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Abstract 

Deploying more than one optical multiplexing scheme in an optical network 

gives to the multi-dimensional network, which is promising for the explosion of 

traffic and growth of users on the Internet. In this thesis, the performance of 

a two dimensional code/wavelength routing network and the more generalized 

multi-dimensional optical routing networks have been studied and the results 

provide qualitative analysis on the benefits offered by the additional dimension 

or conversion capabilities. 

The first part of the thesis presents the enabling technologies for three 

types of multi-dimensional optical routing networks, including the transmit-

ters, optical switches/cross-connects and the optical conversion techniques. 

The blocking performance of a promising two-dimensional code/wavelength 

routing network is studied. The benefits of the deploying of code converters 

are shown by the code conversion gain. 

The second part of the thesis investigated the performance of generalized 

multi-dimensional optical routing networks. Spatial decomposition and di-

mensional composition are proposed to facilitate the study. The blocking 

probability, link utilization and conversion gain of the network are derived 

with closed-form solutions by a generalized trunk switched model. The net-

work topology is shown to have significant effects on these performances. Also, 

the utilization gain from additional dimensions is compared with the optical 
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conversion gain and the results can provide useful information on the network 

upgrading. 
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摘要 

多維光網絡（multi-dimensional network)是指採用了多種光復用技術的 

混合光網絡，例如光時分/波分網絡（OTDM/WDM)，光碼分/波分網絡 

(OCDM/WDM)等。它們通過增加頻道數目，減小帶寬粒度，來解決由於網 

絡中用戶增多和流量增大而造成的帶寬需求。本論文研究了多維光網絡的 

性質和性能，定性地分析了頻道轉換和新增維度帶來的增益，為現時網絡 

的升級提供重要的依據和信息。 

論文第一部分介紹了實現三種重要的多維光網絡必需的技術和光器件， 

包括光源，光交換機和光頻道轉換技術（optical conversion)等。基於光碼 

分/波分網絡這種很有前途的2維網絡，文中研究其阻塞性能（blocking 

performance),並且展示了引入碼字轉換器（code converter)所帶來的性能 

增益（code conversion gain)。 

論文的第二部分硏究了多維光網絡的性能和性質。文中提出了空間分解 

和維度分解！^^種方法來簡化網絡阻塞性能的計算。計算了網絡的阻塞性能， 

鍵路利用率，和頻道轉換增益，並以顯式表達。結果顯示拓撲結構對多維 

‘ 網絡的各項性能均有重要的影響。文中還比較了在波分復用網絡中引入新 

增維度（如時分復用技術）所帶來的增益和頻道轉換增益（conversion gain), 

所得結果能夠為網絡的升級提供有用的信息。 
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Chapter 1 

Introduction 

1.1 Overview of Optical Networking 

In the last decade, optical networks have been deployed in modern commu-

nication networks to provide large bandwidth for the increasing demands of 

Internet users and voice users. Optical Networking is a hot field that attracts 

a lot of attentions. The concept of optical networking was first proposed in 

the middle 80's and the term has two main parts: the optical aspect and the 

networking aspect. It is defined as involving a network in which at least some 

. of the operational steps in a network node take place in the optical realm, not 

just in the electrical realm. Two of the promising techniques in this field are 

optical multiplexing and optical routing. 

Optical multiplexing is a kind of technique that can optically put multi-

ple channels onto the backbone. It aims at enlarging the network capacity 

and providing bandwidth sharing among subscribers. Traffic explosion on the 

Internet makes the optical multiplexing extremely important in today's net-

works. The major undergoing optical multiplexing schemes are 

• Optical Wavelength Division Multiplexing (WDM): WDM is the tech-

nology of combining a number of wavelength onto the same fiber. Con-

ceptually, it is the same as frequency-division multiplexing (FDM) in 

microwave radio and satellite system. The key system features of WDM 

are the capacity upgrade, transparency, wavelength routing and wave-

length switching. 

• Optical Code Division Multiplexing (OCDM): In a network with optical 
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CHAPTER 1. INTRODUCTION 2 

code division multiplexing, each channels is specified by a code. These 

codes are orthogonal to each other and can be used as symbols of the 

desired destination addresses. Therefore when tunable optical encoders 

and decoders are employed, one subscriber can communicate with any 

other user in the network. This gives to the optical code routing. 

• Optical Time Division Multiplexing (OTDM): Time division multiplex-

ing is a commonly used technique in electrical domain to achieve chan-

nel multiplexing. It is more complex and expensive to implement TDM 

in optical domain. There are two kind of OTDM network, namely bit-

interleaved 0TDM and packet-interleaved OTDM. In bit-interleaved net-

works, each channel occupies one time slot (bit) in a TDM frame. They 

have stringent synchronization requirement and the time slot (channel) 

timing time should be of sub-nanosecond range when operate at high-

speed. For packet interleaved TDM networks, the data packets from dif-

ferent nodes are transmitted in burst-mood and arrived asynchronously 

at the receivers. 

參 Subcarrier Multiplexing: Subcarrier multiplexing is a flexible technique 

for sharing the optical bandwidth among many subscribers. Single wave-

length is used and each channel is represented by a specific RF subcarrier. 

The RF is mature and the RF components are economical and have good 

stability. However, the signal processing can only be done in electrical 

domain and the capacity is limited by various of noise such as ther-

mal noise, shot noise, relative intensity noise, intermodulation products, 

clipping and optical beat interference. 

• Polarization Division Multiplexing (PDM): By using different polariza-

tion states, TE and TM, to carry different optical data stream, polar-

ization division multiplexing can double the bandwidth efficiency of a 

fiber. However, polarization control is needed to maintain the state of 

polarization. 

Networks deploying one of these optical multiplexing schemes are gener-

alized as one-dimensional networks. Hybrid networks deploying more than 

one type of optical multiplexing were also extensively investigated, which are 
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termed as multi-dimensional networks. They are dedicated to provide more 

channels and further increase the network capacity in order to adapt to the 

ever-growing traffic and network users. 

Besides optical multiplexing, optical routing is another competitive and 

attractive technique for constructing all-optical networks. Generally, the cur-

rent optical networks can either be opaque or all-optical, in another word, 

transparency. In opaque networks, optical-electrical-optical conversion or re-

generation is performed at every intermediate node in the network and leads to 

the bottleneck of the network. All-optical networks, on the contrary, have no 

electrical signal regeneration or optical-electrical conversion. The communica-

tion between each node pair is carried out by an end-to-end optical lightpath, 

where the lightpath represents direct optical connection without any interme-

diate electronics. Each router (at the node) is able to read the addresses and 

other information carried in photon. This mechanism is called optical rout-

ing. Fibers, wavelengths, time slots, and even codes can be recognised by the 

optical layer, thus can represent the optical address of the desired destination 

and be used for optical routing. With optical routing, a network can support 

different bit rates, protocols and formats. Since there is no optical-electrical 

conversion at each node in the network, the total transmission at each node will 

,, be reduced and is a promising solution for the network bottleneck. Because 

of the long propagation delays, and the time required to configure the optical 

routers, optical routing networks are expected to operate in circuit-switched 

mode. 

When optical routing is deployed in a one- or a multi-dimensional network, 

the network is termed as one-dimensional optical routing network and multi-

dimensional optical routing network, respectively. Although as an extension 

‘ o f one-dimensional optical routing networks, multi-dimensional optical rout-

ing networks have unique properties in the aspects of device implementation, 

network management, control and the performance. 

1.2 Mechanism in Optical Routing Networks 

To illustrate the optical routing clearly, a wavelength routing network, which 

is most popular nowadays, is used as an example. As shown in Fig. 1.1’ it is a 
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Figure 1.1: Wavelength routing in a ring network. 

two-wavelength network with a ring topology. The optical signal between each 

node pair should be carried out on the same wavelength on all hops from the 

source to the destination. It is seen from Fig.1.1, the traffic from node 5 to 

node 3 is carried on Ai, on all of the three hops of the lightpath. At the same 

time, node 4 is having a session with node 2 on wavelength channel A2. Under 

this scenario, the request for a session between the node 3 to node 6 is blocked. 

This kind of blocking can be released with the use of wavelength converters. 

The converter can translate the signals from an incoming wavelength channel 

.. to another wavelength channel optically. With a wavelength converter at node 

5’ lightpath from node 3 to node 6 can be established. The wavelength channels 

used on the successive three hops are Ai (from node 3 to node 4), Ai (from 

node 4 to node 5) and A2 (from node 5 to node 6). From above illustration, we 

can see that wavelength routing is able to overcome the scalability constrains 

through wavelength reuse, wavelength conversion and optical switching when 

the network extends to wide area. Therefore it is an important mechanism for 

optical transport networks. 

1.3 Related Work on Optical Routing Net-

works 

Related to the optical routing networks, there are many issues that are worth 

and desired for studying as shown in Fig.1.2. The first issue is the supporting 

or the enabling technologies, such as the optical converters and the optical 
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Issues in Optical 

Routing Network 

1 Algorithms of ^  
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Technologies Control and Analysis  
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Figure 1.2: The issues with an optical routing network. 

switches/cross-connects. The second is about the network design, control and 

management, such as the network protection and restoration. Another issue 

is the performance analysis on the network improvements, for instance, when 

optical converters or efficient routing and channel (wavelength) assignment 

algorithms are deployed in the network. 

