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Deep neural networks using a single neuron:
folded-in-time architecture using feedback-
modulated delay loops
Florian Stelzer1,2,3, André Röhm4, Raul Vicente3, Ingo Fischer 4 & Serhiy Yanchuk 1✉

Deep neural networks are among the most widely applied machine learning tools showing

outstanding performance in a broad range of tasks. We present a method for folding a deep

neural network of arbitrary size into a single neuron with multiple time-delayed feedback

loops. This single-neuron deep neural network comprises only a single nonlinearity and

appropriately adjusted modulations of the feedback signals. The network states emerge in

time as a temporal unfolding of the neuron’s dynamics. By adjusting the feedback-modulation

within the loops, we adapt the network’s connection weights. These connection weights are

determined via a back-propagation algorithm, where both the delay-induced and local net-

work connections must be taken into account. Our approach can fully represent standard

Deep Neural Networks (DNN), encompasses sparse DNNs, and extends the DNN concept

toward dynamical systems implementations. The new method, which we call Folded-in-time

DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.
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Fueled by deep neural networks (DNN), machine learning
systems are achieving outstanding results in large-scale
problems. The data-driven representations learned by DNNs

empower state-of-the-art solutions to a range of tasks in com-
puter vision, reinforcement learning, robotics, healthcare, and
natural language processing1–9. Their success has also motivated
the implementation of DNNs using alternative hardware plat-
forms, such as photonic or electronic concepts, see, e.g., refs. 10–12

and references therein. However, so far, these alternative hard-
ware implementations require major technological efforts to
realize partial functionalities, and, depending on the hardware
platform, the corresponding size of the DNN remains rather
limited12.

Here, we introduce a folding-in-time approach to emulate a full
DNN using only a single artificial neuron with feedback-
modulated delay loops. Temporal modulation of the signals
within the individual delay loops allows realizing adjustable
connection weights among the hidden layers. This approach can
reduce the required hardware drastically and offers a new per-
spective on how to construct trainable complex systems: The
large network of many interacting elements is replaced by a single
element, representing different elements in time by interacting
with its own delayed states. We are able to show that our folding-
in-time approach is fully equivalent to a feed-forward deep neural
network under certain constraints—and that it, in addition,
encompasses dynamical systems specific architectures. We name
our approach Folded-in-time Deep Neural Network or short Fit-
DNN.

Our approach follows an interdisciplinary mindset that draws
its inspiration from the intersection of AI systems, brain-inspired
hardware, dynamical systems, and analog computing. Choosing
such a different perspective on DNNs leads to a better under-
standing of their properties, requirements, and capabilities. In
particular, we discuss the nature of our Fit-DNN from a dyna-
mical systems’ perspective. We derive a back-propagation
approach applicable to gradient descent training of Fit-DNNs
based on continuous dynamical systems and demonstrate that it
provides good performance results in a number of tasks. Our
approach will open up new strategies to implement DNNs in
alternative hardware.

For the related machine learning method called “reservoir
computing” based on fixed recurrent neural networks, folding-in-
time concepts have already been successfully developed13. Delay-
based reservoir computing typically uses a single delay loop
configuration and time-multiplexing of the input data to emulate
a ring topology. The introduction of this concept led to a better
understanding of reservoir computing, its minimal requirements,
and suitable parameter conditions. Moreover, it facilitated their
implementation on various hardware platforms13–19. In fact, the
delay-based reservoir computing concept inspired successful
implementations in terms of hardware efficiency13, processing
speed16,20,21, task performance22,23, and last, but not least, energy
consumption16,22.

Our concept of folded-in-time deep neural networks also
benefits from time-multiplexing, but uses it in a more intricate
manner going conceptually beyond by allowing for the imple-
mentation of multi-layer feed-forward neural networks with
adaptable hidden layer connections and, in particular, the
applicability of the gradient descent method for their training. We
present the Fit-DNN concept and show its versatility and
applicability by solving benchmark tasks.

Results
A network folded into a single neuron. The traditional Deep
Neural Networks consist of multiple layers of neurons coupled in

a feed-forward architecture. Implementing their functionality
with only a single neuron requires preserving the logical order of
the layers while finding a way to sequentialize the operation
within the layer. This can only be achieved by temporally spacing
out processes that previously acted simultaneously. A single
neuron receiving the correct inputs at the correct times sequen-
tially emulates each neuron in every layer. The connections that
previously linked neighboring layers now instead have to connect
the single neuron at different times, and thus interlayer links turn
into delay-connections. The weight of these connections has to be
adjustable, and therefore a temporal modulation of these con-
nections is required.

The architecture derived this way is depicted in Fig. 1 and
called Folded-in-time DNN. The core of the Fit-DNN consists of
a single neuron with multiple delayed and modulated feedbacks.
The type or exact nature of the single neuron is not essential. To
facilitate the presentation of the main ideas, we assume that the
system state evolves in continuous time according to a differential
equation of the general form:

_xðtÞ ¼ �αxðtÞ þ f ðaðtÞÞ; where ð1Þ

aðtÞ ¼ JðtÞ þ bðtÞ þ ∑
D

d¼1
MdðtÞxðt � τdÞ: ð2Þ

Here x(t) denotes the state of the neuron; f is a nonlinear function
with the argument a(t) combining the data signal J(t), time-
varying bias b(t), and the time-delayed feedback signals x(t− τd)
modulated by the functions MdðtÞ, see Fig. 1. We explicitly
consider multiple loops of different delay lengths τd. Due to the
feedback loops, the system becomes a so-called delay dynamical
system, which leads to profound implications for the complexity
of its dynamics24–32. Systems of the form (1) are typical for
machine learning applications with delay models13,14,20,33.

