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Abstract. A new method is devised for calculating the Igusa local zeta function Zf of a
polynomial f(x1, . . . , xn) over a p-adic field. This involves a new kind of generating func-
tion Gf that is the projective limit of a family of generating functions, and contains more
data than Zf . This Gf resides in an algebra whose structure is naturally compatible with
operations on the underlying polynomials, facilitating calculation of local zeta functions.
This new technique is used to expand significantly the set of quadratic polynomials whose
local zeta functions have been calculated explicitly. Local zeta functions for arbitrary qua-
dratic polynomials over p-adic fields with p odd, and polynomials without constant term
over unramified 2-adic fields are presented. For a quadratic form over an arbitrary p-adic
field, this new technique renders transparent the fact that there are only three candidate
poles, and when p is odd, makes clear precisely which ones are truly poles.

1. Introduction

In this paper, we devise a new method for calculating the Igusa local zeta function of a
polynomial over a p-adic field. Throughout this paper, p is a prime, K is a p-adic field with
finite residue field Fq of order q and valuation ring R. We let π be a uniformizing parameter
for R, and we have the π-adic valuation vπ, and define the absolute value of an element
a ∈ K to be |a|K = q−vπ(a). We let R∗ be the group of units in R and let R∗2 be the group
of square units in R. We use N to denote the set of nonnegative integers. We say that K
(or R) is unramified when the prime p does not ramify in R, and in that case we always
choose π = p.

The Igusa local zeta function of a polynomial f(x1, . . . , xn) ∈ K[x1, . . . , xn] is

(1) Zf (s) =

∫
Rn
|f(x1, . . . , xn)|sKdx1 · · · dxn,

where dx1 · · · dxn is a volume element for the Haar measure. This kind of zeta function was
introduced by Weil [37], and studied extensively by Igusa [9, 10, 11]. See the monograph
by Igusa [13], and also the report by Denef [3] for an extensive survey.

Throughout this paper, we set t = q−s because Igusa [9, 10, 11] showed that Zf (s) is a
rational function of t, and by abuse of notation, we shall call this rational function Zf (t).
The local zeta function carries all information about the number Nk(f) of zeroes that
f(x1, . . . , xn) (mod πk) has in R/πkR for every k ∈ N. Indeed, if we define the Poincaré
series for f to be

Pf =
∑
i∈N

Ni(f)

qni
ti,

then one can show that

Pf (t) =
1− tZf (t)

1− t
.

This relation makes the local zeta function interesting in arithmetic geometry. For example,
the real parts of the poles of Zf (s) are connected with the p-divisibility of the numbers Nk(f)

of solutions modulo πk. For example, Segers [31] proves that the no pole of Zf (s) has real

part less than −n/2 by noting that qd(n/2)(i−1)e | Ni(f) for each i ∈ N when n > 1. The
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sharpest possible lower bound on p-divisibility is given in [21], which is extended to general
algebraic sets in [15]. Numerous other works study the poles of the local zeta function
[24, 33, 19, 34, 3, 35, 4, 6, 5, 40, 41, 29, 43, 36, 22, 23].

Many authors have labored on the calculation of local zeta functions in various situations
[27, 1, 5, 38, 39, 20, 28, 29, 8], and many works either use local zeta functions or else apply
the methods developed for obtaining them [7, 42, 44, 30, 16, 17, 45, 32, 46]. Nonetheless,
certain classes of polynomials have proved forbidding to those who wish to obtain general
results. One such example would be quadratic polynomials over 2-adic fields, the local zeta
functions of which are known to be useful [17], but which are considerably more challenging
to obtain in general than in the case of odd p.

We propose a new method in this paper to improve the situation. We now sketch the
basic philosophy. If f1, . . . , fk are polynomials, then we write f1⊕· · ·⊕fk to denote the sum
f1 + · · ·+fk and at the same time assert that no indeterminate appears in more than one of
the fi; we then say that f is the direct sum of f1, . . . , fk. If a polynomial can be expressed as
the direct sum of many polynomials with only a few indeterminates each, one has a better
chance of being able to calculate its local zeta function. Extreme cases of this would be
diagonal forms such as Fermat varieties, whose local zeta functions have been studied in
[20]. Even if f and g have distinct indeterminates, it is not possible to calculate the local
zeta function of f(x)⊕ g(y) from the local zeta functions of f and g. For a trivial example,
suppose that p is odd and α is a nonsquare unit in R, and that f(x) = x2, g(y) = πy − 1,
and h(y) = πy − α. Then clearly Zg = Zh = 1, and yet Zf⊕g 6= 1 while Zf⊕h = 1. This is
simply a manifestation of the fact that one cannot deduce the valuation of a sum a+ b from
the individual valuations of a and b. Therefore, we invent a new object, called the p-adic
generating function, that carries enough information so that the generating function for a
direct sum can be deduced from the generating functions of the summands. This p-adic
generating function, which is the inverse limit of a family of generating functions, contains
as much data about the polynomial as the collection of Zf−c for all c ∈ R. Such generating
functions cannot be expressed as simple polynomials: their terms have “exponents” that
are sets, and yet because they reside in a group ring whose algebraic structure is naturally
compatible with operations on the underlying polynomials, we obtain a straightforward
calculus of generating functions that enables us to build up the generating function for a
particular polynomial from smaller elements. There is then a simple map from the p-adic
generating functions to local zeta functions that forgets the extra information contained in
the former. This provides a new method for calculating local zeta functions that would
have been very difficult to calculate with existing methods.

To demonstrate the use of this method, we calculate the local zeta function for a generic
quadratic polynomial when p is odd, and for a generic quadratic polynomial without con-
stant term over an unramified 2-adic field. The results are given in Theorems 2.1 and 2.3
below. For odd p, this extends the work of Igusa [12], who considered quadratic polynomials
with no constant term. The problem over 2-adic fields, even the unramified ones, is far more
difficult, and until now we lacked general theorems like the ones that Igusa had proved for
the case of odd p. The new method we present here has rendered the calculations the old
results far easier, has obtained new results, and should also enable the calculation of local
zeta functions for many other non-quadratic polynomials.

We also use the new method to show that the local zeta function of a quadratic form over
any p-adic field has at most three poles (Theorem 2.4 below). When p is odd, we indicate
the poles precisely in Theorem 2.5.
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We present the our results for quadratic polynomials in the next section. The rest of
this paper is organized as follows. In Section 3, we develop the general theory of the p-adic
generating function. In Section 4, we apply the theory to quadratic polynomials to prove the
main results presented in Section 2. Section 4 in turn relies on calculations for unimodular
quadratic forms that are presented in Section 5, with technical proofs in the Appendix.

2. Results: Local Zeta Functions for Quadratic Polynomials

In this section, we present our results on the local zeta functions of quadratic polynomials,
after some introductory material on quadratic polynomials.

2.1. General Remarks on Quadratic Polynomials. To any n×n symmetric matrix M
with entries in R we associate the form Q(x1, . . . , xn) = (x1, . . . , xn)M(x1, . . . , xn)T . When
we speak of a quadratic form over R, we mean one that can be obtained in this manner.
When p = 2, one can scale by 1

2 (and use diagonal entries in 2R) to be able to obtain an
arbitrary homogeneous polynomial of degree 2 in R[x1, . . . , xn], and note that this simply
scales the local zeta function by the π-adic absolute value of 1/2. A unimodular matrix is
a matrix with entries in R and determinant in R∗, and a quadratic form Q is said to be
unimodular if its associated matrix is unimodular.

We say that two quadratic forms Q1 and Q2 are equivalent and write Q1
∼= Q2 if one can

be obtained from the other by an invertible R-linear change of coordinates; these clearly
have the same local zeta function. Equivalence preserves the following three invariants:

• The rank of a quadratic form, written rank(Q), is the rank of its associated matrix.
• The discriminant of a quadratic form Q, written disc(Q), is the element of the set

(K∗/R∗2) ∪ {0} that contains the determinant of the matrix associated to Q. By a
common abuse of terminology, we often say that some a ∈ K is the discriminant of
a quadratic form to mean that the discriminant is aR∗2.
• The norm of a quadratic form Q(x1, . . . , xn) is the ideal of R generated by the set
Q(Rn) of all elements represented by the form. For unimodular quadratic forms
over p-adic fields with p odd, the norm is always R itself or 0 (for the zero form).
When p = 2, a unimodular form has a norm which is an ideal I with 2R ⊆ I ⊆ R
or I = 0 (for the zero form).

Note that the zero form is considered to be unimodular with rank 0, norm 0, and discrimi-
nant 1.

It is a fact [25, §91C] that every quadratic form over R is equivalent to
⊕∞

i=0 π
iQi for

some unimodular quadratic forms Q0, Q1, . . ., almost all of which are zero. When p is odd,
two such decompositions of the same form must be identical up to equivalence of their ith
components for every i (see [25, §92:2]). When p = 2, this is not the case (cf. [25, §93:28]
and [14]). For the purposes of our calculations, we assume that our quadratic polynomials
have been transformed into such a decomposition.

Now we should understand the unimodular forms Qi that make up our decomposition.
For all p, each unimodular form is the direct sum of unimodular forms of rank 1 and 2 (see
[25, §91C, 92:1]). If p is odd, we may use solely rank 1 forms, but we actually find it more
convenient to decompose our unimodular forms into both rank 1 and 2 forms. We now
describe some basic unimodular forms of interest for all p.

• For a ∈ R∗, we use a Sq to denote the quadratic form ax2.
• We write Hyp for the hyperbolic plane 2xy, and we write Hypn for the direct sum

of n hyperbolic planes.
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• We write Ell for the elliptic plane, which is the rank 2 form 2y2f(x/y) with f(X) a
quadratic polynomial over R whose reduction modulo π is quadratic and irreducible
over Fq. All such forms are equivalent, regardless of the choice of polynomial.

In Sections 2.2 (for p odd) and 2.3 (for p = 2 and unramified), we shall use these rank 1
and 2 forms to build generic unimodular forms (up to equivalence).

We now consider generic quadratic polynomials, that is, ones that may have linear and
constant terms. We say that two polynomials f and g over R are isospectral if they have the
same Igusa local zeta function, which (via the Poincaré series) is equivalent to saying that f
and g have the same number of zeroes modulo πk for every k ∈ N. We say that f and g are
strongly isospectral if f and g modulo πk represent each value in R/πkR the same number of
times for every k ∈ N, or equivalently, f and g are strongly isospectral if f − c is isospectral
to g − c for every constant c ∈ R. When p is odd (and also when R = Z2) it turns out (see
Proposition 4.7) that every quadratic polynomial is strongly isospectral to a polynomial of
the form

⊕ω
i=0 π

iQi ⊕ πλL + c, where Q0, . . . , Qω are unimodular quadratic forms, and L
is a linear form involving at most one variable with λ > ω, and c is a constant in R. Thus,
just as Igusa did [12], we may always assume that the polynomial whose local zeta function
we are seeking has been replaced with a polynomial as described in the previous sentence.

2.2. Quadratic Polynomials for Odd p. When p is odd, R∗/R∗2 is a group of order 2,
and we let η be the nontrivial character from this group to {±1} and extend η, and we also
write η(b) when b ∈ R∗ to mean η(bR∗2), and take η(b) = 0 when π | b. We fix α ∈ R∗rR∗2.
On Table 1 we list the unimodular quadratic forms up to equivalence: every unimodular
quadratic form is equivalent to precisely one form on our table (see [25, §92:1a]). Thus rank
and discriminant classify the unimodular forms. We may now compute local zeta functions.

Table 1. Possible Unimodular Forms for Odd p (up to equivalence)

α ∈ R∗ rR∗2

rank r discriminant possible forms

even
(−1)r/2 Hypr/2

(−1)r/2α Ell⊕Hyp(r−2)/2

odd
(−1)(r−1)/2 Sq⊕Hyp(r−1)/2

(−1)(r−1)/2α α Sq⊕Hyp(r−1)/2

Theorem 2.1. Let p be odd. Consider the quadratic polynomial Q =
⊕

i∈N π
iQi ⊕ L + c,

where each Qi is a unimodular quadratic form of rank ri and discriminant di over R, where
there is a positive integer ω such that Qi = 0 for i > ω, where L is a linear form involving
at most one indeterminate, and c ∈ R is a constant. For each j ∈ N, we let

Q(j) =
⊕

0≤i≤j
i≡j (mod 2)

Qi, d(j) = disc(Q(j)) =
∏

0≤i≤j
i≡j (mod 2)

di,

r(j) = rank(Q(j)) =
∑

0≤i≤j
i≡j (mod 2)

ri, q(j) = q
∑

0≤i<j r(i).
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We have the following forms for the Igusa local zeta function ZQ(t) of Q expressed using
the terms Ia(r(i), d(i)) from Table 2.

• If L = 0 and c = 0, let r =
∑

i∈N ri, and then

ZQ(t) =
∑

0≤i<ω−1

ti

q(i)
I0(r(i), d(i))

+

(
tω−1

q(ω−1)
I0(r(ω−1), d(ω−1)) +

tω

q(ω)
I0(r(ω), d(ω))

)(
1− t2

qr

)−1
.

• If L = 0 and c 6= 0, let κ = vπ(c), and then

ZQ(t) =
∑

0≤i≤κ

ti

q(i)
Ic/πi(r(i), d(i)) +

tκ

q(κ+1)
.

• If L(x) = bx for some b with vπ(b) = λ <∞, and if vπ(c) ≥ vπ(b), then

ZQ(t) =
∑

0≤i<λ

ti

q(i)
I0(r(i), d(i)) +

tλ

q(λ)

(
1− 1/q

1− t/q

)
.

• If L(x) = bx for some b with vπ(b) = λ < ∞, and if vπ(c) < vπ(b), then let
κ = vπ(c), and then

ZQ(t) =
∑

0≤i≤κ

ti

q(i)
Ic/πi(r(i), d(i)) +

tκ

q(κ+1)
.

Theorem 2.1 is proved in Section 4.4.

Table 2. Ia(r, d) for Theorem 2.1

η(b) =

{
1 if b ∈ R∗2,
−1 if b ∈ R∗ rR∗2

r odd
π | a

(
1− t

qr

)(
1−1/q
1−t/q

)
π - a

(
1 + η(a(−1)(r+1)/2d)

q(r+1)/2 t
)(

1−1/q
1−t/q

)
− 1

qr −
η(a(−1)(r+1)/2d)

q(r+1)/2

r even
π | a

(
1− η((−1)r/2d)

qr/2

)(
1 + η((−1)r/2d)

qr/2
t
)(

1−1/q
1−t/q

)
π - a

(
1− η((−1)r/2d)

qr/2

)((
1−1/q
1−t/q

)
+ η((−1)r/2d)

qr/2

)

2.3. Quadratic Polynomials over Unramified 2-Adic Fields. We now consider the
case where the prime p is 2 and does not ramify in R. We will need to use the absolute
Galois-theoretic trace Tr: K → Q2 in some of our formulations, and use the convention that
if a ∈ Z2, then (−1)a = (−1)(a mod 2). We also need to know something about the squares
in R. Because the residue field is perfect and of characteristic 2, every element a of R is a
square modulo 2, that is, a ≡ b2 (mod 2) for some b ∈ R. Thus, without loss of generality,
every form a Sq is equivalent to a form bSq where b ≡ 1 (mod 2), so we shall always insist
that such coefficients are 1 modulo 2 in this section. Furthermore, every element of the
form 1 + 8a with a ∈ R is a square (so R∗/R∗2 is finite), but there is a unit ξ ∈ R such that
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1 + 4ξ is not a square (see [25, §63:1 and 64:4] for proofs of these facts). In fact, it is an
easy consequence of Hilbert’s Theorem 90 that the units ξ such that 1 + 4ξ is not square
are precisely those for which Tr(ξ) ≡ 1 (mod 2).

On Table 3 we list the possible unimodular quadratic forms up to equivalence (see Corol-
lary 5.11 below for a proof). A unimodular quadratic form is equivalent to at least one
form on our table: there is some duplication, which would bring no convenience to us to
eliminate.

Table 3. Possible Unimodular Forms over Unramified 2-Adic Fields (up to equivalence)

ξ ∈ R∗ with Tr(ξ) ≡ 1 (mod 2)
a ≡ b ≡ 1 (mod 2)

rank r norm discriminant possible forms

even
2R (for r 6= 0) (−1)r/2 Hypr/2

or 0 (for r = 0) (−1)r/2(1 + 4ξ) Ell⊕Hyp(r−2)/2

even R
(−1)(r−2)/2ab a Sq⊕bSq⊕Hyp(r−2)/2

(−1)(r−2)/2(1 + 4ξ)ab a Sq⊕bSq⊕Ell⊕Hyp(r−4)/2

odd R
(−1)(r−1)/2a aSq⊕Hyp(r−1)/2

(−1)(r−1)/2(1 + 4ξ)a aSq⊕Ell⊕Hyp(r−3)/2

In order to use our theorem below to calculate the local zeta function, one needs to know
how to express the direct sum of any pair of unimodular forms from Table 3 as another form
on Table 3. If Q1 and Q2 are two such forms, then Q1 ⊕ Q2 is another unimodular form
whose rank, norm, and discriminant are respectively the sum, the sum (as ideals), and the
product of those invariants for the two constituent forms. However, these three invariants
are not always enough to identify a unimodular form. To precisely determine Q1⊕Q2, one
can make use of the following “addition rules.”

Lemma 2.2. Suppose that p = 2 and does not ramify in R. Let a, b, c ∈ R∗. Then

(i). Ell⊕Ell ∼= Hyp⊕Hyp, and
(ii). a Sq⊕bSq⊕cSq ∼= (−abc) Sq⊕Hyp if there are r, s, t ∈ R with ar2 +bs2 +ct2 ≡ −abc

(mod 8). Otherwise aSq⊕bSq⊕cSq ∼= (−abc)(1 + 4ξ) Sq⊕Ell.

This is proved in Section 5.4. For rule (ii), since there are only finitely many elements
modulo 8, one can work out which case obtains with finitely many trials. As an example,
Table 4 shows how the addition rules work when R = Z2, the ring of 2-adic integers.

Now we are ready to compute the local zeta function with the following theorem, which
uses Table 5. We use a shorthand for quadratic forms in that table: Planes(+) means
a direct sum of hyperbolic planes (with the correct number needed to achieve a specified
rank) and Planes(−) is the direct sum of a single elliptic plane and the correct number of
hyperbolic planes to achieve a specified rank. For example, if we say that rank(Qi) = ri
and Qi = a Sq⊕Planes(±i), then we mean that either Qi = aSq⊕Hyp(ri−1)/2 (if ±i = +)

or Qi = aSq⊕Ell⊕Hyp(ri−3)/2 (if ±i = −).
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Table 4. Addition Rules Unimodular Quadratic Forms over Z2

Ell⊕Ell ∼= Hyp⊕Hyp

ax2 + by2 + cz2 ∼= dw2 ⊕ P
(a, b, c) (d, P )

(1, 3, 5) (1, 1, 7) (5, 5, 7) (1,Hyp)

(1, 3, 7) (3, 3, 5) (5, 7, 7) (3,Hyp)

(1, 5, 7) (3, 5, 5) (1, 1, 3) (5,Hyp)

(3, 5, 7) (1, 7, 7) (1, 3, 3) (7,Hyp)

(3, 3, 3) (3, 7, 7) (1,Ell)

(1, 1, 1) (1, 5, 5) (3,Ell)

(7, 7, 7) (3, 3, 7) (5,Ell)

(5, 5, 5) (1, 1, 5) (7,Ell)

Theorem 2.3. Suppose that p = 2 and does not ramify in R. Consider the quadratic
polynomial Q =

⊕
i∈N π

iQi ⊕ L, where each Qi is a unimodular quadratic form of rank ri
over R, where there is a positive integer ω such that Qi = 0 for i > ω, and where L is a
linear form involving at most one indeterminate. For each j ∈ N, we let

Q(j) =
⊕
0≤i≤j

i≡j (mod 2)

Qi, r(j) = rank(Q(j)) =
∑

0≤i≤j
i≡j (mod 2)

ri, and q(j) = q
∑

0≤i<j r(i) .