For the last aspects, hundreds of studies were reported in literature. Most 

were on the WDM networks with wavelength routing, since wavelength routing 

networks are more mature than other optical routing networks. Routing and 

wavelength assignment (RWA) algorithms, both static and the dynamic, were 

extensively studied [1, 2, 3，4, 5]. The performance of wavelength routing 

networks with wavelength conversion have been widely studied through many 

different models [6, 7, 8, 9, 10]. In particular, optical networks based on 

sparse wavelength converters placement and limited conversion range have 

also been analyzed because of the high cost of the wavelength converter and 

its impairment to the transmission [11, 10]. We present below, in Table. 1.1， 

• a brief review of the fundamental models available. Binomial model, which is 

utilized in [6, 10] to describe the distribution of the number of busy channels 

on a link, has the lowest computational complexity among all the models and 

is used to indicate the qualitative behavior of the networks. 
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Authors Kovacevic Subramaniam Birman Barry 

[7] [11] [12] [6] 

Traffic Dynamic Dynamic Dynamic Steady-state 

Arrival Poisson Poisson Poisson Unspecified 

Process 

Holding Time Exponential Exponential Exponenetial Unspecified 

Routing Fixed Fixed Fixed, Fixed 

Least-load 

Wavelength Random Random Random Random 

Assignment 

Link Loads Independent Correlated Dependent Correlated 

•. (Markovian) Markovian 

Wavelength on Independent Dependent Independent Dependent 

Adjacent Links 

Performance Blocking Blocking Blocking Wavelength 

Metric Probability Probability Probability Utilization 

Computational Moderate Moderate High Low 

‘ Complexity 

Table 1.1: Fundamental models for the performance analysis of 

wavelength routing networks 
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1.4 The Motivation of This Thesis 

With the rapid growth of Internet users and service classes, future optical net-

works are desirable to offer high connectivity and large capacity. Wavelength 

routing networks, which employ wavelength division multiplexing (WDM), are 

the most promising solution for the near-term implementation of high capacity 

IP network infrastructure. In a wavelength routing network carrying circuit 

switched traffic, the whole bandwidth of a wavelength on each link is dedicated 

to a source-destination pair to carry the traffic between them. Although one 

wavelength can offer nearly the peak electrical transmission speed, without effi-

cient bandwidth allocation, the low data-rate traffic will also take up the entire 

bandwidth of a wavelength and induce a very luxurious consumption of the re-

source. Moreover, limited number of wavelengths, which is around several tens 

per fiber nowadays, reduces the flexibility in bandwidth allocation and limits 

the bandwidth granularity for heterogeneous services in Internet traffic. Fur-

ther improvement in performance, such as network utilization and blocking, 

can be achieved by several approaches. Firstly, wavelength conversion can be 

used to improve the flexibility of constructing an end-to-end lightpath, because 

it overcomes the constraint that the same wavelength should be employed on 

each hop of the lightpath [10, 11，6]. Secondly, performance can be improved 

by adopting routing and wavelength assignment (RWA) schemes [13, 14, 15] at 

the expense of sophisticated control and management. Besides, by providing 

finer bandwidth granularity, more channels can be provided. Recent advances 

in Dense Wavelength Division Multiplexing(DWDM) enable the provision of 

more bandwidth as well as a larger number of channels. However, with the 

ever increase in the network size and the number of users, the limited num-

ber of available wavelengths, will be exhausted eventually. As an example, 

consider a 100-node network employing shortest-path-first-fit (SPFF) RWA 

scheme. If each node has 16 destination nodes, the number of wavelengths 

required is more than 200 [16]. By extending the channels to other dimensions 

such as time domain, frequency domain and code domain, the total number of 

available channels can be increased substantially. Thus, instead of using mere 

WDM technique, hybrid combination of WDM with OTDM, OCDM or SCM, 

the namely multi-dimensional networks, can offer large number of channels 
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and fine channel granularity [17’ 18，19, 16, 20]. Therefore, it is a promising 

solution for the explosion of traffic and subscriber on the Internet. 

Blocking probability and network utilization are important indicators of 

network performance. In [16, 20, 19], the blocking performances of two-

dimensional optical networks, as the multi-fiber multi-wavelength networks 

and TDM/WDM networks, were studied. However, the performance of gener-

alized multi-dimensional optical routing networks is of more interest and needs 

to be investigated. 

1.5 Thesis Structure 

Because of the growing importance of the multi-dimensional optical routing 

networks and the lack of research work in this field, we presented the per-

formance of generalized multi-dimensional optical routing networks, including 

the blocking probability, network utilization and optical conversion gain. Bi-

nomial model is used. The main contribution of the thesis is to extend the 

performance analysis from one-dimensional optical routing networks to the 

more generalized multi-dimensional optical routing networks. The results ob-

tained can provide crucial information for the control and management of the 

multi-dirnensiorial networks. 

The thesis is arranged in the following: 

Chapter 1: Introduction 

This chapter describes the two major aspects of optical networking: optical 

multiplexing and optical routing. Multi-dimensional optical routing networks 

are introduced. Previous work on the performance analysis of the wavelength 

.routing networks are described. Also, the motivation of the thesis is presented. 

Chapters： Technologies for Multi-Dimensional Optical Routing Networks 

This chapter introduces the technologies in supporting three types of multi-

dimensiocal optical routing networks. Schematic and experimental setup of 

the transmitters, optical switches/cross-connects and optical converters etc. 

are presented. 
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Chapters： Performance of Code/Wavelength Routing Networks 

In this chapter, blocking performance of a reconfigurable optical code/wavelength 

routing network is studied, by the binomial model and a trunk switched model. 

The network blocking performances under various conversion capabilities are 

investigated and the blocking probabilities are given in closed-form expres-

sions. Numerical results are obtained to show the performance improvement 

from the optical code conversion in terms of code conversion gain. 

Chapter4： Decomposition Schemes 

This chapter proposes two decomposition algorithms to facilitate the perfor-

mance analysis of the inclusive converted networks, which is a class of multi-

dimensional networks. 

Chapter5: Performance of Multi-Dimensional Optical Routing Networks 

In this chapter, we analyze the performance of a generalized multi-dimensional 

optical routing network with homogeneous switches. The closed-form network 

utilization is derived and compared to that of one-dimensional optical routing 

networks. Based on this analytical model, the closed-form conversion gains are 

derived for both partially and fully convertible cases. Besides, utilization gain 

” from the addition of new dimensions is compared with the converison gain for 

a wavelength routing network. 

Chapters： Conclusion 

This chapter concludes the thesis and points out possible future works. 



Chapter 2 

Technologies for 

Multi-dimensional Optical 

Routing Networks 

2.1 Background 

Exploring optical multiplexings and optical routing in the network are the key 

steps for constructing real optical networks, eliminating the bottle bottleneck 

of the electrical processing. To make this possible, newly developed optical 

devices and new optical techniques are desirable. Special transmitters, mul-

tiplexers/demultiplexers, optical fibers, and add/drops are necessary for the 

optical multiplexings in a network. For the purpose of optical routing, opti-

cal switches/cross-connects are indispensable elements. Many big companies 

and famous institutes around the world, such as Corning, Lucent, NTT, NEC 

thrust into this field. 

Before the investigation on the performance of multi-dimensional optical 

.routing networks in the following chapters, it is essential to introduce the 

main enabling technologies in supporting the optical multiplexings and optical 

routing. In the following sections of this chapter, the main technologies for 

constructing three types of multi-dimensional networks are introduced. 

10 
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2.2 Multi-fiber W D M Networks 

With the advance in wavelength-division multiplexing (WDM) technology, op-

tical networks with WDM are the most popular infrastructure for the IP net-

work. A WDM network deploying wavelength routing is one of the most 

frequently studied subjects in optical networks. The multi-fiber wavelength 

routing network is the most popular 2-dimensional optical routing network. 

The architecture of this network consists of wavelength routers interconnected 

by fiber links. In supporting multi-fiber wavelength routing networks, the 

following devices and technologies are indispensable: 

2.2.1 Phased-Array-Based WDM Device 

A highly versatile WDM device is based on using an arrayed waveguide grating 

(AWG) [21]. It can function as a multiplexer, a demultiplexer, an add/drop 

element, or a wavelength router. It is one of the most successful devices for 

the mentioned functions, because it offers low loss, high port count and can 

be mass produced. The AWG is a generalization of 2 x 2 Mach-Zehnder 

interferometer multiplexer. One popular design consists of Min input and 

Mout output slab waveguides and two identical focusing planar star couplers 

” connected by N uncoupled waveguides with a propagation constant The 

lengths of adjacent waveguides in the central region differ by a constant value 

AL, so that they form a Mach-Zehnder-type grating, as shown in Fig.2.1. For 

a pure multiplexer, we can take Min = N and Mout = 1- The reverse holds for 

a demultiplexer, that is M^ 二 1 and Mout = N. In the case of a wavelength 

router, we can have Min = ^out = N. 

.2.2.2 Wavelength-tunable lasers 

Many different laser designs have been proposed to generate spectrums of 

wavelengths needed for WDM. The basic options are: (1) an array of discrete 

DFB or DBR laser, (2) wavelength-tunable lasers, (3) a multiwavelength laser 

array. Among them, wavelength-tunable transmitter is the most favorite one. 

It is based on DFB or DBR structure, which has a waveguide-type grating 

filter in the lasirig cavity. A tunable multi-section DBR laser is shown in 

Fig.2.2(a). Wavelength tunning is achieved by electrical current injection into 
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Grating Array Waveguides 

\ \ Planar star 

\ \ couplers 

Input slab J \\V » Output slab 

waveguide 、：乂乂 waveguide 

array ^ ^ ^ \ ^ array 

Figure 2.1: Top view of a typical arrayed waveguide grating used as a highly 

versatile passive WDM device. 

the multi sections and the gain profile of the Coupler section shifts along the 

wavelength axis, as shown in Fig.2.2(b) [22]. Therefore, different wavelength 

can be selected as the output. This laser has a large tunning range of 40-60nm 

in the 1550iim window. It has a fast tunning speed of 5-100 ns and up to 100 

channels are accessible. 

2.2.3 Tunable optical Filter 

A tunable optical filter is to select a desired channel from the backbone op-

tically. Many technologies have been examined for creating them, such as 

the tunable MZI filters, tunable AWGs, and tunable multigrating filters. The 

schematic of a tunable multigrating filter used for add/drop is shown in Fig.2.3 

21]. The device operates as follows: a series of up to n wavelengths enter port 

1 of the left-hand circulator and exit at port 2. In the untuned state, each 

fiber grating is transparent to all wavelengths. However, once a grating is 

• tuned to a specified wavelength, this light will be reflected back, re-enter the 

left-hand circulator through port 2, and exit from port 3 to the demultiplexer. 

All the remaining wavelengths that are not reflected pass through to the right-

hand circulator. They enter port 2 and exit from port 3. To add or reinsert 

wavelength that were dropped, one injects these to port 1 of the right-hand 

circulator. They first come out of port 2 and travel towards the series of tuned 

fiber gratings. The tuned gratings reflect each wavelength so that they head 

back towards the right-hand circulator and pass through it to combine with 
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Figure 2.2: Schematic diagram of a three-section tunable distributed feedback 

(DFB) laser. 

the other wavelength. 

2.2.4 Wavelength Converter 

Many approaches for wavelength switch were proposed [23’ 24]. The schematic 

of the optical switch for the multi-fiber WDM network is shown in Fig.2.4. It 

is responsible for deliver the signal from one channel to any one of the out-

put channels. In addition to the MUX, DMUX and the space switch, another 

desired element is the wavelength converter. As is stated, the wavelength con-

verter is able to translate the wavelength optically. Therefore, it can improve 

the network performance by increasing the flexibility on the optical layer. 

The optical wavelength converter has been extensively studied during the last 
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Figure 2.4: Schematic of the multi-fiber optical switch. 

decade, both experimentally and theoretically [25，26, 27, 28, 29, 30, 31]. The 

following are some techniques to achieve the function of wavelength conversion: 

. Four Wave Mixing ( F W M ) 

Wave mixing a,rises from a nonlinear optical response of a medium when more 

than one wave is present. It results in the generation of another wave whose 

intensity is proportional to the product of the interacting wave intensities. 

