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Abstract

We need reliable and efficient methods to measure the quality of machine translation (MT)

systems. An ideal translation is a fluent sentence in the target language that preserves the

meaning of the source sentence. To what degree does an output of an MT system satisfy

these criteria? This is typically measured by eliciting human judgements, for example, by

asking them to rate the quality of MT system translations. Human evaluation is expensive and

laborious; consequently, automatic metrics were introduced to provide immediate feedback to

MT system developers. Importantly, automatic metrics are also frequently used as the primary

measure for reporting empirical results in the MT literature.

In this thesis, we address three aspects of MT evaluation: (1) improving the efficiency of

human evaluation, (2) developing new automatic metrics, and (3) improving the evaluation of

automatic metrics to aid in metric selection and analysis of metric outputs.

Human judgements are inherently noisy; to obtain accurate scores for individual translations,

multiple judgements are collected and averaged. We design unsupervised Bayesian methods to

improve aggregation of human judgements that take annotator reliability into account. With

these methods, we can compute more accurate scores with fewer judgements per translation,

thus decreasing costs. We also explore sequence effects in the data: we show that annotators’

judgement can be affected by the context of the decision, specifically quality of preceding

items, and propose a simple fix to mitigate this problem.

We propose new automatic MT metrics that rely on contextual word embeddings to measure

similarity: these embeddings are influenced by the sentence context of the words in addition to
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the word itself, and result in a substantial improvement in correlation with human judgements

compared to previous metrics.

Finally, we look at evaluation of automatic metrics. The research community has developed

more sophisticated metrics, but MT system developers are slow to move away from BLEU, a

metric that computes the surface similarity between the MT output and the human reference.

This is due to a generally held belief that using BLEU is valid to compare similar MT systems,

along with the fact that BLEU is fast to compute and doesn’t require additional resources.

While BLEU appears to have a reasonable correlation with human judgements in recent studies,

this is possibly an artefact of the MT systems considered in the evaluation. We show that outlier

MT systems (those that are much better or worse than other systems that are included in the

evaluation) can lead to an over-estimate of the correlation, leading to misplaced trust in the

metric. We then look at efficacy of metrics when comparing any two MT systems, which is

the most common use for automatic metrics. We show that small improvements in automatic

metrics often disagree with human judgements, and empirical MT research must always be

supported by human judgements.



Table of contents

List of figures xiv

List of tables xvi

1 Introduction 1

1.1 Research Questions and Contributions . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background: Machine Translation Evaluation 9

2.1 Human Evaluation Methodologies . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Early MT Evaluation Campaigns . . . . . . . . . . . . . . . . . . . . 10

2.1.2 WMT Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Crowdsourcing Annotations . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Direct Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Automatic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Approaches to Designing Automatic Metrics . . . . . . . . . . . . . 25

2.2.3 Reference-free Automatic Evaluation . . . . . . . . . . . . . . . . . 34

2.2.4 Selected Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Evaluating automatic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 System-level Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 45



Table of contents xi

2.3.2 Sentence-level Evaluation . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3 Statistical Significance testing . . . . . . . . . . . . . . . . . . . . . 50

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 A Probabilistic Model for Aggregating Human Judgements 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Background: Probabilistic models of aggregating data . . . . . . . . . . . . . 54

3.3 Direct Assessment: Dataset and Analysis . . . . . . . . . . . . . . . . . . . 61

3.3.1 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Analysis of Worker Scores . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.1 WMT13 SPANISH → ENGLISH . . . . . . . . . . . . . . . . . . . . 71

3.5.2 WMT16 TURKISH → ENGLISH . . . . . . . . . . . . . . . . . . . 76

3.5.3 Adversarial Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.4 Spammer Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.5 Analysis of Individual HITs . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Sequence Effects in Crowdsourced Human Annotations 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Background: Decision making and Cognitive biases . . . . . . . . . . . . . . 90

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Machine Translation Direct Assessment . . . . . . . . . . . . . . . . 95

4.4.2 Sequence Effects in NLP . . . . . . . . . . . . . . . . . . . . . . . . 99



Table of contents xii

4.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Automatic Metrics 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Background: Contextual Word Embeddings . . . . . . . . . . . . . . . . . . 107

5.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Pre-trained Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.2 Supervised Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Reference-free Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5.1 Training Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Meta Evaluation: Reevaluating Automatic Metric Evaluation 129

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Background: Pearson Correlation Coefficient . . . . . . . . . . . . . . . . . 132

6.2.1 Influence of Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.2 Heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Human scores: Direct Assessment (DA) . . . . . . . . . . . . . . . . 138

6.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Influence of Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5 The Influence of the Quality of MT Systems on Metric Reliability . . . . . . 154



Table of contents xiii

6.6 Beyond Correlation: Metric Decisions for System Pairs . . . . . . . . . . . . 157

6.6.1 Agreement between Metrics . . . . . . . . . . . . . . . . . . . . . . 165

6.7 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Conclusion and Future work 170

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography 177



List of figures

2.1 Screenshot of the evaluation interface to collect adequacy and fluency ratings. 11

2.2 Distribution of adequacy scores of five judges . . . . . . . . . . . . . . . . . 12

2.3 Collection of ratings of syntactic constituents. . . . . . . . . . . . . . . . . . 13

2.4 Screenshot of the tool to collect translation rankings . . . . . . . . . . . . . . 15

2.5 Screenshot of the annotation interface for direct assessment. . . . . . . . . . 16

3.1 Correlation of QCPASS vs QCFAIL workers with the ground truth . . . . . . . 64

3.2 Visualising worker scores in the WMT13ES-EN dataset . . . . . . . . . . . . 65

3.3 The proposed model to aggregate DA scores . . . . . . . . . . . . . . . . . . 67

3.4 Correlation of worker precision with five scores per translation . . . . . . . . 72

3.5 Results on the WMT13ES-EN dataset. . . . . . . . . . . . . . . . . . . . . . 73

3.6 Results on the WMT16TR-EN dataset . . . . . . . . . . . . . . . . . . . . . 77

3.7 Results on adversarial data . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Results of spammer removal. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.9 Analysis of Selected HITs . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Training efficiency of the ESIM model . . . . . . . . . . . . . . . . . . . . . 124

6.1 Scatter plots of simulated human and metric scores as the strength of the

relationship increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



List of figures xv

6.2 Scatter plots of simulated human and metric scores with the same correlation

(r = 0.8), but different patterns in the data. . . . . . . . . . . . . . . . . . . 134

6.3 Scatter plots (and Pearson’s r) for metrics (a) with all systems and (b) without

outliers for the WMT19 English → German language pair. . . . . . . . . . . 140

6.4 Pearson’s r for metrics, when sub-sampling systems from the English →

German language pair from WMT19. . . . . . . . . . . . . . . . . . . . . . 141

6.5 Scatter plots (and Pearson’s r) for metrics with and without outliers for: (a)

French → German, and (b) Gujarati → English data from WMT19 . . . . . . 142

6.6 Correlation of metrics with all systems and after discarding outliers over all

language pairs of WMT19 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.7 Pearson correlation coefficient computed over the top-N systems, or over a

rolling window of 4 or 8 systems on English → German and German → English

datasets of WMT19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.8 Pairwise differences in human DA evaluation compared to difference in metric

evaluation computed across all language pairs in WMT 2019 . . . . . . . . . 158

6.9 Comparing metric reliability on to-English and other-than-English language

pairs in WMT 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.10 Comparing metric reliability on system pairs that (a) exclude vs (b) include

online systems in WMT 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.11 Pairwise differences in human DA evaluation compared to difference in metric

evaluation computed across all language pairs in WMT 2017 and WMT 2018 166

6.12 The agreement between metric errors over all 1362 system-pair comparisons at

WMT19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



List of tables

3.1 Summary of probabilistic models included in Sec. 3.2. . . . . . . . . . . . . 55

4.1 MTadeq dataset: Coefficients of the linear model showing sequence bias of

good, moderate and bad workers. . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Learning effect on the MTadeq dataset . . . . . . . . . . . . . . . . . . . . . 98

4.3 Impact of sequence effects on MT system scores in the worst case scenario . 99

4.4 Autocorrelation coefficient β1 for RTE and TEMPORAL data . . . . . . . . . 100

4.5 Autocorrelation coefficient β1 for the AFFECTIVE dataset. . . . . . . . . . . 101

5.1 Pearson’s r on the WMT 2017 sentence-level evaluation data. . . . . . . . . . 117

5.2 Pearson’s r and Kendall’s τ on the WMT 2017 from-English sentence-level

evaluation data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Pearson’s r on the WMT 2017 to-English system-level evaluation data. . . . . 120

5.4 Pearson’s r on the WMT 2017 from-English system-level evaluation data. . . 121

5.5 Pearson’s r on the WMT 2016 IT domain system-level evaluation data. . . . . 121

5.6 Qualitative analysis on high-quality translations . . . . . . . . . . . . . . . . 125

5.7 Qualitative analysis on low-quality translations . . . . . . . . . . . . . . . . 126

6.1 Correlation of metrics with and without outliers (“All” and “−out”, resp.) for

the to-English language pairs from WMT19 that contain outlier systems . . . 141



List of tables xvii

6.2 Correlation of metrics with and without outliers (“All” and “−out”, resp.) for

the language pairs into languages other than English from WMT19 that contain

outlier systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 System-level correlation of all metrics for the from-English language pairs at

WMT19, with and without outliers . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 System-level correlation of all metrics for the to-English language pairs at

WMT19, with and without outliers . . . . . . . . . . . . . . . . . . . . . . . 145

6.5 System-level correlation of all metrics for the other-than-English language

pairs at WMT19, with and without outliers . . . . . . . . . . . . . . . . . . . 146

6.6 System-level correlation of all metrics for the to-English language pairs at

WMT17, with and without outliers . . . . . . . . . . . . . . . . . . . . . . . 150

6.7 System-level correlation of all metrics for the from-English language pairs at

WMT17, with and without outliers . . . . . . . . . . . . . . . . . . . . . . . 151

6.8 System-level correlation of all metrics for the to-English language pairs at

WMT18, with and without outliers . . . . . . . . . . . . . . . . . . . . . . . 152

6.9 System-level correlation of all metrics for the from-English language pairs at

WMT18, with and without outliers . . . . . . . . . . . . . . . . . . . . . . . 153



Chapter 1

Introduction

Advances in natural language processing in recent years have been driven by empirical evalua-

tion. Accordingly, to make progress in any task, it is essential that our evaluation methods are

meaningful and reflect the true capability of our models. This thesis focuses on improving the

robustness of evaluation of machine translation (MT) systems.

With machine translation, we are not only attempting to teach a computer to understand

language, but also produce words in a new language that preserve the meaning of the original

text. How do we know how well we’ve succeeded in this challenging task? When we make

changes to a system, how do we know that this has resulted in an improvement? How do we

decide if it’s better than other MT systems?

As MT is intended for human consumption, it is natural to ask humans to judge translation

quality based on predetermined characteristics such as their adequacy and fluency. Adequacy

measures how much meaning is preserved in the translation, and fluency measures the clarity

and grammaticality of the translation. Ideally, we’d obtain these judgements from experts such

as translators or linguists who are skilled in picking up nuance in translation quality.

Crowdsourcing, i.e., paying a “crowd” of non-experts to complete our annotation tasks,

reduces the total cost and time involved, but introduces new complexities into the process as

annotator reliability can not simply be assumed. Human opinions are generally noisy and
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inconsistent, and this is further exacerbated by personal preferences and cognitive biases, which

can have a significant impact on the quality of annotations. Exactly how this annotation task

is structured has been evolving since the beginning of MT research, and this is still an active

research area.

Expert human evaluation can take weeks or even months. While crowdsourcing can be

significantly faster, there is a need for immediate feedback during MT system development:

to test whether an idea works, or to compare different iterations of an MT system. Automatic

metrics have been developed for this purpose. Automatic metrics are based on the assumption

that “the closer a machine translation is to a professional human translation, the better it

is” (Papineni et al., 2002). They assign a numerical score to Machine Translation output based

on how similar it is to a reference translation by a human expert. There are many ways to

correctly translate a sentence, and many more ways to be wrong. Any difference in the MT

output compared to the reference could be a valid way of expressing the same idea, could reduce

the fidelity or intelligibility of the translation, or even change the meaning of the sentence

completely. MT metrics must be flexible enough to allow valid variations, and yet discriminate

against invalid translations. While humans can intuitively make this judgement, this task

is extremely difficult to automate, and is still unsolved, despite many years of effort by the

research community.

BLEU (Papineni et al., 2002), which essentially computes overlap of n-grams in the MT

output when compared to multiple human references, was the first metric that reported a

high correlation with human judgements. It was widely adopted by the MT community, and

triggered research into understanding the metric: it has several flaws, such as a failure to

recognise valid synonyms and paraphrases, or to discriminate between the relative importance

of the words in the sentence (Callison-Burch et al., 2006; Stent et al., 2005). There have been a

variety of approaches to improve on BLEU. Shallow surface-level metrics, such as BLEU and

TER (Snover et al., 2006) predominate in practice, due in part to their reasonable correlation



3

to human judgements, and their being parameter free, making them easily portable to new

languages. In contrast, trained metrics (Song and Cohn, 2011; Stanojević and Sima’an, 2014;

Ma et al., 2017; Shimanaka et al., 2018), which are learned to match human evaluation data,

have been shown to result in a large boost in performance.

In addition to their use during system development, automatic metrics often serve as the

primary method of evaluation to report the quality of MT systems, serving as a cheaper alter-

native to human evaluation. For instance, the academic community uses small improvements

in automatic metrics to claim improvement in the state of the art. Making decisions based on

unreliable metrics could lead to wasted effort in attempting to reproduce spurious improvements

or discarding promising ideas (Freitag et al., 2020; Kocmi et al., 2021). It is thus essential to

pick the best metrics to report experiment results, and to understand the limitations of these

metrics when making conclusions.

This thesis contains several contributions to increase the efficiency and reliability of MT

evaluation, covering three different aspects of MT evaluation: human evaluation, automatic

evaluation, and the evaluation of automatic metrics.

Throughout this thesis, we use data from the Conference on Machine Translation (WMT;

previously Workshop on Machine Translation), which is run annually to provide a forum for MT

research (Koehn and Monz, 2006 through to Barrault et al., 2019). The news translation

shared task is an important feature of the conference, where participants can submit MT systems

to translate new test sets in multiple directions. The organisers have a firm belief that “automatic

evaluation is an imperfect substitute for human evaluation” (Koehn and Monz, 2006), and

accordingly base their primary results on a large scale human evaluation of the participating

MT systems. This shared task is a major source of innovation in new MT techniques, and

confirms whether ideas from the literature that were validated using automatic metrics hold up

to human evaluation and generalise to new, unseen test sets.
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The data collected from the human evaluation in WMT is used to evaluate automatic metrics

in the metrics shared task, which serves to validate existing automatic metrics and drive the

development of new metrics that refine existing methods or introduce novel approaches to

estimate MT quality. All data from WMT is publicly available, and we use this data to evaluate

our contributions to both human and automatic MT evaluation.

1.1 Research Questions and Contributions

Human Evaluation Our first set of research questions is concerned with collecting and

aggregating annotations for human evaluation of machine translation:

• Can we model annotator reliability when aggregating translation ratings from multiple

annotators?

• Does the order of annotations introduce bias in the data?

Human annotations are inherently noisy, and annotator reliability can vary, particularly

when the data is crowdsourced. To obtain an accurate label or rating for individual items,

typically multiple annotations are collected per item, which are first filtered based on quality

control items, and then aggregated using the majority vote (for discrete tasks) or average scores

(for numeric tasks). We propose a simple probabilistic model for MT human evaluation data

that infers annotator precision, and essentially weights each annotator’s scores based on their

precision when estimating the quality of a translation. This yields more accurate scores that

require fewer annotations per translation, compared to the recommended best practice of using

the mean score of workers who pass quality control.

When humans are evaluating a set of instances, they would ideally score each instance

independently. However, we are all subconsciously influenced by cognitive biases. We show

evidence of sequence effects in MT evaluation data, where the score of an instance is affected
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by scores assigned to previous instances. We suggest a simple method to mitigate the impact of

sequence effects when redundant annotations are obtained.

Automatic Metrics We next move on to designing automatic metrics:

• How can we leverage contextual word embeddings to improve Machine Translation

evaluation metrics?

• Can a supervised MT metric effectively learn from extremely noisy training inputs?

Contextual word embeddings map words to vector representations that depend on their sentence

context. We develop new MT evaluation metrics which rely on contextual word embeddings to

encode the translation and reference. Our first metric is a simple yet effective unsupervised

metric that approximates the precision, recall and F-score of the information in the reference.

Our supervised metrics compute sentence representations from the contextualised word embed-

dings, and then map these to a similarity score. We train these on human evaluation data, and

find that the metric reliability improves when evaluating on a large, but extremely noisy dataset

that was previously unexplored by supervised metrics. We show that when there is limited

budget for the number of annotations, model training is more efficient with single annotations

on more instances compared to accurate scores from aggregating multiple annotations on fewer

instances.

Evaluation of Metrics We finally re-evaluate the evaluation of automatic metrics:

• How is the correlation of metrics with human judgements affected by the set of MT

systems evaluated?

• How does metric reliability depend on the quality of the MT systems evaluated?

• When comparing two MT systems, how do conclusions based on automatic metrics

compare with those based on human evaluation?
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Metrics are typically evaluated based on the Pearson correlation with human judgements on a

small set of MT systems that are not an unbiased sample, or representative in any meaningful

way. We find that outlier MT systems whose quality is much better or much worse than the rest

of the systems have a disproportionate influence on the computed correlation. We identify a

robust method for identifying outliers, and demonstrate their effect on correlation, which for

some metrics can result in radically different conclusions about their utility.

The findings of the WMT 2019 shared task on metric evaluation show that the correlation

of metrics decreases dramatically when evaluated only on the systems with the highest human

scores (Ma et al., 2019). We suggest that this result can be attributed to the instability of

computing correlations at small sample sizes, and find that no empirical evidence that metrics

become less reliable as the MT system quality increases.

To determine how much we can trust automatic metrics, we quantify how often metric

conclusions agree with human decisions, given the difference between metric scores of two

MT systems. The academic community regularly uses small differences in BLEU scores to

claim a new state of the art, but we find that when the difference in BLEU scores is small, the

metric is not good at predicting the result of human judgements. On the other hand, even large

BLEU differences do not always guarantee agreement with human decisions. We show that

BLEU is clearly outperformed by other metrics, but ultimately, all metrics are an inadequate

substitute for high quality human evaluation.

1.2 Thesis Structure

The field of Machine Translation evaluation has a rich history, which we present in Chapter

2. We first chronicle methods used for large-scale human evaluation of multiple systems,

focussing on direct assessment (DA), which is the current method used by the annual Conference

on Machine Translation (WMT). Next, we introduce various approaches towards designing

automatic metrics. We describe popular metrics as well as the current state of the art metrics that
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form the baselines and benchmarks to our proposed metrics. Finally, we review the methods

used to evaluate and compare these metrics.

Chapters 3 and 4 focus on two aspects of improving human evaluation: better aggregation

and mitigating cognitive biases. We begin Chapter 3 with a review of probabilistic models to

aggregate data from various sources. We present an analysis of behaviour of MT annotators, and

then describe our model for MT quality scores. We present results on two multiply-annotated

MT adequacy datasets, and show that these models are more accurate than simply averaging

scores, which can be improved further when we remove the least reliable annotators. Finally, we

show that we can use heatmaps showing pairwise correlation of annotator scores to determine

whether we have collected sufficient annotations to yield accurate scores.

In Chapter 4, we first review cognitive biases, focussing on the biases that people are

susceptible to when making a sequence of decisions: the gambler’s fallacy, sequential contrast

effects and assimilation effects. We then present a simple linear model that can be used to

detect sequence effects, where the annotator response of the current item is influenced by

their response to the previous item. We provide evidence that sequence effects are present in

MT adequacy data, as well as other independent crowdsourced datasets in Natural Language

Processing.

Chapter 5 moves on to automatic evaluation. We begin with a review of contextualised word

embeddings. We describe our proposed new metrics: simple metrics that compute semantic

similarity between the embeddings of the MT output and the reference translation, followed by

supervised neural models that learn sentence representations and then predict the translation

quality. We also explore alternatives to our trained metrics, where we compare MT outputs

directly with the source instead of the reference. We present results on WMT datasets in various

settings, then provide an error analysis that shows where our metrics are right and where they

are wrong.
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Chapter 6 explores evaluation of automatic metrics. The first half of this chapter builds on

recent findings on the metrics evaluation task at WMT, which indicate that the correlation of

automatic metrics is affected by outlier systems, and the correlation falls dramatically when

restricted to the top MT systems. We look into the data to understand the significance of these

findings: (a) we propose means to identify outlier MT systems and illustrate the effect of these

systems when computing correlation between the metric and human scores, and (b) we analyse

whether the metrics are less reliable when comparing high quality MT systems. In the second

part of the chapter, we focus on the reliability of metric decisions when comparing two systems.

Using human judgements as the ground truth, we quantify the errors made by metrics when: (a)

a metric can not detect a difference in quality of two systems but humans can and (b) a metric

incorrectly concludes that system X is better than system Y when humans either judge system

X to be similar or worse than system Y.

We summarise the contributions of the thesis in Chapter 7. We discuss the limitations of

this work and present avenues for future work.



Chapter 2

Background: Machine Translation

Evaluation

In this chapter, we present a broad introduction to evaluation of machine translation. The first

part of the chapter is about human evaluation, where humans are asked to rate the quality of

MT system outputs; we focus on large-scale evaluation campaigns where multiple MT systems

are compared. We then move on to automatic metrics which are used as a cheaper and faster

alternative to human evaluation. We present approaches to designing automatic metrics, and

finally, we review meta-evaluation of automatic metrics which are assessed based on their

correlation with human judgements.

2.1 Human Evaluation Methodologies

Reliable evaluation is critical when measuring progress of MT research, or acceptability of

an MT system for a particular task. MT output is intended for human use, so the best way of

evaluating quality is to obtain human judgements.

We use human judgements on data from the Conference on Machine Translation (abbre-

viated WMT for historical reasons) throughout the thesis, both to demonstrate methods to
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improve human evaluation, and to evaluate automatic metrics. We begin this section with

pre-WMT evaluation campaigns that influenced WMT evaluation, before focussing on the

evolution of human evaluation methods at WMT. After a brief detour to review crowdsourcing

annotations, we describe direct assessment, the current method at WMT, in more detail.

2.1.1 Early MT Evaluation Campaigns

The Automatic Language Processing Advisory Committee conducted the first large-scale

rigorous evaluation of multiple MT systems (Pierce and Carroll, 1966). They asked human

experts to rate translations for intelligibility and fidelity. Intelligibility was measured directly

on a discrete 9-point scale, ranging from “perfectly clear and intelligible" to “hopelessly

unintelligible". To measure fidelity, annotators were presented with the translation first, and

then had to rate the informativeness of a reference by an expert translator, when compared to

the initial translation. For both tasks, evaluators were provided training, and given guidelines

for each available option. In addition, they measured informativeness of an MT system based

on scores on reading comprehension tests of the passages translated by MT systems when

compared with those by a human expert.

In the early 1990s, the DARPA MT initiative evaluated translations on metrics that were

modelled on the metric used by the US government to evaluate work by professional human

translators (White et al., 1994; White and O’Connell, 1994). Annotators were asked to assess

fluency and adequacy of translations on a discrete 7-point scale. Fluency is intended to capture

the grammaticality and idiomatic word choice of the translated sentence, irrespective of the

accuracy of the information. On the other hand, adequacy is intended to measure how much

information in the source sentence is preserved in the translation, without taking fluency into

account. Fluency was evaluated on whole sentences. Adequacy ratings were collected at the

level of linguistic components of a sentence of length ranging between 5 to 20 words, which
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Fig. 2.1 Screenshot of the evaluation interface used to collect adequacy and fluency ratings in
WMT 2006 and 2007 (Koehn and Monz, 2006).

were extracted using information from parse trees. The human evaluation of the NIST Open MT

challenges in the 2000s was based on the DARPA method (Consortium, 2002; NIST, 2002).

2.1.2 WMT Evaluation

Since 2006, the Conference on Machine Translation (WMT)1 has organised a large scale human

evaluation of the MT systems submitted in the translation task.

1Previously Workshop on Statistical Machine Translation (2006-2015). In 2016, the name was changed to
Conference on Machine Translation, but it has retained the acronym of WMT.
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Fig. 2.2 Distribution of adequacy scores given by five different judges in WMT 2006 (Koehn
and Monz, 2006)

Adequacy and Fluency

The human evaluation at the first WMT (Koehn and Monz, 2006) was influenced by the

evaluation at the NIST worshop. Judgements were collected by the participants of the news

translation task, a tradition that has continued till date.

Annotators were asked to rate the adequacy and fluency of a set of five MT system outputs

on a five-point scale based on the source and reference translation (Figure 2.1). The evaluators

reported that it was difficult to assign scores to long translations riddled with multiple errors.

They developed their own rules of thumb to decide between categories. This leads to different

distributions of scores for each annotator (Figure 2.2): some are more lenient than others and

aggregating these judgements into one final score is not straightforward.

In addition, there was a high correlation between fluency and adequacy scores. Fluency and

adequacy are expected to be naturally correlated, for example, a highly disfluent translation

is likely to be incomprehensible, and thus highly inadequate. In the WMT evaluation (Koehn

and Monz, 2006), this relationship could have been exacerbated due to both fluency and

adequacy being presented together, and the presence of the source translation and reference

biasing the annotator to consider the meaning of the translation even when evaluating fluency.

Furthermore, the presence of multiple translations on the screen enables annotators to consider

it a ranking task instead of providing absolute scores. Assessing the fluency and adequacy of

each translation independently could mitigate these sources of bias.
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(a).

(b.)

Fig. 2.3 Figure illustrating (a) the extraction of syntactic constituents from the source sentence
and alignment with the MT output, and (b) screenshot of the Evaluation interface used to collect
judgements for syntactic constituents in WMT 2006 (Koehn and Monz, 2006).
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In the next workshop (Callison-Burch et al., 2007), the organisers introduced alternative

evaluation methods: sentence ranking, ranking of syntactic constituents and binary acceptability

of these constituents.

Syntactic Constituent Ranking and Acceptability Judgements

Syntactic constituents between 3 and 15 words were automatically extracted from the source

sentence based on the output of parse trees, and mapped automatically to system translations

( Fig. 2.3 a) using a word alignment tool such as GIZA++ (Och and Ney, 2003). Annotators

are presented with the source, reference and MT system outputs with the selected constituent

highlighted, and are asked to rank them (Figure 2.3b) or to judge binary yes/no acceptability,

depending on the task. Only constituents which can be aligned to all five systems are used,

and this possibly introduces bias in the evaluation. Annotators for constituent ranking and

judgements were the fastest and most consistent, as measured by both inter- and intra-annotator

agreement. In addition, binary judgements offer the potential for re-use when evaluating another

system on the same test set. Nevertheless, these methods were discontinued after two years,

possibly due to difficulty in extracting constituents and aligning them to the translations.

Sentence Ranking

Sentence ranking was used as the official measure of evaluation between 2007 and 2016.

Annotators are presented with a block of three consecutive source sentences, and are asked to

rank a set of five system translations of each source sentence (Figure 2.4). Although this method

is simpler, annotator agreement is still very low; in WMT 2016, inter-annotator agreement

was only 0.357, as measured by Cohen’s Kappa. Systems can be unfairly advantaged (or

disadvantaged) if they are often compared to systems that are very bad (or very good). In

addition, information on the degree of difference between translations is lost, and it is not
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Fig. 2.4 Screenshot of Appraise, the tool used to collect translation rankings at WMT (Bojar
et al., 2014).

straightforward to compute a final ranking of all systems from multiple partial rankings (Lopez,

2012; Hopkins and May, 2013; Sakaguchi et al., 2014).

Direct Assessment

In 2016, a new method to collect absolute judgements (Graham et al., 2013) was trialled, and

has been officially adopted since 2017. Annotators score translation quality using a visual

analogue scale ( Fig. 2.5), which is mapped to continuous scores that range between 0-100.

The score of an MT system is the average score of all its translations. This method has a high

correlation with sentence ranking, but requires considerably fewer annotations as the number

of assessments per system scales linearly instead of quadratically. Finally, annotators are not
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Fig. 2.5 Screenshot of the annotation interface for direct assessment (Graham et al., 2013).

forced to choose between categories, and a wider array of statistical methods can be applied on

continuous scores to solve the problem of differing internal scale.

Direct assessment also contains built-in measures for quality control, that allows it to be

crowdsourced. This thesis relies heavily on DA: we present methods to improve the collection

and aggregation of crowdsourced DA judgements, and primarily use DA scores to evaluate

automatic metrics. We describe direct assessment in detail in Sec. 2.1.4, but before that,

we make a small detour to crowdsourcing. This next section contains a brief description of

crowdsourcing annotations and early experiments on obtaining crowdsourced annotations in

the area of natural language processing and more specifically, machine translation evaluation,

along with simple attempts to solve the challenges that come with crowdsourcing.

2.1.3 Crowdsourcing Annotations

Howe (2008) defines crowdsourcing as “the act of taking a job traditionally performed by a

designated agent (usually an employee) and outsourcing it to an undefined, generally large

group of people in the form of an open call.” Platforms such as Amazon Mechanical Turk

and Appen allow requesters to pay workers for completing Human Intelligence Tasks (HITS).

Workers (also called “Turkers” on Amazon Mechanical Turk) are free to choose HITS that

interest them, and are paid on completing the HIT. Requesters have the option to reject payment
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for poor quality work, or to offer bonuses for excellent work. The task needs to be designed

carefully to accommodate untrained workers and filter out low quality annotations from workers

who do not complete the task in good faith.

Typically, HITS include quality control items to help identify poor quality work. For

example, items with known answers can give an estimate on worker accuracy. And finally, to

obtain more reliable labels, multiple annotations are collected for each item, which can then

be aggregated. Typically, this means using the majority label for categorical tasks, and the

arithmetic mean for continuous labels. However, this ignores the differences in reliability and

expertise of annotators, and we can potentially obtain better results when we model annotators.

Crowdsourcing in NLP and MT

Snow et al. (2008) were the first to systematically evaluate crowdsourcing data for natural

language processing. They obtained and analysed data for five tasks that require different

kinds of annotations: affective text analysis (continuous ratings between 1 and 100 for six

emotions), word similarity (ordinal scale between 1-10), textual entailment (binary yes/no

judgements), temporal event annotation (binary judgements), and word sense disambiguation

(varying number of senses). Simple aggregation of ten annotations per item was sufficient

to match the performance of human experts, in a fraction of the time and at considerably

less expense. They didn’t employ any methods to filter out low-quality annotations, but

experimented with methods to model the reliability and bias of workers, which we describe in

the next chapter (Sec. 3.2).

In Machine Translation, crowdsourcing has been used to obtain parallel corpora (Ambati

et al., 2010), create reference translations (Bloodgood and Callison-Burch, 2010), obtain

paraphrases to supplement existing references (Denkowski et al., 2010) as well as evaluate MT

systems. Zaidan and Callison-Burch (2011) have used MTurk to crowdsource translations, with

additional HITS to post-edit, and then filter out bad translations.
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To test the possibility of using crowdsourced judgements for ranking MT systems, Callison-

Burch (2009) used Amazon Mechanical Turk to replicate the translation ranking judgements of

WMT 2008. This task is to rank a set of five translations of the same source sentence, and they

obtained 5 repeat annotations for each set of translations. For each pair of translations in the

set, they used the weighted majority of worker judgements to decide which translation is better.