We have the following forms for the Igusa local zeta function ZQ(t) of Q expressed using
the terms I(P0, P1, P2) from Table 5.

• If L = 0, let r =
∑

i∈N ri, and then

ZQ(t) =
∑

0≤i<ω−1

ti

q(i)
I(Q(i), Q(i+1), Qi+2)

+

(
tω−1

q(ω−1)
I(Q(ω−1), Q(ω), 0) +

tω

q(ω)
I(Q(ω), Q(ω−1), 0)

)(
1− t2

qr

)−1
.

• If L = ax with 2 ≤ v2(a) <∞, write λ = v2(a), and then

ZQ(t) =
∑

0≤i<λ−2

ti

q(i)
I(Q(i), Q(i+1), Qi+2) +

tλ−2

q(λ−2)
I(Q(λ−2), Q(λ−1),Sq)

+
tλ−1

q(λ−1)
I(Q(λ−1),Sq, Sq) +

tλ

q(λ)

(
1− 1/q

1− t/q

)
.

• If L = ax with v2(a) = 1, then

ZQ(t) = I(Q(0), Sq, Sq) +
t

qr0

(
1− 1/q

1− t/q

)
.

• If L = ax with v2(a) = 0, then ZQ(t) =
(
1−1/q
1−t/q

)
.

Theorem 2.3 is proved in Section 4.5.
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Table 5. I(Q0, Q1, Q2) for Theorem 2.3

ri = rank(Qi) for i = 0, 1, 2
a ≡ b ≡ c ≡ d ≡ 1 (mod 2)

Planes(±) notation described before Theorem 2.3
Q0 = Planes(±0)

norm(Q1) 6= R
(

1∓0
1

qr0/2

)(
t±0

t2

qr0/2

)(
1−1/q
1−t/q

)
norm(Q1) = R

(
1− 1

qr0

)
t
(
1−1/q
1−t/q

)
Q0 = aSq⊕Planes(±0)

norm(Q1) 6= R
(

1− t2

qr0 ±0
t2−t

q(r0+1)/2

)(
1−1/q
1−t/q

)
norm(Q1) = R

(
1− t

qr0

)(
1−1/q
1−t/q

)
Q0 = a Sq⊕bSq Planes(±0) with 4 | a+ b and σ = (−1)Tr((a+b)/(4a))

norm(Q1) 6= R, norm(Q2) 6= R
(

1− t2

qr0 ±0
t2−t
qr0/2

±1
σ(t3−t2)
qr0+r1/2

)(
1−1/q
1−t/q

)
norm(Q1) 6= R, norm(Q2) = R

(
1− t2

qr0 ±0
t2−t
qr0/2

)(
1−1/q
1−t/q

)
Q1 = cSq⊕Planes(±1)

(
1− t

qr0 ±1
σ(t3−t2)

qr0+(r1+1)/2

)(
1−1/q
1−t/q

)
norm(Q2) 6= R

Q1 = cSq⊕dSq⊕Planes(±1) (
1− t

qr0 ±1
σ(t3−t2)
qr0+r1/2

)(
1−1/q
1−t/q

)
4 | a+ b+ c+ d
norm(Q2) 6= R

Q1 = cSq⊕dSq⊕Planes(±1) (
1− t

qr0

)(
1−1/q
1−t/q

)
4 - a+ b+ c+ d
norm(Q2) 6= R

norm(Q1) = norm(Q2) = R
(

1− t
qr0

)(
1−1/q
1−t/q

)
Q0 = aSq⊕bSq Planes(±0) with 4 - a+ b

norm(Q1) 6= R
(

1− t2

qr0

)(
1−1/q
1−t/q

)
Q1 = cSq⊕Planes(±1) (

1− t
qr0 ±1

ϕ(t3−t2)
qr0+(r1+1)/2

)(
1−1/q
1−t/q

)
ϕ = (−1)Tr(

c
2 [(a+b2c )

q
+a+b

2c ])

norm(Q2) 6= R
Q1 = cSq⊕dSq⊕Planes(±1) (

1− t
qr0 ±1

ψ(t3−t2)
qr0+r1/2

)(
1−1/q
1−t/q

)
4 | a+ b+ c+ d

ψ = (−1)Tr(
c
2 [( c+d2 )

q
+a+b

2c ])

norm(Q2) 6= R
Q1 = cSq⊕dSq⊕Planes(±1) (

1− t
qr0

)(
1−1/q
1−t/q

)
4 - a+ b+ c+ d
norm(Q2) 6= R

norm(Q1) = norm(Q2) = R
(

1− t
qr0

)(
1−1/q
1−t/q

)

2.4. Location of Poles. When p is odd, if we specialize our quadratic polynomial to have
no constant term, then our Theorem 2.1 reduces to the results of Igusa [12, Theorem 1 and
Corollary to Theorem 2]. Let us compare our expression to Igusa’s for ZQ(t) when Q is a
quadratic form. If we adopt the notation of Theorem 2.1 here, then Igusa’s expression for
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ZQ(t) is a sum of terms, one for each nonzero Qi, such that Igusa’s ith term is expressed
as a polynomial divided by(

1− t

q

)(
1− t2

q
∑

0≤j<i ri

)(
1− t2

q
∑

0≤j≤i ri

)
.

Peter [26, Proof of Lemma 3.7] notes that Igusa’s expression makes it appear that the local
zeta function might have many more poles than it actually has. The advantage our our
expression is that it makes clear that there are at most three poles. Indeed, since every
Ia(r, d) in Table 2 is expressible as f(t)/(1 − t/q) for some polynomial f(t) ∈ Q[t], our
formula implies the following.

Theorem 2.4. The Igusa local zeta function of a quadratic form Q of rank r can be written

as f(t)
(1−t/q)(1−t2/qr) for some polynomial f(t) ∈ Q[t].

Note that this theorem does not stipulate that p be odd, for in fact, it is also true when
p = 2 (in both the unramified and ramified cases), as is shown in Section 4.6. When p is
odd, we can go further, and determine precisely the denominator of ZQ(t) when it is written
in reduced form.

Theorem 2.5. Let p be odd, let α ∈ R∗ rR∗2, and let η(b) = 1 for b ∈ R∗2 and η(b) = −1
for b ∈ R∗ r R∗2. Let Q be a quadratic form over R, equivalent to the form

⊕
i∈N π

iQi,
where each Qi is a unimodular quadratic form of rank ri and discriminant di, and almost
all Qi are zero. Let

r =
∑
i∈N

ri, reven =
∑
i∈N

r2i, rodd =
∑
i∈N

r2i+1,

d =
∏
i∈N

di, deven =
∏
i∈N

d2i, dodd =
∏
i∈N

d2i+1.

Write the Igusa local zeta function ZQ(t) of Q as f(t)/g(t), where f(t), g(t) ∈ Q[t] with
gcd(f(t), g(t)) = 1 and with the constant coefficient of g(t) equal to 1.

(a). If r = 0, then g(t) = 1.
(b). If r > 0 and {(reven, deven), (rodd, dodd)} ⊆ {(0, 1), (1, 1), (1, α), (2,−α)}, then

(i). if reven = rodd, then g(t) = 1− t/qr/2, and
(ii). if reven 6= rodd, then g(t) = 1− t2/qr.

(c). If r > 0 and {(reven, deven), (rodd, dodd)} 6⊆ {(0, 1), (1, 1), (1, α), (2,−α)}, then
(i). if reven ≡ rodd ≡ 1 (mod 2), then g(t) = 1− t/q,

(ii). if reven ≡ rodd ≡ 0 (mod 2), then g(t) = (1− t/q)(1− η((−1)r/2d)t/qr/2), and
(iii). if reven 6≡ rodd (mod 2), then g(t) = (1− t/q)(1− t2/qr).

This is proved in Section 4.7.

3. The Theory of the p-Adic Generating Function

Now we proceed to the general theory of the p-adic generating function, which we then
use (in Section 4) to obtain all the results of the previous section.

3.1. Modular Generating Functions. We let Rk = R/πkR and we let vπ(0) = ∞
and formally regard π∞ as 0, so that R∞ ∼= R. Consider a polynomial f(x1, . . . , xn) ∈
R[x1, . . . , xn]. We are interested in how many times f(A1, . . . , An) assumes each value in
Rk as (A1, . . . , An) runs through the qnk values of Rnk . To this end, we introduce the group
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Γk = {γA : A ∈ Rk}, with the multiplication rule γAγB = γA+B, so that Γk is just a
multiplicative version of the additive group of Rk. Then we introduce the group C-algebra
Gk = C[Γk], and we say that F =

∑
B∈Rk FBγ

B in Gk is the modulo πk generating function

for f if f(A1, . . . , An) = B for precisely qnkFB values of (A1, . . . , An) ∈ (Rk)
n. More explic-

itly, the modulo πk generating function for f(x1, . . . , xn) is 1
qnk

∑
(A1,...,An)∈(Rk)n γ

f(A1,...,An).

Note that the coefficients of our generating function are rational numbers scaled so that∑
B∈Rk FB = 1 rather than the more customary integer counts. This has the advantage that

if f(x1, . . . , xn) is conceived of as a polynomial in a larger polynomial ring R[x1, . . . , xn′ ]
where n′ ≥ n, where the indeterminates xn+1, . . . , xn′ do not appear in f , then the modulo
πk generating function for f remains unchanged.

The following easily verified rule is what makes generating functions useful.

Remark 3.1 (Sum-Product Rule for Modular Generating Functions). If f(x1, . . . , xn)
and g(y1, . . . , ym) are two polynomials over R involving distinct indeterminates x1, . . . , xn,
y1, . . . , ym, and if F and G are their respective modulo πk generating functions, then the
modulo πk generating function for f ⊕ g is FG.

3.2. p-Adic Generating Functions. When j ≤ k, we have an epimorphism of C-algebras
ϕk,j : Gk → Gj with ϕ(γB) = γC , where C is the unique element of Rj (which is a coset of

πjR in R) that contains B (a coset of πk in R). Furthermore, if f(x1, . . . , xn) ∈ R[x1, . . . , xn]
and G and H are respectively the modulo πk and modulo πj generating functions for f ,
then one readily shows that ϕk,j(G) = H.

We set G = lim←−Gk, where for each k ∈ N, we let ϕk : G→ Gk be the kth coordinate map,

an epimorphism of C-algebras. If f(x1, . . . , xn) ∈ R[x1, . . . , xn], then the element F ∈ G

such that ϕk(F ) is the modulo πk generating function of f for each k ∈ N is called the
p-adic generating function of f . The sum-product rule for modular generating functions
(Remark 3.1) immediately implies a sum-product rule for p-adic generating functions.

Remark 3.2 (Sum-Product Rule for p-Adic Generating Functions). Let f(x1, . . . , xn) and
g(y1, . . . , ym) be polynomials over R involving distinct indeterminates x1, . . . , xn, y1, . . . , ym.
If F and G are the p-adic respective generating functions for f and g, then the p-adic
generating function for f ⊕ g is FG.

We now give an interpretation of the p-adic generating function F for a polynomial
f(x1, . . . , xn) ∈ R[x1, . . . , xn]. Write

(2) ϕk(F ) =
∑
A∈Rk

FAγ
A,

for each k ∈ N. If C is a collection of pairwise disjoint cosets drawn from
⋃
k∈NRk, and

if S =
⋃
C∈CC, then

∑
C∈C FC is the Haar volume of the preimage f−1(S) of S by the

polynomial f (regarded as a function from Rn to R).

3.3. Relation to the Igusa Zeta Function. Since |a|K = q−vπ(a) for a ∈ K, and since
t = q−s, the Igusa local zeta function (1) becomes

Zf (t) =

∫
Rn
tvπ(f(x1,...,xn))dx1 · · · dxn.

For k ∈ N, let Uk = {(r1, . . . , rn) ∈ Rn : vπ(f(r1, . . . , rn)) = k}. Then

Zf (t) =
∑
k∈N

tk Vol(Uk),
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where Vol(U) is the volume of U . At the end of Section 3.2, we showed that if F (z) is the
p-adic generating function for f , and if the modulo πk generating function for f is as given
in (2), then

Vol(Uk) = FπkR − Fπk+1R.

We define a map Ig from G to the complex-valued functions of a complex variable as follows:
if F (z) ∈ G with ϕk(F ) as given in (2), then

(3) Ig(F (z)) =
∑
k∈N

(FπkR − Fπk+1R)tk,

so that Ig takes the p-adic generating function of f to the Igusa zeta function of f . Ig is
clearly a C-linear map because the maps ϕk are C-linear.

3.4. p-Adic Generating Functions for Constant and Linear Polynomials. Consider
the polynomial f(x) = ax + b in a single variable x, where a, b ∈ R. The modulo πk

generating function for f is

1

#{C ∈ Rk : C ∩ (aR+ b) 6= ∅}
∑
C∈Rk

C∩(aR+b)6=∅

γC .

We introduce the following notation: if A is any coset of any Rj (or if A is a singleton set),
we write zA for the p-adic generating function that has

(4) ϕk(z
A) =

1

#{C ∈ Rk : C ∩A 6= ∅}
∑
C∈Rk
C∩A 6=∅

γC .

Remark 3.3. The p-adic generating function of f(x) = ax+ b is zaR+b.

Note that aR+b is the singleton set {b} when a = 0 (i.e., when f(x) = ax+b is a constant

polynomial). We often write zb in place of z{b}. Recall our convention that π∞ = 0. We
can consider our singleton subsets of R as elements of R∞ = R/π∞R. We sum cosets of
the various Rk in the usual group-theoretic sense: A + B = {a + b : a ∈ A, b ∈ B}. So if
0 ≤ j ≤ k ≤ ∞, the sum of an element of Rj and Rk is an element of Rj . The benefit
of our notation zA is that it gives the following convenient arithmetic for p-adic generating
functions for constant and linear polynomials, which is easy to check.

Remark 3.4. If A ∈ Rj and B ∈ Rk, then zAzB = zA+B in G.

Remark 3.5 (Coalescence). We note that if A ∈ Rj, k ≥ j, and W is a set of qk−j repre-

sentatives for the cosets of Rk that lie in A (so A =
⊔
w∈W w+πkR), then

∑
w∈W zw+π

kR =

qk−jzA. We say that we coalesce cosets when simplify sums in this manner.

3.5. Igusa Local Zeta Functions for Constant and Linear Polynomials. Now we
can compute the local zeta functions for constant and linear polynomials from their p-adic
generating functions.

Lemma 3.6. Let f(x) = ax+ b. Then the Igusa local zeta function of f is{
tvπ(a)

(
1−1/q
1−t/q

)
if vπ(a) ≤ vπ(b),

tvπ(b) if vπ(a) > vπ(b),

where t∞ is interpreted as 0.



12 RAEMEON A. COWAN, DANIEL J. KATZ, AND LAUREN M. WHITE

Proof. The p-adic generating function for f is zaR+b by Remark 3.3. We calculate Ig(zaR+b)
in Lemma 3.7 below. �

Lemma 3.7. Let j ∈ N ∪ {∞}. If A = πjR, then

Ig(zA) = tj
(

1− 1/q

1− t/q

)
,

where t∞ is interpreted as 0. If A = a+ πjR where a 6∈ πjR, then

Ig(zA) = tvπ(a).

Proof. Let F (z) = zA.
First consider the case A = a + πjR with a 6∈ πjR. Consider (4), and note that if we

write ϕk(F ) as in (2), so that

FπkR =

{
1 if k ≤ vπ(a),

0 if k > vπ(a).

So

FπkR − Fπk+1R =

{
1 if k = vπ(a),

0 otherwise,

and thus Ig(F (z)) = tvπ(a) by (3).
Now suppose that A = πjR. Again, consider (4) and write ϕk(F ) as in (2), so that

FπkR =

{
1 if k ≤ j,

1
qk−j

if k > j,

and so for k ∈ N, we have

FπkR − Fπk+1R =

{
0 if k < j,(

1− 1
q

)
1

qk−j
if k ≥ j,

and thus (3) gives

Ig(F (z)) =

(
1− 1

q

)∑
k≥j

tk

qk−j
. �

3.6. Normalization. We often write an element F of Gk as F (γ), inasmuch as it resembles
a polynomial in γ. If F (γ) =

∑
A∈Rk FAγ

A ∈ Gk, we use the notation F (1), which we call

the normalization of F , to denote the sum of the coefficients, that is, F (1) =
∑

A∈Rk FA.

If F is a modular generating function, then F (1) = 1.
Similarly, we often write an element F of G as F (z), especially if we are expressing it as

a linear combination of terms of the form zA. By the nature of the homomorphisms ϕk,j ,
we see that (ϕk(F ))(1) is independent of k, and we let F (1) denote the common value,
which we call the normalization of F . Indeed, if F is expressed as a linear combination
F (z) =

∑
C∈C FCz

C , then F (1) =
∑

C∈C FC . If F is a p-adic generating function, then
F (1) = 1.

We note that multiplying by the p-adic generating function zR for the linear polynomial
f(x) = x extracts the normalization of any other element of G.

Lemma 3.8. If F (z) is an element of G, then F (z)zR = F (1)zR.
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Proof. For each k ∈ N, we have ϕk(z
R) = 1

#Rk

∑
A∈Rk γ

A, and write ϕk(F ) =
∑

B∈Rk FBγ
B,

so that ϕk(z
RF (z)) = ϕk(z

R)ϕk(F (z)) becomes
∑

B∈Rk FB ·
1

#Rk

∑
A∈Rk γ

A+B, which is

F (1)ϕk(z
R) = ϕk(F (1)zR). �

3.7. Scaling. Let f be a polynomial and let s ∈ R. If k ≤ vπ(s), then the modulo πk gen-

erating function for sf is γπ
kR. Now suppose k ≥ vπ(s). If the modulo πk−vπ(s) generating

function for f modulo is ∑
A∈Rk−vπ(s)

FAγ
A,

then the modulo πk generating function for sf is∑
A∈Rk−vπ(s)

FAγ
sA.

Accordingly, we introduce the notation that if F (z) ∈ G with ϕk(F ) as presented in (2),
then F (zs) denotes the element of G given by

(5) ϕk(F (zs)) =

{
F (1)γπ

kR for k ≤ vπ(s),∑
A∈Rk−vπ(s)

FAγ
sA for k ≥ vπ(s).

Remark 3.9. Note that if F (z) = G(z)H(z), then F (zs) = G(zs)H(zs).

Remark 3.10. If F (z) is the p-adic generating function of f , then F (zs) is the p-adic
generating function of sf .

Now Lemma 3.8 generalizes as follows.

Remark 3.11. If j ∈ N ∪ {∞} and F (z) is an element of G, then for k ≤ j we have

F (zπ
j
)zπ

kR = F (1)zπ
kR.

We now show how scaling influences the Igusa local zeta function.

Lemma 3.12. If s ∈ R and F (z) ∈ G, then Ig(F (zs)) = tvπ(s) Ig(F (z)), where t∞ is
interpreted as 0.

Proof. Let G(z) = F (zs), and for each k ∈ N write

ϕk(F ) =
∑
A∈Rk

FAγ
A, and

ϕk(G) =
∑
A∈Rk

GAγ
A.

If s = 0, then G(z) = F (1)z0. For each k ∈ N, we have GπkR = F (1), so then by (3), we

have Ig(G(z)) = 0 = t∞ Ig(F (z)) = tvπ(s) Ig(F (z)).
Now suppose that vπ(s) = j <∞. Then (5) shows us that

GπkR =

{
F (1) if k ≤ j,
Fπk−jR if k ≥ j,

so then

GπkR −Gπk+1R =

{
0 if k < j,

Fπk−jR − Fπk−j+1R if k ≥ j,
and so by (3), we have Ig(G(z)) =

∑
k≥j(Fπk−jR − Fπk−j+1R)tk = tj Ig(F (z)). �
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3.8. Uniformization. For j ∈ N, we say that F (z) ∈ G is πj-uniform if it can be written as
a linear combination of terms of the form zA with A ∈ Rj . If F (z) is a generating function
for some polynomial f , saying that F is πj-uniform is equivalent to saying that for any
A ∈ Rj , and k ≥ j, the polynomial f (mod πk) represents all B ∈ Rk with B ⊆ A equally
often. Thus we say that the polynomial f is πj-uniform if its p-adic generating function is
πj-uniform.

