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ABSTRACT. A new method is devised for calculating the Igusa local zeta function Zy of a
polynomial f(z1,...,z,) over a p-adic field. This involves a new kind of generating func-
tion G that is the projective limit of a family of generating functions, and contains more
data than Z;. This G resides in an algebra whose structure is naturally compatible with
operations on the underlying polynomials, facilitating calculation of local zeta functions.
This new technique is used to expand significantly the set of quadratic polynomials whose
local zeta functions have been calculated explicitly. Local zeta functions for arbitrary qua-
dratic polynomials over p-adic fields with p odd, and polynomials without constant term
over unramified 2-adic fields are presented. For a quadratic form over an arbitrary p-adic
field, this new technique renders transparent the fact that there are only three candidate
poles, and when p is odd, makes clear precisely which ones are truly poles.

1. INTRODUCTION

In this paper, we devise a new method for calculating the Igusa local zeta function of a
polynomial over a p-adic field. Throughout this paper, p is a prime, K is a p-adic field with
finite residue field IF, of order ¢ and valuation ring R. We let m be a uniformizing parameter
for R, and we have the m-adic valuation v,;, and define the absolute value of an element
a € K to be |a|g = ¢ "~(@). We let R* be the group of units in R and let R*? be the group
of square units in R. We use N to denote the set of nonnegative integers. We say that K
(or R) is unramified when the prime p does not ramify in R, and in that case we always
choose ™ = p.

The Igusa local zeta function of a polynomial f(x1,...,x,) € Klx1,...,2zy] is

(1) Zs(s) = /R" |f(x1,...,2n)|5cdzy - - - day,

where dzq - - - dx,, is a volume element for the Haar measure. This kind of zeta function was
introduced by Weil [37], and studied extensively by Igusa [9, 10, 11]. See the monograph
by Igusa [13], and also the report by Denef [3] for an extensive survey.

Throughout this paper, we set t = ¢~° because Igusa [9, 10, 11] showed that Z¢(s) is a
rational function of ¢, and by abuse of notation, we shall call this rational function Z(t).
The local zeta function carries all information about the number Ng(f) of zeroes that
f(z1,...,2,) (mod 7*) has in R/7*R for every k € N. Indeed, if we define the Poincaré
series for f to be

Ni(f) i
Pf = Z qni tl’
€N
then one can show that L 12,0
Pt = =75
This relation makes the local zeta function interesting in arithmetic geometry. For example,
the real parts of the poles of Z(s) are connected with the p-divisibility of the numbers Ny (f)
of solutions modulo 7%. For example, Segers [31] proves that the no pole of Z;(s) has real

part less than —n/2 by noting that ¢/("/2G=D1 | N;(f) for each i € N when n > 1. The
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sharpest possible lower bound on p-divisibility is given in [21], which is extended to general
algebraic sets in [15]. Numerous other works study the poles of the local zeta function
[24, 33, 19, 34, 3, 35, 4, 6, 5, 40, 41, 29, 43, 36, 22, 23|.

Many authors have labored on the calculation of local zeta functions in various situations
[27, 1, 5, 38, 39, 20, 28, 29, 8], and many works either use local zeta functions or else apply
the methods developed for obtaining them [7, 42, 44, 30, 16, 17, 45, 32, 46]. Nonetheless,
certain classes of polynomials have proved forbidding to those who wish to obtain general
results. One such example would be quadratic polynomials over 2-adic fields, the local zeta
functions of which are known to be useful [17], but which are considerably more challenging
to obtain in general than in the case of odd p.

We propose a new method in this paper to improve the situation. We now sketch the
basic philosophy. If fi,..., fi are polynomials, then we write f1 ®---® fi to denote the sum
fi+-- -+ fr and at the same time assert that no indeterminate appears in more than one of
the f;; we then say that f is the direct sum of f1,..., fr. If a polynomial can be expressed as
the direct sum of many polynomials with only a few indeterminates each, one has a better
chance of being able to calculate its local zeta function. Extreme cases of this would be
diagonal forms such as Fermat varieties, whose local zeta functions have been studied in
[20]. Even if f and g have distinct indeterminates, it is not possible to calculate the local
zeta function of f(z) @ g(y) from the local zeta functions of f and g. For a trivial example,
suppose that p is odd and « is a nonsquare unit in R, and that f(x) = 22, g(y) = 7y — 1,
and h(y) = 7y — o. Then clearly Z, = Z), = 1, and yet Zyq, # 1 while Zyg, = 1. This is
simply a manifestation of the fact that one cannot deduce the valuation of a sum a + b from
the individual valuations of a and b. Therefore, we invent a new object, called the p-adic
generating function, that carries enough information so that the generating function for a
direct sum can be deduced from the generating functions of the summands. This p-adic
generating function, which is the inverse limit of a family of generating functions, contains
as much data about the polynomial as the collection of Z;_. for all ¢ € R. Such generating
functions cannot be expressed as simple polynomials: their terms have “exponents” that
are sets, and yet because they reside in a group ring whose algebraic structure is naturally
compatible with operations on the underlying polynomials, we obtain a straightforward
calculus of generating functions that enables us to build up the generating function for a
particular polynomial from smaller elements. There is then a simple map from the p-adic
generating functions to local zeta functions that forgets the extra information contained in
the former. This provides a new method for calculating local zeta functions that would
have been very difficult to calculate with existing methods.

To demonstrate the use of this method, we calculate the local zeta function for a generic
quadratic polynomial when p is odd, and for a generic quadratic polynomial without con-
stant term over an unramified 2-adic field. The results are given in Theorems 2.1 and 2.3
below. For odd p, this extends the work of Igusa [12], who considered quadratic polynomials
with no constant term. The problem over 2-adic fields, even the unramified ones, is far more
difficult, and until now we lacked general theorems like the ones that Igusa had proved for
the case of odd p. The new method we present here has rendered the calculations the old
results far easier, has obtained new results, and should also enable the calculation of local
zeta functions for many other non-quadratic polynomials.

We also use the new method to show that the local zeta function of a quadratic form over
any p-adic field has at most three poles (Theorem 2.4 below). When p is odd, we indicate
the poles precisely in Theorem 2.5.
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We present the our results for quadratic polynomials in the next section. The rest of
this paper is organized as follows. In Section 3, we develop the general theory of the p-adic
generating function. In Section 4, we apply the theory to quadratic polynomials to prove the
main results presented in Section 2. Section 4 in turn relies on calculations for unimodular
quadratic forms that are presented in Section 5, with technical proofs in the Appendix.

2. RESULTS: LOCAL ZETA FUNCTIONS FOR QUADRATIC POLYNOMIALS

In this section, we present our results on the local zeta functions of quadratic polynomials,
after some introductory material on quadratic polynomials.

2.1. General Remarks on Quadratic Polynomials. To any n x n symmetric matrix M
with entries in R we associate the form Q(z1,...,2,) = (1,...,2,)M (21, ...,2,)". When
we speak of a quadratic form over R, we mean one that can be obtained in this manner.
When p = 2, one can scale by % (and use diagonal entries in 2R) to be able to obtain an
arbitrary homogeneous polynomial of degree 2 in R[x1,...,z,], and note that this simply
scales the local zeta function by the m-adic absolute value of 1/2. A unimodular matriz is
a matrix with entries in R and determinant in R*, and a quadratic form @ is said to be
unimodular if its associated matrix is unimodular.

We say that two quadratic forms @1 and Q9 are equivalent and write ()1 =2 ()2 if one can
be obtained from the other by an invertible R-linear change of coordinates; these clearly
have the same local zeta function. Equivalence preserves the following three invariants:

e The rank of a quadratic form, written rank(Q), is the rank of its associated matrix.

e The discriminant of a quadratic form @, written disc(Q), is the element of the set
(K*/R*?) U {0} that contains the determinant of the matrix associated to Q. By a
common abuse of terminology, we often say that some a € K is the discriminant of
a quadratic form to mean that the discriminant is aR*2.

e The norm of a quadratic form Q(x1,...,x,) is the ideal of R generated by the set
Q(R™) of all elements represented by the form. For unimodular quadratic forms
over p-adic fields with p odd, the norm is always R itself or 0 (for the zero form).
When p = 2, a unimodular form has a norm which is an ideal I with 2R C I C R
or I =0 (for the zero form).

Note that the zero form is considered to be unimodular with rank 0, norm 0, and discrimi-
nant 1.

It is a fact [25, §91C] that every quadratic form over R is equivalent to @;c, 7'Q; for
some unimodular quadratic forms Qq, @1, . . ., almost all of which are zero. When p is odd,
two such decompositions of the same form must be identical up to equivalence of their ith
components for every i (see [25, §92:2]). When p = 2, this is not the case (cf. [25, §93:28]
and [14]). For the purposes of our calculations, we assume that our quadratic polynomials
have been transformed into such a decomposition.

Now we should understand the unimodular forms @; that make up our decomposition.
For all p, each unimodular form is the direct sum of unimodular forms of rank 1 and 2 (see
[25, §91C, 92:1]). If p is odd, we may use solely rank 1 forms, but we actually find it more
convenient to decompose our unimodular forms into both rank 1 and 2 forms. We now

describe some basic unimodular forms of interest for all p.

e For a € R*, we use aSq to denote the quadratic form az?.

e We write Hyp for the hyperbolic plane 2xy, and we write Hyp™ for the direct sum
of n hyperbolic planes.
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e We write Ell for the elliptic plane, which is the rank 2 form 2y%f(x/y) with f(X) a
quadratic polynomial over R whose reduction modulo 7 is quadratic and irreducible
over F,. All such forms are equivalent, regardless of the choice of polynomial.

In Sections 2.2 (for p odd) and 2.3 (for p = 2 and unramified), we shall use these rank 1
and 2 forms to build generic unimodular forms (up to equivalence).

We now consider generic quadratic polynomials, that is, ones that may have linear and
constant terms. We say that two polynomials f and g over R are isospectral if they have the
same Igusa local zeta function, which (via the Poincaré series) is equivalent to saying that f
and ¢ have the same number of zeroes modulo 7* for every k € N. We say that f and ¢ are
strongly isospectral if f and g modulo 7* represent each value in R/7* R the same number of
times for every k € N, or equivalently, f and g are strongly isospectral if f — c is isospectral
to g — ¢ for every constant ¢ € R. When p is odd (and also when R = Z3) it turns out (see
Proposition 4.7) that every quadratic polynomial is strongly isospectral to a polynomial of
the form @Y, m'Q; & 7 L + ¢, where Qo, ..., Q, are unimodular quadratic forms, and L
is a linear form involving at most one variable with A > w, and c is a constant in R. Thus,
just as Igusa did [12], we may always assume that the polynomial whose local zeta function
we are seeking has been replaced with a polynomial as described in the previous sentence.

2.2. Quadratic Polynomials for Odd p. When p is odd, R*/R*? is a group of order 2,
and we let 7 be the nontrivial character from this group to {£1} and extend 7, and we also
write 7(b) when b € R* to mean n(bR*?), and take n(b) = 0 when 7 | b. We fix « € R*\ R*2.
On Table 1 we list the unimodular quadratic forms up to equivalence: every unimodular
quadratic form is equivalent to precisely one form on our table (see [25, §92:1a]). Thus rank
and discriminant classify the unimodular forms. We may now compute local zeta functions.

TABLE 1. Possible Unimodular Forms for Odd p (up to equivalence)

a € R* \ R*?
] rank r \ discriminant \ possible forms ‘
(_1)r/2 Hypr 2
Y (C1)2a | Elle Hypt /2
—_1)(r=1)/2 (r=1)/2
odd | &1 o Sq & Hyp s
(-=1)"=V2q | aSq @ Hyp!"

Theorem 2.1. Let p be odd. Consider the quadratic polynomial Q = @,y mQ; ® L + c,
where each Q; is a unimodular quadratic form of rank r; and discriminant d; over R, where
there is a positive integer w such that Q; = 0 for i > w, where L is a linear form involving
at most one indeterminate, and ¢ € R is a constant. For each j € N, we let

Qy= D Qi diy = disc(Q;)) = I di,
0<i<y 0<i<y
i=j (mod 2) 1=j (mod 2)

rgy =rank(Qp) = ¥ ri, g =g0sao.
0<i<;
i=j (mod 2)
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We have the following forms for the Igusa local zeta function Zg(t) of Q expressed using
the terms Io(r(;),d(;)) from Table 2.

o IfL=0andc=0, letr =73, 7, and then

Zg(t) = Z —Io(7(s), d(s))

0<i<w—1 10)
twfl tw t2 -1
+< IO(Tw—17dw—1)+IO(Tw7dw)) (1_> :
Y1) (w=1)s Hw—1) Uw) (@) &(w)
o IfL=0andc#0, let Kk = vz(c), and then

¢ tr
Z(t) = — L yri (i), diy) + :
ngzgn a0 /mt \T(@)> A(i) ot
o If L(x) = bx for some b with v:(b) = A < 00, and if vz(c) > v(b), then
tt N (1-1/q
Zalt) = (i) + - (12402
Og; g DT g \T—t/q

o If L(x) = bx for some b with vy(b) = A < o0, and if vz(c) < vg(b), then let
k = vg(c), and then

£ tr
ZQ(t): 710 Wi(riadi)+ .
OQZ;H a0 / (4) & (4) rr1)

Theorem 2.1 is proved in Section 4.4.

TABLE 2. I,(r,d) for Theorem 2.1

(b) = 1 ifbe R,
TOT=N 21 itbe R~ R

r odd Tl (1_%«) <11:1//3)
rha | (1RG0 (1) - - el
| T () (G ()
eo| (1) () A0

2.3. Quadratic Polynomials over Unramified 2-Adic Fields. We now consider the
case where the prime p is 2 and does not ramify in R. We will need to use the absolute
Galois-theoretic trace Tr: K — Q2 in some of our formulations, and use the convention that
if a € Zg, then (—1)® = (—1)(@™°d2) We also need to know something about the squares
in R. Because the residue field is perfect and of characteristic 2, every element a of R is a
square modulo 2, that is, a = b (mod 2) for some b € R. Thus, without loss of generality,
every form a Sq is equivalent to a form bSq where b =1 (mod 2), so we shall always insist
that such coefficients are 1 modulo 2 in this section. Furthermore, every element of the
form 1+ 8a with a € R is a square (so R*/R*? is finite), but there is a unit £ € R such that
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1 4 4¢ is not a square (see [25, §63:1 and 64:4] for proofs of these facts). In fact, it is an
easy consequence of Hilbert’s Theorem 90 that the units £ such that 1 + 4£ is not square
are precisely those for which Tr(¢) =1 (mod 2).

On Table 3 we list the possible unimodular quadratic forms up to equivalence (see Corol-
lary 5.11 below for a proof). A unimodular quadratic form is equivalent to at least one
form on our table: there is some duplication, which would bring no convenience to us to
eliminate.

TABLE 3. Possible Unimodular Forms over Unramified 2-Adic Fields (up to equivalence)

¢ € R* with Tr(§) =1 (mod 2)
a=b=1 (mod 2)

] rank r \ norm \ discriminant \ possible forms ‘
even 2R (for r # 0) (—1)r/2 Hyp'/?
or 0 (for 7 =0) | (=1)"2(1 + 4¢) Ell & Hyp("=2)/2
oven R (—1)=2/2qp aSq®bSq @ Hypr—2)/2
(=1)=2/2(1 4 4€)ab | aSq &b Sq @ Ell g Hyp"—4/2
odd R (_1)(r—1)/2a asq@Hyp(rfl)/Q
(-1)=D/2(1 4 46)a aSq® Ell® Hyp(r—)/2

In order to use our theorem below to calculate the local zeta function, one needs to know
how to express the direct sum of any pair of unimodular forms from Table 3 as another form
on Table 3. If )1 and @2 are two such forms, then @1 @ @2 is another unimodular form
whose rank, norm, and discriminant are respectively the sum, the sum (as ideals), and the
product of those invariants for the two constituent forms. However, these three invariants
are not always enough to identify a unimodular form. To precisely determine Q1 ® ()2, one
can make use of the following “addition rules.”

Lemma 2.2. Suppose that p = 2 and does not ramify in R. Let a,b,c € R*. Then
(i). El® Ell = Hyp @ Hyp, and
(ii). aSq®bSqDcSq = (—abc) Sq® Hyp if there are v, s,t € R with ar®+bs® +ct? = —abe
(mod 8). Otherwise a Sq@®bSq®cSq = (—abe)(1 + 4€) Sq @ ElL

This is proved in Section 5.4. For rule (ii), since there are only finitely many elements
modulo 8, one can work out which case obtains with finitely many trials. As an example,
Table 4 shows how the addition rules work when R = Zs, the ring of 2-adic integers.

