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Abstract 

Acute induced inflammation, using vaccination, reduces flow-mediated vasodilation in the 

conduit artery in young healthy volunteers. However, this has not been shown in older adults. 

Immunosenescence with advancing age results in inadequate protection from disease because of 

ineffective responses to vaccination. An acute bout of moderate aerobic exercise improves 

arterial and endothelial function and may increase the efficacy of the vaccine in young 

individuals. Hence, this study sought to evaluate the effect of acute systemic inflammation on 

endothelial function and wave reflection in older adults. The second aim was to evaluate if acute 

moderate intensity endurance exercise immediately prior to induced inflammation can prevent 

the negative effect of acute systemic inflammation on vascular function while augmenting the 

efficacy of the vaccine. Fifty-nine healthy volunteers between 55 – 75 years of age were 

randomly allocated to an exercise or control group. Arterial function and inflammatory markers 

were measured at baseline, 24 hours and 48 hours after influenza vaccine and sham injections. 

Antibody titers were measured at baseline and 4 weeks following the Influenza vaccine. CRP 

increased when measured at 24 and 48 hours and IL-6 increased at 24 hours from baseline after 

the Influenza vaccine compared to the sham injection while unexpectedly, arterial function was 

unaltered. There were no significant correlations between changes in inflammatory markers and 

changes in arterial function. Fitness was related to endothelial function as baseline. Endothelial 

function was significantly higher in individuals classified as having good fitness compared to the 

poor fitness category. There was a significant decrease in the endothelial function at 48 hours 

after vaccination compared to baseline in the fair fitness while there was significant decrease in 

the endothelial function when measured at 24 and 48 hours as compared to the baseline in good 

fitness category group. The endothelial function was unaffected in the poor fitness group. There 
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were no differences in the levels of antibody titers against the H3N2 influenza strain between the 

men and women in exercise group as compared to the control group. However, women in the 

exercise group had a significantly higher antibody response for H1N1 influenza strain. In 

conclusion, there was dissociation between inflammation and endothelial function following 

induced acute systemic inflammation in older adults. The responses of endothelial function to 

induced acute systemic inflammation were related to fitness. Acute moderate aerobic exercise 

was not immune-stimulatory in healthy older men, but may serve as a vaccine adjuvant in older 

women. 
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CHAPTER 1 

INTRODUCTION 

Acute systemic inflammation or infection transiently increases risk of cardiovascular events (91, 

113, 130), but the underlying mechanisms are not fully understood. The negative effects of acute 

inflammation include increases in inflammatory markers such as C-reactive protein (CRP) and 

direct arterial effects of inflammation, including increased arterial stiffness and decreased 

endothelial function, all of which increase the risk for cardiovascular events (17, 60, 64, 132). 

Thus, there is clear evidence that inflammation decreases vascular function. With advancing age 

there are further impairments in cardiovascular (41) and immune function (including innate 

immunity) (16, 32, 59, 86).  It is possible that acute inflammation, including that induced by 

influenza vaccination, produces greater decrements in arterial function in older individuals (33, 

71, 77), thus increasing the risk of cardiovascular events (8, 132). Using influenza vaccination as 

a model to induce inflammation we have shown (in young healthy individuals) that induced 

inflammation decreases arterial function, consisted with an increase in risk(107). 

The innate immune response is up-regulated following an acute bout of moderate intensity 

exercise in animals and humans (14, 137). Animal studies have consistently shown that 

administration of a moderate acute stressor just before antigen exposure results in an enhanced 

immune response (9, 25, 137). Recent human studies have shown acute exercise prior to an 

inflammatory stimulus induces immuno-enhancement and an anti-inflammatory response in 

young healthy individuals (31, 128, 137). Furthermore, an acute bout of moderate intensity 

exercise improves endothelial function and decreases arterial stiffness (65, 66, 104). Thus, one 

acute exercise bout of moderate intensity appears to exert a protective effect on arterial function. 

However, the effect of acute moderate intensity exercise administered before vaccination-
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induced acute inflammation on vascular function in the elderly is unknown. Therefore, the 

overall aim of this project is to investigate if acute moderate intensity endurance exercise 

immediately prior to vaccination-induced inflammation can prevent the negative effect of 

acute systemic inflammation on vascular function in older adults.  

Immunosenescence with advancing age results in inadequate protection from diseases because of 

ineffective responses to vaccination (48). Although acute moderate exercise prior to vaccination 

can act as an adjuvant and increase the efficacy of the vaccine in young individuals (31), it is 

unknown if older individuals will show a similar positive response. Thus, a second aim of this 

project is to investigate if moderate acute aerobic exercise immediately prior to an influenza 

vaccine can increase the efficacy of the vaccine in older adults. 

It has been shown that acute exercise prior to an influenza vaccine produced greater antibody 

responses in young women compared to young men (31). However, other studies (68, 69) have 

not reported any sex differences; hence, an exploratory aim is to investigate if acute exercise 

immediately prior to an influenza vaccine produces different effects on antibody response in 

older men and women. 

The primary aims of the present investigation are as follows: 

Aim 1: To examine the effect of acute exercise immediately prior to an acute systemic 

inflammatory stimulus on vascular function in a randomized, double-blind, sham procedure-

controlled crossover design in older adults.  

Hypothesis: We hypothesize that the acute systemic inflammatory response will be lower in the 

exercise group as compared to the control group thus preventing or reducing the negative effects 

of inflammation on the vascular function.  
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Aim 2: To evaluate the effect of acute moderate aerobic exercise immediately prior to an 

influenza vaccine on vaccine efficacy.  

Hypothesis: We hypothesize that the acute exercise immediately prior to the vaccination will 

improve vaccine efficacy as measured by hemagluttination inhibition (HI) antibody titers in older 

adults.  

Aim 3:  To evaluate if acute exercise immediately prior to an Influenza vaccine produces 

different effects on antibody response in men and women.  

Hypothesis: We hypothesize that women will show a higher antibody response to Influenza 

vaccine as compared to men. 

Significance 

Cardiovascular disease continues to be the leading cause of death in the United States and the 

risk of CV events increases with age.  It is well established that influenza vaccination has 

obvious beneficial outcomes in older individuals, a small but significant portion of middle aged 

and older individuals experience an increase in cardiovascular events thought to be mediated by 

the inflammatory response following vaccination.  Furthermore, a significant portion, up to one 

third, of older individuals receive no or greatly reduced protection from the influenza 

vaccination.  If an acute bout of moderate intensity aerobic exercise decreases the subsequent 

acute systemic inflammatory response to influenza vaccination in older individuals, it is possible 

that an acute moderate exercise bout may also exert a protective effect on the vascular function 

which could potentially provide a cardioprotective effect. Furthermore, it is possible that acute 

moderate exercise may increase vaccine efficacy, which could have potentially large public 

health benefits. Thus, if our hypotheses are supported, it is possible that one bout of acute 
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aerobic exercise will reduce the immediate risk of the effects of influenza vaccine dose, while 

enhancing the long term protection of vaccination by improving the efficacy of the vaccine. 

Findings from our study will provide new insight regarding potential stress-immunological 

mechanisms relating inflammation to vascular function and vaccine efficacy in older individuals. 

Our study will provide the foundation for understanding these relationships in human aging and 

the foundation for potential future interventions.  
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CHAPTER 2 

LITERATURE REVIEW 

The vascular endothelium provides a vasodilatory and anti-atherogenic influence on the 

cardiovascular system (8). Endothelial cells receive signals not only from chemical stimulation 

(50) or environmental changes, but from mechanical stimuli as well (8, 103, 114). These signals 

are further translated to the smooth muscle around the artery. The relaxation of the smooth 

muscle results in dilatation of the artery(114). This process of endothelial dependent 

vasodilatation has been attributed for the most part to nitric oxide (NO) which is produced by the 

endothelium (103, 114). A constant production of NO is essential for the basal dilator effect in 

the arterial system of humans. Along with maintaining the dilator vascular tone, NO plays a very 

important role in maintaining the vascular wall in a quiescent state by inhibiting inflammation, 

thrombosis and cellular adhesion and proliferation (22, 56). Hence, reduction or loss of NO 

results in shifting of the vascular wall towards an inflammatory and pro-artherogenic phenotype 

(17).  

Endothelial stunning and induced inflammation: 

A very brief exposure to any endotoxin or certain cytokines impairs the endothelial function for 

days and this effect is called “Endothelial Stunning” (8, 60). It is further accentuated in the 

presence of other underlying risk factors (8). One of the primary risk factors related to 

endothelial dysfunction is inflammation (60, 130, 132). There is a strong link between chronic, 

low grade inflammation and the progression of atherosclerosis (76). Hence, introduction of an 

acute inflammatory stimulus in the presence of low grade chronic inflammation, there is a 

transient increase in the risk of cardiovascular events (8, 60). Endothelial stunning as a result of 



6 
 

inflammation affects the process of endothelium dependent relaxation. In addition, infection of 

the endothelial cells with viruses further increases the expression cell-surface adhesion 

molecules and pro-coagulant activity (130, 131). During inflammation or vascular injury, there 

are important interactions between leukocyte-leukocyte, leukocyte-endothelium and leukocyte-

vascular smooth muscle cell (61). The proteins causing these interactions are known as adhesion 

molecules and they are differentiated into selectins (P-selectin and E-selectin), selectin ligands, 

integrins (β1 and β2) and some immunoglobulins (ICAM and VCAM) (61). The primary 

functions of the adhesion molecules are to promote leukocyte recruitment, leukocyte rolling 

along the endothelial surface, adhesion and activation to the endothelium. E-selectin helps in 

rolling of the leukocyte along the endothelial wall when activated, this is followed by leukocyte 

adhesion and transmigration into the tissue by the integrins and ICAM-1 & VCAM-1 (61). It has 

been observed that following a vascular injury, there is an increase in the expression of ICAM-1 

and VCAM-1 on the endothelial cells, macrophages and smooth muscle cells (61). The 

expression of VCAM-1 is increased in fibrous or lipid-containing plaques. Hence, any infection 

or inflammation to the endothelial cells triggers a pro-atherogenic cascade via cell-surface 

adhesion molecules.  

To mechanistically study the idea that transient or induced inflammation can bring about 

negative changes in the endothelial function and increase the risk of acute cardiovascular event, 

Bhagat et. al. (1996) hypothesized that administration of systemic inflammation (administration 

of bacterial endotoxin) would impair endothelial dysfunction in young participants (8). It was 

found that a brief exposure of bacterial endotoxin impaired endothelium-dependant 

vasodilatation for several days. The study also reported that the endotoxin reduced the 

vasodilator response to bradykinin and arachidonic acid (8). This suggests that endotoxin 
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affected the L-arginine – Nitric oxide pathway (8). Importantly, the results from this study 

suggested that the transient decrease in the endothelial function due to the endotoxin would not 

only result in decreased vasodilatation but also shift the vascular wall towards a pro-

inflammatory and pro-atherogenic phenotype which increases the chances of acute 

cardiovascular events. 

Even though Bhagat et. al. noted the transient changes in the endothelial function, the result 

could be due to an effect of a strong endotoxin. Endotoxins {e.g. lipopolysaccharide (LPS)} are a 

component of the cell wall of gram-negative bacteria. Endotoxins elicit a strong immune 

response by inducing the release of pro-inflammatory cytokines. Although, there is low-grade 

inflammation with aging, exposure to endotoxin results in much higher levels of inflammation. 

