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Abstract  

This dissertation examines the relationships among teachers’ mathematical knowledge, 

their teaching practices, and student achievement. Quantitative and qualitative data collection 

techniques (content knowledge assessments, surveys, interviews, and classroom observations) 

were used to collect data from 21 teachers and 873 students. Twenty-one in-service teachers who 

enrolled in a master’s program designed specifically for the needs of a partnership district were 

followed for 4 years to study how their mathematical knowledge as well as their teaching 

changed over time. Of the 21 teachers, 8 teachers were chosen for additional classroom 

observations and interviews. For the quantitative part of the study, two-level linear growth 

models were used to examine the effects of the mathematical knowledge of K-8 teachers on their 

instructional practices. After student-level data were added, three-level growth models were used 

to analyze the effects of teachers’ knowledge and instructional practices on students’ gain scores. 

Teachers’ beliefs about teaching and learning mathematics were also included in some analyses. 

The results indicated that, compared with the initial baseline data, teachers’ mathematical 

knowledge increased dramatically, and the teachers made statistically significant changes in their 

lesson design, mathematical agenda of the lessons, task choices, and classroom climate. The 

gains in teachers’ mathematical knowledge predicted changes in the quality of their lesson 

design, mathematical agenda, and classroom climate. Teachers’ beliefs were related to the 

quality of their lesson design, mathematical agenda, and the quality of the tasks chosen. However, 

only student engagement was significantly related to students’ gain scores. Neither teachers’ 

mathematical knowledge nor other aspects of instruction (inquiry-oriented teaching, the quality 

of task choices, and the classroom climate) were associated with students’ gain scores. The 

qualitative analyses revealed particular strands of the complex relationship between teachers’ 
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mathematical knowledge and their instructional practices. Teachers’ beliefs played a mediating 

role in the relationship between teachers’ mathematical knowledge and instructional practices. 

Teachers favoring standards-based views of mathematics tended to teach in more inquiry-

oriented ways and ask more questions of students; however, among teachers with limited 

mathematical knowledge, these practices seemed superficial. Additionally, the teachers’ task 

choices appeared to be confounded by teachers’ current level of mathematical knowledge and 

their textbook use. 
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Chapter 1 

Introduction 

In the last decades of the 20th century, educational inequities, economic problems and 

the poor showing of U.S. students on the Second International Mathematics Study (McKnight et 

al., 1987) led the National Council Teachers of Mathematics (NCTM) to publish a series of 

standards documents (1989, 1991, 1995, 2000) laying out a new vision of mathematics 

instruction so that students would be equipped with the necessary knowledge required in the 

workplace and in the new technological age. 

The content and, in particular, the way mathematics is taught as established by the 

NCTM (1989, 2000) were definitely a change from the traditional curriculum. Unlike the 

traditional method of teaching mathematics, which tended to rely on the assumption that students 

acquire knowledge and skills by observing a teacher’s explanations and practices (Greeno, 2003; 

Schoen, Fey, Hirsch, & Coxford, 1999), the NCTM Standards viewed learning mathematics as 

an active process. It recognized that students construct their knowledge through experience by 

engaging in meaningful and purposeful activities. In Standards-based instruction, “knowing” 

mathematics is defined as “doing” mathematics (Greeno, 2003). 

 Concerning the methods of instruction, the Standards emphasized problem solving as a 

means of learning mathematics, rather than using problems to practice procedures that have 

already been learned (Hiebert, 2003; Klein, 2007; Schoenfeld, 2004). Students work on fewer 

but more complex problems that are often based on real-life situations and applications. Students 

are not discouraged from using alternative algorithms instead of the standard algorithms 

(Baroody, 2003). The Standards-based teaching emphasized what was called the development of 

“mathematical power,” which involves learning procedures through understanding, reasoning, 
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problem solving, connecting mathematical ideas, and communicating mathematics to others 

(National Research Council [NRC], 2001). 

The commonly used terms “standards-based” and “inquiry-oriented” teaching refer to the 

practices that are advocated in these documents. However, it should be noted that the use of a 

standards-based approach to instruction does not preclude the use of more traditional activities as 

well, such as explicit instruction. Multiple strategies are necessary to teach several aspects of 

mathematics. A primary emphasis of the reform-oriented teaching includes promoting teaching 

practices that are assumed to facilitate student learning. The Standards document argues that the 

traditional focus on facts and skills should be expanded to include conceptual understanding and 

engagement in a variety of mathematical processes (Hiebert, 2003; Sfard, 2003). Teachers are 

encouraged to create an environment in which students share their observations, propose 

conjectures, and justify their arguments. Students can develop complex cognitive skills and 

processes by actively participating in instruction. In reformed-based mathematics teaching, 

teachers are encouraged to devote more time to class discussions and group work. In this style of 

instruction, the teacher is neither the sole source of authority nor the primary source of 

knowledge. Teachers’ questioning strategies also play a vital role in the quality of instruction 

students receive. Teachers can foster students’ reasoning ability by asking questions that promote 

student thinking.  

Creating and carrying out mathematics lessons as envisioned in these documents 

demands more of teachers than before. The teacher is responsible for creating opportunities for 

students to become mathematically proficient and, at the same time, fostering a classroom 

environment that supports the students (Ball, 1993). As stated in the NCTM’s Principles and 

Standards for School Mathematics (2000), “[T]eachers must know and understand deeply the 
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mathematics they are teaching and be able to draw on that knowledge with flexibility in their 

teaching tasks” (p. 17).  

However, the role of teachers’ mathematical knowledge in their teaching is not clear 

(Mewborn, 2003; National Mathematics Advisory Panel [NMAP], 2008). The field lacks an 

understanding of which instructional practices are related to teachers’ mathematical knowledge. 

Furthermore, the findings from earlier research on the relationships among teachers’ 

mathematical knowledge, their teaching, and student learning are mixed (e.g., Hamilton et al., 

2003; Huntley, Rasmussen, Villarubi, Sangtong, & Fey, 2000; NRC, 2004; Schoen & Hirsch, 

2003; Thompson, 1992; Webb, 2003). Prior research either has investigated a connection 

between teachers’ knowledge and student achievement in general without paying attention to 

teachers’ instruction or has focused on the relationship between teachers’ knowledge and their 

practices while ignoring the effects on student outcomes (e.g., Borko, Eisenhart, Brown, 

Underhill, Jones, et al., 1992; Hill, Blunk, Charalambous, Lewis, Phelps, et al., 2008; Leinhardt 

& Smith, 1985; Monk, 1994; Putnam, Heaton, Prawat, & Remillard, 1992; Rockoff, Jacob, Kane, 

& Staiger, 2008).  

We currently lack a detailed understanding of how teachers’ knowledge affects student 

learning and how teachers’ instruction mediates the effects of their knowledge on student 

performance (Mason, 2008; Silverman & Thompson, 2008; Graeber & Tirosh, 2008). These 

limitations are partly due to the practice of capturing teachers’ knowledge at a particular point in 

time, whereas a longitudinal analysis of teachers’ knowledge would allow for a better 

understanding of the relationships among teachers’ mathematical knowledge, their teaching 

practices, and student learning. 
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Study Overview 

In this study, using the data collected from 21 in-service teachers who were enrolled in a 

new master’s degree program, I investigate the complex relationships among teachers’ 

mathematical knowledge, their mathematics instruction, and student outcomes. In doing so, I 

seek to answer the following two questions: 

1. How does teachers’ mathematical knowledge affect their instruction? What factors, such 
as beliefs and the curriculum, mediate the expression of their knowledge of mathematics 
in instruction? 

2. To what extent are changes in teachers’ mathematical knowledge, instructional practices, 
or both associated with students’ gain in achievement? 

Conceptual Framework  

Several factors play roles in the interplay among teacher knowledge, their instruction, and 

student learning. Modified from Porter and Brophy’s (1988) “a model of good teaching,” the 

framework in Figure 1 below illustrates the complex, dynamic, and interactive relationships 

among these factors. This conceptual framework is used to ground this study. 
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Figure 1. A framework for the factors representing the relationship between teachers’ knowledge 
and their instruction as well as student performance (adapted from Porter & Brophy, 1988, p. 
76). 