Remark 3.13. If i ≤ j, then a πi-uniform element of G is πj-uniform.

Remark 3.14. The product of a πi-uniform element of G and a πj-uniform element of G
is a πmin(i,j)-uniform element of G.

If F (z) is an arbitrary element of G and j ∈ N, then there is a unique πj-uniform
element G(z) ∈ G called the πj-uniformization of F (z), written F (z) (mod πj), such that
ϕj(F (z)) = ϕj(G(z)). If k ≥ j and ϕk(F (z)) is written as in (2), then we must have

(6) ϕk(F (z) (mod πj)) =
∑
A∈Rj

FA
qk−j

∑
B∈Rk
B⊆A

zB.

This is what one gets if one applies ϕj to F (z) to get an element
∑

A∈Rj FAγ
A ∈ Gj , and

then replaces each instance of γ with z to produce the πj-uniform element
∑

A∈Rj FAz
A of

G.

Remark 3.15. If i ≤ j, then the πi-uniformization of the πj-uniformization of an element
F (z) ∈ G is just the πi-uniformization of F (z).

Remark 3.16. An element of G is πj-uniform if and only if it is equal to its own πj-
uniformization.

Uniformizations simplify generating functions, and so they are useful in calculations via
the following principle.

Lemma 3.17. Suppose that j ≥ i, and that F (z), G(z) ∈ G and F (z) is πi-uniform. Then
F (z)G(z) = F (z)(G(z) (mod πj)), and F (z)G(z) is πi-uniform.

Proof. By linearity, it suffices to show this when F (z) = zA for a single coset A ∈ Ri. Let
k ∈ N with k ≥ j be given. Write ϕk(G(z)) =

∑
B∈Rk GBγ

B, and use (4) for ϕk(z
A) to get

ϕk(z
A)ϕk(G(z)) =

1

qk−i

∑
B,C∈Rk
C⊆A

GBγ
B+C =

1

qk−i

∑
D∈Rj

∑
B,C∈Rk
B⊆D
C⊆A

GBγ
B+C

=
1

qk−i

∑
D∈Rj

∑
B,E∈Rk
B⊆D

E⊆A+D

GBγ
E =

1

qk−i

∑
D∈Rj

GD
∑
E∈Rk
E⊆A+D

γE

=
1

qk−i

∑
D∈Rj

GD
qk−j

∑
B,C∈Rk
B⊆D
C⊆A

γB+C = ϕk(z
A)ϕk(G(z) (mod πj)),

where we use (6) to recognize ϕk(G(z) (mod πj)) in the final step. That zA(G(z) (mod πj))
is πi-uniform follows from Remark 3.14. �
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Corollary 3.18. Let i ∈ N, and suppose that F (z) ∈ G is πi-uniform. If j ≥ i and if

G(z) ∈ G, then F (z)G(zπ
j
) = F (z)G(1).

Proof. Apply Lemma 3.17 and note that G(zπ
j
) (mod πj) = G(1)zπ

j
. �

3.9. Partial Generating Functions, Heads, and Homogeneous Polynomials. For
i ∈ N, a subset of Rn is said to be regular modulo πi, or just πi-regular, if it is a union of
sets of the form A1 × · · · ×An where each Ah is a coset of the form ah + πiR for ah ∈ R.

Let f(x1, . . . , xn) ∈ R[x1, . . . , xn] be homogeneous of degree d. For each k ∈ N, let Gk(γ)
be the modulo πk generating function for f , and let G(z) be the p-adic generating function
of f . Recall that

Gk(γ) =
1

qnk

∑
(A1,...,An)∈(Rk)n

γf(A1,...,An).

If S is a regular subset of Rn modulo πi and k ≥ i, then the partial modulo πk generating
function of f on S is defined to be

1

qnk

∑
(A1,...,An)∈(Rk)n
A1×···×An⊆S

γf(A1,...,An).

Note that the πi-regularity makes each (A1, . . . , An) ∈ (Rk)
n either contained in S or

disjoint from S.
For each k ≥ i, we let Hk(γ) denote the partial modulo πk generating function of f

on S. It is straightforward to see that if k ≥ j ≥ i, then the standard projection map
ϕk,j : Gk → Gj carries Hk to Hj . Thus there is an element H of G such that for each k ≥ i,
the projection ϕk(H) in Gk is the partial modulo πk generating function of f on S. We call
this H the partial p-adic generating function of f on S.

The partial modulo πk generating functions (for k ≥ 1) and the partial p-adic generating
function for f associated to the π-regular region S = Rnr (πR)n are of special interest, and
are called the head of the modulo πk generating function of f and the head of the p-adic
generating function of f , respectively. The head of the modulo πk generating function of f
is then

1

qnk

∑
(A1,...,An)∈(Rk)n

(A1,...,An) 6≡(0,...,0) (mod π)

γf(A1,...,An).

This keeps track of how many times f represents a given value modulo πk when we restrict
the inputs so that they cannot all simultaneously be nonunits.

Lemma 3.19. Suppose that there is a degree d homogeneous polynomial f(x1, . . . , xn) ∈
R[x1, . . . , xn], whose p-adic generating function G(z) has head H(z). Then G(z) = H(z) +
1
qnG(zπ

d
), and the Igusa local zeta function of f is Ig(G(z)) = Ig(H(z))/(1− td/qn).

Proof. Consider the behavior of f for inputs (A1, . . . , An) ∈ (Rk)
n such that (A1, . . . , An) ≡

(0, . . . , 0) (mod π). To see how many times f(x1, . . . , xn) represents elements in Rk for
such inputs, one could reparameterize (x1, . . . , xn) = π(y1, . . . , yn), and then note that
f(πy1, . . . , πyn) = πdf(y1, . . . , yn) by homogeneity. If f(y1, . . . , yn) represents a particular
element B of Rk−d for N distinct inputs (C1, . . . , Cn) ∈ Rk−d, then f(πy1, . . . , πyn) repre-
sents πdB ∈ Rk for N distinct inputs (C1, . . . , Cn) of Rk−d, and so represents πdB ∈ Rk for

qn(d−1)N distinct inputs (D1, . . . , Dn) ∈ Rk−1, so that f(x1, . . . , xn) represents πdB ∈ Rk
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for qn(d−1) distinct inputs (A1, . . . , An) ∈ Rk that vanish modulo π. Keeping in mind our

normalization, this makes a contribution of q−n(k−d+1)Nγπ
dB to the modulo πk generating

function, and the coefficient for this contribution is q−n times the coefficient for γB in the
modulo πk−d generating function of f . Thus when we account for the parts of the modulo
πk generating function excluded from the head, we see that

Gk(γ)−Hk(γ) =
1

qn
Gk−d(γ

πd),

where Gk−d(γ
πd) indicates the function obtained from Gk−d(γ) by replacing each instance

of γA (with A ∈ Rk−d) with γπ
dA (in Rk). If we take the inverse limit of both sides of our

equation and recall the definition of G(zs) for s ∈ R, we obtain G(z) −H(z) = 1
qnG(zπ

d
).

Apply Ig to both sides, and apply Lemma 3.12 and rearrange to obtain (1−td/qn) Ig(G(z)) =
Ig(H(z)). �

3.10. Hensel’s Lemma. If f(x1, . . . , xn) ∈ R[x1, . . . , xn] and a = (a1, . . . , an) ∈ Rn, then
the derivative of f at a is the vector of partial derivatives (∂f/∂x1, . . . , ∂f/∂xn) evaluated
at (a1, . . . , an). The valuation of the derivative of f at (a1, . . . , an) is the least valuation
of the n partial derivatives at a. We now state a form of Hensel’s Lemma in terms of our
theory of p-adic generating functions: if the valuation of the derivative is constant on a
certain region, then the partial p-adic generating function on that region is uniform.

Lemma 3.20. Let f(x1, . . . , xn) ∈ R[x1, . . . , xn], and let j ∈ N. Let S be a πj+1-regular
subset of Rn upon which the derivative of f always has valuation j. Then the partial p-adic
generating function of f on S is π2j+1-uniform, so it may be obtained by replacing instances
of γ with z in the partial modulo π2j+1 generating function of f on S. If Wj+1 is a set of
representatives for the cosets of πj+1R in R, then

H(z) =
1

qn(j+1)

∑
(a1,...,an)∈(Wj+1)n∩S

zf(a1,...,an)+π
2j+1R.

Proof. Fix a = (a1, . . . , an) ∈ Wj+1 ∩ S. For any b = (b1, . . . , bn) ∈ Rn, use the Taylor
expansion of f around a to see that the first-order term of f(a+πj+1b)−f(a) has valuation
at least 2j + 1, with equality when πj+1 does not divide the inner product of b with the
derivative of f at a. The second-order and higher-order terms of the Taylor expansion all
have valuation at least 2j+ 2, so f(a+πj+1b)− f(a) is linear in b modulo π2j+2. Then one
shows that for each c ∈ R with c ≡ f(a1, . . . , an) (mod π2j+1), there exist ã ∈ Rn such that
f(ã) ≡ c (mod π2j+2) and ã ≡ a (mod πj+1), and the number of such ã that are distinct
modulo πj+2 is precisely qn−1 by linear algebra.

Thus by iterative amelioration of solutions, one shows that for each k ≥ 2j + 1 and each
c ∈ R with c ≡ f(a1, . . . , an) (mod π2j+1), there exist ã ∈ Rn such that f(ã) ≡ c (mod πk)
and ã ≡ a (mod πj+1), and the number of such ã that are distinct modulo πk−j is precisely

q(n−1)(k−(2j+1)).
If we are thinking of the partial modulo πk generating function for f on S, then the

number of (A1, . . . , An) ∈ (Rk)
n with every Ai ⊆ ai+πj+1R and such that f(A1, . . . , An) =

c+ πkR is equal to q(n−1)(k−(2j+1)) · qnj = qn(k−j−1)−(k−(2j+1)).
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As we let a run through (Wj+1)
n ∩ S, we represent all the n-fold products of cosets of

πj+1R that make up S, and so the partial modulo πk generating function of f on S is

Hk(γ) =
1

qnk

∑
(a1,...,an)∈(Wj+1)n∩S

∑
c+πkR∈Rk

c+πkR⊆f(a1,...,an)+π2j+1R

qn(k−j−1)−(k−(2j+1))γc+π
kR

=
1

qn(j+1)

∑
(a1,...,an)∈(Wj+1)n∩S

∑
c+πkR∈Rk

c+πkR⊆f(a1,...,an)+π2j+1R

q−(k−(2j+1))γc+π
kR,

which by coalescence of cosets (see Remark 3.5) shows that the partial p-adic generating
function of f on S is

H(z) =
1

qn(j+1)

∑
(a1,...,an)∈(Wj+1)n∩S

zf(a1,...,an)+π
2j+1R. �

This has a very useful application to unimodular quadratic forms that we use later.

Corollary 3.21. Let vπ(2) = `, and let W be a set of q`+1 representatives for the cosets of
π`+1R in R . Let Q(x1, . . . , xn) be a unimodular quadratic form of rank n over R. Then
the head of the p-adic generating function of Q is

H(z) =
1

qn(`+1)

∑
(a1,...,an)∈Wn

(a1,...,an)6≡(0,...,0) (mod π)

zQ(a1,...,an)+π2`+1R.

Proof. If M is the matrix associated to Q, then the derivative of Q at (a1, . . . , an) is
2M(a1, . . . , an)T . If (a1, . . . , an) ∈ Rn r (πR)n, then since M is unimodular, we see that
the derivative has valuation vπ(2) = `, so we may apply Lemma 3.20. �

4. Quadratic Polynomials over p-Adic Fields

This section assumes the basic facts about quadratic forms related in Section 2, one of
which is that every quadratic form over R is equivalent to

⊕∞
i=0 π

iQi for some unimodular
quadratic forms Q0, Q1, . . ., almost all of which are zero. We first show how the p-adic
generating function of Q =

⊕∞
i=0 π

iQi relates to those of the constituent unimodular forms
Qi.

4.1. Generating Function for an Arbitrary Quadratic Form.

Proposition 4.1. Suppose vπ(2) = `. Consider the quadratic form Q =
⊕

i∈N π
iQi, where

each Qi is a unimodular quadratic form of rank ri over R, and let ω be a positive integer
such that Qi = 0 for i > ω. For each j ∈ N, we let

Q(j) =
⊕
0≤i≤j

i≡j (mod 2)

Qi, r(j) = rank(Q(j)) =
∑

0≤i≤j
i≡j (mod 2)

ri, q(j) = q
∑

0≤i<j r(i) ,

and for any quadratic form P , use the term GP to denote the p-adic generating function of
P , and HP for the head of GP .

Then the p-adic generating function GQ(z) of Q is∑
0≤i<ω−1

1

q(i)
HQ(i)

(zπ
i
)GQ(i+1)

(zπ
i+1

)
∏

2≤j≤2`
GQi+j (z

πi+j ) +
1

q(ω−1)
GQ(ω−1)

(zπ
ω−1

)GQ(ω)
(zπ

ω
).
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Proof. We proceed by induction on ω. The ω = 1 case is just an application of the sum-
product rule and scaling: the generating function of Q0⊕πQ1 is the product of GQ0(z) and
GQ1(zπ).

If ω > 1, then Q is the direct sum of the quadratic forms Q̃ =
⊕ω−1

i=0 π
iQi and πωQω.

Thus by the sum-product rule, the generating function GQ(z) of Q is the product of the

generating function G
Q̃

(z) of Q̃ and the generating function GQ(ω)
(zπ

ω
) of πωQω. For each

i ∈ N, we let

Q̃i =

{
Qi for i 6= ω,

0 for i = ω,
r̃i = rank(Q̃i) =

{
ri for i 6= ω,

0 for i = ω,

and then for j ∈ N, we set

Q̃(j) =
⊕
0≤i≤j

i≡j (mod 2)

Q̃i, r̃(j) = rank(Q̃(j)) =
∑

0≤i≤j
i≡j (mod 2)

r̃i, q̃(j) = q
∑

0≤i<j r̃(i) ,

so that induction shows that G
Q̃

(z) is∑
0≤i<ω−1

1

q̃(i)
H
Q̃(i)

(zπ
i
)G

Q̃(i+1)
(zπ

i+1
)
∏

2≤j≤2`
G
Q̃i+j

(zπ
i+j

) +
1

q̃(ω−1)
G
Q̃(ω−1)

(zπ
ω−1

)G
Q̃(ω)

(zπ
ω
).

Now note that

Q(i) =

{
Q̃(i) for i < ω,

Q̃(i) +Qω for i = ω,
r(i) =

{
r̃(i) for i < ω,

r̃(i) + rω for i = ω,
and q̃(i) = q(i) for i ≤ ω,

so that G
Q̃

(z) is∑
0≤i<ω−1

1

q(i)
HQ(i)

(zπ
i
)GQ(i+1)

(zπ
i+1

)
∏

2≤j≤2`
j 6=ω−i

GQi+j (z
πi+j ) +

1

q(ω−1)
GQ(ω−1)

(zπ
ω−1

)G
Q̃(ω)

(zπ
ω
).

Recall that the generating function GQ(z) of Q is the product of G
Q̃

(z) and GQω(zπ
ω
). By

the sum-product rule we know that

G
Q̃(ω)

(z)GQω(z) = GQ(ω)
(z),

because Q(ω) = Q̃(ω)⊕Qω. When we multiply G
Q̃

(z) and GQω(zπ
ω
) and use this principle,

we get

GQ(z) =
∑

0≤i<ω−1

1

q(i)
HQ(i)

(zπ
i
)GQ(i+1)

(zπ
i+1

)GQω(zπ
ω
)
∏

2≤j≤2`
j 6=ω−i

GQi+j (z
πi+j )

+
1

q(ω−1)
GQ(ω−1)

(zπ
ω−1

)GQ(ω)
(zπ

ω
).

Now look at the first sum in the last expression. We note that Corollary 3.21 shows

that HQ(i)
(zπ

i
) is π2`+1+i-uniform, so that if i < ω − 2`, Corollary 3.18 then shows that

HQ(i)
(zπ

i
)GQω(zω) = HQ(i)

(zπ
i
), so that we can drop the GQω(zω) term. For i < ω − 2`,

we can also drop the restriction j 6= ω − 2` in the product, since it has no effect. On the
other hand, when ω− 2` ≤ i < ω− 1 in the first sum, the GQω(zπ

π
) term supplies precisely
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the term that the j 6= ω− 2` restriction in the product omits. Thus we obtain precisely the
expression for GQ(z) that we were to prove. �

The following result will allow us to apply Ig to the last term in the expression for the
generating function given in the above proposition.

Lemma 4.2. Let Q0 and Q1 be quadratic forms of ranks r0 and r1. For each quadratic
form P , let GP and HP be respectively the p-adic generating function and the head of the
p-adic generating function of P . Then

GQ0⊕πQ1(z) = HQ0(z)GQ1(zπ) +
1

qr0
GQ1(zπ)GQ0(zπ

2
),

and

GQ0⊕πQ1(z) = HQ0(z)GQ1(zπ) +
1

qr0
HQ1(zπ)GQ0(zπ

2
) +

1

qr0+r1
GQ0⊕πQ1(zπ

2
).

The Igusa local zeta function Ig(GQ0⊕πQ1(z)) is then(
Ig(HQ0(z)GQ1(zπ)) +

t

qr0
Ig(HQ1(z)GQ0(zπ))

)(
1− t2

qr0+r1

)−1
.

Proof. From Lemma 3.19, we have GQ0(z) = HQ0(z) + 1
qr0GQ0(zπ

2
), and we use the sum-

product rule to multiply this by the generating function GQ1(zπ) of πQ1 to obtain

(7) GQ0⊕πQ1(z) = HQ0(z)GQ1(zπ) +
1

qr0
GQ1(zπ)GQ0(zπ

2
)

the first relation we were to prove. Then we use Lemma 3.19 again to obtain GQ1(zπ) =

HQ1(zπ) + 1
qr1GQ1(zπ

3
), and substitute this into (7) to obtain the second relation we were

to prove. When one applies Ig to both sides of the second relation, and uses Lemma 3.12,
one obtains

Ig(GQ0⊕πQ1(z)) = Ig(HQ0(z)GQ1(zπ))+
1

qr0
Ig(HQ1(zπ)GQ0(zπ

2
))+

t2

qr0+r1
Ig(GQ0⊕πQ1(z)),

whence one obtains the expression that was claimed for the Igusa local zeta function. �

4.2. Generating Function for Quadratic Polynomials. In this section, we consider
what happens when we add linear and constant terms to a quadratic form (as defined in
previous section) over a p-adic field. We shall consider polynomials of the form

(8)

∞⊕
i=0

πiQi ⊕ L+ c,

where each Qi is a unimodular quadratic form, and almost all Qi are zero, L is a linear form
with at most one variable (L = 0 if zero variables), and c ∈ R is a constant. In Section 4.9
below, we show that when p is odd or when our ring R is Z2, then any quadratic polynomial
over R is strongly isospectral to a polynomial of the form (8).

Theorem 4.3. Suppose vπ(2) = `. Consider the quadratic polynomial Q =
⊕

i∈N π
iQi ⊕

L + c, where each Qi is a unimodular quadratic form of rank ri over R, where there is a
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positive integer ω such that Qi = 0 for i > ω, where L is a linear form involving at most
one indeterminate, and c ∈ R is a constant. For each j ∈ N, we let

Q(j) =
⊕
0≤i≤j

i≡j (mod 2)

Qi, r(j) = rank(Q(j)) =
∑

0≤i≤j
i≡j (mod 2)

ri, q(j) = q
∑

0≤i<j r(i) ,

and for any quadratic form P , use the term GP to denote the p-adic generating function of
P , and HP for the head of GP .

