in which one hopes to estab-

lish no deterioration in the quality of patient care provided by niirse-practioners 

compared with physicians. In this case, non-inferior means that the quality pro-

vided by the inirse-practioners are not worse than that of physicians. For reducing 

cost, physicians can be replaced by niirse-practioners as service provided by niirse-

practioiiers supposed to be cost and time effective. 
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Chapter 3 

Inference for Risk Ratio 

3.1 Introduction 

Suppose two independent inverse samples are collected from the new and stan-

dard procedures respectively. Let tt̂ v and its be the probabilities that there is a 

case from these two procedures and R = ^ be the cHiciciicy of the new proccduic 

compare to the standard procedure which is our parameter of interest. In this 

chapter, we will introduce two test statistics which are useful for the inference of 

R. 

3.2 Test Statistics for Risk Ratio 

As riientioiied before, the nunibers of non-cases, Yi,i = N,S collected in sample 

i are 

\ yi J 

The random variable Yi can be written as the sum of /� independent random 

variables {Xij — 1), where Xij follows a geometric distribution with mean ^ and 
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variance “-工‘.). 

Yr = — 1) (3.1) 
j=l 

where Xi j �GeoTnetr ic ini ) . 

Following Fieller's Theorem (Fleiss, 1986), we consider the random variable: 

Z = X5 - R X n (3.2) 

where 兄 = = 异 + 1 , / ? = ! ! ^ 二器， 

If Vi is large, i = N, 5 , based on Central Limit Theorem, Z would be asymp-

totic normal distributed with mean 

E{Z) = E{Xs) - B.E{Xn) 

- 丄 — 沉 N 1 

TTs TTs TTyv 

= 0 (3.3) 

and variance 

Var{Z) = Var{Xs - R^n) 

=Var{Xs) + R"Var{XN) 

= + f ^ V (3.4) 
rsTTs V '^'NT^n J 

We then have the test statistic T\: 

Ti = 产 … (3.5) 
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However, ns and ttn are unknown and we can replace them by any consistent 

estimators of 7r5 and ttat. 

Obviously, sample proportion PI = is an estimator of tTj, i = N,S. 

By delta method, 

E(pi) ^ -r,~'a 
TT/ 丁 I 

一 n 
— r,-r/7r;+r,-7r,-

TT/ 

=TTi, (3.6) 

Var{pi) « {—7—^——}Var(yO 
= [ - . ' � .2^(1 - TTj) 

_ r'} n ( l - TTj) 
二 

Tif n ( i - TTQ 
_ 

= 冗 沿 - 兀 《 (3.7) 

n 

where 

TT,； 

1/ / V � —巧) 

兀i 

Therefore, when , /� i s large, 

-兀 0 
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With this result, we can estimate R as 

R = (3.8) 
PS 

Note that ^ > 0 and In R will posses a better asymptotic behavior than R. 

Moreover, by Delta method, 

E{\nR) ^ \nR (3.9) 

and, 

Var{\nR) « Var{\n{ — )) 
TPs 

=Var{\npj\) + V ar (In ps) 

= 1 — � i ^ ’ (3.10) 
RN RS 

where 

E (In Pi) ^ liiTTi, 

Vardnp.) ^ ( I f l ^ H ^ 
TTj n 1 — TTj — ’ 

N. 

for i = N,S. 

Therefore, the test statistic 

In ( i^) - hi � 
T2 = — ^ — (3.11) 

s 

where 

/ I -亓S 1 _ 亓AT 
S = \ + ， 

V rs rN 
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with any consistent estimate of tTj, i = N, S, can be used for inferring R. 

3.3 Consistent Estimators of tt 

The likelihood function: 

L = P{YM = ijN, ys = tts) 

= ( • ( y-- • + � — 1 ) r^rs^^ — — 
V UN y V y.-yN / ^ 

Under the null hypothesis: 

HQ : R < RQ 

versus the atternative hypothesis 

HI： R> RO, 

where 

Risk Ratio R 

TTS, 

and Ro is a pic-«pccificd quantity 

0<Ro<l. 

The likelihood function of ttat and R can be written as 

L=( ĴN + r/v - 1 \( y.-yN+r,-\ \ 冗 ̂ v _ _ ^yu-uN ’ 川！戲 y. = yN+ Vs-
V VN J \ y- - VN J ^ R ' R 
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The log-likelihood function is then given by, 

111 L == C + tn In ttn + vs In ttm - vs \nB. + ijN ln(l - ttn) + {y. — Vn) In (1 — 

where C is a constant. 

Tlio first order derivative of In L with respect to ttm is, 

d In L TN + rs VN y. _ VN 
— = . 
()tTN 兀iV 1 - TTiV Ro - TTat 

After we set ^^^ equal to 0 yields, (See Appendix Al ) 
以冗w R=Ro 

{r-N + rs + y.)TT% — [(nv + rs) + (r̂ v + rs + yiv)丑 o + (y- — VnYIt^n + {tn + rs)Ro = 0’ 

TTyv = ^ (3.12) 

where 

= + rs + y., 

B = - [ ( ? > + rs) + (7,iV + rs + YN、Ro + iv- — VN)], 

C = {rN + rs)Ro. 

We want to show that ttn is the smaller root of the above quadratic equation, 

which is the restricted maximum likelihood estimate. 

Firstly, we show that the roots of this equation are real: 

A 二 B ‘ L 4AC 
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=[unRo + {y. - y^) + {vn + rs)Ro + + rs)f - 4(7^ + rs + '".Xnv + rs)Ro 

=VNRI + {y- - + 2yNMy. - VN) + (nv + rsfRl + (r/v + rsf 

+2(rw + rsfRo + 2["；vi?o + {y. - yN)][{rN + rs)Ro + [tn + rs)] 

一4(nv + rsfRo - + rs)Rn 

二 ylRl + {y. - mf + Cov + rsfRl + (.厂iv + rs)^ + 2yMRo{y. — VN) 

-2(ryv + r s f R o + ^y^RUrN + rs) + 2yNRo{rN + rs) 

+2y.(r,v + rs)RQ - 2 — � + rs)RQ + 2�y. — + rs) 一 + rs)Ro 

=VnRI + {y- — Vn? + [tn + rsfRl + (/> + rsf + — Vn) 

-2(r;v + rsfR^ + 2ijNRl{rN + rs) - 2y.(j�N + rs)Ro + 2(y. — + rs) 

=vlRl + {y- - VN? + + rsfRl + (riv + rsf + 2ijMRo{y. — VN) 

-2(r,v + rsfRo + 2yNRl{rN + rs) 一 2mR办n + rs) - 2{y. - ？ + rs) 

— ijN){rN + rs)Ro + My. — ？/N)(rjv + rs) — — m�(j�N + rs)Ro 

二 YLFTS + (JJ. - YJVF + 询NMU- - VN) + (R,V + RSFRL + (,NV + RSF 

-2(rAr + rsfRo — 2[yNRo + _ 仏v)][(nv + rs) 一 (ryv + rs)Ro] 

+4('�.-？人v)(nv + rs){l - Bo) 

=[yNRo + {y- — VN) - {TN + rs) + (r,v + rs)Ro]~ + — ？/八「)(/、" + .rs)(l — i?o) 

> 0 {since 0 < Rq < 1). 

