
In-Vitro Studies on the Intestinal Absorption Mechanisms of 

Quercetin and Related Glycosides 

Ying Zheng 

A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Master of Philosophy 

in 

Pharmacy 

The Chinese University of Hong Kong 
October 2001 

©The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending to 
use a part of the materials in the thesis in a proposed publication must seek copyright release from the 
Graduate School. 



I r G / 统 系 I t 書 园 \ 女 、 

UNIVERSITY ；fe/ 
^cJ^lBRARY SYSTEM 

{ 



A B S T R A C T 

In-Vitro Studies on the Intestinal Absorption Mechanisms of Quercetin and 

Related Glycosides 
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Purpose. Quercetin is one of the most abundant flavonoids present in human diet. In 

vitro and in vivo studies have demonstrated the beneficial effects of quercetin and 

related glycosides. Bioavailability studies conducted thus far have shown different 

absorption characteristics for quercetin and its various glycosides. It has been 

suggested that quercetin glucosides may be actively absorbed by specific glucose 

transporters. The aims of the present study are to characterize the physicochemical 

properties of quercetin and four of its glycosides, and to investigate the intestinal 

transport mechanisms of quercetin, and in particular, the impact of the sugar moiety 

on its absorption. 

Methods. Quercetin and four of its glycosides were characterized by thermal analysis, 

partition coefficient and solubility measurements, and stability assessment in water at 

various pHs. Permeability coefficients of quercetin and its glycosides across Caco-2 

cell monolayers were measured as a function of direction of transport, concentration 

of the flavonoid, existence of sodium ions, and in the presence or absence of 

verapamil, an inhibitor of the efflux pump P-gp. Rabbit's brush border membrane 

vesicles (BBMVs) were employed to study the competition of quercetin-3-glucoside 

and quercetin-3-galactoside with D-glucose for the glucose transporters. 

Results. Quercetin (aglycone) has been shown to be poorly soluble in water and prone 

to hydrolytic degradation under intestinal pH condition. Incubation of quercetin in 

water at intestinal pH 6.8 resulted in the formation of three degradation products. 

Substitution of quercetin at position 3 with sugar led to lower lipophilicity (lower 

partition coefficient) and higher stability and higher aqueous solubility. 

Apparent permeability coefficient (Papp) of quercetin, quercetin-3-rhamnoside, 
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quercetin-3-galactoside, quercetin-3-glucoside, and quercetin-3-rutinoside, at 50 \xM in 

the donor compartment were, respectively, 15.50± 1.64x10-6, 2.71±0.61xl(r6, 

2.46±0.36x10-6，1.50±0.22x10-6 and 2.73±0.32xl0-6 cm/s from apical to basolateral 

side (AP to BL), and 16.93土0.61x10-6，2.67±0.37xl0'̂  2.42±0.13x10-6，2.43土0.19x10-6 

and 2.15±0.58x10-6 cm/s from basolateral to apical side (BL to AP). Except for 

quercetin-3 -glucoside, there was no significant bi-directional difference in Papp at 5% 

significance level among the glycosides. Papp of quercetin-3 -glucoside was 12.6-，3.4-, 

1.6- and 1.3- fold higher in the BL to AP direction at 25, 30, 50 and 100 jaM, 

respectively. The efflux of quercetin-3 -glucoside was reduced in the presence of 

verapamil, a P-glycoprotein (P-gp) substrate. At 50 [xM, the transport of quercetin-3-

glucoside from AP to BL side was independent of the presence of sodium ions, while 

the presence of sodium/D-glucose co-transporter (SGLTl) inhibitor phloridzin at 100 

[iM in Caco-2 cells monolayers had no inhibitory effect on the transport of quercetin-3-

glucoside. Quercetin-3-glucoside and quercetin-3-galactoside at 0.05，0.1 and 0.2 m M 

had no significant inhibitory effects on the uptake of 0.1 m M D-glucose on BBMVs. 

Conclusions. The above results are indicative of transcellular transport predominantly 

by passive diffusion for quercetin and its glycosides except for quercetin-3 -glucoside, 

whose transport also involves interaction with the P-gp efflux system. Being more 

lipophilic, the aglycone quercetin is expected to be better absorbed than its glycosides. 

However, metabolism by Phase II enzymes in the intestine cells and reduced chemical 

stability at intestinal pH may limit the amount of the free form of quercetin in vivo. In 

contrast, the various glycosides exhibit low lipophilicity (partition coefficient) and 

poor permeabilities which may be a limiting factor for their absorption. The absence 

of inhibitory effect of quercetin-3 -glucoside and quercetin-3 -galactoside on the uptake 

of D-glucose by B B M V s suggests that they may not compete with D-glucose for the 

same binding sites on the glucose transporter SGLTl. 

t 

iii 



摘 要 

黄酮肠道吸收机理的体外研究 

郑 颖 

关键词：黄酮，斛皮素及其糖试，吸收，Caco-2单层细胞，微囊(上皮细胞膜 

刷状缘侧），依赖钠离子的葡萄糖转运载体，P-糖蛋白 

目的：斛皮素是一种在人们的饮食中大量存在的黄酮。体内及体外研究证明 

斛皮素及其糖试有益健康。迄今为止，对其的生物利用度研究显示，斛皮素及 

其各种糖试的吸收过程很不相同。有假设认为，斛皮素的葡萄糖试可被特异性 

的葡萄糖载体转运而被吸收。本研究的目的在于考察斛皮素及其四个糖试的理 

化性质，吸收机理，特别是不同糖基对斛皮素吸收的影响。 

方法：首先研究了斛皮素及其糖试的理化性质，包括热力学分析，分配系数及 

溶解度测定和在不同pH值水溶液中的稳定性考察。斛皮素及其糖试通过Caco-

2单层细胞的渗透系数在下列不同条件下进行考察：不同的转运方向；不同的 

初始浓度；是否存在钠离子及是否存在P-蛋白反转运系统的抑制剂。利用兔子 

的上皮细胞膜(刷状缘侧）制成的微囊来研究斛皮素-3-萄萄糖试和斛皮素-3-半 

乳糖试是否可与D-葡萄糖竞争葡萄糖转运载体。 

结果：斛皮素(武元)水溶性较差，在肠液pH (6. 8)条件下分解并形成三个分解 

产物。斛皮素的3位被糖基取代后使脂溶性降低(分配系数)，同时稳定性及水 

溶性得以提高。 

在50微摩尔/升的浓度下，斛皮素，斛皮素-3-鼠李糖武，斛皮素-3-半乳糖 

戒’斛皮素-3-葡萄糖戒和卢丁在从Caco-2单层细胞粘膜侧到浆膜侧的表观渗 

透系数分别为（厘米/秒）：15.50±1.64Xl(r，2.71±0.61Xl(r，2.46±0.36 

Xicr，1.50±0.22Xl(r及2.73±0.32X10-
6

;从浆膜侧到粘膜侧分别为（厘米 

/秒）：16. 93±0. 61X10—6，2.67±0. 37X10"% 2. 42土0. 13X ICT，2.43±0. 19 ‘ 
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和2.15±0.58X10-
6

。除了斛皮素-3-葡萄糖试，其余糖戒的表观渗透系 

数在两个方向上没有显著性差异（P>0.05)。斛皮素-3-葡萄糖武在25，30，50 

和100微摩尔/升浓度下的表观渗透系数从奖膜侧到粘膜侧分别为从粘膜侧到菜 

膜侧的12. 6，3. 4，1. 6和 1 . 3倍。加入P-蛋白的抑制剂惟拉帕米减少斛皮素-

3-葡萄糖试的反向转运(楽膜侧到粘膜侧）。在50微摩尔/升浓度下，斛皮素-3-

葡萄糖试从粘膜侧到菜膜侧的表观渗透系数与钠离子的存在无关。根皮试(钠离 

子依赖的葡萄糖转运载体抑制剂)，在100微摩尔/升浓度下，在单层细胞模型 

中，对餅皮素-3-葡萄糖试从粘膜侧到奖膜侧的转运无抑制作用。在0.05，0.1 

和0.2毫摩尔/升条件下，斛皮素-3-葡萄糖式和斛皮素-3-半乳糖武对微囊(上 

皮细胞膜刷状缘侧)摄入D-葡萄糖(0. 1毫摩尔/升)无显著性的抑制作用。 

结论：上述结果提示在选定的黄酮中，除去斛皮素-3-葡萄糖戒，斛皮素及其 

它糖试主要通过被动扩散机理被吸收，而斛皮素-3-葡萄糖式的转运还与P-蛋 

白反转运系统关联。由于戒元斛皮素相对较高的脂溶性，预计斛皮素的转运比 

其糖戒好。但是，斛皮素在肠细胞中被二相酶代谢和其在肠液pH条件下较差的 

稳定性会影响体内斛皮素(原形)的量。与其相反，斛皮素糖试的脂溶性(分配系 

数)较低，而且渗透性差，这些可能成为影响其口服吸收的限速步骤。斛皮素-

3-葡萄糖戒和斛皮素-3-半乳糖戒对微囊摄入D-葡萄糖无显著性的抑制作用， 

提示它们可能不能与D-葡萄糖竞争葡萄糖转运载体上相同的结合位点。 
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1. Introduction 

1.1. Rationale of the Study 

Quercetin belongs to the group of flavonoids, a major group of secondary plant 

metabolites occurring widely in plant. Flavonoids are polyphenolic compounds 

present in daily diet. They also occur in foods, usually as 0-/?-glycosides with various 

sugar residues (Kiihnau, 1976). Due to their potential anticancer activities and 

protective effects in cardiovascular diseases (Hollman et al, 1996)，there has been an 

increasing commercial interest in developing some of these biologically active 

flavonoids into drug candidates. 

Despite the well-established biological effects of quercetin，the absorption | 

mechanisms of quercetin and related glycosides (which represent the major form of 

quercetin in foods consumed) are not well understood. It is generally believed that the 

glycosides need to be hydrolyzed first in the gastrointestinal tract before being 
i 

absorbed into the blood (Kiihnau, 1976; Erlund et al, 2000). However, Hollman et al 

(1995, 1997) reported that quercetin conjugated with glucose could be readily 

absorbed in humans without undergoing prior hydrolysis, and the absorption was even 

significantly better than that of the quercetin aglycone. Thus they inferred that 

sodium/glucose co-transporter (SGLTl) may be actively involved in transporting 

quercetin glucoside across the intestinal cells, and this glucose transporter may 

provide an effective way for enhancing the oral absorption of glucoside. Olthof et al 

(2000) also observed that quercetin-3-glucoside and quercetin-4'-glucoside displayed 

rapid and comparable absorption in humans, and proposed that it is the chemical 

nature rather than the position of the attached sugars that determines the absorption of 

flavonoids. 

The present project was aimed at providing a better understanding of the 
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mechanisms of absorption of quercetin across the intestinal epithelial cells and the 

influence of sugar moiety on the absorption process. For this purpose, quercetin and 

four related glycosides, namely, quercetin-3-glucoside, quercetin-3-galactose, 

quercetin-3-rutinoside and quercetin-3-rhamnoside, have been investigated for their 

intestinal transport characteristics using well-established in vitro models. In addition, 

potential absorption-limiting factors such as chemical instability, efflux and 

metabolism have also been studied. 

Presented below is a concise account of the background of the present research. 

1.2. Flavonoids , 
I 

1.2.1. Introduction 

Flavonoids are secondary plant metabolites occurring widely in plant. More than 

4000 flavonoid glycosides have been described to date, which are based on a small 

number of flavonoid aglycones and a large variety of combinations with different 

sugar substituents (Cook and Samman, 1996). 

Flavonoids are a group of polyphenolic compounds based on the flavan nucleus. 

They can be divided into several classes according to the degree of oxidation of the 

oxygen heterocycle, namely, flavonols, flavones, isoflavones, flavanones, 

dihydroflavonols, and chalcones as shown in Figure 1.1 (Cook and Samman, 1996). 

They have antioxidant activities that are related to their chemical structures. 

Comparison of the aglycones with their respective glycosides showed that 

glycosylation at 7-OH and 3-OH on the B ring reduced their antioxidant activity 

(Rice-Evans et al 1996). 
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Fig. 1.1 Structures of Flavonoids 
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In USA, the daily intake of flavonoids per person was estimated to be 1 g 

expressed as glycosides, equivalent to about 115 mg flavonol and flavone aglycones 

(Kiihnau, 1976). However, this estimate was most likely too high as it was based on 

incomplete food composition data. In the Netherlands, the estimated average daily 

intake of flavonols and flavones was 23 mg, out of which 16 mg was quercetin 

(5,7,3',4'-hydroxyflavonol) (Hollman et al, 1999). Quercetin is commonly present in 

foods with relatively high concentration found in tea, onions and apples. 

1.2.2. Potential Health Effects 

In recent years, there has been a growing commercial interest in flavonoids, 

particularly in quercetin due to their potential beneficial effects on human health. 

Quercetin and other flavonoids have been shown to modify eicosanoid biosynthesis, 

protect low-density lipoprotein from oxidation, prevent platelet aggregation and 

promote relaxation of cardiovascular smooth muscle. In addition, they possess 

antiviral and carcinostatic properties (Formica et al, 1995). � 

The potential health benefits of quercetin and other flavonols and flavones in 

humans have been reviewed by Hollman et al (1996, 1999). Epidemiological studies 
•• I： 

on these flavonoids conducted to date at several sites have not revealed any strong 

association between cancer risk and intake of flavonol and flavone except for one 

study involving about 10,000 men and women aged 15-99, which demonstrated a 

reduction of lung cancer risk by about 50% (Knekt et al, 1997; Hertog et al, 1995; 

Goldbohm et al, 1995). Epidemiological findings from other studies also point to a 

protective effect of antioxidant flavonols in cardiovascular diseases but it is 

inconclusive (Keli et al, 1996; Hertog et al, 1997; Rimm et al, 1996). 
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1.2.3. Absorption Studies 

Due to the high oral consumption of flavonoids in our daily diet and their 

potential benefits to human health, the absorption of flavonoids has attracted 

considerable attention in recent years. It is generally assumed that flavonoids in the 

form of glycosides cannot be absorbed from the small intestine, and the absorption of 

such glycosides will not occur until they reach the large intestine where they are 

hydrolyzed by the enzymatic activities of microflora to the respective aglycones 

(Kiihnau, 1976). However, it has been found recently that the cytosolic /^glucosidase 

and a membrane-bound /?-glucosidase (lactase phlorizin hydrolase) in the small 

intestine were capable of hydrolyzing some of these flavonoid glycosides to their 丨 

aglycones, suggesting that the small intestine may also be a significant absorption site 

for the hydrolyzed products (Day et al�1998, 2000a). Hollman et al (1997) observed '； 

widely different absorption characteristics for several quercetin glycosides when nine 
•I i 
； I 

subjects were fed with a large single quantity of onions (containing glucose 
i ‘ 
I 

conjugates of quercetin), apples (containing both glucose and non-glucose quercetin :: 

glycosides), or pure quercetin-3-rutinoside. Absorption of quercetin glycosides from ：, 

the apples or of pure quercetin-3-rutinoside was 30% of that for onions. Peak levels i 

for these three groups of flavonoids were reached in about 0.7, 2.5 and 9 h 丨; 

respectively. In order to avoid the possible hydrolysis of the glycosides caused by the 

colonic bacteria, healthy ileostomy volunteers were recruited for the study. The extent 

of absorption was 52% for quercetin glucoside from onions, 17% for quercetin-3-

rutinoside and 24% for quercetin aglycone (Hollman et al, 1995). The significantly 

higher absorption of the quercetin glucoside relative to the quercetin suggested that 

intestinal sugar transport carriers may be implicated in the absorption of the glucoside. 

