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Rb Retinoblastoma protein 
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A B S T R A C T 

Nowadays, people are more concerned with the nutritional and medicinal values 

of the dietary and natural products than at any other time in the human history. Since 

conventional methods for the treatment of malignant diseases, including 

chemotherapy and radiotherapy, have a number of limitations and are often 

accompanied with many adverse side effects on normal body cells, therefore, the need 

for developing novel approaches to cancer treatment is unequivocal. 

Conjugated linoleic acid (CLA) refers to a group of positional and geometrical 

isomers of the omega-6 essential fatty acid, linoleic acid (LA) (C18:2). All cis- and 

trans- isomeric combinations of CLA have been virtually identified in food. CLA is 

natural product that is derived from ruminant animals. Among all the CLA isomers, 

the cis-9, trans-11 (9Z, 11E) C L A and the trans-10, cis-12 (10E, 12Z) C L A are the 

predominant isomers found in human diet. There are numerous physiological and 

pharmacological activities attributed to CLA, including anti-adipogenic, 

anti-atherosclerotic, anti-carcinogenic, anti-diabetogenic, anti-tumor, as well as 

immunomodulatory properties. CLA has been a target of active cancer research in 

recent years. Although results from the majority of studies are promising, the 

mechanisms by which C L A and its isomers exhibit their anti-tumor activities remain 

poorly understood, and in particular their effects on the proliferation, apoptosis, and 

differentiation of myeloid leukemia cells have not yet been thoroughly investigated. 

In the present study, the anti-proliferative activity of a mixture of CLA isomers 

(CLA-mix) and various individual CLA isomers on different myeloid leukemia cell 
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lines were investigated. Our in vitro studies showed that CLA-mix and its isomers 

inhibited the growth of leukemia and lymphoma cell lines in a dose-dependent manner. 

Moreover, the cis-9, cis-11 C L A (9Z, 11Z-CLA) isomer was found to be the least 

potent isomer among other C L A isomers being investigated. It is also clear that the 

growth-inhibitory activity of CLA-mix on the murine myelomonocytic leukemia 

WEHI-3B JCS cells was not a direct result of the cytotoxic effect of CLA-mix. In 

addition, CLA-mix exhibited relatively low cytotoxicity in normal murine peritoneal 

macrophages. Moreover, treatment of WEHI-3B JCS cells in vitro with CLA-mix or 

the 9E, 11E-CLA isomer could significantly reduce the in vivo tumorigenicity of 

WEHI-3B JCS cells in the syngeneic BALB/c mice. 

The anti-tumor effect of CLA on the leukemia WEHI-3B JCS cells is probably 

mediated through cell cycle arrest at the G0/G1 phase and induction of apoptosis. 

Mechanistic study demonstrated that both CLA-mix and the 9E, 11E-CLA 

up-regulated the expression of several cell cycle-regulatory genes, including the p53 

and the cyclin-dependent kinase inhibitor (CKI) p 2 1 C I P 1 / W A F 1 genes, whereas the 

expression of the cyclin A gene was down-regulated. On the other hand, CLA-mix, 

10E, 12Z-CLA and 9E, 11E-CLA induced D N A fragmentation of the WEHI-3B JCS 

cells. Interestingly, the 9E, 11E-CLA was the most potent apoptotic inducer among all 

the isomers being investigated. Our results also showed that both CLA-mix and the 

9E, 11E-CLA isomer could induce mitochondrial membrane depolarization in the 

WEHI-3B JCS cells. Using the RT-PCR technique`, it was found that the 

anti-apoptotic Bcl-xL gene in WEHI-3B JCS cells was down-regulated while the 

pro-apoptotic Bak and Bad genes were up-regulated upon treatment with CLA-mix or 

9E, 11E-CLA. Furthermore, Western blotting experiments showed that both CLA-mix 

and the 9E, 11E-CLA isomer increased the protein expression of the death receptor 
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Fas and its ligand, Fas-L, in the CLA-mix- or 9E, llE-CLA-treated WEHI-3B JCS 

cells. These findings suggest that apoptosis triggered by CLA-mix and the 9E, 

11E-CLA isomer signals through both the "intrinsic" and "extrinsic" apoptotic 

pathways. This was further confirmed by studying the activities of caspases-3, -8 and 

-9. Furthermore, CLA-mix and the 9E, 11E-CLA isomer also enhanced superoxide 

anion production in the WEHI-3B JCS cells. Interestingly, the generation of 

superoxide anions and the formation of D N A ladders were partially inhibited by 

antioxidants such as superoxide dismutase and N-acetylcysteine. 

In addition to induction of cell cycle arrest and apoptosis, CLA-mix could trigger 

the terminal differentiation of the WEHI-3B JCS cells. CLA-mix was found to 

increase the cytoplasm/nucleus ratio and vacuolation of WEHI-3B JCS cells, which 

are characteristics of mature macrophages. In addition, C L A differentially enhanced 

the expression of macrophage differentiation antigens, such as Mac-1 and F4/80, but 

not the granulocyte differentiation antigen, Gr-1. CLA also induced monocytic serine 

esterase and endocytic activities which further support that C L A can induce 

monocytic rather than granulocytic differentiation of WEHI-3B JCS cells. 

The molecular mechanisms by which CLA-mix can induce differentiation of 

myeloid leukemia cells remain elusive. Our findings showed that the expression of 

certain cytokine genes, such as TNF-α, IL-lβ and IFN-γ, was up-regulated in 

WEHI-3B JCS cells upon exposure to CLA-mix. Nevertheless, the underlying 

mechanisms for CLA-mix-induced monocytic differentiation of myeloid leukemia 

cells still await further investigations. 
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撮要 

現今，人們對日常食品和天然產品的營養和藥用價値都非常關注。由於傳統 

治療惡性腫瘤的方法如放射性治療和化療等都有其局限及副作用’因此發展出嶄 

新的治癌方法確有其明顯的需要。 

共軛亞油酸爲w-6必需脂肪酸亞油酸的一組位置異構體及幾何異構體。實際 

上，所有共軛亞油酸的順式與反式等軸組合都已在食物中找到。共軛亞油酸是一 

種從反芻動物中提取的天然產品。在所有共軛亞油酸的異構體中，只有順式-9、 

反式-11 (9Z,11E)共軛亞油酸及反式-10、順式-12 (10E, 12Z)共軛亞油酸爲存在於 

人類食物的主要異構體。共軛亞油酸具有多種生理和藥理作用，當中包括抗脂肪 

形成、抗動脈粥樣硬化、抗致癌、抗糖尿、抗腫瘤以及免疫調控等特性。近年來, 

共軛亞油酸已成爲抗癌硏究主要對象之一。時至今日,雖然很多硏究都取得肯定 

的成果，不過在共軛亞油酸如何抑制腫瘤細胞生長的機制方面,科學家仍茫無頭 

緒；尤其對骨髓性血癌細胞的增生、分化及細胞凋亡的作用上，仍未有深入的硏 

究。 

在本硏究計劃中，我們會探討共軛亞油酸混合物以及個別的共軛亞油酸異構 

體如何對抗各種骨髓性血癌細胞株的增生。體外實驗結果顯示，共軛亞油酸混合 

物及其異構體均能在濃度依賴的情況下抑制了白血病和淋巴瘤細胞株的生長。此 

外，在眾多共軛亞油酸異構體的硏究對象中，我們還發現了順式，順式-11共 

軛亞油酸（9Z, 11Z-共軛亞油酸)異構體其抑制血癌細胞增生的效力是最弱的。除 

此之外，實驗結果明確地展示了解共軛亞油酸混合物在鼠科骨髓性血癌 

WEHI-3B JCS細胞中，其抑制生長的活性並不是由共軛亞油酸的細胞毒直接引 

起的。另外,共軛亞油酸混合物對正常小鼠腹腔巨噬細胞並無顯著的細胞毒性作 
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用。除此之外，WEHI-3B JCS血癌細胞在體外經過共軛亞油酸混合物及9E, 11E-

共軛亞油酸異構體的處理後，其在同基因BALB/c小鼠中的致癌能力明顯地下 

降。 

共軛亞油酸在WEHI-3B JCS血癌細胞中的抗癌能力可能是透過誘發細胞週 

期停留在Go/G1的時相及誘導細胞凋亡而引致的。機制硏究顯示共軛亞油酸混合 

物及9E, 11E-共軛亞油酸兩者均增加了數種細胞週期調整基因的表達，其中包括 

p 5 3 及 p 2 1 基 因 ， 而减少了細胞週期素 A基因的表達。在另一方面，共軛亞油 

酸混合物、10E, 12Z-共軛亞油酸及9E, 11E-共軛亞油酸誘發了 WEHI-3B J C S細 

胞中脫氧核糖核酸的斷裂。有趣的是9E, 11E-共軛亞油酸是眾多異構體硏究對象 

中最強力的細胞凋亡誘導者。實驗結果亦證明了共軛亞油酸混合物和9E, 11E共 

軛亞油酸異構體均可誘發WEHI-3B JCS細胞的線粒體膜出現去極化現象。透過 

使用反向轉錄酶聚合酶連鎖反應技術，我們發現在WEHI-3B JCS細胞中抗細胞 

凋亡的Bcl-XL基因表達有下調現象’而促進細胞凋亡的Bαk及Bαd基因表達則 

在共軛亞油酸混合物或9E, 11E共軛亞油酸的處理下增加了。 

此外，從Western蛋白質印迹實驗顯示，共軛亞油酸混合物和9E, 11E共軛 

亞油酸異構體均增加了 Fas死亡受體及其配體Fas-L在WEHI-3B JCS細胞中的 

蛋白表達。這些結果反映了由共軛亞油酸混合物和9E, 11E共軛亞油酸異構體觸 

發的細胞凋亡是通過「固有」和「外在」兩條凋亡路徑傳遞訊號的。而半胱氨酸 

天冬氨酸酶(caspases)-3、-8及9的活性被提高了，更進一步印證了這一點。此外， 

共軛亞油酸混合物及9E, 11E共軛亞油酸異構體更增加了在WEHI-3B JCS細胞 

中製造的超氧化物陰離子。令人感興趣的是，超氧化物陰離子的產生和脫氧核糖 

核酸梯帶的形成，均部分地受到超氧化物岐化酶(SOD)及N-乙酰半胱氨酸 
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(N-acetylcysteine)等抗氧化物所抑制。 

除誘發細胞週期停止及細胞凋亡外’共軛亞油酸混合物亦可觸發WEHI-3B 

JCS的細胞分化。我們發現WEHI-3B JCS細胞經共軛亞油酸混合物處理後其細 

胞質/細胞核比例及其空泡化均有所增加-這些均爲成熟巨噬細胞的特徵。另 

外，WEHI-3BJCS細胞的巨噬細胞分化抗原(包括Mac-1, F4/80等)的表達，均 

有上調現象，而其顆粒細胞分化抗原如Gr-1的表達則沒有明顯改變。共軛亞油 

酸混合物亦誘發了 WEHI-3B JCS細胞單核絲胺酸酯酶及內吞能力的增加，這進 

一步證實了共軛亞油酸混合物能誘發WEHI-3B JCS血癌細胞進行單核而非顆粒 

細胞分化這個說法。 

到目前爲止，共軛亞油酸混合物所誘發的骨髓性白血病細胞分化的分子機制 

仍有很多地方尙待探討及發掘。我們的實驗結果顯示，共軛亞油酸混合物能增加 

WEHI-3B JCS細胞中某些細胞因子如TNF-α、IL-1β及IFN-γ的基因表達。儘管 

如此，在共軛亞油酸混合物所引致的骨髓性白血病之單核分化中,其未爲人知的 

機制，仍有待更深入的硏究。 
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Chapter 1 General Introduction 

1.1 Hematopoiesis and Leukemia 

1.1.1 An Overview on Hematopoietic Development 

Hematopoiesis occurs sequentially in distinct anatomical locations during 

development. Since most mature blood cells are short-lived, hematopoiesis assures 

continuous hematopoietic cell production throughout adult life (Rane and Reddy, 

2002). In mammals, embryonic hematopoiesis begins in the yolk sac while definitive 

hematopoiesis occurs in the fetal liver and then switches to the bone marrow and 

spleen. In the mouse, both blood and endothelial progenitors first emerge in the 

extra-embryonic yolk sac blood islands at about embryonic day 7.5 (E7.5) (Haar and 

Ackerman, 1971). The yolk sac largely supports the production of primitive 

hematopoietic cells, consisting primarily of nucleated erythrocytes. Colonization of 

fetal liver by hematopoietic stem cells (HSC) derived from the yolk sac or the 

aorta/gonad/mesonephros (AGM) region of the embryo commences at around E10 or 

El l , and by El2 the fetal liver is the major site for hematopoietic cell development. 

Fetal liver HSC eventually migrate to the bone marrow at around El6 or El7 (Ikuta 

and Weissman, 1993), and the bone marrow becomes the predominant site for 

postnatal hematopoiesis which is continued into adult life (Zanjani et al., 1993). 

HSC contribute to the production of 200 to 250 billion (2-2.5 x 1011) 

erythrocytes, 150 to 200 billion platelets, and 100 to 150 billion neutrophils every day 

throughout human adulthood (Van Zant et al, 1997). The complex hematopoietic 

system begins with an asynchronously dividing population of HSC (Cheshier et al., 

1999). These multipotent HSC are functionally defined by their unique capacity to 

differentiate into all mature blood cell types and maintain self-renewal activity. 

Self-renewal can be symmetrical, producing two daughter HSC, or asymmetrical, 
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resulting in one HSC and another downstream progeny, commonly known as a 

"progenitor" (Warner et al.’ 2004). HSC can be classified as long-term HSC 

(LT-HSC), which are highly self-renewing cells that reconstitute an animal for its 

entire life span or short-term HSC (ST-HCS), which reconstitute the animal for a 

limited period (Passegue et al., 2003). Mouse HSC which commit to differentiation 

pass through a phase of being ST-HSC that self-renew for six to eight weeks only, and 

then advance to the multipotent progenitor (MPP) stage. MPP self-renew for less than 

two weeks, but neither MPP nor ST-HSC are capable of dedifferentiating to LT-HSC 

(Shizuru et al” 2005). LT-HSC give rise to various differentiated cells through a series 

of downstream progenitors, which have limited ability to self-renew and restricted 

capacity to differentiate along different cell lineages (Warner et al., 2004). In general, 

the process of development from oligopotent progenitors to mature cells with specific 

functions involves the progressive loss of developmental potential to other lineages. 

The progenitor cells that commit to lymphoid lineage are known as common 

lymphoid progenitors (CLP). CLP give rise to progenitors of at least four cell types --

T lymphocytes, B lymphocytes, natural killer (NK) lymphocytes, and 

antigen-presenting dendritic cells (Manz et al., 2001). On the other hand, the 

progenitor cells that commit to myeloid lineage are known as common myeloid 

progenitors (CMP), granulocyte-monocyte progenitors (GMP), as well as 

megakaryocyte-erythrocyte progenitors (MEP) (Kondo et al., 1997; Akashi et al,, 

2000). Recently, mouse megakaryocyte committed progenitors (MkP) have been 

identified as a downstream progeny derived from MEP (Nakorn et al” 2003). 

Hematopoiesis is highly regulated by expression of genes in response to 

lineage-committed differentiation of HSC, depending on the hematopoietic 

micro-environment. Cytokines such as colony-stimulating factors (CSF) and 
— — 
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interleukins (IL) are crucial examples of the hematopoietic regulatory factors 

(Goldsby et al., 2003). When mouse HSC are incubated with cytokines and/or ligands 

specific for their surface receptors, they enact gene expression profiles with 

appropriate lineage readout, i.e., myeloid and lymphoid cells through the stimulation 

of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 

(IL-3), respectively. Apart from being the precursors of erythro-megakaryocytic and 

granulo-monocytic progenitors, the common myeloid progenitors also give rise to 

eosinophil progenitors and basophil progenitors, which subsequently differentiate into 

eosinophils in response to IL-5 and basophils in response to IL-4, respectively. For the 

erythro-megakaryocytic lineage, CMP give rise to erythrocytes and blood platelets in 

response to erythropoietin (EPO) and thrombopoietin (TPO) respectively; while for 

the granulo-monocytic lineage，CMP give rise to neutrophils in response to 

granulocyte colony-stimulating factor (G-CSF), or monocytes in response to 

macrophage colony-stimulating factor (M-CSF) (Zhu and Emerson, 2002). The 

monocytes, located in the circulation, would migrate to tissues where they are then 

called "macrophages". For the lymphoid lineage, the common lymphoid progenitors 

are generated through the stimulation of IL-3. Apart from being the precursors of NK 

lymphocytes and dendritic cells, as described just previously, CLP also give rise to T 

and B lymphocytes. Interleukins such as IL-7 and IL-2 have been documented to play 

important roles in the development and maturation of T and B lymphocytes (Howard 

and Hamilton, 2002). The conceptual hematopoietic trees are depicted in Figure 1.1. 

Whether the differentiation of HSC through Hneage-committed progenitors to 

mature effector cells occurs as the result of exogenous or intrinsic signals remains 

ambiguous, however, the molecular mechanisms in either case are revealed in the 

gene expression profiles of HSC and the downstream lymphoid and myeloid 
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progenitor cells (CLP, CMP, GMP, and MEP) along the differentiation hierarchy. 

Clusters of genes preferentially expressed in progenitors precede commitment to a 

particular lineage, and the shifts in the gene expression profiles correlate with the 

distinct potentials associated with each of the progenitors. At the CLP/CMP lineage 

checkpoint, HSC commit to the lymphoid lineage by shutting down expression of 

granulocyte/macrophage-affiliated genes [e.g. myeloperoxidase (MPO) and 

granulocyte colony-stimulating factor receptor (GCSFR)] and erythrocyte-affiliated 

genes [(3-globin and erythropoietin receptor (EPOR)] (Akashi et al., 2000)，therefore 

preventing myeloid cell fates. It is interesting to note that myeloid differentiation is 

the default developmental pathway and that the gene expression programs required 

for lymphoid differentiation must be actively induced (Kondo et al., 2003). 

Under steady-state conditions, the majority of HSC is quiescent or divides slowly. 

Once they divide, they do so asymmetrically for the production of the entire 

complement of cells necessary to maintain blood production over time (Dick, 2003). 

Yet under certain circumstances, such as HSC transplantation, their divisions can be 

mostly symmetrical for a period of time to regenerate the stem cell pool before 

reverting to asymmetrical divisions (Warner et al； 2004). Therefore, normal 

hematopoietic development greatly relies on the delicate balance between 

self-renewal and differentiation. When the processes of self-renewal and 

differentiation become deregulated or uncoupled, leukemias and other 

myeloproliferative and lymphoproliferative disorders can result. Leukemogenesis 

arises from clonal expansion of a single cell and is sustained by a leukemic stem cell 

(LSC). In fact, multiple acquired genetic changes must take place in order to convert a 

normal HSC into a LSC. LSC acquires mechanisms — altered self-renewal capacity, 

increased survival, arrested differentiation and telomere maintenance — through which 

— — 
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they can replicate indefinitely (Warner et al,, 2004). Frequently, transcriptions involve 

certain genes encoding transcription factors which have been reported to play a 

pivotal role in hematopoiesis. Therefore, aberrations in the transcriptional machinery 

appear to be one of the necessary mechanisms leading to leukemias. A representative 

target for mutations in human leukemia is the AML1 (Runxl) Runt domain-core 

binding factor (3 (CBFP)-DNA ternary complex (Harada et al., 2003). Core binding 

factor (CBF) is a transcription factor complex that consists of a- and p-units. CBFa 

binds DNA while CBFp stabilizes the DNA-binding action of CBFa. By binding to 

DNA, CBF regulates the expression of a number of genes involved in hematopoiesis, 

which include GM-CSF, macrophage colony-stimulating factor receptor (M-CSFR), T 

cell receptor-a, -p, -5? and -y (TCR-a, -(3, -5, -y), cell surface glycoprotein CD36, IL-3, 

granzyme B (GRZB)，MPO, neutrophil elastase (NE) and metastasis specific 1 (mtsl) 

genes (van der Reijden et al,, 1997). It is generally acknowledged that AML1 (acute 

myeloid leukemia-1), a Runt domain-containing transcription factor encoded by 

CBFa unit, is one of those genes most frequently involved in the chromosomal 

translocations of human leukemias as a result of point mutation in the transcription 

factor (Vradii et al., 2005). The t(8;21) chromosomal translocation directs the fusion 

of two transcription factors, AML1 and ETO (eight-twenty-one or MTG8). The 

resulting chimeric fusion protein, AML1-ETO, is a dominant-negative inhibitor of 

CBF transcriptional regulation, which represses gene expression obligatory for normal 

hematopoiesis (Warner et al,, 2004). Therefore, blocked-differentiation of myeloid 

progenitors and maturation arrest at different stages during hematopoiesis are resulted, 

ultimately leading to human leukemias. 

To conclude, hematopoiesis is a complex and highly regulated process through 

interactions of various signaling pathways. It is the process of blood cell formation, 
_ - ^ -
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which involves the proliferation of hematopoietic progenitors and their differentiation 

into mature erythrocytes, leukocytes, and platelets. There are catastrophic 

consequences to aberrant hematopoiesis including inborn error of metabolism, 

aplastic anemia, neutropenia, thrombocytopenia, or a combination of these cytopenias, 

myelodysplasia, myeloproliferative disorders, lymphoproliferative disorders, and 

hematologic malignancies including leukemia and lymphoma (Van Zant et al., 1997; 

Smith, 2003). Among all these disorders, leukemia will be discussed in the next 

section in detail. � 
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Fig. 1.1: Hematopoiesis. Different types of mature blood cells are developed from 
pluripotent hematopoietic stem cells. Generally speaking, throughout the whole 
developmental process, the proliferative capacity of the cells decreases with 
increasing degree of differentiation in their functions and number. 
(Howard and Hamilton, 2002) 
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1.1.2 Leukemia 

As discussed in section 1.1, the hematopoietic stem cells are capable of 

developing into two general types of blood cells - lymphocytes and myeloid cells. In 

the lymphoid lineage, the earliest lymphocyte is the lymphoblast, which can transform 

into lymphoblastic or lymphocytic leukemias (American Cancer Society, 2005). In 

this case，leukemias involve the lymphocytes of the white blood cells. In the myeloid 

lineage, the myeloid stem cell is the earliest antecedent that gives rise to white blood 

cells, red blood cells，or platelet-producing cells. Apart from leukocyte leukemias, 

leukemias also involve erythrocyte leukemias and megakaryocyte leukemias 

(American Cancer Society, 2005). Although erythrocyte leukemias and 

megakaryocyte leukemias are quite rare, we should never solely describe leukemias as 

being white blood cell diseases. In fact, leukemia is characterized by perturbation of 

the normal differentiation program with maturation arrest leading to an accumulation 

of immature cells (the blast cells) in the bone marrow (Warner et al., 2004). Like 

other neoplasms, it arises from the neoplastic clonal expansion of a single cell. 

Leukemia initiates in the bone marrow, yet it rapidly spreads into the circulation 

and eventually reaches lymph nodes, the spleen, the liver, the central nervous system, 

and other organs (American Cancer Society, 2005). General symptoms of leukemia 

include fatigue, weakness, weight loss, fever, loss of appetite, and less often, profuse 

bleeding from the gums and mucous membranes under the skin (Van Zant et al” 1997; 

American Cancer Society, 2005), and most of which are resulted from a shortage of 

normal and functional blood cells comprising leukocytes, erythrocytes, and 

megakaryocytes. Although leukemia is typically thought to be a childhood disease, it 

strikes many more adults (Karen and Peterson, 2005). It is a complex disease with 
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many different types and subtypes, which will be discussed in the following section. 

1.1.2.1 General Diagnostic Tests for Leukemia 

Blood cell counts, blood examination, bone marrow tests, as well as various lab 

tests are the most common tests to find out if leukemia is present, what type of 

leukemia it is, and how well the disease is responding to specific treatments. 

Blood cell counts can detect changes in the quantities of different blood cell 

types. Most people with leukemias will have excess yet non-functional white blood 

cells, insufficient red blood cells, and insufficient platelets (American Cancer Society, 

2005). We can also classify the leukemia cells into specific types by looking at their 

size and shape under a microscope. The most immature cells are called “blasts，，，the 

number of blasts in the bone marrow is essential in telling if a person has leukemia. 

There are two different bone marrow tests to diagnose for leukemias. The first 

one is bone marrow aspiration, through which a thin needle is used to draw up a small 

amount of liquid bone marrow (American Cancer Society, 2005). The second one is 

bone marrow biopsy, through which a small cylinder of bone and marrow is removed 

with a slightly larger needle (American Cancer Society, 2005). 

Furthermore, there are precise lab tests which help to diagnose and classify 

leukemias, and these include cytochemistry, flow cytometry, immunocytochemistry, 

cytogenetics, and molecular genetic studies (American Cancer Society, 2005). 
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1.1.2.2 Classification and Epidemiology of Leukemia 

Leukemias can be first classified by their onset rate and the degree of cellular 

maturation. As a result, there are acute leukemias and chronic leukemias. "Acute" 

refers to a condition where the leukemia cells grow rapidly, however, they are 

incapable of maturing properly (Hoffbrand et al., 2001; American Cancer Society, 

2005). In addition, many of these immature cells are blast cells, which are normally 

found in the bone marrow. If acute leukemias are not well treated, they could be fatal 

in a few months. On the contrary, "chronic" means that the leukemia cells look mature 

but they are not fully normal and functional. In chronic leukemias, the white blood 

cells generally do not fight infections as well as do normal white blood cells. The 

diseases have a gradual onset with a prolonged clinical course (Hoffbrand et al,, 2001; 

American Cancer Society, 2005). The second factor to consider in classifying 

leukemia is the type of bone marrow cells that are affected. If granulocytes or 

monocytes are involved, the leukemia is called myelocytic leukemia (also known as 

myeloid or myelogenous leukemia); if bone marrow lymphocytes are involved, the 

leukemia is called lymphocytic leukemia. 

Therefore, by looking at whether a leukemia is acute or chronic, and whether it is 

myelocytic or lymphocytic, most cases of leukemias can be sorted into one of the four 

major types: acute myelocytic leukemia (AML), acute lymphocytic leukemia (ALL), 

chronic myelocytic leukemia (CML), and chronic lymphocytic leukemia (CLL) 

(American Cancer Society, 2005), The key statistics and the risk factors for the four 

major types of leukemias are summarized in Table 1.1. 

In 2005, there will be about 34,810 new cases of all types of leukemia in the 

United States, and acute leukemias contribute to about half of these cases. Among all, 
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AML is the most common leukemia. About 20% of adult AML cases are linked to 

smoking. In addition, chromosomal translocations, deletions, and inversions can also 

affect the development of AML. Translocations, which often occur in many cases of 

AML, can turn on oncogenes，shut down tumor-suppressor genes, or turn off genes 

that would normally help a cell to mature (American Cancer Society, 2005). For most 

types of cancers, they are given stages of Is II, III，or IV, based on the tumor size and 

how far from the original site the cancer has metastasized. Stages are useful in 

determining the prognosis (outlook for chances of survival) and guiding specific 

therapies (American Cancer Society, 2005). However, leukemia does not usually form 

a solid mass or tumor. Several years ago, an international congress was held to decide 

on the best system of classification of acute leukemias. This group of French, 

American, and British hematologists as well as pathologists decided that AML should 

be further divided into 8 subtypes, designated M0 through M7, based on the type of 

cells from which the leukemia developed. This system (the French-American-British 

or FAB system) was based on the microscopic appearance of the cells such as 

ultrastructural morphology, cytogenetics, immunophenotyping, and 

immunohistochemical markers (Hoffbrand et al.’ 2001). Table 1.2 summarizes the 

FAB classification of AML. 

ALL affects children and adults. Most leukemias in children are ALL, which 

occurs at age 3 to 6. Having at least 20% to 30% lymphoblasts, the earliest 

lymphocytes, in the bone marrow is generally required for diagnosis of ALL. The 

most significant factor that decides ALL outcomes is whether there are chromosomal 

translocations. The most common translocation seen in ALL is known as the 

"Philadelphia chromosome", which is an extra large chromosome 22 as a result of a 

translocation between chromosomes 9 and 22. It occurs in about 20% to 25% of ALL 
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cases and patients with such a translocation have a much worse outcome than those 

lacking it. Another translocation between chromosomes 4 and 11 also carries a poor 

outlook. This occurs in about 5% of the ALL cases (American Cancer Society, 2005). 

Other chromosome changes such as deletions and inversions can also affect ALL 

development, although they are much rarer. According to the FAB system, ALL 

should be divided into three subclasses as summarized in Table 1.2. The L3 subclass 

is also known as the Burkitt type leukemia. 

CML is a type of leukemia that initiates in blood-forming cells of the bone 

marrow and invades the blood. It can also progress into a fast-growing acute leukemia 

that invades almost any organ in the body. The changes in DNA leading to cancer 

have been well illustrated in CML. "Philadelphia chromosome" is found in the 

leukemia cells of almost all patients with CML. The translocation contributes to the 

formation of an oncogene called bcr-abl, which acts to initiate leukemic cell growth 

and development (Randolph et al., 2005). According to the American Cancer Society, 

CML can be categorized into three phases as summarized in Table 1.3. 

There are two forms of CLL, one is very slow growing and the other is faster 

growing. In fact, the slow-growing CLL rarely needs to be treated, and the average 

survival for patients with this form of CLL is around 25 years. On the other hand, the 

latter form of CLL is a more serious disorder, and patients have an average survival of 

only about 6 to 8 years (American Cancer Society, 2005). CLL originates from a 

clone of B lymphocytes in 95% of patients while only 5% shows a T-lymphocyte 

origin. Each human cell contains 23 pairs of chromosomes, however there is often a 

deletion in chromosome from the leukemia cells of patients with CLL (Dickinson et 

al,, 2005). Although the chromosomal deletion often occurs in chromosome 11 or 13, 

~ - 12-
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other chromosomes can also be affected. Moreover, an extra chromosome 12 can be 

sometimes found in CLL. There are two systems for staging CLL. The Rai 

classification is used more often in the United States, whereas the Binet system is 

used more widely in Europe. The Rai stages can be separated into low-, intermediate-, 

and high-risk categories. Stage 0 is considered low risk, stages I and II are considered 

intermediate risk, and stages III and IV are considered high risk (American Cancer 

Society, 2005). In the Binet system, CLL is classified according to the number of 

affected lymphoid tissue groups (neck lymph nodes, groin lymph nodes, underarm 

lymph nodes, spleen, and liver) and the presence of anemia or thrombocytopenia 

(American Cancer Society, 2005). Table 1.3 summarizes the Rai system and the Binet 

system for classification of CLL. 

In Hong Kong, childhood cancer is the second leading cause of death among 

children. The incidence rate is about one per 10,000 children and around 120 to 150 

new cases develop each year. Among different types of malignancy, leukemia is the 

most common childhood cancer in Hong Kong, with 36% of total malignant cases as 

reported in the most recent ten-year review (Children's Cancer Foundation, Hong 

Kong, 2005). 
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Table 1.1: Key statistics and risk factors for the four major types of leukemias, 

AML ALL CML _ CLL 

Estimated new 
cases in 2005 in 11,960 3,970 4,600 9,730 
the US alone 

Estimated no. of 
death in 2005 in 9,000 1，490 850 4,600 
the US alone 

Average age of 产八 … 
6 5 65 50 50 70 

patients 

Ratio of adult to Adult: 90% Adult: 67% Adult: 98% 
Adult only 

children Children; 10% Children: 33% Children: 2% 

* S-vear survival Adult： 11 /o 1 Adult: 56% I 丨 
y 27% 68% 

rate Children: 40% Children: 70% 

Sex prevalence Male - -

• Smoking • High-dose • High-dose • Herbicides 
• Long-term radiation radiation (e.g. Agent 

exposure to • Viral infection Orange) 
high levels of (e.g. HTLV-1) • Insecticides 

Risk factors benzene 
• High-dose 

radiation 
• Viral infection 

(e.g. HTLV-1) 

* The 5-year survival rate refers to the percentage of patients who live at least 5 years after 
their cancer is found. In the United States, it varies according to the type of leukemia and 
the age of the patient. 

(American Cancer Society, 2005; Karen and Peterson, 2005) 
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Table 1.2: The French-American-British (FAB) system for classification of acute 
leukemias. 

Type Subtype Sub-class 

• MO: undifferentiated myeloblastic,�50/o 
• Mh myeloblastic with minimal maturation,�15% 
• M2: myeloblastic with granulocytic maturation,�25% 

Acute Mye oi •紹.promyelocytic with many granules, ~ 10% 
Leukemia (AML) • M4: myelomonocytic,�25% (eosinophilia,�5%) 

• M5A: monoblastic; M5B: promonoblastic,�10% totally 
Acute • m6: erythroblastic,�5% 

Leukemia • M7: megakaryoblastic,�5% 

• LI: T cell or pre-B cell; homogeneous small blasts with 
Acute little cytoplasm; typically seen in children;�30% 

Lymphoblastic • L2: T cell or pre-B cell; heterogeneous larger blasts with 
variable amounts of cytoplasm; most often in adult;�65% 

Leukemia (ALL) • L3: B cell; homogeneous large blasts with vacuolated 
basophilic cytoplasm; rare ;�5% 

(Modified from Hoffbrand et al, 2001; American Cancer Society, 2005) 

— -15 - — 



Chapter 1 General Introduction 

Table 1.3: Classification of chronic leukemias. 

Type Subtype Phase / Stage 

• Chronic phase: fewer than 10% blasts (or 20% blasts and 
promyelocytes combined) in blood or bone marrow samples; 
patients usually have mild symptoms and respond to standard 
treatments 

• Accelerated phase: more than 10% blasts (or 20% blasts and 
Chronic promyelocytes combined) but fewer than 30% blasts and 

t . j promyelocytes in blood or bone marrow samples; the leukemia 
cells often have developed new chromosome changes in 

Leukemia addition to the Philadelphia chromosome; symptoms and blood 
counts of patients are not as responsive to therapies as they are 

(CML) during the chronic phase 
• Blast phase (also called acute phase or blast crisis): bone 

marrow and/or blood samples have more than 30% blasts and 
promyelocytes; the blast cells often spread to tissues beyond 
the bone marrow; CML has transformed into a very aggressive 
acute leukemia at this phase 

The Rai system: 
• Stage 0: lymphocytosis is present (blood lymphocyte count is 

Chronic over 10,000 lymphocytes per mm3 of blood); lymph nodes, 
Leukemia spleen，and liver are not enlarged; red blood cell and platelet 

counts are near normal 
• Stage I: lymphocytosis and enlarged lymph nodes; spleen and 

liver are not enlarged; red blood cell and platelet counts are 
near normal 

• Stage II: lymphocytosis and enlarged liver or spleen; with or 
Cliroriic 

without enlarged lymph nodes; red blood cell and platelet 
Lymphoblastic c o u n t s a r e near normal 

Leukemia • stage III: lymphocytosis and anemia; with or without enlarged 
(CLL) lymph nodes, spleen, or liver; platelet counts are near normal 

• Stage IV: lymphocytosis and thrombocytopenia; with or 
without anemia, enlarged lymph nodes, spleen, or liver 

The Binet system: 
• Stage A: fewer than 3 areas of lymphoid tissue are enlarged; 

with no anemia or thrombocytopenia 
• Stage B: 3 or more areas of lymphoid tissue are enlarged; with 

no anemia or thrombocytopenia 
• Stage C: anemia and/or thrombocytopenia are present 

(Modified from American Cancer Society, 2005) 
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1.1.2.3 Conventional Approaches to Leukemia Therapy 

Nowadays, the three most common tactics for treatment of leukemias include 

chemotherapy, radiotherapy, and bone marrow or peripheral blood stem cell 

transplantation (SCT). Treatment options are based on the leukemia subtypes and 

disease stages. In chemotherapy, drugs are given in a vein, a muscle, into the 

cerebrospinal fluid (CSF), or taken by mouth to achieve remission by eliminating 

most of the normal and leukemic bone marrow (American Cancer Society, 2005). 

Combination cytotoxic chemotherapy with several drugs is often used over a period of 

time to enhance the cytotoxic effect and to prevent relapse. The chemotherapy 

regimen for AML usually includes cytarabine (ara-C) and an anthracycline drug such 

as daunorubicin or idarubicin; whereas the regime for ALL often involves 

cyclophosphamide, vincristine, dexamethasone (or prednisone), L-asparaginase, and 

doxorubicin (or daunorubicin) (American Cancer Society, 2005). In CML, the 

"Philadelphia chromosome" generates the abnormal bcr-abl gene and a constitutively 

activated Bcr-Abl protein. Since Bcr-Abl is the causative abnormality in CML, 

Imatinib mesylate, an orally available tyrosine kinase inhibitor, is applied to 

specifically block Bcr-Abl tyrosine kinase activity. Clinical trials have demonstrated 

that imatinib mesylate produces rapid responses in patients with all stages of CML 

(Duffy, 2003). For patients with CLL, they are usually treated with chlorambucil. 

Cyclophosphamide may be substituted if chlorambucil causes side effects. 

Combination therapy may sometimes be employed - the combined use of 

cyclophosphamide with doxorubicin and other drugs such as vincristine and 

prednisone (American Cancer Society, 2005). 

In fact, chemotherapy is the double-edged sword of modern medicine. 
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Chemotherapeutic drugs, whatever form, is made up of toxins meant to 

non-speciflcally kill all actively dividing cells involving not just cancer cells but also 

normal fast growing cells in the bone marrow, hair follicles, and the lining of 

digestive and reproductive tracts (Hoffbrand et al,, 2001; American Cancer Society, 

2005). As a result, chemotherapy can lead to serious side effects in patients. Reduced 

production of blood platelets results in easy bruising or bleeding, low white blood cell 

counts contributes to a higher risk of infection, and low red blood cell counts brings 

about anemia and tiredness. Moreover, some anticancer drugs can affect a patient's 

fertility; other common side effects include hair loss, loss of appetite, nausea and 

vomiting (American Cancer Society, 2005). Apart from the side effects, multidrug 

resistance (MDR) is also a major concern in cancer patients. Development of 

resistance towards chemotherapeutic drugs is associated with myriad mechanisms that 

diminish drug cytotoxicity. P-glycoprotein and multidrug resistance protein (MRP) are 

two members of the large family of ATP-binding cassette transporters that confer 

MDR in human cancer cells. P-glycoprotein，a membrane glycoprotein encoded by the 

MDR1 gene, reduces the intracellular concentration of chemotherapeutic drugs by 

acting as a drug efflux pump. P-glycoprotein exports many types of drugs, including 

Vinca alkaloids, anthracyclines, paclitaxel, actinomycin D, and epipodophyllotoxins 

(Gouaze et al,, 2005), 

In radiotherapy, high-energy rays or particles are employed to kill leukemia cells. 