Hence, a model of induced inflammation with an endotoxin may not be able to accurately 

represent mild systemic inflammation. This study was later followed up by Hingorani et. al. 

(2000) with induction of mild systemic inflammation (administration of vaccine) (60). In this 

study, Salmonella Typhi vaccine was administered to young healthy individuals and assessment 

of the resistance vessels (forearm blood flow) and conduit vessels (brachial artery dilatation) was 

performed. The forearm blood flow was measured in response to intrabrachial infusions of 

bradykinin (BK), acetylcholine (ACh), nitroglycerin (NTG) and verapamil. The brachial artery 

dilatation was measured in response to ischemic response and NTG. In addition, pro and anti-

inflammatory cytokines were measured. The study noted that administration of intramuscular 

vaccine (typhoid) caused a systemic inflammatory response (increase in IL-6 levels) and a 

temporary decrease in response to BK and ACh. However, the decrease in the endothelial-

dependent dilation was not seen in the control group. Similarly, there was no change in the 

response to NTG in the brachial artery even though there was a reduction in the FMD. This 
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suggests that vaccination induced inflammation was specific only to the endothelial agonists 

while there was no effect on the NO donor drug (NTG) and verapamil vasodilatation. The results 

suggest that vaccination temporarily reduces the ability of the vascular endothelium to produce 

the endogenous vasodilators (60). 

Acute systemic inflammation also temporarily increases arterial stiffness while decreasing wave 

reflection in healthy young individuals (132). Vlachopoulos et. al. were the first to note that 8 

hours post salmonella typhi vaccination there is a significant increase in the carotid-femoral 

pulse wave velocity (PWV), suggesting an increase in aortic stiffness (132). There was also a 

significant decrease in augmentation index (AIx) which suggests a decrease in wave reflections 

at 8 hours and 32 hours post vaccination. This study reported a differential change in the 

measures of AIx and PWV. AIx is a measure of wave reflection and commonly accepted as a 

measure of the enhancement of the aortic pressure by a reflected pulse wave. Change in the 

timing of the reflected wave can cause a ventricular-vascular uncoupling. PWV is based on the 

time of transmission of the pressure wave between points (carotid-femoral) with the help of 

ECG-gating. Hence, it is accepted as a measure of arterial stiffness. In certain cases change in 

PWV would affect the timing of the incident and reflected wave thus causing a change in AIx 

because The reflections of pressure and flow waves occur when there is a change in impedance 

(49). This can happen with a change in stiffness or lumen diameter or a combination of both 

(49). However, in other cases where there is a change in the timing of the wave-reflection 

without any change in the PWV e.g. effect of vasoactive drugs, AIx and PWV may not work in 

tandem. Most importantly, AIx has been shown to be affected by height and cannot be controlled 

between subjects where upon such is not the case with PWV (139). In the study by Vlachopoulos 

et. al., the mechanism for the dissimilar changes in AIx and PWV has been thought to be a result 
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of vasodilatation of the small and medium peripheral muscular arteries and arterioles (132). It 

has been noted from various animal studies that immediately following an infection or acute 

inflammation there is increased vasodilatation as a result of higher production of NO or 

prostanoids from de novo synthesis of inducible nitric oxide synthase (iNOS) or cyclooxygenase 

II (COX II) in response to circulating cytokines (51, 82, 130). eNOS and COX-I however are 

down regulated. Interestingly, this immediate response is followed by “Endothelial stunning” for 

several days in response to an acute inflammation or endotoxin. The study also reported that the 

changes in PWV and wave reflection were completely abrogated by ingestion of 1200 mg aspirin 

pre-treatment. This suggests that arterial stiffness was a result of acute systemic inflammation 

which was reversed by preventing the release of IL-1 (aspirin dose) (64, 132). However, the 

aspirin dose may have also blocked the prostaglandin – prostacyclin vasodilatation by blocking 

the COX-1 and COX-2 enzymes. Prostacyclin (PGI2) is produced in the endothelial cells from 

the prostaglandin (which is derived from Arachidonic acid in presence of COX) in the presence 

of prostacyclin synthase (43). In contrast to NO, PGI2 does not contribute to maintenance of 

basal vascular tone (43). Interestingly, within the endothelial cells with an increase in 

intracellular calcium, NO is released continuously while PGI2 is released only in a transient 

manner (81). PGI2 and NO tend to work in synergistically to certain extent, as PGI2 facilitates 

the release of NO and in turn the action of PGI2 in the VSMC is facilitated by NO (112). Hence, 

even though the researchers may have blocked the release of IL-1 and thus prevented arterial 

stiffness, the aspirin dose may have also prevented vasodilation via prostragladins that can occur 

even in the low presence of NO.   

We have shown that influenza vaccination-induced acute inflammation causes an increase in 

blood pressure and arterial stiffness using a randomized double blind sham placebo-controlled 
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cross over design(106). Nineteen healthy subjects (male 10, female 9; age 24±4 yrs) received 

influenza or a sham vaccine (normal saline). The influenza vaccination caused a significant 

increase in blood CRP (1.42±0.6 at baseline, 2.81±1.0 after 24 hours, 5.0±1.3mg/L after 48 

hours, p<0.05) and IL- 6 (1.12±0.3, 2.56±0.4, 2.26±0.6pg/mL, p<0.05) but not TNF- ∝ 

compared with sham injection. Endothelial function decreased following the vaccination, but this 

decrease occurred before significant changes in circulating levels of CRP. Central systolic blood 

pressure (98.0±7.4, 104.5±10.8, 100.7±8.4mmHg) and PWV (7.8±0.9, 8.6±1.5, 8.7±1.3m/s) 

were also significantly increased after the influenza vaccination but not following sham 

vaccination. These findings support a link between inflammation and arterial dysfunction. These 

findings also suggest that an acute inflammation causes a temporary increase in central blood 

pressure and arterial stiffness in young people (106). 

In another study, using a randomized sham placebo-controlled, double blind design, 24 healthy 

subjects (age 24.8±3.5 yrs) were injected with an influenza vaccine as a model to generate a 

systemic inflammatory response (62). Heart rate recovery after maximal treadmill exercise as an 

index of autonomic nervous system function was calculated as the difference between maximal 

heart rate during the test and heart rate 1 (HRR 1) and 2 (HRR 2) minutes after cessation of 

exercise. Both blood analysis and HRR were measured at before each vaccination and 48 hours 

after each vaccination. C-reactive protein (1.87±1.2 to 2.75±1.3 mg/L, p<0.05) was significantly 

increased after an influenza vaccine, but not tumor necrosis factor-α (2.01±0.1 to 2.00±0.19, 

p=NS). HRR1 was significantly attenuated after an influenza vaccination but not sham 

vaccination. However, HRR 2 was not significantly attenuated after an influenza vaccination. 

These findings suggest that inflammation alters autonomic function consistent with an increase 

in cardiovascular risk (62). 



11 
 

 

Vascular Ageing and inflammation: 

With advancing age, there is a rise in systolic pressure accompanied by a decrease in diastolic 

pressure, thus widening the pulse pressure and a higher prevalence of isolated systolic 

hypertension (12, 53). Arterial stiffening has been epicenter for the widened pulse pressure in 

older adults (93). Studies have noted that ageing primarily affects the large elastic arteries (80, 

115) while the smaller arteries are seldom affected (83, 110, 126, 127). The primary changes in 

the large arteries include increased stiffness, increased lumen diameter and increased wall 

thickness (53). The increase in arterial stiffness is usually associated with degeneration of the 

medial layer of the artery (87). The repetitive pulsatile stress over years results in thinning, 

breaking or splitting of the elastic fibers of the medial layer (4). This causes an increase in 

collagen and ground substance content within the layer (4). The age-dependent chronic cyclic 

stress results in loss of the elastic lamellae, thus causing structural stiffening(4). This process is 

referred to as “Arteriosclerosis” (53).  

Arterial properties can be measured using ultrasound or pulse waveform analysis (PWA). This 

technique typically reflects the overall or systemic properties of the arterial tree. When a pressure 

wave is generated following cardiac ejection, it travels along the arterial tree forwards all the 

way up to the resistance arteries in the periphery from where it is reflected back towards the 

heart. When the speed of this wave is high enough to return to the central aorta, the reflected 

wave overrides the incident wave to create an augmented waveform. Aortic AIx has been 

accepted to be the measure of wave reflection and is measured non-invasively by estimating the 

aortic waveform from the radial waveform with a generalized transfer function.  Studies have 

shown that in individuals over the age of 40years, the reflected wave augments the blood 
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pressure in late systole and causes a positive aortic AIx (53). There are pathological increases in 

AIx that can occur in this age group as a result of either increase in magnitude or hastened timing 

of the reflected wave or both (53, 54, 110). Numerous studies have shown the clinical 

significance of AIx in predicting cardiovascular risk (74, 108, 134). Also, the timing of the wave 

reflection is very important as it is related to cardiac function. In young healthy adults the wave 

reflection returns to the heart in early diastole thus augmenting the diastolic pressure and 

increasing the coronary blood flow (53). However, with advancing age, this coupling is 

disturbed. Increase in the stiffness of the large arteries causes an early return on the reflected 

wave and an increase in the incident wave (53). This causes a significant systolic pressure 

augmentation and a decrease in diastolic pressure (87). The decrease in diastolic pressure further 

results in the reduced coronary blood flow and predisposing the individual to myocardial 

ischemia. Chronic activation of this cycle results in systolic hypertension, left ventricular 

remodeling and diastolic dysfunction (49). All of these factors are known to exponentially 

increase the mortality rate due to cardiovascular disease in older adults (49).  

In one of the first studies, O’Rourke reported that with progressive aortic degeneration as seen 

with ageing, the systolic pressure increases indirectly by the early return of the wave reflection 

(5). It has been suggested that changes in large artery pulse contour seen with aging are not only 

related to alterations in central artery stiffness, but changes in the peripheral vasomotor 

modulation of smaller resistance vessels (87).   

In addition to the structural changes, there are biochemical changes associated with aging. The 

most commonly used approach to measure some of these changes is to measure the endothelial 

dependent and independent vasodilatation. In one of the early studies by Ludmer et. al. they 

assessed and reported decrease in the Endothelial dependent dilation (EDD) in the coronary 
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arteries of patients with heart disease (75). However, most researchers perform the EDD 

measurement in the peripheral arteries to assess the arterial endothelial function. In general, the 

brachial artery FMD is used as surrogate for measurement in the coronary artery because 

assessing FMD in epicardial arteries is more invasive as compared to brachial artery FMD. 

Previous studies have shown that a significant number of patients with unstable angina had 

endothelial dysfunction of the brachial artery as tested by FMD. Hence most researchers use 

brachial artery FMD to predict the clinical outcome (2, 36, 63, 73, 85). 

In humans, the EDD is measured using 2 different methods, namely pharmacological stimulus 

(agonist of NO) is infused into the brachial artery or evoking a mechanical stimulus by inflating 

a cuff on the upper arm to a supra-systolic pressure for 5 minutes followed by the rapid release 

(45). In the later method, the dilatation of the resistance arteries distal to the occlusion produces a 

temporary increase in blood flow known as reactive hyperemia while it causes a temporary 

vasodilatation in the proximal conduit artery known as flow mediated vasodilatation (FMD).  