This model highlights the fact that several factors such as teachers’ initial preparation and 

mathematical knowledge, as well as their beliefs, have an impact on teachers’ instructional 

practices. Another important factor is that the model includes contextual factors, indicating that 

teachers are likely to experience different influences, depending on resources, background of 

participants, and other factors (Fennema & Franke, 1992; Grossman, 1990; Porter & Brophy, 

1988; Thompson, 1992).  

Teachers’ beliefs are also a part of the conceptual framework for this study. Certain 

beliefs that teachers hold seem to mediate the effects of teachers’ knowledge on their teaching 

practices (e.g., Grossman, Wilson, & Shulman, 1989; Putnam et al., 1992; Stodolsky & 

Grossman, 1995; Thompson, 1984, 1992). In particular, in this study, special attention is given to 
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teachers’ beliefs about teaching and learning mathematics (Borko et al., 1992; Hill et al., 2008; 

Putnam et al., 1992; Thompson, 1984, 1992). 

However, teachers’ beliefs are not the only factor besides teachers’ knowledge that 

influences their instructional practices. Teachers’ development, such as through certification, 

years of teaching experience, professional development activities, and completing mathematics 

content and methods courses, might have an effect on their teaching. Additionally, some aspects 

of instruction might be related to the curriculum in use or the characteristics of the students.  

Finally, I used the MKT (“mathematical knowledge for teaching”) theory developed by 

Ball and colleagues (2008) to define the mathematics that elementary and middle school teachers 

need to know. Using this framework, I explore the relationship among teachers’ knowledge, their 

instruction, and student learning, taking into consideration other factors in the framework, such 

as teachers’ beliefs.  

In this chapter, I have briefly outlined the problem of interest, research questions, and 

conceptual framework that guided my study. In Chapter 2, I review previous work on the 

teachers’ mathematical knowledge for teaching, beginning with an overview conceptualizing 

what mathematical knowledge seems necessary for effective teaching and ultimately student 

learning, followed by reviews of studies on teacher knowledge. In Chapter 3, I provide detailed 

information on the methods used in the study. The following two chapters, Chapters 4 and 5, 

present quantitative and qualitative findings of the study, respectively. Finally, in Chapter 6, I 

discuss the findings, limitations, and implications of the study. 
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Chapter 2 

Literature Review 

In this chapter, I review the literature on teachers’ knowledge, with special attention 

given to its effect on teachers’ instruction and student achievement. I begin the chapter with an 

overview of current conceptualizations of what mathematical knowledge is necessary for 

effective teaching and student learning. I then discuss the literature on teachers’ mathematics 

knowledge focusing on instruction and student leaning.  

Current Conceptualization of Teacher Knowledge in Mathematics 

Early studies dating from the 1960s reveal an assumption implicitly held regarding 

teacher knowledge: effectiveness in teaching resides simply in the mere subject matter 

knowledge a teacher has accrued. However, the results of the studies using proxy measures, such 

as the number of university-level mathematics and teaching method courses taken, were 

inconclusive, in part, due to the methodological complexity of measuring such variables as well 

as the variables’ poor approximation of teachers’ knowledge  (e.g. Begle, 1979; Monk, 1994).  

Shulman’s presidential address delivered to the American Educational Research 

Association membership (1986) launched increased attention to subject matter knowledge unique 

to teaching. Shulman reframed the study of teacher knowledge in ways that attend to the role of 

content in teaching.  He defined three categories related to teacher content knowledge (1986) and 

later on, in a related Harvard Education Review article (1987), he specified seven categories of a 

knowledge base for teaching: knowledge of content; knowledge of curriculum; pedagogical 

content knowledge; knowledge of pedagogy; knowledge of learners and learning; knowledge of 

contexts of schooling; and knowledge of educational philosophies, goals, and objectives.  
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Shulman’s content knowledge component includes both the amount of the subject 

knowledge as well as the organizing structure of the subject (Shulman, 1986, 1987; Grossman, 

Wilson, & Shulman, 1989). It is “beyond knowledge of the facts or concepts of a domain” (p. 9). 

Teachers must know and be able to explain under what conditions a particular proposition can 

hold true. According to Shulman and his colleagues, teachers should have knowledge of the 

substantive structures of a discipline, “the variety of ways in which the basic concepts and 

principles of the discipline are organized to incorporate its facts,” and of the syntactic structure, 

which is “the set of ways in which truth or falsehood, validity or invalidity, are established” 

(p. 9, 1986).  

Later, in Knowledge Base for the Beginning Teacher, Shulman and his colleagues discuss 

two types of teachers’ beliefs as another dimension of subject matter knowledge for teaching that 

influence novice teachers’ teaching and learning. “No discussion of teacher knowledge would be 

complete without an accompanying discussion of teacher belief, for it is difficult sometimes to 

differentiate between the two” (Grossman, Wilson, & Shulman, 1989, p. 31). Teachers’ beliefs 

about the subject matter they teach and their beliefs about teaching and learning seem to 

influence what and how they teach. 

The second category, curriculum knowledge, consists of knowledge of different programs 

and corresponding materials available for teaching the given content. It goes beyond an 

awareness of the different programs and materials to also include knowledge of the effectiveness 

and implications of programs and materials for given contexts. It entails knowledge of content 

and corresponding materials in other subject areas of students and consists of knowledge of how 

topics are developed across a given program (Shulman, 1986).  
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According to Shulman (1986), the third category, pedagogical content knowledge, which 

has become of central interest to researchers and teacher educators alike, is “the category most 

likely to distinguish the understanding of the content specialist from that of the 

pedagogue”(1987, p. 8). It comprises 

the most useful forms of representation of those ideas, the most powerful analogies, 
illustrations, examples, explanations, and demonstrations—in a word, the most useful 
ways of representing and formulating the subject that make it comprehensible to 
others. . . . Pedagogical content knowledge also includes an understanding of what makes 
the learning of specific topics easy or difficult: the conceptions and preconceptions that 
students of different ages and backgrounds bring with them to the learning of those most 
frequently taught topics and lessons. (p. 9) 

The initial call by Shulman (1986) launched scholars’ efforts to specify what body of 

knowledge is required for teaching. In particular, the term “pedagogical content knowledge” has 

been widely accepted and used by researchers since then. However, researchers differed in their 

definitions of the term and referred to different aspects of subject matter knowledge for teaching, 

which seems to have led to increased ambiguity and limited its usefulness (Ball, Thames, & 

Phelps, 2008; Mason, 2008; Graeber & Tirosh, 2008). 

Grossman, one of Shulman’s research team members, sought to identify the domains of 

subject matter knowledge necessary for effective teaching. Her theoretical framework relied on 

case studies of six first-year English teachers in secondary school. Three beginning English 

teachers who lacked professional preparation for teaching and three teachers who graduated from 

a fifth-year teacher education program were chosen in order to explore the source and nature of 

pedagogical content knowledge in English. By contrasting these two groups of teachers, 

Grossman tried to generalize about teacher knowledge for teaching (Grossman, 1990). Based on 

her study, Grossman reorganized the seven categories defined by Shulman into four main 

categories: subject-matter knowledge, general pedagogical knowledge, pedagogical content 

knowledge, and knowledge of context (see Figure 2). The subject matter content knowledge was 
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composed of the same components Shulman and his colleagues defined: knowledge of content, 

syntactic structure of a discipline, and substantive structures (Shulman, 1987). Grossman placed 

Shulman’s third component of curriculum knowledge into the pedagogical content knowledge 

category (labeled as curricular knowledge). Aligned with the later work of Shulman and his 

colleagues, beliefs became a part of the knowledge base for teaching. Grossman’s component 

related to belief was listed as a part of pedagogical content knowledge and comprised 

“knowledge and beliefs about the purposes for teaching a subject at different grade levels” 

(Grossman, 1990, p. 8). 

 

Figure 2. Grossman’s Model of Teacher Knowledge (p. 5, 1990). 

Unlike Grossman, Leinhard and Smith (1985) used teachers’ experience as a contrasting 

point to identify dimensions of mathematics knowledge for teaching. The authors studied four 

expert and four novice fourth-grade teachers in mathematics. This intensive study included three 

months of observational field notes from mathematics, ten hours of videotaped lessons, and 

interviews on several topics, including the videotaped lessons. Comparing the fraction 

knowledge of these two groups of teachers favored the expert teachers. The authors chose three 
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expert teachers, whose knowledge of fractions and lesson coverage were similar, to study 

closely. Further analysis of these teachers’ behaviors indicated that the details of their 

presentations to students were different. In light of these results, the authors identified two 

aspects of knowledge for teaching: subject matter knowledge and lesson structure knowledge. 