Then, we show that only the smaller root is admissible, note that ttn takes 

value between zero and Rq. 

Let 

/(TT.V) = {rN+rs+y.)7T%-[{rM+rs) + (./.AT+rs+VN )/?()+(". — VN ) 1 tTjv + (r/V+rs) Ro • 

14 



When TTyv = 0, the equation becomes 

/(O) = {riv + rs)Ro. 

which is greater than zero. 

When TT/v = RO, the equation becomes 

f{Ro) = {y.-yN)Ro{Ro-l). 

which is smaller than zero. 

From these two result, wc can find that the quadratic equation must bo a 

decreasing function from positive to negative value as ttn increase from 0 to Rq, 

and only the smaller root of ttn is included within this interval. By Intermediate 

Value Theorem, there must be a value of ttn such that /(TT^V) —:二 0. Therefore, 

the smaller root of the quadratic equation is the restricted maximum likelihood 

estimate of 7r,v under null hypothesis. 

We then use the restricted niaximuni likelihood estimates, tt̂ v and tts (tts — 

•Kjw/Ri)) to replace the sample-based estimates in the test statistics T\ and To. 
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Chapter 4 

Confidence Interval 

4.1 Introduction 

Assume that two independent inverse samples are drawn from the populations 

who received the treatment of new and standard procedures, respectively. Let 

ttn and tts denote the respective probability for a raiidonily selected subject from 

these two populations who shows improvement. Let i? 二 器 be the efficiency 

of the new procedure to the standard procedure. In this chapter, we discuss the 

construction of the confidence intervals of R. 

Recall the test statistics 7\ and To depend on the unknown parameters tTj, 

i = N, S. It is well known that these unknown quantities can be replaced by any 

consistent estimators of them. We will discuss this idea more detail in Section 

4.3. Due to Tang, Tang, Chan and Chan (2002), a better result might be ob-

tained by using the test-based confidence interval. In section 4.2，we will discuss 

the coiistnictioii of confidence interval using the restricted ina^xiinuin likelihood 

estimators of tTj, i = N,S in estimating the unknown tTj, i = N,S. 
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4.2 Test-Based Confidence Interval 

Wc ai c interested in constructing a coiifidciicc interval of R. Recall from Chapter 

3，two statistics, 7\ and T2, are introduced. Both of them contain the nuisance 

parameter ttn • In this section, we are going to show how restricted maximum 

likelihood estimator of tt̂ v is used to obtain the confidence interval. 

For a statistic T{R, 7TJ\), a test-based 100(1 — A)% confidence interval is de-

fined as the interval {RI, RY), where for any value R* 6 {R l , Ru)^ the hypothesis 

Hq : R < /?() is accepted with n level of sigiiificciiicc with the iiiiisaiicc pciraiiictcr 

TT八'is replaced by its restricted maxiiuuni likelihood estimator. We will discuss 

the construction of this confidence interval more detail. 

Under the following null hypotheses: 

For lower homid: 

Hk ： R < Rl 

versus the atternative hypothesis 

: R > RL. 

For upper bound: 

H^ :R> Ru 

versus the atternative hypothesis 

H^ :R< RU. 

17 



We want to test whether the risk ratio R is larger than the lower bound. The 

rejection rule is: we reject H^ if > ； f o r i = 1,2. And, we want to test 

whether the risk ratio R is smaller than the upper bound. The rejection rule is: 

we reject Hg if Ti < — , for i = 1, 2. The lower limit is the minimum /?丄 such 

that HQ is accepted and the upper limit is the maximum Ry such that Ĥ ^ is 

accepted. T\, T-j, are the test, statistics derived on the basis of Fieller's Theorem 

and on the basis of delta method with logarithm transformation respectively. 

Ti = 产 … (4.1) 

T2 = ———. (4.2) 
s 

Afterwards, we can obtain the (1 - Q)% confidence interval for risk ratio: 

[ni^Ru) (4.3) 

where R\ is the miniinuni RI such that //q is accepted and RY is the maximum 

Ru such that HQ is accepted. 

4.3 Using sample-based estimates 

Liii (1995) followed Fieller's Theorem, using 7] to construct the confidence limits. 

Because VAR{Z) is a quadratic function of /?,, the inequality < ẑ !̂) can be 

rewritten â s AR^ - 2BR + C < 0 (See Appendix A2), 
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where 

4 _ Y2 ，2 广 1 一 ~ 、 
^ — An —�a/2 „ -2 ， V TnT̂ N 

B = XsXN, 

r - y2 ，2 flsuA 
� — - 一 -a/2 T" • 

V �ST̂ S / 

UA>0 and B^-AC > 0, then P(Ri < < Ru) = 1-a, where R,, is the larger 

root and Ri is the smaller root. We can see that the confidence limits Ri and Ru 

depend on tTj. In this method, Lui used the unbiased estimator of tTj 二 

for TT,- (Haldane 1945). 

The (1 — q )% confidence interval for risk ratio: 

{Bi.Ru). (4.4) 

Following Lui (1997), we observed the test statistic T) also has the asymptotic 

standard normal (listribiition. Lui (1997) simply suggested tt,： = ’pi, for i = N, S, 

whic h is the saniplo-basod estimate. For ronfidmia�, interval construct.ion, (1 —(•v)% 

Confidence Interval for risk ratio R: 

(^exp I In - 2;as]>, exp |ln f — ^ + z a s l ^ (4.5) 
V I \PsJ M l \PsJ 2 f j �） 

where 

/1 —亓iv _ I - ^s 
S = \ + , V I'N Vs 

'厂. 

Pi = ~r~ ’ for i = N, S. 
ri + Vi 
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In the next chapter, by using simulation, we will use our method to compare 

with the two methods that following Lui. To evaluate their performance, based 

oil these test statistics, coiifidciicc intervals would be constructed and evaluated 

in terms of expected length and coverage probability. 