It has been shown by numerous studies that FMD, both in the arms and legs is impaired with 

aging (28, 35, 44, 92, 110). Eskurza et. al. studied FMD in 3 groups of men; young healthy 

individuals, old sedentary individuals and old endurance-exercise trained individuals. They 

found that at baseline, the old sedentary individuals had a 45% lower FMD as compared to the 

young sedentary adults (35). However, the exercise trained older adults demonstrated similar 

FMD to the young sedentary men. In another study by Parker (97)et. al. studied FMD in both 

brachial and popliteal arteries of young (20-30 years) and older (60 to 79 years) women. They 

reported that older women had about 50-60% lower FMD in both brachial and popliteal arteries. 

Additionally, they noted that the endothelial-independent dilatation, as assessed by 

administration of nitroglycerin was blunted by 45-65% in the older women. They concluded that 
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the age-associated decline in FMD may be partly due to the decreased responsiveness of smooth 

muscle (97).  

Recently, there has been an increased emphasis on understanding the mechanisms of vascular 

ageing so as to reduce the cardiovascular mortality in older adults. Studies have shown that the 

impaired EDD with aging is primarily a function of reduced NO bioavailability (30, 84, 110). In 

humans, this is supported by a study performed by Taddei et.al. (124) where the authors 

evaluated age-related endothelial dysfunction and if it was a result of changes in L-arginine-NO 

pathway in hypertensive and normotensive individuals. They measured the forearm blood flow 

following intrabrachial dose-dependent infusion of Sodium nitroprusside and ACh. ACh was 

then infused in presence of L-NMMA, vitamin C and both. The authors noted there was reduced 

vasodilation to acetylcholine as compared to sodium nitroprusside in hypertensive patients 

compared with control subjects. Interestingly, even in normotensive subjects, the inhibitory 

effect of L-NMMA on response to acetylcholine decreased in parallel with advancing age, 

whereas vitamin C increased vasodilation to acetylcholine in only the oldest group. This suggests 

that the NO production is lower in older adults as compared young adults due to the reduced 

vasoconstriction in response to L-NMMA (124). Even though NO bioavailability is reduced with 

aging interestingly, Donato et. al. reported in healthy humans the eNOS protein expression was 

higher in older adults as compared to young adults (28). This result was accompanied by a 

decrease in EDD in the older adults. This may seem to suggest that in healthy older adults the 

increase in protein expression (eNOS) could be to compensate for the reduced NO bioavailability 

(28, 110).  

Another biochemical mechanism that was reported by Donato et. al. was a significant increase in 

plasma concentrations of Endothelin-1 (ET-1) in older adults as compared to the young 
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individuals (28). ET-1 is considered to be the most potent vasoconstrictor released by the 

vascular endothelial cells. ET-1 acts through specific receptors called the ETA and ETB receptors 

(123). The function ET-1 via ETA receptors on smooth muscle cells is mediating contractions or 

vascostriction (125).  However, the function of ETB receptors is a little more complex and is 

based on the location of the ETB receptors i.e. endothelium or smooth muscle. ETB receptors on 

smooth muscle evoke contraction whereas the ones on endothelium cause relaxation by 

production of endothelium derived relaxing factors (EDRF) (125). Overall, ET-1 is very 

important as it causes a direct vasoconstrictor tone on the vasculature via ETA and ETB of the 

smooth muscle and helps in counterbalancing the vasodilatory effects of NO or other EDRF on 

ETB receptors of the endothelium. Hence, the increased concentration of ET-1 was related to the 

decrease in EDD.  Taken together the study suggests that changes in ET-1 and NO 

bioavailability but not eNOS expression contribute to the vascular endothelial dysfunction in 

older adults. 

Inflammation and Oxidative stress in aging: 

Inflammation has been suggested as one of the primary mechanisms of reduced arterial function 

with ageing. There is substantial amount of clinical and animal study data to show that ageing is 

associated with chronic low grade inflammation (11, 26, 96). In 126 centenarians, the plasma 

levels of TNF-α were positively correlated with IL-6, sTNFR-II and CRP. This suggests that 

there is a continuous interrelated activation of the entire inflammatory cascade (11). In yet 

another large study comprising of 1727 older adults (mean age = 70), there was a significant 

increase in the circulating plasma levels of IL-6 independent of disease status and other disorders 

of aging (11, 18). These studies suggest that the low-grade inflammation in older adults is due to 
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the dysregulation of cytokine production. This state is further exacerbated by other superimposed 

age-related pathologies.  

It has been reported by Csiszar. et. al. that there is a cross-talk between oxidative stress, 

inflammation and endothelial dysfunction, and all of these factors  are involved in the 

pathogenesis of cardiovascular disease (20). Ungvari et. al. reported that reactive oxygen species 

(ROS) can act as the signaling molecules for activating the pathways that regulate the 

inflammatory processes in the arteries of aged mice (129). The oxidatively damaged molecules 

tend to induce the inflammatory processes which in turn cause more cellular oxidative stress. 

This creates a vicious cycle which tends to contribute to endothelial dysfunction.  

In a recent study, Miles et. al. studied 162 healthy male individuals between the age group of 18-

84 for cytokines, chemokines and adhesion molecules (78). They noted that there is a significant 

positive correlation between age and several other cardiovascular risk factors (e.g. BMI, 

hypertension, total cholesterol, LDL and HDL concentrations) with the plasma concentrations of 

sVCAM-1, IL-6, MCP-1, IL-18 and sE-selectin. Also, the correlations with age remained 

significant for sVCAM-1, IL-6, MCP-1 even when other cardiovascular risk factors were 

controlled for. This suggests that the age associated inflammation may not be triggered by other 

known risk factors (78). Several other studies conducted in animals and primates  have reported 

that even with normal/healthy ageing (20, 21, 129), there is a shift towards the proinflammatory 

zone in vascular gene expression coupled with an increase in inflammatory cytokines/markers, 

including   TNF-∝, IL-6, MCP-1, VCAM-1 and inducible nitric oxide (iNOS).  

Donato et. al. studied the expression of inflammatory proteins in vascular endothelial cells of 

peripheral veins obtained from 24 young (mean age = 23) and 36 healthy older adults (mean 

age= 63) (27). They noted that even the healthy older adults had a lower endothelial dependent 



17 
 

vasodilatation and significantly higher levels of plasma C-reactive protein (CRP) and IL-6. 

Interestingly, they also reported higher total and nuclear expression of nuclear factor B (NF-kB), 

which is a pro-inflammatory gene transcription factor, in the endothelial cells of the older adults 

(27). The endothelial cells of the older adults also had a lower expression of the NF-kB inhibitor 

factor. Hence, the authors concluded that the impaired endothelial function present in healthy 

older group is associated with a progression of pro-inflammatory phenotype in the vascular 

endothelium (27). This cycle of activation of pro-inflammatory gene expression in the vascular 

endothelium by the NF-kB and in turn increased levels of NF-kB due to chronic inflammation 

leads to faster progression of atherosclerosis. Hajra et. al. in a mice model have shown that 

regional activation of NF-kB in the vascular endothelium may contribute to the localization of 

atherosclerotic lesions at the sites (52). Also, the increased expression of iNOS in coronary 

vessels, carotid arteries and aorta is due to the prolonged increase in the NF-kB binding in older 

adults (20, 129). Studies have reported that this activity results in increased vascular 

peroxynitrite production (129). This suggests that mitochondrial oxidative stress regulates the 

activity of endothelial NF-kB and hence with aging the vascular inflammation increases, in part 

due to decline in the mitochondrial function. 

Hence, taken together these data show that that oxidative stress and inflammation occur 

concurrently with ageing which affect the vascular tree in a deleterious manner.  

Acute exercise and IL-6 as an anti-inflammatory tool: 

The normal cytokine cascade as seen with sepsis is TNF-∝         IL-1β         IL-6        IL-1ra 

sTNF-R        IL-10 (11, 101). Out of these TNF-∝ and IL-1Β are known to pro-inflammatory 

cytokines, however IL-6 has properties of both pro and anti-inflammatory cytokine (101). 

Interestingly, exercise elicits a slightly different cascade of cytokines as compared to sepsis. 
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With exercise, the pro-inflammatory cytokines (TNF-∝ and IL-1β) do not increase; however, IL-

6 is the first circulating cytokine (101). Studies have shown that IL-6 increases up to 100 times 

during exercise and decreases in the post-exercise period (40, 98, 101, 122). Apart from IL-6, 

studies have reported an increase in IL-1ra and sTNF-R which are known cytokine inhibitors and 

other anti-inflammatory cytokines like IL-10 (94, 95). Numerous studies have noted an increase 

in the circulating levels of plasma IL-6 after exercise without significant muscle damage (15, 29, 

90). It has also been noted that the levels of plasma IL-6 increase with exercise are related the 

intensity, duration and mass of muscle recruited during exercise (40, 101). Steensberg et. al. have 

shown that IL-6 is released from contracting skeletal muscle during exercise unlike TNF-∝ 

(118). Fishcer et. al. have shown that even moderate exercise increases the IL-6 levels by 

approximate 20-fold in young adults (42). Using the same exercise model Pedersen et. al. 

showed that the increase in plasma IL-6 levels is even higher in older adults (99).  

In one of the early studies, Schindler et. al. reported that IL-6 inhibits TNF-∝ production induced 

by LPS in human monocytes (109). In addition, Starkie et. al. reported that infusion of rhIL-6 in 

healthy humans results in inhibition of endotoxin induced TNF-∝ production (116). It has been 

shown that the production of IL-1ra and IL-10 is stimulated by IL-6 (117). Knowing that IL-1ra 

and IL-10 exert anti-inflammatory properties, the stimulation of these cytokines by IL-6 seems to 

suggest that IL-6 creates an anti-inflammatory environment (101).  

Immunoscenescence: 

Each year Influenza affects a wide number of people of all age groups. However, the influenza 

virus can cause a disproportionate increase in serious illness and deaths in the age group of 65 

years and older. The most effective way of avoiding influenza is the Influenza vaccine. However, 

the vaccine is ineffective in about 25% of the older population (47, 138). Numerous reasons have 
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been speculated for the lower influenza vaccine response in the older adults namely, vaccination 

history, exposure to influenza viruses, living situation, dietary factors and most importantly 

immunoscenescence (7, 47). Aging is often associated with a decline in the immunological 

system known as immunosenescence. Hence, in the recent years there has been increase in 

studying the role of exogenous and endogenous adjuvants to increase the efficacy of the vaccine.  

Acute stress (exercise) as an adjuvant: 

It has been shown that high levels of chronic stress (psychological or physical) are detrimental to 

the immune system and function (18, 46). In regards to influenza vaccine titers, chronic stress 

has been shown to reduce the antibody titer in all age groups (79, 102). However, studies have 

shown that acute stress can be immunoenhancing (9, 24). The immunoenhancement due to an 

acute stressor has been looked at from an evolutionary point of view and is considered adaptive 

for survival (31). Dhabhar et. al. conclude that the immunoenhancement of an acute stressor is 

related the duration of the stressor, type of stressor and the temporal relationship between the 

stressor and the challenge (24). In terms of temporal relationship, they have shown that close 

proximity of the acute stressor prior to the antigen exposure seems to boost the immune system 

(24). In number of animal studies it has been reported that restraint stress and footshock prior to 

administering a vaccine increased the humoral immune response to the antigen exposure (100, 

136).  