They experimented with two criteria for weighting workers: (a) agreement with experts on 10

initial judgements, and (b) agreement with the four other workers. The Spearman correlation of

system ranks2 using these crowdsourced judgements and expert judgements matched the expert-

expert correlation (around 0.8). Weighting workers improved agreement between workers,

but made no significant difference to correlation of MT system ranks with expert judgements.

Crowdsourced judgements were used to supplement expert judgements between WMT 2010 to

2013 (Callison-Burch et al., 2008; Bojar et al., 2013), but were subsequently dropped due to

very low agreement rates.

Denkowski and Lavie (2010b) collected adequacy ratings for machine translation output

from English to Arabic on an ordinal scale of 1-4. They collected scores from 10 workers per

translation, and also collected expert scores for around 10% of the translations. They tried

different strategies to improve the quality of the data collected from Mechanical Turk, some of

which were inspired by Callison-Burch (2009):

1. Removing Low-Agreement Judges: Remove workers with low inter-annotator agreement

with other workers, then compute the average score of remaining workers.

2. Removing Outlying Judgements: For every translation, remove scores whose distance

from the average score exceeds a threshold, then recompute the average.

3. Weighted Voting: weight each worker’s scores based on their agreement with expert

scores.
2An MT system’s scores were calculated as the average number of times that it was preferred to any other

system.



2.1 Human Evaluation Methodologies 19

4. Scaling Judgements: Shift the scores of each worker by a constant such that their mean

score matches the average of expert scores on the set of overlapping translations.

In the end, they chose a two-stage normalisation scheme that relies on the availability of expert

judgements: First, the scores of workers that consistently score above or below the expert

scores are scaled. The final score was the average score weighted by agreement with the

gold standard, after discarding workers with poor quality annotations. This two-stage method

resulted in improving sentence-level correlation 3 with expert judgements to 0.487, which is a

substantial improvement from the correlation of the raw data (0.078). While the quality of these

crowdsourced judgements is considerably low, they are also a lot cheaper to obtain compared

to expert judgements.

When crowdsourcing judgements on a continuous scale, as done with direct assessment, it

is difficult to directly use the usual controls established for quality control of discrete or ordinal

labels. We can not expect annotators to exactly replicate the score by a human expert, as it is

possible that they are more or less lenient than the expert; their scores might disagree with the

“gold” scores, but be internally consistent. This necessitates other creative methods to filter out

low-quality data. The next section describes DA and its quality control methods.

2.1.4 Direct Assessment

Graham et al. (2013) proposed using continuous scale judgements to evaluate MT. Annotators

are asked to rate the MT output using a continuous slider, which maps to an underlying scale of

0-100. The slider has markings that divide the scale into four equal parts to help annotators

with internal calibration.

To measure adequacy, annotators are asked to rate the similarity between an MT output and

a human reference translation. In a separate task, annotators are asked to rate the fluency of the

3The type of correlation is not specified.
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sentences. They are not shown the reference during fluency assessment, and this serves as an

independent evaluation of the MT outputs, without any potential for reference bias.

To reduce costs, these annotations are crowdsourced using Amazon Mechanical Turk. The

HITs are designed to filter out inconsistent workers and obtain enough judgements to reduce

worker bias. Each HIT contains 100 items:

• 70 outputs of the MT systems being evaluated

• degraded versions of 10 of these translations,

• 10 reference translations by a human expert, corresponding to 10 system translations,

and

• repeats of another 10 translations.

There is a gap of 40 sentences between an MT output and the corresponding quality

control item (repeat, reference, or degraded translation), to minimise chances of annotators

remembering the score they assigned earlier. The scores on the quality control items are used

to filter out workers who either click randomly or on the same score continuously. The repeat

sentences are used to measure intra annotator consistency. A conscientious worker would give

a near perfect score to reference translations, and give a lower score degraded translations when

compared to the corresponding MT system translation. Other indications of low quality work

are clicking the same score in sequence, or completing the 100 annotations in a few seconds.

After filtering out workers who do not meet the quality control requirement, annotations for the

70 MT outputs and the 10 repeats are used in the evaluation.

In the next chapter, we show that this quality control mechanism often filters out useful

data, unnecessarily increasing the cost of the evaluation.

Individual workers may have their own internal scale, and to make the worker score

distributions more consistent, every individual worker’s scores are standardised by subtracting

the worker’s mean, and dividing by their standard deviation. The final score of an MT system

is the mean score of all its translations. While continuous scores of individual translations may
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be noisier when compared to interval level ratings, this noise is expected to cancel out when a

large number of translations are averaged.

Accurate Scores for Individual Translations

Manual MT evaluation is subjective and difficult, and it is not possible even for a diligent

human to be entirely consistent on a continuous scale. Thus, any human annotations are noisy

by nature.

To obtain accurate scores of individual translations, multiple judgements are collected and

averaged (Graham et al., 2015). This is validated by the law of large numbers, which states

that for independently, identically distributed (i.i.d) samples, the sample mean approaches the

population mean as the size of the sample increases. This was empirically tested by obtaining

two independent sets of judgements: for a sample size of 15, the mean scores have a correlation

greater than 0.9 for all language pairs, and sample size of 40 are almost perfectly correlated

for Spanish-English translations. We verify this in Sec. 3.5, and propose a better method to

aggregate these scores.

However, it is possible that the i.i.d assumption is violated, and all annotators have the same

bias. In Chapter 4, we explore one such source of bias.

Direct Assessment at WMT

Direct assessment has been used to collect human judgements at WMT since 2016, and the

methodology has been refined over the years. This section presents the changes to DA to

improve reliability.

The annotations were entirely crowdsourced in 2016, and it was difficult to source skilled

workers to evaluate translations in languages other than English. Since 2017, DA adequacy

judgements have been the official evaluation method at WMT (Bojar et al., 2017b). The

evaluation of English translations is crowdsourced, and judgements for translations into other
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languages are collected from participants of the WMT news translation shared task. The

correlation of MT system scores sourced through researchers and crowd workers was above

0.98 for three language pairs, confirming the reliability of the crowdsourced evaluation. Fluency

evaluations were dropped, probably due to high correlation with adequacy scores and to save

costs.

In 2018, WMT organisers investigated bilingual assessment for English → Czech trans-

lations, where MT was compared directly with the source input and the reference transla-

tions were not displayed to the annotators (Bojar et al., 2018). This helps remove reference

bias (Fomicheva and Specia, 2016) and also guards against potentially low-quality reference

translations. Finally, since the reference translation is not required to evaluate MT systems,

it can instead be included in the evaluation as a benchmark for MT systems. Since 2019,

all evaluations in languages other than English have been bilingual (Barrault et al., 2019).

Monolingual evaluation is still used for translations into English where the DA judgements are

crowdsourced.

When constructing HITs in the original proposal of DA, annotators were presented randomly

sampled translations from all MT systems included in the evaluation. Since most MT systems

translate MT sentences independently, their translations of a document can be incoherent even if

individual sentences appear to be of high quality (Läubli et al., 2018; Toral et al., 2018; Graham

et al., 2020). In 2019, the evaluation was updated to included document context: annotators

score translated sentences of an MT system in document order.

2.2 Automatic Metrics

While human judgements are more reliable for evaluating machine translation systems, they

are expensive and time-consuming. The need for cheap, immediate feedback motivates the

development of automatic methods. Automatic metrics evaluate MT system performance by

comparing the semantic similarity of an MT system output (also referred to as a hypothesis
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or candidate translation in the literature) with one or more reference translations provided by

professional human translators. Automatically determining the validity of variations in the MT

output from the reference is not easy, and this is still an active research area.

In addition to comparing MT systems, automatic metrics play a vital role in tuning the

parameters of statistical MT systems (Och, 2003; Watanabe et al., 2007). In recent years,

reinforcement learning approaches have been designed to directly optimise neural MT systems

to BLEU (Wu et al., 2018).

This thesis heavily focuses on automatic metrics: in Chapters 3 and 4, we focus on human

annotations which are used to train and evaluate metrics; in Chapter 5, we propose new

automatic metrics; and in Chapter 6, we revisit evaluation of these metrics.

This section provides a detailed background on automatic metrics. We begin with the

desiderata for automatic metrics. We provide historical context into the development of

automatic metrics and we provide more detail about the challenges for designing metrics to

evaluate machine translation. We introduce BLEU, the first metric that attempted to solve these

challenges. We then summarise various approaches taken by existing metrics to improve on

BLEU, and identify areas of improvement that serve as the basis for our metrics in Chapter 5.

We present a brief overview of reference-free automatic metrics. We describe selected metrics

in more detail: BLEU, METEOR, TER and chrF, which are our baselines, and YISI-1 and

RUSE, which were the state of the art at the time when we developed our metrics. In Chapter

6, when we are re-evaluating metric evaluation, we focus on a subset of these metrics. Finally,

we present a detailed overview of methods to evaluate automatic metrics (meta-evaluation),

focussing on measures used at the annual WMT metrics shared task which drives research into

automatic metrics today.

2.2.1 Criteria

What are the criteria of an effective automatic metric?
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The most important requirement is that it reflect the true quality of MT systems. While

human evaluation is not perfect, a carefully designed evaluation is the closest we have to the

ground truth, and automatic metrics are evaluated based on their fidelity to human scores.

This is typically measured by the correlation of metric scores on a set of MT systems against

human scores. It is also useful to understand which sentences are translated well or poorly, and

we would also like our metrics to correlate with human judgements when scoring individual

sentences (see Sec. 2.3 for more details on evaluating metrics).

Other criteria for metrics include:

• High discriminative power: we need metrics to correctly choose the best system among

systems with very similar quality.

• Cross-lingual portability: it should be easily portable to new languages.

• Immune to adversarial attacks: when MT systems are directly optimised to metrics, it is

important that they do not exploit loopholes in the metric that allow them to obtain high

metric scores that do not reflect the true quality.

• Speed and usability: a metric that satisfies all these criteria would not be adopted by the

research community unless it is freely available, easy to use, and reasonably fast when

scoring a test set.

It would be truly difficult to design a one-size-fits-all perfect metric. Many are developed

with English or other European languages in mind, and are directly ported to other languages

depending on the availability of the external resources required. A metric that is reliable when

evaluating translations in one language may not be reliable over other languages. Languages

differ widely in how words are formed, and how much information is contained in a single

word. With highly analytic languages like Chinese, a word typically represents a single concept.

On the other extreme are polysynthetic languages like Inuktitut, where an entire clause can be
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represented in a single word (Micher, 2017). In addition, the importance of word order differs

across languages, partly due to a difference in morphological complexity (Comrie, 1989).

Furthermore, there might be variance in metric reliability even when evaluating MT systems

translating from different languages into the same language. For example, if the two languages

are from the same language family, then it might be easy for MT systems to get the word order

right. In this case, a metric that doesn’t contain a penalty for wrong word order could still be

reliable. This would not hold when evaluating translations from a distantly related language

where it is more likely that MT systems make critical mistakes with the word order.

And finally, even when translating from the same source language to the same target

language, metric reliability depends on the set of systems evaluated, the domain, and possibly

even the test set and the references.

2.2.2 Approaches to Designing Automatic Metrics

In this section, we present a history of the development of automatic metrics, reviewing

the various approaches used to compute translation quality when comparing the MT output

with a reference translation. We then present selected metrics in more detail in Sec. 2.2.4

The first automatic metric used in MT research, the word error rate (WER), was borrowed

from the speech recognition community (Olive et al., 2011). This is based on the Levenstein

distance (Levenshtein, 1966) of the MT system output with the reference translation, that

computes the minimum number of words that need to be substituted, inserted or deleted

to change the candidate to the reference. WER is computed as the total number of errors

normalised by the length of the reference.

WER =
Substitutions+Deletions+ Insertions

reference length
(2.1)
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However, such a straightforward string comparison to an independently translated reference

does not work well, because there are multiple valid ways to translate the same source sentence.

When comparing with a reference, any variation in word choice or phrase order of the candidate

from the reference could either mean the translation is still valid or that it has errors of varying

severity. For example, a valid paraphrase of the sentence would preserve the meaning but

possibly have a large WER. On the other hand, a missing negation is a small deviation from the

reference with a drastic impact on meaning. Automatically evaluating MT is an active research

area, and there are a variety of approaches to solve this problem.

An early approach to allow for different choices in phrase-ordering was position-independent

error rate (PER), which was introduced as an alternative to WER in a paper that presented

an algorithm to speed up the decoding step of the translation process of statistical MT sys-

tems (Nießen et al., 1998). PER ignores word order completely and considers the sentence as a

bag of words. It counts the number of substitutions, and either deletions or insertions required

such that all the words in the translation are matched with the words in the reference. Where

WER harshly penalises any deviation from the reference, PER gives high scores to completely

scrambled translations as long as there is lexical overlap. Neither metric recognises valid word

variation in word choice.

One way to mitigate this was to introduce multiple references: Alshawi et al. (1998)

computed WER of the translation with multiple references, and chose the reference closest

to the translation, i.e., the one that gives the minimum error. However, the closest “correct”

translation is unlikely to be a part of the available set of references, and this still underestimates

the translation quality.

BLEU was developed in 2002 by researchers at IBM specifically to evaluate MT sys-

tems (Papineni et al., 2002). BLEU computes the precision of n-grams of the translation

compared to the reference, rewarding local ordering of words while not requiring the same

global order. BLEU was designed to exploit multiple references more fully than WER: n-grams
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in the hypothesis are marked correct if they match with n-grams from any of the available

references. These references were expected to be produced by translators with different styles,

with the hope that this would mitigate any biases towards or against any particular MT systems.

Even if the metric was not always accurate when evaluating individual sentences, these errors

would cancel out when computed across the whole test set. The metric was introduced with

some carefully-thought out measures to avoid potential pitfalls. Most importantly, it was

supported with empirical data: it had a high correlation with human adequacy and fluency

scores over a set of three commercial MT systems and two human translators (one a native

speaker and the other not) translating from Chinese to English.

BLEU was very quickly adopted by the MT community. This popularity was further

cemented by its use in tuning statistical MT systems: in 2003, methods were proposed to directly

optimise to automatic metrics instead of maximising likelihood (Och, 2003). The authors tested

several metrics including WER, PER and BLEU, but made no definitive conclusions as to the

best metric. However, by 2004, BLEU appears to have become the chosen metric for both

system tuning (Shen et al., 2004; Och et al., 2004) and evaluation (Koehn, 2004).

It also sparked research in understanding the usefulness of this metric (Doddington, 2002;

Coughlin, 2003), and prompted the development of metrics that identify and address its limita-

tions. These metrics use a wide variety of approaches to compute a similarity score between

the MT system output and the reference(s): (a) exact matches: rewarding lexical similarity

of words, n-grams, or, more recently, characters; (b) synonyms and paraphrases: rewarding

matches of words or phrases that have the same meaning and can be used interchangeably; and

(c) embeddings: moving from symbolic to distributed representations allows for a continuous

measure of similarity between words. Finally, some metrics use additional linguistic informa-

tion such as part of speech, constituency and dependency trees, semantic roles and discourse

roles.
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Many metrics combine these components with rules or heuristics to obtain a single score

(as with BLEU and WER). Some metrics such as METEOR and TER use a development set to

tune the weights of individual components (Snover et al., 2009; Denkowski and Lavie, 2010a;

Lo and Wu, 2013). Finally, other metrics are fully supervised, where they use a selection

of these individual components as features (Albrecht and Hwa, 2007; Song and Cohn, 2011;

Fishel et al., 2012; Stanojević and Sima’an, 2014). Some of these metrics are ensembles of

other existing metrics (Joty et al., 2014; Yu et al., 2015; Ma et al., 2017). In recent years, we

have seen the rise of neural end-to-end metrics that learn sentence representations from scratch

or beginning with pre-trained embeddings (Gupta et al., 2015; Shimanaka et al., 2018). The

supervised metrics are trained on human evaluation data; depending on what data is available,

they are either framed as a regression task directly to predict scores, or use a learning to rank

framework (Li, 2011) to distinguish between different translations of the same source sentence.

In the next section, we describe the key components that existing metrics use when matching

the contents of the two sentences, and how they use this information to compute the final metric

score.

Exact Matching: Word and Character Level

Exact word matching, as with WER and BLEU, is an obvious criterion for measuring sentence

similarity.

Metrics like CDER and TER are based on modifications to edit distance, in an attempt to

find the middle ground between WER and PER. When computing WER, if an MT system

generates a phrase of n words in a correct, but different position to the reference, WER counts

this movement as n additions and n deletions. CDER (Leusch et al., 2006) and TER (Snover

et al., 2006) are modifications of the Levenshtein distance that reduce this harsh penalty for

movement of phrases.
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Other metrics follow BLEU in computing overlap between word n-grams, and use various

strategies for combining this information. NIST (Doddington, 2002) is a direct modification

of BLEU, which, among other tweaks, weighs n-gram matches based on their frequency in

the test set. The ROUGE family of metrics (Lin and Och, 2004) computes n-gram recall

instead of precision, and introduces skip-bigrams which allow for gaps between the two words

matched.4 GTM introduced the F-score (the harmonic mean of recall and precision) over

matched n-grams, as a way to balance between the two components that measure whether all

content in the translation is correct and whether all the content in the reference is available

in the translation. Other strategies include computing an alignment between the words in the

translation and reference, then computing precision, recall or F-score on the matches in the

alignment. For example, METEOR (Banerjee and Lavie, 2005) includes a greedy aligner, and

MAXSIM and TESLA (Chan and Ng, 2008; Liu et al., 2010) compute an optimal alignment.

Finally, in any sentence, some words are more important than others towards expressing

the general idea of a sentence. For example, when comparing Arrietty borrowed a sugar cube

and Arrietty stole sugar cube, the loss of a renders the sentence less fluent, but does not make

much difference to adequacy. For this reason, some metrics assign a lower weight to function

words (Denkowski and Lavie, 2010c), or use idf-weighting that gives more importance to less

frequent words (Lo, 2017). This also helps with reducing the reward for spurious matches of

highly frequent words like the. However, this can be problematic. For example, with can be

considered a function word, but when comparing she ate with a spoon and she ate a spoon,

removing the word makes the sentence slightly nonsensical and definitely incorrect.

Languages like Chinese and Japanese do not use white space as a word delimiter and require

a pre-processing step for word segmentation. Metrics were designed specifically for these

languages which compute the n-gram similarity at the character level instead; skipping the

noisy word segmentation step improves correlation of the metric (Li et al., 2011; Liu and Ng,

2012).
4ROUGE was originally developed to evaluate automatic text summarisation.
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Computing character-level similarity also helps with matching morphological variants of

words in all languages, and are particularly useful for languages like Finnish and Russian

that have rich morphology. Character-level metrics like CharacTER (Wang et al., 2016) and

EED (Stanchev et al., 2019), which compute edit distance over characters, and chrF (Popović,

2015), which computes the F-score of character n-grams, have the simplicity, efficiency and

portability of BLEU. And they typically outperform not just BLEU, but also some fairly com-

plex metrics. BEER is a trained metric, whose features included word matching and precision,

recall and F-score of character n-grams, as well as syntactic features and permutation trees to

model reordering (Stanojević and Sima’an, 2015). Later versions of the metric (Stanojević,

2017) only consisted of lexical features as the high correlation was mostly attributed to the

character-level features; any gain in correlation from including the more complex features was

not worth the decrease in efficiency.

Flexible Matching: Synonyms and Paraphrases

Requiring exact matches with the references means that metrics assign lower scores to transla-

tions with a valid but different word choice from the reference. While this can be mitigated to

some extent by using multiple references, it is expensive to generate multiple references, and a

small set of references can not capture the entire set of valid variations. This motivates the use

of more flexible matching.

In addition to surface-level lexical comparison, some metrics use external resources to match

synonyms and paraphrases. Princeton WordNet (Fellbaum, 1998) is a manually constructed

lexical database that contains semantic relationships between more than a hundred thousand

words. In particular, it groups synonyms, words which refer to the same concept and can largely

be used interchangeably, into synsets. METEOR introduced the concept of synonym matching

to automatic MT evaluation. The METEOR aligner matches words in the translation and

reference if they belong in the same WordNet synset. Including WordNet synonyms improved
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correlation for METEOR, and the strategy was also adopted by metrics like TESLA and

TER-PLUS.

This variation in expressing the same concept is not restricted to the word level; phrases that

have low surface-level similarity can have the same meaning. Moreover, developing a wordnet

requires several years of human effort, and mature wordnets are available only for a limited

set of languages. Paraphrase tables can be computed automatically from parallel corpora

for any language (Bannard and Callison-Burch, 2005). Many metrics incorporate paraphrase

similarity, either before computing the alignment between the two sentences (Denkowski and

Lavie, 2010c; Marie and Apidianaki, 2015), or using paraphases as additional references when

computing the score (Pang et al., 2003; Barančíková, 2014). Synonym and paraphrase matches

are not unlikely to be noise, and the word context plays a crucial role in determining whether

a word can be replaced with a synonym or not. Most metrics address this issue by simply

assigning a lower weight to these matches, but some attempt to determine the validity of the

substitution by training a classifier (Kauchak and Barzilay, 2006) or using existing word sense

disambiguation tools (Marie and Apidianaki, 2015).

Flexible Matching with Embeddings

So far, we have treated words (or groups of words) as symbolic units. When comparing them,

we look at exact matches, or use synonym or paraphrases to match words that can be used

interchangeably in a given context. So the matching is binary: two words or phrases are either

matched or not. However, meaning similarity is a gradient: the word ancient does not have the

same meaning as past, old or history, but it is more similar to these words than gift, amorphous

or physics.

Word embeddings map each word to a dense vector in high dimensional space, such that

semantically similar words are closer in the space compared to words with very different

meanings. These distributed representations can then be used to automatically compare word
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similarity in a continuous space, for example, by computing the cosine similarity between the

embeddings of the two words.

Metrics extend BLEU directly by also rewarding fuzzy n-gram matches in addition to exact

matches (Wang and Merlo, 2016; Tättar and Fishel, 2017). Servan et al. (2016) and Fomicheva

et al. (2015) use embedding similarity in addition to or in place of synonym matching, to reward

fuzzy matches if the word embedding similarity is greater than a threshold that needs to be

carefully chosen to balance between precision and recall. MEANT 2.0 (Lo, 2017) directly

uses the cosine similarity of the word embeddings.

However, classic word embeddings are independent of word context, and context is captured

instead using hand-crafted features or heuristics. For example, UPF-COBALT (Fomicheva

et al., 2015) uses additional rules to only reward matches where the words are in the same

context. More recently, methods for creating contextual word embeddings (Peters et al., 2018;

Devlin et al., 2019) have been developed, where the representation of a word is dependent on

its context in the sentence. When comparing embeddings of the same word in two sentences,

the similarity will be higher if the word context is similar in both sentences. In Chapter 5, we

use off-the-shelf contextual word embeddings to design a metric that is highly effective despite,

or perhaps because of, its simplicity.

Another approach is to match the sentence embeddings of the reference and translation.

The DREEM metric (Chen and Guo, 2015) computes sentence embeddings as a concatenation

of three different methods: one-hot representations based on the counts of the words in the

sentence, the average of pre-trained word embeddings, and unsupervised sentence embeddings

computed from unsupervised recursive auto-encoders. The final score is the cosine similarity

of the sentence embeddings. This method only requires pre-trained word embeddings, and is

not further trained on human annotations.

Metrics such as UOW-REVAL and RUSE directly learn embeddings of the entire translation

and reference sentences, and are trained end-to-end to predict scores. UOW-REVAL (Gupta
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et al., 2015) learns sentence representations of the MT output and reference translation as

a Tree-LSTM (Tai et al., 2015), and then models their interactions using the element-wise

difference and the Hadamard product between the two representations. RUSE (Shimanaka

et al., 2018) has a similar architecture, but it uses pre-trained sentence representations instead

of learning them from scratch on the training dataset

In both these “neural” metrics, the two sentence representations are learned independently,

and are then compared. To improve on this, we look to other NLP tasks that have sentence-pairs

as inputs such as natural language inference (Bowman et al., 2015), paraphrase detection,

and semantic textual similarity (STS) (Cer et al., 2017). These tasks share similarities with

the automatic MT evaluation: a good translation entails the reference and vice-versa, and an

irrelevant or wrong translation would be neutral or contradictory compared to the reference.

The similarity with paraphrase detection and STS is even more direct, except that MT outputs

are not always fluent. For these tasks, models that include pairwise word interactions when

learning sentence representations have a higher accuracy than systems that process the two

sentences independently (Rocktäschel et al., 2016; Chen et al., 2017; Wang et al., 2017). In

Chapter 5, we adopt this idea of learning sentence representations conditioned on the other

sentence to the task of automatic MT evaluation, which we then use to predict translation

quality. Additionally, we build on contextual word embeddings when learning these sentence

embeddings.

Since we designed these metrics, there has been other work that uses contextual embeddings.

Most notably, BERTSCORE uses similar ideas as our pre-trained metrics, and was developed

independently and released during the review period of our paper. In Chapter 4, we talk

about this metric in more detail and compare it with our work. YISI-1 was updated in 2019

to use contextual word embeddings instead of word2vec. And more recently, there have

been a plethora of supervised metrics that build on contextual word embeddings such as

BLEURT (Sellam et al., 2020) and COMET (Rei et al., 2020a).
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Other Approaches

Other metrics use additional resources to make more linguistically-informed matching. Instead

of lexical overlap, some syntax-based metrics compute overlap over part of speech tags,

syntactic constituents, dependency chains or semantic roles (Liu and Gildea, 2005; Giménez

and Màrquez, 2007a; Mehay and Brew, 2007; Popović and Ney, 2009; Yu et al., 2014).

Errors from these pre-processing tools can propagate to the metric, particularly when the

input is machine translation outputs that are not fluent. Some metrics attempt to solve this

by computing the linguistic structures on the reference sentence only (Yu et al., 2014). But a

more compelling argument against these methods is that they are computationally expensive

and require resources that are available only in a limited set of languages. Ma et al. (2017)

show that including these expensive syntax-oriented metrics only results in a small gain in their

ensemble metric, so only use lexical metrics.

2.2.3 Reference-free Automatic Evaluation

Automatic metrics require a one-time investment of generating high quality metrics. It would

be very useful to evaluate MT system quality by comparing MT system outputs directly with

the source sentence.

Reference-based automatic metrics can be biased towards MT system translations that are

superficially similar to the reference, so comparing directly with the source can potentially

remove reference-bias. However, these can be biased towards MT systems that produce literal

translations of the source that are not fluent, but also potentially inaccurate.

This task of automatic reference-free evaluation has a rich history in the application of

estimating the quality of translations of a single MT system. Possible use-cases include:

• to determine whether a translation is perfect, needs post-editing, or if the translator is

better off starting from scratch.

• to estimate post-editing cost.
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• to automatically estimate whether a translation is adequate for gisting purpose

WMT has included a shared task on MT quality estimation (QE) since 2012 (Callison-Burch

et al., 2012). Early QE systems were typically supervised models, with features from the source

sentence (measuring translation difficulty), system output (measuring translation fluency and

comprehensibility), and both (measuring translation adequacy)(Blatz et al., 2004; Specia et al.,

2009, 2013). Some features require the corpus that was used to train the MT system, linguistic

tools such as parsers or part-of-speech taggers, or even internal information from the MT

system which indicate its confidence in the translation. Another set of important features can

be obtained by using the outputs of a high-quality MT system as pseudo-references, and using

scores of automatic metrics such as METEOR.

End-to-end trained deep neural networks resulted in a significant boost in performance.

The predictor-estimator model (Kim and Lee, 2016), a key neural architecture, consists of two

stacked modules: (a) an encoder-decoder that is trained on parallel data to predict translation

probabilities of the MT output; and (b) an estimator which uses the representations from the

predictor module to estimate translation quality. The latest state of the art quality estimation

systems use cross-lingual pre-trained contextual embeddings (Specia et al., 2020).

WMT 2019 metrics task introduced a new track inviting reference-free metrics that were

evaluated in the same setting as traditional reference-based metrics. The best-performing

metrics, UNI (Yankovskaya et al., 2019) and YiSi-2 (Lo, 2019), were both based on cross-

lingual embeddings. UNI is a trained neural model that predicts translation quality from

sentence representations that are obtained from pre-trained cross-lingual embeddings LASER

and BERT. YiSi-2 is a reference-free version of YiSi (which we describe in Sec. 2.2.4) which

uses multilingual BERT embeddings.

More recently, the state of the art in reference-free evaluation of MT systems has been

advanced by metrics that use the probabilities of a large, multilingual neural machine translation
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model to score the MT outputs given the source sentence (Thompson and Post, 2020; Agrawal

et al., 2021).

2.2.4 Selected Metrics

We describe selected metrics in more detail, along with their strengths and weaknesses based

on our criteria.

• Baselines: BLEU, METEOR, TER, CHRF. BLEU is still the most widely used eval-

uation metric. In addition to BLEU, some research papers also include the results of

METEOR and TER, and more recently, CHRF.

• Benchmarks: RUSE and YISI-1 are both embedding–based metrics that were the best

metrics at WMT 2017 and 2018.

BLEU

BLEU is based on precision of n-grams of the MT output when compared with one or more

reference translations. BLEU allows some flexibility in word order of the translation, by

allowing matches of n-grams anywhere in the sentence. BLEU was originally designed to use

multiple translations to account for variation in word choice and word order. Since multiple

translations are used, it is not possible to use recall directly. In place of recall, BLEU uses

a brevity penalty for translations shorter than the (shortest) reference, as shorter MT outputs

usually can not contain all the information in the source sentence.

Translations that include multiple instances of words with high-likelihood of being in the

reference will have an inflated value of precision. To solve this, the count of each n-gram in the

candidate translation is clipped by the maximum count of the n-gram in the reference.

countclip(x) = min(count(x), max_ref_count(x)) (2.2)
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The values of the precision will necessarily get smaller as the n-gram order increases. For

example, there will be fewer exact matches of 4-grams compared to unigrams. Noting that this

decrease in n-gram precisions is roughly exponential with n, Papineni et al. (2002) chose to

convert them to the logarithmic scale before averaging them, which is equivalent to using the

geometric mean.

The final BLEU score is the weighted geometric mean of the clipped n-gram precisions,

scaled down by the brevity penalty.

BLEU-N = BP.
( n

∏
N=1

pn

) 1
n

, (2.3)

where

pn =
∑s∈candidate sentences ∑n-gram∈s Countclipn-gram

∑s′∈candidate sentences ∑n-gram′∈s′ Countclipn-gram′ (2.4)

Brevity penalty BP =


1 if c > r

e1− r
c if c ≤ r

(2.5)

Although BLEU was originally designed to be used with multiple references, it is typically

used with a single reference today.

When computing BLEU scores for short documents or single sentences, it is very likely

that there are no matches of the higher order n-grams. As BLEU uses a geometric average,

a precision of zero over 4-grams or even 3-grams results in a BLEU score of zero for the

sentence. This necessitates smoothing of zero counts. A variety of techniques such as the add 1

smoothing (Lin and Och, 2004) have been proposed, and including any of them results in a big

improvement over the sentence-level correlation with human scores (Chen and Cherry, 2014).

BLEU scores range between 0 and 1, where a translation closer to the reference gets a

higher BLEU score. Often, the scores are multiplied by hundred to increase readability, and

these values are referred to as BLEU points. However, there is no intuitive interpretation, and
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a BLEU score on its own can give little information on how good a system is. It is highly

dependent on the test set and reference(s) used (Culy and Riehemann, 2003). So BLEU scores

are only useful when comparing two systems on the same test set and references. This also

holds for all the other metrics that followed BLEU.

BLEU has a number of parameters. Some, like the maximum length of n-grams, is almost

always set at the default value of 4. However, differences in pre-processing the text –whether

text is lowercased, for example, or what tokenization is used – can have a large influence on the

value of BLEU. To solve this, sacreBLEU (Post, 2018) was developed to help researchers use

BLEU with consistent tokenization and parameters, and clearly report all parameters of BLEU

in their paper.