It must be pointed out, however, that the chemical analysis of quercetin glycosides in 
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this reported study involved acid hydrolysis of the glycosides to the quercetin 

(aglycone)，and it was not known if the absorbed flavonoids might also have included 

some aglycone resulting from hydrolysis in the gastrointestinal tract. Such a 

possibility has indeed been demonstrated by Walle et al (2000) who conducted similar 

studies on the onion glycosides. These authors found that only quercetin could be 

detected in the plasma of ileostomy subjects after being given an onion meal. Thus 

they concluded that quercetin-4'-glucoside and quercetin-3,4'-glucoside were 

efficiently hydrolyzed to the quercetin in the small intestine before being absorbed 

into the blood (Walle et al, 2000). Similarly, oral intake of quercetin-4'-glucoside and j 

quercetin-3-rutinoside in pure form or in food did not afford any free form of the ' 
i 

glycosides in human plasma and urine (Graefe et al, 2001). However, Aziz et al 1 
‘ I 

(1998) reported the detection of small amounts of unchanged quercetin-4'-glucoside 

I 
in the plasma and urine of human subjects following the consumption of onions. 

‘j 

Maximum accumulation in plasma and excretion in urine of this glycoside were ；: 
I.. 

0.13% and 0.2% respectively of the amount of intake. These results further support \ 
I I 

the view that the absorption of quercetin in the form of glycosides is very limited, and .:.: 
‘I 

hydrolysis may be required prior to absorption. ：丨 

K 

In addition to the aforementioned in vivo studies, several in vitro transport models 

have also been employed to elucidate the absorption process of flavonoids. In vitro 

perfusion of the isolated rat jejunum with quercetin-3-rutinoside demonstrated that 

neither the quercetin aglycone nor its potential glucuronide metabolites but only the 

original glycoside could be detected after passage of the flavonoid through the 

intestinal cells. However, for perfusion with quercetin-3-glucoside, small amounts of 

unchanged glucoside together with quercetin and quercetin glucuronides were found 

(Spencer et al, 1999). In vitro studies involving Caco-2 cell monolayers showed that 
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the carrier, sodium/glucose cotransporter SGLTl, was likely involved in transporting 

quercetin 4'-ŷ -glucoside across the apical membrane of the monolayer (Walgren et al, 

2000b), but such involvement could not be readily demonstrated owing to the 

counteracting effect of the apical multidrug resistance-associated protein 2 (Walgren 

et al, 1998, 2000a). [The multidrug resistant system is as an energy-dependent efflux 

pump that exports drug substrates out of the cells and thereby decreases their 

absorption (see later discussion)]. The efflux mechanism was also found to reduce the 

transport of genistein-7-glucoside, an isoflavone (Walle et al, 1999). 

The significant role of metabolising enzymes present in the gut in the absorption 

process of quercetin (aglycone) has been demonstrated both in vivo and in vitro. j 

Pharmacokinetic studies on quercetin showed that extensive glucuronidation occurred 、 

following oral administration of 50 mg of the pure compound to human volunteers, 

the amount of unconjugated quercetin observed at 12 h was 10.7% of the total 
I 
•丨丨 

quercetin (Erlund et al, 2000). In vitro studies have shown that both quercetin and : 

chrysin could induce UDP-glucuronosyltransferase (UGT) in Caco-2 cells 
r 

(Galijatovic et al, 2000). It has also been found that the ease of glucuronidation at ： 

different positions of the quercetin (see Figs. 1.1 and 1.2) by U G T followed the order: ：; 

4，- >3'- >7- >3-, and the resulting glucuronides except for quercetin-3-glucuronide 

retained part of the biological activities of the native quercetin (Day et al, 2000b). The 

latter was further substantiated by the observation that the conjugation derivatives of 

quercetin recovered from human plasma still possessed half of the antioxidant 

properties of quercetin (Manach et al, 1998). 

All of the above observations indicate that the absorption process of quercetin 

glycosides possibly involves a complex interplay of a number of transport 

carriers/proteins and metabolising enzymes. The findings emphasize that not only the 
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native forms of quercetin and its glycosides, but also their potential metabolites in the 

body need be considered when assessing the beneficial effects of these flavonoids on 

human health. 

1.3. Drug Absorption 

1.3.1 Pathways and Mechanisms of Intestinal Absorption 

A compound may transport across the intestinal epithelial barriers by two routes, 

namely, transcellular and paracellular routes as shown in Figure 1.2. The transcellular 

transport pathway is the most significant pathway since the cell membrane surface 

constitutes more than 99% of the total surface area of the intestine (Artursson, 1991). 丨 

The paracellular pathway is characterized by the presence of tight junction on the 

1 

apical side of the epithelial cells. This pathway accounts for less than 1% of the 

surface area of the intestinal epithelium, and transepithelial transport through this 
11 

• I 

pathway is restricted by the size of transported species. Hydrophilic compounds with 

a molecular weight over 200 are only absorbed in small amounts by the paracellular 

route in humans (Lennernas, 1995). 

Broadly, there are four mechanisms of absorption, v/z passive diffusion, active : 
• I 

I 
I； • 

transport, facilitated transport and endocytosis, which are described below and shown ！; 

in Figure 1.2. 

(1) Passive Diffusion 

It is the predominantly utilized mechanisms for drug transport. The driving force 

for diffusion across the membrane is the concentration gradient of the compound 

across that membrane. The process of membrane penetration is described by Pick's 

first law. 
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(2) Active transport 

Active transport is mediated by means of carriers under the expenditure of energy 

(i.e.utilization of ATP). Each drug or group of drugs needs a specific carrier. 

Absorption proceeds against a concentration gradient and in the case of ions, against 

an electrochemical potential. The active transport becomes saturated if there are more 

drug molecules present than carriers available. The carriers are located on the external 

surface of the membrane. They form a complex with the drug molecule, which moves 

across the membrane by utilizing the energy provided by ATP. Many essential 

nutrients (e.g. monosaccharides, amino acid and vitamins) are transported by this 
I 

mechanism. 

i 
•1 I 

(3) Facilitated transport 丨 

The facilitated transport is the same as active transport, the only difference is that 
‘I 
,1 

. . - I 

the process does not operate against a concentration gradient. 丨 

- I ； 

I 

(4) Endocytosis 

Endocytosis is the uptake of extracellular material, exogenous molecules, or ;； 
• i 

macromolecules into a cell by invagination of the plasmalemma and vesicle !； 

formation. It is the only transport process in which a drug or compound does not have 

to be in aqueous solution in order to be absorbed. Large peptides and other 

macromolecules may be absorbed by this route (Ritschel et al, 1999). 
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Fig. 1.2. Potential model of transport of molecules across the intestinal epithelium 

1. Passive diffusion | 
2. Carrier-mediated transport (active or facilitated transport) 

3. Paracellular transport 
4. P-glycoprotein efflux system 
5. Endocytosis 

‘ t 
• I 丨 

1.3.2. Transporters Potentially Involved in the Absorption of Flavonoids ！ 
< ,. 

1.3.2.1. Glucose Transporter 

Shoji et al (1992) investigated whether the conjugation of a glucose or galactose 

moiety to a model compound (i.e.尸-nitrophenol or /̂ -naphthol) could result in active 
‘ I ••i 11 

transport of that compound by the glucose transport system from the mucosal side to I 
K 

the serosal side. Their findings supported the feasibility of exploiting the glucose 

transport carrier as an alternative and possibly more efficient route in the intestinal 

absorption of non-glucose flavonoids through substitution with a glucose or galactose 

group. 

It is well established that glucose absorption is specific, saturable, and energy-

dependent. D-glucose can be absorbed from the gut against its concentration gradient. 

The conceptional breakthrough for glucose transport originated from the Na+/glucose 
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co-transport hypothesis presented by Crane and his colleagues. It was proposed that 

sugar transport was coupled to the Na+ gradient across the brush border membrane 

and that the Na+ gradient was maintained by the Na+/K+ pump. This hypothesis was 

tested, verified, refined, and extended to include the active transport of sugars, amino 

acids, and ions into cells. D-glucose uptake from gut lumen into enterocytes is driven 

by the Na+ electrochemical potential gradient across the brush border. The 

intracellular Na+ activity is low compared with the gut fluid, and a membrane 

potential of - 40 to — 60 m V exists across the brush border membrane (Wright et al, 

1994). 
i 

Two distinctly different glucose transport systems have been shown to be present in | 

the epithelial membranes isolated from the small intestine as shown in Figure 1.3. The 
•I 
1 

_l_ I 

major transport mechanism in the brush border membrane is the Na /glucose co-

transport system, SGLTl, where glucose is transported across the membrane into the 
；丨 M 

cells against its concentration gradient through a coupling to the sodium ions across h 
‘ ；‘； 

+ + + 

the membrane. A low intracellular concentration of Na is maintained by the Na /K - V 
f 

ATPase localized in the basolateral membrane. The glucose accumulated into the 
I I 

intestinal epithelial cells is then transported across the basolateral membrane by a 

Na+-independent facilitated diffusion system located on the basolateral membrane. ； 

K+ 

A 

S G L T l f S i — — A T P a s e ~ 、 
M ，R GLIJT2 

2Na+ 余 . ^ Na D-glucose 
D-glucose ) r 

( “ Small Intestine  

Tight junction 

Fig. 1.3. Glucose transport systems in the small intestine 
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1.3.2.2, Multi-drug Resistance Systems 

As alluded to earlier, the transports of quercetin-4'-glucoside and genistein-7-

glucoside are associated with the multidrug resistant systems (Walle et al, 1999; 

Walgren et al, 2000a). 

Multi-drug resistance (MDR) is defined as the ability of cells exposed to a single 

drug to develop resistance to a broad range of structurally and functionally unrelated 

drugs, due to enhanced outward transport (efflux) of drugs, which is mediated by a 

membrane glycoprotein 'drug transport pump'. The most consistent alteration found 

in M D R cell lines is an increased expression of a surface glycoprotein (i.e. P-

glycoprotein), which will be elaborated in the following section (Hunter, 1997). 

1.3.2.2.1. P-glycoprotein 

(1) Distribution in normal tissues of human 

Thiebaut (1987) employed an immunohistochemical technique using the anti-P-

glycoprotein monoclonal antibody, MRK16 to examine frozen normal tissues. P-

glycoprotein (P-gp) expression was found on the biliary canalicular surface of ！ 
I 

hepatocytes and the apical surface of small biliary ductules of the liver, the apical 
I 
;i 

surface of proximal tubular epithelial cells of the kidney, the epithelial cells of small j 

pancreatic ductules and the luminal surface of columnar epithelial cells of the 

jejunum and colon. The adrenal gland expressed P-gp in both the cortex and medulla, 

while no expression was identified in stomach, lung, ovary, uterus, spleen, skin or 

central nervous system tissues. P-gp was expressed at the apical brush border in 

confluent epithelial layers of human Caco-2 cells (Hosoya et al, 1996; Hunter et al, 
1993 a). 

The specific location of P-gp expression indicates that it could be a factor that 

13 



limits intestinal absorption and diffusion of xenobiotics, as well as a feature that 

participates in the biliary, renal and intestinal clearance of drugs. 

(2) Structure and function of P-glycoprotein 

P-gp is an ATP-dependent glycoprotein located at the apical side of the 

membrane and has a molecular weight of 170 KDa. It is encoded by M D R l gene in 

humans and mdrla and mdrlb in mouse. It was shown to encode a protein of 1280 

amino acids, the polypeptide chain consisting of two similar regions each containing 

six putative transmembrane segments and an intracellular adenosine triphosphate 

(ATP) binding site. It is recognized as a member of the ATP-binding cassette (ABC) 

super-family of membrane transport protein. The P-gp acts as an energy-dependent 

efflux pump that exports its drug substrates out of the cells, thus making the cell 

resistant to multiple cytotoxic compounds (Tanigawara, 2000). : 

The multidrug resistant systems play an important role in the pharmacokinetic 

behaviours of those drugs that are P-gp substrates/inhibitors. A well-known example 
J 

is the cardiac glycoside, digoxin, which showed significant interactions with :、 

verapamil, nifedipine and quinidine, which are P-gp inhibitors. The plasma levels and 

half-life of the digoxin were observed to increase in the presence of these drugs | 

(Hunter et al, 1997). In vilw transport studies using Caco-2 cell monolayers 

confirmed the involvement of P-gp in the absorption of digoxin (Cavet et al, 1996). 

Another example is celiprolol, a /̂ -adrenoceptor blocking agent that exhibits dose-

dependent bioavailability in rat (Kiio ci ai 1994). It is a substrate of P-gp, as 

evidenced by the in vitro observation that the basal-to-apical transport of celiprolol 

through Caco-2 cell monolayers was 5 times higher than that determined in the 

reverse direction. Net celiprolol secretion (efflux) obtained in the concentration range 
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of 0.01 to 5 m M displayed saturable kinetics and the secretion was inhibited by 

several substrates of P-gp, i.e. vinblastine, verapamil and nifedipine (Karlsson et al, 

1993). A more recent study also showed that the component, bergamottin, in 

grapefruit juice is a P-gp inhibitor and potentially can increase the absorption of those 

drugs that are P-gp substrates (Wang et al, 2001). It has been suggested that inhibition 

of P-gp by constituents of grapefruit juice could present ways both to enhance 

bioavailability of therapies without increasing the dose and to reduce drug resistance 

in refractory cells. 

P-gp possesses the ability to recognize and transport a chemically and 

pharmacologically diverse range of compounds. Its substrates include calcium 

channel blockers, antibiotics, cyclosporines, peptides etc (Hunter et al, 1997). The 

mechanisms by which P-gp recognizes a wide range of substrates are not clear at 

present, but all P-gp substrates are at least somewhat hydrophobic (Tanigawara, 

2000). 

I 
:i. 