However, in human studies the results have been mixed. One of the reasons being the limited 

novel psychological and physical stressors that can be introduced prior to the antigen. The 

consistent pattern seen in most of the human studies is the upregulation of the innate immune 

system by acute stress (31, 111). This includes an increase in the number of natural killer cells 

and neutrophils and increases in the cytokine production. In one of the first human studies with 
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exercise as a stressor, Eskola et. al. studied the effect of heavy (marathon) and moderate (35 

mins of running) on the number and function of lymphocytes in eight young healthy men (34). 

They reported that even though the lymphocyte responsiveness is transiently depressed by heavy 

stress, the humoral immune functions are enhanced. They also noted that the recovery of the 

reduced lymphocyte functions occurs within 24 hours. The study reported that the 4 marathon 

runners had significantly higher antibody response to tetanus toxoid vaccination as compared to 

the fifty nine control participants (34). In a similar study with chronic stress Brunsgaard et. al. 

studied the effect of DPT (Diptheria, tetanus toxoid and pneumococcal) vaccine on 22 triathletes 

who completed a half-ironman, 11 non-competing triathletes and 22 sedentary controls (10). 

They reported no difference in the antibody response amongst the groups.   

However, intense and prolonged exercise is associated with a post-exercise “open window” for 

infection because of a high plasma cortisol level, decrease in the activity of NK cells, decrease in 

granulocyte oxidative burst activity, decrease in mitogen-induced lymphocyte proliferation and a 

decrease in nasal mucociliary clearance (86, 88, 89, 137). Eskola et. al. also noted a transient 

decrease in lymphocyte function for 24 hours following marathon running and antigen exposure. 

Interestingly, there is some evidence that exhaustive exercise in rats prior to the exposure of LPS 

caused a decrease in stimulation of TNF-∝ in plasma (6, 137). 

The underlying mechanisms regarding the immunoenhancing effects of acute stress remain a 

debatable topic. There are 2 key possibilities namely, glucocorticoids and IL-6. Dhabhar et. al. in 

late 90’s reported that infusion of glucocorticoids (corticosterone) in mice augmented the 

delayed type hypersensitivity (DTH) response (24). The dose of corticosterone was of the same 

level found during acute stress in adrenalectomized mice. Thus, the dose mimicked acute stress 

in intact mice. In this study, they provided some evidence that increase in the levels of 
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glucocorticoids in close temporal proximity of antigen exposure, provides immunoenhancement. 

IL-6 has been shown to provide both pro and anti-inflammatory effects. In 1999, Lee et. al. 

reported that when IL-6 gene is administered concurrently with the influenza vaccine in mice, 

the animals are completely protected from any subsequent viral challenge (72). In a human study 

implicating IL-6, it was reported that healthy adults who were antibody responders to 

Franscisella tularensis had higher levels of IL-6 prior to immunization as compared to non-

responders (70).  

Recently, Edwards et.al. used an acute psychological stressor and an acute physical stressor in 

close proximity to the administration of influenza vaccination (31). They examined the effects of 

these stressors to the antibody response to the all the 3 vaccine strains. They studied 31men and 

29 women who were randomly assigned to either dynamic exercise, mental stress or control 

group. Dynamic exercise included a four step incremental cycle ergometer, while the mental task 

included mental arithmetic task. Plasma cortisol and IL-6 were measured at baseline, after the 

task and 60 minutes of recovery, while the antibody titers were measured 4 weeks and 20 weeks 

post vaccination. The antibody titers for A/Panama strain were higher in women for both mental 

and exercise group as compared to the control group. Interestingly, men did not show any 

difference between groups. Also, the plasma levels of IL-6 at the 60 minute recovery was noted 

to be a significant predictor of A/panama antibody titers in women. The study seems to provide 

evidence that physical as well as psychological stressor can be immunoenhancing at least in 

women (31).  

However, in a more recent study Campbell et. al. studied 156 healthy participants to evaluate if 

exercise can augment the immune response to vaccination and if the temporal relationship of 

exercise and vaccination would affect the efficacy of the vaccine (13). They noted that the 
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eccentric exercise did not further augment the antibody titer as compared to the control group. 

The authors concluded that as the participants were healthy the immune responses to the vaccine 

could be at a maximal extent and hence, there would be limited room for immunoenhancement 

by exercise.  

Taken together, these studies suggest that acute stress prior to the exposure of antigen can be 

immune-enhancing based on the duration and intensity of exercise and temporal proximity to the 

antigen. Acute psychological stress too seems to be immune-enhancing and potentially may 

affect women differently as compared to men (31). However, in healthy humans if the immune 

responses are at the maximal extent there is a very small margin for immune-enhancement by 

exercise. 
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Chapter 3 

Effect of Acute Moderate Exercise on Vaccination Induced Inflammation and Arterial Function 

in Older Adults 

The vascular endothelium provides a vasodilatory and anti-atherogenic influence on the 

cardiovascular system (8). Endothelial dependent vasodilatation has been attributed mostly to 

nitric oxide (NO), which is produced by the endothelium (103, 114). NO also has an important 

role in maintaining the vascular wall in a quiestant state by inhibiting inflammation, thrombosis 

and cellular adhesion and proliferation (22, 56). Hence, reduction or loss of NO results in 

shifting the properties of the vascular wall towards an inflammatory and pro-artherogenic 

phenotype (17).  

A brief exposure to certain cytokines impairs endothelial function for days and this effect is 

called “Endothelial Stunning” (8, 60). It is further accentuated in presence of other underlying 

risk factors (8), particularly inflammation (60, 130, 132). There is a strong link between chronic, 

low grade inflammation and the progress of atherosclerosis (76). There is also a substantial 

amount of clinical and animal data showing that ageing is associated with chronic low grade 

inflammation (11, 26, 96). In addition, an acute inflammatory stimulus in the presence of low 

grade chronic inflammation transiently increases the risk of cardiovascular events (8, 60).  

Acute induced inflammation, using Salmonella typhi vaccination, reduced flow-mediated 

vasodilation in the conduit artery in young healthy volunteers (60). We have previously shown 

similar results using the influenza vaccine in young healthy adults (39). Also, acute systemic 

inflammation induced by salmonella typhi vaccination increases aortic arterial stiffness while 

decreasing wave reflection in healthy young individuals (132). However to our knowledge, there 



24 
 

is no study showing the effect of induced acute systemic inflammation on endothelial function in 

healthy older adults.   

An acute bout of moderate aerobic exercise reduces both central and peripheral femoral artery 

stiffness (66) while increasing endothelial function (105, 133). Acute moderate aerobic exercise 

is also anti-inflammatory, potentially due to the release of IL-6, which can inhibit TNF-∝ 

production (109) while stimulating the production of anti-inflammatory cytokines such as IL-1ra 

and IL-10 (117), creating an anti-inflammatory environment (101). Therefore, it is possible that 

acute moderate intensity exercise administered before vaccination-induced acute inflammation 

may have a protective effect on vascular function particularly in older individuals, but this has 

never been investigated. Consequently, the overall aim of this study was to first evaluate the 

effect of acute systemic inflammation induced by influenza vaccination on endothelial function 

and wave reflection in older adults. Furthermore, we sought to evaluate if acute moderate 

intensity endurance exercise immediately prior to vaccination-induced inflammation can prevent 

the negative effect of acute systemic inflammation on vascular function.  
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METHODS 

Subjects  

Fifty-nine healthy volunteers (men and women) between 55 – 75 years of age (mean age = 67) 

were recruited. Twenty-three men and 32 women completed the study while 1 man and 3 women 

dropped out of the study following the initial visit. The reasons for drop-out were change in 

medication (1 male) and change of mind (3 women).  All subjects were free of acute 

cardiovascular or respiratory disease and none smoked.  A stress test was performed on visit 1 to 

exclude any participant with evidence of stress induced myocardial ischemia. Exclusion criteria 

included participants with diagnosed uncontrolled hypertension, stroke, or myocardial infarction 

within 6 months prior to the study. Participants were excluded if they had metabolic disease 

(diabetes mellitus – Type II), inflammatory diseases (rheumatoid arthritis and systemic lupus 

erythematosus), bleeding disorder, or were taking medications known to affect inflammation 

(aspirin), and any form of smoking. Participants who had suffered from the common cold or 

influenza or upper respiratory tract infection 2 months preceding testing were also excluded. 

Participants who had already received a flu shot for the season, who were taking thyroid 

medications, or allergy medications on a regular basis were excluded as well. Subjects were also 

excluded if they were taking over the counter pain/anti-inflammatory medications.  All subjects 

were recruited from the local community and provided written informed consent prior to 

participation.  This study was approved by the Institutional Review Board of the University of 

Illinois at Urbana-Champaign.      

 

Study Design 
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This was a randomized, double-blind, sham procedure-controlled crossover trial. The 

administration of vaccine and sham was counterbalanced within the groups. All subjects reported 

to the laboratory for a total of 9 days of testing. Before the vascular measures, subjects did not 

consume caffeine, alcohol or exercise for 12 hours prior to testing.  All the participants were 

asked to fast for at least 10 hours. All the measurements for every visit were performed between 

6.30am to 9.30am to control for diurnal variation. Participants rested in the supine position for a 

period of 10-min in a temperature-controlled room prior to testing.  The sequence of vascular 

measures was as follows: blood pressure measurement, carotid artery tonometry, radial artery 

tonometry, brachial artery reactivity and carotid artery ultrasound imaging. The vascular 

measures were followed by a blood draw. 

Study design:

 

Figure 3.1: Participants were evaluated for inflammation, endothelial function and arterial 

stiffness in baseline condition, then randomized to exercise or control group. All the participants 

in both groups received influenza vaccine and sham injections followed by repeat evaluations at 
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24 and 48 hours post-injection. All the participants in both the groups were counterbalanced for 

the order in which the injections were administered.  

Visit Details: 

On Visit 1, all the included participants were asked to perform a peak aerobic capacity test 

(VO2peak) in presence of a physican using a modified Balke Treadmill protocol.  Speed was 

maintained at 3.0 mph throughout the test while the grade increases by 2% every 2 minutes. The 

starting grade on the treadmill was 2%. Following the stress test the participants were randomly 

assigned to either the exercise group or the control group. 

Participants received vaccine or the sham (normal saline – 0.5ml with sodium chloride 0.9% 

wt/vol into the deltoid muscle (shoulder) of their non-dominant arm on the 2nd and 5th visit, 

Subjects randomized to the exercise group performed  a 40 minute moderate intensity aerobic 

exercise bout at an intenisty of  55 – 65% of their maximum HR immediately preceeding the 

both the vaccination and sham injection. Those randomized to the non-exercise group did not 

perfrom any physical activity preceeding the vaccination and sham injection.  The participant 

and the researchers were blinded to when they received the vaccine or sham injection. Vascular 

measurements and blood draws were conducted at 24 and 48 hours following vaccination. The 

study design is represented in Figure 3.1.  

Anthropometrics: Height and weight was measured using a stadiometer (to the nearest 0.5 cm) 

and a beam balance platform scale, respectively.  BMI was calculated as weight (kg) divided by 

height (m) squared. 

Brachial BP: Following 10 minutes in the supine position, resting systolic and diastolic BP was 

measured in the supine position using an automated oscillometric cuff (HEM-907 XL, Omron 
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Corporation, Japan). All BP measurements were made in duplicate and the average of the two 

values was recorded. 

Carotid BP: Carotid artery pressure waveforms were attained using applanation tonometry 

(Millar Instruments, Houston, TX) and calibrated against brachial mean arterial and diastolic 

pressure.  