According to Leinhardt and Smith, subject matter knowledge consists of “concepts, algorithmic 

operations, the connections among different algorithmic procedures, the subset of the number 

systems being drawn upon, the understanding of classes of student errors, and curriculum 

presentation” (p. 247). The latter includes planning and running a lesson smoothly and providing 

clear explanations of the materials covered. In their study, the authors broke down mathematical 

ideas into small component parts, which might lead to overlooking the overall understanding of 

mathematics (Franke & Fennema, 1992). 

Several other scholars have attempted to identify components of teacher mathematics 

knowledge (e.g. Marks, 1990). In their review chapter in Handbook of Research on Mathematics 

Teaching and Learning (1992), Fennema and Franke proposed their own model of teachers’ 

mathematics knowledge (see Figure 3). Their suggested model includes four categories related to 

knowledge: knowledge of mathematics, context specific knowledge, pedagogical knowledge, 

and knowledge of learners’ cognition in mathematics. Teachers’ beliefs were also part of their 

model, interacting with teacher knowledge. Additionally, the four components of teachers’ 

knowledge each influenced one another. Another important characteristic of the model was that 

each component of teachers’ knowledge was situated in a classroom context. 

The first component, knowledge of mathematics, comprises: 

knowledge of the concepts, procedures, and problem-solving processes within the domain 
they teach, as well as in related content domains. It includes knowledge of the concepts 
underlying the procedures, the interrelatedness of these concepts, and how these concepts 
and procedures are used in various types of problem solving. (p. 162) 
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Figure 3. Fennema’s and Franke’s (1992) Model of Teacher Knowledge (p. 162). 

Pedagogical knowledge includes knowledge of teaching procedures such as effective 

strategies for planning, classroom routines, behavior management techniques, classroom 

organizational procedures, and motivational techniques. The third category, knowledge of 

learners’ cognitions in mathematics, includes knowledge of students’ thinking and learning 

processes, particularly involving mathematics content. The last component of teachers’ 

knowledge, context specific knowledge, is a unique set of knowledge that drives teachers’ 

classroom behavior. “Within a given context, teachers’ knowledge of content interacts with 

knowledge of pedagogy and students’ cognitions and combines with beliefs to create” this 

knowledge (p. 162). Although the authors explained other elements of their model, they did not 

specify the role of teachers’ beliefs. 
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Despite Fennema and Franke’s effort to combine existing research studies and propose a 

model to help future studies, it seems that researchers are still influenced by Shulman’s call to 

define what subject matter knowledge for teaching means and use his work as a starting point for 

their studies. In part due to the individualized and disjointed efforts towards defining subject 

matter knowledge for teaching, researchers are still trying to identify what is needed for effective 

teaching. Several studies managed to identify some aspects of mathematical knowledge 

necessary for teaching. Ma’s (1999) study could be considered an example of such success. Ma 

compared 23 U.S. and 72 Chinese elementary teachers’ mathematical knowledge in several 

elementary mathematics topics: subtraction with regrouping, multi-digit multiplication, division 

by fractions, and perimeter and area of a closed figure. Analysis of teachers’ responses to 

interview items revealed that Chinese teachers had more coherent and connected knowledge of 

mathematics. In this work, Ma went on to describe another element of mathematics knowledge 

for teaching: “profound understanding of fundamental mathematics (PUFM),” a knowledge that 

goes beyond conceptual understanding. It refers to the capacity to see a connection between a 

given topic and other mathematical concepts and to be able to organize a set of related ideas.  

With a similar approach, An, Kulm, and Wu (2004) compared 28 U.S. and 33 Chinese 

middle school teachers’ pedagogical knowledge. Paralleling Ma’s notion of PUFM, the authors 

constructed “profound pedagogical content knowledge,” which is deep and broad knowledge of 

teaching and the curriculum. Like the model suggested by Fennema and Franke (1992), the 

authors highlighted the importance of taking into account context and teachers’ beliefs. In 

addition, their framework indicated interactive relationships among the components of teacher 

knowledge. 
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Many of the researchers, as exemplified above, who have attempted to characterize 

mathematical knowledge for teaching have conducted qualitative studies of small numbers of 

teachers engaged in teaching practice. The qualitative focus of the studies tended to illuminate 

certain constructs of teachers’ mathematical knowledge (Borko et al., 1992; Even, 1993; 

Fennema & Franke, 1992; Ma, 1999; Sowder, Philipp, Armstrong, & Schappelle, 1998; 

Swafford, Graham, & Carol, 1997). However, Ball and her colleagues (2008) developed a 

practice-based theory of teachers’ mathematical knowledge for teaching and have been 

experimentally testing the components of their framework. 

Ball and her colleagues analyzed the existing literature on mathematical knowledge for 

teaching at that time and identified the elements that seemed essential parts of mathematics 

knowledge for teaching. They studied teaching mathematics rather than teachers, in order to 

analyze the mathematical demands of teaching. They developed a set of hypotheses concerning 

the nature of mathematical knowledge for teaching elementary school mathematics (e.g., Ball, 

Thames, & Phelps, 2008). Although their practice-based theory is still under construction and 

some of the components of the model have not yet been empirically tested, several reports have 

already been published regarding discernible categories in the framework (e.g., Ball et al., 2008; 

Hill, Rowan, & Ball, 2005; see Figure 4). Ball and her colleagues created the term “mathematical 

knowledge for teaching” (MKT) to refer to a special kind of knowledge required only for 

teaching mathematics (Ball et al., 2008; Hill et al., 2005). 
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Figure 4. Model of Teachers’ Mathematical Knowledge for Teaching (Ball et al., 2008, p. 403). 

As shown in Figure 4 above, the model has two main domains: subject matter knowledge 

and pedagogical content knowledge. According to Ball and her colleagues (2008), subject matter 

knowledge consists of three sub-domains: common content knowledge, specialized content 

knowledge, and knowledge at the mathematical horizon. The third component of teachers’ 

subject matter knowledge, knowledge at the mathematical horizon, is described as a provisional 

category recognizing connections among topics throughout the curriculum. The pedagogical 

content knowledge is also composed of three sub-domains: knowledge of content and students, 

knowledge of content and teaching, and knowledge of curriculum. Similarly, knowledge of 

content and students (KCS) and knowledge of content and teaching (KCT) were identified as two 

different constructs of pedagogical content knowledge.  

The first component of teachers’ content knowledge, common content knowledge, refers 

to the mathematical knowledge and skills that not only teachers but also others might have. This 

knowledge is not unique to teaching. Solving mathematics problems or knowing how to carry 

out a procedure as well as knowing the definition of a concept are examples of common content 
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knowledge. The second domain, specialized content knowledge, is mathematical knowledge 

specific to teaching. This knowledge differs both from knowledge of students or pedagogy and 

from Shulman’s pedagogical content knowledge. When identifying patterns in student errors or 

assessing whether a nonstandard approach would work, teachers need to have a kind of 

mathematical knowledge that others do not. The last component of teachers’ content knowledge, 

horizon knowledge, is “an awareness of how mathematical topics are related over the span of 

mathematics included in the curriculum” (Ball, Thames, & Phelps, 2008, p. 403). The place of 

horizon knowledge has not been tested yet, so the place of this category has not yet been fixed.  