Wave mixing preserves both phase and amplitude information, offering strict 

transparency. In Fig.2.5, n = 3 corresponds to four-wave mixing. The signal 

on A5 and the pump on Ap (continuous wave) are propagating simultaneously, 

and a third wavelength is generated on 九= 2 / p - f , with the same pattern 
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Figure 2.5: Schematic diagram of a wavelength converter based on FWM. 
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Figure 2.6: Schematic diagram of a wavelength converter based on XGM. 

as the signal. This is the desired converted signal. This technique provides 

modulation-format independence and high bit-rate capabilities. However, the 

conversion efficiency is not very high and it decreases swiftly with increasing 

.. conversion span. 

Cross Gain Modulation (XGM) 

Semiconductor Optical Amplifier (SOA) could work in Cross Gain Modulation 

(XGM) and Cross Phase Modulation (XPM) modes. The principle of XGM is 

based on the gain saturation and on the homogeneous linewidth enhancement. 

Fig.2.6 shows a schematic diagram of the wavelength converter based on XGM. 

, The intense signal pulse arid the continuous probe wave co-propagate in the 

‘ SOA. With bit “ 1" of the signal, the optical gain of the probe wave is small, 

while with bit “ 0", the probe wave has large optical gain. Therefore, the bit 

pattern of the signal is inversely converted to the probe wave's wavelength. 

An optical filter is used to remove the original signal. 
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Figure 2.7: Schematic diagram of a wavelength converter based on XPM. 

Cross Phase Modulat ion ( X P M ) 

The operation of a wavelength converter using SOA in cross-phase modulation 

(XPM) mode is based on the fact that the refractive index of the SOA is 

dependent of the carrier level in its active region. An incoming signal that 

depletes the carrier density will modulate the refractive index and thereby 

result in phase modulation of a CW signal (AJ coupled into the converter. The 

SOA can be integrated into an interferometer so that an intensity-modulated 

signal format results at the output of the converter. Techniques involving SOA 

in XPM mode have been proposed using the nonlinear optical loop mirror 

(NOLM), Mach-Zender interferometer (MZI) and Michielson interferometer 

’• (MI). Fig.2.7 shows an MZI wavelength converter based on SOA in XPM mode. 

A continuous wave on Ac is forward injected and splitted into the two arms 

with SOA. The signal power is injected backward. Phase of the CW lightwave 

on the upper arm changes with the bit pattern on A .̂ The constructive and 

destructive effect at the output coupler will make the light on Ac having the 

same bit pattern with the signal. 

With the XPM scheme, the converted output signal can be either inverted 

. or non-inverted, unlike in the XGM scheme where the output is always in-

、 verted. The XPM scheme is also very power efficient compared to the XGM 

scheme. 

2.3 O C D M / W D M 

Recently, OCDM has been extensively investigated. Though it is not as mature 

and popular as its counter part in mobile communication, recent advances in 
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photonics devices, such as planar lightwave circuit (PLC) and super structure 

fiber Bragg grating (SS-FBG)，have greatly enhance the feasibility of OCDM. 

In an OCDM/WDM network, which is a promising 2-dimensional network, 

bandwidth on one wavelength is divided into small fractions labelled by optical 

correlated codes, and assigned to different connections. Previous works include 

the experimental demonstrations of OCDM transmission systems as well as 

the code routing networks with optical code conversion [32’ 33’ 34, 35，36, 

37，38] _ More recently, the optical correlated codes are introduced as labels 

in a photonics multiple protocol label switching network (OMPLS), in order 

to simplify and speed up the processing in the Label Switched Router (LSR) 

39, 40，41]. The OCDM/WDM network would be a 3-dimensional network 

if multiple fibers are employed on each link. En/Decoding and optical code 

conversion are the desired optical technologies, which are listed below. 

2.3.1 Optical En/Decoder 

Several approaches are proposed for the optical en/decoding and two of them 

are described here. 

Scheme 1 

An all optical 8-chip bipolar encoder is shown in Fig.2.8 [42]. It can generate all 

the possible combination of equi-amplitude 8-chip biphase shift keying (BPSK) 

codes by giving a binary phase shift of either 0 or tt to the delay chip pulse 

on each arm. Note that the conventional n-stage ladder encoder can only 

produce limited number of codes. The delay time dt is set to lOOps, which is 

much smaller than the coherence time of the light source. The chip pulse width 

must be less than dt so that the chip pulse in a code is clearly resolved. The 

、 encoder can be used as the decoder by reversing the input and output ports. It 

is a monolithically integrated tapped delay line waveguide device fabricated on 

a silicate glass substrate by using Planar Lightwave Circuit (PLC) technology. 

The variable tap is a Mach-Zehnder interferometer waveguide. The thermal-

optical phase shifter uses a Cr thin film heater. The code setup can be made 

by controlling the taps and the phase shifters using a desktop computer. 
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Figure 2.8: Experimental setup of optical code converter of schemeS. 

Scheme2 

Recently, optical en/decoder based on super-structured fiber Bragg grating 

(SSFBG) has been reported [43’ 44，45]. Fig.2.9 shows the schematic of a 

pulse encoding and decoding using SSFBG. The input pulse is reflected off 

SSFBG A, providing the 

transmission code which is a 7-chip pseudo random 

binary m-sequence. The length of each chip corresponds to the chip duration. 

After transmission, SSFBG B operates as a matched filter to despread the 

code sequence. 

2.3.2 Optical Switch 

A proposed CDM/WDM optical switch is shown in Fig.2.10 [40]. The com-

posite signals on the different code/wavelength channels are first separated 

in the wavelength domain by an optical wavelength demultiplexer, and then 

decoded. The output from each decoder will feed into a time-gate-intensity-

.threshold (TGIT) device in order to differentiate the auto-correlation peaks 

、 from its sub-peaks and cross-correlation peaks, all generated from the decorre-

lated optical pulse train. At last, the decoded signal is switched to the desired 

output port of the space switch, recoded and transmitted again. 

2.3.3 Optical Code Conversion 

Similar to the wavelength routing, optical code routing is proposed and studied 

38，33]. Optical code conversion is an important issue for the optical code 



CHAPTER 2. TECHNOLOGIES FOR OPTICAL MULTIPLEXINGS 19 

A 
SSFBG A 

> m mm-

」 L 丫 3 」 L 「 . I 

Input Signal o i o o i i i 

Encoded Signal 

Jirv 
A h SSFBG B 

< Hl̂ ——H+Mf-

— ^ ^ ― ； … . 1 」 1 
Output Decoded i i i o o i o 

Signal 

Figure 2.9: Outline of the physical approach of pulse encoding and decoding 

using super-structured fiber Bragg gratings (SSFBGs). 

routing networks. It can be employed to improve the flexibility of the optical 

layer and make the optical code routing more efficient. Some experimental 

setups were proposed and two of them are listed here. 

Scheme 1 

Fig. 2.11 shows a scheme for all optical code conversion [46]. The important 

distinction of this approach is the enabling code conversion that is indepen-

dent of wavelength conversion and without alteration of other co-propagating 

codes. The schematic configuration is shown in Fig.2.11(a). It is a decode-and-

recode approach. Fig.2.11(b) shows the experiment setup used to demonstrate 

‘ c o d e reconfiguration. A mode lock laser operating at 1557nm produced close 

to transform-limited laser pulse of width 2ps at a rate of 10 GHz. The sig-

nificances of employing pulse train is the ability to gate in optical domain a 

decoded waveform to enhance the process gain of the scheme. These pulses 

were fed、into a Lithium Niobate external modulator and on-ofF keyed at 10 

Gbit/s using the data output of a pattern generator. The modulated pulse 

train was fed into a PLC encoder comprising eight equally spaced 5ps delays 

that employed a phase code sequence consisting of 0 or tt. The encoded pulse 
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Figure 2.10: A proposed schematic of the OXC in a OCDM/WDM network. 

train was fed into a PLC matched filter decoder. The output of the decoder 

was fed into a saturable absorber and combined with a high power 10-GHz 

pulse stream from a second mode locked laser driven from a RF source syn-

chronized with the drive of first mode locked laser. The second mode locked 

laser, used to clock the gate at the autocorrelation peak, operates at a wave-

length 1546.5nm, sufficiently offset to ensure that it may be removed by optical 

.. filtering when co-directionally pumped (this restriction on wavelength could 

be removed by pumping counter-directionally). The pump power at the in-

put to the saturable absorber was 13dBm. The gate exhibits an extinction 

ratio of 15dB and a gate width 8ps. The gated pulse from the matched de-

coder was then fed to a second PLC encoder. Thus, the signal is optically 

translated from a code channel to another, where wavelength conversion is an 

independent process. 

S c h e m e 2 

This scheme demonstrates an all-optical code conversion of lOGb/s BPSK 

codes without wavelength-shift by using cross-phase modulation (XPM) in an 

optical filter [47]. The principle of the scheme is as follows. The index of the 

refraction corresponding to the signal light is modified through XPM propor-

tionally to the instantaneous power envelope of the control light, resulting in 

a modulation of signal phase. In order to convert the optical BPSK code us-

ing XPM, the total phase shift during the interaction length must be tt. And 
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Figure 2.11: Experimental setup of optical code converter of scheme 1. 

in order not to shift the wavelength, the control pulse should walk through 

the entire signal pulse utilizing the group velocity dispersion (GVD). When 

the fundamental optical soliton is used as the control pulse, the difference of 

phase shift between the leading edge and tailing edge is minimized, because 

the shape of the control pulse is unchanged. Fig.2.12 shows the experiment 

setup. Transversal filter 1 is used as the optical encoder to generate time 

spread BPSK code. The signal BPSK pulse code sequences and the control 

pulse are combined together and launched into the DSF fiber. The optical code 

is converted by co-propagating with the control pulse in a DSF fiber through 

‘ X P M . The output signal pulse sequence is matched filtered in the time domain 
V 

by Transversal Filter 3. The output becomes the correlation waveform, which 

enables the verification of the code conversion. 

2.4 O T D M / W D M 

OTDM/WDM is another promising multi-dimensional networks because TDM 

is a commonly used mechanism for the bandwidth sharing. However, synchro-
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Figure 2.12: Experimental setup of optical code converter of scheme2. 

nization among all the subscribers in the network is required. 