Four methods are used to esimate the coverage probability and expected length, 

for convonionco, wo define: 

Method I: using 7\ and 升i = , i = N,S 

Method II: using 7] and restricted maximum likelihood estimates 

Method III: using To and tt = — i = N,S 

G - r/H-J/i ‘ ‘ 

Method IV: using T2 and restricted maximum likelihoood estimates 

20 



Chapter 5 

Simulation 

5.1 Introduction 

To evaluate the performance of the above four methods, we apply Monte Carlo 

siiiiulation. For simplicity, we aissiiine vs, r̂ v are equal to r, and setting r equals 

to 20，30, 50, 100, TTs- equals to 0.01, 0.1, 0.2，Rq equals to 0.6’ 0.7, 0.8, 0.9，1， 

RO = ^ and or value equals to 0.01, 0.05, 0.1. S-plus is used to generate 10000 

rancloiii observations which follow negative binomial distribution. 

After simulation, we would like to estimate the coverage probability and the 

expected length of the confidence interval. The coverage probability is simply the 

percentage of the cases of the true value of R that covered by the confidence inter-

val aiicl the cxpcctccl length is the average of the length of the coiifidciicc iiitcrval. 

5.2 Simulation Procedures 

There aro five stops in the simulation proroduros: 
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Step 1 

Setting the parameters: 

r 二 20,30’ 50,100 

Ro = 0.0,0.7,0.8,0.9,1 

ns = 0.01,0.1,0.2, TTjv = 告 

Step 2 

Generating 10000 random observations which follow negative binomial distribu-

tion with parameter (r, tts) and (r, ttjv) for each configuration. 

Step 3 

For each configuration, we use the 10000 random observations, estimate the 

sample-based estimates and restricted maximum likelihood estimates. 

Step 4 

Using the estimates and the test statistics mentioned before to estimate the lower 

limits and upper limits. 

Step 5 

Computing the expected length and the coverage probability for each configura-

tion. 
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5.3 Simulation Results 

With the same r, Rq, ns and «，we found that method I has the largest coverage 

probabilities when comparing to other three methods. The other three methods 

consistently agree with the nominal confidence interval ( l - a ) % quite well. How-

ever, within the three methods, the coverage probabilities of method II do not 

asice with the nominal ronfidoncc interval of (1 - The difFcronco botwoon 

the coverage probability and the nominal confidence interval (1 — a)% is a little 

hit larger than those of method III and IV. We can note this result from Table 

5.1. 

Table 5.1: r = 20，a = 0.05，its = 0.01, coverage probabilities 

Ro 
ns Method 0.6 0.7 0.8 0.9 1 

0.01 r 0 . 9 7 7 9 0 . 9 7 5 0.9724 0.9787 0.9773 
II 0.9568 0.9519 0.9479 0.9543 0.9564 

III 0.9544 0.9491 0.9457 0.9512 0.9504 
IV 0.9503 0.9454 0.9417 0.9475 0.9473 

For the expected length, we observed that Method I has the longest expected 

lengths and method IV has the shortest expected lengths. We can note this result 

from Table 5.2. 

Table 5.2: r = 20, a = 0.05, tts = 0.01，expected lengths 

I I Ro 
ITS "Tlethod 0.6 0.7 0.8 0.9 1 

0.01 i 0 . 9 8 3 0 9 8 1 . 1 4 7 6 3 1 1 . 3 1 6 1 9 6 ~ 1 . 4 8 0 0 0 7 ~ 1 . 6 3 3 5 5 7 
II 0.851583 0.996245 1.144361 1.288542 1.423728 

III 0.829387 0.968442 1.110962 1.249527 1.379583 
IV 0.819464 0.95858 1.101033 1.239508 1.369455 
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With the same r, Rq and tts but different a, we can obtain similar results, 

moreover, as a is larger, the coverage probabilities of method I become much 

more disagree with the noinial confidence interval (1 — a)%. We can note this 

result from Table 5.3. 

Table 5.3: r = 20’ a = 0.1, tts = 0.01，coverage probabilities 

Bo 
TTS M e t h o d 0.6 0.7 0.8 0.9 1 

0.01 r 0.9409 0.9354 0.9328 0.9374 0.9367 
II 0.9046 0.9006 0.8961 0.9004 0.9 

III 0.9045 0.8995 0.8985 0.9013 0.8959 
IV 0.8964 0.8922 0.8919 0.8955 0.89 

When rv increases, the expected lengths become shorter. Comparing Table 

5.4 with Table 5.5, we can found that the expected lengths are nmch shorter in 

Table 5.5. 

Tiihle 5.4: r = 20, q = 0.01, tts = 0.01, expected lengths 

— I I 
TVS Method 0.6 0.7 0.8 0.9 1 

0.01 i 1 . 5 3 4 4 5 1 1 . 7 9 0 6 1 8 2 . 0 5 2 8 4 5 2 . 3 0 7 5 7 4 2.546338 
II 1.217223 1.423183 1.634541 1.839779 2.0327 

III 1.139764 1.330776 1.526G03 1.71G964 1.895G19 
IV 1.130029 1.321097 1.516G69 1.707008 1.885438 

Table 5.5: r = 20, a = 0.1, tts = 0.01, expected lengths 

— I I Ro 
ITS "Het l iod 0.6 0.7 0.8 0.9 l " 

0.01 I 0 . 7 7 7 6 8 9 0 . 9 0 7 9 6 5 1 . 0 4 1 3 7 1 1 . 1 7 1 0 8 3 1 . 2 9 2 8 0 4 
II 0.691072 0.80867G 0.929204 1.046572 1.156588 

III 0.683386 0.798021 0.915355 1.029558 1.136718 
IV 0.673404 0.787962 0.905396 1.019527 1.126659 
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With the same r, i?o and rv but, difForont tts, the coverage probabilities of 

method I are closer to the nominal confidence interval of (1 — a)% when tts is 

large. We can get this result from Table 5.6. 

Table 5.6: r = 20’ cv = 0.1, coverage probabilities 

TTS Method 0.6 0.7 0.8 0.9 1 
l U j T I 0.9409 0.9354 0.9328 0.9374 0.9367 
~0.2 I 0.9394 0.937 0.9364 0.9316 0.9307 

W'e observed from Table 5.7 that the expected length depends on tts, when 

TTs is small, it is longer. When tts is large, it is shorter. 