1.3.2.2.2. Non-P-glycoprotein Efflux Mechanisms 

In addition to P-gp, other non-P-gp efflux mechanisms also exist, including the : 
i.； 
i'：. 

multi-drug resistance-associated protein (MRP). M R P is a 190 kDa protein 1 

distributed broadly similar to that described for P-gp (Hunter et al, 1997), and is also 

functionally expressed in Caco-2 cells (Gutmann el al, 1999). 

1.4. In vitro Models to Study Absorption 

To screen new drug candidates for intestinal absorption at an early stage of the 

drug development process, scientists in the pharmaceutical industry have often 

resorted to new efficient techniques that are amenable to high throughput screening 
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and require only minimal quantity of drug material. These techniques are based on 

defined in vitro and in situ models, which can be readily applied to estimate the 

permeability of drug candidates through a defined biological barrier, elucidate the 

transport pathways of drugs, determine the structure-transport relationship, and to 

determine the most optimal physicochemical characteristics for drug transport. 

Presented below are some of the models commonly employed in drug absorption 

screening. 

1.4.1. Ussing Chamber 

This model was first proposed by Ussing et al (1951) as shown in Figure 1.4. 

Small sections of a tissue are clamped between two compartments. The compound 
！ 
I 

under test is added to one of the compartments called ‘donor, chamber. The 

accumulation of the compound at the other side of the membrane is called ‘receiver， ：: 
i ,•丨丨 • I 

chamber. The flux of compound across the tissue is defined as the rate of •！ 
I.. 

accumulation normalized for tissue surface area. In most studies, the intestinal tissue 
• ：丨:i 

I [‘ 
is prepared before mounting by stripping off the serosa and the outer musculature. f, 

I I 
：丨 

Such stripped tissue is considered desirable for studies designed to determine the ；：丨 

丨：丨 

mechanism and rate of transport since permeation through the serosa and musculature 

does not contribute in any significant way to the overall drug bioavailability (Smith et 

al, 1996). 

The unique feature of Ussing Chamber is that it allows measurement of the 

electrical parameters of the tissue throughout the course of the experiment. It is 

equipped with electrodes and a voltage clamp for monitoring epithelial potential 

difference (PD), short-circuit current (SCC) and tissue resistance (R). These electrical 

parameters can be used to verify the viability and integrity of the tissue during the 
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experiment. To minimize viability problems, experiments should be limited in time. 

The major drawback of the technique is that the viability of the tissue may be changed 

during the incubation, as has been observed in some studies (Polentamtti et al, 1999). 

Nevertheless, the technique has proved useful for studying the regional difference in 

absorption along the gastrointestinal tract (Ungell et al, 1998). In terms of utility and 

functional expression of carrier-mediated transport, the Ussing Chamber was ranked 

between the Caco-2 model and the single-pass perfusion model (Lennernas et al, 

1997). 

1.4.2. Cultured Cells 

1.4.2.1. Choice of Cells 

In vitro intestinal absorption models are polarized systems mimicking the small 

intestine. Primary cultures of enterocytes have very poor viability and do not form an 
I, 

organized monolayer that will differentiate. The most commonly used cell culture 

models are derived from immortalized cell lines. 丨, 
j I 

. 丨丨. 
Twenty intestinal adenocarcinoma cell lines have been classified into four types ： 

I. 

according to their degree of differentiation. Type 1 cells undergo spontaneous 

differentiation under normal cell culture conditions, i.e. polarization of the cells with , 
I 

formation of domes and well-developed apical brush borders with several hydrolases. 

Only one cell line, Caco-2, belongs to this group. Type 2 cells do not differentiate 

spontaneously. However, they can be induced to differentiate when the cell culture 

conditions are altered by replacement of glucose by galactose. The well-characterized 

cell line HT29 is an example of a type2 cell line. Type 3 cells are organized into 

polarized monolayers with formation of domes without differentiation. Type 4 cells 

grow in multilayers without any signs of differentiation. Only the cell lines that form 

polarized monolayers with well-developed barrier properties can be considered in 
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drug absorption studies. The type 1 cell line Caco-2 is preferred in most cases 

(Artursson, 1991). 

1.4.2.2. Caco-2 Cell Monolayers as In Vitro Model 

Caco-2 cell line is an immortal cell line derived from a human colon carcinoma 

and can be grown as a single layer on porous support. Normal intestinal epithelial 

cells are attached to a basement membrane. Usually, some type of collagen is used to 

support the attachment. The use of permeable substrata may also be important for the 

differentiation process. The cells obtain access to nutrients not only from the apical 

but also from the basolateral side. Caco-2 cells grown on plastic has poorly developed ! 

microvilli compared to those grown on filters (Artursson, 1991). 

I 

Caco-2 cell lines exhibit structural/morphological as well as ,: 

biochemical/functional similarities to the small intestinal epithelium (Pinto et al, : 
‘I 
I I 

1983; Hidalgo et al, 1989). Morphologically, they resemble small intestine with a .丨 

well-defined brush border on the apical side, and well-formed tight junctions between , 
I' 1 

the cells. Brush border membrane-associated enzymes such as aminopeptidase, 

alkaline phosphatase, sucrase and dipeptidyl aminopeptidase are present in the Caco-2 
I , 

cell monolayers (Pinto el al, 1983). The existence of phases I and II metabolizing 丨 

enzymes, glutathione S-transferase, glucuronidase, and sulfotransferase, in this cell 

system has been reported (Rosenberg and LefF, 1993; Peters et al, 1989; Bjorge et al, 

1991; Abid et al, 1995). Several active transport systems that are located in the 

intestinal epithelium (e.g. sugars, amino acids, dipeptides, bile acids) are also 

expressed in Caco-2 cell monolayers (Blais ef al�1987; Smith et al, 1991; Yoshioka et 

al, 1991; Hu et al, 1990; Dantzig el al, 1990). Several drug efflux systems are also 

found in Caco-2 cells, such as P-gp and multi-drug resistant systems (Hosoya et al, 18 



1996; Hunter et al 1993). 

The Caco-2 cell monolayers model has several advantages. Firstly, it can be used 

to determine both cellular uptake and transepithelial transport. Secondly, it expresses 

cell polarity, which makes it possible to determine the directionality of 

uptake/transport and to elucidate transport mechanisms. Thirdly, the cells are isolated 

from humans and species-related differences are therefore not a concern. However, 

the Caco-2 cell model does have certain limitations. The model is devoid of mucin-

producing goblet cells, and thus the impact of the mucus layer normally present on 

the intestinal epithelium cannot be evaluated. The tight junctions in the differentiated 

Caco-2 cell monolayers are more reflective of those in the colon than in the small 

intestine, thus affording higher transepithelial resistance than normally found across 

the small intestinal epithelium (Artursson, 1990). 

1.4.2.3. Correlation Between In Vivo Absorption and In Vitro Permeability 

Coefficients 
I i 

The permeability coefficients of drugs measured using the Caco-2 cell monolayer : 

model has been found to correlate well with their absorption in humans ( 0 - 1 0 0 % ) . ：丨 

. . ！I ； 

The relationship between oral absorption and permeability coefficients is generally , 

sigmoidal in trend. The good correlation and the sigmoidal relationship between in 

vitro permeability coefficients and in vivo absorption have been observed for most 

drugs, irrespective of their modes of transport (i.e. transcellular, paracellular, or 

carrier-mediated pathway). However, the best correlation was demonstrated for the 

passively transported drugs (Artursson et al，1996). In addition, while such 

permeability-absorption correlation has been widely verified in different laboratories, 

significant variations in the measured permeability coefficients have been found 
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among the laboratories (Bailey et al’ 1996). In view of such interlaboratory variations, 

it is important to validate the in vitro Caco-2 cell model by determining the 

permeability coefficients of a set of known markers for comparison against literature 

values before applying the model to absorption prediction of the unknown test 

compounds. 

1.4.3. Everted Gut Sacs 

The everted gut was first described by Wilson and Wiseman in 1954 (Wilson and 

Wiseman, 1954). In the everted gut sac method, the mucosa becomes the outer side of 
i 

the sac and is in contact with the incubation medium. The sac is filled with buffer and 

immersed in a flask filled with oxygenated (95:5 C02:02) buffer containing the 
,I 

_ • 1 

compound under investigation. At the end of the experiment, the sac is cut opened at : 

one end, and the serosal fluid is collected. Viability of the sac can be monitored , 
丨 I 

•I ‘ 

during the experiment by measuring the transport of a marker. This method is an 
I , . 

inexpensive and relatively simple technique. By preparing the segment from different :: 
I'i 

parts of the intestine, the absorption from different sites can be compared. However， 、’ 

the serosal compartment is a closed compartment, which may distort the transport 
••i 

kinetics of the drug upon prolonged incubation or if the drug is very rapidly absorbed 
/ 

(Barthe et al, 1999). 

1.4.4. Brush Border Membrane Vesicles (BBMVs) 

This model has been well validated and widely used to study glucose transport 

for several years (Hopfer et al, 1973; Kessler et al, 1978). In this approach, frozen 

small intestine of rabbit was treated by CaCh precipitation followed by centrifugation. 

The final pellet contains the luminal wall-bound proteins and phospholipids, which 

20 



contain most of the enzymatic and carrier activities of the brush border, such as Na+-

glucose cotranspoiler SGLTl (Hopfer et ai 1973). 

In order to investigate the possible interaction of selected quercetin glycosides 

with sugar transporter SGLTl, B B M V s were employed in the present study. Uptake 

of D-glucose into B B M V s was used as control and compared with uptake of D-

glucose in the presence of selected glycosides. 

Compared with other in vitro models, B B M V s mainly contain the brush border 

components, typically only the apical transcellular transporters and enzymes. 

Therefore, B B M V s are more suitable for studying glucose transport. The major 

drawbacks with this approach are that radio-labeled compound need be used for 

improving the sensitivity of analysis and the technique is subject to day-to-day 
1 

variation in B B M V s preparation (Tukker, 2000). 

1.4.5. In situ Experiments ！ 
‘‘ 

In situ experiments for studying intestinal drug uptake was first introduced in the late : 
I:丨 

1960s. Segments of the intestine of anesthetized animals are cannulated and perfused 

by a solution of the drug. Input of the drug compound can be closely controlled in ： 

• 丨，， 

terms of concentration, pH, osmolality, intestinal region, and flow rate. The technique 

is the nearest to the in vivo system and is good for generating kinetic data. However, 

being a perfusion system, it affords no information on the events at the cellular 

membrane level. Another disadvantage of this model is that it consumes more animals 

than the other in vitro models. Moreover, surgical manipulation and anesthesia 

decrease the intestinal blood flow and may affect the intestinal absorption (Barthe et 

a/, 1999). 
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1.5. Aims and Scope of Study 

In view of the potential beneficial effects of quercetin flavonoids for certain 

diseases (e.g. cancer, cardiovascular diseases) and the relative dearth of information 

on the oral absorption of these compounds, the present project aimed to elucidate the 

absorption mechanism(s) of quercetin, and in particular, the impact of the sugar 

substituents on the absorption of quercetin with a view to developing formulation 

strategies to improve its oral absorption. To this end, quercetin and four related 

glycosides, viz quercetin-3-glucoside, quercetin-3-galactose, quercetin-3-rutinoside 

and quercetin-3-rhamnoside (Fig. 1.2), were investigated for their intestinal transport 

characteristics using well-established />/ vitro models. Additionally, potential 

absorption-limiting factors including chemical instability, efflux effect and gut 

metabolism have also been examined. The specific objectives of the present thesis 

were as follows: ： 

‘I 

1) to conduct (preformulation) characterization studies on quercetin and four related 

glycosides, including thermal analysis, partition coefficient and aqueous solubility ’ 

measurements, and stability assessment in water at different pHs; 

2) to investigate the transport mechanisms of quercetin and its glycosides using 

validated in vitro Caco-2 cell monolayer model; , 

3) to examine the possible involvement of glucose transporters in the intestinal 

transport of quercetin glucoside using isolated brush border membrane vesicles 

from the small intestine of rabbit. 
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CHAPTER 2. 

MATERIALS & METHODS 
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i< 
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2.1. Materials 

2.1.1. Chemicals 

All solvents and chemicals used were of HPLC and analytical grade respectively 

unless otherwise specified. 

Studied compounds: 

Quercetin (purity > 98%), quercetin-3-mtinoside (purity > 95%), quercetin-3-

rhamnoside (purity > 89%) and fisetin (purity > 99%) were purchased from Sigma 

(USA). Quercetin-3-glucoside and quercetin-3-galatoside were supplied by Carl Roth 

(Germany). 

Marker compounds: 

Lucifer yellow, atenolol, phloridzin, verapamil hydrochloride were obtained from 
’.’！ 

'I 

Sigma. [^H]-D-glucose (ImCi/ml) was purchased from Amersham Life Science (UK). 丨 

[̂ H]-polyethylene glycol-4000 (250 p.Ci), [̂ H]-mannitol (250 |iCi) were purchased 丨 

from N E N Life Science Product, Inc. (USA). :: 

I • 

Media for cell culture: , 

D M E M (Gibco 12430-054), FBS (Qualified), trypsin-EDTA (0.05% in 0.53mM 

EDTA), Penicillin-Streptomycin, L-glutamine and non-essential amino acids were 

obtained from GibcoBRL, Life & Technologies (USA). 

Collagen type I (from rat tail), sterile D M S O and sodium pyruvate was supplied 

by Sigma. 
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Buffers for in vitro studies: 

KH buffer (pH 7.4) was prepared by mixing 100 ml 1.17 M sodium chloride (B.R 

grade), 100 ml 0.248 M sodium bicarbonate (B.R grade), 10 ml 0.47 M potassium 

chloride, 12 ml 100 m M magnesium chloride hexahydrate, 10 ml 120 m M potassium 

dihydrogen phosphate, 10 ml 0.256 M calcium chloride dihydrate and 2 g D-glucose 

(B.R grade) with water to the final volume of 1 L. All water used was freshly 

distilled, de-ionized and filtered. 

PBS^ buffer was prepared by dissolving 1 tablet of phosphate buffered saline 

tablets (Sigma) containing 0.01 M phosphate buffer, 0.0027 M potassium chloride and 

0.137 M sodium chloride, pH 7.4 in 200 ml water. Then calcium chloride and 

magnesium chloride were added to a final concentration of 0.9 m M and 0.4 m M 

respectively. 