2.4.1 Fast Optical Switch 

In addition to lasers, MUX and DMUX which are needed as in a pure WDM 

network, another desirable device is fast switch with a wide operation spec-

trum. Many schemes are reported for constructing fast optical switches with 

new architectures and provide the possibility of the implementation of TDM/WDM 

network [48，49，50, 51] _ Among all the approaches, semiconductor optical am-

plifiers (SOA) have been considered as promising candidates to fulfill this func-

‘ t i o n because of their wide gain spectrum and possibility of being integrated 

with other optical devices. 

2.4.2 Optical Time Slot Interchanger (OTSI) 

Optical TSI 

is an optical converter which can interchange the signals in differ-

ent time slots [51, 52’ 53]. One of the schematic diagram of OTSI experimental 

system is shown in Fig.2.13. Its operation principle is described as follows. The 

DFB laser 
is directly modulated by a programmable pattern generator (Pattl) 
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Figure 2.13: Schematic diagram of optical TSI experimental system. 

at 2.5 Gbit/s. The input data frame consisted of four time slots or channels 

A, B, C，D, each containing a 16 bit data packet and a 4 bit guard band. This 

input signal to TSI is split into four parallel paths, each with different delay, 

before being fed into SLA (semiconductor laser amplifier) gates (G1-G4). A 

second pattern generator (Patt2), synchronized to Pattl, is used to produce 

a switch control pulse. The control pulse is fed into the delay and control 

unit to deliver the correct control signal to individual SLA gates according to 

assigned channel output. The gated signals are then recombined at a second 

passive coupler to form the new output. In this way, the signal in different 

time slots are interchanged. 

2.5 Conclusion 

In this chapter, three types of multi-dimensional optical routing networks, 

based on WDM, OTDM and OCDM, are demonstrated. The key devices and 

technologies for the implementation are introduced, including the transmit-

、 ters, optical switches, optical filter and the optical converters. In addition to 

these networks, current technologies also offer the possibility for other hybrid 

networks, such as the SCM/PDM and TDM/CDM/WDM. 



Chapter 3 

Performance of 

Code /Wavelength Routing 

Networks 

3.1 Background 

Wavelength Division Multiplexing (WDM) network is a promising solution to 

the explosively growing bandwidth demand in today's internetworking. In ad-

dition to WDM, OCDM is another attractive optical multiplexing technology. 

、‘ It can further enhance bandwidth granularity of the WDM transport network 

and gives rise to the OCDM/WDM hybrid network. It is shown that, the 

spectrum efficiency of the OCDM/WDM network could be twice as much of 

that with WDM only [33]. Different from the wavelength routing in a con-

ventional WDM network, in an OCDM/WDM network, an optical channel 

which is specified by an Optical Correlated Code (OCC) and a wavelength is 

assigned to a source-destination pair to carry the traffic between them. This 

. i s called code/wavelength routing. The enabling technologies are introduced in 

Chapter2. In this chapter, the main work focus on the blocking performance 

analysis of a code/wavelength routing network. Closed-form expressions are 

derived to show the improvement from the reconfiguration capability on the 

code dimension. 

24 
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3.2 Reconfiguration Capability 

For an optical network, one of the latest research thrusts is to enhance the op-

tical layer control by increasing the reconfiguration capability of the network 

elements. In a simple wavelength routing network, wavelength converter is one 

of the most important reconfigurable elements. In an OCDM/WDM network, 

to enhance the reconfiguration capability of the optical layer, wavelength con-

version (WC) and optical code conversion (CC) can both be utilized. Optical 

code conversion is used to translate input signals from one code channel to an-

other code channel. Possible configurations are proposed recently in [33, 54], 

which have been described in Chapter 2. 

Consider a OCDM/WDM network with single fiber for each link. Let H 

denotes the number of hops along a path, N denotes the number of wavelengths 

per fiber and M represents for the number of code channels per wavelength. 

Therefore all together M xN channels exist on a link. Every code/wavelength 

channel could be uniquely represented by a set of (h, n, m) ’ representing its 

indices of the hop, the wavelength and the code, respectively, where 1 < 

h < H, I < n < N, I < m < M. The four types of routing nodes in a 

code/wavelength routing network can be described by their transfer functions 

•• T as below: 

• The non-convertible routing node (NR) 

The node is only used for interconnecting fiber links and does not have 

any optical conversion capability. The input optical signal can only be 

put on the same code/wavelength channel on the output fiber. As it 

is shown in Fig.3.1(a), the input channel is ("，n，m)，and the possible 

• channel of the output link is represent by the hatched square in the 

、 link of /i + 1. The transfer function of such a node can be described as 

TV (Jh n, m) = (/i + 1, n, m). 

• The code convertible routing node (CR) 

This node could implement code conversion for the code channels, keep-

ing the wavelength of the input signal unchanged. Shown in Fig.3.1(b), 

the input signal on (h, n, m) can be converted to any code channel on the 
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Figure 3.1: Possible channels for conversion to establish connections on the 

adjacent hops in a code/wavelength routing network. 

wavelength n. The transfer function can be represented as Tc {h, n, m )= 

{h + l,n, m'), where 1 < m' < M. 

• The wavelength convertible routing node (WR) 

This node can implement wavelength conversion as shown in Fig.3.1(c). 

The input signal on (/i, n, m) can appear at any wavelength channel on 

, the code m. And the transfer function is Tw (h, n,m) = {h-\-1, n', m), 

where 1 <n' < N. 

• The full-conversion routing node (FR) 

The node has integrated functions of a wavelength and code conver-

sion, which can route the input signal to any code/wavelength channel 

on the output port. As shown in Fig.3.1(d), its transfer function is 

Tf (h,n,m) = (h + l，n',m')’ where 1 < < N and 1 < m' < M. 

、 These four kinds of routing nodes give rise to different reconfigure capa-

bility in the optical network, which will benefit the network in the aspects of 

rerouting, optical restoration and protection. Employing WC and CC in the 

network,、a much flexible optical routing is achieved because it eliminates the 

constraint of routing on the fixed code/wavelength channel from the source to 

the destination. 
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3.3 Analytic Models 

In this section, the blocking probabilities in an optical code/wavelength routing 

network carrying circuit switched traffic are discussed, by a trunk switched 

model. 

3.3.1 Trunk Switched Model 

To study the performance of the TDM/WDM networks, trunk switched net-

works were first introduced in [20]. In a trunk switched network, channels on 

each link are grouped into several trunks according to the conversion capability 

of a node. For each trunk, it should employ a full-channel interchanger (FI) 

to interchange all the channels in the same trunk. The number of channels in 

a trunk is called trunk size. 

A tunnel is defined as a sequence of identical channel bunch from the source 

to the destination. The end-to-end channel selection for establishing a light-

path should be kept in the same tunnel and cannot cross different tunnels. 

The tunnel is said successful when the end-to-end connections can be set up 

within it, or it is regarded as blocked. 

Fig. 3.2 shows the node construction in a trunk switched network. Due to 

the different conversion capabilities at the nodes, the definition of a trunk may 

be different among different nodes. Here, the partial conversion capabilities 

on code or wavelength dimension are not modeled. Therefore, in a single fiber 

code/wavelength routing network, trunks at different nodes, which are shown 

in Fig.3.3, are described as below. To make it clear, in Fig.3.3, we present at 

each node an example of trunk by marking all the channels inside with red 

color and bold line. 

、 • NR: With neither code nor wavelength conversion at the node, the link 

is viewed as M x N trunks with one channels per trunk by NR. 

• CR: With only code conversion at the node, the channels on the same 

wavelength are group into one trunk and the link is regarded as N trunk 

with the same trunk size of M. 

• WR: The node has wavelength conversion only, therefore the channels 
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Figure 3.3: The trunks viewed by different nodes in a code/wavelength routing 

network. 

on the same code channel are grouped into one trunk. The link therefore 

is regarded as M trunks and each has the same trunk size of N. 

• FR: The node has both code and wavelength conversion, and the link is 

regarded as one trunk with the trunk size of M x AT. 

3.3.2 Assumptions 

、 For the performance analysis of the code/wavelength routing networks, the 

following assumptions are made: 

• Each session uses the entire bandwidth of a channel; 

• Uniform link load on each hop; 

• Each channel is assumed to have the same busy probability p; 
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• The occupancy status of the channels (busy or free) on each link is 

assumed to be independent and thus is binomial distributed. Thus, the 

trunk statuses (busy or free) are independent, the number of busy trunks 

on a link is also a binomial distribution; 

• The network only supports point-to-point traffic, ie, there is no multi-

casting and broadcasting; 

• Circuit switched traffic is considered; 

• Connection requests are not queued, ie, if a connection is blocked, it is 

immediately discarded; 

• Static routing of connections. Thus connections between a particular 

source-destination pair always use the same fixed path, but may use any 

available channels on that path; 

• Random channel assignment is used, in which connections are assigned 

to a channel which is chosen randomly from among available. 

These assumptions are applicable for all of the following chapters of this thesis. 

3.3.3 Blocking of the Paths with Various Configurations 

Shown in Fig.3.4，user A requests for a session with user B through an H-hop 

path with various configurations. In the following, the blocking probabilities of 

the calls through these possible paths are investigated. The load and channel 

assignment on different links are assumed to be independent. 

Casel: Path with no optical conversions 

V We first consider the case that there is no optical conversion allowed on the 

path, as shown in Fig.3.4(a). In order to setup the lightpath, the end-to-

end connections should employ the same code/wavelength channel. This is 

the principle of code/wavelength continuity. The session will be blocked if 

all the M X N code/wavelength continuous lightpaths are blocked. Each 

code/wavelength channel has a load of p, which indicates the busy proba-

bility of a channel and also denotes the link utilization of the network. In this 

case, the blocking probability denoted by Pbo is: 
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PBo{H,N,M)=(l-{l-pf) . (3.1) 
v / 

Case2: Pa th with CRs only 

For a network deployed with code converters only, wavelength conversion still 

cannot be performed. Therefore, the wavelength continuity constrain should 

be obeyed during connections setup. A path with only code conversion is 

shown ixi Fig.3.4(b). According to the definition of the trunk, all the code 

channels on a wavelength on a link are regarded as a trunk, as illustrated 

in Fig.3.3. There are N trunks on each link, which equals to the number of 

wavelengths. When all the channels in a trunk are occupied, the trunk is 
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regarded as busy. Otherwise, the trunk is free. 

Since each node has the same conversion capability in this case, the trunks 

viewed by each node are identical. So it is clear that, between the source and 

destination nodes, there are N fixed-wavelength tunnels which are considered 

independent. Because the N tunnels are identical, therefore, the blocking 

probability of an end-to-end path with H hops could be derived as: 

PBC (丑，N, M) = (P{a fixed-wavelength tunnel is blocked})^ . 