Wave Reflection and Aortic BP: Applanation tonometery was performed using a high-fidelity 

strain-gauge transducer (SphygmoCor, AtCor Medical, Sydney, Australia) on the radial artery to 

obtain pressure waveforms. Using a generalized validated transfer function, a central aortic 

pressure waveform was reconstructed from the radial artery pressure waveform. Augmentation 

index (AIx) was calculated as the ratio of amplitude of the pressure wave above its systolic 

shoulder (i.e., the difference between the early and late systolic peaks of the arterial waveform) 

to the total PP and was expressed as a percentage. Because AIx is influenced by varied HR, AIx 

values were also normalized to an HR of 75 bpm.  

Intima-media Thickness (IMT): The carotid artery was imaged with ultrasound (Aloka, SSD-

5500, Tokyo, Japan) using a 7.5 MHz linear-array probe. IMT of the common carotid artery was 

defined as the distance between the leading edge of the lumen-intima interface to the leading 

edge of the media-adventitia interface of the far wall of the carotid artery. All measurements 

were made at end diastole. The IMT of the common carotid artery was determined from an 

average of 5 measurements obtained 20 mm proximal to the carotid bifurcation (37, 55, 57).  

Carotid Artery Stiffness: The carotid artery was imaged with ultrasound (Aloka, SSD-5500, 

Tokyo, Japan) using a 7.5 MHz linear-array probe. Carotid BP was measured with applanation 

tonometery. Heart rate was recorded with a single lead electrocardiogram (ECG).  β-stiffness 
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index (β), which adjusts arterial compliance for changes in distending pressure, was then 

calculated as follows:          

β = 
)(

log

001

01

DDD

PP


 

where D1 and D0 are the maximum (systolic) and minimum (diastolic) diameters, and P1 and P0 

are the highest (systolic) and lowest (diastolic) carotid pressures. Our previous studies have 

successfully used this technique (37, 38, 55, 57) 

Flow Mediated Vasodilatation (FMD): was assessed non-invasively using ultrasonography 

(Aloka, SSD 5500 Japan). The subjects were in supine position with their right arm outstretched. 

A rapid release cuff (Hokanson DE) was placed below the elbow joint on the widest part of the 

forearm. The brachial artery was imaged in longitudinal section, 5–10 cm proximal to placement 

of a blood pressure cuff, just below the antecubital fossa, using a high frequency (5–13 MHz) 

linear array probe. Once the image was obtained the arm was maintained in a stable position 

using a custom design immobilizer cushion, while the ultrasound transducer was stabilized using 

a clamp. Split screen was used to measure the arterial diameter (B-mode) on the left side of the 

screen while Doppler velocity was measured on the right side of the screen. The flow signals 

were corrected at an insonation angle of 60 degrees. The sample volume was placed in the 

middle of the artery with a large sample. Baseline measurement was recorded for 30 seconds 

followed by cuff inflation of 250 mmHg. The images were recorded at 5 frames/second using 

Vascular Tools (MIA). The ischemic stimulus was maintained for 5 minutes. Image capture was 

restarted 30 seconds prior to cuff deflation and continued until 180 seconds post-deflation. 

Image Analysis: Analysis of the brachial artery diameter was carried out using an automated 

edge detection software system (Medical Imaging Applications, Iowa) as an off-line analysis. 
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The vertical and horizontal calibration was set based on the ultrasound settings for each 

individual participant. Following the calibration, region of interest (ROI) was set on the portion 

of the artery where the walls were most clear. The technician only edited the images where the 

intima lumen interface was not detected correctly by the software. The baseline and peak dilation 

were recorded at end-diastole of the cardiac cycle. The data is presented as percent change from 

baseline diameter. 

Blood velocity image analysis: Similar to the arterial diameter, following the calibration, ROI 

was set around the Doppler waveform and the velocity-time integral (automated) was used to 

calculate the mean velocity. This method conforms to the guidelines set out for the ultrasound 

measurement of endothelium-dependent FMD of the brachial artery (19).   

Brachial artery shear stress: Brachial artery shear stress was calculated using the formula: 

(8*Vm) / D, where Vm is the mean blood velocity and D is the arterial diameter. Following this, 

shear stress AUC was calculated using GraphPad (v. 4.03, La Jolla, CA) above the baseline to 

time to peak dilation. Normalization of FMD to shear stress was calculated by FMD/SS (AUC).  

Peak Aerobic Capacity and Stress Test: 

Peak oxygen consumption (VO2 peak) was assessed using a modified Balke protocol until 

volitional fatigue in presence of a physician.  Expired gases were analyzed using a Quark b2 

breath-by-breath metabolic system (Cosmed, Rome Italy). 12 lead EKG was recorded throughout 

the test. Following the test, all participants underwent 3 minutes of active recovery followed by 5 

minutes of passive recovery.  

Blood analysis: Following an overnight fast, blood samples were collected using a butterfly 

needle inserted into the antecubital vein. Samples were collected into 10 ml tubes containing 
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EDTA (anticoagulant and chelating agent).  Samples were separated by centrifugation at 4° C for 

15 min at 1100g and were stored at -80° C until analyzed.  Serum concentrations of C-reactive 

protein (CRP) and Interleukin-6 (IL-6) were measured to assess systemic inflammation.  High-

sensitivity Separate Quantikine enzyme-linked immunosorbent assay (ELISA) kits (R&D 

systems, Minneapolis, MN & Abnova, Taipei, Taiwan) were used to measure serum IL-6 and 

CRP respectively.  

Power analysis / Justification of sample size  

We calculated the minimum sample size necessary for our design using our pilot data and other 

relevant studies (39, 60, 132). With a total sample size of 60 total subjects (n= 30 per group), we 

achieved a power of 80% for detecting the effects that we anticipate at a significance level of p< 

0.05.   

 We performed sample size calculation using our pilot data for IL-6 and CRP as inflammatory 

markers. We have shown a 58% difference in the CRP values in the vaccination group after 48 

hours as compared to the sham group generating an effect size of 0.50. Thus, we estimated that a 

total sample size of 33 subjects would provide 80% power at the 5% level of significance with a 

two tailed test. We have reported a 54% increase in IL-6 48 hrs. after vaccination also generating 

an effect size  of 0.50. Hence, we estimated that a total sample size of 33 subjects would provide 

for achieved 80% power at the 5% level of significance. To estimate the effect size of the effect 

of acute exercise on vaccination induced inflammation, we used the data from Starkie et. al. 

(116). They showed that that TNF-α increased significantly more in a non-exercised group 

compared to an exercise group following an endotoxin infusion. Based on their data we 

estimated that a total of 13 subjects will be needed for 80% power at the 5% level of significance 

to detect a difference in TNF-α values between exercise and control.  
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We used our own pilot data to estimate the effect size for flow-mediated dilation.  FMD 

decreased by 2.04 units with a SD of 3.1 generating an effect size of 0.66 between vaccination 

and sham in our pilot study. Hence, we estimated that a total sample size of 21 subjects would 

provide 80% power at the 5% level of significance. PWV increased by 10.22% following 

vaccination compared to sham after 48 hours with and effect size of 0.91. Thus, we estimated 

that a total sample size of 12 subjects would provide 80% power at the 5% level of significance. 

We then performed a power analysis to detect an interaction between vaccination (sham vs 

influenza) and exercise (exercise or no exercise) using an ANOVA model on the variables with 

smallest effect size.   This analysis yielded an estimated a total sample size of 56 for this study. 

Nevertheless, because we used a novel design with variables not studied previously in this 

context our goal was a sample size of 60 for this study.  

Statistical Analysis   

All data are reported as means + SEM.  A priori significance was set at p < 0.05.  Normality of 

distribution was assessed. If the data were not normally distributed, outcome measures were 

logarithmically transformed. A 3-factor model Analysis of variance with repeated measures with 

condition (flu and sham) by time and the group factor was acute exercise. Analysis of variance 

with repeated measures was used to assess changes in other continuous outcome variables.  

Based on cardiorespiratory fitness classifications in American College of Sports Medicine 

Guidelines (1), below 20th percentile for age and sex is indicative of sedentary life style and 

increased risk of death from all causes and hence they were categorized as poor. Participants 

between 20th to 50th percentiles were categorized as Fair and everyone above 50th percentile were 

categorized as Good based on age and sex. This categorization was done as our sample was not 
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large enough to categorize them based on 5 categories. A 3 by 3 (time * fitness category) 

ANOVA with repeated measures with fitness category as a between factor, and time of 

measurement (baseline, 24 hour and 48 hour post) was the within factor, was used to assess the 

effect of fitness on continuous outcome variables. Pearson’s correlation coefficients were used to 

assess relationships between variables of interest. Data analysis was carried out using Statistical 

Package for the Social Sciences (SPSS, v 18, SPSS, Inc., Chicago, IL).   
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Results: 

The baseline participant characteristics are presented in Table 3.1. There were no significant 

differences between the acute exercise and the control group at baseline (Table 3.1).  There were 

also no significant effects of the acute exercise condition on any variables (Table 3.2), thus the 

data of the exercise and the control group were combined to evaluate the effect of influenza 

vaccination. There was a significant interaction (condition * time) in CRP and IL-6 for 24 and 48 

hours after the Influenza vaccine compared to the sham injection. There was a significant 

increase in CRP at 24 hour and 48 hour time point (figure 3.2) and IL-6 at 24 hour time point 

(Figure 3.3) following the Influenza vaccine while there was no change in these variables 

following the sham injection. There were no significant differences in FMD or normalized FMD 

at 24 and 48 hours as compared to baseline following the Influenza vaccine (Figure 3.4). There 

were no significant differences in any blood pressure measures, AIx or carotid β-stiffness at 24 

and 48 hours compared to baseline following the Influenza vaccine (Table 3.3). There were no 

significant correlations between change in inflammatory markers (CRP and IL-6) and change in 

FMD (data not shown). 

There was a significant time by fitness category interaction for FMD. The baseline FMD was 

significantly higher in the good fitness category compared to the poor category (Figure 3.5). 

There was a significant decrease in the FMD at 48 hours compared to the baseline in both fair 

and good fitness category groups. Also, there was a significant decrease in the FMD at 24 hours 

compared to the baseline in the good fitness category group. There was a significant increase in 

CRP at 24 hours compared to the baseline in the individuals with poor fitness while the 

individuals with fair and good fitness did not show any significant changes at 24 hours (Figure 

3.6). 
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Discussion:  

The primary and novel finding of the study was that even though there was a significant change 

in the inflammatory markers following Influenza vaccination, there were no alterations in 

endothelial function or arterial stiffness in the older adults in this study. This finding was not 

consistent with our hypothesis that older adults would present with reduced arterial function 24 

and 48 hours following an Influenza vaccine induced inflammation, as has been previously 

shown in younger populations (60). To our knowledge this is the first study to show a 

disassociation between inflammation and endothelial function in older adults. The second major 

finding of this study was that acute moderate aerobic exercise immediately before the Influenza 

vaccination had no effect on inflammation or arterial function.  Our third major finding was that 

the FMD response to influenza vaccination was dependent on fitness.  