For patients with acute leukemias, radiation may be applied when leukemia cells have 

spread to the brain and spinal fluid or to the testicles. For patients with chronic 

leukemias, radiation therapy is usually not the main treatment. However, it is used to 

shrink the enlarged internal organs, such as the spleen, to prevent them from pressing 

on other organs. Radiation therapy is also useful in treating pain due to bone damage 
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as a result of leukemic cell growth within the bone marrow. Moreover, radiation is 

given to several parts of the body prior to bone marrow or peripheral blood stem cell 

transplantation (American Cancer Society, 2005). Radiation attacks both the 

proliferating cancer cells as well as rapidly growing cells of normal tissues. The main 

short-term side effects of radiotherapy are sunburn-like skin changes in the treated 

area, fatigue, and reduced resistance to infection (American Cancer Society, 2005). 

Stem cell transplantation (SCT) is regarded as a standard therapy that permits the 

use of high-dose chemotherapy and total body radiotherapy to kill all the "hidden" 

leukemia cells in patients' body, which result in destruction in their bone marrow. 

Patients can receive SCT to restore their bone marrow following chemotherapy and 

radiotherapy. For SCT, stems cells are collected from the bone marrow (known as 

bone marrow SCT) through bone marrow aspiration or from the bloodstream (known 

as peripheral blood SCT) in a process called apheresis (American Cancer Society, 

2005). Post-transplantation therapies include drugs such as prednisone and 

cyclosporine that can weaken a patient's immune system to prevent it from rejecting 

the transplant. For the next few weeks patients are given supportive therapies such as 

intravenous nutrition, anti-bacterial and anti-fungal antibiotics, red blood cell 

transfusions, platelet transfusions, or other medications if necessary (American 

Cancer Society, 2005). In fact, such clinical procedures are very expensive and tricky 

in searching suitable major histocompatibility complex (MHC) compatible donors for 

patients receiving allogeneic SCT. Moreover，life-threatening graft-versus-host 

disease (GVDH) still represents a major complication of allogeneic SCT, which 

occurs when the immunocompetent donor T lymphocytes contained in the graft attack 

the patient's epithelial surfaces of the skin and mucous membranes, biliary ducts of 

the liver, and crypts of the intestinal tract, as a result of MHC disparities between the 
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donor and the immunosuppressed patient (Vargas-Diez et al., 2005). The most 

disabling symptoms of GVHD are severe skin rashes and severe diarrhea. On the 

positive side, however, GVHD can also lead to graft-versus-leukemia activity 

(American Cancer Society, 2005). Leukemia cells remaining after the chemotherapy 

and radiotherapy will often be eradicated through immune rejection by the donor 

immune cells. 

1.1.2.4 Novel Approaches to Leukemia Therapy 

While chemotherapeutic drugs eradicate leukemia cells, they can also kill our 

rapidly growing cells as a result of adverse cytotoxicity. In addition, certain side 

effects of the drugs often damage human organs including the kidneys, liver, brain， 

heart, lungs, testes, and ovaries (American Cancer Society, 2005). A representative 

example is tumor lysis syndrome, a side effect caused by the rapid breakdown of 

leukemia cells during cancer treatment, constituting a major source of morbidity and 

mortality. Very often, these dying leukemia cells release substances into the 

bloodstream leading to acute renal failure (Lameire et al,, 2005). Many other 

undesirable side effects along with conventional chemotherapies also put forward the 

need to develop novel strategies for treatment of hematologic malignancies. 

Leukemia results from disruption of the fine balance between proliferation and 

differentiation of hematopoietic stem cells and/or progenitor cells. Over the past 

decade, significant breakthroughs have been made to arrest the cell cycle, to provoke 

apoptosis, or to induce differentiation of leukemia cells by natural products (Fung et 

al., 1997; Mak et al,, 2002; Lung et al, 2004). A paradigm is provided by the clinical 

development of a non-chemotherapeutic drug known as all-trans-retinoic acid (ATRA) 
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in the treatment of acute promyelocytic leukemia (APL)，through induction of 

differentiation of APL cells into mature granulocytes (Huang et al” 1988; Pandolfi, 

2001). After remission of APL, further treatment usually consists of two or more 

courses of chemotherapy followed by maintenance with ATRA for at least one year. 

About seven out of ten patients are effectively cured with this approach (American 

Cancer Society, 2005). Other examples of naturally occurring anti-tumor compounds 

include 1,25 dihydroxycholecalciferol (vitamin D3), quercetin (flavonoid), 

biochanin A (isoflavonoid), epigallocatechin-3-gallate (EGCG, green tea catechin), 

trans-3,4',5-trihydroxystilbene (red wine resveratrol), and arsenic trioxide (AS2O3). 

Among them, vitamin D3 and AS2O3 are employed in clinical trials for hematologic 

malignancies (Miller and Waxman, 2002). While vitamin D3 had been reported to 

induce G0/G1 phase cell cycle arrest, differentiation, and apoptosis of human APL 

HL-60 and NB4 cells (Hisatake et al., 2001), As203 also induced apoptosis in APL 

cells (Mak et al” 2002) and triggered cellular differentiation of APL cells from 

patients who had relapsed (Soignet et al., 1998). Similarly, quercetin also exhibited 

apoptosis-inducing effect on human APL HL-60 cells (Shen et al., 2003), and 

biochanin A induced monocytic differentiation of murine myelomonocytic leukemia 

WEHI-3B ICS cells (Fung et al, 1997). Moreover, the green tea catechin EGCG 

inhibited the growth of leukemia cells by inducing differentiation of the human 

eosinophilc leukemia EoL-1 cells (Lung et al, , 2002). Resveratrol, a phytoalexin often 

found in skins of red grapes and red wines, inhibited the proliferation of human APL 

HL-60 cells through induction of apoptosis (Kang et al” 2003). 

Therefore, there is an increasing interest in the use of natural products as 

complementary and/or alternative medicines against leukemias in recent years 

(American Cancer Society, 2005). They are good candidates for cancer therapy not 
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only by providing low-dose chemotherapy in combination with conventional 

treatments, but also by assuaging side effects, alleviating drug resistance, and 

lessening recurrence of malignancies. Over the past two years, we have sought to 

address this issue by studying the anti-tumor activities of a kind of dietary fats, the 

conjugated linoleic acid (CLA), on myeloid leukemia cells. We have found a few 

distinct yet complementary mechanisms that CLA retards leukemic cell growth, 

which will be delineated in detail in chapters 3, 4 and 5 of this M.Phil. dissertation. 
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1.2 Conjugated Linoleic Acid 

1.2.1 Introduction: Historical Development and Occurrence of Conjugated 

Linoleic Acid 

In general, the term "conjugated linoleic acid" and its acronym "CLA" refers to a 

group of positional and geometric conjugated dienoic isomers of omega-6 essential 

fatty acid, linoleic acid (Pariza et al., 2001). All cis- (Z-) and trans- (E-) isomeric 

combinations of CLA have been virtually identified in human diet, of which the most 

commonly occurring CLA isomer found in food is cis-9, trans-l 1 octadecadienoic 

acid (cis-9, trans-\ 1 CLA), followed by trans-l, cis-9 CLA, cis-ll, trans-\3 CLA, 

trans-ll5 cis-13 CLA, cistrans-10 CLA, trans-S, cis-10 CLA, and trans-10, cis-12 

CLA (Kelly, 2001; Belury, 2003). Numerous fatty acids with conjugated double 

bonds appear naturally in edible fats derived from ruminant animals, for example milk 

fat and beef tallow (Pariza et al,, 2001). However, CLA is not found to exist in 

significant amount in plants. According to an examination on CLA content in milk 

from various herds of cows in New York State, CLA levels ranged from 2.4 to 18 mg 

CLA/g fat (Ma et al., 1999), 

Prior to 1987, scientific attention in CLA was largely confined to rumen 

microbiologists who studied the cis-9, trans-ll CLA isomer as an intermediate in the 

biohydrogenation of linoleic acid (Parodi, 1999). Significant breakthroughs have been 

made in the research of CLA when Ha et al. (1987) reported that CLA produced by 

base-catalyzed isomerization of linoleic acid was an effective inhibitor of 

benzo(a)pyrene-initiated mouse epidermal neoplasia. Since then, copious biological 

and physiological effects of CLA have been reported, which will be discussed in the 

following sections in detail, 
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1.2.2 Phytochemistry and Metabolism of Conjugated Linoleic Acid 

1.2.2.1 Chemical Structures of Conjugated Linoleic Acid Isomers 

The biochemical nomenclature for linoleic acid designates as cis-9, cis-12 

octadecadienoic acid (CI8:2). Linoleic acid has an 18-carbon ("octa-deca") fatty acid 

backbone containing two double bonds ("di-en") at the 9 and 12 carbon atoms in a 

c/^-isomeric configuration. This structural configuration results in two double bonds 

separated by two single bonds. CLA is formed when reactions shift the location of 

one or both double bonds of linoleic acid in such a way that the two double bonds are 

separated by one single bond As a result, several dozen different CLA isomers are 

possible, depending on which double bonds are relocated and the resulting cis- or 

trans-isomQric reconfigurations (Kelly, 2001). Fig. 1.2 depicts the chemical structures 

of linoleic acid and several common CLA isomers. However, some commercial CLA 

preparations contain additional isomers with conjugated double bonds at positions 8 

and 10, or 11 and 13 (Pariza et al., 2001). 
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Fig. 1.2: Chemical structures of linoleic acid and several common CLA isomers. 
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1.2.2.2 Biosynthesis of Conjugated Linoleic Acid 

CLA is found predominantly in products of ruminants and is formed as a result 

of incomplete microbial biohydrogenation (metabolism) of dietary unsaturated fatty 

acids in the rumen (Kelly and Bauman, 1996). The pathway by which linoleic acid is 

biohydrogenated to stearic acid is presented in Fig. 1.3. When biohydrogenation is not 

complete, CLA can escape the rumen and be absorbed from the digestive tract, 

thereby providing the mammary gland with a source of CLA which is found in milk 

fat (Kelly and Bauman, 1996). The endogenous rumen bacteria primarily responsible 

for the biohydrogenation are known as Butyrivibrio fibrisolvens, which have linoleic 

acid isomerase enzyme activity (Kelly, 2001). Although CLA is an intermediate in 

ruminal biohydrogenation of linoleic acid, the cow can also synthesize CLA in 

mammary gland from trans fatty acid (trans-11 18:1) with an enzyme called 

A9-desaturase (Griinari et al., 2000). This enzyme inserts a c彷-double bond at carbon 

9 of the trans-W fatty acid to form the cis-9, trans-\\ CLA isomer. This biochemical 

pathway attributes to the majority of CLA found in products generated from milk fat 

of lactating cows (Kelly, 2001), Interestingly, adipose tissues of growing sheep and 

cattle have substantially greater amount of A9-desatirrase, therefore adipose tissue 

seems to be the pivotal site of endogenous synthesis of cis-9, trans-I I CLA in 

growing ruminants; and mammary gland is the apparent site of endogenous synthesis 

of cis-9, trans-W CLA in lactating ruminants (Bauman et al., 1999). As a result of the 

isomerization and desaturation reactions in cows, cis-9, trans-W CLA is thereby the 

principal CLA isomer in the human diet. 

For the trans-10, cis-12 CLA isomer, it has been reported that Propionibacter 

can convert linoleic acid to trans-10, cis-12 CLA. Certain as-yet-unidentified rumen 
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bacteria also appear to possess this capability to form trans-10, cis-12 CLA in rumen 

digesta, in addition to cis-9, trans-\\ and trans-9, trans-11 CLA (Pariza et al； 2001). 

Although cow's milk is reported to contain trans-10, cis-\2 CLA and trans-10 fatty 

acid, since mammals do not possess A12 desaturase, they could not subsequently 

convert trans-10 fatty acid into trans-10, cisA2 CLA. Accordingly, the trans-10, 

cisA2 CLA reported in milk fat would seem to originate solely from trans-10, cis-12 

CLA that is absorbed from the gastrointestinal tract. In addition, the sources of other 

CLA isomers that occur naturally in milk fat are not known, but it is most likely that 

they are derived from bacterial metabolism in the rumen (Pariza et al,, 2001). In fact, 

CLA content of milk fat can be influenced by directly manipulating the type of dietary 

supplements fed to dairy cows. Supplementing cows' diet with polyunsaturated oils 

that contain either linoleic acid (e.g. corn oil or sunflower oil) or linolenic oil (e.g. 

fish oil) increases CLA content of milk fat substantially (Kelly，2001). Furthermore, it 

has been reported that not just the quantities but also the ratios of CLA isomers 

produced in the rumen and subsequently found in beef fat may be affected by diet 

(Pariza et al., 2001). 

In humans, low concentrations of CLA are found in human blood and tissues 

(MacDonald, 2000). However, unlike ruminants, human production of CLA from free 

radical-mediated oxidation of linoleic acid does not appear to occur to any significant 

degree. In one experiment, feeding 16 g/day linoleic acid for six weeks resulted in no 

changes in plasma levels of CLA (Herbel et al., 1998). In mice, tissue CLA levels 

decline steadily following the withdrawal of CLA from the diet. Since tissue levels of 

CLA in humans seem to be a direct reflection of dietary exposure to CLA, it is likely 

that a similar decline would result in humans subsequent to CLA withdrawal from the 

diet (Kelly, 2001). The primary isomer that builds up in human tissues subsequent to 

- . 2 7 - …— 



Chapter 1 General Introduction 

milk fat intake is also the cis-9, trans-ll CLA. 

Some bacterial species in the large intestine of monogastric animals, for example 

Lactobacillus reuteri from rat colon, also possess the capacity to convert linoleic acid 

into cis-9, trans-l\ CLA through microbial metabolism (Pariza et al” 2001). Although 

bacteria for linoleic acid conjugation were also detected in human intestinal tract, 

CLA synthesis from dietary linoleic acid was not observed. Emerging evidence 

suggests that the bacterial linoleic acid-conjugating activity is inhibited by glucose 

and other carbohydrates in rats. The total concentrations of glucose and total reducing 

carbohydrates found in cecum and colon contents of rats were sufficiently high to 

inhibit CLA synthesis in vivo (Kamlage et al., 2000). 
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Linoleic Acid 
(cis-9, cw-12C18:2) 

Butyrivibrio fibrisolvens \ 
y 

Conjugated Linoleic Acid 
(cis-9, trans Al CI 8:2) 
(cis-9, cis-U CI8:2) 

(trans-9, cis-ll CI8:2) 

Y 
Trans Fatty Acid 
(trans-9 C\S:l) 
(trans-U CI8:1) 

1 

Stearic Acid 
(saturated CI8:0) 

Fig. 1.3: The pathway of biohydrogenation of linoleic acid to stearic acid by 

rumen microorganisms. 
(Modified from Kepler et al” 1966; Kelly and Bauman, 1996) 
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1.2.2.3 Metabolism of Conjugated Linoleic Acid 

Of 28 positional and geometrical isomers of CLA, the only CLA isomers that 

have been shown to be metabolized in vivo are cis-9, transA\ and trans-\09 cis-\2 

CLA which can undergo A6 desaturation, elongation and further A5 desaturation, 

while maintaining the conjugated diene (CD) double bond structure. As a result, the 

two CLA isomers (CD 18:2) form conjugated y-linolenate (CD18:3; by introducing a 

double bond at position 6), conjugated eicosatrienoate (CD20:3; by adding two carbon 

atoms) and conjugated arachidonic acid (or conjugated eicosatetraenaote, CD20:4; by 

introducing a double bond at position 5) (Banni, 2002), Indeed, emerging evidence 

indicates that all these elongated and desaturated metabolites have been identified in 

the liver and mammary tissue of rats and adipose tissue and sera of humans (Belury, 

2002). Moreover, other metabolites with 16 carbon atoms, possibly derived from 

peroxisomal p-oxidation of CLA and its metabolites, have been detected. CD 16:2 is 

most probably derived from CLA, whereas CD 16:3 is most probably derived from 

CD20:4 (theoretically, CD16:3 could also be derived from CD18:3 and CD20:3) 

(Banni, 2002). In fact, it has been reported that linoleic acid is metabolized to the 

same extent, to form CD 18:3, as CLA when compared in an enzymatic study using a 

hepatic isolate of 46 desaturase enzyme (Belury, 2002). The schemes of CLA as well 

as linoleic acid metabolism are depicted in Fig�1.4. 

Metabolism of CLA and its metabolites in peroxisomes suggests that they might 

be capable of activating peroxisome proliferator-activated receptors (PPAR). CLA has 

been reported to ligate and activate PPAR-a, and to induce key enzymes of 

peroxisomal p-oxidation (Moya-Camarena et al., 1999). Interestingly, conjugated 

arachidonic acid derived from trans-10 or cis-10 CLA possesses double bonds in 
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positions A5,8,12,14, which is similar to a PPAR-y ligand, raising the possibility that 

CD20:4 A5,8,12,14 may also be a PPAR-y ligand (Banni, 2002). Nevertheless, the 

role of CLA metabolites in modulating tissue responses such as adipose tissue mass, 

glucose sensitivity, carcinogenesis, and/or tumor formation is pending further 

investigation. Yet the physiological activities of CLA metabolites are hampered by the 

lack of availability of purified metabolites (e.g. CD18:3, CD20:3, and CD20:4) for 

study in cell culture and in vivo feeding experiments (Belury, 2002). 
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Linoleic Acid trans-109 cis-12 CLA c/5-9, trans-11 CLA 
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. CD18:3 CD18:3 
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CD20:3 CD20:3 CD20:3 
Di-homo-y-linolenate 8Z, 12E, 14Z 8Z, 11Z, 13E 
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Fig. 1.4. Schemes of CLA and linoleic acid metabolism 

Key: Z - cis configuration; 
E - trans configuration; 
Red arrow - peroxisomal p-oxidation. 

(Modified from Belury, 2002; Banni，2002). 
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1.2.2.4 Mode of Entry and Tissue Incorporation of Conjugated Linoleic Acid 

CLA can be fed as free fatty acid or as triglyceride. Since it is lipid-soluble in 

nature, CLA is freely incorporated into the membrane phospholipids such as 

phosphatidylcholine and cholesteryl esters (Kelly, 2001). The majority of 

commercially available CLA is in the form of free fatty acids but not the 

triglyceride-bound CLA as found in food. It is not currently known whether the 

pharmacokinetics of CLA preparations in humans is influenced by feeding CLA as 

free fatty acids or as triglyceride-bound preparation (Kelly, 2001). Importantly, the 

accumulation of CLA isomers and several elongated, desaturated, and p-oxidation 

metabolites have been found in tissues of animals fed diets with CLA (Belury, 2002). 

The incorporation of CLA in humans is tissue-dependent, with adipose and lung 

tissues comprising the highest CLA concentrations (Kelly, 2001). However, the 

incorporations of cis-9, trans-ll and trans-10, cisA2 CLA isomers into both plasma 

lipids (e.g. phosphatidylcholine and cholesteryl esters) and peripheral blood 

mononuclear cell lipids were found to be relatively low (Burdge et al., 2004). 

1.2.2.5 Toxicology of Conjugated Linoleic Acid 

Rat toxicity data indicated that CLA intake as 1.5 percent of the diet for 36 

weeks results in no histopathological damage to organs and no hematological 

abnormalities (Scimeca, 1998), In order to support the safety-in-use of Clarinol 

G80, a product with approximately equal proportions of cis-9, trans-ll and trans-10, 

cis-\2 CLA which account for 75% of the total fatty acid content, two in vitro 

mutagenicity assays and a 90-day repeat-dose oral rat toxicity study were performed. 

The results showed that Clarinol™ G80 was non-mutagenic. In the 90-day toxicity 
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study, Clarinol™ G80 could lead to hepatocellular hypertrophy in female rats (but not 

the male ones) receiving the highest dose level (15% w/w). Because there were no 

changes in clinical chemistry and histology of the liver, such hepatocellular 

hypertrophy was not considered as adverse treatment-related effect and was regarded 

as an adaptive effect as it was reversible upon withdrawal of the test material. In 

addition, an increase in plasma insulin levels was also observed in these female rats 

but there was no effect on plasma glucose levels. Therefore, it has been concluded 

that a “No Observed Adverse Effect Level" (NOAEL) of 5% Clarinol™ G80, which 

is equivalent to 2433 mg/kg bw/day for male and 2728 mg/kg bw/day female rats， 

was identified in the study (O'Hagan and Menzel, 2003). Nonetheless, the effects of 

chronic use of CLA appear to be variable among animal species, genotype and sex 

(O'Hagan and Menzel, 2003), For instance, CLA at 1% of the diet has resulted in 

hepatomegaly in some mice (Kelly, 2001). 

Other studies also concluded that CLA did not produce adverse effects in dogs 

and pigs even when fed at 5% in the diet (Pariza, 2004). Human clinical trial data on 

Clarinol™ G80 and other mixed isomer preparations of CLA have shown no effect on 

insulin and glucose levels (O'Hagan and Menzel, 2003). Moreover, in the published 

human clinical trials no effect on liver function has been reported. Aspartate 

aminotransferase (ALAT)， alanine aminotransferase (ASAT), and 

y-glutamyltransferase (y-GT) levels were not affected by treatment with 1.7-6.8g/day 

CLA for a period of 12 weeks in both male and female volunteers (Blankson et al., 

2000). Adverse effects reported after CLA administration in human subjects may 

include gastrointestinal complaints and fatigue (Blankson et al., 2000). In fact, there 

are contradictions concerning the effects of CLA on insulin and glucose homeostasis 

in man with recent reports indicating that CLA increases insulin level in plasma while 
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others show no effect on glucose level (Wahle et al., 2004). Clearly, the 

documentations of adverse effects of CLA on health are in the minority but they need 

to be critically appraised before the health benefits of CLA can be arrived at. 

1.2.3 Physiological Activities of Conjugated Linoleic Acid: Reported Health 

Benefits 

Over the past two decades many health benefits (these will be discussed in 

sections 1.2.3.1 through 1.2.3.7) have been attributed to CLA (as small as 0.5% of diet) 

in experimental animal models including its actions on conditions such as obesity, 

atherosclerosis, carcinogenesis, tumor formation, and to delay the onset of diabetes 

and enhance our immune system (Belury, 2002). The overwhelming number of 

beneficial reports for CLA on the basis of studies with cells in vitro, with animal 

models of disease, and with human volunteers in vivo are very encouraging and 

warrant critical appraisal. 

Owing to the high cost and/or lack of availability, very few studies conducted in 

vivo have used highly purified isomers or naturally extracted CLA oil (Belury, 2002). 

Therefore, the majority of research to date has been conducted on a synthetic mixture 

of CLA isomers, in which the cis-9, trans-W CLA and the trans-10, cis-\2 CLA are 

the predominant isomers constituting approximately 85 to 90 percent. These two 

isomers are usually represented in about equal quantities, with ten other minor CLA 

isomers representing the remaining 10 to 15 percent of the mixture (Kelly, 2001). 

Interestingly, the major effects of CLA are largely, but not exclusively, observed in 

mice treating with a mixture of CLA isomers or the trans-10, cis-12 but not the cis-9, 

trans-W CLA (Pariza et al, 2001; Wahle et al., 2004). It is also likely that some 

_ 3 5 _ 



Chapter 1 General Introduction 

effects are induced and/or enhanced by various CLA isomers acting synergistically 

(Pariza et al, 2001). However, their effective dosages and duration have not been 

elucidated in vivo. 

1.2.3.1 An ti- adip o gen esis 

It has been suggested that trans-10, cis-12 CLA is the bioactive isomer of CLA 

that reduces adiposity with increased lean body mass (Pariza et al, 2001; Rainer and 

Heiss, 2004). The change in body composition is partly associated with a reduction in 

fatty acid uptake by adipocytes, the principal sites of fat storage (Azain et al., 2000; 

Choi et al., 2000; Xu et al” 2003). The reduction in lipid uptake by adipocytes, in turn, 

appears to be due to inhibitory effects of CLA on the enzymatic activities of 

stearoyl-CoA desaturase (SCD) (Choi et al., 2000; Park et al” 2000) and lipoprotein 

lipase (LPL) (Pariza et al, 2001; Xu et al., 2003). In addition, it had been reported that 

apoptosis was triggered in adipose tissue of mice fed diet at 1% CLA, an isomer 

mixture with about 40% trans-10, cis-Yl CLA, supporting that trans-10, cis-12 CLA 

was able to induce apoptosis in cultured 3T3-L1 mouse adipocytes 

(Tsuboyama-Kasaoka et al,, 2000; Pariza et al, 2001). By contrast, other groups 

reported that feeding diet supplemented with 0.25 or 0.5% CLA for 5 weeks to 

Sprague-Dawley rats reduced adipocyte cell size but not number (Azain et al,’ 2000; 

Xu et al., 2003). Hence the CLA-induced apoptosis in adipose tissue may be species 

dependent. Such an effect was observed in mice but not in the rats. 

The induction of adipocyte differentiation is also another mechanism responsible 

for changes in body composition by CLA. Induction of markers of adipocyte 

differentiation by CLA was first shown in vivo In male Zucker diabetic fatty (ZDF, 

- 3 6 -



Chapter 1 General Introduction 

fa/fa) rats fed with 1.5% CLA for 2 weeks. In this study the adipocyte lipid-binding 

protein ap2, a marker of adipocyte differentiation, was increased approximately five 

fold relative to rats fed diet without CLA (Houseknecht et al., 1998). At present, there 

is little support for the hypothesis that CLA might enhance lipolysis. In particular, 

CLA (specifically the trans AO, cis-\2 CLA) would block body fat gain, but not 

necessarily reduce body fat level which had accumulated prior to CLA administration 

(Pariza et al, 2001; Xu et al., 2003). Nevertheless, one should not assume that CLA 

(and trans-10, cis-\2 CLA) will necessarily exhibit a single defined set of effects on 

all adipocytes irrespective of other biological considerations. It is possible that the 

effects of CLA on a given adipocyte will depend, at least in part, on the location, 

microenvironment and physiological function of that adipocyte (Pariza et al., 2001). 

For instance, the CLA-induced reduction in adiposity may under certain 

circumstances be overwhelmed by a diet that is excessively high in fat. Pariza et al 

(2001) had pointed out that more researches should be considered in light of the 

interplay between adipocytes (fat storage) and skeletal muscle cells (fat combustion). 

However, the possible effects of CLA on skeletal muscle are less understood than that 

of adipocytes. 

Despite the evidence that CLA improves lipid profile in animal models, studies 

using human subjects are currently ambiguous to advocate whether CLA 

supplementation has a significant effect on human body composition (Kelly, 2001; 

Rainer and Heiss, 2004), Certain studies found no significant changes in body 

composition among obese subjects given CLA (Zambell et al., 2000; Kamphuis et al., 

2003). By contrast, other studies reported a trend toward decreased body weights and 

body mass index (BMI) among subjects receiving CLA (Blankson et al” 2000; Pariza 

et al, 2001). Additionally, it was also reported that the plasma levels of trans-10, 
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cis-\2 CLA were inversely associated with body weight and serum leptin, a hormone 

known to regulate fat intake, in subjects with type 2 diabetes mellitus (DM) (Belury et 

al., 2003), and trans AO, cis-12 CLA was able to prevent accumulation of triglyceride 

in primary cultures of human differentiating preadipocytes (Brown and Mcintosh, 

2003). 

1.2.3.2 Anti-diabetogenesis 

Central to all of the risk factors leading to type 2 DM is obesity. There is 

increasing evidence showing that CLA is able to delay the onset of type 2 DM. In a 

male Zucker diabetic fatty (ZDF) rat model, rats were fed with semi-purified diets 

containing no CLA (control), 1.5% CLA, or the anti-diabetic drug, troglitazone 

(0.02%) for two weeks. Rats fed with the diet containing CLA or troglitazone 

exhibited significant reduction in fasting glucose, insulinemia，triglyceridemia, free 

fatty acid levels, and leptinemia compared with control rats (Belury, 2002). While 

CLA reduces fasting insulin in diabetic animals, it modestly elevates fasting serum 

insulin in non-diabetic mice and humans (Tsuboyama-Kasaoka et al., 2000; Medina et 

al., 2000). Since fasting insulin may be used as a surrogate marker for insulin 

resistance, these data suggest that CLA reduces insulin sensitivity under a 

normoglycemic state. In one experiment, after long-term feeding (8 months) of a 

CLA-diet, an induction of insulin resistance was observed in C57BL/6J male mice 

(Tsuboyama-Kasaoka et al., 2000). The impact and significance of CLA-induced 

insulin resistance for people who are normoglycemic is yet unknown. 

Because CLA is capable of delaying the onset of DM in the ZDF rat model, CLA 

as an aid in the management of type 2 DM in humans was examined in a 
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double-blinded study. Subjects with type 2 DM were randomized into one of two 

groups receiving either a supplement containing a mixture of CLA isomers (8.0 g 

daily, n 二 12) or a supplement containing linoleic acid as a control (8.0 g safflower oil 

daily, n = 9) for 8 weeks. The isomers of CLA in the mixtures were primarily cis-9, 

trans-\\ CLA (approximately 37%) and trans-10, cis-\2 CLA (approximately 39%) in 

free fatty acid form. It was found that supplementation with CLA for 8 weeks could 

be associated with favorable alterations of several metabolic parameters in subjects 

with type 2 DM. Moreover, the plasma levels of CLA were inversely associated with 

body weight and serum levels of leptin, a hormone known to regulate fat intake 

(Belury et al., 2003). 

1.2.3.3 Anti-atherosclerosis 

There is a large and growing body of evidence indicating that CLA reduces 

atherosclerotic plaque formation in rabbits and hamsters. In one experiment, when 

CLA (0.5 g daily) was added to a hypercholesterolemic diet for rabbits, both the 

serum triglyceride and the low density lipoprotein (LDL) cholesterol levels were 

significantly reduced relative to rabbits fed with a diet devoid of CLA after 12 weeks. 

Moreover, the aortas of rabbits fed with the CLA-containing diet showed less 

atherosclerotic plaque formation (Lee et al., 1994). The ability of CLA to reduce 

aortic plaque formation could be resulted from changes in LDL oxidative 

susceptibility (Belury, 2002). In another study, hamsters were fed with a diet 

supplemented with or without CLA to induce hypercholesterolemia. The diet with 1% 

CLA reduced plasma total cholesterol, non-high density lipoprotein cholesterol, and 

early aortic atherosclerosis compared to a diet devoid of CLA (Wilson et al” 2000). 

On the contrary, CLA was shown to induce the formation of aortic fatty streaks in 
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C57BL/6 mice fed with an atherogenic diet (Munday et al., 1999). Because of the 

differential effects of CLA in various animal models, further work is needed to 

elucidate the mechanisms by which CLA can cause the reduction of atherosclerotic 

plaque formation in humans. 

1.2.3.4 Anti-carcinogenesis 

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are probably the 

major omega-3 fatty acids in fish oil responsible for cancer suppression. However，the 

amount of fish oil needed to elicit this response usually exceeds 10% in human diet. 

By contrast, CLA concentration as low as 0.1% was adequate to produce a significant 

reduction in mammary-tumor yield in rats challenged with a low dose of carcinogen, 

7,12-dimethylbenz(a)anthracene (DMBA). Therefore, CLA together with various 

other anti-carcinogens may provide chemoprevention against cancer at concentrations 

close to human consumption levels (Macdonald. 2000). In fact, in a publication of the 

National Academy of Science, Carcinogens and Anticarcinogens in the Human Diet, it 

was concluded that “.，. conjugated linoleic acid (CLA) is the only fatty acid shown 

unequivocally to inhibit carcinogenesis in experimental animals." (National Research 

Council, 1996). 

The biological activity of CLA was discovered as a consequence of its inhibitory 

effects on chemically-induced epidermal carcinogenesis in mice (Ha et al., 1987) and 

subsequent research using rat carcinogenesis models (Liew et al., 1995; Pariza et al., 

2001). CLA was also found to inhibit chemically-induced mammary carcinogenesis in 

a dose-dependent manner regardless of whether it was fed as a free fatty acid or 
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triglyceride (Ip et al., 1996). The cis-9, trans-ll CLA isomer by itself has been shown 

to effectively reduce chemically-induced rat mammary neoplasia (Pariza et al., 2001). 

Nevertheless, there is also evidence for a synergistic interaction between cis-9, 

trans Al and trans-10, cis-\2 CLA in inhibiting mammary carcinogenesis in rats 

(Belury, 2002). The biochemical mechanism whereby CLA inhibits carcinogenesis 

may involve effects on the metabolism of linoleic acid (because CLA and linoleic acid 

share the same enzyme system) and vitamin A，therefore it is possible that both 

isomers might affect linoleic acid metabolism as well as exerting individual 

biochemical effects to modulate carcinogenesis (Pariza et al., 2001). 

Apart from linoleic acid metabolism, efforts have been made to elucidate the 

anti-carcinogenic mechanisms of CLA by determining its effects on different stages of 

carcinogenesis - initiation, promotion, and progression. In one study a 

CLA-containing lipid fraction extracted from fried ground beef was topically applied 

to mouse skin before initiation with DMBA. Tumor yield, interpreted as average 

number of tumors per mouse, after 16 weeks of promotion with 

12-0-tetradecanoylphorbol-13 -acetate (TPA) was shown to be inhibited by 

approximately 45% (Ha et cd., 1987). As an anti-initiator, CLA may modulate events 

such as free radical-induced oxidation, carcinogen metabolism, and/or 

carcinogen-DNA adduct formation in some tumor models (Belury, 2002). In addition 

to its anti-initiator activity, CLA was also shown to inhibit tumor promotion. The 

promotion stage involves clonal expansion of initiated cells, as a result of increased 

cell proliferation, reduced apoptosis, and/or dysregulated differentiation, to form a 

benign tumor (Belury, 2002). In a subsequent study, rats that were fed with diets 

containing 1% CLA following initiation with methylnitrosourea exhibited reduced 

proliferation and thereby reduced the density of the terminal end bud as well as 
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lobuloalveolar bud structures of mammary epithelium (Thompson et al,, 1997). 

Importantly, the terminal end bud is the site of tumor formation for both rat and 

human breast cancer. More recently, CLA-induced anti-proliferation of the terminal 

end bud was found to be accompanied by reduced levels of two cyclins, cyclin D1 and 

cyclin A (Ip et al., 2001), These data suggest that CLA modulates molecular signaling 

events that regulate the cell cycle, ultimately regulating cell proliferation. Nonetheless, 

it has been demonstrated that the ability of CLA to inhibit cell growth may be 

tissue-specific (Belury, 2002). In other tissue,models, the mechanistic role of CLA in 

modulating carcinogenesis involves induction of apoptosis as well as differentiation. 

A large growing body of evidence suggests that CLA can induce apoptosis in 

numerous tissues including mammary, liver, and adipose tissues (Tsuboyama-Kasaoka 

et al., 2000; Belury, 2002). In these studies, CLA-induced apoptosis was correlated 

with a reduction of bcl-2，a signaling protein known to repress apoptosis. Furthermore, 

CLA can induce differentiation of the adipose tissue, suggesting that it may inhibit 

carcinogenesis through modulating tissue differentiation (Belury, 2002). 

It is critical to apprehend how CLA modulates metastasis of the malignant 

tumors which contribute the leading cause of morbidity and mortality in cancer 

patients. In recent years CLA has also been shown to inhibit the progression stage of 

carcinogenesis. At least one study revealed that CLA (0.5-1%) inhibited proliferation 

of the transplanted mammary cancer cells to form secondary tumors in mice (Belury, 

2002). Moreover, a Chinese group of researchers reported that the cis-9, trans-W 

CLA isomer hampered the invasion of human gastric carcinoma cells via inhibition of 

the metastasis-associated gene expression (Yang et al., 2003). Therefore, the 

possibility that a higher intake of CLA might reduce the risk of metastasis cannot be 

ruled out. However, more studies should be carried out to substantiate the protective 
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effect of CLA on the risk of metastasis. 

1.2.3.5 Anti-tumor Activity 

The anti-tumor potential of CLA has received a great deal of research attention in 

both in vitro and in vivo animal models. A growing body of evidence has 

demonstrated the in vitro anti-tumor activity of CLA. CLA suppressed tumor growth 

and served as a cytotoxic mediator to a variety of human cancer cell lines including 

hepatoma cells, HepG2 (Igarashi and Miyazawa, 2001; Yu-Poth et al., 2003)，lung 

adenocarcinoma cells, A-427, SK-LU-1, and A549 (Schonberg and Krokan, 1995), 

gastric carcinoma cells, SGC-7901 (Liu et al” 2002; Chen et al,, 2003), colon 

carcinoma cells，HT-29, HCT116，and SW480 (Cho et al,, 2003; Kemp et al,, 2003; 

Lim et al., 2005)，colorectal cancer cells, MIP-101 (Palombo et al., 2002), prostate 

carcinoma cells, LNCaP, and PC-3 (Song et al., 2004; Ochoa et al., 2004), and 

bladder cancer cells, TSU-Prl (Oh et al., 2003), In addition, CLA also inhibited 

proliferation of estrogen receptor-positive breast cancer MCF-7 cells, and induced 

apoptosis of estrogen receptor-negative breast cancer MDA-MB-231 cells (Durgam et 

al” 1997; Chujo et al, 2003; Miglietta et al” 2005). In these studies, the biochemical 

mechanisms of CLA-induced anti-tumor activity involved inhibition of tumor cell 

proliferation, modulation of tumor cell cycle progression, as well as induction of 

apoptosis and/or tumor cell differentiation. In fact, CLA not only demonstrated in 

vitro anti-tumor activity but also in vivo growth- and metastasis-inhibitory activities. 