Another discernible domain, knowledge of content and students (KCS), is a combination 

of knowledge of students and knowledge of mathematics. It requires familiarity with, and 

anticipation of, students’ mathematical thinking and understanding for a given content. The last 

domain, knowledge of content and teaching (KCT), brings knowing about teaching and knowing 

about mathematics together. It includes knowledge of how to choose  

which examples to start with and which examples to use to take students deeper into the 
content. Teachers evaluate the instructional advantages and disadvantages of 
representations used to teach a specific idea and identify what different methods and 
procedures afford instructionally. (Ball et al., 2008, p. 401) 

The two sub-domains defined within pedagogical content knowledge in this model match 

with Shulman’s elements of pedagogical content knowledge (1986): “the conceptions and 

preconceptions that students of different ages and backgrounds bring with them to the learning of 

those most frequently taught topics and lessons” and “the ways of representing and formulating 

the subject that make it comprehensible to others” (p. 9). Ball and her colleagues, like 

Grossman’s (1990) framework, placed Shulman’s third category, curricular knowledge, within 

their pedagogical content knowledge category.  
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Although the results of their current studies suggest multidimensional subject matter 

knowledge for teaching exists, it could be difficult at times to distinguish specialized content 

knowledge from knowledge of students and content. For example, while selecting a numerical 

example to examine whether students understand decimal numbers, a shift occurs across four 

domains; ordering a list of decimals requires common knowledge, while generating a list to be 

ordered would demand specialized content knowledge. Additionally, recognizing which 

decimals would cause students’ difficulty to understand entails knowledge of students and 

content. Finally, decisions of what to do regarding students’ difficulties involve knowledge of 

content and teaching (Ball et al., 2008). 

As stated, Ball and her research team’s approach to mathematical knowledge, the 

categorization of mathematical knowledge specific to teaching, is ongoing work and open to 

refinement and revision. Ball and her research team caution us against unknown territory, 

pointing out the extent to which their formulation of MKT is culturally specific. These scholars 

have not emphasized other contexts (e.g., schools, classroom environment) and teachers’ beliefs 

have not been part of their specification process of MKT to date, but, as suggested by other 

scholars (Fennema & Franke, 1992; Grossman 1990), beliefs could also influence decisions and 

moves teachers make in teaching. 

Hill and Ball, in work with a variety of colleagues (e.g., Ball, Hill, & Bass, 2005; Hill, 

Ball, & Schilling, 2008; Hill, Rowan, & Ball, 2005), demonstrated that teaching mathematics 

demands mathematical understanding beyond the mathematical knowledge needed by other 

practitioners of mathematics. In addition, findings of other studies have contributed to the notion 

that majoring in mathematics or having strong subject matter content knowledge is insufficient 

for the mathematical knowledge necessary for teaching. However, the fact is that we still lack a 
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detailed understanding of what mathematical knowledge is necessary for teaching and to what 

extent other factors influence teachers’ MKT (Graeber & Tirosh, 2008; Mason, 2008; Silverman 

& Thompson, 2008). Researchers in the field are still developing a framework for content 

knowledge for teaching by focusing on different elements of the body of mathematics knowledge 

for teaching. Researchers’ different conceptions and beliefs about what mathematical knowledge 

is necessary to be an effective teacher (e.g., Silverman & Thompson, 2008) might be one 

explanation for the variety of models of mathematical knowledge for teaching.  

However, there are some common conceptualizations in these frameworks. Teachers’ 

knowledge and teachers’ practices can and do interact with one another and change over time. 

Another important common ground is that the models are developed in context, indicating that 

teachers are likely to experience different influences, depending on locality, resources, 

participant background, and other factors (Fennema & Franke, 1992; Grossman, 1990; Porter & 

Brophy, 1988; Thompson, 1992).  

The studies that were designed to identify elements of teachers’ knowledge for effective 

teaching have not included student performance as a factor in their models in general. It could be 

partly due to the small scale nature of these studies, which might prevent them from studying the 

effects of teachers’ knowledge as well as their teaching on student achievement. It could also be 

due to the implicit assumption that increasing teachers’ knowledge and improving teaching 

practices should be enough to improve student achievement. 

On the other hand, teachers’ beliefs are a part of some researchers’ models. Certain 

beliefs that teachers hold seem to mediate the effects of teachers’ knowledge on teachers’ 

practices. The most commonly studied beliefs are those about: the nature of mathematics 

(Grossman et al., 1989; Putnam et al., 1992; Stodolsky & Grossman, 1995; Thompson, 1984; 
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Thompson, 1992); teaching and learning mathematics (Borko et al., 1992; Hill et al., 2008; 

Putnam et al., 1992; Thompson, 1984; Thompson, 1992); content (Forgasz & Leder, 2008; 

Grossman et al., 1989; Putnam et al., 1992); and general pedagogy and learning (Borko et al., 

1992; Forgasz & Leder, 2008). However, teachers’ beliefs are not the only factor besides 

teachers’ knowledge influencing teachers’ instructional practices. Teachers’ own experiences as 

students could influence teachers’ instructional practices (Grossman, 1990; Porter & Brophy, 

1988; Thompson, 1992). Also, teachers’ experiences could affect their beliefs about mathematics 

teaching and learning (Grossman, 1990; Thompson, 1992). Additionally, teachers’ perceptions 

about their students’ abilities have an influence on their teaching (Forgasz & Leder, 2008; Porter 

& Brophy, 1988).   

Some aspects of instruction could result from external pressures rather than teachers’ own 

beliefs about what is appropriate. External factors on teacher thinking and action should be 

included in any framework that portrays the relationships between teachers’ knowledge and their 

observed instruction, as well as between knowledge and student achievement, to better 

understand possible inconsistencies between those dimensions. For example, policies such as No 

Child Left Behind could influence teachers’ practices without necessarily affecting their beliefs 

or reflecting teachers’ knowledge for teaching.  

Empirical Studies of Teachers’ Mathematics Knowledge  

Throughout the past four decades, numerous studies have been undertaken in an attempt 

to identify the relationships among teachers’ mathematics knowledge, instructional practices, and 

student learning (Mewborn, 2003). Researchers have differed in their approaches to explore 

these relationships. Studies, especially earlier ones, sought to demonstrate the impact of teachers’ 

knowledge on student standardized test scores by using proxy variables. Education level, number 



 20 

of undergraduate mathematics and/or mathematics education courses, years of teaching 

experience, certification status, and majoring or minoring in mathematics were commonly used 

variables in this genre. Another approach taken in the literature employs more direct measures of 

teachers’ knowledge, such as teachers’ performance on certification exams or other tests of 

mathematics knowledge.  Especially after Shulman’s (1986) presidential call, researchers 

conducted more observational studies to identify elements of mathematical knowledge required 

for teaching in actual classroom settings.  

Studies using proxy measures. The studies using proxy measures have been mainly 

quantitative and sought to demonstrate a relationship between teachers’ knowledge and student 

achievement. Teacher education level, years of teaching experience, and number of university-

level mathematics and teaching method courses taken were used as measures of teachers’ 

mathematical knowledge. These studies failed to find any statistically significant correlation 

between measures of teacher knowledge and student achievement (e.g., Begle, 1979; Monk, 

1994). Begle (1979) found no evidence to suggest a significant positive relationship between 

students’ mathematics achievement and teachers’ mathematical knowledge when estimated by 

teachers’ mathematics credits beginning with calculus, credits in mathematics methods, and 

majoring or minoring in mathematics. However, a less often reported result from his study 

indicated that the number of credits in mathematics method courses was more strongly correlated 

with student performance than the total number of credits in mathematics courses a teacher had. 

Similarly, Monk (1994) found that the number of mathematics education courses had positive 

effects on the performance of the students in secondary schools and contributed more to student 

achievement gains than the number of mathematics courses. Additionally, it appeared that the 

relationship between the number of mathematics courses a teacher had taken and student 
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achievement was not linear. The effect of the number of mathematics courses on student 

performance diminished beyond five or more courses.  

Another example of a study in this tradition is Rowan and his colleagues’ (2002) analysis 

of teachers’ effects on student achievement. Teachers’ degrees in mathematics served as a proxy 

for teachers’ knowledge. Two data sets were used to investigate the relationship: in the first 

longitudinal data set students were followed from first grade to third grade, while in the second 

data set students from grade three were followed for three years. The findings of the study 

implied that for both cohorts, students whose teachers held advanced degrees in mathematics did 

worse than students whose teachers did not have a mathematics degree. Wayne and Youngs 

(2003) reviewed 21 studies in which students’ SES was controlled and found that additional 

course work and degrees in math significantly correspond to high school students’ performance, 

but these results were not applicable to elementary school students. Similarly, the National 

Mathematics Advisory Panel (2008) indicated teachers having majors in mathematics had a 

positive effect on high school students’ performance. According to the report, the same effects 

were not present in studies of elementary teachers. 

