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Abstract

We discuss several of different index concepts for differential-algebraic
equation (differentiation, strangeness, tractability, geometric, perturba-
tion, and structural index) and analyze their relationship.

1 Introduction

Differential-algebraic equations (DAEs) present today the state-of-the-art in
mathematical modeling of dynamical systems in almost all areas of science
and engineering. Modeling is done in a modularized way by combining stan-
dardized sub-models in a hierarchically built network. The topic is well-
studied from an analytic, numerical and control theoretical point of view, and
several monographs are available that cover different aspects of the subject
[1, 2, 9, 14, 15, 16, 21, 28, 29, 34].

The mathematical model can usually be written in the form

F (t, x, ẋ) = 0, (1)

where ẋ denotes the (typically time) derivative of x. Denoting by Ck(I,Rn) the
set of k times continuously differentiable functions from I = [t, t] ⊂ R to Rn,
one usually assumes that F ∈ C0(I× Dx × Dẋ,Rm) is sufficiently smooth, and
that Dx,Dẋ ⊆ Rn are open sets. The model equations are usually completed
with initial conditions

x(t) = x, t ∈ I. (2)

Linear DAEs
Eẋ−Ax− f = 0, (3)

with E,A ∈ C0(I,Rm,n), f ∈ C0(I,Rm) often arise after linearization along tra-
jectories, see [4], with constant coefficients in the case of linearization around
an equilibrium solution. DAE models are also studied in the case when x is
infinite-dimensional, see e. g. [7, 37] but here we only discuss the finite dimen-
sional case.
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Studying the literature for DAEs, one quickly realizes an almost babylonian
confusion in the notation, in the solution concepts, in the numerical simulation
techniques and in control and optimization methods. These differences partially
result from the fact that the subject was developed by different groups in math-
ematics, computer science and engineering. Another reason is that it is almost
impossible to treat automatically generated DAE models directly with standard
numerical methods, since the solution of a DAEs may depend on derivatives
of the model equations or input functions and since the algebraic equations re-
strict the dynamics of the system to certain manifolds, some of which are only
implicitly contained in the model. This has the effect that numerical methods
may have a loss in convergence order, are hard to initialize, or fail to preserve
the underlying constraints and thus yield physically meaningless results, see e.g.
[2, 21] for illustrative examples. Furthermore, inconsistent initial conditions or
violated smoothness requirements can give rise to distributional or other classes
of solutions [8, 21, 27, 35] as well as multiple solutions [21]. Here we only discuss
classical solutions, x ∈ C1(I,Cn) that satisfy (1) pointwise.

Different approaches of classifying the difficulties that arise in DAEs have
lead to different so-called index concepts, where the index is a ’measure of diffi-
culty’ in the analytical or numerical treatment of the DAE. In this contribution
the major index concepts will be surveyed and put in perspective with each
other as far as this is possible. For a detailed analysis and a comparison of var-
ious index concepts with the differentiation index, see [5, 12, 14, 21, 22, 24, 31].
Since most index concepts are only defined for uniquely solvable square systems
with m = n, here only this case is studied, see [21] for the general case.

2 Index concepts for DAEs

The starting point for all index concepts are the linear systems with constant
coefficients. In this case the smoothness requirements can be determined from
the Kronecker canonical form [11] of the matrix pair (E,A) under equivalence
transformations E2 = PE1Q, A2 = PA1Q, with invertible matrices P,Q, see
e. g. [21]. The size of the largest Kronecker block associated with an infinite
eigenvalue of (E,A) is called Kronecker index and it defines the smoothness
requirements for the inhomogeneity f . For the linear variable coefficient case,
it was first tried to define a Kronecker index, see [13]. However, it was soon
realized that this is not a reasonable concept [5, 17], since for the variable coeffi-
cient case the equivalence transformation is E2 = PE1Q, A2 = PA1Q−PE1Q̇,
and it locally does not reduce to the classical equivalence for matrix pencils.
Canonical forms under this equivalence transformation have been derived in
[17] and existence and uniqueness of solutions of DAEs has been characterized
via global equivalence transformations and differentiations.