• If L = 0, then the p-adic generating function of Q is

GQ(z) =
∑

0≤i<ω−1

zc

q(i)
HQ(i)

(zπ
i
)GQ(i+1)

(zπ
i+1

)
∏

2≤j≤2`
GQi+j (z

πi+j )

+
zc

q(ω−1)
GQ(ω−1)

(zπ
ω−1

)GQ(ω)
(zπ

ω
).

• If L = ax with vπ(a) = λ <∞, then the p-adic generating function of Q is

GQ(z) =
∑

0≤i<λ−2`

zc

q(i)
HQ(i)

(zπ
i
)GQ(i+1)

(zπ
i+1

)
∏

2≤j≤2`
GQi+j (z

πi+j )

+
∑

max{0,λ−2`}≤i<λ

zc+π
λR

q(i)
HQ(i)

(zπ
i
)GQ(i+1)

(zπ
i+1

)
∏

2≤j≤2`
GQi+j (z

πi+j ) +
zc+π

λR

q(λ)
.

Proof. We may assume c = 0: the p-adic generating function of c is zc by Remark 3.3, and
the general case follows from the c = 0 case by the sum-product rule. The L = 0 case is
Proposition 4.1.

So we suppose L = ax with vπ(a) = λ < ∞ henceforth. By the sum-product rule,
the p-adic generating function we seek is the product of the p-adic generating function of⊕

i∈N π
iQi furnished by Proposition 4.1, and the p-adic generating function of L(x) = ax,

which is zπ
λR, as shown in Remark 3.3. When using Proposition 4.1, we make sure to use

ω large enough that ω > λ. When we multiply zπ
λR with terms from Proposition 4.1 of

the form HQ(i)
(zπ

i
)GQ(i+1)

(zπ
i+1

)
∏

2≤j≤2`GQi+j (z
πi+j ) with i ≥ λ, we get HQ(i)

(1)zπ
λR by

Remark 3.11, which equals (1−1/qr(i))zπ
λR because the head of a generating function for a

form with r(i) variables records the form’s values on a set of Haar volume 1− 1/qr(i) . And

when we multiply zπ
λR with the term GQ(ω−1)

(zπ
ω−1

)GQ(ω)
(zπ

ω
), we simply get zπ

λR. Thus
the generating function of Q is

GQ(z) =
∑

0≤i<λ

zπ
λR

q(i)
HQ(i)

(zπ
i
)GQ(i+1)

(zπ
i+1

)
∏

2≤j≤2`
GQi+j (z

πi+j )

+
∑

λ≤i<ω−1

zπ
λR

q(i)

(
1− 1

qr(i)

)
+

zπ
λR

q(ω−1)
,

and then use the definition of q(i) and r(i) to see that the second sum and the final term

telescope to give zπ
λR/q(λ).
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We then note that Corollary 3.21 shows that HQ(i)
(zπ

i
) is π2`+1+i-uniform, so that if

i < λ − 2`, Remark 3.11 shows that HQ(i)
(zπ

i
)zπ

λR = HQ(i)
(zπ

i
), so that we can drop the

zπ
λR term in these cases. �

Corollary 4.4. Let p be odd. Consider the quadratic polynomial Q =
⊕

i∈N π
iQi ⊕ L+ c,

where each Qi is a unimodular quadratic form of rank ri and discriminant di over R, where
there is a positive integer ω such that Qi = 0 for i > ω, where L is a linear form involving
at most one indeterminate, and c ∈ R is a constant. For each j ∈ N, we let

Q(j) =
⊕

0≤i≤j
i≡j (mod 2)

Qi, d(j) = disc(Q(j)) =
∏

0≤i≤j
i≡j (mod 2)

di,

r(j) = rank(Q(j)) =
∑

0≤i≤j
i≡j (mod 2)

ri, q(j) = q
∑

0≤i<j r(i),

and for any quadratic form P , use the term GP to denote the p-adic generating function of
P , and HP for the head of GP .

• If L = 0, then the p-adic generating function of Q is

GQ(z) =
∑

0≤i<ω−1

zc

q(i)
HQ(i)

(zπ
i
) +

zc

q(ω−1)
GQ(ω−1)

(zπ
ω−1

)GQ(ω)
(zπ

ω
).

• If L = ax with vπ(a) = λ <∞, then the p-adic generating function of Q is

GQ(z) =
∑

0≤i<λ

zc

q(i)
HQ(i)

(zπ
i
) +

zc+π
λR

q(λ)
.

Proof. This follows from Theorem 4.3, where we have ` = vπ(2) = 0. Corollary 3.21 says
that if P0 is a unimodular quadratic form, then HP0(z) is π-uniform, so if P1 is another
unimodular quadratic form, then Corollary 3.18 shows that HP0(z)GP1(zπ) = HP0(z). �

4.3. Local Zeta Function for a Quadratic Polynomial. We now use what we know
about the p-adic generating function of a quadratic polynomial to determine its local zeta
function.

Theorem 4.5. Suppose vπ(2) = `. Consider the quadratic polynomial Q =
⊕

i∈N π
iQi ⊕

L + c, where each Qi is a unimodular quadratic form of rank ri over R, where there is a
positive integer ω such that Qi = 0 for i > ω, where L is a linear form involving at most
one indeterminate, and c ∈ R is a constant. For each j ∈ N, we let

Q(j) =
⊕
0≤i≤j

i≡j (mod 2)

Qi, r(j) = rank(Q(j)) =
∑

0≤i≤j
i≡j (mod 2)

ri, q(j) = q
∑

0≤i<j r(i) ,

and for any quadratic form P , use the term GP to denote the p-adic generating func-
tion of P , and HP to denote the head of GP . For a ∈ R, µ ∈ N, and quadratic forms

P0, P1, . . . , P2`, let Ia(P0, P1, . . . , P2`) = Ig(zaHP0(z)GP1(zπ) . . . GP2`
(zπ

2`
)), and let Iµa =

Ig(za+π
µRHP0(z)GP1(zπ) . . . GP2`

(zπ
2`

)).
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• If L = 0 and c = 0, let r =
∑

i∈N ri, and then the Igusa local zeta function for Q is

ZQ(t) =
∑

0≤i<ω−1

ti

q(i)
I0(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`)

+

(
tω−1

q(ω−1)
I0(Q(ω−1), Q(ω), 0, 0, . . . , 0) +

tω

q(ω)
I0(Q(ω), Q(ω−1), 0, 0, . . . , 0)

)(
1− t2

qr

)−1
.

• If L = 0 and c 6= 0, let κ = vπ(c), and then the Igusa local zeta function of Q is

ZQ(t) =
∑

0≤i≤κ

ti

q(i)
Ic/πi(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`) +

tκ

q(κ+1)
.

• If L(x) = bx for some b with vπ(b) = λ <∞, and if vπ(c) ≥ λ, then the Igusa local
zeta function for Q is

ZQ(t) =
∑

0≤i<λ−2`

ti

q(i)
I0(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`)

+
∑

max{0,λ−2`}≤i<λ

ti

q(i)
Iλ−i0 (Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`)+

tλ

q(λ)

(
1− 1/q

1− t/q

)
.

• If L(x) = bx for some b with vπ(b) = λ < ∞, and if λ − 2` ≤ vπ(c) < λ, then let
κ = vπ(c), and then the Igusa local zeta function for Q is

ZQ(t) =
∑

0≤i<λ−2`

ti

q(i)
Ic/πi(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`)

+
∑

max{0,λ−2`}≤i≤κ

ti

q(i)
Iλ−i
c/πi

(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`) +
tκ

q(κ+1)
.

• If L(x) = bx for some b with vπ(b) = λ < ∞, and if vπ(c) < λ − 2`, then let
κ = vπ(c), and then the Igusa local zeta function for Q is

ZQ(t) =
∑

0≤i≤κ

ti

q(i)
Ic/πi(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`) +

tκ

q(κ+1)
.

Proof. We apply Ig to the p-adic generating functions supplied by Theorem 4.3, and when
p is odd we note (see the proof of Corollary 4.4) that if P0 and P1 are unimodular quadratic
forms, then we can always replace HP0(z)GP1(zπ) with HP0(z).

We note that when a ∈ R and F (z) ∈ G, Lemma 3.12 tells us that the term Ig(zaF (zπ
i
))

becomes ti Ig(za/π
i
F (z)) when vπ(a) ≥ i, and it becomes F (1)tvπ(a) when vπ(a) < i. And

similarly, if µ ∈ N, then Ig(za+π
µRF (zπ

i
)) becomes ti Ig(za/π

i+πµ−iRF (z)) when vπ(a), µ ≥ i,
and it becomes F (1)tvπ(a) when vπ(a) < µ, i.

When L = 0 and c = 0, we use Lemmata 4.2 and 3.12 to apply Ig to the last term

GQ(ω−1)
(zπ

ω−1
)GQ(ω)

(zπ
ω
), and note that r(ω−1) + r(ω) = r.
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When L = 0 and c 6= 0, we make sure to use ω > κ+ 1, so that we obtain

Ig(GQ(z)) =
∑

0≤i≤κ

ti

q(i)
Ic/πi(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`)

+
∑

κ<i<ω−1

1

q(i)
HQ(i)

(1)tκ +
1

q(ω−1)
tκ,

and then note that HQ(i)
(1) = 1− 1

q
r(i) because the head of a generating function for a form

with r(i) variables records the form’s values on a set of Haar volume 1− 1/qr(i) . Then one
sees that the second sum and last term telescope to give the desired form.

When L = bx with for some b with vπ(b) = λ < ∞, and when vπ(c) ≥ vπ(b), then a
reparameterization with x′ = (x− c/b) eliminates the constant term, so we may take c = 0
in this case. Then we apply Ig and use Lemma 3.7 for the last term.

When L(x) = bx for some b with vπ(b) = λ < ∞, and when vπ(c) < λ, and we let

κ = vπ(c), then we again use the fact that Ig(zcF (zπ
i
)) = F (1)tκ whenever i > κ to obtain

either

Ig(GQ(z)) =
∑

0≤i<λ−2`

ti

q(i)
Ic/πi(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`)

+
∑

max{0,λ−2`}≤i≤κ

ti

q(i)
Iλ−i
c/πi

(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`) +
∑
κ<i<λ

tκ

q(i)
HQ(i)

(1) +
tκ

q(λ)
,

if λ− 2` ≤ κ < λ, or else

Ig(GQ(z)) =
∑

0≤i≤κ

ti

q(i)
Ic/πi(Q(i), Q(i+1), Qi+2, Qi+3, . . . , Qi+2`) +

∑
κ<i<λ

tκ

q(i)
HQ(i)

(1) +
tκ

q(λ)
,

if κ < λ− 2`, and again note that HQ(i)
(1) = 1− 1

q
r(i) , and the last sum and final term of

each form telescope to give the desired form. �

4.4. Proof of Theorem 2.1. This follows from Theorem 4.5, where we have ` = vπ(2) = 0,
so no term of the form Iµa (P0) occurs, and the term Ia(P0) is just Ig(zaHP0(z)). If P0 is
of rank n and discriminant e, then we write this as Ia(n, e). The calculation of the values
Ia(n, e) in Table 2 is in Lemma 5.9 in the next section.

4.5. Proof of Theorem 2.3. We apply Theorem 4.5 with ` = 1, π = 2, and c = 0.
For the cases where L(x) 6= 0, the terms I20 (Q(λ−2), Q(λ−1), Qλ) and I10 (Q(λ−1), Q(λ), Qλ+1)
are dealt with specially. We note that if P0, P1, and P2 are unimodular quadratic forms,
then HP0(z)GP1(z2)GP2(z4)z4R = HP0(z)GP1(z2)z4R by Remark 3.11, which is the same as
HP0(z)GP1(z2)GSq(z4) by Lemma B.2 of Appendix B, so that I20 (P0, P1, P2) = I0(P0, P1, Sq).

And similarly, HP0(z)GP1(z2)GP2(z4)z2R = HP0(z)z2R by Remark 3.11, which is the same
as HP0(z)GSq(z2)GSq(z4) by Lemma B.4, so that I10 (P0, P1, P2) = I0(P0, Sq,Sq). So all our
terms Iµ0 (P0, P1, P2) can be replaced with I0(P0, A,B) for some unimodular quadratic forms
A and B, and since the subscript on I is always zero for Theorem 2.3 (since c = 0), we
suppress it. The formulae in Theorem 2.3 for λ = 0 and 1 are then easy obtained. The
values of I(P0, P1, P2) in Table 5 are calculated in Appendix B below.
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4.6. Proof of Theorem 2.4. This result follows if we can show that terms of the form
Ia(P0, . . . , P2`) and Iµa (P0, . . . , F2`) as defined in Theorem 4.5 are equal to polynomials in
Q[t] divided by 1−t/q. This will follow from Lemma 3.7 if we show that for any unimodular

quadratic forms P0, . . . , P2`, the term HP0(z)GP1(zπ) · · ·GP2`
(zπ

2`
) is πk-uniform for some

k ∈ N. But this follows from Corollary 3.21 (applied to P0) and Lemma 3.17.

4.7. Proof of Theorem 2.5. We use Theorem 2.1, which shows that the local zeta function
is a Q-linear combination (with positive coefficients) of terms of the form tiI0(n, e) with
I0(n, e) from Table 2, plus one final term involving a division by (1− t2/qr) that we analyze
now.

Lemma 4.6. With the assumptions and notations of Theorem 2.1, let r =
∑

i∈N ri and
d =

∏
i∈N di, and let

M =

(
tω−1

q(ω−1)
I0(r(ω−1), d(ω−1)) +

tω

q(ω)
I0(r(ω), d(ω))

)(
1− t2

qr

)−1
.

• If r(ω−1) and r(ω) are both odd, then

M =

(
tω−1

q(ω−1)

)(
1− 1/q

1− t/q

)
.

• If r(ω−1) and r(ω) are both even, then

M =

(
tω−1

q(ω−1)

)1 +
η((−1)r(ω−1)/2d(ω−1))(t− 1)

qr(ω−1)/2
(

1− η((−1)r/2d)t
qr/2

)
(1− 1/q

1− t/q

)
.

• If r(ω−1) is even and r(ω) is odd, then

M =

(
tω−1

q(ω−1)

)1 +
η((−1)r(ω−1)/2d(ω−1))(t− 1)

qr(ω−1)/2
(

1− t2

qr

)
(1− 1/q

1− t/q

)
.

• If r(ω−1) is odd and r(ω) is even, then

M =

(
tω−1

q(ω−1)

)1 +
η((−1)r(ω)/2d(ω))t(t− 1)

q(r(ω−1)+r)/2
(

1− t2

qr

)
(1− 1/q

1− t/q

)
.

Proof. Substitute the values of I0(r(ω−1), d(ω−1)) and I0(r(ω), d(ω)) from Table 2 and simplify.
�

Proof of Theorem 2.5: The rank 0 case is trivial, so we assume positive rank henceforth.
As mentioned above Theorem 2.1 shows that the local zeta function is a Q-linear combi-
nation (with positive coefficients) of terms of the form tiI0(n, e) with I0(n, e) from Table
2, plus the final term involving a division by (1 − t2/qr) that we just analyzed in Lemma
4.6. Perusal of Table 2 shows that I0(n, e) is zero when n = 0, is a positive constant when
(n, e) ∈ {(1, 1), (1, α), (2,−α)}, and otherwise (1− t/q)I0(n, e) is a polynomial whose value
at t = q is positive.

First suppose that {(reven, deven), (rodd, dodd)} ⊆ {(0, 1), (1, 1), (1, α), (2,−α)}. Then The-
orem 2.1 shows that the local zeta function is a polynomial plus the final term analyzed in
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Lemma 4.6. So the denominator g(t) we seek is the denominator of that term when (writ-
ten in reduced form), and this can readily be deduced for the finitely many possibilities for
(reven, deven) and (rodd, dodd) under consideration here by consulting Table 2.

So henceforth assume that {(reven, deven), (rodd, dodd)} 6⊆ {(0, 1), (1, 1), (1, α), (2,−α)}.
This makes r ≥ 2. If r = 2, we must have {(reven, deven), (rodd, dodd)} = {(0, 1), (2,−1)},
and we let ω be the greatest index such that Qω 6= 0. Then Theorem 2.1 and the fact
that I0(r(i), d(i)) is a constant for i < ω (and is zero when i 6≡ ω (mod 2)) show that the

local zeta function is a polynomial plus a positive constant times tωI0(r(ω), d(ω))/(1−t2/q2),
and since (r(ω), d(ω)) = (2,−1), Table 2 tells us that this last term (in reduced form) has

denominator (1− t/q)2.
So we may assume that r ≥ 3 henceforth. The factors 1± t/qr/2 can no longer occur in

the denominator of any I0(n, e), so they will be present in the local zeta function for Q if
and only if they are present in the denominator of the final term analyzed in Lemma 4.6.
Since I0(r(i), d(i)) is not a constant for some i, when we multiply the local zeta function by
1− t/q and evaluate at t = q, this term gives a positive contribution, and the other terms
give a nonnegative one (we are including the final term, whose denominator is positive at
t = q in view of the rank). So the local zeta function must have 1− t/q in its denominator
when written in reduced form.

4.8. Comparison with Igusa’s Results. Igusa calculated the local zeta function for a
quadratic polynomial with no constant term in the case where p is odd in Theorem 1 and
Corollary to Theorem 2 of [12], which is the special case of Theorem 2.1 when c = 0. He
also has some calculations in his monograph [13, Corollary 10.2.1], which give a special
case of his results for p odd in [12], but also give local zeta functions for a restricted
family quadratic forms over 2-adic fields (including ramified ones) that behave similarly to
unimodular quadratic forms over p-adic fields with p odd. In our notation, when p = 2, Igusa
restricts his attention to quadratic forms equal to 1/2 times one of the following: Hypn,
Ell⊕Hypn−1, Hypn⊕2uSq, or Ell⊕Hypn−1⊕2uSq, where u is a unit in R. The factor of
1/2 merely causes the zeta function to be scaled by t−vπ(2). When there is no 2uSq term
present, Igusa’s result follows directly from our calculations of zeta functions for unimodular
forms in Lemma 5.7 below. When the 2uSq term is present, write Q+ = Hyp(r−2)/2 and

Q− = Ell⊕Hyp(r−3)/2 so that Q = Q± ⊕ 2uSq. Then multiply the p-adic generating
functions GQ±(z) and GuSq(z2) of Q± and 2uSq from Lemma 5.7 and Corollary 3.21 and
coalesce cosets (see Remark 3.5) to show that the p-adic generating function for Q is

GQ(z) =

(
1− 1

qr−1

)
z2R +

1

qr+`
GQ±(zπ

2
)
∑
τ∈T ∗`

z2uτ
2+8πR +

1

qr
GQ(zπ

2
),

where ` = vπ(2) and T ∗` = {t0 + t1π + · · · + t`π
` : t0, . . . , t` ∈ T, t0 6= 0}. Apply Ig to

both sides, recognizing that GQ±(zπ
2
) = G(z2π

2
) for some G(z) ∈ G, so that Ig applied

to the second term gives (q − 1)t`/qr, and also note that Ig applied to the last term gives

t2 Ig(GQ(z))/qr by Lemma 3.12, and so we rearrange to get Ig(GQ(z)) = t`(1−1/q)(1−t/qr)
(1−t/q)(1−t2/qr) ,

which matches Igusa’s result when we divide by t` to account for his difference in scaling.