Despite its flaws, the MT research community continues to rely on BLEU as the default

automatic metric; it is well studied, quick to compute and portable to any language. Tools like

compare-mt (Neubig et al., 2019) have been developed to analyse BLEU score differences

between systems.

METEOR

METEOR (Banerjee and Lavie, 2005) was developed to specifically address some of the

deficiencies of BLEU. To allow for variation in word choice, METEOR also rewards matches

of stems, paraphrases and synonyms. Instead of relying on higher order n-grams to check for

fluency, METEOR explicitly computes an alignment between the translation and reference

sentences based on the full set of word matches, and introduces a fragmentation penalty that

accounts for word-reordering. A translation that is essentially word salad would receive a

higher fragmentation penalty compared to a coherent sentence.

The METEOR score is defined as the F-score of the unigrams multiplied by the fragmenta-

tion penalty. Then F-score is computed as the harmonic mean of the precision and recall of the

words in this alignment, weighted to give more importance recall. The fragmentation penalty
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depends on the number of chunks in the alignment, where a chunk is a group of contiguous

word matches that have the same order in both the MT system output and the reference.

Meteorα,β ,γ = Fα .fragβ ,γ (2.6)

, where

P =
# matches

length of translation
,R =

# matches
length of reference

,Fα =
PR

αP+(1−αR)
(2.7)

fragβ ,γ = 1− γ(
# chunks
# matches

)
β

(2.8)

METEOR is relatively fast to compute, but adoption for different languages depends on the

availability of resources such as stemmers and WordNet (to check for synonyms).

METEOR places a higher importance on recall, as this was found to empirically correlate

better with human scores when comparing different MT systems. It is recommended to place

equal importance for precision and recall when directly using METEOR to optimise an MT

system.

METEOR has been refined over the years. For example, the weights for individual compo-

nents can be tuned over the gold standard scores on a development set. The latest version of

METEOR can use automatically computed paraphrase tables instead of WordNet, allowing it

to be more portable into new languages.

TER

The Translation Edit Rate (Snover et al., 2006), like WER, computes the number of edits

required to change an MT output to a correct and fluent translation. When a candidate has a

different phrase-order to the reference, WER requires the edit operations for each word in the

phrase.
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To avoid harshly penalising such translations, TER introduces a new edit operation: the

movement of a sequence of words.

TER =
# edits

# reference words
, (2.9)

where an edit could be insertions, deletions, substitutions of either single words, or a “shift” in

a block of words from the hypothesis to another location in the sentence.

When multiple references are available, TER chooses the reference that has the smallest

distance from the hypothesis. It is normalised by the average length of all reference translations.

Computing the optimum edits that include moving blocks of words is an NP-complete

problem; in practice, beam search is used to find an efficient approximate edit distance.

While TER’s penalty for different phrase-orderings is considerably more lenient compared

to WER, TER still penalises translations that have a different word-choice from the reference.

To mitigate this, TER was later extended to TER-plus (Snover et al., 2009) by adding support

for matching words with the same stems, synonyms, paraphrases. In addition, the cost for each

type of edit can be tuned based on a human gold standard in a development set.

CHARACTER (Wang et al., 2016) and EED (Stanchev et al., 2019) are both inspired by

TER, and they compute the edit distance on the character-level instead of the word level.

HTER: To eliminate reference bias, translations are evaluated against a “targeted reference”

that is obtained by post-editing the MT output into a fluent and faithful translation of the source

sentence. HTER is defined as the TER score calculated using this targeted reference. HTER

had a Pearson correlation of 0.630 with human judgements. Like TER, HTER assigns the

same cost for every edit, whether it’s a trivial morphological error, or an edit that changes the

meaning completely (a negation, for example).
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CHRF

CHRF (Popović, 2015) is the F-score of character n-grams of the MT output and the reference.

White space characters are discarded before computing n-grams; experiments showed that

explicitly including white space did not yield an improvement in correlation. This makes CHRF

tokenisation-independent.

CHRFβ =
(
1+β

2) CHRP · CHRR
β 2 · CHRP+ CHRR

(2.10)

CHRP and CHRR are the arithmetic mean of the precision and recall respectively of character

n-grams, where n ranges from 1-6. CHRF is the weighted harmonic mean of CHRP and CHRR,

where β determines the importance of recall over precision. A value of 1 implies that both

precision and recall are equally important

Like BLEU, CHRF also computes clipped counts when computing precision and recall. As

matching character n-grams is more likely than matching word n-grams, the scores of chrF

tend to be high. Finally, it is rare to have zero counts even of the longest character n-gram, and

does not require smoothing.

CHRF has been extended to CHRF++ (Popović, 2017), which includes the F-scores of word

unigrams and bigrams in addition to character n-grams when calculating precision and recall.

This helps temper the probably overly-optimistic scores of CHRF and yields a small (often

inconsistent) improvement in correlation.

CHRF is a lexical metric that doesn’t require any additional resources. As such, it is quick

to compute and language-independent. It has high correlation with human scores, and is often

competitive with the top metrics that require additional resources, particularly on languages

other than English.
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MEANT, MEANT 2.0 and YISI-1

MEANT (Lo et al., 2012) is a semantic similarity metric which uses linguistic information

from semantic frames and word embeddings to compute similarity between words in matched

frames. The metric aims to compute whether the MT outputs preserve the key information of

the source input: who did what to whom, for whom, when, where, why and how? Each frame

contains a predicate and its arguments.

MEANT first computes and aligns the shallow semantic frames of the MT output and the

reference translation based on the similarity of the predicates. For each pair of aligned frames,

the role fillers of the arguments of the MT output and reference translation are aligned based

on their semantic similarity. MEANT computes similarity of two words as the cosine similarity

of their embeddings, and similarity of two phrases is computed by aggregating word similarity.

The final score is the micro-averaged semantic similarity of the phrases in aligned semantic

frames of the MT output and the reference translation.

MEANT 2.0 (Lo, 2017) computes n-gram similarity instead of of word similarity, and

introduces inverse-document-frequency-weighting for each n-gram. When shallow semantic

parsers are not available, MEANT_2.0-NOSRL computes the weighted F-score on the entire

sentence instead of on the aligned semantic frames.

The YISI-1 family of metrics is inspired by MEANT, and optionally incorporates informa-

tion from semantic roles. YiSi-0 is a degenerate version that does not require any resources

beyond the reference translation, and it computes lexical similarity by computing LCS distance.

YiSi-1 computes semantic similarity as the cosine similarity of word2vec (Mikolov et al., 2013)

embeddings in 2018, and was updated to use contextual embeddings (Devlin et al., 2019)

in 2019. YiSi-2 is a reference-free version that uses cross-lingual contextual embeddings to

compute the similarity between source and MT outputs.
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RUSE

Regressor Using Sentence Embeddings (Shimanaka et al., 2018) is an end-to-end neural metric

that is trained on human evaluation scores. As the name suggested, the metric uses pre-trained

sentence embeddings to obtain representations of the MT system output and the reference

translation.

The version submitted to the WMT metrics task in 2017 used the concatenation of three dif-

ferent pre-trained sentence embeddings — Infersent (Conneau et al., 2017), Quickthought (Lo-

geswaran and Lee, 2018) and USE (Cer et al., 2018) — that are obtained by training models

with a diverse set of objectives on different datasets.

The representation of the sentence pair is the concatenation of the representations of the

MT system output and the reference translation, and their element-wise product and difference

(a heuristic first proposed by Mou et al. (2016) that has proved useful for text classification

tasks with sentence-pairs as inputs). This helps the model extract the interactions between the

contents of the two sentences. This representation is given as input to a regressor, which is

trained against Direct Assessment (Graham et al., 2015) scores. The recommended choice

of regressor is a carefully tuned feedforward neural net.5 The sentence embeddings are kept

constant during training.

RUSE has a high correlation with human scores when evaluating MT systems translating to

English, and was, at the time of introduction, not outperformed by any other metric. However,

RUSE is not very efficient; computing three different sets of pre-trained models is not quick,

even when it has been speeded up with a GPU. And finally, RUSE requires pre-trained sentence

representations, that could, in theory, be obtained for any new language given a monolingual

corpus. But in practice, high quality sentence embeddings are only available for a small set of

languages, which makes RUSE difficult to port to new languages.

5They optimise for the number of layers, number of hidden units, dropout and batch size.
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2.3 Evaluating automatic Metrics

Although human evaluation is not perfect, we assume that it is the ground truth, and we evaluate

metrics based on their agreement with human scores. BLEU (Papineni et al., 2002) was the

first metric introduced with strong empirical justification: it had high correlation with human

fluency and adequacy judgements over 5 “systems” translating from Chinese to English. This

included three commercial MT systems and 2 human non-professional translators to test if

BLEU can correctly distinguish between high quality translations. The test set contained around

500 sentences that were taken from 40 news articles.

Coughlin (2003) conducted a large scale correlation study of metric and human scores

across seven language pairs; they computed the correlation between human and metric score

differences on pairs of systems.

Subsequent metrics like CDER (Leusch et al., 2006) and METEOR (Banerjee and Lavie,

2005) were all evaluated based on correlation with human judgements on MT systems.

Since 2007, the metrics shared task at WMT has played a key role in the development and

evaluation of automatic metrics. The data collected from the large-scale human evaluation of

the news translation task at WMT serves as the ideal test bed for evaluating automatic metrics.

The metrics shared task has been an important component of WMT, where participating metrics,

along with baselines, are evaluated on two levels:

• system level, which measures how much automatic metrics measure the overall quality

of the MT systems submitted for each language pair in the translation task

• segment level, which evaluates metrics on a more fine-grained scale, typically sentences.

Through this thesis, we use sentence-level to refer to this, though the official term at

WMT is segment-level.

We next describe the evaluation of metrics at the system and sentence level.
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2.3.1 System-level Evaluation

From 2007 to 2012, the metrics were evaluated based on their Spearman rank correlation

coefficient with human scores on the set of MT systems.

The Spearman correlation measures the strength of the monotonic relationship between

the metric and human scores. When automatic metric evaluation was first introduced at WMT,

human scores were obtained on an ordinal scale, and Spearman correlation was the natural

choice of evaluation measure.

ρ = 1− 6∑d2
i

n(n2 −1)
(2.11)

where

n is the total number of observations (MT systems in our case)

di = rank(mi)− rank(hi) is the difference in ranks of metrics and human judgements for

system i

Spearman correlation is 1 when the metric ranks the MT systems in the same order as

human evaluation. The correlation decreases if the metrics disagree with humans when ordering

any two given systems, irrespective of how close the systems are in quality.

Given that many MT system pairs have very small score differences (and in some cases

these differences are not statistically significant), evaluating with the Spearman correlation

harshly penalises metrics that have a different ordering for these systems.

This motivates the switch to Pearson correlation, which takes the score differences into

account. Pearson correlation coefficient measures the strength of the linear relationship between

the human and metric scores.

r =
∑

n
i=1(hi −h)(mi −m)√

∑
n
i=1(hi −h)2(mi −m)2

(2.12)
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where

hi and mi are the human and metric score respectively of system i

h and m are the mean scores of humans and metrics respectively.

If a metric errs when ordering two similar systems, the decrease in Pearson correlation is

smaller than when the systems are widely different in quality. Finally, the Spearman correlation

does not take into account the magnitude of score difference between two systems, as long

as the order is right. If human scores of two systems are really close, Pearson correlation

penalises metrics if there is a wide margin between the scores of these systems, whether or not

the ranking is correct.

In this sense, Pearson correlation more closely reflects our criteria for metric evaluation.

But Pearson correlation has its drawbacks. For example, it assumes that the relationship is

linear. At WMT 2014, when the organisers of the metrics task switched from Spearman to

Pearson correlation, they noted that this assumption is unlikely to be violated since the MT

systems evaluated are typically in a small quality range.

Pearson correlation is highly sensitive to the presence of outliers in the dataset. This is

because it is highly dependent on the mean, and the presence of any outliers will skew the mean

towards the outlier. We elaborate on this in Chapter 5, and present the implications of this on

metric evaluation.

Until WMT 2016, the gold standard was the MT system scores obtained through relative

ranking (RR) method. In 2016, DA was trialled and has been the official method since 2017.

In 2016, for the to-English language pairs, metrics were evaluated using both the RR and DA

methods. At the system level, metric rankings with both methods were similar for Czech,

Turkish and Finnish, but there were discrepancies with the other three languages: the ranking

of the top three metrics were inverted for German-English; the Russian-English evaluation has

a single outlier, CHARACTER, which has a high ranking with DA but not RR; and finally, there
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was only a moderate agreement for Romanian-English. The metrics results paper (Bojar et al.,

2016b) did not investigate any of these discrepancies.

2.3.2 Sentence-level Evaluation

When metrics can reliably separate good translations from the bad at the sentence level, this

could help with error analysis during system development. Since 2008, the WMT metrics task

has also evaluated metrics at the sentence level (Callison-Burch et al., 2008). This evaluation is

necessarily dependent on the kind of human annotations available, and the methods of sentence-

level meta-evaluation has necessarily evolved along with changes in human evaluation. In

addition, these measures have been refined over the years.

We describe the three methods used over the years, based on the correlation method

computed over the method of obtaining human scores.

Kendall’s Tau over Relative Ranking (RR)

When human evaluation was collected in the form of rankings of 5 MT system translations

of the same source sentences, metrics were evaluated based on how well they reproduced the

same ranking as humans.

This was initially computed as average accuracy of metrics correctly ordering every pair of

MT systems evaluated, then was replaced by a modified version of the Kendall’s Tau correlation

coefficient.

Kendall’s Tau has the intuitive explanation as the difference between the probability of the

metrics evaluating pairs of sentences in the right order, and the probability that they are in a

different order.

For a pair of translations by systems i and j for the same source sentence, a pair of ranks

(hi,mi),(h j,m j) is said to be:

• concordant, if (hi −h j)(mi −m j)> 0
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• discordant, if (hi −h j)(mi −m j)< 0

• neither, if (hi −h j) = 0

The Kendall’s tau correlation is then calculated over all available human pairwise judge-

ments,as:

τ =
num concordant pairs−num discordant pairs

total number of pairs
(2.13)

Note that there are many options to deal with ties in human and metric scores (Macháček

and Bojar, 2014). This variation, which has been used since 2014, ignores all translation pairs

where human scores indicate ties and penalises ties in metric scores if the human judgements

indicate that one is better than the other.

Since the WMT annotations are restricted only to ranks of a limited set of translations

for the same source sentence, the number of concordant and discordant pairs are similarly

restricted, so what is being calculated is not exactly Kendall’s Tau. It tests whether a metric

correctly ranks different system translations of the same source sentence, but doesn’t directly

evaluate whether the metric rightly assigns low scores to low quality translations and vice-versa.

Given the low values of inter- and intra-annotator agreement in the human scores, there

is a lot of noise in the human judgements we use as “ground truth”. Worse, when there are

contradictory annotations for a given translation-pair, these are counted as separate annotations,

so even a hypothetically “perfect” metric would not receive a perfect correlation of 1. Thus, we

believe that this measure does not give a very accurate understanding of metric performance.

Pearson Correlation over Direct Assessment (DA)

In 2016, when WMT trialled Direct Assessment to evaluate MT systems, they also collected

additional human scores specifically for more accurate sentence level evaluation of automatic

metrics. See Sec. 2.1.4 for details.
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To elaborate, the test sets included accurate scores of 560 translations per language pair,

which were sampled randomly from all MT system translations available. Metrics were

then evaluated based on their Pearson correlation (Eq. (2.12)) with human scores over these

translations.

Since the test set typically consists of thousands of sentences, it is rare that the small sample

of 560 sentences includes translations of the same source sentence by different systems. Thus,

this evaluation tests the reverse of the modified Kendal’s Tau over pairwise judgements: it tests

whether a metric correctly assigns low scores to low quality translations and vice-versa, but not

whether it ranks different system translations of the same source sentence in the correct order.

For example, if a given source sentence is hard to translate, then we can expect all systems to

produce low quality translations. This method of evaluating with Pearson does not test whether

the metric is correctly distinguishing between the different translations of this same sentence.

There is only moderate agreement over the WMT 2016 sentence-level correlations computed

using RR and DA, which was not investigated further.

Kendall’s Tau over Relative Ranking from Direct Assessment (DARR)

While ideally we would like to have 15-way annotated accurate scores for each language-pair,

it is expensive to collect all these additional annotations. When insufficient scores are collected,

it can be argued that the singly-annotated data contains too much noise to be suitable for

sentence-level evaluation using Pearson Correlation Coefficient. When we have continuous

scores for at least two system-translations of the same source sentence (after filtering out

annotators that do not pass quality control), these are converted to pairwise judgements. In

an attempt to mitigate noise, these translation pairs are included in the gold standard only

if the difference in their raw scores is greater than a predefined threshold. The threshold is

set at 25 points as the DA analogue scale has markers that divide the scale into four regions:

0-25,25-50,50-75 and 75-100. Once we have these pairwise judgements, we evaluate metrics



2.3 Evaluating automatic Metrics 50

using the same formulation of Kendall’s Tau as with RR (Eq. (2.13)). This method of evaluation

is denoted as DARR.

While these measures sound reasonable, there have been no empirical experiments presented

that investigate how the noise affects metric correlations computed, and how the metric rankings

obtained using this method compare to using the Pearson Correlation over 15-way annotated

scores or Kendall’s Tau over relative ranking judgements.

2.3.3 Statistical Significance testing

To test whether the difference in correlations of two metrics M1 and M2 can be attributed to

chance, the following statisitical significance tests are used:

• Pearson Correlation:

The William’s test for dependent correlations that share a variable (Williams, 1959) is

used to test whether the Pearson correlation between M1 and human scores is equals the

correlation between M2 and human scores,

T (n−3) =
(r13 − r23)

√
(n−1)(1+ r12)√

2K (n−1)
(n−3) +

(r13+r23)3

4 (1− r12)3
, (2.14)

where n is the samples size (number of systems or sentences), r12 is the correlation

between M1 and M2, r13 is the correlation between M1 and human scores, and r23 is the

correlation between M2 and human scores, and K = 1− r2
12 − r2

13 − r2
23 +2r12r13r23.

The p-value is calculated from the t-distribution with n-3 degrees of freedom, and a cutoff

of p = 0.05 is used to determine significance.

The William’s test is recommended for small or moderate samples (Neill and Dunn,

1975). Graham and Baldwin (2014) proposed the test as suitable for comparing automatic

metrics. It takes the correlation between the metrics into account, and is more powerful
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than the equivalent test for independent samples (Fisher z-transformation). The power of

the William’s test to differentiate between metrics increases with the correlation between

the two metrics.

• Kendall’s Tau:

The bootstrap test is used to test for statistical significance between Kendall’s Tau corre-

lations of metrics. 95% confidence intervals are estimated from 1000 Bootstrap samples

of human judgements, and metric correlation differences are deemed as statistically

significant if the they have non-overlapping confidence intervals.

2.4 Summary

In this chapter, we presented a review of the three main aspects of machine translation evaluation:

human evaluation, automatic evaluation, and evaluation of automatic metrics. We identified

potential areas of improvement, and in the next four chapters, we present our research on

improving aggregation of human judgements (Chapter 3), detecting bias in human annotations

(Chapter 4), leveraging contextual embeddings to develop automatic metrics (Chapter 5), and

re-evaluating the evaluation of automatic metrics (Chapter 6).



Chapter 3

A Probabilistic Model for Aggregating

Human Judgements

This chapter builds on the paper:

Nitika Mathur, Timothy Baldwin, and Trevor Cohn. Towards efficient machine

translation evaluation by modelling annotators. In Proceedings of the Australasian

Language Technology Association Workshop 2018, pages 77–82, Dunedin, New

Zealand, December 2018.

3.1 Introduction

Human evaluation is a fundamental requirement for reliable assessment of machine translation,

despite progress in automatic evaluation methods over the years. Further, human judgements

serve as a gold standard to evaluate automatic metrics. Accordingly, accurate human judgements

are crucial for progress in automatic evaluation. The process of collecting human annotations

is time-consuming and expensive. The data is inevitably noisy due to the subjective nature of

the task. This problem is exacerbated when the annotations are crowdsourced from anonymous
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unskilled workers who are less invested in the task. The question of how to efficiently collect

this data has evolved over the years, but there is still scope for improvement.

We described direct assessment (“DA”; Graham et al., 2017) in Sec. 2.1.4 of the previous

chapter. DA is currently accepted as the best practice for human evaluation of machine

translation, and has been the official method of collecting human annotations at the annual

Conference for Machine Translation since 2017 (Bojar et al., 2017b). This method was

designed for crowdsourcing judgements: every crowd worker scores a set of 100 translations on

a continuous scale. 30 out of the 100 translations are quality control items designed to filter out

unreliable workers; they check whether workers give high scores to high quality translations,

similar scores to repeat items and comparatively low scores to translations that have been

deliberately degraded.

In this chapter, we show that this quality control process is typically effective at identifying

the extremely unreliable workers, but has a low recall for good workers: about a third of good

quality data is discarded, which increases the cost of the evaluation. On the other hand, despite

variation in quality, in the DA method, all the workers who have passed quality control are

given equal weights to obtain the final average ‘true’ score. To solve both these problems, we

explore Bayesian methods that explicitly model the reliability of all annotators, and use this

information to infer the true quality of the translations. This provides a more cost-effective way

to collect more accurate estimates of the true translation quality.

We begin the chapter with a brief description of different probabilistic models that provide

principled means to obtain the true labels from multiply-annotated data for a variety of tasks:

discrete labels, ordinal labels, pairwise preference judgements and continuous labels, focusing,

when possible, on methods designed specifically for text processing and machine translation

evaluation. Next, we present the multiply-annotated direct assessment datasets, along with an

analysis of worker scores to understand the scope of improvement from modelling annotator

precision.
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We then present our model to infer the quality of machine translation outputs and the

results of our experiments: compared to the current method of averaging scores of workers

who pass quality control, our models typically produce more accurate estimates of the quality

of translations for a given set of annotations collected. We explore spammer removal, where

we rerun the model with the top k workers with the highest inferred precision and show that

this can potentially improve the accuracy of the model estimate. Finally, we present an analysis

of selected individual HITs to look for leads to answer two questions: what is the ideal k, and

is there a need to collect more annotations?

3.2 Background: Probabilistic models of aggregating data

The simplest way to aggregate multiple annotations is to use the mean or the majority vote.

However, this ignores the differing reliabilities and biases of workers. In Sec. 2.1.3, we

described some strategies to mitigate these problems when crowdsourcing data, for example,

filtering out scores that have low agreement with experts and weighting worker’s scores based

on their agreement with experts. These methods require expert annotations, which are not

always available. Other methods look at inter-annotator agreement: weight worker scores based

on their agreement with the majority or mean of the remaining workers, which, in turn is often

biased due to the presence of scores from unreliable workers.

In scenarios where multiple conflicting sources of information are available per instance,

there is always a potential for improved aggregation using probabilistic models. These models

can be particularly beneficial when aggregating crowdsourced data, given the high variance in

annotator reliability and instance difficulty.

In this section, we describe methods that aim to infer the true labels/scores of the instances

that use Bayesian models. They were developed to infer the ground truth from multiple

conflicting sources, whether it is crowdsourced workers, expert annotators (Dawid and Skene,

1979), or classifier combination (Kim and Ghahramani, 2012). Some of these models are
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Model Input Requires Models
type features annotators

D&S (Dawid and Skene, 1979) Discrete N Y
MACE (Hovy et al., 2013) Discrete N Y
Raykar (Raykar et al., 2010) Discrete,continuous Y Y
Reviewer Calibration (Flach et al., 2009) Ordinal N Y
H&M (Hopkins and May, 2013) Relative Ranking N N
Trueskill (Sakaguchi et al., 2014) Relative Ranking N N
EASL (Sakaguchi and Van Durme, 2018) Continuous N N
GP (Groot et al., 2011) Continuous Y Y
MTQE (Cohn and Specia, 2013) Continuous Y Y

Table 3.1 Summary of probabilistic models included in Sec. 3.2.

supervised learners that primary designed for predicting the labels of new data based on the

features of the instances; these models take annotator reliability into account and jointly learn

the ground truth and the parameters of the learner. We also include probabilistic models that

aggregate MT evaluation data but do not take annotator reliability into account. These models

are summarised in Tab. 3.1.

A variety of methods can be used to infer the ground truth for these models, such as

expectation maximisation (Dawid and Skene, 1979), Gibbs sampling (Hopkins and May, 2013;

Kim and Ghahramani, 2012), expectation propagation (Flach et al., 2009), and variational

inference (Hovy et al., 2013).

Notation Through out this section, we use ri, j to denote the response by worker j for item i,

where the ground truth is zi. For discrete or ordinal data, we denote the total number of classes

as K. The models use various probability distributions to model the data, and we denote the

normal distribution as N , the gamma distribution as G , the multinomial distribution as M ,

the beta distribution as B and the uniform distribution as U
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Discrete Labels

In seminal work on modelling annotators to aggregate data, Dawid and Skene (1979) assumed

that worker performance depends on the true label of the items. Their model assumes that

the true labels are drawn from categorical distribution with probability π , and each worker is

parameterised by a KxK confusion matrix where θ j,r,z is the probability of worker j to have

a response r when the true label is z. They designed an expectation maximisation algorithm

to jointly learn the true labels as well as the parameters θ j,r,z and π . These inferred labels

were more accurate compared to majority voting. Snow et al. (2008) used this model to obtain

more accurate estimates of the true labels on crowdsourced textual entailment and temporal

event annotation datasets. Passonneau and Carpenter (2014) enhanced this model with weak

Dirichlet priors for the worker confusion matrices and used it on word sense annotations. The

priors add arithmetic stability in cases where worker responses do not include certain word

senses, which can happen, for example, with infrequent word senses. This method yields a

probability distribution of word senses for every instance, which can be used when evaluating

computational word sense disambiguation models.

A variety of different approaches have been proposed since then. Some, like Dawid and

Skene (1979), model worker reliability as a confusion matrix on each label (Raykar et al., 2010;

Kim and Ghahramani, 2012). Others model annotator reliability directly (Demartini et al.,

2012). More complex methods attempt to model the difficulty of instances (Whitehill et al.,

2009; Raykar and Yu, 2012) or annotator expertise on individual instances (Yan et al., 2010).

Multi-Annotator Competence Estimation (MACE) (Hovy et al., 2013) was designed specifi-

cally for NLP annotations. This is a simple algorithm that models the credibility of an annotator

j as the probability of not spamming θ j. For each item i, the true class zi ∼ U . The model

assumes that the annotator response on an instance depends on true label of the instance and

whether the annotator is spamming on that instance: Si, j ∼ Bernoulli(1−θ j). If the annotator

is not spamming ( when Si, j = 0), then the annotator label yi, j is copied from the true label
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zi. Otherwise, yi, j ∼ M j, where M j is a multinomial distribution that describes the spam-

ming behaviour of annotator j. These models were evaluated on three discrete-label NLP

datasets (Snow et al., 2008), and are superior not just to majority voting but also the more

complex models of Raykar and Yu (2012) that model instance difficulty. Further, the worker

reliability parameter θ j can be used to filter out annotators with high probability of spamming,

thus increasing accuracy of the final results.

Crowdsourcing has been heavily used to collect training data for supervised machine

learning systems. Recent approaches focus on training supervised machine learning models at

the same time as learning the ground truth from the noisy labels. Raykar et al. (2010) pioneered

this approach with EM algorithms to jointly learn a probabilistic classifier along with annotator

reliabilities for binary and multi-class classification tasks. Another avenue of research is active

learning, where the model iteratively chooses the item for labelling that is most useful to

the classifier (for example, the item with most uncertainty) from a large pool of unlabelled

data (Settles, 2009). The goal is to reduce the total cost of annotation. We can also vary the

number of redundant labels collected on an instance based on the uncertainty of the label and/or

of the classification model (Sheng et al., 2008).

Ordinal Data

Many NLP tasks involve ordinal data. In particular, MT quality judgements are often collected

as ordinal ratings, so we next describe a key model that uses ordinal data that was used to assist

with decisions on accepting papers submitted to the ACM SIGKDD 2009 conference (Flach

et al., 2009). The reviewer calibration model is a probabilistic Bayesian model that was devel-

oped to infer the true underlying quality of papers. A review by judge j of a paper submission

contains an ordinal rating and an expertise level e indicating reviewer confidence. Each paper

submission s to the conference has a latent true quality qs ∼N (µq,νq). The expertise indicates

annotator precision for the review, which is drawn from a Gamma distribution λe ∼ G (kλ ,βλ ).
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The reviewer’s latent score of a given paper submission depends on the quality of the paper and

their expertise: sr ∼ N (qs,
1
λe
). Since the reviewer ratings are ordinal, the model also learns

thresholds for each reviewer that map the continuous perceived quality with the annotator rating.

Instead of directly making decisions based on the inferred quality of papers, this model was

used to highlight areas in the review process that require greater scrutiny due to the variation in

reviewer ratings caused by differing standards and expertise levels.

Relative Ranking

We now describe two probabilistic models that were designed to aggregate Relative Ranking

data that was collected at WMT: Hopkins and May (2013) designed probabilistic models for

machine translation relative ranking judgements where annotators rank translations of the same

MT system of the same source sentence i. Each system j has a latent true ability µ j which

is drawn from a Gaussian prior with zero mean: µ j ∼ N (0,σ2
0 ). The quality of translation i

of system j, qi, j ∼ N (µ j,σ
2
a ), where the standard deviation σa is shared by all systems. A

judge’s perceived quality of a given translation πi, j ∼ N (qi, j,σ
2
obs). When comparing two

translations i and i′, the annotator j would prefer the translation with higher π if the difference

is greater than a fixed decision radius, i.e., if πi, j > πi′, j + ε . Otherwise, the judgement is a tie.

Sakaguchi et al. (2014) adapted TrueSkill (Herbrich et al., 2007), an algorithm initially

developed to estimate the true “skill” of Xbox players, for MT preference judgements. MT

systems are treated as players. TrueSkill assumes an MT system’s skill q j ∼N (µ j,σ
2
j ), where

µ j is the estimate of the MT system quality, and σ2
j is a system-specific variance parameter

expresses the uncertainty around the current estimate of µ j. The parameters are updated using

Bayesian online learning after each observation of a win, loss or tie between two systems.

Finally, TrueSkill uses active learning to select evenly matched players on Xbox live; for MT

evaluation, this corresponds to active learning to select the set of systems to obtain preference

judgements: it selects system with the greatest uncertainty (highest σ2
j ), then matches it with
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the systems closest to it in quality, maximising the information gain from each annotation.

Trueskill results in more efficient estimation of MT system scores than the Hopkins and May

(2013) model, which can probably be attributed to the active learning component.

Both these models offered a principled way of aggregating the relative ranking data, and

Trueskill reduces the total annotations required by requesting rankings of systems that are close

together in quality. But both models assume that all raters are equally competent and do not

account for any variation in annotator reliability.

Continuous Labels

Efficient Annotation of Scalar Labels (EASL) was developed as an alternate to direct assess-

ment (Graham et al., 2017) and relative ranking that aimed to combine the advantages of both

methods when collecting human annotations for MT evaluation. Annotators score five transla-

tions of the same source sentence on a continuous scale. EASL models this data with bounded

continuous labels as a beta distribution (Sakaguchi and Van Durme, 2018). Scores of MT

system Si ∼ B(αi,βi), with the mode of the distribution as the true quality of the system, and

the variance as uncertainty. It uses an online learning algorithm to update the two parameters

of the beta distribution after each annotation. Inspired by TrueSkill, they use active learning to

select instances with the greatest uncertainty to annotate next. This model was evaluated on

system-level data simulated from WMT 2016 DA judgements, and shown to be more efficient

than DA in estimating MT system rankings. However, the reason for improvement is unclear

as there were no ablation studies, and since EASL requires ratings of five translations at once,

there is potential for annotators to treat it as a ranking problem. Finally, like the models for MT

relative ranking (Hopkins and May, 2013; Sakaguchi et al., 2014), EASL doesn’t distinguish

between annotator reliability.