Studies involving this approach have several limitations. Certain problems exist with the 

methods researchers applied, particularly in meta-analysis. Researchers’ approaches varied in 

terms of which existing studies to include in their meta-analyses and which statistical methods to 

apply; as a result, they reached different conclusions (Greenwald, Hedges, & Laine, 1996; 

Hanushek, 1996; Rowan et al., 2002). Besides, the quality of the measures to assess teachers’ 

mathematical knowledge is problematic. No information is available concerning the quality of 

the courses a teacher had taken (Monk, 1994). Beyond that, the number of courses and having a 
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major or minor in mathematics are poor proxies for the kind of knowledge that matters for 

teaching (Hill et al., 2005). 

Studies using direct measures of teacher knowledge. Using gross measures such as 

number of courses taken was replaced or accompanied by more direct assessments of teachers’ 

knowledge in this genre. Although some of the measures are indistinguishable from tests that 

were given to students, others pose tasks special to the practice of teaching. The studies in this 

tradition typically reveal a positive relationship between teachers’ knowledge and student 

achievement (e.g., Hill et al., 2005; Hill, Sleep, Lewis, & Ball, 2007). However, what is assessed 

in these measures has differed across studies, which leads to important limitations on the 

interpretations of this work. 

The first study involving this approach was the Coleman Report (1966), and it measured 

teachers’ knowledge via a multiple-choice questionnaire. The report indicated that teachers’ 

scores positively predicted student achievement in mathematics. However, none of the items on 

the measure were specifically related to mathematics.  

Rowan, Chiang, and Miller (1997) used the National Education Longitudinal Study of 

1988 (NELS: 88) data and tested the effects of teachers on student achievement in mathematics 

by using a general employees’ performance model. This model suggested that teachers’ abilities, 

motivation, and work situations could explain teachers’ effects on students’ performance in 

mathematics. Teacher ability was defined in terms of teachers’ knowledge of subject matter and 

teaching strategies. Two separate measures were used as an indication of teachers’ knowledge in 

mathematics. One was the teachers’ response to a one-item math questionnaire, and the other 

was whether a teacher majored in math or not. The results indicated that students whose teachers 

answered the item correctly and students whose teachers had a math major had higher 
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achievement levels than those whose teachers’ answer was wrong and whose teachers did not 

have a math major. However, in both cases the size of the effect was quite small. 

Hill et al. (2005) investigated the effects of teachers’ mathematical knowledge for 

teaching on student performance in mathematics. Researchers collected data from 115 

elementary schools that were participants of one of the three leading reform programs and from 

26 comparison schools similar to the reform oriented-schools in terms of district setting and 

district SES. Although the sample was different from a nationally representative sample of 

schools, 334 first-grade and 365 third-grade teachers participated in this study. Eight students 

from each teacher’s classroom were chosen and followed for two periods of three years, from 

kindergarten to second grade and from third-grade to fifth grade. Parents were interviewed via 

phone to access students’ academic history and other home background-related factors. The 

standardized assessment used for students did not match well with the areas in which teachers’ 

knowledge was assessed and covered additional content domains besides the elementary school 

mathematics curriculum.  These researchers assessed teachers’ mathematical knowledge in two 

domains defined by Ball and her colleagues (2008): common content knowledge and specialized 

content knowledge in three content areas: number concepts, operations and patterns, functions 

and algebra. Although proxy variables, such as the average number of content and methods 

courses they had taken and teachers’ certifications, were not significant contributors to student 

performance, the teachers’ scores in this measure were the strongest teacher-level predictor for 

student achievement. Based on the findings of the study, one standard deviation increase in 

teachers’ content knowledge measure predicted a one-half to two-thirds of a month of additional 

student growth in mathematics. However, the authors noted that teachers’ related variables, 
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including their math score, only explained a small variation in students’ achievement (8% for 

first grade and 2% for third grade).  

Recently, Rockoff, Jacob, Kane, and Staiger (2008) investigated the relationship between 

students’ math score gains and novice teachers’ knowledge, measured by both traditional 

predictors and the assessment to capture MKT defined by Ball et al. (2008). Of 602 new 

elementary and middle school math teachers who teach mathematics from fourth to eighth grade, 

333 completed the survey measuring teachers’ MKT. A high percentage of the teachers who 

completed the survey are members of Teaching Fellows and/or TFA corps, which indicates non-

randomness in respondent teachers and may limit the generalization of findings to all new 

teachers. Student math achievement was captured by using state-level standardized test scores, 

which also enabled the researchers to access student demographics and prior achievement. 

Aligned with some of the previous studies, majoring in mathematics and holding certification 

were not significant predictors for student performance. However, a teacher’s score on the test 

for MKT was the most significant predictor for student performance with an effect-size of .03 

standard deviations. It is important to remember that even teachers’ MKT (with the largest 

coefficient) only explained less than 8% of the teacher-level variation.  Another noteworthy point 

is that these researchers also analyzed the joint effects of teachers’ variables on student 

performance. The researchers used factor analysis, resulting in two groups, one of which was 

labeled as cognitive skills and the other labeled as non-cognitive skills. The cognitive skill group 

included the variables such as attending a more selective college, SAT score, the IQ test, and 

math knowledge for teaching, while the non-cognitive skill group included measures such as 

teachers’ extraversion, conscientiousness, and efficacy. Both factors seemed to have a modest 

association with student performance, while a single variable in each group might not be a 
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significant factor for teacher effectiveness and may not significantly predict student achievement. 

This finding suggests that some factors that are not directly related to teachers’ subject matter 

could still play a part in teachers’ effectiveness. 

Observational Studies 

Another line of inquiry concerning teachers’ effectiveness focuses on investigating 

teachers’ mathematical knowledge while they are teaching. According to this view, mathematical 

knowledge for teaching goes beyond that captured in measures of mathematics courses taken or 

teachers’ scores on mathematics tests. Most of the work done in this genre has been qualitative in 

orientation and has used a variety of different approaches to address their question: case studies 

(e.g., Grossman, 1990), expert-novice comparisons (e.g., Leinhardt & Smith, 1985), international 

comparisons (e.g., Ma, 1999), and studies of novice teachers (e.g., Borko et al., 1992). 

Several studies in this genre attempt to focus on links between a teacher’s lack of 

mathematical understanding and quality of their instruction. These studies suggest that 

mathematics knowledge for teaching is different from mere subject matter knowledge in 

mathematics. For instance, Borko and her colleagues (1992) used a case study to illuminate the 

difficulty of one student teacher with a strong mathematical background. The student teacher 

struggled to conceptually explain the standard algorithm for division of fractions in a sixth grade 

mathematics classroom. Although the novice teacher seemed to be mathematically well-

equipped by taking several college-level mathematics courses and to hold beliefs regarding 

teaching mathematics similar to the current views of effective mathematics teaching, her lack of 

strong knowledge of both elementary school mathematics and how to teach mathematics limited 

her teaching to explanations of the procedures. As noted by Putnam et al. (1992) “the limits of 

[the teachers’] knowledge of mathematics became apparent and their efforts fell short of 
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providing students with powerful mathematical experiences” (p. 221).  In their study of four 

fifth-grade teachers, teachers holding limited mathematical knowledge tended to choose 

mathematically incorrect representations to interest their students, in part due to their 

conceptions that mathematics, by nature, is hard and boring.  

Similar results were also obtained from the studies with secondary school mathematics 

teachers (e.g., Kahan, Cooper, & Bethea, 2003). For instance, Even (1993) used a two-phase 

study to investigate prospective secondary mathematics teachers’ conceptions of function and its 

relationship to their pedagogical knowledge. In the first phase of the study, 152 prospective 

students from several universities participated in the study and completed an open-ended 

questionnaire to capture their understanding of what function means and how to teach function. 

In the second phase, to make an in-depth analysis of the relationship between teachers’ 

understanding and their preferred way of teaching, ten more novice teachers were asked to 

participate in the study. In addition to the questionnaire used in the former phase of the study, 

these prospective teachers were interviewed. The findings indicated that novice teachers lacked 

an understanding of the current conceptualization of function, and this limited knowledge 

seemed to have an impact on how they intended to teach the concept of function. 