Table 5.7: r = 20. cv = 0.1, expected lengths 

一 1 1 一 

TTS Method 0.6 0.7 0.8 0.9 l " 
0.01 r 0 . 7 7 7 6 8 9 0 . 9 0 7 9 6 5 1 . 0 4 1 3 7 1 ~ 1 . 1 7 1 0 8 3 1 . 2 9 2 8 0 4 

II 0.691072 0.808G76 0.929204 1.040572 1.156588 
III 0.68338C 0.798021 0.915355 1.029558 1.136718 
IV 0.673404 0.7879G2 0.905396 1.019527 1.126659 

I 0 . G 9 7 3 4 8 0 . 8 0 0 1 0 1 0 . 9 0 5 9 3 5 1 . 0 1 2 2 5 4 1 . 1 1 1 8 1 7 
II 0.630641 0.728438 0.830165 0.93344 1.031278 

III 0.620713 0.714359 0.811372 0.909534 1.002022 
IV 0.612557 0.706268 0.80314 0.901179 0.99356 

With the same tts', Ro and a but different /,’ we can see that the coverage 

probabilities of the four methods become smaller when r is large. The coverage 

probabilities of method I are being closer to the nominal confidence interval (1 — 

a)%. We can compare Table 5.8 with Table 5.9 to obtain this result. 
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Table 5.8: r = 100, a = 0.05, tts = 0.01, coverage probabilities 

_ 只0 

TTS Method 0.6 0.7 0.8 0.9 1_ 
0.01 i 0 . 9 6 3 3 0.9606 0.9545 0.9597 0.9547 

II 0.9459 0.9482 0.9433 0.9477 0.9427 
III 0.9567 0.9556 0.95 0.9535 0.9479 
IV 0.9442 0.9473 0.9418 0.9458 0.9412 

Table 5.9: r = 20，a = 0.05, tts = 0.01, coverage probabilities 

一 代） 

TVS Method 0.6 0.7 0.8 0.9 1_ 
0.01 I 0 . 9 7 7 9 0 . 9 7 5 0 . 9 7 2 4 0.9787 0.9773 

II 0.9568 0.9519 0.9479 0.9543 0.9564 
III 0.9544 0.9491 0.9457 0.9512 0.9504 
IV 0.9503 0.9454 0.9417 0.9475 0.9473 

From Table 5.2 and Table 5.10, we found that when r is small, the expected 

length is relatively longer, when r is large, it is shorter. 

Table 5.10: r = 100, q = 0.05，tts = 0.01, expected lengths 

一 I I 
TTS Method 0.6 0.7 0.8 0.9 1 

0.01 i0 .348267 0.4058680.46418 0.522293 0.580089 
II 0.331143 0.3876G2 0.444746 0.501828 0.558303 

III 0.338783 0.394926 0.451773 0.508339 0.564554 
IV 0.328922 0.384986 0.441737 0.498475 0.554515 

With the same tts, r and q but different Rq, we found that the coverage 

probability does not depend on Rq, we can get. similar results even though Ro is 

difforont. Wo found that the oxpcrtocl length is longer when Rq is larger. From 

the above ten tables, we can observe this result. 
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Chapter 6 

Conclusion 

From the above siiiiiilation results, we noted that using Method I tends to produce 

a conservative confidence interval when the pre-determiried number of cases r is 

small. The performance of Method I depends on the size of r. Method I performs 

better when r is large. Its coverage probabilities are being closer to the nominal 

confidence level of (1 — a)%. And its expected lengths are shorter when r is large. 

Method II uses the same test statistic as Method I with restricted inaxiiiiurii 

likelihood estimates instead of sample-based estimates. We noted that Method 

II performs better than Method I in all situations mentioned in the simulation. 

The covciagc jnobabilitios agree with the iioiiiiiial coiifidciicc level of (1 — (y)% 

and the expected lengths are shorter than those by Method I. 

When comparing to Method II，Method III is much better in terms of coverage 

probability and expected length when r is small. Method III consistently agrees 

with the nominal confidence level of (1 — Q)% well for all situations mentioned in 

the previous chapter. The expected lengths that we obtained by using Method 

III are shorter than those using Method I in all cases but only shorter than those 

27 



obtained by Method II when r is small. 

Method IV uses the same test statistic as Method III. The coverage probabili-

ties of t licsc two iiictliodtt arc similar and both agree with the iioiiiinal coiifidciice 

level of (1 — a )% well. Using Method IV can obtain a shorter expected length in 

all situations. 
I* 

In siiininary, when the pre-cleterniined number of cases r is large, the four 

methods are appropriate to be used. However, Method II and Method IV per-

form bet ter in terms of expected length. These two methods have a relatively 

shorter expected length. When r is small, Method I is conservative and should 

not 1)(3 used. The other three methods are more appropriate to be used. But in 

terms of expected length, Method III and Method IV are better because these 

two met hods have shorter expected length. 

Using Met hod IV is appropriat e for all situations because it can obtain the 

shortest expected length among four methods. Moreover, using restricted niaxi-

iiiiini likelihood estimates can obtain a shorter expected length and the coverage 

probability would agree with the nominal confidence level of (1 — a)% well. 
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Appendix 

A. Equation derviation 
A l . Equation derviation 1 

L = P{Y,\ = UN, Ys = ys\7TN- TTs) 

=(！JN + \ / y. - m + , ' � - 1 )冗RN 冗R卯 _ )州(1 —冗 S)ys 
V m J \ y- - UN ) N b 

Ho： R< Bo 

Hi : R> Ro 

where 0 < /?o < 1； is a prc-spccificcl quciiitity 

L = ( + ''N _ 1 ) ( _ yN + 7 � - 1 \ 兀 _ 7r�v)"'v(l -， y ' - I N 
~ V yN y V y-_yN 广 R^^ '� ' Ro 

where y. = + ys 

TTjV� 
InL = coil slantIn ttn+i's In TTjv-rs In R+ijn In (1 - 7r")+(y.-?/iV) In (1 " 

d\nL _ vn + rs _ ^Jn — V- — Vn 
dllN TTat 1 — TTjV R — TTjv 

Setting ^ 二 0 
6 _ R=Ro 

0 = {VN + 7,S)(1 - TTjvXRn - TTiv) _ - TTiv) — T̂ NiV- — ？/iv)(l — TTiv) 

0 = (nv + rs)[Ro - {ttn + Rq-^n) + tt^] 一 { v n t ^n R q — Vnt^n) 

-{y- 一 yN){'^N - t^n) 

29 



0 = {vn + rs){B.o) 一 (rjv + rs){l + + (Hv + rs)TTlr — ywR狗 + Vnt^I' 