Note that the blocking probability of each tunnel is equal to the blocking 

probability of the conventional wavelength routing network with wavelength 

converters as derived in [6]. A tunnel is successful when the trunk is free on 

each hop of this tunnel. Therefore, the blocking probability of a session when 

only CRs in the path can be expressed as: 

P B c ( H , N , M ) = ( l _ ( l _ p M f y . (3.2) 

Thus we show that for this case, the original two-dimensional (code/wavelength) 

problem can be decomposed to one-dimensional problem. Similar results can 

be obtained for the case when there is WRs only. 

Case3: Path with FRs only 

For the case that all the nodes on the path are equipped with full-conversion, 

as shown in Fig.3.4(c), all the channels on a link are viewed as a trunk. Block-

ing would occur when any one of the H hops is blocked. In this case, we 

can consider the two-dimensional channels (TV wavelength and M code) as 

‘one-dimensional channels with channel number M x N. Thus the blocking 

、 probability can be derived as: 

PBAH,N,M) = l — {l — pNMyi (3.3) 

Case4: Path with sparsely placed FRs only 

The converter is expensive and therefore it is possible that only some nodes 

will be equipped with it. When full conversion is performed on some nodes 
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while other nodes have no conversion capability, as shown in Fig.3.4(d), the 

FRs will cut the path into K sub-path whose blocking probabilities are inde-

pendent [10]. Within each sub-path, no conversion can be provided, which is 

equivalent to the case discussed in Casel. We assume a uniform placement of 

the converters. Under this scenario, according to the derivations above, the 

blocking probability can be expressed as: 

/VsF(//’A^M) = l-[]P{S"k = l} = l— (1— ( 1 _ ( 1 —p)L) ’ 

k=l 乂 ) 

(3.4) 

where K is the number of sub-path. That means there are [K - 1) FRs are 

placed on the path. — 1} represents the success probability of the k仇 

sub-path. L is the average number of hops in a sub-path, where L = It 

must be noted that the expression in eq.(3.4) is exact only if H is an integer 

multiple of K, otherwise, the above equation is the lower bound of the actual 

blocking probability [10 . 

CaseS: Path with sparsely placed CRs only 

In this part we discuss the case that only code conversion is available and the 

code converters are sparsely placed as shown in Fig.3.4(e). We investigate the 

effect of code converters number on the blocking probability of the path. Be-

cause there is no wavelength conversion performed, the wavelength continuity 

constrain is required, thus at least one fixed-wavelength tunnel succeeds in 

order to set up an end-to-end connection. Similar to the discussion in Case2, 

there are N independent and wavelength-continuous tunnels. Each tunnel is 

. further decomposed into K sub-path by the CRs. These subpaths are indepen-

、 dent in blocking probability. The success probability of an end-to-end tunnel 

is: 

‘ P{SN = 1} = ( 1 - ( 1 - ( 1 - p ) 乙 ） j 

For a call request, blocking occurs when all the N tunnels are blocked. In 

this way, the blocking probability of the path under the scenario of uniform 
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CRs placement is derived as: 

PBSC {H, N, M) = n - = 1}) = ( 1 - ( 1 - ( l - ( l - p ) ” j 

“ (3.5) 

Therefore, this problem is again simplified into a one-dimensional problem. 

Similarly, we can obtain the result for the path with sparsely placed WRs 

only. 

Case6: Path with CRs and FRs 

Another case that can lead to closed-form solutions is a path with CRs and 

FRs as shown in Fig.3.4(f). Assume that the FR nodes cut the path into K 

sub-segments which are independent as discussed above. Within each sub-

path, there is no wavelength conversion permitted, and it is similar to the case 

discussed in Case2. The decomposition process of the path is illustrated in 

Fig.3.5. The blocking probability of the k̂ ^ sub-path, which is denoted by 

= 0}’ can be derived from equation eq.(3.3.3): 

= (1 —(1 —广广 

If the FRs are uniformly placed, the blocking probability of the path is derived 

as: 

PBCF [H, TV, M ) - 1 - n (1 - P{SK = 0}) = l - f l - ( l - ( l -

k=i V ^ , ) 
(3.6) 

It is clear that in this case, a two-dimensional path is decomposed into 

、 one-dimensional paths to obtain the analytical results. Again we can obtain 

similar closed-form results for path with WRs and FRs. 

In this section, the blocking performance in a code/wavelength routing 

network with different conversion capability has been investigated to obtain 

closed-form analytical results. We found that it is possible to obtain closed-

form expressions of the end-to-end blocking probability in a two-dimensional 

routing path, by decomposing the two-dimension routing case into single-

dimensional one. Fig.3.5 is an example showing the decomposition process 
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Figure 3.5: The decomposition procedure for the path with CRs, NRs, FR. 

of the path with CRs, NRs, FRs. The decomposing principles can be ex-

tended to the generalized multi-dimensional optical routing path (the number 

of dimensions is larger than 1) to achieve closed-form expressions for end-to-

end blocking probability. The generalization of the decomposition algorithm 

will be discussed in Chapter 4. 

3.4 Numerical Results 

From the derivations above, some numerical results are shown to illustrate 

the blocking probabilities and code conversion gains under various converter 

‘configurations. The improvement of the addition of conversion in the code 

、 
dimension is demonstrated. 

Fig.3.6 shows the blocking probability of a 20-hop path with different num-

ber of wavelengths and code channels. The total number of channels on a link 

is fixed at 16. From the graph, it is shown that the blocking probability is the 

highest when neither conversion is performed, no matter what the individual 

values of M and N are. With full conversion performed, the lowest block-

ing probability is achieved as expected. It is also found that with the aid of 
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Figure 3.6: The Blocking Probability versus the link loads p. 

code conversion, the blocking performance is improved significantly with the 

increase of the code number. Therefore, it is shown that when a large set of 

codes are employed, code conversion will bring significant improvement to the 

code/wavelength routing networks. 

Code Conversion Gain is defined as the improvement in blocking proba-

bility when code conversion is added at the nodes on a path. Fig.3.7 shows 

the code conversion gain, which is the ratio of the blocking probability for 

the path of Casel over that for Case5, when different number of code con-

verters are placed. From Fig.3.7’ we can find not only the code conversion 

gain increases with the increase of the number of code converter, but also the 

most significant improvement occurs at p = 0.1. Therefore, code conversion 

achieves higher conversion gain in a network with lower link load. 

. With code converters placed at some of the nodes, the path shown in 

、 Fig.3.4(g) becomes the path in Fig.3.4(h)，since the combination of the code 

and wavelength conversion at a node gives rise to the FR. Here, the code con-

version gain is the ratio of the blocking probability of the path in Fig.3.4(g) (with 

only WRs) to that of the path in Fig.3.4(h)(with WRs and FRs). The numeri-

cal result shown in Fig.3.8 demonstrates that, when code conversion uniformly 

added on four nodes of a 20-hop path, a significant gain of is achieved. 

Fig.3.9 shows the link utilization p of the paths in both Case5 and Case6 
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Figure 3.7: The code conversion gain versus the number of code converters 

along the path. 

with M = 8’ N= 8’ H = 20. The required blocking probability PB [PBSC = 

PBCF — PB) are 10"^ and 10—5 respectively. We can see that when the al-

lowed blocking probability increases from 10—5 to 10"^, around 10% utiliza-

tion improvement is achieved. In both case5 and Case6, the addition of code 

•• conversion will improve the link utilization, however the improvement is more 

significant in Case5. It is also found that, the link utilization increases most 

significantly when small number of the code converters are provided. For ex-

ample, for the path in Case5, at a blocking probability of 10一5，if only five 

nodes are provided with code conversion, the link utilization is increased by 

more than three folds. However even if all nodes are equipped with code 

conversion, the utilization gain is only around six folds. 

3.5 Conclusion 

In this chapter, the blocking performance and the link utilization of an op-

tical code/wavelength routing network under limited conversion capabilities 

are investigated. By the mathematical analysis, closed-form expressions of 

the blocking probabilities are derived for various cases. The numerical results 

demonstrate the improvement from the code conversion in the network. For 

optical code/wavelength routing network with a small number of wavelengths 
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Figure 3.8: The code conversion gain when code conversion is sparsely added 

to the path already has WCs. 

but a relatively large number of optical codes, code conversion will make sig-

nificant performance improvements. For the low-loaded networks, code con-

version will achieve high conversion gain. With wavelength conversion already 

provided in the network, the addition of the code conversion achieves a con-

、• version gain as high as 10̂  even when the code conversion is provided with a 

low placement density (the ratio of the number of nodes with code conversion 

to the total number of nodes along the path) of 0.2. Thus, the code conver-

sion could help achieve a higher throughput and an efficient utilization of the 

code/wavelength routing network. 
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Notation Definition 

WC Wavelength conversion 

CC Code conversion 

OCC Optical correlated code 

NR Router without optical conversion 

CR Router with code conversion only 

WR Router with wavelength conversion only 

FR Router with both code and wavelength conversion 

Trunk A group of channels which can be fully interchanged at a node 

Tunnel A sequence of identical channel bunch from source to destination 

M Number of codes per wavelength 

N Number of wavelength per fiber 

"" p Uniform link load of the network 

G Conversion Gain (improvement on blocking probability) 

H Number of hops of a lightpath 

K Number of segments of a lightpath seperated by FRs 

k Index of segments 

、 L Number of hops per segment 

n Index of wavelengths 

m Index of codes 

h Index of hop number of a lightpath 

Table 3.1: Notations used in Chapter 3. 
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Figure 3.9: Link utilization versus number of nodes with code conversion. Pb: 

allowed blocking probability. 



Chapter 4 

Decomposition Schemes 

4.1 Introduction 

Hybrid optical networks, such as OTDM/WDM, OCDM/WDM and OTDM/CDM 

/WDM networks, bloom to offer higher transmission capacity and a larger 

number of channels [55, 37，18]. With the recent advances in optical switch-

ing and optical devices, multiple optical switches have been reported to sup-

port multi-dimensional routing networks, e.g. time-space switches for the 

OTDM/WDM networks and space switches for the OCDM/WDM networks. 

In these hybrid networks, multi-dimensional optical multiplexing techniques 

are employed and individual channels can be switched independently at the 

node. On the other hand, optical conversion techniques, such as wavelength 

conversion, optical time slot interchanger, optical code conversion and multi-

fiber space switches, are also widely investigated for providing reconfiguration 

capability on the optical layer, which have been introduced in Chapter 2. From 

this point of view, future optical networks would be heterogeneous switched 

networks. However, to the best of our knowledge, there was no paper investi-

、 gating the blocking performance of multi-dimensional optical routing networks 

with heterogeneous switches. Motivated by the derivations on the blocking 

probability for the OCDM/WDM networks in Chapters, in this chapter, we 

propose iterative decomposition schemes to facilitate the analysis of the quan-

titative behavior for a class of multi-dimensional routing networks. 