Now we are ready to compute the local zeta function with the following theorem, which
uses Table 5. We use a shorthand for quadratic forms in that table: Planes(+) means
a direct sum of hyperbolic planes (with the correct number needed to achieve a specified
rank) and Planes(—) is the direct sum of a single elliptic plane and the correct number of
hyperbolic planes to achieve a specified rank. For example, if we say that rank(Q;) = 7;
and @; = a Sq @ Planes(+;), then we mean that either Q; = a Sq® Hyp("i—1)/2 (if £; =+)
or Q; = aSq®El@®Hyp"=3/2 (if +; = —).
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TABLE 4. Addition Rules Unimodular Quadratic Forms over Zo

Ell¢ Ell & Hyp & Hyp |

ax? +by? 4+ cz®> =2 dw? @ P

(a,b,c) (d, P)
(1,3,5) (1,1,7) (5,5,7) | (1,Hyp)
(1,3,7)  (3,3,5) (5,7,7) | (3, Hyp)
(1,5,7)  (3,5,5) (1,1,3) | (5,Hyp)
(3,5,7) (1,7,7) (1,3,3) | (7,Hyp)
(3,3,3)  (3,7.7) (1, ELl)
(1,1,1) (1,5,5) (3,El)
(7, 7.7) (3,3,7) (5, Ell)
(5,5,5) (L,1,5) (7, ELl)

Theorem 2.3. Suppose that p = 2 and does not ramify in R. Consider the quadratic
polynomial Q = @,y 7 Q; ® L, where each Q; is a unimodular quadratic form of rank r;
over R, where there is a positive integer w such that QQ; = 0 for i > w, and where L is a
linear form involving at most one indeterminate. For each j € N, we let

Q=D @ rg) =rank(Qg) =Y i and g =gX0saTo,
0<i<y 0<i<y
i=j (mod 2) i=j (mod 2)

We have the following forms for the Iqusa local zeta function Zg(t) of Q expressed using
the terms I(Py, P1, Py) from Table 5.

o IfL=0,letr =7, .yri, and then

Zg(t) = Z LI(Q(i)vQ(i—H)’QH—Q)

o<icw—1 10)
tw—l tw t2 -1
+ IQw— 7Qw70+7IQw7Qw— a0)<1_> .
<q(w1)(( 1), @), 0) q(w)(m (w-1),0) 7
o If L =ax with 2 < wvy(a) < 0o, write X\ = vy(a), and then
4i A2
Zq(t) = Z ?I(Q(i)aQ(H—l)aQi—m) + I(Q(r—2), Q(r—1),5q)
0<i<a—2 1(0) q(r-2)
A1 N (1-1/q
+ IQ_,Sq,Sq—|—< )
qr—1) (@ ) qoy \1—1t/q

o If L = ax with va(a) =1, then

[} IfL = ax with ’(}2(0,) = 0, then ZQ(t) — 1_1/‘1)'

Theorem 2.3 is proved in Section 4.5.
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TABLE 5. I(Qo,Q1,Q2) for Theorem 2.3

r; = rank(Q;) for i =0,1,2
a=b=c=d=1 (mod 2)
Planes(+) notation described before Theorem 2.3
Qo = Planes(+)

norm(Q1) # R (1 o ﬁ) <t +o qrtj/z) (E?Z)
norm(@Qq) = R (1 - q'}O) t (11:115//3)

Qo = aSq @ Planes(+q)
norm(Q1) # R (1 - th20 +o q(fjﬁg/z) (11:1;2)
norm(@Q1) = R (1 - qio) (11:%;1)

Qo = aSq®bSqPlanes(+¢) with 4 | a + b and o = (—1)T((@+0)/(4a))
o (13 —¢2 —
norm(Q1) # R, norm(Q2) # R (1 - q% = =) ;i;/é + qT(ng/g) (11_1//3>

norm(Q1) # R, norm(Q2) = R <1 — q% + ;fo_/g) <11:1//;1>
Q1 = ¢Sq @ Planes(+1) . (£ —12) 1-1/q
norm(Qs2) # R <1 — 7o F1 qro+<r1+1>/2) (1—t/q>
Q1 = ¢Sq®d Sq @ Planes(+)
dla+btc+d (1—%011 Zf(fi:ffg) Gj@
norm(Qz) # R
Q1 = ¢Sq®d Sq @ Planes(+1)
4ta+b+c+d (1_[%0) (11:1//3)
norm(Q2) # R
o) - e 7 | (1] (]
Qo = aSq®bSqPlanes(+g) with 4{a + b
i) ey
Q1 = ¢Sq ® Planes(+) .
ol ORI | (1= e e (1)
norm(Qz) # R
Q1 = c¢Sq®d Sq @ Planes(+1)
4|a+b+c—|—d ot 1/1(25371‘,2) 1*1/6]
oo ey | (- EeR) (5F)
norm(Qa) # R
Q1 = ¢Sq®dSq ® Planes(+1)
4ta+b+c+d (1_%0) (E;g)
norm(Qs) £ R
norm(Q1) = norm(Qa) = R (1- &) (=)

2.4. Location of Poles. When p is odd, if we specialize our quadratic polynomial to have
no constant term, then our Theorem 2.1 reduces to the results of Igusa [12, Theorem 1 and
Corollary to Theorem 2]. Let us compare our expression to Igusa’s for Zg(t) when Q is a
quadratic form. If we adopt the notation of Theorem 2.1 here, then Igusa’s expression for
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Zg(t) is a sum of terms, one for each nonzero Q;, such that Igusa’s ith term is expressed
as a polynomial divided by

t t2 t2
() (i) (i)
q qo<i<i qlo<i<i

Peter [26, Proof of Lemma 3.7] notes that Igusa’s expression makes it appear that the local
zeta function might have many more poles than it actually has. The advantage our our
expression is that it makes clear that there are at most three poles. Indeed, since every
I,(r,d) in Table 2 is expressible as f(t)/(1 — t/q) for some polynomial f(¢t) € Q[t], our
formula implies the following.

Theorem 2.4. The Igusa local zeta function of a quadratic form Q of rank r can be written
f(t) -
S T (=TT for some polynomial f(t) € Q[t].
Note that this theorem does not stipulate that p be odd, for in fact, it is also true when
p = 2 (in both the unramified and ramified cases), as is shown in Section 4.6. When p is
odd, we can go further, and determine precisely the denominator of Zg(t) when it is written
in reduced form.

Theorem 2.5. Let p be odd, let « € R* . R*?, and let n(b) = 1 for b € R*? and n(b) = —1
for b € R* ~ R*2. Let Q be a quadratic form over R, equivalent to the form Dicn 'Q;,
where each Q; is a unimodular quadratic form of rank r; and discriminant d;, and almost
all QQ; are zero. Let

r= § T4, Teven = g 724, Todd = § T2i+1,

ieN ieN ieN
d=]]d, deven = | [ das, doaa = | [ dait1-
ieN ieN ieN

Write the Igusa local zeta function Zg(t) of Q as f(t)/g(t), where f(t),g(t) € Q[t] with
ged(f(t),g(t)) = 1 and with the constant coefficient of g(t) equal to 1.
(a). If r =0, then g(t) = 1.
(b) If r>0 and {(Tevenydeven)v (Toddudodd)} C {(07 1)7( ) (1 Oé) ( )} then
(i). if Teven = Todd, then g(t) =1 —1t/q"/?, and
(i1). if Teven # Todd, then g(t) =1 —1%/q".
(c). If r > 0 and {(Teven, deven), (Todds doda) } Z {(0,1),(1,1),(1, ), (2, —a)}, then
(i). if Teven = Toad = 1 (mod 2), then g(t) =1 — t/q,
(i4). if Teyen = Todd = 0 (mod 2), then g(t) = (1 —t/q)(1 — n((=1)"/2d)t/q"/?), and
(iii). if Teven Z Todd (mod 2), then g(t) = (1 —1t/q)(1 —t2/q").

This is proved in Section 4.7.

3. THE THEORY OF THE p-ADIC GENERATING FUNCTION

Now we proceed to the general theory of the p-adic generating function, which we then
use (in Section 4) to obtain all the results of the previous section.

3.1. Modular Generating Functions. We let R, = R/7*R and we let v,(0) = oo
and formally regard 7> as 0, so that Ry, = R. Consider a polynomial f(xy,...,z,) €
Rlzy,...,x,). We are interested in how many times f(Aj,...,A,) assumes each value in
Ry as (Ay,..., A,) runs through the ¢"* values of Ry To this end, we introduce the group
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Iy, = {v* : A € R;}, with the multiplication rule v4y% = y4+8 5o that T, is just a
multiplicative version of the additive group of Rj. Then we introduce the group C-algebra
Sk = C[I'y], and we say that F' =3 p p Fp~yP in Gy, is the modulo 7 generating function
for fif f(Ay,..., A,) = B for precisely ¢"*Fp values of (A, ..., A,) € (R;)". More explic-
itly, the modulo 7% generating function for f(x1,...,x,) is q%k Z(A1,...,An)e(Rk)” (A An)
Note that the coefficients of our generating function are rational numbers scaled so that
> Be r, F'B = 1 rather than the more customary integer counts. This has the advantage that
if f(x1,...,2y) is conceived of as a polynomial in a larger polynomial ring R[z1,...,x,/]
where n’ > n, where the indeterminates z,11,...,z,  do not appear in f, then the modulo
7% generating function for f remains unchanged.
The following easily verified rule is what makes generating functions useful.

Remark 3.1 (Sum-Product Rule for Modular Generating Functions). If f(z1,...,z5)
and g(y1,...,Ym) are two polynomials over R involving distinct indeterminates x1, ..., Tn,
Yls- - Ym, and if F and G are their respective modulo ©* generating functions, then the
modulo T generating function for f ® g is FG.

3.2. p-Adic Generating Functions. When j < k, we have an epimorphism of C-algebras
¢rj: Gk — Gj with p(v8) = +“, where C is the unique element of R; (which is a coset of
7/ R in R) that contains B (a coset of 7% in R). Furthermore, if f(z1,...,2,) € R[x1,...,2x)
and G and H are respectively the modulo 7% and modulo 77 generating functions for f,
then one readily shows that ¢ ;(G) = H.

We set G = ](jLngk, where for each k € N, we let ¢r: G — G be the kth coordinate map,
an epimorphism of C-algebras. If f(z1,...,2,) € R[z1,...,2,], then the element F' € §
such that ¢ (F) is the modulo 7% generating function of f for each k € N is called the
p-adic generating function of f. The sum-product rule for modular generating functions
(Remark 3.1) immediately implies a sum-product rule for p-adic generating functions.

Remark 3.2 (Sum-Product Rule for p-Adic Generating Functions). Let f(z1,...,%,) and
9(Y1, -, ym) be polynomials over R involving distinct indeterminates x1,...,Tn, Y1, -, Ym.-
If F and G are the p-adic respective generating functions for f and g, then the p-adic
generating function for f @ g is FG.

We now give an interpretation of the p-adic generating function F' for a polynomial
f(z1,...,20) € R[x1,...,2y,]. Write
(2) or(F) = Y Fay”,
A€ERy

for each £ € N. If C is a collection of pairwise disjoint cosets drawn from (J, .y Ry, and
if S = UceeC, then Y ce Fo is the Haar volume of the preimage f~!(S) of S by the
polynomial f (regarded as a function from R" to R).

3.3. Relation to the Igusa Zeta Function. Since |a|x = ¢ (@ for a € K, and since
t = q—*, the Igusa local zeta function (1) becomes

Z5(t) = / @) gy . da,.
For k e N, let Uy, = {(r1,...,mn) € R" : vz(f(r1,...,7s)) = k}. Then

Zp(t) =Y t*Vol(Uy),
keN
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where Vol(U) is the volume of U. At the end of Section 3.2, we showed that if F'(z) is the
p-adic generating function for f, and if the modulo 7% generating function for f is as given
in (2), then
VOl(Uk) = Fﬂ.kR — F7rk+1R'

We define a map Ig from G to the complex-valued functions of a complex variable as follows:
if F(z) € § with ¢(F) as given in (2), then
(3) Ig(F(2)) = ) (Fakp — Frerrp)t",

keN

so that Ig takes the p-adic generating function of f to the Igusa zeta function of f. Ig is
clearly a C-linear map because the maps j, are C-linear.

3.4. p-Adic Generating Functions for Constant and Linear Polynomials. Consider
the polynomial f(z) = axz + b in a single variable z, where a,b € R. The modulo 7"
generating function for f is

1 c
#{CE Ry CN(aR+b) #0} 2,
CEeRy
CN(aR+b)£0

We introduce the following notation: if A is any coset of any R; (or if A is a singleton set),
we write 24 for the p-adic generating function that has

(4) (=) ! 3 40
CEeR,

T H{CER,L:CNALD
CNA#D

Remark 3.3. The p-adic generating function of f(z) = ax + b is 225+0,

Note that aR+b is the singleton set {b} when a = 0 (i.e., when f(x) = axz+0b is a constant
polynomial). We often write 2* in place of z{¥}. Recall our convention that 7> = 0. We
can consider our singleton subsets of R as elements of Ry, = R/7*°R. We sum cosets of
the various Ry in the usual group-theoretic sense: A+ B = {a+b:a € A,b € B}. So if
0 <j <k < oo, the sum of an element of R; and Ry is an element of R;. The benefit
of our notation z* is that it gives the following convenient arithmetic for p-adic generating
functions for constant and linear polynomials, which is easy to check.

Remark 3.4. If A€ Rj and B € Ry, then 2428 = 24%8 in G.

Remark 3.5 (Coalescence). We note that if A€ Rj, k> 7, and W is a set of ¢*~7 repre-
sentatives for the cosets of Ry, that lie in A (so A =|],cyy w+7"R), then > i ZwtT R —
A

¢" 724, We say that we coalesce cosets when simplify sums in this manner.

3.5. Igusa Local Zeta Functions for Constant and Linear Polynomials. Now we
can compute the local zeta functions for constant and linear polynomials from their p-adic
generating functions.

Lemma 3.6. Let f(x) = ax +b. Then the Igusa local zeta function of f is
por(a) (%;3) if ve(a) < vr(b),
£ (0) if vr(a) > vg(b),

where t>° is interpreted as 0.
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Proof. The p-adic generating function for f is z#/7+% by Remark 3.3. We calculate Ig(z%ft+t)
in Lemma 3.7 below. ]

Lemma 3.7. Let j € NU {cc}. If A = 7/R, then
i (1—1/q
Ig(z4) =t/
el = (1272
where t>° is interpreted as 0. If A = a + 1 R where a & 7/ R, then
Ig(24) = tv=(@),
Proof. Let F(z) = z4.

First consider the case A = a + m/R with a ¢ 7/ R. Consider (4), and note that if we
write ¢ (F) as in (2), so that

1 if k <wvg(a),
kaR = .
0 if k> vz(a).

1 if k =vg(a),
Frvp = Favirp = {0 otherwige

and thus Ig(F(z)) = tv=(®) by (3).
Now suppose that A = 7/ R. Again, consider (4) and write ¢ (F') as in (2), so that

FﬁkRz{ll MS‘]

= itk >j,

and so for k € N, we have

Fovg— Frenig = {0 1\ 1 ?fk <j:7
(1—7) = if k> 7,

q J

and thus (3) gives

Ta(F(2)) = <1 - 1> 3 q,fkj 0

1/ 155

3.6. Normalization. We often write an element F' of G, as F'(y), inasmuch as it resembles
a polynomial in . If F(v) =3 4cp, Fay? € G, we use the notation F(1), which we call
the normalization of F', to denote the sum of the coefficients, that is, F'(1) = > ,cp Fa.
If F is a modular generating function, then F'(1) = 1.

Similarly, we often write an element F' of G as F(z), especially if we are expressing it as
a linear combination of terms of the form z4. By the nature of the homomorphisms Pk
we see that (pr(F))(1) is independent of k, and we let F'(1) denote the common value,
which we call the normalization of F. Indeed, if F' is expressed as a linear combination
F(z) = Y oee FozC, then F(1) = Y e Fo. If F is a p-adic generating function, then
F(1)=1.

We note that multiplying by the p-adic generating function zf for the linear polynomial
f(z) = x extracts the normalization of any other element of .

Lemma 3.8. If F(z) is an element of G, then F(z)z = F(1)z".
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Proof. For each k € N, we have ¢y (2%) = ﬁ > AcR, 74, and write ¢ (F) = > Ber, FpyB,
so that o (2%F(2)) = or(2")or(F(2)) becomes >.per, I'p - ﬁ > AcR, yA*+B | which is
F(L)pr(2") = ou(F(1)27). O
3.7. Scaling. Let f be a polynomial and let s € R. If k < v,(s), then the modulo 7% gen-

erating function for sf is WﬂkR. Now suppose k > v,(s). If the modulo 7%~¥=(5) generating
function for f modulo is
> Fayt

AERk—uﬂ-(s)
then the modulo 7* generating function for sf is
S net
AERE—vr(s)

Accordingly, we introduce the notation that if F'(z) € § with ¢ (F') as presented in (2),
then F'(z®) denotes the element of G given by

5 F(1)y™ R for k < vr(s),
(5) ep(F(2%)) = sA
ZAGRFUW(S) Favy for k > v, (s).
Remark 3.9. Note that if F(z) = G(2)H(2), then F(2°) = G(2°)H(2*).
Remark 3.10. If F(z) is the p-adic generating function of f, then F(z°) is the p-adic
generating function of sf.

Now Lemma 3.8 generalizes as follows.
Remark 3.11. If j € NU {oo} and F(z) is an element of G, then for k < j we have
F(z™)z" R = (1) R,

We now show how scaling influences the Igusa local zeta function.

Lemma 3.12. If s € R and F(z) € G, then Ig(F(2°)) = ") Ig(F(z)), where t> is
interpreted as 0.

Proof. Let G(z) = F(z°), and for each k € N write

op(F)= > Fay", and
A€Ry,
or(G) = D Gar™.
AeRy
If s = 0, then G(z) = F(1)z°. For each k € N, we have G xp = F(1), so then by (3), we
have Ig(G(z)) = 0 = t® Ig(F(z)) = t*~) Ig(F(2)).
Now suppose that v.(s) = j < co. Then (5) shows us that
F(1) ifk<j,
Gﬂ.kR - . .
Fop itk>7,
so then
0 if k<7,
Goip— Gopirp = L
Fojp—Frjnp iftk>7,

and so by (3), we have Ig(G(2)) = >y (Frr-ig — Fo—jmp)tht = t/ 1g(F(2)). O
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3.8. Uniformization. For j € N, we say that F(z) € G is 7/ -uniform if it can be written as
a linear combination of terms of the form 2# with A € R;. If F'(2) is a generating function
for some polynomial f, saying that F is 7/-uniform is equivalent to saying that for any
A € Rj, and k > j, the polynomial f (mod 7*) represents all B € Ry, with B C A equally
often. Thus we say that the polynomial f is 7/-uniform if its p-adic generating function is
7/ -uniform.