Intuitively, the feedback loops in Fig. 1 lead to a reintroduction
of information that has already passed through the nonlinearity f.
This allows chaining the nonlinearity f many times. While a
classical DNN composes its trainable representations by using
neurons layer-by-layer, the Fit-DNN achieves the same by
reintroducing a feedback signal to the same neuron repeatedly.

Fig. 1 Scheme of the Fit-DNN setup. A nonlinear element (neuron) with a
nonlinear function f is depicted by a black circle. The state of the neuron at
time t is x(t). The signal a(t) is the sum of the data J(t), bias b(t), and
feedback signals. Adjustable elements are indicated by square boxes. The
data signal is generated from an input vector u using a matrix Win

containing input weights (blue box). The bias signal is generated using bias
coefficients (light gray box). Each feedback loop implements a delay τd and
a temporal modulation MdðtÞ (color boxes) to generate the feedback
signals. Finally, the output is obtained from the signal x(t) using a matrix
Wout of output weights (dark gray box).
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In each pass, the time-varying bias b(t) and the modulations
MdðtÞ on the delay-lines ensure that the time evolution of the
system processes information in the desired way. To obtain the
data signal J(t) and output ŷ we need an appropriate pre- or
postprocessing, respectively.

Equivalence to multi-layer neural networks. To further illustrate
how the Fit-DNN is functionally equivalent to a multi-layer
neural network, we present Fig. 2 showing the main conceptual
steps for transforming the dynamics of a single neuron with
multiple delay loops into a DNN. A sketch of the time-evolution
of x(t) is presented in Fig. 2a. This evolution is divided into time-
intervals of length T, each emulating a hidden layer. In each of the
intervals, we choose N points. We use a grid of equidistant tim-
ings with small temporal separation θ. For hidden layers with N
nodes, it follows that θ= T/N. At each of these temporal grid
points tn= nθ, we treat the system state x(tn) as an independent
variable. Each temporal grid point tn will represent a node, and
x(tn) its state. We furthermore assume that the data signal J(t),
bias b(t), and modulation signals MdðtÞ are step functions with
step-lengths θ; we refer to the “Methods” section for their precise
definitions.

By considering the dynamical evolution of the time-continuous
system x(t) only at these discrete temporal grid points tn (black
dots in Fig. 2a), one can prove that the Fit-DNN emulates a
classical DNN. To show it formally, we define network nodes x‘n

of the equivalent DNN as

x‘n :¼ xðð‘� 1ÞT þ nθÞ; ð3Þ
with n= 1,…,N determining the node’s position within the
layer, and ℓ= 1,…, L determining the layer. Analogously, we
define the activations a‘n of the corresponding nodes. Further-
more, we add an additional node x‘Nþ1 :¼ 1 to take into account
the bias. Thus, the points from the original time-intervals T are
now described by the vector x‘ ¼ ðx‘1; ¼ ; x‘N Þ. Fig. 2b shows the
original time-trace cut into intervals of length T and nodes
labeled according to their network position. The representation in
Fig. 2c is a rotation of Fig. 2b with the addition of an input and an
output layer.

The connections are determined by the dynamical dependen-
cies between the nodes x‘n. These dependencies can be explicitly
calculated either for small or large distance θ. In the case of a large
node separation θ, the relations between the network nodes x‘n is
of the familiar DNN shape:

x‘n ¼ α�1f ða‘nÞ; ð4Þ

a‘ :¼ W‘x‘�1: ð5Þ
System (4) is derived in detail in the Supplementary Information.
The matrix Wℓ describes the connections from layer ℓ− 1 to ℓ

and corresponds to the modulated delay-lines in the original
single-neuron system. Each of the time-delayed feedback loops
leads to a dependence of the state x(t) on x(t− τd), see colored
arrows in Fig. 2a. By way of construction, the length of each
delay-loop is fixed. Since the order of the nodes (3) is tied to the
temporal position, a fixed delay-line cannot connect arbitrary
nodes. Rather, each delay-line is equivalent to one diagonal of the
coupling matrix Wℓ. Depending on the number of delay loops D,
the network possesses a different connectivity level between the
layers. A fully connected Fit-DNN requires 2N− 1 modulated
delay loops, i.e., our connectivity requirement scales linearly in
the system size N and is entirely independent of L, promising a
favorable scaling for hardware implementations.

The time-dependent modulation signals MdðtÞ allow us to set
the feedback strengths to zero at certain times. For this work, we
limit ourselves to delayed feedback connections, which only link
nodes from the neighboring layers, but in principle this limitation
could be lifted if more exotic networks were desired. For a visual
representation of the connections implied by two sample delay
loops, see Fig. 2b and c. The mismatch between the delay τd and T
determines, which nodes are connected by that particular delay-
loop: For τd < T (τd > T), the delayed feedback connects a node x‘n
with another node x‘þ1

i in a subsequent layer with n > i (n < i),
shown with red (yellow) arrows in Fig. 2.

To complete the DNN picture, the activations for the first layer
will be rewritten as a1≔ g(ain)≔ g(Winu), where Win is used in
the preprocessing of J(t). A final output matrix Wout is used to
derive the activations of the output layer aout≔WoutxL. We refer
to the “Methods” section for a precise mathematical description.

