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ABSTRACT OF THE THESIS

Forced Response Analysis
of Coupled Cantilever Beams

Under Perturbations
by

James Anthony Mullinix
Master of Science in Applied Mathematics with a Concentration in Dynamical Systems

San Diego State University, 2015

Coupled rotating cantilever beams are ubiquitous in technology. From simple fans to
turbine engines and electricity producing windmills, they can be found nearly everywhere.
This study aims to characterize possible failure points when considering multiple cantilever
beam systems coupled around a central hub which is rotating. The energy equations include
effects from gyroscopic as well as Coriolis effects and are fully developed from first physical
principles and variational calculus. The study sweeps over industrially practical rotation
speeds and tests periodically perturbed rotations for harmonic resonances of natural modes.
An application, written in C++, is designed to assemble finite element matrices with
consideration of various spatial orientations, node connectivity, external forcing and boundary
conditions for generic structures. A second set of programs, written in MatLab, performs
multiple analysis routines including static modal analysis as well as forced response analysis
via forward time integration. All routines are designed for flexibility and maintainability
while keeping efficiency at the core.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND
The study of rotating cantilever beams has been around since the early days of

aviation. For example, the fundamental study in this area was published in 1922 by Southwell
and Gough, Ref. [22]. The dynamics of airscrew blades were studied and an error calculation
was provided to bound the error of the approximation. The work is important because it
acknowledged that rotation speed affects the stiffness of a beam and then studied how the
rotation speed changed the frequencies of the natural modes of vibration. The stiffening of the
beam due to rotation increases the natural frequencies and this work provided an upper bound
to the correction of the frequencies based upon rotation speed. In 1973, Belytschko and Hsieh
studied the efficiency of convected coordinates on finite element approximation techniques
Ref [2]. Hoa studied finite element approximation to blades with tip mass and varied setting
angle in 1979, Ref. [12]. In 1980, Hale and Meirovitch studied a method of finite element
analysis in which fewer degrees of freedom can be used as the system is reduced to
substructures, Ref [11]. Christensen and Lee studied nonlinear finite element analysis and
time integration of rigid bodies undergoing large translations and rotations Ref. [5]. In 1988,
Yokoyama explored the vibration of rotating cantilever beams using the full Timoshenko
beam theory approach to the finite element model in Ref. [27]. Lee and Kuo studied the
effects of twist, taper, setting angle and hub connection elasticity on the natural frequencies of
the rotating cantilever beam in their 1992 work Ref. [16]. The work by Yoo, Ryan and Scott
in 1995 greatly improved the accuracy of the numerical results for elastic beams by creating a
transformation to a stretch coordinate frame for one of the displacement directions and
coupling the stretch to the in plane and out of plane displacements, Ref. [29]. In 1998, Yoo
and Shin studied the effects of gyroscopic coupling on rotating beams in Ref. [30]. Yoo,
Kwak and Chung as well as Yoo, Park and Park studied pre-twisted beams using the stretch
coordinate frame transformation in 2001, Refs. [28], [31]. The 2008 Ozgumus and Kaya
study investigated doubly tapered beams in Ref. [19] and the 2011 study by Zhu explored
pretwisted rotating Timoshenko beams using finite element analysis in Ref. [32]. As recently
as 2013, Kim, Yoo and Chung have studied rotating cantilever beams in Ref. [13]. In short,
although rotating beams have been studied for a century, there is ongoing work in the field to
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improve the accuracy and reliability of finite element analysis techniques centered on
accounting for more complex effects and geometries of the beams.

1.2 ORGANIZATION
This study is organized as follows. First, the equations of motion are developed from

first principles of physics in Chapter 2. More specifically, Section 2.1 develops the energy
equations, while Section 2.2 uses variational approximation to develop the equations of
motion and Section 2.3 describes the discretization process.

Chapter 3 provides numerical results and analyzes the results. Section 3.1 validates the
model against previous results and Section 3.2 develops the experimental design. Section 3.3
provides the experimental results and analysis.

Finally, Chapter 4 summarizes the work and describes what challenges lie ahead.
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CHAPTER 2

EQUATIONS OF MOTION

The equations of motion of the rotating cantilever beam system are developed through
the principles of variational approximation as covered in Appendix A. We begin by describing
the energy equations of the system, then apply variational approximation to formulate the
approximating form and apply the discretizing interpolation for a single element two-node
system. Finally, the system is expanded to N -dimensional form, and the system matrices are
formulated.

2.1 ENERGY EQUATIONS

The energy equations consist of kinetic energy, denoted by T , and potential energy,
denoted by V . These are precisely the quantities discussed in Appendix A. In this case, the
beam is discretized as a coupled mass-spring system. The coupling is determined by the
equations of motion resulting from integration, simplification and interpolation. The system
that shall be considered is the system discussed in Ref. [6]. In this system, it is assumed that
the beam is long compared to its height and thickness, so that shear deformations may be
neglected.

The beam is affixed to a central hub which is rotated at a frequency Ω. The direction
which is in-plane with the rotations and along the length of the beam is referred herein as the
axial direction, labeled u. The direction which is in-plane with rotations and orthogonal to the
u direction is referred to as the chord-wise direction, and is labeled v. The out-of-plane
direction, which is orthogonal to both u and v, is referred to as the flap-wise direction and is
labeled w (see Fig. 2.1).

2.1.1 Stretch Coordinate Frame
Any displacement will cause elongation or shortening of the beam, which shall be

named stretch and assigned the variable s. The stretch is affected by all displacement
coordinates, u, v, w. Consequently, accounting for stretch from displacements in the Cartesian
reference frame becomes unwieldy to maintain. In order to remedy this, it is necessary to
create a coordinate relation between the displacements and the stretch. This section follows
closely to the work done in Ref. [17].
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Figure 2.1. Cantilever beam with rotation about a central hub. J. CHUNG AND H. H.
YOO, Dynamic analysis of a rotating cantilever beam by using the finite element method,
Journal of Sound and Vibration, 249 (2002), pp. 147–164.

Consider the diagram given by Fig. 2.2. In this diagram, the u direction has been
replaced by a dummy variable η in order to prevent confusion during the derivation of the
stretch term, s.

Figure 2.2. Stretch coordinate relation diagram. M. A. LIMA, Rotating cantilever beams:
Finite element modeling and vibration analysis, Master’s thesis, University of Porto, Porto,
Portugal, 2012
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From Pythagoras, we have the length of the hypotenuse of the infinitesimal displacements
dη, dv, dw given as

dS =
√

(dη)2 + (dv)2 + (dw)2, (2.1)

and integrating both sides of Eq. (2.1) yields

S =

∫ x+u

0

√
(dη)2 + (dv)2 + (dw)2, (2.2)

which is known as the arclength integral in R3. Notice that the integration is done with respect
to η, and varies over 0 to x+ u as in the diagram. Note: the arclength S is not equivalent to
stretch s. This integral is complicated to compute in this form, so a change of variables is
introduced. Let

φ = η − u (2.3)

so that
dη = dφ+ du. (2.4)

The integration limits are converted by considering that at the center of the rotation, the
displacement will be zero in all directions, so that stretch is zero. For the upper limit, consider
that η = u+ x so that φ = x.

Substituting Eq. (2.4) into Eq. (2.1) yields

dS =
√

(dφ+ du)2 + (dv)2 + (dw)2. (2.5)

By the chain rule, this can be rewritten as

dS =

[(
dφ+

∂u

∂φ
dφ
)2

+

(
∂v

∂φ
dφ
)2

+

(
∂w

∂φ
dφ
)2
]1/2

. (2.6)

Factoring out dφ, replacing the integration limits, and substitution into Eq. (2.2) yields

S =

∫ x

0

[(
1 +

∂u

∂φ

)2

+

(
∂v

∂φ

)2

+

(
∂w

∂φ

)2
]1/2

dφ. (2.7)

The first term in Eq. (2.7) is expanded as(
1 +

∂u

∂φ

)2

= 1 + 2
∂u

∂φ
+

(
∂u

∂φ

)2

, (2.8)

and considering the infinitesimals

1 + 2
∂u

∂φ
�
(
∂u

∂φ

)2

, (2.9)
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we approximate Eq. (2.8) as (
1 +

∂u

∂φ

)2

≈ 1 + 2
∂u

∂φ
. (2.10)

Let
f(y) = (1 + y)1/2, (2.11)

with McLaurin expansion

f(y) = f(0) + f ′(0)y +
1

2
f ′′(0)y2 + · · ·

= (1 + 0)1/2 +
1

2
(1 + 0)−1/2y − 1

4
(1 + 0)−3/2y2 + · · ·

= 1 +
y

2
− y2

4
+ · · · , (2.12)

and assuming small variations so that y2 � y, we approximate f near 0 by

f(y) ≈ 1 +
y

2
. (2.13)

Plugging Eq. (2.10) in to Eq. (2.7) yields

S =

∫ x

0

[
1 + 2

∂u

∂φ
+

(
∂v

∂φ

)2

+

(
∂w

∂φ

)2
]1/2

dφ. (2.14)

Observe that this can be rewritten as

S =

∫ x

0

[
1 +

{
2
∂u

∂φ
+

(
∂v

∂φ

)2

+

(
∂w

∂φ

)2
}]1/2

dφ, (2.15)

and for

y = 2
∂u

∂φ
+

(
∂v

∂φ

)2

+

(
∂w

∂φ

)2

, (2.16)

the approximation in Eq. (2.13) may be applied to Eq. (2.15) so that arclength may be written
as

S =

∫ x

0

1 +
1

2

[
2
∂u

∂φ
+

(
∂v

∂φ

)2

+

(
∂w

∂φ

)2
]

dφ. (2.17)

Distribution of the constant 1/2 and integration over the first two terms yields

S = x+ u+
1

2

∫ x

0

(
∂v

∂φ

)2

dφ+
1

2

∫ x

0

(
∂w

∂φ

)2

dφ. (2.18)

We now define the stretch term s in relation to the arclength S by

S = x+ s, (2.19)
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so that stretch can be written as

s = u+
1

2

∫ x

0

(
∂v

∂φ

)2

dφ+
1

2

∫ x

0

(
∂w

∂φ

)2

dφ. (2.20)

For ease of notation, let

hv ≡
1

2

∫ x

0

(
∂v

∂φ

)2

dφ, (2.21)

hw ≡ 1

2

∫ x

0

(
∂w

∂φ

)2

dφ, (2.22)

so that
s = u+ hv + hw. (2.23)

The temporal rate of change of stretch can thus be expressed as

ṡ = u̇+ ḣv + ḣw, (2.24)

where the chain rule yields

ḣv =

∫ x

0

∂v

∂φ

∂v̇

∂η
dφ, (2.25)

ḣw =

∫ x

0

∂w

∂φ

∂ẇ

∂η
dφ. (2.26)

With the book-keeping surrounding stretch completed, it is now possible to obtain the
equations of motion. Note, however, that there were many assumptions that will require the
numerics to include a sufficiently fine grid in both time and space such that the assumptions
are valid. A discussion of what “sufficiently fine” pertains to is given in Section 2.3.

2.1.2 Kinetic Energy
The system’s kinetic energy is given by the classical scalar kinetic energy formulation

T =
1

2
m~v2. (2.27)

The generalized integral representation of this equation is given by

T =
1

2

∫ L

0

ρA~v · ~v dx, (2.28)

where L is the length of the cantilever beam, ρ and A are the point density and cross section
area, respectively. The units for ρ are kg

m3 , and A is m2, and since Eq. (2.28) integrates upon a
singular axis, we recover mass along a single axis by the product ρA at each point along the
beam.
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If density and cross section are uniform along the entire beam, Eq. (2.28) can be
written as

T =
1

2
ρA

∫ L

0

~v · ~v dx, (2.29)

where, for each point on the beam, Eq. (2.29) is precisely the same as Eq. (2.27). From the
rotation, and deformation corresponding to bending, the velocity at the point P is

~vp = (u̇− Ωv)i + [v̇ + Ω(a+ x+ u)]j + ẇk. (2.30)

Rotation induces angular momentum, and allowing for stretch along the axial direction yields
that the momentum from the rotational speed Ω is calculated by

L = Ω · (a+ x+ u)Aρ, (2.31)

where (a+ x) is the point position along the axial direction when the system is at rest and u is
the displacement along the axial direction when the system is rotating at frequency Ω.

The corresponding direction of rotation is the same direction as v, so that the
chord-wise component of velocity is increased by this momentum. Assuming conserved
momentum, a change in the chord-wise direction must result in a change in the axial
direction. Then an increase in momentum in the chord-wise direction must result in a
decrease in momentum in the axial direction, so that the −Ωv term in Eq. (2.30) is required.
The flap-wise direction is unaffected, and it is not present in Eq. (2.31). The assumption of
conserved momentum is valid since the system achieves stability; otherwise, the momentum
would grow rapidly and the beam would break.

Plugging Eq. (2.30) into Eq. (2.29) finally yields the following expression for the
kinetic energy:

T =
1

2
ρA

∫ L

0

〈(u̇− Ωv)i + [v̇ + Ω(a+ x+ u)]j + ẇk〉2 dx, (2.32)

=
1

2
ρA

∫ L

0

(u̇− Ωv)2 + [v̇ + Ω(a+ x+ u)]2 + ẇ2 dx. (2.33)

2.1.3 Potential Energy
The potential energy of the system is taken to be strain energy; the effects of gravity

are considered small relative to the other forces. This is because when deformed, the beam
will try to restore itself to its original shape; the restoring force can be thought of as stored
energy, and typically this is called strain energy. This assumption is taken because of the
properties of the material that shall be considered, typically metals such as steel and
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aluminum, which do not permanently deform but restore to their original shape after
deformation.

2.1.3.1 STRAIN ENERGY
We start by incorporating the results from Appendix B. By considering an applied

force to the beam and applying Eq. (B.23) to Eq. (B.26), we rewrite the total strain energy as

U =

∫ L

0

∫
A

1

2E

(
F

A

)2

dA dx, (2.34)

where F is the applied force and E is the material constant known as Young’s modulus, then
integrate over the area A to find

U =

∫ L

0

F 2

2EA
dx. (2.35)

The axial stress resultant from stretch can be expressed by considering the stress-strain
relationship in Eq. (B.25), and applying the strain definition from Eq. (B.10), we write

σ = E
∂s

∂x
(2.36)

thus

Ustretch =

∫ L

0

EA

2

(
∂s

∂x

)2

dx. (2.37)

The strain induced by bending is given by

ε = −y
ρ
, (2.38)

where y is the distance from the neutral plane. For axisymmetric geometries, maximum strain
occurs at the boundary (i.e. for a cylinder, the radius). ρ is given as the radius of curvature;
that is, the radius of the osculating circle that best fits the curvature of the bend. The radius of
curvature in 2D orthogonal (or cartesian) coordinates is expressed as the arclength of the path
traveling along the rod. The arclength integral is computed to be

ρ =

∣∣∣∣(1 + y′2)3/2

y′′

∣∣∣∣ . (2.39)

Here, y′ is the derivative of y with respect to x. We now assume that the bending is small so
that y′ � 1 and approximate the radius of curvature to be

ρ =

(
d2y

dx2

)−1

. (2.40)

This assumption is valid for the metallic alloys we are considering as a result of material
properties. Additionally, we are in a coordinate frame in which we will consider the directions
u, v, w with respect to x.
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Substituting Eq. (2.40) into Eq. (2.38), and adjusting into the flap-wise coordinate
frame yields

ε = −y
(
∂2v

∂x2

)
, (2.41)

and using the stress-strain relationship given in Eq. (B.25), we find

σ = −Ey
(
∂2v

∂x2

)
. (2.42)

The bending moment, M , is defined to be

M = −
∫
A

yσ dA =

∫
A

Ey2

(
∂2v

∂x2

)
dA. (2.43)

For each subsection along x, both E and ∂2v
∂x2 are considered constant with respect to the area,

and we write the integral as

M = E

(
∂2v

∂x2

)∫
A

y2 dA. (2.44)

The quantity resulting from the area integral is known as the moment of inertia, and in this
case it is the second moment about z, written as

Izz =

∫
A

y2 dA. (2.45)

With this simplification, we write the bending moment as

Mz = EIzz

(
∂2v

∂x2

)
. (2.46)

Upon substitution for ∂2v
∂x2 , we may rewrite Eq. (2.42) as

σ =
Mzy

Izz
. (2.47)

Plugging this stress into the strain integral from Eq. (B.26) we have

Ubending =

∫ L

0

∫
A

1

2

σ2

E
dA dx =

∫ L

0

∫
A

1

2E

(
Mzy

Izz

)2

dA dx. (2.48)

Distributing the power, we use the principle from Eq. (2.44) to pull out the terms not
involving y, and integrating over the cross-section area cancels one moment of inertia term
Izz, which yields

Ubending =

∫ L

0

M2
z

2EIzz
dx, (2.49)

and substituting for Mz yields

Ubending =

∫ L

0

EIzz
2

(
∂2v

∂x2

)2

dx. (2.50)
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This term holds for bending in two directions, flap-wise (v) and chord-wise (w). In the
case of chord-wise bending, the bending moment is written as My, the moment of inertia is
Iyy, and the inverse radius of curvature is given as ∂2w

∂x2 . Otherwise, the formulation is
precisely the same.