Remark 3.13. Ifi < j, then a w'-uniform element of G is 7 -uniform.

Remark 3.14. The product of a 't -uniform element of G and a w -uniform element of G
is a 79 _yniform element of G.

If F(z) is an arbitrary element of G and j € N, then there is a unique 7l -uniform
element G(z) € G called the 77 -uniformization of F(z), written F(z) (mod 77), such that
0;i(F(2)) = ¢j(G(2)). If k > j and @i (F(2)) is written as in (2), then we must have

(6) or(F(z) (mod 77)) Z Z B

ACR; BeRk
BCA

This is what one gets if one applies ¢; to F'(z) to get an element ZAeRj Fay? € Gj, and
then replaces each instance of v with z to produce the 7/-uniform element > ACR, Faz2 of
S.

Remark 3.15. Ifi < j, then the ' -uniformization of the © -uniformization of an element

F(z) € G is just the ©-uniformization of F(z).

Remark 3.16. An element of G is m-uniform if and only if it is equal to its own -
uniformization.

Uniformizations simplify generating functions, and so they are useful in calculations via
the following principle.

Lemma 3.17. Suppose that j > i, and that F(z),G(z) € § and F(2) is 7'-uniform. Then
F(2)G(z) = F(2)(G(2) (mod 7)), and F(z)G(z) is ©*-uniform.

Proof. By linearity, it suffices to show this when F(z) = 24 for a single coset A € R;. Let
k € N with k£ > j be given. Write o (G(2)) = ZBeRk GpvyP, and use (4) for pi(24) to get

ok(z)er(G(2) = 5= D GpyPt B
‘BCERk DER B,CERy,
CCA BCD
CCA
1
g > A"
DGRJ' B,EcRy DeR E€Ry,
BCD ECA+D
ECA+D
1 Gp B+C A j
= ki Z k—j Z v = vr(2%)er(G(2) (mod 7)),
1 DeR; q B,CERy
BCD
CCA

where we use (6) to recognize ¢1,(G(z) (mod 77)) in the final step. That 24(G(z) (mod 77))
is wl-uniform follows from Remark 3.14. O
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Corollary 3.18. Let i € N, and suppose that F(z) € § is wt-uniform. If § > i and if
G(z) € G, then F(2)G(2™) = F(2)G(1).

Proof. Apply Lemma 3.17 and note that G(z™) (mod 7/) = G(1)2™. O

3.9. Partial Generating Functions, Heads, and Homogeneous Polynomials. For
i € N, a subset of R" is said to be reqular modulo 7, or just m'-regular, if it is a union of
sets of the form A; x --- x A,, where each A}, is a coset of the form aj, + 7R for aj, € R.
Let f(x1,...,2,) € R[x1,...,2,] be homogeneous of degree d. For each k € N, let G ()
be the modulo 7% generating function for f, and let G(z) be the p-adic generating function

of f. Recall that
1
i = Do ot
(Al,---vAn)e(Rk)n

If S is a regular subset of R” modulo 7* and k > 4, then the partial modulo 7 generating
function of f on S is defined to be

Loy pean,
.
T Amye(Re)

A x-xA,CS
Note that the 7i-regularity makes each (Ay,...,A,) € (Rj)" either contained in S or
disjoint from S.

For each k > i, we let Hy(y) denote the partial modulo ¥ generating function of f
on S. It is straightforward to see that if k¥ > j > i, then the standard projection map
©k,j: 9, — Gj carries Hy to H;j. Thus there is an element H of G such that for each k& > i,
the projection ¢ (H) in G is the partial modulo 7% generating function of f on S. We call
this H the partial p-adic generating function of f on S.

The partial modulo 7% generating functions (for & > 1) and the partial p-adic generating
function for f associated to the m-regular region S = R"™ ~\ (mR)™ are of special interest, and
are called the head of the modulo 7 generating function of f and the head of the p-adic
generating function of f, respectively. The head of the modulo 7% generating function of f

is then 1
E f A ,.‘.,An

1 (Ao Am)E(RY)"
(A1,...,An)#(0,...,0) (mod )
This keeps track of how many times f represents a given value modulo 7% when we restrict
the inputs so that they cannot all simultaneously be nonunits.

Lemma 3.19. Suppose that there is a degree d homogeneous polynomial f(xi,...,x,) €
Rlx1,...,xy,), whose p-adic generating function G(z) has head H(z). Then G(z) = H(z) +
qinG(z’Td), and the Iqusa local zeta function of f is Ig(G(2)) = Ig(H(2))/(1 — t%/q").

Proof. Consider the behavior of f for inputs (A41,...,A4y) € (Rk)" such that (41,...,4,) =
(0,...,0) (mod 7). To see how many times f(xi,...,z,) represents elements in Ry for
such inputs, one could reparameterize (z1,...,z,) = 7(y1,...,yn), and then note that
f(myt, ..., myn) = 7 f(y1,...,yn) by homogeneity. If f(y1,...,yn) represents a particular
element B of Ry_g4 for N distinct inputs (C4,...,Cy) € Rg_g, then f(mwy1,...,7y,) repre-
sents 7B € Ry for N distinct inputs (C1, ..., Cy) of Ry_g4, and so represents 7B € Ry, for
¢"U~DN distinct inputs (D1,...,D,) € Rj_1, so that f(z1,...,2,) represents 7B € Ry,
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for g™V distinct inputs (A, ..., A,) € Ry, that vanish modulo 7. Keeping in mind our
normalization, this makes a contribution of ¢g—"(*k—d+1) Ny ’y”dB to the modulo 7% generating
function, and the coefficient for this contribution is ¢~" times the coefficient for 4? in the
modulo 7%~% generating function of f. Thus when we account for the parts of the modulo

7% generating function excluded from the head, we see that
1 d
Gr(v) — H(v) = qfnkad(V );

where Gk_d(yﬂd) indicates the function obtained from Gj_4(y) by replacing each instance
of ¥4 (with A € Ry_4) with ATA (in Ry). If we take the inverse limit of both sides of our
equation and recall the definition of G(z°) for s € R, we obtain G(z) — H(z) = q% (z”d).

Apply Ig to both sides, and apply Lemma 3.12 and rearrange to obtain (1—t9/¢") Ig(G(z)) =
Ig(H (2)). m

3.10. Hensel’s Lemma. If f(x1,...,z,) € R[z1,...,z,] and a = (ay,...,a,) € R™, then
the derivative of f at a is the vector of partial derivatives (0f/0z1,...,0f/0xy) evaluated
at (a1,...,ap). The valuation of the derivative of f at (a1,...,a,) is the least valuation
of the n partial derivatives at a. We now state a form of Hensel’s Lemma in terms of our
theory of p-adic generating functions: if the valuation of the derivative is constant on a
certain region, then the partial p-adic generating function on that region is uniform.

Lemma 3.20. Let f(x1,...,2,) € R[z1,...,27,], and let j € N. Let S be a ©/-reqular
subset of R™ upon which the derivative of f always has valuation j. Then the partial p-adic
generating function of f on S is w2t -uniform, so it may be obtained by replacing instances
of ¥ with z in the partial modulo 721 generating function of f on S. If Wit is a set of
representatives for the cosets of ™R in R, then

1 2j+1
H(Z) = W Z Zf(al""7a")+7r J R.
(alz"~7an)€(Wj+1)nﬂS

Proof. Fix a = (a1,...,a,) € W1 N S. For any b = (by,...,b,) € R", use the Taylor
expansion of f around a to see that the first-order term of f(a+7/71b) — f(a) has valuation
at least 25 + 1, with equality when 7+ does not divide the inner product of b with the
derivative of f at a. The second-order and higher-order terms of the Taylor expansion all
have valuation at least 2j +2, so f(a+m/T1b) — f(a) is linear in b modulo 7272, Then one
shows that for each ¢ € R with ¢ = f(ay,...,a,) (mod 7%*1) there exist @ € R™ such that
f(@) = ¢ (mod 7%%2) and @ = a (mod 7/*1), and the number of such @ that are distinct
modulo 7712 is precisely ¢"~! by linear algebra.

Thus by iterative amelioration of solutions, one shows that for each k£ > 2j 4+ 1 and each
c € Rwith ¢ = f(ay,...,a,) (mod 721 there exist @ € R" such that f(a) = ¢ (mod 7%)
and @ = a (mod 7/*1), and the number of such @ that are distinct modulo 7%~/ is precisely
gD (k= (25+1))

If we are thinking of the partial modulo 7* generating function for f on S, then the
number of (A41,..., A,) € (Ry)" with every A; C a; + 71 R and such that f(Aq,...,A,) =
c+ mFR is equal to ¢ DE=2i+D) . gni — gn(k—j—1)=(k—(2j+1))
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As we let a run through (W;41)" NS, we represent all the n-fold products of cosets of
/1R that make up S, and so the partial modulo 7% generating function of f on S is

1 N (1 (o k
Hk(')/) — qﬂ Z Z qn(kz i—1)—(k (2]+1))/_YC+7I' R
(a1,an)E(Wjtr1)"NS c+n*RER,
cH+mFRC f(ay,...,an)+m2HIR
g > S e
n(Jj+ ’
q (a1,e-s0n)E(Wjg1)mNS c+7m*RERy,

c+7rkR§f(a1,...,a7L)+7r2j+lR

which by coalescence of cosets (see Remark 3.5) shows that the partial p-adic generating
function of f on S is

1 2541
_ flat,...,an)+m* T R
H(:) =~ 3 e , 0
(al,.‘.,an)E(WjJrl)”ﬂS

This has a very useful application to unimodular quadratic forms that we use later.

Corollary 3.21. Let v.(2) = £, and let W be a set of ¢"1 representatives for the cosets of

7R in R . Let Q(x1,...,,) be a unimodular quadratic form of rank n over R. Then
the head of the p-adic generating function of Q is
1 20+1
_ Q(a1,...,an)+m2+IR
H(z) = PEACEEY Z Ze .

(a1,..,an)EW™
(a1,e.,an)#(0,...,0) (mod )
Proof. If M is the matrix associated to @, then the derivative of @ at (ai,...,ay,) is
2M (a1, ... an)T. If (a1,...,a,) € R~ (7R)", then since M is unimodular, we see that
the derivative has valuation v,(2) = ¢, so we may apply Lemma 3.20. O

4. QUADRATIC POLYNOMIALS OVER p-ADIC FIELDS

This section assumes the basic facts about quadratic forms related in Section 2, one of
which is that every quadratic form over R is equivalent to @;, 7'(Q; for some unimodular
quadratic forms Qg, @1, ..., almost all of which are zero. We first show how the p-adic
generating function of Q = ;2 7'Q; relates to those of the constituent unimodular forms

Qi.
4.1. Generating Function for an Arbitrary Quadratic Form.
Proposition 4.1. Suppose v(2) = £. Consider the quadratic form Q = @,y 7'Q;, where

each Q; is a unimodular quadratic form of rank r; over R, and let w be a positive integer
such that Q; = 0 for i > w. For each j € N, we let

Q=D r) = rank(Qg) = 3, T ag) = g0,
0<i<y 0<i<y
i=j (mod 2) i=j (mod 2)

and for any quadratic form P, use the term Gp to denote the p-adic generating function of
P, and Hp for the head of Gp.
Then the p-adic generating function Gg(z) of Q is

1 i i+l iti
Z 7HQ(2')(Z )GQ(i+1)(Z ) H GQ¢+]'(Z ])‘I'

o<icw—1 10) 2<j<20

1
q(w-1)

qw—1 v
GQ(UJ—I)('Z )GQ(W)(Z )-
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Proof. We proceed by induction on w. The w = 1 case is just an application of the sum-
product rule and scaling: the generating function of Q@ 7@ is the product of G, (z) and

GQ1( ).
If w> 1, then @ is the direct sum of the quadratic forms Q b, WZQZ‘ and T™Q,.
Thus by the sum-product rule, the generating function Gg(z) of @ is the product of the

generating function G @(z) of @ and the generating function G, (2™) of ™ Q.. For each
i €N, we let
r; fori# w,

Qi =

0 fori=uw,

_ . fori 7 B _
@i forizw r; = rank(Q;) = ,
0 fori=uw,
and then for j € N, we set
Qp=O @ Fg) = rank(Qp) = D 7, Q) = g >0,
0<i<j 0<i<y
i=j (mod 2) i=j (mod 2)

so that induction shows that G5(z) is

1 7r¢ it itd 1 w1 gy
Z q( )HQ( )( )GQ(i+1) (2 ) H GQH—]‘ (2 ) T= _ GQ(L:J—I) (2 )GQ(W) (=)
0<i<w—1 2<5<2¢

Now note that

Quy = Q(z‘) for z < w, ry = i(i) for z < w, and ) = g for i < w,
Q)+ Qu fori=uw, e _

so that Gé(z) is

1 H—] 1 ﬂ.w—l T
Z fHQ(Z ( )GQ(Z+1) H GQth ) GQ(M_U (Z )Gé(w) (Z )
0<i<w—1 q() 2<j<20 q(w—1)
i

Recall that the generating function Gq(z) of @ is the product of G5(z) and G, (z™). By
the sum-product rule we know that

Gé(w) (2)GQ.(2) = GQ(UJ) (2)s

because Q(,,) = @(w) & Q.. When we multiply G Qv(z) and Gg,, (z™) and use this principle,
we get

1 . "
Go(z)= > quQm(Z )Gy (27 G (™) T Gau, ™)
0<i<w—1 1(2) 2< <20
JFw—i
1 ﬂ.wfl T
+Q(w,1)GQ(“”1)(z )GQ(w)(z ).

Now look at the first sum in the last expression. We note that Corollary 3.21 shows
that HQ(Z.)(ZWZ) is w21+ yniform, so that if i < w — 2¢, Corollary 3.18 then shows that
HQ<i)(z“Z)GQw (z¥) = HQ@)(Z”Z), so that we can drop the Gg_(2*) term. For i < w — 2/,
we can also drop the restriction j # w — 2¢ in the product, since it has no effect. On the
other hand, when w — 2/ < ¢ < w — 1 in the first sum, the G, (2™") term supplies precisely
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the term that the j # w — 2¢ restriction in the product omits. Thus we obtain precisely the
expression for Gg(z) that we were to prove. O

The following result will allow us to apply Ig to the last term in the expression for the
generating function given in the above proposition.

Lemma 4.2. Let Qg and Q1 be quadratic forms of ranks ro and r1. For each quadratic
form P, let Gp and Hp be respectively the p-adic generating function and the head of the
p-adic generating function of P. Then

2

s 1 s s
GQoarq: (2) = Hgy(2)Gq, (27) + qTOGQl(Z )Gy (27 ),

and

- 1 x 2 1 2
GQ0®WQ1 (Z) = HQO (Z)GQI (Z ) + qTOHCh (Z )GQO (Z ) + WGQOEBﬂ'Ql (z )

The Igusa local zeta function Ig(GQuerg,(2)) is then

(16t (:)Gau (%) + - Te(Hau ()G (™) ) (1 - s ) N

Proof. From Lemma 3.19, we have Gg,(2) = Hg,(z) + q%OGQO(ZWQ), and we use the sum-
product rule to multiply this by the generating function Gg, (2™) of 7Q; to obtain

2

(7) G Qoo (2) = Hao(2)G, (27) + qi(JGQl(Z”)GQo(Z” )

the first relation we were to prove. Then we use Lemma 3.19 again to obtain Gg, (2™) =
Hg, (27) + q%GQl(zﬂg), and substitute this into (7) to obtain the second relation we were
to prove. When one applies Ig to both sides of the second relation, and uses Lemma 3.12,
one obtains

2
Ig(GQoanq. (2)) = Ig(Hq,(2)Gq, (7)) + 6171"0 Ig(Hg, (27)Gq, (zﬂ2 )+ qr:-i-m Ig(GQoarq, (2)),

whence one obtains the expression that was claimed for the Igusa local zeta function. [

4.2. Generating Function for Quadratic Polynomials. In this section, we consider
what happens when we add linear and constant terms to a quadratic form (as defined in
previous section) over a p-adic field. We shall consider polynomials of the form

o0
(8) @WZQZ'@L—FC,

i=0
where each Q; is a unimodular quadratic form, and almost all Q); are zero, L is a linear form
with at most one variable (L = 0 if zero variables), and ¢ € R is a constant. In Section 4.9
below, we show that when p is odd or when our ring R is Zs, then any quadratic polynomial
over R is strongly isospectral to a polynomial of the form (8).

Theorem 4.3. Suppose v;(2) = £. Consider the quadratic polynomial Q = @,y TQ; ®
L + ¢, where each Q; is a unimodular quadratic form of rank r; over R, where there is a
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positive integer w such that Q; = 0 for i > w, where L is a linear form involving at most
one indeterminate, and ¢ € R is a constant. For each j € N, we let

w=D @ rg) = rank(Q)) = > T 4 = g0,
0<i<j 0<i<j
i=j (mod 2) i=j (mod 2)

and for any quadratic form P, use the term Gp to denote the p-adic generating function of
P, and Hp for the head of Gp.

o If L =0, then the p-adic generating function of @ is

C

z i qitl it
GQ(Z) = Z fHQ(i) (ZTr )GQ z+1) H GQ'H»] )
0<i<w—1 10) 2§j§2e

ZC

w

- ")

ﬂ.wfl
Go1) GQ(wﬂ) (z )GQ(w) (2

o If L = ax with vy(a) = A < oo, then the p-adic generating function of Q is

z¢ z+1 it
Go(2)= > %HQ<-( NGaun ™) T G, 2™)

0<i<A—2¢ 2<j<2¢
Le+TR g, aetTR
+ Z a0 HQ( )( )GQ(1+1) H GQMLJ )+ q
max{OA—20}<i<x (D) 2< <2 )

Proof. We may assume ¢ = 0: the p-adic generating function of c is z¢ by Remark 3.3, and
the general case follows from the ¢ = 0 case by the sum-product rule. The L = 0 case is
Proposition 4.1.