•i ‘ 
Other chemicals: 

1.1 
/̂ -Glucuronidase was purchased from Sigma. It was diluted with 1 M sodium : 

'丨丨, 

acetate (pH 5.0) to 5xl06u/l. ：‘ 
t 

Dimethyl sulfoxide, bovine serum albumin and folin-ciccalteu's reagent were :: 
i 

11 
obtained from Sigma. Octan-l-ol was obtained from B D H (England). , 

2.1.2. Materials for Cell Culture 

Caco-2 cells were obtained from the American Type Culture Collection (USA) 

Centrifuge tube, tissue culture flask, filters (0.22 |Lim) were purchased from Iwaki 

(Japan). Six-well transwell® plate (0.4 [xm pore size, 4.71 cm�，polycarbonate filter, 

Costar 3410), six-well transwell® plate (0.4 f̂ m pore size, 4.71 cm^ collagen coated 

PTFE filter, Costar 3491) and pipette (5 ml) were purchased from Coming Costar 
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Corp. (USA). 

MF-Millipore membrane filters (mixed cellulose acetate and cellulose nitrate, 

0.45 |im pore size) used in B B M V studies were purchased from Millipore, Inc. 

(USA). 

2.1.3. Instruments 

The HPLC column employed was a reversed phase Cig column (4.6x250mm, 

particle size 5 \im) connected with an ODS guard column (Alltech Associates, Inc., 

USA). The HPLC system consisted of Waters 2690 separations module, Waters 996 

photodiode array detector and Waters 464 pulsed electrochemical detector. 

Mass spectrometry was performed on API 2000 Triple Quadrupole LC/MS/MS 

spectrometer (USA). 

U V absorption was measured by Spectronic® Genesys™ 5 spectrophotomer. 
.1 

Fluorescence was measured by fluorescence spectrophotometer (Model F2000, 

Hitachi, Japan). ) 

The radioactive samples were counted in low activity liquid scintillation counter : 

(LS2900TR and LS6000). 
I i. 

All electrical measurements on the tissues were taken using multi-channel , 

voltage/current clamp, voltage/current electrode and epithelial voltohmmeter supplied 

by World Precision Instruments, Inc. (USA). 

2.1.4. Animals 

Male Sprague-Dawley rat (220-250 g) and white New Zealand rabbit were bred at 

and supplied by the laboratory Animal Service Center at the Chinese University of 

Hong Kong. Animals were allowed free access to food and water before sacrifice. 
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2.2. Methods 

2.2.1. Preformulation Characterization of Selected Flavonoids 

2.2.1.1. Determination of Stability 

100 ̂ iM quercetin glycosides and 15 [xM quercetin were prepared in PBS buffer (pH 

7.4 or 6.8, D M S O < 0.5%) or simulated gastric fluid, TS (pH 1.2, USP24). They were 

incubated at 37 °C with agitation and collected at different time points for 4 hours. 

Collected samples were analyzed by HPLC. 

10 [ig/m\ quercetin (in 10% methanol) dissolved in PBS buffer (pH 6.8) was 

incubated at 37 °C with shaking. Sample collected at 2, 5, 20, 25, 80 hours were 

analyzed by HPLC-MS for the degradation products of quercetin. 

2.2.1.2. Thermal Analysis 

Thermogravimetric analysis (TGA) was performed in an open pan using a Perkin 

Elmer Thermogravimetric Analyzer T G A 7 with Thermal Analysis Controller TAG 

7/DX (Perkin Elmer, CT, USA). 

Differential Scanning Calorimetry (DSC) profiles were generated using a Perkin , 

Elmer Pyris 1 differential scanning calorimeter (with Pyris Manager software) (Perkin 
I . 

Elmer, CT, USA). Indium (Tm = 156.6。C; AHf 二 28.45 J g"') was used for routine ’ 

calibration. Samples were placed in pin-hole pans. Scanning speed at 20 °C min"̂  was 

employed. 

2.2.1.3. Determination of Solubility 

Excess amounts of quercetin glycosides were placed in PBS buffer (pH 7.4). The 

suspensions were equilibrated at different temperatures over night. The equilibrated 

sample was centrifuged at 13000 rpm for 5 minutes and the supernatant was assayed by 
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U V spectrophotometry at 360 nm. 

2.2.1.4. Determination of Partition Coefficient 

Small amounts of quercetin-3 -mtinoside, quercetin-3 -glucoside, quercetin-3-

rhamnoside and quercetin-3-galactoside were added in PBS buffer (pH 7.4, pre-saturated 

with n-octanol) as stock solution. The stock solution was centrifuged at 4000 rpm for 5 

minutes. Concentration of the supernatant (Ci) was measured by U V at 360 nm. The 

supernatant (Vi) was mixed with n-octanol (V2) pre-saturated with PBS and shaken up 

and down at room temperature. After equilibration for 20 minutes, the aqueous phase 

sample was collected and centrifliged at 2500 rpm for 3 minutes. The concentration of the 

aqueous phase (C2) was measured by U V at 360 nm except for quercetin-3 -rhamnoside, 

whose concentration of the aqueous phase was measured by HPLC at X̂ ax 360 nm. 

Partition coefficient was calculated by the following equation (Martin et al, 1983). 

Log P = log [(V1/V2) X (Ci-C2)/C2]. 

I 
t, 

2.2.2. Validation of in vitro models 
# 

I'. 
2.2.2.1. Ussing Chamber 

• v 

2.2.2.1.1. Tissue Preparation 

For preparation of the tissue segment, ileum from the anesthetized rat was rapidly 

removed, washed with cold K H solution and put into beakers with K H solution on ice. 

The ileum was allowed to rest for approximately 30 minutes for lowering the tissue 

temperature before further treatment to minimize tissue damage during preparation. Ileum 

was cut into 2 cm pieces along their mesenteric border and the serosa were removed 

using blunt dissection under microscope. Care was taken to avoid taking segment of the 

Peyers patches (Polentamtti et al, 1999). During preparation, the tissue was submerged in 
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ice-cold K H solution bubbled with gas mixture O2/CO2 (95:5). 

The stripped tissues were mounted in Ussing Chamber over a surface area of 0.636 

cm . 10 ml of K H solution was added to each compartment of the Ussing Chamber and 

the solutions were bubbled as before. The chambers were kept at 37。C by means of a 

thermostatic water circulator. Prior to each experiment, the electrical parameters of the 

tissue were allowed to stabilize for 30-40 minutes to permit recovery of the tissue from 

the preparation and to attain equilibrium at 37 °C. 

2.2.2.1.2. Electrical Measurements 

The following electrical parameters were recorded during the experiment using four 

channels Voltage Clamp (WPI): potential difference (PD) which reflects the voltage 

gradient generated by the tissue; resistance (R) which reflects the tissue integrity, and 

short-circuit current (SCC) which indicates the ionic fluxes across the epithelium. 

• .1 
Electrical parameters are widely accepted for monitoring the viability and integrity of the 

tissue for the Ussing Chamber technique. : 

Potential difference of ileum prepared above was measured before each experiment, ‘ 

any ileum with PD < 4mV was omitted (Polentarutti et al, 1999). 
r' 
I' 

2.2.2.1.3. Experimental Protocols 

After the equilibration period, the compound to be studied was added to the apical or 

basolateral side called donor chamber; the other side is the receiver chamber. At 0, 15, 30, 

60, 90, 120 minutes, the samples (1 ml) were removed from the receiver chamber. 

Following removal of each sample, the same volume of a blank buffer was added back to 

the same chamber to maintain the volume constant. Concentrations of the markers were 

measured by fluorescence spectrophotometry, HPLC or scintillation counting, depending 
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on the markers. 

2.2.2.1.4. Calculation of Permeability 

The apparent permeability coefficient was calculated from the following equation. 

Papp = [dC/dt X V] / (A X C), where dC/dt is the change in concentration in the receiver 

chamber per unit time, V is the receiver volume and A is the area available for diffusion 

or transport, C is the initial concentration of the donor chamber (Smith et al, 1996) 

2.2.2.2. Caco-2 Cell Monolayers 

2.2.2.2.1. Preparation of Caco-2 Cell Monolayers 

Caco-2 cells were maintained at 37 °C in Dulbecco's modified Eagle's medium, 

containing 10% fetal bovine serum, 1 % nonessential amino acids, 1 % L-glutamine in an 

atmosphere of 5 % CO2 and 95 % relative humidity. Cells grown in 75 cm^ flasks were 

. '1 
passaged every 4 days at 80 %-90 % confluence and the cells detached by using 0.05 % 

trypsin-0.53 m M EDTA. Cells were seeded at a density of 3 x 10̂  cells/well in : 

I ‘ 

Transwell® inserts previously coated with a thin collagen layer and dried for at least 5 

hours (Hidalgo et al, 1989). The medium (1.5 ml in the apical side and 2.6ml in the 
I ' 1' 

basolateral side) was changed every other day. 

2.2.2.2.2. Validation of Caco-2 Cell Monolayers 

Integrity of the Monolayers: 

In the validation experiments, monolayers' integrity was determined by measuring 

the transepithelial electrical resistance (TEER) using an epithelial voltohmmeter, and by 

following the transepithelial transport of poorly absorbed markers, mannitol and lucifer 

yellow. The potential difference was expressed as TEER (ohms.cm^), after subtraction of 

32 



the intrinsic resistance of the cell-free inserts. A monolayer with a low TEER, or with a 

high transport rate with mannitol or lucifer yellow, was assumed to exhibit extensive 

leakage in the monolayer and was discarded (Gres et al, 1998). Transport studies on the 

selected flavonoids used TEER to monitor the integrity of the monolayers. 

PBS+ was used as transport buffer involved calcium ions to maintain the integrity of 

the tight junction between the cells. 

Permeabilities of marker compounds: 

Caco-2 cells grown in Transwell® insert for 3 weeks were used for all transport 

studies. Complete culture medium was removed from both the apical and basolateral 

sides and the monolayers were washed twice with transport buffer. Marker compounds 

dissolved in PBS+ were added on apical or basolateral side called the donor side, then the 

samples (1ml) at the other side, i.e. the receiver side, was collected at regular time 

intervals for 2 hours. The same volume of the blank PBS+ was added back to the same 
I 

compartment to maintain the volume constant. 

Marker compounds were analyzed by fluorescence spectrophotometry, HPLC or 

scintillation counting as before. 

Validation of sodium/glucose co-transporter (SGLTl): 

1.5 ml 100 i^M D-glucose containing 0.5 |LiCi [ H]-D-glucose was added on apical 

side of the Caco-2 cell monolayers. Transport studies were performed as above. The 

Caco-2 cell monolayers were rinsed with PBS+ and residual buffer removed by 

turning the Transwell insert over. The whole filter was cut from the insert and put into 

a mini-vial for scintillation counting. 

For inhibition of SGLTl, 100 [iM phloridzin was preloaded on both sides of 
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Caco-2 cell monolayers for 20 minutes, then removed from apical side. 100 ^iM 

phloridzin with 1.5 ml 100 [iM D-glucose were added together to the apical side. 

Transport studies were carried out as mentioned above. 

2.2.2.2.3. Calculation of Permeability 

The apparent permeability coefficient (Papp) was calculated from the following 

equation: Papp = [(dC/dt) x V)] / (A x C), where dC/dt is the change in concentration in 

the receiver side per unit time, V is the receiver volume and A is the area available for 

diffusion or transport. C is the initial concentration of the compound on the donor side. 

i r 

2.2.3. Transport Studies of Selected Flavonoids 

Direction of Transport: ‘ 

20 m M quercetin glycosides (or 5 m M quercetin) were dissolved in D M S O as stock 

solution and diluted with P B S + to 50 |LIM (or 12.5 JIIM). Flavonoid in the transport buffer 

was applied to either the apical or the basolateral side of Caco-2 cell monolayers. 人 

Samples were collected as described previously in 2 hours and analyzed by HPLC. At the ‘ 

end of the experiments, 100 |LI1 sample was removed from the donor side. 丨 

Recovery was defined as the percentage of total amount of the flavonoids found on ‘ 

donor and receiver side at the end of the experiments. 

Concentration dependence: 

Transport experiments were performed from apical to basolateral side and from 

basolateral to apical side for quercetin-3 -glucoside at 25, 30, 50 and 100 j^M. 

Inhibition of P-gp with verapamil: 
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100 \iM verapamil was added to both sides and preloaded for 20 minutes, followed 

by the addition of 30 )LIM quercetin-3 -glucoside to the donor side. Then transport 

experiments were conducted as mentioned above. 

Enzymatic hydrolysis: 

12.5 |LIM quercetin was added on apical side, and transport experiments were 

conducted as mentioned above. Samples containing glucuronides collected from 

basolateral side of Caco-2 cell monolayers was hydrolyzed by ŷ -Glucuronidase. 

Studies of quercetin-3 -glucoside with sugar transporters: 

100 |LIM phloridzin was added to both sides and preloaded for 20 minutes. Then it. 

was added with 100 |LIM quercetin-3 -glucoside to the apical side. Then transport 

experiments were conducted as mentioned above. 
I 

2.2.4 Brush Border Membrane Vesicles (BBMVs) 

2.2.4.1 Preparation of B B M V s 

Brush border membrane vesicles were prepared from the tips of the microvilli of the i 
. I 

frozen rabbit small intestine. Frozen rabbit intestine were prepared as in Fig. 2.1. BBMVs ‘ 

were prepared using the M g precipitation method (Hopfer et al, 1973) as outlined in 

Fig. 2.2. 
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Freshly killed white New Zealand rabbit 

T  
Small intestine was placed in ice-old 154 m M KCl 

i  
The content was removed and the small intestine was cleaned in ice-cold KCl 

i  
Small intestine was cut longitudinally, washed and blotted 

i  
Small intestine was frozen in liquid nitrogen ] 

i 

i  
Frozen small intestine was stored at -70 °C ； i 

I i 

.1 i i 
Fig. 2.1. Preparation of frozen rabbit small intestine 

< 『 
I 

...i 
t' 

I 

V i 
• I 

1•‘‘ 
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Frozen small intestine was thawed in 200 ml buffer 1 
and cut into pieces 

T  
Mechanically vibrated for 1 minute 

T  
Solution was filtered and the supernatant was made up to 300 ml 

with buffer 1 

i  
0.61 g MgCl2 was added and stirred 

i  
Solution was centrifuged at 4 °C, 5000 rpm, for 15 mins 

i T 
The supernatant was centrifuged at 4 °C, The pellet was discarded 
17000 rpm for 30 mins 

I I 
j 

± i I 
1 

The pellet was resuspended in buffer 2 and The supernatant was discarded 
centrifuged at 4 17000 rpm, for 40 ； 

mins 

，r ::丨 
f • i 

，r The supernatant was discarded 

The pellet was resuspended in 1ml buffer 3 and ‘ 

the volume doubled using buffer 3. 

* 
The solution was passed 5 times through a 25 gauge needle 

Y  
Solution was divided into 0.26 ml aliquots and stored in liquid nitrogen 

Fig. 2.2. Preparation of B B M V s from frozen small intestine 
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2.2.4.2. Uptake of D-glucose by B B M V s 

The uptake of D-glucose into B B M V was performed according to the rapid 

filtration techique of Hopfer et al (1973) as shown in Figure 2.3. 