Finally, the full strain energy equation is a combination of the above discussed terms,
given as

U =

∫ L

0

E

2

[
Izz

(
∂2v

∂x2

)2

+ Iyy

(
∂2w

∂x2

)2

+ A

(
∂s

∂x

)2
]

dx. (2.51)

2.2 APPLYING VARIATIONAL APPROXIMATION
Now that the kinetic and potential energy equations have been determined, the

principles of variational approximation may be used to approximate the equations of motion.
We begin by writing the Lagrangian of the system, then rearranging the system by way of
integration by parts to develop the Euler-Lagrange equations for the system. The
non-vanishing terms that are not included in the Euler-Lagrange formulation are used to
formulate approximation functions which both satisfy the boundary conditions and vanish as
required to permit the use of variational approximation. Additionally, the properties of the
physical system are considered when choosing the class of test functions which might be
appropriate.

2.2.1 Developing the Euler-Lagrange Equations
The Lagrangian is given by

L = T − V = T − U. (2.52)

Applying variations as in Appendix A, we have the functional

J =

∫ t1

t0

L dt (2.53)

to be minimized as

δJ = δ

∫ t1

t0

L dt. (2.54)

By the linearity of δ we may move the variation inside the integral as

δJ =

∫ t1

t0

δL dt =

∫ t1

t0

δ(T − U) dt =

∫ t1

t0

δT − δU dt. (2.55)

For T and U , each has a spatial integral. We define the subfunctions T̂ and Û as

T =

∫ L

0

T̂ dx, (2.56)

U =

∫ L

0

Û dx, (2.57)
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and write

δJ =

∫ t1

t0

∫ L

0

δT̂ − δÛ dx dt. (2.58)

The chain rule for the variational operator requires that each independent variable of the
function under variation is considered. For the kinetic energy, we have that

T̂ = T̂ (u, u̇, v, v̇, w, ẇ), (2.59)

which yields

δT̂ =
∑
pi

∂T̂

∂pi
δpi +

∂T̂

∂ṗi
δṗi, pi ∈ {u, v, w}. (2.60)

Note that there explicitly is not a function w in T̂ , but including this term for ease of notation
is harmless since ∂T̂

∂w
= 0. For the potential energy function, we have that

Û = Û(sx, vxx, wxx), (2.61)

which yields

δÛ =
∑
qj

∂Û

∂qj
δqj, qj ∈ {sx, vxx, wxx}. (2.62)

In order to properly formulate the Lagrangian of the system, we must transform these
coordinates so that terms are given in δs, δv, δw. Integration by parts shall be employed in
various ways in order to derive the Lagrangian in this form.

We first introduce a tool to transform products by way of integration by parts. The
assumptions are strict and specific, but are well suited for problems in this domain, since they
always apply to cantilever beams.
Lemma 2.1. Let f be an integrable function in the domain [0, L] and define F =

∫
f(x) dx

on [0, L]. If F (0) = f(L) = 0, then given the integrable function g,

I =

∫ L

0

(∫ x

0

g(ξ) dξ
)
f(x) dx =

∫ L

0

(∫ x

L

f(ξ) dξ
)
g(x) dx. (2.63)

Proof. We perform integration by parts as follows. Let

α =

∫ x

0

g(ξ) dξ.

Then
dα = g(x) dx

by the Fundamental Theorem of Calculus. Let

dβ = f(x) dx.
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Then
β = F (x).

Applying the integration by parts formula, we have

I =
∫ x

0
g(ξ) dξF (x)

∣∣L
0
−
∫ L

0
F (x)g(x) dx

=
∫ L

0
g(x) dxF (L)−

∫ L
0
F (x)g(x) dx (since F (0) = 0)

=
∫ L

0
F (L)g(x) dx−

∫ L
0
F (x)g(x) dx (since F (L) is constant)

=
∫ L

0
[F (L)− F (x)]g(x) dx (by linearity)

=
∫ L

0

(∫ x
L
f(ξ) dξ

)
g(x) dx (by definition of F )

Since time t and space x are independent of each other, the iterated integrals may be
switched, and we may write the variation on T̂ as∫ t1

t0

∫ L

0

δT̂ dx dt =

∫ L

0

∫ t1

t0

δT̂ dt dx. (2.64)

The term for qi = u has special properties and we shall consider those properties later; we first
analyze qi ∈ {v, w}. The q̇i term is integrated by using integration by parts. This is
accomplished by using the time integral; the spatial integral shall be excluded for brevity.
First, write out the full variation on the kinetic energy:∫ t1

t0

δT̂ (q̇i, qi) dt =

∫ t1

t0

∂T̂

∂q̇i
δq̇i dt+

∫ t1

t0

∂T̂

∂qi
δqi dt. (2.65)

Then, consider the first integral on the right hand side, and let

α =
∂T̂

∂q̇i
, (2.66)

then

dα =
d
dt

(
∂T̂

∂q̇i

)
dt. (2.67)

Next, let
dβ = δq̇i dt, (2.68)

then
β =

∫
d
dt

(δqi) dt = δqi. (2.69)

Finally, we may write the first integral as∫ t1

t0

∂T̂

∂q̇i
δq̇i dt =

∂T̂

∂q̇i
δqi

∣∣∣∣∣
t1

t0

−
∫ t1

t0

d
dt

(
∂T̂

∂q̇i

)
δqi dt. (2.70)
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The variational approximation requires that

∂T̂

∂q̇i
δqi

∣∣∣∣∣
t1

t0

= 0, ∀i, (2.71)

thus the first integral is given by∫ t1

t0

∂T̂

∂q̇i
δq̇i dt = −

∫ t1

t0

d
dt

(
∂T̂

∂q̇i

)
δqi dt. (2.72)

Substitution of Eq. (2.72) into Eq. (2.65) yields∫ t1

t0

δT̂ (q̇i, qi) dt =

∫ t1

t0

{
− d

dt

[
∂T̂

∂q̇i

]
+
∂T̂

∂qi

}
δqi dt. (2.73)

We now reintroduce the spatial integral and switch the order of integration so that T̂ and Û are
integrating in the same order, which yields∫ t1

t0

∫ L

0

δT̂ (q̇i, qi) dx dt =

∫ t1

t0

∫ L

0

{
− d

dt

[
∂T̂

∂q̇i

]
+
∂T̂

∂qi

}
δqi dx dt. (2.74)

We now continue the process for strain energy. The strain energy U yields differing
variation fields which must be converted to be in the qi form. The dynamic expressions in U
are given in Eq. (2.51) as vxx, wxx, and sx. The generalized coordinates are qxxi

and qxi
,

where the subscript x represents the derivative with respect to x and the subscript i represents
the i-th direction.

The chain rule applied to the strain term U is given by

δU(qxxi
, qxi

) =
∂U

∂qxxi

δqxxi
+
∂U

∂qxi

δqxi
. (2.75)

Once again, we aim to modify this expression so that the terms on the right are given as
variations of qi. The full variation of the strain energy is given as∫ t1

t0

δU(qxxi
, qxi

) dt =

∫ t1

t0

∂U

∂qxxi

δqxxi
dt+

∫ t1

t0

∂U

∂qxi

δqxi
dt. (2.76)

We now rewrite U as

U =

∫ L

0

Û dx, (2.77)

so that

δU = δ

∫ L

0

Û dx =

∫ L

0

δÛ dx. (2.78)
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The dynamic components of U are the same as that of Û , so the chain rule applies in the same
way and the full variation applied to this new expression is given as∫ t1

t0

∫ L

0

δÛ(qxxi
, qxi

) dx dt =

∫ t1

t0

∫ L

0

∂Û

∂qxxi

δqxxi
dx dt+

∫ t1

t0

∫ L

0

∂Û

∂qxi

δqxi
dx dt. (2.79)

Following the same form, we integrate by parts. First, consider the first integral on the right
side. For brevity, we shall not write the time integral, and focus on the spatial integral. As
before, let

α ≡ ∂Û

∂qxxi

, (2.80)

then

dα =
d

dx

(
∂Û

∂qxxi

)
dx. (2.81)

Let
dβ ≡ δqxxi

dx, (2.82)

then
β =

∫
d

dx
δqxi

dx = δqxi
. (2.83)

Applying the integration by parts formula yields

∫ L

0

∂Û

∂qxxi

δqxxi
dx =

∂Û

∂qxxi

δqxi

∣∣∣∣∣
L

0

−
∫ L

0

d
dx

(
∂Û

∂qxxi

)
δqxi

dx. (2.84)

In this equation, the first expression will not necessarily vanish. This provides the means for
ensuring the approximating functions will satisfy the physical boundary conditions.
Furthermore, the second term is still not in proper form, as the variation is acting on qxi

, not
qi. Thus, we must integrate the second term by parts. Let

α ≡ d
dx

(
∂Û

∂qxxi

)
, (2.85)

then

dα =
d2

dx2

(
∂Û

∂qxxi

)
dx. (2.86)

Let
dβ ≡ δqxi

dx, (2.87)

then
β =

∫
d

dx
δqi dx = δqi. (2.88)
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Applying the integration by parts formula yields∫ L

0

d
dx

(
∂Û

∂qxxi

)
δqxi

dx =
d

dx

(
∂Û

∂qxxi

)
δqi

∣∣∣∣∣
L

0

−
∫ L

0

d2

dx2

(
∂Û

∂qxxi

)
δqi dx. (2.89)

Once again, the first term is a boundary condition term. Plugging this into Eq. (2.84) yields∫ L

0

∂Û

∂qxxi

δqxxi
dx =

∂Û

∂qxxi

δqxi

∣∣∣∣∣
L

0

− d
dx

(
∂Û

∂qxxi

)
δqi

∣∣∣∣∣
L

0

+

∫ L

0

d2

dx2

(
∂Û

∂qxxi

)
δqi dx. (2.90)

Similarly, we integrate the second term of Eq. (2.79) by parts. Let

α ≡ ∂Û

∂qxi

, (2.91)

then

dα =
d

dx

(
∂Û

∂qxi

)
dx. (2.92)

Let
dβ ≡ δqxi

dx, (2.93)

then
β =

∫
d

dx
δqi dx = δqi. (2.94)

Applying the integration by parts formula, we have∫ L

0

∂Û

∂qxi

δqxi
dx =

∂Û

∂qxi

δqi

∣∣∣∣∣
L

0

−
∫ L

0

d
dx

(
∂Û

∂qxi

)
δqi dx. (2.95)

Again, the lead term is for the boundary conditions. Replacing Eqs. (2.90) and (2.95) into
Eq. (2.79) yields∫ t1

t0

∫ L

0

δÛ(qxxi
, qxi

) dx dt =

∫ t1

t0

∫ L

0

{
d2

dx2

[
∂Û

∂qxxi

]
− d

dx

[
∂Û

∂qxi

]}
δqi dx dt+ B.C.’s,

(2.96)
where the boundary condition term “B.C.’s” is given by

B.C.’s =
∂Û

∂qxxi

δqxi

∣∣∣∣∣
L

0

− d
dx

(
∂Û

∂qxxi

)
δqi

∣∣∣∣∣
L

0

+
∂Û

∂qxi

δqi

∣∣∣∣∣
L

0

. (2.97)

Rewriting Û in terms of U yields∫ t1

t0

δU(qxxi
, qxi

) dt =

∫ t1

t0

{
d2

dx2

[
∂U

∂qxxi

]
− d

dx

[
∂U

∂qxi

]}
δqi dt+ B.C.’s, (2.98)
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with “B.C.’s” given by

B.C.’s =
∂U

∂qxxi

δqxi

∣∣∣∣L
0

− d
dx

(
∂U

∂qxxi

)
δqi

∣∣∣∣L
0

+
∂U

∂qxi

δqi

∣∣∣∣L
0

. (2.99)

Combining the kinetic and strain energy variations, we have∫ t1

t0

δL dt =

∫ t1

t0

{
− d

dt

[
∂T

∂q̇i

]
+
∂T

∂qi
− d2

dx2

[
∂U

∂qxxi

]
+

d
dx

[
∂U

∂qxi

]}
δqi dt+ B.C.’s.

(2.100)
This formulation, provided the B.C.’s are properly satisfied, is to be minimized. Thus,

we set ∫ t1

t0

δL dt = 0, (2.101)

so that, given the arbitrary nature of the test function qi, it must be true that

− d
dt

[
∂T

∂q̇i

]
+
∂T

∂qi
− d2

dx2

[
∂U

∂qxxi

]
+

d
dx

[
∂U

∂qxi

]
= 0. (2.102)

These are known as the Euler-Lagrange Equations. This expression describes the motion of
the system.

2.2.2 System Analysis
Considering that the displacement u is a function of s, hv and hw, we must analyze the

special case of δu. The chain rule for variations yields that given that

u = u(s, hv, hw) = s− (hv + hw), (2.103)

we write the variation of u as

δu =
∂u

∂s
δs+

∂u

∂hv
δhv +

∂u

∂hw
δhw = δs− δhv − δhw. (2.104)

Similarly, given that
u̇ = u̇(ṡ, ḣv, ḣw) = ṡ− (ḣv + ḣw), (2.105)

we write the variation of u̇ as

δu̇ =
∂u̇

∂ṡ
δṡ+

∂u̇

∂ḣv
δḣv +

∂u̇

∂ḣw
δḣw = δṡ− δḣv − δḣw. (2.106)

The variations δhv, δhw, δḣv and δḣw are not in the proper frame; that is, we need variations
on s, v and w only. Since hv and hw are functions of v and w respectively, we can calculate
the variations as

δhv = δ
1

2

∫ x

0

(
∂v

∂η

)2

dη. (2.107)
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Let

τ =

(
∂v

∂η

)2

. (2.108)

Then
δhv = δ

1

2

∫ x

0

τ dη, (2.109)

and the chain rule for variations yields

δhv =
1

2

∫ x

0

∂τ

∂vη
δvη dη =

∫ x

0

vηδvη dη, (2.110)

where vη is the partial derivative of v with respect to η. Note that the variation is not in terms
of v, but in terms of vη; we shall leave the variation in this form for simplicity. The reason
shall be clear upon application to the system.

The process is identical for δhw, thus plugging into Eq. (2.104) we have

δu = δs−
∫ x

0

∂v

∂η
δvη dη −

∫ x

0

∂w

∂η
δwη dη. (2.111)

For the terms δḣv and δḣw, we consider the full terms as follows. First, we shall
consider δḣv.