Raykar et al. (2010) combined the standard linear regression model with an annotator model

to predict the true labels from multiply-annotated continuous data. The linear regression model
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with additive Gaussian noise is given by zi ∼N (wT xi,1/γ). The annotator model assumes each

annotator has Gaussian noise: yi, j ∼ N (zi,1/τ j), where τ j is the inverse variance of annotator

j. These two models are combined to yield the final model yi, j ∼ N (wT xi,1/γ +1/τ j)

Groot et al. (2011) extended the Gaussian process linear regression model to allow individual

noise parameters for every annotator. This is a more powerful model than the model of Raykar

et al. (2010) as it is non-parametric and can be applied even when individual annotators annotate

only a subset of all items.

The above two methods were tested on simulated data: instead of using annotations collected

from different people, they simulate annotators of varying reliabilities by adding Gaussian noise

to the ground truth of real datasets. On this synthetic data, these methods perform better than

models trained on all individual annotators, or trained on the mean response of all annotators.

In the MT domain, Cohn and Specia (2013) use a multi-task Gaussian process to learn

to predict the estimated post-editing effort as well as the actual post editing time of different

post-editors. Both tasks are subjective, and the latter is particularly challenging as different

translators are faster when post-editing different translations. This model is slightly different

from all previously presented models; instead of aiming to recover the one ground truth from

multiple annotators, it aims to use all data to better predict the response of individual annotators.

They treat the response of each annotator (whether estimated post-editing effort or actual

post-editing time) as a specific task, and learn annotator-specific models that share information

between each other due to explicitly modelling the covariance between the annotators. Note

that these models are a generalization of the model of Groot et al. (2011) which has a noise

parameter for each annotator but does not model the covariance of individual annotators.

In our use case of obtaining the true quality of the MT system outputs, the primary goal is to

learn the ground truth. We need simple methods analogous to MACE for continuous data that

leverage inferred annotator reliability that we can use to decrease costs of direct assessment.
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3.3 Direct Assessment: Dataset and Analysis

In this section, we first review direct assessment (described in detail in Sec. 2.1.4), expanding

on the quality control (QC) mechanism. We then introduce two multiply-annotated DA datasets

that we will use for our experiments, and visualise this data to understand the effectiveness of

QC and identify the scope for improvement from modelling annotators. We use this information

to design our model, which we describe in the next section.

Direct assessment requires annotators to score translations using an analogue slider which

maps to an underlying scale of 0–100. When they are crowdsourced, each HIT contains

100 translations, of which 30 are control items for quality control that are used to filter out

low quality workers, for example, those who click randomly or assign the same score to all

translations.

The scores of workers who pass quality control are standardised to improve worker con-

sistency. The scores are still noisy after standardising, but this noise is expected to cancel out

when a large number of scores are averaged. We confirm this in our experiments in Sec. 3.5.

The final score of an MT system is the mean standardised score of its translations after

discarding scores that do not meet quality control criteria. To obtain accurate scores of

individual translations, multiple (at least 15) judgements are collected and averaged.

3.3.1 Quality Control

The quality control mechanism of direct assessment relies on the assumptions that a consistent

annotator would assign similar scores to the same annotations, lower scores to degraded versions

of a translation compared to the original, and high scores to the reference translation.

To check for this, each HIT on MTurk contains 100 translations, of which 70 are MT

system translations, and an additional 30 items are used for quality control (QC). The QC items

include:
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1. degraded versions of 10 MT system translations;

2. repeats of another 10 MT system translations.

3. 10 reference translations by a human expert;

Worker responses are also examined for red flags: workers who took suspiciously little

time to annotate the entire HIT, workers who gave the same score to a series of translations, or

appear to have scored translations at random based on the quality control items. These workers

are refused payment.

For the other workers, paired statistical significance tests are used to test that the mean score

of the 10 degraded translations is lower than the mean of the corresponding system translation.

An arbitrary (but customary) cut off of p = 0.05 is used to determine “good” workers. The

remaining workers are further tested to check that there is no significant difference between

their scores for the repeat-pairs. The workers who do not pass both these quality control checks

are paid for their efforts, but their scores are unused. If these scores have useful information,

the overall cost is unnecessarily increased.

Both these tests are based on a sample-size of 10 items, and, as such, have low power.

In particular, the test might not be able to detect a statistically significant difference in the

scores of the degraded items. We show in the next section that about a third of the workers

with moderate-to-high correlation do not pass quality control, and thus DA ends up discarding

potentially useful annotations. We could increase the power by increasing the sample size of the

degraded-reference-pairs, but this would be at the expense of the number of useful annotations

collected.

3.3.2 Datasets

In this chapter, we use the following multiply-annotated datasets for our experiments:
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WMT13 SPANISH → ENGLISH (WMT13ES-EN) Our main dataset is the Spanish → En-

glish dataset from WMT 2013 (Bojar et al., 2013) that was collected in the process of adopting

direct assessment for sentence-level evaluation (Graham et al., 2015). The WMT13ES-EN

dataset consists of 523 workers who evaluated a total of 12 HITS, of which 230 did not pass

quality control. For our experiments, we use four of these HITs that were annotated by at least

80 workers who passed quality control. Having such a large dataset ensures that we can trust

the ground truth and enables additional analysis while varying the quality of workers.

WMT16 TURKISH → ENGLISH (WMT16TR-EN) To show that our models are effective

beyond the WMT13ES-EN dataset, we also evaluate our models on data from the sentence-level

dataset collected for the WMT 2016 metrics task (Bojar et al., 2016b). We focus on the Turkish

to English dataset, which consists of 8 HITs, each annotated by at least 15 workers that pass

quality control. We chose this language-pair as it has a comparatively low percentage of “good”

workers compared to the rest of the language pairs: of the 256 workers that annotated the 8

HITs, only 83 workers passed quality control.

3.3.3 Analysis of Worker Scores

In this section, we highlight the variation in quality of annotators’ scores, and provide evidence

that the quality control mechanism can be too harsh. To do this, we visualise data from the two

datasets that we use in our experiments.

Automatic metrics such as BLEU (Papineni et al., 2002) are generally evaluated using the

Pearson correlation with the ground truth, which is computed as the mean of all workers that

pass quality control. We similarly evaluate a worker’s reliability using the Pearson correlation

of the worker’s scores with this ground truth over the MT system translations (excluding the

quality control items). Over all the data collected for both the datasets, the group of QCPASS

workers is, on average, more reliable than the QCFAIL workers (see Fig. 3.1). Importantly, we
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(a) WMT16TR-EN

Fig. 3.1 Correlation of QCPASS vs QCFAIL workers with the ground truth in the WMT13ES-EN
and WMT16TR-ENdatasets. (Note that the two figures do not have the same range on the
y-axis.)

can see that almost all workers with extremely low or negative correlations were filtered out.

However, there is substantial overlap in the correlations of the two groups. In particular, over

the WMT16TR-EN dataset, the significance test was not very effective, and around a third of

the workers whose scores have a correlation greater than 0.6 were discarded. Fig. 3.1a. With

the WMT13ES-EN dataset, 10 of the 42 workers whose scores have a correlation greater than

0.8 were discarded.

When computing the mean, the scores of all workers that pass the quality control check are

given equal weight, despite the variation in their reliability. Given that quality control is not

always reliable, the computation of the ground truth could include scores of a few low quality

worker with correlation as low as r = 0.2. It could be argued that this is rare, and that since we

are using at least 15 workers the contribution of each individual worker is very small. A bigger

problem is the discarding of potentially useful scores, as it increases the cost of the evaluation.

Fig. 3.2 shows the scatter plots of the standardised scores of three workers from the

WMT13ES-EN dataset against the mean of all QCPASS workers. The first two workers both
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Fig. 3.2 Visualising the scores of three workers in the WMT13ES-EN dataset: The first column
is a scatterplot of the worker’s scores against the ground truth, the second column is a histogram
or errors (the worker score − the ground truth), and the third column is a QQ plot of the errors.
The first two workers have a high correlation and their errors have a low variance, whereas the
third worker’s scores are essentially random and the errors have a high variance. Only the first
worker passes quality control. The second worker is paid, but their scores are discarded. The
third worker is rejected payment.
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have high correlations with the ground truth. But the second worker doesn’t pass quality

control; this worker is paid but the scores are unused. The third worker’s scores are essentially

random, and is rejected payment. We also plot a histogram of the errors (the difference between

the ground truth and the worker) of each worker. The errors of all three workers have an

approximately normal distribution with the mean very close to zero. The variance of the errors

depends on the quality of the annotations: the errors of more reliable workers have a smaller

variance. The last column contains QQ plots of the errors that compare the quantiles of the

errors with the normal distribution. All points on this graph lie close to the diagonal, confirming

that the errors of all workers are close to being normally distributed.

3.4 Model

To model direct assessment data, we need a model that takes in continuous data as inputs, and

can take worker reliability into account to infer the true translation quality. It would also be

beneficial to take advantage of the quality control items that are included in DA.

Based on the analysis from the previous section, we propose a simple model which assumes

that a worker’s score is normally distributed around the true quality of the translation. Each

worker has a precision (inverse variance) parameter τ that models their accuracy: workers with

higher τ have smaller errors.

We use the corresponding conjugate priors for both the translation rating and worker

precision. The full generative process works like this:

• For each translation i ∈ T , we draw the true quality µi from the standard normal distribu-

tion.

µi ∼ N (0,1)
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T

W

Fig. 3.3 The proposed model, where worker j ∈W has precision τ j, translation i ∈ T has quality
µi, and worker j scores translation i with si, j.

• Then for each worker j ∈W , we draw their accuracy τ j from a shared gamma prior with

shape parameter k and rate parameter θ .

τ j ∼ G (k,θ)

• The worker’s scores si, j is then drawn from a normal distribution, with mean µi, and

precision τ j.

si, j ∼ N
(

µi,τ
−1
j

)
(3.1)

Direct assessment computes the average score for each translation, and can be viewed as the

Maximum Likelihood Estimate of the mean score of the same model but with a shared τ for all

workers, instead of having a separate parameter τ j for each worker.

si, j = N
(
µi,τ

−1) (3.2)

The joint distribution of the full model is:

P(µi,τ j,si, j) = ∏
j

P(τ j)∏
i

P(µi)P(si, j|µi,τ
−1) (3.3)
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We want to maximise the likelihood of the observed judgements:

P(s) =
W∫

j=1

P(τ j)

T∫
i=1

P(µi)P(si, j|µi,τ)dτ dµ

=

W∫
j=1

Γ
(
τ j|k,θ

) T∫
i=1

N (µi|0,1)N
(

si, j|µi,τ
−1
j

)
dτ dµ

(3.4)

We use the Expectation Propagation algorithm (Minka, 2001) to infer posteriors over the

latent variables µ and τ .1 Expectation Propagation is a technique for Bayesian inference, which

aims to find an approximate factorised distribution closest to the true distribution. It uses a

message-passing algorithm to iteratively refine each factor by minimising the KL divergence

from the approximate to the true distribution. We also experimented with using Gibbs Sampling

and Variational Message Passing and observed similar results.

One benefit of using the above algorithms instead of expectation maximisation is that

we can include additional constraints on the latent variables to help the model. We add the

following constraints on the quality control items:

1. the true quality of the degraded translation is lower than the quality of the corresponding

system translation

2. the true quality of the repeat items should be equal

We expect that the model will learn a high τ for good quality workers, and give their scores

higher weight when estimating the mean. We believe that the additional constraints will help

the model to infer the worker precision, as the model would learn that workers whose scores

that have major violations of these constraints have a low precision.

Finally, note that we choose to use the standardised scores of workers as inputs to the model.

If using raw scores instead, we would need additional parameters to infer the scale and offset

1We use the Infer.NET (Minka et al., 2018) framework to implement our models.
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of the workers. In the current setup of DA where each subset of translations is scored by the

same set of annotators, we believe that in the end, the scale and offset parameters this model

would learn would be something very similar to the standardised scores. If, instead, we have a

dataset where each annotator scores a random subset of the translations (as with the conference

reviews dataset, where each reviewer rates a different set of papers (Flach et al., 2009)), then

the model with an offset parameter might infer that an annotator consistently scores lower

or higher relative to others. Finally, if using raw scores, the choice of Gaussian distribution

to model worker scores is technically deficient as a Gaussian is unbounded. This could be

remedied, for example, by using a truncated Gaussian distribution.

Relationship with Prior Work

Of the models described in Sec. 3.2 that can be applied to continuous data, EASL (Sakaguchi

and Van Durme, 2018) has been directly applied to MT direct assessment data but for collecting

and aggregating scores for MT systems. It models raw scores using a Beta distribution, and

ignores the differences in worker scale. We showed that quality control can be aggressive with

filtering out worker scores, and that there is potential in modelling annotator reliability when

aggregating scores. However, EASL ignores worker reliability, and was applied only to the

scores of “good” workers who pass quality control.

Our model, like many other models described in Sec. 3.2, assumes the annotator response

is normally distributed around the true scores. Models like Raykar et al. (2010); Groot

et al. (2011) jointly learn a regressor and the ground truth; their main goal is to learn a

machine learning model, and require features. For MT evaluation, we could directly use

automatic metrics or features from metrics. However, since automatic metrics are known to

be biased against translations that are superficially dissimilar to the reference, using features

based on these metrics (whether hand-crafted or obtained using representation learning) might

potentially favour annotators who are also similarly biased. Moreover, this data is used to
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evaluate automatic metrics, so it would create a circular process if we were to incorporate

features into the model used to construct the gold standard.

Finally, the models for relative ranking and pairwise preference data need an additional

latent variable for the continuous scores perceived by the annotators, and then a mechanism to

convert this to the observed score. The reviewer calibration (Flach et al., 2009) model and the

model of Hopkins and May (2013) learn thresholds to convert to ordinal ratings and pairwise

decisions respectively. Trueskill (Sakaguchi et al., 2014) uses custom equations to update

the latent true score once a win, loss or tie is observed. Since we are directly dealing with

continuous data, our model doesn’t require this additional step.

3.5 Experiments

We evaluate our model on two multiply-annotated datasets that were collected for sentence-

level metric evaluation: WMT13ES-EN and WMT16TR-EN presented in Sec. 3.3.2. When

crowdsourcing annotations, the quality of workers that complete our HITs varies. For each

dataset, we run our model on the scores of different random subsets of workers that represent the

possible variation in quality. We evaluate our models based on their Pearson correlation2 with

the ground truth as we vary the number of workers per translation, comparing the translation

quality inferred by our model with the following baselines:

1. raw-mean: the mean of the raw scores of all the workers input to the model,

2. z-mean: the mean of the standardised scores of all the workers input to the model, and

3. DA: the mean of the standardised scores of the subset of workers input to the model that

pass quality control. This is the best practice recommended by Graham et al. (2015) and

is followed by WMT to compute the translation quality scores (Bojar et al., 2016b)

2We compute the correlation only on the MT system translations and do not include the quality control items.
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The WMT13 SPANISH → ENGLISH dataset contains 12 HITS in total, of which we use 4

HITS in our experiments as they were annotated by a large number of workers. We use the

remaining 8 HITS as a development set to set the shape and rate parameters for the Gamma

prior for annotator precision. We obtain k = 5 and θ = 0.3 based on maximum likelihood fit of

the distribution of worker precisions on these 8 HITs: we first compute errors of each worker

from the “ground truth” (shown in Fig. 3.2), then compute the inverse variance of these errors.

Note that the results are stable to small changes in the priors.

3.5.1 WMT13 SPANISH → ENGLISH

Our main experiments are on the four HITs of the WMT13ES-EN dataset which were annotated

by at least 80 workers that passed quality control. We use the average score of 60 QCPASS

workers as the ground truth, and use three different subsets of the remaining workers to test our

models: (a) a mix of QCPASS and QCFAIL workers, (b) workers who fail quality control, and (c)

workers who pass quality control. Of the workers that fail quality control, those whose scores

were egregiously bad were rejected payment based on manual inspection. We refer to these

workers as UNPAIDand the remaining workers (who were paid for their effort but whose scores

were discarded) as PAIDQCFAIL.

For each worker cohort, Fig. 3.5 shows

1. a scatterplot of the model’s inferred precision of the subset of all 20 workers and the

correlation of the workers with the ground truth, and

2. the correlation of the model’s inferred quality compared to the baselines as we increase

the number of workers per HIT.

We now analyse the results in detail:
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Fig. 3.4 Scatter plot of worker precision inferred by the model with five workers per translation
against the correlation of the worker score with the “ground truth” on the WMT13ES-EN
dataset.

Mix of QCPASS and QCFAIL Workers

Surprisingly, the mean of the raw scores has a slightly higher correlation than the mean of

the standardised scores, particularly when there are fewer than six workers. One possible

explanation for this is that workers that use only a small part of the scale essentially receive

a lower “weight” when computing the mean. In an extreme example of a worker that scores

randomly, adding these scores has little effect on the mean if their range is small. This might

occur if they click in the same part of the analogue scale for all translations in the HIT. But

if the scores are standardised, then the scores of this spammer have an equal influence on the

mean as the other workers, and the correlation of the mean decreases. As we increase the

number of workers, each worker has a smaller influence on the mean whether using raw scores

or standardised, so a few low-quality scores do not bring down the correlation of the mean as

long as there are enough high quality scores.3

3We find that workers who utilise only a small range of the scale are likely to have a low quality, probably
because it is difficult to be consistent, or because they are deliberately spamming by randomly clicking on the
same area of the scale.
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(a) Mix of QCPASS and QCFAIL workers
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(c) QCPASS Workers

0.4 0.5 0.6 0.7 0.8
Worker Correlation

1

2

3

4

5

6

Es
tim

at
ed

W
or

ke
rP

re
cis

ion

QCpass

1 4 7 10 13 16
Number of workers per translation

0.6

0.7

0.8

0.9

P
ea

rs
on

 C
or

re
la

tio
n

Model estimate
mean z-score
mean raw-score

Fig. 3.5 Results on the WMT13ES-EN dataset:
(left) Scatterplot of inferred precision against correlation with ground truth with 20 workers per
HIT; (right) Correlation of the model’s inferred quality with the ground truth as we increase the
number of workers.
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As many high quality workers fail to pass quality control, rraw−mean and rz−mean (the corre-

lation of the raw and standardised mean) is higher than rDA (the correlation of the standardised

mean of the subset of QCPASS workers).

With as few as 5 worker scores per HIT, the model’s inferred precision correlates highly

with worker correlation (Fig. 3.4). Of the 20 workers that annotated these four HITs, 11 pass

quality control, and the correlation of these QCPASS workers with the ground truth ranges

between 0.4 and 0.85. There are three other workers that do not pass quality control but have a

moderate correlation (r > 0.5). The model also recognises that the remaining workers have a

low quality, and learns a low precision for these workers. The model’s inferred estimate has a

higher correlation than all three baselines. The correlation of the model estimate, rmodel , rapidly

reaches 0.9 at 7 workers per translation. As we increase the number of workers to 20, rmodel

continues to increase even when we add low-quality workers. The gap between the correlation

of the model’s inferred quality and the baselines decreases, but the model is always slightly

better.

Most UNPAIDworkers are weakly correlated with the ground truth. Unfortunately, some of

these workers have a moderate correlation, and the correlations of QCPASS and UNPAIDworkers

have an overlap. Finally, most PAIDQCFAILworkers are moderately correlated with the ground

truth; the model takes advantage of these workers, and its estimate of the model quality is

clearly better than the mean of the subset of QCPASS workers.

QCFAIL Workers

We next look at only the subset of workers that have not passed quality control, to check how

much valuable information is lost in the process of quality control. This mix contains both

workers who were rejected payment (UNPAIDworkers) and PAIDQCFAILworkers who were paid

but whose scores were discarded due to failing the significance tests.
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The quality of the mean of raw scores is noticeably higher than the mean of z-scores, and

our model quality is typically even higher. This is consistent with the observations on the

previous cohort that includes a mix of QCPASS and QCFAIL workers, and can be attributed to

low-quality workers that utilise only a small range of the scale.

In this cohort of workers, the first annotators of all four HITs coincidentally have a reason-

ably high quality (r ≥ 0.6). The correlation of all three methods drops when we add low-quality

workers, but the decrease in model quality is much smaller as it gives a higher weight to the

high-quality workers. As we add more workers, rmodel increases markedly; it follows the

trend of rz−mean, but maintains the strong improvement over both baselines. At 20 workers per

translation, rmodel is just above 0.85, whereas rz−mean is only around 0.8. Note that rmodel is the

best performing method when we have more than four workers.

QCPASS Workers

Finally, we look at only the subset of workers that have passed quality control, to confirm that

the model does not fail in the (unlikely) scenario where all annotations have a high quality.

Although some of these annotators only have a moderate correlation with the ground truth,

this doesn’t negatively affect rz−mean due to the presence of many high quality annotators, and

rz−mean steadily increases as we add more annotators per HIT. The mean of the standardised

scores is clearly better than the mean of raw scores, replicating the results shown in Graham

et al. (2015).

At just two workers per HIT, the model is unable to correctly discern which worker is better,

and so rmodel is lower than rz−mean. With low-quality workers, the model uses the constraints

on the quality control items, but when both workers pass quality control, this information is less

helpful. Once we add a third worker, the model can now reasonably infer worker accuracy, and

rmodel is very slightly higher than rz−mean. It remains at least as high as rz−mean as we increase

the number of workers to 20.
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3.5.2 WMT16 TURKISH → ENGLISH

This dataset consists of 8 HITS, with at least 15 QCPASS annotations for each translation. Of

the 256 workers that completed these HITs, about two thirds (67.58%) fail the quality control

measures. We choose this dataset to show that our model performs well even when there is a

large proportion of low-quality workers.

We use the mean of all QCPASS workers as the ground truth. This number is much smaller

than the 60 worker scores used in the WMT13ES-EN dataset. Moreover, as we showed in

Sec. 3.3.3, some of the QCPASS workers have a low correlation with the mean. Thus, this

“ground truth” is not as reliable as with the WMT13ES-EN dataset, and we can expect our

model to have lower correlations.

In this dataset, very few workers were outright rejected payment. We do not see the

clear demarcation between PAIDQCFAILand UNPAIDworkers; the correlation of the rejected

UNPAIDis spread between −0.3 and 0.6, overlapping significantly with the PAIDQCFAILworkers.

As with the WMT13ES-EN, we test our models on (a) a mix of QCPASS and QCFAIL workers,

(b) QCFAIL workers, and (c) workers who pass quality control. Note that the mix of workers in

sets (a) and (c) overlaps with the QCPASS workers used to compute the ground truth, unlike the

WMT13ES-EN dataset where we had a separate set of QCPASS workers for the gold standard.

This provides an advantage to the baselines when evaluating over sets (a) and (c). As the ground

truth is the mean z-score of all QCPASS workers, and we have 15-17 QCPASS workers per HIT,

rz −mean ⪅ 1 for set (c) at n = 15 workers.

Fig. 3.6 shows the results. With any of the three subsets of workers, the correlation of the

mean standardised scores is always higher than that of the mean raw scores. This is particularly

true for the set of QCPASS workers, where rz−mean is clearly higher than rraw−mean. This might

be attributed to the fact that the “ground truth” is the mean of all z-scores, but rz−mean is higher

than rraw−mean even with the set of QCFAIL workers, where there is no overlap at all with the

scores used to compute the ground truth.
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(a) Mix of QCPASS and QCFAIL Workers
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(c) QCPASS Workers
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Fig. 3.6 Results on the WMT16TR-EN dataset:
(left) Scatterplot of inferred precision against correlation with ground truth with 20 workers per
HIT; (right) Correlation of the model’s inferred quality with the ground truth as we increase the
number of workers
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Fig. 3.7 Pearson’s r of the estimated true score with the “ground truth” of five high quality
workers and an additional N random workers per translation, where N ranges from 0 to 20. The
model estimate degrades much slower than the baseline (the mean of the standardised scores of
these workers).

Our model is clearly better than the baselines for the cohort of QCPASS + QCFAIL workers

and the cohort of QCFAIL workers, with a stronger improvement over the latter subset. On the

set of QCPASS workers, the model estimate is slightly better than the standardised mean when

we have less than 10 workers per HIT. This is mainly due to one low quality worker (correlation

less than 0.1), whose scores managed to pass quality control. After that, the z-mean gains a

slight advantage over the model estimate, which might be attributed to the gold standard being

computed as the mean of z-scores of all QCPASS workers.

3.5.3 Adversarial Settings

In addition to the experiments above on MTurk data, we generate synthetic data to understand

how well the model performs under adversarial conditions. We simulate a scenario where we

have five high-quality scores per translation, and test whether the model can recover the true

quality despite the presence of additional workers whose scores contain no information about

the quality of the translation.
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For each of the four HITS from the WMT13ES-EN, we sample five QCPASS workers with

high correlation (r ≥ 0.8) with the true quality, and generate scores of additional random

workers by sampling from the standard normal distribution. Fig. 3.7 shows the performance of

the model as we add up to 20 random workers to the five QCPASS workers.

With only the five QCPASS workers, the correlation of the mean (rz−mean) and the model’s

inferred quality (rmodel) with the ground truth is 0.94. The model doesn’t have much scope

for improvement over the mean because all workers are very high quality. As we add random

workers to the mix, rz−mean drops sharply. But the correlation of the model’s inferred quality

is still above 0.9 even after adding up to ten random workers. The correlation of the model

decreases steadily after that, but the rate of decrease is much smaller compared to the mean, and

the difference between rmodel and rz−mean steadily increases as we add more random workers.

After adding 20 random workers, rmodel is 0.76, which is an improvement of 0.16 over rz−mean.

3.5.4 Spammer Removal

While the model down-weights scores from annotators with a low inferred precision, these

scores still have some influence on the inferred translation quality. If the scores are random (or

worse, negatively correlated with the true quality), then this might negatively affect the inferred

translation quality as the model attempts to fit these scores. Li (2019) likens spammer removal

to feature selection for Machine Learning models, where workers can be considered as features,

and noisy features can decrease performance.

Following Raykar and Yu (2012) and Rahimi et al. (2019), we exclude low-quality

annotators (called “spammers”) from the model’s input data. More specifically, we rank

annotators of each HIT based on the inferred precision of the model trained with all 20 workers

in the cohort. Next, we retrain the model with the top k workers from each HIT, and plot the

correlation of the models’ estimated translation quality. If the model is being hindered by

spammers and its estimate of worker accuracy is correct, we expect that the model estimate
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gets steadily better as we discard low quality scores. But as we remove more annotators, the

model will begin to lose valuable information, and the model quality will begin to decrease.

On the other hand, if the estimate of worker reliability is flawed, the model’s correlation with

the ground truth will be unstable as we discard workers.

We compare spammer removal with two unsupervised baselines that correspond to the raw

and standardised mean. We compute the mean raw score of all workers in the cohort, then sort

workers based on their correlation with this. To simulate spammer removal on the raw scores,

we then compute the mean score of the k workers with the highest correlation with the mean of

all workers. We do the same process with the standardised scores.

Fig. 3.8 shows the results of removing spammers on four subsets of the data:

Mix of QCPASS and QCFAIL workers, WMT13ES-EN: With all 20 workers, rmodel is around

0.9, which is higher than rz−mean and rraw−mean. The model appears to be robust to having a few

low quality workers as inputs, and rmodel stays constant as we remove the least precise workers.

The correlation then begins to decrease after we remove more than 8 workers. At the top 16

workers, rz−mean surpasses rraw−mean and is almost as high as rmodel , and stays approximately

equal to rmodel as we decrease k. At just the best four workers, rz−mean and rmodel are still above

0.9.

QCFAIL workers, WMT13ES-EN: This subset has some low quality workers and using

the top 14 workers results in an increase in rmodel compared to using all 20 workers. Both

rraw−mean and rz−mean increase as we remove the least correlated workers, showing that the

model is much more resilient to spammers compared to the mean.

Mix of QCPASS and QCFAIL workers, WMT16TR-EN: Here, rmodel increases as we remove

the 4 worst workers, then decreases sharply as we remove more workers. The quality of the

best workers in these subsets is not as high as with the WMT13ES-EN dataset, so more workers
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(a) Mix of QCPASS and QCFAIL workers
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(b) QCFAIL Workers

Fig. 3.8 Results of spammer removal: correlation of the model’s inferred quality with the
ground truth, as we decrease the number of annotators per HIT. For the model estimate, we use
the top k workers, ranked by the inferred precision of these workers. For the baselines, we sort
workers based on their correlation with the mean of all 20 workers.
(Column 1 is cohort of QCPASS and QCFAIL workers, and column 2 is cohort of QCFAIL workers.)



3.5 Experiments 82

are needed to achieve a high correlation. Again, rz−mean is clearly higher than rraw−mean.

Interestingly, the correlation of the baselines peak at the top 12 workers instead of top 16, and

it appears that the model is not very effective at selecting the best workers as it is outperformed

by the mean of standardised scores when k is between 4 and 12. Note that the best correlation

of the model is still higher than the best correlation of the baselines.

QCFAIL workers, WMT16TR-EN: Spammer removal results the highest improvement in

this dataset: rmodel increases from 0.73 to 0.76 on discarding four workers, then decreases. The

model also maintains a clear improvement over both baselines. However, the quality is still

low, and we clearly need to collect more annotations.

3.5.5 Analysis of Individual HITs

The quality of the model estimate depends on the set of workers who annotated the translations.

In this section, we look at some representative HITS to help determine (a) what is the ideal

number of spammers to remove and (b) whether we need to collect more annotations.

For each HIT, Fig. 3.9 shows

1. A heatmap showing the pairwise correlation of the scores of the workers who annotated

the HIT, along with the model’s inferred quality and the standardised mean. The workers

are sorted based on the model’s inferred precision. We use a diverging colour scheme,

with a darker hue representing a stronger relationship. Instead of being centered at zero,

the heatmap is centered at 0.1984. Thus, a random worker would have mostly blue hues

in their row and column, and a strong worker would have dark browns when compared

to other strong workers. If the model correctly estimates the precision of the workers, we

would expect the top left block to have dark browns, with a slow transition to blue as we

move to the bottom right.

4This represents the 95% confidence interval for the correlation of two variables of length 70 drawn from a
random normal distribution.
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2. a scatterplot of the model’s inferred precision of the subset of all 20 workers and the

correlation of these workers with the ground truth, and

3. the correlation of the model’s inferred quality with the ground truth of the top k workers

per HIT, based on the model’s inferred accuracy with all 20 workers as input.

In all the heatmaps in Fig. 3.9, the workers with higher inferred precision (the top rows)

correlate higher with the model than the mean score. The trend gradually reverses, and the

model places less weight on scores with low inferred precision. Here are observations specific

to individual HITs:

(a) This is an example of a HIT from WMT13ES-EN (mix of QCPASS and QCFAIL workers)

that has attracted many reliable workers. The correlation heatmap has a large and intense

brown block at the top left corner, and just a few rows of light blue at the bottom. The

model obtains a high correlation (r = 0.95), and is resilient to the obvious spammers

based on the heatmap.

(b) This HIT contains workers from the WMT13ES-EN dataset that fail quality control. The

heatmap appears similar to HIT (a), except that the block of highly correlated workers

is smaller. But this is sufficient to gain a correlation above 0.9 with all 20 workers.

The maximum correlation is achieved using the top 12 workers, which corresponds to

removing workers whose rows are predominantly blue in the heatmap.

(c) This HIT was annotated by workers from the WMT16TR-EN dataset that fail quality

control. Like HIT (b), the heatmap indicates that the correlation is highest when using

the top 12 workers. However, many of these workers are only moderately correlated with

each other, indicating that these workers are less reliable, and more annotations should

be collected.