Hingorani et. al. reported that there was a decrease in flow-mediated vasodilation in the conduit 

artery 8 hours after  Salmonella typhi vaccination coupled with mild acute systemic 

inflammation in young healthy volunteers (60).  Similarly, Vlachpoulos et. al reported a 

temporary increase in arterial stiffness following a similar vaccination also coupled with 

systemic inflammation in healthy young individuals (132). Although others have shown that 

more noxious stimuli such as endotoxin induced both inflammation and “Endothelial Stunning” 

(8), it is clear that a more mild stimulus such as Salmonella typhi vaccination also produces 

significant increases in inflammation and decreases in arterial function (60, 132). We have also 

reported similar findings in young participants, using influenza vaccination, which induced acute 

inflammation coupled with an increase in blood pressure and arterial stiffness (106). We have 

also shown a significant decrease in  FMD following the Influenza vaccination in young healthy 

individuals (39). These findings demonstrate that influenza vaccination causes a temporary 
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decrease in endothelial function and an increase in central blood pressure and arterial stiffness in 

young healthy individuals, presumably as a result of the vaccination induced inflammation.  

Acute submaximal exercise does not increase pro-inflammatory cytokines (TNF-∝ and IL-1 β) 

but IL-6 increases up to 100 times and decreases in the post-exercise period (40, 98, 101, 122). 

There are also increases in IL-1ra and sTNF-R which are known cytokine inhibitors and other 

anti-inflammatory cytokines like IL-10 (94, 95). Pedersen et. al. showed that moderate exercise 

increases the plasma IL-6 levels in older adults (99). Knowing that IL-1ra and IL-10 exert anti-

inflammatory properties, the stimulation of these cytokines by IL-6 seems to suggest that IL-6 

may create an anti-inflammatory environment (101) during moderate exercise. This anti-

inflammatory environment could then prevent decreases in endothelial function. However, we 

found no effect of acute exercise prior to vaccination on either inflammation or endothelial 

function, following vaccination (Table 3.2). This may suggest that even though moderate 

exercise may enhance immune function immediately following the exercise bout, this had no 

lasting effect and did not affect the inflammatory or endothelial response 24 and 48 hours 

following vaccination. Hence, we decided to combine the data of the exercise and the control 

group to evaluate the effect of influenza vaccination. 

To our knowledge this is the first study to use the model of induced inflammation in healthy 

older adults, and our data suggest that inflammation and reductions in FMD are uncoupled in this 

population. Even though we observed significant increases in inflammatory markers (Table 3.3) 

at 24 and 48 hours following the Influenza vaccine, we did not observe any significant changes 

in endothelial function, arterial stiffness, wave-reflection (AIx) or blood pressure. Also, there 

was no significant correlation between change of CRP and IL-6 and the change in FMD or any 

other measure of arterial function. Taken together, these data support the notion of dissociation 
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between the inflammatory changes and endothelial function in older adults.  Consequently, the 

reduction in arterial and endothelial function due to vaccination is apparently only observed in 

young healthy individuals, suggesting that aging may affect the acute inflammation-vascular 

function interaction, or that the changes in FMD in young individuals may actually be unrelated 

to changes in inflammation.  

There may be several reasons for the difference in our findings compared to previous studies.  

We speculate that one of the reasons may be that the regular seasonal Influenza vaccine may not 

be a strong enough stimulus to result in arterial dysfunction in older adults. As endothelial 

dysfunction may be dependent on inflammatory changes we compared the percent change in 

CRP from baseline at 24 to 48 hours between older adults to data previously published for young 

healthy adults (39). Young adults increased CRP 139 and 358% at 24 and 48 hours compared to 

52 and 67% respectively for the older adults in our study.  The study design and the equipment 

used were similar in both of these studies. Thus, the older individuals in our current study 

exhibited an attenuated change in inflammation. Furthermore, the older individuals exhibited 

higher baseline values for CRP compared to younger adults, consistent with previous studies 

showing low-grade inflammation with aging. Taken together this seems to suggest that the older 

individuals already have low grade inflammation and the Influenza vaccine may not cause a 

large enough inflammatory response to affect arterial function.  

Another potential reason could be that older adults already present with lower endothelial 

function and higher wave reflection at baseline. Numerous studies have shown FMD to be 

impaired with aging (28, 35, 44, 92, 110). Parker (97) et. al. reported that older women had about 

50-60% lower FMD in both brachial and popliteal arteries and hence they concluded that the 

age-associated decline in FMD may be partly due to the decreased responsiveness of smooth 
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muscle (97). In addition, studies have shown that in individuals over the age of 40 years, the 

reflected wave augments blood pressure in late systole and causes a positive aortic AIx (53). 

There are pathological increases in AIx that can occur in this age group as a result of either 

increase in magnitude or hastened timing of the reflected wave or both (53, 54, 110). O’Rourke 

reported that with progressive aortic degeneration  as seen with ageing, the systolic pressure 

increases indirectly by the early return of the wave reflection (5). Hence, it may be possible that 

induced inflammation could not further deteriorate what may have been persistent arterial 

dysfunction.  

Fitness also affects FMD, especially in older adults (35). Exercise trained older adults have 

demonstrated similar endothelial function to young sedentary men. Others have shown similar 

results (23). Hence, as our sample had both sedentary and physically active older adults we 

compared the endothelial function based on fitness categories constructed from the VO2peak 

data generated from the exercise tests (poor, fair and good).  As our sample size was not large 

enough, we combined the percentiles as mentioned in the analysis section, based on American 

College of Sports Medicine (ACSM) guidelines (1). Consistent with previous literature (129), 

FMD was significantly higher in individuals with good fitness compared to those with poor 

fitness at baseline (Figure 3.5). However, there was a significant decrease in the FMD at 24 

hours and 48 hours following the Influenza vaccine only in individuals with good fitness (Figure 

3.5) with a significant decrease at 48 hours in individuals with fair fitness. The individuals with 

poor fitness did not have any changes FMD following the Influenza vaccine. This supports our 

previous speculation that in some of the older adults who already have lower endothelial 

function, the Influenza vaccine may not be able to further perturb arterial dysfunction. Also, CRP 
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was higher at baseline in individuals with poor fitness. Interestingly, individuals with poor 

fitness showed the highest increase in CRP 24 hours later (Figure 3.6).  

As the inflammatory markers were disassociated from the endothelial function in this group, we 

explored other factors that may have caused the differential changes in FMD based on the fitness 

of an individual. As previously shown, increases in the wall thickness and arterial stiffness may 

limit the extent of maximal dilatation (135). However, we found that the carotid β-stiffness 

(Table 3.4) was not significantly different between groups or at 24 and 48 hours. Hence, arterial 

stiffness is an unlikely reason for the differential effects. Furthermore, since blood pressure 

remained unchanged between groups and over time, it seems unlikely that blood pressure could 

affect the response. Another factor may be a change in baseline vasodilatation as a result of 

vaccination, which could have affected the change in FMD. We found a significant increase in 

baseline brachial artery diameter in the individuals with poor fitness at 24 and 48 hours 

compared to the individuals with fair and good fitness (Table 3.4).  It is possible that the 

increased brachial artery diameter may have left little margin for vasodilatation in the individuals 

with poor VO2. However, we can only speculate on mechanisms involved as this was beyond the 

scope of this study.  

There were several limitations to this study.   Even though the study concentrated on the 

association between inflammation and endothelial following induced acute systemic 

inflammation in older adults, one of the limitations was the absence of young adults for 

comparison. Statins have been shown to affect post-vaccination changes in FMD and 

inflammation. Hence, this may be a confounding factor in this study with older adults. However, 

there were only 18 participants who reported using statins and importantly, as we show that there 

seems to be a disassociation between inflammation and endothelial function, the effect of statin 
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on inflammation may not have affected the results in the present study. Also, given the number 

of medications and factors we had controlled for in our exclusion criteria, it was impractical to 

also exclude older adults currently using statin drugs. Finally, although our sample size was 

much larger than similar studies in young adults, our sample may not be representative of other 

groups of older adults. 

Conclusion: To our knowledge, this is the first study to demonstrate there is dissociation between 

inflammation and endothelial function following induced acute systemic inflammation in older 

adults. We also demonstrated that the response of FMD and inflammatory markers to induced 

acute systemic inflammation were dependent on fitness, but acute exercise had effect on either 

inflammation or arterial function. 
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Table 3.1: Comparison of descriptive variables between exercise and control group 

 
Exercise 
(n=28) 

Control 
(n=27) 

Age (years) 66 ± 0.93 67 ± 0.77 

Height (cms) 168.54 ± 1.68 165.61 ± 2.28 

Weight (kg) 79.96 ± 2.78 71.52 ± 3.49 

BMI (kg/m2) 28.07 ± 0.83 25.94 ± 0.98 

VO2peak  25.90 ± 1.20 25.14 ± 1.29 

IMT (mm) 0.67 ± 0.02 0.69 ± 0.01 

Note: Values are mean ± SEM. BMI, Body Mass Index; VO2peak, peak aerobic capacity; IMT, Intima-

media Thickness.  There were no significant differences between groups
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Table 3.2: Arterial function and inflammatory markers in exercise and control group following influenza vaccine and sham injection 

Note: Values are mean ± SEM. AIx75, Augmentation Index at heart rate of 75bpm; β-stiffness, Beta stiffness; FMD, Flow mediated dilation; 

NFMD, Normalized flow mediated dilation; IL-6, Interleukin 6; CRP, C-reactive protein. # Significant condition (Flu vs. Sham) and time 

interaction (p<.05). There was no significant effect of exercise on any variable.

Exercise 
(n=28) 

Control 
(n=27) 

 Flu Sham  Flu Sham 

 Baseline 24 hours 48 hours 24 hours 48 hours Baseline 24 hours 48 hours 24 hours 48 hours 

AIx75 
(%) 

24.11 ± 
1.98 

24.13 
±0.92 

22.95 ± 
1.17 

24.38 
±0.87 

24.07 ± 
1.01 

24.75 ± 1.68 25.43 ± 0.9 
25.55 ± 

1.15 
25.78 ± 0.86 24.99 ±0.99 

β-
stiffness 

12.67 ± 
0.83 

12.37 ± 
0.75 

12.39 
±0.66 

17.55 ± 
4.02 

12.81 ± 
0.62 

12.70 ± 0.91 
11.93 ± 

0.75 
12.01 ± 

0.66 
11.63 ± 4.02 12.01 ± 0.62 

FMD 
(%) 

5.59 ± 0.65 
3.76 ± 
0.69 

3.53 ± 
0.51 

4.77 ± 
0.62 

4.86 ± 
0.67 

5.91 ± 0.71 5.46 ± 0.62 4.41 ± 0.46 4.82 ± 0.56 5.04 ± 0.61 

NFMD 
(AU) 

0.07 ± 0.02 
0.10 ± 
0.08 

0.04 ± 
0.05 

0.06 ± 
0.04 

0.11 ± 
0.03 

0.10 ± 0.03 0.13 ± 0.07 0.13 ± 0.05 0.11 ± 0.03 0.04 ± 0.02 

IL-6 # 
(ng/mL) 

1.55 ± 0.24 
2.09 ± 
0.32 

1.47 ± 
0.26 

1.35 ± 
0.26 

1.22 ± 
0.15 

1.34 ± 0.15 2.31 ± 0.41 2.05 ± 0.43 2.05 ± 0.43 1.87 ± 0.37 

CRP # 
(mg/L) 

2.51 ± 0.48 
3.35 ± 
0.53 

3.42 ± 
0.47 

2.29 ± 
0.39 

2.18 ± 
0.45 

2.56 ± 0.60 2.74 ± 0.43 2.98 ± 0.49 2.29 ± 0.46 2.49 ± 0.51 
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Table 3.3: Comparison of blood pressure, arterial function and inflammatory markers 

Note: Values are mean ± SEM. # interaction between condition and time (p<.05). * differs significantly 

from baseline (p<.05). 