-{y- — + (y •一 m>‘ii 

+ [{rN + rs) + VN + (". — 
0 = (r八.+ rs + y.)Tr% - [(ryv + vs) + (Hv + rs + |/jv)Ho + {y. - VNYIT^N 

+ (r,v + rs)RQ 
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A2. Equation derviation 2 

Liii (1995) 

1 … 户 ( 而 … 
= < zl,.VaT{Z)) 

=P(之2 < + R'VariXN)]) 

= P ( - 4 / 2 / ? V n r ( X , v ) - zli^Var{Xs) + < 0) 
= P { - z l ^ , R ' V a r { X M ) _ zl^^Var{Xs) + {Xs _ R文N? < 0) 

= P { - z l / . , R ' V a r { X N ) — zl/^VoriXs) + X^ - 2XsXnR + R'X^j < 0) 
= - zlj^Var{XN)]R' — 2XsXnR + — zli,Var{Xs)\ < 0) 
= P { A R ' 一 2DR + C < 0) 

where /I = 錄 ‘ " B = XsXn. C = 一 

If .4 > 0 and B- - AC > 0, the P{RI < ^ < R,,) = 1 - a 

where Ra is the larger root and /?; is the smaller root. 
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B. Table 

The following tables are the results of simulation. 

Table 6.1: r = 20，q 二 0.01, coverage probabilities 
^ 

TTS "Method 0.6 0.7 0.8 0.9 l " 
0.01 r 0.9985 0 . 9 9 7 7 0 . 9 9 9 0.9983 0.9989 

II 0.9922 0.9908 0.9931 0.9924 0.9927 
III 0.9893 0.9882 0.9902 0.9903 0.989 
IV 0.988 0.9874 0.9888 0.9896 0.9882 , 

0.1 I 0 . 9 9 8 0.9984 0.9986 0.9981 0.9985 ； 

II 0.9907 0.9916 0.9926 0.9908 0.9928 
III 0.9875 0.9885 0.9897 0.9866 0.9893 
IV 0.9861 0.9881 0.9894 0.9863 0.989 

0.2 r 0.9983 0.9996 0.9985 0.9989 0.9988 
II 0.9911 0.9936 0.993 0.9917 0.9921 

III 0.9876 0.9914 0.9904 0.9883 0.988 
IV 0.988 0.9917 0.9907 0.9885 0.9888 

Table 6.2: ./• = 20, a 二 0.01’ expected lengths I I Rn _ 
TTS Method 0.6 0.7 0.8 0.9 ~T 

0.01 r 1.534451 1.790618 2.052845 2.307574 2.546338 
II 1.217223 1.423183 1.634541 1.839779 2.0327 

III 1.139764 1.330776 1.526603 1.716964 1.895619 
IV 1.130029 1.321097 1.516669 1.707008 1.885438 

0.1 r 1.4333711.657071 1.873484 2.095275 2.303077 
II 1.1G9301 1.363218 1.553654 1.752108 1.940295 

III 1.086777 1.262928 1.43517 1.61378 1.782593 
IV 1.080152 1.255875 1.427653 1.605486 1.77329 

r 1.324553 1.509273 1.696343 1.881811 2.053069 
II 1.112918 1.287001 1.468983 1.654763 1.831504 

III 1.025254 1.179298 1.338539 1.499391 1.650799 
IV 1.022702 1.176604 1.335596 1.495943 1.646884 
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Table 6.3: r 二 30, a = 0.01, coverage probabilities 
^ 

TTS l^ethocl 0.6 0.7 0.8 0.9 1 
0.01 I 0 . 9 9 8 0.9966 0.9959 0.9964 0.9973 

II 0.9921 0.99 0.9895 0.9903 0.9924 
III 0.9913 0.9887 0.9887 0.9885 0.991 
IV 0.9899 0.9877 0.988 0.9874 0.9903 ‘ 

0.1 r 0.9969 0.9973 0.9968 0.9973 0.9966 
II 0.9913 0.9917 0.9914 0.9905 0.9921 

III 0.9901 0.9907 0.9901 0.9893 0.9891 
IV 0.9892 0.9899 0.989 0.9888 0.9887 

0.2 r 0 . 9 9 7 1 0 . 9 9 7 0.9966 0.9961 0.9963 
II 0.9919 0.9914 0.9899 0.9912 0.9909 

III 0.9898 0.9889 0.9887 0.9902 0.9885 
IV 0.9887 0.988 0.9884 0.9901 0.9886 

Table 6.4: r = 30, a = 0.01, expected lengths 
^ 

Method 0.6 0.7 0.8 0.9 ~ 
0.01 I 1.0469 1 .2181281 .397611 .571662 1.739 

II 0.91633 1.068319 1.227667 1.382391 1.531188 
III 0.8856 1.030703 1.182926 1.330635 1.472771 
IV 0.8757 1.020905 1.172961 1.320757 1.462659 

r 0.990448 1.144028 1.303738 1.460238 1.608819 
II 0.878371 1.020069 1.16855 1.315162 1.455464 

III 0.84550G 0.979136 1.118811 1.256451 1.387871 
IV 0.837236 0.970807 1.110278 1.247434 1.378419 

r 0.926054 1.065358 1.202242 1.335378 1.469238 
II 0.832976 0.967288 1.10149 1.234124 1.369889 

III 0.797917 0.922602 1.046395 1.168065 1.291666 
IV 0.791967 0.916624 1.040342 1.161831 1.285004 
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Table 6.5: r = 50, a = 0.01, coverage probabilities 
^ 

TFg Method 一 0.6 0.7 0.8 0.9 1 
0.01 r 0.9966 0.9946 0.9956 0.9949 0.9941 

II 0.9927 0.99 0.9913 0.9892 0.991 
III 0.9928 0.9898 0.9919 0.9891 0.9904 
IV 0.9913 0.9886 0.9898 0.9877 0.9896 

0.1 r 0.9956 0.9959 0.9945 0.9946 0.9944 
II 0.9902 0.9907 0.9895 0.9903 0.9901 

III 0.9901 0.9906 0.9901 0.9893 0.9895 
IV 0.9882 0.9891 0.9888 0.9886 0.9886 

0.2 r 0.9946 0.9953 0.9955 0 . 9 9 5 8 0 . 9 9 6 
II 0.9897 0.9914 0.9886 0.9918 0.9924 