Dynamical systems perspective: small node separation. For
small node separation θ, the Fit-DNN approach goes beyond the
standard DNN. Inspired by the method used in refs. 13,34,35, we
apply the variation of constants formula to solve the linear part of
(1) and the Euler discretization for the nonlinear part and obtain
the following relations between the nodes up to the first-order
terms in θ:

x‘n ¼ e�αθx‘n�1 þ α�1ð1� e�αθÞf ða‘nÞ; n ¼ 2; ¼ ;N; ð6Þ
for the layers ℓ= 1,…, L, and nodes n= 2,…,N. Note, how the

Fig. 2 Equivalence of the Fit-DNN using a single neuron with modulated
delayed feedbacks to a classical DNN. a The neuron state is considered at
discrete time points x‘n :¼ xðð‘� 1ÞT þ nθÞ. The intervals ð‘� 1ÞT; ‘Tð �
correspond to layers. Due to delayed feedbacks, non-local connections
emerge (color lines). b Shows a stacked version of the plot in (a) with the
same active connections. c Shows the resulting network: it is a rotated
version of (b), with additional input and output layers. Black lines indicate
connections implied by the temporal ordering of the emulation.
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first term e�αθx‘n�1 couples each node to the preceding one within
the same layer. Furthermore, the first node of each layer ℓ is
connected to the last node of the preceding layer:

x‘1 ¼ e�αθx‘�1
N þ α�1ð1� e�αθÞf ða‘1Þ; ð7Þ

where x0N :¼ x0 ¼ xð0Þ is the initial state of system (1). Such a
dependence reflects the fact that the network was created from a
single neuron with time-continuous dynamics. With a small node
separation θ, each node state residually depends on the preceding
one and is not fully independent. These additional ‘inertial’
connections are represented by the black arrows in the network
representation in Fig. 2c and are present in the case of small θ.

This second case of small θ may seem like a spurious,
superfluous regime that unnecessarily complicates the picture.
However, in practice, a small θ directly implies a fast operation—
as the time the single neuron needs to emulate a layer is directly
given by Nθ. We, therefore, expect this regime to be of interest for
future hardware implementations. Additionally, while we recover
a fully connected DNN using D= 2N− 1 delay loops, our
simulations show that this is not a strict requirement. Adequate
performance can already be obtained with a much smaller
number of delay loops. In that case, the Fit-DNN is implementing
a particular type of sparse DNNs.

Back-propagation for Fit-DNN. The Fit-DNN (4) for large θ is
the classical multilayer perceptron; hence, the weight gradients
can be computed using the classical back-propagation
algorithm3,36,37. If less than the full number of delay-loops is
used, the resulting DNN will be sparse. Training sparse DNN is a
current topic of research38,39. However, the sparsity does not
affect the gradient computation for the weight adaptation.

For a small temporal node separation θ, the Fit-DNN approach
differs from the classical multilayer perceptron because it
contains additional linear intra-layer connections and additional
linear connections from the last node of one hidden layer to the
first node of the next hidden layer, see Fig. 2c, black arrows.
Nonetheless, the network can be trained by adjusting the input
weights Win, the output weights Wout, and the non-zero elements
of the potentially sparse weight matrices Wℓ using gradient
descent. For this, we employ a back-propagation algorithm,
described in section “Application to machine learning and a back-
propagation algorithm”, which takes these additional connections
into consideration.

Benchmark tasks. Since under certain conditions, the Fit-DNN
fully recovers a standard DNN (without convolutional layers), the
resulting performance will be identical. This is obvious, when
considering system (4), since the dynamics are perfectly described
by a standard multilayer perceptron. However, the Fit-DNN
approach also encompasses the aforementioned cases of short
temporal node distance θ and the possibility of using less delay-
loops, which translates to a sparse DNN. We report here that the

system retains its computational power even in these regimes, i.e.,
a Fit-DNN can in principle be constructed with few and short
delay-loops.

To demonstrate the computational capabilities of the Fit-DNN
over these regimes, we considered five image classification tasks:
MNIST40, Fashion-MNIST41, CIFAR-10, CIFAR-100 considering
the coarse class labels42, and the cropped version of SVHN43. As a
demonstration for a very sparse network, we applied the Fit-DNN
to an image denoising task: we added Gaussian noise of intensity
σtask= 1 to the images of the Fashion-MNIST dataset, which we
considered as vectors with values between 0 (white) and 1 (black).
Then we clipped the resulting vector entries at the clipping
thresholds 0 and 1 in order to obtain noisy grayscale images. The
denoising task is to reconstruct the original images from their
noisy versions. Fig. 3 shows examples of the original Fashion-
MNIST images, their noisy versions, and reconstructed images.

For the tests, we solved the delay system (1) numerically and
trained the weights by gradient descent using the back-
propagation algorithm described in the section. “Application to
machine learning and a back-propagation algorithm”. Unless
noted otherwise, we operated in the small θ regime, and in
general did not use a fully connected network. By nature of the
architecture, the choice of delays τd is not trivial. We always chose
the delays as a multiple of θ, i.e. τd= ndθ, d= 1,…,D. The integer
nd can range from 1 to 2N− 1 and indicates which diagonal of
the weight matrix Wℓ is accessed. After some initial tests, we
settled on drawing the numbers nd from a uniform distribution
on the set {1,…, 2N− 1} without replacement.

If not stated otherwise, we used the activation function
f ðaÞ ¼ sinðaÞ, but the Fit-DNN is in principle agnostic to the
type of nonlinearity f that is used. The standard parameters for
our numerical tests are listed in Table 1. For further details, we
refer to the “Methods” “Data augmentation, input processing and
initialization” section.