  

  
Flu 

(n=53) 
Sham 
(n=54) 

 
Baseline 
(n=54) 

24 hours 48 hours 24 hours 48 hours 

SBP  
(mmHg) 

125.88 ± 1.87 125.25 ± 1.97 123.36 ± 1.98 125.69 ± 1.75 125.02 ± 1.72 

DBP 
(mmHg) 

71.62 ± 1.14 70.55 ± 1.19 80.87 ± 10.05 71.15 ± 1.25 71.59 ± 1.19 

MAP 
(mmHg) 

89.71 ± 1.87 90.45 ± 1.33 89.72 ± 1.40 91.22 ± 1.35 91.17 ± 1.27 

aorMAP 
(mmHg) 

91.30 ± 1.28 90.47 ± 1.33 89.70 ± 1.40 91.25 ± 1.35 91.11 ± 1.26 

AIx75 
(%) 

24.43 ± 1.26 24.79 ± 1.25 24.28 ± 1.32 24.98 ± 1.24 24.39 ± 1.31 

β-stiffness 12.68 ± .61 12.16 ± .61 11.95 ± .66 14.37 ± 2.63 12.26 ±.60 

Arterial Compliance 
(mm2/kPa) 

.70 ± .03 .74 ± .03 .75 ± .04 .76 ± .04 .72 ± .04 

FMD 
(%) 

5.65 ± .48 4.57 ± .44 3.93 ± .33 4.85 ± .39 5.01 ± .42 

NFMD 
(AU) 

.08 ± .02 .10 ± .03 .08 ± .02 .07 ± .01 .08 ± .02 

IL-6 # 
(ng/mL) 

1.44 ± .14 2.20 ± .25 * 1.76 ± .25 1.70 ± .25  1.55 ± .20 

CRP # 
(mg/L) 

2.53 ± 0.37  3.05 ± 0.34 * 3.21 ± 0.33 * 2.29 ± 0.31 2.33 ± 0.34 
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Table 3.4: Comparison of blood pressure and arterial structure variables in fitness categories at baseline 

and 24 and 48 hours following influenza vaccine 

 Poor Fair Good 

 Baseline 24 h 48 h Baseline 24 h 48 h Baseline 24 h 48 h 

SBP 
130.71 ± 

3.85 
128.57 
± 3.95 

128.64 
± 3.82 

123.06 ± 
3.60 

120.50 
± 3.69 

116.56 
± 3.57 

122.53 ± 
3.72 

124.93 
± 3.81 

116.56 
± 3.57 

MAP 
93.21 ± 

2.61 
91.92 ± 

2.61 
93.64 ± 

2.75 
90.31 ± 

2.44 
87.93 ± 

2.44 
85.62 ± 

2.57 
89.53 ± 

2.52 
89.93 ± 

2.52 
90.66 ± 

2.66 

β stiffness 
11.52 ± 

1.15 
11.29 ± 

1.24  
10.00 ± 

1.27 
14.52 ± 

1.08 
13.74 ± 

1.16 
13.79 ± 

1.18 
11.19 ± 

1.11 
12.05 ± 

1.2 
12.64 ± 

1.22 

Brachial 
Diameter 

4.22 ± 
0.16 

4.44 ± 
0.16 * 

4.39 ± 
0.15 * 

4.28 ± 
0.16 

4.38 ± 
0.16 

4.39 ± 
0.15 

4.42 ± 
0.18 

4.48 ± 
0.17 

4.31 ± 
0.17 

Note:  Values are mean ± SEM. SBP, Systolic Blood Pressure; MAP, Mean Arterial Pressure; β-stiffness, 

Carotid beta stiffness;  * differs significantly from baseline (p<.05). 

  



45 
 

     

Figure 3.2: CRP changes in older adults from baseline following influenza vaccine and sham.  * indicates 

there was a significant interaction between Flu and Sham (p<0.05).  # indicates that the flu condition was 

significantly greater than the sham condition (p<.05) 
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Figure 3.3: IL-6 changes in older adults from baseline following influenza vaccine and sham.  # indicates 

there was a significant interaction between flu and sham injections (p<.05).  * indicates that the flu 

injection was significantly greater than the sham injection.  $ indicates that the 24 hour time point was 

significantly greater than the 48 hour time point for the flu injection (p<.05). 
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Figure 3.4: Changes in flow mediated dilation (FMD) from baseline following influenza vaccine and 

sham.  There were no statistically significant effects.  
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Figure 3.5: Flow mediated dilation (FMD) at baseline, 24 hours and 48 hours following influenza vaccine 

based on the fitness categories of poor (n= 20), fair (n=15), good (n=10).  $ indicates a significant fitness 

group by time interaction (p<0.05).  # indicates significantly different from the baseline values of the 

Poor group (p<0.05). * indicates significantly different from baseline within groups (p<0.05). 
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Figure 3.6: CRP values at baseline, 24 hours and 48 hours following influenza vaccine based on the 

fitness categories of poor (n= 22), fair (n=12), good (n=9).  There was a significant interaction between 

group and time (p<.05).  Flu vaccination increased CRP only in the poor fitness category.    * indicates 

significantly different from baseline (p<0.05) 
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CHAPTER 4 

Effect of Acute Moderate Exercise on Vaccination Induced Inflammation and Vaccine Efficacy 

in Older Adults 

The influenza virus can cause a disproportionate increase in serious illness and deaths in 

individuals 65 years of age and older (138). The most effective way of avoiding influenza is 

through Influenza vaccination. However, the vaccine is ineffective in about 25% of the older 

population (47, 138). Numerous reasons may cause the lower influenza vaccine response in the 

older adults including, vaccination history, and exposure to influenza viruses, living situation, 

dietary factors and immunoscenescence (7, 47). Hence, studying the role of exogenous and 

endogenous adjuvants to increase the efficacy of the vaccine is important.  

It has been shown that high levels of chronic stress (psychological or physical) are detrimental to 

immune system function (18, 46). Chronic stress has been shown by to reduce influenza vaccine 

antibody titers in all age groups (79, 102). However, studies have shown that acute stress can be 

immunoenhancing (9, 24, 100, 136).  

An acute psychological stressor and an acute physical stressor in close proximity to the 

administration of influenza vaccination (31) induced higher  antibody titers for A/Panama strain 

in women compared to an unstressed control group. It has been shown that acute exercise prior 

to an influenza vaccine produced greater antibody responses in young women compared to 

young men (31). However, other studies (68, 69) have not reported any sex differences. In a 

more recent study, Campbell et. al. noted that that the eccentric exercise in  young healthy adults 

did not further augment the antibody titer in the exercise group as compared to the control group 

(13). Thus, it is currently unclear if acute exercise can enhance the efficacy of influenza 

vaccination.  The primary aim of this study was to evaluate the effect of acute moderate aerobic 
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exercise immediately prior to administration of the influenza vaccine on vaccine efficacy in older 

adults. A second exploratory aim was to investigate if acute exercise immediately prior to an 

influenza vaccine produces different effects on antibody response in older men versus women.



52 
 

Methods: 

Subjects  

Fifty-nine healthy volunteers (men and women) in the age group of 55 – 75 years (mean age = 

67) were recruited. Twenty three men and 32 women completed the study while 1 man and 3 

women dropped out of the study following initial visit. The reasons for drop-out were change in 

medication (1 male) and change of mind (3 women).  All subjects were free of cardiovascular or 

respiratory disease and none smoked.  A stress test was performed on visit 1 to exclude any 

participant with evidence of stress induced ischemia. Exclusion criteria involved participants 

with diagnosed uncontrolled hypertension, stroke, or myocardial infarction within the 6 months 

prior to the study. Participants were excluded if they had metabolic disease (diabetes mellitus), 

inflammatory diseases (rheumatoid arthritis and systemic lupus erythematosus), bleeding 

disorder, or were taking medications known to affect inflammation (aspirin), and any form of 

smoking. Participants who had suffered from common cold or influenza and bacterial or viral 

infection or upper respiratory tract infection 2 months preceding testing were also excluded. 

Participants who have already received a flu shot for the season, who were taking thyroid 

medication, or allergy medication on regular basis were excluded as well. Subjects were also 

excluded if they were taking over the counter pain/anti-inflammatory medication.  All subjects 

were recruited from the local community and provided written informed consent prior to 

participation.  This study was approved by the Institutional Review Board of the University of 

Illinois at Urbana-Champaign. 

Study Design 
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Subjects were randomized to an acute exercise or no exercise (control) group. Before the 

measures, subjects did not consume caffeine, alcohol or exercise for 12 hours prior to testing.  

All the participants were asked to fast for at least 10 hours. All the measurements for every visit 

were performed between 6.30am to 9.30am to control for any diurnal variation. Participants 

rested in the supine position for a period of 10-min in a temperature-controlled room prior to 

testing.  

Visit Details: 

On Visit 1, all the included participants were asked to perform a maximal aerobic capacity test 

(VO2peak) in presence of a physican using a modified Balke Treadmill protocol.  Speed was 

maintained at 3.0 mph throughout the test while the grade increases by 2% every 2 minutes. The 

starting grade on the treadmill was e 2%. Following the stress test the participants were randomly 

assigned to either the exercise group or the control group. 

Participants received vaccine in the deltoid muscle (shoulder) of their non-dominant arm on the 

2nd visit, Subjects randomized to the exercise group performed a 40 minute moderate intensity 

aerobic exercise bout at an intenisty of  55 – 65% of their maximum HR immediately preceeding 

the both the vaccination and sham injection. Those randomized to the non-exercise group did not 

perform any physical activity preceeding the vaccination and sham injection.  The participant 

and the researchers were blinded to when they received the vaccine or sham injection. 

On the 24 and 48 hours visits the partipants underwent blood draws.  

Efficacy: All participants visited the lab 4 weeks after receiving the Influenza vaccine for the 

efficacy blood draw.  
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Anthropometrics: Height and weight was measured using a stadiometer (to the nearest 0.5 cm) 

and a beam balance platform scale, respectively.  BMI was calculated as weight (kg) divided by 

height (m) squared. 

Brachial BP: Following 10 minutes in the supine position, resting systolic and diastolic BP was 

measured in the supine position using an automated oscillometric cuff (HEM-907 XL, Omron 

Corporation, Japan). All BP measurements were made in duplicate and the average of the two 

values was recorded. 

Maximal Aerobic Capacity and Stress Test: 

Peak oxygen consumption (VO2 peak) was assessed using a modified Balke protocol until 

volitional fatigue in presence of a physician.  Expired gases were analyzed using a Quark b2 

breath-by-breath metabolic system (Cosmed, Rome Italy). 12 lead EKG was recorded throughout 

the test. Following the test, all participants underwent 3 minutes of active recovery followed by 5 

minutes of passive recovery.  