The majority of animal tumor research has focused on the effects of CLA on 

mammary cancer (Kelly, 2001). In one study, severe combined immunodeficient 

(SCID) mice were fed with 1% CLA for two weeks before subcutaneous injection of 
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human breast adenocarcinoma MDA-MB468 cells, and 1% CLA administration was 

continued throughout the study period. It was found that CLA inhibited local tumor 

growth and tumor metastasis to lungs, peripheral blood, and bone marrow (Visonneau 

et al., 1997), suggesting that dietary CLA can block the local growth and systemic 

spread of the human breast cancer cells via mechanisms that are independent of the 

host's immune system. 

Unlike CLA, however, linoleic acid showed no growth-inhibitory activity against 

tumor cells in vitro or even stimulated the growth of some cancer cell lines (Banni et 

al., 1999). It had been reported that incubation with linoleic acid resulted in a 25% 

increase in cell proliferation (Kelly, 2001). Moreover, the effects of CLA on leukemia 

cells have not been thoroughly studied. 

1.2.3.6 Effects of Conjugated Linoleic Acid on Lipid Metabolism 

Of the two predominant isomers of CLA, cis-9, trans-ll CLA accumulates to a 

greater extent than trans-10, cis-12 CLA in phospholipids of liver, skin, and bone 

tissues in animal models (Belury, 2002). The higher level of cis-9, trans-ll CLA may 

be owing to its preferred tissue incorporation and/or due to the trans-10, cis-12 CLA 

isomer has a more rapid metabolism (Belury, 2002). Nevertheless, CLA exhibits 

several effects on hepatic lipid metabolism, for instances, a mixture of CLA isomers 

(in which cis-9, trans Al and trans-10, cis-12 CLA are the predominant isomers) 

reduced secretion of apolipoprotein B in cultured human hepatoma Hep-G2 cells and 

the trans-10, cis-\2 CLA isomer inhibited the expression and activity of hepatic 

stearoyl-CoA desaturase (SCD) (Pariza et al., 2001). In addition, trans-10, cis-12 

CLA was found to be more effective than cis-9, trans-ll CLA on repressing 
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triacylglyceride secretion in vitro (Lin et al., 2001). 

1.2.3.6.1 Actions on Phospholipids by Conjugated Linoleic Acid 

Three theories have been reported by Belury (2002) to explain how CLA can 

affect the physiological activities including adiposity, diabetes, carcinogenesis, and 

immunity. Firstly, CLA can modulate the accumulation of arachidonic acid in 

phospholipids, resulting in a decreased pool of arachidonic acid and thereby the 

downstream eicosanoid products (Fig. 1.5). Secondly, CLA can modulate the 

expression, at both gene and protein levels, and/or activity of the cyclooxygenase-1 (a 

constitutive enzyme) and/or the cyclooxygenase-2 (an inducible enzyme) so as to 

reduce the production of eicosanoid products. While CLA is regarded as an 

anti-carcinogen, arachidonic acid may be a procarcinogen by causing subsequent 

production of prostaglandins (Iwakiri et al., 2002). Iwakiri and coworkers showed that 

CLA decreased the concentration of prostaglandin E2 by suppressing the transcription 

of cyclooxygenase-2 in macrophages (Iwakiri et al,, 2002; Yu et al., 2002). Thirdly, it 

has been proposed that CLA or its elongated and desaturated products (e.g. conjugated 

arachidonic acid as shown in section 1.2.2.4 and Fig. 1.5) may act as substrates or 

antagonists for cyclooxygenases, and ultimately reducing the availability of enzymes 

for arachidonic acid, More likely, CLA acts antagonistically to repress the activity of 

cyclooxygenase in phospholipids by the formation and accumulation of the 

arachidonate analogue of CLA, the conjugated arachidonic acid (or conjugated 

eicosatetraenaote, CD24:4). 
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Fig. 1.5: Schematic pathways for the synthesis of eicosanoids from arachidonic 
acids. 

(Modified from Belury, 2002) 
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1.2.3.6.2 Conjugated Linoleic Acid as a Ligand for the PPAR System 

Until recently, the role of CLA on lipid metabolism in the liver and extra-hepatic 

tissues is basically unknown. CLA modulates lipid metabolism, in part, by activating 

a group of nuclear transcription factors, the peroxisome proliferator-activated 

receptors (PPAR) (Belury, 2002). More recently, new evidence demonstrates that 

activators of PPARy are protective against cancers of the colon, prostate, and 

mammary gland (Sporn et al., 2001). Therefore, it is feasible that some of the 

CLA-induced physiological activities are PPARy-dependent (Belury, 2002). In fact, 

the PPARy isoform is present mainly in the extra-hepatic tissues including adipose, 

colon, prostate, and mammary gland (Belury, 2002). In addition, CLA may increase 

the level of PPARy, and PPAR丫2 is found to be one of several transcription factors 

that are responsible for adipose tissue differentiation (Belury, 2002). 

1.2.3.7 Immunomodulation 

More recently, dietary CLA has been documented to offer beneficial effects to 

animals on inflammation-induced growth suppression, endotoxin-induced anorexia, 

mucosal damage and growth failure in experimental colitis, and antigen-induced type 

1 hypersensitivity response (Field and Schley, 2004). The two predominant isomers of 

CLA appear to have similar effects on immune function (Wahle et al, 2004). In 

addition, CLA increased immunoglobulin production in rat spleen lymphocytes 

(Yamasaki et al., 2000) and, on the other hand, decreased the production of mediators 

of inflammation, such as prostaglandin E2, tumor necrosis factor-a (TNF-a), and nitric 

oxide, in macrophages by reducing the interferon-丫 (IFNy)-induced mRNA expression 

of the inducible cyclooxygenase 2，inducible nitric oxide synthase (iNOS), and TNF-a 
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(Yu et al., 2002). Interestingly, it has been found that the effects of CLA on cellular 

immunity sustained for some time beyond the period of dietary supplementation 

(Field and Schley, 2004). 

In a recent double-blinded, randomized, reference-controlled study, the roles of 

CLA (3 g/day, with 1:1 cis-9, trans-ll and trans-10, cis-12 CLA isomers) on immune 

functions of healthy human volunteers (n=28) of both sexes aged 25 to 50 were 

investigated (Song et al., 2005). Subjects were arbitrarily divided into two groups, the 

reference group received high oleic sunflower oil whereas the treatment group was 

provided with a total 3 g CLA per day in 6 soft gel capsules for 12 weeks, which was 

followed by a 12-week washout period. Afterwards, blood samples were analyzed for 

the changes in levels of immunoglobulins (IgA，IgM, and IgE) as well as cytokines 

(TNFa, IL-1J3, and IL-10). The results showed that the plasma levels of IgA and IgM 

were increased while the allergy-related IgE levels were decreased. In addition, CLA 

also reduced the levels of the proinflammatory cytokines, TNF-a and IL-ip, yet 

enhanced the levels of the anti-inflammatory cytokine, IL-10 (Song et al., 2005). 

Nevertheless, this is the first human study to demonstrate that CLA can beneficially 

affect immune function, in part, by modulating mediators of immunity in the healthy 

volunteers. It had been previously reported that pharmacological PPARy agonists 

inhibited the peripheral blood mononuclear cell synthesis of proinflammatory 

cytokines (TNF-a, IL-lp，and IL-6) at the level of mRNA expression (Wahle et al, 

2004). Since CLA is a known ligand for PPAR, this suggests that the observed 

reduction in proinflammatory cytokines with CLA in the human volunteer study of 

Song et al. could be due to PPAR activation (Wahle et al, 2004). 

Current understanding of the cellular mechanisms of immunomodulation by 

_ 4 8 _ 
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CLA is incomplete. Initial studies demonstrated that the levels of leukotriene-B4 and 

leukotriene-C4 in spleen and lungs were reduced in rats fed with 1% CLA in diet 

(Sugano et al” 1998). Belury (2002) has postulated that CLA can modulate several 

events in immunity by regulating eicosanoid formation. Arachidonic acid-derived 

eicosanoids, from both cyclooxygenase and lipoxygenase pathways, are produced by 

various types of immune cells and are thought to regulate inflammation and cytokine 

synthesis (Belury 2002). However, in humans supplemented with CLA (3.9 g/day) for 

93 days, no apparent changes were observed in the levels of eicosanoids including 

prostaglandin E2 and leukotriene B-4 (Kelley et al, 2001). The discrepancy of data 

between different models of immune function suggests that the role of CLA in 

immunity awaits further investigations. 
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1.3 Aims and Scopes of This Investigation 

Conjugated linoleic acid (CLA) is a fatty acid that is widely distributed in human 

diets and exhibit numerous beneficial physiological effects in various animal models 

and in humans, as described in Section 1.2.3. Until recently, the anti-tumor activities 

and action mechanisms of CLA on myeloid leukemia cells remain elusive. Moreover, 

their pro-apoptotic as well as differentiation-inducing activities on myeloid leukemia 

cells have not yet been studied. Therefore, the aim of my project is to investigate the 

anti-tumor activity of CLA against myeloid leukemia, and attempts were made to 

elucidate the cellular and molecular mechanisms governing their anti-tumor activity. 

In the present study, the anti-proliferative effect of a mixture of CLA isomers and 

four of its individual isomers on the murine myelomonocytic leukemia cell line, 

WEHI-3B JCS, was compared. Four other leukemia cell lines of mouse and human 

origins, including Ml, HL-60, NB4, and K-562, and a human lymphoma cell line, 

U-937, were used to demonstrate that the growth-inhibitory effect of CLA is not 

restricted only to a single leukemia cell line. The kinetics and reversibility of CLA 

with respect to their anti-proliferative effect on WEHI-3B JCS cells were assessed. 

The anti-proliferative and cytotoxic activities of CLA were evaluated by the 

colorimetric MTT assay or the H-thymidine incorporation assay and trypan blue 

exclusion assay, respectively. In addition, the cell cycle kinetics and cell 

cycle-regulatory gene expression following CLA treatment on WEHI-3B JCS cells 

were assessed by flow cytometry and RT-PCR, respectively. Moreover, the ability of 

CLA to induce apoptosis in myeloid leukemia cells was measured by the DNA 

fragmentation assay and semi-quantified by an ELISA kit. The expression of 

apoptosis-related genes was analyzed by RT-PCR while the expression of their protein 
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products was determined by Western blotting. Apart from determining the gene and 

protein expressions, the induction of caspase activities and mitochondrial membrane 

depolarization were also measured to elucidate the possible apoptotic pathway(s) 

induced by CLA. Furthermore, the effect of CLA on the in vivo tumorigenicity of 

WEHI-3B JCS cells was also studied in syngeneic BALB/c mice. 

The differentiation-inducing activity of CLA on WEHI-3B JCS cells was 

assessed by a number of criteria, including their morphological, phenotypic, and 

functional alterations following CLA treatment. The morphological changes were 

studied by staining of cytocentrifage preparations and by flow cytometry. The 

phenotypic changes were assessed by antibody staining of surface differentiation 

markers and measured by flow cytometry. Functional changes were evaluated by the 

induction of monocytic serine esterase activity and endocytic activity following 

exposure of the WEHI-3B JCS cells to CLA. Finally, the expression of 

differentiation-related cytokine genes was analyzed by RT-PCR. 
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2.1 Materials 

2.1.1 Animals 

Inbred female BALB/c (H-2d) mice aged 6-8 weeks old were bred at the 

University Laboratory Animal Services Centre of The Chinese University of Hong 

Kong under a specific pathogen-free condition. They were fed with animal diet 

(Chow 5001, Rodent Laboratory) and tap water. 

2.1.2 Cell Lines 

1) WEHI-3B 

WEHI-3B (D") is a mineral oil-induced murine myelomonocytic leukemia cell 

line derived from BALB/c mice. It was originally acquired from Dr. D. Metcalf 

(Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia) and 

subsequently subcloned at the John Curtin School of Medical Research, Australian 

National University, Canberra, Australia. One of the subclones designed as WEHI-3B 

JCS (Leung et al” 1994) was used in this study. 

2) Ml 

Ml is a murine myeloblastic leukemia cell line established from a spontaneous 

myeloid leukemia of SL strain mice (Ichikawa, 1969). It was purchased from the 

American Type Culture Collection (ATCC), U.S.A. 
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3) HL-60 

HL-60 is a human promyelocytic leukemia cell line derived by leukopheresis 

from a 36-year-old Caucasian female with acute promyelocytic leukemia (Collins et 

al,, 1977). It was purchased from the ATCC, U.S.A. 

4) NB4 

NB4 is a human promyelocytic leukemia cell line established from the bone 

marrow of a 23-year-old woman with acute promyelocytic leukemia (Lanotte et al., 

1991). NB4 cells carry the t(15;17) PML-RARA fusion gene. It was purchased from 

the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), 

Germany. The subclone used in this study was obtained from Prof. K.P. Fung 

(Department of Biochemistry, CUHK). 

5) K-562 

K-562 is a human chronic myelogenous leukemia (CML) cell line established 

from the pleural effusion of a 53-year-old female with CML in terminal blast crises 

(Lozzio and Lozzio，1975). It was purchased from the ATCC, U.S.A. 

6) U-937 

U-937 is a human histiocytic monoblast-like lymphoma cell line originated from 

the pleural effusion of a patient with histiocytic lymphoma (Sundstrom and Nilsson, 

1976). It was purchased from the ATCC, U.S.A. 
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2.1.3 Cell Culture Medium, Buffers and Other Reagents 

1) Cell Culture Medium 

The powdered form of RPMI 1640 medium (GIBCO BRL Life Technologies Inc.), 

supplemented with 25 mM N-2-hydroxy-ethyl-piperazine-N'-2-ethane-sulfonic acid 

(HEPES) and 2 mM L-glutamine was used for the preparation of culture medium. The 

powdered medium dissolved in deionized water was buffered with 2 g sodium 

bicarbonate (NaHC03) (Sigma Chemical Co.) per litre. The solution was then 

adjusted to pH 7.14 by 1 M hydrochloric acid (HC1) or sodium hydroxide (NaOH) 

(Sigma Chemical Co.), After that, it was sterilized by membrane filtration through a 

0.22 jim Millipore filter and stored at 4°C until use. 

RPMI medium supplemented with 1% antibiotics, which was called "Plain 

Medium" (PM), was usually used in washing cells. Complete RPMI medium (CM) 

for cell culture was prepared by supplementing PM with 10% or 20% fetal bovine 

serum (FBS). Most of the human and murine cell lines were cultured with 10% 

FBS-supplemented CM while HL-60 was cultured with 20% FBS-supplemented CM. 

Culture medium used for doing assays was prepared by supplementing PM with 10% 

or 20% heat-inactivated fetal bovine serum (HI-FBS). 

2) Serum Supplements 

Fetal Bovine Serum (FBS) (GIBCO BRL Life Technologies Inc.) was stored as 50 

ml and 20 ml aliquots. HI-FBS was prepared by heating the FBS at 56°C for 30 

minutes. Both of them were stored up at -20°C until use. 
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3) Antibiotic Solutions 

Two types of antibiotic solutions were used in alternative periods: antibiotic PSF 

[10,000 units/ml penicillin G (sodium salt), 10,000 |ug/ml streptomycin sulfate and 25 

|Lig/ml amphotericin B as Fungizone in 0.85% saline] and antibiotic PSN [5,000 |Lig/ml 

penicillin G sodium, 5,000 jug/ml streptomycin sulfate and 10,000 ĵ ig/ml neomycin 

sulfate in 0.85% saline]. The 100X stock solutions were purchased from GIB CO BRL 

Life Technologies Inc. They were kept at -20°C as 5 ml aliquots. 

4) Dulbecco's Phosphate-Buffered Saline (PBS) 

PBS (Sigma Chemical Co.) was prepared by dissolving the powdered salt (8 g 

sodium chloride, 0.2 g potassium chloride, 0.2 g monobasic potassium phosphate and 

1.15 g dibasic sodium phosphate) In one litre of deionized water. The pH of the 

solution was adjusted to 7.4 by adding 1 M HC1 or NaOH before use. It was sterilized 

by autoclaving at 121 °C for 20 minutes. 

5) Thioglycollate (TG) Broth 

TG broth (3% w/v) was prepared by suspending 3 g of dehydrated thioglycollate 

powder (Difco Lab.) in 100 ml deionized water. It was then heated to boiling to 

completely dissolve the powder and sterilized by autoclaving at 121°C for 20 minutes. 

It was kept in dark at room temperature for at least one month before use. 

6) Methylthiazoletetrazolium (MTT) 

MTT was purchased from Sigma Chemical Co. in powdered form. It was 

dissolved in deionized water to prepare the stock solution at 5 mg/ml concentration. 

The stock was stored at 4°C until use. 
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8) 1% Paraformaldehyde 

a) Hemacolor Staining Solutions 

Three distinct Hemacolor staining solutions (Diagnostica Merck) were used to 

stain cells after cytocentrifugation. Hemacolor Solution 1 was methanol for fixing 

cells, Hemacolor Solution 2 was a buffered color reagent red and Hemacolor Solution 

3 was a buffered color reagent blue. The buffer solutions were freshly prepared by 

dissolving 1 buffer tablet in 1 litre of deionized water. They were stable for at least 4 

weeks and stored in a tightly closed glass bottle. All staining solutions were 

light-protected and kept at room temperature. 

b) Trypan Blue Solution 

Trypan blue solution was purchased from Gibco BRL Life Technologies Inc. It 

contained 0.4% (w/v) trypan blue dissolved in 0.85% saline. 

8) Linoleic Acid and Conjugated Linoleic Acid 

Linoleic acid (LA), a mixture of conjugated linoleic acid isomers (CLA-mix) and 

a variety of individual CLA isomers employed in this study are shown in Table 2.1. 

LA and CLA-mix were purchased from Sigma Chemical Co, while CLA isomers, 

including cis-9, trans-li conjugated linoleic acid (9Z, 11 E-CLA), trans-10, cis-\2 

conjugated linoleic acid (10E, 12Z-CLA)，cis-9, cis-\\ conjugated linoleic acid (9Z， 

11 Z-CLA) and trans-9, trans-\\ conjugated linoleic acid (9E，11 E-CLA), were 

procured from Matreya，Inc. The composition of the CLA-mix is shown in Table 2.2. 

All fatty acids were supplied in liquid form and they were used for subsequent cell 

culture assays by dissolving in absolute ethanol (EtOH). All stock solutions were kept 

in dark at -20°C. 
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Table 2.1: Linoleic acid (LA), a mixture of conjugated linoleic acid isomers 

(CLA-mix) and the four individual CLA isomers employed in this study. 

Fattv acid Estimated purity Stock Concentration 
^ (%) (M) 

LA 99 0.2 

CLA-mix > 99 0.2 

cis-9, transA \ CLA 
(9Z, 11E-CLA) � ° ' 2 

trans-10，cis-12 CLA 
(10E, 12Z-CLA) ^ 0 , 2 

cis-9, cis-ll CLA 
(9Z, 11Z-CLA) U 'Z 

trans-9, trans-W CLA Q , n 
(9E, 11E-CLA) • 
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Table 2.2: The composition of conjugated linoleic acid (CLA-mix) employed in 

this study. 

Fatty Acid Relative Proportion (%)* 

cis-9, trans-ll and trans-9, cis-\\ CLA 
(9Z, 11E- and 9E, 11Z-CLA) 4 1 , 2 

trans AO, cis-\2 CLA 
(10E, 12Z-CLA) 4 4 , 1 

cis-9, cis-ll CLA 
(9Z, 11Z-CLA) 1 , 1 

cis-10, cis-12 CLA � … 9 4 (10Z, 12Z-CLA) 义 

trans-9, trans-\\ and trans-10, transA2 CLA 
(9E, 11E- and 10E, 12E-CLA) 

LA < 1 

*Data obtained from Sigma Chemical Co. 

2.1.4 Reagents for H-Thymidine Incorporation Assay 

1) [Methyl-3H] Thymidine (3H-TdR) 

The H-TdR stock solution (Amersham Life Science Ltd.) with specific activity 

of 2 Ci/mmol was kept as 500 \xl aliquots at 4°C. It was freshly diluted with 10% 

FBS-supplemented complete RPMI medium (10% CM) to make up the 25 jaCi/ml 

working solution for DNA labeling. Twenty microlitres working solution was added 

into each well of the 96-well flat-bottomed microtiter plate for performing the 

proliferation assay. 
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2) Liquid Scintillation Cocktail 

The ready-to-use optiPhase "High" safe-2 liquid scintillation cocktail, obtained 

from Perkin-Elmer Co., is based on biodegradable solvents with dioctyl 

sulfosuccinate, sodium salts and poly(ethyleneglycol)mono(4-nonylphenyl)-ether. It 

was stored in dark at room temperature. 

2.1.5 Reagents and Buffers for Flow Cytometry 

1) Propidium Iodide (PI) DNA Staining Buffer 

The PI DNA staining buffer, freshly prepared in PBS, comprised 400 jug/ml 

ribonuclease A (RNase A) (Boehringer Mannheim), 50 jug/ml propidium iodide 

(Boehringer Mannheim), 10 mM EDTA (pH 7.4) (Sigma Chemical Co.), 0.1% 

trisodium citric acid (Sigma Chemical Co.) and 0.1% Triton X-100 (Sigma Chemical 

Co.). All these reagents were stored up at 4°C until use. 

2) JC-1 Staining Solution 

5,5^6,6!-tetrachloro-l,r?3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) 

is a cationic dye that exhibits potential-dependent accumulation in mitochondria, as 

illustrated by a fluorescence emission shift from green (�525 nm) to red (-590 nm). It 

was purchased from Molecular Probes Inc. (U.S.A). It was dissolved as stock solution 

at a concentration of 5 mg/ml in DMSO and was kept at -20°C. The dye was diluted 

to 0.13% as a working solution in warm PBS. 
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3) Fluorescein Diacetate 

Fluorescein diacetate，purchased from Calbiochem®, was used for measuring the 

activity of monocytic serine esterase (also known as non-specific esterase). A stock 

solution of 20 mg/ml was prepared by dissolving the powder in sterilized DMSO and 

stored at 4°C. 

4) Fluorescein Isothiocyanate (FITC)-Conjugated Bovine Serum Albumin 

(BSA) 

FITC-BSA was purchased from Sigma Chemical Co. in powdered form and 

stored in dark at 4°C. The FITC content was 11.2 mol/mol albumin. It was freshly 

prepared to a working solution of 1 mg/ml by dissolving in RPMI + 10% HI-FBS 

when use. 

5) Dihydroethidium (DHE) 

DHE, also known as hydroethidine, was purchased from Molecular Probes Inc. 

The 10 mM DHE stock solution was prepared by dissolving 1 mg DHE powder in 

DMSO and was kept at -20 °C in dark. The working concentration of DHE was 10 

|iM. 

6) Antibodies 

a) Mouse IgG 

The mouse IgG was purchased from Sigma Chemical Co. It was used to block 

the non-specific binding of immunoglobulins to Fc receptors of cells. It was stored at 

-20°C in 0.5 ml aliquots. 

- 6 0 -



Chapter 2 Materials & Methods 

b) Rat IgG 

The rat IgG was purchased from Sigma Chemical Co. It was used to block the 

non-specific binding of immunoglobulins to Fc receptors of cells. It was stored at 

-20°C in 0.5 ml aliquots. 

c) Rat Anti-mouse Macrophage Differentiation Antigen CDllb (Mac-1) 

Monoclonal Antibody (clone Ml/70, rat IgG�b isotype) 

The Mac-1 monoclonal antibody was derived from the cell culture supernatant of 

the hybridoma cell line Ml/70，which was purchased from the ATCC, U.S.A. Small 

volume aliquots of the Mac-1 antibody were kept at -70°C. 

d) Rat Anti-mouse Macrophage Differentiation Antigen F4/80 Monoclonal 

Antibody (clone C1.A3-1, rat IgG2b isotype) 

The F4/80 monoclonal antibody was derived from the cell culture supernatant of 

the hybridoma cell line F4/80, which was purchased from the ATCC, U.S.A. Small 

volume aliquots of the F4/80 antibody were stored at -70°C. 

e) Rat Anti-mouse Myeloid Differentiation Antigen Gr-1 Monoclonal Antibody 

(clone RB6-8C5, rat IgG2b isotype) 

The Gr-1 monoclonal antibody was purchased from BD Pharmingen. The 

RB6-8C5 antibody reacts with the myeloid differentiation antigen, Gr-1. It was stored 

at -70°C until use. 
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f) FITC-Conjugated Goat F(ab')i Anti-Rat IgG Antibody 

It was purchased from Southern Biotechnology Associates Inc. and established 

from the pepsin digest of goat anti-rat IgG (H+L) which was purified by gel filtration. 

The FITC conjugate was supplied as 0.5 mg in 1 ml PBS at pH 7.4 with 0.1% sodium 

azide as preservative, It reacts with the heavy and light chains of rat IgG and with the 

light chains of rat IgM and IgA. It has minimal cross reactivity with mouse 

immunoglobulins. It was stored at 4°C in dark. 

7) Antioxidants 

a) Superoxide Dismutase (SOD) 

SOD, purchased from Sigma Chemical Co.，catalyzes the dismutation of 

superoxide radicals into hydrogen peroxide and molecular oxygen. SOD has been 

reported to suppress apoptosis in cultured rat ovarian follicles, neural cell lines and 

transgenic mice (Tilly et al., 1995; Keller et al., 1998). The 200 units/ml SOD 

working solution was prepared by dissolving 30,000 units/ml SOD powder in 150 ml 

RPMI medium supplemented with 10% HI-FBS. It was kept at -20°C until use. 

b) N-acetylcysteine (NAC) 

NAC, purchased from Sigma Chemical Co., has been reported to increase the 

cellular pools of free radical scavengers and to prevent apoptosis in neuronal cells 

(Ferrari et al., 1995). The 15 mM NAC working solution was prepared by dissolving 

0.1 g NAC powder in 40.85 ml RPMI + 10% HI-FBS. It was kept at 4°C until use. 

_ 6 2 _ 
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8) 1% Paraformaldehyde 

Paraformaldehyde was purchased from Sigma Chemical Co. in powdered form. 

One gram paraformaldehyde was dissolved in 50 ml of deionized water by heating to 

60°C with stirring in a fume hood for 1 hour. A few drops of 1 M NaOH were added 

to help to dissolve until a clear solution was obtained. After cooling to room 

temperature, 50 ml 2X PBS solution was added to produce 1% paraformaldehyde in 1 

X PBS and the solution was stored in dark at 4°C until use. 

9) FACS Medium 

The FACS medium contained 2% HI-FBS and 0.05% sodium azide in PBS. The 

azide was added to inhibit the process of internalization of cell-bound antibodies, as 

well as patching and capping of the cells. The FACS medium was used for washing 

and resuspension of cells in FACS analysis and was kept at 4°C. 

10) FACS Flow Shealth Fluid 

The shealth fluid is a ready-to-use solution purchased from Becton Dickinson 

International, It is a balanced electrolyte solution comprising sodium chloride, 

potassium chloride, disodium EDTA, sodium fluoride and an anti-microbial agent. 

The solution was kept at room temperature. 

2.1.6 Reagents for DNA Extraction 

1) IGEPAL CA-630 Lysis Buffer 

This lysis buffer was purchased from Sigma Chemical Co and "IGEPAL" is a 

registered trademark of Phone-Poulenc, Inc. The buffer was prepared in 50 mM Tris 

[hydroxylmethyl] amino methane (Tris)-HCl, pH 7.5 with 3% non-ionic detergent 
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IGEPAL CA-630 ((Octylphenoxy) polyethoxyethanol) and 20 mM EDTA. It was kept 

at room temperature. 

2) Proteinase K 

Proteinase K, which is a highly active subtilisin type of protease, was purchased 

from Boehringer Mannheim in powdered form. It was purified from the mold 

Tritirachium album Limber. The stock solution was prepared at a concentration of 20 

mg/ml by dissolving it in autoclaved deionized water and stored as 500 jil aliquots at 

-20°C until use. 

3) RNaseA 

RNase A is a pancreatic RNase powder purchased from Boehringer Mannheim. 

The stock was prepared at a concentration of 10 mg/ml by dissolving in 10 mM 

Tris-HCl (pH 7.5) and 15 mM NaCl. It was stored as 500 jil aliquots at -20°C until 

use. 

4) Sodium Acetate Solution (NaOAc) 

The NaOAc acetate solution was purchased from Sigma Chemical Co in 

powdered form. A B M stock solution was prepared by dissolving 24.61 g sodium 

acetate in 100 ml deionized water. It was then sterilized by autoclaving at 121°C for 

20 minutes. The solution was kept at room temperature. 

5) TioEo.i Buffer 

The TioEo.i buffer was made up of 10 mM Tris-HCl (pH 7.5) and 0.1 mM EDTA 

in deionized water. The solution was kept at room temperature. 

- 6 4 - ~ 
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2.1.7 Cell Death Detection ELISAplus Kit 

This ELISA kit was purchased from Roche Applied Science, and the whole set was 

stored at 4°C. The kit contained the following reagents: 

1) Anti-histone-biotin 

This monoclonal antibody, raised from mouse (clone HI 1-4)，was biotin-labeled 

for the binding of histone component of the nucleosomes and the capturing of 

immune complex via biotin to the streptavidin-coated microplate. It was reconstituted 

in 450 JliI deionized water when use. 

2) Anti-DNA-POD 

This monoclonal antibody, raised from mouse (clone MCA-33), was conjugated 

with peroxidase for binding the DNA components of the nucleosomes and for the 

color reaction with ABTS substrate. It was reconstituted in 450 jil deionized water 

when use. 

3) Positive Control 

DNA-Histone-Complex, the positive control, reacts positively with the ABTS 

substrate. It was reconstituted in 450 |il deionized water when use. 

4) Incubation Buffer 

A 100 ml ready-to-use incubation buffer was used to prepare the immunoreagent. 

The immunoreagent was freshly prepared by mixing 1/20 volume anti-histone-biotin 

and 1/20 volume anti-DNA-POD with 18/20 volume incubation buffer. 

— _ 6 5 _ 
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8) 1% Paraformaldehyde 

A 100 ml ready-to-use lysis buffer was used to lyse cells. 

6) Substrate Buffer 

A 15 ml ready-to-use substrate buffer was used to dissolve the ABTS tablets. 

7) ABTS Substrate Tablet 

2, 2，- Azino-bis [3-ethyl-benzothiazoline-6-sulfonate] (ABTS) tablets were 

dissolved in substrate buffer to give a pale green solution. The substrate solution turns 

dark green following reaction with peroxidase. The intensity of green color, therefore, 

could be used to illustrate the degree of apoptosis in this assay. Each tablet was 

dissolved in 5 ml substrate buffer. 

2.1.8 Reagents for Measuring Caspase Activity 

1) Cell Lysis Buffer 

This cell lysis buffer consisted of 1% (v/v) IGEPAL-CA 630 (Sigma Chemical 

Co.), 150 mM NaCl，50 mM Tris-HCl (pH 7.5) and one tablet of complete protease 

inhibitor cocktail，which yielded a mixture of several protease inhibitors with a broad 

spectrum of activity on serine, cysteine and metalloproteases and calpains inhibitors 

when dissolved in 50 ml deionized water. The tablet was purchased from Roche 

Molecular Biochemicals. The cell lysis buffer was stored up at 4°C until use. 

2) Reaction Buffer 

The reaction buffer was made up of 10 mM HEPES-KOH (pH 7.0), 40 mM 

p-glycerophosphate, 50 mM NaCl, 2 mM MgCl2, 5 mM EGTA, 0.1% CHAPS, 100 
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jug/ml BSA, 10 mM DTT. The solution was kept at 4�C. 

3) Dithiothreitol (DTT) 

DTT was purchased from Invitrogen Life Technologies Inc. It was dissolved in 

deionized water as 1 M stock was stored up at -20°C. It was added to the reaction 

buffer to a final concentration of 10 mM just before use for the full activity of the 

enzymes by stabilizing enzymes with free sulfhydryl groups. 

4) Caspase-3 Substrate, Ac-DEVD-AMC 

Ac-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin (Ac-DEVD-AMC), purchased 

from Sigma Chemical Co., is a specific fluorogenic caspase-3 substrate. It was 

dissolved in DMSO as a 2 mM stock solution and was stored at -20°C. 

5) Caspase-3 Inhibitor, Ac-DEVD-CHO 

Ac-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), purchased from ALEXIS 

Biochemicals, is a specific caspase-3 inhibitor. It was dissolved in DMSO as a 10 mM 

stock solution and was stored at -20°C. 

6) Caspase-8 Substrate, Ac-IETD-AMC 

Ac-Ile-Glu-Thr-Asp-7-Amido-4-methylcoumarin (Ac-IETD-AMC), purchased 

from ALEXIS Biochemicals, is a fluorogenic substrate for caspase-8 and granzyme B. 

It was dissolved in DMSO as a 1 mM stock solution and was stored at -20°C. 

7) Caspase-8 Inhibitor, Ac-IETD-CHO 

Ac-Ile-Glu-Thr-Asp-CHO, purchased from ALEXIS Biochemicals, is a 

-
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caspase-8 and granzyme B inhibitor. It was dissolved in DMSO as a 10 mM stock 

solution and was stored at -20°C. 

8) Caspase-9 Substrate, Ac-LEHD-AFC 

Ac-Leu-Glu-His-Asp-7-amido-4-trifluoromethylcoumarin (Ac-LEHD-AFC), 

purchased from ALEXIS Biochemicals, is a fluorogenic substrate for caspase-9. It 

was dissolved in DMSO as a 5 mM stock solution and was stored at -20oC. 

9) Caspase-9 Inhibitor, Ac-LEHD-CHO 

Ac-Leu-Glu-His-Asp-CHO, purchased from ALEXIS Biochemicals, is a 

caspase-9 inhibitor. It was dissolved in DMSO as a 10 mM stock solution and was 

stored at -20°C. 

10) 7-Amino-4-Methyl Coumarin (AMC) 

AMC is a standard marker for quantifying the activities of caspase-3 and 

caspase-8. It was dissolved in DMSO as a 0.05 M stock solution and was further 

diluted with lysis buffer to 100 JJM. Both the stock and the diluted solutions were kept 

at 4°C. 

11) 7-Amino-4-trifluoromethyl Coumarin (AFC) 

AFC is a yellow powder that is used as a standard marker for quantifying the 

activity of caspase-9. It was dissolved in methanol as a 0.02 M stock solution and was 

further diluted with lysis buffer to 80 \xM. Both the stock and the diluted solutions 

were kept at 4°C. 

— - 6 8 -



Chapter 2 Materials & Methods 

2.1.9 Reagents for Total RNA Isolation 

1) DEPC-treated Deionized Water 

Deionized water was treated with 0.1% diethyl pyrocarbonate (DEPC) which 

was purchased from Sigma Chemical Co. After shaking thoroughly to disperse the 

DEPC, it was allowed to stand overnight. The solution was then autoclaved at 121°C 

for 20 minutes in order to destroy the remaining DEPC. 

2) Trizol Reagent 

Trizol reagent, purchased from Invitrogen Life Technologies Inc., is a 

mono-phasic solution of phenol and guanidine isothiocyanate. This ready-to-use 

solution maintains the integrity of the RNA, while disrupting cells and dissolving cell 

components. It was stored in dark at 40C until use. 

3) Chloroform 

Chloroform, purchased from BDH Laboratory Supplies with 99.0 to 99.4% 

purity, was used along with the Trizol reagent to isolate RNA. 

4) Isopropanol 

Isopropanol, purchased from BDH Laboratory Supplies with 99.7% purity, was 

used to precipitate RNA. 

2.1.10 Reagents and Buffers for RT-PCR 

1) Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT) 

The enzyme was purchased from Invitrogen Life Technologies Inc. It was 

isolated from Escherichia coli expressing a portion of the pol gene of M-MLV on a 
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plasmid. This enzyme was stored in a buffer of 20 mM Tris-HCl pH 7.5, 1 mM DTT, 

0.01% (v/v) NP-40，0.1 mM disodium EDTA, 0.1 M sodium chloride and 50% (v/v) 

glycerol at -20°C. One unit of its activity was defined as the amount of enzyme that 

would incorporate 1 mole of deoxythymidine triphosphate (dTTP) into 

acid-precipitable material in 10 minutes at 3TC using poly(A) and oligo-dTi2-i8 as 

template and primer respectively. 

2) First Strand Buffer (5X) 

The first strand buffer was purchased from Invitrogen Life Technologies Inc. and 

was supplied as a 5X solution of 250 mM Tris-HCl (pH 8.3), 375 mM potassium 

chloride and 15 mM magnesium chloride (MgCl�). It was stored at ^20°C until use. 

3) 01igo-dTi2_i8，Sodium Salt (pd(T)i2-i8，sodium salt) 

It was purchased from Promega Corporation and was prepared as a stock 

solution of 1 |ug/|Lxl in TIQEO.I buffer. It was stored at -20°C until use. 

4) TioEi Buffer 

The TioEi buffer was made up of 10 mM Tris-HCl (pH 8) and 1 mM EDTA in 

DEPC-treated deionized water. All the constituent chemicals were purchased from 

Sigma Chemical Co. 

5) RNASEOUT™ Recombinant Ribonuclease Inhibitor 

It was purchased from Invitrogen Life Technologies Inc. It was affinity purified 

from a recombinant strain of E. coli expressing a cloned porcine liver gene. This 

inhibitor has a very high binding affinity for pancreatic-type ribonucleases such as 
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RNase A and is active against RNase A, RNase B and RNase C. It had a 

concentration of 40 units/jil but a minimum of 1 mM DTT was required to maintain 

its activity. It was stored at -20°C in a buffer containing 20 mM Tris-HCl (pH 8), 50 

mM KC1, 0.5 mM EDTA, 8 mM DTT and 50% (v/y) glycerol. One unit was defined 

as the amount of inhibitor required to inhibit by 50% the activity of 5 ng of RNase A 

as determined by the inhibition of hydrolysis of cytidine 2\ 3，-cyclic monophosphate 

by RNase A. 