One could argue that teachers’ lack of understanding of mathematics could be resolved 

by requiring them to increase their subject matter knowledge by taking more college 

mathematics courses. Ma (1999) challenges this assumption in her comparison study. She 

argued, in her comparison study between U.S. and Chinese elementary school teachers, that 

Chinese teachers built knowledge necessary for effective teaching while working as a teacher. 

Chinese teachers had two or three more years of teacher education in addition to their equivalent 

of a 9th grade mathematics education. Teaching only one subject and/or one other subject could 
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enable teachers to specialize in their mathematical knowledge in a way that they could see the 

connection between concepts and their relative importance.  

 Ball and Wilson’s (1990) findings also undermined the claim that more subject matter 

knowledge is the solution for better teaching. In their study, they compared the mathematical 

knowledge of 22 undergraduate students majoring in mathematics and education and 21 

postbaccalaureate mathematics majors in alternate route programs at both the entry and exit 

points of their programs. The mathematics content of the study dealt with the relationship 

between perimeter and area, proof by example, division by zero, and division of fractions. 

Neither upon entry to the teacher education programs nor exit from their programs did these 

teacher trainees differ much in their understanding of underlying meanings for mathematical 

ideas. Even at the end of the program, beginning teachers in both programs lacked preparation; 

they still had limited understanding of choosing meaningful presentations to teach concepts.  

The empirical studies cited above suggest there is knowledge used in classrooms beyond 

formal subject matter knowledge, a contention also supported by Shulman’s (1986) notion of 

“pedagogical content knowledge.” For example, Thompson and Thompson (1994, 1996) studied 

one middle school teacher as he was teaching the concept of rate to one of the mathematically-

strong students in his sixth-grade classroom.  The teacher in the study seemed to hold strong 

mathematical content knowledge, based on the test used by the researchers, and to hold general 

pedagogical knowledge, based on interview with the teacher. However, the language he chose to 

explain the multiplicative relationship between speed and distance, with the goal of teaching 

speed as rate, and his limited attention to the student’s thinking process, reasoning, and 

interpretation of his explanation might have undermined his efforts to help the student correct her 

misunderstanding and understand rates conceptually.  
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Unlike the studies cited above, which tend to focus on teachers’ limited mathematical 

knowledge and its relationship to their instruction, Fernández (1997) aimed to identify the 

situations where strong mathematical knowledge could play more significant roles in 

instructional practices. She studied nine secondary mathematics teachers who had strong 

mathematical backgrounds and held compatible beliefs regarding teaching mathematics with the 

ones the current Standards suggested. She focused on teachers’ responses to students’ 

unexpected answers and noted that these teachers were able to provide counter-examples to the 

students to show the errors in their thinking, see where students’ thinking and solutions lead to, 

and include students’ alternative methods in their instruction.  

Like Fernandez, several other researchers have attempted to identify what mathematics 

knowledge matters in the work of teaching. Carpenter, Fennema, Peterson, Chiang, and Loef 

(1989) underlined the importance of knowledge of students’ thinking. In their study, they 

randomly assigned half of the forty teachers to participate in a month-long training designed to 

help the teachers understand students’ thinking while they solve addition and subtraction 

problems. The other 20 teachers participated in two-hour workshops focused on non-routine 

problem solving.  The researchers observed all of the teachers in the following year. The 

researchers asked the teachers to predict how their 12 randomly chosen students would solve 

selected problems. The findings from classroom observations and students’ performances on 

mathematics tests suggested that teachers in the experimental group increased their knowledge of 

individual students' problem-solving processes and changed their instructional practices. They 

seemed to teach problem solving significantly more and number facts significantly less than did 

the teachers in the control group. Additionally, experimental teachers encouraged students to use 

a wide range of problem-solving strategies, listened to their students’ processes, and discussed 
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alternative methods more often than the teachers in the control group. Students of the teachers in 

the experimental group outperformed their counterparts in the areas of problem solving.  

Although students’ achievement in experimental classrooms differed modestly from the ones in 

control classrooms, the interviews with students indicated that students in the experimental 

classrooms reported a greater understanding of mathematics and more confidence in solving 

problems.  

As indicated by Carpenter and his colleagues, teachers’ knowledge of student thinking 

seems to be an important aspect of mathematics knowledge for teaching. Swafford et al. (1997) 

reported the effects of a four-week professional development course designed to increase 

teachers’ geometry content knowledge and teachers’ knowledge of students’ cognition on 

teachers’ instructional practices. Forty-nine middle grade (4-8) teachers attended this course and 

made significant gains in their content knowledge. The authors chose eight of them for follow-up 

observations and interviews to see the impact of their knowledge on their instruction. The 

teachers appeared to try new instructional practices, such as hands-on activities and 

manipulatives, and to take more risks to enhance student learning. They also seemed to devote 

more time to geometry instruction and to report more confidence in their abilities. 

Although the teachers in the mentioned studies changed some of their practices, the 

relationship between teacher knowledge and teaching is not straightforward; beliefs and several 

other factors could mediate the effects of teachers’ content knowledge on instruction. Sowder, 

Phillipp, Armstrong, and Schappelle (1998) reported on a two-year professional development 

project aimed to increase teachers’ knowledge in areas of rational number, quantity, and 

proportional reasoning. Five middle school teachers participated in this study, and four of them 

attended the whole program. Sowder and her colleagues investigated teachers’ knowledge in the 
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mentioned areas and its relationship to their instructional decisions and student achievement. The 

findings indicated that teachers’ practices changed as their content knowledge increased and 

deepened. However, the researchers noted that change in teachers’ instructional practices took 

time; even a year after the implementation of the program the changes the teachers made were 

limited. Another issue raised by the researchers that had influence on teachers’ instructional 

decisions as well as their beliefs, was teachers’ concerns regarding student performance on 

standardized tests, which constrained teachers’ willingness to take risks to change their 

instructional practices. 

Like Sowder and her colleagues, Hill, Blunk et al. (2008) investigated the complex 

relationship between teachers’ mathematical knowledge and their instruction. Ten teachers 

participated in the study and several types of data were collected from them: a survey measuring 

teachers’ mathematical knowledge for teaching, classroom observations, interviews, and 

debriefings regarding the observed lesson. The researchers used a rubric to evaluate the quality 

of the participant teachers’ instruction based on six elements: mathematics errors, responding to 

students inappropriately, connecting classroom practice to mathematics, richness of mathematics, 

responding to students appropriately, and mathematical language. Correlation analysis indicated 

that teachers’ scores on mathematics assessments were significantly positively associated with 

the element of instruction responding to students appropriately and were significantly negatively 

associated with mathematics errors teachers made. In the next phase of the study, Hill and her 

colleagues chose five of the teachers for further investigation of the interrelations between 

teachers’ knowledge and their instruction. The teacher who scored high on both the mathematics 

test and lesson rubric and the teacher who scored low on both the mathematics test and lesson 

rubric were chosen to illustrate the role that mathematical knowledge plays in supporting or 
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hindering the quality of instruction. To uncover alternative explanations, two teachers (with low 

math score and high instruction score and with high math score and low instruction score) were 

selected. The final teacher was chosen for the case study due to her both divergent and 

convergent cases. Her mathematical knowledge was strongly similar to the one who scored high 

on both the mathematics test and lesson rubric, while her score for her instruction was in the 

middle of the range.  

In-depth analysis of these teachers suggested that teachers with strong mathematical 

knowledge made fewer errors and provided rich examples of mathematics. The examples and 

activities they chose and their responses to the students also reflected their high level of 

mathematical knowledge. Teachers with lower-level content knowledge could exhibit some of 

these characteristics in their instruction, but it was not consistent across their lessons. This 

variability was in part due to the extent of the support they got from either their textbook or the 

professional development they received. The authors discussed three factors that seemed to 

mediate the effects of teachers’ mathematical knowledge on their instruction. Teachers’ beliefs 

regarding how mathematics should be learned and how mathematics should be made enjoyable 

for students appeared to be factors affecting teachers’ instruction. Moreover, how teachers use 

the curriculum materials and their views of the curriculum materials seemed to affect their 

instruction; it could sometimes serve to degrade the quality of instruction or sometimes improve 

the instruction. Finally, the professional development teachers received seemed to have mixed 

effects on teachers’ instruction. Teachers, especially ones with lower mathematical knowledge, 

appeared to have problems implementing supplementary materials and tasks learned in 

professional development in the intended way; as a consequence, these activities and materials 

could serve to lower the quality of the mathematics instruction. This finding highlights the 
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importance of Shulman’s third category of teacher knowledge, “curriculum knowledge.” 