(d) At the other extreme is an example from WMT13ES-EN: QCFAIL workers. Here, the

heatmap is predominantly blue, with scattered light brown cells, which would ideally
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(b) SUFFICIENT RELIABLE WORKERS
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(c) INSUFFICIENT RELIABLE WORKERS
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(d) FEW RELIABLE WORKERS
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Fig. 3.9 Analysis of Selected HITs:
Column 1: Pairwise correlation of the model estimate, standardised mean and all workers
sorted by inferred accuracy. See text on page 82 for details.
Column 2: Scatterplot of the model estimate of worker precision against worker correlation.
Column 3: Correlation of the model’s inferred quality with the ground truth as we remove
spammers.
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be present at the top left corner. This indicates that the model has failed to infer the top

workers. The highest correlation is obtained at k = 6 workers, which is impossible to

determine based on the heatmap. But the heatmap does highlight the need to collect more

annotations, and with better quality annotations, the model might do better at inferring

worker quality.

When collecting annotations, these heatmaps can be used as a diagnostic tool to help

determine how many spammers to remove and whether we have collected enough annotations.

3.6 Conclusion

In this chapter, we looked at better methods to aggregate direct assessment data to estimate

accurate scores for individual translations.

Direct assessment uses statistical significance tests over a small set of quality control items

to determine “good” workers, and computes the true translation quality as the mean standardised

scores of at least fifteen QCPASS workers. However these tests are too conservative, and can

lead to discarding potentially useful data. Workers are rejected payment only when their scores

are found to be egregiously bad based on manual examination, so discarding useful scores leads

to an increase in the cost of annotation.

The errors of the standardised annotator scores are normally distributed with a zero mean,

with better annotators having a smaller variance. Based on this, we proposed a simple prob-

abilistic model to aggregate data instead of using the mean of QCPASS workers. The model

learns the precision (inverse variance) of individual annotators based on patterns of agreement

with other annotators. We also supply additional constraints on the quality control items to help

with this. The model returns an estimate of the true quality that places a higher weight on more

reliable workers.
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We tested this model on two datasets: the WMT13ES-EN which has four HITs with at

least 80 workers that pass quality control, and additionally, the WMT16TR-EN dataset that

contains a large percentage of workers that do not pass quality control. It typically returns a

more reliable estimate of the translation quality using fewer annotations per HIT.

We next explored spammer removal, where we rerun the model with the top k workers

based on their inferred accuracy. We found that the model was a lot more resilient to spammers

(random workers) compared to the mean of raw or standardised scores. When there are enough

high-quality workers present, the model is not adversely affected by the presence of a few

spammers and removing these workers doesn’t help the model. In other scenarios, for example,

with many spammers, using the scores of the top k workers resulted in an improvement over

the using all 20 workers.

A major limitation of this model is that it does not directly inform us of how to choose how

many spammers to remove or when to stop collecting judgements. We presented a potential

direction for solving this, by plotting pairwise correlations of the worker scores. Excellent

workers are highly correlated with the true quality of the translations, which, in turn, means

that they must correlate with each other. On the other hand, random workers would have low

pairwise correlations with the other workers (irrespective of their quality). Based on this, we

can develop heuristics that answer both questions. We can filter out workers who have low

correlation with others, and collect more annotations until we have at least t workers who

have a correlation higher than a threshold with the other workers, where t can be empirically

determined, and then tested on unseen data. These ideas, if further developed, could reduce

costs further.

Finally, this work assumes that the annotator scores are unbiased and that the noise is

random. In the next chapter, we show that this assumption is not always true: humans are

susceptible to cognitive biases, and we present evidence for one such bias in MT direct

assessment data.



Chapter 4

Sequence Effects in Crowdsourced Human

Annotations

This chapter builds on the paper:

Nitika Mathur, Timothy Baldwin, and Trevor Cohn. Sequence effects in crowd-

sourced annotations. In Proceedings of the 2017 Conference on Empirical Meth-

ods in Natural Language Processing, pages 2860–2865, Copenhagen, Denmark,

September 2017.

4.1 Introduction

Human evaluation is regarded as the gold standard for machine translation evaluation: humans

can intuitively identify how much of the meaning of the original sentence has been preserved

when scoring MT outputs. In particular, when comparing MT output with a reference trans-

lation, human evaluators can quickly understand the impact of any difference between the

two sentences. In contrast, automatic metrics struggle to do so, and can be biased towards

translations that are superficially similar to the reference translation, which leads to sub-par
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performance when evaluating MT systems that often look superficially similar to the reference

translation but hide semantic inadequacies.

In the previous chapter, when we inferred the true translation quality from multiply-

annotated data, we assumed that errors in individual annotators’ ratings are random, i.e.,

their ratings are unbiased, and so aggregating these ratings would yield robust and accurate

estimates of the true quality.

However, humans are affected by subconscious cognitive biases. The design of the anno-

tation task can influence the decisions made by annotators in subtle ways: besides the actual

features of the instance being annotated, annotators are also influenced by factors such as the

user interface, wording of the question, and familiarity with the task or domain. Accordingly,

the assumption of unbiasedness is not always justified.

In this chapter, we explore one particular source of cognitive biases, and show that annotator

judgements are affected by sequence bias, whereby the order of presentation can affect individ-

uals’ assessment of an item. We focus on crowdsourced data, where annotations are collected

by a number of anonymous crowd workers through platforms such as Amazon Mechanical

Turk.

To mitigate the cost and time requirement of obtaining annotations from experts, multi-

ple studies have been conducted to test the feasibility of using crowdsourcing in NLP, and

crowdsourcing is now regularly used to obtain NLP annotations, including MT human judge-

ments1. (See Sec. 2.1.3 for a review of various attempts at crowdsourcing MT evaluation.) In

particular, the official evaluation at the annual Conference on Machine Translation (abbreviated

as WMT for historical reasons) has been partly crowdsourced between WMT 2010 to WMT

2013 (Callison-Burch et al., 2008; Bojar et al., 2013), and then since 2017 (Bojar et al., 2017b)

to the present year.

1As MT systems improve in quality, there has been recent work that show that expert evaluations do not
always agree with crowdsourced evaluations (Toral et al., 2018; Läubli et al., 2020; Freitag et al., 2021), but
crowdsourcing is still commonly used to evaluate MT.
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The items required to be annotated are broken down into small groups of instances called

HITs and are presented to crowd workers. As individual anonymous workers are expected to

be less accurate than experts, crowdsourcing requires more redundancy than expert annotation.

Typically, multiple annotations are collected per item, which are then aggregated to yield the

final labels.

In most annotation exercises, the order of presentation of instances is randomised to remove

bias due to similarities in topic, style and vocabulary (Koehn and Monz, 2006; Bojar et al.,

2016a). When crowdsourcing judgements, the normal practise (as used in the datasets we

analyse) is for the item ordering to be randomised when creating HITs, and then to have each

HIT annotated by multiple workers.2 All workers who complete the HIT generally see the

items within the HIT in the same order (Snow et al., 2008; Graham et al., 2017).

We begin the chapter with a review of the literature on cognitive biases, focusing on

sequence effects. We then describe the method we use to detect sequence effects, before

moving on to our experiments. We investigate the presence of sequence effects on the multiply-

annotated MT direct assessment dataset (Graham et al., 2015) that we used in our experiments

in Chapter 3. While direct assessment is a primary method for human evaluation of MT

today, many researchers still use other methods, for example, obtaining preference judgements

over two translations of the same source sentence. To show that sequence effects can also

be present in other kinds of annotations, we explore additional crowdsourced NLP tasks

where raw crowdsourced data is publicly available along with expert judgements: the binary

tasks of textual entailment and temporal ordering (Snow et al., 2008). Finally, we analyse a

crowdsourced affective text analysis dataset (Snow et al., 2008) to check if sequence effects

can be detected in settings where workers annotate each sentence on different aspects (in this

case, valence and five emotions), before moving on to the next sentence.

2This can be easily done in Amazon Mechanical Turk, for example, by specifying the maximum number of
assignments per HIT.
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4.2 Background: Decision making and Cognitive biases

We can regard annotations as a sequence of decisions made by the annotators. Psychologists

distinguish between two modes of thought in the mind that are responsible for decision making

called system 1 and system 2 (Kahneman, 2011). System 1 is fast, automatic, relies on

associations and memories. This system is responsible for everyday decisions and intuitive

judgements such as the distance to a given object, or simple items that have been learned though

repetition such as 6×7 = 42.

System 2 requires attention and cognitive effort, and is typically activated when system 1

requires assistance, for example, in new and unfamiliar situations such as computing complex

mathematical calculations.

System 1 is usually correct and justified in its decisions, but sometimes, intuitions and

heuristics can lead to systematic errors or biases. System 2, on the other hand, is slow and

analytical, and is more resistant to these biases.

Ideally, NLP annotators would rely completely on System 2 when making decisions.

However, even in scenarios where people intend to make deliberate, careful decisions, it can be

difficult to “turn off” the automatic judgements of system 1, and subconscious heuristics can

factor into decisions that are intended to be completely rational. In this chapter, we focus on

the biases that arise when making decisions in a sequence: instead of evaluating each instance

independently, annotators might be influenced by their response to previous instances. Possible

explanations for sequence effects include:

Gambler’s fallacy: Once annotators have developed an idea of the distribution of scores or

labels, they can come to expect even small sequences to follow the distribution. For example,

in binary annotation tasks, if they expect that positive (1) and negative (0) items are equally

likely, then they believe the sequence 11100001 is less likely than the sequence 01011010,

even though both contain the same proportion of positive and negative items (50% False and
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50% True). When asked to generate random sequences, experimental subjects refrain from

producing strings that contain patterns or streaks, and when judging sequences, any sequences

that happen to contain these patterns are judged as non-random (Bar-Hillel and Wagenaar,

1991). This can affect the decisions they make when annotating a sequence of items: if they

assign a negative label to an item, they may approach the next item with a prior belief that it is

more likely to be a positive. In this way, the distribution of their judgements can match their

prior more closely than it really should. Evidence for gambler’s fallacy has been found in lab

settings as well as real world decisions.

In the lab, to demonstrate gambler’s fallacy, undergraduate students were given the choice

of gambling or playing it safe when predicting the outcome of a series of coin tosses (Gold

and Hester, 2008). When they chose to gamble, they receive 100 points if the result of the fair

coin toss is a preselected “winning” side, say heads. If they choose the safe option, they receive

70 points irrespective of the outcome of the coin toss. The rational choice would be to always

choose the safe option, as the expected value on gambling on a fair coin is 50 points. After

a streak of three heads, as expected, participants were more likely to choose the safe option.

However, they were more likely to gamble on the 100 points after three tails, showing that they

were subconsciously engaging in the Gambler’s fallacy. In another experiment, they found that

this bias disappears when switching coins or allowing the coin a day to “rest” before tossing

the coin again.

Additionally, real world high-stakes decision-makers have been shown to be prone to the

gambler’s fallacy. Chen et al. (2016) found that refugee asylum judges are more likely to reject

an application when the previous application was accepted. Similarly, they showed evidence

of gambler’s fallacy in the decisions of baseball empires when calling whether a pitch was a

ball or a strike, and loan officers when deciding whether to grant a loan. This bias is weaker if

decision makers are more experienced or given strong incentives to be right.
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Sequential contrast effects: Sequential contrast effects appear when the perceived quality

of the current item is affected by the quality of the items observed immediately before. When

scoring a series of items, a high quality item may raise the bar for the next item. On the other

hand, a bad item may make the next item seem better in comparison. Sequential contrast effects

have been observed in scenarios such as judgements in physical attractiveness (Kenrick and

Gutierres, 1980; Bhargava and Fisman, 2014) and financial markets, where the earnings of

publicly traded firms are perceived as more or less impressive by investors depending on the

previous day’s earnings (Hartzmark and Shue, 2018).

Assimilation effects: When faced with a sequence of decisions, annotators might show

assimilation effects where there is a positive bias towards the previous decision(s) made. In

continuous tasks such as rating the quality of items, this means that the score of one item

is closer to the previously assigned score, compared to a scenario where the two decisions

were made independently. Assimilation effects have been reported in real world sequential

decisions, for example, in the scores of expert gymnastics judges (Damisch et al., 2006) and

jury decisions in criminal courts (Bindler and Hjalmarsson, 2018). One explanation for this

is anchoring and insufficient adjustment: the annotator uses their score of the previous item

as an anchor, and adjusts the score of the current item from this anchor based on perceived

similarities and differences with the previous item (Tversky and Kahneman, 1974). Anchoring

effects may decrease as people gain experience and expertise in the task (Wilson et al., 1996).

Cognitive biases in NLP annotations

NLP research relies heavily on annotated datasets for training and evaluation. When collecting

annotations for any NLP task, care is usually taken to ensure that the annotations are of high

quality, through careful design of label sets, annotation guidelines and training of annotators

(Hovy et al., 2006), and intuitive user interfaces (Stenetorp et al., 2012).
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There has been much work on the potential of errors due to cognitive biases. Schoch

et al. (2020) caution against the influence of positive or negative framing of the questions,

and anchoring effects formed based on examples presented to annotators. In a more concrete

example, annotators are shown to exhibit anchoring effect when asked to revise predictions

from machine learning models which serve as the initial anchors; the labels of annotators

correcting the POS tags and dependency parser predictions by the machine learning models

are biased towards the initial tags, and tend to have more errors compared to annotations made

from scratch (Berzak et al., 2016).

To the best of our knowledge, there are no mentions in the NLP literature of the cognitive

biases arising from the sequential nature of annotating items. During annotation tasks requiring

discrete labels, we might expect annotators to develop prior heuristics on the distribution

of the labels, resulting in errors when the sequence of actual items do not conform to these

priors. When assessing the quality of NLP systems, there is potential for sequential contrast

or assimilation effects. In the next section, we present a simple model for detecting sequence

effects in annotations.

4.3 Methodology

Ideally, the response of a given annotator for a given item can solely be explained by the true

label/score of the item. If this is the case, we should not be able to predict the decision on

current item given previous decisions. If, however, the annotator is influenced by the previous

item, there would be either a positive or negative relationship between consecutively annotated

items.

Following Chen et al. (2016), we use a simple linear model to test whether the annotation

of an instance is correlated with the annotation on previous instances, conditioned on control
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variables such as the gold standard (i.e. expert annotations3):

Yi,t = β0 +β1Yi,t−1 +β2Goldt +η (4.1)

where Yi,t is the annotation given by an annotator i to an instance t, and η is Gaussian noise

with zero mean. To fit predictions to the data, we use linear regression for continuous tasks and

logistic regression for binary tasks. If there is no dependence between consecutive instances,

and annotators assign labels/scores based only on the aspects of the current instance, then the

data can be explained from the gold score (learning a positive β2 value) and bias term (β0), and

the autocorrelation coefficient β1 will be close to zero.

If we do not use the ground truth as a control variable, then a positive or negative autocorre-

lation might arise by chance, particularly if the sentences are not randomised. But since we do

include this control, a non-zero value of β1 is evidence of mistakes being made by annotators

due to sequential bias. A positive value of β1 can be explained by priming or anchoring, and a

negative value with sequential contrast effects or the gambler’s fallacy. Accordingly, we test

the statistical significance of the β1 ̸= 0 to determine whether sequence effects are present in

crowdsourced text corpora.

Note that this is a first order model that assumes linearity; it doesn’t consider higher

order interactions, and is unable to describe annotator decisions that are influenced by earlier

responses.

4.4 Experiments

In this section, we present evidence of sequence effects in the machine translation adequacy

dataset. We also explore other influential crowdsourced datasets including both binary and

3For the Machine Translation dataset described in Sec. 4.4.1, we use the mean of at least fifteen crowd workers
as a proxy for expert annotations.
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continuous annotation tasks: recognising textual entailment, event ordering, and affective text

analysis.

4.4.1 Machine Translation Direct Assessment

Our main dataset is based on direct assessment (Graham et al., 2017) — the current best-

practise, as adopted by WMT since 2017 (Bojar et al., 2017b). We test for autocorrelation in

this data, exploring the difference in how workers with different quality annotations are affected

by sequence bias. We also analyse whether workers get more or less biased as they annotate

more items. Finally, we investigate whether the presence of sequence effects can influence

aggregate scores.

We briefly summarise direct assessment (DA), which we described in more detail in Sec. 3.3,

before presenting results. Annotators are asked to judge the adequacy of translations using a

100-point sliding scale which is initialised at the mid point. There are 3 marks on the scale

dividing it into 4 quarters to aid workers with internal calibration. They are given no other

instructions or guidelines on how to use the scale, and what quality each part of the scale

represents4.

Each HIT contains 100 items, and is designed to include quality control items (10 repeat MT

translations, 10 reference translations, and 10 deliberately degraded translations) to filter out

poor quality scores. Worker who submitted scores of clearly bad quality were rejected payment

based on manual inspection of the quality control items and additional key indicators like the

time taken to complete the annotations. We refer to these workers as “bad”. The scores on the

quality control items of the remaining workers are further checked using statistical significance

tests, and only workers who fulfil these criteria are used to compute the final results. We refer

to these workers as “good” or “moderate”, based on whether they fulfil these additional criteria.

(See Sec. 3.3.1 for more details on quality control.)

4In contrast, the FLORES setup of DA (Guzmán et al., 2019), presents additional guidelines to annotators, for
example, "the 0–10 range represents a translation that is completely incorrect and inaccurate".
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Finally, to eliminate differences due to different internal scales, every individual worker’s

scores are standardised. Following Graham et al. (2015), we use the average of standardised

scores of at least 15 “good” workers as the ground truth.

In this chapter, we base our analysis on the adequacy dataset on Spanish-English newswire

data from WMT 2013 (Graham et al., 2015; Bojar et al., 2013). The dataset consists of 12

HITS of 100 sentence pairs each; each HIT is annotated by at least 30 workers that pass quality

control (we describe the dataset more fully in Sec. 4.4.1). In the original datasets, the scores of

translations that are not MT system outputs are discarded once they have been used to determine

the quality of the crowd workers. In our experiments, we consider all the instances that were

rated by the annotators to preserve continuity. We refer to the final dataset as “MTadeq”.

Results

As this is a continuous output, we use a linear regression model, whereby the current score

is predicted based on the previous score with the mean of all worker scores as control. As

the scores were standardised, we do not control for overall annotator bias towards positive or

negative values.

As seen in Tab. 4.1, we see a small but significant positive autocorrelation for “good” and

“moderate” workers, which increases if we remove the mean scores as a control variable. The

autocorrelation is much higher for bad (rejected) workers. We used an ANOVA to determine

if the difference in β1 between the three groups is statistically significant. We found no

significant difference in β1 between the good and moderate workers, but these two groups have

a significantly lower autocorrelation than the bad workers.

Since scores of individual workers contain assimilation effects, it is highly likely that the

mean itself is biased. Using this as the gold standard means that we are explaining away

some of the positive autocorrelation by this control variable. Thus, if we used an unbiased
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Good Moderate Bad
N items 48216 24696 17738

β1 (autocorrelation) 0.030∗∗∗ 0.038∗∗∗ 0.193∗∗∗

β2 (gold) 0.741∗∗∗ 0.661∗∗∗ 0.256∗∗∗

β ′
1 (autocorrelation) 0.066∗∗∗ 0.053∗∗∗ 0.196∗∗∗

Table 4.1 MTadeq dataset: Coefficients of the linear model showing sequence bias of good,
moderate and bad workers. β1 is the autocorrelation coefficient using the mean of good workers
as a control, and β ′

1 is the autocorrelation coefficient of a model with no controls. Stars denote
statistical significance: ∗ = 0.05, ∗∗ = 0.01, and ∗∗∗ = 0.001.

estimate of the true quality instead, the value of the autocorrelation coefficient would probably

be somewhere in between the two values when we include and exclude the mean as a control.

In the rest of our experiments, we include the mean as a control variable.

Learning effect: In this dataset, each annotator scores a sequence of a 100 translations. As

workers score more translations, do they become more or less prone to sequential bias? If the

task is new and unfamiliar, there might be a learning effect as annotators get more proficient at

rating translations, resulting in a decrease in the bias. On the other hand, if the task is too long

or monotonous, annotators might get fatigued and this might result in a higher propensity to be

influenced by cognitive biases. We divide the dataset into 3 equal sized buckets based on the

position of the translation in the HIT, and test for autocorrelation in each subset.

As shown in Tab. 4.2, for good and moderate workers, the bias is stronger in the first group

of sentences annotated, decreases in the second, and is much smaller in the last. This could

be because workers are familiarising themselves with the task earlier on, and calibrating their

scale. The autocorrelation of moderate workers is comparatively higher than that of the good

workers in the first tertile, but this difference is negligible in the next two tertiles.

On the other hand, there is no such trend with bad quality scores. In fact, the bias is highest

in the last tertile, possibly because the workers are not putting in sufficient effort to produce
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Position Good Moderate Bad

1st Tertile 0.043534 ∗∗∗ 0.062781∗∗∗ 0.179367∗∗∗

2nd Tertile 0.0321688∗∗∗ 0.034176∗∗∗ 0.17299 ∗∗∗

3rd Tertile 0.015494 ∗∗ 0.013832 0.22488 ∗∗∗

Table 4.2 MTadeq dataset: Autocorrelation coefficient β1 of worker scores for translations in
the first, second or third tertile based on the position of the sentence of the HIT.

accurate scores, or are becoming more efficient at subverting the process such as by forming

click patterns between similar positions on the screen.

Worst case scenario Next we assess the potential impact of sequence effects in the worst

case situation.

When collecting annotations for evaluating MT systems, translations are sampled randomly

across all MT systems included in the evaluation. If the translations are not randomised across

MT systems, is there a possibility for the rankings to be affected due to sequence effects?

We divide the dataset into 3 equal sized buckets based on the “gold” score of the previous

sentence, which we discretise into low, middle and high based on equal-frequency binning.

As shown in Tab. 4.3, when each translation is annotated by a single worker, we can see

that the sentences in the “low” partition and the “high” partition have a difference of 0.18,

which is highly significant;5 moreover, this difference is likely to be sufficiently large to alter

the rankings of systems in an evaluation. The bias decreases when we increase the number

of annotations per translation and use the average score, but remains significant because all

workers scored the translations in the same order. This shows that the mean is also affected by

sequence bias.

This means that if were to order a HIT such that a specific system’s output is seen consis-

tently immediately after a bad (or good) output, then this could deflate (or inflate) the aggregate

score of the system, and potentially change the system’s rank.

5 p < 0.001 using Welch’s two-sample t-test
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N All Low Middle High H − L

1 0.01383897423 −0.09282164104 0.05054697839 0.08278096145 0.1756026025∗∗∗

5 0.004058806497 −0.05353356618 −0.01743259295 0.08309723811 0.1366308043∗∗∗

10 −0.000782429078 −0.04804236797 −0.03939720313 0.0850108181 0.1330531861∗∗∗

15 −0.0008957628429 −0.04962361921 −0.02339873432 0.07028759037 0.1199112096∗∗∗

Table 4.3 Impact of sequence effects on MT system scores in the worst case scenario: Trans-
lations following a low quality translation receive a lower score than those following a good
translation: “All” is the mean score of all sentences in the dataset, where each sentence score is
calculated as the average of N (standardised) worker scores. “Low”, “Middle”, and “High” are
mean scores of sentences where the previous sentence annotated is of low, medium and high
quality, resp. “H − L” is the difference between the average high and low scores.

4.4.2 Sequence Effects in NLP

In this section, we explore the potential for sequence effects in different kinds of annotations.

First, we look at the binary annotation tasks: recognising textual entailment (“RTE”) and event

temporal ordering (“TEMPORAL”). Next, we look at the affective text analysis dataset which,

like direct assessment, is carried out on a scale of 0-100, but instead of a single quality score,

contains annotations for different emotions for each sentence. All three datasets are taken

from the crowdsourcing study of Snow et al. (2008), and include crowdsourced annotations,

as well as expert annotations which we use as the true label in our experiments. As with the

MTadeq dataset, we look for autocorrelation between workers’ scores, and explore how this is

influenced by the quality of workers’ annotations.

Recognising Textual Entailment (RTE) and Event Temporal Ordering

In the RTE task, annotators are presented with two sentences and are asked to judge whether

the second text can be inferred from the first. With the TEMPORAL dataset, they are shown

two sentences describing events and asked to indicate which of the two events occurred first.

The RTE dataset contains 800 unique instances with 20 instances per MTurk HIT and the

TEMPORAL dataset contains 462 unique instances with 10 instances per HIT. For both tasks,
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Task All Non-extreme Good

RTE −0.10221 −0.19198∗∗ −0.16943 ∗

TEMPORAL 0.1977 −0.511 ∗∗∗ −0.5671∗∗∗

Table 4.4 Autocorrelation coefficient β1 for RTE and TEMPORAL data. Stars denote statistical
significance: ∗ = 0.05, ∗∗ = 0.01, and ∗∗∗ = 0.001.

each HIT was annotated by 10 workers, all of whom see the instances in the same sequential

order.

Results As this is a discrete task, we use logistic regression on worker labels against labels

on the previous instance in the current HIT, with the expert judgements as a control variable.6

We also add an additional control, namely the percentage of True labels assigned by the worker

overall, which accounts for the overall annotator bias. Without this control, the value of the

previous label can indicate the tendency of a given worker to give positive labels, leading to a

positive autocorrelation.7 To calculate the percent of positive labels, we use all labels by the

worker in the current HIT excluding the current label to avoid giving the model any information

about the current instance.

As shown in Tab. 4.4, over all workers (“All”), we find a small negative autocorrelation

for both the RTE and TEMPORAL tasks. One possibility is that this is biased by opportunistic

workers who assign the same label to all instances in the HIT, for which we can’t expect any

first order sequence effects. Following Chen et al. (2016), we calculate autocorrelation for

the subgroup of “Non-extreme” workers whose rate of positive decisions lies between 0.2 and

0.8. The autocorrelation of this subgroup is higher, and is statistically significant. Finally, we

also show results for workers with at least 60% accuracy when compared to expert annotations

(“Good”). We observe a significantly negative value of β1, showing that even good workers are

prone to assimilation effects.

6We see similar results when using linear regression instead of logistic regression.
7This is not relevant to MTadeq dataset as all worker’s scores are standardised.
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All Good Bad

β1 (autocorrelation) −0.02797 ∗ −0.00615 −0.03876 ∗

β2 (gold) 0.44533∗∗∗ 0.65632∗∗∗ 0.23330∗∗∗

Table 4.5 Autocorrelation coefficient β1 for the AFFECTIVE dataset. Stars denote statistical
significance: ∗ = 0.05, ∗∗ = 0.01, and ∗∗∗ = 0.001.

Affective Text Analysis

In the affective text analysis task (“AFFECTIVE”), annotators are asked to rate news headlines

for anger, disgust, fear, joy, sadness and surprise on a continuous scale of 0–100. In addition

to these six emotions, they rate sentences for (emotive) valence, i.e., how strongly negative

or positive they are (−100 to +100). The original dataset consisted of 1000 headlines, each

annotated by 6 experts (Strapparava and Mihalcea, 2007). In the crowdsourced dataset, 100

headlines were randomly sampled from the original dataset and divided into 10 HITs, with 10

workers annotating each HIT (Snow et al., 2008). We test for autocorrelation of scores of each

aspect individually, controlling for the expert scores and worker correlation with the mean of

expert scores. We also look separately at datasets of good and bad workers, based on whether

the correlation with the expert annotations is greater than 0.5.

Results For individual emotions, we do not observe any significant autocorrelation (p≥ 0.05).

As there are only 1000 annotations per emotion, we also look at results when pooling data for

all aspects. Though we find a statistically significant negative autocorrelation for scores of the

full dataset (Tab. 4.5), this disappears when we filter out bad workers. Given the difficulty of

this very subjective task, it is likely that many of workers considered ‘bad’ might have simply

found this task too difficult, and thus become more prone to sequence effects. On the other

hand, good workers were providing six other scores between rating the same emotion of two

consecutive sentences. This interruption might decrease the chance of being influenced by the

annotation for the previous sentence.
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4.5 Discussion and Conclusions

We have shown significant sequence effects across several independent crowdsourced datasets:

a negative autocorrelation in the RTE and TEMPORAL datasets, and a positive autocorrelation

in the MTadeq dataset. The negative autocorrelation can be attributed either to sequential

contrast effects or the gambler’s fallacy, and the positive autocorrelation to assimilation effects.

These effects were not significant for the AFFECTIVE dataset, perhaps due to the nature of

the annotation task, whereby annotations of one emotion are separated by six other annotations,

thus limiting the potential for sequencing effects. This is consistent with previous research:

Chen et al. (2016) found that the autocorrelation is smaller between judicial cases that are

separated by a longer time period.

These effects were typically more significant in the subset of inaccurate annotators, and

people who are annotating data seemingly at random are very prone to cognitive biases.

However, there is evidence of sequence effects even in crowdworkers who provide a reasonably

good quality of annotations. Since all workers see the instances in the same order, this affects

any other inferences made from the data, including aggregated assessment.

With MT evaluation using direct assessment, the judgements are subjective, and when

people are asked to rate them on a continuous scale, they need time to calibrate their scale.

We show that the sequential bias decreases for better workers as they annotate more sentences

in the HIT, indicating a learning effect. This is in line with experiments on rating physical

attractiveness where sequence effects attenuated as their experimental subjects gained more

experience (Bhargava and Fisman, 2014).

When collecting DA annotations for evaluating MT systems, the original proposal for DA

ensures that the translations are selected randomly from the MT systems evaluated (Graham

et al., 2017). The order of translations in the HIT is randomized, so any bias in individual scores

of a system’s translations would be cancelled when averaging scores of all its translations,

assuming a sufficiently large sample. Thus we do not expect sequential bias to have a marked
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effect on system rankings or other macro-level conclusions on the basis of this data. However,

when collecting multiple judgements for accurate sentence-level scores, all workers see the

scores in the same order. Thus, the scores of individual translations remain biased, which

augurs poorly for the use of these annotations at the sentence level, such as when used in error

analysis, or for training and evaluating automatic metrics.

In cases where the instances are independent, sequence problems can be easily addressed

by adequate randomisation — providing each individual worker with a separate dataset that

has been randomised such that no two workers see the same ordered data. In this way sequence

effects can be considered as independent noise sources, rather than a systematic bias, and

consequently the aggregate results over several workers will remain unbiased.

In recent years, as the quality of MT increases, it is now recommended to evaluate MT at the

document level. For WMT, HITs are now structured such that annotators see the translation of a

given document by an MT system in order, before moving on to another document translated by

another MT system (see Sec. 2.1.1 for details). In this case, we want annotators to evaluate each

sentence of the document in context, thus it would be desirable to see assimilation effects within

the scores of a given document. But we still need each document to be evaluated independently,

without any influence of sequential contrast or assimilation effects. If the quality of translated

documents vary across HITs, it is possible that workers will calibrate differently. For example,

the presence of a document translated by a very low quality MT system in the HIT might result

in the remaining documents receiving comparatively higher scores. Thus Direct Assessment

evaluations might run in to the same issues as relative ranking, where an MT system’s final rank

is influenced by luck in being compared more often with low or high quality systems Bojar

et al. (2011). Knowles (2021) demonstrated that system rankings at WMT 2020 were indeed

affected by the selection of the MT systems in the HIT; systems that were paired with low

quality systems had an unfair advantage over systems that are paired more often with higher

quality systems.
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The analysis in this chapter has shown that cognitive biases can distort evaluation and

annotation exercises; in particular, we demonstrated sequence effects in annotations by crowd-

workers. We limited our scope to binary and continuous responses, however it is likely that

sequence effects are prevalent for multinomial and structured outputs, e.g., in discourse and

parsing, where priming is known to have a significant effect (Reitter et al., 2006).