III 0.9897 0.9912 0.9899 0.9915 0.9915 
IV 0.9883 0.9897 0.9885 0.9908 0.9906 

Table 6.6: .r = 50, o； 二 0.01, expected lengths 
Ro 

^ Method— 0.6 0.7 0.8 0.9 1 
0.01 r 0.717574 0.837061 0.956315 1.078963 1.195791 

II 0.663258 0.775545 0.887637 1.003004 1.112805 
III 0.656596 0.766082 0.875311 0.987697 1.094771 
IV 0.646639 0.756131 0.865447 0.977661 1.084724 

r 0.683893 0.794167 0.905435 1.013324 1.121599 
II 0.635731 0.741295 0.848319 0.952492 1.057507 

III 0.628126 0.730429 0.833867 0.934476 1.035681 
IV 0.619022 0.72121 0.824506 0.924908 1.025888 

T 2 r 0.647477 0.747753 0.844688 0.942068 1.038396 
II 0.605652 0.704008 0.799791 0.896727 0.993575 

III 0.597207 0.69148 0.783085 0.875591 0.967512 
IV 0.58905 0.683379 0.774902 0.86723 0.959137 
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Table 6.7: r = 100, a = 0.01, coverage probabilities 
^ 

TTs "Method 0.6 0.7 0.8 0.9 1 
0.01 r 0.9941 0 . 9 9 2 9 0 . 9 9 4 0.9936 0.9904 

II 0.9904 0.989 0.9894 0.9901 0.9867 
III 0.9914 0.9908 0.9914 0.9909 0.9877 
IV 0.9891 0.9887 0.9889 0.9891 0.9855 ‘ 

0.1 r 0.9933 0.9916 0.9913 0.9941 0.9923 
II 0.9892 0.9868 0.9861 0.9902 0.9886 ， 

III 0.9905 0.9887 0.9886 0.9913 0.9893 ‘ 
IV 0.9886 0.986 0.986 0.9895 0.9881 : 

0.2 r 0.9926 0.9919 0.9924 0.9937 0.9928 
II 0.988 0.9887 0.9884 0.9905 0.9893 

III 0.9902 0.9899 0.9902 0.9913 0.9899 
IV 0.9871 0.9879 0.9882 0.9897 0.9883 

Table 6.8: r = 100, a = 0.01，expected lengths 

TTs Method 0.6 0.7 0.8 0.9 ~ T 
0.01 r 0 .4681210 .54562 0.624063 0 .7021850 .77963 

II 0.44479 0.520112 0.596382 0.672328 0.747706 
III 0.449475 0.523891 0.599192 0.674279 0.74874 
IV 0.439388 0.513873 0.589172 0.664317 0.738724 

0.1 r 0.449386 0.5216 0.595272 0.66G642 0.738649 
II 0.427781 0.498531 0.570824 0.641019 0.711946 

III 0.432068 0.501821 0.572988 0.6420G3 0.711795 
IV 0.422418 0.492173 0.5632G9 0.632219 0.701932 

1 1 2 r 0.427122 0 .4941650 .56074 0.625946 0.690135 
II 0.407318 0.47368 0.539917 0.60487 0.669247 

III 0.411337 0.476455 0.541285 0.604844 0.6G7662 
IV 0.401911 0.467114 0.531949 0.595455 0.658251 
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Table 6.9: r — 20, a — 0.05, coverage probabilities 
^ 

TTs "Tiethod 0.6 0.7 0.8 0.9 F 
0.01 r 0 . 9 7 7 90 . 9 7 5 0.9724 0.9787 0.9773 

II 0.9568 0.9519 0.9479 0.9543 0.9564 
III 0.9544 0.9491 0.9457 0.9512 0.9504 
IV 0.9503 0.9454 0.9417 0.9475 0.9473 

0.1 r 0.9736 0.9741 0.9774 0 . 9 7 0 9 0 . 9 7 4 
II 0.949 0.9501 0.9497 0.9427 0.9509 

III 0.9468 0.9451 0.948 0.9398 0.9452 
IV 0.9413 0.9424 0.9458 0.9377 0.9425 

0.2 r 0.9761 0.9775 0 . 9 7 7 4 0 . 9 7 4 0.9747 
II 0.9565 0.9581 0.9534 0.9489 0.9522 

III 0.9542 0.9537 0.9501 0.9458 0.947 
IV 0.9497 0.9506 0.9485 0.9449 0.9467 

Table 6.10: r = 20, q = 0.05, expected lengths 
Ro 

Method 0.6 0.7 0.8 0.9 T " 
0.01 r 0.983098 1.147631 1.316196 1.480007 1.633557 

II 0.851583 0.996245 1.144361 1.288542 1.423728 
III 0.829387 0.9G8442 1.110962 1.249527 1.379583 
IV 0.819464 0.95858 1.101033 1.239508 1.369455 

0.1 r 0.9319611.080519 1.225229 1.374544 1.515045 
II 0.81762 0.953016 1.085822 1.223946 1.35486 

III 0.793447 0.922266 1.048244 1.17904 1.302588 
IV 0.784966 0.91355 1.039309 1.169766 1.292961 

0.2 r 0 .8738971.00109 1.131357 1.261879 1.383823 
II 0.777326 0.898068 1.023811 1.151557 1.272638 

III 0.75119 0.864378 0.981579 1.100084 1.211763 
IV 0.744435 0.857465 0.974529 1.09275 1.204289 
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Table 6.11: r = 30, a = 0.05, coverage probabilities ^ 
TVs "^lethod 0.6 0.7 0.8 0.9 1 

"OOl r 0.9738 0 . 9 6 8 2 0 . 9 G 8 0.9668 0.9708 
II 0.9532 0.9506 0.9478 0.9467 0.9534 

III 0.9538 0.9509 0.9494 0.9482 0.9516 
IV 0.9481 0.9456 0.9459 0.9434 0.9489 

~ i n r 0.9665 0 . 9 7 1 8 0 . 9 6 8 0.9698 0.9702 
II 0.9467 0.9541 0.9462 0.9481 0.9527 

III 0.9471 0.9539 0.9486 0.9491 0.9506 
IV 0.9413 0.9485 0.9451 0.9463 0.9473 

0.2 r 0.9686 0.9675 0.9669 ^ 0.97 
II 0.9502 0.9515 0.9479 0.9508 0.9532 

III 0.9508 0.9513 0.9505 0.9522 0.951 
IV 0.9464 0.9462 0.9467 0.9478 0.9481 

Table 6.12: r = 30, a = 0.05，expected lengths 

TTS Method ^ O ]_ 
0.01 r 0.724761 0.843441 0.967837 1.088583 1.204702 

II 0.659724 0.769601 0.88483 0.996617 1.104314 
III 0.653879 0.76102 0.87346 0.982485 1.087467 
IV 0.644043 0.751161 0.863367 0.972575 1.077432 