40 
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(a).Path in a homogeneous trunk switched network; 

(b).Path in an inclusive converted trunk switched network; 

(c).Paths in an exclusive converted trunk switched network. 

"“ Figure 4.1: Possible path configurations in a multi-dimensional trunk switched 

network. 

4.2 Inclusive Converted Networks 

Trunk switched model was described in Chapters. In this chapter, we extend 

the trunk switched network to model generalized multi-dimensional networks 

(the number of dimensions is larger than 1). 

‘ As stated in Chapters, in a trunk switched network, channels on each link 

are grouped into several trunks according to the conversion capability of a 

node. Each trunk employs a full-channel interchanger to interchange all the 

channels in the same trunk. 

Assume a multi-dimensional network has a dimension set of D, where D = 

{di,d2, ...d“ ..., dn}, n is the number of dimensions of optical multiplexing in 

the network. The number of channels on the dimension di is assumed to be 
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Ni and the total number of channels on a link is given by . 

n 

N = (4.1) 

i=l 

We generalize this network as an n-dimensional optical routing network 

(n > 1). Assume a node a in the network has the conversion capability on 

a set of dimensions Ea, where Ea C D. This means all the channels in the 

dimensions in Ea can be fully interchanged at the node a. In an n-dimensional 

network with heterogeneous switches, Ea could be different among different 

nodes. Therefore, for node a, the trunk size, which is denoted by Ma, is given 

by 

Ma= H Nj (4.2) 

djeEa 

And the number of trunks, denoted by Ka, is given as 

K a = n N] (4.3) 

Note that, M。, x Ka ^ N. 

In the general catalogue of the trunk switched networks, there are two 

classes of networks which are termed as Inclusive Converted Networks and 

Exclusive Converted Networks. For an inclusive converted network, the path 

inside should meet either of the following two conditions: 

• EaQ Ea+i and Ea C E^—i, 

• Ea+I and Ea D 丑a—i， 

where, node a is any of the intermediate node on the path. When node a is 

、 the first intermediate node on the path, its neighbor on the left is the source 

node. Under this scenario, only Ea+i is considered. On the contrary, for the 

last intermediate node on the path, only Ea-i is considered. Other networks 

can be cataloged as Exclusive Conversion Networks. 

Fig. 4.1 (6) shows an Inclusive Conversion Path in the inclusive converted 

network. In particular, when all the nodes has the same conversion capabil-

ities, the network is a homogeneous network, which belongs to the general 

catalogue of the inclusive converted network. Fig. 4.1 (a) shows the path in 
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a homogeneous network. A path in the exclusive conversion network is shown 

in 4.1 (c). 

Many multi-dimensional network can be modeled as an inclusive converted 

network, such as a multi-fiber code /wavelength routing network with optical 

code converters sparsely placed. 

4.3 Decompositions 

Two decomposition processes are proposed to study the performance of the 

multi-dimensional networks which can be modeled as inclusive converted net-

works. Binomial model is used and the loads on different links are assumed 

to be independent. Decompositions aim at partitioning the original path into 

sub-blocks that have fewer hops or dimensions and thus simplify the blocking 

probability calculation. 

4.3.1 Spatial Decomposition (S.D.) 

Spatial decomposition is adopted to separate the path into subpaths at the 

nodes with full conversion (FC) nodes. In a multi-dimensional network, the 

FC node refers to the node that has conversion capability on all the dimensional 

of the path and view all the channels in D as a trunk, such as the node 2 in 

Fig.(4.1) (b). The basic idea of S.D. lies in the assumption that, the blocking 

probability of the separated subpaths are independent [10]. Note that a path 

is divided into /c + 1 subpaths if it has k FC nodes. Under this scenario, the 

blocking probability of the path can be represented as: 

fc+i 

. PB = l - l l i l - P i ) (4.4) 

Pi is the probability that a call is blocked at the i让 subpath. For each subpath, 

it can be regarded as a new path with the dimension set unchanged (D). 

Spatial decomposition is illustrated in Fig.3.5 in Chapters. By S.D., the path 

in (a) is decomposed into two subpaths in (b). 
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4.3.2 Dimensional Decomposition (D.D.) 

For a path that does not have FC nodes, dimensional decomposition is per-

formed. The dimensional decomposition is based on the assumption that the 

channel on one link are independent. 

Recall that, for a path with dimension set D, where D = {^1,(^2, -.-di, 

if none of the intermediate nodes has the conversion capability on a dimension 

di, then 山 is defined as Non-Convertible Dimension. On the other hand, for 

a dimension dj in set D, if at least one node on the path can has conversion 

capability on it, dj is termed Convertible Dimension. 

Dimensional Decomposition begins at categorizing all the dimensions in D 

into convertible dimension set E and non-convertible dimension set E，where 

E + E 二 D. Let M be the total number of channels on the dimensions in set 

E. It is the product of the channel number of each dimension in set E, which 

is given by 

M = Y [ N , (4.5) 

d,CE 

Similarly, the total number of channels K of set E is the product of the 

channel number of each dimension in the set E, and 

‘ Y l Ni (4.6) 

d,CE 

The path is viewed as K tunnels, with M channels in each tunnel. The 

tunnel, which has been defined in Chapter3, refers to as a sequence of the iden-

tical channel bunch from the source to the destination. Due to the conversion 

limitation at the nodes, the end-to-end channel selection should be kept in the 

same tunnel. These tunnels are independent in terms of blocking probability. 

、 Therefore the blocking probability of the path can be derived as: 

K 

Pb = Y[P {the 产 tunnel is busy) = Pf (4.7) 
‘ j=i 

where Pj is the blocking probability of the 产 tunnel. 

The dimensional decomposition is illustrated in Fig.3.5. By D.D., each 

subpath in (b) is decomposed into three tunnels. 
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Figure 4.2: The flowchart of the iterative decomposition procedure for the 

inclusive converted network. 

Due to the different conversion capabilities at the nodes, each tunnel can 

be regarded as a new path with heterogeneous switches and a dimension set E. 

In this way, by D.D., the path is decomposed into independent tunnels with 

a lower dimension of |丑|. Notice that, each tunnel will also be an inclusive 

converted case. 

4.3.3 Iterative Decompositions 

An iterative decomposition scheme is proposed to analyze the qualitative be-

、 havior of an inclusive converted multi-dimensional routing network. The pro-

cedure is shown in Fig. 4.2. 

For an inclusive converted path that has FC node, it is first operated by 

S.D., and is divided into subpaths. It should be noted that, because the 

original path is an inclusive converted path, then, at least one non-convertible 

dimension would exist in each subpath. Therefore, D.D. is operated on the 

subpath and decomposes it into independent tunnels. Although the tunnels 

on different subpaths may not be identical, new FC nodes will emerge in 
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each tunnel. Here, to a tunnel, the new FC nodes refer to the node that 

can permute on all the dimensions in it. As we know, each tunnel can be 

regarded as a new inclusive converted path. Then, again, we employ S.D. 

to divide the tunnel into subpaths at the new FC nodes, and so on. The 

decomposition is employed iteratively until only one-channel subpaths/tunnels 

with no conversion are obtained, and the decomposition procedure then stops. 

The blocking probability of the one-channel subpath/tunnel with hop number 

h, can be derived by 

= 1 _ (1 - p f ( 4 . 8 ) 

where p is the busy probability of a channel and p is the number of hops of 

the one-channel subpath/tunnel. 

According to eq.(4.4), eq.(4.7) and eq.(4.8), closed-form expression of the 

blocking probability of the original path can be obtained. If the original in-

clusive converted path has no FC nodes, the procedure will begin at D.D. 

first, and also stops when the one-channel subpaths/tunnels are obtained. A 

decomposition process for an inclusive converted path in a two-dimensional 

code/wavelength routing network is illustrated by the Fig.3.5 in Chapters. 

4.4 Conclusion 

In this chapter, an iterative decomposition scheme is proposed to analyze the 

blocking probability for a class of multi-dimensional optical routing networks. 

Trunk switched model is extended to the generalized multi-dimensional case. 

This can lead to substantial simplification of the analysis and give quantitative 

assessment of the complex networks. 

、 



CHAPTER 4. DECOMPOSITION SCHEMES 47 

Notation Definition 

FC Full conversion 

D.D. Dimensional decomposition 

S.D. Spatial decomposition 

h Number of hops of the one-channel subpath/tunnel 

D Dimension set of the optical multiplexings in a network 

di, dj A dimension of the optical multiplexing of the network 

Ea The set of dimensions that node a has conversion capability on 

k Number of full conversion nodes on a path 

E Convertible dimension set 

E Non-convertible dimension set 

M Total number of channels on the dimensions in set E 

K Total number of channels on the dimensions in set E 

N^ Number of channels on dimension di 

P Link load, or the busy probability of a channel 

. Ma trunk size viewed by node a 

Ka Number of trunk at node a 

N Total number of channels on the link 

、 Table 4.1: Notations used in Chapter 4. 
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Chapter 5 

Performance of 

Multi-Dimensional Optical 

Routing Networks 

5.1 Homogeneous Trunk Switched Networks 

Multi-dimensional homogeneous networks are a class of networks in which each 

node has the same conversion capabilities. In this chapter, we analyze their 

performance on the network utilization, utilization gain and optical conversion 

" gain, by the extended homogeneous trunk switched model. Fig.4.1(a) shows 

a path in a homogeneous trunk switched network. The effect of the network 

topology on the network performance is considered. 

In an n-dimensional homogeneous network (n > 1), the dimension set is 

denoted by D, where D = {c i i， "2，•"，…The number of convertible 

dimensions is given by m, with 0 < m < n, which means m out of the n 

dimensions are convertible. Thus the channels on these m dimensions can be 

• fully interchanged on each node. For m = 0, it is a non-convertible network, 

、 for 0 < m < n, it is a partial convertible network, and m = n means a fully 

convertible network. 

Each node has the same conversion capability in the homogeneous network, 

therefore 4he trunks viewed by each node are identical. Let K denote the 

number of trunks on each link and M denote the trunk size, or the number of 

channels per trunk. By the extended tmnk switched model described in the 

section2 of Chapter4, they are given by 

48 
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M 二 n 凡 K = N/M = I I N , , (5.1) 
^五 i£E 

where E is the set of m convertible dimensions, and E is the set of (n - m) 

non-convertible dimensions. Ni is the number of channels on the dimension di. 

N denotes the total number of channels on a link, which is given by eq.(4.1). 