Since the differentiation of computed quantities is usually difficult, it was
suggested in [3] to differentiate first the original DAE (3) and then carry out
equivalence transformations. For this we gather the original equation and its
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derivatives up to order ` into a so-called derivative array

F`(t, x, . . . , x
(`+1)) =


F (t, x, ẋ)
d
dtF (t, x, ẋ)

...

( ddt)
`F (t, x, ẋ)

 (4)

We require solvability of (4) in an open set and define the Jacobians

M`(t, x, ẋ, . . . , x
(`+1)) = F`;ẋ,...,x(`+1)(t, x, ẋ, . . . , x(`+1)),

N`(t, x, ẋ, . . . , x
(`+1)) = −(F`;x(t, x, ẋ, . . . , x(`+1)), 0, . . . , 0),

which correspond to the derivative array in the linear case (3).

2.1 The differentiation index

The most common index definition is that of the differentiation index, see [5].

Definition 1 Suppose that (1) is solvable. The smallest integer ν (if it exists)
such that the solution x is uniquely defined by F`(t, x, ẋ, . . . , x

(`+1)) = 0 for all
consistent initial values is called the differentiation index of (1).

Over the years the definition of the differentiation index has been slightly mod-
ified to adjust from the linear to the nonlinear case [3, 5, 6] and to deal with
slightly different smoothness assumptions. In the linear case it has been shown
in [21] that the differentiation index ν is invariant under (global) equivalence
transformations, and if it is well-defined, then there exists a smooth, pointwise

nonsingular R ∈ C(I,C(ν+1)n,(ν+1)n) such that RMν =

[
In 0
0 H

]
. Then from

the derivative array Mν(t)żν = Nν(t)zν + gν(t), where gν contains derivatives
of f one obtains an ordinary differential equation (ODE)

ẋ = [ In 0 ]R(t)Mν(t)żν = [ In 0 ]R(t)Nν(t)

[
In
0

]
x+ [ In 0 ]R(t)gν(t),

which is called underlying ODE. Any solution of the DAE is also a solution of
this ODE. This motivates the interpretation that the differentiation index is
the number of differentiations needed to transform the DAE into an ODE.

2.2 The strangeness index

An index concept that is closely related to the differentiation index and extends
to over- and under-determined systems is based on the following Hypothesis.

Hypothesis 1 Consider the DAE (1) and suppose that there exist integers µ,
a, and d such that the set Lµ = {z ∈ R(µ+2)n+1 | Fµ(z) = 0} associated with F

is nonempty and such that for every point z0 = (t0, x0, ẋ0, . . . , x
(µ+1)
0 ) ∈ Lµ,

there exists a (sufficiently small) neighborhood in which the following properties
hold:
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1. We have rankMµ(z) = (µ+1)n−a on Lµ such that there exists a smooth
matrix function Z2 of size (µ+ 1)n× a and pointwise maximal rank, sat-
isfying ZT2 Mµ = 0 on Lµ.

2. We have rank Â2(z) = a, where Â2 = ZT2 Nµ[In 0 · · · 0]T such that there
exists a smooth matrix function T2 of size n×d, d = n−a, and pointwise
maximal rank, satisfying Â2T2 = 0.

3. We have rankFẋ(t, x, ẋ)T2(z) = d such that there exists a smooth ma-
trix function Z1 of size n × d and pointwise maximal rank, satisfying
rankÊ1T2 = d, where Ê1 = ZT1 Fẋ.

Definition 2 Given a DAE as in (1), the smallest value of µ such that F
satisfies Hypothesis 1 is called the strangeness index of (1).

It has been shown in [21] that if F as in (1) satisfies Hypothesis 1 with char-
acteristic values µ, a and d, then the set Lµ ⊆ R(µ+2)n+1 forms a (smooth)
manifold of dimension n+ 1. Setting

F̂1(t, x, ẋ) = ZT1 F (t, x, ẋ),

F̂2(t, x) = ZT2 Fµ(t, x, ẑ),

where ẑ = (x̂(t), . . . , x̂(µ+1)), and considering the reduced DAE

F̂ (t, x, ẋ) =

[
F̂1(t, x, ẋ)

F̂2(t, x)

]
= 0, (5)

one has the following (local) relation between the solutions of (1) and (5).