So we suppose L = az with v;(a) = A < oo henceforth. By the sum-product rule,
the p-adic generating function we seek is the product of the p-adic generating function of
P, cn 7' Qi furnished by Proposition 4.1, and the p-adic generating function of L(z) = ax,
which is z”kR as shown in Remark 3.3. When using Proposition 4.1, we make sure to use
w large enough that w > A. When we multiply 2" R with terms from Proposition 4.1 of

it i+ . . A
the form Hg , (2" )GQ(i+1)( M o<jco0Gauy, (2 2™ with i > \, we get Hq, (1)2" R by

Remark 3.11, which equals (1 —1/ qr(i>)z”AR because the head of a generating function for a
form with 7(;) variables records the form’s values on a set of Haar volume 1 —1/¢"®. And
when we multiply 2™ R with the term GQuun (z”wjl)GQ(w) (2™), we simply get 2™ R Thus
the generating function of @ is

A
5T R it
Ga(z) = 3. = —Hay(")Gaun (") [I Gausz™)
0<i<A (@) 2§]<2£
A
1 Py R
+ Z ( T) + )
A<i<w—1 qZ q @ q(“-’*l)

and then use the definition of g(;) and ;) to see that the second sum and the final term

telescope to give z’rAR/q(/\).
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We then note that Corollary 3.21 shows that HQ(i>(z’Ti) is w241+ uniform, so that if
i < A—2{, Remark 3.11 shows that Hg, (7)™ R = HQ“,)(z“i), so that we can drop the
2™ R term in these cases. ([
Corollary 4.4. Let p be odd. Consider the quadratic polynomial Q = @,y mQ; ® L +c,
where each Q; is a unimodular quadratic form of rank r; and discriminant d; over R, where

there is a positive integer w such that Q; = 0 for i > w, where L is a linear form involving
at most one indeterminate, and c € R is a constant. For each j € N, we let

Qyy= D Qi diy = dise(Q)) = [l di,
0<i<j 0<i<j
i=j (mod 2) i=j (mod 2)

TG) = rank(Q(j)) = Z i, ;) = q20§i<j Yo
0<i<j
1=j (mod 2)

and for any quadratic form P, use the term Gp to denote the p-adic generating function of
P, and Hp for the head of Gp.

o If L =0, then the p-adic generating function of Q) is

ﬂ.wfl T
GQ(W71) (2 )GQ(w) (z").

2° i z¢

Go(z) = Z 7HQ(Z')(ZW ) +

0<icw—1 00

d(w-1)

o If L = ax with v(a) = XA < 0o, then the p-adic generating function of Q is

€ i Zc+7r’\R
Go(z) = Z 7'1—162(1')(27r )+
o<i<x 16)

a)

Proof. This follows from Theorem 4.3, where we have ¢ = v;(2) = 0. Corollary 3.21 says
that if Py is a unimodular quadratic form, then Hp,(z) is m-uniform, so if P; is another
unimodular quadratic form, then Corollary 3.18 shows that Hp,(2)Gp,(27) = Hp,(z). O

4.3. Local Zeta Function for a Quadratic Polynomial. We now use what we know
about the p-adic generating function of a quadratic polynomial to determine its local zeta
function.

Theorem 4.5. Suppose v;(2) = £. Consider the quadratic polynomial Q = P,y Qi ®
L + ¢, where each Q; is a unimodular quadratic form of rank r; over R, where there is a
positive integer w such that Q; = 0 for i > w, where L is a linear form involving at most
one indeterminate, and ¢ € R is a constant. For each j € N, we let

Q=B @ rg) = rank(Q)) = > T ag) = g ===,
0<i<y 0<i<y
i=j (mod 2) i=j (mod 2)

and for any quadratic form P, use the term Gp to denote the p-adic generating func-
tion of P, and Hp to denote the head of Gp. For a € R, u € N, and quadratic forms

20

Py, Py, ..., Py, let I,(Py, Pr,...,Py) = Ig(ZaHpo(Z)Gp1 (zM)... GPM(Z7r ), and let I =
Ig(2*™" R Hp, (2)Gp, (27) ... Gpy, (7).
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e IfL=0andc=0, letr =7, 7i, and then the Igusa local zeta function for Q is

ti
Zq(t) = Z %IO(Q(i)aQ(i+1)7Qi+27Qi+37--~7Qi+2€)

0<i<w—1
+ < Q1) Q20,01 0) + 2 10( Q. Qs 11,0, .. ,0)>(1 _ t2> B
Uw—1) U(w) q
o IfL =0 and c#0, let kK =vr(c), and then the Igusa local zeta function of Q is
Zq(t) = Z LZ'Ic/ﬂi(Q(i)a Q(i+1); Qit2,Qiy3,s .-, Qiyar) + r .
0<i<r 109 d(w+1)

o If L(x) = bz for some b with v(b) = X\ < 0o, and if vz(c) > X, then the Igusa local
zeta function for @ is

ti
Zot) = Y. —Io(Qqu) Q1) Qiva, Qiss,- -, Qiyar)
0<i<A—2¢ q@)

o th (1-1/q
+ Z — I3 Qs Qiv1)s Qit2r Qitss - -+, Qiyar) +—— /g )
max{0,A—20}<i<x 100 a0 q

o If L(z) = bx for some b with vz(b) = X < 00, and if X — 20 < vz(c) < A, then let
k = vr(c), and then the Igusa local zeta function for @Q is

ti
Zg(t) = Z — Loy (Qiys Qiv1), Qit2s Qis, - -+, Qitae)

0<icr—2e 10)

to
+ Z 712\/7(2' (Qiys Qit1)s Qit2, Qigss - -, Qiyar) +

max{0,A—2¢}<i<k 9)

t:‘i

Q(,‘i-‘rl) .

o If L(x) = bx for some b with vy(b) = A\ < o0, and if vz(c) < X\ — 2¢, then let
k = vg(c), and then the Igusa local zeta function for @Q is

t "
Zg(t) = Z — 1) (Qiy, Qiv1), Qitas Qitsy - -+, Qitae) +

0<i<k () Q(r+1) .

Proof. We apply Ig to the p-adic generating functions supplied by Theorem 4.3, and when
p is odd we note (see the proof of Corollary 4.4) that if Py and P; are unimodular quadratic
forms, then we can always replace Hp,(z)Gp, (2™) with Hp,(2).

We note that when a € R and F(z) € G, Lemma 3.12 tells us that the term Ig(z2F (™))
becomes ¢ Ig(2%/™ F(z)) when vx(a) > i, and it becomes F(1)t~(@) when v (a) < i. And
similarly, if ¢ € N, then Ig(z*T™RF(2™)) becomes t¢ Ig(2%/™ ™ "B F(2)) when v (a), p > i,
and it becomes F(1)t'~() when vy (a) < p, i.

When L = 0 and ¢ = 0, we use Lemmata 4.2 and 3.12 to apply Ig to the last term
GQ<W71)(z”w_1)GQ(w) (2™), and note that r,_1) + 7, =
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When L =0 and ¢ # 0, we make sure to use w > k + 1, so that we obtain

Le(Go(=) = 3 LI (Quy Qusny Qiens Qi Qi)

o<i<r 10)

]' K K
+ > — Hg,, (1)t —|—q(w_1)t,

and then note that Hg, (1) =1— r< )

with 7(;) variables records the form s values on a set of Haar volume 1 —1/¢"®. Then one
sees that the second sum and last term telescope to give the desired form.

When L = bz with for some b with v.(b) = A < oo, and when vr(¢c) > v, (), then a
reparameterization with 2’ = (z — ¢/b) eliminates the constant term, so we may take ¢ = 0
in this case. Then we apply Ig and use Lemma 3.7 for the last term.

When L(z) = bx for some b with v;(b) = A < oo, and when v,(c) < A, and we let
# = vr(c), then we again use the fact that Ig(2¢F(2™)) = F(1)t* whenever i > & to obtain
either

because the head of a generating function for a form

ti
I8(Go(2) = > —Im(Qu) Qus), Qita, Qivs, -, Qivar)

0<icr—z2¢ 10

tz t th
+ Z C/Tl'l (Q(z Q(i+1)7 Qi+27 Qi+37 cee 7Qi+2@) + Z 7HQ(1') (1) + —,

max{0A—20}<i<r 10 w<iex 10) ae)
ifA—20 <k <A, or else
t "
Ig(GQ(z)) Z c/7r2 (Q( ) Q (i+1)> Ql+27 QZ+37 SRR) QH—% + Z + -
0<i<k q( l€<l</\ Q()\)
if K < A —2¢, and again note that Hg, (1) =1 — qr%, and the last sum and final term of
each form telescope to give the desired form. O

4.4. Proof of Theorem 2.1. This follows from Theorem 4.5, where we have ¢ = v(2) = 0,
so no term of the form I (Py) occurs, and the term I,(Pp) is just Ig(z*Hp,(2)). If Py is
of rank n and discriminant e, then we write this as I,(n,e). The calculation of the values
I,(n,e) in Table 2 is in Lemma 5.9 in the next section.

4.5. Proof of Theorem 2.3. We apply Theorem 4.5 with £ = 1, # = 2, and ¢ = 0.
For the cases where L(x) # 0, the terms Ig(Q()\_Q), Q(r—1),@x) and I&(Q(A_l), Q> @xr1)
are dealt with specially. We note that if Py, P, and P> are unimodular quadratic forms,
then Hp,(2)G p, (2%)Gp, (212 = Hp (2)G p, (2?)2* by Remark 3.11, which is the same as
Hp,(2)Gp, (2%)Gsq(2*) by Lemma B.2 of Appendix B, so that I3(Py, Py, Py) = Io(Po, P1,Sq).
And similarly, Hp,(2)Gp, (22)G p,(2%)22EF = Hp,(2)2*F by Remark 3.11, which is the same
as Hp,(2)Gsq(2%)Gsq(2?) by Lemma B.4, so that I} (Py, P1, P2) = Io(Po, Sq,Sq). So all our
terms I} (P, P1, Py) can be replaced with Iy(Pp, A, B) for some unimodular quadratic forms
A and B, and since the subscript on [ is always zero for Theorem 2.3 (since ¢ = 0), we
suppress it. The formulae in Theorem 2.3 for A = 0 and 1 are then easy obtained. The
values of I(Py, P1, P») in Table 5 are calculated in Appendix B below.
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4.6. Proof of Theorem 2.4. This result follows if we can show that terms of the form
I,(Py, ..., Py) and I5(Py, ..., Fy) as defined in Theorem 4.5 are equal to polynomials in
Q[t] divided by 1—t/q. This will follow from Lemma 3.7 if we show that for any unimodular
quadratic forms Py, ..., Py, the term Hp, (2)Gp, (z7)- - Gp%(z”%) is w*-uniform for some
k € N. But this follows from Corollary 3.21 (applied to Py) and Lemma 3.17.

4.7. Proof of Theorem 2.5. We use Theorem 2.1, which shows that the local zeta function
is a Q-linear combination (with positive coefficients) of terms of the form t"Iy(n,e) with
Io(n, e) from Table 2, plus one final term involving a division by (1 —t2/¢") that we analyze
now.

Lemma 4.6. With the assumptions and notations of Theorem 2.1, let v = ) ;7i and
d=[l;endi, and let

tw—l tw t2 -1
M = To(7(w=1), d(w—1)) + —To(T (0, d(w ><1—) .
(q(wl) 0 w-1): do-n) 4 =00 ) 7

If rw—1y and r, are both odd, then

v= (o) i)

If r(,—1) and r,) are both even, then

r —1)r/2 _ .
q(w—1) q (w=1)/2 (1 _ W) | 1—1t/q

If r(,—1) is even and 1) is odd, then

w—1 -1 T(W,D/Qd _ t—1 .
M:<t ) 1+77(( ) (w-1))(—1) (1 l/q>‘
q(w-1) qr<w_1>/2 (1 _ Z;ir) 1—1t/q

If r(w—1) s odd and r,) is even, then

M= < e ) | D@ )it~ 1) <1 - l/q>.

9(w-1) qrw-n+7)/2 (1 _ %) 1—t/q

Proof. Substitute the values of Io(7(,—1), d(—1)) and Io(r(y), d(.)) from Table 2 and simplify.
O

Proof of Theorem 2.5: The rank 0 case is trivial, so we assume positive rank henceforth.
As mentioned above Theorem 2.1 shows that the local zeta function is a Q-linear combi-
nation (with positive coefficients) of terms of the form t'Iy(n,e) with Iy(n,e) from Table
2, plus the final term involving a division by (1 — #2/¢") that we just analyzed in Lemma
4.6. Perusal of Table 2 shows that Iy(n,e) is zero when n = 0, is a positive constant when
(n,e) € {(1,1),(1, @), (2, —)}, and otherwise (1 —t/q)Iy(n,e) is a polynomial whose value
at t = q is positive.

First suppose that {(Teven; deven)s (Todd; dodd) } € {(0,1),(1,1), (1, @), (2, —)}. Then The-
orem 2.1 shows that the local zeta function is a polynomial plus the final term analyzed in
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Lemma 4.6. So the denominator g(t) we seek is the denominator of that term when (writ-
ten in reduced form), and this can readily be deduced for the finitely many possibilities for
(Tevens deven) and (roqd, dodq) under consideration here by consulting Table 2.

So henceforth assume that {(reven,deven), (Todd;dodd)} Z {(0,1),(1,1), (1, ), (2, —)}.
This makes r > 2. If r = 2, we must have {(reven,deven), (Todd; doad)} = {(0,1),(2,—1)},
and we let w be the greatest index such that @, # 0. Then Theorem 2.1 and the fact
that Io(r(;),d(;)) is a constant for 7 < w (and is zero when 7 # w (mod 2)) show that the
local zeta function is a polynomial plus a positive constant times “Io(r (), dy)/(1—*/¢%),
and since (r(,),d(,)) = (2,—1), Table 2 tells us that this last term (in reduced form) has
denominator (1 —t/q)2.

So we may assume that r > 3 henceforth. The factors 1 4+¢/¢"/* can no longer occur in
the denominator of any Iy(n,e), so they will be present in the local zeta function for @ if
and only if they are present in the denominator of the final term analyzed in Lemma 4.6.
Since Io(r(;), d(;)) is not a constant for some 4, when we multiply the local zeta function by
1 —t/q and evaluate at ¢ = ¢, this term gives a positive contribution, and the other terms
give a nonnegative one (we are including the final term, whose denominator is positive at
t = ¢ in view of the rank). So the local zeta function must have 1 —¢/q in its denominator
when written in reduced form.

r/2

4.8. Comparison with Igusa’s Results. Igusa calculated the local zeta function for a
quadratic polynomial with no constant term in the case where p is odd in Theorem 1 and
Corollary to Theorem 2 of [12], which is the special case of Theorem 2.1 when ¢ = 0. He
also has some calculations in his monograph [13, Corollary 10.2.1], which give a special
case of his results for p odd in [12], but also give local zeta functions for a restricted
family quadratic forms over 2-adic fields (including ramified ones) that behave similarly to
unimodular quadratic forms over p-adic fields with p odd. In our notation, when p = 2, Igusa
restricts his attention to quadratic forms equal to 1/2 times one of the following: Hyp”,
Ell@ Hyp" ™!, Hyp" ®2u Sq, or Ell & Hyp" ! @2u Sq, where u is a unit in R. The factor of
1/2 merely causes the zeta function to be scaled by t=v=(2), When there is no 2u Sq term
present, Igusa’s result follows directly from our calculations of zeta functions for unimodular
forms in Lemma 5.7 below. When the 2u Sq term is present, write Q1 = Hyp(PQ)/ 2 and
Q- = Ell@Hyp(“?’)/2 so that @ = Q4 & 2uSq. Then multiply the p-adic generating
functions Gg. (2) and Gy sq(2%) of Q1 and 2uSq from Lemma 5.7 and Corollary 3.21 and
coalesce cosets (see Remark 3.5) to show that the p-adic generating function for @ is

Go(z) = <1 — qu_l> 2R 4 quMGQi(ZWQ) Z L2 ASTR ;GQ(2”2),
TeTy
where ¢ = v;(2) and T} = {to + tim + --- + ter’ : to,...,ty € T,tg # 0}. Apply Ig to
both sides, recognizing that Gg, (z™) = G(22™) for some G(z) € G, so that Ig applied
to the second term gives (q — l)té /q", and also note that Ig applied to the last term gives
t?1g(Gg(2))/q" by Lemma 3.12, and so we rearrange to get Ig(Gg(z)) = m%,

which matches Igusa’s result when we divide by ¢ to account for his difference in scaling.
4.9. Strong Isospectrality for p odd and Z,. Recall from Section 2.1 that two polyno-

mials f and g over R are said to be strongly isospectral if for each k € N, the reductions
of f and g modulo 7* represent each value in R/7*R the same number of times. This is
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equivalent to saying that f and g have the same p-adic generating function. We prove that
in certain cases, quadratic polynomials over R are isospectral to ones where no variable
appears in both the linear and quadratic part.

Proposition 4.7. Suppose that p is odd, or else that p = 2 and R = Zy. Let Q be a
quadratic polynomial over R. Then f is strongly isospectral to a polynomial of the form
D, 7Q; & L + ¢, for some unimodular quadratic forms Qo, Q1,...,Q, where L is a
linear form involving at most one variable, A > w, and c is a constant in R.