4.9. Strong Isospectrality for p odd and Z2. Recall from Section 2.1 that two polyno-
mials f and g over R are said to be strongly isospectral if for each k ∈ N, the reductions
of f and g modulo πk represent each value in R/πkR the same number of times. This is
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equivalent to saying that f and g have the same p-adic generating function. We prove that
in certain cases, quadratic polynomials over R are isospectral to ones where no variable
appears in both the linear and quadratic part.

Proposition 4.7. Suppose that p is odd, or else that p = 2 and R = Z2. Let Q be a
quadratic polynomial over R. Then f is strongly isospectral to a polynomial of the form⊕ω

i=0 π
iQi ⊕ πλL + c, for some unimodular quadratic forms Q0, Q1, . . . , Qω, where L is a

linear form involving at most one variable, λ > ω, and c is a constant in R.

Proof. In [25, §91C] it is shown that for any quadratic form, there is an invertible R-linear
change of variables that transforms it to a form

⊕ω
i=0 π

iPi, where each Pi is a unimodular
quadratic form. In [25, §91C, 92:1]) it is shown that one can arrange that each Pi be a
direct sum of unimodular quadratic forms of rank 1 (when p is odd) or ranks 1 and 2 (when
p = 2). We apply such a transformation to our quadratic polynomial, thus brining the
quadratic portion into this convenient form. This change of variables transforms the linear
portion of our polynomial to another linear form M .

Now for each rank 1 or 2 direct summand of the quadratic portion, say f(x) or g(x, y),
consider f(x)+ax or g(x, y)+ax+by, where the ax or ax+by is the portion of M involving x
or x and y. Since a rank 2 summand that cannot be decomposed into two rank 1 summands
must be Hyp or Ell by Corollary 5.11, Lemmata 4.9–4.11 below show that f(x) + ax or
g(x, y) + ax+ by is strongly isospectral to a linear form plus a constant or a quadratic form
plus a constant.

Thus we can assume that there are no variables in common between the linear and
quadratic portions of our polynomial. Then note that any nonzero linear form is isospectral
to a linear form with a single variable by an invertible R-linear change of variables.

If our single-variable linear term is ax, and there is a quadratic term of the form πµP
with µ > vπ(a), Lemma 4.8 shows that we can remove the πµP term. �

We conclude with some technical lemmata used above.

Lemma 4.8. Let f(x1, . . . , xn) = ax1+bL(x2, . . . , xn)+cP (x1, . . . , xn) with a, b, c ∈ R, and
L(x2, . . . , xn), P (x1, . . . , xn) ∈ R[x1, . . . , xn] with L(x2, . . . , xn) a linear form. If vπ(a) ≤
vπ(b) and vπ(a) < vπ(c), then f(x1, . . . , xn) is strongly isospectral to ax1.

Proof. By scaling, we may assume that a = 1 and π | c. Then the partial derivative of f at
x1 never vanishes modulo π, so Lemma 3.20 shows that the p-adic generating function for f
is the same that of x1 + bL(x2, . . . , xn), which by an invertible R-linear change of variables
is the same as that of x1. �

Lemma 4.9. Let f(x) = ax2 +bx for some a, b ∈ R. If vπ(b) < vπ(a), then f(x) is strongly
isospectral to bx. If vπ(b) = vπ(a) and R = Z2, then f(x) is strongly isospectral to 2bx. If

vπ(b) ≥ vπ(2a), then f(x) is strongly isospectral to ax2 − b2

4a .

Proof. Lemma 4.8 handles the first case, and the third case is obtained by completing the
square. In the second case, we reparameterize with x = by/a to obtain (b2/a)(y2 + y). It
suffices to show that y2+y is strongly isospectral to 2y, for then f will be strongly isospectral
to 2b(b/a)y, which is isospectral to 2by, since b/a is a unit. Note that the derivative of y+y2

is always 1 modulo 2, and so by Lemma 3.20, the p-adic generating function of y2 + y is
z2R, which is the p-adic generating function of 2x by Remark 3.3. �
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Lemma 4.10. Let f(x) = ax + by + cxy for some a, b, c ∈ R. If vπ(a), vπ(b) ≥ vπ(c),
then f(x, y) is strongly isospectral to cxy − ab

c . Otherwise, f(x, y) is strongly isospectral to
ax+ by.

Proof. In the first case, use the change of variables x = u− b/c and y = v−a/c, and handle
the residual cases with Lemma 4.8. �

Lemma 4.11. Let σ ∈ R such that z2+z+σ (mod π) is irreducible in Fq and set e(x, y) =
(x2 + xy + σy2), so that 2e(x) is an elliptic plane. Let f(x, y) = ax + by + ce(x, y). If

vπ(a), vπ(b) ≥ vπ(c), then f(x, y) is strongly isospectral to ce(x, y) + σa2−ab+b2
c(1−4σ) . Otherwise,

f(x, y) is strongly isospectral to ax+ by.

Proof. In the first case, use the change of variables x = u − (b − 2σa)/(c(1 − 4σ)) and
y = v − (a− 2b)/(c(1− 4σ)), and handle the residual cases with Lemma 4.8 �

5. Unimodular Quadratic Forms

Since Theorem 4.3 expresses the p-adic generating function and Igusa zeta function of
a quadratic polynomial in terms of the p-adic generating functions (and their heads) of
unimodular quadratic forms, we now analyze what unimodular forms look like. This will
eventually enable us to calculate the entries of Tables 2 and 5 used by Theorems 2.1 and
2.3.

We set down some basic assumptions and notations that shall hold in Sections 5.1–5.4.
We assume the basic facts about quadratic forms related in Section 2.1. We also recall from
Section 2.2 that when p is odd, R∗/R∗2 is a group of order 2, and we fix α ∈ R∗rR∗2, and
we use the extended character η defined in in Section 2.2.

When p = 2, the residue field is perfect and of characteristic 2, so every element a of R is
a square modulo 2, that is, a ≡ b2 (mod 2) for some b ∈ R. So aSq is always equivalent to
bSq for some b ∈ R with b ≡ 1 (mod 2). Furthermore, every element of the form 1 + 4πa
with a ∈ R is a square (so R∗/R∗2 is finite), but we can (and do) fix a unit ξ ∈ R such that
1+4ξ is not a square (see [25, §63:1 and 64:4] for proofs of these facts). In fact, it is an easy
consequence of Hilbert’s Theorem 90 that the elements a ∈ R such that 1 + 4a is square are
precisely those such that if ā ∈ Fq is the reduction of a modulo π, then the absolute trace
of ā is 0. When p = 2 and is unramified in R, we shall use Tr to denote the absolute trace
Tr: K → Q2, so if a ∈ R, then 1 + 4a is a square if and only if Tr(a) ≡ 0 (mod 2). We use

the convention that if a ∈ Z2, then (−1)a = (−1)(a mod 2).
Throughout this section, we let T be a set of Teichmüller representatives for Fq in K,

that is, T contains all the (q− 1)th roots of unity and 0. We let T ∗ = T r {0}. When p = 2
and does not ramify in R, we let S = {τ ∈ T : Tr(τ) ≡ 0 (mod π)}.

5.1. Unimodular Quadratic Forms of Rank 1. A unimodular quadratic form of rank 1
is uSq for some u ∈ R∗. Let us examine the p-adic generating functions for these quadratic
forms when p is odd and in the unramified 2-adic case.

Lemma 5.1. For p odd and a ∈ R∗, the head p-adic generating function of a Sq is

HaSq(z) = zR − 1

q
zπR +

1

q

∑
τ∈T

η(aτ)zτ+πR,

and the p-adic generating function satisfies GaSq(z) = HaSq(z) + 1
qGaSq(zπ

2
).
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Proof. From Corollary 3.21 and the fact that ax2 (mod π) represents each element of aF∗2q
twice as x runs through T ∗, we deduce that the head is (1/q)

∑
τ∈T ∗(1 + η(aτ))zτ+πR, and

coalesce cosets (see Remark 3.5) to obtain the desired form. Then Lemma 3.19 gives the
relation for GaSq. �

Lemma 5.2. Suppose that p = 2 and that K is unramified. If a ∈ R∗, then the head of the
p-adic generating function of a Sq is

Ha Sq(z) =
2

q2

∑
τ∈T ∗
s∈S

zaτ(1+4s)+8R.

The p-adic generating function satisfies GaSq(z) = HaSq(z) + 1
qGaSq(zπ

2
).

Proof. By Corollary 3.21, we have

Ha Sq(z) =
1

q2

∑
τ0∈T ∗
τ1∈T

za(τ0+2τ1)2+8R,

and then note that (τ0 + 2τ1)
2 = τ20 (1 + 4(r+ r2)) where r = τ1/τ0. As (τ0, τ1) runs through

T ∗×T , we note that (τ20 , r) runs through T ∗×T , and as r runs through T , we note that r2+r
(mod 2) runs through S, necessarily taking each value twice (since a quadratic polynomial
cannot take any value more than twice, and there are q/2 values of trace zero). Thus as
(τ0, τ1) runs through T ∗×T , (τ0 + 2τ1)

2 (mod 8) becomes congruent to each τ(1 + 4s) with
(τ, s) ∈ T ∗ × S two times. �

5.2. Unimodular Quadratic Forms of Rank 2. Let us first compute the p-adic gener-
ating function for hyperbolic and elliptic planes.

Lemma 5.3. The p-adic generating function of the hyperbolic plane satisfies

GHyp(z) =

(
1− 1

q

)
z2R +

1

q
GHyp(zπ).

The head of the p-adic generating function is

HHyp(z) =

(
1− 1

q

)(
z2R +

1

q
z2πR

)
,

and the p-adic generating function satisfies GHyp(z) = HHyp(z) + 1
q2
GHyp(zπ

2
). When p is

odd, then 2R = R, so the above instances of 2R and 2πR may be replaced with R and πR,
respectively.

Proof. Let us consider the partial generating function for xy on the region S = (Rr πR)×
R, that is, where x is a unit. Then the derivative of xy always has valuation 0, and
so we may use Lemma 3.20 to show that the partial p-adic generating function on S is
q−1
q2
∑

τ∈T z
τ+πR = q−1

q zR.

Now consider xy on the region Sc = R2 r S, that is, where x is a multiple of π, and
suppose we are interested in the partial modulo πk generating function of xy on Sc. We
write x = πx̃, and count the number of times (πx̃)y takes each value in Rk as x̃ runs through
Rk−1 and y runs through Rk, which is q times the number of times π(x̃y) takes each value
in Rk as x̃ and y run through Rk−1. Thus if the modulo πk−1 generating function for x̃y is
Fk−1(γ), then the partial modulo πk generating function for xy on Sc is 1

qFk−1(γ
π). (The
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γπ means we should replace each term γA where A ∈ Gk−1 with γπA. And the 1
q comes

about, since we get the counting factor of q just mentioned, but also pick up two factors of
q in the denominator due to our choice of normalization of modular generating functions.)
Taking limits, we see if the p-adic generating function for x̃y is G(z), then the partial p-adic
generating function for xy on Sc is 1

qG(zπ). But of course x̃y and xy represent the same

form G(z), so if we add the partial p-adic generating functions of xy on S and on Sc, then

we see that the p-adic generating function of xy satisfies G(z) = q−1
q zR + 1

qG(zπ). Now

scale by 2 to get the first relation we were to prove for the p-adic generating function of
Hyp.

We apply this relation to its own second term to get

GHyp(z) =

(
1− 1

q

)(
z2R +

1

q
z2πR

)
+

1

q2
GHyp(zπ

2
),

which shows that the head of the p-adic generating is exactly what we claim it to be by
Lemma 3.19. �

Recall that whenever f(X) a quadratic polynomial over R whose reduction modulo π is
an irreducible quadratic polynomial over Fq, the rank 2 form 2y2f(x/y) is called the elliptic
plane Ell. All such forms are equivalent, regardless of the choice of f . Some standard forms
for Ell are x2 − αy2 when p is odd and 2(x2 + xy − ξy2) when p = 2, where α and ξ are as
defined at the beginning of Section 5. We now compute the p-adic generating function for
an elliptic plane.

Lemma 5.4. The p-adic generating function of the elliptic plane satisfies

GEll(z) =

(
1 +

1

q

)
z2R − 1

q
GEll(z

π).

The head of the p-adic generating function is

HEll(z) =

(
1 +

1

q

)(
z2R − 1

q
z2πR

)
,

and the p-adic generating function satisfies GEll(z) = HEll(z) + 1
q2
GEll(z

π2
). When p is

odd, then 2R = R, so the above instances of 2R and 2πR may be replaced with R and πR,
respectively.

Proof. Let us compute the head of the p-adic generating function for 1
2 Ell, whose derivative

has valuation 0 on R2 r (πR)2 (see proof of Corollary 3.21). Suppose that f(X) is a qua-
dratic polynomial over R whose reduction modulo π, say g(X), is an irreducible quadratic
polynomial over Fq. Then express 1

2 Ell as Q(x, y) = y2f(x/y). Let θ and θ̄ be the roots of

g(x) in Fq2 , and then note that y2g(y/x) = β(y−θx)(y− θ̄x) for some β ∈ F∗q . Now suppose
that d, e ∈ R reduce modulo π to δ, ε ∈ Fq respectively. Then Q(d, e) (mod π) = βN(δ−εθ),
where N is the Galois-theoretic norm from Fq2 to Fq. Furthermore, as (d, e) runs through a

set of representatives modulo π of R2 r (πR)2, our (δ, ε) runs through F2
q r {(0, 0)}, and so

δ − εθ runs through F∗q2 , and so N(δ − εθ) runs through F∗q , taking each value q + 1 times.

Thus, by Lemma 3.20, we have H 1
2
Ell(z) = q+1

q2
∑

τ∈T ∗ z
τ+πR, and then we coalesce cosets

and scale by 2 to get the claimed expression for HEll(z).
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The recursive expression GEll(z) = HEll(z)+ 1
q2
GEll(z

π2
) comes immediately from Lemma

3.19. Now set I(z) = GEll(z) + 1
qGEll(z

π)−
(

1 + 1
q

)
z2R, and use the recursion to obtain

I(z) = HEll(z) +
1

q2
GEll(z

π2
) +

1

q
HEll(z

π) +
1

q3
GEll(z

π3
)−

(
1 +

1

q

)
z2R,

which is seen to be 1
q2
I(zπ

2
) when one substitutes the value of HEll(z). Thus I(1) = 0, and

furthermore, we can iterate this relation to see that I(z) = 1
q2k
I(zπ

2k
) for every k ∈ N. Now

if we apply ϕ2k to I(z) to get an element of G2k, the fact that I(z) is equal to 1
q2k
I(zπ

2k
)

shows that the only term γτ+π
2kR of ϕ2k(I(z)) that could have a nonzero coefficient would

be γπ
2kR. But the coefficient for this must also be zero since I(1) = 0. So ϕ2k(I(z)) = 0 for

every k ∈ N, so I(z) = 0. This proves the first claim of our lemma. �

Remark 5.5. We can repeatedly apply GEll(z) = HEll(z) + 1
q2
GEll(z

π2
) and use the value

of HEll(z) from Lemma 5.4 to see that for each k ∈ N, we have

GEll(z) =
k−1∑
i=0

1

q2i

(
1 +

1

q

)(
z2π

2iR − 1

q
z2π

2i+1R

)
+

1

q2k
GEll(z

π2k
).

This shows that Ell represents precisely the elements r ∈ R whose valuation has the same
parity as vπ(2) (and also Ell represents 0, but only trivially).

When p is odd, there are only two unimodular forms of rank 2 in R[x, y] up to equivalence
(see [25, §92:1a]), and these are evidently Hyp and Ell (these having different discriminants).

For the rest of this section, we assume that p = 2. By [25, §93:17], a generic rank 2 form
in R[x, y] is equivalent to a form Pl(a, b) given by ax2 + 2xy − ba−1y2, where a, b ∈ R with
vπ(a) ≤ min{vπ(2), vπ(b)/2}, and b equal to either 0, or 4ξ, or else b is an element with
vπ(b) odd and less than vπ(4). Note that the discriminant of Pl(a, b) is −(1 + b) and its
norm is the ideal aR. The restrictions we place on a and b stem from a being the norm
generator and b generating a quadratic defect, which are discussed in [25, §93:3, §63A].

In the special case where b = 0 and vπ(a) = vπ(2), a simple coordinate transform shows
that Pl(a, b) is equivalent to the hyperbolic plane. Similarly, when b = 4ξ and vπ(a) = vπ(2),
it is not hard to show that Pl(a, b) is an elliptic plane. If a is a unit, we may complete the
square to show that Pl(a, b) is equivalent to ax2 + cy2 for some unit c. Note that Hyp and
Ell have norm 2R and ax2 + cy2 with vπ(a) = 0 has norm R. All other Pl(a, b) have norm
strictly between R and 2R.

When K is unramified, our constraints on a and b then show that Pl(a, b) is either Hyp
(when vπ(a) = 1 and b = 0), Ell (when vπ(a) = 1 and b = 4ξ), or of the form ax2 + cy2

with a, c ∈ R∗ (when vπ(a) = 0). The generating functions of the first two forms have been
calculated explicitly above, and it will be useful to have an explicit calculation of the third.

Lemma 5.6. Suppose that p = 2 and does not ramify in R. Let a, b ∈ R∗ with a ≡ b ≡ 1
(mod 2).

If 4 | a+ b, let σ = (−1)Tr((a+b)/(4a)), and then the head of the p-adic generating function
for a Sq⊕bSq is

HaSq⊕b Sq(z) = zR − 1

q
z2R +

q − 1− σ
q2

z4R +
σ

q2
z8R.
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If 4 - a+ b, then the head of the p-adic generating function for a Sq⊕bSq is

HaSq⊕b Sq(z) =
2

q2

∑
τ∈T ∗
s∈S

zτ(a+
4
a+b

s)+4R +
2

q3

∑
τ∈T ∗
s∈S

zτ(a+b+4s)+8R.

In all cases, the p-adic generating function satisfies

Ga Sq⊕b Sq(z) = Ha Sq⊕b Sq(z) +
1

q2
GaSq⊕b Sq(zπ

2
).

This is proved in Appendix A.

5.3. Unimodular Quadratic Forms of Arbitrary Rank. As mentioned in Section 2.1,
every unimodular form is equivalent to a direct sum of forms of ranks 1 and 2. We now look
at this principle more specifically so that we can calculate the p-adic generating functions of
forms of higher rank. It turns out that any form of rank greater than 4 is always equivalent
to a form containing a hyperbolic plane as a direct summand. Therefore, it will be useful
to compute generating functions of direct sums of hyperbolic planes.

Lemma 5.7. Let ` = vπ(2). Let r ∈ N be even, let Q+ = Hypr/2, and let Q− =

Ell⊕Hyp(r−2)/2. The p-adic generating function of Q± satisfies

GQ±(z) =

(
1∓ 1

qr/2

)
z2R ± 1

qr/2
GQ±(zπ), and GQ±(z) = HQ±(z) +

1

qr
GQ±(zπ

2
),

where the head of the p-adic generating function of Q± is

HQ±(z) =

(
1∓ 1

qr/2

)(
z2R ± 1

qr/2
z2πR

)
,

with

Ig(HQ±(z)) =

(
1∓ 1

qr/2

)(
t` ± t`+1

qr/2

)(
1− 1/q

1− t/q

)
.

The Igusa local zeta function of Q± is

Ig(GQ±(z)) =
Ig(HQ±(z))

1− t2/qr
.

When p is odd, then 2R = R, so the above instances of 2R and 2πR may be replaced with
R and πR, respectively.

Proof. We begin by proving the first relation for GQ± . We proceed by induction on r, with
the r = 0 case trivial, and the r = 2 cases given by Lemmata 5.3 and 5.4. For r > 2,

we set Q̃+ = Hyp(r−2)/2 and Q̃− = Ell⊕Hyp(r−4)/2, and let G
Q̃±

(z) and GHyp(z) be the

p-adic generating functions of Q̃± and Hyp. Then the sum-product rule tells us that we
can multiply these together to get the generating function for Q±, so

GQ±(z) =

[(
1− 1

q

)
z2R +

1

q
GHyp(zπ)

] [(
1∓ 1

q(r−2)/2

)
z2R ± 1

q(r−2)/2
G
Q̃±

(zπ)

]
.