6) Thermoprime p us DNA Polymerase 

The enzyme, purchased from Advanced Biotechnologies Ltd, is a thermostable 

DNA polymerase isolated from thermophilic bacteria. It is a single polypeptide of 

approximately 94 kDa which has 5' to 3’ polymerization-dependent exonuclease 

replacement activity, but lacks the 3’ to 5，exonuclease activity. One unit of the 

enzyme was defined as the amount that would incorporate 10 nmoles of dNTPs into 

acid insoluble material in 30 minutes at 47°C. It was stored at -20oC until use. 

7) Reaction Buffer IV (10X) 

The reaction buffer, purchased from Advanced Biotechnologies Ltd., was 

supplied as a 1 OX solution of 200 mM (NH4)2S04, 750 mM Tris-HCl (pH 9) and 0.1% 

(w/v) Tween. It was stored at -20°C until use. 

8) MgCI2 solution 

It was purchased from Advanced Biotechnologies Ltd. at 25 mM concentration 

and was stored at -20°C until use. 

— — -
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9) Ultrapure dNTP Set, 2'-Deoxyribonucleoside 5'-Triphosphate, Sodium Salt 

It was purchased from Pharmacia Biotech, with each nucleotide supplied as 100 

mM solution in deionized water (pH 7.5). Ten microlitres of each nucleotide stock 

solution was mixed with 60 [i\ Ti0Ei buffer to make a working solution. The working 

solution was stored at -20°C. 

10) Primer Pairs 

The specific pairs of oligonucleotide primers were designed on the basis of the 

published sequences of cloned cDNA. They were devised to prime on the sense and 

antisense sequences of the corresponding cDNA respectively. The PCR primer sets for 

PCR amplifications of specific cDNA were synthesized by Invitrogen Life 

Technologies Inc. The lyophilized primer pairs were reconstituted in DEPC-treated 

deionized water to a working concentration of 2.5 jaM. The primers were stored as 

500 \i\ aliquots at -20°C. They have the annealing temperature of 56-61°C. The 

sequences of the primer pairs and the predicted sizes of the PCR products are 

summarized in Table 2.3. 

— — 
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Table 2.3: Primers used in RT-PCR and the predicted sizes of the PCR products. 

Predicted size of 
c D N A

 S e a u e n c e t o n the amplified 
amplified Sequence (5 to 3 ) P C R product 

(bp) 

Sense strand: 
^ A dt^U AAT GGT GAA GGT CGG TGT GAA C * uArUH A ,. , t 226 Antisense strand: 

GAA GAT GGT GAT GGG CTT CC 
Sense strand: 

2 1 CTT TGA CTT CGT CAC GGA GAC 
^ Antisense strand: 

AGG CAG CGT ATA TCA GGA GAC 
Sense strand: 

2 ? AAG CAC TGC CGG GAT ATG GA 2 9 3 
P Antisense strand: 

AAC CCA GCC TGA TTG TCT GAC 
Sense strand: 

d , T TGG CAA CCC ATC CTG GCA CCT c � 0 Bcl-xL A i 538 Antisense strand: 
ACT GAA GAG TGA GCC CAG CAG AAC 
Sense strand: 

0 , GCC CAG GAC AC A GAG GAG GTT TTC • Bak A 广 , 528 Antisense strand: 
AAA CTG GCC CAA CAG AAC CAC ACC 
Sense strand: 

0 , ATC CCA GAG TTT GAG TCG AGG GA Bad A ‘• , 445 Antisense strand: 
TTC GAG CCC ACC AGG ACT GGA 
Sense strand: 

^ ^ TCC CCA AAG GGA TGA GAA GTT C 川 TNF-a A ^ A 411 Antisense strand: 
TCA TAC CAG GGT TTG AGC TCA G 
Sense strand: 

I L i GAG CTT CAG GCA GGC AGT ATC 5 8 2 
P Antisense strand: 

GTA TAG ATT CTT TCC TTT GAG GC 
Sense strand: 

I p N AGGAACTGGCAAAAGGATGGTG 3 5 3 
^ Antisense strand: 

GTGCTGGCAGAATTATTCTTATTG 

-73 -
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2.1.11 Reagents and Buffers for Gel Electrophoresis of Nucleic Acids 

1) Tris-Borate-EDTA (TBE) Electrophoresis Buffer (5X) 

The buffer stock was 5X which was prepared by dissolving 54 g Tris, 27.5 g 

boric acid and 20 ml 0.5 M EDTA in I litre deionized water. The pH of the buffer was 

adjusted to 8. The concentration of the working TBE buffer was 0.5X and it was 

prepared by diluting one part of the 5X stock TBE buffer with nine parts of deionized 

water. Both of the working and stock solutions were kept at 4°C. 

2) Gel Loading Dye (5X) 

The gel loading dye, purchased from Sigma Chemical Co., was a 5X solution 

containing 0.05% (w/v) bromophenol blue, 40% (w/v) sucrose, 0.1 M EDTA (pH 8.0) 

and 0.5% sodium dodecyl sulfate (SDS). The solution was used for non-denaturing 

agarose gel electrophoresis of nucleic acids. 

3) 100 bp DNA Marker 

The 100 bp DNA marker was purchased from Invitrogen Life Technologies Inc. 

The stock concentration was 1 (ig/pl, and the working solution was prepared by 

diluting the stock solution 10 fold with TioEi buffer. 

4) Agarose Gel 

The agarose powder was purchased from Sigma Chemical Co. The 1% (w/v) and 

2% (w/v) agarose gels were prepared by dissolving 10 g and 20 g agarose in 1 litre 

0.5X TBE buffer respectively, which were then heated to 70°C on a hot plate with 

constant stirring until the solution became clear. The 1% agarose gel was used for 

RNA gel electrophoresis while the 2% agarose gel was used for DNA and PCR 

— — • 



Chapter 2 Materials & Methods 

products gel electrophoresis. 

5) Ethidium Bromide (EtBr) 

It was purchased from Sigma Chemical Co. The stock concentration was 10 

mg/ml and was prepared by dissolving the EtBr in deionized water. The working 

solution was prepared through dilution of the stock solution by 10,000 fold. Both the 

stock and working solutions were kept in dark at room temperature. 

2.1.12 Reagents, Buffers and Materials for Western Blot Analysis 

1) Cell Lysis Buffer 

The cell lysis buffer was made up of 1% (v/v) IGEPAL-CA 630 (Sigma 

Chemical Co.), 150 mM NaCl, 50 mM Tris-HCl (pH 7.5) and one tablet of complete 

protease inhibitor cocktail (Roche Molecular Biochemicals) in 50 ml deionized water. 

Following dissolution in 50 ml lysis buffer, each tablet of complete protease inhibitor 

cocktail yielded a mixture of several protease inhibitors with a broad spectrum of 

activity on serine, cysteine and metalloproteases and calpains inhibitors. The cell lysis 

buffer was kept at 4°C until use. 

2) Bradford Solution 

The Bradford solution, purchased from Bio-Rad Laboratories, is a 450 ml 

ready-to-use solution. It was stored at 4°C until use. 

3) 30% (w/v) Acrylamide / Bis Solution, 37.5:1 

The acrylamide solution, purchased from Bio-Rad Laboratories, is a 500 ml 

ready-to-use solution containing 30% (w/v) of acrylamide (146.1 g) and 

- _ 7 5 . 
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N,N'-methylene-bis-acrylamide (3.9 g) for a total monomer to crosslinker ratio of 

37.5:1. It was kept in dark at 4°C until use. 

4) Lower Buffer for Separating Gel 

The lower buffer, purchased from Sigma Chemical Co., is a 1.5 M Tris-HCl 

buffer with pH adjusted to 8.8. It was kept at 4°C until use. 

5) 10% Sodium Dodecyl Sulfate (SDS) Solution 

SDS was purchased from Sigma Chemical Co. in powdered form. A 10% SDS 

solution (w/v) was prepared by dissolving 10 g SDS in 100 ml deionized water. It was 

kept at room temperature. 

6) 10% Ammonium Persulfate (APS) 

Ammonium persulfate was purchased from Bio-Rad Laboratories. The 10% APS 

solution (w/v) was prepared by dissolving 0.5 g APS in 5 ml deionized water. The 

solution was kept in 500 jul aliquots at -20°C until use. 

7) N,N,N?,N'-Tetra-methylethylenediamine (TEMED) 

It was purchased from Bio-Rad Laboratories and was stored at 4°C until use. 

8) Upper Buffer for Stacking Gel 

The upper buffer, purchased from Sigma Chemical Co., is a 0.5 M Tris-HCl 

buffer with pH adjusted to 6.8. It was stored up at 4°C. 
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9) Ultrapure dNTP Set, 2'-Deoxyribonucleoside 5'-Triphosphate, S o d i u m Salt 

It was prepared by mixing 0.4 ml 0.05% (w/v) bromophenol blue, 2 ml upper 

buffer, 2 ml glycerol，2 ml 10% (w/v) SDS, 1.4 ml deionized water and 0.2 ml 

2-mercaptoethanol. All reagents were purchased from Sigma Chemical Co. The 

loading buffer was stored at 4°C until use. 

10) Kaleidoscope Prestained Standards 

These prestained standards, purchased from Bio-Rad Laboratories, consisted of 

seven uniquely colored proteins including myosin (199,000 Da), P-galactosidase 

(128,000 Da), bovine serum albumin (85,000 Da), carbonic anhydrase (41,700 Da), 

soybean trypsin inhibitor (32，100 Da), lysozyme (18,300 Da) and aprotinin (7,500 

Da). The standard colored proteins prepared in 33% (v/v) glycerol, 3% SDS, 10 mM 

Tris (pH 7), 10 mM DTT, 2 mM EDTA, 0.01% NaN3 were stored at -20°C until use. 

11) Tris-Glycine-SDS Electrophoresis Buffer (10X) 

The 10X buffer contained 0.25 M Tris-HCl, pH 8.6, 1.92 M glycine and 1% SDS 

in deionized water. It was filtered by filtration through a 0.2 jum Millipore filter and 

was stored at 4°C. The 10X concentrate was freshly diluted to IX working buffer 

solution for SDS-PAGE. 

12) Coomassie Blue Staining and Destaining Solutions 

The Coomassie blue staining and destaining solutions were used to stain and 

destain the SDS-polyacrylamide gel respectively after transferring the proteins from 

the gel to the PVDF membrane. The staining solution was prepared by mixing one 

part of 0.05% Coomassie blue (Bio-Rad Lab.) in acetic acid, three parts of methanol 
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and ten parts of deionized water. For the destaining solution, it was prepared by 

mixing one part of acetic acid, three parts of methanol and ten parts of deionized 

water. 

13) Tris-Glycine Buffer (10X) 

The Tris-glycine buffer was prepared by mixing 0.25 M Tris-HCl (pH 7.5) with 

1.92 M glycine in deionized water. It was then filtered by filtration through a 0.22 jum 

Millipore filter and stored up at 4°C. 

14) Tris-Glycine-Methanol Transfer Buffer (IX) 

The Tris-glycine-methanol transfer buffer was prepared by mixing 100 ml 

methanol with 50 ml 10X Tris-glycine buffer in 350 ml deionized water. The buffer 

solution was stored at 4°C. 

15) Polyvinylidene Difluoride (PVDF) Western Blotting Membranes 

The microporous PVDF membrane with pore size of 0.45 jum was purchased 

from Roche Applied Science and was stored at room temperature. 

16) TBS-Tween Washing Buffer (10X) 

The washing buffer was made up of 100 mM Tris-HCl (pH 7,5), 1 M NaCl and 

1% (v/v) Tween 20 in deionized water. All the constituent reagents were purchased 

from Sigma Chemical Co. The working solution (IX) was prepared through dilution 

of the 10X stock by 10 fold using deionized water. Both the stock and working 

solution were stored up at 4°C. 

— — 
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17) 5% Skimmed Milk Solution (Blocking Solution) 

It was prepared by dissolving Nestle's skimmed milk powder in IX washing 

buffer at a concentration of 5% (w/v). 

18) Primary Antibodies 

a) Rabbit Anti-FasL Polyclonal Antibody 

This anti-FasL antibody, purchased from Santa Cruz Biotechnology, Inc., is a 

rabbit polyclonal antibody raised against a recombinant protein corresponding to 

amino acids 100-278 mapping at the carboxyl terminus of FasL of rat origin. Each 

vial contained 200 jj,g IgG in 1 ml PBS, 0.1% sodium azide and 0.2% gelatin. It reacts 

with FasL of mouse, rat and human origin. The antibody was stored at 4°C. 

b) Rabbit Anti-Fas Polyclonal Antibody 

This anti-Fas antibody, purchased from Santa Cruz Biotechnology Inc., is a 

rabbit polyclonal antibody raised against a recombinant protein corresponding to 

amino acids 1-335 representing full length Fas of human origin. Each vial contained 

200 [ig IgG in 1 ml of PBS, 0.1% sodium azide and 0.2% gelatin. The antibody reacts 

with Fas of human, mouse and rat origin. The antibody was stored at 4°C. 

c) Mouse Anti-p actin Monoclonal Antibody 

This arrti-p-actin antibody, purchased from Sigma Chemical Co., is a monoclonal 

antibody (mouse IgG2a isotype) derived from the AC-74 hydridoma as a result of 

fusion of mouse myeloma cells and splenocytes from an immunized mouse. It 

recognizes an epitope located on the N-terminal end of the p-isoform of actin. The 

antibody specifically reacts with p-actin (42 kDa) in a wide variety of tissues and 

. 7 9 . 



Chapter 2 Materials & Methods 

species using immunoblotting. The product was provided as ascites fluid containing 

0.1% sodium azide as a preservative. 

19) Secondary Antibodies 

Two types of secondary antibodies were used in this study. These include sheep 

anti-mouse IgG, peroxidase-linked species-specific whole antibody and donkey 

anti-rabbit IgG, peroxidase-linked species-specific whole antibody. Both of them were 

purchased from Amersham Pharmacia Biotech, with the concentration of 1 mg/ml. 

They were used in 1:1,000 concentration. The antibodies were stored up at 4°C. 

20) Western Blotting Luminol Reagents 

The Western blotting luminol reagents, purchased from Santa Cruz 

Biotechnology Inc., consisted of solution A (125 ml) and solution B (125 ml). They 

were kept at 4°C. An equal volume of solution A and B was mixed well before use. 

21) X-ray Films (Fuji, Japan) 

The Fuji X-ray films were stored in dark at 4°C. 

2.2 Methods 

2.2.1 Culture of the Tumor Cell Lines 

All the murine and human leukemia cell lines (WEHI-3B JCS, Ml，NB4, K-562), 

and the human lymphoma cell line (U-937) were maintained in complete RPMI 

medium supplemented with 10% FBS, 1% PSF or PSN as continuous suspension 

cultures. For the human leukemia HL-60 cells, they were maintained in the same 

condition except that 20% FBS was mandatory for their normal growth. All cell lines 
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were cultured in 25 or 75 cm2 tissue culture flasks and incubated at 37°C in a 

humidified incubator supplied with 5% carbon dioxide ( C O 2 ) . The cell lines were 

sub-cultured at 2-3 day intervals or twice weekly depending on their doubling times. 

Cells in the exponential growth phase were used for all experiments. Long term 

storage of cell lines was done by cryo-preservation in liquid nitrogen. 

2.2.2 Isolation, Preparation and Culture of Mouse Peritoneal Macrophages 

BALB/c mice were injected intraperitoneally (i.p.) with 1-1.5 ml sterile 3% 

thioglycollate broth to elicit the peritoneal macrophages. Three days later, the mice 

were sacrificed by cervical dislocation and placed ventral side up on a clean surface. 

The skin of the abdomen was cleaned with 70% ethanol, cut and pulled apart so that 

the abdominal wall was exposed. A 5 ml syringe fitted with a 20-gauge needle was 

used to inject some air to inflate the peritoneal cavity. After that, 3 ml plain RPMI 

medium was injected into the abdominal cavity to wash out the cells and the 

procedure was repeated twice to rinse out most of the peritoneal exudate cells (PEC). 

The thioglycollate-elicited peritoneal macrophages were then washed twice with cold 

plain RPMI medium. They were finally resuspended in RPMI medium and 

supplemented with 10% HI-FBS and seeded into a 96-well plate microtiter at a 

concentration of 5x105 cells/ml for 3 hours to allow the adherence of macrophages to 

the bottom of the wells. The non-adherent cells were then removed and different 

concentrations of CLA-mix were added for further analysis. 
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2.2.3 Determination of Cell Viability 

1) MTT Colorimetric Assay 

All the murine and human leukemia or lymphoma cell lines (104 - 105 cells/ml) as 

well as the thioglycollate-elicited murine peritoneal macrophages (2.5 x 106 cells/ml) 

were incubated alone or with different concentrations of CLA-mix and its isomers 

(0-200 jiM) respectively in the 96-well flat-bottomed microtiter plates at 37°C for a 

defined incubation period (24，48 or 72 hours) inside a humidified 5% C02 incubator. 

The cells were then incubated with 30 pi MTT (5 mg/ml) for 2-3 hours. Then the 

medium was removed and 100 jjl DMSO was used to dissolve the MTT deposited in 

each well. Then absorbance was measured at 540 nm. The viability of cells was 

calculated as follows: 

% viable cells = ( O D 5 4 0 of test sample / O D 5 4 0 of control) x 100% 

2) Trypan Blue Exclusion Assay 

The trypan blue exclusion test was used to determine the number of viable cells in 

cultures. Cells were cultured with different concentrations of CLA-mix (0-200 |LIM) at 

37°C inside a humidified 5% CO2 incubator. The viability of the cells was then 

determined after a defined incubation period (24, 48 or 72 hours). Ten microlitres cell 

suspension was mixed with 10 jil of 0.4% trypan blue solution. The viable cells were 

visible as clear cell bodies while the dead cells were stained blue. By counting the 

number of viable and dead cells, the viability was calculated as follows: 

% cell viability = (no, of viable cells / no. of total cells counted) x 100% 
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2.2.4 Determination of Cell Proliferation by [3H]-TdR Incorporation Assay 

Leukemia WEHI-3B JCS cells (104 cells/ml) were incubated with different 

concentrations of CLA-mix (0-200 |uM) in the 96-well flat-bottomed microtiter plates 

at 37°C for 72 hours inside a humidified 5% C02 incubator. The cells were then 

pulsed with 0.5 jaCi [3H]-TdR in 20 叫 complete medium for 6 hours. After a 

freeze-and-thaw cycle, the cells were harvested onto a glass microflber filter. The 

radioactivity, expressed in counts per minute (cpm)5 was measured by the liquid 

scintillation analyzer LS 2900 TR. The results were expressed as the percentage 
• • • • 3 

inhibition of [ H]-TdR incorporation, using the untreated cells as a control (Leung et 

al,, 1994). The percentage inhibition of [ H]-TdR incorporation was calculated as 

follows: 
% inhibition = (cpm of control — cpm of test sample) / cpm of control x 100% 

2.2.5 In Vivo Tumorigenicity Study 

WEHI-3B JCS cells (104 cells/ml) were incubated with CLA-mix (100 \xM or 

150 jiM) for 8 hours at 37°C inside a humidified 5% CO2 incubator. The cells were 

then harvested and washed three times with plain RPMI medium. Each BALB/c 

mouse in groups of five was injected i.p. with 3 x 1 0 syngeneic WEHI-3B JCS cells 

in 1 ml RPMI medium. On day 12 of post-tumor inoculation, WEHI-3B JCS cells 

were recovered from the peritoneal cavity of mice and the viable tumor cells were 

counted by trypan blue exclusion assay. 

2.2.6 Analysis of Cell Cycle Profile / DNA Content by Flow Cytometry 

WEHI-3B JCS cells (104 cells/ml) were first synchronized by culturing in RPMI 

medium supplemented with 0.5% HI-FBS for 24 hours. They were then incubated in 
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RPMI + 10% HI-FBS with different concentrations of CLA-mix and its isomers 

(0-200 |nM) for another 24 hours at 37�C inside a humidified 5% C02 incubator. Cells 

were harvested and washed with PBS by spinning at 430 x g for 5 minutes. Cells were 

then fixed with 1 ml 70% ethanol at 4°C for at least 30 minutes. Afterwards, cells 

were centrifuged at 430 x g for 10 minutes, followed by washing with PBS and 

centrifuging again at 430 x g for 10 minutes to remove the ethanol. Cells were then 

resuspended in 1 ml freshly prepared propidium iodide DNA staining solution (50 

jig/ml PI) in dark at room temperature for 1,5 hours. Then flow cytometric analysis 

was carried out. Stained cells were analyzed for fluorescence intensity with a 

fluorescence-activated cell sorter (Becton Dickinson FACSort) equipped with an 

argon laser emitting at 488 nm, using the CellQuest software. A minimum of 10,000 

events were acquired for each determination. The percentages of cells in Go/Gi, S and 

G2/M cell cycle phases were calculated by the ModFit program (Becton Dickinson). 

2.2.7 Measurement of Apoptosis 

1) DNA Fragmentation Analysis 

Apoptotic cells show a typical occurrence of fragmented DNA, therefore, DNA 

fragmentation is regarded as one of the indications of cells undergoing apoptosis. 

Apoptotic DNA fragments were isolated from the apoptotic cells by the method of 

Herrmann et al (1994). WEHI-3B JCS cells (104 cells/ml) were incubated with 

various concentrations of CLA-mix and its isomers respectively at 37°C for different 

periods of time and the untreated cells acted as a control. WEHI-3B JCS cells (3 x 106) 

were then harvested and washed with cold PBS by centrifUgation at 430 x g for 5 

minutes. The cell pellets were then treated with 200 jul IGEPAL CA-630 lysis buffer 

for 10 minutes at 37°C. The samples were centrifuged at 6,000 x g for 5 minutes. 
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Supernatants, which contained the apoptotic DNA fragments, were collected to 

another new eppendorfs and 50 pi 5% SDS was added. The mixture was incubated 

with 10 ul RNase A (10 mg/ml) at 56°C for 1.5 hour to remove the cellular RNA, 

followed by another 1.5 hours of incubation with 20 jal proteinase K (20 mg/ml) at 

56°C in order to remove the proteins. The DNA was then precipitated with 0.1 volume 

of 3 M sodium acetate and 2.5 volumes of absolute ethanol. After centrifugation at 

20,800 x g for 30 minutes, the DNA pellets were washed with 70% ethanol and then 

absolute ethanol, followed by air drying for about 10 minutes. The dried pellets were 

re suspended in 20 |ul TioEo.i buffer and incubated at 37°C for 30 minutes. Just before 

performing the gel electrophoresis, the samples were heated at 65°C for 5 minutes. 

After adding 5 [d of gel loading dye into each sample, the DNA samples were loaded 

into the wells of 2% agarose gel for electrophoresis at 100 volts. After electrophoresis, 

the gels were stained with ethidium bromide (1 jug/ml) for 3 minutes, followed by 

destaining with deionized water for 15 minutes. The DNA bands were visualized with 

UV illumination and the images were captured by Bio-Rad Gel Doc 2000 under UV 

illumination. 

2) Cell Death Detection ELISAplus Kit 

This method can be used to quantify the degree of apoptosis (Bourre et al, 2002). 

The kit is based on a quantitative sandwich-enzyme-immunoassay principle using 

mouse monoclonal antibodies to specifically determine the amount of mono- and 

oligonucleosomes produced during apoptosis, which are in the cytoplasmic fraction of 

cell lysates. Briefly, WEHI-3B JCS cells (104/ml) were either treated with CLA-mix 

or its isomers (150 pM) for 48 hours, and 105 treated cells were harvested by spinning 

at 200 x g for 10 minutes. The pellet was resuspended in 200 \il lysis buffer and lysed 
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for 30 minutes at room temperature. The lysate was then centrifuged at 200 x g for 10 

minutes. Twenty microlitres supernatant, which corresponded to the cytoplasmic 

fraction, was carefully transferred into the streptavidin coated microplate. An equal 

volume (20 |il) of positive control was also added to a new well while the background 

control was made by only adding the incubation buffer into the well. After the 

addition of 80 jal freshly prepared immunoreagent into each well, the plate was 

covered with the adhesive cover foil provided in the kit and was incubated on a shaker 

with gentle shaking (300 rpm) for 2 hours at room temperature. Afterwards, the 

solution was removed thoroughly by aspiration and each well was rinsed 3 times with 

250 [i\ incubation buffer. Then 100 \xl ABTS substrate solution was subsequently 

added into each well. After gentle shaking for 25 minutes, the absorbance was read at 

405 rim - 490 nm. The results were converted to enrichment factor which reflected 

the degree of apoptosis. The enrichment factor was calculated as follows: 

„ . t , , i Absorbance of sample - Absorbance of background hnrichment 士 actor = ° 
Absorbance of control - Absorbance of background 

Enrichment factor greater than or equal to 2 was considered significant when 

compared with the untreated control (Bourre et al” 2002) 

2.2.8 Determination of the Mitochondrial Membrane Potential 

The mitochondrial membrane potential (A\]/m) of CLA-mix- or CLA 

isomer-treated WEHI-3B JCS cells was measured by the JC-1 staining method 

(Dorrie et al,, 2001). JC-1 stock solution (1.3 \xl, 5 mg/ml in DMSO) was diluted with 

- f\ 1 ml warm PBS. WEHI-3B JCS cells (10°) were harvested and centrifuged. The pellet 

was resuspended with 1 ml working solution and then incubated for 15 minutes at 

37°C. After incubation, the cells were subjected to flow cytometric analysis. 
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Excitation was made at 488 nm and the emissions of red (-590 nm) and green (-525 

nm) fluorescence were measured simultaneously. 

2.2.9 Measurement of Caspase Activity 

There were 2 steps in studying the caspase activity: 

1) Treatment of Cells and Extraction of Proteins 

The method for measuring caspase activity was adopted from Mack et al (2000). 

WEHI-3B JCS cells (3x10 ) were treated with CLA-mix or CLA isomer for defined 

periods of time at 37°C in a humidified CO2 incubator. The cells were harvested and 

washed twice with cold PBS by centrifuging at 430 x g for 5 minutes at 4°C. Cell 

viability was determined by the trypan blue exclusion test. The cell pellet was then 

resuspended in 150 \il lysis buffer (50 \x\ / 106 cells) and the mixture was vortexed 

vigorously. The cell lysates were kept on ice for 10 minutes and then centrifuged at 

18,000 x g for 3 minutes at 4°C. The supernatants were collected for further use. 

2) Fluorometric Measurement of Caspase Activity 

In order to confirm the correlation between caspase activities with the signal 

detection, each sample would have its respective control in the presence of specific 

caspase inhibitor. The control reaction was set up by incubating 50 [il cell lysate with 

1 jal of the corresponding caspase inhibitor and 50 pi reaction buffer in a 96-well 

flat-bottomed microtiter plate at 37°C for 30 minutes. Afterwards, another 50 jul of 

each cell lysate sample was added into the new wells of the plate. These samples were 

free from caspase inhibitors. One microlitre of the corresponding specific caspase 

substrate was then added to all of the wells, and the reaction buffer was added to 

make up the final volume of 200 jul. The whole mixture was again incubated at 370C 
— — 
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for 1 hour. The fluorescence units released by the mixture were determined by the 

fluorescent plate reader, TEC AN Polarion, The amount of fluorescence units released 

represented the caspase activity which could be quantified by comparing with the 

standard curve of free fluorescence units. The standard curve was made by diluting 

the AMC or AFC solution to 0,5 ĵ M, 1 ĵ M, 2 juM and 4 juM with the lysis buffer. 

2.2.10 Study of Intracellular Accumulation of Reactive Oxygen Species (ROS) 

The method for measuring the generation of ROS, particularly the superoxide 

anions (02"), was adopted from Ito et al (2004). DOiydroethidium (DHE) enters cells 

and is oxidized by ROS, with a relative selectivity for 02" to form ethidium, which 

intercalates with DNA and causes the nucleus to exhibit a red shift in fluorescence. 

DHE and ethidium are retained within cells with minimal leakage. Therefore, to 

measure the generation of ROS, CLA-mix- or CLA isomer-treated WEHI-3B JCS 

cells (5 x 105) were incubated with 10 pM dihydroethidium (Molecular Probes, 

Eugene, OR) for 15 minutes at 37°C in a humidified CO2 incubator. The cells were 

then washed and resuspended in PBS. The oxidative conversion of dihydroethidium to 

ethidium was analyzed by flow cytometry. 

2.2.11 Study of the Scavenging Activity of Antioxidants 

Prior to treatment with CLA-mix or CLA isomer for 24 hours, WEHI-3B JCS 

cells (5 x 105) were pre-incubated with either 200 units/ml SOD for 3 hours or 15 mM 

NAC for 2 hours in a humidified CO2 incubator. Afterwards, the cells were cultured 

with 10 (iM dihydroethidium (Molecular Probes, Eugene, OR) for 15 minutes at 37�C, 

and were then washed and resuspended in PBS. The oxidative conversion of 

dihydroethidium to ethidium was analyzed by flow cytometry. 

- 8 8 - “ 



— Chapter 2 Materials & Methods 

2.2.12 Gene Expression Study 

There were 4 steps in studying gene expression: 

1) Isolation of Total Cellular RNA 

For WEHI-3B JCS cells, 106 cells were firstly treated with appropriate 

concentrations of CLA-mix or CLA isomer for different periods of time at 37°C inside 

a humidified 5% C02 incubator. The cells were then harvested by centrifugation at 

430 x g for 5 minutes at 4�C and lysed by adding 1 ml TRIZOL reagent (1 ml 

TRIZOL for 5-10 x 10° cells) with vigorous shaking. The cell lysate solutions were 

incubated at room temperature for 5 minutes to allow complete dissociation of 

nucleoprotein complexes. Then 200 [d chloroform per 1 ml TRIZOL reagent was 

subsequently added to the samples and shaked robustly for 15 seconds. The samples 

were allowed to stand at room temperature for 3 minutes and then centrifuged at 

12,000 x g for 15 minutes at 4°C. The upper aqueous phase containing RNA (-400 jul) 

was being transferred to another new micro-centrifuge tube. Isopropanol (500 jul) was 

added to precipitate the RNA and the samples were allowed to stand at room 

temperature for 10 minutes, followed by centrifugation again at 12,000 x g at 4°C for 

another 10 minutes. The supernatants were then discarded and the RNA pellets were 

washed with 1 ml 75% ethanol per ml of TRIZOL. After centrifugation at 7,500 x g at 

4°C for 5 minutes, the supernatants were removed by aspiration and the RNA pellets 

were air-dried for about 5 minutes. After that，the RNA pellets were dissolved in 30 jul 

DEPC-treated water and stored at -70°C until use. 

In order to determine the RNA content in each sample, they were firstly diluted 

100 fold with DEPC-treated water. The absorbance of the diluted RNA was calculated 

at 260 nm. According to the measurement results, small aliquots of RNA with a 

working concentration of 0.5 [xg/[il were prepared with DEPC-treated water and kept 

— -89- “ 
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at -70°C. The purity was assessed by measuring the ratio of A26o/A280 (it should have a 

value ranged from 1.0 to 2.0) and the integrity of RNA was verified by running 1 jul 

total RNA (0.5 jug) samples on a 1% agarose gel, followed by staining with ethidium 

bromide. 

2) Reverse Transcription (RT) 

In this step, the RNA was converted to its complementary DNA (cDNA) for 

further PCR amplification of the target genes. Total RNA (2 [ig) were reverse 

transcribed in a 20 PI reaction mixture containing 40 units of RNASEOUT™ 

recombinant ribonuclease inhibitor, IX M-MLV first strand buffer, 0.5 mM of each 

dNTP, 10 mM DTT, 0.1 jig oligo(dT)12_18 and 200 units of M-MLV reverse 

transcriptase, A negative control devoid of RNA samples was used to check for 

contaminations if any. The reaction was carried out in a thermocycler, GeneAmp PCR 

System 9700 (Perkin-Elmer Co.). Briefly, the reaction mixture was incubated at 37°C 

for 1 hour, followed by 99°C for 5 minutes to inactivate the reverse transcriptase and 

to completely denature the template, and then the samples were cooled down to 4°C. 

The resulting cDNA samples were kept at -20°C until use. 

3) Polymerase Chain Reaction (PCR) 

Two microlitres of each cDNA sample (equivalent to 0.1 ]ug of total RNA) was 

mixed with a 23 jul reaction mixture containing IX PCR buffer, 1.5 mM MgCl2, 0.2 

mM dNTPs, 1 unit of Thermoprimeplus DNA polymerase, and 0.2 |nM of each sense 

and antisense oligonucleotide primer in a PCR tube. A negative control exclusive of 

cDNA sample was prepared to check for any contaminations. The reactions were 

performed in a thermocycler, GeneAmp PCR System 9700 (Perkin-Elmer Co.). 

-90 - ~ 
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Briefly, the samples were firstly subjected to an initial denaturation at 94°C for 5 

minutes. Then 20-30 thermal cycles were carried out (The number of cycles varied 

from gene to gene). The thermal cycle basically included denaturation at 94�C for 30 

seconds, annealing at 56°C to 61�C for 60 to 75 seconds (the temperature and duration 

depended on which target genes were amplified) and elongation at 72°C for 1 minute. 

In the last cycle, one more step in elongation for 5 minutes was performed to 

complete the reaction. The amplified PCR products were then cooled down to 4°C and 

kept at 4°C for doing subsequent gel electrophoresis. 

4) Agarose Gel Electrophoresis 

Each PCR product (5 |il) was mixed with 1 jul 5X gel loading buffer. The mixture 

was then added into the wells of the 2% agarose gel. Simultaneously, a mixture of 5 

|il 100 bp DNA ladder and 1 jil loading dye was also added into a well of the 2% 

agarose gel. Electrophoresis was carried out in 0.5X TBE buffer on the gel at a 

constant voltage of 100 volts for about 1.5 hours, Following electrophoresis, the gel 

was stained with 1 jug/ml ethidium bromide solution for 3 minutes and then destained 

with deionized water for 20 minutes. The stained gel was visualized and analyzed by 

the Bio-Rad Gel Doc 2000 under UV illumination. 

The gel images were captured and analyzed by the Image Quant software 

(Molecular Dynamics) to quantify the intensity of each gel band. The relative 

intensity of each band was compared with the solvent control following normalization 

with respect to the house-keeping gene glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH). 

_ 9 1 _ ^ 
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2.2.13 Protein Expression Study 

There were 4 steps in studying protein expression: 

1) Treatment of Cells and Extraction of Proteins 

WEHI-3B JCS cells (104 cells/ml) were treated with CLA-mix or CLA isomer 

for different periods of time at 37°C in a humidified 5% C02 incubator. The cells were 

harvested and washed twice with cold PBS by centrifuging at 430 x g for 5 minutes at 

4°C. The pellet was then resuspended with lysis buffer (50 jul lysis buffer/106 cells) 

and vortexed vigorously. Afterwards，the cell lysates were kept on ice for at least 30 

minutes and centrifuged at 20,800 x g for 5 minutes at 4°C. The supernatants were 

collected for further assay. 

2) Quantification of Proteins 

The protein concentrations of the cell lysates were determined by Bradford 

protein assay. Bovine serum albumin (BSA) solutions at 2 |iig/ml, 4 |iig/ml, 6 jag/ml, 8 

|Lig/ml, and 10 jug/ml, prepared in deionized water in duplicate with 2 mg/ml BSA 

stock solution, were used as standards for the assay. Protein samples (1.6 jul) were 

diluted with 798.4 \xl deionized water. Then 800 \il BSA standards or protein samples 

were mixed well with 200 |LI1 Bradford reagent by inverting the cuvettes. After mixing, 

they were allowed to stand at room temperature for 5 minutes and the absorbance at 

595 nm was measured using the Bradford reagent as a blank. A standard curve was 

constructed by the BioPhotometer (Eppendorf) in order that the concentrations of the 

protein samples could be determined by the machine automatically. Adjustments were 

made according to the measurement results by diluting the samples with lysis buffer, 

as a result, all the samples contained 20 [ig proteins in a similar volume 5 pi). Each 

protein sample (20 jug) was subjected to SDS-poly acrylamide gel electrophoresis 



Chapter 2 Materials & Methods 

(PAGE). 

3) Western Blotting Analysis 

SDS-PAGE was employed to separate proteins according to their molecular 

weights. Five microlitres protein sample ( � 2 0 jug) was mixed with 5 4X protein 

loading buffer, together with 10 \il lysis buffer to make up the total volume of 20 

The mixed protein samples were boiled for 5 minutes and loaded onto the 

SDS-polyacrylamide gel with 5% stacking gel. Kaleidoscope prestained protein 

standards (8 pi) were also loaded and the gel was run under constant voltage of 100 

volts for about 2 hours. The percentage of acrylamide added in the running gel was 

varied in accordance with the molecular weight of the target protein. A protein of 

higher molecular weight needed a lower percentage of acrylamide gel and vice versa. 

With respect to the experimental results illustrated in this thesis, only 10% and 15% 

gels were used, and Table 2.4 shows the composition of these two percentages of 

SDS-polyacrylamide gel. 
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Table 2.4: Composition of the SDS-polyacrylamide gel. 

Separating Gel (5 ml) 
5 % Stacking Gel (3 ml) 

10% 15% 

Deionized water 1.677 ml 2 ml 1.15 ml 

Lower Buffer —— 1.25 ml 1.25 ml 

Upper Buffer 0.75 ml HH 11^ 

30% Acrylamide Stock 0.5 ml 1.65 ml 2.5 ml 

— — 1 0 % SDS 0.03 ml 0.025 ml 0.025 ml 

10% APS 0.04 ml 0.075 ml 0.075 ml 

— T E M E D 2 jul 

Following electrophoresis, the stacking gel was cut with a spacer and discarded. 