Proof. In [25, §91C] it is shown that for any quadratic form, there is an invertible R-linear
change of variables that transforms it to a form @:":0 7' P;, where each P; is a unimodular
quadratic form. In [25, §91C, 92:1]) it is shown that one can arrange that each P; be a
direct sum of unimodular quadratic forms of rank 1 (when p is odd) or ranks 1 and 2 (when
p = 2). We apply such a transformation to our quadratic polynomial, thus brining the
quadratic portion into this convenient form. This change of variables transforms the linear
portion of our polynomial to another linear form M.

Now for each rank 1 or 2 direct summand of the quadratic portion, say f(x) or g(z,y),
consider f(z)+ax or g(x,y)+ax+by, where the ax or ax+by is the portion of M involving
or x and y. Since a rank 2 summand that cannot be decomposed into two rank 1 summands
must be Hyp or Ell by Corollary 5.11, Lemmata 4.9-4.11 below show that f(z) + az or
g(z,y) + ax + by is strongly isospectral to a linear form plus a constant or a quadratic form
plus a constant.

Thus we can assume that there are no variables in common between the linear and
quadratic portions of our polynomial. Then note that any nonzero linear form is isospectral
to a linear form with a single variable by an invertible R-linear change of variables.

If our single-variable linear term is ax, and there is a quadratic term of the form 7#P
with g > vz(a), Lemma 4.8 shows that we can remove the 7P term. O

We conclude with some technical lemmata used above.

Lemma 4.8. Let f(x1,...,2,) = ax1+bL(xe,...,x,)+cP(z1,...,2,) witha,b,c € R, and
L(za,...,xn), P(x1,...,2,) € R[z1,...,2s] with L(xa,...,x,) a linear form. If vz(a) <
vr(b) and vr(a) < vr(c), then f(x1,...,x,) is strongly isospectral to axy.

Proof. By scaling, we may assume that a = 1 and 7 | ¢. Then the partial derivative of f at
x1 never vanishes modulo 7, so Lemma 3.20 shows that the p-adic generating function for f
is the same that of 1 + bL(xo, ..., 2, ), which by an invertible R-linear change of variables
is the same as that of z7. O

Lemma 4.9. Let f(r) = ax?+bx for some a,b € R. If vz (b) < vr(a), then f(x) is strongly
isospectral to bx. If vz(b) = vr(a) and R = Zsg, then f(z) is strongly isospectral to 2bx. If
vr(b) > vr(2a), then f(x) is strongly isospectral to ax?® — %.

Proof. Lemma 4.8 handles the first case, and the third case is obtained by completing the
square. In the second case, we reparameterize with = by/a to obtain (b%/a)(y? +y). It
suffices to show that 3%+ is strongly isospectral to 2y, for then f will be strongly isospectral
to 2b(b/a)y, which is isospectral to 2by, since b/a is a unit. Note that the derivative of y+y?
is always 1 modulo 2, and so by Lemma 3.20, the p-adic generating function of y? + y is
228 which is the p-adic generating function of 2z by Remark 3.3. g
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Lemma 4.10. Let f(z) = ax + by + cxy for some a,b,c € R. If vr(a),v:(b) > vr(c),
then f(z,y) is strongly isospectral to cxy — %b. Otherwise, f(x,y) is strongly isospectral to
azr + by.

Proof. In the first case, use the change of variables x = u—b/c and y = v — a/¢, and handle
the residual cases with Lemma 4.8. 0

Lemma 4.11. Let o € R such that 22+ 2+0 (mod 7) is irreducible in Fy and set e(z,y) =
(22 + 2y + 0y?), so that 2e(x) is an elliptic plane. Let f(x,y) = ax + by + ce(x,y). If
oga?—ab+b?

vr(a),vr(b) > vr(c), then f(x,y) is strongly isospectral to ce(z,y) + Ceit0) - Otherwise,
f(z,y) is strongly isospectral to ax + by.

Proof. In the first case, use the change of variables x = u — (b — 20a)/(c(1 — 40)) and
y=uv—(a—2b)/(c(1 —40)), and handle the residual cases with Lemma 4.8 O

5. UNIMODULAR QUADRATIC FORMS

Since Theorem 4.3 expresses the p-adic generating function and Igusa zeta function of
a quadratic polynomial in terms of the p-adic generating functions (and their heads) of
unimodular quadratic forms, we now analyze what unimodular forms look like. This will
eventually enable us to calculate the entries of Tables 2 and 5 used by Theorems 2.1 and
2.3.

We set down some basic assumptions and notations that shall hold in Sections 5.1-5.4.
We assume the basic facts about quadratic forms related in Section 2.1. We also recall from
Section 2.2 that when p is odd, R*/R*? is a group of order 2, and we fix a € R* . R*?, and
we use the extended character n defined in in Section 2.2.

When p = 2, the residue field is perfect and of characteristic 2, so every element a of R is
a square modulo 2, that is, @ = b> (mod 2) for some b € R. So a Sq is always equivalent to
bSq for some b € R with b =1 (mod 2). Furthermore, every element of the form 1 + 47a
with a € R is a square (so R*/R*? is finite), but we can (and do) fix a unit £ € R such that
1+4¢ is not a square (see [25, §63:1 and 64:4] for proofs of these facts). In fact, it is an easy
consequence of Hilbert’s Theorem 90 that the elements a € R such that 1+ 4a is square are
precisely those such that if a € F, is the reduction of @ modulo 7, then the absolute trace
of a is 0. When p = 2 and is unramified in R, we shall use Tr to denote the absolute trace
Tr: K — Qq, so if a € R, then 1 + 4a is a square if and only if Tr(a) =0 (mod 2). We use
the convention that if a € Zs, then (—1)% = (—1){@med2),

Throughout this section, we let 7" be a set of Teichmiiller representatives for F, in K,
that is, 7' contains all the (¢ — 1)th roots of unity and 0. We let 7% = T'\. {0}. When p = 2
and does not ramify in R, we let S = {7 €T : Tr(r) =0 (mod 7)}.

5.1. Unimodular Quadratic Forms of Rank 1. A unimodular quadratic form of rank 1
is u Sq for some u € R*. Let us examine the p-adic generating functions for these quadratic
forms when p is odd and in the unramified 2-adic case.

Lemma 5.1. For p odd and a € R*, the head p-adic generating function of a Sq is
1 1
Hysq(z) = 21— =2 4 = Z n(ar)z" T8,
q q TET

and the p-adic generating function satisfies Gqsq(2) = Hasq(2) + %Ga Sq(z”2).
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Proof. From Corollary 3.21 and the fact that az? (mod 7) represents each element of aIF;Q
twice as  runs through 7%, we deduce that the head is (1/¢) 3, o (1 + n(a7))z™™%, and
coalesce cosets (see Remark 3.5) to obtain the desired form. Then Lemma 3.19 gives the
relation for Gy sq. [l

Lemma 5.2. Suppose that p = 2 and that K is unramified. If a € R*, then the head of the
p-adic generating function of aSq is

2
HaSq(Z) == Z Za7(1+4s)+8R'
q TeT™*
seS
The p-adic generating function satisfies Gqsq(2) = Hasq(2) + %Ga sq(z”2).

Proof. By Corollary 3.21, we have

1

HaSq(z) == Z Za(To+27'1)2+8R’

ToET™

T €T
and then note that (10 +271)? = 72(1+4(r +1?)) where r = 71 /7. As (70, 71) runs through
T*xT, we note that (73, 7) runs through T* x T', and as r runs through 7', we note that r2+r
(mod 2) runs through S, necessarily taking each value twice (since a quadratic polynomial
cannot take any value more than twice, and there are ¢/2 values of trace zero). Thus as
(70, 71) runs through T* x T', (79 +271)? (mod 8) becomes congruent to each 7(1+4s) with
(1,8) € T* x S two times. O

5.2. Unimodular Quadratic Forms of Rank 2. Let us first compute the p-adic gener-
ating function for hyperbolic and elliptic planes.

Lemma 5.3. The p-adic generating function of the hyperbolic plane satisfies

1 1
Guyp(2) = <1 - q) 2R+ gGHyp(Zﬂf

The head of the p-adic generating function is

1 1
HHyp(z) = (1 — q> <22R + quWR) ,

and the p-adic generating function satisfies Guyp(2) = Huyp(2) + q%GHyp(z”2). When p is
odd, then 2R = R, so the above instances of 2R and 2w R may be replaced with R and 7R,
respectively.

Proof. Let us consider the partial generating function for 2y on the region S = (R~ 7R) x
R, that is, where x is a unit. Then the derivative of xy always has valuation 0, and

so we may use Lemma 3.20 to show that the partial p-adic generating function on S is
g1 ,THTR — ¢—1 R
q? TeT — q .

Now consider zy on the region S¢ = R? \ S, that is, where z is a multiple of 7, and
suppose we are interested in the partial modulo 7% generating function of zy on S¢. We
write = 7z, and count the number of times (77)y takes each value in Ry, as T runs through
Rj_1 and y runs through Ry, which is ¢ times the number of times 7m(Zy) takes each value
in Ry, as T and y run through Rj_;. Thus if the modulo 7! generating function for Zy is

1

Fj._1(7), then the partial modulo 7% generating function for zy on S¢ is 7F-1(7"). (The
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~™ means we should replace each term 44 where A € G,_; with v™. And the % comes
about, since we get the counting factor of ¢ just mentioned, but also pick up two factors of
¢ in the denominator due to our choice of normalization of modular generating functions.)
Taking limits, we see if the p-adic generating function for zy is G(z), then the partial p-adic
generating function for zy on S¢ is %G(z”). But of course zy and xy represent the same
form G(z), so if we add the partial p-adic generating functions of xy on S and on S¢, then
we see that the p-adic generating function of xy satisfies G(z) = %zR + %G(z”). Now
scale by 2 to get the first relation we were to prove for the p-adic generating function of

Hyp.
We apply this relation to its own second term to get

1 1 1
Ghyp(z) = (1 — q) <z2R + qz2”R> + quHyp(ZﬂQ),

which shows that the head of the p-adic generating is exactly what we claim it to be by
Lemma 3.19. 0

Recall that whenever f(X) a quadratic polynomial over R whose reduction modulo 7 is
an irreducible quadratic polynomial over F,, the rank 2 form 2y f(x/y) is called the elliptic
plane Ell. All such forms are equivalent, regardless of the choice of f. Some standard forms
for Ell are 22 — ay? when p is odd and 2(z? + zy — &y?) when p = 2, where a and ¢ are as
defined at the beginning of Section 5. We now compute the p-adic generating function for
an elliptic plane.

Lemma 5.4. The p-adic generating function of the elliptic plane satisfies
1 2R 1 T
GEH(Z) =1+ ; z2o — 5GE11(2 )

The head of the p-adic generating function is

1 1
Hin(s) = (147 ) (#7220,

and the p-adic generating function satisfies Ggn(z) = Hun(z) + q%GEH(ZWQ). When p is
odd, then 2R = R, so the above instances of 2R and 2w R may be replaced with R and 7R,
respectively.

Proof. Let us compute the head of the p-adic generating function for % Ell, whose derivative
has valuation 0 on R? \ (7R)? (see proof of Corollary 3.21). Suppose that f(X) is a qua-
dratic polynomial over R whose reduction modulo 7, say ¢g(X), is an irreducible quadratic
polynomial over F,. Then express 5 Ell as Q(z,y) = y*f(z/y). Let 6 and 6 be the roots of
g(z) in F2, and then note that y?g(y/z) = B(y — 0z)(y — Oz) for some 3 € ;. Now suppose
that d, e € R reduce modulo 7 to d,e € F, respectively. Then Q(d,e) (mod 7) = BN (d—e0),
where N is the Galois-theoretic norm from F 2 to IF,. Furthermore, as (d,e) runs through a
set of representatives modulo 7 of R? X\ (7R)?, our (4,¢) runs through F2 ~ {(0,0)}, and so
0 — €6 runs through IF‘ZQ, and so N (0 — efl) runs through Fy, taking each value ¢ + 1 times.

Thus, by Lemma 3.20, we have H1 g (2) = %21 dorers 27t™R and then we coalesce cosets
2
and scale by 2 to get the claimed expression for Hgy(2).
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The recursive expression Ggp(z) = Hgn(z)+ q%GEu(z”2) comes immediately from Lemma,

3.19. Now set I(z) = Ggn(z) + %GEH(z”) — (1 + %) 22 and use the recursion to obtain

1 1 1 1
I(2) = Hen(2) + —5Gen(z™) + ~Hen(z") + —Gpn(z™ ) — (1 + > 2R,
q q q q
which is seen to be q%[(z”z) when one substitutes the value of Hygy(z). Thus I(1) = 0, and

furthermore, we can iterate this relation to see that I(z) = q%[ (z™") for every k € N. Now

ﬂ.Qk )

if we apply o to I(z) to get an element of Go, the fact that I(z) is equal to q%[(z

shows that the only term v7 7% of war(I(2)) that could have a nonzero coefficient would

be v**&_ But the coefficient for this must also be zero since I(1) = 0. So par(I(2)) = 0 for
every k € N, so I(z) = 0. This proves the first claim of our lemma. O

Remark 5.5. We can repeatedly apply Ggn(z) = Hgn(z) + q%GEn(Z”Z) and use the value
of Hgn(z) from Lemma 5.4 to see that for each k € N, we have

= 1\ [ gezip 1 goimig) 1 -
GE11(2> = Z 1+ - z — 62 + qWGEH(Z )

20
im0 4 q

This shows that Ell represents precisely the elements r € R whose valuation has the same
parity as v;(2) (and also Ell represents 0, but only trivially).

When p is odd, there are only two unimodular forms of rank 2 in R[z, y] up to equivalence
(see [25, §92:1a]), and these are evidently Hyp and Ell (these having different discriminants).

For the rest of this section, we assume that p = 2. By [25, §93:17], a generic rank 2 form
in R[z,y] is equivalent to a form Pl(a,b) given by az? + 2xy — ba~1y?, where a,b € R with
vr(a) < min{v,(2),v-(b)/2}, and b equal to either 0, or 4, or else b is an element with
vz(b) odd and less than v,(4). Note that the discriminant of Pl(a,b) is —(1 + b) and its
norm is the ideal aR. The restrictions we place on a and b stem from a being the norm
generator and b generating a quadratic defect, which are discussed in [25, §93:3, §63A].

In the special case where b = 0 and v;(a) = v:(2), a simple coordinate transform shows
that Pl(a, b) is equivalent to the hyperbolic plane. Similarly, when b = 4¢ and v (a) = v (2),
it is not hard to show that Pl(a,b) is an elliptic plane. If a is a unit, we may complete the
square to show that Pl(a, b) is equivalent to ax? 4 cy? for some unit c. Note that Hyp and
Ell have norm 2R and ax? + cy? with v,(a) = 0 has norm R. All other Pl(a,b) have norm
strictly between R and 2R.

When K is unramified, our constraints on a and b then show that Pl(a,b) is either Hyp
(when v,(a) = 1 and b = 0), Ell (when v;(a) = 1 and b = 4£), or of the form ax? + cy?
with a,c € R* (when v;(a) = 0). The generating functions of the first two forms have been
calculated explicitly above, and it will be useful to have an explicit calculation of the third.

Lemma 5.6. Suppose that p = 2 and does not ramify in R. Let a,b € R* witha=b=1
(mod 2).

If4|a+b, let o = (—1)Tet0)/(4) " gnd then the head of the p-adic generating function
for aSq@®bSq is

1 —1-
R_722R+q UZ4R+£Z8R‘

Hysqabsq(z) =2
amamrEd q & q>
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If 41 a + b, then the head of the p-adic generating function for a Sq®bSq is

2 2
Hasqopsq(z) = — Z ST(ataigs)HAR | = Z ,T(a+b+4s)+8R

2
TeT* q TeT™

seS seS
In all cases, the p-adic generating function satisfies

1 2
GaSq@bSq(z) = HaSqG}bSq(Z) + ?GCLSq@bSq(zTr )

This is proved in Appendix A.

5.3. Unimodular Quadratic Forms of Arbitrary Rank. As mentioned in Section 2.1,
every unimodular form is equivalent to a direct sum of forms of ranks 1 and 2. We now look
at this principle more specifically so that we can calculate the p-adic generating functions of
forms of higher rank. It turns out that any form of rank greater than 4 is always equivalent
to a form containing a hyperbolic plane as a direct summand. Therefore, it will be useful
to compute generating functions of direct sums of hyperbolic planes.

Lemma 5.7. Let { = v;(2). Let r € N be even, let Q+ = Hypr/Q, and let Q_ =

Elle Hyp"=2/2. The p-adic generating function of Q+ satisfies
1 2R 1 s 1 s
Go.(2)=(1F 77 ) * + qT/2GQi(z ), and  Gq,(z) :HQ:t(Z)"i_?GQ:t(Z ),

where the head of the p-adic generating function of Q+ is

1 1
o) = (1% 7 ) ("% 7).

- (15 ) (-2) (1=20)

The Igqusa local zeta function of Q+ is

2

with

1o(Go. () = 525 2.

When p is odd, then 2R = R, so the above instances of 2R and 2w R may be replaced with
R and TR, respectively.

Proof. We begin by proving the first relation for Gg,. We proceed by induction on r, with
the r = 0 case trivial, and the r = 2 cases given by Lemmata 5.3 and 5.4. For r > 2,
we set Q4 = Hyp"=2/2 and Q_ = EllaHyp"~9/2, and let G@i(z) and Ghyp(2) be the

p-adic generating functions of @i and Hyp. Then the sum-product rule tells us that we
can multiply these together to get the generating function for 4, so

_ 1 2R 1 g 1 2R 1 _ T
Ca:(2) = [(1 N q> @ Gl )} Kl - q(T‘Q)/2> = E anCal)

Since hyperbolic and elliptic planes are of norm 2R, any generating function like Gyp(2™)
or Gg, (2™) is equal to a generating function of the form G(22™). Thus, when we multiply



32 RAEMEON A. COWAN, DANIEL J. KATZ, AND LAUREN M. WHITE

out the above expression and use Remark 3.11, we obtain our first relation, Gg, (2) =

<1 F q}n) 220+ q7,1/2 Go, (2™). We apply this relation to its own second term to get

2

1 1
Go.(z)=(17F ><2R:i: R>+G 2",
Qi( ) ( qr/2 7"/2 q Qi( )

and then use Lemma 3.19 to show that the head of the p-adic generating function of Q4 is
exactly what we claim it to be, and to get Ig(Gq_ ) in terms of Ig(Hg, ), which we calculate
with Lemma 3.7. O

When p is odd, for any given rank there are only two unimodular forms of that rank up
to equivalence, one of each discriminant.