In Table 2, we show the Fit-DNN performance for different
numbers of the nodes N= 50, 100, 200, and 400 per hidden layer
on the aforementioned tasks. We immediately achieve high
success rates on the relatively simple MNIST and Fashion-
MNIST tasks. The more challenging CIFAR-10, coarse CIFAR-
100, and cropped SVHN tasks obtain lower yet still significant
success rates. The confusion matrices (see Supplementary
Information) also show that the system tends to confuse similar
categories (e.g., “automobile” and “truck”). While these results
clearly do not rival record state-of-the art performances, they
were achieved on a novel and radically different architecture. In
particular, the Fit-DNN here only used about half of the available
diagonals of the weight matrix and operated in the small θ
regime. For the tasks tested, increasing N clearly leads to
increased performance. This also serves as a sanity check and
proves the scalability of the concept. In particular, note that if
implemented in some form of dedicated hardware, increasing the
number of nodes per layer N does not increase the number of
components needed, solely the time required to run the system.

Fig. 3 Example images for the denoising task. Row a contains original images from the Fashion-MNIST dataset. Row b shows the same images with
additional Gaussian noise. These noisy images serve as input data for the trained system. Row c shows the obtained reconstructions of the original images.
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Also note, that the denoising task was solved using only 5 delay-
loops. For a network of 400 nodes, this results in an extremely
sparse weight matrix Wℓ. Nonetheless, the system performs well.

Figure 4 shows the performance of the Fit-DNN for the
classification tasks and the correctness of the computed gradients
for different node separations θ. Since this is one of the key
parameters that controls the Fit-DNN, understanding its
influences is of vital interest. We also use this opportunity to
illustrate the importance of considering the linear local connec-
tions when performing back-propagation to compute the weight
gradients. We applied gradient checking, i.e., the comparison to a
numerically computed practically exact gradient, to determine the
correctness of the obtained gradient estimates. We also trained
the map limit network (4) for comparison, corresponding to a
(sparse) multilayer perceptron. In this way, we can also see how
the additional intra-layer connections influence the performance
for small θ.

The obtained results of Fig. 4 show that back-propagation
provides good estimates of the gradient over the entire range of θ.
They also highlight the strong influence of the local connections.
More specifically, taking into account the local connections, the
back-propagation algorithm yields correct gradients for large
node separations θ ≥ 4 and for small node separations θ ≤ 0.125
(blue points in Fig. 4). For intermediate node separations, we
obtain a rather rough approximation of the gradient, but the
cosine similarity between the actual gradient and its approxima-
tion is still at least 0.8, i.e., the approximation is good enough to
train effectively. In contrast, if local connections are neglected,
back-propagation works only for a large node separation θ ≥ 4,
where the system approaches the map limit (red points in Fig. 4).

Consequently, we obtain competitive accuracies for the MNIST
and the Fashion-MNIST tasks even for small θ if we use back-
propagation with properly included local connections. When we
apply the Fit-DNN to the more challenging CIFAR-10, coarse
CIFAR-100, and cropped SVHN tasks, small node separations
affect the accuracies negatively. However, we still obtain reason-
able results for moderate node separations.

Further numerical results regarding the number of hidden
layers L, the number of delays D, and the role of the activation
function f are presented in detail in the Supplementary
Information. We find that the optimal choice of L depends on
the node separation θ. Our findings suggest that for small θ, one
should choose a smaller number of hidden layers than for the
map limit case θ→∞. The effect of the number of delays D
depends on the task. We found that a small number of delays is
sufficient for the denoising task: the mean squared error remains
constant when varying D between 5 and 40. For the CIFAR-10
task, a larger number of delays is necessary to obtain optimal
results. If we use the standard parameters from Table 1, we obtain
the highest CIFAR-10 accuracy for D= 125 or larger. This could
likely be explained by the different requirements of these tasks:
While the main challenge for denoising is to filter out unwanted
points, the CIFAR-10 task requires attention to detail. Thus, a
higher number of delay-loops potentially helps the system to
learn a more precise representation of the target classes. By
comparing the Fit-DNN performance for different activation
functions, we also confirmed that the system performs similarly
well for the sine f ðaÞ ¼ sinðaÞ, the hyperbolic tangent
f ðaÞ ¼ tanhðaÞ, and the ReLU function f ðaÞ ¼ maxf0; ag.

Discussion
We have designed a method for complete folding-in-time of a
multilayer feed-forward DNN. This Fit-DNN approach requires
only a single neuron with feedback-modulated delay loops. Via a
temporal sequentialization of the nonlinear operations, an arbi-
trarily deep or wide DNN can be realized. We also naturally
arrive at such modifications as sparse DNNs or DNNs with
additional inertial connections. We have demonstrated that gra-
dient descent training of the coupling weights is not significantly
interfered by these additional local connections.

Extending machine-learning architectures to be compatible
with a dynamical delay-system perspective can help fertilize both
fundamental research and applications. For example, the idea of
time-multiplexing a recurrent network into a single element was
introduced in ref. 13 and had a profound effect on understanding
and boosting the reservoir computing concept. In contrast to the
time-multiplexing of a fixed recurrent network for reservoir
computing, here we use the extended folding-in-time technique
to realise feed-forward DNNs, thus implementing layers with

Table 2 Fit-DNN performance for classification and
denoising tasks depending on the number of nodes per
hidden layer N.

N 50 100 200 400

MNIST 97.31 98.49 98.91 98.97 [%]
Fashion-MNIST 86.61 87.82 88.59 89.18 [%]
CIFAR-10 48.29 51.42 53.94 54.99 [%]
Coarse CIFAR-
100

29.39 32.73 34.51 35.41 [%]

Cropped SVHN 73.45 78.93 80.85 81.38 [%]
Denoising 0.0277 0.0254 0.0241 0.0236 [MSE]

Shown are accuracies [in %] and mean squared error for the denoising task for different N.
Increasing N improves the results for all tasks. For the classification tasks with N= 50, the
number of delays is D= 99, for the other cases the standard value D= 100 is used. For the
denoising task, D= 5 is used for all cases.