Another important question for future work is whether sequence bias is detectable in expert

annotators, not just crowd workers. We showed that autocorrelation decreases as crowd workers

annotate more MT outputs. Chen et al. (2016) report that more experienced judges are less

susceptible to the Gambler’s fallacy, and Reilly et al. (1998) show that assimilation effects

were smaller if their experimental subjects were familiar with the task. While we can hope that

data annotated by experts is less biased, it is still important to empirically determine that this is

so.

So far, this thesis explored ways to improve robustness of human evaluation of MT. In

the next chapter, we move to automatic evaluation, proposing new metrics that compare MT

with reference translation. In Chapter 6, where we explore evaluation of automatic metrics,

we touch on some of the themes of this chapter: extremely high or low scoring MT systems

can not just bias human annotations, but also have a major negative impact on the results of

automatic metric evaluation.



Chapter 5

Automatic Metrics

This chapter builds on the paper:

Nitika Mathur, Timothy Baldwin, and Trevor Cohn. Putting evaluation in context:

Contextual embeddings improve machine translation evaluation. In Proceedings of

the 57th Annual Meeting of the Association for Computational Linguistics, pages

2799–2808, Florence, Italy, July 2019.

5.1 Introduction

The previous two chapters explored two different aspects of improving human evaluation of

MT. While human evaluation is considered more reliable than automatic methods, it is often

impractical to obtain human judgements due to the cost and time required.

Automatic metrics are an indispensable part of machine translation (“MT”) evaluation,

serving as a proxy for human evaluation. They provide immediate feedback during MT

system development to validate ideas, tune parameters of systems, and perform neural model

architecture selection. Thus, the reliability of metrics is critical to progress in MT research.

Automatic MT metrics attempt to automatically predict the quality of a translation by

comparing it to a reference translation of the same source sentence. BLEU (Papineni et al.,
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2002), which measures the precision of n-grams between the Machine Translation output and a

human reference translation, has been the chosen measure of evaluating research hypotheses

since it was introduced. BLEU has many flaws which have been extensively studied (Callison-

Burch et al., 2006), and many new metrics have been developed that address these flaws.

Sec. 2.2.2 presents a detailed review of of approaches to designing metrics, which we briefly

summarise here:

Character-level variants such as BEER, CHRF and CHARACTER overcome the problem

of harshly penalising morphological variants (Stanojević and Sima’an, 2014; Popović, 2015;

Wang et al., 2016). In order to allow for variation in word choice and sentence structure, other

metrics use information from linguistic tools such as POS taggers, lemmatizers, synonym

dictionaries, dependency and constituency parsers, and semantic role analysers (Banerjee and

Lavie, 2005; Snover et al., 2006; Liu et al., 2010; Giménez and Màrquez, 2007b; Castillo and

Estrella, 2012; Guzmán et al., 2014). More recently, metrics have adopted word embeddings to

capture the semantics of individual words (Lo, 2017).

However, classic word embeddings are independent of word context, and context is captured

instead using hand-crafted features or heuristics. This chapter aims to improve over existing

automatic MT evaluation methods, through developing a series of new metrics based on

contextual word embeddings (Peters et al., 2018; Devlin et al., 2019), a technique which

captures rich and portable representations of words in context and have been shown to provide

important signal to many other NLP tasks.

We begin with an introduction to contextual word embeddings. We propose simple pre-

trained metrics that use off-the-shelf contextual embeddings to approximate the precision, recall

and F-score when comparing an automatic translation with a reference. We next develop a

series of trained models, which aim to learn sentence representations of the translation and the

reference that take into account similarities to words in the other sentence. We also apply these

models in a reference-free setting, where we use multilingual word embeddings to compare the
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MT system translation directly with the source sentence.1 We evaluate these metrics on the

WMT 2017 metrics shared task dataset (Bojar et al., 2017a), which was the most recent publicly

available dataset when we completed this work. We then analyse the two different strategies

for the datasets to train these models – using a small set of reliable, multiply-annotated dataset

compared to a larger, noisier singly-annotated dataset and find that the latter strategy is more

efficient. Finally, we present a qualitative analysis of our metrics compared to BLEU.

We completed this work in early 2019, and our metrics use BERT (Devlin et al., 2019)

embeddings which were released in late 2018. Since then, there has been an explosion of

research in understanding BERT, as well as the new models that improve on BERT, and we talk

of the implications on automatic metric evaluation at the end of the chapter in Sec. 5.6.

5.2 Background: Contextual Word Embeddings

Word embeddings are real-valued vector representations of words in a high-dimensional vector

space. These embeddings are learned from large monolingual corpora, and capture semantic

and syntactic relationships between words (Liu et al., 2019a; Rogers et al., 2020; Lin et al.,

2019; Tenney et al., 2019). By mapping words to embeddings, we can capture a soft-similarity

between two words which is helpful when computing similarity in meaning between the MT

output and the reference.

Classic word embeddings such as word2vec (Mikolov et al., 2013) and GloVe (Pennington

et al., 2014) map each word to a single vector irrespective of context. More recent methods for

creating contextual word embeddings such as ELMo (Peters et al., 2018) and BERT (Devlin

et al., 2019) compute representations for a word that depend on the sentence-context of the

word. These embeddings can be very useful with MT evaluation: when comparing embeddings

of the same word in two sentences, their similarity will be higher if the context is similar.

1The code of our metrics is available online at https://github.com/nitikam/mteval-in-context
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These are obtained from deep neural models that are trained on self-supervised tasks on

large text corpora. ELMo uses a two-layer biLSTM that is pre-trained on a bi-directional

language modelling task. ELMo embeddings are a concatenation of the hidden states of the

forward and backward LSTM. BERT uses a bi-directional transformer decoder, which captures

context using self-attention on all words of the sentence. BERT is trained using a masked

language model and the next sentence prediction task.

Both ELMo and BERT were developed on English data. Additionally, Multilingual BERT

was trained on a concatenation of data from 102 languages. Multilingual BERT has no explicit

cross-lingual objective and was not trained on parallel data; these are not true cross-lingual

vectors where words from all languages are in a shared embedding space. Nevertheless,

multilingual BERT has been successfully applied to tasks that require cross-lingual semantic

understanding such as natural language inference, part of speech tagging, named entity recog-

nition, paraphrase detection and question answering (Wu and Dredze, 2019; Hu et al., 2020;

Lewis et al., 2020; Lauscher et al., 2020). This is true even with languages that do not have

lexical overlap (Pires et al., 2019).

5.3 Metrics

We wish to predict the score of a translation t of length lt against a human reference r of length

lr. For all models, we use fixed pre-trained contextualised word embeddings ek to represent

each token in the MT output and reference translation, in the form of matrices Wt and Wr.

5.3.1 Pre-trained Metrics

These metrics compute the soft-similarity between the embeddings of the tokens in the MT

output and the reference, and are inspired by metrics proposed by Corley and Mihalcea (2005)
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that use the Wu & Palmer method on WordNet (Fellbaum, 1998) to compute semantic similarity

between two words.

We first use cosine similarity to measure the pairwise embedding similarity between the

tokens in t and r. We approximate the precision of a token in t with its maximum similarity

with any token in r. Our first metric, BERTP is the average precision of all tokens in t:

precisioni =
lrmax

j=1
cosine(ei,e j) (5.1)

BERTP =
lt

∑
i=1

precision j

lt
(5.2)

Similarly, BERTR is the average recall of the reference, where the approximate recall of a

token in r with its maximum similarity with any token in t.

recall j =
ltmax

i=1
cosine(ei,e j) (5.3)

BERTR =
lr

∑
j=1

recall j

lr
(5.4)

Finally, we compute the F1-score as the harmonic mean of the precision and recall.

BERTF = 2
BERTP ·BERTR

BERTP+BERTR
(5.5)

These metrics use a greedy matching between the tokens of the MT output and the reference.

We also experimented with computing the similarity over the optimal one-to-one alignment

between the tokens using the Hungarian algorithm, but found this decreased performance on

the development set. This is in line with the experiments of Rus and Lintean (2012).
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5.3.2 Supervised Metrics

In theory, BERT uses context from the entire sentence to compute token representations.

However, in the end, these metrics compute the average similarity (precision or recall) over

all tokens in the sentence, and computing the average can hide small but critical errors. So we

look at learning similarity between sentences representations. The metric RUSE (Shimanaka

et al., 2018) uses pre-trained sentence embeddings to independently compute representations

of the MT and the reference, then predicts the score using a neural regressor that is trained on

MT human evaluation data; can we improve on this by computing sentence representations

that are aware of the pairwise similarities between the words of the two sentence? We first

describe a BiLSTM baseline that replicates RUSE, except that it learns sentence representations

from scratch on MT human evaluation data, then explore models that use attention to compute

conditional representations of the two sentences.

Trained BiLSTM Our first model learns independent representations of the MT output and

the reference translation, then predicts the quality of the MT based on the interactions between

the two sentence representations.

We first encode the embeddings of the translation and reference with a bidirectional LSTM,

and concatenate the max-pooled and average-pooled hidden states of the BiLSTM to generate

vt and vr, respectively:

vs,max =
lsmax

k=1
hs,k, vs,avg =

ls

∑
k=1

hs,k

ls
(5.6)

vs = [vs,max;vs,avg] (5.7)

To get the predicted score, we run a feed-forward network over the concatenation of the sentence

representations of t and r, and their element-wise product and difference (a useful heuristic

first proposed by Mou et al. (2016)). We train the model by minimizing mean squared error
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with respect to human scores.

m = [vt ;vr;vt ⊙vr;vt −vr] (5.8)

y = w⊺ReLU(W⊺m+b)+b′ (5.9)

Trained BiLSTM + attention When sentence embeddings are learned independently, it is

difficult to encode all the relevant information that is required for comparing the two sentences.

It can be very useful for the model to also take into account pairwise similarity between the

tokens of the two sentences. Accordingly, our next model uses the attention mechanism to

compute sentence representations that capture similarities with the tokens in the other sentence.

The attention mechanism was first proposed for neural MT models to solve the bottleneck

of representing the meaning of the entire sentence in a single vector (Bahdanau et al., 2015),

and allows the decoder to focus on the hidden representations of relevant parts of the input.

The attention mechanism has been showed to be useful a multitude of other tasks, including

sentence-pair tasks such as natural language inference. Models that include attention to model

pairwise word interactions when learning sentence representations have a higher accuracy than

systems that process the two sentences independently (Rocktäschel et al., 2016; Chen et al.,

2017; Wang et al., 2017).

To obtain a sentence representation of the translation which is conditioned on the reference,

we compute the attention-weighted representation of each word in t. The attention weights are

obtained by running a softmax over the dot product similarity between the hidden state of the

translation and reference BiLSTM. Similarly, we compute the MT-aware representation of the
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reference:

ai, j = hr
⊺
i ht j (5.10)

h̃r =
lt

∑
j=1

exp(ai, j)

Σiexp(ai, j)
·ht (5.11)

h̃t =
lr

∑
i=1

exp(ai, j)

Σ jexp(ai, j)
·hr (5.12)

We then use h̃t and h̃r as our sentence representations in Eq. (5.6) – (5.9) to compute the

final scores.

Enhanced Sequential Inference Model (ESIM): We also directly adapt ESIM (Chen et al.,

2017), a high-performing model on the natural language inference (NLI) task (Bowman et al.,

2015), to the MT evaluation setting. The NLI task, which requires a model to predict whether

the premise entails the hypothesis, is closely related to the MT evaluation task (Padó et al.,

2009). A good translation entails the reference and vice-versa: missing content in the MT

output would break the entailment of the reference, and hallucinated content in the MT would

break entailment of the MT output. Further, any inaccuracy in the MT output would result in a

contradiction. An additional complexity that is not present in the NLI task is that MT output is

not always fluent.

We use the human reference translation r and the MT output t as inputs to the ESIM

model. The model first encodes r and t with a BiLSTM, then computes the attention-weighted

representations of each with respect to the other (Eq. (5.10) – (5.12)). This model next

“enhances” the representations of the translation (and reference) by capturing the interactions

between ht and h̃t (and hr and h̃r):

mr = [hr; h̃r;hr ⊙ h̃r;hr − h̃r] (5.13)

mt = [ht ; h̃t ;ht ⊙ h̃t ;ht − h̃t ] (5.14)
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These representations are passed through a feed-forward layer to project them back to

the model dimensionality, and then through a second BiLSTM to compose local sequential

information. The final representation of each pair of reference and translation sentences is

the concatenation of the average-pooled and max-pooled hidden states of this BiLSTM. To

compute the predicted score, we apply a feed-forward regressor over the concatenation of the

two sentence representations.

p = [vr,avg;vr,max;vt,avg;vt,max] (5.15)

y = w⊺ReLU(W⊺p+b)+b′ (5.16)

5.3.3 Reference-free Metrics

The above metrics compare the MT output with the reference translation in a monolingual

setting. This requires a one-time investment in obtaining a high quality reference translation.

We also explore evaluating MT outputs in a reference-free setting, where we compare them

directly with the source sentence. We compute our metric scores in the exact same way as the

reference-based metrics, just replacing the reference translation with the source sentence, and

using multilingual embeddings to encode the source sentence and reference translation.

5.4 Experimental Setup

5.4.1 Data

To train and evaluate our models, we use human evaluation data from the Conference on

Machine Translation (WMT) (Bojar et al., 2016a, 2017b), which is based on the direct

assessment (“DA”) method (Graham et al., 2017). Here, MT system outputs are evaluated by

humans in comparison to a human reference translation on a continuous scale (Graham et al.,

2015, 2017). Each annotator assesses a set of 100 items, of which 30 are quality control items
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used to filter out low-quality annotations. Individual worker scores are first standardised, and

then the final score of an MT system is computed as the average score across all translations

in the test set. To obtain an accurate score for individual translations, the average score is

calculated from scores of at least 15 “good” annotators that pass quality control. This data

is then used to evaluate automatic metrics at the sentence level (Graham et al., 2015). See

Sec. 2.1.4 for more details on DA.

Training sets: We train on the crowdsourced human evaluation data of news domain of WMT

2016, which includes the following language pairs:

• Czech, Finnish, German, Romanian, Russian and Turkish → English2

• English → Russian.

We use data collected in two settings:

1. TRAINS: This dataset consists of accurate multiple-annotated scores for 560 translations

per language pair sampled randomly from the outputs of all MT systems participating

in the WMT 2016 translation task. This data was collected for evaluating metrics at the

sentence level.

2. TRAINL: This dataset consists of mostly singly-annotated3 DA scores for around 125k

translations from six source languages into English, and 12.5k translations from English-

to-Russian. This data was collected to obtain human scores for MT systems participating

in the WMT 2016 translation task; an average of 2,666 translations were evaluated per

MT system across all the language pairs.

Development set For the validation set, we use the accurate sentence-level DA judgements

collected for WMT 2015 data (Bojar et al., 2015) for four to-English language pairs (Czech,

2We used the Turkish → English dataset in Chapter 3 to demonstrate the efficacy of our probabilistic model to
aggregate DA judgements.

3About 15% of the translations have a repeat annotation collected as part of quality-control.
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German, Finnish and Russian), and English-to-Russian. The dataset consists of 500 translation-

reference pairs that were randomly sampled from each language pair.

Test sets We evaluate on in-domain data from the WMT 2017 (Bojar et al., 2017a) news task

in the following settings:

• Sentence-level DA judgements in 7 to-English and 2 from-English language pairs.

• Sentence-level DARR judgements in 5 from-English language pairs. Due to insufficient

annotations collected, DA annotations collected were converted to preference judgements

in the following manner: if at least two MT system translations of a source sentence were

evaluated, and the average score for System A is reasonably greater than the average

score of System B, then this is interpreted as a Relative Ranking judgement (denoted as

DARR; relative ranking from DA scores) where Sys A is better than Sys B.

• System-level DA scores in 7 to-English and 7 from-English language pairs.

We also evaluate on out of domain, system-level data for five from-English language pairs

from the WMT 2016 IT task. This data was collected using the relative ranking (RR) method

where annotators rank the quality of 5 translations of the same source sentence (Sec. 2.1.2).

These RR judgements were aggregated using the Bayesian probabilistic model Trueskill (Her-

brich et al., 2007) to obtain scores for MT systems (Sakaguchi et al., 2014) (as described in

Sec. 3.2).

5.4.2 Implementation Details

We implement our models using AllenNLP in PyTorch. We experimented with both ELMo

(Peters et al., 2018) and BERT (Devlin et al., 2019) embeddings, and found that BERT

consistently performs as well as, or better than ELMo, thus we report results using only BERT

embeddings in this chapter.
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For BERTP, BERTR and BERTF, we use the top layer embeddings of the tokens of the

MT and Reference translations. We use the bert_base_uncased model for all to-English

language pairs, the bert_base_chinese model for English-to-Chinese and the

bert_base_multilingual_cased model for the remaining from-English language pairs.4

For the trained metrics, we learn a weighted average of all layers of BERT embeddings.

On the to-English test sets, we use bert_base_uncased embeddings and train on the WMT

2016 to-English data. On all other test sets, we use the bert_base_multilingual_cased

embeddings and train on the concatenation of the WMT 2016 English-to-Russian and all

to-English data.

For the reference-free setting, we train a single model for all language pairs; we use

bert_base_multilingual_cased embeddings and train on all available data from the WMT

2016 news dataset.

For all our trained neural metrics, we fix the dimension of the BiLSTM hidden state to 300

and set the Dropout rate to 0.5, based on recommendations of the original ESIM paper. We use

the Adam optimizer with an initial learning rate of 0.0004 and batch size of 32, and use early

stopping on the validation dataset.

Training the ESIM model on the full dataset takes around two hours on a single V100

GPU, and all metrics take less than two minutes to evaluate a standard WMT dataset of 3000

translations.

5.5 Results

We report the Pearson correlation of our proposed metrics against existing metrics on the WMT

2017 to-English news dataset in Tab. 5.1. MEANT_2.0 (Lo, 2017), which uses pre-trained

4At the time this work was done, there were no publicly available monolingual models for languages other
than English and Chinese.
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cs–en de–en fi–en lv–en ru–en tr–en zh–en AVE.

B
as

el
in

es BLEU 0.435 0.432 0.571 0.393 0.484 0.538 0.512 0.481
CHRF 0.514 0.531 0.671 0.525 0.599 0.607 0.591 0.577
MEANT_2.0 0.578 0.565 0.687 0.586 0.607 0.596 0.639 0.608
RUSE 0.614 0.637 0.756 0.705 0.680 0.704 0.677 0.682

Pr
eT

r BERTP 0.641 0.667 0.807 0.695 0.701 0.711 0.658 0.697
BERTR 0.655 0.650 0.777 0.671 0.680 0.702 0.687 0.689
BERTF 0.659 0.671 0.805 0.695 0.702 0.718 0.686 0.705

Tr
ai

nS BiLSTM 0.517 0.556 0.735 0.672 0.606 0.619 0.565 0.610
BiLSTM + attention 0.611 0.603 0.763 0.740 0.655 0.695 0.694 0.680
ESIM 0.534 0.546 0.757 0.704 0.621 0.632 0.629 0.632

Tr
ai

nL BiLSTM 0.628 0.621 0.774 0.732 0.689 0.682 0.655 0.682
BiLSTM + attention 0.704 0.710 0.818 0.777 0.744 0.753 0.737 0.749
ESIM 0.692 0.706 0.829 0.764 0.726 0.776 0.732 0.746

So
ur

ce

BERTP_SRC 0.161 0.390 0.121 0.072 0.314 0.155 0.457 0.238
BERTR_SRC 0.134 0.357 0.034 0.013 0.255 0.082 0.445 0.188
BERTF_SRC 0.148 0.376 0.077 0.041 0.287 0.118 0.455 0.215
ESIM_SRC 0.549 0.536 0.714 0.661 0.604 0.646 0.304 0.573

Table 5.1 Pearson’s r on the WMT 2017 sentence-level evaluation data. PreTr: Unsupervised
metric that relies on pre-trained embeddings; TrainS: trained on accurate 3360 instances;
TrainL: trained on noisy 125k instances; Source: reference-free metrics, where ESIM_SRC

is trained on the TrainL dataset. Correlations of metrics not significantly outperformed by
any other for that language pair are highlighted in bold (William’s test; Graham and Baldwin,
2014).
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en–cs en–de en–fi en–lv en–ru en–tr en–zh
τ τ τ τ r τ r

B
as

el
in

es

SENT-BLEU 0.274 0.269 0.446 0.259 0.468 0.377 0.642
CHRF 0.388 0.339 0.549 0.432 0.605 0.490 0.608
BEER 0.398 0.336 0.557 0.420 0.569 0.490 0.622
MEANT_2.0-NOSRL 0.395 0.324 0.565 0.425 0.636 0.482 0.705
MEANT_2.0 – 0.350 – – – – 0.727

P

BERTP 0.395 0.349 0.554 0.407 0.627 0.530 0.754
BERTR 0.429 0.388 0.580 0.435 0.665 0.530 0.798
BERTF 0.422 0.373 0.580 0.424 0.658 0.547 0.796

T ESIM 0.387 0.393 0.542 0.392 0.723 0.571 0.725

So
ur

ce

BERTP_SRC 0.219 0.151 0.395 0.078 0.426 0.206 0.473
BERTR_SRC 0.249 0.189 0.413 0.127 0.426 0.255 0.449
BERTF_SRC 0.238 0.171 0.407 0.104 0.431 0.247 0.466
ESIM_SRC 0.272 0.326 0.418 0.239 0.594 0.506 0.575

Table 5.2 Pearson’s r and Kendall’s τ on the WMT 2017 from-English sentence-level evaluation
data. The first section represents existing metrics, both trained and untrained. We then present
results of our pre-trained metrics, followed by our supervised metric, and our reference-free
metrics. Note than ESIM and ESIM_SRC are both trained on the TrainL dataset. Correlations
of metrics not significantly outperformed by any other for that language pair are highlighted in
bold (William’s test (Graham and Baldwin, 2014) for Pearson’s r and Bootstrap (Efron and
Tibshirani, 1993) for Kendall’s τ).
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word2vec embeddings, is the best pre-trained metric. And RUSE (Shimanaka et al., 2018) is

the best supervised metric. We also include SENT-BLEU and CHRF baselines.

Our pre-trained metrics, BERTP, BERTR and BERTF, surpass or equal the correlation of

all metrics participating in the WMT 2017 metrics shared task. Of the three, BERTF has the

highest correlation on average.

The architecture of our BiLSTM baseline is similar to RUSE, except that we learn the

sentence representation instead of using pre-trained sentence embeddings. In the TRAINS

setting (the sentence-level data, as with RUSE), the BiLSTM baseline does not perform well,

indicating that it is difficult to learn sentence representations from such a small dataset. However

adding attention makes it competitive with RUSE, proving the value of computing sentence

representations that are aware of token-level similarities with the other sentence. The ESIM

model — which also uses attention to compute conditional representations of both the MT

and the reference, but has many more parameters than the previous model — improves on the

BiLSTM model but underperforms compared to the BiLSTM model with attention.

The performance of all models improves substantially when these metrics are trained on the

larger, singly-annotated training data ( “TrainL”), i.e., using data from only those annotators

who passed quality control. Clearly the additional input instances make up for the increased

noise level in the prediction variable. The simple BiLSTM model performs as well as RUSE,

and both the models with attention substantially outperform this benchmark.

Finally, the performance of the pre-trained metrics suffers in the reference-free setting,

as Multilingual BERT does not provide a true cross-lingual signal. All three metrics have

a much lower correlation than BLEU. However, when trained on top of Multilingual BERT,

ESIM_SRC has a higher correlation than BLEU, and is even competitive with CHRF.

We now evaluate the pre-trained BERTP, BERTR and BERTF metrics and the ESIM

model (trained on the large dataset) in the other settings. In the sentence-level tasks out-of-

English (Tab. 5.4), BERTR and BERTF (based on BERT-Chinese) significantly outperform all
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cs–en de–en fi–en lv–en ru–en tr–en zh–en
4 11 6 9 9 10 16

B
as

el
in

es

BLEU 0.971 0.923 0.903 0.979 0.912 0.976 0.864
CHRF 0.939 0.968 0.938 0.968 0.952 0.944 0.859
CHARACTER 0.972 0.974 0.946 0.932 0.958 0.949 0.799
BEER 0.972 0.960 0.955 0.978 0.936 0.972 0.902
RUSE 0.990 0.968 0.977 0.962 0.953 0.991 0.974

Pr
eT

r BERTP 0.980 0.939 0.992 0.994 0.920 0.985 0.902
BERTR 0.996 0.971 0.948 0.980 0.949 0.994 0.967
BERTF 0.989 0.958 0.979 0.992 0.935 0.994 0.949

T ESIM 0.983 0.949 0.985 0.974 0.921 0.986 0.901

So
ur

ce

BERTP_SRC 0.442 0.931 0.007 0.195 0.918 0.322 0.844
BERTR_SRC 0.031 0.965 0.177 0.146 0.875 0.486 0.830
BERTF_SRC 0.283 0.965 0.100 0.169 0.921 0.417 0.865
ESIM_SRC 0.964 0.839 0.904 0.826 0.781 0.876 0.720

Table 5.3 Pearson’s r on the WMT 2017 to-English system-level evaluation data. The first
section represents existing metrics, both trained and untrained. We then present results of our
pre-trained metrics, followed by our supervised metric trained in the TrainL setting: noisy 125k
instances. Correlations of metrics not significantly outperformed by any other for that language
pair are highlighted in bold.

metrics in the English-to-Chinese test set. These metrics (based on multilingual BERT) are

highly competitive with other metrics in the remaining language pairs. BERTP has a slightly

lower correlation than BERTR and BERTF. ESIM, which was trained on a concatenation of

to-English and to-Russian data, outperforms all metrics on the English-to-Russian data. But the

results are mixed on other language pairs. ESIM is trained only on to-English and to-Russian

data, so its performance is still impressive. Further, five of these language pairs are evaluated on

Kendall’s Tau over pairs of translations on the same source sentence. Our training method using

squared error as part of regression loss is better suited to Pearson’s r — and performance might

be increased through a different loss, such as hinge loss over pairwise preferences (Stanojević

and Sima’an, 2014) which would better reflect Kendall’s Tau.
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en–cs en–de en–fi en–lv en–ru en–tr en–zh
14 16 12 17 9 8 11

B
as

el
in

es BLEU 0.956 0.804 0.920 0.866 0.898 0.924 0.981
BEER 0.970 0.842 0.976 0.930 0.944 0.980 0.914
CHARACTER 0.981 0.938 0.972 0.897 0.939 0.975 0.933
CHRF 0.976 0.863 0.981 0.955 0.950 0.991 0.976

Pr
eT

r BERTP 0.965 0.796 0.968 0.955 0.942 0.987 0.977
BERTR 0.984 0.889 0.980 0.951 0.971 0.988 0.991
BERTF 0.979 0.845 0.975 0.954 0.959 0.988 0.991

T ESIM 0.967 0.839 0.962 0.942 0.966 0.960 0.974

So
ur

ce

BERTP_SRC 0.685 0.485 0.933 0.417 0.735 0.144 0.867
BERTR_SRC 0.766 0.592 0.921 0.547 0.366 0.500 0.704
BERTF_SRC 0.731 0.537 0.929 0.495 0.579 0.350 0.819
ESIM_SRC 0.846 0.779 0.888 0.834 0.869 0.868 0.867

Table 5.4 Pearson’s r on the WMT 2017 from-English system-level evaluation data. The first
section represents existing metrics, both trained and untrained. We then present results of our
pre-trained metrics, followed by our trained metric, and our reference-free metrics. Note than
ESIM and ESIM_SRC are both trained on the TrainL dataset. Correlations of metrics not
significantly outperformed by any other for that language pair are highlighted in bold.

en–cs en–de en–es en–nl en–pt
num systems 5 10 4 4 4

B
as

el
in

es BLEU 0.750 0.621 0.976 0.596 0.997
CHRF 0.845 0.588 0.915 0.951 0.967
BEER 0.744 0.621 0.931 0.983 0.989
CHARACTER 0.901 0.930 0.963 0.927 0.976

Pr
eT

r BERTP 0.521 0.591 0.900 0.966 0.973
BERTR 0.602 0.810 0.910 0.984 0.988
BERTF 0.599 0.696 0.905 0.977 0.981

T ESIM 0.745 0.838 0.984 0.828 0.997

Table 5.5 Pearson’s r on the WMT 2016 IT domain system-level evaluation data. The first
section represents existing metrics, both trained and untrained. We then present results of
our pre-trained metrics, followed by our supervised metric trained on the TrainL dataset.
Correlations of metrics not significantly outperformed by any other for that language pair are
highlighted in bold.
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In the reference-free setting, the pre-trained metrics all have lower correlations than SENT-

BLEU. ESIM_SRC has a higher correlation than SENT-BLEU on the English-to-German,

English-to-Russian and English-to-Turkish data, is competitive on English-to-Czech data, and is

outperformed on the remaining three language pairs. This could be attributed to the similarities

between English and German, and the inclusion of English-to-Russian data in the training set.

On the system-level evaluation of the news domain, all our reference-based metrics are

competitive with all other metrics in all language pairs both to- and out-of-English (see Tab. 5.3

and Tab. 5.4). The results of the reference-free metrics are surprising: the pre-trained metrics

are not outperformed by any of the reference-based metrics on German-to-English and Russian-

to-English data, despite their low sentence-level correlations. But in many other language pairs,

these metrics have very low correlations; in the worst case, BERTP has a correlation of 0.007

over Finnish-to-English data. The correlation of ESIM_SRC is always above 0.7, but never

outperforms BLEU, even in language pairs where it was substantially better than SENT-BLEU

at the sentence-level.

In the IT domain, we have mixed results (Tab. 5.5). CHARACTER is the only metric that

has a correlation above 0.9 on the English-to-German language pair. BERTR and ESIM have

a higher correlation than the rest of the metrics. There is no consistent winner on the other

language pairs, and we note that ESIM is competitive with the other metrics, despite the change

in domain and the lack of training data in any of these language pairs.

5.5.1 Training Efficiency

When trained on the large, singly-annotated dataset (TrainL), our supervised metrics improved

substantially over training on the small, multi-annotated dataset (TrainS) when evaluating our

reference-based metrics on to-English translations. The total number of annotations in the

TrainS setting are much smaller than in the TrainL setting. In this section, we present a direct
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comparison between the quality of ESIM trained using the two strategies while keeping the

total number of annotations equal.

Fig. 5.1 shows how the average sentence-level correlation of ESIM improves as we increase

the number of annotations collected, using two different strategies:

1. TrainS: collecting additional annotations on the same set of 3360 training instances, and

2. TrainL: collecting annotations on a new set of 3360 training instances.

The former strategy decreases noise in the training data, while the latter improves diversity

of training instances.

We find that on the same number of training instances (3360), the model performs better

on cleaner multiply-annotated data compared to singly-annotated data (r = 0.57 vs 0.64). In

the TrainS setting, when we collect more than five annotations per translation, the gain in

correlation is negligible. In the TrainL setting, increasing the size of the training set is clearly

beneficial even after collecting annotations on more than 50000 instances.

Therefore, when we have a choice between collecting multiple annotations for the same

instances vs collecting annotations for additional instances, the second strategy leads to more

gains.

5.5.2 Qualitative Analysis

Automatic metrics may overestimate translation quality because of superficial similarities

between the MT system translation and reference output. On the other hand, they might assign

low scores to perfectly valid translations that deviate from the reference. We manually inspect

translations in the validation set and, in this section, present examples that illustrate how BLEU,

BERTR and ESIM score them.