One aliquot (0.26 ml) of frozen B B M V s was re-suspended in 0.44 ml of buffer 3 

i  
20 |LIL B B M V S were mixed with 40 |aL ofO.lmM D-glucose and [^H]-D-

glucose in buffer 4 

i  
Mixture was incubated at 25 

i I 
After 1, 10, 20, 40, 60, 120, 300 and 3600 seconds, 1ml ice 

cold buffer 5 was added into the mixture ： j 
I I 

i i 丨 

Mixture was rapidly filtered through a pre-wetted filter 

. I ； 

i , 
‘I 

Filters were washed 5 times with 1ml buffer 5 '丨 

i  
Then placed in a minivial and counted ；  

丨丨 j 

r'' 

Fig. 2.3. Procedure of uptake of D-glucose into B B M V s 

Buffer 1: lOmM mannitol, 2 m M HEPES adjust with Tris to pH 7.1 

Buffer 2: lOOmM mannitol, O.lmM MgS04, 2 m M HEPES adjust with Tris to pH 7.4 

Buffer 3: 300mM mannitol, O.lmM MgS04, lOmM HEPES adjust with Tris to pH 7.4 

Buffer 4: 100 m M NaCl, 100 m M mannitol, 10 m M HEPES-Tris, pH 7.4 

Buffer 5: 200 m M NaCl, 10 m M HEPES-Tris, 250 ̂ iM phlorizin, pH 7.4 

HEPES = N-2-HydroxyethyIpiperazine-N‘-2-ethanesulphonic acid 

Tris = 2-amino-(hydroxymethyl)propane-1,3-diol 
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The procedure for measuring the uptake of D-glucose by B B M V s in the presence 

of quercetin-3-glucoside/quercetin-3-galactoside was the same as above except for 

incubation of the added flavonoid glycoside (0.05 m M , 0.1 m M or 0.02 m M ) together 

with 0.1 m M D-glucose with BBMVs. The uptake of D-glucose by B B M V s was 

calculated as before. The control incubation was performed without the quercetin 

glycosides. 

2.2.4.3. Counting on ̂ H-D-glucose in B B M V s 

The filters with the B B M V s were each placed in a minivial containing 3 ml 

scintillation fluid and were counted for 3 minutes. | 
r ] 

'丨 

‘ -i 
I 

2.2.4.4. Calculation of Glucose Uptake 

1 ， 

Glucose uptake was expressed as picomoles (pmoles, 10" ) of glucose/mg protein 
• I 

using the following equation: 

Glucose uptake — 
I 

corrected cpm x amount of glucose added (pmoles) 

mean cpm for control samples x protein concentration of B B M V x volume of BBMV(ml) 
I 
1 

, I 

Note: ‘ 

Corrected cpm (counts per minute) = actual measured value — value for non-specific 

binding to filter. 

(Non-specific binding to the filter was measured by control incubation containing 40 

[il of 0.1 m M D-glucose without BBMV). 

Mean control cpm = total activity (the activity of 40 |LI1 0.1 m M radiolabelled D-

glucose) 
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2.2.4.5. Total Protein Assay 

Preparation of B B M V s test samples: 

One aliquot (0.26 ml) of frozen B B M V s was re-suspended in 0.44 ml of water. 

Three dilutions (using water) were made for the assay: 1 in 10; 1 in 20 and 1 in 50 

dilutions 

Preparation of protein assay agent 

Buffer 1 was prepared by mixing 4 % sodium carbonate (Na2C03) with 0.2 M 

sodium hydroxide (NaOH), (1:1 v/v). 

Buffer! was prepared by mixing 1 % copper sulphate pentahydrate 
I 

(CUSO4 5H2O) with 1 % sodium tartrate (Na2C4H406), (1:1 v/v). 

•I I 
Bovine serum albumin (BSA) was prepared to Img/ml. 

Protein assay | 

Lowry method was used for total protein determination (Lowry et al, 1951). BSA : 
I 

f . 

was used as standard protein solution. For the calibration curve, 0 - 500 jul BSA 

(Img/ml), were made up to the final volume of 500 \i\ with water. 2.5 ml mixture '； 
,‘ i • 1 

(buffer 1: buffer 2 = 50:1) was then added into to the above BSA solution and shaken , 

for 10 minutes. Then 0.25 ml Folin-ciocalteu's phenol reagent was added and agitated 

for 30 minutes. All samples were measured at 750 nm by visible spectrometry. The 

same assay procedure was used for the B B M V test samples. The protein 

concentration of B B M V was calculated by taking the mean of the three results 

obtained from the 3 dilutions. The protein assay was carried out for each batch of 

BBMVs. 
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2.2.5. Analytical Methods 

2.2.5.1. H P L C Analysis 

2.2.5.1.1. H P L C Analysis of Quercetin and Related Glycosides 

The mobile phase for HPLC analysis consisted of two solvent compositions: 

acetonitrile (solvent A) and 25 m M phosphate buffer (solvent B) adjusted to pH 2.4 

by concentrated phosphate acid (Hertog et al, 1992). The mobile phase at a flow rate 

of 1.0 ml/min was composed of 30 % A and 70 % B for quercetin and 25 % A and 75 

% B for quercetin glycoside with U V detection at 360 nm or electrochemcial 

detection at 800 mV. 

i 

At the end of the transport experiments with quercetin, 100 |ul sample was mixed 丨 

with 25 III 1 M sodium acetate (pH 5.0), 25 ̂ il P-glucuronidase (5x10^ U/1, pH 5.0) ；, 

and incubated in a mini-vial for 30 minutes at 37 °C. Then 50 |LI1 400 ng/ml fistin 

(dissolved in methanol) as internal stand and 25 |LI1 (20%, pH 2.15) ascorbic acid were 

added to the sample (Nielsen et al, 1998). The sample was centrifuged at 13000 rpm 

for 10 minutes and analyzed by HPLC. 

2.2.5.1.2. HPLC-MS Analysis of Quercetin Degradation Products ; 

Degraded samples were injected into RP Ci8 column with a mobile phase 

composed of acetonitrile (solvent A) and 2 m M ammonium formate adjusted to pH 

3.0 with formic acid (solvent B). Gradient elution was carried out according to the 

following program: solvent A was kept at 10% in the first 5 minutes, then increased 

from 10 to 40% from 5 to 20 minutes, and then decreased back to 10% in 10 minutes. 

The flow rate was 1 ml/min. The eluent was monitored by U V detection (220-400 

nm) to obtain the U V scan of each degradation products and by electrochemical 

detection at 800 mV. 
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Mass Spectrum (MS) was carried out in the negative (degradation product I and 

2) and positive (degradation product 3) mode with electrospray ionization, by 

scanning from 80-305 amu to obtain molecular weight information. 

2.2.5.1.3. H P L C Analysis of Propranolol 

The mobile phase for HPLC analysis consisted of two solvent compositions: 

acetonitrile (solvent A) and 50 m M phosphate buffer adjusted to pH 3.0 by 

concentrated phosphoric acid (solvent B). The mobile phase at a flow rate of 1.0 

ml/min consisted of 30 % A and 70 % B with U V detection set at 230 nm. 

2.2.5.2. U V Analysis 

The concentration of quercetin glycoside for the solubility studies was measured 

by U V spectrophotometry at 360 nm. 

i 
i 

2.2.5.3. Fluorescence Analysis 

Samples of atenolol was measured by fluorescence spectrometry at excitation 

(Ex) 259 nm and emission (Em) 600 nm. Lucifer yellow was measured at 424 nm (Ex) ； 
• I 

and 525 nm (Em) (Reardon et al, 1993). j 

2.2.5.4. Analysis of Radio-labeled Markers 

H-labeled D-glucose, PEG-4000, L-leucine and mannitol were counted by 

scintillation counter. 

2.2.6. Statistical Analysis 

All experiments were done in at least triplicate and data were expressed as mean 
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士 standard deviation. The difference between mean values were analyzed using the 

Student t-test. A minimum p value of 0.05 was used as significance level for t-tests. 

I 

i 

. -i 

‘I 

I • 
I 
f. 

i 
‘i 
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CHAPTER 3. 

RESULTS & DISCUSSIONS 
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3.1. Preformulation Studies on Selected Flavonoids 

3.1.1. Stability 

The chemical degradation of flavonoids was studied at 37 °C in PBS buffer with 

pH adjusted to 7.4 and 6.8, and in simulated gastric fluid (pH 1.2), which mimic the 

pH condition of the plasma, intestine and stomach respectively, (Fig.3.1a-e.). All the 

flavonoids except for the aglycone quercetin, were relatively stable under the above 

conditions. The percentages of flavonoids remaining after incubation were above 

90%. 

These results suggest that substitution of the O H group at position 3 of quercetin 

by a sugar moiety enhances the chemical stability of quercetin. 
I. 

I H I 
I 

I I 

§) 1 1 0 n 

c 100 A "•"PH7.4 
0) • ^ ^ ^ - A - 1 
S 90 H -»-pH6.8 
^ 8 0 - • PH 1-2 
U) 
I 70 -
'I 60 -

^ 50 1 "•‘ 「 : 
UL [ 

0 50 100 150 200 250 

Time (minutes) 

Fig. 3.1a. Stability of quercetin-3-galactoside at pH 7.4, 6.8 and 1.2 in aqueous 

solutions at 37 °C. 
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Fig. 3.1b. Stability of quercetin-3-glucoside at pH 7.4, 6.8 and 1.2 in aqueous solution 
at 37 °C. 
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Fig. 3.1c. Stability of quercetin-3-mtinoside at pH 7.4, 6.8 in aqueous solutions at 
37 °C. 
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Fig. 3.Id. Stability of Quercetin-3 -rhamnoside at pH 7.4, 6.8 in aqueous solutions at 
37 °C. 
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Quercetin became more unstable at higher pH condition. Only 30% of the 

compound left after three hours of incubation at pH 7.4 (Fig. 3.1e.). Incubation of 

quercetin at pH 6.8 in PBS aqueous buffer resulted in the formation of three 

degradation products, as evidenced by HPLC (Figs. 3.2a,b.). The polarity based on 

retention time decreased in the order: product 1 > product 2 > product 3 > quercetin. 

Their U V scans are shown in Figs.3.3a-d. U V scan was useful for selecting the Â ax of 

degradation products for further assay. LC/MS analysis of the degradation products 

showed that product 2 has an m/z of 168, product 3 has m/z of 272 and 300 and 

product 1 has m/z of 110 and 154. The possible degradation pathways of quercetin in 

aqueous solution at pH 6.8 are shown below. 

OH 

r ^ ^ o H 

W ^ H 
〇 H 〇 \ 

Quercetin (m/z = 302) 

X i 

H O ^ ^ ^ C H 厂 COH 
o 

Product 2 (m/z = 168) 

XH 
OH y 

Product 1 (m/z = 154) 
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Justesen et al (2001) reported the mass spectra of the degradation products of 

quercetin obtained by in vitro fermentation with faecal material from humans. 

However, further investigation employing preparative HPLC (to collect the 

degradation products) and solution N M R will be necessary to identify/confirm their 

chemical structures. 

§) 120 -1 

5 100 • — ^ 

0 60 - 麗 - a — p H 6.8 

o) 40 - - ^ p H 1.2 I 
c 2 0 - ^ 

• • M 

1 0 ^ , , 1 , i 

^ 0 50 100 150 200 

T ime (minutes) 

Fig. 3.1e. Stability of Quercetin at pH 7.4, 6.8 and 1.2 in aqueous solutions at 37 °C. ： 
I 

I 

48 

^ 



10.5 

Quercetin 

> £ 

； J k _ 一 ― L _ 

2 Minutes 叨 
I, 丨： 

Fig. 3.2a. HPLC Chromatogram of quercetin. 
The retention time (Rt) of quercetin is 22.3 minutes. , 
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Fig. 3.2b. HPLC chromatogram of quercetin and its degradation products. 
Quercetin was incubated in PBS buffer (pH 6.8) at 37 °C for 20h. 
The Retention time of degradation products 1, 2, 3 is 6.7,13.8 and 
15.3 minutes. 
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3.1.2. Thermal Analysis 

Thermal analysis generally refers to any method involving heating the sample 

and measuring the change in some physical property. The most important thermal 

methods for the study of solid-state behavior are thermogravimetry (TG), differential 

scanning calorimetry (DSC) and thermal microscopy. T G measures the change in 

mass of the sample as the temperature is varied. DSC measures the difference in 

temperature or energy between the sample and a reference material as the temperature 

of the system is changed. The technique is most frequently employed for studying 

solid phase transitions such as polymorphism and desolvation. Thermal methods of 

1 

analysis are important analytical tools for characterizing crystal forms, an important : 

I 

parameter governing the solubility and possibly the oral absorption of drugs. 

] 

Quercetin and the four related glycosides were all found to be stoichiometric 

hydrates as confirmed by DSC and T G A (Figs. 3.4-3.8, Table 3.1). A sharp 
I 

endothermic peak (corresponding to dehydration) at 〜100-120 °C was evident for 

quercetin-3-galactoside and quercetin (Figs. 3.4b, 3.8b), suggesting the dehydration 
I 

process was complete within a narrow temperature range. For the other 3 flavonoids, 

the dehydration endotherm was not clearly discemable, indicating that the dehydration 丨 
i 

occurred over a much wider temperature range. Based on T G A data (Table 3.1), it can 

be deduced that quercetin and quercetin-3 -rutinoside are dihydrates whereas 

quercetin-3-glucoside, quercetin-3-rhamnoside and quercetin-3-galactoside are 

monohydrates. 

52 



102 
i。。-H I  

Onset = 91.156 'C 

95 • Delta Y = 9,015 % \ Inflection Point = 108.711。C 

End = 121,988 X \ , 
V J Onset Y = 90.851 % 

90 • ‘ ‘ ‘ \ Onset X = 339.028 'C 

一 \ \ 

85 M 

I \ 
I 80. \ 

• V 
59.59 i . , , -T , , , , , 

5 30.4 50 100 150 200 250 300 350 400 41E 
_ Temperature ("C) 

Figure 3.4a. T G A of Quercetin 

65.93 
6 0 • 

4。’ Peak = 128.985 °C 

Peak Height = 24.6722 mW . 