Although the authors provide the field insights about the complex relationship between teachers’ 

knowledge and their instruction, we still do not know how these variations between teachers’ 

knowledge and instruction differ in their effects on student performance.  

What is Missing in the Literature? 

Research on teachers’ mathematical knowledge generally appears to either investigate a 

connection between teachers’ knowledge and student achievement without paying attention to 

teachers’ instruction or to focus on the relationship between teachers’ knowledge and their 

practice but ignore their effects on students’ outcomes. We lack a detailed understanding of how 

teachers’ knowledge affects student learning and how their teaching mediates the effects of 

teachers’ knowledge on student performance.  

Another constraint in the literature dealing with teachers’ knowledge is the quality of the 

assessments used to measure teachers’ content knowledge (particularly earlier studies). As Hill 

and her colleagues argued what was assessed as teachers’ knowledge in these measures remains 

questionable (Hill et al., 2007). New assessments designed to measure important aspects of 

teachers’ mathematics knowledge, such as Learning Mathematics for Teaching” (LMT) 

(Learning Mathematics for Teaching, 2004) and the Diagnostic Teacher Assessment in 

Mathematics and Science (DTAMS; Center for Research in Mathematics and Science Teacher 

Development, 2011), should be used in order to investigate teachers’ knowledge more 

efficiently. It seems that teachers’ MKT has not been adequately measured in several studies, 

which might dispute the findings of the existing research, not only regarding the magnitude of 

the effect of teachers’ knowledge on student learning but also regarding the kinds of teacher 

knowledge that matter most in producing student learning (Hill et al., 2005).  
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Another limitation is researchers’ tendency to address a relatively narrow range of 

mathematical content in the studies.  It seems that numerous researchers have measured teachers’ 

knowledge on the topics of place value, division, fractions, area and perimeter (Mewborn, 2001). 

Teachers’ mathematical knowledge in areas other than these has not been studied as much. 

Given recent emphasis on more contemporary mathematical topics such as probability, data 

analysis, algebraic reasoning, and number theory, it seems important to investigate teachers’ 

knowledge in broader domains. 

Another constraint worth noting here is that several studies generally illustrate how 

knowledgeable teachers or less knowledgeable teachers teach (e.g., Putnam et al., 1992). 

However, the research conducted so far, which tends to focus on either teachers with strong 

mathematical knowledge or teachers with limited mathematical knowledge, has failed to include 

a wide range of teachers differing in their mathematical knowledge. The researchers attribute 

many characteristics of teachers’ instruction to teachers’ knowledge, making a wide range of 

teachers necessary. The field needs more studies that focus on teachers who work in similar 

contexts but vary in their mathematical knowledge, in order to identify what and how 

mathematical knowledge for teaching (MKT) is related to teachers’ practices and student 

learning.  

Additionally, although teachers’ beliefs about the nature of mathematics, teaching 

mathematics, and particularly their views on what constitutes evidence of students’ 

understanding seem to play a significant role in shaping teachers’ instructional practices (e.g., 

Stodolsky & Grossman, 1995; Thompson, 1994), the studies have not analyzed the effects of 

beliefs systematically while looking at the relationship between teachers’ knowledge and their 

practice. Teachers’ beliefs generally appear to be mentioned in these studies when there is a 
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conflicting outcome between teachers’ knowledge and expected instructional practices. 

However, failure to recognize the role of teachers’ beliefs in instructional practices might lead to 

misunderstanding about ways to improve the quality of mathematics instruction in schools.   

Lastly, given the difficulty of disentangling the causal order in studies linking teacher 

knowledge to instruction and student outcomes, one of the most important questions that remain 

unanswered is how teachers’ knowledge changes over time and how these changes affect their 

instructional practices as well as student learning. Only a few studies have provided a 

longitudinal analysis of teachers’ knowledge, while the change in teachers’ knowledge (if it 

exists) generally has not been measured by well-established assessments (e.g., Sowder et al., 

1998). Rather than capturing teachers’ knowledge at a particular point in time, investigating 

teachers’ knowledge over time might shed new light on how teachers’ mathematical knowledge 

relates to their practices and student learning. 

In this study, using Ball and Hill’s MKT construct, I explore how changes in teachers’ 

MKT are related to changes in their instructional practices and student achievement. I discuss 

this process in detail in the next chapter. 
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Chapter 3 

Methods of Data Collection and Analysis 

Chapter 2 discussed the literature on teachers’ knowledge of mathematics, focusing on its 

effects on instruction and student achievement. This chapter outlines the methods used to explore 

the associations among teachers’ mathematical knowledge for teaching (MKT), their 

instructional practices, and the achievement of their students. I begin this chapter with an 

overview of the mixed methods approach, followed by the research context and methods of data 

collection and analysis.  

Mixed Methods Approach 

As mentioned above, in this study, I investigated whether a relationship existed among 

teachers’ mathematical knowledge and their instructional practices as well as student 

achievement, and elaborated on how that association between teachers’ mathematical knowledge 

and instruction actually occurred.  

I used a mixed methods approach because using qualitative and quantitative methods 

together yielded a better understanding of the phenomena than using a single method. As stated 

by Greene and Caracelli (2003), “social reality is both casual and contextual, and social 

knowledge is both propositional and constructed. To respect all facets of realism, multiple 

methods are not only welcomed but required” (p. 99). 

My primary intent was to generate a more elaborate and comprehensive understanding of 

the interplay between teachers’ knowledge of mathematics and instructional practices. In 

particular, using quantitative data, I investigated the extent to which changes in teachers’ MKT 

were related to changes in their instructional practices and their students’ achievement gains. 

Using qualitative data, I investigated how the relationships occurred among teachers’ knowledge, 
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instructional practices, and student learning. My primary intent in including qualitative methods 

in the study was not for the purpose of triangulation. My aim of using a mixed methods approach 

was for “complementarity, in which different research methods address different aspects of the 

phenomenon, and convergence is not necessarily expected. Findings from the separate 

components are then fitted together like a jigsaw puzzle” (Smith, 2006, p. 465). Hence, I aimed 

to achieve this goal by “collecting quantitative data and then collecting qualitative data to help 

explain or elaborate on the quantitative results” (Creswell, 2002, p. 566). As I explain in detail in 

the following section, I first started by analyzing the quantitative data, and based on a 

preliminary analysis of the data, I chose a subsample of teachers for the qualitative part of the 

data analysis.  

More specifically, this study entailed addressing the following two research questions: 

1. How does teachers’ MKT affect their instruction? What factors, such as beliefs and the 
curriculum, mediate the expression of MKT in instruction?  

2. To what extent are changes in teachers’ MKT, instructional practices, or both related to 
students’ gains in achievement?  

 

Research Context 

Description of the program. The main data for this study resulted from the evaluation of 

a 2.5-year master’s program created with support by a federally funded, state-administered Math 

and Science Partnership (MSP) grant. Faculty from a state university designed a master’s degree 

program in collaboration with a partnering high-needs school district located in an ethnically 

diverse, midsized city in the Midwest. In the partnership district, roughly one half of the students 

were students of color and two-thirds of the students qualified for free or reduced lunch, which is 

24% higher than the percentage of students who qualify for free or reduced lunch at the state 

level. Furthermore, as of 2008, 39% of the teachers in the district held a master’s degree, which 
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is 14% lower than at the state level (see Figure 5). The percentage expenditure spent on 

instruction was 38% at the district level, whereas the ratio is 48% at the state level. Finally, 77% 

of the students in the district met or exceeded the standards, whereas 85% of the students in the 

state reach that level.  

 

Figure 5. Comparison of the partnership district and state. 

The program took place from August 2008 until December 2010. The program focused 

on “sense-making in mathematics and science” and was designed to meet the partner district’s 

needs and to deepen teachers’ content and pedagogical content knowledge in mathematics and 

science. This 32-credit-hour Ed.M. program consisted of nine courses, including mathematics, 

science, and education courses. Courses were offered at a local community college within the 

school district during the school year and on the university campus during the summer.  