−δḣv = −δ∂hv
∂t

(2.112)

= − ∂

∂t
δhv (2.113)

= − ∂

∂t

[
−
∫ x

0

vηηδv dη
]

(2.114)

=

∫ x

0

∂

∂t

[
∂2v

∂η2
δv

]
dη (2.115)

=

∫ x

0

∂3v

∂t∂η2
δv +

∂2v

∂η2
δv̇ dη (2.116)

However, this is multiplied by the partial of T on u̇, which yields∫ t1

t0

∫ L

0

(∫ x

0

∂

∂t

[
∂2v

∂η2
δv

]
dη
)
∂T̂

∂u̇
dx dt. (2.117)

We apply Lemma 2.1 and find∫ t1

t0

∫ L

0

(∫ x

L

∂T̂

∂u̇
dη

)
∂

∂t

[
∂2v

∂x2
δv

]
dx dt (2.118)

=

∫ t1

t0

∫ L

0

(∫ x

L

∂T̂

∂u̇
dη

)[
∂3v

∂t∂x2
δv +

∂2v

∂x2
δv̇

]
dx dt.
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The term involving δv̇ must be reconfigured so that the variation is in terms of v instead of v̇.
To accomplish this, we perform integration by parts, as below. Consider the integral∫ t1

t0

∂2v

∂x2
δv̇ dt. (2.119)

Let
α ≡ ∂2v

∂x2
, (2.120)

then
dα =

∂

∂t

∂2v

∂x2
dt =

∂3v

∂t∂x2
dt. (2.121)

Let
dβ ≡ δv̇ dt, (2.122)

then
β =

∫
δ
∂v

∂t
dt =

∫
∂

∂t
δv dt = δv. (2.123)

Applying the integration by parts formula yields∫ t1

t0

∂2v

∂x2
δv̇ dt =

∂2v

∂x2
δv

∣∣∣∣t1
t0

−
∫ t1

t0

∂3v

∂t∂x2
δv dt, (2.124)

and the first term on the right side vanishes by definition of δ, so that∫ t1

t0

∂2v

∂x2
δv̇ dt = −

∫ t1

t0

∂3v

∂t∂x2
δv dt, (2.125)

and clearly
∂2v

∂x2
δv̇ = − ∂3v

∂t∂x2
δv. (2.126)

Substituting this result in Eq. (2.118) yields∫ t1

t0

∫ L

0

(∫ x

L

∂T̂

∂u̇
dη

)[
∂3v

∂t∂x2
δv − ∂3v

∂t∂x2
δv

]
dx dt = 0. (2.127)

The result is precisely the same for δḣw, so that

δu̇ = δṡ. (2.128)

In our analysis we may now substitute these results for δu and δu̇. We shall now
evaluate the terms ∂T̂

∂u
and ∂T̂

∂u̇
.

∂T̂

∂u
=
∂T̂

∂s

∂s

∂u
+
∂T̂

∂hv

∂hv
∂u

+
∂T̂

∂hw

∂hw
∂u

. (2.129)
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Since
u = s− (hv + hw), (2.130)

we have

s = u+ (hv + hw), (2.131)

hv = s− (u+ hw), (2.132)

hw = s− (u+ hv), (2.133)

so that
∂s

∂u
= 1, (2.134)

∂hv
∂u

= −1, (2.135)

∂hw
∂u

= −1, (2.136)

which yields
∂T̂

∂u
=
∂T̂

∂s
−

(
∂T̂

∂hv
+

∂T̂

∂hw

)
. (2.137)

Similarly,
∂T̂

∂u̇
=
∂T̂

∂ṡ
−

(
∂T̂

∂ḣv
+

∂T̂

∂ḣw

)
. (2.138)

Given the linearity of both ∂T̂
∂u

and ∂T̂
∂u̇

, we may calculate these in terms of u, u̇ and substitute
for u = s− (hv + hw) upon conclusion of the calculation.
We begin the analysis with the first term of Eq. (2.102).

− d
dt

[
∂T

∂q̇i

]∣∣∣∣
qi=u

= −
(
ρA

2

)
d
dt

∫ L

0

[2u̇− 2Ωv] dx, (2.139)

= −ρA
∫ L

0

[ü− Ω̇v − Ωv̇] dx. (2.140)

Continuing, we have

− d
dt

[
∂T

∂q̇i

]∣∣∣∣
qi=v

= −
(
ρA

2

)
d
dt

∫ L

0

[2v̇ + 2Ω(a+ x+ u)] dx, (2.141)

= −
∫ L

0

ρA[v̈ + Ω̇(a+ x+ u) + Ωu̇] dx. (2.142)

In w,

− d
dt

[
∂T

∂q̇i

]∣∣∣∣
qi=w

= −
(
ρA

2

)
d
dt

∫ L

0

[2ẇ] dx, (2.143)

= −
∫ L

0

ρA[ẅ] dx. (2.144)
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Next we shall analyze the second term. In u,

∂T

∂qi

∣∣∣∣
qi=u

=
ρA

2

∫ L

0

2v̇Ω + 2Ω2(u+ a+ x) dx, (2.145)

= ρA

∫ L

0

[v̇Ω + Ω2(u+ a+ x)] dx. (2.146)

In v,

∂T

∂qi

∣∣∣∣
qi=v

=
ρA

2

∫ L

0

[−2Ωu̇+ 2Ω2v] dx, (2.147)

= ρA

∫ L

0

[Ω2v − Ωu̇] dx. (2.148)

Finally, in w,

∂T

∂qi

∣∣∣∣
qi=w

= 0. (2.149)

The third and fourth terms are from strain energy. The third term is analyzed as follows. In s,

− d2

dx2

[
∂U

∂qxxi

]∣∣∣∣
qi=s

= − d2

dx2
[0] , (2.150)

= 0. (2.151)

In v,

− d2

dx2

[
∂U

∂qxxi

]∣∣∣∣
qi=v

= − d2

dx2

∫ L

0

EIzz
2

[2vxx] dx, (2.152)

= −E
∫ L

0

[Izz]xx[vxx] + 2[Izz]x[vxxx] + (2.153)

[Izz][vxxxx] dx.

We have already assumed constant cross-section area A, and we shall also consider that
moment of inertia is constant, so that [Izz]x = [Iyy]x = 0. Thus we write

− d2

dx2

[
∂U

∂qxxi

]∣∣∣∣
qi=v

= −EIzz
∫ L

0

vxxxx dx. (2.154)

In w,

− d2

dx2

[
∂U

∂qxxi

]∣∣∣∣
qi=w

= − d2

dx2

∫ L

0

EIyy
2

[2wxx] dx, (2.155)

= −EIyy
∫ L

0

wxxxx dx. (2.156)
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Finally, the fourth term is given as follows. In s,

d
dx

[
∂U

∂qxi

]∣∣∣∣
qi=s

=
d

dx

∫ L

0

EA

2
[2sx] dx, (2.157)

= EA

∫ L

0

sxx dx. (2.158)

In v,

d
dx

[
∂U

∂qxi

]∣∣∣∣
qi=v

=
d

dx

∫ L

0

EA

2
[0] dx, (2.159)

= 0. (2.160)

In w,

d
dx

[
∂U

∂qxi

]∣∣∣∣
qi=w

=
d

dx

∫ L

0

EA

2
[0] dx, (2.161)

= 0. (2.162)

It is important to note that the equations are broken up into their respective coordinates
purposefully. One reason is to illuminate the zero evaluations. The other is that the
Euler-Lagrange equations must be evaluated for each coordinate, s, v and w. We will
summarize these results by grouping the non-zero terms into their respective coordinate
references.

We first consider the Lagrangian for the various coordinates. We use the linearity to
write the derivatives of the potential function T in terms of u. Furthermore, we show the
Lagrangian in terms of the three coordinates s, v and w as separate equations. The expanded
Lagrangian under variation is written as

δ

∫ t1

t0

L dt
∣∣∣∣
s

=

∫ t1

t0

{
− d

dt

[
∂T

∂u̇

]
+
∂T

∂u
− d2

dx2

[
∂U

∂sxx

]
+

d
dx

[
∂U

∂sx

]}
δs dt, (2.163)

δ

∫ t1

t0

L dt
∣∣∣∣
v

=

∫ t1

t0

{
− d

dt

[
∂T

∂v̇

]
+
∂T

∂v
− d2

dx2

[
∂U

∂vxx

]
+

d
dx

[
∂U

∂vx

]}
δv dt (2.164)

−
∫ t1

t0

∂T

∂u

[∫ x

0

vηδvη dη
]

dt,

δ

∫ t1

t0

L dt
∣∣∣∣
w

=

∫ t1

t0

{
− d

dt

[
∂T

∂ẇ

]
+
∂T

∂w
− d2

dx2

[
∂U

∂wxx

]
+

d
dx

[
∂U

∂wx

]}
δw dt (2.165)

−
∫ t1

t0

∂T

∂u

[∫ x

0

wηδwη dη
]

dt,

where we have appended the terms for δhv and δhw into the v and w variation directions.
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Now we write down the s coordinate equations, after plugging in for
u = s− (hv + hw). ∫ t1

t0

[
−ρA

∫ L

0

[
s̈− ∂

∂t
(ḣv + ḣw)− Ω̇v − Ωv̇

]
dx

+ρA

∫ L

0

[{s− (hv + hw) + a+ x}Ω2 + v̇Ω] dx (2.166)

+EA

∫ L

0

sxx dx
]
δs dt.

Applying the variation, canceling integrals and simplifying yields

ρA

[
s̈− ∂

∂t
(ḣv + ḣw)− Ω̇v + 2Ωv̇ − {s− (hv + hw) + a+ x}Ω2

]
= EAsxx. (2.167)

Next, we write the v coordinate equations after substituting for u:∫ t1

t0

[
−ρA

∫ L

0

[v̈ + Ω̇(a+ x+ s− (hv + hw)) + Ω(ṡ− (ḣv + ḣw))] dx

+ρA

∫ L

0

[−Ω(ṡ− (ḣv + ḣw)) + Ω2v] dx+ EIzz

∫ L

0

vxxxx dx
]
δv dt (2.168)

−
∫ t1

t0

ρA

∫ L

0

[{s− (hv + hw) + a+ x}Ω2 + v̇Ω]

[∫ x

0

vηδvη dη
]

dx dt.

We cannot apply the variation unless the variation is in the proper domain. We transform the
variation to be in terms of v using integration by parts. To solve this, we first apply
Lemma 2.1, which yields∫ t1

t0

[
−ρA

∫ L

0

[v̈ + Ω̇(a+ x+ s− (hv + hw)) + Ω(ṡ− (ḣv + ḣw))] dx

+ρA

∫ L

0

[−Ω(ṡ− (ḣv + ḣw)) + Ω2v] dx+ EIzz

∫ L

0

vxxxx dx (2.169)

− ρA
∫ L

0

[∫ x

L

{s− (hv + hw) + a+ η}Ω2 + v̇Ω dη
]
vxδvx dx

]
dt.

We now apply integration by parts on the last term. Let

α ≡
[∫ x

L

{s− (hv + hw) + a+ η}Ω2 + v̇Ω dη
]
vx, (2.170)

then
dα =

∂

∂x

{[∫ x

L

(s− (hv + hw) + a+ η)Ω2 + v̇Ω dη
]
vx

}
. (2.171)

Let
dβ ≡ δvx dx, (2.172)
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then
β = δv. (2.173)

Application of the integration by parts formula yields∫ L

0

[∫ x

L

(s− (hv + hw) + a+ η)Ω2 + v̇Ω dη
]
vxδvx dx (2.174)

= αδv

∣∣∣∣L
0

−
∫ L

0

∂

∂x

{[∫ x

L

(s− (hv + hw) + a+ η)Ω2 + v̇Ω dη
]
vx

}
δv dx,

where the term αδv vanishes on the boundary by definition of δ. Applying the variation,
canceling integrals and simplifying yields

−ρA[v̈ + Ω̇(a+ x+ s− (hv + hw)) + 2Ω(ṡ− (ḣv + ḣw))− Ω2v] (2.175)

+ρA
∂

∂x

{[∫ x

L

(s− (hv + hw) + a+ η)Ω2 + v̇Ω dη
]
vx

}
= −EIzzvxxxx.

Lastly, we write the w coordinate equations:∫ t1

t0

[
−ρA

∫ L

0

ẅ dx+ EIyy

∫ L

0

wxxxx dx
]
δw dt (2.176)

+

∫ t1

t0

ρA

∫ L

0

[(s− (hv + hw) + a+ x)Ω2 + v̇Ω]

[∫ x

0

wηδwη dη
]

dx dt.

Again, we must apply Lemma 2.1 to move the variation.∫ t1

t0

[
−ρA

∫ L

0

ẅ dx+ EIyy

∫ L

0

wxxxx dx
]
δw dt (2.177)

+

∫ t1

t0

ρA

∫ L

0

∫ x

L

[(s− (hv + hw) + a+ η)Ω2 + v̇Ω] dηwxδwx dx dt.

We perform integration by parts in the same way as in the case of v, which yields∫ L

0

[∫ x

L

(s− (hv + hw) + a+ η)Ω2 + v̇Ω dη
]
wxδwx dx (2.178)

= αδw

∣∣∣∣L
0

−
∫ L

0

∂

∂x

{[∫ x

L

(s− (hv + hw) + a+ η)Ω2 + v̇Ω dη
]
wx

}
δw dx,

where the term αδw vanishes on the boundary by definition of δ. Applying the variation,
canceling integrals and simplifying yields

−ρAẅ + ρA
∂

∂x

{[∫ x

L

(s− (hv + hw) + a+ η)Ω2 + v̇Ω dη
]
wx

}
= −EIyywxxxx. (2.179)

Note that the product of s, hv, hw, and v̇ with either vx or wx yields nonlinear terms.
Furthermore, recall that hv, hw and their derivatives are nonlinear. We shall exclude these
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terms. Additionally, we shall ad hoc add the forcing terms pv and pw to represent experimental
forcing functions. These forces are not considered in the original equations because they
would not allow for conservation; the goal of the derivation via variations is to consider the
system in its natural, unperturbed state. Adding forces ad hoc for experimentation purposes
does not violate any of the original assumptions, but allows for imposing external forcing for
analysis. This simplification yields the following system of linear differential equations,
which is an approximation to the equations of motion of a rotating cantilever beam.

ρA
[
s̈− Ω̇v + 2Ωv̇ − (s+ a+ x)Ω2

]
= EAsxx. (2.180)

−ρA[v̈+Ω̇(s+a+x)+2Ωṡ−Ω2v]+ρA
∂

∂x

{∫ x

L

Ω2(a+ η) dηvx

}
= pv−EIzzvxxxx (2.181)

−ρAẅ + ρA
∂

∂x

{∫ x

L

Ω2(a+ η) dηwx

}
= pw − EIyywxxxx (2.182)

2.3 DISCRETIZING THE SYSTEM
We now have the final equations of motion, with the caveat that ‘suitable’ test

functions qi must be selected. ‘Suitable’ means that the functions are in H2 (known as the
Hilbert space, or the space of functions with continuous derivatives whose inner product is
bounded) in the interval [0, L], and that all boundary and initial conditions are satisfied by the
functions. There are standard test functions that are frequently used; choosing which class of
test functions to use is dependent upon the physics of the problem. Furthermore, the test
functions should match the behavior of the spatial displacements of the system. Polynomial
shapes are reasonable approximations to how we expect the beam to displace from bending
and stretching, so choosing polynomials for test functions is logical.

In order that we might find suitable interpolating polynomials for the discretized
system, we begin by considering a rod consisting of one element and two nodes as in Fig. 2.3.

Figure 2.3. Single element, two node beam.

The displacement directions are s, v and w, corresponding to stretch, chordwise and
flapwise bending respectively. Stretch is uni-axial and thus only has one degree of freedom,
which is from displacement. Bending, however, has both displacement and bending angle, so



26

the flapwise and chordwise displacements each have two degrees of freedom: one from
displacement and the other from bending angle.

The stretch degrees of freedom applied to the two node single element beam yields one
degree of freedom at two distinct nodes for a total of two degrees of freedom. The smallest
polynomial which may represent this system has two coefficients and is therefore linear.