Area = 600.221 mJ 

• A Delta H = 91.358 J/g 

I \ E n d : 134.336 °C 

‘ ^ / \ Onset = 123.467 °C 

？ -2。 
e Peak = 332.588 T 

今 Peak Height = 90.4091 mW 

f -40 • Area = 866,607 mJ 

Delta H = 131.904 J/g 
^ ^ ^ End = 333.850 X •s -60 • ^s^ 
主 ^ S . Onset = 330.560 °C 

-80 • Vv 
-100 • >v 

- 1 2 0 • 

X -140 - rv^ 
� 

-151.9 -I , , , ^ ‘ 
43.38 100 150 200 250 300 343 

- Temperature ("C) 

Figure 3.4b. DSC thermogram of Quercetin 

53 



1 0 0 . 2 「 I  

—\ I 1 — Onset Y = 95.6466 % 

I ‘ s A Onset X = 233.866 °C 

Delta Y = 3.9346 % Inflection Point = 54.363 "C 

90 .. End = 58.762 °C Onset = 49.992 °C \ 

85 V 

r . \ 
7 75 \ 

‘ V 
65 -
60 ^Sw 
^ \ 
50 • 

47.76 , , , , , , , , , , , 
‘ 30-34 50 100 150 200 250 300 350 400 450 500 53! 

Temperature ("C) 

Figure 3.5a. T G A of Q-3-glucoside 
82.56 1 

_ 65 - Onset = 229.941。C f ^ 

I ^ End = 246.086�C , 
^ 60 - Peak = 240.453 丨 

0 Peak Height = 13.1538 mW ‘ 

£ 55 • Area = 668.653 mJ 

1 ^ ^ Delta H = 124.054 J/g 
n: 50 • 
<D Z 

,45 

40 • 

35 -

30 -

- 2 7 . 7 . , r , , , _ 

-18.43 0 50 100 150 200 25： 

Temperature (°C) 

Figure 3.8b. DSC thermogram of Q-3-galactoside 

54 



100.1 1 

1 O n s e t = 80.923。C 

. 96 Delta Y = 4 1738 % Inflection Point = 99.893 °C 

9   
End = 126.080 X ‘ " “ “   

n Onset Y = 92.9001 % 

\ Onset X = 220.784 "C 

卜 \ 

5 88 -

: : \ 
80 -

78.24 -J , , , , , , , , • 

62.74 80 100 120 140 160 180 200 220 240 252 
_ Temperature ('C) 

Figure 3.6a. T G A of Q-3-rhamnoside 

81.03 3 

I I I -— I I ‘ ‘ I 

70 -

60 -

i y 
o 50 - ^ ^ 
L o . 
15 

30 • 

20 -

11.26 -I , , , , ,_— , 
-41.99 0 50 100 150 200 241 

Temperature (°C) 

Figure 3.8b. DSC thermogram of Q-3-galactoside 

55 



的.98 - H ^ 

Onset = 84.683 T 98 、 

Delta Y = 5 5793 % N l Inflection Point = 103.027 °C 
96 - N ^ 

r- , , O n s e t Y = 93.2374 % 
End = 117.439 \ ^ ^ ^ Onset X = 241.752 X 

1 — — I . 

丨 : : ^ ^ ^ ^ 

E 88 • \\ 

I \ 
86 . \ 

:: \ 
76.45 -I—. . . , , , r , , , , , 

- 56.25 80 100 120 140 160 180 200 220 240 260 272 
_ Temperature CC) 

Figure 3.7a. T G A of Q-3-rutinoside 

22.36 n 

I -2。 

P � 

P。- ^ ^ 
-70 • 

-80 . 

-90 -

- 1 0 0 • 

-107.2 4—1 1 1 1 1 1 . 1 1 1 , , 
16.84 40 60 80 100 120 140 160 180 200 220 239 

Temperature (°C) 

Figure 3.7b DSC thermogram of Q-3-rutinoside 

56 



lUO.O 1 

95. ^ 1 I y Onset Y = 95,4731 % 

End = 105.665 丨nflection Point = 99.715 \ Onset X = 234.298 

Delta Y = 3,2801 % Onset = 93.921 "C \ 

I : \ 

卜 \ 
t - \ 

: V 
60 • 

51.63 -i . . , , , , . , 

i 48.61 100 150 200 250 300 350 400 423 
_ Temperature ("C) 

Figure 3.8a. T G A of Q-3-galactoside 

35.99 1 

30 j 

g. Onset = 101.291 °C / 

I 25 • End = 132.938。C / 

I Area = 188.616 mJ / 
0 Delta H = 56.642 J/g / 

1 20 -- Peak = 121.422。C / 

1 Peak Height = 3.0450 mW j 

6.219 J • , . , , , , ,——-_, 
-79.46 -50 0 50 100 150 200 250 300 335 

Temperature (。C) 

Figure 3.8b. DSC thermogram of Q-3-galactoside 

57 



Table 3.1. Bound water of flavonoids. 

Flavonoids Percentage of bound water Number of 
Mean value Theoretical value bound water 

Quercetin 9 m 10^ 2 

Q-3-glucoside 3.93 3.73 1 

Q-3-rhamnoside 4.17 3.86 1 

Q-3-rutinoside 5.58 5.57 2 

Q-3-galactoside 3.28 3.73 1 

3.1.3. Aqueous Solubility 

Dissolution is an important factor affecting the absorption of the poorly soluble 

drugs. The aqueous solubilities of the four quercetin glycosides determined at 

different temperatures are presented in Table 3.2a. The solubility of quercetin was not 

measured since it is relatively unstable in water (see Fig.3.1e). 

The solubility of various glycosides in water increased with an increase in 

temperature. In addition, the solubilities depended on the sugar substituent at position 

3 of the quercetin structure, and followed the order: quercetin-3-glucosides ~ 

quercetin-3 -galatcoside > quercetin-3 -rhamnoside > quercetin-3-rutinoside. 

Table 3.2a. Solubility of quercetin glycosides in aqueous solution (pH 7.4, n = 3). 

T ( C) Fraction X 10 [(mole of glycosides)/(mole of solvent)] 

Quercetin-3- Qurecetin-3- Quercetin-3- Quercetin-3-
rutinoside glucoside galactoside rhamnoside 

~ 4 1 . 2 1 8 ± 0 . 0 1 8 6 1 . 6 0 9 ± 0 . 0 3 9 0 1 . 6 8 7 ± 0 . 0 5 5 8 1 . 6 7 8 ± 0 . 0 1 9 3 

15 1 . 6 8 1 士 0 . 0 4 4 9 2 . 3 0 2 士 0 . 0 3 9 5 3 . 0 3 6 士 0 . 0 7 4 5 2 . 8 2 0 士 0 . 0 1 4 6 

2 5 2 . 4 6 5 ± 0 . 0 7 8 2 5 . 3 7 7 ± 0 . 0 9 0 8 3 . 9 1 6 士 0 . 0 5 1 7 4 . 3 8 0 ± 0 . 0 5 7 7 

3 0 3 . 7 3 1 士 0 . 0 4 3 1 1 1 . 3 9 士 0 . 2 0 9 7 . 1 2 0 ± 0 . 0 5 7 7 5 . 5 7 9 土 0 . 1 4 5 

3 7 5 . 2 2 2 士 0 . 1 8 4 1 2 . 3 3 士 0 . 2 5 2 1 5 . 2 5 ± 0 . 1 5 2 9 . 6 2 8 ± 0 . 1 3 8 

5 0 1 0 . 6 2 ± 0 . 0 8 3 9 1 7 . 2 0 土 0 . 0 3 0 0 3 4 . 6 9 士 0 . 3 1 4 1 4 . 1 2 ± 0 . 0 9 9 9 
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The solubility data were analyzed using the Van't Hoff equation, and the 

associated plots are shown in Fig. 3.9. The regression equation and apparent molar 

enthalpy of solution, AH^ (calculated from the slope of the plot) of each glycoside are 

shown in Table 3,2b. The van's Hoff plots for the various glycosides displayed good 

linearity (R^ = 0.93-0.99; n = 6), showing that the van's Hoff equation was obeyed by 

all the glycosides. 

-10 I 1 I 1 i 1 i 

-10.5 3 ————ZA——ZS————a.7 • 八 。 . . 
• Q-3-rutinoside 

• B Q-3-gIucoside 
7 -” .5 Q-3-galactoside 
二 -12 ^ Q-3-rhamnoside 

-14 J  

1000/T, K 

Fig. 3.9. Van't Hoff plots on the saturated aqueous concentration of glycosides 

Table 3.2b. Van't Hoff equation and calculated AH^ 

Compound Equation R^ (kJ/mol) 

Q-3-glucoside Y =-5.154 x + 5.20 0.93 42.85±5.89 
Q-3-galactoside Y =-5.955 x + 7.98 0.97 49.51 ±4.24 
Q-3-rhamnoside Y = -4.283 x + 2.02 0.99 35:61 +2.01 
Q-3-rutinoside Y = -4.281 x + 1.65 0.97 35 59 + 3 30 

All the quercetin glycosides displayed positive AH^ values, suggesting that the 

dissolution process is endothermic. 

As shown in Table 3.1, the AH^ values are statistically indistinguishable for 

quercetin-3-glucosides and quercetin-3-galactoside and for quercetin-3-rhamnoside 

and quercetin-3-rutinoside. Quercetin-3-glucoside and quercetin-3-galacoside had 

higher AH^ than quercetin-3-rhamnoside and quercetin-3-rutinoside. The differences 

59 



Q 

or similarities in the observed A H among the various samples are closely related to 

the lattice energy, as can be deduced from the following thermodynamic reasoning. 

The dissolution of a solid in a solvent (e.g. water) can be viewed as being 

equivalent to the breaking of the crystal lattice of the sample (solute-solute 

interaction) followed by solvation of the separate solute molecules (solute-solvent 

interaction). The enthalpy of solution, AH^ of the solid is therefore given by 

AHS = AHci + AHsoiv 

where AHd is the change in crystal lattice enthalpy (i.e. heat absorbed when the solute 

molecules of the crystal are separated by an infinite distance against their 

intermolecular forces) and AHsoiv is the change in solvent enthalpy (i.e. heat evolved 

when the solute interacts with the solvent). AHd is positive, (i.e. endothermic 

transition) since energy is required to break the solute-solute interactions while AHsoiv 

is generally negative (i.e. exothermic transition) if there exists an affinity between the 

solute and the solvent. 

For the quercetin-3-glucoside monohydrate and the quercetin-3-galacotoside 

monohydrate, the 2 sugar moieties, glucose and galactose，are closely similar in terms 

of chemical structure and the numbers of hydrophilic groups present. Thus the 

interaction of these two glycosides with water should be comparable (i.e. similar -

AHsoiv). Since the measured AH^ are statistically equivalent, the lattice energy of both 

monohydrates, as reflected by AHd, should also be comparable. However, for the 

quercetin-3-rhamnoside monohydrate, the rhamnose moiety has one O H group less 

compared with glucose or galactose. Thus it interaction with water should be weaker 

both in solution (i.e. less negative AHsoiv) and in the crystal lattice (i.e. lower AHd), as 

evidenced by a lower AH^. On the other hand, the rutinoside dihydrate has a glucose 

and rhamnose linked together. The additional glucose in the rutinoside provides 
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additional hydrophilic sites (OH groups) for interaction with water both in solution 

and in the crystal lattice, and will yield a more negative AHsoiv and a higher AHd. It is 

interesting to note that the rhaninoside monohydrate and the rutinoside dihydrate have 

virtually identical AH^, suggesting that the difference between solvation (hydration) 

enthalpy (AHsoiv) and lattice enthalpy (AHd) governing the dissolution process is the 

same for the two samples. 

The higher AHd estimate deduced from thermodynamic reasoning for the 

rutinoside dihydrate is consistent with the generally accepted principle that the 

dihydrate is always more stable and stronger in intermolecular interactions than the 

monohydrate. 

3.1.4. Partition Coefficient 

Lipophilicity is an important factor affecting the transport process across the 

biological membrane. The lipophilicity of a compound is usually measured in terms 

of its partition coefficient between octanol and water at a defined pH. Molecular 

weight of the compound and its capability to form hydrogen bonds are two major 

determinations of partition coefficient (Waterbeemd et al, 2001). 

The partition coefficient of quercetin and four related glycosides were determined 

in the octanol/water system. The results are summarized in Table 3.3. Lipophilicity 

was seen to decrease in the order: quercetin > quercetin-3-rhamnoside > quercetin-3-

glucoside > quercetin-3 -galactoside > quercetin-3-rutinoside. This result suggests that 

sugar substitution at position 3 reduces the lipophilicity of quercetin. The order of 

lipophilicity is consistent with the number of hydrophilic O H group present in the 

sugar substituents, as referred to in the preceding discussion on AH^. 
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Table 3.3. Partition coefficient of quercetin and its glycosides (n = 4). 

Compound M W (g/mole) Log P  
Quercetin 302 1.81 ±0.49 A 

Quercetin-3-glucoside 4 6 4 . 3 8 0.816 ± 0.0049 
Quercetin-3-galactoside 4 6 4 . 3 8 0.785 士 0.0046 
Quercetin-3-rhamnoside 4 4 8 . 4 1.36 士 0 . 0 4 7 

Quercetin-3-rutinoside 610.5 -0.236 士 0.0090 
a Partition coefficient of quercetin was obtained from Murota et al. (2000). 

3.2. Validation of in vitro models 

3.2.1. Selection of Marker Compounds 

Validation of the in vitro models employed six marker compounds, namely 

mannitol, propranolol, lucifer yellow, atenolol, L-leucine and PEG-4000. These are 

widely used and well documented marker compounds (Dowty, 1997; Lennemas, 

1997; Reardon，1993). Table 3.4. shows the diversity in physical properties of the 

marker compounds. The values shown for % absorbed in humans are literature data, 

ranging from less than 1% for PEG-4000 to 100% for L-leucine and propranolol. 

Table 3.4. Physicochemical data, M W , pKa values, LogP (Octanol/Water, pH 7.4) and 
absorption in human of 6 markers studied in the Ussing Chamber and 
Caco-2 cell monolayers 

Compound MW pKa LogP Percentage of Transport References 
(g/mole) (oct/water pH oral absorption mechanism/ 

7.4) (human) route 
Mannitol 182 N/A -3.10 65 Paracellular D o v ^ l w ~ — 

Propranolol 259 9.5 1.3 100 Passive diffusion Lennemas, 1997 

Lucifer 457.2 N/A N/A N/A Paracellular Reardon, 1993 
yellow 

Atenolol 266 9.6 -1.8 50 Paracellular Lennemas, 1997 
Ores, 1998 

L-leucine 131 2.3 N/A 100 Carrier mediated Lennemas, 1997 
Ores, 1998 

PEG-4000 4000 9.6 -5.1 0 paracellular Dowty, 1997 
— G r ^ , 

N/A: data is not availabile 

Mannitol is widely used as low molecular weight markers. Being hydrophilic, it 

62 



has very limited partition into the lipophilic cell membranes. As with mannitol, 

atenolol is transported by the paracellular route through the tight junction. 