Since hyperbolic and elliptic planes are of norm 2R, any generating function like GHyp(zπ)
or G

Q̃±
(zπ) is equal to a generating function of the form G(z2π). Thus, when we multiply
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out the above expression and use Remark 3.11, we obtain our first relation, GQ±(z) =(
1∓ 1

qr/2

)
z2R ± 1

qr/2
GQ±(zπ). We apply this relation to its own second term to get

GQ±(z) =

(
1∓ 1

qr/2

)(
z2R ± 1

qr/2
zπR

)
+

1

qr
GQ±(zπ

2
),

and then use Lemma 3.19 to show that the head of the p-adic generating function of Q± is
exactly what we claim it to be, and to get Ig(GQ±) in terms of Ig(HQ±), which we calculate
with Lemma 3.7. �

When p is odd, for any given rank there are only two unimodular forms of that rank up
to equivalence, one of each discriminant.

Proposition 5.8. Let p be odd and r be a positive integer. Then up to equivalence there
are two distinct unimodular forms of rank r. If r is even, these are Hypr/2 of discriminant
(−1)r/2 and Ell⊕Hyp(r−2)/2 of discriminant (−1)r/2α. If r is odd, these are Sq⊕Hyp(r−1)/2

of discriminant (−1)(r−1)/2 and α Sq⊕Hyp(r−1)/2 of discriminant (−1)(r−1)/2α.

Proof. In [25, §92:1a], it is shown that (up to equivalence) there are precisely two unimodular
quadratic forms of any given rank, and we have exhibited two that are inequivalent since
they have different discriminants. �

We may now express the p-adic generating functions of these unimodular forms for odd
p in terms of their discriminants. We also calculate the values of Ia(r, d) in Table 2 that are
used in Theorem 2.1 to express the local zeta functions for quadratic polynomials over R
when p is odd. Recall from Section 4.4 that Ia(r, d) = Ig(zaHQ(z)) where Q is a unimodular
quadratic form of rank r and discriminant d and HQ(z) is the head of its p-adic generating
function.

Lemma 5.9. Let p be odd, let Q be a quadratic form over R of rank r and discriminant d,
and let a ∈ R.

I If r is even, then the head of the p-adic generating function of Q is

HQ(z) =

(
1− η((−1)r/2d)

qr/2

)(
zR +

η((−1)r/2d)

qr/2
zπR

)
,

• and if π | a, then

Ig(zaHQ(z)) =

(
1− η((−1)r/2d)

qr/2

)(
1 +

η((−1)r/2d)

qr/2
t

)(
1− 1/q

1− t/q

)
,

• but if π - a, then

Ig(zaHQ(z)) =

(
1− η((−1)r/2d)

qr/2

)((
1− 1/q

1− t/q

)
+
η((−1)r/2d)

qr/2

)
.

I If r is odd, then the head of the p-adic generating function of Q is

HQ(z) = zR − 1

qr
zπR +

η((−1)(r−1)/2d)

q(r+1)/2

∑
t∈T

η(t)zt+πR,
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• and if π | a, then

Ig(zaHQ(z)) =

(
1− t

qr

)(
1− 1/q

1− t/q

)
,

• but if π - a, then

Ig(zaHQ(z)) =

(
1 +

η(a(−1)(r+1)/2d)

q(r+1)/2
t

)(
1− 1/q

1− t/q

)
− 1

qr
− η(a(−1)(r+1)/2d)

q(r+1)/2
.

In any case, the p-adic generating function satisfies GQ(z) = HQ(z) + 1
qrGQ(zπ

2
), so that

the Igusa local zeta function for Q is

Ig(GQ(z)) =
Ig(HQ(z))

1− t2/qr
.

Proof. The calculation of the head of the p-adic generating function for the even rank case
follows directly from Proposition 5.8 and Lemma 5.7. If Q has odd rank, then Proposition
5.8 tells us that it equivalent to the direct sum of a quadratic form Q1 of rank r − 1 and
discriminant 1 with a quadratic form Q2 of rank 1 and discriminant d (viz., the form d Sq).
By the even rank case of this lemma, and by Lemma 5.1, these forms have generating
functions

GQ1(z) =

(
1− 1

σ

)(
zR +

1

σ
zπR

)
+

1

σ2
GQ1(zπ

2
)

GQ2(z) = zR − 1

q
zπR +

1

q

∑
t∈T

η(dt)zt+πR +
1

q
GQ2(zπ

2
),

where σ = η((−1)(r−1)/2)q(r−1)/2. We use the sum-product rule to obtain GQ(z) as the
product GQ1(z)GQ2(z), and we apply Remark 3.11 when multiplying out the right hand
sides to obtain

GQ(z) = zR − 1

qσ2
zπR +

1

qσ

∑
t∈T

η(dt)zt+πR +
1

qσ2
GQ(zπ

2
),

and in view of Lemma 3.19, this shows that the head of the p-adic generating is exactly
what we claim it to be. We use Lemma 3.7 to compute Ig(zcHQ(z)) in each case, and the
relation between Ig(GQ(z)) and Ig(HQ(z)) comes from Lemma 3.19. �

For the rest of this section, we assume that p = 2, and examine the unimodular quadratic
forms that can arise in 2-adic fields.

Proposition 5.10. Let p = 2. If r is even, then any unimodular quadratic form of rank r
is equivalent to one of the following:

(i). Hypr/2,

(ii). Pl(a, b)⊕Hypr/2−1,

(iii). Pl(a, b)⊕ Pl(πj , 0)⊕Hypr/2−2, or

(iv). Pl(a, b)⊕ Pl(πj , 4ξ)⊕Hypr/2−2,

where Pl(a, b) is as defined in Section 5.2, and a, b ∈ R with vπ(a) ≤ min{vπ(2), vπ(b)/2},
and b equal to either 0, or 4ξ, or else b is an element with vπ(b) odd and less than vπ(4),
and vπ(a) < j ≤ vπ(2) with vπ(a) + j odd in cases (iii) and (iv).

If r is odd, then any unimodular quadratic form of rank r is equivalent to one of the
following:
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(i). a Sq⊕Hyp(r−1)/2,

(ii). a Sq⊕Pl(πj , 0)⊕Hyp(r−3)/2, or

(iii). a Sq⊕Pl(πj , 4ξ)⊕Hyp(r−3)/2,

where a ∈ R∗ and 0 < j ≤ vπ(2).

Proof. This is a consequence of [25, §93:17–18], where we note that ξ can be always be
replaced with −ξ, for the ratio (1 + 4ξ)/(1 − 4ξ) ≡ 1 (mod 8), and so is a square. Thus
1− 4ξ is a nonsquare because 1 + 4ξ is. �

Corollary 5.11. Suppose that p = 2 and does not ramify in R. If r is even, then any
unimodular quadratic form of rank r is equivalent to one of the following:

(i). Hypr/2,

(ii). Ell⊕Hypr/2−1,

(iii). a Sq⊕bSq⊕Hypr/2−1, or

(iv). a Sq⊕bSq⊕Ell⊕Hypr/2−2,

where a, b ∈ R∗ and are both congruent to 1 modulo 2.
If r is odd, then any unimodular quadratic form of rank r is equivalent to one of the

following:

(i). a Sq⊕Hyp(r−1)/2,

(ii). a Sq⊕Ell⊕Hyp(r−3)/2,

where a ∈ R∗ and is congruent to 1 modulo 2.

Proof. This follows from Proposition 5.10. In Section 5.2, we noted that Pl(a, b) is always
equivalent to Hyp (when vπ(a) = 1 and b = 0), Ell (when vπ(a) = 1 and b = 4ξ), or
uSq⊕v Sq with u and v units (when vπ(a) = 0). Furthermore we may take the units u and
v to be 1 modulo 2 by scaling x and y, since every unit is a square modulo 2. �

When p = 2 and is not ramified in R, all unimodular forms that have norm R, 2R, or 0.
Those with norm 2R and 0 are covered by Lemma 5.7 above (one uses Q+ with r = 0 to get
the form 0). So we now calculate the p-adic generating functions and local zeta functions
for unimodular forms of norm R over unramified 2-adic fields.

Lemma 5.12. Suppose that p = 2 and does not ramify in R. Let a ∈ R∗. Let r ∈ N be
odd, let Q+ = a Sq⊕Hyp(r−1)/2, and if r ≥ 3, then let Q− = aSq⊕Ell⊕Hyp(r−3)/2. The
head of the p-adic generating function of Q± is

HQ±(z) =

(
1∓ 1

q(r−1)/2

)[
zR ± 1

q(r+1)/2

∑
τ∈T

zaτ+4R

]
+

2

qr+1

∑
τ∈T ∗
s∈S

zaτ(1+4s)+8R,

with

Ig(HQ±(z)) =

(
1− t2

qr
± t2 − t
q(r+1)/2

)(
1− 1/q

1− t/q

)
.

The p-adic generating function satisfies GQ±(z) = HQ±(z) + 1
qrGQ±(z4). The Igusa local

zeta function for Q± is

Ig(GQ±(z)) =
Ig(HQ±(z))

1− t2/qr
.
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Proof. Let Q̃+ = Hyp(r−1)/2 and when r ≥ 3, let Q̃− = Ell⊕Hyp(r−3)/2. Let G
Q̃±

(z) and

GaSq(z) be the respective p-adic generating functions of Q̃± and aSq. By the sum-product
rule, the p-adic generating function for Q± is GQ±(z) = Ga Sq(z)G

Q̃±
(z). Taking the values

of these latter two generating functions are described in Lemmata 5.2 and 5.7, we see that
GQ±(z) is 2

q2

∑
τ∈T ∗
s∈S

zaτ(1+4s)+8R +
1

q
Ga Sq(z4)

[(1∓ 1

q(r−1)/2

)(
z2R ± 1

q(r−1)/2
z4R
)

+
1

qr−1
G
Q̃±

(z4)

]
.

One can multiply out and simplify the products using Remark 3.11, keeping in mind that

G
Q̃±

(z4) is equal to G(z8) for some G(z) ∈ G since Q̃± is of norm 2R or 0. When one does

this, and coalesces
∑

τ∈T z
τ+2R into qzR (see Remark 3.5), one obtains(

1∓ 1

q(r−1)/2

)[
zR ± 1

q(r+1)/2

∑
τ∈T

zaτ+4R

]
+

2

qr+1

∑
τ∈T ∗
s∈S

zaτ(1+4s)+8R +
1

qr
GQ±(z4),

which, by Lemma 3.19 makes the head what it is claimed to be. We use Lemma 3.7 to
calculate Ig(HQ±(z)), and the relation between Ig(GQ±(z)) and Ig(HQ±(z)) comes from
Lemma 3.19. �

Lemma 5.13. Suppose that p = 2 and does not ramify in R Let a, b ∈ R∗ with a ≡ b ≡ 1
(mod 2). Let r ∈ N be even, let Q+ = aSq⊕bSq⊕Hyp(r−2)/2 for r ≥ 2, and let Q− =

a Sq⊕bSq⊕Ell⊕Hyp(r−4)/2 for r ≥ 4.
If 4 | a+ b, let σ = (−1)Tr((a+b)/(4a)), and then the head of the p-adic generating function

for Q± is

HQ±(z) = zR ∓ 1

qr/2
z2R ± 1

qr/2
z4R − σ + 1

qr
z4R +

σ

qr
z8R,

with

Ig(HQ±(z)) =

(
1− t2

qr
± t2 − t

qr/2
+
σ(t3 − t2)

qr

)(
1− 1/q

1− t/q

)
.

If 4 - a+ b, then the head of the p-adic generating function for Q± is

HQ±(z) =

(
1∓ 1

q(r−2)/2

)(
zR ± 1

qr/2
z2R
)

± 2

q(r+2)/2

∑
τ∈T ∗
s∈S

zτ(a+
4
a+b

s)+4R +
2

qr+1

∑
τ∈T ∗
s∈S

zτ(a+b+4s)+8R,

with

Ig(HQ±(z)) =

(
1− t2

qr

)(
1− 1/q

1− t/q

)
.

In all cases, the p-adic generating function satisfies GQ±(z) = HQ±(z)+ 1
qrGQ±(z4). The

Igusa local zeta function for Q± is

Ig(GQ±(z)) =
Ig(HQ±(z))

1− t2/qr
.
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Proof. Let Q̃+ = Hyp(r−2)/2 when r ≥ 2, and let Q̃− = Ell⊕Hyp(r−4)/2 when r ≥ 4.

Let G
Q̃±

(z) and GaSq⊕b Sq(z) be the respective p-adic generating functions of Q̃± and

aSq⊕bSq. By the sum-product rule, the p-adic generating function for Q± is GQ±(z) =
GaSq⊕b Sq(z)G

Q̃±
(z). The values of these latter two generating functions are described in

Lemmata 5.6 and 5.7.
First consider the case where 4 | a+ b, so that GQ±(z) is

zR − 1

q
z2R +

q − 1− σ
q2

z4R +
σ

q2
z8R +

1

q2
GaSq⊕b Sq(z4)

times (
1∓ 1

q(r−2)/2

)(
z2R ± 1

q(r−2)/2
z4R
)

+
1

qr−2
G
Q̃±

(z4).

One can multiply out and simplify the products using Remark 3.11, keeping in mind that

G
Q̃±

(z4) is equal to G(z8) for some G(z) ∈ G since Q̃± is of norm 2R or 0. When one does

this, one obtains

zR ∓ 1

qr/2
z2R ± 1

qr/2
z4R − σ + 1

qr
z4R +

σ

qr
z8R +

1

qr
GQ±(z4),

which, by Lemma 3.19 makes the head what it is claimed to be.
In the case where 4 - a + b, we use the appropriate generating function for aSq⊕bSq

from Lemma 5.6 to see that GQ±(z) is

2

q2

∑
τ∈T ∗
s∈S

zτ(a+
4
a+b

s)+4R +
2

q3

∑
τ∈T ∗
s∈S

zτ(a+b+4s)+8R +
1

q2
Ga Sq⊕b Sq(z4)

times (
1∓ 1

q(r−2)/2

)(
z2R ± 1

q(r−2)/2
z4R
)

+
1

qr−2
G
Q̃±

(z4).

One can multiply out and simplify the products using Remark 3.11, keeping in mind that

G
Q̃±

(z4) is equal to G(z8) for some G(z) ∈ G since Q̃± is of norm 2R or 0. When one does

this, and coalesces cosets (see Remark 3.5), one obtains(
1∓ 1

q(r−2)/2

)(
zR ± 1

qr/2
z2R
)
± 2

q(r+2)/2

∑
τ∈T ∗
s∈S

zτ(a+
4
a+b

s)+4R

+
2

qr+1

∑
τ∈T ∗
s∈S

zτ(a+b+4s)+8R +
1

qr
GQ±(z4),

which, by Lemma 3.19 makes the head what it is claimed to be. We use Lemma 3.7 to
calculate Ig(HQ±(z)) in each case, and the relation between Ig(GQ±(z)) and Ig(HQ±(z))
comes from Lemma 3.19. �

5.4. Addition Rules for Unimodular Quadratic Forms over Unramified 2-Adic
Fields. In order to use Theorem 2.3 to calculate the local zeta function of a quadratic
polynomial over an unramified 2-adic ring, one needs to know how to express the direct
sum of any pair of unimodular forms on Table 3 as another form on Table 3. In Lemma 2.2
we proposed “addition rules” that make this possible. We prove Lemma 2.2 here.

The first addition rule is actually true for all p-adic fields.
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Lemma 5.14. The quadratic form Ell⊕Ell is equivalent to the quadratic form Hyp⊕Hyp.

Proof. When p is odd, Proposition 5.8 shows that up to equivalence the only forms of rank
4 are Hyp⊕Hyp and Ell⊕Hyp. When p = 2, consult Proposition 5.10, and recall from
Section 5.2 that if Pl(a, b) has norm 2R, then it must be Hyp or Ell, and so up to equivalence
the only forms or rank 4 and norm 2R are Hyp⊕Hyp and Ell⊕Hyp. Of the two candidates,
only Hyp⊕Hyp has the same discriminant as Ell⊕Ell. �

We prove the second addition rule specifically for the unramified 2-adic case.

Lemma 5.15. Suppose that p = 2 and does not ramify in R. Suppose that Q(x, y, z) =
ax2+by2+cz2 with a, b, c ∈ R∗. If there are d, e, f ∈ R with Q(d, e, f) ≡ −abc (mod 8), then
Q(x, y, z) is equivalent to (−abc) Sq⊕Hyp. Otherwise Q(x, y, z) is equivalent to (−abc)(1+
4ξ) Sq⊕Ell.

Proof. Since Q has rank 3 and norm R, Corollary 5.11 shows that it must be equivalent
either to (−abc) Sq⊕Hyp or (−abc)(1 + 4ξ) Sq⊕Ell, where the coefficient of the Sq term
has been chosen in view of the fact that the discriminant must be preserved. We note
that (−abc) Sq⊕Hyp obviously represents −abc. We claim that (−abc)(1 + 4ξ) Sq⊕Ell
does not represent −abc (mod 8). For if it did, then since Ell represents only zero and
elements of odd valuation by Remark 5.5, we would need to have some r ∈ R such that
f(r) = (−abc)(1 + 4ξ)r2 + abc is either zero or of odd valuation. The valuation of f(r) will
be 0 unless r ≡ 1 (mod 2). Write r = 1 + 2s with s ∈ R, so that f(r) ≡ −4abc(ξ + s+ s2)
(mod 8), and then note that Tr(ξ + s+ s2) ≡ 1 (mod 2), so that vπ(f(r)) = 2. �

Appendix A. Proof of Lemma 5.6

Throughout this section, we assume that p = 2 and does not ramify in R. We let T be a
set of Teichmüller representatives for Fq in K, that is, T contains all the (q − 1)th roots of
unity and 0. We let T ∗ = T r {0}, and we let S = {τ ∈ T : Tr(τ) ≡ 0 (mod π)}.

In order to prove Lemma 5.6, we need some preliminary results concerning the arithmetic
of Teichmüller representatives. We present these as technical lemmata, some of which are
used here, and some of which find use later in Appendix B.

Lemma A.1. Let a ∈ R, and suppose that a0 ∈ T with a ≡ a0 (mod 2). Then aq ≡ a0
(mod 4). If a is a unit, or if the residue field for R has order q ≥ 4, then aq ≡ a0 (mod 8).

Proof. Write a = a0 + 2r for some r ∈ R, and consider the binomial expansion of (a0 + 2r)q

modulo 8, which is aq0+2qaq−10 r+2q(q−1)aq−20 r2. The last two terms always vanish modulo
4, and they vanish modulo 8 when q ≥ 4. If q = 2 and a is a unit, then a0 = 1, and it is
easy to check that a2 ≡ 1 (mod 8) for every unit in Z2. �

Lemma A.2. Suppose that a, b, c ∈ T with a+ b ≡ c (mod 2). Then

a+ b ≡ c+ 2(ab)q/2

≡ c+ 2a+ 2(ac)q/2 (mod 4).

If the residue field for R is of order q ≥ 4, then

a+ b ≡ c+ 2(ab)q/2 + 4(ab)q/4(aq/2 + bq/2)

≡ c+ 2a− 2(ac)q/2 + 4(ac)q/4(aq/2 + cq/2) (mod 8).
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Proof. We prove the asserted congruences modulo 8 for the case when q ≥ 4: these imply
the asserted congruences modulo 4, which are easy to show when q = 2, since T = {0, 1}.
By Lemma A.1, (a + b)q ≡ c (mod 8), so then a + b ≡ c + ((a+ b)− (a+ b)q) (mod 8),
and we use binomial expansion. From the theorems of Kummer [18] and Anton [2], we
know that the only binomial coefficients

(
q
j

)
that do not vanish modulo 8 are those with

j = 0, q/4, q/2, 3q/4, and q, and the values of these are 1, 4, −2, 4, and 1 modulo 8,
respectively. This (and the fact that aq = a and bq = b since a, b ∈ T ), suffice to prove the
first congruence.