Considering the n-th two node element along the rod, we represent the stretch degrees
of freedom (DOF) as sn and sn+1 as shown in Fig. 2.4. The interpolating stretch polynomial
can be expressed as

s(x) = c0 + c1x, (2.183)

or, in vector form,

s(x) =
(

1 x
)(c0

c1

)
. (2.184)

Figure 2.4. Single element, two node stretch displacement diagram.

In this form, we express the polynomial vector ~p and coefficient vector ~c as follows:

~p =

(
1

x

)
, (2.185)

~c =

(
c0

c1

)
, (2.186)

so that the polynomial can be written as

s(x) = ~p>~c. (2.187)

Plugging in constraints on the rod so that xn = 0 and xn+1 = L, we can write the polynomial
from Eq. (2.183) as

s(0) =
(

1 0
)(c0

c1

)
= c0 = s0, (2.188)

s(L) =
(

1 L
)(c0

c1

)
= c0 + c1L = s1. (2.189)
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We then write the element vector ~s as

~s =

(
s0

s1

)
, (2.190)

and the matrix A as

A =

(
1 0

1 L

)
, (2.191)

so that we can write the system as
~s = A~c. (2.192)

Solving for the coefficients ~c yields

~c = A−1~s =

(
1 0

−1/L 1/L

)(
s0

s1

)
. (2.193)

Plugging the ~c coefficient vector from Eq. (2.193) into Eq. (2.187) yields

s(x) = ~p>A−1~s. (2.194)

The product ~p>A−1 yields the following vector

~H> = ~p>A−1 =
(

1 x
)( 1 0

−1/L 1/L

)
=
(

1− x/L x/L
)
, (2.195)

so that

~H(x) =

(
1− x/L
x/L

)
. (2.196)

The first entry in ~H , say H1(x), is a polynomial in x. This polynomial is the scaled first order
Hermitian polynomial. The scaling is from L, the arbitrary length. If L = 1, this is precisely
the Hermitian polynomial of order one. Together with the second term, they form the
Hermitian interpolating basis polynomials for the stretch component of our physical system.

The product ~H>~s yields the system stretch polynomial in terms of the interpolating
polynomials and the stretch displacements at the nodal positions. When at the first node,
H2 = 0 so that the stretch displacement s is precisely equal to the measured stretch at the first
node; similarly, when at the second node, H1 = 0 so that the stretch displacement s is
precisely equal to the measured stretch at the second node. Elsewhere, the stretch is a linear
combination of the measured stretch terms.

In this case, we chose the terminal position to be L, the total length of the rod.
Furthermore, this formulation also works at the n-th element along the rod, where L is
replaced by the distance l between the n-th and (n+ 1)-th nodes. For the general element n,
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the starting point is still 0, since we may index each element and treat it as a two node single
element rod. Thus all nodes are accounted for and the entire rod can be interpolated by the
elemental polynomial functions. This provides a discretization for the entire rod and we can
represent the stretch displacement with a matrix of size (n+ 1)× (n+ 1) for n elements.

In a similar fashion, we now describe the bending displacements v and w. For each of
these displacements, there is also a bending angle. Thus, for each node there are two DOF and
for a single element two node beam there will be four degrees of freedom. The smallest
interpolatory polynomial that can account for four DOF has degree three.

Considering the n-th two node element along the rod, we represent the bending DOF
as yn, θn, yn+1 and θn+1 as shown in Fig. 2.5. Here, bending is represented by y as a generic
coordinate frame to represent either v or w bending. We shall plug v, w in for y at the
conclusion of the calculation.

Figure 2.5. Single element, two node bending displacement diagram.

The interpolating bending polynomial can be expressed as

y(x) = c0 + c1x+ c2x
2 + c3x

3. (2.197)

The coefficient vector ~c and polynomial vector ~p are expressed as

~c =


c0

c1

c2

c3

 , (2.198)

~p =


1

x

x2

x3

 . (2.199)

The bending angle θi at each node can be locally approximated if the bending angle is small.
Large bending angles would certainly permanently deform or break the beam, so this
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assumption is valid relative to the physical system. Thus, the bending approximation is given
to be equal to the slope at the node, or

θ(x) ≈ dy
dx

= c1 + 2c2x+ 3c3x
2. (2.200)

Following a similar path to that taken in the stretch interpolation, we plug in x = 0 and
x = L, solve the system for the coefficient vector ~c, and back substitute to find the Hermitian
polynomial vector ~H(x).

The vector form of the bending function is expressed as

y(x) = ~p>~c. (2.201)

Plugging in the limits 0 and L into Eqs. (2.197) and (2.200), we have

y(0) = c0 = y1, (2.202)

θ(0) = c1 = θ1, (2.203)

y(L) = c0 + c1L+ c2L
2 + c3L

3 = y2, (2.204)

θ(L) = c1 + 2c2L+ 3c2L
2 = θ2. (2.205)

We label the vector ~y as

~y =


y1

θ1

y2

θ2

 (2.206)

and the matrix A as

A =


1 0 0 0

0 1 0 0

1 L L2 L3

0 1 2L 3L2

 . (2.207)

We now have the system
~y = A~c, (2.208)

and we can find the coefficients ~c as
~c = A−1~y, (2.209)

where

A−1 =


1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L
2
L3

1
L2 − 2

L3
1
L2

 . (2.210)
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Plugging this back into Eq. (2.201), we have

y(x) = ~p>A−1~y. (2.211)

The product ~p>A−1 yields the Hermite interpolating polynomials, given as

~H =


1− 3x2

L2 + 2x3

L3

x− 2x2

L
+ x3

L2

3x2

L2 − 2x3

L3

−x2

L
+ x3

L2

 . (2.212)

Once again, if we consider the discretized rod of n elements, each element can be treated as a
single element two node rod, and this interpolation will satisfactorily approximate the beam
deflection between the nodes.

We now have elemental representations of stretch and bending corresponding to the
displacements s, v and w. What remains is to describe how the elements fit into the system of
equations we found.

To be clear, we shall state the requirements of the approximation technique we shall
employ. Firstly, consider the results from Appendix A. We have a system of equations derived
through variations, and is thusly in variational form, so the Ritz approximation technique may
be employed. However, the governing equations are nonhomogeneous. Since the governing
equations are nonhomogeneous, we are no longer guaranteed that Ritz approximations will
properly emulate the system. Thus, we must employ Ritz-Galerkin (or Galerkin-Petrov)
weighted residual minimization. This technique uses the approximating test functions as the
weighting functions. In order to employ this technique, it is prudent to ensure that our test
functions satisfy the requirements of the test functions as well as the weighting functions.

The test functions must satisfy the following criteria. For test functions of the form

s(x) ≈
n∑
i=1

csiφ
u
i (x) + φu0(x), (2.213)

v(x) ≈
n∑
i=1

cviφ
v
i (x) + φv0(x), (2.214)

w(x) ≈
n∑
i=1

cwi φ
w
i (x) + φw0 (x), (2.215)

• φα0 (α = s, v, w) should satisfy the specified essential boundary conditions
corresponding to their displacement direction.

• φαi (α = s, v, w; i = 1, . . . , n) should satisfy

– continuity in accordance with the variational method,
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– the homogeneous form of the specified essential boundary conditions,

– linear independence and completeness.

Our test functions shall be Hermite polynomials of order 1 or greater. The Hermite
polynomials are continuous on the boundary, complete, and linearly independent. The
essential boundary conditions have yet to be described. We will address the essential
boundary condition requirements after applying the approximating functions to the system.

The bending element displacement and acceleration vectors from Eq. (2.206) can be
expressed as

~y =


yi

θi

yi+1

θi+1

 , (2.216)

~̈y =


ÿi

θ̈i

ÿi+1

θ̈i+1

 , (2.217)

where yi represents the displacement at node i, and θi represents the bending angle at node i.
Similarly, we express the Hermitian vector from Eq. (2.212) as

~H =


H1(x)

H2(x)

H3(x)

H4(x)

 . (2.218)

We write the function y(x) from Eq. (2.197) in terms of the vectors ~y and ~H:

y(x) =
4∑
j=1

Hj(x)yj = ~H>~y, (2.219)

where yj is the j-th element of ~y. This is an expression for bending displacement interpolation
functions for v and w, and by simply writing v and w in place of y, we may express v and w
as follows.

v(x) =
4∑
j=1

Hj(x)vj = ~H>~v, (2.220)

w(x) =
4∑
j=1

Hj(x)wj = ~H> ~w. (2.221)
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We wish to apply these interpolating approximations to the Euler-Lagrange equations
found as Eqs. (2.180), (2.181) and (2.182). Unfortunately, we have a fourth order spatial
derivative in both v and w, but v and w are approximated by third degree polynomials. To
remedy this, we are inclined to use integration by parts to reduce the order of the derivatives.
Integration by parts is carried out when products of functions are inside an integral. Following
this logic, we shall multiply the equations by their respective displacement direction
interpolation functions as follows:

[ρA(s̈− 2Ωv̇ − Ω2s− Ω̇v)− EAsxx] · s = ρAΩ2(a+ x) · s, (2.222)(
ρA(v̈ + 2Ωṡ− Ω2v + Ω̇s) + EIzzvxxxx − ρAΩ2 ∂

∂x

{[
a(L− x) (2.223)

+
1

2
(L2 − x2)

]
∂v

∂x

})
· v = [pv − ρAΩ̇(a+ x)] · v,(

ρAẅ + EIyywxxxx − ρAΩ2 ∂

∂x

{[
a(L− x) (2.224)

+
1

2
(L2 − x2)

]
∂w

∂x

})
· w = pw · w.

We now integrate each equation over the element. First consider the stretch coordinate s:∫ l

0

ρA(s̈− 2Ωv̇ − Ω2s− Ω̇v)s− EAsxxs dx =

∫ l

0

ρAΩ2(a+ x)s dx. (2.225)

The interpolation function for s is a first degree polynomial, and we have a second order
derivative. We will employ integration by parts to remedy this situation. Consider∫ l

0

−EAsxxs dx. (2.226)

Let
α ≡ −EAs, (2.227)

then
dα =

d
dx

(−EAs) dx. (2.228)

Let
dβ ≡ sxx dx, (2.229)

then
β =

∫
d

dx
sx dx = sx. (2.230)

Then, by the integration by parts formula,∫ l

0

−EAsxxs dx = − EAssx
∣∣∣∣l
0

+

∫ l

0

EAs2
x dx. (2.231)
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The first term on the right vanishes on the boundaries and yields

−
∫ l

0

EAsxxs dx =

∫ l

0

EAs2
x dx. (2.232)

Applying this result, we have∫ l

0

ρA(s̈− 2Ωv̇ − Ω2s− Ω̇v)s+ EAs2
x dx =

∫ l

0

ρAΩ2(a+ x)s dx. (2.233)

Immediately an inconsistency emerges. We have mixed terms in s and v, but the vector forms
of s and v do not allow for the other terms. We now expand our definitions of s and v into one
combined form so that this equation has a sensible definition. At the same time, for ease of
notation and clarity, we shall roll the w term into the combined term. Define the combined
displacement vector ~d as follows.

~d =



si

vi

θi

wi

φi

si+1

vi+1

θi+1

wi+1

φi+1



. (2.234)

Next, we define a combined interpolation vector ~N as follows.

~N =



Hs1(x)

Hv1(x)

Hv2(x)

Hw1(x)

Hw2(x)

Hs2(x)

Hv3(x)

Hv4(x)

Hw3(x)

Hw4(x)



, (2.235)

where the subindices s, v and w indicate the displacement direction and 1, 2, 3 and 4 indicate
the index of the interpolatory vector from each displacement direction formulation. The
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vector ~N can be expressed as the sum of the directional vectors ~Ns, ~Nv and ~Nw as follows:

~N = ~Ns + ~Nv + ~Nw, (2.236)

where the directional vectors are defined as

~Ns =
(
Hs1(x) 0 0 0 0 Hs2(x) 0 0 0 0

)>
, (2.237)

~Nv =
(

0 Hv1(x) Hv2(x) 0 0 0 Hv3(x) Hv4(x) 0 0
)>

, (2.238)

~Nw =
(

0 0 0 Hw1(x) Hw2(x) 0 0 0 Hw3(x) Hw4(x)
)>

. (2.239)

We can now write the functions s and v terms of the combined displacement vector ~d and the
respective interpolatory vectors ~Ns and ~Nv as

s = ~N>s
~d, (2.240)

v = ~N>v
~d. (2.241)

Similarly,
w = ~N>w

~d. (2.242)

We may now represent the discretized system in Eq. (2.233). Next, we analyze the bending
coordinate v. Before we can integrate over the element, we must recall the conditions of the
integral ∫ L

x

(a+ η) dη. (2.243)

This integral treats x on the full coordinate system, not just in the element. To consider the
element, recall that ∫ b

a

f(x) dx =

∫ b−a

0

f(x+ a) dx. (2.244)

In our case,

f(x) =

∫ L

x

a+ η dη, (2.245)

so that under the revised coordinates, we transform the elemental integration from the limits
xe → xe+1 to 0→ l for l = xe+1 − xe. For f , we have

f(x+ xe) =

∫ L

x+xe

a+ η dη = a(L− (x+ xe)) +
1

2
(L2 − (x+ xe)

2). (2.246)

It is not apparent, but the displacement approximation polynomials were already described in
the space 0→ l instead of xe → xe+1, so we do not need to adjust s, v and w. We only require



35

a modification to the function f as described above. Thus, the v direction is expressed as∫ l

0

ρA(v̈ + 2Ωṡ− Ω2v + Ω̇s)v + EIzzvxxxxv − ρAΩ2

[
a(L− (x+ xe)) (2.247)

+
1

2
(L2 − (x+ xe)

2)

]
∂2v

∂x2
v dx =

∫ l

0

[pv − ρAΩ̇(a+ x)]v dx.

This equation has two terms to be simplified, the fourth order spatial derivative and the third
term which must be simplified. Integration by parts twice on the fourth order term yields∫ l

0

EIzz
∂4v

∂x4
v dx = EIzzv

∂3v

∂x3

∣∣∣∣l
0

− EIzz
∂v

∂x

∂2v

∂x2

∣∣∣∣l
0

+

∫ l

0

EIzzv
2
xx dx, (2.248)

and the first two terms on the right cancel due to boundary conditions, yielding∫ l

0

EIzz
∂4v

∂x4
v dx =

∫ l

0

EIzzv
2
xx dx. (2.249)

The third term is manipulated as follows. Consider∫ l

0

−ρAΩ2 ∂

∂x

{[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
∂v

∂x

}
v dx. (2.250)

Let
α ≡ −ρAΩ2v, (2.251)

then
dα =

d
dx

(−ρAΩ2v) dx = −ρAΩ2 ∂v

∂x
. (2.252)

Let
dβ ≡ ∂

∂x

{[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
∂v

∂x

}
dx, (2.253)

then
β =

[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
∂v

∂x
. (2.254)

The integration by parts formula yields∫ l

0

−ρAΩ2 ∂

∂x

{[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
∂v

∂x

}
v dx

= − v
[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
∂v

∂x

∣∣∣∣l
0

(2.255)

+

∫ l

0

ρAΩ2

[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
v2
x dx,
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where the first term on the right side vanishes due to boundary conditions, yielding

−
∫ l

0

ρAΩ2 ∂

∂x

{[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
∂v

∂x

}
v dx (2.256)

=

∫ l

0

ρAΩ2

[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
v2
x dx.

The full v bending integral equation is written as∫ l

0

ρA(v̈ + 2Ωṡ− Ω2v + Ω̇s)v + EIzzv
2
xx (2.257)

+ ρAΩ2

[
a(L− (x+ xe)) +

1

2
(L2 − (x+ xe)

2)

]
v2
x dx =

∫ l

0

[pv − ρAΩ̇(a+ x)]v dx.