The gel was put into deionized water for 5 minutes to remove SDS that could hamper 

the protein transfer, and then washed twice in the transfer buffer for 5 minutes. A 

piece of PVDF membrane was activated with 100% methanol and soaked in IX 

transfer buffer, together with 6 pieces of filter paper (3 MM Whatman 

chromatography papers) for 10 minutes. Afterwards, 3 pieces of filter paper were 

placed on the semi-dry electroblotter (Bio-Rad Laboratories), followed by a piece of 

PVDF membrane. The gel was then placed carefully onto the membrane and lastly 3 

more pieces of filter paper were covered onto the gel. Air bubbles were excluded by 

rolling a glass tube on the surface of filter papers and the surrounding water should be 

dried before electroblotting. The proteins were transferred from the gel onto the 

PVDF membrane after applying voltage at 16 volts for 35 minutes. After 

electroblotting, the membrane was washed with IX washing buffer for 10 minutes, 

and then incubated with 5% skimmed milk at room temperature for at least 1 hour 
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with rotation to block the non-specific sites for probing. Primary antibody probing the 

target protein was added into the milk solution at a ratio of 1:1,000. The membrane 

was incubated with the primary antibody overnight at 4°C with rotation. On the next 

day, the primary antibody was removed and the membrane was washed thrice with IX 

washing buffer for 5-10 minutes. The membrane was then incubated with the 

corresponding horseradish peroxidase-linked secondary antibody at 1:1,000 dilution 

in washing buffer for 1 hour at room temperature with rotation. After incubation, the 

membrane was washed thrice with IX washing buffer and then subjected to ECL 

assay. 

4) ECL Assay 

Two detection reagents (reagent A and reagent B, 0.5 ml each) were mixed and 

poured onto the membrane. Excess mixture was removed. The membrane was then 

placed in a transparent plastic bag and the ECL film was placed above it in dark room. 

The film cassette was closed for different periods of exposure time, varying from 15 

seconds to 3 minutes. Finally the film was developed and the specific protein bands 

could be visualized on the X-ray film. Band intensity was quantified by the 

ImageQuant software (Molecular Dynamics). The relative intensity of each protein 

band was compared with the solvent control following normalization with respect to 

the house-keeping protein p-actin. 

2.2.14 Measurement of Cell Differentiation 

1) Cell Morphology Study 

To assess the capability of conjugated linoleic acid to induce cellular 

differentiation, WEHI-3B JCS cells (104 cells/ml) were incubated with different 

concentrations of CLA-mix at 37°C for 48 hours. The solvent control-treated cells 

_____. 
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were harvested and resuspended in 1 ml RPMI medium supplemented with 10% 

HI-FBS, whereas the CLA-mix-treated cells were allowed to stand at room temperature 

for a while. This procedure permits a short period of cold shock for detaching the 

differentiated cells from the culture flasks after taking them out from the 37°C incubator. 

The cells were then harvested by a cell scalper or by washing them twice with cold 

plain RPMI with vigorously shaking. The harvested cells were resuspended in 1 ml 

RPMI + 10% HI-FBS. Cell morphology was then examined by the preparation of 

cytospin smears. CLA-mix-treated WEHI-3B JCS cells (2xl05 cells) were fixed onto 

a microscopic slide by cytocentrifugation at 500 rpm for 5 minutes using the Shandon 

Cytospin 3 centrifuge (Shadon Scientific Ltd.，U.K.). The cells were then allowed to 

be air-dried. They were subsequently stained with each of the three different 

Hemacolor staining solutions for 15 seconds and destained under running tap water. 

Finally, the air-dried cells on the slides were mounted with neutral mounting medium, 

Canada Balsam (Sigma Chemical Co.) and the cell morphology was examined under 

the light microscope. 

2) Immunophenotyping 

WEHI-3B JCS cells (104 cells/ml) were incubated with 50 ĵ M or 150 fiM 

CLA-mix at 370C for 48 hours. The untreated cells were harvested and resuspended in 

1 ml RPMI + 10% HI-FBS, whereas the CLA-mix-treated cells were allowed to stand 

at room temperature for a while. The cells were then harvested by a cell scalper or by 

washing them twice with cold plain RPMI with vigorous shaking. The harvested cells 

were resuspended in 1 ml RPMI + 10% HI-FBS and cell count was performed with the 

hemocytometer. WEHI-3B JCS cells (2.5x105) were added to a transparent conical 

centrifuge tube containing 10 ml FACS medium and spun at 405 x g for 5 minutes. The 

supernatant was removed by aspiration and the pellet was suspended in a final volume 
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of 0.2 ml FACS medium. Rat IgG (10 jug/ml) and mouse IgG (10 j^g/ml) were then 

added to the cell suspension to block the Fc receptors. After incubation at 4°C for 30 

minutes with occasional shaking, the cells were washed twice with the FACS medium. 

The pellet was resuspended in a final volume of 50 jal FACS medium and dispended 

into each well of a 96-well U-bottomed microtiter plate (~2 x 105 cells / 50 |ul / well). 

Fifty microlitres primary antibody or PBS was added to each well. After incubation at 

4°C for 30 minutes with occasional shaking, the cells were washed twice with FACS 

medium by spinning at 304 x g for 3 minute^ at 4�C. FITC-conjugated sheep anti-rat Ig 

(1 |ng) was then added to each well. After incubation at 4°C for 30 minutes (with 

occasional shaking), the cells were washed thrice with FACS medium by spinning at 

304 x g for 3 minutes at 4°C. The pellets were then resuspended in 0,6 ml FACS 

fixative in FACS tubes. FACS analysis was performed. 

3) Measurement of Activity of Monocytic Serine Esterase Activity 

WEHI-3B JCS cells (104 cells/ml) were incubated respectively with the solvent 

control, 100 \iM or 150 \iM CLA-mix at 37°C for 72 hours. The solvent 

control-treated cells were harvested and resuspended in 1 ml RPMI + 10% HI-FBS, 

whereas the CLA-mix-treated cells were allowed to stand at room temperature for a 

while. The cells were then harvested by a cell scalper or by washing them twice with 

cold plain RPMI with vigorously shaking. The harvested cells were resuspended in 1 

ml RPMI + 10% HI-FBS for cell counting. They were then resuspended in RPMI + 

10% HI-FBS with a cell density of 2x105 cells/well in 200 |Lil. The cell suspension was 

then dispensed into a 96-well U-bottomed microtiter plate. Then 20 |ul fluorescein 

diacetate (200 jug/ml) was added into each well. The samples were incubated at room 

temperature in dark for 30 minutes with occasional shaking. The cells were washed 
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twice with FACS medium by spinning at 304 x g for 3 minutes at 4°C. The cell pellets 

were resuspended in 0.8 ml FACS fixative in FACS tubes and kept in dark. FACS 

analysis was performed. 

4) Assay for Endocytosis 

WEHI-3B JCS cells (104 cells/ml) were incubated with the solvent control, 100 

(iM or 150 ]uM CLA-mix at 37°C for 72 hours. The solvent control-treated cells were 

harvested and resuspended in 1 mi RPMI + 10% HI-FBS, whereas the 

CLA-mix-treated cells were allowed to stand at room temperature for a while. The cells 

were then harvested by a cell scalper or by washing them twice with cold plain RPMI 

with vigorously shaking. The harvested cells were resuspended in 1 ml RPMI + 10% 

HI-FBS for cell counting. They were then resuspended in a 15 ml conical tissue culture 

tube containing 0.9 ml RPMI + 10% HI-FBS. Then 0.1 ml FITC-conjugated BSA (1 

mg/ml) was also added to the cells, which were incubated at 37°C in dark for 6 hours, 

with occasional shaking for every 30 minutes. The cells were subsequently washed 

thrice by spinning at 405 x g for 5 minutes, and were fixed with 1 ml FACS fixative in 

FACS tubes. FACS analysis was performed. 

2.2.15 Statistical Analysis 

Each experiment was performed at least two to three times and the results of only 

one representative experiment were presented. The data were expressed as arithmetic 

mean 士 standard error (S.E.) of triplicate or quadruplicate determinations performed 

under the same conditions. The student's t-test was used for statistical analysis. 

Normally, p < 0.05 was regarded as significantly different. 
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3.1 Introduction 

CLA has received considerable attention in recent years because it has been 

shown to promote various beneficial health-related effects in animals, as discussed in 

Chapter 1, particularly its anti-carcinogenic and anti-tumor activities. Recently, CLA 

has been reported to exhibit growth-inhibitory effect on a variety of human tumor cell 

lines derived from bladder (639V and SG65), breast (MCF7 and MDA-MB-231), 

colorectal region (HT-29 and MIP-101), liver (hepatoma HepG2 and SK-HEP-1), 

nervous system (glioblastoma ADF)�prostate (LNCaP and PC-3 )�and stomach 

(SGC-7901) (Palombo et al,, 2002; Chen et al., 2003; Maggiora et al., 2004). Apart 

from in vitro studies, however, the majority of CLA researches has been carried out on 

its chemopreventive effect on mammary and colon tumorigenesis in vivo (Liew et al.’ 

1995; Visonneau et al” 1997; Futakuchi et al,, 2002). By contrast, dietary CLA did 

not influence the growth of pancreatic solid tumor in Syrian hamsters (Kilian et al., 

2003). To date, few data are available to show the anti-tumor activity of CLA on other 

kinds of tumor cells (Maggiora et al,, 2004). 

In this study, the anti-proliferative activity of a mixture of CLA isomers, 

so-called CLA-mix, and some of its isomers on the murine myelomonocytic leukemia 

WEHI-3B JCS cells was investigated. The growth-inhibitory effect of CLA-mix was 

also determined using a variety of murine and human myeloid leukemia cell lines, and 

its cytotoxic effect on the leukemia cells as well as normal myeloid cells such as 

murine peritoneal macrophages was also examined. Moreover, the kinetics and the 

reversibility of CLA-mix with regard to its anti-proliferative activity on the WEHI-3B 

JCS cells were studied. In addition to these in vitro studies, the ability of CLA-mix to 
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suppress the in vivo tumorigenicity of WEHI-3B JCS cells in syngeneic BALB/c mice 

was also assessed. Furthermore, the action mechanisms by which CLA-mix and the 

trans-9, trans Al CLA (9E，11E-CLA) isomer could exert their in vitro 

anti-proliferative activity on the WEHI-3B JCS cells were examined. The cell cycle 

profiles of the CLA-mix- and 9E, llE-CLA-treated WEHI-3B JCS cells, and their 

expression of certain cell cycle-regulatory genes were studied using flow cytometry 

and reverse transcription-polymerase chain reaction (RT-PCR) respectively. 
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3.2 Results 

3.2.1 Anti-proliferative Activity of CLA-mix and CLA Isomers on Various 

Myeloid Leukemia Cell Lines In Vitro 

In the initial experiments, the anti-proliferative activity of a mixture of CLA 

isomers (CLA-mix) on the murine myelomonocytic leukemia WEHI-3B JCS cells 

was evaluated by the standard colorimetric MTT assay as described in Chapter 2. The 

WEHI-3B JCS cells (10 cells/ml) were 'cultured with different concentrations of 

CLA-mix for 48 hours. During the last 2-3 hours of incubation, the cells were 

co-cultured with the MTT salt. In fact, the MTT assay measures the active metabolism 

of the mitochondrial dehydrogenases of living cells which can reflect the viable cell 

number of the WEHI-3B JCS cells following treatment with CLA-mix. In addition to 

the WEHI-3B JCS cell line，the anti-proliferative effect of CLA-mix was also 

examined using a variety of murine and human myeloid leukemia cell lines, including 

Ml, HL-60, NB4, and K-562, and also the human lymphoma U-937 cells. Moreover, 

the growth-inhibitory effect of CLA-mix was compared with its parental fatty acid, 

linoleic acid (LA), and its four isomers, namely cis-9, trans-11 CLA (9Z, 11E-CLA), 

trans-10, cis-12 CLA (10E, 12Z-CLA), cis-9, cis-ll CLA (9Z, 11Z-CLA), and trans-9, 

trans-U CLA (9E, 11E-CLA). It was found that the growth of WEHI-3B JCS cells 

was inhibited dose-dependently by CLA-mix (Fig. 3.1). The observed 

growth-inhibtory effect of CLA-mix on WEHI-3B cells was not due to the solvent 

effect, as the solvent control (ethanol), even at the highest concentration (0.1% v/v) 

used in my studies, exhibited little, if any, growth-inhibitory effect on the WEHI-3B 

JCS cells after 48 hours of incubation (Fig. 3.1). Similar growth-inhibitory effect of 

CLA-mix was also demonstrated in various murine and human hematologic malignant 
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cell lines (Fig. 3.2). Table 3.1 shows the estimated IC50 values of CLA-mix on various 

leukemia or lymphoma cell lines. By comparing these cell lines, the human 

promyelocytic leukemia NB4 cell line and the murine myelomonocytic leukemia 

WEHI-3B JCS cell line were found to be most sensitive to the anti-proliferative 

activity of CLA-mix. Nevertheless, owing to its short doubling time and its 

well-characterized features, the WEHI-3B JCS cell Kne was chosen as the major cell 

model for further studies. In addition, the WEHI-3B JCS cells can grow in syngeneic 

BALB/c mice, thus facilitating in v/vo studies without stimulating immune rejections. 

When compared to its parental fatty acid, LA (Fig. 3.3), and all of the four CLA 

isomers being investigated (Fig. 3.4), CLA-mix was found to be the most potent 

growth-inhibitor. A comparison of the sensitivity of WEHI-3B JCS cells to CLA-mix 

and its four isomers was shown in Table 3.2. Specifically, among all CLA isomers 

being studied, the 9E，11E-CLA，10E，12Z-CLA and 9Z，11E-CLA inhibited the 

growth of WEHI-3B JCS cells to a similar extent while the 9Z，11Z-CLA was found 

to be slightly weaker, especially at 200 ]xM concentration. Since CLA-mix inhibited 

the growth of WEHI-3B JCS cells to a greater extent than each of its isomers, it is 

possible that interactions might occur among individual CLA isomers, resulting in 

higher anti-proliferative activity on WEHI-3B JCS cells following exposure to 

CLA-mix. 
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Fig. 3.1: Growth-inhibitory effect of CLA-mix on the murine myelomonocytic 
leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 cells/ml) were incubated 
with different concentrations of CLA-mix (0-200 [M) and ethanol (EtOH) (0-0.1%) 
at 37°C for 48 hours. Cell proliferation was determined by the MTT assay as 
described in Chapter 2. Results were expressed as % viability using the untreated 
cells as a control. Each point represents the mean 士 S.E. of quadruplicate cultures. 
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Fig. 3.2: Growth-inhibitory effect of CLA-mix on various types of murine and 
human leukemia or lymphoma cell lines as determined by the MTT assay. 
Leukemia cells were incubated with different concentrations of CLA-mix at 37°C for 
48 hours. Cell proliferation was determined by the MTT assay as described in Chapter 
2. Results were expressed as % viability using the untreated cells as a control. Each 
point represents the mean 士 S.E. of quadruplicate cultures. 
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Table 3.1: The estimated IC50 values of CLA-mix on various types of leukemia or 

lymphoma cell lines. 

Tumor cell line Estimated ICsn value (uM) 

Murine myelomonocytic 
t t . WEHI-3B JCS � 1 5 0 
leukemia 

Murine acute myeloblastic 
, , . Ml � 1 8 0 
leukemia 

HL-60 � 1 6 0 

Human promyelocytic 
leukemia 

NB4 � 1 4 0 

Human chronic 
K-562 > 200 

myelogenous leukemia 

Human histiocytic 
. U-937 >200 

monoblast-like lymphoma 

I C 5 0 value is the estimated concentration of CLA-mix which can cause 50% 
inhibition on the in vitro growth of leukemia or lymphoma cells under specified 
experimental conditions. 
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Fig. 3.3: Growth-inhibitory effect of CLA-mix and LA on the murine 
myelomonocytic leukemia WEHI-3B JCS cells as determined by the MTT assay. 
WEHI-3B JCS cells (104 cells/ml) 

were incubated with different concentrations of 
CLA-mix and LA at 370C for 48 hours. Cell proliferation was determined by the MTT 
assay as described in Chapter 2. Results were expressed as % viability using the 
untreated cells as a control. Each point represents the mean 土 S.E. of quadruplicate 
cultures. 
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Fig. 3.4: Growth-inhibitory effect of CLA-mix and its isomers on the murine 
myelomonocytic leukemia WEHI-3B JCS cells as determined by the MTT assay. 
WEHI-3B JCS cells (104 cells/ml) were incubated with different concentrations of 
CLA-mix and CLA isomers at 37°C for 48 hours. Cell proliferation was determined 
by the MTT assay as described in Chapter 2. Results were expressed as % viability 
using the untreated cells as a control. Each point represents the mean 士 S.E. of 
quadruplicate cultures. 
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Table 3.2: The estimated IC50 values of CLA-mix and its isomers on the murine 

myelomonocytic leukemia WEHI-3B JCS cells. 

Type of CLA Estimated IC钊 value (uM) 

CLA-mix ~ 150 

9Z, 11E-CLA >200 

10E, 12Z-CLA ‘ >200 

9Z, 11Z-CLA >200 

9E, 11E-CLA >200 

I C 5 0 value is the estimated concentration of CLA-mix or its isomers which can 
cause 50% inhibition on the in vitro growth of the murine myelomonocytic 
leukemia WEHI-3B JCS cells under specified experimental conditions. 
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3.2.2 Cytotoxic Effect of CLA-mix on the WEHI-3B JCS Cells In Vitro 

The cytotoxicity of CLA -mix on the murine myelomonocytic leukemia 

WEHI-3B JCS was examined by the trypan blue exclusion assay. Following 

incubation with CLA-mix for 24, 48, and 72 hours, it was found that CLA-mix, at 

concentrations ranged from 25 to 200 jxM, exhibited no direct cytotoxicity on the 

WEHI-3B JCS cells (Fig. 3.5). Therefore, our findings indicate that the 

anti-proliferative activity of CLA-mix is unlikely to be due to the direct cytotoxicity 

of CLA-mix on the WEHI-3B JCS cells. 
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Fig. 3.5: Effect of CLA-mix on the viability of murine myelomonocytic leukemia 
WEHI-3B JCS cells. WEHI-3B JCS cells (104 cells/ml) were incubated with 
different concentrations of CLA-mix at 37°C for 24, 48 and 72 hours. The numbers of 
viable and dead cells were then counted by using trypan blue exclusion assay. Results 
were expressed as % cell viability, using the untreated cells as a control. Each point 
represented the mean 士 S.E. of triplicate cultures. 
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3.2.3 Cytotoxic Effect of CLA-mix on Primary Murine Myeloid Cells In Vitro 

One of the major concerns for a novel medication to be applied clinically is its 

possible cytotoxic effect on the normal cells of our body. In order to examine whether 

CLA-mix exhibits any cytotoxic effect on normal cells, the thioglycollate-elicited 

murine peritoneal macrophages were cultured in vitro with different concentrations of 

CLA -mix at 37°C for 48 hours. The viability of the macrophages was then measured 

by the MTT assay. Figure 3.6 shows that CLA-mix exhibited only a slight cytotoxic 

effect on the macrophages over a wide range of concentrations (25-200 juM). The 

percentage of viable cells following CLA treatment was > 85%, even at the highest 

concentration tested. Moreover，when compared with its parental fatty acid, LA, it can 

be seen that CLA displayed less cytotoxic effect on the macrophages, suggesting that 

CLA-mix is relatively non-toxic to the normal cells such as murine peritoneal 

macrophages. 
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Fig. 3.6: Effect of CLA-mix and linoleic acid (LA) on the viability of murine 
peritoneal macrophages in vitro, Thioglycollate-elicited BALB/c peritoneal 
macrophages (5 x 10 cells/ml) were cultured with different concentrations of 
CLA-mix and LA for 48 hours at 37°C. Cell proliferation was determined by the MTT 
assay as described in Chapter 2. Results were expressed as % viability using the 
untreated cells as a control. Each point represents the mean 士 S.E. of quadruplicate 
cultures. 
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3.2.4 Kinetic and Reversibility Studies of the Anti-proliferative Activity of 

CLA-mix on the WEHI-3B JCS Cells 

The tritiated thymidine (3H-TdR) incorporation assay was also used to measure 

the anti-proliferative activity of CLA-mix on WEHI-3B JCS cells, as the 

incorporation of labeled DNA precursor, 3H-TdR, into the DNA of the cells is directly 

proportional to the extent of cell proliferation. In the present study, WEHI-3B JCS 

cells were incubated with different concentrations of CLA-mix (0 - 200 |iM) at 37°C 

for 24, 48 and 72 hours and cell proliferation was then measured by the 3H-TdR 

incorporation assay. Figure 3.7 shows that CLA significantly inhibited the in vitro 

proliferation of WEHI-3B JCS cells in a dose- and time-dependent manner. The 

estimated I C 5 0 value at 48 hours of incubation is � 1 5 2 jj,M, which is very similar to 

the results obtained with the MTT assay (Fig. 3.1). 

To test the reversibility of the anti-proliferative effect of CLA-mix on the 

WEHI-3B JCS cells, the leukemia cells were treated with CLA-mix at 150 }iM and 

200 jiM for 6, 12, or 48 hours, then the CLA-mix was washed away by removing the 

medium and then replaced with complete medium and the cells were incubated up to 

48 hours totally. As shown in Figure 3.8, the growth-inhibitory effect of CLA-mix at 

both concentrations was less than 25% after only 6 or 12 hours, but the % of 

inhibition reached up to 53% and 89% after 48-hour treatment with 150 fiM and 200 

jjM CLA-mix, respectively. In general, the longer the exposure time to CLA-mix, the 

less reversibility the anti-proliferative effect was. 
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Fig. 3.7: Kinetic study on the growth-inhibitory effect of CLA-mix on the murine 
myelomonocytic leukemia WEHI-3B JCS cells. JCS cells (104 cells/ml) were 
incubated with different concentrations of CLA-mix at 37°C for different time 
intervals (24，48 and 72 hours). Cultures were then pulsed with 0.5 ĵ Ci of 3H-TdR for 
6 hours before harvest. Radioactivity, expressed as counts per minute (cpm), was 
determined using a liquid scintillation counter. Results were expressed as % inhibition 
of 3H-TdR incorporation with respect to the untreated control cells. Each point 
represents the mean 士 S.E. of quadruplicate cultures. 
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Fig. 3.8: Reversibility study on the anti-proliferative effect of CLA-mix on the 
murine myelomonocytic leukemia WEHI-3B JCS cells. JCS cells (104 cells/ml) 
were co-incubated with 150 pM or 200 \xM CLA-mix at 37 °C for 6，12, and 48 hours. 
CLA-mix were washed away and replaced by complete medium at the corresponding 
times and all cultures were incubated up to 48 hours. Cultures were then pulsed with 
0.5 (iCi of H-TdR for 6 hours before harvest. Radioactivity, expressed as counts per 
minute (cpm), was measured using a liquid scintillation counter. Results were 
expressed as % inhibition of H-TdR incorporation, using the untreated cells as a 
control. Each point represents the mean 士 S,E. of quadruplicate cultures. 
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3.2.5 Effect of CLA-mix and its isomers on the Cell Cycle Profiles of the 

WEHI-3B JCS Cells In Vitro 

Cell proliferation entails DNA synthesis followed by nuclear division and 

cytoplasm partition to yield two daughter cells. Such a sequential routine is known as 

the "cell cycle" (Massague, 2004). The eukaryotic cell cycle is divided into four 

phases: Gi? S，G2，and M. The gap Gi phase is incorporated between nuclear division 

(M) and DNA synthesis (S) during which the cell integrates mitogenic or 

growth-inhibitory signals to make fiirther decisions regarding whether to enter S 

phase for self-renewal or pause for differentiation or apoptosis. In addition to the 

above four phases, the term Go is used to describe the cell that has exited the cell 

cycle and become quiescent. In fact, deregulation of the normal cell cycle is regarded 

as the hallmark of cancer (Johnson and Walker, 1999). Nevertheless, numerous novel 

opportunities have been targeted on checkpoint controls of the cell cycle to develop 

new therapeutic strategies, including induction of checkpoint arrest leading to 

cytostasis and ultimately apoptosis, arrest of proliferating cells in various phases of 

the cell cycle which may sensitize them to treatment with other therapeutic agents 

such as radiation, and targeting specific regulatory mediators of the cell cycle through 

either ectopic expression or down-regulation of certain cell cycle-regulatory genes. 

More recently, CLA-mix has been shown also to arrest the colon cancer HT-29 

cells in the Gi phase (Lim et al,, 2005). In the present study, we determined whether 

CLA-mix and its isomers inhibited proliferation of the murine myelomonocytic 

leukemia WEHI-3B JCS cells by alterating the cell cycle progression. For these 

experiments, two concentrations, 100 [iM and 150 |uM, of the CLA-mix and its 

- 1 1 6 - 一 



Chapter 3 Anti-tumor Activities 

isomers were used. Our results showed that CLA-mix increased the percentage of 

cells in G0/Gi phase in a dose-dependent manner which was accompanied by a 

corresponding reduction in the percentages of cells in S phase (Fig. 3.9). Moreover, 

among the four CLA isomers being investigated, the 10E，12Z-CLA increased the 

percentage of cells in G0/Gi phase to the greatest extent, though its effect was still less 

than CLA-mix (Fig. 3.10-3.13). Interestingly, the 9Z, 11Z-CLA isomer did not exert 

any effect on the cell cycle as there were no significant differences in the percentages 

of cells in each phase of the cell cycle when compared to the untreated control cells. 
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Fig. 3.9: Effect of CLA-mix on the cell cycle profile of murine 
myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 

cells/ml) were incubated with 100 |uM (A) or 150 juM (B) CLA-mix at 37�C for 
24 hours. CLA-mix-treated cells (10 cells) were fixed with ethanol and stained 
with PI under hypotonic conditions. Pi-stained cells were analyzed for 
fluorescence intensity using the F AC Sort flow cytometer. Cell cycle distribution 
was calculated by the MODFIT program using RFIT analysis model. 
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Fig. 3.10: Effect of 9Z, 11E-CLA on the cell cycle profile of murine 
myelomonocytic leukemia WEHI-3B JCS cells, WEHI-3B JCS cells (104 

cells/ml) were incubated with 100 \xM (A) or 150 [iM (B) 9Z, 11 E-CLA at 37°C 
for 24 hours. 9Z, 1 lE-CLA-treated cells (106 cells) were fixed with ethanol and 
stained with PI under hypotonic conditions. PI-stained cells were analyzed for 
fluorescence intensity using the F AC Sort flow cytometer. Cell cycle distribution 
was calculated by the MODFIT program using RFIT analysis model. 
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Fig. 3.11: Effect of 10E, 12Z-CLA on the cell cycle profile of murine 
myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 

cells/ml) were incubated with 100 FIM (A) or 150 j l iM (B) 10E, 12Z-CLA at 37°C 
for 24 hours. 10E, 12Z-CLA-treated cells (106 cells) were fixed with ethanol and 
stained with PI under hypotonic conditions. Pi-stained cells were analyzed for 
fluorescence intensity using the FACSort flow cytometer. Cell cycle distribution 
was calculated by the MODFIT program using RFIT analysis model. 
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Fig. 3.12: Effect of 9Z, 11Z-CLA on the cell cycle profile of murine 
myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 

cells/ml) were incubated with 100 \iM (A) or 150 |iiM (B) 9Z, 11Z-CLA at 37°C 
for 24 hours. 9Z, 1 lZ-CLA-treated cells (106 cells) were fixed with ethanol and 
stained with PI under hypotonic conditions. Pi-stained cells were analyzed for 
fluorescence intensity using the FACSort flow cytometer. Cell cycle distribution 
was calculated by the MODFIT program using RFIT analysis model. 
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Fig. 3.13: Effect of 9E, 11E-CLA on the cell cycle profile of murine 
myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 

cells/ml) were incubated with 100 \iM (A) or 150 |iiM (B) 9E, 11E-CLA at 37°C 
for 24 hours. 9E，l lE-CLA-treated cells (10 cells) were fixed with ethanol and 
stained with PI under hypotonic conditions. PI-stained cells were analyzed for 
fluorescence intensity using the F AC Sort flow cytometer. Cell cycle distribution 
was calculated by the MODFIT program using RFIT analysis model. 
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3.2.6 Effect of CLA-mix and its isomer on the Expression of Cell 

Cycle-regulatory Genes in the WEHI-3B JCS Cells 

From the previous section, it was found that the growth-inhibitory activity of 

CLA-mix was mediated, at least in part, through halting cell cycle progression at the 

Gi phase. In addition, there were no previous reports documenting the 

growth-inhibitory effect and action mechanisms of the 9E, 11E-CLA isomer on 

leukemia cells, both in vitro and in vivo. Therefore, further examination on the 

expression of cell cycle-regulatory genes would be carried out in the CLA-mix-treated 

and the 9E, llE-CLA-treated WEHI-3B JCS cells. 

Upon DNA damage, it has been reported that the tumor suppressor protein p53 

can either trigger cell cycle arrest in an attempt to repair the damage, or it can induce 

apoptosis to prevent the cell from developing into a tumor (Eastman, 2004). In fact, 

p53 is particularly important for regulating progression through Gi phase of the cell 

cycle while other checkpoint regulators are responsible for arrest in S or G2 phase. On 

the other hand, there is strong evidence to suggest that the cyclin-dependent kinase 

(cdk) inhibitor (CKI) p21CIP1/WAF1 is the key mediator of the p53-regulated Gi 

checkpoint control (Deng et al., 1995). The p21CIP1/WAF1 gene promoter contains a 

p53-binding site that allows p53 to transcriptionally activate the p2iCIP1/WAF1 gene 

(Johnson and Walker, 1999). Induction of p21CIP1/WAF1 halts cell cycle progression by 

inhibiting a variety of cyclin/cdk complexes. Cdks allow progression through 

different phases of the cell cycle by phosphorylating specific substrates, and their 

kinase activity is dependent on the presence of activated cyclins. Nevertheless, the 

Gi/S-promoting cyclin/cdk complexes include cyclin D/cdk4/6, cyclin E/cdk2, and 
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cyclin A/cdkl/2 (King and Cidlowski, 1998; Field and Schley, 2004). 

In the present study, the expression of certain cell cycle-regulatory genes was 

examined by the semi-quantitative RT-PCR technique. As shown in Fig. 3.14A and B, 

the mRNA levels of the p53 gene were increased following treatment with CLA-mix 

and 9E, 11E-CLA for 12 and 6 hours, respectively. However, their effects on the p53 

gene expression were transient as the mRNA levels returned to normal at 24 hours in 

both CLA-mix-treated and 9E, llE-CLA-treated WEHI-3B JCS cells. Moreover, both 

CLA-mix and 9E, I1E-CLA increased the expression of the p21CIP1/WAF1 gene and 

decreased the expression of the cyclin A gene (Fig. 3.15 and 3.16). In addition to 

p21cipi/wafi, C L A . m i x a l s o increased the mRNA levels of another CKI, the p27KIP1 

(Fig. 3.16)，which can inhibit the cyclin/cdk complexes such as the cyclin A/cdk2 

from promoting GI to S phase transition (Russo et al” 1996). 
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Fig. 3.14: Analysis of the p53 gene expression in the (A) CLA-mix-treated and (B) 
9E, 11E-CLA-treated murine myelomonocytic leukemia WEHI-3B JCS cells by 
RT-PCR. JCS cells (106 cells) were incubated with 150 jiM of CLA at 37�C for 
different time intervals (3，6, 12 and 24 hours) or treated with medium (C) or ethanol 
(SC) as controls. Total RNA 

were extracted by TRIZOL reagent with the method 
described in Chapter 2. The RNA were reverse transcribed and amplified by PCR 
using specific primer pairs. The PCR products were then separated on an ethidium 
bromide-stained agarose gel (2%). The amount of PCR products was quantified by 
ImageQuant. The value at the bottom of each band represents the relative intensity 
after normalization with respect to GAPDH, and comparison was made with the 
corresponding medium control. 
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Fig. 3.15: Analysis of the cell cycle-related gene expression in the 
CLA-mix-treated murine myelomonocytic leukemia WEHI-3B JCS cells by 
RT-PCR. WEHI-3B JCS cells (106 cells) were incubated with 150 jiM CLA-mix at 
37°C for different time intervals (6, 12 and 24 hours) or treated with medium (C) or 
ethanol (SC) as controls. Total RNA were extracted by TRIZOL reagent with the 
method described in Chapter 2. The RNA were reverse transcribed and amplified by 
PCR using specific primer pairs. The PCR products were then separated on an 
ethidium bromide-stained agarose gel (2%). The amount of PCR products was 
quantified by ImageQuant. The value at the bottom of each band represents the 
relative intensity after normalization with respect to GAPDH, and comparison was 
made with the corresponding medium control. 
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Fig. 3.16: Analysis of the cell cycle-related gene expression in the 9E， 

llE-CLA-treated myelomonocytic leukemia WEHI-3B JCS cells by RT-PCR. 
WEHI-3B JCS cells (106 cells) were incubated with 150 [iM 9E, 11 E-CLA at 37°C 
for different time intervals (3, 6，9，12, and 24 hours) or treated with medium (C) or 
ethanol (SC) as controls. Total RNA were extracted by TRIZOL reagent with the 
method described in Chapter 2. The RNA were reverse transcribed and amplified by 
PCR using specific primer pairs. The PCR products were then separated on an 
ethidium bromide-stained agarose gel (2%). The amount of PCR products was 
quantified by ImageQuant. The value at the bottom of each band represents the 
relative intensity after normalization with respect to GAPDH, and comparison was 
made with the corresponding medium control. 
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3.2.7 Effect of CLA-mix and its isomer on the In Vivo Tumorigenicity of the 

WEHI-3B JCS Cells 

So far, CLA-mix and the 9E, 11E-CLA isomer were found to inhibit the tumor 

cell growth of the murine myelomonocytic leukemia WEHI-3B JCS cells in vitro, and 

to induce G0/Gi phase arrest in the cell cycle of WEHI-3B JCS cells by modulating 

the expression of certain cell cycle-regulatory genes. It was, therefore, of interest to 

know whether they could also demonstrate the growth-inhibitory activity on tumor 

cells in vivo. WEHI-3B JCS cells were incubated for 8 hours at 37°C with two 

different concentrations of CLA-mix and the 9E，11E-CLA isomer. The cells were 

washed with RPMI medium and injected i.p. into BALB/c mice, in groups of five, at 

3 x 10° cells per mouse. Leukemia cells were harvested from the peritoneal cavity of 

mice 12 days following tumor inoculation. As shown in Figures 3.17 and 3.18, 

pre-treatment of WEHI-3B JCS cells with either CLA-mix or the 9E, 11E-CLA 

isomer could significantly reduce the tumor cell growth of WEHI-3B JCS cells in 

syngeneic mice in a dose-dependent manner. 
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Fig. 3.17: Effect of in vitro pre-treatment of myelomonocytic leukemia WEHI-3B 
JCS cells with CLA-mix on their tumorigenicity in syngeneic BALB/c mice. 
WEHI-3B JCS cells (104 cells/ml) 

were incubated with solvent control or with two 
different concentrations (100 |iiM and 150 ĵ M) of CLA-mix for 8 hours at 37�C. The 
cells were then washed thrice with plain RPMI medium. Viable WEHI-3B JCS cells 
(3 x 106) were injected i.p. into each BALB/c mouse in groups of five. Leukemia cells 
recoverable from the peritoneal cavity of mice were counted at day 12 post-tumor 
inoculation and results were expressed as percentage of inhibition of leukemic cell 
growth in vivo. Significantly different from untreated cells: * p < 0.01. 
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Fig. 3.18: Effect of in vitro pre-treatment of murine myelomonocytic leukemia 
WEHI-3B JCS cells with 9E，11E-CLA on their tumorigenicity in syngeneic 
BALB/c mice. WEHI-3B JCS cells (104 cells/ml) 

were incubated with solvent control 
or with two different concentrations (100 \iM and 150 |iiM) of 9E, 11E-CLA for 8 
hours at 37°C. The cells were then washed thrice with plain RPMI medium. Viable 

Z： 
WEHI-3B JCS cells (3x10°) 

were injected i.p. into each BALB/c mouse in groups of 
five. Leukemia cells recoverable from the peritoneal cavity of mice were counted at 
day 12 post-tumor inoculation and results were expressed as percentage of inhibition 
of leukemic cell growth in vivo. Significantly different from untreated cells: * p < 
0.001, 
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3.3 Discussion 

In this chapter, the effects of CLA-mix on the proliferation of murine 

myelomonocytic leukemia WEHI-3B JCS cells were examined. It was found that the 

growth of WEHI-3B JCS cells was inhibited dose-dependently by CLA-mix, with an 

estimated IC50 value of approximately 150 [iM following 48 hours of incubation. 