Proposition 5.8. Let p be odd and r be a positive integer. Then up to equivalence there
are two distinct unimodular forms of rank r. If r is even, these are HypT/ 2 of discriminant
(=1)"/? and Ell @ Hyp"=2/2 of discriminant (=1)"2a. Ifr is odd, these are Sq @ Hyp("—1/2
of discriminant (—=1)"=1/2 and o Sq @ Hyp"=Y/2 of discriminant (—1)"—1/2q.

Proof. In [25, §92:1a], it is shown that (up to equivalence) there are precisely two unimodular

quadratic forms of any given rank, and we have exhibited two that are inequivalent since
they have different discriminants. O

We may now express the p-adic generating functions of these unimodular forms for odd
p in terms of their discriminants. We also calculate the values of I,(r, d) in Table 2 that are
used in Theorem 2.1 to express the local zeta functions for quadratic polynomials over R
when p is odd. Recall from Section 4.4 that I,(r,d) = Ig(2*Hg(z)) where @ is a unimodular
quadratic form of rank r and discriminant d and Hg(z) is the head of its p-adic generating
function.

Lemma 5.9. Let p be odd, let Q) be a quadratic form over R of rank r and discriminant d,
and let a € R.

» Ifr is even, then the head of the p-adic generating function of Q) is

_1\r/2 _1\r/2
Holz) = (1_?7(( q32 d)) <ZR+n<< ;32 d>sz)’

e and if T | a, then

_1\r/2 _1\r/2 _
Tg(z*Hg(z)) = (1 _ n(=b)"d) (;32 d>> <1 U q132 d)t> G _%g) ,

e but if Tt a, then

—1)7/24 1-1 —1)/2d
Ig(z*Hq(z)) = (1 -~ qriz )> <<1 - t;j) T i qr32 )) :

» If r is odd, then the head of the p-adic generating function of Q is

1 n (7” 1/2d
Hoe) = o = oty M S et
q teT
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e and if T | a, then

seieen = (1) (737

e but if w1 a, then

a(—1)r+1/2¢g 1—1 1 a(—1)r+1/2¢g
Tg(=" Ho(2) = <1+ O )t> (554) -7 -

In any case, the p-adic generating function satisfies Ggo(z) = Hg(z) + q%GQ(ZH), so that
the Igusa local zeta function for Q is

Ig(Go(2)) =

q q(r+1)/2

Ig(Hg(2))

1—t2/q"

Proof. The calculation of the head of the p-adic generating function for the even rank case
follows directly from Proposition 5.8 and Lemma 5.7. If @) has odd rank, then Proposition
5.8 tells us that it equivalent to the direct sum of a quadratic form @) of rank r — 1 and
discriminant 1 with a quadratic form @2 of rank 1 and discriminant d (viz., the form d Sq).
By the even rank case of this lemma, and by Lemma 5.1, these forms have generating
functions

1 1 1 2
G — (1= R - TR —Q T
Ql(z) ( J) <Z + JZ >+ o2 Ql(z )
R 1 TR 1 t+mR 1 w2
Go,(2) =2"— ="+ - Zn(dt)z + -G, ("),
9 teT 4
where o = n((—1)(""1/2)¢r=1/2_ We use the sum-product rule to obtain Gg(z) as the
product Gg,(2)Gg,(z), and we apply Remark 3.11 when multiplying out the right hand

sides to obtain
1 1 1
Go(z) =21 — @zﬂR + e Zn(dt)zH”R + PGQ(,Z” ),
tel
and in view of Lemma 3.19, this shows that the head of the p-adic generating is exactly
what we claim it to be. We use Lemma 3.7 to compute Ig(2°Hg(2)) in each case, and the
relation between Ig(Gg(z)) and Ig(Hg(2)) comes from Lemma 3.19. O

For the rest of this section, we assume that p = 2, and examine the unimodular quadratic
forms that can arise in 2-adic fields.

Proposition 5.10. Let p = 2. If r is even, then any unimodular quadratic form of rank r
s equivalent to one of the following:

(i). Hyp'’?,

(ii). Pl(a,b) ® Hyp'/>1,

(iii). Pl(a,b) & Pl(x7,0) & Hyp'/>72, or

(iv). Pl(a,b) ® Pl(n/,4¢) @ Hyp'/22,
where Pl(a,b) is as defined in Section 5.2, and a,b € R with vz(a) < min{v,(2),v.(b)/2},
and b equal to either 0, or 4, or else b is an element with v;(b) odd and less than v.(4),
and vx(a) < j < v:(2) with ve(a) + j odd in cases (iii) and (iv).

If r is odd, then any unimodular quadratic form of rank r is equivalent to one of the
following:
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(i). aSq& Hyp"—V/2,

(ii). aSq@Pl(n?,0) @ Hyp=3)/2, or
(iii). aSq® Pl(xd,4€) @ Hypr—3)/2,
where a € R* and 0 < j < v.(2).

Proof. This is a consequence of [25, §93:17-18], where we note that £ can be always be
replaced with —¢, for the ratio (1 4 4€)/(1 — 4¢) = 1 (mod 8), and so is a square. Thus
1 — 4¢ is a nonsquare because 1 + 4¢ is. U

Corollary 5.11. Suppose that p = 2 and does not ramify in R. If r is even, then any
unimodular quadratic form of rank r is equivalent to one of the following:

(i). Hyp'’?,

(ii). Ell@ Hyp /271,

(113). aSq®bSq @ Hyp™/2~1, or

(iv). aSq®bSq® Ell @ Hyp'/2~2,
where a,b € R* and are both congruent to 1 modulo 2.

If r is odd, then any unimodular quadratic form of rank r is equivalent to one of the
following:

(i). aSq & Hyp— 172,

(ii). aSq@® Ell@ Hyp("—3)/2,

where a € R* and is congruent to 1 modulo 2.

Proof. This follows from Proposition 5.10. In Section 5.2, we noted that Pl(a,b) is always
equivalent to Hyp (when v;(a) = 1 and b = 0), Ell (when v;(a) = 1 and b = 4£), or
uSq@®v Sq with u and v units (when v;(a) = 0). Furthermore we may take the units v and
v to be 1 modulo 2 by scaling x and y, since every unit is a square modulo 2. O

When p = 2 and is not ramified in R, all unimodular forms that have norm R, 2R, or 0.
Those with norm 2R and 0 are covered by Lemma 5.7 above (one uses Q4+ with = 0 to get
the form 0). So we now calculate the p-adic generating functions and local zeta functions
for unimodular forms of norm R over unramified 2-adic fields.

Lemma 5.12. Suppose that p = 2 and does not ramify in R. Let a € R*. Let r € N be
odd, let Q4+ = aSq@®Hyp" V2 and if r > 3, then let Q_ = aSq@Ell@® Hyp"=3/2. The
head of the p-adic generating function of Q+ is

_ 1 R 1 at+4R

2
+ qr+1 Z ZaT(1+4s)+8R’

TET™
seS

22—t 1-1/q
Ig(Hqo, (2)) = <1 - q7 + q(r+1)/2> <1 — t/q) ’
The p-adic generating function satisfies Gg, (2) = Hg,(2) + q%GQjE (z*). The Igusa local
zeta function for Q+ is

with

Ig(Hg, (2))

Ig(GQ:I: (Z)) = 1— tg/qT .
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Proof. Let @+ = Hyp"~V/2 and when r > 3, let Q_ = Ell® Hyp" /2. Let G@i (z) and
Gasq(%) be the respective p-adic generating functions of Qvi and a Sq. By the sum-product
rule, the p-adic generating function for Q+ is Gg_ (z) = G, Sq(z)GQi (z). Taking the values
of these latter two generating functions are described in Lemmata 5.2 and 5.7, we see that

Go.(z) is

2 ar(1+4s)+8R | 1 4 1 2R LI 1 4
q72 Z z ( ) -+ gGaSq(Z ) 1 F W z + q(’r’—l)/QZ +qT_1 éi(z ) .

TeT*
seS

One can multiply out and simplify the products using Remark 3.11, keeping in mind that

G5 (2%) is equal to G(2®) for some G(z) € G since @ is of norm 2R or 0. When one does

Q+
this, and coalesces Y. op 2" T2

1 R at+4R
<1:Fq('r—1)/2> [z + r+1)/2 >z

TeT

into gz (see Remark 3.5), one obtains

T(1+45)+8R 4
7”+1 Z IR 4 qr GQi( ),

TET™
seS

which, by Lemma 3.19 makes the head what it is claimed to be. We use Lemma 3.7 to
calculate Ig(Hg, (2)), and the relation between Ig(Gg,(2)) and Ig(Hg,(z)) comes from
Lemma 3.19. U

Lemma 5.13. Suppose that p = 2 and does not ramify in R Let a,b € R* witha=b=1
(mod 2). Let r € N be even, let Q1 = aSqdb Sq@Hyp =272 for r > 2, and let Q_ =
aSq®bSq® Ell® Hyp"—9/2 for r > 4.

If4d|a+b, let o = (—1)TetD)/(A) " gnd then the head of the p-adic generating function
for Q+ is

1 ory 1 ar 041 ar 0 gr
Ho, (2) =21t F r/2 :I:qr/zz 7 z +q72

2 22—t o3 —t?)\ [1-1/q
Ig(Hg, (2)) = <1 - — = + > ( > .
(Hou(2)) = (1= e Tt TE ) (=8
If 41 a+ b, then the head of the p-adic generating function for Q4 is

1 1
HQi(Z) = <1:Fq(7'_2)/2> (ZR:]: T/2Z2R>

)

with

a+b +4R 7(a+b+4s)+8R
/2 Z 7‘+1 § : ’
TeT™ TET™
seS seS

with

IQHQA@)=<L‘?><1:15>'

In all cases, the p-adic generating function satisfies G, (2) = Hg, (2)+ q%G’QjE (z4). The
Igusa local zeta function for Q-+ is

I5(Go, () = Se)

—t2/q"
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Proof. Let ©+ = Hyp("2/2 when r > 2, and let Qv, = Ella Hyp"%/2 when r > 4.
Let Géi(z) and Ggsqabsq(2) be the respective p-adic generating functions of Q-+ and
aSq®bSq. By the sum-product rule, the p-adic generating function for Q+ is Gg, (z) =
Gasqab sq(z)GQvi(z). The values of these latter two generating functions are described in
Lemmata 5.6 and 5.7.

First consider the case where 4 | a + b, so that Gg, (2) is

1 g—l-o i !
R §Z2R_+,4442;?44724R-+»6§ZSR'+’&§(;aSq@%Sq(Z4)

1 2R 1 4R 1 4
(1 F W) (Z + q(T_2)/2Z + qT_Q @:ﬁ: (Z )

One can multiply out and simplify the products using Remark 3.11, keeping in mind that

G@i(z‘l) is equal to G(z8) for some G(z) € G since Q+ is of norm 2R or 0. When one does

this, one obtains

z

times

1 1 o+1 o 1
ZR:F qr/2 2R:|: 4R_ Z4R+*Z8R+?GQ:‘:(24),

r/2 qr q"
which, by Lemma 3.19 makes the head what it is claimed to be.

In the case where 4 { a + b, we use the appropriate generating function for a Sq®bSq
from Lemma 5.6 to see that Gg_(2) is

2 1
2 Z 7' a+b +4R+ = Z ZT(a+b+4s)+8R+?Gasq®bsq<z4)

TeT™* TET™*
seSs seS

1 2R 1 g 1 4
(1 + q(r2)/2> <Z + Yok + qrij@i(z )-

One can multiply out and simplify the products using Remark 3.11, keeping in mind that

Géi(z4) is equal to G(z®) for some G(z) € G since Q+ is of norm 2R or 0. When one does

this, and coalesces cosets (see Remark 3.5), one obtains

1 R 1 2R T +4R
(1 + q(r2)/2> <Z + 72" > (r+2 72 P e

times

TeT*
seS
E : T(a+b+4s)+8R
qr+1 z ) + GQi( )7
TeT*
seS

which, by Lemma 3.19 makes the head what it is claimed to be. We use Lemma 3.7 to
calculate Ig(Hg, (z)) in each case, and the relation between Ig(Gg, (2)) and Ig(Hg, (%))
comes from Lemma 3.19. U

5.4. Addition Rules for Unimodular Quadratic Forms over Unramified 2-Adic
Fields. In order to use Theorem 2.3 to calculate the local zeta function of a quadratic
polynomial over an unramified 2-adic ring, one needs to know how to express the direct
sum of any pair of unimodular forms on Table 3 as another form on Table 3. In Lemma 2.2
we proposed “addition rules” that make this possible. We prove Lemma 2.2 here.

The first addition rule is actually true for all p-adic fields.
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Lemma 5.14. The quadratic form Ell ® Ell is equivalent to the quadratic form Hyp & Hyp.

Proof. When p is odd, Proposition 5.8 shows that up to equivalence the only forms of rank
4 are Hyp @ Hyp and Ell ® Hyp. When p = 2, consult Proposition 5.10, and recall from
Section 5.2 that if Pl(a, b) has norm 2R, then it must be Hyp or Ell, and so up to equivalence
the only forms or rank 4 and norm 2R are Hyp @ Hyp and Ell @ Hyp. Of the two candidates,
only Hyp @ Hyp has the same discriminant as Ell & ElI. ([l

We prove the second addition rule specifically for the unramified 2-adic case.

Lemma 5.15. Suppose that p = 2 and does not ramify in R. Suppose that Q(z,y,z) =
ax?+by?+cz? with a,b,c € R*. If there ared, e, f € R with Q(d, e, f) = —abc (mod 8), then
Q(x,y, z) is equivalent to (—abc) Sq® Hyp. Otherwise Q(x,y, z) is equivalent to (—abc)(1+
4¢) Sq@ ElL

Proof. Since @ has rank 3 and norm R, Corollary 5.11 shows that it must be equivalent
either to (—abc) Sq@ Hyp or (—abc)(1 + 4€) Sq @ Ell, where the coefficient of the Sq term
has been chosen in view of the fact that the discriminant must be preserved. We note
that (—abc) Sq@® Hyp obviously represents —abc. We claim that (—abc)(1 + 4€) Sq@ Ell
does not represent —abc (mod 8). For if it did, then since Ell represents only zero and
elements of odd valuation by Remark 5.5, we would need to have some r € R such that
f(r) = (—abe)(1 + 4€)r? + abe is either zero or of odd valuation. The valuation of f(r) will
be 0 unless 7 = 1 (mod 2). Write » = 1 + 2s with s € R, so that f(r) = —4abc(€ + s + s?)
(mod 8), and then note that Tr(¢ + s + s?) =1 (mod 2), so that v (f(r)) = 2. O

APPENDIX A. PROOF OF LEMMA 5.6

Throughout this section, we assume that p = 2 and does not ramify in R. We let T be a
set of Teichmiiller representatives for Fy in K, that is, T' contains all the (¢ — 1)th roots of
unity and 0. We let 7% =T\ {0}, and we let S = {7 € T": Tr(7) =0 (mod 7)}.

In order to prove Lemma 5.6, we need some preliminary results concerning the arithmetic
of Teichmiiller representatives. We present these as technical lemmata, some of which are
used here, and some of which find use later in Appendix B.

Lemma A.1. Let a € R, and suppose that ag € T with a = ag (mod 2). Then a? = ag
(mod 4). If a is a unit, or if the residue field for R has order ¢ > 4, then a? = ap (mod 8).

Proof. Write a = ag + 2r for some r € R, and consider the binomial expansion of (ag + 2r)?
modulo 8, which is ag +2qag_1r+2q(q— 1)ag_2r2. The last two terms always vanish modulo
4, and they vanish modulo 8 when ¢ > 4. If ¢ = 2 and a is a unit, then ag = 1, and it is
easy to check that a®> = 1 (mod 8) for every unit in Zs. O

Lemma A.2. Suppose that a,b,c € T with a+ b= c¢ (mod 2). Then
a+b=c+2(ab)/?
=c+2a+2(ac)??  (mod 4).
If the residue field for R is of order ¢ > 4, then
a+b=c+2(ab)¥? + 4(ab)?*(a?? + bY/?)
= ¢+ 2a — 2(ac)”? + 4(ac)¥*(a?? + ¢¥/2)  (mod 8).
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Proof. We prove the asserted congruences modulo 8 for the case when g > 4: these imply
the asserted congruences modulo 4, which are easy to show when ¢ = 2, since T' = {0, 1}.
By Lemma A.1, (a + )¢ = ¢ (mod 8), so then a +b = c+ ((a+b) — (a+b)?) (mod 8),
and we use binomial expansion. From the theorems of Kummer [18] and Anton [2], we
know that the only binomial coefficients (‘]1) that do not vanish modulo 8 are those with
j =0, q/4, q/2, 3¢/4, and ¢, and the values of these are 1, 4, —2, 4, and 1 modulo 8,
respectively. This (and the fact that a? = a and b? = b since a,b € T'), suffice to prove the
first congruence.