The mixed terms are already handled by the combined displacement vector ~d as well as the
interpolation vectors ~Ns and ~Nv

The integral equation for the w bending direction is handled similarly to the v bending
direction. There is a fourth order term and the third term that can be simplified. The process is
exactly the same with w written in place of v. The result is written as follows.∫ l

0

ρAẅw + EIzzw
2
xx + ρAΩ2

[
a(L− (x+ xe)) (2.258)

+
1

2
(L2 − (x+ xe)

2)

]
w2
x dx =

∫ l

0

pww dx.

From the application of the discretization to the equations of motion, we now have the
essential boundary conditions. We shall show that the boundary conditions are met by the
approximating functions s(x), v(x) and w(x).

From Eq. (2.231), we have that

s
∂s

∂x

∣∣∣∣L
0

= 0. (2.259)

From the physical system, we know that at x = 0, the beam has zero displacement in each
displacement direction. However, at the end of the beam (x = L), the beam may certainly be
displaced in every direction. We conclude, then, that this condition is satisfied if sx(L) = 0.

The formulation of v(x) and w(x) is exactly the same, so the essential boundary
conditions are also the same. For either case, we define ξ(x), ξ ∈ {v, w} for ease of
discussion. We have from Eq. (2.248)

ξ
∂3ξ

∂x3

∣∣∣∣L
0

= 0 (2.260)
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and
∂ξ

∂x

∂2ξ

∂x2

∣∣∣∣L
0

= 0, (2.261)

and from Eq. (2.255)

ξ

[
a(L− x) +

1

2
(L2 − x2)

]
∂ξ

∂x

∣∣∣∣L
0

= 0. (2.262)

As in the case of s, the displacement at x = 0 must be zero; additionally, the bending must be
zero. Thus we have ξ(0) = ξx(0) = 0. For the first condition, we must have that ξxxx(L) = 0,
which represents the vanishing shear force for a free beam; indeed this agrees with the
physical system. For the second condition, we must have that ξxx(L) = 0, which represents
the vanishing of the bending moment for a free beam; this also agrees with our physical
system. The third condition is zero at x = L, so there is no more work to do.

The partial derivatives applied to the vector form of s, v and w can be expressed by

zx = [ ~Nz]
>
x
~d, (2.263)

zxx = [ ~Nz]
>
xx
~d, (2.264)

ż = [ ~Nz]
> ~̇d, (2.265)

z̈ = [ ~Nz]
> ~̈d, (2.266)

where z is s, v or w and the subscripts x and xx indicate derivative with respect to x and the
second derivative with respect to x, respectively. The over dot represents differentiation with
respect to time. The differentiation operation on the vector applies the derivative to each
element of the vector and results in a vector of the same size.

Under this new notation, the s direction integral equation (Eq. (2.233)) is written as∫ l

0

ρA
(
~Ns

> ~̈d− 2Ω ~Nv

> ~̇d− Ω2 ~Ns

>~d− Ω̇ ~Nv

>~d
)
~Ns

>~d+ EA
(

[ ~Ns]
>
x
~d
)2

dx (2.267)

=

∫ l

0

ρAΩ2(a+ x) ~Ns

>~d dx.

Observe that(
[ ~Ns]

>
x
~d
)2

=
(

[ ~Ns]
>
x
~d
)(

[ ~Ns]
>
x
~d
)

=
(

[ ~Ns]
>
x
~d
)

[ ~Ns]
>
x
~d =

(
[ ~Ns]

>
x
~d[ ~Ns]

>
x

)
~d. (2.268)

With this result, we may pull ~d out to the right on all terms, which yields∫ l

0

{
ρA
(
~Ns

> ~̈d− 2Ω ~Nv

> ~̇d− Ω2 ~Ns

>~d− Ω̇ ~Nv

>~d
)
~Ns

>
(2.269)

+EA
(

[ ~Ns]
>
x
~d[ ~Ns]

>
x

)}
~d dx =

∫ l

0

{
ρAΩ2(a+ x) ~Ns

>} ~d dx.
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Lemma 2.2. Given nontrivial vectors {α, β, γ} ∈ Rn,∫
~α>~γ dξ =

∫
~β>~γ dξ ⇔

∫
~α> dξ =

∫
~β> dξ. (2.270)

Proof. ∫
~α>~γ dξ =

∫
~β>~γ dξ

⇔ ~α>~γ = ~β>~γ

⇔
(
~α> − ~β>

)
~γ = 0

⇔
(
~α> − ~β>

)
= 0 (~γ is nontrivial)

⇔ ~α> = ~β>

⇔
∫
~α> dξ =

∫
~β> dξ

(2.271)

The integral of the vector is not defined. Let this notation imply that we shall integrate
each element of the vector. Since ~d is non-trivial, we have∫ l

0

ρA
(
~Ns

> ~̈d− 2Ω ~Nv

> ~̇d− Ω2 ~Ns

>~d− Ω̇ ~Nv

>~d
)
~Ns

>
+ EA[ ~Ns]

>
x
~d[ ~Ns]

>
x dx (2.272)

=

∫ l

0

ρAΩ2(a+ x) ~Ns

>
dx.

Consider the vectors
{
~α, ~β,~γ

}
∈ Rn of the same length. Note that

(
~α>~γ

)
~β> =

[
~β
(
~γ>α

)]>
=
[(
~β~α>

)
~γ
]>
. (2.273)

We shall use this property to organize Eq. (2.272). At the same time, we shall group the terms
by time derivatives of the vector ~d. We have∫ l

0

{
ρA ~Ns

~Ns

> ~̈d− ρA2Ω ~Ns
~Nv

> ~̇d

+
(
ρA
[
−Ω2 ~Ns

~Ns

>
− Ω̇ ~Ns

~Nv

>]
+ EA[ ~Ns]x[ ~Ns]

>
x

)
~d
}

dx (2.274)

=

∫ l

0

ρAΩ2(a+ x) ~Ns dx.

The v bending integral, Eq. (2.257), may be discretized in a similar fashion.∫ l

0

{
ρA
(
~Nv

> ~̈d+ 2Ω ~Ns

> ~̇d− Ω2 ~Nv

>~d+ Ω̇ ~Ns

>~d
)
~Nv

>~d

+EIzz

(
[ ~Nv]

>
xx
~d
)2

+ ρAΩ2

[
a(L− x) +

1

2
(L2 − x2)

](
[ ~Nv]

>
x
~d
)2
}

dx (2.275)

=

∫ l

0

[pv − ρAΩ̇(a+ x)] ~Nv

>~d dx.
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Using the observation of Eq. (2.268) and “cancelling” the non-trivial vector ~d yields∫ l

0

{
ρA
(
~Nv

> ~̈d+ 2Ω ~Ns

> ~̇d− Ω2 ~Nv

>~d+ Ω̇ ~Ns

>~d
)
~Nv

>

+EIzz[ ~Nv]
>
xx
~d[ ~Nv]

>
xx + ρAΩ2

[
a(L− x) +

1

2
(L2 − x2)

]
[ ~Nv]

>
x
~d[ ~Nv]

>
x

}
dx (2.276)

=

∫ l

0

[pv − ρAΩ̇(a+ x)] ~Nv

>
dx.

Applying the observation of Eq. (2.273) to reorganize, we have∫ l

0

{
ρA ~Nv

~Nv

> ~̈d+ ρA2Ω ~Nv
~Ns

> ~̇d+

(
ρA[−Ω2 ~Nv

~Nv

>
+ Ω̇ ~Nv

~Ns

>
]

+EIzz[ ~Nv]xx[ ~Nv]
>
xx + ρAΩ2

[
a(L− x) +

1

2
(L2 − x2)

]
[ ~Nv]x[ ~Nv]

>
x

)
~d

}
dx (2.277)

=

∫ l

0

[pv − ρAΩ̇(a+ x)] ~Nv dx.

Similarly, the w integral equation (Eq. (2.258)) may be discretized.∫ l

0

{
ρA ~Nw

> ~̈d ~Nw

>~d+ EIyy

(
[ ~Nw]>xx

~d
)2

(2.278)

+ρAΩ2

[
a(L− x) +

1

2
(L2 − x2)

](
[ ~Nw]>x

~d
)2
}

dx =

∫ l

0

pw ~Nw

>~d dx.

Using the observation of Eq. (2.268) and “cancelling” the non-trivial vector ~d yields∫ l

0

{
ρA ~Nw

> ~̈d ~Nw

>
+ EIyy[ ~Nw]>xx

~d[ ~Nw]>xx (2.279)

+ρAΩ2

[
a(L− x) +

1

2
(L2 − x2)

]
[ ~Nw]>x

~d[ ~Nw]>x

}
dx =

∫ l

0

pw ~Nw

>
dx.

Applying the observation of Eq. (2.273) to reorganize, we have∫ l

0

{
ρA ~Nw

~Nw

> ~̈d+

(
EIyy[ ~Nw]xx[ ~Nw]>xx (2.280)

+ρAΩ2

[
a(L− x) +

1

2
(L2 − x2)

]
[ ~Nw]x[ ~Nw]>x

)
~d

}
dx =

∫ l

0

pw ~Nw dx.
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We now combine Eq. (2.274), Eq. (2.277) and Eq. (2.280) to form the full system, grouping
the terms by time derivatives of ~d.∫ l

0

{
ρA
[
~Ns
~Ns

>
+ ~Nv

~Nv

>
+ ~Nw

~Nw

>] ~̈d+ ρA2Ω
[
~Nv
~Ns

>
− ~Ns

~Nv

>] ~̇d
+
(
−ρAΩ2

[
~Ns
~Ns

>
+ ~Nv

~Nv

>]
+ ρAΩ̇

[
~Nv
~Ns

>
− ~Ns

~Nv

>]
+ EA[ ~Ns]x[ ~Ns]

>
x

+ρAΩ2

[
a(L− x) +

1

2
(L2 − x2)

] [
[ ~Nv]x[ ~Nv]

>
x + [ ~Nw]x[ ~Nw]>x

]
(2.281)

+E
[
Izz[ ~Nv]xx[ ~Nv]

>
xx + Iyy[ ~Nw]xx[ ~Nw]>xx

])
~d
}

dx

=

∫ l

0

ρAΩ2(a+ x) ~Ns + [pv − ρAΩ̇(a+ x)] ~Nv + pw ~Nw dx.

We have the equations of motion for the discretized system represented by Eq. (2.281),
although it may not be very clear. To clarify this expression, first note that∫ l

0

~d dx =

∫ l

0

dx~d, (2.282)

and the same applies to the time derivatives ~̈d and ~̇d, since the elements of these vectors are
constant with respect to x (they are nodal DOF). We now define element matrices to simplify
the expression and illuminate the equations of motion. Let

[p] = ρA

∫ l

0

~Ns
~Ns

>
+ ~Nv

~Nv

>
dx (2.283)

[m] = [p] + ρA

∫ l

0

~Nw
~Nw

>
dx, (2.284)

[g] = ρA

∫ l

0

~Nv
~Ns

>
− ~Ns

~Nv

>
dx, (2.285)

[k] = E

∫ l

0

A[ ~Ns]x[ ~Ns]
>
x + Izz[ ~Nv]xx[ ~Nv]

>
xx + Iyy[ ~Nw]xx[ ~Nw]>xx dx, (2.286)

[σ] = ρA

∫ l

0

Ω2

[
a(L− x) +

1

2
(L2 − x2)

] [
[ ~Nv]x[ ~Nv]

>
x + [ ~Nw]x[ ~Nw]>x

]
dx,(2.287)

~f =

∫ l

0

ρAΩ2(a+ x) ~Ns + [pv − ρAΩ̇(a+ x)] ~Nv + pw ~Nw dx. (2.288)

Then we may express Eq. (2.281) as

[m] ~̈d+ 2Ω[g] ~̇d+ ([k] + Ω2([σ]− [p]) + Ω̇[g])~d = ~f. (2.289)

The matrices in Eq. (2.289) are related to the physics and are given special names. The matrix
[m] is called the mass matrix, [k] is called the stiffness matrix, and [g] is called the
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gyroscopic matrix. Note that the total stiffness depends on [σ], [p], and [g], where the term
involving [σ] and [p] describes Coriolis stiffening, while the term involving [g] describes
inertial stiffening. If the cantilever beam is not rotating (i.e. Ω = 0) we recover the standard
cantilever beam system

[m] ~̈d+ [k]~d =

∫ l

0

pv ~Nv + pw ~Nw dx. (2.290)

The computed matrices are given below.

[p] =
lρA

420



140 0 0 0 0 70 0 0 0 0

0 156 22l 0 0 0 54 −13l 0 0

0 22l 4l2 0 0 0 13l −3l2 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

70 0 0 0 0 140 0 0 0 0

0 54 13l 0 0 0 156 −22l 0 0

0 −13l −3l2 0 0 0 −22l 4l2 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



[m] =
lρA

420



140 0 0 0 0 70 0 0 0 0

0 156 22l 0 0 0 54 −13l 0 0

0 22l 4l2 0 0 0 13l −3l2 0 0

0 0 0 156 22l 0 0 0 54 −13l

0 0 0 22l 4l2 0 0 0 13l −3l2

70 0 0 0 0 140 0 0 0 0

0 54 13l 0 0 0 156 −22l 0 0

0 −13l −3l2 0 0 0 −22l 4l2 0 0

0 0 0 54 13l 0 0 0 156 −22l

0 0 0 −13l −3l2 0 0 0 −22l 4l2
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[g] =
lρA

60



0 −21 −3l 0 0 0 −9 2l 0 0

21 0 0 0 0 9 0 0 0 0

3l 0 0 0 0 2l 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 −9 −2l 0 0 0 −21 3l 0 0

9 0 0 0 0 21 0 0 0 0

−2l 0 0 0 0 −3l 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



[k] =
E

l3



Al2 0 0 0 0 −Al2 0 0 0 0

0 12Izz 6Izzl 0 0 0 −12Izz 6Izzl 0 0

0 6Izzl 4Izzl
2 0 0 0 −6Izzl 2Izzl

2 0 0

0 0 0 12Iyy 6Iyyl 0 0 0 −12Iyy 6Iyyl

0 0 0 6Iyyl 4Iyyl
2 0 0 0 −6Iyyl 2Iyyl

2

−Al2 0 0 0 0 Al2 0 0 0 0

0 −12Izz −6Izzl 0 0 0 12Izz −6Izzl 0 0

0 6Izzl 2Izzl
2 0 0 0 −6Izzl 4Izzl

2 0 0

0 0 0 −12Iyy −6Iyyl 0 0 0 12Iyy −6Iyyl

0 0 0 6Iyyl 2Iyyl
2 0 0 0 −6Iyyl 4Iyyl

2



~f =



(Alρ(3a+ l − 3xe))/6

−(Alρ(10a+ 3l − 10xe))/20

−(Al2ρ(5a+ 2l − 5xe))/60

0

0

(Alρ(3a+ 2l − 3xe))/6

−(Alρ(10a+ 7l − 10xe))/20

(Al2ρ(5a+ 3l − 5xe))/60

0

0
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Let

α1 = L2 − x2
e,

α2 = 2a(L− xe)

α3 = l(a+ xe),

β1 = −72l2 + 252(α1 + α2 − α3),

β2 = −15l3 + 21l(α1 + α2 − 2α3),

β3 = 6l3 + 21l(α1 + α2),

β4 = −4l4 + 14l2(2α1 + 2α2 − α3),

β5 = 3l4 + 7l2(−α1 − α2 + α3),

β6 = −18l4 + 14l2(2α1 + 2α2 − 3α3),

where L is (global) beam length, a is distance from the center of the axis of rotation to the
beginning of the beam, xe is the position of the e-th node, and l is the length of the element.
The matrix [σ] can be expressed as

[σ] =
ρA

420l



0 0 0 0 0 0 0 0 0 0

0 β1 β2 0 0 0 −β1 β3 0 0

0 β2 β4 0 0 0 −β2 β5 0 0

0 0 0 β1 β2 0 0 0 −β1 β3

0 0 0 β2 β4 0 0 0 −β2 β5

0 0 0 0 0 0 0 0 0 0

0 −β1 −β2 0 0 0 β1 −β3 0 0

0 β3 β5 0 0 0 −β3 β6 0 0

0 0 0 −β1 −β2 0 0 0 β1 −β3

0 0 0 β3 β5 0 0 0 −β3 β6



.