For a TDM/WDM network with L fibers per link, F wavelengths per fiber 

and T time slots per wavelength, it can be modeled as a homogeneous trunk 

switched network with M = LT ^nd K = F if fiber switches and optical time 

slot interchangers are employed at each node. 

5.2 Analytical Model 

Based on the extended trunk switched network and the model for studying 

wavelength routing networks [6, 56], we proposed in this section an analytical 

model to evaluate the performance of the homogeneous multi-dimensional op-

tical routing networks. Assume all channels have the same busy probability, 

or the channel utilization p. When all the channels in a trunk are occupied, 

the trunk is regarded as busy. Otherwise, the trunk is free. 

In an optical routing network, the traffic originates from the source node 

may traverse more than one hop over the network and this leads to link cor-

r-elation among the successive links. According to [20], link correlation 小 is 

given by 

叫 l l ) S ’ (5.2) 

where f/ is the average number of hops of the lightpaths established in the 

• network; A is the switch size, i.e. each node has A input links and A output 

、 links. Intuitively, the ring topology has a higher link correlation, compared to a 

hypercube network with the same number of nodes, because of the small switch 

size (A - 1) and relatively large H. Basically, link correlation • represents the 

probability that a call is forwarded to the next hop along a path. Therefore, 

(1 — 0) gives the probability that a call is dropped at one node. In this chapter, 

the correlation of the traffic on a link is assumed to be only due to its previous 

link, which is referred to as the Markovian correlation. 
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Figure 5.1: An H-hop call request. 

As shown in Fig. 5.1, station A requests a session to station B over a mesh 

network. There are H hops (links) from the source node 1 to the destination 

node H + 1. Due to the limited conversion capabilities at the nodes, channel 

selections on these H hops should be confined to the same trunk for estab-

lishing a lightpath. This is termed as fixed-trunk constraint. At node i, given 

that its input trunk is busy, let PL be the conditional probability that at least 

one call is dropped from its input trunk, i.e. the trunk becomes free at node 

i. For a network with M channels per trunk, PL can be derived as 

M ( \ 

、， = — (5.3) 

Given that the input trunk of node i (the U in Fig.5.2) is free, P„ is the 

conditional probability that sufficient new calls are added at node i so as to 

make the output trunk (the t。in Fig.5.2) become busy. That is 

Pn = P{ to at the node i is busy | ti at the node i is free }. (5.4) 

• There are three cases that will make the trunk on the i仇 hop busy. The 

、 first case, as shown in Fig.5.2(a), is that all the channels in the trunk on the 

(i — 1 产 hop have calls, i.e. the trunk is busy, and all the calls are forwarded 

to the I仇 hop. The second case is shown in Fig.5.2(b). The trunk on the 

(i - 1 广 Jiop is busy, with some of the calls leaving from node z, while new 

calls are inserted at node i to make the trunk on the i仇 hop busy. As shown 

in Fig.5.2(c)，the third case is that the trunk on the {i - 1)让 hop is free, i.e. 

there are free channels in this trunk, while new calls are inserted at the node 

i and make the trunk on the i仇 hop busy. 
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Figure 5.2: Three cases that make a trunk busy on the i仇 hop. U and t。are 

the input and output trunk of node i, respectively. 

Extending the previous work in [6，56] to the homogeneous trunk switched 

networks, the busy probability of the trunk on the i仇 hop, denoted by 礼 can 

be derived as 

Qi = P{ to at node i is busy } 

= t o at node i is busy | ti at node i is busy ti at node i is busy } 
7 5 

+ P{ to at node i is busy | U at node i is idle U at node i is idle } 

= 1 , (IH (1 — Pl) +Pn-(1- Qi-l + Qi-iPL). 

Therefore, 

= Qi-i) PN + Qi-i (1 - PL + PLPU) . (5.6) 

In a network with K trunks per link and M channels per trunk, there are 

‘ K end-to-end fixed-trunks, or tunnels, along the H hops. A lightpath can be 

、 established in any one of the tunnels, but not across different tunnels. Since all 

channels are assumed to be independent and have the same busy probability 

P, the busy probability of a trunk on the i仇 hop is denoted by 仏 and is simply 

Qi = , , l < i < H (5.7) 

Substituting (5.7) into (5.6), we obtain as 

pM PL 

: I - pM + pM PL M ) 



CHAPTER 5. PERFORMANCE OF MULTI-DIMENSIONAL OPTICAL 52 

Further, assuming there is no blocking on both the ingress link (from station 

A to node 1) and the egress link (from node ff + 1 to station B), the blocking 

probability for an H-hop call requests (say from station A to B) is given by 

^ / JJ一 1 \ 

p _ - p r / T T p / the kth trunk on the k仇 trunk on 1 
b ̂  1 1 尸r\the {i + 1 产 hop is free the i让 hop is free] j (5 9) 

= ( 1 —(1 — P J " 广 . 

where 0认 hop (z = 0) represents the ingress link. 

Combining (5.3)-(5.9) together, channel utilization p can be expressed by 

1—(1 —P巧互 丫 (5.10) 

/ H , 、 A [M, K.H) 

綱 ） 、，，， 

where = 1 - P^ = c/)^ is defined as trunk correlation of the network. 

po (M, K, H) and a (M, I〈, H) are given as follows, 

Po{M,K,H)= ( 1— (1 — 广 广 ’ （5.11) 

a (M, K, H) = (1 — (1 _ P》、“$ (M)) M • (5.12) 

Fig. 5.3 shows the relation between trunk correlation <J>(M) and trunk 

size M. Three types of networks are considered and their corresponding link 

correlations [20] are given beside the curves. As shown, trunk correlation 

decreases exponentially with respect to trunk size M. 

po (M, /(, H) is the link utilization under the link independent assumption, 

‘ i.e. link correlation 0 = 0. Note that, a (M, K, H) < 1, therefore, under 

link independent assumption, the link utilization is underestimated, or, the 

blocking probability of the network is overestimated. 

Further, as trunk size M becomes large, a (M, K, H) approaches 1 and 

P{M,K,H), in turn, approaches F)O[M,K,H). Therefore, the link indepen-

dent assumption is valid only for the networks with large M values. This 

verifies the approximation applied in the calculation of link utilization for 

convertible wavelength routing networks[10, 6]. However, without wavelength 
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converters, the wavelength routing network is modeled as a trunk switched 

network with M = 1, and the effect of the traffic correlation is significant and 

cannot be ignored. 

5.3 Utilization Gain 

For an optical network with more than one dimension, it can provide finer 

bandwidth granularity by dividing the channel bandwidth of a one-dimensional 

network into fractions. Comparing a generalized n-dimensional optical routing 

network to a one-dimensional optical routing network with the same topology, 

the ratio of their link utilizations is defined as utilization gain, and is given as 

G A Traffic carried in an n-dimensional network 

Traffic carried in a one-dimensional network' ‘ 

For both one- and n-dimensional networks without conversion capabilities, 

they can be modeled as trunk switched network with unit trunk size (i.e. 

M = 1). For the one-dimensional networks, the number of trunks per link, K, 

equals Ni, where Ni is the number of channels per link. The link utilization for 

an i/-hop path is denoted by p (1,7Vi,i/), as derived from eq. (5.10). For an n-

dimensiorial network, the number of trunks is K = N and the link utilization 

of an H-hop path can be denoted by p{l,N,H). Assuming the bandwidth 

on a link is fixed for both networks, the ratio of their link utilizations, or 

the utilization gain of an n-dimensional network is derived from eq.(5.10) and 

eq.(5.13) as: 

/ , , 1 \ / ( \ 

G u = J ~ ^ ) 丁 . (5.14) 

‘ (1- (1-作八 1-(1-<)、J 
As yV > iVi and (j)<l, the utilization gain Gu is greater than 1. Thereby, 

an optical routing network with finer bandwidth granularities gives a higher 

link utilization. As the total number of available channels, iV, increases, the 

utilization gain will increase accordingly, but not linearly. When i V 》 1 , 

P (1, N, H) will be close to 1’ and the utilization gain will approach h 
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Let (/) = 0, corresponding to the link independent case. The utilization 

gain is given by 

^ — Po(l,JV„N) — — 7 ( 5 . 1 5 ) 

Comparing eq.(5.14) and eq. (5.15), it is found that the network utilization 

gain is scaled by a factor of which is less than 1，if the link correlation 

is taken into account. From the above illustration, it is found that the utiliza-

tion gain is overestimated under the link independent assumption. The larger 

the N, the smaller the and the less accurate the link independent 

assumption is. 

On the other hand, for a network with larger link correlation (j), "^({工，仏)  

falls and thus the utilization gain will decrease. Therefore, highly correlated 

network (with large value of (j)) will obtain less significant improvement in link 

utilization when adding new dimensions. 

Fig. 5.4 shows the utilization gain of a 3-dimensional optical routing net-

work when the allowed blocking probability is P^ = 0.001. Different link corre-

lation factors, are considered. The numbers of channels on each dimension 

are N^ N2 and TVs, with N2 = N^ = 16，respectively. With the increase of N^ 

the utilization gain decreases for all cases, (j) = 0 is the link independent case, 

which gives the maximum utilization gain. The utilization gain reduces with 

the increase of the link correlation 小. 

Fig. 5.5 shows the utilization gain of the n-dimensional network (n = 3) 

versus the number of hops, H. Three networks with different link correlation 

0 are considered. It is shown that the utilization gain is fairly insensitive to 

、 ‘ t h e number of hops, H, when H > 20’ disregarding the values of Ni and (j). 

This result implies that the utilization gain of the n-dimensional network is 

fairly insensitive to the network size if the network is su伍ciently large. 

5.4 Conversion Gain 

In this section, we apply the trunk switched model to investigate the perfor-

mance improvement of a homogeneous n-dimensional network when optical 
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conversion is employed. 

The networks before and after the additional conversions can both be 

modeled as homogeneous trunk switched network. To derive the conversion 

gain in the n-dimensional optical routing network, we model the original n-

dimensional network as a trunk switched network with Ki trunks and Mi 

channels per trunk. After additional optical conversions are provided, the net-

work can be modeled as a trunk switched network with K2 trunks and M2 

channels per trunk. 