To prove the second congruence, we replace b with ¢ — a and use the same techniques.
This does not change the value of our expression modulo 8, for b = ¢ — a (mod 2), whence
one easily shows that b2 = (¢ — a)? (mod 4), so that %% = (¢ — a)?/? (mod 4). O

Corollary A.3. Suppose that a € R and b,c € T with a+ b = ¢ (mod 2). Then
a+b=c+a+al+2ac)”? (mod 4).

Proof. Write a = ag + 2a; with ap € T and a; € R. Then ap + b = ¢ (mod 2), so that
Lemma A.2 tells us that ag + b = ¢ + 2ag + 2(apc)?? (mod 4). So a + b = ¢ + 2a¢ + 2a; +
2(apc)?’? (mod 4), which is the same as ¢ + a + ag + 2(ac)?/? (mod 4), which is the same
as ¢+ a + a? + 2(ac)?’? (mod 4) by Lemma A.1. O

Lemma A.4. Leta € R. Ifa #0 (mod 2), then as b runs through T, the quantity b> + ab
(mod 2) runs through the values of {a*s (mod 2) : s € S}, taking each value twice. If a =0
(mod 2), then as b runs through T, the quantity b*> + ab (mod 2) runs through the values of
Fy, taking each value once.

Proof. The claim when a = 0 (mod 2) is clear because b* +ab = b* (mod 2), and = +— 22 is
a permutation of F;. So we assume a # 0 (mod 2) henceforth. Write ¢ = a~'b, so that we
are looking at the quantity a?(c? 4 ¢) (mod 2) as ¢ runs through a~'T, which is the same
as T modulo 2. As c runs through 7, the quantity ¢ + ¢ (mod 2) takes each value in F,
with zero trace twice since it cannot take any such value more than twice. O

Lemma A.5. For ¢ € R, write ¢S (mod 2) to mean the set {cs (mod 2) : s € S}. Then
¢S (mod 2) is a subgroup of the additive group of Fy, and if a,b € R* with a # b (mod 2),
we have aS (mod 2) 4+ bS (mod 2) =F,.

Proof. Let ¢ be the reduction of ¢ modulo 2. If ¢ = 0, then ¢S (mod 2) = {0}, and if ¢ # 0,
then ¢S (mod 2) is the kernel of the Fo-linear functional x +— Tr(z/c), hence an additive
subgroup of [, of index 2. Changing ¢ modulo 2 changes the functional, hence its kernel,
and so aS (mod 2) + bS (mod 2) must be the entire group F,. O

Corollary A.6. Let a,b € R with a # b (mod 2). Then as (c,d) runs through T?, the
quantity ¢ + ac + d* + bd (mod 2) runs through the values of Fy, with each value being
taken q times.

Proof. By Lemma A.4, if either a or b vanishes modulo 2, then this is clear. Otherwise,
(c® +ac,d? +bd) (mod 2) runs through a?S (mod 2) x b>S (mod 2) with each value taken
four times, and then Lemma A.5 completes the proof. ([l

Proof of Lemma 5.6: Once we determine the head, the rest follows immediately from
Lemma 3.19. It suffices to determine the head for Sq ®w Sq for w € R* with w =1 (mod 2),
for we can use w = b/a and then scale the generating functions by a to get the desired forms,
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once we check that when 4 { a +b we have 4a/(1+ (b/a)) = 4a%/(a+b) = 4/(a+b) (mod 8)
and 4a =4 (mod 8) because a =1 (mod 2).
We can use use Corollary 3.21 to determine the head as

H(Z) — i Z Z(So+251)2+w(7'0+27'1)2+8R
1 :
q 50,51,70,T1ET
(30’70)7é(070)
When ¢ = 2, we have T' = {0,1} and S = {0}, and the square of any unit is always 1
(mod 8), so if we break the sum into the cases where (sg,70) = (1,0), (0,1), and (1,1),

respectively, we get

1 2 1 2 1
1+4wr{+8R 4s7+w+8R 1+w+8R
- Z 1 + - z1 + —z .
S Z 8 Z 4

mEeT s1€T

Then note that 4 = 4w = 4 (mod 8), and that 7 + 72 is a permutation of T to get
(21HAR . ywtaR 4 o 1+wt8R) /4 and it is not hard to show that this matches the two general
forms to be proved (under their respective hypotheses) when one sets ¢ equal to 2.

We assume ¢ > 4 henceforth. Write w = 1 + 2w; + 4w (mod 8) with wg, wi,wy € T,
and then note that

(so + 251)2 + w(T + 27’1)2 = s% + 7'02 + (w— 1)7'3 + 4(5% + s0s1) + 4(7’12 +771) (mod 8).

Let us concern ourselves with the case when this value is 1 (mod 2), that is, when s +78 = 1
(mod 2). Then by Lemma A.2, we have

3(2) + Tg =1+ 2(7‘3 —70) + 47’61/2(7'0 +1) (mod 8),

and since s + 78 = 1 (mod 2), we must have sg + 70 = 1 (mod 2), so that (so + 251)? +
w(o + 271)? (mod 8) is

+1
142 (<w2) e — 7'0> + 473/2(70 + 1)+ 4(s2 + (1 — 10)s1) + 4(72 4 10711).

As we let (s, 70) run through (7)2~.{(0, 0)}, we see that (s, 7¢) runs through (7)%~.{(0,0)},
and we obtain s + 78 = 1 (mod 2) in ¢ different ways. If 4 | 1 + w, then (w+1)/2 = 0
(mod 2), so then (w+1)78/2+ 7 (mod 2) runs through F,, taking each value once. But if
441+ w, then Lemma A.4 shows that (w + 1)73/2 + 79 (mod 2) runs through the values
of %HS (mod 2), taking each value twice. In either case, Corollary A.6 shows that for any
given values of sp and 79, the term (s + (1 — 19)s1) + (& + 7o71) taken modulo 2 runs
through F,, taking each value ¢ times as (s1,71) runs through 72. Thus, if 4 | 1 4+ w, we see
that (so+ 2s1)% +w(m0+271)? (mod 8) runs through the values of the form 1+ 25+ 4c with
s,c € T, taking each value ¢ times. And if 411+ w, we see that (so + 2s1)% + w(mo + 271)?
(mod 8) runs through the values of the form 1+ 4s/(w + 1) + 4c with s € S and c € T,
taking each value 2¢q times.

Of course the value of (sg+2s1)%+w(79+271)? can be a unit not congruent to 1 modulo 2.
If u € T and we want to count the instances where (s + 2s1)? +w(7o +271)? = u (mod 2),
then just pick the unique v € T' with v? = u, and then note there is bijection between the
quadruples (sg, 70, $1,71) in our summation that make (sq + 2s1)% + w(7o + 271)? congruent
to 1 modulo 2 and the quadruples that make it congruent to v modulo 2: just scale the
quadruple by v. So we just multiply all the outputs that are 1 modulo 2 by v? = u to get
the outputs that are v modulo 2.
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Finally, we must consider the outputs of (so + 2s1)? 4+ w(7o + 271)? that vanish modulo
2, that is, when sg = 79 (which runs through 7™ since our summation prohibits both from
vanishing simultaneously). Meanwhile (s1,7;) runs through 72. Then we have

(50 4+ 251)% + w(ro + 271)% = (1 + w) 78 + 4(sT + 7081) + 4(1% + To71)
= (14+w)rg +4((s1 +1)* +70(s1 +71)) (mod 8).

For each value of 7p € T*, Lemma A.4 shows that the term (s1 +71)% 4+ 79(s1 +71) (mod 2)
runs through 725 (mod 2), taking each value 2q times as (si,71) runs through 72. And
7'0 runs through T* as 19 runs through 7™, so we get 2¢q instances of each element of the
form 7(1 + w + 4s) (mod 8) for 7 € T* and s € S. There are several cases to consider.
If 4|1+ wand Tr((1 +w)/4) =0 (mod 2), then our expression furnishes 2¢ instances of
each value that 47s (mod 8) attains as (7, s) runs through 7% x S, and since 0 € S, this
means we get (2¢)(¢ — 1) = 2¢® — 2q instances of 0 (mod 8) and (2¢)(q/2 — 1) = ¢*> — 2q
instances of 47 (mod 8) for each 7 € T*. If 4 | 1 + w and Tr((1 + w)/4) =1 (mod 2), then
our expression furnishes 2¢ instances of each value that 47s (mod 8) attains as (7, s) runs
through T x (T ~\. S), and so we get ¢? instances of each element of the form 47 (mod 8)
with 7 € T*. If 41 1 4+ w, then we still have 2 | 1 + w, and then our expression furnishes 2¢q
instances for each value that 7(1 4+ w + 4s) (mod 8) attains as (7, s) runs through 7" x S.

When we put together all these counts and coalesce cosets (see Remark 3.5), we see that
if4|1+wand Tr((1+w)/4) =0 (mod 2), then the head of the p-adic generating function
for Sq ®w Sq is
R_1or 4=24r 1 sr

— =2t 2+ 52

q q q

and if 4 | 1 + w with Tr((1 4+ w)/4) =1 (mod 2), then

HSqEBqu(Z) =z

1 1 1
Hsqawsq(z) = P Ry Z AR _ —zgR,
ameed g q q*

and if 411 + w, then

2
u(1+4s/(1 4R 1 4 8R
HSqEBqu 2 Z +4s/(1+w))+ + = q3 Z ZT( +w+ds)+8R
ueT™ TET™
seS ses

APPENDIX B. CALCULATIONS FOR TABLE 5

In this section we calculate the values I(Qq, @1, Q2) in Table 5. Recall from Section 4.5
that if Qo, Q1, and @2 are unimodular quadratic forms, and if we let Gg,(z) and Hg,(2)
denote respectively the p-adic generating generating function of @); and the head of said
generating function, then I(Qo, Q1,Q2) = Ig(Hg,(2)Go, (2?)Gg,(21)).

Throughout this section, we assume that p = 2 and does not ramify in . We let T" be
a set of Teichmiiller representatives for F, in K, that is, T' contains all the (¢ — 1)th roots
of unity and 0. We let 7% = 7'\ {0}, and we let S = {7 € T': Tr(7) = 0 (mod m)}. We
always use (Jg, )1, and (J2 to denote unimodular quadratic forms, and if @) is a quadratic
form over R, then G(z) will denote the p-adic generating function for @, and Hg(z) will
denote the head of Gg(z).

We use the same shorthand for unimodular quadratic forms that is used in Table 5:
Planes(+) means a direct sum of hyperbolic planes (with the correct number needed to
achieve a particular rank, if specified) and Planes(—) is the direct sum of a single elliptic
plane and some number of hyperbolic planes (again, achieving a particular rank, if specified).
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For example, if we say that rank(Q;) = r; and @Q; = a Sq ®bSq @ Planes(+;), then we mean
that either Q; = a Sq®bSq® Hyp(rz'_?)/2 (if £; =+) or Q; = aSq®bSqP Ell® Hyp(”_‘l)/2
if 4+, = —).

( When cilculating Ig(Hg,(2)Gg, (22)Gg,(z1)) for unimodular forms Qo, Q1, and Qs, the
first thing to note from Corollary 3.21 is that Hg,(z) is 8-uniform. Therefore we may make
extensive use of Remark 3.11 and Lemma 3.17 in our calculations. Indeed, throughout this
section, when F'(z) € G, we use F (2) as shorthand for the 2-uniformization of F(z) and F(z)
for the 4-uniformization. Note that by F(z?'), we mean that one should first 2-uniformize
F, and then scale by replacing every instance of z with 2¥ . If one wants to perform the
operations in the opposite order, then one arrives at the same function if one first scales
F(z) to obtain F(z%), and then uniformizes F(z?") modulo 27!, The same convention and
principle holds for F/(z), and so F(22) and F (z1) are both 8-uniform.

Lemma B.1. We have

Hay(2)Ga,(2*)Ga, (2") = Hay (=) Ho, (%) Ha, (') = Hao(2)Ga: (%) Gy ().
Proof. Since Corollary 3.21 shows that Hg,(z) is 8-uniform, this follows from Lemma 3.17.
O

The various uniformizations and related quantities on Tables 6 and 7 will be useful. They
are easy to calculate from Gg and Hg as given in Lemmata 5.7, 5.12, and 5.13. Now we
are ready to examine Hg,(2)Gg, (22)Gg,(z*) according to various cases.

Lemma B.2. We have

Hg,(2)Go, (22)GQ2 (24)Z4R = Hq,(?)Gq, (22)GSQ(Z4)'

Proof. We have Hg,(2)Gg,(2%)Gg,(2*)z* = Hg,(2)Gg,(%)z*, which in turn equals

Hg,(2)Gg,(2%)Gsq(2*) by Table 6, and so equals Hg,(2)Gg,(2?)Gsq(2?) by Lemma B.1.
U

Lemma B.3. If norm(Q1) = norm(Q2) = R, then Hg,(2)Gg, (2%)Gg,(2*) is just i-\IQO(z),

which can be obtained from Table 6 or 7.

Proof. Lemma B.1 allows us to replace Hg,(2)Gg, (2%)Gq,(z*) by HQO(Z)éQl(ZQ)@Q2 (z1),

which equals Hg,(2)Gg, (2%)2*F by Tables 6 and 7. Then we may replace G, (22)z4% by

G, (22)2*, which equals 22248 = 22% by Tables 6 and 7. So we need only calculate

Hg,(2)2*%, which is Hg, by Lemma 3.17. O

Lemma B.4. We have

Ho,(2)Gq, (2%)Gay () 2% = Ho, (2)Gsq(2%) Gsq(2*):
Proof. We see that Hg,(2)Gg, (22)Gg, (2422 = Hg,(2)2* = ﬁQO(Z), which in turn
equals Hg, (2)Gsq(2?)Gsq(2*) by Lemma B.3. O
Lemma B.5. If norm(Q2) = R and norm(Q1) # R, then Hg,(2)Go, (22)Gg,(2Y) is just
Hg,(z), which can be obtained from Table 6 or 7.

Proof. Lemma B.1 allows us to replace Hg, (2)Gg, (22)Go,(2*) by Hg, (z)CNT’Ql(zQ)C:’Q2 (z1),
which equals Ho,(2)Gg, (2%)2*F by Tables 6 and 7. Then we may replace G, (22)z4 by
Go, (22)2* which equals 24248 = 24 by Table 6. So we need only calculate Ho, ()24 =

HQ0(2)° O



42 RAEMEON A. COWAN, DANIEL J. KATZ, AND LAUREN M. WHITE

TABLE 6. Uniformizations of Generating Functions for a Unimodular Form @

r = rank(Q)
a=1 (mod 2)
() = Planes(=+o)
Gal?) (1 + q7'1/2> S qu/z ZR
ol (1% ) (2% )
H 1 t2 1-1/q
Tg(Ho(2)) (1 ¥ W) (t n W) (l—t/q)
Hq(z) — Hg(z) 0
Ig(Ho(2) — Ho(2)) 0
Go(z) »2R
Ho(2) <1 — ir) L2R
Ig(Hq(2)) (1- )¢ ()
@ = aSq @ Planes(+o)
Go(z) (1 ¥ ﬁ) R4 W S g 22T
Hq(z) (1 F ﬁ) R LR LS p 2R
A 2 2_ 1-1
Ig(Hq(2)) (1- &+ 55) (54)
HQ(Z) — HQ(Z) [17% ZTGET; Za7(1+4s)+8R _ qir ZTET* ZaT+4R
Ig(Hq(2) — Ho(2)) 0
Go(?) 2R
Hq(z) R qierR
i 1-1
Ig(Ho(2)) (1-£) (58

Lemma B.6. If norm(Qy) # R, then Ho,(2)Gq,(22)Go,(z*) = Hg,(2)Go, (22).

Proof. Lemma B.1 allows us to replace Hg,(2)Gg, (22)Gg,(z*) by HQO(Z)éQl(,z*Q)é\lQ2 (z4),

which equals Hg, (Z)éQl(ZQ)ZsR by Table 6. Since Gg,(2?) is a 8-uniform, we see that
Go (22)28R = Gq, (22)' [

Lemma B.7. If norm(Q2) # R and Q)1 = Planes(+1), then
- 1 -
Hay(:)Gau (%) Gau(=") = Flaw() %1 s (Haw(2) — Hau(2))

Proof. Lemma B.6 allows us to replace Hg,(2)Gg, (22)Gg,(2?) with HQO(z)éQl(ZQ), and
we use the value of G, from Table 6 and apply Lemma 3.17. O

Lemma B.8. Ifnorm(Qy), norm(Q1), and norm(Qz) # R, then Hg,(2)Go, (2?)Gg,(2*) =
Hq,(2) = Hg, (%), which can be obtained from Lemma 5.7 or Table 6.