Naturally, all of the matrices are symmetric, except the matrix [g], which is skew-symmetric.
In other words,

[g] = −[g]>. (2.291)

Lemma 2.3. Skew symmetric matrices have purely imaginary eigenvalues ( i.e. Re(λ) = 0).

Proof. Let A be a real skew symmetric matrix, with eigenvalue λ and eigenvector ~ξ. Then, by
definition,

A~ξ = λ~ξ, (2.292)

and
A = −A>. (2.293)
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Let ()∗ denote the conjugate operator. We have

(A~ξ)∗ = (λ~ξ)∗

⇔ A~ξ∗ = λ∗~ξ∗ (A is real)
⇔ (A~ξ∗)> = (λ∗~ξ∗)>

⇔ (A~ξ∗)>~ξ = (λ∗~ξ∗)>~ξ

⇔ ~ξ∗>A>~ξ = λ∗~ξ∗>~ξ

⇔ ~ξ∗>(−A)~ξ = λ∗~ξ∗>~ξ (A is skew-symmetric)

⇔ ~ξ∗>(−λ)~ξ = λ∗~ξ∗>~ξ (Eq. (2.292))
⇔ −λ~ξ∗>~ξ = λ∗~ξ∗>~ξ (scalars commute)

⇔ −λ~ξ∗> = λ∗~ξ∗> (~ξ is nontrivial)
⇔ −λ = λ∗ (~ξ is nontrivial)
⇔ Re(λ) = 0

(2.294)

As a result of the configuration of [g], the contribution of the ~̇d term does not add nor
remove energy from the system — and important distinction, as that would imply that the
physical system would always decay to zero or grow unbounded, and we know the physical
system does not do that.

Next, we must assemble the system. Consider Eq. (2.289). The matrices m,g,k, σ

and p are in terms of the element. Each element is, essentially, the connection of two nodes.
Each node has the five degrees of freedom: s stretch, v displacement, v bending, w
displacement and w bending. If we label the elements and nodes in an orderly fashion from
the base of the beam to the tip, we find that element one is the connection of nodes one and
two, element two is the connection of nodes two and three, and so on up to the last or n-th
element, which is the connection of the n-th and (n+ 1)-th nodes. If the elements are all
equal length, then the properties of each element are identical and we may create the element
matrices once for our assembly. If not, the assembly loop will require us to build the element
matrices at each iteration. In either case, we shall have a block diagonal matrix, which is
densly populated near the diagonal, and zeros (or at least very sparse) elsewhere. This could
be useful if the system is to be modeled with thousands of elements; routines are available in
may environments (e.g. MatLab, Python/NumPy, etc.) which allow for optimized
computation of sparse matrices so that much less memory is used.

Whatever the method of labeling and indexing, assembly is most generally
accomplished by creating an index of degrees of freedom in the global frame. The i-th
element will have ten degrees of freedom. The local degrees of freedom, indexed as
i = 1, 2, . . . , 10, correspond to the matrix entries in m,g,k, σ and p,~f . The indexing vector
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~gdofs stores the global degrees of freedom. These degrees of freedom, in turn, correspond to
the matrix indices of M,G,K,S, P and ~F, the global mass, gyroscopic, stiffness and Coriolis
stiffening matrices as well as the nonhomogeneous forcing term. Construction of the indexing
vector is done as

~gidofs(j) = 5(i− 1) + j, (2.295)

for the i-th element, where the j-th local index is in {1, 2, . . . , 10}. The (j, k)-th local matrix
entry for the i-th element modifies the global matrix as follows.

K(~gidof(j), ~g
i
dof(k)) = K(~gidof(j), ~g

i
dof(k)) + k(j, k), (2.296)

for j, k ∈ {1, 2, . . . , 10}. The process is the same for
g→ G,p→ P,m→M, σ → S,~f → ~F. We then formulate the global system as

[M] ~̈d+ 2Ω[G] ~̇d+ ([K] + Ω2([S]− [P]) + Ω̇[G])~d = ~F. (2.297)

During the derivation process, several linearity assumptions were made. These
assumptions are tabulated in Appendix C in Table C.1. It is important to keep track of these
assumptions, as the assumptions may not be true for all cases; for example if the hub rotation
speed Ω grows large, terms involving hub rotation may no longer be insignificant.
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CHAPTER 3

RESULTS

3.1 VALIDATION
The test of the system is carried out by examining the natural modes of the

discretization and comparing against published material. To do so, it is important to consider
the system at equilibrium; in this case, we take angular acceleration to be zero so that Ω̇ = 0.
We relabel the matrices as follows, consistent with the order of the derivative.

X0 = [K] + Ω2([S]− [P]), (3.1)

X1 = 2Ω[G], (3.2)

X2 = [M], (3.3)

so that at equilibrium we have

[X2] ~̈d+ [X1] ~̇d+ [X0]~d = 0. (3.4)

To find the natural frequencies, we assume the ansatz

~d = ~ξeiωt, (3.5)

and plugging into Eq. (3.4) yields

−[X2]ω2~ξeiωt + [X1]iω~ξeiωt + [X0]~ξeiωt = 0. (3.6)

Cancelling eiωt and factoring yields(
−[X2]ω2 + [X1]iω + [X0]

)
~ξ = 0. (3.7)

This equation is known as a quadratic eigenvalue problem. Whereas the generalized
eigenvalue problem has the form (

−[X2]ω2 + [X0]
)
~ξ = 0, (3.8)

written more typically as
[M]λ = [K], (3.9)

and highly optimized algorithms exist for this formulation. The algorithms for the quadratic
eigenvalue problem recast themselves into the generalized eigenvalue problem using various



47

methods. According to Ref. [23] the “standard” method for factorizing the system into its
linear components, known as the first companion form, is accomplished as follows. Let

u = ωξ, (3.10)

so that
−[X2]uω + [X1]iu+ [X0]ξ = 0. (3.11)

The generalized eigenvalue problem may now be written as(
0 I

X0 iX1

)(
ξ

u

)
− ω

(
I 0

0 X2

)(
ξ

u

)
= 0, (3.12)

where 0 is a zero filled matrix, and I is the identity matrix. In general, the first companion
form is described by

L1 :

(
0 N

−X0 −X1

)
− ω

(
N 0

0 X2,

)
(3.13)

where N is any nonsingular matrix. Thus, it is often convenient to choose N = I, or some
multiple of the identity. As one might expect, there are several companion forms. Of
particular interest are the third and fourth companion forms, which are well suited for
gyroscopic problems. These linearizations are described by:

L3 :

(
X0 0

X1 X0

)
− ω

(
0 X0

−X2 0

)
, (3.14)

L4 :

(
0 −X0

X2 0

)
− ω

(
X2 X1

0 X2

)
. (3.15)

The third companion form is preferred when X2 is singular or near singular, and the fourth
companion form is preferred when X0 is singular or near singular.

The three linearization techniques described above were tested for accuracy and the
most accurate method was used throughout the testing. The accuracy was tested by
considering eigenvalue spectrum of the result. The eigenvalues returned should either be
purely imaginary, or real. If the eigenvalues are not either purely imaginary or real, the
solution to the eigenvalue problem yields inaccurate results. Thus, the quality of the result can
be calculated. The method employed in this calculation is given below.

Since any complex number z may be expressed by real values α and β as z = α + iβ,
we can determine whether the complex eigenvalue spectrum is purely imaginary or real.
Consider

|z|2 = zz̄ = (α + iβ)(α− iβ) = α2 + β2, (3.16)
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and thus
|z| =

√
α2 + β2 ≤ |α|+ |β|. (3.17)

Requiring equality yields that
|α|+ |β|√
α2 + β2

= 1, (3.18)

so that z is either purely imaginary or real if

|α|+ |β|√
α2 + β2

− 1 = 0. (3.19)

Since a true solution must be purely imaginary or real, we set the j-th eigenvalue to be

ωj = αj + iβj, (3.20)

and evaluate the quality of the eigenvalue solution spectrum with

err =
N∑
j=1

 |αj|+ |βj|√
α2
j + β2

j

− 1

 . (3.21)

Of the three linearization methods described above, the L3 factorization provided the smallest
error.

The system was adimensionalized for comparison with Ref. [6] and Ref. [26] using
the following transformations.

τ =
t

T
, (3.22)

ξ =
x

L
, (3.23)

δ =
a

L
, (3.24)

γ = TΩ, (3.25)

α =

√
AL2

Izz
, (3.26)

λ = T 2Ω̇, (3.27)

T =

√
ρAL4

EIzz
. (3.28)

It is clear that τ is a rescaling of time, ξ is a rescaling of space, γ is a rescaling of rotation
speed of the beam, and δ is the ratio of distance from axis of rotation to the beam length. The
other parameters are described as follows. α is a parameter that, when properly tuned, assures
that the beam is sufficiently slender to approximate via the Euler-Bernoulli beam
approximation. Ref. [6] uses a parameter of α = 70, which is certainly slender enough. We



49

shall also use this value. We then sweep the parameters γ and δ from 0 to 50 and 0 to 5,
respectively, and compare the results with Ref. [6] and Ref. [26].

The adiminsionalization requires a modification of our matrices X2,X1 as follows.

X2 =
X2

T 2
, (3.29)

X1 =
X1

T
. (3.30)

The results are given in Table 3.1. N = 100 elements are used in the beam, with Iyy = Izz,
and α = 70 to ensure sufficient slenderness. The descriptor “chordwise” refers to the
v-bending modes, “flapwise” refers to the w-bending modes, and “axial” refers to the
s-stretch modes. The material properties are adimensionalized; any material properties may
be used. Note that the beam is assumed to have a rectangular cross-section, but imposing that
Iyy = Izz requires that the width and height (depth and breadth) are equal. Thus, the beam has
a square cross-section.

Table 3.1. Comparison of Natural Modes for N = 100 and α = 70

Mode Type Mode δ γ Present Ref. [6] Ref. [26]

chordwise 1 0 0 3.5160 3.5160 3.5160

chordwise 2 0 0 22.0345 22.0345 22.0345

chordwise 3 0 0 61.6972 61.6972 61.6972

chordwise 4 0 0 109.9569 109.9569 109.9557

axial 1 0 0 120.9019 120.9019 120.9019

axial 2 0 0 329.8978 330.8796 329.8672

flapwise 1 0 1 3.6816 3.6816 3.6816

flapwise 2 0 1 22.1810 22.1810 22.1810

chordwise 1 0 2 3.6196 3.6196 3.6196

flapwise 1 0 2 4.1373 4.1373 4.1373

flapwise 2 0 2 22.6149 22.6149 22.6149

flapwise 1 0 3 4.7973 4.7973 4.7973

flapwise 2 0 3 23.3203 23.3203 23.3203

flapwise 1 0 4 5.5850 5.5850 5.5850

flapwise 2 0 4 24.2734 24.2733 24.2733

flapwise 1 0 5 6.4495 6.4495 6.4495

flapwise 2 0 5 25.4461 25.4461 25.4461

flapwise 1 0 6 7.3604 7.3604 7.3604

(table continues)
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Table 3.1 (Continued)

Mode Type Mode δ γ Present Ref. [6] Ref. [26]

flapwise 2 0 6 26.8091 26.8091 26.8092

flapwise 1 0 7 8.2996 8.2996 8.2997

flapwise 2 0 7 28.3341 28.3341 28.3342

flapwise 1 0 8 9.2568 9.2568 9.2569

flapwise 2 0 8 29.9954 29.9954 29.9956

flapwise 1 0 9 10.2257 10.2257 10.2258

flapwise 2 0 9 31.7705 31.7705 31.7709

chordwise 1 0 10 4.9700 4.9700 4.9703

flapwise 1 0 10 11.2023 11.2023 11.2025

flapwise 2 0 10 33.6404 33.6404 33.6409

chordwise 1 0 50 7.3337 7.3337 7.5540

chordwise 1 1 2 4.3978 4.3978 4.3978

chordwise 1 1 10 13.0482 13.0482 13.0494

chordwise 1 1 50 41.2275 41.2275 41.3791

chordwise 1 5 2 6.6430 6.6430 6.6430

chordwise 1 5 10 27.2658 27.2660 27.2761

chordwise 1 5 50 74.0094 74.0031 74.1949

There is a clear correspondence between the model presented here and that of Ref. [6];
furthermore, the model here agrees with the analytic solution provided by Ref. [26]. Thus, we
conclude that the model developed here is suitable for testing.

3.2 EXPERIMENTAL SETUP
We now develop a coupling model for the purpose of analyzing the interaction of

coupled rotating cantilever beams.

3.2.1 Coupling Multiple Beams
If n beams are coupled on a rotating disk, there will be coupling in all six degrees of

freedom. However, the in-plane and axial displacement and bending as well as out-of-plane

displacement will be much smaller than the out-of-plane bending. In-plane refers to the plane
in which the rotation occurs, as shown in Fig. 3.1. Based upon this assumption, only
out-of-plane bending will be considered.



51

Figure 3.1. Cantilever beam coupling about a central hub.

The coupling is that of the bending angle so the coupling is modeled as a torsion
spring. The spring is given a constant relative to the stiffness of the material from which the
cantilever beams are constructed. The coupling parameter is given as

k = β
EI

L
, (3.31)

where E is Young’s modulus of the beam, I = Iyy is the second bending moment of the beam
at the connection point, L is the length of the beam, and β is a scaling parameter. Larger β
indicates stronger coupling, whereas small β can be used to decouple the beams. For our
purposes, β = 1000 to indicate strong coupling.

A single beam is assembled using a C++ routine, then a routine in MatLab duplicates
the beam n times and couples each beam only to its nearest neighbors. Since the boundary
conditions pin s, v, vbending and w, the first DOF in each beam is the w-bending DOF. The
spring stiffness matrix

Ktorsion =

(
k −k
−k k

)
(3.32)

is applied to the full stiffness matrix as an addition at the appropriate wbending nodes. Node
selection is done by considering that the uncoupled matrices are block diagonal, so that the
first beam is located in the top left corner of the matrix and the the second follows it,
continued until the n-th beam is in the bottom right corner. This is applied to all of the
matrices K,P,M,G, σ. Only the K stiffness matrix will be modified, as it is assumed the
torsion spring is massless and no other terms are involved in spring coupling. The stiffness
matrix is modified as

K(~g(i), ~g(j)) = K(~g(i), ~g(j)) + Ktorsion(i, j), i, j ∈ {1, 2}, (3.33)
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where ~g contains the degrees of freedom to be modified. The values in ~g are given as

~g(i) = i-th global DOF = first wbending DOF for the beam that is to be coupled. (3.34)

With the expanded definitions, the system can again be solved for eigenvalues and
eigenvectors. Validation of these results was checked by using the fact that if λi, ~ξi are a
solution pair to the eigenvalue problem, then

(λ2
iX2 + λiX1 + X0)~ξi = ~resi = ~0. (3.35)

Thus the solution was considered to be valid if
n∑
i=1

max | ~resi| < tol, (3.36)

where the tolerance is typically set to be small, but slightly above machine precision, or

tol ≈ 10−12. (3.37)

This solution residue, in conjunction with the spectral error defined in Eq. (3.21), provide
compelling evidence that the eigensolutions presented by MatLab are indeed solutions to the
system.

The system was tested with three coupled beams and 20 elements per beam. The
results were satisfactory in that the spectral error and residue values were acceptable. When
the number of elements was raised to 100 elements per beam, the residue became ∼ O(102),
which is unacceptably large. The solution was found using the L3, L1 and L4 linearizations
to no avail. According to Ref. [3], it is possible to reduce the error of linearized polynomial
eigenvalue problems by scaling the eigenvalue matrices. The procedure is carried out as
follows.