For example, an optical routing network with F wavelengths and T time 

slots is regarded as a trunk switched network with Ki = FT, Mi = 1, when 

no conversion is provided. However, if only the optical time slot interchangers 

are provided, it will be modeled as a trunk switched network with K2 = F, 

M2 = T. ’ 

Notice that, MiKi = M2K2 and M2 > Mi. By substituting the parameters 

{Mi’/( i} and {Mz,/^} to eq_(5.10), we can get the link utilizations before 

and after the optical conversion, denoted as pi and p2, respectively. Hence, the 

utilization improvement Gc = ^ is defined as the conversion gain and given 

by 

^ r ^ — — . _ _ ^ ) 
( H / I \ 备 

( 1 - 1 - P 广 1 - ( I _ P ^ ] 
^ V / / \ V w / 

(5.16) 

By making some appropriate simplifications and approximations (Appendix), 

the maximum value Gc,max of the conversion gain is derived as 

. Ĝ c，m«a:< ( 丑 ( 1 - 0 恥 ) ) 击—成， M 2 > M i (5.17) 

It is found from the eq.(5.17) that the maximum utilization gain depends 

on the 皿mber of hops H, link correlation 0，the former trunk size Mi, and 

the trunk expanding factor (5 = 樂 ) . B y keeping all the other parameters 

unchanged, the increase in S will lead to a higher conversion gain. However, 

with the increase in 5, the maximum conversion gain will saturate quickly to 

= (5.18) 
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Fig. 5.6 demonstrates the conversion gain when optical converters are 

added in an n-dimensional network that originally does not have any conver-

sion. Three types of networks with different link correlations are investigated. 

N is the total channel number. The number of hops is H = 20. Three cases 

are considered. M 二 N is the fully converted case while M = ^ and M = ^ 
2 4 

are the partially converted cases. As illustrated in the figure, the network 

with a higher link correlation exhibits less significant conversion gain under 

the same scenario. For each type of network, maximum gain is obtained when 

the total number of channels N is about 10，20 and 30 ior M = N, M = N/2 

and M = N/4, respectively. Also, the conversion gain is the highest when 

fully conversion is provided、M = N). However, even when the trunk size is 

as small as one quarter of the total channel TV, the conversion gain is very close 

to the fully converted case, especially when N is large. This result implies, 

by providing optical conversion on the dimension even with small number of 

channels, the utilization improvement can be significant. 

5.5 Comparison on the Utilization Gain by 

Multiplexing and by Conversion 

、、 For a wavelength routing network, it can be either upgraded to a convertible 

wavelength routing network by placing converters at the nodes or upgraded 

to a 2-dirnerisional networks by adding a new dimension, TDM, for example. 

From the derivations in the previous sections, these two approaches can both 

provide improvements in the link utilization. In this section, we will compare 

the improvements in the link utilization under these two approaches for a 

wavelength routing network. 

. Without the loss of generality, we assuming there are Ni wavelengths on 

、 each link in the wavelength routing network and the number of channels in 

the additional dimension is N2. After the addition of the second dimension 

in the wavelength routing network, by eq.{5.10) and eq.(5.13), the utilization 

gain is given as 

(5.19) 

When by applying wavelength converters into the network, from eq.(5.10) 
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and eq.(5.13), the conversion gain is derived as 

pjNuhH) K 、 

^ - ^ H l ： ^ - (5.20) 

Fig.(5.7) shows the improvement in the link utilization of the network ver-

sus the number of hops H. The allowed blocking probability is = 10-3. TV! 

and N2 are assumed to be 8 and 16, respectively. It is found that, link correla-

tion affects the conversion gain more significantly than the utilization gain by 

multiplexing (adding a new dimension). For a highly correlated network, as a 

ring with (f) = 0.92, the utilization gain by multiplexing is always larger than 

the conversion gain, no matter how large the network is. For the moderately 

= 0.31) and slightly ((/)=0.09) correlated networks, when the network size 

is small, the addition of a new dimension can obtain a higher utilization gain 

than deploying converters. 

Fig.(5.8) illustrates the improvement in the link utilization of the network 

versus the wavelength number N^ with N2 = 16 and P^ = 10—3. For a 

highly correlated network, no matter how many number of wavelengths (TVi) 

it has, utilization gain by deploying a new dimension would be higher than the 

conversion gain. However, for the moderately and slightly correlated networks, 

only when the number of wavelength is small, the utilization improvement by 

multiplexing is more significant than the conversion gain. 

5.6 Conclusion 

In this chapter, an analytic model is proposed for studying the network utiliza-

tion of generalized multi-dimensional optical routing networks. It is found that 

the utilization gain by multiplexing is closely related to the link correlation. 

、 • Less link correlated network will achieve more significant utilization gain. It 

is also found that, the utilization gain is fairly insensitive to the network size. 

We derive, for the first time, closed-form solutions for the conversion gain in a 

partially or fully convertible n-dimensional optical routing network. From the 

comparisbn of the utilization gain by multiplexing with the conversion gain, 

we find that highly correlated networks can obtain higher utilization gain by 

multiplexing. Also, small networks and the networks with small number of 

channels also benefit more from multiplexing than from conversion. 
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Appendix 

From eq. (5.11)，we get: 

( ( 丄、去、女 

Pio 叫 1 - 1 - P 广 

\ \ ^ / (5.21) 

^O(i-n-))". 
1 

This approximation is valid for large H and P^^ not to close to one. For 

Pb = 0.001, H = 10，and Ki is as large as 100’ the error is within 5% and 

0.5% for Ml 二 1 and Mi = 10, respectively. 

Similarly, 

/ / A 
P20= 1-11-

\ \ ^ / (5.22) 
/ 1 / 丄 \ \m 

如 ( l - i . 
And from eq. (5.12), we get: 

( … I ( (5-23) 
= ( 1 -少1 -互 / n (1 — i V " 卞 1 ) ， 

where = (I)(Afi) = 

、 ( 1 / + 、 、 由 (5.24) 
= ( 1 — — 巾 2 ) ， 

where = ^ (M2) = 
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The conversion gain 

广 P2 
CTC = — 

Pl 
/ i_\ 

^ ( / f 可 一 两 

f - / n ( l - 一 ） 

、1 飞 - 去 + 作 2 1 (5.25) 

For MiKi = M2K2, we multiplex the above equation with 尸。卞’ and the 

conversion gain can be represented as: 卜 

Gc « 击— ( A ) 南 (丛 ) — 由 ’ (5.26) 

where 

^̂  = 7 ~ ~ ^ f o r i = l,2. (5.27) 

—In 1 - P严 
V / 

For i = l,2, let = P , ^ , 识 = - I n (1 - P^^ = f Then, 

• jm 电 i) 

、 ‘ Vi 

= • (1 -①d + (5.28) 

^ - ( 1 

、 Vi 

The approximation works well for large H and P^' not too close to one. 

For Pb = 0.001, = 0.31，H = 10, R\ = 50, the error is only around 8%. 



CHAPTER 5. PERFORMANCE OF MULTI-DIMENSIONAL OPTICAL 60 

ff is smaller than 1 and monotonously decreasing with Ki, For K2 < Ki 

and M2 > Ml, ( g ) < ( I ) T h e r e f o r e , the maximum conversion gain 

is given by 

Gc,max < (1 - $1)击(1 - $2)-南 

1 1 (5.29) 
< (77(1 —$1))可—可’ 

where M2 > Mi. 
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Notation Definition 

D Dimension set of the optical multiplexing of the network 

屯力 A dimension of the optical multiplexing of the network 

Ni Total number of channels on dimension di 

E Convertible dimension set 

E Non-convertible dimension set 

N Total number of channels per link 

K Number of trunks per trunk 

M Number of channels per trunk 

F Number of wavelengths per fiber 

T Number of slots per frame in TDM domain 

k the index of K 

、， P Uniform link load, or the busy probability of a channel 

A Switch size 

// Number of hops of a lightpath 

n Average number of hops of the lightpaths in a network 

4> Link correlation 

‘ qi Busy probability of a trunk on the i仇hop 

中 Trunk correlation 

Gu Utilization gain 

71 Number of dimensions in a multi-dimensional network 

m Number of convertible dimensions 

Gc Conversion gain (improvement in network utilization) 

S Expanding factor 

Table 5.1: Notations used in Chapter 5. 
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Figure 5,3: Traffic correlation versus the trunk size in a trunk switched net-
work. 
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Figure 5.4: Utilization gain by multiplexing versus the original channel number 

for the networks with different link correlation. 
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Chapter 6 

Conclusion 

6.1 Summary of the Thesis 

In this thesis, the blocking performance of a code/wavelength routing network 

is presented. Two decomposition schemes are proposed to facilitate the in-

vestigation of the inclusive converted network. Also, by a generalized trunk 

switched model, the performance of the multi-dimensional optical routing net-

works are analyzed, including the blocking probability, network utilization and 

optical conversion gain. 

Chapter 2 presents the enabling technologies for three types multi-dimensional 

optical routing networks, including the optical conversion technologies, optical 

transmitters, optical filters, etc. The schematic and the experimental setup 

are demonstrated. 

Chapter 3 investigates the blocking performance arising from the limited 

conversion capability in a code/wavelength routing network. The numerical 

results show that the code conversion achieves higher conversion gain for the 

network with lower traffic load. When a small number of code converters are 

、 -provided, the improvement of the blocking probability is the most significant. 

Chapter 4 proposes an iterative decomposition scheme to facilitate the 

analysis on the blocking probability for a class of multi-dimensional routing 

networks. Extended trunk switched model is described. 

In Chapter 5，an analytic model is proposed for studying the network uti-

lization of generalized multi-dimensional optical routing networks. It is found 

that the utilization gain by adding new dimensions is closely related to the 

link correlation of the network. Less link correlated network will achieve more 

65 
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significant utilization gain when new dimensions are added. It is also found 

that, the utilization gain is fairly insensitive to the network size. We derive, 

for the first time, closed-form solutions for the conversion gain in a partially 

or fully convertible n-dimensional optical routing network. From the com-

parison of the utilization gain by multiplexing (adding new dimensions) with 

the conversion gain, we find that highly correlated networks can obtain higher 

utilization gain by multiplexing than by conversion. Also, small networks and 

the networks with small number of channels benefit more from multiplexing 

than from conversion. 

6.2 Future Work 

For future work, it could be classified into two aspects, one is the experimental 

work, and the other is theoretical work. 

The multi-dimensional switch is not mature currently, which will be one of 

the barriers for the implementation of the multi-dimensional optical routing 

networks. The three dimensional optical switch that can switch on the fiber, 

wavelength and time dimensions is promising for future application. 

The network topology (in terms link correlation) is considered for the per-

’、 formance analysis on the homogeneous multi-dimensional optical networks. 

One of the future theoretical work could be the investigation on the hetero-

geneous networks. This would lead to the analysis on the optimal converter 

placement in a multi-dimensional networks with heterogeneous nodes. 

Besides，the analysis on the blocking performance can be extended to the 

multi-dimensional networks with multicasting in optical layer. 

In this thesis, binomial model is used for the investigation of the qualitative 

behavior of the multi-dimensional networks. Another possible future work is 

> to take the traffic model into account and obtain accurate numerical results 

for the blocking probability under different traffic pattern. 
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