Proof. Apply Lemma B.7, and note from Table 6 that Hg,(2) — ﬁQO(z) =0. O
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TABLE 7. Uniformizations of Generating Functions for a Unimodular Form @
r = rank(Q)
a=b=1 (mod 2)
Q = aSq®bSqPlanes(+o) with 4 | a + b and o = (—1)T((a+0)/(4a)) |

GQ(Z) R:F r1/222R:|: 7"/224R
fig(2) Rap dpctfioe lp AR LR
7 2 2 1—1
Ig(Ho(2)) ( ; o) (12)
7 o (,8R 4R
(=) — Hq(2) G
Ig(Ho(z) — Ho(=)) 2 - 1) (=)
Gq(2) 2F
8 R_ 1 2R
Hg(z) 2t — q—wi y
Ig(Ho(2)) (1-24) ()
Q) = aSq®bSqPlanes(+o) with 4{a +b
GQ(Z) (1 + q(’“—12)/2) ks q7‘1/2 s q(r+22)/2 ZTEG’Z;* zT(aJraer )+4R
r7 T(a+-2s R
Hg(2) (1 + W) e CEE e T el 2 (staiago) R _ LR
5 2\ (1-1
Tg(flq(2) (1-5) (=)
HQ(Z) — HQ(Z) _qu_ 2R ‘I‘ 1 AR 4 T+1 ZTE'{;‘* ,7(a+b+4s)+8R
~ se
Ig(Hq(z) — Ho(2)) 0
Go(2) R
o R_ 1 2R
Hf?(z) 2t — ?f y
Ig(Hol(2)) (1-2) (=)

Lemma B.9. Suppose that norm(Q2) # R, that Q1 = Planes(+1) is of rank r1, and that
Qo = aSq @ Planes(+g) is of rank rog. Then

Ig(Hq,(2)Ga, (22)GQ2 (Z4)) = Ig(Hg,(2)) = Ig(Hg, (%)),
which can be obtained from Lemma 5.12 or Table 6.
Proof. Apply Lemma B.7, and note from Table 6 that Ig annihilates Hg,(z) — ﬁ@o (2). O

Lemma B.10. Suppose that norm(Q2) # R, that Q1 = Planes(+1) is of rank r1, and that
Qo = aSq®bSq® Planes(+q) is of rank ro witha =b=1 (mod 2).
If4|a+b, let o = (—1)T(@+b)/(49) " and then

t2 22—t o> —-1))\ [1-1/q
2 4\y _ _
Ig(HQo(Z)GQl(Z )GQQ(’Z )) - <1 qro +o qro/2 +1 qro+7"1/2 ) (1 t/q) ’

If4fa+b, then
Ig(Hq,(2)Ga, (2%)Ga, () = Ig(Hqo () = Is(Ho, (2)),

which can be obtained from Lemma 5.13 or Table 7.
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Proof. Apply Lemma B.7, and use Table 7 to obtain Ig(fIQo(z)) and Ig(Hg,(z) — E[Qo (2)).
U

Lemma B.11. Suppose that norm(Q2) # R, and that Q1 = ¢Sq @ Planes(+1) is of rank
r1. Then

~ 1
Hq,(2)Gq, (ZQ)GQz (24) = Hg,(2) 1 W(HQO HQO Z 2.
veT

Proof. Lemma B.6 allows us to replace Hg, (2)Gq, (22)Gg, (%) with Hg, (2)Go, (22), and we
use the value of G, from Table 6. We multiply this by Hg,(z), and note that Hg, (2)z% =
Hg,(2) and Hg,(2)z2" 8% = Hg, (2)2%7 by the 8—unif0rmity of Hg, (%), and so obtain

1 7 2cv
(1 F1 M) Hey(2) £ (”T () 2",

veT
which is equal to

~ 1 ~ 1
Hq,(2) £1 W(HQO( z) — HQO Z 2ev + (T1+1)/2 (Hg, (2 HQO Z 2,
veT veT

Now note that HQO (z) — ﬁQO (z) is necessarily a linear combination of terms of the form
Zatal _ pat2R oo that by coalescence of cosets (see Remark 3.5), we have

(za+4R _ za—l—?R) Z 2261] —0. 0
veT

Lemma B.12. Suppose that norm(Q2) # R, that Q1 = ¢Sq® Planes(+1) is of rank ry,
that Qo = Planes(+q) is of rank ro. Then

Hq,(2)Gq, ()Gq,(2") = Hqy(2),
which can be obtained from Table 6.
Proof. Use Lemma B.11 and note from Table 6 that Hg,(z) — ﬁIQO(z) =0. O

Lemma B.13. Suppose that norm(Q2) # R, that Q1 = ¢Sq @ Planes(+1) is of rank r1,
and that Qo = a Sq @ Planes(+q) is of rank ro. Then

Ig(HQo (Z)GQl (z2)GQ2 (z4)) = Ig(HQO (2)),
which can be obtained from Table 6.
Proof. We apply Lemma B.11, and note from Table 6 that

1 2
(HQO HQO ZZQCU _ _qTO Z Za‘r+20v+4R+ qr0+1 Z ZaT(1+4s)+2cv+8R’

veT TET™* TET*
veT seS
veT
which is annihilated by Ig. O

Lemma B.14. Suppose that norm(Q2) # R, that Q1 = ¢Sq @ Planes(+1) is of rank r1,
and that Qy = aSq@®bSq® Planes(+;) with a = b = 1 (mod 2) and 4 | a + b, and let
o = (—1)Trl(@tb)/(4a)  Thep,

o3 — 42 _
s oo =1 &2 20) (208)
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Proof. We apply Lemma B.11, and use the values of fAIQO and Ho,(z) — ﬁQO(z) = o (8 —

24R) /g™ from Table 7. Note that Ig annihilates (Hg,(z) — Hg,(2))2z*® when v € T* and
gives oq (3 — t2)(1 —1/q)/(1 — t/q) when v = 0. O

Lemma B.15. Suppose that norm(Q2) # R, that Q1 = ¢Sq® Planes(+1) is of rank ry,
and that Qo = aSq®bSq® Planes(£;) with a = b = 1 (mod 2) and 4 { a + b, and let
o — (CTGIE 52D, Thon

3 __ 42 —
Ig(Hq,(2)Go, (ZQ)GQ2 (Z4)) = (1 - qfﬂo +1 q(fo(i(ﬁ:l)/)?) <i - 1?3)

Proof. We apply Lemma B.11, and use the value of Hg, — fNIQO from Table 7 to see that

1 2
2cv __ 2R 7(a+b+4s)+2cv+8R
(HQO HQO Z =TT + F Z 274 : ’
veT TET* s€S,weT

Let us examine the triple sum. First, reparameterize it with v = wr with w € T to obtain

§ : Z2CT(’U}+6+28/8)+8R
)
TeT* seS,weT

where we set e = a+b. For each w € T, there is a unique x € T such that w+e¢ =z

(mod 2), and z runs through T as w runs through T. By Corollary A.3, we have w + e =
z+ el + e+ 2(ze)?? (mod 4), and so we can again reparameterize our sum as

Z ZQCT(a:+eq+e+2(ze)q/2+25/c)+8R

TeT* s€S,xeT

where we note that 2 | e? + e by Lemma A.1. The only part of our expression for
Hg,(2)Gg, (22)Gg,(2*) to which it is difficult to apply Ig is this sum. To do this, we need
to understand the valuation of the term 2cr (z + e+ e + 2(ze)?/? + 2s/c). The valuation
is 1 when z # 0, i.e., for (¢ — 1)?¢/2 of the triple sum’s terms.

When z = 0, we have 47 (c(e? + €)/2 + s), so the valuation is at least 2. It is exactly 2 if
and only if c(e?+e)/2 # s (mod 2). If Tr(c(e+e€)/2) =1 (mod 2), this invariably happens,
so we get a valuation of 2 for ¢(¢ — 1)/2 of our summation terms. If Tr(c(e? +e€)/2) =0
(mod 2), then we get a valuation of 2 for (¢ — 1)(¢/2 — 1) of our triple sum’s terms, and
a valuation of 3 or higher for ¢ — 1 of our triple sum’s terms. Thus, if we apply Ig to the
triple sum, when Tr(c(e? 4+ €)) =0 (mod 4), we get

q(q;l)QtJr (¢ — 1)2(q—2)t2+(q_ 1) G:%z) ’

and when Tr(c(e? 4 ¢€)) = 2 (mod 4), we get.

qlq — 1)21,/+ q(qg—1)

2.
2 2

Using these calculations to apply Ig to (Hg,(z) — fIQO(z)) > per 220 and the value of

Ig(fIQO(z)) from Table 7, we get the desired value of Ig(Hg, (2)Go, (2?)Gg,(2*)) via Lemma
B.11. O
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Lemma B.16. Suppose that norm(Q2) # R and that Q1 = ¢Sq@d Sq @ Planes(+1) is of
rank r1 with c =d =1 (mod 2) and 4| ¢+ d. Then

Mo, (G, ()Gau(=") = Hau(2) 1 — 7 (Hay(2) = gy ).

Proof. Lemma B.6 allows us to replace Ho,(2)Gg, (2?)Gg,(2*) with HQO(Z)(NJQ1 (22), and
we use the value of Gg,(z) from Table 7. We multiply this by Hg,(z), and note that
Hg,(2)2%  is just the 2/-uniformization of Hg,(2). O

Lemma B.17. Suppose that norm(Q2) # R and that Q1 = ¢Sq®d Sq @ Planes(+1) is of
rank r1 withc=d =1 (mod 2) and 4 | ¢+ d. Suppose that norm(Qo) = Planes(+g). Then

Hq,(2)Gq,(2%)Gq, (2") = Hgy(2),
which can be obtained from Table 6.

Proof. Use Lemma B.16 and note from Table 6 that He,(z) — Ho,(z) = 0. O

Lemma B.18. Suppose that norm(Q2) # R and that Q1 = ¢Sq@d Sq @ Planes(+1) is of
rank r with ¢ =d =1 (mod 2) and 4 | ¢+ d. Suppose that Qo = a Sq® Planes(+q). Then

Ig(Hq,(2)Gq, (2%)Ga. (") = 1g(Hg,(2)),
which can be obtained from Table 6.
Proof. Apply Lemma B.16, and note from Table 6 that Ig annihilates Hg, (2) — fIQO (). O

Lemma B.19. Suppose that norm(Q2) # R and that Q1 = ¢Sq®d Sq @ Planes(£1) is of
rank 1 with c = d =1 (mod 2) and 4 | ¢+ d. Suppose that Qo = a Sq®bSq® Planes(+)
is of rank rq.

If4|a+b, let o = (—1)T@+b)/(49)) g then

t o(t® —

Ia(Ho, (2)Go, ()G, (=) = (1 - L 2o /2>> G - 1@ |

If4fa+b, then
Ig(Hoy(:)Ga, (2*)Ga, (") = 1s(Hg,(2)),
which can be obtained from Table 7.

Proof. Apply Lemma B.16, and use Table 7 to obtain Ig(fIQO (2)) and Ig(Hg,(z) — E[Qo (2)).
U

Lemma B.20. Suppose that norm(Q2) # R and that Q1 = ¢Sq®d Sq @ Planes(+1) is of
rank r1 with c=d =1 (mod 2) and 41 c+d. Then

7 2 2vu(c
HQO(Z)GQI (ZQ)GQz (24) = HQO(Z) +1 q(ri+2)/2 (HQo( HQO ) Z o (e+atav)
veT™
uesS

Proof. Lemma B.6 allows us to replace Hg, (2)Gq, (2%)Gg,(z*) with Hg, (z)éQ1 (2%), and we
use the value of Gg, from Table 7. We multiply this by Hg,(z), and note that Hg,(2)2%'
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is the 2/-uniformization of Hp,(z) and Hg,(2)z 20(ctgrqu) H8R Hg,(2)z 20(et5ra) because
Hg,(z) is 8-uniform by Corollary 3.21. So we obtain

1 ~ 1 =~
Hqy(2)Go, (2%)Gq, () = (1 T1 q(rl_g)/g> Hq,(2) +1 qi/QHQO(Z)

+
1 g Han(e) Y e
q TeT™
seS
which is
1 ~ 1 =~
I+ =7 Hg,(2) £1 T/QHQO(Z> HQo Z z
q q TeT*
2 o
ilW(HQo< - Hoy()) 3 At
q TeT*
seS

which in turn is

-~ HQ HQ 9re (HQO(Z) - HQO(Z)) 27 (et
Hoo(5) 11— r1/2 O Z - q(ri+2)/2 P (+etae).

TeT TeT*

ses

Now note that ﬁ@o (2) — ﬁ@o (z) is necessarily a linear combination of terms of the form
20 AR _ pa 2R g6 that by coalescence of cosets (see Remark 3.5), we have

(Za+4R o za+2R) Z Z?Tc —0. 0
TeT

Lemma B.21. Suppose that norm(Q2) # R and that Q1 = ¢Sq®dSq® Planes(+1) is of
rank r1 with c=d =1 (mod 2) and 41 ¢+ d. Suppose that Qo = Planes(+g). Then

Hg,(2)Gq, (2%)Go,(2*) = Hg,(2),

which can be obtained from Table 6.
Proof. Apply Lemma B.20, and note from Table 6 that fIQO = Hg,. g

Lemma B.22. Suppose that norm(Q2) # R and that Q1 = ¢Sq@d Sq @ Planes(+1) is of
rank r1 with c = d =1 (mod 2) and 4 t ¢ + d. Suppose that Qo = aSq® Planes(+o) is of
rank ro. Then

Ig(Hq, (2)Gaq, (+%)Gq, (") = Ig(Hg, (),
which can be obtained from Table 6.

Proof. We apply Lemma B.20, and use the value of Hg,(z) — Hg,(z) from Table 6. When

ct——

it is multiplied by » ,e7* 2 (et giqu ) one gets
uesS

2 3 Lat(+4s)+20(ctLu)+sr 1 3 satt2o(etgigu) HR,
ro+1 ’ T0
T ver T ver
S,uES u€eS

which is clearly annihilated by Ig. O
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Lemma B.23. Suppose that norm(Q2) # R and that Q1 = ¢Sq@d Sq @ Planes(+1) is of
rank 1 with c = d =1 (mod 2) and 41 ¢+ d. Suppose that Qo = aSq®bSq® Planes(+)
is of rank rg witha=b=1 (mod 2) and 4 | a+b. Then
Tg(Hay (2)Ga (%) Gas (1) = Te(Hay (2),

which can be obtained from Table 7.

Proof. We apply Lemma B.20, and use Table 7 to obtain the value Hg,(z) — E[Qo(z) =
o288 — 248) /g0 where o = (—1)Tr((e+b)/(42))  Note that Ig always annihilates (Hg,(2) —
Hg,(2))z 20(e+23a%) when v € T*, O

Lemma B.24. Suppose that norm(Q2) # R and that Q1 = ¢Sq®d Sq @ Planes(+1) is of
rank r1 with c =d =1 (mod 2) and 4 1 ¢ + d. Suppose that Qo = a Sq$bSq @ Planes(+)
is of rank ro witha =b=1 (mod 2) and 4fa+b.

If4fa+b+c+d, then

Ig(Hqg, (2)Gq, (2*)Gq.(2")) = Ig(Hgy(2)),
which can be obtained from Table 7.

If4la+b+c+d, lety = (fl)rﬁ( [(C;d)q"'a?icb]), and then

3 _ 42 _
Ig(Hqy(2)Gq, (2*)Ga, (") = (1 - qio 1 wq(fo“lf?)) (11 - 1//g> '

Proof. We apply Lemma B.20, and use the value of Hg, — f[Qo from Table 7 to see that

(HQO( HQo ) Z z2v o+ )

nlo

veT™
ues
is 2 1 2
— 4 2R _ AR 4 Z (atbtds)+20 (et fgu)+8R.
2(]7‘072 2q7'071 q'r’0+1
T0eT™
S,ueS

Let us examine the quadruple sum. First, reparameterize with v = 7w with w € T* to
obtain
Z ZZT(c(w—i—e)—l—Zs—i-Z(w/g)u)+8R

T,weT™
s,u€S

where ¢ = ‘E—tb and g = %d. Note that if w # ¢g (mod 2), then Lemma A.5 tells us that
s+ (w/g)u (mod 2) runs through F,, taking each value ¢*/4 times, as (s,u) runs through
S2. If w = g (mod 2), then s + (w/g)u (mod 2) runs through S, taking each value q/2
times. Lemma A.1 tells us that w = ¢¢ (mod 4) when w = ¢g (mod 2), so our quadruple

sum becomes )

q 2rc(w+e)+4R | 4 27(c(g9+e)+2s)+8R
I Pk 7

T,weT™ TeT*
wZg (mod 2) ses
and we can sum over all w, and then deduct the w = 0 and w = g terms to get
3 2 2
q°(q — 2)221% Y Jrlatbterd)+ar | 4 Z (elg"+e)+2) 18R
4 4 4
TET* TGT*

seS
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where we have used the fact that ¢(c + d) = ¢ + d (mod 4) because ¢ = d = 1 (mod 2).
When we combine this with the other terms, we get that

1 2
21} c+ _
(9> (HQO( HQO ) GZT* z C+d - _quo—l (M B qN>
vueS
where

M — Z T(a+b+c+d)+4R and N — Z gq+e)+2s)+8R‘

TeT* TeT™
ses

We get different values for these sums depending on vy(a+ b+ c+d), v2(9?+ €), and in the
case where va(g? + e) > 1 whether Tr(c(g? 4 €)/2) is 0 or 1 modulo 2. The important cases
to delineate for M are (I) va(a +b+c+d) =1 and (II) va(a + b+ ¢+ d) > 1. Note that
case (I) is not achievable when R = Zy, but can be achieved in any unramified extension
thereof. Since g? = g (mod 2) and ¢ = 1 (mod 2) (making e = %5 (mod 2)), we see that
g9 +e= % (mod 2), so we see that va(g?+ €) = 0 in case (I) and v2(g? +¢€) > 0 in
case (II). We then divide case (II) into case (ITA) where Tr(c(¢g? +¢€)/2) =1 (mod 2), and
case (IIB) where Tr(c(g? + €)/2) =0 (mod 2).

In case (I), we have M(z) = ¢z2% — 2*%, and
_ 1-1/q _ (g=1Dqt
(M) = (ot~ ) (1) and 1) = TP

In case (ITA) or (IIB), we have M(z) = (¢ — 1)z*%, and
1-1/q
Te(M(2)) = (q — 1)t2 _
R Crd
Then in case (ITA), we obtain

(g —1)qt?

Ig(N(2) = T4,

and in case (IIB), we have

Te(N(2)) = 4= 1)(q — 2)* -1 (1—1/Q> _ <qt3+q(q—2)t2> <1 - 1/Q> .

2 1—t/q 2 1—t/q
Using these calculations to apply Ig to (9), and also using value of Ig(ﬁQO(z)) from Table
7, we get the desired value of Ig(Hg,(2)Gg, (2?)Gg,(2*)) via Lemma B.20. O
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