Table 1 Default parameters.

(a) (b) (c) (d)

input nodes M 784 3072 3072 784
output nodes P 10 10 20 784
nodes per hidden layer N 100 100 100 100
number of hidden layers L 2 3 3 2
number of delays D 100 100 100 5
node separation θ 0.5 0.5 0.5 0.5
system time scale α 1 1 1 1
initial training rate η0 0.01 0.0001 0.0001 0.001
training rate scaling factor η1 10000 1000 1000 500
intensity of training noise σ 0.1 0.01 0.01 –

Standard parameters for (a) the MNIST and Fashion-MNIST tasks, (b) the CIFAR-10 and cropped SVHN tasks, (c) the CIFAR-100 tasks with coarse class labels, and (d) the image denoising task.
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adaptive connection weights. Compared to delay-based reservoir
computing, our concept focuses on the different and extended
range of possible applications of DNNs.

From a general perspective, our approach provides an alter-
native view on neural networks: the entire topological complexity
of the feed-forward multilayer neural networks can be folded into
the temporal domain by the delay-loop architecture. This exploits
the prominent advantage of time-delay systems that “space” and
“time” can intermingle, and delay systems are known to have rich
spatio-temporal properties32,44–46. This work significantly
extends this spatio-temporal equivalence and its application while
allowing the evaluation of neural networks with the tools of delay
systems analysis26,30,47,48. In particular, we show how the tran-
sition from the time-continuous view of the physical system, i.e.,
the delay-differential equation, to the time-discrete feed-forward
DNN can be made.

Our concept also differs clearly from the construction of neural
networks from ordinary differential equations49–51. Its main
advantage is that delay systems inherently possess an infinite-
dimensional phase space. As a result, just one neuron with
feedback is sufficient to fold the entire complexity of the network.

It has been shown that dynamic sparsity38,39 can outperform
dense networks and, fundamentally, Fit-DNNs are intrinsically
compatible with certain kinds of sparsity. However, in our
approach, removing or adding a delay loop would change an
entire diagonal in the hidden weight matrices. Therefore, sparsity
training algorithms such as those discussed in refs.38,39 and
related works are not directly applicable to the Fit-DNN. Our
preliminary tests have shown that removing the weights of a
diagonal at the same time disturbs the previous training too
much, so the method fails. Nevertheless, we expect that it is

possible to find a suitable method to optimize the choice of
delays. Therefore, further investigation of specific sparsity train-
ing methods for the Fit-DNN would be very welcome. One
candidate for such a method could be pruning by slowly fading
diagonals that contain weaker connections on average.

Even with a fixed sparse connectivity, we can perform image
classification using only a single dynamical neuron. This case, in
particular, highlights one of the most exciting aspects of the Fit-
DNN architecture: many hardware implementations of DNNs or
related systems have suffered from the large amount of elements
that need to be implemented: the active neurons as well as the
connections with adjustable weights. The Fit-DNN overcomes
both of these limitations; no matter how many neurons are
functionally desired, physically we only require a single one. Even
though we advocate for sparse connectivity in this paper, a fully
connected DNN would only require a linear scaling of the
number of delay loops with the number of nodes per layer N. This
represents a major advantage as compared to directly imple-
mented networks, where the number of connections grows
quadratically. Thus, where it is acceptable to use sparse networks,
increasing the number of layers L or the number of nodes per
layer N for the Fit-DNN only requires more time, but not more
hardware elements.

Another major aspect of the Fit-DNN construction is the
importance of the temporal node separation θ. For large node
separation θ, the Fit-DNN mimics conventional multilayer per-
ceptrons. Therefore, the performance in terms of accuracy is
equivalent in this case. In contrast, choosing a smaller θ benefits
the overall computation time, but decreases the achievable
accuracy. This decrease strongly depends on the considered tasks
(see Fig. 4).

In addition to providing a dynamical systems perspective on
DNNs, Fit-DNNs can also serve as blueprints for specialized
DNN hardware. The Fit-DNN approach is agnostic concerning
the type of nonlinearity, enabling flexibility of implementations.
A suitable candidate could be a photonic neuromorphic
implementation13–16,20,52,53, where a fast artificial neuron can be
realized with the Gigahertz timescale range. Photonic systems
have already been used to construct delay-based reservoir com-
puters. In retrospect, it is quite clear how instrumental the
reduced hardware requirement of a delay-based approach was in
stimulating the current ecosystem of reservoir computing
implementations. For example, the delay-based reservoir com-
puting has been successfully implemented using electronic sys-
tems, magnetic spin systems, MEMS, acoustic, and other
platforms. We hope that for the much larger community around
DNNs, a similarly stimulating effect can be achieved with the Fit-
DNN approach we presented here, since it also drastically reduces
the cost and complexity for hardware-based DNNs.

Certainly, realizations on different hardware platforms face
different challenges. In the following, we exemplify the require-
ments for a photonic (optoelectronic) scheme. Such an imple-
mentation requires only one light source, a few fiber couplers, and
optical fibers of different lengths. The modulations of the delay
loops can be implemented using Mach-Zehnder intensity mod-
ulators. Finally, only two fast photodetectors (one for all delay
loops and one for the output) would be required, as well as an
optical amplifier or an electrical amplifier which could be used to
compensate for roundtrip losses. Those are all standard tele-
communication components. The conversion from optical to
electrical signals can be done extremely fast, faster than the clock
rate of today’s fast electronic processors, and only two photo-
detectors are needed, regardless of the number of virtual nodes
and number of delay loops.