0.1 r 0.690207 0.798317 0.911117 1.021956 1.1275 
II 0.632533 0.73461 0.841598 0.947153 1.048106 

III 0.625643 0.724582 0.828169 0.930205 1.027623 
IV 0.616447 0.715439 0.818795 0.920607 1.017856 

0.2 r 0.649735 0.749473 0.848024 0.944429 1.041943 
II 0.599601 0.696075 0.792316 0.887317 0.984187 

III 0.591776 0.684602 0.776719 0.867243 0.959414 
IV 0.583623 0.676306 0.768238 0.858788 0.950777 
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Table 6.13: r = 50’ a 二 0.05, coverage probabilities 
I I Rn 一 

TTS Method 0.6 0.7 0.8 0.9 
0.01 r 0.9659 0.9626 0.9649 0.9604 0.9644 

II 0.9503 0.9473 0.9477 0.9458 0.9517 
III 0.955 0.9521 0.9534 0.9485 0.9532 
IV 0.9475 0.9458 0.9482 0.9432 0.9484 

0.1 r 0.9654 0.9617 0.9615 0.9629 0.9609 
II 0.9491 0.9477 0.944 0.9503 0.9464 

III 0.9559 0.9512 0.9498 0.9523 0.9485 
IV 0.9464 0.9453 0.9442 0.9471 0.944 

r 0.9614 0.9614 0.9617 0.9606 0.9624 
II 0.9474 0.9466 0.9449 0.9451 0.9501 

III 0.9519 0.9513 0.951 0.9483 0.9521 
IV 0.9447 0.9441 0.9459 0.9435 0.948 

Table 6.14: r = 50, q — 0.05, expected lengths 

TTS Method 0.6 0.7 0.8 0.9 T 
i n n r 0.519562 0.606137 0.692557 0.781456 0.866109 

II 0.487407 0.570431 0.653246 0.73835 0.819515 
III 0.490571 0.572402 0.654014 0.737981 0.818049 
IV 0.480647 0.562339 0.644028 0.728104 0.807962 

" i n r 0.49G613 0 .5770610 .65846 0.737349 0.816672 
II 0.467198 0.545085 0.624011 0.700879 0.778153 

III 0.469958 0.546499 0.62396 0.699315 0.775109 
IV 0.460392 0.536881 0.614274 0.689482 0.765279 

r 0 .4717250 .54546 0.616984 0.G89018 0.760425 
II 0.445093 0.517447 0.587946 0.659249 0.730374 

III 0.447483 0.518189 0.587021 0.656349 0.725465 
IV 0.438274 0.508939 0.577665 0.647104 0.716121 
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Table 6.15: r = 100, q = 0.05, coverage probabilities 
I I Ho 一 

TTs Method 0.6 0.7 0.8 0.9 l_ 
"OOl r 0.9633 0.9606 0.9545 0.9597 0.9547 

II 0.9459 0.9482 0.9433 0.9477 0.9427 
III 0.9567 0.9556 0.95 0.9535 0.9479 
IV 0.9442 0.9473 0.9418 0.9458 0.9412 

0.1 r 0.9594 0.9594 0.9539 0 . 9 5 7 9 0 . 9 5 7 
II 0.9441 0.9446 0.9415 0.9464 0.9453 

III 0.9538 0.9522 0.9486 0.9521 0.9507 
IV 0.9429 0.9425 0.9391 0.945 0.944 

0.2 r 0.9596 0.9579 0.9576 0.9614 0.9565 
II 0.9444 0.9443 0.9452 0.95 0.9463 

III 0.9557 0.9524 0.952 0.9568 0.9507 
IV 0.9433 0.9424 0.9445 0.9485 0.9453 

Table 6.16: r = 100, Q- — 0.05，expected lengths 
^ 

^ Method 0.6 0.7 0.8 0.9 1 
0.01 r 0.348267 0 .4058680 .46418 0.522293 0.580089 

II 0.331143 0.387662 0.444746 0.501828 0.558303 
III 0.338783 0.394926 0.451773 0.508339 0.564554 
IV 0.328922 0.384986 0.441737 0.498475 0.554515 

0.1 r 0.334624 0 .3885840 .44352 0.496885 0.550703 
II 0.318335 0.371517 0.425699 0.478321 0.531428 

III 0.326017 0.378627 0.432379 0.484458 0.537115 
IV 0.316044 0.368769 0.4225 0.474601 0.52716 

r 0.318484 0.368737 0.418583 0.467529 0.515863 
II 0.303039 0.35282 0.40239 0.451074 0.499309 

III 0.310578 0.359779 0.40876G 0.456828 0.504311 
IV 0.300812 0.349991 0.399032 0.447012 0.494562 
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Table 6.17: r = 20, a = 0.1, coverage probabilities 
一 Ro 

"Method 0.6 0.7 0.8 0.9 1 “ 
r 0.9409 0.9354 0.9328 0.9374 0.9367 

II 0.9046 0.9006 0.8961 0.9004 0.9 
III 0.9045 0.8995 0.8985 0.9013 0.8959 
IV 0.8964 0.8922 0.8919 0.8955 0.89 

" H I r 0.9296 0.9318 0.9352 0.9272 0.9303 
II 0.8947 0.896 0.8986 0.889 0.8971 

III 0 .8948 0 .8949 0 .9002 0 .8903 0 .8941 
IV 0.8867 0.8883 0.8948 0.8863 0.8903 

r 0 . 9 3 9 4 0 . 9 3 7 0.9364 0.9316 0.9307 
II 0.9055 0.9031 0.8988 0.8933 0.9011 

III 0.9057 0.9023 0.9007 0.895 0.8983 
IV 0.8972 0.8974 0.8954 0.8911 0.895 

Table (3.18: r = 20, a 二 0.1, expected lengths 
^ 

“TTS M e t h ^ O.G 0.7 0.8 0.9 1 
0.01 r 0.777689 0.907965 1.0413711.171083 1.292804 

II 0.691072 0.80867G 0.929204 1.046572 1.156588 
III 0.683386 0.798021 0.915355 1.029558 1.136718 
IV 0.673404 0.787962 0.905396 1.019527 1.126659 

0.1 r 0.740333 0.859189 0.975075 1.094915 1.207957 
II 0.6G3442 0.773488 0.881237 0.993334 1.099393 