Theorem 3 [19, 21] Let F as in (1) satisfy Hypothesis 1 with values µ, a,
and d. Then every sufficiently smooth solution of (1) also solves (5).

It also has been shown in [21] that if x∗ ∈ C1(I,Rn) is a sufficiently smooth
solution of (1) then there exist an operator F̂ : D→ Y, D ⊆ X open, given by

F̂(x)(t) =

[
ẋ1(t)− L(t, x1(t))
x2(t)−R(t, x1(t))

]
, (6)

with X = {x ∈ C(I,Rn) | x1 ∈ C1(I,Rd), x1(t) = 0} and Y = C(I,Rn). Then
x∗ is a regular solution of (6), i. e., there exist neighborhoods U ⊆ X of x∗, and
V ⊆ Y of the origin such that for every b ∈ V the equation F̂(x) = b has a
unique solution x ∈ U that depends continuously on f .

The requirements of Hypothesis 1 and that of a well-defined differentiation
index are equivalent up to some (technical) smoothness requirements, see [18,
21]. For uniquely solvable systems, however, the differentiation index aims at a
reformulation of the given problem as an ODE, whereas Hypothesis 1 aims at
a reformulation as a DAE with two parts, one part which states all constraints
and another part which describes the dynamical behavior. If the appropriate
smoothness conditions hold then ν = 0 if µ = a = 0 and ν = µ+ 1 otherwise.
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2.3 The perturbation index

Motivated by the desire to classify the difficulties arising in the numerical so-
lution of DAEs, the perturbation index [16] was introduced which studies the
effect of a perturbation η in

F (t, x̂, ˙̂x) = η, (7)

with sufficiently smooth η and initial condition x̂(t) = x̂.

Definition 4 If x ∈ C1(I,Cn) is a solution, then (3) is said to have per-
turbation index κ ∈ N along x, if κ is the smallest number such that for all
sufficiently smooth x̂ satisfying (7) the estimate (with appropriate norms in the
relevant spaces)

‖x̂− x‖ ≤ C(‖x̂− x‖∞ + ‖η‖+ ‖η̇‖+ · · ·+ ‖η(κ−1)‖), (8)

holds with a constant C independent of x̂. It is said to have perturbation index
κ = 0 if the estimate

‖x̂− x‖ ≤ C(‖x̂− x‖∞ + max
t∈I
‖
∫ t
t η(s) ds‖∞) (9)

holds.

For the linear variable coefficient case, the following relation holds.

Theorem 5 [21] Let the strangeness index µ of (3) be well-defined and let x be
a solution of (3). Then the perturbation index κ of (3) along x is well-defined
with κ = 0 if µ = a = 0 and κ = µ+ 1 otherwise.

The reason for the two cases in the definition of the perturbation index is that
in this way the perturbation index equals the differentiation index if defined.
Counting in the way of the strangeness index according to the estimate (8),
there would be no need in the extension (9).

It has been shown in [21] that the concept of the perturbation index can
also be extended to the non-square case.

3 The tractability index

A different index concept [14, 23, 24] is formulated in its current form for DAEs
with properly stated leading term,

F
d

dt
(Dx) = f(x, t), t ∈ I (10)

with F ∈ C(I,Cn,l), D ∈ C(I,Cl,n), f ∈ C(I,Cn) sufficiently smooth such that
kernelF (t) ⊕ rangeD(t) = Cl for all t ∈ I and such there exists a projector
R ∈ C1(I,Cl,l) with rangeR(t) = rangeD(t), and kernelR(t) = kernelF (t) for
all t ∈ I. One introduces the chain of matrix functions

G0 = FD, G1 = G0 + B0Q0, Gi+1 = Gi + BiQi, i = 1, 2, . . . , (11)
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where Qi is a projector onto Ni = kernelGi, with QiQj = 0 for j = 0, . . . , i− 1,
Pi = I − Qi, B0 = fx, and Bi = Bi−1Pi−1 − GiD− d

dt(DP1 . . .PiD
−)DPi−1,

where D− is the reflexive generalized inverse of D satisfying (DD−) = R and
(D−D) = P0.