Given the quadratic eigenvalue problem

Q(λ) = λ2A+ λB + C, (3.38)

we multiply Q by β and set λ = µα, which yields

Q̂(µ) = µ2(α2β)A+ µ(αβ)B + (β)C. (3.39)

If we set
a ≡ ||A||2, b ≡ ||B||2, c ≡ ||C||2, (3.40)

then according to Ref. [8], the optimal rescaling parameters α and β can be found by{
α, β : min

α,β>0

{
max

{∣∣βα2a− 1
∣∣ , |βαb− 1| , |βc− 1|

}}}
, (3.41)
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with the solution as

α =

√
c

a
, β =

2

c+ αb
. (3.42)

This procedure was applied to the matrices X0, X1 and X2 as defined by
Eqs. (3.1), (3.2) and (3.3) respectively. MatLab’s polyeig routine was run after rescaling
these matrices, using three coupled beams of 100 elements each and the residue was
satisfactory. Recall that the polyeig routine is the L1 linearization and was not as accurate as
the L3 linearization in terms of the solution error with respect to the previous publications.
The uncoupled single beam case was run using the polyeig routine and the values were
within 0.01% of those in Table 3.1. Thus, the numerical error issues with the quadratic
eigenvalue problem were solved using renormalization techniques as described by
Refs. [3] and [8].

3.2.2 Forced Response Setup
We now investigate the effects of periodic forcing on the rotation of the central hub.

The direct application of this forcing is that of a propeller driven by a radial engine. Given
such an engine, there will be periodic vibration on the overall torque with period 2nπΩ, where
n is the number of engines (or 4-stroke cylinders) attached to the crankshaft, as illustrated in
Ref. [24]. These vibrations will provide a force on top of the average force which is time
dependent. The force in this case is simply the hub rotation speed Ω. We redefine Ω to be
dependent upon time as

Ω = Ω0(1 + ε(cos(ωt)), (3.43)

where ω = nΩ0 is an integer multiple of the average rotation speed Ω0. Note that if the
forcing is small so that ε→ 0, then Ω→ Ω0 recovers the constant rotation speed as before.
Since Eq. (2.297) indicates a dependence on Ω̇, which is now nonzero, we calculate Ω̇ as

Ω̇ = −Ω0εω sin(ωt) = −nΩ2
0ε sin(nΩ0t). (3.44)

If, in Eq. (2.297), we let pv = pw = 0, the natural assumption would be of no forcing so that
the solution should grow linearly with the sinusoidal frequency corresponding to the first
eigenmode with respect to rotational speed Ω0. However, if ε 6= 0, the solution should have
amplified eigenmodes corresponding to the intersection of kn(Ω0) and the eigenmodes
corresponding to Ω0.

3.3 EXPERIMENTAL RESULTS
The first step in the analysis of the system is to plot the first eigenfrequencies

corresponding to Ω0 and compare them to periodic vibrations of frequencies nΩ0. These
results are presented in Fig. 3.2. The points where kn = nΩ0 intersects with the
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eigenfrequency curves are of particular interest, as this indicates that a radial engine
comprised of n cylinders will be in resonance with a particular eigenmode. Cases where a
single Ω0 contains multiple neighboring intersections are most interesting as mixed
eigenfrequencies will be in resonance and may be excited.

Figure 3.2. Harmonic interaction curves: Eigenfrequency ω vs. hub rotation speed Ω0.
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We now integrate the system forward in time. The time integration is done by
considering the system from Eq. (2.297) where pv 6= 0 or pw 6= 0. We set

X0 = [K] + Ω2([S]− [P]) + Ω̇[G], (3.45)

X1 = 2Ω[G] + [C], (3.46)

X2 = [M], (3.47)

and write the system as
[X2]~̈x+ [X1]~̇x+ [X0]~x = ~F. (3.48)
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The second order system can be written as a system of first order equations under the
transformation

~̇x = ~v, (3.49)

~̇v = [X2]−1
(
~F− [X1]~v − [X0]~x

)
. (3.50)

It is natural to proceed with an explicit Runge-Kutta integration routine to solve this system,
given that it is easy to construct a fourth order accurate algorithm. However, this system is
numerically stiff, a condition which results in poor performance of explicit integration
schemes. Unfortunately, there is not a concise definition of numerical stiffness which
encompasses all of the reasons that a system may be numerically stiff. However, using
guidance from the discussion in Ref. [14], it is plain to see from a simple implementation of
MatLab’s explicit fourth order Runga Kutta routine, known as ode45, that this system exhibits
many of the qualities that a numerically stiff system has. Thus, an implicit scheme ought to be
used.

The default integration scheme employed in many engineering texts (e.g. Ref. [20]) is
known by engineers as the Newmark method. The Newmark method was introduced by
Nathan Newmark and published in 1959, Ref. [18]. The scheme is an implicit second order
integration. Newmark’s method is a generalization of second order implicit schemes,
parameterized with two parameters. When the parameters of Newmark’s method are chosen
appropriately, the method is identical to the trapezoid method. According to Ref. [14], the
trapezoid scheme has the largest region of stability of all second order implicit schemes so
that it is the preferred choice. As such, mathematicians often employ the trapezoid method for
second order accurate implicit integration. Clearly, since the Newmark method is a
generalization of the trapezoid method, the Newmark method is optimized when the
parameters chosen so that it is actually the trapezoid rule. The routine employed in this study
utilizes MatLab’s ode23t, a second order adaptive implicit integrator, which is based on the
trapezoid method.

The analysis tested values at Ω0 = 4400 RPMs and forcing was applied at the
eigenfrequency ω corresponding to the excitation of either v or w. When exciting w, only one
of the beams was forced at the hub. The system was tested for two values of the coupling
strength parameter β ∈ {10−1, 103}. The damping matrix in Eq. (3.46), labeled [C], was
constructed relative to the mass and stiffness matrices [M] and [K] as

[C] = s1[M] + s2[K], (3.51)

with parameters s1 = s2 = 10−5. The perturbation parameter ε was set to ε = 10. Time was
allowed to run for 10 cycles, which was sufficient for the settling of the oscillations, as
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indicated by the settling of the displacement in U . The forcing function is given by

~Fperturb = ~p{v,w}ε sin(ωt), (3.52)

where ~p{v,w} is a vector of zeros except where the forcing is set, which is set to 1. The force
term in Eq. 3.50 is then given to be

~F = ~Fnonhom + ~Fperturb (3.53)

In the case of ~pw, the forcing is done at one place – the first node of the second beam at the w
DOF. In the case of ~pv, the forcing is done at three places – the first node of every beam at the
v DOF. The reason for forcing all three beams in v is to simulate the effects of periodic
forcing from the hub, i.e. impulsive forcing from a rotary engine. In w, only one beam is
forced in order to study the effects of the w coupling strength. Additionally, only forcing one
beam in w simulates the effect of one of the beams having a slightly skewed setting angle with
respect to the plane of rotation.

The results are plotted in Figs. 3.3, 3.4, 3.5 and 3.6. Fig. 3.3 shows the displacement
the beams in u. Forcing occurs at the hub in the v direction. Both displacement and time are
adimensionalized, so the scales in the figures are arbitrary. The figures indicate the
displacement at the tip of the beams, at the opposite side as the forcing. Figs. 3.3 and 3.4
show that all the beams follow the same displacement trajectory, which makes sense given
that all of the beams are equally forced in magnitude, period and phase. Fig. 3.5 shows that
the displacement trajectories in w are the same for all beams even though only one of the
beams is forced. This is because the coupling strength is very large. The trajectories in
Fig. 3.6 tell a different story – lesser coupling strength yields that the forced beam is displaced
with a heavy periodicity, while the unforced beams lag but do follow the overall trajectory. In
effect, the unforced beams follow a “smoothed” trajectory relative to the trajectory that the
forced beam takes.
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Figure 3.3. U displacement at the beam tip with forcing of V at the hub on all beams.
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Figure 3.4. V displacement at the beam tip with forcing of V at the hub on all beams.
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Figure 3.5. W displacement at the beam tip with β = 103.
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Figure 3.6. W displacement at the beam tip with β = 10−1.
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CHAPTER 4

CONCLUSION

4.1 SUMMARY OF WORK
This thesis develops a finite element model for rotating cantilever beams from first

physical principles. The energy equations are derived and variational calculus is applied to
minimize the action functional. The test and weighting functions are derived and are the
Hermite polynomials. These results are combined to create the discretized model. Finally,
simulations are run to examine the system response to harmonic forcing.

Chapter two introduces the system in Cartesian coordinates. The energy equations are
then built using the Cartesian coordinate frame. A coordinate transformation produces a new
hybrid coordinate frame with a stretch coordinate which describes elongation of the beam
along its central axis. Elongation is described by the arclength integral so that the stretch
coordinate s is coupled to in-plane displacements v and out-of-plane displacements w. The
hybrid coordinate frame is substituted into the energy equations, then variational calculus is
applied to the system to minimize the action functional, which produces the Euler-Lagrange
equations.

The test functions for the variational minimization are produced by considering the
interpolating polynomials for the system. Enforcing boundary conditions on the interpolatory
polynomials generates the Hermite polynomials. Thus, the test functions are the Hermite
polynomials, which satisfy the requirements for application of variational minimization.
Since the system is nonhomogeneous, Rayleigh-Ritz minimization no longer satisfies the
minimization. Weighting functions are multiplied on the final result and then the system is
minimized. The weighting functions are chosen to be the same as the test functions, thus
Ritz-Galerkin is employed. Since the test and weight functions are the same and Hermite
polynomials satisfy the conditions of both test and weight functions, the result of the
minimization is the optimized form.

The discretization process breaks the beam into many coupled smaller beams. In order
for the test and weight functions to be suitable for the minimization of the discretized beam,
there must be continuity along the coupling. The Hermite polynomials provide this continuity,
so the final form of the single-element beam optimization is acceptable for the coupled
multi-element beam. The resulting matrix form of the elemental Euler-Lagrange system are
presented for easy application. Finally, the assembly process is described.
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Chapter three presents the eigenvalue analysis of the produced system. The values are
consistent with previous studies, thus the system is considered to be representative of the
physical model. A f response analysis study is developed and the results show that harmonic
forcing produces amplification of the natural modes. Then, forcing is applied to the system
and the effects of periodic forcing as well as asymmetric forcing in the beam coupling terms
are studied.

This work produced a descriptive manual for generating finite element models that
represent physical systems with good agreement to previous work. Additionally, an
application was developed in C++ that can easily be modified to both add terms for the
Euler-Lagrange equations so that nonlinear analysis can be investigated, as well as adding
stress-strain analysis. Furthermore, the routines written in MatLab provide eigenvalue and
frequency response analysis capabilities that are also easy to modify according to changes in
the model. Thus, this research provides a frame work for continued studies of coupled
rotating cantilever beams.

4.2 FURTHER WORK
This study can be furthered in many ways. For one, the system can be modified to be a

Timosheko beam system so that pretwisted beams can be studied. Additionally, a sweep over
the coupling strength parameter β would illuminate the importance of damping at the hub and
more sophisticated models can be used to couple the beams around the hub. It would be
beneficial to perform a MEX compilation of the C++ code so that the matrices that are
assembled in the C++ code may be directly accessed by MatLab and not written to disk by
C++ and read from the disk by MatLab. Furthermore, it would be useful to convert the
algorithms presented here so that they can be used as a package add-on to a commercial off
the shelf solver such as ANSYS or FEMAP/NASTRAN.

The fact that the trapezoid rule is the most accurate second order method and is
A-stable presents the natural desire to utilize this method for the time integration. The fact
that it is not L-stable presents issues with negative eigenvalues, as they will tend to result in
oscillations in the solution. However, with a bit of effort, it is possible to develop integrators
that are L-stable. Specifically, the implicit Runga-Kutta Radau I-A and Radau II-A schemes
are L-stable and are third order accurate for the two step method. The increase of the number
of steps (from one to two) is offset by the fact that there are no oscillations and the the method
converges with third order accuracy. While it was convenient to use MatLab’s ode23t routine
for this work, it would be natural to explore an implicit RK scheme to improve the efficiency
of the integrator.

Finally, some of the linearity assumptions can be discarded to study nonlinear effects
of the rotation and coupling. The linearity assumptions are tabulated in Appendix C. Of the
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assumptions, the terms involving Ω are particularly interesting as their importance increases
with increased rotation speed. To begin with, the assumption that the nonlinear bending
coupling terms

ρA
∂

∂x

{[∫ x

L

Ω2u

]
vx

}
→ 0 and ρA

∂

∂x

{[∫ x

L

Ω2u

]
wx

}
→ 0

should be discarded so that the presence of nonlinearities at high rotation speeds Ω in the
coupling of u to v- and w-bending can be studied. Since these terms depend on Ω2, it is clear
that fast rotation speeds should increase the effects of these terms. Thus, it would be
worthwhile to investigate this system with those terms included.
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VARIATIONAL APPROXIMATION AND
CALCULUS OF VARIATIONS

In this appendix a treatment on variational approximation is presented as the
background and basis for the finite element approximation technique that is employed in
solving the cantilever beam problem.

A.1 INTRODUCTION TO VARIATIONS
Let a, b, α, β, γ ∈ R. Suppose there is a function

η(x) : [a, b]→ [α, β], (A.1)

with η ∈ C1[a, b], such that
η(a) = η(b) = 0. (A.2)

Suppose there is also a function

y(x) : [a, b]→ [α, β], (A.3)

with y ∈ C1[a, b], where

y(a) = α, y(b) = β. (A.4)

For the parameter γ, define:
Y (x; γ) ≡ y(x) + γη(x). (A.5)

Clearly, as γ → 0, Y (x; γ)→ y(x). Furthermore, for any η and γ,

Y (a; γ) = y(a), Y (b; γ) = y(b). (A.6)

By the chain rule,

dY
dx

=
∂Y

∂y

dy
dx

+ γ
∂Y

∂y

dη
dx

(A.7)

= 1 · y′ + 1 · γη′ (A.8)

= y′ + γη′. (A.9)

Since y, η ∈ C1[a, b], this result has that Y ∈ C1[a, b], and we write Y ′ = dY
dx .

We now define the variation, with operator δ.
Definition A.1. Given Y as defined above, we define:

δY = Y (x; γ)− Y (x; 0) = γη(x), (A.10)

and call this the variation of Y , and call δ the variational operator.
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From this definition, we see that for 0 < γ � 1, δY ≈ 0, and, moreover,

lim
γ→0

δY = 0. (A.11)

In order to understand the linearity of δ, observe that:

d
dx

[δY ] =
dY (x;α)

dx
− dY (x; 0)

dx
(A.12)

= y′ + γη′ − y′ (A.13)

= γη′, (A.14)

and

δ

[
dY
dx

]
= δ [y′ + γη′] (A.15)

= y′ + γη′ − y′ (A.16)

= γη′, (A.17)

so clearly
d

dx
[δY ] = δ

[
dY
dx

]
. (A.18)

Similarly,

δ

∫
Y dx =

∫
Y (x; γ)dx−

∫
Y (x; 0)dx (A.19)

=

∫
Y (x; γ)− Y (x; 0)dx (A.20)

=

∫
δY dx. (A.21)

A full treatment of this property has been presented in Refs. [15, 25].
Definition A.2. Let y be defined as above. Consider the following integral:

J =

∫ b

a

f(x, y, y′) dx, (A.22)

for some function f in C1[a, b]. Suppose that there is some function y which minimizes J ,
where the function y is unknown. Suppose furthermore that there is some other function Y
which is known and is “near” y. In order to find y, we construct Y as above, and write

Ĵ(γ) =

∫ b

a

f(x, Y, Y ′) dx. (A.23)

Ĵ is called a functional, and γ = 0⇒ Y = y extremizes Ĵ in the function space.
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Definition A.3. Consider:

Ĵ ′ =
dĴ
dγ

=

∫ b

a

∂f

∂Y

∂Y

∂γ
+

∂f

∂Y ′
∂Y ′

∂γ
dx =

∫ b

a

∂f

∂Y
η +

∂f

∂Y ′
η′ dx. (A.24)

Allowing γ → 0, we have

Ĵ ′(0) =

∫ b

a

∂f

∂y
η − ∂f

∂y′
η′ dx, (A.25)

and integrating by parts provides:

Ĵ ′(0) =
∂f

∂y′
η

∣∣∣∣b
a

+

∫ b

a

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx =

∫ b

a

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx. (A.26)

Since we are minimizing Ĵ , we set this integral to zero; that is:∫ b

a

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx = 0, (A.27)

and since this requirement must hold for any η, it must be true that (see Ref. [25])

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (A.28)

These are known as the Euler-Lagrange Equations.
The term Euler-Lagrange Equations is plural because, in spite of the fact that

Eq. (A.28) appears as a single equation, this extends to n-dimensional space for y, y′ ∈ Rn.
Thus, Eq. (A.28) is actually a system of equations. A full treatment of this is given in
Ref. [15].