To prove the second congruence, we replace b with c − a and use the same techniques.
This does not change the value of our expression modulo 8, for b ≡ c− a (mod 2), whence

one easily shows that b2 ≡ (c− a)2 (mod 4), so that bq/2 ≡ (c− a)q/2 (mod 4). �

Corollary A.3. Suppose that a ∈ R and b, c ∈ T with a+ b ≡ c (mod 2). Then

a+ b ≡ c+ a+ aq + 2(ac)q/2 (mod 4).

Proof. Write a = a0 + 2a1 with a0 ∈ T and a1 ∈ R. Then a0 + b ≡ c (mod 2), so that

Lemma A.2 tells us that a0 + b ≡ c+ 2a0 + 2(a0c)
q/2 (mod 4). So a+ b ≡ c+ 2a0 + 2a1 +

2(a0c)
q/2 (mod 4), which is the same as c + a + a0 + 2(ac)q/2 (mod 4), which is the same

as c+ a+ aq + 2(ac)q/2 (mod 4) by Lemma A.1. �

Lemma A.4. Let a ∈ R. If a 6≡ 0 (mod 2), then as b runs through T , the quantity b2 + ab
(mod 2) runs through the values of {a2s (mod 2) : s ∈ S}, taking each value twice. If a ≡ 0
(mod 2), then as b runs through T , the quantity b2 + ab (mod 2) runs through the values of
Fq, taking each value once.

Proof. The claim when a ≡ 0 (mod 2) is clear because b2 +ab ≡ b2 (mod 2), and x 7→ x2 is
a permutation of Fq. So we assume a 6≡ 0 (mod 2) henceforth. Write c = a−1b, so that we
are looking at the quantity a2(c2 + c) (mod 2) as c runs through a−1T , which is the same
as T modulo 2. As c runs through T , the quantity c2 + c (mod 2) takes each value in Fq
with zero trace twice since it cannot take any such value more than twice. �

Lemma A.5. For c ∈ R, write cS (mod 2) to mean the set {cs (mod 2) : s ∈ S}. Then
cS (mod 2) is a subgroup of the additive group of Fq, and if a, b ∈ R∗ with a 6≡ b (mod 2),
we have aS (mod 2) + bS (mod 2) = Fq.

Proof. Let c̄ be the reduction of c modulo 2. If c̄ = 0, then cS (mod 2) = {0}, and if c̄ 6= 0,
then cS (mod 2) is the kernel of the F2-linear functional x 7→ Tr(x/c̄), hence an additive
subgroup of Fq of index 2. Changing c modulo 2 changes the functional, hence its kernel,
and so aS (mod 2) + bS (mod 2) must be the entire group Fq. �

Corollary A.6. Let a, b ∈ R with a 6≡ b (mod 2). Then as (c, d) runs through T 2, the
quantity c2 + ac + d2 + bd (mod 2) runs through the values of Fq, with each value being
taken q times.

Proof. By Lemma A.4, if either a or b vanishes modulo 2, then this is clear. Otherwise,
(c2 + ac, d2 + bd) (mod 2) runs through a2S (mod 2)× b2S (mod 2) with each value taken
four times, and then Lemma A.5 completes the proof. �

Proof of Lemma 5.6: Once we determine the head, the rest follows immediately from
Lemma 3.19. It suffices to determine the head for Sq⊕w Sq for w ∈ R∗ with w ≡ 1 (mod 2),
for we can use w = b/a and then scale the generating functions by a to get the desired forms,
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once we check that when 4 - a+ b we have 4a/(1+(b/a)) = 4a2/(a+ b) ≡ 4/(a+ b) (mod 8)
and 4a ≡ 4 (mod 8) because a ≡ 1 (mod 2).

We can use use Corollary 3.21 to determine the head as

H(z) =
1

q4

∑
s0,s1,τ0,τ1∈T
(s0,τ0)6=(0,0)

z(s0+2s1)2+w(τ0+2τ1)2+8R.

When q = 2, we have T = {0, 1} and S = {0}, and the square of any unit is always 1
(mod 8), so if we break the sum into the cases where (s0, τ0) = (1, 0), (0, 1), and (1, 1),
respectively, we get

1

8

∑
τ1∈T

z1+4wτ21+8R +
1

8

∑
s1∈T

z4s
2
1+w+8R +

1

4
z1+w+8R.

Then note that 4 ≡ 4w ≡ 4 (mod 8), and that τ 7→ τ2 is a permutation of T to get
(z1+4R + zw+4R + z1+w+8R)/4, and it is not hard to show that this matches the two general
forms to be proved (under their respective hypotheses) when one sets q equal to 2.

We assume q ≥ 4 henceforth. Write w ≡ 1 + 2w1 + 4w2 (mod 8) with w0, w1, w2 ∈ T ,
and then note that

(s0 + 2s1)
2 + w(τ0 + 2τ1)

2 ≡ s20 + τ20 + (w − 1)τ20 + 4(s21 + s0s1) + 4(τ21 + τ0τ1) (mod 8).

Let us concern ourselves with the case when this value is 1 (mod 2), that is, when s20+τ20 ≡ 1
(mod 2). Then by Lemma A.2, we have

s20 + τ20 ≡ 1 + 2(τ20 − τ0) + 4τ
q/2
0 (τ0 + 1) (mod 8),

and since s20 + τ20 ≡ 1 (mod 2), we must have s0 + τ0 ≡ 1 (mod 2), so that (s0 + 2s1)
2 +

w(τ0 + 2τ1)
2 (mod 8) is

1 + 2

((
w + 1

2

)
τ20 − τ0

)
+ 4τ

q/2
0 (τ0 + 1) + 4(s21 + (1− τ0)s1) + 4(τ21 + τ0τ1).

As we let (s0, τ0) run through (T )2r{(0, 0)}, we see that (s20, τ
2
0 ) runs through (T )2r{(0, 0)},

and we obtain s20 + τ20 ≡ 1 (mod 2) in q different ways. If 4 | 1 + w, then (w + 1)/2 ≡ 0
(mod 2), so then (w+ 1)τ20 /2 + τ0 (mod 2) runs through Fq, taking each value once. But if
4 - 1 + w, then Lemma A.4 shows that (w + 1)τ20 /2 + τ0 (mod 2) runs through the values
of 2

w+1S (mod 2), taking each value twice. In either case, Corollary A.6 shows that for any

given values of s0 and τ0, the term (s21 + (1 − τ0)s1) + (τ21 + τ0τ1) taken modulo 2 runs
through Fq, taking each value q times as (s1, τ1) runs through T 2. Thus, if 4 | 1 +w, we see
that (s0 +2s1)

2 +w(τ0 +2τ1)
2 (mod 8) runs through the values of the form 1+2s+4c with

s, c ∈ T , taking each value q times. And if 4 - 1 +w, we see that (s0 + 2s1)
2 +w(τ0 + 2τ1)

2

(mod 8) runs through the values of the form 1 + 4s/(w + 1) + 4c with s ∈ S and c ∈ T ,
taking each value 2q times.

Of course the value of (s0+2s1)
2+w(τ0+2τ1)

2 can be a unit not congruent to 1 modulo 2.
If u ∈ T and we want to count the instances where (s0 + 2s1)

2 +w(τ0 + 2τ1)
2 ≡ u (mod 2),

then just pick the unique v ∈ T with v2 = u, and then note there is bijection between the
quadruples (s0, τ0, s1, τ1) in our summation that make (s0 + 2s1)

2 +w(τ0 + 2τ1)
2 congruent

to 1 modulo 2 and the quadruples that make it congruent to u modulo 2: just scale the
quadruple by v. So we just multiply all the outputs that are 1 modulo 2 by v2 = u to get
the outputs that are u modulo 2.
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Finally, we must consider the outputs of (s0 + 2s1)
2 + w(τ0 + 2τ1)

2 that vanish modulo
2, that is, when s0 = τ0 (which runs through T ∗ since our summation prohibits both from
vanishing simultaneously). Meanwhile (s1, τ1) runs through T 2. Then we have

(s0 + 2s1)
2 + w(τ0 + 2τ1)

2 ≡ (1 + w)τ20 + 4(s21 + τ0s1) + 4(τ21 + τ0τ1)

≡ (1 + w)τ20 + 4((s1 + τ1)
2 + τ0(s1 + τ1)) (mod 8).

For each value of τ0 ∈ T ∗, Lemma A.4 shows that the term (s1 + τ1)
2 + τ0(s1 + τ1) (mod 2)

runs through τ20S (mod 2), taking each value 2q times as (s1, τ1) runs through T 2. And
τ20 runs through T ∗ as τ0 runs through T ∗, so we get 2q instances of each element of the
form τ(1 + w + 4s) (mod 8) for τ ∈ T ∗ and s ∈ S. There are several cases to consider.
If 4 | 1 + w and Tr((1 + w)/4) ≡ 0 (mod 2), then our expression furnishes 2q instances of
each value that 4τs (mod 8) attains as (τ, s) runs through T ∗ × S, and since 0 ∈ S, this
means we get (2q)(q − 1) = 2q2 − 2q instances of 0 (mod 8) and (2q)(q/2 − 1) = q2 − 2q
instances of 4τ (mod 8) for each τ ∈ T ∗. If 4 | 1 +w and Tr((1 +w)/4) ≡ 1 (mod 2), then
our expression furnishes 2q instances of each value that 4τs (mod 8) attains as (τ, s) runs
through T ∗ × (T r S), and so we get q2 instances of each element of the form 4τ (mod 8)
with τ ∈ T ∗. If 4 - 1 +w, then we still have 2 | 1 +w, and then our expression furnishes 2q
instances for each value that τ(1 + w + 4s) (mod 8) attains as (τ, s) runs through T ∗ × S.

When we put together all these counts and coalesce cosets (see Remark 3.5), we see that
if 4 | 1 +w and Tr((1 +w)/4) ≡ 0 (mod 2), then the head of the p-adic generating function
for Sq⊕w Sq is

HSq⊕w Sq(z) = zR − 1

q
z2R +

q − 2

q2
z4R +

1

q2
z8R,

and if 4 | 1 + w with Tr((1 + w)/4) ≡ 1 (mod 2), then

HSq⊕w Sq(z) = zR − 1

q
z2R +

1

q
z4R − 1

q2
z8R,

and if 4 - 1 + w, then

HSq⊕w Sq(z) =
2

q2

∑
u∈T ∗
s∈S

zu(1+4s/(1+w))+4R +
2

q3

∑
τ∈T ∗
s∈S

zτ(1+w+4s)+8R.

Appendix B. Calculations for Table 5

In this section we calculate the values I(Q0, Q1, Q2) in Table 5. Recall from Section 4.5
that if Q0, Q1, and Q2 are unimodular quadratic forms, and if we let GQi(z) and HQi(z)
denote respectively the p-adic generating generating function of Qi and the head of said
generating function, then I(Q0, Q1, Q2) = Ig(HQ0(z)GQ1(z2)GQ2(z4)).

Throughout this section, we assume that p = 2 and does not ramify in R. We let T be
a set of Teichmüller representatives for Fq in K, that is, T contains all the (q − 1)th roots
of unity and 0. We let T ∗ = T r {0}, and we let S = {τ ∈ T : Tr(τ) ≡ 0 (mod π)}. We
always use Q0, Q1, and Q2 to denote unimodular quadratic forms, and if Q is a quadratic
form over R, then GQ(z) will denote the p-adic generating function for Q, and HQ(z) will
denote the head of GQ(z).

We use the same shorthand for unimodular quadratic forms that is used in Table 5:
Planes(+) means a direct sum of hyperbolic planes (with the correct number needed to
achieve a particular rank, if specified) and Planes(−) is the direct sum of a single elliptic
plane and some number of hyperbolic planes (again, achieving a particular rank, if specified).
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For example, if we say that rank(Qi) = ri and Qi = a Sq⊕bSq⊕Planes(±i), then we mean

that either Qi = aSq⊕bSq⊕Hyp(ri−2)/2 (if ±i = +) or Qi = aSq⊕bSq⊕Ell⊕Hyp(ri−4)/2

(if ±i = −).
When calculating Ig(HQ0(z)GQ1(z2)GQ2(z4)) for unimodular forms Q0, Q1, and Q2, the

first thing to note from Corollary 3.21 is that HQ0(z) is 8-uniform. Therefore we may make
extensive use of Remark 3.11 and Lemma 3.17 in our calculations. Indeed, throughout this

section, when F (z) ∈ G, we use F̂ (z) as shorthand for the 2-uniformization of F (z) and F̃ (z)

for the 4-uniformization. Note that by F̂ (z2
j
), we mean that one should first 2-uniformize

F , and then scale by replacing every instance of z with z2
j
. If one wants to perform the

operations in the opposite order, then one arrives at the same function if one first scales

F (z) to obtain F (z2
j
), and then uniformizes F (z2

j
) modulo 2j+1. The same convention and

principle holds for F̃ (z), and so F̃ (z2) and F̂ (z4) are both 8-uniform.

Lemma B.1. We have

HQ0(z)GQ1(z2)GQ2(z4) = HQ0(z)HQ1(z2)ĤQ2(z4) = HQ0(z)G̃Q1(z2)ĜQ2(z4).

Proof. Since Corollary 3.21 shows that HQ0(z) is 8-uniform, this follows from Lemma 3.17.
�

The various uniformizations and related quantities on Tables 6 and 7 will be useful. They
are easy to calculate from GQ and HQ as given in Lemmata 5.7, 5.12, and 5.13. Now we
are ready to examine HQ0(z)GQ1(z2)GQ2(z4) according to various cases.

Lemma B.2. We have

HQ0(z)GQ1(z2)GQ2(z4)z4R = HQ0(z)GQ1(z2)GSq(z4).

Proof. We have HQ0(z)GQ1(z2)GQ2(z4)z4R = HQ0(z)GQ1(z2)z4R, which in turn equals

HQ0(z)GQ2(z2)ĜSq(z4) by Table 6, and so equals HQ0(z)GQ2(z2)GSq(z4) by Lemma B.1.
�

Lemma B.3. If norm(Q1) = norm(Q2) = R, then HQ0(z)GQ1(z2)GQ2(z4) is just ĤQ0(z),
which can be obtained from Table 6 or 7.

Proof. Lemma B.1 allows us to replace HQ0(z)GQ1(z2)GQ2(z4) by HQ0(z)G̃Q1(z2)ĜQ2(z4),

which equals HQ0(z)G̃Q1(z2)z4R by Tables 6 and 7. Then we may replace G̃Q1(z2)z4R by

ĜQ1(z2)z4R, which equals z2Rz4R = z2R by Tables 6 and 7. So we need only calculate

HQ0(z)z2R, which is ĤQ0 by Lemma 3.17. �

Lemma B.4. We have

HQ0(z)GQ1(z2)GQ2(z4)z2R = HQ0(z)GSq(z2)GSq(z4).

Proof. We see that HQ0(z)GQ1(z2)GQ2(z4)z2R = HQ0(z)z2R = ĤQ0(z), which in turn
equals HQ0(z)GSq(z2)GSq(z4) by Lemma B.3. �

Lemma B.5. If norm(Q2) = R and norm(Q1) 6= R, then HQ0(z)GQ1(z2)GQ2(z4) is just

H̃Q0(z), which can be obtained from Table 6 or 7.

Proof. Lemma B.1 allows us to replace HQ0(z)GQ1(z2)GQ2(z4) by HQ0(z)G̃Q1(z2)ĜQ2(z4),

which equals HQ0(z)G̃Q1(z2)z4R by Tables 6 and 7. Then we may replace G̃Q1(z2)z4R by

ĜQ1(z2)z4R, which equals z4Rz4R = z4R by Table 6. So we need only calculate HQ0(z)z4R =

H̃Q0(z). �
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Table 6. Uniformizations of Generating Functions for a Unimodular Form Q

r = rank(Q)
a ≡ 1 (mod 2)
Q = Planes(±0)

G̃Q(z)
(

1∓ 1
qr/2

)
z2R ± 1

qr/2
z4R

H̃Q(z)
(

1∓ 1
qr/2

)(
z2R ± 1

qr/2
z4R
)

Ig(H̃Q(z))
(

1∓ 1
qr/2

)(
t± t2

qr/2

)(
1−1/q
1−t/q

)
HQ(z)− H̃Q(z) 0

Ig(HQ(z)− H̃Q(z)) 0

ĜQ(z) z2R

ĤQ(z)
(

1− 1
qr

)
z2R

Ig(ĤQ(z))
(

1− 1
qr

)
t
(
1−1/q
1−t/q

)
Q = aSq⊕Planes(±0)

G̃Q(z)
(

1∓ 1
q(r−1)/2

)
zR ± 1

q(r+1)/2

∑
τ∈T z

aτ+4R

H̃Q(z)
(

1∓ 1
q(r−1)/2

)
zR − 1

qr z
4R ± 1

q(r+1)/2

∑
τ∈T z

aτ+4R

Ig(H̃Q(z))
(

1− t2

qr ±
t2−t

q(r+1)/2

)(
1−1/q
1−t/q

)
HQ(z)− H̃Q(z) 2

qr+1

∑
τ∈T ∗
s∈S

zaτ(1+4s)+8R − 1
qr
∑

τ∈T ∗ z
aτ+4R

Ig(HQ(z)− H̃Q(z)) 0

ĜQ(z) zR

ĤQ(z) zR − 1
qr z

2R

Ig(ĤQ(z))
(

1− t
qr

)(
1−1/q
1−t/q

)

Lemma B.6. If norm(Q2) 6= R, then HQ0(z)GQ1(z2)GQ2(z4) = HQ0(z)G̃Q1(z2).

Proof. Lemma B.1 allows us to replace HQ0(z)GQ1(z2)GQ2(z4) by HQ0(z)G̃Q1(z2)ĜQ2(z4),

which equals HQ0(z)G̃Q1(z2)z8R by Table 6. Since G̃Q1(z2) is a 8-uniform, we see that

G̃Q1(z2)z8R = G̃Q1(z2). �

Lemma B.7. If norm(Q2) 6= R and Q1 = Planes(±1), then

HQ0(z)GQ1(z2)GQ2(z4) = H̃Q0(z)±1
1

qr1/2

(
HQ0(z)− H̃Q0(z)

)
.

Proof. Lemma B.6 allows us to replace HQ0(z)GQ1(z2)GQ2(z4) with HQ0(z)G̃Q1(z2), and

we use the value of G̃Q1 from Table 6 and apply Lemma 3.17. �

Lemma B.8. If norm(Q0), norm(Q1), and norm(Q2) 6= R, then HQ0(z)GQ1(z2)GQ2(z4) =

H̃Q0(z) = HQ0(z), which can be obtained from Lemma 5.7 or Table 6.