The Fit-DNN setup allows to balance between computational
speed and the number of required hardware components. Since

Fig. 4 Fit-DNN performance for classification and denoising tasks;
dependence on the node separation θ. Shown are accuracies of the
classification tasks by employing the back-propagation algorithm taking the
local coupling into consideration (blue points), and neglecting them (red
points); (a, c, e, and g). The accuracy obtained in the map limit case θ→∞

is shown by the horizontal black line (this corresponds to the classical
sparse multilayer perceptron). Lower panels b, d, f, and h show the cosine
similarities between the numerically computed approximation of the exact
gradient and the gradient obtained by back-propagation with (blue points)
or without (red) local connections.
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only one nonlinear node and one fast read-out element are
absolutely necessary in our approach, ultrafast components could
be used that would be unrealistic or too expensive for full DNN
implementations. At the same time, since the single nonlinear
element performs all nonlinear operations sequentially with node
separation θ, parallelization cannot be applied in this approach.
The overall processing time scales linearly with the total number
of nodes LN and with the node separation θ. Possible ways to
address this property that could represent a limitation in certain
applications include the use of a small node separation θ13 or
multiple parallel copies of Fit-DNNs. In this way, a tradeoff
between the number of required hardware components and the
amount of parallel processing is possible. At the same time, the
use of a single nonlinear node comes with the advantage of almost
perfect homogeneity of all folded nodes, since they are realised by
the same element.

We would also like to point out that the potential use of very
fast hardware components is accompanied by a possibility of fast
inference. However, a fast hardware implementation of the Fit-
DNN will not accelerate the training process, because a tradi-
tional computer is still required, at least for the back-propagation
of errors. If the forward propagation part of the training process
is also performed on a traditional computer, the delay equation
must be solved numerically for each training step, leading to a
significant increase in training time. Therefore, the presented
method is most suitable when fast inference and/or high hard-
ware efficiency are prioritized. We would like to point out that the
integration of the training process into the hardware-part could
be addressed in future extensions of our concept.

We have presented a minimal and concise model, but already a
multitude of potential extensions are apparent for future studies.
For instance, one can implement different layer sizes, multiple
nonlinear elements, and combine different structures such as
recurrent neural networks with trainable hidden layers.

Incorporating additional neurons (spatial nodes) might even
enable finding the optimal trade-off between spatial and temporal
nodes, depending on the chosen platform and task. Also, we
envision building a hierarchical neural network consisting of
interacting neurons, each of them folding a separate Fit-DNN in
the temporal domain. Altogether, starting with the design used in
this work, we might unlock a plethora of neural network
architectures.

Finally, our approach encourages further cross-fertilization
among different communities. While the spatio-temporal
equivalence and the peculiar properties of delay-systems may be
known in the dynamical systems community, so far, no appli-
cation to DNNs had been considered. Conversely, the Machine
Learning core idea is remarkably powerful, but usually not for-
mulated to be compatible with continuous-time delay-dynamical
systems. The Fit-DNN approach unifies these perspectives—and
in doing so, provides a concept that is promising for those seeking
a different angle to obtain a better understanding or to implement
the functionality of DNNs in dedicated hardware.

Methods
The delay system and the signal a(t). The delay system (1) is driven by a signal
a(t) which is defined by Eq. (2) as a sum of a data signal J(t), modulated delayed
feedbacks MdðtÞxðt � τdÞ, and a bias b(t). In the following, we describe the
components in detail.

(i) The input signal. Given an input vector ðu1; ¼ ; uMÞT 2 RM , a matrix
W in 2 RN ´ ðMþ1Þ of input weights win

nm and an input scaling function g, we
define

JðtÞ :¼ g win
n;Mþ1 þ ∑

M

m¼1
win
nmum

� �
; ð8Þ

for (n− 1)θ < t ≤ nθ and n= 1,…,N. This rule defines the input signal J(t)
on the time interval (0, T], whereas J(t)= 0 for the other values of t. Such a

restriction ensures that the input layer connects only to the first hidden layer
of the Fit-DNN. Moreover, J(t) is a step function with the step lengths θ.

(ii) The feedback signals. System (1) contains D delayed feedback terms
MdðtÞxðt � τdÞ with the delay times τ1 <… < τD, which are integer
multiples of the stepsize τd= ndθ, nd∈ {1,…, 2N− 1}. The modulation
functions Md are defined interval-wise on the layer intervals ((ℓ− 1)T, ℓT].
In particular, MdðtÞ :¼ 0 for t ≤ T. For (ℓ− 1)T+ (n− 1)θ < t ≤ (ℓ− 1)
T+ nθ with ℓ= 2,…, L and n= 1,…,N, we set

MdðtÞ :¼ v‘d;n: ð9Þ
Thus, the modulation functions MdðtÞ are step functions with step length θ.
The numbers v‘d;n play the role of the connection weights from layer ℓ− 1 to
layer ℓ. More precisely, v‘d;n is the weight of the connection from the
(n+N− nd)-th node of layer ℓ− 1 to the n-th node of layer ℓ. Section
“Network representation for small node separation θ” below explains how
the modulation functions translate to the hidden weight matrices Wℓ. In
order to ensure that the delay terms connect only consecutive layers, we set
v‘d;n ¼ 0 whenever nd < n or nd > n+N− 1 holds.

(iii) The bias signal. Finally, the bias signal b(t) is defined as the step function

bðtÞ :¼ b‘n; for ð‘� 1ÞT þ ðn� 1Þθ < t ≤ ð‘� 1ÞT þ nθ; ð10Þ
where n= 1,…,N and ℓ= 2,…, L. For 0 ≤ t ≤ T, we set b(t)≔ 0 because the
bias weights for the first hidden layer are already included in Win, and thus
in J(t).