Tab. 5.6 shows examples of translations that receive high human scores. In the first three

examples, our proposed metrics correctly recognise synonyms and minor word re-orderings,

unlike SENT-BLEU which relies on n-gram matching. In example 4, there are no exact matches
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Fig. 5.1 Average Pearson’s r for ESIM over the WMT 2017 to-English sentence-level dataset
vs. the total number of annotations in the training set. We contrast two styles of collecting data:
(1) the circles are trained on a single annotation per instance; and (2) the crosses are trained
on the mean of N annotations per instance, as N goes from 1 to 14. The first strategy is more
data-efficient.

between the words of the MT output and the reference, so it is unsurprising that SENT-BLEU

assigns it a low score. While ESIM recognises the similarity between the two sentences

(working together and cooperation), BERTR does not, possibly because it measures recall and

penalises the MT output for being more concise. Finally, the last example shows that none of

the metrics recognise a completely different way of expressing the same meaning.

Tab. 5.7 presents examples of low quality MT outputs. The first three examples show that

SENT-BLEU gives high scores to translations with high partial overlap with the reference. In

example 1, the first half of the MT output is identical to the reference, but the second half is

non-sensical. In examples 2 and 3, key phrases of the MT output are wrong, resulting in an

overall confusing translation. BERTR gives low scores to the first two sentences, but not the
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Translations with HIGH Human scores ESIM BERTR SENT-
BLEU

1. ref: The negotiations have been scheduled to take place
next Saturday, the Russian Minister of Energy,
Alexander Nowak, said on Monday.

sys: The negotiations are scheduled for coming Satur-
day, said the Russian energy minister Alexander
Nowak on Monday.

2. ref: Lesotho military says no coup planned; PM stays
in South Africa

sys: Lesotho-military member says that no coup is
planned; Prime Minister remains in South Africa

HIGH HIGH LOW

3. ref: In September 2011, Abbott’s condition worsened
again, and his consultant took his CT scans and
X-rays to a panel of experts.

sys: In September 2011 Abbotts state worsened again
and his family doctor brought his CT-Scans and
X-rays to an expert group.

4. ref: The boardroom is now contemplating the possibility
of working together.

HIGH LOW LOW

sys: Now the boards are thinking about a possible coop-
eration.

5. ref: He ended up spending a month off work.
sys: In the end, he could not go to work for a month. LOW LOW LOW

Table 5.6 Examples of good translations in the WMT 2015 sentence-level DA dataset and
whether ESIM, BERTR and SENT-BLEU correctly give them high scores

third which is a very long sentence and a few words with low similarity are lost when computing

the average similarity. Note that ESIM correctly recognises all three as low quality translations.

However, in some cases, ESIM can be too permissive of bad translations which contain closely

related words (example 4). Finally, we show examples where humans recognize that seemingly

minor differences are actually unacceptable. In example 5, a single word substitution (replacing

shrapnel with garnet) changes the meaning of the entire sentence. Example 6 contains another

single word substitution (raced instead of hit) and the MT output is missing a key verb (blew
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Translations with LOW Human scores ESIM BERTR SENT-
BLEU

1. ref: The military plays an important role in Pakistan and
has taken power by force several times in the past.

sys: The military plays an important role in Pakistan and
has already more frequently geputscht.

2. ref: For the benefit of the school, Richter nurtured a
good relationship with the then Mayor, Ludwig Götz
(CSU).

LOW LOW HIGH

sys: For the good of the school of judges as rector of a
good relationship with the former mayor Ludwig
Götz (CSU)

3. ref: Behind much of the pro-democracy campaign in
Hong Kong is the Occupy Central With Love and
Peace movement, whose organizers have threatened
to shut down the financial district if Beijing does not
grant authentic universal suffrage.

sys: Behind the pro-democracy campaign in Hong
Kong is the movement Occupy Central With Love
and Peace, whose organizers have threatened the
acupuncture, off, if Beijing allows no real universal
suffrage.

LOW HIGH HIGH

4. ref: Foreign goods trade had slowed, too.
sys: Foreign trade also slowed the economy. HIGH LOW LOW

5. ref: Some shrapnel pieces are still in my knee.
sys: Some garnet fragments are still in my knee.

6. ref: Stewart hit the wall for the second time after his
right front tire blew out on lap 172, ending his night.

HIGH HIGH HIGH

sys: Stewart raced for the second time against the wall
after his right front tire on lap 172 and ended his
evening.

Table 5.7 Examples of bad quality translations in the WMT 2015 sentence-level DA dataset
and whether ESIM, BERTR and SENT-BLEU correctly give them low scores

out). Unfortunately, all the metrics assign high scores to these MT outputs, highlighting a key

challenge for automatic metrics.
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5.6 Conclusion and Discussion

In this chapter, we showed that pre-trained contextual embeddings are very useful for automatic

MT evaluation metrics. We proposed simple pre-trained metrics that essentially compute the

precision, recall and F-score of the MT output and the reference translation. We found that

these metrics are highly effective, and that we can further improve on them when we train on

previous MT human evaluation data.

We also run our metrics in a reference-free setting, where we compare the MT output

directly with source. The pre-trained metrics have moderate correlations for some language

pairs, and non-significant correlations in others. ESIM_SRC outperforms SENT-BLEU at the

sentence-level in all the to-English language pairs as well as three from-English language pairs.

However, the success at the sentence level does not translate to the system level, where it never

has a higher correlation than BLEU.

Finally, we evaluated our metrics on the WMT 2016 data in the IT domain, showing that

ESIM, which is trained on news data, is robust to change in domain.

Since this work was done in 2019, there has been plenty of research on probing ELMo and,

to a larger extent, BERT of what information is encoded in these embeddings. Our pre-trained

metrics were independently proposed as BERTscore (Zhang et al., 2020) when our paper

was under review. The authors found that the embeddings from intermediate layers of BERT

outperformed the top layer, and so empirically determined the best layer, resulting in a small

boost in correlation. They also tested the utility of IDF-weighting on tokens based on their

frequency in the reference set; this doesn’t always improve performance, so it is left as optional.

Finally, they investigated replacing BERT with other pre-trained contextual embedding models

that improve on BERT, for example, by enhancing the architecture or pre-training scheme.

When their paper was published in 2020, the best model was RoBERTalarge (Liu et al., 2019b)

on the to-English language pairs, but at the time of writing, DeBERTa (He et al., 2020) has the

highest correlation.
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YISI-1 was updated in 2019 to use the optimal layer of BERT embeddings (Lo, 2019). In

2020, YISI-1 was improved further when evaluating translations where the target language

is not English (Lo, 2020), by replacing multilingual BERT with monolingual BERT models

evaluating translations into French and Finnish, and with XLM-RoBERTalarge (Conneau et al.,

2019) for other non-English languages.

More recently, automatic metric performance has been improved further by trained metrics

that build on the success of RUSE and ESIM. BLEURT (Sellam et al., 2020) first pre-trains

BERT on synthetic data generated by applying a variety of perturbations to using automatic met-

rics (BERTscore, SENT-BLEU and ROUGE) as a soft signal, before finetuning on MT human

evaluation data. COMET (Rei et al., 2020a) is trained on top of XLM-RoBERTalarge (Conneau

et al., 2019) and incorporates the source sentence in addition to the MT output and reference

translation.

There has also been tremendous progress in reference-free evaluation in recent years.

COMET-QE (Rei et al., 2020b), like ESIM_SRC, is a neural model that encodes the source

and MT output using cross-lingual embeddings(XLM-RoBERTalarge), and predicts translation

quality from the learned representations. PRISM-src (Thompson and Post, 2020) adopts a

completely new approach and uses a multilingual neural machine translation model to score

the MT outputs given the source sentence.

In this chapter, we proposed new metrics and showed that they are highly correlated

with human scores at both the sentence- and system- level. In the next chapter, we explore

system-level metric evaluation in more detail.



Chapter 6

Meta Evaluation: Reevaluating Automatic

Metric Evaluation

This chapter builds on the paper:

Nitika Mathur, Timothy Baldwin, and Trevor Cohn. Tangled up in BLEU: Reeval-

uating the evaluation of automatic machine translation evaluation metrics. In

Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 4984–4997, Online, July 2020.

6.1 Introduction

In the previous chapter, we presented a family of new automatic metrics, and evaluated them

on the system and sentence-level following standard practices established at the metrics shared

task at the annual Conference of Machine Translation (WMT). At the system-level, metrics are

evaluated based on the Pearson’s correlation coefficient of metric scores against human scores.

The stronger the correlation, the more we can trust that an improvement in metric scores will

also lead to an improvement in human scores, thus justifying the use of automatic metrics as a
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proxy for human evaluation. In this chapter, we revisit system-level evaluation of automatic

metrics, and the implications of using automatic metrics to evaluate MT systems.

Our intuitive understanding of the strength of the association between two variables given

a particular value of Pearson correlation assumes that the data is from a bivariate normal

distribution. However, the same value of Pearson’s r can be the result of different underlying

relationships between the two variables (in our case, the metric and human scores). Anscombe

(1973) showed an example of four bivariate datasets that all have the same summary statistics

(mean and standard deviation of X, mean and standard deviation of Y, and Pearson’s correlation

between X and Y), but a quick glance at a scatterplot of the data reveals that the datasets have

very different distributions and tell different stories.1

The findings of the WMT 2019 metrics shared task (Ma et al., 2019) indicate the presence

of two such patterns in their data:

1. Outliers: these are MT systems whose quality differs markedly from the rest of the

systems in the dataset. When we are evaluating metrics on the entire set of systems, these

outlier systems can have a disproportionate influence on the Pearson correlation between

metric and human scores. This is problematic as the presence of outliers can result in

high metric correlations even when the metric makes major errors with scoring the rest

of the systems, resulting in a false confidence in metric reliability.

2. Heteroskedasticity: the variance of metric errors depends on the quality of the MT

systems. The value of Pearson correlation can be misleading when there is heteroskedas-

ticity in the data. If metrics make more errors when scoring high quality MT systems,

then the Pearson correlation computed on the entire set of MT systems overestimates

their reliability on high-quality systems. The findings of the WMT 2019 metrics task (Ma

1https://janhove.github.io/teaching/2016/11/21/what-correlations-look-like contains examples
of sixteen different patterns that clearly illustrate the extent of this phenomenon

https://janhove.github.io/teaching/2016/11/21/what-correlations-look-like
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et al., 2019) show that metrics get less reliable when we evaluate them only on strong

MT systems, indicating the presence of heteroskedasticity.

In this chapter, we first have a closer look at Pearson’s correlation coefficient and review

how it is affected by outliers and heteroscedasticity. Then, after describing the data and metrics

we use for our analysis, we revisit the findings of the WMT 2019 metrics task to investigate

the influence of these two patterns on metric evaluation: in Sec. 6.4, we show that outliers can

have a disproportional influence on Pearson correlation, and in Sec. 6.5, we find no empirical

evidence for heteroskedasticity in WMT 2019 metrics data.

As we mentioned earlier, a strong correlation between metric and human scores is taken to

indicate that the metric can be reliably used as a cheaper alternative to human evaluation. If

metric scores have a positive correlation with human scores, then many incremental improve-

ments in metric scores on a particular test set will ultimately lead to better MT systems over

time. Thus, if our goal is improvement in MT quality in the long-term, then a strong correlation

between an automatic metric with human scores can validate the use of these metrics.

However, evaluating metrics using a correlation measure ignores the fact that important

decisions are made using these metrics. Metrics are used to compare pairs (or small sets)

of systems: deciding between different architectures of a model, deciding whether a given

feature improves quality, deciding whether the new system beats the existing state of the art,

or deciding whether an idea is worth publishing or if a paper should be accepted. Ideally,

conclusions based on a difference in metric scores should agree with conclusions by humans,

or if they differ, it should be due to a small margin. While Pearson’s r implicitly takes these

errors into account when computing the value of the correlation (larger errors lead to smaller

correlations), we believe it is beneficial to explicitly test how well automatic metrics satisfy

these criteria.

In the second part of the chapter, we investigate the utility of MT metrics when comparing

two systems (Sec. 6.6). More concretely, we seek to quantify the extent of improvement



6.2 Background: Pearson Correlation Coefficient 132

required under an automatic metric such that the ranking reliably reflects human assessment. In

doing so, we consider both type I and II errors when evaluating two systems A and B. Type

I errors occur when a metric concludes that A is significantly better than B, when humans

either judge them to be insignificant or judge B to be significantly better than A. Type II errors

correspond to errors where metrics do not find a statistically significant difference between

the two systems, but humans do. Both types of errors have the potential to stunt progress in

the field: if we make decisions solely based on (flawed) automatic metric scores, this leads to

spurious “improvements” that can not be replicated later. On the other hand, falsely rejecting

ideas that result in true improvement might potentially shut down exploration of promising

research directions.

6.2 Background: Pearson Correlation Coefficient

The Pearson correlation coefficient, denoted by r, is a measure of the strength of the linear

relationship between two variables. Pearson’s r is the covariance of the two variables (metric

scores m and human scores h) divided by the product of their standard deviations.

r =
Cov(h,m)

σhσm
, (6.1)

where

Cov(h,m) is the covariance of human and metric scores

σh and σm are the standard deviation of human and metric scores respectively.

When we insert the formulae for computing the sample covariance and sample standard

deviations, the resulting formula for the sample Pearson correlation is:

r =
∑

n
i=1(hi −h)(mi −m)√

∑
n
i=1(hi −h)2(mi −m)2

, (6.2)
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Fig. 6.1 Scatter plots of simulated human and metric scores as the strength of the relationship
increases.

where

hi and mi are the human and metric score respectively of system i

h and m are the mean human and metric scores respectively.

Pearson’s r ranges from −1 to 1. The sign indicates the direction of the relationship: a

value greater than zero implies a positive relationship, less than zero is a negative relationship.

The absolute value indicates the strength of the relationship: a value of ±1 indicates a perfect

relationship, and the relationship grows weaker as the value approaches zero. Fig. 6.1 shows

scatter plots of examples of simulated human and metric scores as the correlation between the

two increases from 0 to 1.

The value of the Pearson correlation can mask the presence of different patterns in the

data (Fig. 6.2), and we next describe two such patterns: (a) the presence of outliers and (b)

heteroskedasticity.

6.2.1 Influence of Outliers

An outlier is “an observation (or subset of observations) which appears to be inconsistent with

the remainder of the dataset” (Barnett and Lewis, 1974). Pearson’s correlation is sensitive to

outliers in the sample, as it is calculated using the mean and standard deviation which are both
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Fig. 6.2 Scatter plots of simulated human and metric scores with the same correlation (r = 0.8),
but different patterns in the data.

highly influenced by outliers. Even a single outlier can have a drastic impact on the value of the

correlation coefficient. In the extreme case, outliers can give an illusion of a strong correlation

when there is none, or mask the presence of a true relationship.

The WMT metrics task datasets consist of MT systems that were submitted as a part of the

annual WMT news translation task, and anonymous online services such as Google Translate

and Microsoft Translator. The number of MT systems included is generally small, and can

include both univariate outliers (Fig. 6.2 A), where the value of a single variable (human or

metric scores) is exceptionally large or small compared to the values of that variable, and

multivariate outliers (Fig. 6.2 B), where the combination of human and metric scores is unusual.

These outliers can arise in metric evaluation data for two reasons:

• Univariate outliers caused by MT system quality: typically, the quality of most systems

lies in a small range, but some systems can be either much better or much worse than the

rest of the systems in the cohort. These systems are generally worse than the others, for

example, because they are experimenting with different approaches or data conditions,

or because they are submissions by students who are new to developing MT systems.

In rare cases, the dataset might include exceptional MT systems that clearly surpass

the quality of the other systems included in the evaluation. These outlier systems will

have extremely low or high human scores, and we refer to them as low outliers and high
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outliers respectively. If metrics correctly score these MT systems (both high and low

outliers), this results in a high value of Pearson’s r, even if the metric makes major errors

in scoring the rest of the systems.

• Multivariate outliers due to metric errors: these outliers arise in the metric evaluation

datasets when metrics make major errors scoring MT systems. Automatic metrics can

be biased towards systems that have a superficial similarity to the reference translation,

resulting in low scores for high quality translations that are phrased differently. On the

other hand, if an MT system was overfit to a metric, it might lead to high metric scores

but low human scores. The correlation between metric and human scores increases if we

remove these MT systems.

Spearman correlation coefficient and Kendall’s Tau correlation are robust alternatives to

Pearson correlation: they are based on ranks and pairwise relationships respectively between

the two points, and as such, are not disproportionately influenced by outliers. However, they are

not a good fit for metric evaluation as they do not take into account the differences in scores. In

particular, they harshly penalise metrics that have a different ordering of systems that humans

have judged to be of similar quality (§ 2.2).

Another robust solution is to recompute Pearson correlation after removing the outliers.

Standard methods for computing robust correlations involve removing both univariate and

multivariate outliers in the joint distribution of the two variables: the metric and human scores

in our case. However, multivariate outliers include system pairs that indicate metric errors, and

we believe they should not be removed because they provide important data about the errors

and possible biases of the metric. Thus, we only look towards detecting univariate outliers

caused by human scores.
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Univariate Outlier Detection

A common method of detecting outliers is to simply standardise human scores, and remove

systems with scores that lie 2.5 (or some other predefined cut-off) standard deviations away

from the mean. However, standardising depends on the mean and standard deviation, which are

themselves affected by outliers. A more robust alternative is to use the median instead of the

mean as the measure of central tendency, and the Median Absolute Deviation (MAD) instead

of the standard deviation as the estimator of scale.

For MT systems with human scores h, we use the following steps to detect outlier sys-

tems (Rousseeuw and Hubert, 2011; Leys et al., 2013):

1. Compute MAD, which is the median of all absolute deviations from the median of human

scores

MAD = b×median(|h− h̃|),

where h̃ is the median of human scores and b is the consistency constant that ensures that

the value of MAD is consistent with the standard deviation of the underlying distribution.

This value is computed as the inverse of the 0.75 quartile of the distribution, and is equal

to 1.483 for the Gaussian distribution.

2. compute robust scores:

z = (h− h̃)/MAD

A value of zi indicates that the score hi is at a distance of zi ∗MAD from h̃

3. discard systems that are distant from the median in either direction: more precisely,

discard system i if |zi| exceeds a cut-off (we use 2.5 as recommended by Leys et al.

(2013))
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6.2.2 Heteroskedasticity

Heteroskedasticity occurs when the variance of the error terms is not constant across all

values of the independent variable, human scores in our case (Fig. 6.2 C). The presence of

heteroskedasticity in metric scores implies that metric reliability is dependent on the quality of

the MT systems. The findings of the WMT 2019 metrics task show that metric correlations

break down when we restrict the set of MT systems to the best MT systems of the language pair.

If metrics are less reliable when evaluating strong MT systems, then reporting the Pearson’s

correlation coefficient for the whole set of MT systems means that we are underestimating the

reliability for low-quality MT systems, while over-estimating it for the best systems.

We can informally detect heteroskedasticity by inspecting the scatter plot of human and

metric scores; the errors around the line of best fit will form a cone-like pattern, as their variance

increases with an increase in human scores (Fig. 6.2 C).

We next describe the datasets and selected metrics, before exploring the influence of these

two patterns in these datasets.

6.3 Data

In this chapter, we primarily use data from the WMT 2019 metrics task (Ma et al., 2019) for

our analysis, and supplement this with analysis on the WMT 2017 (Bojar et al., 2017a) and

WMT 2018 (Ma et al., 2018) datasets.

In WMT 2019, metrics were evaluated on the following 18 language pairs (7 language pairs

translating to English, 8 translating out of English, and 3 that do not include English):

• English (en) ↔ Czech (cs), German (de), Finnish (fi), Gujarati (gu), Kazakh (kk),

Lithuanian (lt), Russian (ru), and Chinese (zh)

• English (en) → Czech (cs), German → French, German → Czech, and French → German
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6.3.1 Human scores: Direct Assessment (DA)

For the ground truth for evaluating metrics, we use direct assessment (DA) (Graham et al.,

2017) scores collected as part of the human evaluation at WMT 2019 (Barrault et al., 2019).

Annotators are asked to rate the adequacy of a set of translations compared to the corresponding

source/reference sentence on a slider which maps to a continuous scale between 0 and 100. Low-

quality annotations are filtered out based on quality control items included in the annotation

task. Each annotator’s scores are standardised to account for different scales. The score of

an MT system is computed as the mean of the standardised score of all its translations. (See

Sec. 2.1.4 for details on direct assessment.)

In WMT 2019, typically around 1500–2500 annotations were collected per system for

language pairs where annotator availability was not a problem. To assess whether the difference

in scores between two systems is not just chance, the Wilcoxon rank-sum test is used to test for

statistical significance.

6.3.2 Metrics

Automatic metrics compute the quality of an MT output (or set of translations) by comparing it

with a reference translation by a human translator. For the WMT 2019 metrics task, participants

were also invited to submit metrics that rely on the source instead of the reference. In this

chapter, we focus on the following metrics that were included in evaluation at the metrics task

at WMT 2019:

Baseline metrics

• BLEU (Papineni et al., 2002) is the precision of n-grams of the MT output compared

to the reference, weighted by a brevity penalty to punish overly short translations.

BLEU has high variance across different hyper-parameters and pre-processing strategies,
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in response to which sacreBLEU (Post, 2018) was introduced to create a standard

implementation for all researchers to use; we use this version in our analysis.

• TER (Snover et al., 2006) measures the number of edits (insertions, deletions, shifts and

substitutions) required to transform the MT output to the reference.

• CHRF (Popović, 2015) uses character n-grams instead of word n-grams to compare the

MT output with the reference. This helps with matching morphological variants of words.

Best metrics across language pairs

• YISI-1 (Lo, 2019) computes the semantic similarity of phrases in the MT output with

the reference, using contextual word embeddings (BERT: Devlin et al. (2019)).

• ESIM (Chen et al., 2017) is a trained neural model that first computes sentence represen-

tations from BERT embeddings, then computes the similarity between the two strings.

We adapted this model to MT evaluation; see Sec. 5.3 for details.2

Reference-free metric

• YISI-2 (Lo, 2019) is the same as YISI-1, except that it uses cross-lingual embeddings to

compute the similarity of the MT output with the source.

The baseline metrics, particularly BLEU, were designed to use multiple references. How-

ever, in practice, they have only have been used with a single reference in recent years.

We describe the baselines and YISI-1 in more detail in Sec. 2.2.4, and ESIM in Sec. 5.3.
2ESIM’s submission to WMT shared task does not include scores for the language pairs en-cs and en-gu. In

this chapter, we use scores obtained from the same trained model that was used in the original submission.
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Fig. 6.3 Scatter plots (and Pearson’s r) for metrics (a) with all systems and (b) without outliers
for the WMT19 English → German language pair. We also show the line of best fit and the
confidence interval around the line. Systems further away from the best-fit line indicate errors.

6.4 The Influence of Outliers on the Correlation of Automatic

Metrics

When there are systems that are generally much worse (or much better) than the majority of the

systems, metrics are usually able to correctly assign low (or high) scores to these systems. This

can result in an inflated value of the Pearson correlation, giving misleading estimates of the

relationship between human and metric scores of other systems.

Based on a visual inspection of the data, we can see there are two outlier systems in the

English → German language pair (Fig. 6.3a). To illustrate the influence of these systems on

Pearson’s r, we repeatedly sub-sample ten systems from the 22 MT systems in the English →

German data (see Fig. 6.4). When the most extreme outlier (en-de-task) is present in the

sample, the correlation of all reference-based metrics is greater than 0.97. The selection of
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Fig. 6.4 Pearson’s r for metrics, when sub-sampling systems from the English → German
language pair from WMT19. We group the samples in the presence of the two outliers
(“en-de-task” and “online-X”), and when neither is present.

de–en gu–en kk–en lt–en ru–en zh–en
All −out All −out All −out All −out All −out All −out

#sys 16 15 11 10 11 9 11 10 14 13 15 13

BLEU 0.81 0.79 0.83 0.97 0.95 0.91 0.96 0.97 0.87 0.81 0.90 0.81
chrF 0.92 0.86 0.95 0.96 0.98 0.77 0.94 0.93 0.94 0.88 0.96 0.84
ESIM 0.94 0.90 0.88 0.99 0.99 0.95 0.99 0.99 0.97 0.95 0.99 0.96
YiSi-1 0.95 0.91 0.92 1.00 0.99 0.92 0.98 0.98 0.98 0.95 0.98 0.90
YiSi-2 0.80 0.61 −0.57 0.82 −0.32 0.66 0.44 0.35 −0.34 0.71 0.94 0.62

Table 6.1 Correlation of metrics with and without outliers (“All” and “−out”, resp.) for the
to-English language pairs from WMT19 that contain outlier systems

de–cs en–de en–fi en–kk en–ru fr–de
All −out All −out All −out All −out All −out All −out

#sys 11 10 22 20 12 11 11 9 12 11 10 7

BLEU 0.87 0.74 0.97 0.81 0.97 0.94 0.85 0.58 0.98 0.95 0.87 0.85
chrF 0.97 0.97 0.98 0.88 0.99 0.97 0.97 0.90 0.94 0.97 0.86 0.80
ESIM 0.98 0.99 0.99 0.93 0.96 0.93 0.98 0.90 0.99 0.99 0.94 0.83
YiSi-1 0.97 0.98 0.99 0.92 0.97 0.94 0.99 0.89 0.99 0.98 0.91 0.85
YiSi-2 0.61 0.12 0.92 −0.01 0.70 0.48 0.34 0.69 −0.77 0.13 −0.53 0.07

Table 6.2 Correlation of metrics with and without outliers (“All” and “−out”, resp.) for the
language pairs into languages other than English from WMT19 that contain outlier systems.



6.4 Influence of Outliers 142

40 50

Metric Scores

−0.6

−0.4

−0.2

0.0

0.2

0.4

H
u
m
a
n
s
c
o
r
e
s

chrF (r = 0.95 / 0.96)

0.1 0.2

Metric Scores

−0.50

−0.25

0.00

0.25

0.50

BLEU (r = 0.83 / 0.97)

0.625 0.650 0.675

Metric Scores

0

2

4

YiSi-2 (r = -0.57 / 0.82)

Outlier

Yes

No

(a) Gujarati → English

0.6 0.7

Metric Scores

−0.4

−0.2

0.0

0.2

0.4

0.6

H
u
m
a
n
s
c
o
r
e
s

ESIM (r = 0.95 / 0.96)

0.25 0.30 0.35

Metric Scores

−0.50

−0.25

0.00

0.25

0.50

0.75

BLEU (r = 0.83 / 0.97)

0.79 0.80 0.81

Metric Scores

−2

−1

0

1

2

YiSi-2 (r = -0.57 / 0.82)

Outlier

Yes

No

(b) French → German

Fig. 6.5 Scatter plots (and Pearson’s r) for metrics with and without outliers for: (a) French →
German, and (b) Gujarati → English data from WMT19. We also show the line of best fit and
the confidence interval around the line. Systems further away from the best-fit line indicate
errors.

systems has a higher influence on the correlation when neither outlier is present, and we can

see that YISI-1 and ESIM have stronger correlations than BLEU. The impact of the presence

of the outliers is even higher for the reference-free metric YISI-2.

For each language pair, we use the median absolute deviation (MAD) estimator (see

Sec. 6.2.1) to detect outlier systems that have either much better or much worse direct assess-

ment scores than the rest of the MT systems. In WMT 2019, these are low quality systems, with

the exception of French → German, where the MAD estimator identifies the top two systems

as well as the lowest ranked system as outliers (Fig. 6.5b).

Tables 6.1 and 6.2 show Pearson’s r with and without outliers for the language pairs that

contain outliers. Some interesting observations are as follows:
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• For some language pairs, Lithuanian → English and English → Finnish for example,

the correlation between the reference based metrics and DA is high irrespective of the

presence of the outlier;

• the correlation of BLEU with DA drops sharply from 0.85 to 0.58 for English → Kazakh

when outliers are removed;

• for English → German, the correlation of BLEU and TER appears to be almost as high

as that of YISI-1 and ESIM. However, when we remove the two outliers, there is a much

wider gap between the metrics. This suggests that YISI-1 and ESIM are more reliable

and should be used in place of BLEU.

• if metrics wrongly assign a high score to a low outlier, removing these systems increases

correlation, and only reporting the correlation after discarding outliers is not ideal. For

instance, CHRF correctly scores system JU-Saarland as the worst system of Gujarat →

English, but most other metrics give a relatively high score compared to the next best

systems (Fig. 6.5a). Thus, we suggest reporting correlations over all systems as well as

without outliers.

Finally, Fig. 6.6 shows the correlation of selected metrics on all language pairs, when

computed over all systems and after discarding outliers. The graph of YISI-2 highlights the

major impact these outliers can have on the Pearson correlation. We also note that once we

remove outliers, ESIM and YISI-1 clearly outperform the baselines BLEU and TER, which

wasn’t apparent when considering the correlation over all systems.

Tables 6.3, 6.4, and 6.5 show the results for all metrics, when outliers are removed.3

3The code to detect outlier MT systems and generate these tables is available at
https://github.com/nitikam/tangled
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de-cs de-fr fr-de
All -out All All -out
11 10 11 10 7

BEER 0.978 0.976 0.941 0.848 0.794
BERTR 0.961 0.956 0.964 0.889 0.812
BLEU 0.941 0.922 0.891 0.864 0.821
CDER 0.864 0.734 0.949 0.852 0.794
CHARACTER 0.965 0.959 0.928 0.849 0.848
CHRF 0.974 0.970 0.931 0.864 0.796
CHRF+ 0.972 0.967 0.936 0.848 0.785
EED 0.982 0.984 0.940 0.851 0.792
ESIM 0.980 0.986 0.950 0.942 0.825
ESIM_SRC 0.720 0.346 0.888 0.707 0.140
HLEPORA_BASELINE 0.941 0.903 0.814 −
HLEPORB_BASELINE 0.959 0.951 0.814 −
IBM1-MORPHEME 0.355 0.009 -0.509 -0.625 -0.357
IBM1-POS4GRAM − 0.085 -0.478 -0.719
NIST 0.954 0.944 0.916 0.862 0.800
PER 0.875 0.757 0.857 0.899 0.427
SACREBLEU-BLEU 0.869 0.742 0.891 0.869 0.846
SACREBLEU-CHRF 0.975 0.980 0.952 0.882 0.815
TER 0.890 0.787 0.956 0.895 0.673
WER 0.872 0.749 0.956 0.894 0.657
YISI-0 0.978 0.972 0.952 0.820 0.836
YISI-1 0.973 0.980 0.969 0.908 0.846
YISI-2 0.606 0.122 0.721 -0.530 0.066

Table 6.5 Correlation of metrics for the language pairs of WMT19 that do not include English.
For language pairs that contain outlier systems, we also show correlation after removing outlier
systems. Values in bold indicate that the metric is not significantly outperformed by any other
metric under the Williams Test.
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Fig. 6.6 Correlation of metrics with all systems (orange) and after discarding outliers (blue)
over all language pairs of WMT19

Influence of Outliers on Statistical Significance Tests

The WMT metrics task uses the William’s test (Williams, 1959) to detect statistical significance

when comparing the correlation of two metrics. This test is applicable when comparing the

difference between two dependent correlations that share a variable, and was recommended

for automatic metrics by Graham and Baldwin (2014). Metrics that are not significantly

outperformed by any other metric are declared the “winners” of the task. (See Sec. 2.3.3 for

details on the William’s test.) In this section, we explore the effect of outlier removal on the

William’s test and on the winning metrics of a language pair.

The power of the William’s test depends on the sample size and correlation between the

two metrics: the test is more likely to detect statistical significance between the metrics if they

are highly correlated. While the sample size is constant for a language pair, the correlations of
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any given pair of metrics depends on the similarity of their approaches, and so the test does not

have the same differentiating power for all pairs of metrics.