A.2 VARIATIONAL MINIMIZATION
Alternatively, consider

δĴ =

∫ b

a

δf dx, (A.29)

and, following from Ref. [15],

δf = f(x, Y (x; 0), Y ′(x; 0))− f(x, Y (x; γ), Y ′(x; γ)) = γ

[
∂f

∂Y
η +

∂f

∂Y ′
η′
]
. (A.30)

Using this, we write

δĴ =

∫ b

a

δf dx, (A.31)

= γ

∫ b

a

[
∂f

∂Y
η +

∂f

∂Y ′
η′
]

dx (A.32)

= γ

∫ b

a

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
η dx. (A.33)
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Thus, the variation of our functional can be expressed as a scalar multiple of the rate of
change of our functional with respect to the parameter γ. We conclude that the variation of the
functional can be used to minimize the functional. It can be shown that this formulation holds
for n-dimensional x, Y , and Y ′, Ref. [15].

A.3 THE PRINCIPLE OF LEAST ACTION
The Euler-Lagrange equations are often used to describe the energy of a system. The

more common notation associated with energy is

L = L(t, x, ẋ), (A.34)

and the integral

S =

∫ t1

t0

L dt =

∫ t1

t0

L(t, x, ẋ) dt (A.35)

is called the action. The Principle of Least Action states that as system will take the path of
least action. In this case, we can determine the path of least action by taking the variation of
the action functional equal to zero:

δS = δ

∫ t1

t0

L(t, x, ẋ) dt = 0, (A.36)

or ∫ t1

t0

δL(t, x, ẋ) dt = 0⇔ ∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0. (A.37)

The Lagrangian of a system is given as

L = T − V, (A.38)

where T is the kinetic energy of the system and V is the potential energy in the system. For
this discussion, it shall be assumed that all virtual work is stored as energy in V , and will
derive the work in its potential form. This is valid for mass-conserving systems and the work
is described as the conservative force minus the change in potential energy, which leads
immediately to [20]:

δW = −δV, (A.39)

where in this case W represents virtual work.

A.4 THE RITZ-RAYLEIGH METHOD
While the aforementioned variational approximation is useful for approximating the

“mass action” of the system, it is not enough for computing true motion of the system. In
order to do so, a discretization technique must be employed. Since we know that the energy
equations are useful in variational approximation, we are motivated to utilize the energy



69

equations to elucidate an approximation for the equations of motion. We shall employ Ritz’s
method to approximate the system so that we may calculate the discrete equations of motion.
In essence, Ritz’s method provides us with an appropriate solution, and in doing so, yields a
discretized system. By construction, the error (or residual) is minimized, and the boundary
values are all accounted for. In finite difference techniques, a template is applied to a problem,
and stability, well-posedness, numerical and system boundary conditions all need to be
computed and verified. Finite element methods, including Ritz’s method, account for all of
these ingredients, so long as appropriate test functions are chosen [1].

The immediate question to be posed is: “How does one choose appropriate test
functions?” The answer, however, is not nearly straightforward. In practice, it is easy to
determine the appropriate function space and calculate the test functions. In terms of proving
that the test functions are appropriate, the theory is quite complicated. It is beyond the scope
of this paper, and shall not be thoroughly discussed. A full treatment can be found in
Brenner’s text [4]. The foundations, however, shall be stated.
Definition A.4. Let f ∈ C1[a, b] be such that∫ b

a

|f(x)|n dx <∞, (A.40)

and define

||f ||n =

(∫ b

a

|f(x)|n dx
)1/n

(A.41)

as the n-th L-norm. Then all f meeting the requirement in Eqn. A.40, coupled with the
corresponding L-norm, forms the n-th Hilbert space, Hn([a, b]). That is,

Hn([a, b]) =

{
f ∈ C1[a, b] :

∫ b

a

|f(x)|n dx <∞
}
, (A.42)

with corresponding L-norm.
Of particular interest, for the finite element application, is H2.
Note: This is a particular definition of a Hilbert space. There are more generic

definitions, but this definition is quite suitable for our application. For more information on
Hilbert spaces, and other norms/normed spaces, refer to Ref. [4].

We now consider an extension of above ideas.
Definition A.5. Let

Yn(x;~γ) = y(x) +
n∑
k=1

γkηk(x), (A.43)

where ηi, i = 1, . . . , n are as above — i.e. ηi(a) = ηi(b) = 0 for each i. Let

J =

∫ b

a

f(x, Yn, Y
′
n) dx. (A.44)



70

Then
δJ = 0⇔ ∂f

∂Yn
− d

dx

(
∂f

∂Y ′n

)
= 0. (A.45)

If this is satisfied, then J is minimized by Y ∗, say, and there must be some Y ∗n comprised of
the resulting solution parameters ~γ∗ that satisfies

||Y ∗ − Y ∗n ||2 ≤ ||Y ∗ − V ||2, for any V ∈ H2([a, b]). (A.46)

This is known as Ritz-Rayleigh minimization.
This may not look very useful, but indeed we have the result that a finite dimensional

function can be used to approximate an infinite dimensional problem. And, we have
information about how to pick such finite dimension functions — they need to be in H2 and
they must satisfy the boundary criteria. Thus, we may use well known and characterized
approximation functions to discretize our system, and at the same time, we will have found
equations of motion of our system from the energy functions.

Perhaps more interestingly, what this statement says is that if we can find a function
Y ∗n which satisfies the criteria — it meets the boundary conditions and is in H2, then
providing that the function is consistent with the problem (i.e. is periodic for periodic
systems, etc.) — then we can be assured that the test function is as close to the minimizing
function as any other function in the function space.

Note: Not all problems can be solved using Ritz’s method. The problem must have a
variational formulation; in other words, it must satisfy the Euler-Lagrange equations. If not,
such as the case of non-conservative work, the variation cannot be used to minimize the
functional, and the problem must be solved using Galerkin’s method of the weighted residual.
See Ref. [7] for a description of this method.

One final observation can be made. The Ritz method does not need to be applied when
discretizing a system that is in variational form. Any of the Galerkin weighted residual
methods will also work; however, when applying those methods to a problem in variational
form, the result will always reduce to the same form as the Ritz approximation as discussed in
Ref. [21]. This is important to note because many authors publish that their approximation is
done via weighted methods, but in the end, given that their system is in variational form, the
final form will be the same as the resultant form of the Ritz approximation method.
Furthermore, the notation behind weighted methods is sometimes simpler, and for that reason,
one might be compelled to setup the problem in a weighted form; this result allows for such a
substitution.
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STRAIN EQUATIONS
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STRAIN EQUATIONS

This appendix derives the strain equations from first principles of structural mechanics
for use in building the stress and strain terms in the cantilever beam problem.

B.1 NORMAL STRAIN
The strain energy of the beam is proportional to the deformation and deforming force.

Mathematically, this is expressed as

U =

∫ δ

0

F dδ, (B.1)

where U is strain energy, F is the applied force, and δ is the displacement.
The average Normal strain is given by

εavg =
∆L

L
, (B.2)

where L is the length and ∆ is the usual difference operator, and the average normal strain is a
dimensionless ratio. This strain is normal to the applied force.

Figure B.1. Normal strain in a 1D rod.

The point normal strain in 1D is constructed as follows. Suppose two points are
examined along a rod as in Figure B.1, say P and Q. The distance between the points is
denoted

∆x = Q− P, (B.3)
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and the displacements of the two points P and Q are denoted as uP and uQ so that the
displacement is given as

∆u = uQ − uP . (B.4)

By setting
u = uP (B.5)

and adding zero
uQ = uQ + uP − uP = uP + (uQ − uP ) (B.6)

we find
uQ = u+ ∆u, (B.7)

and we can write the difference quotient

(u+ ∆u)− u
∆x

. (B.8)

The point normal strain is given as the limit of this quotient

εp = lim
∆x→0

(u+ ∆u)− u
∆x

= lim
∆x→0

∆u

∆x
=

du
dx

(B.9)

In the case of higher dimensions, the displacement functions are functions of higher
dimension, and the point normal strain in each direction would be a partial derivative, e.g.

εxx =
∂u

∂x
(B.10)

for strain in the x-direction. The subscript, in this case, is given in index notation for the
displacement vector u and the spatial displacement in x.

The mixed case is more general, and is a combination of multiple terms, given as

εij =
1

2

{
∂ui
∂xj

+
∂uj
∂xi

}
+

1

2

{
3∑

k=1

∂uk
∂xi

∂uk
∂xj

}
(B.11)

in the orthogonal ijk coordinate frame.
It is important to note that this relationship only holds for small strains. The linearity

of the displacement-strain relationship is a local effect. Large strains often result in nonlinear
deformations. This requires consideration of the higher order terms, which yields e.g.

εxx =
∂u

∂x
+

1

2

{(
∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2
}

(B.12)

for a 3D system.



74

B.2 SHEAR STRAIN
The Shear strain is an angular change. It is often thought of as the change in angle

between two vectors. The study of shear strain involves the consideration of an infinitesimal
volume that is cubic in shape. By considering only one of the faces of the cube, it is possible
to discuss the angular relationship between the bottom and left sides of the cube. Before
deformation, they are π/2 radians apart; once deformed, they will be π/2− γ radians apart,
where γ = γ1 + γ2 is the final angular deformation. Here γ1 and γ2 represent, respectively, the
angular displacements of the bottom and left edges with respect to their initial positions.

Figure B.2. Shear strain over a square. C. FELIPPA, Strains. Univeristy of Colorado, Boul-
der. Aerospace Engineering Dept., http://www.colorado.edu/engineering/CAS/courses.d/
Structures.d/IAST.Lect04.d/IAST.Lect04.pdf, accessed June 2014, 2013

The Average shear strain is given as

γavg =
π

2
− γ, (B.13)

where γ is the total angular displacement of the edges.
In general, it is also possible for the cube to be translated from its original position,

and thus a general form will need to be implemented to find the displacements γ1 and γ2.
From Figure B.2, we consider the right triangle formed with hypotenuse A′B′. The angle γ1 is
known to be the arctangent of the vertical over the horizontal legs. Using the corresponding
notation, we have

tan (γ1) =

(
vB − vA
uB − uA

)
(B.14)

and we write the numerator as a difference, while noting that the denominator is a change in
the distance of segment AB. For small strains, this change will be trivial, so we approximate

uB − uA ≈ ∆x. (B.15)



75

Plugging Eq. B.15 into Eq. B.14, and writing the numerator as a difference, we have

tan (γ1) =

(
∆vBA
∆x

)
. (B.16)

Furthermore, by assuming small strains we have

γ1 � 1 (B.17)

so that
tan (γ1) ≈ γ1. (B.18)

Following a similar process for γ2, we construct

γ1 =
∆v

∆x
, γ2 =

∆u

∆y
, (B.19)

and write
γ = γ1 + γ2 =

∆v

∆x
+

∆u

∆y
. (B.20)

We now write the definition of the Point shear strain as

γxy = lim
∆x,∆y→0

γ = lim
∆x,∆y→0

∆v

∆x
+

∆u

∆y
=
∂v

∂x
+
∂u

∂y
. (B.21)

Linearity of ∂ implies that γxy = γyx.
This can be easily extended to 3D so that all faces of the cube can be analyzed for

shear strain.

B.3 STRAIN ENERGY DENSITY
Average strain energy density is given as

Ūd =

∫
σ dε, (B.22)

where σ is stress, and ε is strain. Normal stress is defined as

σ =
F

A
, (B.23)

where F is the applied force, and A is the surface area upon which the force is applied. Shear

stress is defined as
τ =

T

A
, (B.24)

where T is the applied torque, and A is the surface area upon which the torque is applied. F is
a force normal to the cross section, while T is tangential to the cross section.

Hooke’s Law relates stress to strain by the linear relationship

σ = Eε, (B.25)
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where E represents Young’s modulus, or the elastic modulus, and is a material property.
Hooke’s law holds for a small range on most materials, but some materials are nonlinear and
do not have a linear relationship. For our purposes, the materials are linear for small strains;
this is true for many common metallic alloys such as aluminum and steel [10].

Plugging Eq. B.25 into Eq. B.22 yields

Ūd =

∫
Eε dε =

1

2
Eε2 =

1

2
σε =

1

2

(
σ2

E

)
. (B.26)

Total strain energy of a rod or beam is given by

U =

∫
V

Ūd dV =

∫ L

0

∫
A

1

2

(
σ2

E

)
dA dx. (B.27)

Similar to Hooke’s law, there is a linear relationship between shear stress and shear
strain given by

τ = Gγ, (B.28)

where γ is shear strain, G is the material property called shear modulus, and τ is shear stress.
The same procedure as above can be applied to calculate the strain energy from shear.

Poisson’s Ratio is the absolute value of the lateral strain over the axial strain, is a
dimensionless value, and is denoted by ν. E, G, and ν are related by

E = 2G(1 + ν). (B.29)
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LINEARITY ASSUMPTIONS
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LINEARITY ASSUMPTIONS

This appendix tabulates the various linearizing assumptions for reference. The results
are stored in Table C.1. Subscripts indicate differentiation with respect to the subscript label
(except the case of hv and hw). The phrase “higher order terms” is abbreviated as “h.o.t.”.

Table C.1. Linearizing Assumptions from Development of the Equations of Motion

Reference Simplification Explanation

Strain: Eqs. B.11 and B.12 ux + 0.5u2
x → ux

Small deformations corres-
pond to small strains

Shear: Eqs. B.17 and B.21
γ � 1⇒ tan(γ) ≈ γ
→ γxy = vx + uy

Small deformations corres-
pond to small shear strains

Stretch: Eqs. 2.9 and 2.10
1 + 2uφ � u2

φ

→ (1 + uφ)2 ≈ 1 + 2uφ

Small deformations corres-
pond to small stretch

Stretch: Eq. 2.13
y2 � y

→ f(y) ≈ 1 + 0.5y
Small deformations corres-

pond to small stretch

Curvature: Eq. 2.40
y′ � 1

→ ρ = 1/yxx

Small deformations corres-
pond to small bending

Linearize the EOM
Eqs. 2.167 and 2.180 −ρA(ḧv + ḧw)→ 0

Removing h.o.t.
ḧv and ḧw are nonlin.

Linearize the EOM
Eqs. 2.175 and 2.181

ρA
{[∫ x

L
Ω2(s− hv − hw)

+ v̇Ω dη
]
vx
}
x
→ 0,

−2Ω(ḣv + ḣw)→ 0

Removing h.o.t.
Products on vx are nonlin.
ḣv and ḣw are nonlin.

Linearize the EOM
Eqs. 2.179 and 2.182

ρA
{[∫ x

L
Ω2(s− hv − hw)

+ v̇Ω dη
]
wx
}
x
→ 0

Removing h.o.t.
Products on wx are nonlin.