Definition 6 [23] A DAE of the form (10) with properly stated leading term
is said to be regular with tractability index τ on the interval I, if there exist a
sequence of continuous matrix functions (11) such that

1. Gi is singular and has constant rank r̄i on I for i = 0, . . . , τ − 1,

2. Qi is continuous and DP1 . . .PiD− is continuously differentiable on I for
i = 0, . . . , τ − 1,

3. QiQj = 0 holds on I for all i = 1, . . . , τ − 1 and j = 1, . . . , i− 1,

4. Gµ is nonsingular on I.

The chain of projectors and spaces allows to filter out an ODE for the differential
part of the solution u = DP1 . . .Pτ−1D−Dx of the linear version of (10) with
f(x, t) = A(t)x(t) + q(t), see [23], which is given by

u̇− d

dt
(DP1 . . .Pτ−1D−)u−DP1 . . .Pτ−1G−1µ AD−u = DP1 . . .Pτ−1G−1µ q.

Instead of using derivative arrays here derivatives of projectors are used. The
advantage is that the smoothness requirements for the inhomogeneity can be
explicitly specified and in this form the tractability index can be extended to the
infinite dimensional systems. However, if the projectors have to be computed
numerically, then difficulties in obtaining the derivatives can be anticipated.

It is still a partially open problem to characterize the exact relationship
between the tractability index and the other indices. Partial results have been
obtained in [5, 6, 24, 22], showing that (except again for different smoothness
requirements) the tractability index is equal to the differentiation index and
thus by setting τ = 0 if µ = a = 0 one has τ = µ+ 1 if τ > 0.

3.1 The geometric index

The geometric theory to study DAEs as differential equations on manifolds
was developed first in [30, 32, 33]. One constructs a sequence of sub-manifolds
and their parameterizations via local charts (corresponding to the different con-
straints on different levels of differentiation). The largest number of differenti-
ations needed to identify the DAE as a differential equation on a manifold is
then called the geometric index of the DAE. It has been shown in [21] that any
solvable regular DAE with strangeness index µ = 0 can be locally (near a given
solution) rewritten as a differential equation on a manifold and vice versa. If one
considers the reduced system (5), then starting with a solution x∗ ∈ C1(I,Rn)
of (1), the set M = F̂−12 ({0}) is nonempty and forms the desired sub-manifold
of dimension d of Rn, where the differential equation evolves and that contains
the consistent initial values. The ODE case trivially is a differential equation
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on the manifold Rn. Except for differences in the smoothness requirements, the
geometric index is equal to the differentiation index [5]. This then also defines
the relationship to the other indices.

3.2 The structural index

A combinatorially oriented index was first defined for the linear constant coeffi-
cient case. Let (E(p), A(p)) be the parameter dependent pencil that is obtained
from (E,A) by substituting the nonzero elements of E and A by independent
parameters pj . Then the unique integer that equals the Kronecker index of
(E(p), A(p)) for all p from some open and dense subset of the parameter set
is called the structural index, see [25] and in a more general way [26]. For the
nonlinear case a local linearization is employed.

Although it has been shown in [31] that the differentiation index and the
structural index can be arbitrarily different, the algorithm of [25] to determine
the structural index is used heavily in applications, see e. g., [38] by employing
combinatorial information to analyze which equations should be differentiated
and to introduce extra variables for index reduction [36]. A sound analysis
when this approach is fully justified has, however, only been given in special
cases [10, 20, 36].

4 Conclusions

Different index concepts for systems of differential-algebraic equations have
been discussed. Except for different technical smoothness assumptions (and in
the case of the strangeness-index, different counting) for regular and uniquely
solvable systems, these concepts are essentially equivalent to the differentiation
index. However, all have advantages and disadvantages when it comes to gener-
alizations, numerical methods or control techniques. The strangeness index and
the perturbation index also extend to non-square systems, while the tractability
index allows a direct generalization to infinite dimensional systems.
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