Similar growth-inhibitory effect of CLA-mix could also be demonstrated in various 

murine and human leukemia cell lines, including Ml, HL-60, NB4, and K-562, as 

well as in the human lymphoma U-937 cells. Moreover, when compared to its 

parental fatty acid, linoleic acid (LA), and its four isomers, CLA-mix exhibited the 

most potent inhibition on the proliferation of WEHI-3B JCS cells. At 200 |uM of fatty 

acid, CLA-mix showed a 62% growth inhibition on WEHI-3B JCS cells whereas LA 

showed only 22% of growth inhibition. Our results are in line with an earlier report 

showing that at similar concentrations, the cytostatic and cytotoxic effects of CLA 

were more pronounced than LA (Shultz et al., 1992). In fact, LA has been regarded as 

a promoter of carcinogenesis (Kilian et al., 2003) and is known to induce tumor 

formation (Maggiora et al., 2004). The differential effect of LA and CLA on the 

proliferation of tumor cells had also been reported previously. For example, 

Cunningham et al (1997) showed that LA stimulated the growth of human breast 

cancer MCF-7 cells while CLA was inhibitory. On the other hand, Kim et al. (2002) 

demonstrated that CLA markedly inhibited the growth of human colon cancer Caco-2 

cells, in contrast, LA slightly increased Caco-2 cell growth. Moreover, LA 

significantly reduced Fas-mediated apoptosis in human colorectal carcinoma CX-1 

and CCL-188 cells, suggesting that such an inhibitory effect might protect the tumor 
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cells from lymphocyte-mediated apoptosis signaling through the Fas receptor 

(Meterissian et al； 2000). In the present study, among the four CLA isomers tested, 

we found that 9E，11E-CLA, 10E，12Z-CLA and 9Z，11E-CLA had similar 

anti-proliferation activity while the 9Z，11Z-CLA isomer was less potent. It is known 

that 9Z, 11E-CLA and 10E, 12Z-CLA are two predominant isomers found in the 

commercial preparations of CLA mixtures. The individual potencies of these 2 CLA 

isomers on the proliferation of tumor cells had been investigated. It had shown that 

10E, 12Z-CLA but not 9Z, 11E-CLA exhibited strong cytotoxic effect on the rat 

hepatoma dRLh-84 cells in vitro (Yamasaki et al., 2002). Similarly, Kim et al (2002b) 

showed that 10E, 12Z-CLA inhibited the growth of human colon cancer Caco-2 cells 

dose-dependently in serum-free medium whereas 9Z, 11E-CLA had no effect. On the 

other hand, Palombo et al (2002) demonstrated that the 10E，12Z-CLA exhibited the 

greatest inhibitory effect on the proliferation of two human colorectal cancer cell lines 

(HT-29 and MIP-101) whereas both 10E，12Z-CLA and 9Z, 11E-CLA isomers were 

moderately effective against the human prostate cancer cell line PC-3. In contrast, a 

recent report showed that the 10E, 12Z-CLA was more effective than 9Z, 11E-CLA 

isomer in inhibiting PC-3 cell proliferation, since 10E, 12Z-CLA isomer seems to 

exert its effect through modulation of the cell apoptosis and cell cycle control, 

whereas the 9Z, 11E-CLA isomer affects arachidonic acid metabolism (Ochoa et al., 

2004). Interestingly, it had been reported that the 10E, 12Z-CLA isomer could 

inhibit the growth-factor-induced proliferation of the human breast cancer MCF-7 

cells whereas the 9Z, 11E-CLA isomer had no effect. However, when the MCF-7 cells 

were cultured in medium supplemented with 1% FBS, 9Z, 11E-CLA was found to be 

more potent than 10E, 12Z-CLA in inhibiting MCF-7 cell proliferation, suggesting 

that these two CLA isomers have separate mechanisms and different targets of actions 
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(Chujo et aL, 2003). In contrast to these findings, our results showed that both the 10E, 

12Z-CLA isomer and the 9Z，11E-CLA isomer were equally effective in inhibiting the 

proliferation of the myeloid leukemia WEHI-3B JCS cells, though 10E, 12Z-CLA 

was a better inducer of G0/Gi cell cycle arrest than 9Z, 11E-CLA in WEHI-3B JCS 

cells. In addition，the 9Z，11Z-CLA was found to be the least potent growth-inhibitor 

among all the isomers examined. Our results are also at variance with a recent report 

showing that 9Z, 11Z-CLA and 9Z，IIE-CLA being the most potent and least potent 

isomers respectively in the growth inhibition of the MCF-7 cells (Tanmahasamut et 

a/” 2004). Taken together, these findings suggest that the anti-proliferative activity 

of CLA isomers depends not only on the culture conditions but also on the type of 

tumor targets. 

In one study using the human breast cancer MCF-7 cells, it was found that there 

was no synergistic or opposing action between CLA isomers as CLA-mix, which 

contains almost the same amount of the predominant isomers, 9Z，11E-CLA and 10E, 

12Z-CLA, showed an intermediate anti-proliferative activity between these two 

isomers (Chujo et al, 2003). By contrast, our results showed that interactions among 

individual CLA isomers might exist as CLA-mix suppressed the growth of WEHI-3B 

JCS cells to a greater extent than each of its four isomers. 

In order to determine whether the observed anti-proliferative activity of 

CLA-mix was owing to its cytostatic or cytotoxic effects, the trypan blue exclusion 

assay was carried out to test for its cytotoxicity. Our results showed that CLA-mix, at 

concentrations ranged from 25 to 200 jiM，exhibited no cytotoxicity on the WEHI-3B 

JCS cells following incubation for 24, 48, and 72 hours. Additionally, we also 

demonstrated that the growth-inhibitory effect of CLA-mix was not due to the solvent 
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effect, since the highest concentration of ethanol (0.1%) used in our study exhibited 

little，if any, growth-inhibitory effect on the WEHI-3B JCS cells after 48 hours of 

incubation. Moreover, our results also indicated that CLA-mix (25-200 \xM) exhibited 

minimal, if any，cytotoxic effect on normal myeloid cells such as the 

thioglycollate-elicited murine peritoneal macrophages after 48 hours of incubation. 

Kinetic study of the anti-proliferative activity of CLA-mix on WEHI-3B JCS 

cells showed that CLA-mix could inhibit their proliferation in a time-dependent 

manner. Interestingly, such growth-inhibitory effect of CLA-mix was partially 

reversible when the WEHI-3B JCS cells were exposed to CLA-mix for a short 

incubation period (6 and 12 hours). These results suggest that CLA-mix might exert 

its anti-proliferative effect on WEHI-3B JCS cells within the first 24 hours and that 

longer incubation time will result in irreversible changes. 

Modulation on the deregulated cell cycle of tumor cells could, very often, 

establish novel therapeutic approaches for a variety of cancers. In fact, many 

conventional chemotherapeutic agents intervene at multiple phases in the cell cycle 

(Johnson and Walker, 1999). DNA damaging drugs like cisplatin, nitrogen mustard, 

cyclophosphamide, and chlorambucil can cause cell cycle arrest at both the Gi/S and 

the G2/M checkpoints. Moreover, nucleoside analogs such as hydroxyurea, 

gemcitibine, and difluorodeoxyuridine can also activate the Gi checkpoint arrest. In 

this study, our results showed that 24-hour treatment with CLA-mix increased the 

percentage of WEHI-3B JCS cells in G0/Gi phase in a dose-dependent manner which 

was accompanied by a corresponding reduction in the percentages of cells in the S 

phase. Among the four CLA isomers being investigated, the 10E, 12Z-CLA increased 

the percentage of WEHI-3B JCS cells in G0/Gi phase to the greatest extent. In fact, 
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our results are in line with the recent findings of Kemp et al (2003) who had reported 

that the 10E, 12Z-CLA isomer is more effective than the 9Z, 11E-CLA isomer in 

inducing cell cycle arrest at the Gi phase of the human breast cancer MCF-7 cells. 

Nevertheless, our results suggest that not all of the CLA isomers can modulate the cell 

cycle of WEHI-3B JCS cells as the 9Z, 11Z-CLA isomer did not exert any effect on 

the cell cycle. 

As depicted in Fig 3.19，it has been well established that cell cycle progression is 

primarily regulated by the sequential activation and inactivation of certain 

cyclin-dependent kinases (cdks) through the periodic synthesis and destruction of 

cyclins (Eastman A, 2004; Johnson and Walker, 1999). The Gi/S-promoting 

cyclin/cdk complexes refer to cyclin Dl/2/3/cdk4/6, cyclin El/2/cdk2? and cyclin 

A/cdkl/2 (Kastan and Bartek, 2004), which are regulated by a stoichiometric 

combination of cyclin-dependent kinase inhibitors (CKIs) such as p21CIP1/WAF1 and 

p27KIP1 of the Cip/Kip Family (Senderowicz, 2004; Johnson and Walker, 1999). In 

fact, ectopic expression or amplification of cyclin D, E, and A has been reported in a 

variety of cancers (Johnson and Walker, 1999). In order to halt cell cycle progression 

through Gi phase, p21CIP1/WAF1 is capable of inhibiting the cyclin D-，E-, and 

A-dependent kinase activities (el-Deiry et al., 1993)，while p27KIP1 is responsible to 

silence the cyclin E- and A-dependent kinase activities of cdk2 (Massague, 2004). 

Many mutated oncogenes and tumor suppressor genes are also associated with 

faulty Gi control. Among all，p53 is the most frequently mutated tumor suppressor 

gene in human cancer (Sherr, 2004). The p53 protein, regarded as the guardian of the 

genome, plays a pivotal role in regulating the cell cycle at the Gi/S interval or 

triggering apoptosis in response to DNA damage (Kemp et al, 2003; Eastman, 2004). 
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p53 regulates the cell cycle, at least in part, by inducing the transcription of 

p21CIP1/WAF1. In the present study, the expression of several cell cycle-regulatory genes 

was examined. The mRNA levels of the p53 gene were increased following exposure 

to CLA-mix and 9E, 11E-CLA. Moreover, both CLA-mix and 9E, 11E-CLA 

increased the expression of the p21CIP1/WAF1 gene but decreased the expression of the 

cyclin A gene. In addition to the CKIp21CIP1/WAF\ CLA-mix also increased the mRNA 

level of another CKI, the p27KIP1, which has been known to inhibit cyclin/cdk 

complexes such as the cyclin A/cdk2 from promoting Gi to S phase transition (Russo 

et al, 1996). The hypothetical pathways by which CLA could activate cell cycle arrest 

at the Gi phase were shown in Fig. 3.20, Indeed, our results are in agreement with 

many published work which showed that CLA can regulate tumor cell cycle by 

modifying the expression of cyclins，cdk inhibitors, and other checkpoint proteins 

(Belury, 2002), Ip et al (2001) had demonstrated that feeding CLA-mix for 4 weeks 

reduced the expression of cyclins D1 and A in the terminal end buds and alveolar 

clusters of rat mammary epithelium. More recently, the anti-proliferative activity of 

CLA-mix in human breast cancer MCF-7 cells and colon cancer HCT 116 cells has 

been attributed to the up-regulation of wild-type p53 gene expression (Kemp et al., 

2003). In this study, CLA-mix elicited cell cycle arrest at the Gi phase and induced the 

accumulation of CKIs including p21CIP1/WAF1 and p27KIP1 proteins. Besides, CLA-mix 

also reduced the expression of proteins required for Gi to S-phase transition involving 

cyclins D1 and E (Kemp et al., 2003). A more recent report has also shown that 

24-hour treatment with CLA-mix induced Gi arrest by over-expressing the 

p21ciPi/WAFI g e n e i n human colon carcinoma HT-29, HCT116, and SW480 cell lines 

(Lim et al,, 2005). Moreover, in addition to the CLA-mix, the 10E, 12Z-CLA isomer 

has also been shown to decrease the proliferation of the human prostate carcinoma 
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PC-3 cells by over-expressing the p21CIP1/WAF1 gene. By contrast, the 9Z, 11 E-CLA 

isomer did not alter the mRNA levels of the p21 C I P 1 / W A F 1

 g e n e in the PC-3 cells 

(Ochoa et al., 2004). To our knowledge, there are no previous reports showing that the 

9E, 11 E-CLA isomer could arrest tumor cell cycle, and we are the first to show that 

this CLA isomer could trigger Gi arrest by modulating cell cycle-regulatory genes 

including p53, p21CIP1删,and cyclin A. 

Although CLA has been found to induce p2lCIP1/WAF1 gene expression, however, 

whether CLA-induced Gi arrest is p53-dependent remains controversial. Kemp et al. 

(2003) demonstrated that CLA did not cause alteration on the protein levels of p53, 

p21CIP1/WAF1, p27, and cyclin E in the p55-mutant MCF-7 cells and ； -def ic ient 

human colon cancer HCT116 cells, suggesting that CLA-induced Gi arrest depends 

on the action of the wild-type p53 gene. However, Lim et al. (2005) suggested that 

wild type p53 is not essential for induction of p21CIP1/WAF1 by CLA, since CLA 

addition also led to increased p21 expression in both the human colon cancer HT-29 

and SW480 cells with the mutant p53 gene. In addition to the increased protein 

expression of p21CIP1/WAF1 in the HT-29 cells, CLA-induced Gi arrest was 

accompanied by the reduced expressions of other cell cycle-regulatory proteins such 

as cyclin Dl, cyclin E, cyclin A, phosphorylated Rb protein, and proliferating cell 

nuclear antigen (PCNA), and with the reduced kinase activities of cdk2 and cdk4 

(Lim et al., 2005). Nevertheless, more extensive studies should be carried out in other 

tumor cell lines so as to determine whether the wild-type p53 gene plays a pivotal role 

in regulating the Gi checkpoint control following exposure to CLA. 

Since CLA was found to exhibit anti-proliferative activity and triggered G\ phase 

arrest in the leukemia WEHI-3B JCS cells, therefore, the suppressive effect of CLA 
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on the tumorigenicity of the WEHI-3B JCS cells in syngeneic BALB/c mice was also 

examined. The results showed that pretreatment of WEHI-3B JCS cells in vitro with 

either the CLA-mix or the 9E，11E-CLA isomer could decrease the in vivo growth of 

the leukemia cells in syngeneic mice. Interestingly, Visonneau et al (1997) had 

reported that 1% dietary CLA could block the local growth and systemic spread of 

human breast adenocarcinoma cells in SCID mice, indicating CLA may exert its 

anti-tumor effect independent of the host immune system. Nevertheless, the 

mechanisms by which CLA can mediate its anti-tumor effect in vivo await further 

investigations. 

In conclusion, in this chapter it was demonstrated that CLA-mix and some of its 

isomers could exhibit growth-inhibitory effect on the myeloid leukemia cells. 

Activation of cell cycle arrest could be one of the possible mechanisms contributing 

to the observed anti-proliferative activity of CLA, Other possible mechanisms 

including the induction of apoptosis and differentiation of myeloid leukemia cells by 

CLA would be examined and discussed in detail in chapters 4 and 5 respectively. 
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Fig. 3.19: Regulation of cell cycle progression by cyclin-dependent kinases (cdks) 
and cyclins. Cell cycle progression is the result of enzymatic phosphorylation of 
various cell cycle proteins by the serine/threonine kinases, also known as cdks. These 
cell cycle regulators periodically form complexes with proteins called cyclins. The 
main cyclin/cdk complexes responsible for Gi/S are cyclin D/cdk4/6，cyclin E/cdk2, 
and cyclin A/cdkl/2. Cyclin A/cdkl/2 complexes are in charge of S phase entry and 
transition, whereas cyclin B/cdkl complex is the main cyclin/cdk complex 
responsible for G2 exit and M phase entry. 
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Fig. 3.20: Schematic representation of Gi/S transition. CLA may promote 
progression to S phase through phosphorylation of the retinoblastoma protein (Rb) by 
cyclin/cdk complexes, which are in turn regulated by cdk inhibitors such as p21 and 
p27. DNA synthesis (S phase) occurs when Rb is phosphorylated, releasing the 
transcription factor E2F. Gi phase arrest following DNA damage is owing to the 
transcriptional activation of p53, leading to ectopic expression of p21 and thereby 
inhibition of the Gi/S-promoting cyclin/cdk complexes. 
(Modified from Senderowicz, 2004) 
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Chapter 4 Apoptosis-inducins Activity 

4.1 Introduction 

Cell death is a vital cellular process for animal development. There are three 

modes of cell death that are currently understood as autophagy, necrosis, and 

apoptosis (Crow et al” 2004). Autophagy is exemplified by the degradation of 

proteins and organelles in the lysosomal pathway through which their constituents can 

be reused by the cell (Klionsky and Emr，2000). On the other hand, necrosis and 

apoptosis can be distinguished by distinct morphological and molecular features of 

the dying cells (Strasser et al.’ 2000). The morphological changes that occur during 

apoptosis include chromatin condensation, cytoplasmic shrinkage, plasma membrane 

blebbing, and nuclear membrane breakdown; whereas the molecular changes that 

arise during apoptosis involve internucleosomal DNA cleavage and randomization of 

phosphatidyl serine (PS) distribution between the inner and outer layers of the plasma 

membrane. Moreover, there are also apoptotic bodies formed during apoptosis (Jiang 

and Wang, 2004), which are rapidly engulfed by phagocytes such as macrophages and 

neutrophils after apoptosis. 

As a matter of fact, apoptosis is an evolutionarily preserved process that plays 

pivotal roles in embryonic development and in the homeostasis, remodeling, 

surveillance, and host defenses of postnatal tissues (Crow et al., 2004). Very often, the 

loss of apoptosis is the hallmark of human malignancies. Therefore, reactivating the 

apoptotic machinery in tumor cells appears to be an attractive approach to cancer 

treatment. Many chemotherapeutic drugs and 丫-irradiation induce apoptosis in tumor 

cells (Strasser et al., 2000). For instance, anti-tumor drugs such as etoposide and 

mitoxanthrone (Kaufmann, 1989; Bhalla et al., 1995) with strong pro-apoptotic 
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activity but minimal cytotoxicity would be expected to offer potential 

chemotherapeutic effects on myeloid leukemia cells. 

Apoptosis is mediated by two central pathways, namely the "intrinsic" and 

"extrinsic" pathways (Senderowicz, 2004). The “intrinsic” pathway is employed to 

eliminate cells in response to chemotherapeutic drugs, DNA damage, ionizing 

radiation，and also oxidative stress (Boatright and Salvesen, 2003; Crow et al., 2004). 

On the other hand, the “extrinsic，，pathway is responsible for eliminating the 

unwanted cells during development, educating our immune system, and triggering the 

immune-system-mediated tumor removal (immunosurveillance) (Boatright and 

Salvesen, 2003). The "intrinsic" pathway is characterized by dissipation of 

mitochondrial membrane potential (A 0 m), release of mitochondrial cytochrome c 

(cyt c) leading to subsequent activation of caspase-9; whereas the "extrinsic" pathway 

is characterized by the activation of death receptors such as Fas and the resultant 

activation of caspase-8. In fact, the two signaling cascades may be sometimes 

entwined. For example, caspase-9 and caspsae-8 from both pathways can cleave and 

activate effector procaspase-3 into activated caspase-3 (Nagata, 1999; Bratton et al., 

2001). Activated caspase-3 then cleaves specific substrates including poly 

(ADP-ribose) polymerase (PARP), resulting in morphological and biochemical 

changes of apoptosis (Li et al., 1997; Hengartner, 2000). 

In response to death signals, the decision of a cell to undergo apoptosis may 

depend upon the complex interplay between the "intrinsic" and "extrinsic" signaling 

cascades. In addition, a great deal of evidence has indicated that the intracellular 

redox status is also one of the key mediators of apoptosis in many cell systems. 

Mitochondria are a major source of reactive oxygen species (ROS) (Droge, 2002). It 

has been previously reported that ROS may trigger cyt c release by promoting 
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mitochondrial permeability transition (MPT) through oxidation of thiol groups on the 

adenine nucleotide translocator (ANT) of the inner mitochondrial membrane (IMM), 

suggesting that mitochondria are targets of ROS in apoptosis (Kanno et al., 2004). 

Moreover, the novel coupling between ROS and Fas aggregation appears to play a 

significant role in apoptosis induced by DNA-damaging agents in the Fas-expressing 

leukemia cells (Huang et al., 2003). Therefore, ROS can also trigger apoptosis by 

Fas-dependent pathway. 

In this chapter, the apoptosis-inducing activity of the CLA-mix and four CLA 

isomers, namely 9Z, 11E-CLA, 10E, 12Z-CLA, 9Z, 11Z-CLA, and 9E, 11E-CLA, on 

the murine myelomonocytic leukemia WEHI-3B JCS cells was examined by using the 

DNA fragmentation assay and quantified by using the ELISA kit. One of the CLA 

isomers which showed the greatest potency to induce apoptosis of the WEHI-3B JCS 

cells was used for further mechanistic studies. In order to reveal which apoptotic 

pathway(s) has/have been triggered by CLA-mix or its isomer, the changes in the 

mitochondrial membrane potential were studied by the JC-1 staining method, and the 

activities of certain caspases such as caspases-3, -8, and -9 were measured using 

specific fluorometric substrates. The effects of CLA-mix- and CLA isomer in 

inducing the transcriptional and translational activation of the apoptosis-regulatory 

genes in the WEHI-3B JCS cells were elucidated by RT-PCR and Western blot 

analysis, respectively. Furthermore, the possible association of CLA-induced 

apoptosis and the increased production of reactive oxygen species (ROS) by 

WEHI-3B JCS cells was analyzed by flow cytometry. Finally, the effects of free 

radical scavengers, including N-acetylcysteine (NAC) and superoxide dismutase 

(SOD), on the CLA-induced apoptosis would be determined by the DNA 

fragmentation assay. 
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4.2 Results 

4.2.1 Induction of Apoptosis in Both Murine and Human Myeloid Leukemia 

Cells by CLA 

During apoptosis，several morphological features can be observed and of which, 

DNA fragmentation is often used as a positive indicator for the occurrence of 

apoptosis. In the present study, whether CLA-mix can induce apoptosis in the murine 

myelomonocytic leukemia WEHI-3B JCS cells and human promyelocytic leukemia 

HL-60 cells was determined by the DNA fragmentation assay. As shown in Fig. 4.1 

and 4.2, CLA-mix triggered DNA fragmentation in both WEHI-3B JCS cells and 

HL-60 cells dose-dependently. At its IC50, (150 |liM)，CLA-mix caused DNA 

fragmentation in WEHI-3B JCS cells after 48 hours of incubation and a 

time-dependent response can also be demonstrated (Fig. 4.3). In addition to CLA-mix, 

several CLA isomers were also investigated for their apoptosis-inducing activity. As 

shown in Fig. 4.4, DNA fragmentation appeared in the WEHI-3B JCS cells treated 

with 150 i l i M 10E? 12Z-CLA and 150 \iM 9E, 11E-CLA after 48 hours of incubation, 

whereas DNA fragments were not detected in cells treated with the same 

concentration of 9Z，11E-CLA and 9Z, 11Z-CLA. Interestingly, the 9E, 11E-CLA 

isomer elicited stronger pro-apoptotic activity when compared to the 10E, 12Z-CLA 

isomer, which was known to induce apoptosis in a number of tumor cell types 

(Yamasaki et al,, 2002; Ochoa et aL，2004). The apoptosis-inducing activity of 

CLA-mix and its isomers was further confirmed by the Cell Death Detection 

ELISAplus kit (Fig. 4.5). This kit is used for quantifying the degree of apoptosis 

(Bourre et al., 2002) based on the principle of quantitative 

sandwich-enzyme-immunoassay using mouse monoclonal antibodies to specifically 
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quantify the amount of mono- and oligonucleosomes present in the cytoplasmic 

fraction of cell lysates. 

- 1 4 5 -



Chapter 4 Apoptosis-inducing Activity 

Fig. 4.1: Dose response study for the induction of DNA fragmentation in 
CLA-mix-treated murine myelomonocytic leukemia WEHI-3B JCS cells. 
WEHI-3B JCS cells (104 cells/ml) were either untreated (Lane 2) or incubated with 
solvent control (0.1% ethanol) (Lane 3) or cultured with different concentrations of 
CLA-mix (Lane 4-6) at 37�C for 48 hours. Apoptotic DNA fragments were extracted 
by mild detergent IGEPAL CA-630 lysis buffer, and were analyzed by electrophoresis 
on 2% agarose gel stained with ethidium bromide. 

Lane 1: 100 bp DNA Markers 

Lane 2: Untreated JCS cells 

Lane 3 : Solvent control-treated JCS cells 

Lane 4: JCS cells treated with CLA-mix (50 ^M) 

Lane 5: JCS cells treated with CLA-mix (100 (iM) 

Lane 6: JCS cells treated with CLA-mix (150 |uM) 
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Fig. 4.2: Dose response study for the induction of DNA fragmentation in 
CLA-mix-treated human promyelocytic leukemia HL-60 cells. HL-60 cells (5x104 

cells/ml) were either untreated (Lane 2) or incubated with solvent control (0.1% 
ethanol) (Lane 3) or cultured with different concentrations of CLA-mix (Lane 4-6) at 
37°C for 48 hours. Apoptotic DNA fragments were extracted by mild detergent 
IGEPAL CA-630 lysis buffer, and were analyzed by electrophoresis on 2% agarose 
gel stained with ethidium bromide. 

Lane 1: 100 bp DNA Markers 

Lane 2: Untreated HL-60 cells 

Lane 3: Solvent control-treated HL-60 cells 

Lane 4: HL-60 cells treated with CLA-mix (50 ^M) 

Lane 5: HL-60 cells treated with CLA-mix (100 |iM) 

Lane 6: HL-60 cells treated with CLA-mix (150 |LIM) 
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Fig. 4.3: Kinetic study on the induction of DNA fragmentation in 
CLA-mix-treated murine myelomonocytic leukemia WEHI-3B JCS cells. 
WEHI-3B JCS cells (104 cells/ml) were either untreated (Lane 2) or incubated with 
solvent control (0.1% ethanol) (Lane 3) or cultured with 150 juM CLA-mix at 37°C 
for different periods of time (Lane 1, 4，5). Apoptotic DNA fragments were extracted 
by mild detergent IGEPAL CA-630 lysis buffer, and were analyzed by electrophoresis 
on 2% agarose gel stained with ethidium bromide. 

Lane 1: JCS cells treated with CLA-mix for 48 hours 

Lane 2: Untreated JCS cells 

Lane 3: Solvent control-treated JCS cells 

Lane 4: JCS cells treated with CLA-mix for 24 hours 

Lane 5: JCS cells treated with CLA-mix for 72 hours 

Lane 6: 100 bp DNA Markers 

-148 _ 



Chapter 4 Apoptosis-inducing Activity 

？-¾ ‘ 

I I 1 I'1 I|' I ' 

！ 

'ii'iiii'ii it i'i, n iii| 11 ^Bi I I I î M' ii11 1 
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Fig. 4.4: Induction of DNA fragmentation in murine myelomonocytic leukemia 
WEHI-3B cells following treatment with CLA-mix or its various isomers. 
WEHI-3B JCS cells (104 cells/ml) were either untreated (Lane 2) or incubated with 
solvent control (0.1% ethanol) (Lane 3) or cultured with 150 \iM CLA-mix (Lane 4) 
and its various isomers (Lane 5-8) at 37°C for 48 hours. Apoptotic DNA fragments 
were extracted by mild detergent IGEPAL CA-630 lysis buffer, and were analyzed by 
electrophoresis on 2% agarose gel stained with ethidium bromide. 

Lane 1: 100 bp DNA Markers 

Lane 2: Untreated JCS cells 

Lane 3: Solvent control-treated JCS cells 

Lane 4: JCS cells treated with CLA-mix (150 jliM) 

Lane 5: JCS cells treated with 9¾ 1 1 Z-CLA (150 jiM) 

Lane 6: JCS cells treated with 9E, 11 E-CLA (150 jxM) 

Lane 7: JCS cells treated with 10E, 12Z-CLA (150 \iM) 

Lane 8: JCS cells treated with 9Z, 11 E-CLA (150 ^M) 
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Fig. 4.5: Induction of apoptosis in CLA-treated murine myelomonocytic 
leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 cells/ml) were either 
untreated or treated with 150 |liM CLA-mix or its isomers at 37 °C for 48 hours. 
Apoptotic DNA fragments were detected using an ELISA kit. The degree of apoptosis 
was expressed as enrichment factor as described in detail in Chapter 2. The 
DNA-Histone-Complex, supplied by the manufacturer, is used as positive control in 
this study. 
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4.2.2 Effect of CLA and its Isomer on the Mitochondrial Membrane Potential 

of the WEHI-3B JCS Cells 

Mitochondrial membrane depolarization is one of the putative mechanisms in the 

"intrinsic" apoptotic pathway leading to translocation of the apoptogenic proteins, 

such as cytochrome c (cyt c) and apoptosis-inducing factor (AIF), from mitochondria 

into cytosol, resulting in activation of caspase cascades. The mitochondrial membrane 

potential (A 0m) can be measured by the JC-1 dye, chemically known as 

5,5'56?6'-tetrachloro-1,1 ?,3?3'-tetraethylbenzimidazolyl-carbocyanine iodide 

(Cossarizza et al., 1993), JC-1 is a cationic dye that accumulates in mitochondria in a 

potential-dependent manner. It is used as an indicator to assess the A 0 m in cells by 

forming J-aggregates in the polarized mitochondrial membrane and emitting red 

fluorescence at 590 nm after excitation at 488 nm. By contrast, its monomeric form 

accumulates in depolarized mitochondrial membrane and emits green fluorescence at 

525 nm (Dorrie et al., 2001). The depolarization of mitochondrial membrane can be 

thereby detected as a reduced red/green fluorescence intensity ratio becasue the 

emission of fluorescence shifts from red to green (Smiley et al., 1991; Di Lisa et al., 

1995). In the present study, WEHI-3B JCS cells were incubated with 150 j l iM 

CLA-mix or 150 pM 9E, 11E-CLA for 12, 24, 36，and 48 hours. The cells were then 

stained with the JC-1 dye and the red and green fluorescence were measured by flow 

cytometry. Our results showed that a time-dependent depolarization of A 0 m became 

significant after 36 hours of incubation with CLA-mix and 12 hours of incubation 

with 9E, 11E-CLA (Fig 4.6 and 4.7). About 54% and 77% cells had their 

mitochondrial membrane depolarized at 48 hours of treatment with CLA-mix and 9E, 

11E-CLA, respectively. 
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Fig. 4.6: The effect of CLA 
-mix on the mitochondrial membrane depolarization 

in murine myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells 
(104 cells/ml) were treated with (A) solvent control (0.1% ethanol), or 150 |uM 
CLA-mix for (B) 12 hours, (C) 24 hours, (D) 36 hours, or (E) 48 hours and then 
stained with the mitochondria-selective JC-1 dye. Cells with normal polarized 
mitochondrial membranes at the top left quadrant emit red fluorescence. The number 
at the bottom right quadrant represented the percentage of cells that emit green 
fluorescence attributable to depolarized mitochondrial membranes. 
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Fig. 4.7: The effect of 9E, 11E-CLA on the mitochondrial membrane 
depolarization in myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS 
cells (104 cells/ml) were treated with (A) solvent control (0.1% ethanol), or 150 |uM 
9E, 11E-CLA for (B) 12 hours, (C) 24 hours, (D) 36 hours, or (E) 48 hours and then 
stained with the mitochondria-selective JC-1 dye. Cells with normal polarized 
mitochondrial membranes at the top left quadrant emit red fluorescence. The number 
at the bottom right quadrant represented the percentage of cells that emit green 
fluorescence attributable to depolarized mitochondrial membranes. 
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4.2.3 Effect of CLA-mix and its Isomer on the Expression of 

Apoptosis-regulatory Genes of the Bcl-2 Family in the WEHI-3B JCS 

Cells 

The Bcl-2 family of proteins can be divided into both anti-apoptotic and 

pro-apoptotic members. Mammalian anti-apoptotic Bcl-2 proteins which promote cell 

survival include Bcl-2 and Bcl-XL (Bcl-x protein long isoform). The Bcl-XL protein has 

three or four regions with amino acid sequence similar to the Bcl-2 protein (Strasser et 

fl/., 2000; Crow et al, 2004). These regions are currently known as Bcl-2 homology 

regions BH1-BH4. Mammalian pro-apoptotic Bcl-2 proteins which promote cell death 

such as Bax (Bcl-2-associated X protein) and Bak (Bcl-2-antagonist/killer) also 

contain 2 or 3 BH regions. By contrast, the most potent pro-apoptotic proteins of the 

Bcl-2 family have only a BH3 region, including Bad (Bcl-2-antagonist of cell death) 

and tBid (truncated Bid), In addition to the BH regions, many proteins of the Bcl-2 

family have a conserved C-terminal transmembrane region which is responsible for 

their localization to the cytosolic portion of the outer mitochondrial membrane (OMM) 

which led to the idea, in the "intrinsic” pathway of apoptosis, that anti-apoptotic and 

pro-apoptotic members of the Bcl-2 family function as transmembrane channels that 

respectively hinder or promote the efflux of mitochondrial proteins such as cyt c that 

activate the caspase cascades (Strasser et al., 2000; Jiang and Wang, 2004). 

Nevertheless, the homo-oligomerization of Bax or Bak on the mitochondrial 

membrane is regarded as an essential event for the release of cyt c (Wei et al., 2001). 

It has been reported that either Bax or Bak is required to mediate all events of 

apoptosis in the intrinsic pathway. The BH3-only proteins such as Bad are also 

thought to activate Bax or Bak homo-oligomerization (Jiang and Wang, 2004). 

Interestingly, both pro-apoptotic and anti-apoptotic members of the Bcl-2 family can 
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physically interact (Oltvai and Korsmeyer, 1994) and their hetero-dimerization is 

believed to play a key role in regulating the "intrinsic" pathway of apoptosis. The 

anti-apoptotic members prevent release of mitochondrial proteins by binding to and 

antagonizing the pro-apoptotic members of the Bcl-2 family (Jiang and Wang, 2004). 

For instance, Bcl-XL can form a heterodimer with Bak (Sattler et al.，1997). 

The activities of the pro-apoptotic and anti-apoptotic members of the Bcl-2 

family can be up- or down-regulated by drug-induced gene transcriptions. In the 

present study, the modulatory effects of CLA-mix and the 9E, 11E-CLA isomer on the 

apoptosis-regulatory gene expression in the WEHI-3B JCS cells were investigated by 

the technique of RT-PCR. Briefly, the WEHI-3B JCS cells were either untreated, 

treated with solvent control (SC), or treated with 150 j l i M CLA-mix or 150 j l i M 9E, 

11E-CLA for different time periods up to 24 hours. Total RNA were extracted and the 

apoptosis-regulatory genes of interest were amplified using specific primer pairs. The 

amount of PCR product was normalized with respect to the house-keeping gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

As shown in Fig. 4.8，the expression of the pro-apoptotic gene Bak was increased 

by about 170% while the expression of the anti-apoptotic gene BCI-XL was greatly 

diminished after 24 hours of treatment with CLA-mix. Similarly, Fig. 4.9 shows that 

the 9E，11E-CLA isomer increased the expression of the pro-apoptotic gene Bad by 

about 60% and reduced the expression of the anti-apoptotic gene Bcl-xiMy about 80% 

after 24 and 12 hours of treatment, respectively. In both cases, the expression of the 

anti-apoptotic BCI-XL gene was reduced. However, there was no significant changes in 

the expression level of Bad in the CLA-mix-treated WEHI-3B JCS cells and in the 

expression level of Bak in the 9E, llE-CLA-treated WEHI-3B JCS cells (data not 

shown). 
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c SC 6 h 12 h 24 h 

Bak (528 bp) 

1 0.8 1.7 1.5 2.7 

BC1-XL (538 bp) 

1 0.9 0.5 0.0 0.0 

El 
GAPDH (226 bp) 

Fig. 4.8: Analysis of the apoptosis-regulatory gene expression in the 
CLA-mix-treated murine myelomonocytic leukemia WEHI-3B JCS cells by 
RT-PCR. WEHI-3B JCS cells (106 cells) were incubated with 150 j l iM CLA-mix at 
37°C for different time intervals (6, 12 and 24 hours) or treated with medium (C) or 
ethanol (SC) as controls. Total RNA were extracted by TRIZOL reagent with the 
method described in Chapter 2. The RNA were reverse transcribed and amplified by 
PCR using specific primer pairs. The PCR products were then separated on an 
ethidium bromide-stained agarose gel (2%). The amount of PCR products was 
quantified by ImageQuant. The value at the bottom of each band represents the 
relative intensity after normalization with respect to GAPDH, and comparison was 
made with the corresponding medium control. 

- 1 5 6 -



Chapter 4 Apoptosis-inducing Activity 

c S C 3 h 6h 9 h 12 h 24 h 

1 1.1 1.4 1.3 0.6 0.2 0.8 

Bad (445 bp) 

1 1.1 0.9 1.0 1.4 1.6 

GAPDH (226 bp) 

Fig. 4.9: Analysis of the apoptosis-regulatory gene expression in the 9E, 
llE-CLA-treated murine myelomonocytic leukemia WEHI-3B JCS cells by 
RT-PCR. WEHI-3B JCS cells (106 cells) were incubated with 150 îM 9E, 11E-CLA 
at 37°C for different time intervals (3, 6，9，12 and 24 hours) or treated with medium 
(C) or ethanol (SC) as controls. Total RNA were extracted by TRIZOL reagent with 
the method described in Chapter 2. The RNA were reverse transcribed and amplified 
by PCR using specific primer pairs. The PCR products were then separated on an 
ethidium bromide-stained agarose gel (2%). The amount of PCR products was 
quantified by ImageQuant. The value at the bottom of each band represents the 
relative intensity after normalization with respect to GAPDH, and comparison was 
made with the corresponding medium control. 
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4.2.4 Effect of CLA-mix and its Isomer on the Expression of 

Apoptosis-regulatory Proteins in the WEHI-3B JCS Cells 

It was postulated that the genes which encode molecules for apoptotic signal 

transduction, including Fas and Fas-L, could work as tumor-suppressor genes (Nagata, 

1999). The identification of Fas (also known as CD95) and Fas ligand (Fas-L) as 

death receptor and its ligand respectively has facilitated the elucidation of signal 

transduction through the “extrinsic” pathway. Both Fas and Fas-L belong to the TNF 

family (Suda et al, 1993). It was found that binding of Fas with Fas-L or 

cross-linking of Fas with agonistic antibodies induces apoptosis in the Fas-bearing 

cells. 

In addition to the "intrinsic" pathway, it is of interest to know whether CLA can 

activate the "extrinsic" pathway of apoptosis. Since Fas receptor is a paragon for 

studying the “extrinsic” pathway, the modulatory effects of CLA-mix and 9E, 

11E-CLA on the protein expression of Fas and its ligand, Fas-L，in the WEHI-3B JCS 

cells were determined by the Western blot analysis. Figures 4.10 and 4.11 show that 

the Fas and Fas-L proteins were increased by about 2.1- and 2.6-fold respectively 

after 48 hours of treatment with CLA-mix. Similarly, the Fas and Fas-L proteins were 

increased by about 2.7- and 3.3-fold respectively after 48 hours of treatment with the 

9E, 11E-CLA isomer (Fig. 4.10 and 4.11). 
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Fig. 4.10: Analysis of protein expression of Fas in CLA-mix-treated and 9E, 
llE-CLA-treated murine myelomonocytic leukemia WEHI-3B cells by Western 
blot analysis. WEHI-3B JCS cells (104 cells/ml) were treated with solvent control 
(0.1% ethanol), 150 jaM CLA-mix or 150 |uM 9E, 11E-CLA for 24 and 48 hours at 
37°C. The proteins of each sample were extracted and analyzed by Western blot as 
described in Chapter 2. The proteins were probed with specific primary antibody 
followed by horseradish peroxidase-conjugated secondary antibody and visualized by 
the ECL assay. The value at the bottom of each band, determined by ImageQuant, 
represents the relative intensity after normalization with respect to P-actin，and 
comparison was made with the corresponding solvent control (SC). 
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Fig. 4.11: Analysis of protein expression of Fas ligand (Fas-L) in 
CLA-mix-treated and 9E, llE-CLA-treated murine myelomonocytic leukemia 
WEHI-3B cells by Western blot analysis. WEHI-3B JCS cells (104 cells/ml) were 
treated with solvent control (0.1% ethanol), 150 |iM CLA-mix or 150 |uM 9E, 
11E-CLA for 48 hours at 37°C. The proteins of each sample were extracted and 
analyzed by Western blot as described in Chapter 2. The proteins were probed with 
specific primary antibody followed by horseradish peroxidase-conjugated secondary 
antibody and visualized by the ECL assay. Tiie value at the bottom of each band, 
determined by ImageQuant, represents the relative intensity after normalization with 
respect to p-actin, and comparison was made with the corresponding solvent control 
(SC). 
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4.2.5 Effect of CLA-mix and its Isomer on the Induction of Caspase Activity in 

the WEHI-3B JCS Cells 

Accumulated evidence suggests that at least 14 caspases have been identified in 

mammals (Strasser et al, 2000). The caspases constitute a family of cysteine 

proteases which cleave target proteins at sites next to aspartic acid residues. Apoptotic 

caspases are classified as 'initiator' caspases (caspases-2，-8，-9, -10, and -12) or 

'effector' caspases (caspases-3, -6, and -7), depending on their point of entry into the 

apoptotic cascade (Stennicke et al,, 1999; Boatright et al, 2003; Crow et al., 2004). 