Network representation for small node separation θ. In this section, we provide
details to the network representation of the Fit-DNN which was outlined in
“Results” section. The delay system (1) is considered on the time interval [0, LT].
As we have shown in “Results” section, it can be considered as multi-layer neural
network with L hidden layers, represented by the solution on sub-intervals of
length T. Each of the hidden layers consists of N nodes. Moreover, the network
possesses an input layer with M nodes and an output layer with P nodes. The input
and hidden layers are derived from the system (1) by a discretization of the delay
system with step length θ. The output layer is obtained by a suitable readout
function on the last hidden layer.

We first construct matricesW‘ ¼ ðw‘
njÞ 2 RN ´ ðNþ1Þ , ℓ= 2,…, L, containing the

connection weights from layer ℓ− 1 to layer ℓ. These matrices are set up as follows:
Let n0d :¼ nd � N , then w‘

n;n�n0d
:¼ v‘d;n define the elements of the matrices Wℓ. All

other matrix entries (except the last column) are defined to be zero. The last
column is filled with the bias weights b‘1; ¼ ; b‘N . More specifically,

w‘
nj :¼ δNþ1;jb

‘
n þ ∑

D

d¼1
δn�n0d ;j

v‘d;n; ð11Þ

where δn,j= 1 for n= j, and zero otherwise. The structure of the matrix Wℓ is
illustrated in the Supplementary Information.

Applying the variation of constants formula to system (1) yields for 0 ≤ t0 < t ≤
TL:

xðtÞ ¼ e�αðt�t0Þxðt0Þ þ
Z t

t0

eαðs�tÞf ðaðsÞÞ ds: ð12Þ

In particular, for t0= (ℓ− 1)T+ (n− 1)θ and t= (ℓ− 1)T+ nθ we obtain

x‘n ¼ e�αθx‘n�1 þ
Z t0þθ

t0

eαðs�ðt0þθÞÞf ðaðsÞÞ ds; ð13Þ

where a(s) is given by (2). Note that the functions MdðtÞ, b(t), and J(t) are step
functions that are constant on the integration interval. Approximating x(s− τd) by
the value on the right θ-grid point x(t− τd) ≈ x((ℓ− 1)T+ nθ− ndθ) directly yields
the network equation (6).

Application to machine learning and a back-propagation algorithm. We apply
the system to two different types of machine learning tasks: image classification and
image denoising. For the classification tasks, the size P of the output layer equals
the number of classes. We choose f out to be the softmax function, i.e.,

ŷp ¼ f outp ðaoutÞ ¼
expðaoutp Þ

∑P
q¼1 expðaoutq Þ ; p ¼ 1; ¼ ; P: ð14Þ

If the task is to denoise a greyscale image, the number of output nodes P is the
number of pixels of the image. In this case, clipping at the bounds 0 and 1 is a
proper choice for f out, i.e.

ŷp ¼ f outp ðaoutÞ ¼
0; if aoutp < 0;

aoutp ; if 0≤ aoutp ≤ 1;

1; if aoutp > 1:

8><
>: ð15Þ

“Training the system” means finding a set of training parameters, denoted by
the vectorW, which minimizes a given loss function EðWÞ. Our training parameter
vectorW contains the input weights win

nm , the non-zero hidden weights w‘
nj , and the
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output weights wout
pn . The loss function must be compatible with the problem type

and with the output activation. For the classification task, we use the cross-entropy
loss function

ECEðWÞ :¼ � ∑
K

k¼1
∑
P

p¼1
ypðkÞln ðŷpðkÞÞ ¼ � ∑

K

k¼1
ln ðŷptðkÞðkÞÞ; ð16Þ

where K is the number of examples used to calculate the loss and pt(k) is the target
class of example k. For the denoising tasks, we use the rescaled mean squared error
(MSE)

EMSEðWÞ :¼ 1
2K

∑
K

k¼1
∑
P

p¼1
ŷpðkÞ � ypðkÞ

� �2
: ð17Þ

We train the system by stochastic gradient descent, i.e., for a sequence of
training examples (u(k), y(k)) we modify the training parameter iteratively by the
rule

Wkþ1 ¼ Wk � ηðkÞ∇EðWk; uðkÞ; yðkÞÞ; ð18Þ
where ηðkÞ :¼ minðη0; η1=kÞ is a decreasing training rate.

If the node separation θ is sufficiently large, the local connections within the
network become insignificant, and the gradient ∇EðWÞ can be calculated using the
classical back-propagation algorithm for multilayer perceptrons. Our numerical
studies show that this works well if θ ≥ 4 for the considered examples. For smaller
node separations, we need to take the emerging local connections into account. In
the following, we first describe the classical algorithm, which can be used in the
case of large θ. Then we formulate the back-propagation algorithm for the Fit-
DNN with significant local node couplings.