Lucifer yellow and PEG-4000 represent the medium and high molecular weight 

compounds. They are used as non-absorbable markers. Propranolol, a ŷ -receptor 

antagonists, is a marker of the transcellular (passive diffusion) route (Lennemas, 

1997), which is the major transport pathway for many compounds. 

L-leucine, an amino acid, is a carrier-mediated transport marker (Gres, 1998). Its 

transport across the intestinal cells is an active process involving ATP and carrier. 

Active transport is normally characterized by bi-directional difference in permeability 

of the compound being transported across the cells, with a higher permeability from 

the apical to basolateral (AP BL) side than in the reverse direction (BL AP). 

3.2.2. Validation of Ussing Chamber 

The results of the transport studies on rat ileum using the Ussing Chamber are 

summarized in Table 3.5. The results were generally comparable to the published data. 

The apparent permeability coefficient Peff of L-leucine was 6 times greater from AP to 

BL than from BL to AP, confirming the involvement of carriers in the transport of 

amino acid. For propranolol and atenolol, the permeability was 2 and 3 times greater 

from BL to AP than in the reverse direction. However, as have been well established, 

they are transported by passive diffusion and paracellular route respectively and thus 

should not have shown any bi-directional differences in permeability across the cells. 

Tomita et al, (2000) also found the permeation of lucifer yellow and mannitol across 

rat colonic mucosa were 3 and 2.3 times greater from BL to AP than in the opposite 

direction. At present, the reason for such discrepancy in the directional differences in 

permeability of transcellular and paracellular markers remains obscure. In view of this 
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problem and the difficulties in data interpretation, the Ussing Chamber technique was 

relinquished in the subsequent transport studies with the flavonoids. 

Table 3.5. Apparent Permeability Coefficients of 6 marker compounds obtained in rat 
ileum using the Ussing Chamber (n = 3-6). 

Compound Concentration Pe^ X 10̂  (cm/s) rat ileum PeffX 10^ (cm/s) (references) 

AP to BL BL to AP AP to BL — 

Mannitol 0.8 |ici/ml 124 N ^ 0y(0.^ 

Propranolol 2mM 2.66 (0.35) 4.62(1.04) 4.13 (0.38) b 

Lucifer yellow 0.33 mg/ml 0.503 (0.027) N/A N/A 

Atenolol 1 mM 0.464 (0.132) 1.29 (0.226) 0.508 (0.076) b 

L-leucine 0.5 ^ici/ml 3.3 (0.878) 0.564 (0.033) 1.964 (0.579) b 

PEG-400Q 1 |ici/ml 0.332 N/A 0.167 (0.033) a — 
'Dowty et al, 1997. 
bUngell etal, 1997. 
Permeabilities from BL to AP of marker compounds are not available (N/A). 

3.2.3. Validation of Caco-2 Cell Monolayers 

3.2.3.1. Integrity of Caco-2 Cell Monolayers 

Transepithelial electrical resistance (TEER) is widely used to assess the integrity 

of the Caco-2 cell monolayers. TEER is determined primarily by the ion flux through 

paracellular space. A constant TEER value of 1015 士 137 ohm-cm〗 was found in 

D M E M culture medium for a 3-week culture of Caco-2 cell monolayers in our 

laboratory. 

Throughout the course of all the experiments, the integrity of cell monolayers was 

preserved as monitored by TEER. The TEER value was 574 士 103 ohm-cm^ before 

transport experiments and 431 土 64 ohm-cm^ at the end of transport experiments 

conducted in transport buffer PBS+. The percentage of the remaining TEER was 76 士 

11% (n = 64). TEER was affected by the integrity of the cell monolayers, temperature 
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and ingredient of transport buffer. Thus the experiments need to be conducted under 

defined culturing and experimental conditions. 

3.2.3.2. Permeability of Marker Compounds 

The permeability coefficient determined for the marker compounds using Caco-2 

cell monolayers are presented in Table 3.6. Most of the values were comparable to the 

literature data. However, for the carrier-mediated marker L-leucine, the permeability 

obtained from our experiment was 20 times greater than the reference value. The 

difference may be due to the different level of expression of the transporters on Caco-

2 cell monolayers under different culture conditions and cell passages. 

For propranolol and mannitol that are transported by passive diffusion and 

paracellular transport route respectively, there were no significant differences in 

permeability between the two directions (p>0.05). Since the Caco-2 cell monolayers 

are devoid of mucus layer，the technique is much simpler to handle than the Ussing 

Chamber involving the use of rat ileum. 

Table 3.6. Apparent Permeability Coefficients of 5 marker compounds obtained in 
Caco-2 cell monolayers (n = 3). 

Compound Concentration Papp ^ 10^ (cm/s) Papp̂  10^ (cm/s) 

AP to BL BL to AP (Reference, AP to BL) 

Mannitol 1 [ici/donor ~T48 (0.0432) l ^ ^ C O . ^ ) 

Propranolol 100 îM 54.7 (10.17) 52.6 (0.205) 27.5 ' 

Lucifer yellow 0.33 mg/ml 0.259 (0.0933) N/A 0.1- 0.7 d 

Atenolol 3 mM 0.907 (0.0822) N/A 1.16' 

L-leucine 0.5 |ici/ml 9.19 (1.47) 1.71 (0.201) 0.47^ 
— a — a — B C T ^ — f ^ l w — w ^ ^ — a t — a — n.i『i i TTiir̂ iPni i iii^ii. .•! jiararaMrMagtgB-aacaaMsawgiwt 

'Yee,1997 
Îrvine, 1998 
'Ores, 1998 
^Leimemas, 1997 
Permeabilities from BL to AP of marker compounds are not available (N/A). 
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3.2.3.3. Selection of in vitro models 

Compared with the Ussing Chamber technique, Caco-2 cell monolayers are more 

appropriate for investigating the possible involvement of the efflux systems in the 

transport process by comparison of permeability of marker compounds in the two 

directions (i.e. A P B L or BL AP). Area of the transport in the Caco-2 cell 

monolayers model is larger than that in Ussing Chamber, which will increase the flux 

across the cells and hence improve the ease of analysis. Thus, the Caco-2 cell 

monolayers model was preferred to the Ussing Chamber technique in the present 

study. Although the Ussing Chamber employs animal tissues and resembles more 

closely the in vivo situations, the observed discrepancy in the bi-directional 

permeability for some of the transport markers has rendered it a less desirable 

technique for mechanistic transport studies. 

3.2.3.4. Validation of Sodium/glucose Co-transporter (SGLTl) 

Phloridzin is a competitive inhibitor of D-glucose transporter SGLTL It binds to 

the Na+-D-glucose cotransporter of the small intestine brush border membrane but 

cannot be transported by this way (Toggenburger et al, 1982). 

Comparison of permeability and uptake of D-glucose into the Caco-2 cell 

monolayers with or without phloridzin is shown in Table 3.7. As can be seen, the 

permeability and uptake of D-glucose into the cell monolayers were decreased in the 

presence of phloridzin by 50% of the control. These results confirm the existence of 

the major transporter of sugars, SGLTl, in the current Caco-2 cell monolayers, under 

the stated culture conditions. Thus, this model was used to study the transport process 

potentially involving the sugar transporter, SGLTl. 
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Table 3.7. The effect of SGLTl inhibitor Phloridzin (100 |iM) on Papp and uptake of 

D-glucose (100 )LIM) from AP to BL on the Caco-2 cell monolayers (n = 3). 

Uptake P % 3.622 士 0.414* 6.773 ± 0.438 

*p<0.05, significantly difference compared to control 

3.3. Transport Studies on Quercetin and Related Flavonoids 

3.3.1. Direction of Transport 

To determine whether the transport of quercetin and its glycosides involved any 

active process like the efflux system, the bi-directional transport permeability of these 

compounds in Caco-2 cell monolayers was compared as shown in Table 3.8. 

Recovery was calculated as the percentage of total amount of the flavonoids in 

original form found on both donor and receiver sides at the end of the experiments. 

Apparent permeability was calculated in the original form of flavonoids by the 

equation described in chapter 2. 

There was no significant difference in permeability between the two directions 

among the flavonoids except for quercetin-3 -glucoside (p = 0.0018). Its permeability 

in the BL to AP direction was greater than in the AP to BL direction, which suggests 

the involvement of an efflux pump. Further studies using different concentrations of 

the glucosides and an efflux pump inhibitor were conducted to confirm this, and the 

results are discussed in the following section 3.3.2. The above findings suggest that 

quercetin, quercetin-3 -galactoside, quercetin-3 -rhamnoside and quercetin-3 -rutinoside 

are transported by passive diffusion whereas the transport of quercetin-3 -glucoside 

involves also the efflux P-gp. 

The apparent permeability coefficient of quercetin (aglycone) was about 5 times 

and 10 times higher than those of the glycosides and mannitol respectively, consistent 

with its higher lipophilicity. Thus it appears that permeability is not a limiting step in 
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the absorption process of quercetin. 

All of the above transport studies with quercetin were conducted at pH 6.8 

instead of 7.4 based on the consideration of the cell viability and chemical stability of 

quercetin. Quercetin was more stable at pH 6.8 than at pH 7.4 but still yielded several 

degradation products as shown in Figure 3.2b. The measured quercetin would still be 

an underestimate as a result of the degradation-related loses. Thus future permeability 

measurement of quercetin need to take degradation into account. 

Apart from potential loss due to degradation, quercetin may accumulate in the 

cell monolayers due to its higher lipophilicity. For these reasons, the recovery of 

quercetin in the original form in the donor and receiver sides after the experiments 

was poor (〜46o/o). 

Although the various quercetin glycosides differed in the sugar substituent at 

position 3 of the quercetin structure, their Papp were similar. Compared with the 

paracellular marker mannitol, quercetin glycosides displayed a higher Papp, by about 2 

times. Thus poor permeability may limit their absorption. 

To improve our understanding and prediction of the absorption of flavonoids, 

quantitative- structure-activity-relationship (QSAR) derived models may be employed 

to correlate structure-related physicochemical parameters with oral absorption. In the 

present study, we speculate that lipophilicity is a major contributor to the membrane 

permeability of flavonoids. However, other parameters such as polar surface area may 

also need to be considered in above models. The sugar moiety and its site of 

substitution in flavonoid glycosides may determine whether the transport could use 

specific transporters, and are worthy of further investigation. 
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Table 3.8. Bi-directional permeability of Quercetin (12.5 jiiM) and its glycosides 

(50 jiM) in the Caco-2 cell monolayers (n = 3-5). 

_ _ _ - P a p p X i o6 (cm/s) Recovery % 

Compound — A P t o B L BlTtoAP Two directions 

Q-3-rutinoside 2.73 ± 0.32 2.15 ±0.58 92.4 士 8.2 

Q-3-glucoside 1.50 士 0.22 2.43 士 0.19* 93.8 ±5.5 

Q-3-galactoside 2.46 ±0.36 2.42 ±0.13 84.2 士 7.6 

Q-3-rhamnoside 2.71 士 0.61 2.67 ±0.37 102.3 士 9.4 

Quercetin 15.5 士 0.16 16.9 士 0.61 45.7 士 10 — 

AP: Apical side, BL: Basolateral side 
* p<0.05, significant different between two directions 

3.3.2. Concentration Dependence 

The flux of quercetin-3-glucoside across Caco-2 cell monolayers is shown in Fig. 

3.10a，b. The flux was essentially linear for up to 2 hours for all quercetin-3-glucoside 

concentrations studied (25-100 )aM). The flux from the basolateral side to the apical 

side was 12.6-, 3.4-, 1.6- and 1.3- folds greater than that from the apical side to the 

basolateral side, indicating the involvement of the efflux system. 
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Fig.S.lOa. Transepithelial flux of quercetin-3-glucoside across the Caco-2 cell 
Monolayers from AP to BL (n = 3). 
The Quercetin-3 -glucoside concentrations used were 25 jLiM ( ) 30 jiM 
(),50 laM ( ) and 100 ̂ iM ( ) 
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Fig. 3.10b. Transepithelial flux of Quercetin-3-glucoside across the Caco-2 cell 
monolayers from BL to AP (n = 3). 
The Quercetin-3 -glucoside concentrations used were 25 i^M (• ),30 jiM 
(),50|aM(A)andl00|^M(®). 

As shown in Figure 3.10c, there was no significant correlation between the 

apparent permeability of quercetin-3-glucoside and TEER. 1/Papp in the AP to BL 

direction varied by several folds within a narrow range of 1/TEER values. The 

variation may be due to the efflux effects but not to the paracellular transport pathway. 

This suggests that quercetin-3 -glucoside is predominantly transported across the 

intestinal cells by the transcellular route. 
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Fig. 3.10c. (Apparent permeability, Papp)'̂  plotted against (transepithelial 
Electrical resistance, TEER)—! of Caco-2 cell monolayers after 
transport studies with different concentration of quercetin-3-glucoside 
from two directions. 
Each point is expressed as mean 士 SD (n = 3). 
The Quercetin-3 -glucoside concentrations used were 25 ̂ iM (1), 30 |iM 
(2)，50 |iM (3) and 100 ̂iM (4). 
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3.3.3 Inhibition of P-gp by Verapamil 

Transport studies were conducted in the presence of a P-gp inhibitor to confirm 

the involvement of the efflux system. Verapamil, a substrate of P-glycoprotein is 

generally used as an inhibitor at 100 [iM in Caco-2 study to serve this purpose 

(Hosoya et al, 1996; Hunter et al, 1993). In addition, verapamil has the advantage that 

it does not alter the permeability of those markers for the paracellular and passive 

diffusion routes in Caco-2 cell monolayers (Hosoya et al, 1996). 

As shown in Fig. 3.11, verapamil at a concentration of 100 fiM reduced the 

permeability of quercetin-3 -glucoside at 30 |LIM across the epithelial cell layers in the 

BL to AP direction from (2.84 士 0.20)xl0-6 cm/s to (2.05 士 0.19)xl0-6 cm/s. 

Furthermore, the inhibition was accompanied by an increase in permeability in the AP 

to BL direction from (0.842 士 0.19)x 10-6 cm/s to (1.58 士 0.14)x 10-6 cm/s. No decrease 

in TEER was observed upon verapamil treatment, indicating that the integrity of the 

cells was maintained during the expermient. 
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Fig. 3.11. Time course of 30 jaM Quercetin-3-glucoside transport across the Caco-2 
cell monolalyers in the absence or presence of 100 jiiM verapamil (n = 3). 
Key: , A B (control); ，B A (control); , A B (with 
verapamil); , B A (with verapamil). 

These results suggest that quercetin-3 -glucoside is a substrate of the P-

glycoprotein efflux pump, and interaction of verapamil with P-glycoprotein reduces 
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the efflux of quercetin-3-glucoside. 