Blood analysis: Following an overnight fast, blood samples were collected using a butterfly 

needle inserted into the antecubital vein. Samples were collected into 10 ml tubes containing 

EDTA (anticoagulant and chelating agent).  Samples were separated by centrifugation at 4° C for 

15 min at 1100g and were stored at -80° C until analyzed.  Serum concentrations of C-reactive 

protein (CRP) and Interleukin-6 (IL-6) were measured to assess systemic inflammation.  High-

sensitivity Separate Quantikine enzyme-linked immunosorbent assay (ELISA) kits (R&D 

systems, Minneapolis, MN & Abnova, Taipei City, Taiwan) were used to measure serum IL-6 

and CRP respectively. 
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The Influenza anti-body titers were measured using a haemagglutination inhibition test. The 

Fluarix vaccine for 2010-11 contained 3 viral strains: H3N2, H1N1 and B-Florida and the 

Fluarix vaccine for 2011-12 contained the same viral strains. The serum samples were analyzed 

by the Clinical Virology Lab at Hackensack Medical Center, New Jersey, USA.  

Power analysis / Justification of sample size  

Based on previous data showing higher antibody titers in individuals who performed moderate 

exercise prior to vaccination (31), we calculated an effect size of 1.25 resulting in an estimated N 

of 18 subjects will be needed for 80% power at the 5% level of significance to detect a difference 

in vaccine efficacy between exercise and control.   

We then performed a power analysis to detect an interaction between exercise (exercise or no 

exercise) using an ANOVA model on the variables with smallest effect size. This analysis 

yielded an estimated a total sample size of 56 for this study. Nevertheless, because we are 

proposing a novel design with variables not studied previously in this context we aimed for a 

total sample size of 60 for this study.  

Statistical Analysis: 

All data are reported as means + SEM.  A priori significance was set at p < 0.05. Normality of 

distribution was assessed. If the data were not normally distributed, outcome measures were 

logarithmically transformed. A 2 (time) by 2 (exercise group as between subject factor) Analysis 

of Variance with repeated measures (ANOVA) was performed for all the continuous variables. A 

2 (time) by 2 (sex as between subject factor) Analysis of Variance with repeated measures 

(ANOVA) was performed for all the continuous variables. Because the baseline antibody titers 

for the H1N1 strain were lower in women in the exercise group, we performed a 2 (exercise vs 
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control) by 2 (men vs women)  analysis of covariance on the H1N1 antibody titers at the 4 week 

time point, using baseline values as the covariate.  Pearson’s correlation coefficients were used to 

assess relationships between variables of interest.  Data analysis was carried out using Statistical 

Package for the Social Sciences (SPSS, v 18, SPSS, Inc., Chicago, IL).   
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Results: 

The participant characteristics are presented in Table 4.1. There were significant time effect in 

CRP and IL-6 (Figure 4.1) at 24 and 48 hours as compared to baseline after the Influenza 

vaccine. Both CRP and IL-6 increased significantly at 24 and 48 hours as compared to the 

baseline (Figure 4.1). There were no differences in the change of inflammatory markers between 

the exercise and the control group. There were no differences in the levels of antibody titers for 

H3N2 between the exercise groups as compared to the control group (Figure 4.2). There was a 

significant time by gender by exercise group interaction for H1N1 strain (Figure 4.3). The 

antibody titers increased significantly post 4 weeks in all the groups except women in the control 

group. There was a significant difference in the pre antibody titers for H1N1 in women. When 

covarying for baseline values of H1N1, there was still a significant interaction of exercise and 

sex, showing that the women in the exercise group increased their H1N1 antibody titers 

significantly more than the women in the control group.  There were no differences in the 

number of sero-protected individuals between exercise and control group (Table 4.3). There was 

a strong correlation (r = 0.7) between IL-6 levels 24 hours post-vaccination and antibody titers 

post 4-weeks in the exercise group. The correlation was slightly weaker in the control group (r = 

0.5). 
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Discussion: 

To our knowledge, this is the first study to evaluate the effect of acute moderate aerobic exercise 

prior to Influenza vaccination on antibody response in older adults. In the present study we did 

not find any evidence of immune-enhancement as a result of acute moderate aerobic exercise in 

older men, but exercise provided an immune enhancement for the H1N1 strain in older women.  

Studies have shown that acute stress can be immune-enhancing (9, 24). The immune-

enhancement of an acute stressor is related the duration of the stressor, type of stressor and the 

temporal relationship between the stressor and the challenge (24). Close proximity of the acute 

stressor prior to the antigen exposure seems to boost the immune system (24). In the present 

study, the acute moderate exercise prior to the Influenza vaccination did not provide immune-

enhancement for men, while there was a selective immune enhancement for the H1N1 strain in 

women.  Interestingly, the overall sero-protection was unaltered by exercise in the present study. 

There may be several possible explanations for this lack of enhanced sero-protection. It is 

possible that the intensity and mode of the acute exercise could affect the findings. Our choice of 

moderate aerobic exercise was partly based on previous data using cycle ergometry at 55% of 

predicted maximum workload where they reported that the antibody titers for A/Panama strain 

were higher in women for both mental and exercise group as compared to the control group (31). 

As our participant population was older adults we selected moderate aerobic exercise bout 

between 55% - 65% of heart rate maximum for 40 minutes on treadmill based on American 

College of Sports Medicine (ACSM) guidelines (1).  This intensity of the exercise may not have 

been a strong enough stimulus to augment vaccine efficacy. However, intense and prolonged 

exercise is associated with a post-exercise “open window” for infection because of a high plasma 

cortisol level, decrease in the activity of NK cells, decrease in granulocyte oxidative burst 
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activity, decrease in mitogen-induced lymphocyte proliferation and a decrease in nasal 

mucociliary clearance (86, 88, 89, 137). Hence, using a higher intensity of exercise may be 

detrimental for the antibody response in the older adults.  

Campbell et. al. have previously shown that there was no immuno-enhancement in young 

healthy individuals with a relatively healthy immune system (13). The authors suggested that the 

immune response to the influenza vaccine could be maximal and hence, there would be limited 

room for immunoenhancement by exercise. Similarly, although our study focused on older 

individuals, our inclusion criteria were set specifically for healthy individuals and hence this may 

explain the lack of immune-enhancement in men and lack of overall enhancement of sero-

protection. However, considering the relatively large number of individuals who did not receive 

sero-protection in the present study, this may be an unlikely explanation. 

It has been shown that acute exercise prior to an influenza vaccine produced greater antibody 

responses in young women compared to young men in the A-Panama strain (31). However, other 

exercise training studies (68, 69) have not reported any sex differences following vaccination. 

The results from the present study show that acute moderate intensity aerobic exercise has no 

differential effects between older men versus women on the antibody titer of H3N2 strain (Figure 

4.2) of the Influenza vaccine. Interestingly, there was a significant exercise effect in women as 

compared to men for the H1N1 strain of the Influenza vaccine (Figure 4.3). However, we had to 

be careful in interpretation of these data as the females in the exercise group had significantly 

lower pre vaccination antibody titers. The post antibody titers were similar in the women in the 

exercise group compared to controls. This may suggest that the exercise effect was primarily 

driven by the low pre vaccination antibody titers values in the women in the exercise group.  
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However, the significant effect was still present after covarying for baseline values, suggesting 

exercise may indeed enhance H1N1 antibody titers in older women.  

IL-6 has been noted as a potential candidate playing a key role in acute stress induced immune-

enhancement.  IL-6 is among the first cytokines to be released and elevated post-exercise, thus it 

may help regulate the immune response (31). As previously reported in humans, the antibody 

responders to a virus strain of Francisella tularensis had a higher level of IL-6 pre-immunization 

compared to non-responders. It may be speculated that the enhancement of antibody titer could 

be related to levels of IL-6. Hence, in the present study we evaluated the correlation between IL-

6 levels and antibody titers. Even though we did not note any exercise effect for the IL-6 values 

24 and 48 hours post exercise, we found that there was a strong correlation (r = 0.7) between IL-

6 levels 24 hours post-vaccination and antibody titers post 4-weeks in the exercise group. The 

correlation was slightly weaker in the control group (r = 0.5). However, based on the results in 

the present study, we are unable to evaluate if IL-6 is the key mechanism for the immune-

enhancement of the antibody titer. Unfortunately, due to a smaller sample size we were unable to 

perform a regression modeling for mediation analysis to implicate the role of IL-6. 

Limitations: In the present study we did not perform a detailed immunological assessment, thus, 

we are unable to address key mechanisms and modulations of the immune system following 

acute moderate intensity aerobic exercise. We did not control for the pre-vaccination antibody 

titers.   The present study included only healthy older adults thus our data may not be 

representative of the population of older adults at large.  

Conclusions: The present study suggests that acute moderate aerobic exercise may not be 

immune-stimulatory in healthy older men, but may provide selective immune enhancement in 

older women. The association between IL-6 and post 4 weeks antibody titers may be indicative 
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of potential mechanism but can only be speculated in the present study.  Sero-protection was 

unaltered by prior exercise but re-enforce the fact that there is a large number of older 

individuals who remain unprotected even after obtaining the vaccine.  
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Table 4.1: Descriptive variables for exercise and control groups 

 
Exercise 
(n=28) 

Control 
(n=27) 

Age (years) 66 ± 0.93 67 ± 0.77 

Height (cms) 168.54 ± 1.68 165.61 ± 2.28 

Weight (kg) 79.96 ± 2.78 71.52 ± 3.49 

BMI (kg/m2) 28.07 ± 0.83 25.94 ± 0.98 

VO2peak  25.90 ± 1.20 25.14 ± 1.29 

Note: Values are mean ± SEM. BMI, Body Mass Index; IMT, Intima-media Thickness.  There 

were no statistically significant differences between groups. 
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Table 4.2: Comparison between exercise and control groups for the influenza vaccine strains of 

H1N1 and H3N2 

 

 

 

 

 

Note: Values are mean ± SEM. * differs significantly from baseline (p<0.05). 

  

 

Exercise 
(n= 26) 

Control 
(n=28) 

Baseline 4 Weeks Baseline 4 Weeks 

H1N1 1.17 ± 0.39 3.16 ± 0.41* 2.44 ± 0.37 3.95 ± 0.39* 

H3N2 3.36 ± 0.38 5.38 ± 0.28* 3.56 ± 0.38 5.54 ± 0.27* 
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Table 4.3: Number of individuals sero -protected expressed as a percentage for the strains of H1N1, 

H3N2 and B-Florida 

 
Exercise 
(n=26) 

Control 
(n=28) 

Total 
(n=54) 

H1N1 17.9 25 20.3 

H3N2 51.9 46.4 48.2 

B - Florida 46.7 29.4 37.5 

Note: Values are mean percentages.  There were no statistically significant differences between groups. 

  



65 
 

 

Figure 4.1: Effect of influenza vaccination on CRP and IL-6.  Subejcts were measured at 

baseline (before vaccination) and 24 and 48 hours following vaccination.  The * denotes a 

significant change from baseline (p<.05) 
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Figure 4.2: Comparison of antibody titer for H1N1 between men and women and exercise and 

control groups.  M – Exe, men in exercise group (n=10); M – Con, men in control group (n=10); 

W – Exe, women in exercise group (n=16); W – Con, women in control group (n=17).  There 

were no significant differences between men and women, nor between exercise and control 

conditions.   
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Figure 4.3: Comparison of antibody titer for H1N1 between men and women and exercise and 

control groups. M – Exe, men in exercise group (n=10); M – Con, men in control group (n=11); 

W – Exe, women in exercise group (n=16); W – Con, women in control group (n=17). # denotes 

a significant time by sex by exercise status interaction (p<0.05). * denotes significantly different 

from pre within group (p<0.05). $ denotes significantly different from women in exercise group 

(p<0.05). 
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