Caspases are synthesized as zymogens, also known as procaspases, which have very 

weak protease activity. The 'initiator' caspases are activated by oligomerization and 

self-cleavage of their monomelic procaspases, whereas the 'effector' caspases are 

activated through proteolytic cleavage of their inactive procaspases into active 

caspases by the upstream activated initiator caspases. 

During apoptosis, caspase-9 is a common "initiator" caspase of the "intrinsic" 

pathway while caspase-8 is a common "initiator" caspase of the "extrinsic" pathway. 

Once procaspase-9 or -8 is activated into caspase-9 or -8, respectively, "effector" 

caspases such as caspase-3 will be cleaved and activated accordingly. As shown in Fig. 

4.12 to 4.18, the activities of caspases-3, -8 and -9 were significantly enhanced 

following treatment with CLA-mix or the 9E, 11E-CLA isomer. For caspase-8, the 

enhanced activity was more prominent after 48 and 24 hours of treatment with 

CLA-mix and 9E, ilE-CLA respectively in WEHI-3B JCS cells (Fig. 4.12 and 4.13). 

The caspase-8 activity was increased by 78% and 50% after exposure to CLA-mix 

and 9E, 11E-CLA respectively for 48 hours (Fig. 4.13). Similarly, for caspase-9, the 

enhanced activity was more prominent after 24 hours of treatment with CLA-mix or 
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9E, 11E-CLA. It can be seen that the caspase-9 activity was increased by 33% and 

105% after exposure of the WEHI-3B JCS cells to CLA-mix and 9E, 11E-CLA 

respectively for 24 hours (Fig. 4.15). For caspase-3, the enhanced activity was more 

prominent after 48 hours of treatment with either CLA-mix or 9E，11E-CLA in 

WEHI-3B JCS cells. The caspase-3 activity was enhanced by about 6.4 fold and 8.3 

fold after exposure of the WEHI-3B JCS cells to CLA-mix and 9E，11E-CLA 

respectively for 48 hours (Fig, 4.17 and 4.18). Moreover, the addition of 

caspase-specific inhibitors markedly reduced the activity of specific caspase in each 

case, thus confirming the specificity of each assay in this study. 
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Fig. 4.12: Analysis of caspase-8 activity in CLA-mix-treated and 9E, 
llE-CLA-treated murine myelomonocytic leukemia WEHI-3B JCS cells by 
fluorometric assay after 24 hours of incubation. WEHI-3B JCS cells (104 cells/ml) 
were treated either with solvent control or with 150 |liM CLA-mix or with 150 [iM 9E， 

11E-CLA for 24 hours at 37°C. The proteins of each sample were extracted and 
incubated with specific substrate of caspase-8 (IETD-AMC) with or without its 
specific inhibitor (IETD-CHO). The samples were subjected to excitation at 430 nm 
and the fluorescence emitted at 465 nm was measured by the fluorescence plate reader, 
Cytofluo. The caspase-8 activity corresponded to the AMC release. The units were 
quantified by comparing with the AMC standard curve. 
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Fig. 4.13: Analysis of caspase-8 activity in CLA-mix-treated and 9E, 
llE-CLA-treated myelomonocytic leukemia WEHI-3B JCS cells by fluorometric 
assay after 48 hours if incubation. WEHI-3B JCS cells (104 cells/ml) were treated 
either with solvent control or with 150 \iM CLA-mix or with 150 |iiM 9E, 11E-CLA 
for 48 hours at 37°C. The proteins of each sample were extracted and incubated with 

specific substrate of caspase-8 (IETD-AMC) with or without its specific inhibitor 

(IETD-CHO). The samples were subjected to excitation at 430 nm and the 
fluorescence emitted at 465 nm was measured by the fluorescence plate reader, 
Cytofluo. The caspase-8 activity corresponded to the AMC release. The units were 
quantified by comparing with the AMC standard curve. 
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Fig. 4.14: Analysis of caspase-9 activity in CLA-mix-treated and 9E, 
llE-CLA-treated murine myelomonocytic leukemia WEHI-3B JCS cells by 
fluorometric assay after 12 hours of incubation. WEHI-3B JCS cells (104 cells/ml) 

were treated either with solvent control or with 150 |liM CLA-mix or with 150 \iM 9E， 

11E-CLA for 12 hours at 37°C. The proteins of each sample were extracted and 

incubated with specific substrate of caspase-9 (LEHD-AFC) with or without its 

specific inhibitor (LEHD-CHO). The samples were subjected to excitation at 430 nm 
and the fluorescence emitted at 535 nm was measured by the fluorescence plate reader, 
Cytofluo. The caspase-9 activity corresponded to the A F C release. The fluorescence 

units were quantified by comparing with the A F C standard curve. 
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Fig. 4.15: Analysis of caspase-9 activity in CLA-mix-treated and 9E, 
llE-CLA-treated murine myelomonocytic leukemia WEHI-3B JCS cells by 
fluorometric assay after 24 hours of incubation. WEHI-3B JCS cells (104 cells/ml) 

were treated either with solvent control or with 150 |uM CLA-mix or with 150 juM 9E, 

11E-CLA for 24 hours at 37。C. The proteins of each sample were extracted and 

incubated with specific substrate of caspase-9 (LEHD-AFC) with or without its 

specific inhibitor (LEHD-CHO). The samples were subjected to excitation at 430 nm 

and the fluorescence emitted at 535 nm was measured by the fluorescence plate reader, 

Cytofluo. The caspase-9 activity corresponded to the A F C release. The fluorescence 

units were quantified by comparing with the A F C standard curve. 
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Fig. 4.16: Analysis of caspase-9 activity in CLA-mix-treated and 9E, 
HE-CLA-treated murine myelomonocytic leukemia WEHI-3B JCS cells by 
fluorometric assay after 48 hours of incubation. WEHI-3B JCS cells (104 cells/ml) 
were treated either with solvent control or with 150 |uM CLA-mix or with 150 |nM 9E, 
IIE-CLA for 48 hours at 37°C. The proteins of each sample were extracted and 
incubated with specific substrate of caspase-9 (LEHD-AFC) with or without its 
specific inliibitor (LEHD-CHO). The samples were subjected to excitation at 430 nm 
and the fluorescence emitted at 535 nm was measured by the fluorescence plate reader, 
Cytofluo. The caspase-9 activity corresponded to the AFC release. The fluorescence 
units were quantified by comparing with the AFC standard curve. 
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Fig. 4.17: Analysis of caspase-3 activity in CLA-mix-treated murine 
myelomonocytic leukemia WEHI-3B JCS cells by fluorometric assay. WEHI-3B 
JCS cells (1(T cells/ml) 

were treated either with solvent control or with 150 jxM 

CLA-mix for 36 and 48 hours at 37°C. The proteins of each sample were extracted 

and incubated with specific substrate of caspase-3 (DEYD-AMC) with or without its 

specific inhibitor (DEVD-CHO). The samples were subjected to excitation at 430 nm 

and the fluorescence emitted at 465 nm was measured by the fluorescence plate reader, 

Cytofluo. The caspase-3 activity corresponded to the A M C release. The fluorescence 

units were quantified by comparing with the A M C standard curve. 
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Fig. 4.18: Analysis of caspase-3 activity in 9E, llE-CLA-treated murine 
myelomonocytic leukemia WEHI-3B JCS cells by fluorometric assay. WEHI-3B 
JCS cells (104 cells/ml) were treated either with solvent control or with 150 juM 9E， 

11E-CLA for 36 and 48 hours at 37°C. The proteins of each sample were extracted 
and incubated with specific substrate of caspase-3 (DEVD-AMC) with or without its 
specific inhibitor (DEVD-CHO). The samples were subjected to excitation at 430 nm 
and the fluorescence emitted at 465 nm was measured by the fluorescence plate reader, 
Cytofluo. The caspase-3 activity corresponded to the AMC release. The fluorescence 
units were quantified by comparing with the AMC standard curve. 
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4.2.6 Effect of CLA-mix and its Isomer on the Induction of ROS in the 

WEHI-3B JCS Cells 

Reactive oxygen species (ROS) have been previously implicated in the induction 

or enhancement of apoptosis (Huang et al,, 2003), which are produced upon stress 

stimulation such as exposure to UV, y-irradiation, or cytotoxic drugs. Mitochondria 

are a major source and target of R O S (Droge, 2002). Excessive R O S crucial for 

apoptosis are raised as a consequence of electron leakage from the respiratory chain 

complexes I and III in the inner mitochondrial membranes (IMM). For instance, 

superoxide anion (0
2
") is formed when an electron is captured by molecular oxygen 

(Hileman et al, 2004). Yet，the mechanisms responsible for ROS-mediated apoptosis 

remain poorly understood. It is now thought that R O S can trigger cyt c release in 

mitochondrial permeability transition (MPT)-dependent or -independent manner. R O S 

may promote M P T through oxidation of thiol groups on the adenine nucleotide 

translocator (ANT) of I M M (Kanno et aL, 2004). However, the mechanism by which 

cyt c is released through the outer mitochondrial membrane ( O M M ) in this case is not 

clear. 

Previous investigation showed that dietary C L A supplement had prooxidant 

activity (Basu et al, 2000). Therefore, the production of R O S in CLA-treated 

WEHI-3B JCS cells was analyzed. Superoxide anion is a major R O S component in 

the mitochondria (Ito et al, 2004). Intracellular 0
2
" generation is measured by the 

oxidation of dihydroethidium to fluorescent ethidium. In this study, it was found that 

CLA-mix and the 9E, 11E-CLA isomer enhanced the 0
2
" production in the WEHI-3B 

JCS cells (Fig. 4.19 and 4.20). More drastic production of 0
2
" could be detected, in 

both cases, after 12 hours of C L A treatment. 
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Fig. 4.19: Analysis of superoxide anion accumulation in CLA-mix-treated murine 
myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 cells/ml) 

were treated with 150 \xM CLA-mix for (A) 6 hours，(B) 12 hours, (C) 24 hours, or (D) 

48 hours. The induced cells were then cultured with dihydroethidium and the 

fluorescence was measured by flow cytometry. The fluorescence in CLA-mix-treated 

cells was compared to the solvent-treated cells (control) in each case. 
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Fig. 4.20: Analysis of superoxide anion accumulation in 9E, llE-CLA-treated 
murine myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 

cells/ml) were treated with 150 |uM 9E，11 E-CLA for (A) 6 hours, (B) 12 hours, (C) 

24 hours, or (D) 48 hours. The induced cells were then cultured with dihydroethidium 

and the fluorescence was measured by flow cytometry. The fluorescence in 

CLA-mix-treated cells was compared to the solvent-treated cells (control) in each 

case. 
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4.2.7 Effect of Antioxidants on the Induction of ROS by CLA-mix and its 

Isomer in the WEHI-3B JCS Cells 

Since intracellular accumulation of R O S causes detrimental damages, such as 

lipid peroxidation, D N A adduct formation, protein oxidation, and enzyme inactivation, 

ultimately leading to cell death (Hileman et al,, 2004), therefore, the body cells have 

inherited a highly regulated antioxidant defense system to maintain proximal R O S 

levels. Primary ROS, such as 0
2
", difftise into the cytoplasm and are scavenged by the 

antioxidants. This prevents partly the formation of secondary radicals like hydroxyl 

radical (.OH) by Fe
2+

-catalyzed Fenton reaction (Tsuruga et al., 2003). 

Superoxide anion is converted rapidly to H
2
0

2
 by superoxide dismutase (SOD). 

Most of the H
2
〇2 generated was further converted to H

2
0 by catalase and glutathione 

peroxidase. In this study, we investigated the effects of specific antioxidants, such as 

S O D and N-acetylcysteine (NAC), on CLA-induced R O S generation. As shown in 

Fig. 4.21 and 4.22, preincubation with 200 units/ml S O D for 3 hours or 15 m M N A C 

for 2 hours significantly reduced the CLA-induced 0
2
" production in the CLA-mix- or 

9E, llE-CLA-treated WEHI-3B JCS cells after 24 hours of treatment. 
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Fig. 4.21: Effects of superoxide dismutase on superoxide anion production in 
CLA-mix-treated and 9E, llE-CLA-treated murine myelomonocytic leukemia 
WEHI-3B JCS cells. WEHI-3B JCS cells (10

4

 cells/ml) were preincubated with 200 

units/ml S O D for 3 hours (A-C), and then cultured with (A) solvent control (SC), (B) 

150 |liM CLA-mix, or (C) 150 |liM 9E, 11E-CLA for another 24 hours. The induced 
cells were then treated with dihydroethidium and analyzed by flow cytometry. 
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Fig. 4.22: Effects of N-acety[cysteine (NAC) on superoxide anion production in 
CLA-mix treated and 9E，HE-CLA-treated murine myelomonocytic leukemia 
WEHI-3B JCS cells. WEHI-3B JCS cells (10

4

 cells/ml) were preincubated with 15 

m M N A C for 2 hours (A-C), and then cultured with (A) solvent control (SC), (B) 150 

jiM CLA-mix, or (C) 150 ̂ iM 9E，IIE-CLA for another 24 hours. The induced cells 

were then treated with dihydroethidium and analyzed by flow cytometry. 
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4.2.8 Effect of Antioxidants on the Induction of Apoptosis by CLA-mix and its 

Isomer in the WEHI-3B JCS Cells 

As demonstrated in section 4.2.7, antioxidants such as S O D and N A C could 

significantly reduce the CLA-induced 0
2
" production in the CLA-mix- or 9E, 

llE-CLA-treated WEHI-3B JCS cells. Therefore, it was of interest to know whether 

these antioxidants could also reduce the CLA-induced D N A fragmentation in 

WEHI-3B JCS cells. The results showed that D N A fragmentation triggered by 

CLA-mix and 9E, 11E-CLA could be partly diminished by prior treatment with either 

S O D (Fig. 4.23) or N A C (Fig. 4.24). However, the antioxidants could not completely 

block the CLA-induced D N A fragmentation, and this suggests that other apoptosis 

signaling pathways, such as those regulated by the Bcl-2 family members or the death 

receptor Fas, may be involved in triggering the apoptosis of the CLA-treated 

WEHI-3B JCS cells. 
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Fig. 4.23: Effects of superoxide dismutase on induction of DNA fragmentation in 
CLA-mix-treated and 9E, llE-CLA-treated murine myelomonocytic leukemia 
WEHI-3B cells. WEHI-3B JCS cells (10

4

 cells/ml) were either untreated (Lanes 2，4 

and 6) or pretreated with S O D (200 units/ml) for 3 hours (Lanes 3, 5 and 7). The cells 

were then cultured with solvent control (0.1% ethanol) (Lanes 6 and 7), 150 \iM 
CLA-mix (Lanes 2 and 3) or 9E, 11E-CLA (Lanes 4 and 5) at 37。C for 48 hours. 

Apoptotic D N A fragments were extracted by mild detergent IGEPAL CA-630 lysis 

buffer, and were analyzed by electrophoresis on 2 % agarose gel stained with ethidium 

bromide. 

Lane 1: 100 bp D N A marker 

Lane 2: JCS cells cultured with 150 jiM CLA-mix 

Lane 3: JCS cells cultured with 150 [iM CLA-mix (with S O D pretreatment) 

Lane 4: JCS cells cultured with 150 [iM 9E, 11E-CLA 
Lane 5: JCS cells cultured with 150 j i M 9E, 11 E-CLA (with S O D pretreatment) 
Lane 6: JCS cells cultured with solvent control 

Lane 7: JCS cells cultured with solvent control (with S O D pretreatment) 
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Fig. 4.24: Effects of N-acetylcysteine on induction of DNA fragmentation in 
CLA-mix-treated and 9E，llE-CLA-treated murine myelomonocytic leukemia 
WEHI-3B cells. W E H I - 3 B JCS cells (10

4

 cells/ml) were either untreated (Lanes 2，4 

and 6) or pretreated with N A C (15 MM) for 2 hours (Lanes 3，5 and 7). The cells were 

then cultured with solvent control (0.1% ethanol) (Lanes 2 and 3), 150 JLIM CLA-mix 

(Lanes 4 and 5) or 9E, 11E-CLA (Lanes 6 and 7) at 37°C for 48 hours. Apoptotic 

D N A fragments were extracted by mild detergent IGEPAL CA-630 lysis buffer, and 

were analyzed by electrophoresis on 2 % agarose gel stained with ethidium bromide. 

Lane 1: 100 bp D N A marker 

Lane 2: JCS cells cultured with solvent control 

Lane 3: JCS cells cultured with solvent control (with N A C pretreatment) 

Lane 4: JCS cells cultured with 150 \iM CLA-mix 

Lane 5: JCS cells cultured with 150 jjM CLA-mix (with N A C pretreatment) 

Lane 6: JCS cells cultured with 150 ̂ M 9E, 11E-CLA 
Lane 7: JCS cells cultured with 150 j^M 9E，llE-CLA (with N A C pretreatment) 

- 1 7 8 - —— 



— Chapter 4 Apoptosis-inducins Activity 

4.3 Discussion 

One of the most established approaches to cancer chemotherapy is the induction 

of D N A damage and subsequent induction of apoptosis (Johnson and Walker, 1999). 

To date, several studies have revealed the ability of CLA, especially the trans-10, 

cis-\2- (10E, 12Z-) C L A isomer, to induce apoptosis in a variety of cancer cell lines 

(Palombo et al” 2002; Yamasaki et al, 2002; Oh et al,, 2003; Maggiora et al., 2004; 

Ochoa et al., 2004; Kim et al., 2005). Therefore, in this chapter, investigation on 

whether C L A could trigger apoptosis pf the murine myelomonocytic leukemia 

WEHI-3B JCS cells was carried out. Our results showed that CLA-mix and two of the 

C L A isomers, trans-10, cis-12 (10E，12Z-) C L A and trans-% trans-ll (9E, 11E-) 

CLA, were able to trigger apoptosis in WEHI-3B JCS cells while the other two C L A 

isomers, cis-9, trans-ll (9Z, 11E-) C L A and cis-9, cis-11 (9Z，11Z-) CLA, failed to do 

so. In fact, this is the first report documenting that the 9E, 11E-CLA isomer is a more 

potent inducer of apoptosis on tumor cells than other C L A isomers so far investigated. 

Moreover, we had shown that the C L A apoptosis of WEHI-3B JCS cells was not 

detected until 48 hours after treatment, as measured by the D N A fragmentation assay 

and the cell death detection ELISA kit 

Our findings also demonstrated that both CLA-mix and the 9E, 11E-CLA isomer 

could induce mitochondrial membrane depolarization in the WEHI-3B JCS cells. 

Previous reports have shown that disturbances leading to loss of the mitochondrial 

membrane potential (A屮m) include formation of mitochondrial permeability 

transition (MPT) by pro-apoptotic Bcl-2 family proteins, such as Bax, Bak, and Bad, 

during the “intrinsic” pathway of apoptosis (Terrones et al., 2004). Although it is 

believed that the anti-apoptotic members prevent efflux of mitochondrial proteins by 

binding to and antagonizing the pro-apoptotic members of the Bcl-2 family, both 
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Bcl-2 and Bcl-
XL
 may exert their anti-apoptotic effects through mechanisms other 

than direct interactions with Bax and Bak (Crow et al,, 2004). They can fonction as 

“sinks，’ that sequester the BH3-only pro-apoptotic proteins, such as Bad, preventing 

them from activating Bax and Bak (Cheng et al., 2001). Moreover, Bcl-
XL
 has been 

shown to interact with the adaptor protein apoptotic protease-activating factor (Apaf-1) 

to prevent it from activating procaspase-9 in the "intrinsic" pathway (Pan et al., 1998). 

Since the pro-apoptotic members of the Bcl-2 family can bind to the anti-apoptotic 

members, such hetero-dimerization frees Apaf-1 to activate procaspase-9. However, 

in the "extrinsic" pathway, the Fas-associated protein with death domain 

(FADD)-induced activation of caspase-8 is not blocked by anti-apoptotic Bcl-2 family 

members (Martin et al., 1998). 

Therefore, in order to elucidate the possible mechanisms by which CLA-mix and 

the 9E, 11E-CLA exerted their pro-apoptotic activities on the WEHI-3B JCS cells, 

their effects on the expression of the Bcl-2 family genes were first studied. From the 

gene expression study of CLA-mix- or 9E, 11E-CLA-treated WEHI-3B JCS cells, it 

was found that the anti-apoptotic Bcl-xL gene was down-regulated while the 

pro-apoptotic Bak and Bad genes were up-regulated. Nevertheless, in addition to 

transcriptional activation, the activity of different pro-apoptotic Bcl-2 family members 

is controlled by post-translational modifications. For instances, the activity of Bad can 

be regulated by protein kinase A-mediated phosphorylation (Harada et al., 1999). 

Moreover, both Bcl-2 and Bcl-x
L
 have been also shown to be regulated by 

phosphorylation (Ito et al., 1997; Chang et al., 1997). 

Apart from modulating the expression of the apoptosis-regulatory genes by C L A 

and its isomer, our results showed that the protein expression of both Fas and Fas-L 

was up-regulated in CLA-mix- or 9E, llE-CLA-treated WEHI-3B JCS cells. These 
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findings suggest that apoptosis triggered by CLA-mix and the 9E，11E-CLA isomer is 

signaled through both the "intrinsic" and "extrinsic" pathways. This was further 

confirmed by studies on the activities of caspases-3, -8 and -9. It was found that both 

CLA-mix and the 9E, II E-CLA isomer respectively increased the activities of 

"initiator" caspases-8 and -9 as well as "effector" caspase-3 in WEHI-3B JCS cells. 

Our results are in line with a previous report showing that the C L A , particularly the 

10E, 12Z-CLA isomer, can induce caspase-dependent apoptosis in human colorectal 

(MIP-101) and prostate (PC-3) carcinoma cells (Palombo et al., 2002). Moreover, 

Yamasaki et al (2002) also demonstrated that the 10E, 12Z-CLA but not the 9Z
? 

11 E-CLA isomer induced apoptosis of rat hepatoma dRLh-84 cells through activation 

of caspases-3 and -9. 

Caspases-9 and -8 are initiators of the "intrinsic" and "extrinsic" pathways of 

apoptosis, respectively. In the "intrinsic" pathway, mitochondria seem to be the main 

cellular reservoir of procaspase-9. In the presence of ATP or dATP, cyt c binds to an 

adaptor protein, Apaf-1，which recruits procaspase-9 to form an apoptosome 

(Earnshaw, 1999). Apaf-1 recruits procaspase-9 via its N-terminal caspase-activation 

recruitment domain (CARD). In its quiescent state, Apaf-1 is a compact molecule. In 

the presence of ATP or dATP, cyt c displaces the C A R D domain, allowing the 

compact structure of Apaf-1 to stretch out into a more linear molecule to form 

apoptosome with procaspase-9 (Jiang and Wang, 2000). This leads to autocatalytic 

activation of procaspase-9 to caspase-9. Activated caspase-9 cleaves and activates the 

downstream procaspase-3, which is also recruited into the apoptosome (Bratton et al” 

2001). 

On the other hand, in the "extrinsic" pathway, caspase-8 is activated when the 

death receptor Fas is activated by oligomerization (Nagata, 1999). Fas-L induces 
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trimerization of Fas and the trimerized cytoplasmic region of Fas then transduces the 

death signal. When Fas is activated, an adaptor molecule called F A D D is recruited to 

Fas and binds to Fas via interactions between the death domains at its C terminus 

(Boldin et al., 1996). The N terminus of F A D D , known as the death-effector domain 

(DED), is responsible for recruiting procaspase-8 (Muzio et al., 1996). As a result, the 

DISC (death-inducing signaling complex) is formed which leads to oligomerization, 

self-cleavage, and activation of procaspase-8 (Nagata, 1999). Activated caspase-8 

then cleaves and activates downstream effector caspases such as caspases-3 and -7. In 

fact, caspase-8 also functions as a direct conduit between the "extrinsic" and 

"intrinsic" pathways by cleaving and activating Bid, a pro-apoptotic member of the 

Bcl-2 family. Activated caspase-8 cleaves Bid into truncated Bid (tBid) to expose its 

B H 3 domain to the cytosol (Cheng et al., 2003; Crow et al, 2004). After cleavage, 

tBid translocates to the mitochondria and inserts into the O M M . Bid-induced 

permeabilization of the O M M requires the B H 3 domain of tBid as well as Bak or Bax. 

The exposed B H 3 domain of tBid can bind to Bak, leading to the displacement of 

V D A C 2 from Bak. Similarly, the BH3 domain of Bid also binds to Bax, facilitating 

its insertion into the O M M to induce cyt c release and the subsequent cyt c-mediated 

activation of caspases such as caspases-9 and -3 in the "intrinsic" pathway. 

During apoptotic execution, effector caspases cleave and inactivate certain vital 

cellular proteins, including D N A repair enzymes, gelsolin, lamin, p53 inhibitor 

M D M 2 , and protein kinase C5 (Strasser et al, 2000). Therefore, effector caspases act 

both as executioners that cleave key proteins to promote death activities, and as 

executives that turn the cell-survival pathways off (Earnshaw, 1999). One such 

death-promoting factor is a nuclease called caspase-activated DNase (CAD) (Enari et 

al., 1998), also known as caspase-activated nuclease. C A D is ubiquitously expressed 
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in various tissues and is normally inactivated by binding to its inhibitor iCAD, also 

called D N A fragmentation factor-45 (DFF-45) (Enari et al., 1998; Sakahira et al., 

1998; Tang and Kidd，1998). During apoptosis, iCAD is cleaved by effector 

caspases-3 and -7，leading to the release of active C A D which then cleaves 

chromosomal D N A into fragments of 50-200 kbp. Moreover, C A D can induce the 

collapse and hypercondensation of the chromatin against the nuclear periphery (Enari 

et al,, 1998). 

Growing evidence has shown that intrinsic oxidative stress in malignant cells 

offers therapeutic selectivity for cancer chemotherapy. Cancer cells are more active in 

the production of 0
2
" than normal cells and are thereby more vulnerable to be 

destroyed by reactive oxygen species (ROS)-generating agents (Hileman et al., 2004). 

R O S is a collective term for free radicals such as superoxide anions (0
2
")

?
 hydroxyl 

radicals (OH), and some other non-radical oxygen derivatives such as hydrogen 

peroxide (H
2
0

2
) (Gorman et al, 1997). Of which, 0

2
' have been well-characterized as 

apoptotic inducers in a variety of cell types including leukemia cells (Fuchs et al, 

1994; Zhou et al., 2003; Cam et al., 2004). In our study, we found that CLA-mix and 

the 9E, 11E-CLA isomer enhanced 0
2
" production in the WEHI-3B JCS cells after 12 

hours of incubation. Therefore, the CLA-induced oxidative stress in our study is 

consistent with other groups showing the prooxidant activity of dietary C L A 

supplement (Basu et al., 2000). 

Mitochondria are the site where many ROS-metabolizing enzymes are situated, 

including superoxide dismutase (SOD)，catalase, and various peroxidases. Therefore, 

high level of R O S accumulation may be due to the loss of feed-back inhibition of the 

respiratory chain after depletion of cellular ATP (Swamy and Huat, 2003). In the 

present study, we demonstrated that antioxidants such as S O D and N A C could reduce 
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the CLA-induced R O S production as well as the formation of D N A fragmentation in 

WEHI-3B JCS cells. S O D is the key enzyme required to remove 0
2
"by converting it 

to H
2
0

2
，which is further eliminated by catalase and peroxidases (Fridovich et al., 

1995). N A C , a precursor of reduced glutathione (GSH), is also capable of quenching 

ROS. Prior treatment with either 200 units/ml S O D or 15 m M N A C significantly 

reduced the production of 0
2
" and partly blocked apoptosis in both CLA-mix-treated 

and 9E, llE-CLA-treated WEHI-3B JCS cells. As a consequence, it could be 

speculated that accumulation of CLA-induced R O S in WEHI-3B JCS cells may be 

due to inhibition of intracellular antioxidant defense system. Intracellular G S H is a 

known substrate or cofactor of protective enzymes. G S H controls the redox state of a 

cell by quenching R O S and keeping the enzyme G S H peroxidase in a reduced state 

(Sies，1999). Accumulating evidence showed that early G S H depletion caused 

mitochondrial membrane depolarization with simultaneously R O S generation prior to 

induction of apoptosis (Swamy and Huat, 2003). A recent study also demonstrated 

that upon exposure to CLA, G S H depletion and reduced G S H peroxidase activity 

were found in the leukemia Jurkat T cells (Bergamo et al； 2004) and in pancreatic 

intratumoral tissue (Kilian et al., 2003), respectively. 

In response to D N A damage, the p53 protein triggers the onset of D N A repair 

leading to the completion of cell cycle, or induces apoptosis leading to the exit from 

the cell cycle (Offer et al, 2002). High level of p53 was found to induce apoptosis in 

human promyelocytic leukemia HL-60 cells (Ronen et al., 1996). Marchenko et al 

(2000) found that p53 protein localizes to mitochondria at the onset of p53-dependent 

apoptosis. The tumor suppressor protein p53 induces apoptosis by transactivating the 

expression of numerous pro-apoptotic genes, including Apaf-1, Asc, Bax, Bid， 

Caspase-6, Fas, Fas-L, Noxa, p21 Cipl/WAF1，and Puma (Miyashita and Reed, 1995; 
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Muller et al., 1998; Maecker et al” 2000; Sax et al, 2002; Crow et al, 2004). In fact, 

in addition to cell cycle regulation, p21
C i p l / W A F 1

 has been shown to have pro-apoptotic 

activities as disruption of p21
C i p l / W A F 1

 expression decreased cell death (Sheikh et al., 

1995; Yang et al., 2001). It was previously shown that CLA-mix could induce 

p53-dependent and -independent apoptosis in different cell types (Belury, 2002; 

Majumder et al, 2002). Moreover, the 10E, 12Z-CLA but not the 9Z, 11 E-CLA was 

able to increase the expression of p21WAF1/CIP1 gene in prostate cancer PC-3 cells 

(Ochoa et al., 2004). Here, we demonstrated that CLA-mix and its isomer, 9E， 

11 E-CLA, might induce apoptosis of WEHI-3B JCS cells in a p53-dependent manner, 

since the expressions of both p53 and p21 genes were markedly increased in 

CLA-mix- and 9E, llE-CLA-treated WEHI-3B JCS cells as shown in chapter 3. 

Based on the results so far obtained, a proposed mechanism by which CLA-mix 

and the 9E，11 E-CLA might exert their pro-apoptotic activity on the WEHI-3B JCS 

cells is described as follows. During the activation of "intrinsic" pathway, they 

down-regulate the anti-apoptotic genes of the Bcl~2 family, such as Bcl-XL’ and 

up-regulate the pro-apoptotic genes, including Bak and Bad, to form M P T which are 

responsible for the loss of A ^ m and subsequent mitochondrial release of cyt c into the 

cytosol. cyt c binds to Apaf-1 and recruits procaspase-9 to form an apoptosome. This 

leads to autocatalytic activation of procaspase-9 to caspase-9. Activated caspase-9 

then cleaves and activates the procaspase-3 into activated caspase-3. Moreover, 

CLA-mix and the 9E, 11 E-CLA isomer also up-regulate the gene expression of p53 

and p21, which have pro-apoptotic activities and might be responsible for some of the 

apoptotic events in the “intrinsic” pathway. In fact, our results are in agreement with a 

recent report showing that CLA-mix induces apoptosis in human breast cancer 

MDA-MB-231 cells through the "intrinsic" pathway by up-regulating the protein 
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expression of Bak, down-regulating the protein expression of Bcl-
XL
, inducing the 

translocation of cyt c from the mitochondria to the cytosol, and promoting the 

cleavage of procaspases-3 and -9 (Miglietta et al, 2005). 

On the other hand, our results also demonstrated that CLA-mix and the 9E, 

11E-CLA isomer can trigger apoptosis through the “extrinsic” pathway. They 

up-regulate the protein expression of the death receptor Fas and its agonist Fas-L. 

This cell death process can be enhanced by wild-type p53, which up-regulates Fas 

expression at the transcriptional level (Nagata, 1999; Crow et al, 2004). Various 

tumor cells such as leukemia, hepatoblastoma, neuroblastoma, and brain tumor cells 

are killed by cytotoxic drugs or 丫-irradiation in a Fas-dependent manner. When Fas is 

activated, the adaptor molecule F A D D is recruited and binds to Fas, which is 

responsible for recruiting procaspase-8 by its D E D . As a result, the procaspase-8 is 

activated to caspase-8 which then cleaves and activates caspases-3. Our findings also 

showed that CLA-mix and the 9E, llE-CLA isomer can activate caspases-8 and -3. 

Therefore, CLA-mix and the 9E, llE-CLA isomer can trigger apoptosis through 

both the "intrinsic" and “extrinsic” pathways in the murine myelomonocytic leukemia 

WEHI-3B JCS cells. Since both the "intrinsic" and "extrinsic" pathways are entwined, 

this contributes to an amplification of cyt c release which may give profound 

therapeutic implications: when drugs targeted to both pathways are combined, this 

cocktail therapy may contribute a synergistic effect for induction of apoptosis. In 

addition to these pathways, CLA-mix and the 9E, llE-CLA might also trigger 

apoptosis through an oxidative stress mediated by the ROS-dependent cell death 

pathway. Nevertheless, whether the loss of membrane integrity is a direct result of 

M P T formed by pro-apoptotic Bcl-2 family members or due to R O S reacting with 

membrane lipids remains to be elucidated, 
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Chapter 5 Differentiation-indue ins Activity 

5.1 Introduction 

During the last two decades, differentiation therapy of cancer has been a subject 

of intense investigation (Spira and Carducci
?
 2003; Zelent et al； 2005). Acute 

promyelocytic leukemia (APL) is the first model of hematologic malignancies treated 

by differentiation-inducing agents including the well-known inducer, alWra似-retinoic 

acid (ATRA) (Fang et al.’ 2002). Very often, differentiation therapy is used with or 

following cycles of low-dose conventional chemotherapy. It has been shown that 

combination of cytotoxic and differentiation therapies can enhance tumor cell 

apoptosis, reduce recurrence of malignancies and alleviate development of drug 

resistance (Lo et al., 2002). One of the characteristics of myeloid leukemia is the 

neoplastic proliferation of hematopoietic progenitor cells which lose the capability to 

differentiate. Differentiation therapy is thereby an alternative approach for the 

treatment of myeloid leukemia in which the immature leukemia cells are induced to 

attain a mature phenotype when exposed to differentiation inducers (Hozumi, 1994; 

Leszczyniecka et al., 2001) and terminal differentiation of leukemia cells is usually 

accompanied by the cessation of cell proliferation (Leszczyniecka et al, 2001). Table 

5.1 summarizes the common differentiation inducers employed in clinical trials for 

hematologic malignancies. 

It had been reported previously that various C L A isomers, including the cis-9, 

trans-ll CLA, cis-9, cis-ll CLA, trans-9, trans-\\ CLA, and trans-10, cis-\2 CLA, 

induced monocytic differentiation of the human promyelocytic leukemia HL60 cells, 

as assessed by their ability to induce expression of the LPS receptor C D 14，on the 

leukemic cell surface (Yu et al., 2002). Since this is the only documentation to date 

narrating the differentiation-inducing activity of CLA, yet its action mechanisms to 
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trigger differentiation of myeloid leukemia cells remain poorly understood. In the 

present study，a mixture of C L A isomers (CLA-mix) was investigated for its effects 

on the differentiation of the murine myelomonocytic leukemia WEHI-3B JCS cells in 

terms of morphological, phenotypic, and functional changes. Morphological changes 

in the CLA-treated WEHI-3B JCS cells were studied by staining of cytocentrifuged 

preparations. The changes in size and granularity were also analyzed by flow 

cytometry. Additionally, phenotypic changes in the WEHI-3B JCS cells following 

C L A -mix administration were studied by determining the expression of certain cell 

surface markers of monocytic (Mac-1 and F4/80) and granulocytic (Gr-1) 

differentiation. Furthermore, other differentiation-associated functional characteristics 

such as monocytic serine esterase (MSE) and endocytic activities of WEHI-3B JCS 

cells subsequent to CLA-mix exposure were also studied. 

Since previous work in our laboratory had shown that hematopoietic cytokines 

such as tumor necrosis factor-a (TNF-a) (Mak et al., 1993; Leung et al,, 1994)，and 

interleukin-1 (IL-1) (Chan et al, 1997) may play a role in triggering the monocytic 

differentiation of the murine myeloid leukemia WEHI-3B JCS cells, therefore, the 

modulatory effect of CLA-mix on the expression of these cytokine genes in the 

leukemia WEHI-3B JCS cells was also examined. 
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Table 5.1: Common differentiation inducers used in clinical trials for hematologic 

malignancies. 