Walgren et al (1998) found that both quercetin 3,4,-diglycoside and quercetin 4，-

^-glucoside showed prominent efflux in the Caco-2 cells. These authors further 

demonstrated that the efflux of quercetin 4'-ŷ -glucoside across the Caco-2 cell 

monolayers was associated with the apical multidrug resistance-associated protein 2 

(Walgren et al, 2000). 

Taking the findings from present study and those reported by other groups 

together into consideration, it appears that some of the quercetin glucosides are 

substrates of the efflux pumps, and several efflux pumps may be responsible for the 

efflux of quercetin glucosides. 

3.3.4. Metabolism of Quercetin in Caco-2 Cells 

Fig. 3.12. shows the concentration of quercetin (aglycone) on the basolateral side 

before and after enzymatic hydrolysis of quercetin glucuronide when quercetin was 

loaded on apical side. 
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Fig. 3.12. Concentration of quercetin aglycone in basolateral side before and after 
hydrolysis. The transport studies were performed from apical to basolateral 
side with Caco-2 cell monolayers (n = 3). 
Initial concentration of quercetin aglycone in apical solution was 12.5 jaM. 
** p<0.01, significantly different before and after hydrolysis. 
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As can been seen from Fig. 3.6，the concentration of quercetin after hydrolysis by 

ŷ -glucuronidase was increased on the receiver side. These results suggest that 

quercetin aglycone is transported into the cell membrane and metabolized by the 

Phase II enzymes expressed on Caco-2 cell monolayers (Bjorge et al, 1991; Abid et 

al, 1995) to its conjugate forms, and then secreted into the basolateral side. 

Although the present study confirmed that quercetin could be metabolized by 

Phase II enzymes in the intestinal cells, further studies are required to identify the 

chemical structures of the metabolites. 

3.3.5. Studies of Quercetin-3-glucoside with Sugar Transporters 

In recent years, Hollman et al, (1995;1997;1999) have conducted a series of 

absorption studies of quercetin and its glycosides in human subjects. They suggested 

that intestinal glucose transporter (SGLTl) may be involved in the absorption of 

quercetin glucosides. 

To verify if this was indeed the case, the present study has employed the Caco-2 

cell monolayers to investigate the transport of quercetin-glucosides across the cells. 

Our choice of the Caco-2 cell model was based on the early work of Blais et al, 

(1987) who had demonstrated the presence of a Na+-dependent sugar transport system 

in Caco-2 cell monolayers grown on petri dishes with properties similar to those 

normally found in brush-border membranes of human fetal colon. These authors used 

a nonmetabolizable sugar analog «-methylglucoside (AMG) and found that its 

accumulation in confluent monolayers was inhibited by sodium replacement, 

phloridzin and D-glucose. The existence of a Na+-dependent hexose transport system 

in Caco-2 cells was further confirmed by Riley et al (1991). 

Using D-glucose as a marker, we have validated that our Caco-2 cell monolayers 
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also expresses the glucose transporter, SGLTl. As shown in Table 3.9, the 

permeability of quercetin-3 -glucoside from A P to B L in the presence of sodium 

displayed no significant difference from that observed in the absence of sodium (p > 

0.05). 

Table 3.9. The effect of sodium ions on Papp of Quercetin-3 -glucoside (50 _ ) from 
AP to BL on Caco-2 cell monolayers (n = 6). 

Papp(AP BL) X 10^ (Cm/S) 

Wkhsodiumions L502±T22 
Without sodium ions 1.288 士 0.14 

p〉0.05, no significant difference. 

In addition, the S G L T L inhibitor, phloridzin, at 100 |LIM did not decrease the 

permeability of quercetin-3 -glucoside across the Caco-2 cell monolayers in the AP to 

BL direction, as expected (Fig. 3.13). 
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Fig. 3.13. The effect of SGLTl inhibitor Phloridzin (100 juM) on the transport of 

Quercetin-3 -glucoside (100 ̂ iM) from AP to BL on Caco-2 cell monolayers 
(n = 3). 
p〉0.05, no significant difference. 

The above observations could be interpreted in several ways. As our previous 
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data have shown, the transport of quercetin-3 -glucoside across the Caco-2 cells 

probably involves an efflux pump, i.e. P-gp. Regardless of whether quercetin-3-

glucoside is actively transported by SGLTl from A P to B L side or not, this efflux 

pump or P-gp would pump the compounds out of the cells if it had enough sites to 

bind quercetin-3-glucoside. Therefore, no directional difference in transport would be 

observed. The other possible explanation is that quercetin-3 -glucoside is not a 

substrate of and cannot be transported by sodium/glucose cotransporter SGLTl. 

Hence, no difference in permeability from AP to BL was observed when replacing 

sodium or adding the SGLTl inhibitor, phloridzin. Another possibility is that 

quercetin-3-glucoside could be actively transported into the cells and passively 

transported out of the cells concurrently. The relative slow passive diffusion process 

could result in an apparent lack of bi-directional differences in the measured 

permeability. 

3.4. Uptake of D-glucose by B B M V s 

Since the Caco-2 cells are derived from human colonic cell line, the observed 

lack of effect of the SGLTl on the glucosides transport may not be fully reflective of 

the in vivo situation in the small intestine. To investigate this further, we have selected 

another well-established in vitro model utilizing isolated brush border membrane 

vcsiclcs (BBMVs) with SGLTl expression from the rabbit's small intestine. 

B B M V s are a microvillar membrane preparation containing relatively small 

amount of metabolizing enzymes. It is a very well-characterized model for glucose 

uptake study (Hopf^r et aL 1973; Kcssler et a!, 1978). The technique measures the 

interaction of glucoside with the SGLTl indirectly in terms of its inhibition on the D-

glucose uptake by SGLTl. This indirect verification of the SGLTl involvement in the 
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glucoside transport will unlikely be obscured by any coexisting efflux action of P-gp 

which only competes for the glucoside, as could be the case with the Caco-2 cell 

technique. 

Fig. 3.14. shows a typical time course plot of glucose uptake by B B M V s . Under a 

NaCl gradient, a very rapid initial uptake of D-glucose, marked by an 'overshoot' 

peak, was observed in 1 minute after the commencement of incubation, consistent 

with the result from Kessler et al, (1978). Thus for comparison of the rate of glucose 

uptake, all the uptake experiments were performed for exactly 1 minute. 

The effect of quercetin-3 -glucoside or quercetin-3-galactoside on the D-glucose 

uptake by rabbit's intestinal B B M V s is shown in Figs. 3.15a，b. Quercetin-3 -glucoside 

and quercetin-3 -galactoside at 0.05, 0.1 and 0.2 m M concentration appeared to have 

no significant inhibitory effects on the uptake of 0.1 m M D-glucose (t-test, p > 0.05). 
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Fig. 3.14. Time course plot of D-glucose uptake by rabbit intestinal B B M V s (n = 4). 

40 |al of 0.1 m M D-glucose in incubation buffer (100 m M NaCl, 100 m M 
mannitol, 10 m M HEPES-Tris, pH 7.4). 
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Fig. 3.15a. Uptake of D-glucose by rabbit intestinal B B M V s in the presence of 
Quercetin-3 -glucoside (n = 6). 
Condition 1: 0.1 m M D-glucose (control) 
Condition�：0.1 m M D-glucose and 0.05 m M Quercetin-3 -glucoside 
Conditions： 0.1 m M D-glucose and 0.1 m M Quercetin-3-glucoside 
Condition4: 0.1 m M D-glucose and 0.2 m M Quercetin-3 -glucoside 
p〉0.05, no significant difference from the control. 
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Fig. 3.15b. Uptake of D-glucose with Quercetin-3-galactoside by rabbit intestinal 
B B M V s (n = 5). 
Condition 1: 0.1 m M D-glucose (control) 
Condition!: 0.1 m M D-glucose and 0.05 m M Quercetin-3-galactoside 
Conditions： 0.1 m M D-glucose and 0.1 m M Quercetin-3 -galactoside 
Condition4: 0.1 m M D-glucose and 0.2 m M Quercetin-3 -galactoside 
p〉0.05, no significant difference from the control. 

Ader et al (2001) suggested that quercetin-3-glucoside could compete with 

methyl-a-D-glucopyranoside (MDG), a non-metabolisable glucose analogue, for the 

intestinal glucose transporter SGLTl. They applied an in vitro method using rat small 
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intestine to investigate the mucosal uptake of M D G . They found that quercetin-3-

glucoside and quercetin-4‘-glucoside could inhibit SGLTl-mediated uptake of M D G , 

whereas the aglycone quercetin or the quercetin-3-rutinoside was ineffective. 

Lee et al (1994) found that rat SGLTl (665 amino acid residues) was 86-87% 

identical to SGLTl in rabbit, pig and human. The inhibitory effect of phlorizin on 

MDG-evoked inward current in oocytes injected with rat or rabbit SGLTl cRNA was 

more potent on rat SGLTl than on rabbit SGLTl (IC50 0.17 [iM and 5 jiM), implying 

the existence of species difference in SGLTl. Using the same rats' SGLTl, the uptake 

of Ci4-labelled M D G was observed to decrease in the presence of D-glucose, 

unlabelled M D G , D-galactose, 3-0-methyl-D-glucoside or uridine, suggesting that the 

binding to rat SGLTl may not be very selective for D-glucose. This may compromise 

the utility of such an in vitro approach which relies on the use of an inhibitor to 

indirectly confirm the presence of the glucose cotransporters. 

Further insight can be gained from studies designed to determine the structural 

requirement for binding of the glucosides to SGLTl. Nomoto et al (1997) have 

proposed the following structural requirements for the SGLTl substrate: (1) the 

substrate must have a D-pyranose ring configuration, (2) it must possess a CI chair 

form, and (3) the hydroxyl group in the glucose molecule at carbon 2 must be in the 

equatorial position. The authors found that ŷ -form glucopyranoside had a higher 

affinity for SGLTl than did the a- form. 

Both quercetin-3-glucoside and quercetin-3-galactoside meet the above criteria 

and thus can potentially interact with SGLTl. Although the present findings seemed 

to suggest an absence of competition between quercetin-3-glucoside or quercetin-3-

galactoside and D-glucose for the same binding sites on the sugar transporter, the 

possible involvement of this carrier in the transport of flavonoid glycosides cannot be 
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entirely ruled out and need to be investigated further. 

The present project employed in vitro intestinal absorption models to explain 

some observations made in vivo on flavonoid absorption. The results suggest that 

relatively high permeability of quercetin across the intestinal epithelium may account 

for the short tmax (time to peak concentration) observed in vivo. The lower 

concentration of quercetin in free form found in vivo may be due to its degradation 

under intestinal pH conditions, and metabolism by Phase II enzymes to its conjugate 

form across the intestinal cells. As for the selected quercetin glycosides, there was no 

significant difference in their permeabilities as determined by the Caco-2 cell 

monolayers model. Passive diffusion appears to be the major route of transport 

although some efflux systems like P-gp may also be involved in the absorption of 

quercetin-3-glucoside. The selected glycosides are stable under intestinal pH 

condition. Their poor permeabilities probably explain why they are generally not well 

absorbed in vivo, it is likely that the selected glycosides need be hydrolyzed first 

before being absorbed into the blood. This may account for the observed low 

concentrations of unchanged quercetin glycosides in the blood after oral consumption. 

However, the possible involvement of glucose transporter in the transport process 

of flavonoids glycosides cannot be entirely ruled out and need to be further. The 

relationship between the structures of flaovnoid glycosides and specific interactions 

with glucose transporter SGLTl will provide valuable insight on the bioavailabilities 

of flavonoids. If specific carriers are indeed involved, the flavonoids that satisfy the 

structural requirements are expected to be absorbed better than the others which are 

predominantly transported by passive diffusion. Such structure-related difference in 

absorption may contribute to the inter-batch variations in the oral absorption of 

commercial flavonoid products. 
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CHAPTER 4. 
CONCLUSIONS 
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In conclusion, the physicochemical properties (including chemical stability, 

aqueous solubility, formation of hydrates, heat of solution and partition coefficient of 

quercetin and its glycosides (quercetin-3 -glucoside, quercetin-3 -galactoside, 

quercetin-3 -rutinoside and quercetin-3 -rhamnoside) have been characterized. In 

addition, the intestinal transport mechanisms of these flavonoids have been 

investigated using validated in vitro models, namely, Caco-2 cell monolayers derived 

from human's colonic cancer cell and brush border membrane vesicles from rabbit's 

small intestine. 

Quercetin (aglycone) has been shown to be poorly soluble in water and prone to 

hydrolytic degradation under intestinal pH condition. Incubation of quercetin in water 

at intestinal pH 6.8 resulted in the formation of three degradation products. 

Substitution of quercetin at position 3 with sugars lead to lower lipophilicity (partition 

coefficient) and higher stability and aqueous solubility. 

Quercetin displayed a higher permeability than the various glycosides, and 

transport across the Caco-2 cell monolayers was accompanied by the formation of the 

glucuronide metabolite. Permeability does not appear to be a limiting factor for its 

absorption. However, metabolism by phase II enzymes in the intestine, poor aqueous 

solubility and the relative instability at intestinal pH may limit the amount of the free 

form of quercetin absorbed in vivo. In contrast, the various glycosides exhibited low 

partition coefficients and poor permeabilities, which may be a limiting factor for their 

absorption. All of these observations suggest that passive diffusion is the predominant 

transport mechanism for quercetin and its glycosides except for quercetin-3-glucoside, 

whose transport may also involve interaction with the efflux P-gp. 

Quercetin-3-glucoside and quercetin-3-galactoside possessed no inhibitory effect 

on the uptake of D-glucose by BBMVs, suggesting that they may not compete with 
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D-glucose for the glucose transporters, SGLTl. 

The present thesis has generated some significant findings on the physical-

chemical properties, intestinal absorption mechanisms and absorption-limiting factors 

of quercetin and four related glycosides. Apart from being useful for explaining some 

of the reported variations in oral bioavailabilities of these flavonoids in humans, the 

findings have important implications in the formulation of efficacious flavonoid 

products. As a follow-up on the present work, the following studies are worthy of 

consideration: 

1. Immunostaining of the in vitro cell models employed would be worthwhile to 

assure the expression of specific transporters at the molecular level. 

2. Since B B M V s experiments for verifying the involvement of SGLTl was based 

indirectly on the inhibition of D-glucose binding with SGLTl by the quercetin 

glycoside, it would be advisable to measure the direct uptake of the glycosides 

into B B M V s (i.e. direct binding with SGLTl) for further confirmation. 

3. It would be necessary to use at least a few more structurally different flavonoids 

to further probe/confirm the relationship between chemical structure and 

intestinal absorption. If specific sugar substitution could indeed result in active 

absorption via sugar transporters, then appropriate structural modification could 

be used to enhance the oral absorption of flavonoids. This, couple with proper 

formulation strategies, will enable the formulation of efficacious flavonoid 

products. 
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