Proof. Apply Lemma B.7, and note from Table 6 that HQ0(z)− H̃Q0(z) = 0. �
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Table 7. Uniformizations of Generating Functions for a Unimodular Form Q

r = rank(Q)
a ≡ b ≡ 1 (mod 2)

Q = a Sq⊕bSq Planes(±0) with 4 | a+ b and σ = (−1)Tr((a+b)/(4a))

G̃Q(z) zR ∓ 1
qr/2

z2R ± 1
qr/2

z4R

H̃Q(z) zR ∓ 1
qr/2

z2R ± 1
qr/2

z4R − 1
qr z

4R

Ig(H̃Q(z))
(

1− t2

qr ±
t2−t
qr/2

)(
1−1/q
1−t/q

)
HQ(z)− H̃Q(z) σ

qr

(
z8R − z4R

)
Ig(HQ(z)− H̃Q(z)) σ

qr (t3 − t2)
(
1−1/q
1−t/q

)
ĜQ(z) zR

ĤQ(z) zR − 1
qr z

2R

Ig(ĤQ(z))
(

1− t
qr

)(
1−1/q
1−t/q

)
Q = aSq⊕bSq Planes(±0) with 4 - a+ b

G̃Q(z)
(

1∓ 1
q(r−2)/2

)
zR ± 1

qr/2
z2R ± 2

q(r+2)/2

∑
τ∈T ∗
s∈S

zτ(a+
4
a+b

s)+4R

H̃Q(z)
(

1∓ 1
q(r−2)/2

)
zR ± 1

qr/2
z2R ± 2

q(r+2)/2

∑
τ∈T ∗
s∈S

zτ(a+
4
a+b

s)+4R − 1
qr z

4R

Ig(H̃Q(z))
(

1− t2

qr

)(
1−1/q
1−t/q

)
HQ(z)− H̃Q(z) − 1

qr−1 z
2R + 1

qr z
4R + 2

qr+1

∑
τ∈T ∗
s∈S

zτ(a+b+4s)+8R

Ig(HQ(z)− H̃Q(z)) 0

ĜQ(z) zR

ĤQ(z) zR − 1
qr z

2R

Ig(ĤQ(z))
(

1− t
qr

)(
1−1/q
1−t/q

)
Lemma B.9. Suppose that norm(Q2) 6= R, that Q1 = Planes(±1) is of rank r1, and that
Q0 = a Sq⊕Planes(±0) is of rank r0. Then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) = Ig(H̃Q0(z)) = Ig(HQ0(z)),

which can be obtained from Lemma 5.12 or Table 6.

Proof. Apply Lemma B.7, and note from Table 6 that Ig annihilates HQ0(z)− H̃Q0(z). �

Lemma B.10. Suppose that norm(Q2) 6= R, that Q1 = Planes(±1) is of rank r1, and that
Q0 = a Sq⊕bSq⊕Planes(±0) is of rank r0 with a ≡ b ≡ 1 (mod 2).

If 4 | a+ b, let σ = (−1)Tr((a+b)/(4a)), and then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) =

(
1− t2

qr0
±0

t2 − t
qr0/2

±1
σ(t3 − t2)
qr0+r1/2

)(
1− 1/q

1− t/q

)
.

If 4 - a+ b, then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) = Ig(H̃Q0(z)) = Ig(HQ0(z)),

which can be obtained from Lemma 5.13 or Table 7.
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Proof. Apply Lemma B.7, and use Table 7 to obtain Ig(H̃Q0(z)) and Ig(HQ0(z)− H̃Q0(z)).
�

Lemma B.11. Suppose that norm(Q2) 6= R, and that Q1 = cSq⊕Planes(±1) is of rank
r1. Then

HQ0(z)GQ1(z2)GQ2(z4) = ĤQ0(z)±1
1

q(r1+1)/2
(HQ0(z)− H̃Q0(z))

∑
v∈T

z2cv.

Proof. Lemma B.6 allows us to replaceHQ0(z)GQ1(z2)GQ2(z4) withHQ0(z)G̃Q1(z2), and we

use the value of G̃Q1 from Table 6. We multiply this by HQ0(z), and note that HQ0(z)z2R =

ĤQ0(z) and HQ0(z)z2cτ+8R = HQ0(z)z2cτ by the 8-uniformity of HQ0(z), and so obtain(
1∓1

1

q(r1−1)/2

)
ĤQ0(z)±1

1

q(r1+1)/2
HQ0(z)

∑
v∈T

z2cv,

which is equal to

ĤQ0(z)±1
1

q(r1+1)/2
(H̃Q0(z)− ĤQ0(z))

∑
v∈T

z2cv ±1
1

q(r1+1)/2
(HQ0(z)− H̃Q0(z))

∑
v∈T

z2cv.

Now note that H̃Q0(z) − ĤQ0(z) is necessarily a linear combination of terms of the form

za+4R − za+2R, so that by coalescence of cosets (see Remark 3.5), we have(
za+4R − za+2R

)∑
v∈T

z2cv = 0. �

Lemma B.12. Suppose that norm(Q2) 6= R, that Q1 = cSq⊕Planes(±1) is of rank r1,
that Q0 = Planes(±0) is of rank r0. Then

HQ0(z)GQ1(z2)GQ2(z4) = ĤQ0(z),

which can be obtained from Table 6.

Proof. Use Lemma B.11 and note from Table 6 that HQ0(z)− H̃Q0(z) = 0. �

Lemma B.13. Suppose that norm(Q2) 6= R, that Q1 = cSq⊕Planes(±1) is of rank r1,
and that Q0 = aSq⊕Planes(±0) is of rank r0. Then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) = Ig(ĤQ0(z)),

which can be obtained from Table 6.

Proof. We apply Lemma B.11, and note from Table 6 that

(HQ0(z)− H̃Q0(z))
∑
v∈T

z2cv = − 1

qr0

∑
τ∈T ∗
v∈T

zaτ+2cv+4R +
2

qr0+1

∑
τ∈T ∗
s∈S
v∈T

zaτ(1+4s)+2cv+8R,

which is annihilated by Ig. �

Lemma B.14. Suppose that norm(Q2) 6= R, that Q1 = c Sq⊕Planes(±1) is of rank r1,
and that Q0 = a Sq⊕bSq⊕Planes(±1) with a ≡ b ≡ 1 (mod 2) and 4 | a + b, and let

σ = (−1)Tr((a+b)/(4a)). Then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) =

(
1− t

qr0
±1

σ(t3 − t2)
qr0+(r1+1)/2

)(
1− 1/q

1− t/q

)
.
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Proof. We apply Lemma B.11, and use the values of ĤQ0 and HQ0(z)− H̃Q0(z) = σ(z8R −
z4R)/qr0 from Table 7. Note that Ig annihilates (HQ0(z) − H̃Q0(z))z2cv when v ∈ T ∗ and
gives σq−r0(t3 − t2)(1− 1/q)/(1− t/q) when v = 0. �

Lemma B.15. Suppose that norm(Q2) 6= R, that Q1 = cSq⊕Planes(±1) is of rank r1,
and that Q0 = aSq⊕bSq⊕Planes(±1) with a ≡ b ≡ 1 (mod 2) and 4 - a + b, and let

ϕ = (−1)Tr(
c
2 [(a+b2c )

q
+a+b

2c ]). Then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) =

(
1− t

qr0
±1

ϕ(t3 − t2)
qr0+(r1+1)/2

)(
1− 1/q

1− t/q

)
Proof. We apply Lemma B.11, and use the value of HQ0 − H̃Q0 from Table 7 to see that

(HQ0(z)− H̃Q0(z))
∑
v∈T

z2cv = −q − 1

qr−1
z2R +

2

qr+1

∑
τ∈T ∗,s∈S,v∈T

zτ(a+b+4s)+2cv+8R.

Let us examine the triple sum. First, reparameterize it with v = wτ with w ∈ T to obtain∑
τ∈T ∗,s∈S,w∈T

z2cτ(w+e+2s/c)+8R,

where we set e = a+b
2c . For each w ∈ T , there is a unique x ∈ T such that w + e ≡ x

(mod 2), and x runs through T as w runs through T . By Corollary A.3, we have w + e ≡
x+ eq + e+ 2(xe)q/2 (mod 4), and so we can again reparameterize our sum as∑

τ∈T ∗,s∈S,x∈T
z2cτ(x+e

q+e+2(xe)q/2+2s/c)+8R.

where we note that 2 | eq + e by Lemma A.1. The only part of our expression for
HQ0(z)GQ1(z2)GQ2(z4) to which it is difficult to apply Ig is this sum. To do this, we need

to understand the valuation of the term 2cτ
(
x+ eq + e+ 2(xe)q/2 + 2s/c

)
. The valuation

is 1 when x 6= 0, i.e., for (q − 1)2q/2 of the triple sum’s terms.
When x = 0, we have 4τ (c(eq + e)/2 + s), so the valuation is at least 2. It is exactly 2 if

and only if c(eq+e)/2 6≡ s (mod 2). If Tr(c(eq+e)/2) ≡ 1 (mod 2), this invariably happens,
so we get a valuation of 2 for q(q − 1)/2 of our summation terms. If Tr(c(eq + e)/2) ≡ 0
(mod 2), then we get a valuation of 2 for (q − 1)(q/2 − 1) of our triple sum’s terms, and
a valuation of 3 or higher for q − 1 of our triple sum’s terms. Thus, if we apply Ig to the
triple sum, when Tr(c(eq + e)) ≡ 0 (mod 4), we get

q(q − 1)2

2
t+

(q − 1)(q − 2)

2
t2 + (q − 1)t3

(
1− 1/q

1− t/q

)
,

and when Tr(c(eq + e)) ≡ 2 (mod 4), we get.

q(q − 1)2

2
t+

q(q − 1)

2
t2.

Using these calculations to apply Ig to (HQ0(z) − H̃Q0(z))
∑

v∈T z
2cv and the value of

Ig(ĤQ0(z)) from Table 7, we get the desired value of Ig(HQ0(z)GQ1(z2)GQ2(z4)) via Lemma
B.11. �
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Lemma B.16. Suppose that norm(Q2) 6= R and that Q1 = cSq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 | c+ d. Then

HQ0(z)GQ1(z2)GQ2(z4) = ĤQ0(z)±1
1

qr1/2

(
HQ0(z)− H̃Q0(z)

)
.

Proof. Lemma B.6 allows us to replace HQ0(z)GQ1(z2)GQ2(z4) with HQ0(z)G̃Q1(z2), and

we use the value of G̃Q1(z) from Table 7. We multiply this by HQ0(z), and note that

HQ0(z)z2
jR is just the 2j-uniformization of HQ0(z). �

Lemma B.17. Suppose that norm(Q2) 6= R and that Q1 = c Sq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 | c+ d. Suppose that norm(Q0) = Planes(±0). Then

HQ0(z)GQ1(z2)GQ2(z4) = ĤQ0(z),

which can be obtained from Table 6.

Proof. Use Lemma B.16 and note from Table 6 that H̃Q0(z)−HQ0(z) = 0. �

Lemma B.18. Suppose that norm(Q2) 6= R and that Q1 = cSq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 | c+ d. Suppose that Q0 = aSq⊕Planes(±0). Then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) = Ig(ĤQ0(z)),

which can be obtained from Table 6.

Proof. Apply Lemma B.16, and note from Table 6 that Ig annihilates HQ0(z)−H̃Q0(z). �

Lemma B.19. Suppose that norm(Q2) 6= R and that Q1 = cSq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 | c + d. Suppose that Q0 = aSq⊕bSq⊕Planes(±0)
is of rank r0.

If 4 | a+ b, let σ = (−1)Tr((a+b)/(4a)), and then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) =

(
1− t

qr0
±1

σ(t3 − t2)
qr0+r1/2

)(
1− 1/q

1− t/q

)
.

If 4 - a+ b, then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) = Ig(ĤQ0(z)),

which can be obtained from Table 7.

Proof. Apply Lemma B.16, and use Table 7 to obtain Ig(ĤQ0(z)) and Ig(HQ0(z)−H̃Q0(z)).
�

Lemma B.20. Suppose that norm(Q2) 6= R and that Q1 = cSq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 - c+ d. Then

HQ0(z)GQ1(z2)GQ2(z4) = ĤQ0(z)±1
2

q(r1+2)/2

(
HQ0(z)− H̃Q0(z)

) ∑
v∈T ∗
u∈S

z2v(c+
4
c+d

u).

Proof. Lemma B.6 allows us to replaceHQ0(z)GQ1(z2)GQ2(z4) withHQ0(z)G̃Q1(z2), and we

use the value of G̃Q1 from Table 7. We multiply this by HQ0(z), and note that HQ0(z)z2
jR
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is the 2j-uniformization of HQ0(z) and HQ0(z)z2v(c+
4
c+d

u)+8R = HQ0(z)z2v(c+
4
c+d

u) because
HQ0(z) is 8-uniform by Corollary 3.21. So we obtain

HQ0(z)GQ1(z2)GQ2(z4) =

(
1∓1

1

q(r1−2)/2

)
ĤQ0(z)±1

1

qr1/2
H̃Q0(z)

±1
2

q(r1+2)/2
HQ0(z)

∑
τ∈T ∗
s∈S

z2τ(c+
4
c+d

s),

which is(
1∓1

1

q(r1−2)/2

)
ĤQ0(z)±1

1

qr1/2
H̃Q0(z)±1

1

qr1/2
H̃Q0(z)

∑
τ∈T ∗

z2τ

±1
2

q(r1+2)/2

(
HQ0(z)− H̃Q0(z)

) ∑
τ∈T ∗
s∈S

z2τ(c+
4
c+d

s),

which in turn is

ĤQ0(z)±1
H̃Q0(z)− ĤQ0(z)

qr1/2

∑
τ∈T

z2τc ±1

2
(
HQ0(z)− H̃Q0(z)

)
q(r1+2)/2

∑
τ∈T ∗
s∈S

z2τ(c+
4
c+d

s).

Now note that H̃Q0(z) − ĤQ0(z) is necessarily a linear combination of terms of the form

za+4R − za+2R, so that by coalescence of cosets (see Remark 3.5), we have(
za+4R − za+2R

)∑
τ∈T

z2τc = 0. �

Lemma B.21. Suppose that norm(Q2) 6= R and that Q1 = cSq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 - c+ d. Suppose that Q0 = Planes(±0). Then

HQ0(z)GQ1(z2)GQ2(z4) = ĤQ0(z),

which can be obtained from Table 6.

Proof. Apply Lemma B.20, and note from Table 6 that H̃Q0 = HQ0 . �

Lemma B.22. Suppose that norm(Q2) 6= R and that Q1 = cSq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 - c + d. Suppose that Q0 = a Sq⊕Planes(±0) is of
rank r0. Then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) = Ig(ĤQ0(z)),

which can be obtained from Table 6.

Proof. We apply Lemma B.20, and use the value of HQ0(z)− H̃Q0(z) from Table 6. When

it is multiplied by
∑

v∈T ∗
u∈S

z2v(c+
4
c+d

u), one gets

2

qr0+1

∑
t,v∈T ∗
s,u∈S

zat(1+4s)+2v(c+ 4
c+d

u)+8R,− 1

qr0

∑
t,v∈T ∗
u∈S

zat+2v(c+ 4
c+d

u)+4R,

which is clearly annihilated by Ig. �
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Lemma B.23. Suppose that norm(Q2) 6= R and that Q1 = cSq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 - c + d. Suppose that Q0 = a Sq⊕bSq⊕Planes(±0)
is of rank r0 with a ≡ b ≡ 1 (mod 2) and 4 | a+ b. Then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) = Ig(ĤQ0(z)),

which can be obtained from Table 7.

Proof. We apply Lemma B.20, and use Table 7 to obtain the value HQ0(z) − H̃Q0(z) =

σ(z8R − z4R)/qr0 , where σ = (−1)Tr((a+b)/(4a)). Note that Ig always annihilates (HQ0(z)−
H̃Q0(z))z2v(c+

4
c+d

u) when v ∈ T ∗. �

Lemma B.24. Suppose that norm(Q2) 6= R and that Q1 = cSq⊕dSq⊕Planes(±1) is of
rank r1 with c ≡ d ≡ 1 (mod 2) and 4 - c + d. Suppose that Q0 = a Sq⊕bSq⊕Planes(±0)
is of rank r0 with a ≡ b ≡ 1 (mod 2) and 4 - a+ b.

If 4 - a+ b+ c+ d, then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) = Ig(ĤQ0(z)),

which can be obtained from Table 7.

If 4 | a+ b+ c+ d, let ψ = (−1)Tr(
c
2 [( c+d2 )

q
+a+b

2c ]), and then

Ig(HQ0(z)GQ1(z2)GQ2(z4)) =

(
1− t

qr0
±1

ψ(t3 − t2)
qr0+r1/2

)(
1− 1/q

1− t/q

)
.

Proof. We apply Lemma B.20, and use the value of HQ0 − H̃Q0 from Table 7 to see that(
HQ0(z)− H̃Q0(z)

) ∑
v∈T ∗
u∈S

z2v(c+
4
c+d

u)

is
2− q
2qr0−2

z2R − 1

2qr0−1
z4R +

2

qr0+1

∑
τ,v∈T ∗
s,u∈S

zτ(a+b+4s)+2v(c+ 4
c+d

u)+8R.

Let us examine the quadruple sum. First, reparameterize with v = τw with w ∈ T ∗ to
obtain ∑

τ,w∈T ∗
s,u∈S

z2τ(c(w+e)+2s+2(w/g)u)+8R,

where e = a+b
2c and g = c+d

2 . Note that if w 6≡ g (mod 2), then Lemma A.5 tells us that

s + (w/g)u (mod 2) runs through Fq, taking each value q2/4 times, as (s, u) runs through
S2. If w ≡ g (mod 2), then s + (w/g)u (mod 2) runs through S, taking each value q/2
times. Lemma A.1 tells us that w ≡ gq (mod 4) when w ≡ g (mod 2), so our quadruple
sum becomes

q2

4

∑
τ,w∈T ∗

w 6≡g (mod 2)

z2τc(w+e)+4R +
q

2

∑
τ∈T ∗
s∈S

z2τ(c(g
q+e)+2s)+8R,

and we can sum over all w, and then deduct the w = 0 and w = g terms to get

q3(q − 2)

4
z2R +

q2

4
z4R − q2

4

∑
τ∈T ∗

zτ(a+b+c+d)+4R +
q

2

∑
τ∈T ∗
s∈S

z2τ(c(g
q+e)+2s)+8R,
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where we have used the fact that c(c + d) ≡ c + d (mod 4) because c ≡ d ≡ 1 (mod 2).
When we combine this with the other terms, we get that

(9)
(
HQ0(z)− H̃Q0(z)

) ∑
v∈T ∗
u∈S

z2v(c+
4
c+d

u) = − 1

2qr0−1

(
M − 2

q
N

)

where

M =
∑
τ∈T ∗

zτ(a+b+c+d)+4R and N =
∑
τ∈T ∗
s∈S

z2τ(c(g
q+e)+2s)+8R.

We get different values for these sums depending on v2(a+ b+ c+ d), v2(g
q + e), and in the

case where v2(g
q + e) ≥ 1 whether Tr(c(gq + e)/2) is 0 or 1 modulo 2. The important cases

to delineate for M are (I) v2(a + b + c + d) = 1 and (II) v2(a + b + c + d) > 1. Note that
case (I) is not achievable when R = Z2, but can be achieved in any unramified extension
thereof. Since gq ≡ g (mod 2) and c ≡ 1 (mod 2) (making e ≡ a+b

2 (mod 2)), we see that

gq + e ≡ a+b+c+d
2 (mod 2), so we see that v2(g

q + e) = 0 in case (I) and v2(g
q + e) > 0 in

case (II). We then divide case (II) into case (IIA) where Tr(c(gq + e)/2) ≡ 1 (mod 2), and
case (IIB) where Tr(c(gq + e)/2) ≡ 0 (mod 2).

In case (I), we have M(z) = qz2R − z4R, and

Ig(M(z)) = (qt− t2)
(

1− 1/q

1− t/q

)
and Ig(N(z)) =

(q − 1)qt

2
.

In case (IIA) or (IIB), we have M(z) = (q − 1)z4R, and

Ig(M(z)) = (q − 1)t2
(

1− 1/q

1− t/q

)
.

Then in case (IIA), we obtain

Ig(N(z)) =
(q − 1)qt2

2
,

and in case (IIB), we have

Ig(N(z)) =
(q − 1)(q − 2)t2

2
+ (q − 1)t3

(
1− 1/q

1− t/q

)
=

(
qt3 + q(q − 2)t2

2

)(
1− 1/q

1− t/q

)
.

Using these calculations to apply Ig to (9), and also using value of Ig(ĤQ0(z)) from Table
7, we get the desired value of Ig(HQ0(z)GQ1(z2)GQ2(z4)) via Lemma B.20. �
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[18] E. E. Kummer. Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew.
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