The classical back-propagation algorithm can be derived by considering a
multilayer neural network as a composition of functions

ŷ ¼ f outðaoutðaLð¼ ða1ðainðuÞÞÞÞÞÞ ð19Þ
and applying the chain rule. The first part of the algorithm is to iteratively compute
partial derivatives of the loss function E w.r.t. the node activations, the so called
error signals, for the output layer

δoutp :¼ ∂EðaoutÞ
∂aoutp

¼ ŷp � yp; ð20Þ

for p= 1,…, P, and for the hidden layers

δLn :¼ ∂EðaLÞ
∂aLn

¼ f 0ðaLnÞ ∑
P

p¼1
δoutp wout

pn ; ð21Þ

δ‘n :¼ ∂Eða‘Þ
∂a‘n

¼ f 0ða‘nÞ ∑
N

i¼1
δ‘þ1
i w‘

in; ‘ ¼ L� 1; ¼ ; 1: ð22Þ

for n= 1,…,N. Then, the partial derivatives of the loss function w.r.t. the training
parameters can be calculated:

∂EðWÞ
∂wout

pn
¼ δoutp xLn; ð23Þ

for n= 1,…,N+ 1 and p= 1,…, P,

∂EðWÞ
∂w‘

nj

¼ δ‘nx
‘�1
j ; ð24Þ

for ℓ= 2,…, L, j= 1,…,N+ 1 and n= 1,…,N, and

∂EðWÞ
∂win

nm
¼ δ1ng

0ðainn Þum; ð25Þ

for m= 1,…,M+ 1 and n= 1,…,N. For details, see ref. 54 or ref. 3.
Taking into account the additional linear connections, we need to change the

way we calculate the error signals δ‘n for the hidden layers. Strictly speaking, we
cannot consider the loss E as a function of the activation vector aℓ, for ℓ= 1,…, L,
because there are connections skipping these vectors. Also, Eq. (19) becomes
invalid. Moreover, nodes of the same layer are connected to each other. However,
the network has still a pure feed-forward structure, and hence, we can apply back-
propagation to calculate the error signals node by node. We obtain the following
algorithm to compute the gradient.

Step 1: Compute

δoutp :¼ ∂E
∂aoutp

¼ ŷp � yp; ð26Þ

for p= 1,…, P.
Step 2: Let Φ≔ α−1(1− e−αθ). Compute the error derivatives w.r.t. the node
states of the last hidden layer

ΔL
N :¼ ∂E

∂xLN
¼ ∑

P

p¼1
δoutp wout

pN ; ð27Þ

and

ΔL
n :¼ ∂E

∂xLn
¼ ΔL

nþ1e
�αθ þ ∑

P

p¼1
δoutp wout

pn ; ð28Þ

for n=N− 1,…, 1. Then compute the error derivatives w.r.t. the node
activations

δLn :¼ ∂E
∂aLn

¼ ΔL
nΦf 0ðaLnÞ; ð29Þ

for n= 1,…,N.
Step 3: Repeat the same calculations as in step 2 iteratively for the remaining
hidden layers ℓ= L− 1,…, 1, while keeping the connection between the nodes
x‘N and x‘þ1

1 in mind. That is, compute

Δ‘
N :¼ ∂E

∂x‘N
¼ Δ‘þ1

1 e�αθ þ ∑
N

i¼1
δ‘þ1
i w‘þ1

iN ; ð30Þ

and

Δ‘
n :¼ ∂E

∂x‘n
¼ Δ‘

nþ1e
�αθ þ ∑

N

i¼1
δ‘þ1
i w‘þ1

in ; ð31Þ

for n=N− 1,…, 1. Computing the error derivatives w.r.t. the node activations
works exactly as for the last hidden layer:

δ‘n :¼ ∂E
∂a‘n

¼ Δ‘
nΦf 0ða‘nÞ; ð32Þ

for n= 1,…,N.
Step 4: Calculate weight gradient using Eqs. (23)–(25).

The above formulas can be derived by the chain rule. Note that many of the
weights contained in the sums in Eq. (30) and Eq. (31) are zero when the weight
matrices for the hidden layers are sparse. In this case, one can exploit the fact that
the non-zero weights are arranged on diagonals and rewrite the sums accordingly
to accelerate the computation

∑
N

i¼1
δ‘þ1
i w‘þ1

in ¼ ∑
D

d¼1
1 ≤nþn0

d
≤N

δ‘þ1
nþn0

d
v‘þ1
d;nþn0

d
ð33Þ

For details we refer to the Supplementary Information. Additionally, the training
process is illustrated in Supplementary Movie 1.

Data augmentation, input processing, and initialization. For all classification
tasks, we performed an augmentation of the training input data by adding a small
Gaussian noise to the images and by pixel jittering, i.e., randomly shifting the
images by at most one pixel horizontally, vertically, or diagonally. For the CIFAR-
10/100 tasks, we also applied a random rotation of maximal ± 15∘ and a random
horizontal flip with the probability 0.5 to the training input images. Further, we
used dropout55 with a dropout rate of 1% for the CIFAR-10/100 tasks. For the
denoising task, we performed no data augmentation.

Moreover, for the five classification tasks, we used the input preprocessing
function gðaÞ ¼ tanhðaÞ. For the denoising task, we applied no nonlinear input
preprocessing, i.e., g(a)= a. The weights were always initialized by Xavier
initialization56. In all cases, we used 100 training epochs.

Data availability
The MNIST data40 (labeled images of handwritten digits) used in this study are available
in the MNIST database: http://yann.lecun.com/exdb/mnist/. The Fashion-MNIST data41

(labeled images of fashion articles) used in this study are available in the Fashion-MNIST
database: https://github.com/zalandoresearch/fashion-mnist, MIT License © 2017
Zalando SE. The CIFAR-10 and CIFAR-100 data42 (labeled images of objects, animals,
plants, or people) used in this study are available in the CIFAR-10 and CIFAR-100
databases: https://www.cs.toronto.edu/~kriz/cifar.html. The cropped SVHN data43

(labeled images of house numbers extracted from Google Street View photos) used in this
study are available in the SVHN database: http://ufldl.stanford.edu/housenumbers/.

Code availability
The source code57 to reproduce the results of this study is freely available on GitHub:
https://github.com/flori-stelzer/deep-learning-delay-system/tree/v1.0.0.
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