Differentiation 
. , Examples inducers 

A
 丄. . Interferons; 

Anti-proliferative 

a
g

e n t s
 Arsenic trioxide (As

2
0

3
); 

Chemotherapeutic agents - cytosine arabinoside; hydroxyurea 

Cyclic A M P analogs 8-chloro-cyclic-cAMP (8-Cl-cAMP) 

Demethylating agents Aza-cytidine ‘ 

Histone deacetylase Suberoylanilide hydroxamic acid (SAHA); 

Depsipeptide; 

inhibitors (HDACi) Sodium phenylbutyrate (NaPB) 

Erythropoietin (EPO); 

Hemato oietic Granulocyte colony-stimulating factor (G-CSF); 

v
 Granulocyte-macrophage colony-stimulating factor (GM-CSF); 

Interleukin-3 (IL-3); 

Interleukin-6 (IL-6) 

Alkylopho spholipids ； 

T
. ., Gangliosides; 
Lipids 

Short-chain fatty acids; 

Sodium butyrate 

P K C agonists and Bryostatin; 

antagonists Tetradecanoylphorbol acetate (TPA) 

Polar-planar 
Hexamethylene bisacetamide ( H M B A ) 

compounds 
、

r
. . , Retinoic acid and its derivatives; 

Vitamin analogs . 
Vitamin D3 

(Modified from Miller and Waxman, 2002) 
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5.2 Results 

5.2.1 Morphological Alterations in CLA-mix- and CLA isomer-treated WEHI-3B 

JCS Cells 

Murine myelomonocytic leukemia WEHI-3B JCS cells were examined for their 

morphological changes following treatment with CLA-mix, Briefly, WEHI-3B JCS 

cells were cultured with CLA-mix (25-200 ̂ iM) at 37°C for 48 hours. The cells were 

then cytocentrifuged onto microscopic slides and stained with Hemacolor solutions. 

As shown in Fig. 5.1, CLA-mix induced the morphological differentiation of the 

WEHI-3B JCS cells in a dose-dependent manner. The differentiated cells (Fig. 5.1 

B-F) had typical macrophage-like morphology as there was an increase in the 

cytoplasm to nucleus ratio as well as increase in vacuolation in the CLA-treated cells 

when compared with the control cells (Fig, 5.1 A). Differential counting of the 

cytospin preparations showed that 〜44% of WEHI-3B JCS cells cultured with 150 

fiM of C L A for 48 hours had acquired the characteristics of mature macrophages 

(Table 5.2). Additionally，we also examined the morphological changes of the 

WEHI-3B JCS cells after exposure to various C L A isomers. It is interesting to find 

out that C L A isomers, including cis-9, trans-10 C L A (Fig. 5.2), trans-10, cis-12 C L A 

(Fig. 5.3), and trans-9, trans-ll C L A (Fig, 5.4), could induce morphological changes 

of WEHI-3B JCS cells with characteristics of mature macrophages. However, the 

cis-9, cis-U C L A did not exhibit any differentiation-inducing activity on WEHI-3B 

JCS cells (data not shown). Therefore, the results suggest that some C L A isomers can 

induce differentiation of WEHI-3B JCS cells along the monocytic lineage. 
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Fig. 5.1: Morphological changes in CLA-mix-treated murine myelomonocytic 
leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 cells/ml) were incubated 
with (A) solvent control (0.1% ethanol); (B) 25 |iiM CLA-mix; (C) 50 [iM CLA-mix; 
(D) 100 ̂ iM CLA-mix; (E) 150 jiM CLA-mix; or (F) 200 p M CLA-mix at 37°C for 
48 hours. The cells were cytocentrifuged onto microscopic slides and were then 
stained with Hemacolor solutions (Magnification x 200). 
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Fig. 5.2: Morphological changes in cis-% trans-ll (9Z, HE) CLA-treated murine 
myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 cells/ml) 
were incubated with (A) solvent control (0.1% ethanol); (B) 25 u M 9Z，11E-CLA. (C) 
50 _ 9Z，11E-CLA; ( D ) 漏 譯 9Z，11E-CLA; (E) 150 | M 9Z, 11E-CLA; or (F) 
200 p M 9Z, 11E-CLA at 37。C for 48 hours. The cells were cytocentrifliged onto 
microscopic slides and were then stained with Hemacolor solutions (Magnification x 
200). 
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Fig. 5.3: Morphological changes in trans-10, cis-12 (10E, 12Z) CLA-treated 
murine myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 

cells/ml) were incubated with (A) solvent control (0.1% ethanol): (B) 25 liM 10E 
12Z-CLA; (C) 50 g M 10E, 12Z-CLA; (D) 100 JIM 10E, 12Z-CLA; (E) 150 u M 10E; 
12Z-CLA; or (F) 200 |iM 10E, 12Z-CLA at 37。C for 48 hours. The cells were 
cytocentrifuged onto microscopic slides and were then stained with Hemacolor 
solutions (Magnification x 200). 
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Fig. 5.4: Morphological changes in trans-9, trans-ll (9E, HE) CLA-treated 
murine myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (10

4 

cells/ml) were incubated with (A) solvent control (0.1% ethanol); (B) 25 liM 9E 
11E-CLA; (C) 50 m 9E, 11E-CLA; (D) 100 譯 9E，11E-CLA; (E) 150 p M 9E, 
11E-CLA; or (F) 200 ^ M 9E, 11E-CLA at 37。C for 48 hours. The cells were 
cytocentrifuged onto microscopic slides and were then stained with Hemacolor 
solutions (Magnification x 200). 
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Table 5.2: Morphological differentiation of CLA-treated WEHI-3B JCS cells. 

Treatment of cells Percentage of different cell types (mean 士 SD) 

w i t

h Immature Intermediate Mature macrophage 

blast cells stages cells -like cells 

Solvent control 89.7 土 2.4 10.3 ±2.4 0 

C L A (25 |uM) 48.8 ±5.3 41.2 ±2.4 10.0 ±2.9 

C L A (50 JLIM) 12.5 土 0 60.8 士 6.7 26.7 土 2.7 

C L A (150 ̂ iM) 11.2 ±1.3 44.7 ± 0.6 44.1 ± 1.8 

WEHI-3B JCS cells (10
4

 cells/ml) were incubated with solvent control or various 

concentrations of C L A (25, 50，and 150 |liM) at 37°C for 48 hours. Cytospin 

preparations were made and cells were stained with Hemacolor staining set for 

morphological identification of cells. The stained cells were scored as the immature 

blast cells (myeloblasts), intermediate stages cells (myelocytes and promonocyte-like 

cells) and mature macrophage-like cells. At least 300 cells were scored for each 

determination. 
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5.2.2 Effects of CLA-mix on the Cell Size and Granularity of WEHI-3B JCS 

Cells 

To further analyze the differentiation-inducing activity of CLA-mix, the changes 

in cell size and granularity in CLA-mix-treated WEHI-3B JCS cells were studied by 

flow cytometry. Forward scatter (FSC) indicates the cell size and side scatter (SSC) 

indicates the internal complexity of the cells. As illustrated in Fig. 5.5, CLA-mix 

significantly increased the SSC of the WEHI-3B JCS cells. Such increase could also 

be demonstrated in the SSC of the human promyelocytic leukemia N B 4 cells treated 

with CLA-mix (data not shown). Therefore, these results further support that the 

granularity of the CLA-treated WEHI-3B JCS cells had increased as a result of 

cellular differentiation. 

- 1 9 6 - — — 



— Chapter 5 Differentiation-inducing Activity 

3.0% 0 1 %
 38.3% 0.1% 

D C 
° 1 ^^^ ' ' ' 1 ' 1 ' • ' ' • ' ' • ‘ ‘ III I I I ' P I , I I L' I I I ！ I I III • I I I ,. I , , , 

0 1023 0 1023 
96 .9% FSC-H 0 .0% 61:.6% FSC:H 0 . 0 % 

73.2% 0 .2% 80-8% 0 .1% 

I 1 g ] I ^ I 

C D 
O 1023 0 1023 

26.6% FSC-H 0 .0% 19.2% FSC-H 0 .0% 

Fig. 5.5: Effects of CLA-mix on the cell size and granularity of murine 
myelomonocytic leukemia WEHI-3B JCS cells. WEHI-3B JCS cells (104 cells/ml) 

were incubated with (A) solvent control (0.1% ethanol); (B) 50 \iM CLA-mix; (C) 

100 jiM CLA-mix; or (D) 200 \iM CLA-mix at 37。C for 48 hours. The 

paraformaldehyde-fixed cells were analyzed for FSC and SSC using the FACSort 

flow cytometer. 
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5.2.3 Studies of the Surface Phenotypic Changes in the CLA-mix-treated 

WEHI-3B JCS cells 

Cellular differentiation is usually accompanied by phenotypic changes on the cell 

surface of differentiated cells, as determined by the expression of certain 

lineage-specific differentiation antigens. They can be thereby used as markers for 

studying cell differentiation. Previous work had demonstrated that enhanced 

expressions of Mac-1 and F4/80 surface markers were seen in WEHI-3B JCS cells 

undergoing monocytic differentiation (Mak et al 1993; Chan et al., 1997). As shown 

in Fig. 5.6，the expression of macrophage differentiation antigens Mac-1 and F4/80 in 

WEHI-3B JCS cells was significantly augmented dose-dependently upon exposure to 

CLA-mix. However, the expression of granulocytic marker Gr-1 was similar in both 

control and CLA-mix-treated cells. These results suggest that CLA-mix triggers 

differentiation of WEHI-3B JCS cells along the monocytic pathway with the 

acquisition of macrophage-like phenotypes. 
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Fig. 5.6: Studies of the surface phenotypic changes in the CLA-mix-treated 
murine myelomonocytic leukemia WEHI-3B JCS cells by flow cytometry. 
WEHI-3B JCS cells (10

4

 cells/ml) were incubated with CLA-mix (0, 50 and 150 jaM) 
at 37°C for 48 hours. After harvesting, cells were stained with rat monoclonal 
antibodies to Mac-1，F4/80 and Gr-1 antigen respectively. Control cells were stained 
with isotype-matched antibodies. 
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5.2.4 Studies on the Induction of Monocytic Serine Esterase (MSE) Activity in 

the CLA-mix-treated WEHI-3B JCS Cells 

Monocytic Serine Esterase (MSE), usually referred as the non-specific esterase, 

is a cytoplasmic marker for monocytic differentiated cells (Yam et al., 1971). M S E 

converts fluorescein diacetate into a fluorescent product which is then measured by 

flow cytometry. Activity of M S E can be primarily detected in monocytes, 

macrophages and histocytes. Therefore the assessment on activity of M S E is 

exclusive to cells of monocytic but not granulocytic lineage. As shown in Fig. 5.7，the 

M S E activity of WEHI-3B JCS cells was increased significantly in a dose-dependent 

manner by exposure to CLA-mix. 
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Fig. 5.7: Studies on the induction of monocytic serine esterase activity in the 
CLA-mix-treated murine myelomonocytic leukemia WEHI-3B JCS cells by flow 
cytometry. WEHI-3B JCS cells (10

4

 cells/ml) were incubated with (A) 100 p M 

CLA-mix; or (B) 150 fxM CLA-mix at 37。C for 3 days. Cells were harvested and then 

incubated with fluorescein diacetate. The fluorescence intensity was determined by 

the FACSort flow cytometer. 
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5.2.5 Studies on the Induction of Endocytic Activity in the CLA-mix-treated 

WEHI-3B JCS Cells 

It has been reported previously that monocytic differentiation of WEHI-3B JCS 

cells is always accompanied by increased endocytic activity (Leung et al., 1994). In 

this study, the endocytic activity was determined by flow cytometric analysis on the 

uptake of fluorescent FITC-conjugated bovine serum albumin (FITC-BSA). As 

illustrated in Fig. 5.8, the endocytic activity of the CLA-mix-treated WEHI-3B JCS 

cells was increased dose-dependently after 3-day treatment with CLA-mix. 
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Fig. 5.8: Studies on the induction of endocytic activity in the CLA-mix-treated 
murine myelomonocytic leukemia WEHI-3B JCS cells by flow cytometry. 
WEHI-3B J C S cells (10

4

 cells/ml) were pre-treated with (A) 100 \xM; or (B) 150 JLIM 

CLA-mix at 37。C for 3 days and then incubated with FITC-conjugated B S A at 37°C 

for 6 hours. The fluorescence intensity was determined by the FACSort flow 

cytometer. 
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5.2.6 Studies on the Expression of the Differentiation-regulatory Cytokine Genes 
in the CLA-mix-treated WEHI-3B JCS Cells 

In addition to chemical inducers, several hematopoietic cytokines are also known 

to promote the differentiation of various leukemia cell lines along lineage-restricted 

pathways as revealed in Table 5.1. For examples, as reported in a recent review article 

(Tsiftsoglou et al, 2003), granulocyte colony-stimulating factor (G-CSF), interleukin 

(IL)-l，and IL-6 were found to induce differentiation of murine myeloblastic leukemia 

M l cells towards the macrophage phenotype in the years 1988 and 1989. In 1990, 

transforming growth factor-P (TGF-P) had been documented to promote 

differentiation of the human monoblast-like lymphoma U-937 cells into macrophages. 

In addition, leukemia inhibitory factor (LIF) and tumor necrosis factor-a (TNF-a) 

were found to promote macrophage development in M l and WEHI-3B JCS cells as 

reported in 1991 and 1993, respectively. Furthermore, in 1997, erythropoietin (EPO) 

and thrombopoietin (TPO) were found to induce differentiation of human 

megakaryoblastic leukemia UT-7/GM cells into erythrocytic and megakaryocyte 

phenotype, respectively. 

Therefore, in this study, the technique of RT-PCR was employed to analyze the 

expression of certain cytokine genes, such as TNF-a, IL-ip，and IFN-y, in the 

WEHI-3B JCS cells after treatment with 150 juM CLA-mix for different time intervals. 

As shown in Fig. 5.9, the expression of TNF-a and IFN-y genes was significantly 

increased at 3-hour after treatment with CLA-mix, which peaked at the 12 hour and 

then declined thereafter. On the other hand, the expression of IL-ip gene was also 

enhanced at 3-hour after treatment with CLA, but continued to increase in a 

time-dependent manner and the level remained high at the 24 hour after C L A 

treatment. 
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SC 3 h 6 h 9 h 12 h 24 h 

GAPDH (226 bp) 

1 0.92 1.01 1.26 1.26 1.22 

【 一 ‘ ― 一 : . . . . . . . ： 一 . . . ‘ ^ 3 1 TNF-a (411 bp) 

1 2.19 3.11 3.37 3.74 2.75 

I L 1

"P (
5 8 2 b

P) 

1 2.08 2.86 2.91 4.20 4.73 

• p ^ ^ T p ' ^ ‘ ‘ ” “，：、 ^ r -i 

IFN-r (353 bp) 

1 2.18 2.19 1.90 3.49 2.94 

Fig. 5.9: Expression of the differentiation-regulatory cytokine genes in the 
CLA-mix-treated murine myelomonocytic leukemia WEHI-3B JCS cells. 
WEHI-3B JCS cells (10

6

 cells) were incubated with 150 JLIM CLA-mix at 37。C for 

different time intervals (3，6, 9，12 and 24 hours) or treated with ethanol (SC) as a 

control. Total R N A were extracted by TRIZOL reagent with the method described in 

Chapter 2. The R N A were reverse transcribed and amplified by P C R using specific 

primer pairs. The number of amplification cycles was 22 for G A P D H , 28 for TNF-a 

and IL-lp and 24 for IFN-y respectively. The P C R products were then separated on an 

ethidium bromide-stained agarose gel (2%). The amount of P C R products was 

quantified by ImageQuant. The value at the bottom of each band represents the 

relative intensity after normalization with respect to G A P D H , and comparison was 

made with the corresponding solvent control. 
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5.3 Discussion 

Normally hematopoietic stem cells (HSC) are programmed to differentiate along 

restricted cell lineage pathways during blood cell development through regulation of 

certain external growth factors that maintain the balance of cell proliferation, 

differentiation, and apoptosis in the bone marrow (Tsiftsoglou et al, 2003). 

Accumulating evidence indicates that leukemia cells fail to differentiate leading to 

accumulation of immature blast cells in,the bone marrow (Warner et al., 2004). 

Therefore, differentiation therapy has become a novel approach for the treatment of 

cancer including hematological malignancies (Leszczyniecka et aL, 2001) as 

commitment of leukemia cells into differentiation pathways is accompanied by 

irreversible maturation and growth inhibition. Previous reports in our laboratory have 

documented that a subclone (JCS) of the murine myelomonocytic leukemia WEHI-3B 

cells could be induced to differentiate along the monocytic lineage by cytokines such 

as TNF-a (Mak et al, 1993; Leung et al, 1994) and IL-1 (Chan et al, 1997) and 

isoflavones such as biochanin A (Fung et al., 1997). The leukemia WEHI-3B JCS cell 

line is a good in vitro model for studying the growth and differentiation of myeloid 

leukemia cells as the WEHI-3B cells retain the capacity to undergo monocytic or 

granulocytic differentiation in response to various biological or chemical agents (Mak 

et al’，1993; Gamba-Vitalo et al., 1986). 

In this study, the differentiation-inducing activity of a mixture of C L A isomers in 

the murine myelomonocytic leukemia WEHI-3B JCS cells was demonstrated. Present 

findings showed that non-cytotoxic concentrations of CLA-mix (50-200 JLIM) could 

induce terminal differentiation ofWEHI-3B JCS cells into cells with characteristics of 

macrophages, as shown by morphological, phenotypic and functional studies. In terms 
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of morphology, CLA-mix increased the cytoplasm/nucleus ratio and vacuolation of 

WEHI-3B JCS cells. Interestingly, C L A isomers including the cis-9, trans-\\ CLA, 

the trans AO, cis-Yl C L A , and the trans-9, trans-\\ C L A had also found to induce 

morphological changes of the WEHI-3B JCS cells with characteristics of mature 

macrophages. Therefore the results suggest that all these three C L A isomers can 

induce monocytic differentiation of WEHI-3B JCS cells. In addition, flow cytometric 

analysis on the forward scatter (FSC) and side scatter (SSC) of the WEHI-3B JCS 

cells also demonstrated that the SSC was markedly increased following CLA-mix 

treatment. This further supports that the granularity of the CLA-mix-treated WEHI-3B 

JCS cells was increased as a result of cellular differentiation. In terms of phenotype 

and functions, the increased expression of macrophage differentiation antigens 

(Mac-1 and F4/80) but not the granulocyte differentiation antigen (Gr-1), in addition 

to induction of monocytic serine esterase and endocytic activities by CLA-mix are 

evidence for WEHI-3B JCS cells undergoing monocytic rather than granulocytic 

differentiation. Present findings are in line with a recent report which showed that 

various C L A isomers could induce the monocytic differentiation of the human 

promyelocytic leukemia HL-60 cells, as measured by the increased expression of the 

cell surface marker C D 14 (Yu et al,，2002). Interestingly, the differentiation-inducing 

activity of C L A isomers was also reported for cultured human preadipocytes (McNeel 

et al., 2003), however, when the mouse clonally-derived 3T3-L1 preadipocyte cell 

line was used, C L A was found to inhibit their differentiation (Brodie et al., 1999; 

Kang et al., 2003). These results suggest that the ability of C L A to modulate 

preadipocyte differentiation may depend on whether primary or cloned cell lines are 

used or there may be species differences. 

The molecular mechanisms by which CLA-mix can induce differentiation of 
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myeloid leukemia cells remain elusive. It is well known that several hematopoietic 

cytokines (such as TNF-a, IL-lp and IFN-y) are effective in inducing 

lineage-restricted myeloid leukemic cell differentiation (Olsson et al., 1996). Our 

study also showed that TNF-a, IL-1 and IFN-y genes were up-regulated in WEHI-3B 

JCS cells as early as 3 hours and their levels remained high up to 24 hours after 

exposure to CLA-mix. It is possible that the increased expression of these cytokine 

genes may be related with WEHI-3B JCS cell maturation and acquisition of 

macrophage characteristics. Similarly，the ability of C L A to increase the IL-2 and 

IFN-y cytokine gene expression was also reported in the Jurket T leukemia cell line 

(Luongo et al., 2003). Nevertheless, the underlying mechanisms for 

CLA-mix-induced monocytic differentiation of myeloid leukemia cells require further 

investigations. Recently, it has been demonstrated that activators of peroxisome 

proliferator-activated receptor y (PPARy) are protective against cancers of the colon, 

prostate, and mammary gland (Sporn et al., 2001). The PPARy is a ligand-activated 

nuclear transcription factor belonging to the steroid receptor superfamily (Chang and 

Szabo, 2000). Whereas much is known about the role of PPARy in adipocytic 

differentiation (Yu et al., 2002), its activation also leads to anti-neoplastic activity by 

inducing many cancer cell lines, including bladder cancer (Guan et al., 1999)，breast 

cancer (Mueller et al., 1998), and non-small cell lung cancer (Chang and Szabo, 

2000), to undergo differentiation and to revert their immature malignant phenotype 

back to more mature, less malignant phenotype (His et al，2002; Maggiora et al., 

2004). In fact, PPARy is highly expressed in adipose tissue, adrenal gland, colon, 

mammary gland, prostate, and macrophages (Belury, 2002; Yu et al., 2002). 

Interestingly, the induction of PPARy was correlated with the anti-proliferative effect 

of C L A treatment (Maggiora et al” 2004). Since C L A shares many functional 

similarities with ligands of PPARy (Yu et al., 2002), C L A is thought to activate the 
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responsive genes of PPARy by forming A6-desaturated products (Belury, 2002; Yu et 

a/., 2002). Many groups have also reported the involvement of PPARy in macrophage 

differentiation (Tontonoz et al,, 1998) as well as in regulating macrophage gene 

expression (Ricote et al., 2000). Nevertheless, the mechanisms of myeloid 

differentiation involving PPARy remain controversial as studies using 

PPARy-deficient stem cells showed that PPARy is not essential for macrophage 

differentiation, both in vitro and in vivo (Moore et al., 2001). In addition, it has also 

been reported that PPARy plays a role specifically in lipogenesis but not in the 

differentiation of human promyelocytic leukemia N B 4 cells (Inazawa et al, 2003). 

The discrepancy of data between different cell models suggests that the role of the 

activated PPARy in CLA-induced myeloid leukemic cell differentiation awaits further 

investigations. More studies should be done to elucidate the molecular mechanisms 

and the signaling pathways by which C L A can trigger myeloid leukemic cell 

differentiation. In conclusion, since C L A could trigger leukemic cell differentiation 

and ultimately contribute to proliferative quiescence, therefore, our findings suggest 

that C L A or its isomers might have therapeutic potentials in the differentiation therapy 

against hematologic malignancies, particularly the myeloid leukemia. 
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Conjugated linoleic acid (CLA) comprises a family of positional and geometric 

isomers of linoleic acid (LA). The major dietary sources of C L A are derived from 

ruminants, for instance, it can be found in many dairy products. The predominant 

isomer of C L A , the cis-9, trans-ll C L A (9Z, llE-CLA), can be produced directly by 

bacterial biohydrogenation in the rumen or by A9-desaturation of the vaccenic acid 

(trans-ll) in most mammalian tissues including humans. However, the yield from the 

latter process does not contribute significantly to any beneficial effect on our health. 

The second most copious isomer of C L A is the trans-10, cisA2 C L A (10E, 12Z-CLA), 

which has been identified in grilled beef as a potential anti-carcinogen (Wahle et al., 

2004). Numerous health benefits of a mixture of C L A isomers (CLA-mix) have been 

mainly attributed to the 10E, 12Z-CLA isomer. Interestingly, recent studies revealed 

that these two predominant isomers, in fact，act through different signaling pathways 

to exhibit diverse physiological and pharmacological activities, as demonstrated in a 

variety of animal models, to assuage conditions such as obesity, atherosclerosis, 

carcinogenesis, tumor formation, and to delay the onset of diabetes and enhance our 

immune system (Belury, 2002). Among all these bioactivities, the anti-tumor activities 

of C L A have received much attention in recent years. C L A has been found to 

suppress tumor growth and serve as a cytostatic or cytotoxic mediator to various 

human cancer cell lines. 

As shown in Chapter 3, CLA-mix could inhibit the proliferation of murine 

myelomonocytic leukemia WEHI-3B JCS cells in a dose- and time-dependent manner. 

Similar growth-inhibitory effect of CLA-mix was also demonstrated in other murine 

and human leukemia cell lines including Ml, HL-60, NB4, and K-562, as well as in 

the human lymphoma U-937 cells. Moreover, CLA-mix showed the most potent 

anti-proliferative activity on WEHI-3B JCS cells when compared to its parental fatty 
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acid，LA, and the four isomers being investigated. Among all the isomers tested, the 

trans-9, trans-U CLA(9E, 11E-CLA)，the 10E, 12Z-CLA and the 9Z, llE-CLA were 

found to have similar anti-proliferative activity on the leukemia WEHI-3B JCS cells. 

Interestingly, our findings showed that the all-trans C L A (9E, llE-CLA) was more 

potent than the all-cw C L A (9Z, 11Z-CLA) to inhibit the proliferation of WEHI-3B 

JCS cells. Therefore, more studies should be done to elucidate the structure-function 

relationship of different C L A isomers. Previous studies had demonstrated that the 

major effects of C L A are largely observed in mice treating with a mixture of C L A 

Isomers or the 10E，12Z-CLA but not the 9Z, llE-CLA (Pariza et al, 2001; Wahle et 

al., 2004). It is more likely that the differential effects of different C L A isomers are 

due to their different structures. For instance, since 9Z, llE-CLA and linoleic acid are 

similar in structure, it is possible that the 9Z，llE-CLA isomer might alter arachidonic 

acid metabolism so as to modulate carcinogenesis (Pariza et al., 2001; Ochoa et al., 

2004). On the other hand, the 10E，122-CLA isomer has been shown to induce 

apoptosis in a variety of tumor cell lines (Palombo et al,, 2002; Yamasaki et al” 2002; 

Oh et al., 2003; Maggiora et al, 2004; Ochoa et al, 2004; Kim et al” 2005). Our 

results also indicate that interactions might occur among individual C L A isomers as 

the anti-proliferative activity of CLA-mix is greater than each of its four isomers. 

Nevertheless, the observed anti-proliferative activity of CLA-mix was most likely to 

be due to its cytostatic but not cytotoxic effect on WEHI-3B JCS cells as assessed by 

the trypan blue exclusion assay. Moreover, our results also indicated that CLA-mix 

exhibited minimal cytotoxic effect on normal cells such as the murine peritoneal 

macrophages. 

In order to elucidate the mechanisms by which C L A and its isomers could trigger 

their anti-proliferative activity on the WEHI-3B JCS cells, their effects on the cell 
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cycle, apoptosis and differentiation of WEHI-3B JCS cells were investigated. Our 

findings revealed that CLA-mix, the 10E，12Z-CLA, and the 9E，IIE-CLA could 

trigger cell cycle arrest at the G
0
 / Gi phase. To date, this is the first report 

demonstrated the “extraordinarily” anti-proliferative activity of the 9E，IIE-CLA 

isomer. Therefore, it was chosen for further mechanistic investigations. Using the 

technique of RT-PCR, both CLA-mix and the 9E，IIE-CLA were found to modulate 

the expression of several cell cycle-regulatory genes. The m R N A levels of the p53 

gene were increased following exposure to CLA-mix and the 9E, IIE-CLA. In 

addition, both CLA-mix and the 9E, 11E-CLA up-regulated the gene expression of the 

cyclin-dependent kinase inhibitor (CKI) p2lCIP1/WAFI, while the expression of cyclin A 

gene was down-regulated. Moreover, CLA-mix also increased the m R N A levels of 

another CKI, the p27 , which is known to inhibit cell cycle progression from Gi to 

S phase. Interestingly, we are the first to show that the 9E, IIE-CLA isomer could 

activate the Gi checkpoint of the leukemia cells by modulating cell cycle-regulatory 

genes including p53，p21CIP1/WAF1, and cyclin A. As both CLA-mix and the 9E, 

IIE-CLA had been found to induce the gene expressions of p53 and p21CIPI/WAFI, 

this suggests that C L A induces Go / Gj phase cell cycle arrest in a p53-dependent 

manner. 

Since C L A was found to exhibit inhibitory effects on the leukemia WEHI-3B 

JCS cell growth and cell cycle transition at the Gi phase, the suppressive effect of 

C L A on the tumorigenicity of the WEHI-3B JCS cells in syngeneic BALB/c mice was 

also examined. Our results showed that pretreatment of WEHI-3B JCS cells in vitro 

with either the CLA-mix or the 9E, IIE-CLA isomer could significantly reduce the in 

vivo growth of the leukemia cells in a dose-dependent manner. Nonetheless, the 

preponderance of the anti-tumor researches of C L A is the in vitro studies. Therefore, 
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more studies should be carried out using in vivo tumor models to demonstrate the 

anti-tumor activity of C L A , which is a necessary step before putting C L A into clinical 

trials. 

The induction of cell cycle arrest could be one of the possible mechanisms 

leading to the observed anti-proliferative activity of C L A on myeloid leukemia cells. 

Other possible mechanisms include the induction of apoptosis and differentiation of 

myeloid leukemia cells. Our results showed that CLA-mix and two of the C L A 

isomers, 10E, 12Z-CLA and 9E, 11E-CLA, were able to trigger apoptosis in 

WEHI-3B JCS cells while the other two C L A isomers, 9Z, 11E-CLA and 9Z, 

11Z-CLA, failed to do so. In fact, this is the first report documented that the 9E, 

11E-CLA isomer exerts the most potent pro-apoptotic activity on WEHI-3B JCS cells 

when compared with other C L A isomers being investigated. Our findings also showed 

that both CLA-mix and the 9E
?
 11E-CLA isomer could induce mitochondrial 

membrane depolarization in the WEHI-3B JCS cells, suggesting that the intrinsic 

pathway may be involved in the CLA-induced apoptosis of the WEHI-3B JCS cells. 

From the pro-apoptotic gene expression studies of CLA-mix- or 9E， 

l lE-CLA-treated WEHI-3B JCS cells, it was found that the anti-apoptotic Bcl-xL gene 

was down-regulated while the pro-apoptotic Bak and Bad genes were up-regulated. 

Therefore, our results suggest that C L A triggers apoptosis of WEHI-3B JCS cells 

through transcriptional activation of the pro-apoptotic genes of the Bcl-2 family. 

Moreover, we had also examined the translational regulation of certain 

apoptosis-regulated proteins by CLA. Our results showed that the protein expression 

of the death receptor Fas and its ligand, Fas-L, were both up-regulated in the 

CLA-mix- and 9E, llE-CLA-treated WEHI-3B JCS cells. These present findings 
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suggest that apoptosis of the WEHI-3B JCS cells triggered by CLA-mix and the 9E
? 

11E-CLA isomer signals through both the “intrinsic” and "extrinsic" pathways. This 

was further confirmed by studies on the activities of caspases-3, -8 and -9. It was 

found that both CLA-mix and the 9E, IlE-CLA isomer increased significantly the 

activities of "initiator" caspases-8 and -9 as well as "effector" caspase-3 in the 

WEHI-3B JCS cells. 

To sum up, a proposed mechanism by which CLA-mix and the 9E, 11E-CLA 

might exert their pro-apoptotic activity on the WEHI-3B JCS cells is described as 

follows. During the "intrinsic" pathway, they down-regulate the anti-apoptotic genes 

of the Bcl-2 family, such as BCI-
X
L, and up-regulate the pro-apoptotic genes, including 

Bak and Bad, to form mitochondrial membrane permeability transition (MPT) which 

are responsible for the loss of mitochondrial potential (A^m) and subsequent 

mitochondrial release of cytochrome c (cyt c) into the cytosol. Nevertheless, whether 

CLA-mix and the 9E, 11E-CLA isomer can induce the translocation of cyt. from 

mitochondria into cytosol awaits further investigation. Cyt c binds to an adaptor 

protein, Apaf-1, and recruits procaspase-9 to form an apoptosome. This leads to 

autocatalytic activation of procaspase-9 to caspase-9. Activated caspase-9 is an 

"initiator" caspase that cleaves and activates the effector caspases such as caspase-3. 

Moreover, as discussed before, CLA-mix and the 9E, 11E-CLA isomer also 

up-regulate the gene expression of p53 and p21, which also have pro-apoptotic 

activities and might be responsible for some of the apoptotic events in the “intrinsic’， 

pathway. 

In addition, the results also demonstrated that CLA-mix and the 9E, 11E-CLA 

isomer can trigger apoptosis through the "extrinsic" pathway. When Fas is activated, 
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the adaptor molecule F A D D is recruited and binds to Fas, which is responsible for 

recruiting procaspase-8 by its D E D . As a result, the procaspase-8 is activated to 

caspase-8 which is also an "initiator" caspase and can cleave and activate caspase-3. 

In addition to these two apoptotic pathways, CLA-mix and the 9E, 11 E-CLA 

might also trigger apoptosis through an oxidative stress mediated by ROS-dependent 

cell death pathway. In our study, we found that CLA-mix and the 9E, 11 E-CLA 

isomer enhanced the superoxide anion (0
2
") production in the WEHI-3B JCS cells. 

Interestingly, prior treatment of WEHI-3B JCS cells with antioxidants such as S O D or 

N A C significantly suppressed the production of O2" and partly blocked apoptosis in 

both CLA-mix-treated and 9E, llE-CLA-treated WEHI-3B JCS cells. As a result, it 

could be speculated that over-production of R O S in CLA-treated WEHI-3B JCS cells 

may result in detrimental damages to the cell such as lipid peroxidation, D N A adduct 

formation, protein oxidation, and enzyme inactivation, and all these events can 

ultimately lead to the death of the leukemia cells. However, it is still uncertain 

whether the loss of membrane integrity in CLA-induced apoptosis of leukemia cells is 

a direct result of M P T formed by pro-apoptotic Bcl-2 family members or reactions of 

reactive oxygen species such as the O2" with membrane lipids. Nevertheless, whether 

CLA-mix and the 9E, 11 E-CLA isomer can trigger apoptosis through other apoptotic 

pathways such as the endoplasmic reticulum stress-induced apoptotic pathway and 

caspase-independent apoptotic pathway is an intriguing aspect that is worthy of future 

investigation (Vermeulen et al., 2005). 

Apart from the anti-proliferative and apoptosis-inducing activities of CLA, we 

also demonstrated that C L A isomers could exhibit differentiation-inducing activity in 

the murine myelomonocytic leukemia WEHI-3B JCS cells. It has been reported that 
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the WEHI-3B JCS cells can retain the capacity to undergo monocytic or granulocytic 

differentiation in response to certain signals (Mak et ah, 1993; Leung et al, 1994; 

Chan et al., 1997; Fung et aL, 1997). Present findings showed that CLA-mix and its 

isomers could induce terminal differentiation of WEHI-3B JCS cells into cells with 

characteristics of mature macrophages, as judged by a number of morphological, 

phenotypic and functional criteria. 

In terms of morphology, CLA-mix increased the cytoplasm/nucleus ratio and 

vacuolation of WEHI-3B JCS cells. C L A isomers including the 9Z, llE-CLA, the 

10E, 12Z-CLA, and the 9E, llE-CLA had also found to induce morphological 

changes of the WEHI-3B JCS cells in a dose-dependent manner, and the induced cells 

had the characteristics of mature macrophages. W e therefore believe that all these 

C L A isomers can induce monocytic differentiation of WEHI-3B JCS cells. In addition, 

flow cytometric analysis on the forward scatter (FSC) and side scatter (SSC) of the 

WEHI-3B JCS cells also demonstrated that the SSC was markedly increased 

following CLA-mix administration, indicating that an increase in granularity in 

leukemia cell is associated with cellular differentiation. In terms of phenotype and 

functions, the increase in expression of macrophage differentiation antigens, Mac-1 

and F4/80, but not the granulocyte differentiation antigen, Gr-1, as well as the 

induction of monocytic serine esterase (MSE) and endocytic activities by CLA-mix 

are evidence to support that CLA-mix induces monocytic rather than granulocytic 

differentiation in WEHI-3B JCS cells. 

The molecular mechanisms by which CLA-mix can induce differentiation of 

myeloid leukemia cells remain largely elusive. It is well known that several 

hematopoietic cytokines, such as TNF-a, IL-1 and IFN-y, are effective in inducing 
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lineage-restricted myeloid leukemia cell differentiation (Olsson et al.，1996). Our 

findings also showed that the expression of TNF-a, IL-ip and IFN-y genes was 

upregulated in WEHI-3B JCS cells upon exposure to CLA-mix. It is possible that the 

increased expression of these cytokine genes may be related with WEHI-3B JCS cell 

maturation and acquisition of macrophage characteristics. Nevertheless, the 

underlying mechanisms for CLA-mix-induced monocytic differentiation of myeloid 

leukemia cells await further investigations. 

In conclusion, since C L A and some of the C L A isomers can inhibit the growth of 

myeloid leukemia WEHI-3B JCS cells in vitro, possibly through triggering Go / Gi 

phase cell cycle arrest, inducing apoptosis and leukemic cell differentiation, C L A and 

its isomers might have therapeutic potentials against the hematologic malignancies, 

particularly the myeloid leukemia. Interestingly, C L A shares many functional 

similarities with ligands of PPARy (Yu et al., 2002), and the anti-proliferative activity 

of C L A treatment was correlated with the induction of PPARy (Maggiora et al., 2004). 

Moreover, Miglietta and coworkers (2005) have recently reported that C L A induces 

apoptosis through reduction of the E R K / M A P K signaling (Miglietta et al., 2005). 

Nonetheless, the signaling pathways by which C L A exerts anti-tumor activities on 

myeloid leukemia cells have not been fully elucidated. There are still many gaps in 

our knowledge on the action mechanisms by which C L A inhibits the growth of 

myeloid leukemia cells. 

Despite all the promising findings, definitive evidence on the safety and efficacy 

of C L A as a "drug" in the treatment of myeloid leukemia in humans are still lacking. 

It is obvious that more in-depth studies are required to elucidate the anti-tumor 

activity of C L A in vivo. By unraveling the molecular mechanisms and signaling 
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pathways by which C L A can modulate the proliferation, apoptosis, and differentiation 

of myeloid leukemia cells, it is hoped that novel treatment for some forms of myeloid 

leukemia can be developed with higher efficacy and minimal toxicity in the near 

future. 
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