III 0.654598 0.761015 0.865022 0.973045 1.075154 
IV_ 0.G45503 0.751752 0.855655 0.963397 1.065245 

r 0.697348 0.800101 0.905935 1.012254 1.111817" 
II 0.630641 0.728438 0.830165 0.93344 1.031278 

III 0.620713 0.714359 0.811372 0.909534 1.002022 
IV 0.612557 0.706268 0.80314 0.901179 0.99356 
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Table 6.19: r = 30，a 二 0.1, coverage probabilities 
I I Bo 

~77"~\Iet.hod 0.6 0.7 0.8 0.9 1 
"OOl r 0.9259 0.9265 0.9245 0.9206 0.9269 

II 0.8993 0.9024 0.8925 0.8969 0.9041 
III 0.9051 0.9057 0.8992 0.8984 0.9052 
IV 0.8939 0.8965 0.8924 0.891 0.8988 

~ i n r 0.9226 0 . 9 2 5 5 0 . 9 2 4 0.9223 0.9252 
II 0.8946 0.8965 0.8918 0.8986 0.9024 

III 0.8992 0.8994 0.8999 0.9006 0.9034 
IV 0.8897 0.8906 0.8911 0.8936 0.8966 

" 0 2 r 0.9283 0 . 9 2 3 2 0 . 9 2 4 0.9275 0.9227 
II 0.9032 0.8951 0.8929 0.9035 0.8993 

III 0.9085 0.8987 0.9008 0.9052 0.9011 
IV 0.8983 0.8915 0.8929 0.8989 0.8953 

Table 6.20: r = 30, a' = 0.1, expected lengths 
^ 

TTs i M e t h ^ 0.6 0.7 0.8 0.9 1 
0.01 r 0.587366 0.683636 0.784461 0.882363 0.976566 

II 0.540954 0.631344 0.72612 0.818006 0.906522 
III 0.542014 0.630878 0.724014 0.814494 0.901447 
IV 0.532102 0.620881 0.714025 0.804385 0.891416 

0.1 r 0.560617 0.648806 0.740802 0.831304 0.917574 
II 0.518586 0.602564 0.690385 0.777089 0.860008 

III 0.519065 0.601263 0.687217 0.771987 0.852848 
IV 0.509558 0.591651 0.677497 0.762073 0.842954 

0.2 r 0.528966 0.610764 0.691789 0.771076 0.851526 
II 0.491495 0.570722 0.649586 0.727426 0.806814 

III 0.491456 0.568597 0.645122 0.720468 0.797072 
IV 0.482653 0.559597 0.636266 0.711588 0.788138 
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Table 6.21: r = 50, o； = 0.1, coverage probabilities 

TTS i M e t h ^ 0.6 0.7 0.8 0.9 1 
" M l r 0.9191 0.9206 0.9176 0.9146 0.9176 

II 0.8958 0.8972 0.8958 0.8933 0.8985 
III 0.9056 0.9057 0.9035 0.8986 0.9027 
IV 0.8917 0.8941 0.8954 0.8879 0.8955 

r 0.9203 0.9165 0.9163 0.9173 0.9146 
II 0.896 0.894 0.8917 0.8974 0.894 

III 0.9079 0.9036 0.902 0.9033 0.8992 
IV 0.8932 0.8907 0.892 0.8945 0.8905 

r 0.9179 0.9158 0.9173 0.9159 0.9176 
II 0.8937 0.8932 0.8939 0.8965 0.8996 

III 0.9048 0.9033 0.9049 0.9023 0.9044 
IV 0.8901 0.8901 0.8947 0.8942 0.8964 

Table 6.22: r = 50, a 二 0.1，expected lengths 

TTS Method ^ ^ O 1_ 
0.01 r 0.427775 0.499072 0.570243 0.643418 0.713163 

II 0.402619 0.471411 0.540092 0.610712 0.678004 
III 0.408609 0.476762 0.544809 0.614751 0.681462 
IV 0.398736 0.466808 0.534836 0.604691 0.671332 

0.1 r 0.409309 0 .4757650 .54291 0.608218 0.673736 
II 0.385765 0.450449 0.515801 0.579539 0.643633 

III 0.391712 0.455512 0.520122 0.582947 0.646146 
IV 0.381851 0.445728 0.51027 0.572986 0.636236 

0.2 r 0.389293 0 .4502770 .50964 0.569382 0.628727 
II 0.367487 0.42749 0.485836 0.544935 0.603834 

III 0.373128 0.432169 0.489599 0.547588 0.605235 
IV 0.36366 0.422G72 0.480112 0.537969 0.595588 

4 2 



Table 6.23: r 二 100，a = 0.1, coverage probabilities 
； 

~ ^ Method 0.6 0.7 0.8 0.9 1 
"OM r 0.9132 0.9182 0.9115 0.9108 0.9063 

II 0.888 0.8966 0.8933 0.8894 0.89 
III 0.9052 0.9119 0.905 0.9016 0.8987 
IV 0.8865 0.895 0.8916 0.8881 0.8873 

~ a i r 0.9122 0 . 9 1 3 40 . 9 0 6 0.9087 0.9095 
II 0.8868 0.892 0.8852 0.891 0.8935 

III 0.9043 0.9077 0.8986 0.9017 0.9029 
IV 0.8855 0.8894 0.8837 0.8903 0.8919 

" 0 2 r 0.9176 0.9139 0.9149 0.9155 0.9127 
II 0.8923 0.8918 0.894 0.896 0.8943 

III 0.9103 0.9075 0.9078 0.9084 0.9058 
IV 0.8907 0.8902 0.8938 0.8944 0.8929 

Table 6.24: r 二 100’ q = 0.1, expected lengths 

TTs Method 0.6 ^ 
I m r 0.289612 0.337527 0.386072 0.434468 0.482455 

II 0.274585 0.321767 0.36947 0.417021 0.464241 
III 0.283341 0.330212 0.377701 0.425067 0.471948 
IV 0.273254 0.320229 0.367668 0.415071 0.461994 

~ i n r 0.278458 0.323396 0.3692030.41363 0.458492 
II 0.264021 0.308337 0.353538 0.397431 0.44186 

III 0.272638 0.316G29 0.361545 0.405183 0.449227 
IV 0.262757 0.306735 0.351651 0.395209 0.439263 

r 0.265161 0.307033 0.348706 0.389443 0.429827 
II 0.251243 0.292761 0.334144 0.374658 0.414842 

III 0.259781 0.301 0.341924 0.382213 0.421902 
IV 0.249967 0.291155 0.332154 0.372265 0.412134 
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