Removing outliers decreases sample size and also influences the correlation of two metrics:

• if both metrics give low scores to the low outliers, the resulting high correlation between

the two metrics means the test has a high power to distinguish between the metrics. When

we discard outliers, the correlation between metrics decreases, and the power of the test

decreases.

• if two metrics differ in how they score the outlier (one metric gives a low score, and the

other a relatively high score), then removing the outlier might increase the correlation

between the two metrics on the remaining MT systems, potentially increasing the power

of the William’s test.

In the German → English language pair, the reference-free metric UNI (Yankovskaya et al.,

2019) is a not outperformed by other metrics after removing outliers. With the outlier present,

the correlation of UNI with other metrics is high (as they all give low scores to the outlier), so

the power of the test is high. However, since UNI is less correlated with the other metrics once

the outlier is removed, the test has low power and is unable to differentiate between UNI and

the remaining metrics.

In a more extreme example, after removing the 3 outliers, there are only 7 MT systems

left in the French → German language pair. The correlation of YiSi-2 drops from 0.530 to

just 0.066. Since YiSi-2 also has low correlation with the other metrics, and the sample size is

so small, the William’s test doesn’t detect a statistically significant difference between YiSi-2

and any other metric, even though the other metrics are highly correlated with human scores.

So despite a negligible correlation with human scores, YiSi-2 is classified as a winner in this

language pair.

BERTR and YISI-1 both incorrectly assign a relatively high score to the low outlier in the

Gujarati → English language pair. They are competent when scoring the remaining systems,
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and these metrics are not outperformed by any other metric on discard that outlier, and are now

“winner”. This is not ideal, and reporting correlation only after discarding outliers can result in

a loss of important information about metrics.

Finally, YISI-1 is still the best performing metric with the most wins across all language

pairs, with ESIM coming in second.

Previous Years

We computed results without outliers for the system-level metrics task of WMT 2017 (Tables

6.6 and 6.7) and WMT 2018 (Tables 6.8 and 6.9).

In the WMT 2017 data, we detect the presence of outliers in six out of the 14 language

pairs. As with 2019, the outliers are systems with low DA scores, with the exception of English

→ Russian, where the best system scores much higher than the rest and is clearly an outlier.

Of these six language pairs, the correlation of all metrics remains high after outlier removal

for English → Chinese. For German → English, English → Latvian and English → Finnish,

the decrease in correlation of BLEU is a little higher compared to other metrics like BERTR

and CHRF. Finally, with English → Russian and Russian → English, there is a sharp drop in

correlation of BLEU compared to other metrics. Surprisingly, the correlation of ESIM is even

smaller than BLEU for Russian → English, so ESIM is not uniformly better than BLEU.

In the WMT 2018 metrics task, all participating metrics have a high correlation with DA

scores for all language pairs except Turkish → English. For most of these, the correlation stays

high after discarding outliers. However, we see a decrease in correlation for three language

pairs. For English → Turkish and German → English, we see that the drop in the correlation of

BLEU is much higher than in YISI-1 and CHRF. Finally, the story is unique for Chinese →

English. Of the 14 MT systems, the DA scores of the top nine are close together, and the MAD

estimator detects the remaining five systems as outliers. When we compute correlation after

discarding these five outliers, all metrics have a correlation between 0.5 and 0.7. When we look
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closer at the DA scores, these systems are all in one big cluster with no significant difference

found between any two systems. It would be unreasonable to expect high correlation from the

metrics on these MT systems.

6.5 The Influence of the Quality of MT Systems on Metric

Reliability

In general, reference-based metrics have a high correlation with human scores across all

language pairs. Typically, the correlation of reference-based metrics is greater than r = 0.8 in

all language pairs at WMT 2019, and we can infer that it is reasonable to use these metrics in

place of human evaluation. However, the correlation is dependent on the systems that are being

evaluated, and as the quality of MT increases, we want to be sure that the metrics evaluating

these systems stay reliable. To estimate the validity of the metrics for high-quality MT systems,

Ma et al. (2019) sorted the systems based on their direct assessment scores, and plotted the

correlation of the top N systems, with N ranging from all systems to the best four systems.

They found that for seven out of 18 language pairs, the correlation between metric and human

scores decreases as we decrease N, and tends towards zero or even negative when N = 4.

Of the nine language pairs that included a human translation as a part of the evaluated

systems, there are four language pairs (German → English, English → German, English →

Russian, and English → Chinese) where the quality of the best MT systems is close to human

performance (Barrault et al., 2019). If metrics are unreliable for strong MT systems, we would

expect to see a sharp degradation in correlation for these language pairs. But as we look at the

top N systems for these language pairs, the pattern is mixed: correlation of the top N systems

decreases as we decrease N for German → English and English → German, stays the same

for English → Russian, and actually increases for English → Chinese. On the other hand, the
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Fig. 6.7 Pearson correlation coefficient computed over the top-N systems, or over a rolling
window of 4 or 8 systems on English → German and German → English datasets of WMT19.
Systems are sorted by DA quality score, and the x axis shows the index of the starting system.
The error bars indicate 95% confidence intervals computed using bootstrap resampling.
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correlation decreases when computed over the top N English → Kazakh MT systems, where

the human scores indicate that best system’s quality is far from the quality of human translation.

Is there another explanation for these results? Pearson’s r between metrics and DA scores

is unstable for small samples, where we see major fluctuations in the value of Pearson’s r as

we add or decrease a single MT system. This is particularly true when the systems are very

close in terms of quality. The low correlation over top-N systems (when N is small) could just

be an artefact of this instability. We add error bars to the top-N plots of Ma et al. (2019) by

computing the 95% confidence intervals using the percentile bootstrap method: we compute

the correlation between metric and human scores of 1000 bootstrap samples of the MT systems

in the subset, sort these correlations, and use the values at the 2.5 and 97.5 percentiles as the

confidence limits. In general, the error bars get wider as N decreases, indicating less confidence

in the results.

We also visualise the correlation of a rolling window of systems, starting with the worst N

systems, and moving forward by one system until we reach the top N systems. The number of

systems stays constant for all points in these graphs, which makes for a more valid comparison

than the original setting where the sample size varies. If the metrics are indeed less reliable for

strong systems, we should see the same pattern on these graphs as with the top N systems.

Fig. 6.7 shows the correlations of the top-N, and rolling window of correlations with

window size of 4 and 8 on the German → English and English → German data. For both

language pairs, the results of the top-N analysis shows decreasing correlation as N decreases.

However, this decrease in correlation is also accompanied by decreasing confidence in the

value of the correlations (wider error bars).

For the German → English language pair (Fig. 6.7 (a)), the correlation of most metrics is

very unstable when N = 4. Both BLEU and CHRF perfectly correlate with human scores for

systems ranked 2–5, but then the correlation drops to a large negative value when considering

the top 4 systems. On the other hand, ESIM, which shows an upward trend when looking at the
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top-N systems, exhibits the opposite behaviour. Even worse, for English → German (Fig. 6.7

(b)), YISI-2 obtains a perfect correlation at some values of N, when in fact its correlation with

human scores is negligible once outliers are removed (Sec. 6.4). We observe similar behaviour

across all language pairs: the correlation is more stable as N increases (that is, we see fewer

fluctuations in the value of r, and narrower error bars), but there is no consistent trend in the

correlation that depends on the quality of the systems in the sample.

If we are to trust Pearson’s r at small sample sizes, then the reliability of metrics doesn’t

really depend on the quality of the MT systems. Given that the sample size is small to begin

with (typically 10–15 MT systems per language pair), we believe that we do not have enough

data to use this method of sub-sampling systems to assess whether metric reliability decreases

with the quality of MT systems. A possible explanation for the low correlation of subsets of MT

systems is that it depends on how close these systems are in terms of quality. In the extreme

case, the difference between the DA scores of all the systems in the subset can be statistically

insignificant, so metric correlation over these systems can be attributed to chance. In the next

section, we look at individual pairs of MT systems to examine whether the conclusions of

metrics agree with human evaluation (DA), taking statistical significance of the score difference

into account.

Metric reliability depends on the quality of the references (Freitag et al., 2020), and perhaps,

as MT systems get better, automatic metrics require better references. But based on the data

from the WMT 2019 metrics task, there is no empirical proof that the metric reliability decreases

as MT system quality increases, and we believe that metrics can be unreliable irrespective of

MT system quality.

6.6 Beyond Correlation: Metric Decisions for System Pairs

So far, we have looked at evaluating metrics using Pearson correlation with human scores, and

looked closer at whether the high value of the correlation was hiding important patterns. In this
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Fig. 6.8 Pairwise differences in human DA evaluation (x-axis) compared to difference in metric
evaluation (binned on y-axis; NS means insignificant metric difference) computed across all
language pairs in WMT 2019. The colours indicate pairs judged by humans to be insignificantly
different (cyan/light gray), significantly worse (red/dark gray on the left) and significantly better
(green/dark gray on the right), and the numbers next to the metric differences on the x-axis
indicate the number of system pairs in the category corresponding to the colour.
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section, we switch focus to how much we can trust automatic metrics when using them as a

proxy for human judgements to make decisions about MT systems.

When we are comparing two systems, a metric might conclude that system A is better

than system B with a certain score difference, or, if the score difference is not statistically

significant, that the two systems are of similar quality. Basing important decisions on metric

score alone runs the risk of making wrong decisions with respect to the true gold standard of

human judgements. That is, while a change may result in a significant improvement in a metric,

this may not be judged to be an improvement by human assessors (type I error). On the other

hand, the metric might not detect a true improvement in the two systems (type II error).

Graham et al. (2014) computed accuracy of metric conclusions compared to human deci-

sions on all pairs of MT systems in the WMT13 Spanish ↔ English language pairs. We extend

their methodology by dividing metric errors into type I and type II errors, and then further

examining how this depends on the value of the metric score difference. Finally, instead of

computing these for individual language pairs, we combine data across all language pairs used

in recent iterations of the WMT metrics shared task, focussing on WMT 2019.

For computing the statistical significance of human scores, we apply the Wilcoxon rank-sum

test which is used by WMT when ranking systems. We use the bootstrap method (Koehn, 2004)

to test for statistical significance of the difference in BLEU and TER between two systems.

YISI-1 and ESIM compute the system score as the average of sentence scores, so we use

the paired t-test to compute significance. Although CHRF is technically the macro-average of

n-gram statistics over the entire test set, the online implementation also allows us to optionally

compute the micro-average, and the two methods are highly correlated. We treat CHRF as a

micro-average when computing significance such that we can use the more powerful paired

t-test over sentence scores.

Figure 6.8 visualises the agreement between metric score differences and differences

in human DA scores. Ideally, only differences judged as truly significant would give rise
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to significant and large magnitude differences under the metrics; and when metrics judge

differences to be insignificant, ideally very few instances would be truly significant. However,

this is not the case: there are substantial numbers of insignificant human differences even for

very high metric differences (cyan, for higher range bins); moreover, the “NS” category —

denoting an insignificant difference in metric score — includes many human significant pairs

(red and green, top bin).

Considering BLEU (the top plot in Figure 6.8), for insignificant BLEU differences, humans

judge one system to be better than the other for half of these system pairs. This corresponds

to a type II error. It is of concern that BLEU cannot detect these differences. Worse, the

difference in human scores has a very wide range. Conversely, when the difference in BLEU

scores is small (between 0–3) but significant, more than half of these systems are judged to be

insignificantly different in quality (corresponding to a type I error). For higher BLEU deltas,

these errors diminish, however, even for a BLEU difference between 3 and 5 points, about a

quarter of these system pairs are of similar quality. This paints a dour picture for the utility of

BLEU as a tool for gate keeping (i.e., to define a ‘minimum publishable unit’ in deciding paper

acceptance on empirical grounds, through bounding the risk of Type I errors), as the unit would

need to be whoppingly large to ensure only meaningful improvements are accepted. Were we

to seek to minimise Type II errors in the interests of nurturing good ideas, the threshold would

need to be so low as to be meaningless, effectively below the level required for acceptance of

the bootstrap significance test.

TER scores also contain major errors: the metric can wrongly conclude that a system is

much better than another when humans have judged them similar, or even worse, drawn the

opposite conclusion.

CHRF, YISI-1 and ESIM have fewer errors compared to BLEU and TER. When these

metrics mistakenly fail to detect a difference between systems, the human score difference

is considerably lower than for BLEU. Accordingly, they should be used in place of BLEU.
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However the above argument is likely to still hold true as to their utility for gate keeping or

nurturing progress, in that the thresholds would still be particularly punitive or permissive, for

the two roles, respectively.

Impact of Target Language

Most metrics are designed primarily for English. Metrics evaluating in English have better

available resources, such as word embeddings trained on a larger monolingual corpus. Other

languages can also be harder for metrics compared to English, for example, if they are mor-

phologically more complex (Bouamor et al., 2014; Guzmán et al., 2016). Finally, supervised

models have a lot more training data in English as there are multiple language pairs every year

that have English as the target language. In this section, we check whether this impacts the

correctness of metric decisions.

When we split the system pairs based on whether the target language is English (Fig. 6.9),

we find that all metrics make fewer errors when comparing the MT and reference translations

in English compared to other languages, particularly the errors where metrics and humans both

come to significant but opposite conclusions. In addition, metrics have a greater discriminative

power when evaluating English translations, as there are very few type II errors where metrics

do not detect a significant difference.

Impact of MT system Diversity

One possible reason for metric errors is the diversity in approaches of MT systems evaluated.

For example, the metrics are known to be biased against rule based systems (Callison-Burch

et al., 2006). But in recent years, the MT systems submitted to WMT were dominated by

neural systems (recurrent models in 2017, and transformer models in 2018 and 2019) (Bojar

et al., 2017b, 2018; Barrault et al., 2019). There were very few rule-based systems submitted4.

4just three in WMT 2019
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Fig. 6.9 Comparing metrics on to-English vs other-than-English language pairs in WMT
2019: Pairwise differences in human DA evaluation (x-axis) compared to difference in metric
evaluation (binned on y-axis; NS means insignificant metric difference). The colours indicate
pairs judged by humans to be insignificantly different (cyan/light gray), significantly worse
(red/dark gray on the left) and significantly better (green/dark gray on the right).
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Fig. 6.10 WMT 2019 system pairs that (a) exclude vs (b) include online systems: Pairwise
differences in human DA evaluation (x-axis) compared to difference in metric evaluation
(binned on y-axis; NS means insignificant metric difference). The colours indicate pairs judged
by humans to be insignificantly different (cyan/light gray), significantly worse (red/dark gray
on the left) and significantly better (green/dark gray on the right).



6.6 Beyond Correlation: Metric Decisions for System Pairs 164

These were mostly outperformed by neural systems in the human evaluation, and didn’t pose a

challenge to automatic metrics.

The systems evaluated consist of a mix of systems submitted by researchers (mostly neural

models) and anonymous online systems such as Google and Amazon translation systems. The

identity of these systems is hidden, and their approach, architecture, training data, and any data

pre- or post-processing is unknown. Unlike most submissions to the translation task, these

systems were not iteratively tuned on BLEU on the official WMT validation sets. Thus, we can

expect the online systems to be more diverse than the submissions to the WMT translation task.

Given that most academic papers do not compare with online systems, it is useful to divide the

system pairs into two categories: EXCLONLINE, which excludes online systems, i.e., where

both systems are submissions to the translation task; and INCLONLINE, where at least one

system is an anonymous online system.

Fig. 6.10 shows that CHRF, YISI-1 and ESIM have fewer errors in EXCLONLINE than

INCLONLINE, but this doesn’t hold for BLEU and TER. The percentage of total errors in

EXCLONLINE is greater than in INCLONLINE across all metrics and all years. This increase

can be mostly attributed to type I errors: system pairs where the metric score difference is

significant but humans didn’t detect a significant difference. This is because there are more

system pairs that are close together in quality, possibly because these systems were less diverse.

When we consider only type I errors where the metric score difference is significant, but

human score-differences are significant in the opposite direction, we see that ESIM, CHRF and

YISI-1 have significantly fewer errors when excluding online systems, but this is not true with

BLEU and TER.

The increase in the total errors of TER and BLEU compared to the other metrics is striking

when we restrict the comparisons to MT system submissions. This is far from ideal given that

these metrics are widely used in academia both during system development (model selection on
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the validation set, for instance) and when benchmarking against other research systems when

presenting final results.

Previous Years

When we compare metric errors on system pairs from WMT 2017 and 2018 (Fig. 6.11), we

find that the overall “difficulty” of the metrics task varies between the years. In WMT18, the

high correlations of all metrics with human scores (which mostly stay high even after removing

outliers) translate to fewer errors (both type I and type II). In particular, there are remarkably

few errors where both metric and humans score differences are significant but reach opposite

conclusions, and these major errors are restricted to system-pairs where at least one online

system is included. For WMT17 data, we see more errors compared to WMT18. Finally, even

as the total percentage of errors varies between the years, the relative patterns between metrics

stays the same. BLEU is clearly outperformed by CHRF, YISI-1, and ESIM in all cases.

6.6.1 Agreement between Metrics

While MT experiments are typically reported using BLEU as an evaluation measure, sometimes

BLEU is used in combination with other metrics such as TER and METEOR (Banerjee and

Lavie, 2005), and CHRF. So far, we investigated the reliability of using individual metrics to

compare MT systems. We now investigate whether reporting a combination of metrics results

in more reliable decisions.

Fig. 6.12 shows the agreement between metric decisions when comparing MT systems in

2019. BLEU and TER are both lexical metrics that compare the MT and the reference at the

word-level. They are highly correlated, and when BLEU is wrong, TER contradicts BLEU

only 20% of the times.
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Fig. 6.11 Pairwise differences in human DA evaluation (x-axis) compared to difference in
metric evaluation (binned on y-axis; NS means insignificant metric difference) computed across
all language pairs in WMT 2017 and WMT 2018. The colours indicate pairs judged by humans
to be insignificantly different (cyan/light gray), significantly worse (red/dark gray on the left)
and significantly better (green/dark gray on the right).
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Fig. 6.12 The agreement between metric errors over all 1362 system-pair comparisons at
WMT19. The values in the diagonal indicate the total number of type I and type II errors for
the metric. The off-diagonal cells show the total number of errors made by the row-metric
where the column-metric is correct.

Surprisingly, the conclusions of CHRF have a higher agreement with YISI-1 than BLEU,

even though CHRF and BLEU are both lexical metrics whereas YISI-1 computes similarity

based on contextual word embeddings.

The decisions of ESIM, a trained neural model, diverge a little more from the other metrics.

ESIM has the fewest errors of all metrics, but we see in Fig. 6.8 that the errors of YISI-1 have

a smaller magnitude.

Overall, despite the variety of approaches towards the task, all five metrics have common

biases: over half of all erroneous decisions made by a particular metric are made in common

with all other metrics.

This could be taken positively: when all five metrics agree on their decision, they are

twice as likely to be right. But what conclusions can we draw when the metrics disagree? As

expected, when BLEU or TER disagree with CHRF, YISI-1 and ESIM, the former are more

likely to be wrong. We need further investigation as to which metrics to trust in this situation.
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6.7 Conclusion and discussion

In this chapter, we first revisited the findings of the metrics task at WMT 2019, which flagged

potential problems in the current best practises for assessment of evaluation metrics: (a) metric

correlations are affected by outlier MT systems, and (b) the metrics are less reliable over strong

MT systems.

We presented a robust way to detect outliers using the median and the median absolute

deviation (MAD), and found that outlier systems can have a disproportionate influence on the

Pearson correlation coefficient of metrics with human scores. In some cases, the correlation

doesn’t change much when outliers are removed, indicating that metrics are reliable when

scoring all systems. However, even if the metric is not completely reliable when scoring most

systems, it can be easy for metrics to correctly detect that the outlier system is much worse

than others, and removing outliers can lead to a drop in Pearson’s r. In extreme cases, the

presence of outliers can give the illusion of a strong correlation when there is none. Finally, if a

metric’s assessment of the outlier is wrong, then dropping the outlier will lead to an increase in

correlation, which ignores metric errors. Accordingly, we recommend future evaluations to

report metric correlations with all systems, as well as after outlier removal (Leys et al., 2019).

The outlier detection method presented here, the MAD estimator, relies on the assumption

that the distribution is symmetric. The distribution of human scores is typically reasonably

close to satisfying this assumption, but there are some examples where this assumption is not

true. This might result in removing systems that, on visual inspection, do not appear to be

outliers. One avenue for future work is to investigate outlier detection methods that do not

require this assumption.

We next investigated the relationship between metric reliability and the quality of the

MT systems evaluated. We showed that the decrease in correlation when evaluating only the

best MT systems can be attributed to comparing Pearson’s r computed over different sample

sizes. Pearson’s correlation coefficient is known to be unstable for small sample sizes, and this
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instability is exacerbated when the systems in consideration are very close in quality. This goes

some way to explaining the findings whereby strong correlations between metric scores and

human judgements evaporate when considering small numbers of strong systems. We show

that the same could be true for any small set of similar quality systems. Thus, this effect can, in

some cases, be attributed to noise, rather than true shortcomings in the metrics themselves.

We note that it can still be true that metrics become more unreliable as the MT systems get

better. However, we believe that the number of systems evaluated for each language pair in the

WMT metrics tasks is too small (typically less than 15) to yield a conclusive empirical proof.

In common use, metrics are used to compare two systems, and accordingly we have also

investigated the real meaning encoded by a difference in metric score, in terms of what this

indicates about human judgements of the two systems. Most published works report BLEU

differences of 1-2 points, however at this level we show this magnitude of difference only

corresponds to true improvements in quality as judged by humans about half the time. Although

our analysis assumes the human evaluation method “direct assessment” to be a gold standard,

and clearly it has shortcomings, our analysis does suggest that the current rule of thumb for

publishing empirical improvements based on small BLEU differences has little meaning.

Overall, this chapter adds to the case for retiring BLEU as the de facto standard metric,

and instead using other metrics such as CHRF, YISI-1 or ESIM in its place during system

development. These have higher correlations with human scores, particularly when we discard

outliers, and are more powerful in assessing empirical improvements. However, human

evaluation must always be the gold standard, and for continuing improvement in translation, to

establish significant improvements over prior work, all automatic metrics make for inadequate

substitutes.



Chapter 7

Conclusion and Future work

Reliable evaluation is crucial for progress in any task, and the work in this thesis forms a part

of the movement to improve evaluation in NLP. We looked at improving robustness of three

major aspects of machine translation evaluation.

We proposed methods to improve the collection and aggregation of human annotations of

translation quality, which have the potential to decrease the cost of collecting annotations and

improve data quality.

We developed a family of automatic metrics that advanced the existing state of the art on

automatic evaluation. In concurrent work, our pre-trained metrics were independently proposed

as BERTscore (Zhang et al., 2020), which has been widely adopted in the research community

when evaluating machine translation and other natural language generation tasks such as

summarization. The success of our supervised metrics inspired metrics such as COMET (Rei

et al., 2020a) and BLEURT (Sellam et al., 2020) that have further improved the quality of MT

metrics.

Finally, we revisited the evaluation of these automatic metrics. We present definitive

evidence that the character-based metric CHRF and metrics that rely on pre-trained contextual

embeddings are superior to BLEU, and our research is a part of the movement shift away

from using BLEU when automatic evaluation is necessary. The work has also had a high
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impact on the running of evaluation campaigns for automatic metrics. We argued that metric

evaluation needs to focus on the primary use-case of comparing MT systems. Kocmi et al.

(2021) conducted a large-scale analysis of the performance of selected metrics over 3000 pairs

of MT systems, and provided additional evidence to our conclusions in Chapter 6: neural

embedding-based metrics (including ESIM) are far more trustworthy compared to lexical

metrics like BLEU.

This chapter summarises the findings of the thesis, then presents avenues for future work.

7.1 Summary

Human Evaluation

In Chapter 3, we investigated the potential of probabilistic models to aggregate crowdsourced

direct assessment (DA) data. We showed that the quality control mechanism of DA, which

tests for internal consistency of annotators, often filters out useful data, thus increasing the

overall cost of the evaluation. We proposed a simple Bayesian unsupervised model to aggregate

DA scores. The model assumes that the annotator scores are normally distributed around the

true quality of the translation, with an annotator-specific precision. The model infers reliable

estimates of annotator precision, with help from additional constraints to the model based on

the quality control items. The model effectively weights the scores of annotators based on the

inferred precision to come up with a better estimate of the translation quality compared to the

average scores, even when restricted to annotators that pass quality control. We found that

we can further improve the model’s estimate of translation quality by re-running the model

after discarding scores of annotators with the lowest model precision. Finally, we showed

that we can use pairwise correlation heat maps of annotator scores as a diagnostic tool to help

decide (a) how many low-quality annotators to remove and (b) whether we need to collect more

annotations.
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Human judgements are, in theory, unbiased, and are considered to be the most reliable

method to evaluate machine translation systems. However, people are susceptible to cognitive

biases when making decisions. In Chapter 4, we looked at one specific source of cognitive

bias that can arise when making a sequence of decisions. When annotators evaluate a set of

translations, ideally, they would score each translation on its own merits. However, we used

a simple linear regression model to show that crowdsourced annotator scores are positively

autocorrelated with the score of the previous translation. When collecting multiple judgements

of translation quality, if all annotators see these translations in the same order, any aggregate

score will also contain this bias. To mitigate this, we suggest randomising the translations such

that no two annotators see the translations in the same order.

Automatic Evaluation

Chapter 5 focused on automatic evaluation metrics. We proposed new automatic metrics that

use contextual word embeddings to encode the MT output and the reference translation. Our

first metrics approximate the precision, recall and F-score between the two sentences using a

greedy maximum-matching of the embeddings of the MT output and the reference translation:

namely, computing the maximum cosine similarity between the embedding of a reference token

against any token in the MT output.

We then explored a series of supervised models that are built on top of contextualised word

embeddings, including ESIM, a model that was first developed for natural language inference.

These models uses cross-sentence attention and sentence matching heuristics to generate a

representation of the translation and the reference. We investigated the tradeoff between the

number of instances in the training set and the number of annotations per instance. We find

that training ESIM on a large, singly-annotated set of human evaluation judgements clearly

outperforms training the model on a smaller, multiply-annotated dataset, thus adding to the

literature that diversity of training instances is more important than accuracy.
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Our pre-trained metrics, though simple in formulation, are highly effective and rival or

surpass previous metrics on the WMT 2017 dataset. Our supervised metrics further improve on

these results.

Meta evaluation

In Chapter 6, we took a closer look at evaluating our metrics. In recent years, they have been

evaluated based on their Pearson Correlation with human scores. We showed that Pearson

correlation is highly sensitive to outlier MT systems that are markedly different in quality from

the rest of the MT systems. These systems have a disproportionate influence on the value of

the correlation: if the metrics score these systems correctly, it leads to high correlations even

when they make errors scoring the remaining systems, thus leading to false confidence in the

utility of these metrics. We thus propose to also include the correlation without outliers when

evaluating metrics at the system level. This analysis was included in the results of the WMT

2020 metrics shared task, and the findings showed that outliers also inflate correlation at the

sentence-level.

We next investigated whether metric reliability decreases with an increase in MT system

quality. Findings from the WMT 2019 metrics task indicate that metric correlation sharply

decreases when evaluated on smaller subsets of the best MT systems. We show that this can be

attributed more to the instability of Pearson correlation on small sample sizes, and that there

is no empirical evidence in the data to indicate that metrics are more likely to make mistakes

when evaluating strong MT systems. The machine translation researchers have always been

aware that automatic metrics are flawed, and relying on these metrics has always carried the

risk of making wrong conclusions. Our findings suggest that this risk is independent of the

quality of the MT systems being evaluated.

Finally, we investigated how much we can trust metric conclusions when comparing pairs

of MT systems, which is the most common use case of these metrics. Small differences in
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BLEU scores are often used in academia to claim a new state of the art over existing systems.

We find that such a small difference in BLEU scores is essentially a coin toss: about half the

time, there is no statistically significant difference in the human scores of the two systems. And

in rare cases, humans even find a difference in the opposite direction. We recommend using

more sophisticated metrics than BLEU when automatic evaluation is required during system

development, and basing any final conclusions on human evaluation. We acknowledge that

direct assessment is not perfect, that it is possible that the discrepancies between the metric

and human decisions can actually be errors of human evaluation and not metrics. In fact, many

recent studies have questioned the validity of crowdsourced human judgements as untrained

annotators often miss errors in the MT output (Castilho et al., 2017; Läubli et al., 2020; Freitag

et al., 2021). Note that our method of looking at metric score distributions is independent of

the method of human evaluation, and the same analysis can be repeated with higher quality

human scores.

7.2 Future Work

Refining the evaluation of MT is still an active research ares, and we present some avenues for

future work that follow from the work in this thesis.

Human evaluation

In this thesis, we proposed a probabilistic model to aggregate multiply-annotated translation

quality judgements. We show that the model’s inferred quality outperforms the current best

practice, which is using the mean of workers who pass quality control, particularly when we

remove spammers (the least reliable annotators). The model does not directly tell us how many

spammers to remove to obtain the highest accuracy, and we propose heurstics to do so based

on looking at pairwise correlations between all annotators. A more principled option is to
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extend the model to include a parameter for whether workers are spamming, which determines

whether the worker’s scores are uniformly distributed or distributed normally around the true

quality. This would allow the model to decide on the utility of a given annotator’s scores when

fitting the data.

This is useful for getting accurate estimates of the quality of individual translations. When

evaluating MT systems, direct assessment computes the score of an MT system as the average

score of all (or a sufficiently large number) its translations in the test set, typically collecting

only a single annotation per translation. We could extend our model to aggregate these scores

to learn the true quality of MT systems. In this case, we model MT system scores as a Gaussian

distribution centred around the scores of its translations. Since we will have multiple systems

translating each source sentence, the model could also be enhanced to model translation

difficulty of a sentence.

Automatic metrics

We train our metrics with a large, noisy set of judgements; our regression model uses a squared

error loss that assumes a constant Gaussian noise for each instance in the training set. In reality,

we showed in Chapter 3 that annotator reliability varies, and we can get better aggregation of

human scores when we model their reliability. We can apply this idea when training metrics, by

giving more weight to reliable annotators when computing the loss. The neural model would

jointly learn the parameters of the regression model and annotator precision.

Meta-evaluation

In Chapter 6, we looked at how much we can trust metric decisions when comparing pairs of

MT systems. More specifically, we compared metric agreement with human decisions on pairs

of systems included in the WMT evaluation, which are a mix of anonymous online systems

and researcher submissions to the shared task. We found that metrics are more likely to make
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major errors when one or both systems is an online systems, and hypothesise that this might

be due to diversity of the online services compared to WMT submissions. We need to test

this hypothesis, for example, by comparing the pairwise similarity of MT system translations,

perhaps looking at similarities in lexical choice and word order.

We use automatic metrics in two broad scenarios(Resnik and Lin, 2010), which are: (a)

formative evaluation: making small changes to the systems and evaluate whether this improves

the quality; and (b) summative evaluation: comparing an MT system with a completely different

MT system developed by others, for example to claim state of the art on a given dataset. The

WMT metrics shared task is an accurate reflection of the second scenario, and we used data

from this task to recommend a careful human evaluation to support any final conclusions

when comparing MT systems. But obtaining human judgements is not practical for formative

evaluation. Are metrics more or less reliable when measuring incremental improvements on a

single MT system?

To this end, we need to carefully apply a diverse set of ideas for improvement on a single

MT system. Once we have the conducted a careful human evaluation, we could evaluate metrics

using both the traditional method of computing correlation as well as analysis over the system

pairs to understand the validity of individual decisions and how they depend on metric score

differences. This test set would then either validate the continued use of BLEU over the years,

or give decisive evidence for switching to a different metric. Finally, this will also yield a rich

dataset to train future metrics.

This is an exciting time for machine translation research; MT quality has improved signifi-

cantly in recent years, and better evaluation methods will accelerate progress in the quality of

MT systems.
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