Two courses focused specifically on mathematics. The first course, which was a hybrid 

of mathematics content and methods, occurred during the first semester of the program (fall 
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2008). The second, which was a mathematics content course, occurred in the second year of the 

program (spring 2010). Both courses were four credits and met Thursday evenings. Teachers 

who both completed the program with at least a 3.25 GPA and participated in all the evaluation 

components (including repeated assessments of their mathematical knowledge) were given a 

$1,500 stipend. This stipend encouraged teachers’ serious engagement with the program 

components, including coursework and evaluation. 

Description of the two mathematics courses.  

Mathematics Content and Methods Hybrid Course. The hybrid course was a 

combination of typical mathematics methods and “mathematics for elementary teachers” course 

work. The instructor for this course organized it around the National Council of Teachers of 

Mathematics’ (NCTM, 2000) content strands (numbers, geometry, measurement, algebra and 

functions, and statistics and probability). The instructor drew primarily from the popular 

mathematics methods text Elementary and Middle School Mathematics, by Van De Walle 

(2006), organizing most weekly lessons around the assigned chapter(s) in the text. In addition to 

reading the text, teachers completed two major problem-solving assignments, conducted a small 

action research project in their classrooms, taught a lesson to the class, and participated in 

reading circles in which they discussed (electronically) what they were learning from the text and 

other assigned articles. The problem-solving assignments included a variety of challenging 

mathematics problems adapted from various sources, including the Van De Walle text, the 

mathematics methods text, Fostering Children’s Mathematical Power, An investigative 

Approach to K-8 Mathematics Instruction, by Baroody and Coslick (1998), The Connected 

Mathematics Project (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2006), Developing 

Mathematical Ideas (Schifter, Bastable, Russel, Yaffee, Lester, & Cohen, 1999), and Thinking 
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Mathematically (Mason, Burton, & Stacey, 1985). Although collaborative group work was 

encouraged on the problem-solving assignments, two tests served as a measure of how well 

teachers learned what was intended from those assignments, as well as from the course readings 

and discussions. Overall, the course was designed to deepen teachers’ knowledge of mathematics 

content specifically relevant to K-8 teaching, and to enhance teachers’ ability to teach that 

content with a focus on student sense-making.  

Mathematics Content Course. The second mathematics course focused specifically on 

mathematics content with the theme, “mathematics in the world around you.” The course was 

taught by an award-winning mathematics department instructor. The instructor had prior 

experience teaching middle school mathematics, as well as “mathematics for elementary 

teachers” courses. This content course exposed teachers to a wide variety of interesting 

mathematics applications while enhancing their knowledge of algebra, probability and statistics, 

number theory, and other topics. The college textbook used was entitled For All Practical 

Purposes: Mathematical Literacy in Today’s World by Consortium for Mathematics and Its 

Applications, 2003. Specific topics included networks, linear programming, random samples, 

probability, inference, voting systems, game theory, symmetry and tilings, geometric growth, 

codes, and data management. Additionally, the teachers were given homework via the 

Assessment and Learning in Knowledge Spaces system, to encourage review of algebraic and 

other fundamental mathematical ideas underlying the various real-world applications under 

study. The course followed a fairly traditional mathematics course format, with students 

completing mathematics problem sets and taking tests. Overall, the course was designed to 

enhance teachers’ knowledge of mathematics and applications of mathematics so that they would 
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be better informed about the ways in which mathematics is used in the world and would have a 

richer variety of examples to draw on when teaching their own students.  

Participant teachers. Participants consisted of 21 K-8 in-service teachers who were 

enrolled in the MSP-sponsored master’s program. Although the cohort started with 26 teachers in 

total, five program participants were excluded from the study because three were middle school 

science teachers and the other two were not from the partnership district.1 Of the 21 remaining 

teachers, three were middle school mathematics teachers, one was a special education teacher, 

and the rest were elementary school teachers.  

The teachers were employed in 12 public elementary and middle schools across the 

district and surrounding areas. Only one teacher was male and the majority of the teachers were 

White (and non-Latino/a), with the exception of three African American teachers. All participant 

teachers held teacher certification before enrolling in the program, and they taught mathematics 

in grades ranging from first to seventh. The majority of these teachers (19) had been elementary 

education majors. One teacher had been a physical education major. In addition, one teacher had 

been a middle school education major. The teachers’ years of experience in the classroom ranged 

from 1 to 12 years (mean = 5.4; median = 4).  

Although these 21 teachers were teaching or were expecting to teach mathematics each 

year starting from the beginning of the program, some teachers switched between grades and 

subject areas for a number of reasons. For example, one teacher became a literacy coach in the 

first year of the master’s program but taught mathematics in the second year of the program. 

Another teacher was teaching mathematics before the program started but did not teach 

                                                 
1 I also observed several other teachers from surrounding districts because of my special interest 
in those teachers’ instruction, but these two teachers were not in that group.  
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mathematics for the last 2 years. In addition, several teachers switched between grade levels 

because of school needs. 

Target teachers. The results from the initial quantitative data sources, such as teachers’ 

scores on mathematical knowledge tests, were used to identify target teachers for more in-depth 

data collection. Eight of these 21 teachers were chosen for the qualitative part of the analysis. In 

the Case Selection section, I explain in detail how and why I chose the target teachers.  

Students. As shown in Table 1, a total of 873 students were included in the data analysis. 

It is important to note that I had access to only the partnership district Illinois Standards 

Achievement Test (ISAT) data, which reduced the number of teachers and students available for 

the data analysis. Each year, two thirds of the students were eligible for free or reduced lunch 

and just over half of the students were African American (see Table 1).  

Table 1 

Demographic Information on the Participant Students 

Year N African 
American (%) White (%) Low-income 

eligible (%) 
Year 0 231 53.3 46.8 70.6 
Year 1 225 53.3 46.7 68.4 
Year 2 225 58.2 41.8 72.9 
Year 3 192 55.2 44.8 76 
Overall 873 55 45 71.8 

 

Data Collection 

I collected a variety of data throughout the program. Hence, I used several data collection 

instruments. I used paper-and-pencil tests to measure teachers’ MKT, a survey of teachers’ 

beliefs about teaching and learning mathematics, and a classroom observation protocol to 

quantify the quality and frequency of teachers’ practices. Data collection also included classroom 

observations (which included both a protocol and field notes), interviews with the target teachers, 
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and school-provided student achievement data. Because my major focus throughout the data 

collection period remained on teachers not their students, I considered the data on teachers’ 

MKT and instructional practices my primary data sources, whereas I considered the other data, 

such as student achievement data and interviews, supplementary data used to improve 

understanding. Table 2 shows the data available for each teacher. In this section, I first briefly 

describe the instruments used and the data collected, followed by a detailed discussion of the 

data collection process.  

Table 2 

Available Data Sources From the Teachers 

 Teachers 

Source Yes No 

Assessment for MKT 21 0 
Classroom observations 21 0 
Beliefs survey 19 2 
Student test scores 112 0 
Interviews 83 13 

Note. MKT = mathematical knowledge for teaching. 

MKT Measure.  In this study, LMT instruments were used to assess teachers’ MKT. The 

LMT assessments, which were developed for the Study of Instructional Improvement at the 

University of Michigan, were specifically designed to capture elementary school teachers’ MKT 

(e.g., Ball, Thames, & Phelps, 2008). The researchers developed multiple-choice items intended 

to assess teachers’ knowledge of the mathematics most relevant to teaching in elementary 

                                                 
2 Students’ standardized tests on LMT scores were available for 14 teachers, but the gain score 
could be calculated for only 11 teachers who taught students at the fourth-grade level and above. 
3 I conducted interviews with a subsample of teachers in whose classrooms I had also conducted 
extra observations. 
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classrooms, with items situating mathematics-related questions within teaching-specific 

scenarios (e.g., interpreting or evaluating student responses). 

The sample item in Figure 6 provides a glimpse of the LMT measure even though this 

particular item was excluded from the LMT item bank because it was psychometrically 

problematic. The item requires specialized mathematical knowledge, and teachers must know 

more than just the standard multiplication algorithm to answer correctly. For instance, teachers 

need an understanding of place value and the distributive property of multiplication over addition 

to determine whether the three given methods are generalizable.  

 

Figure 6. Sample item from the Learning Mathematics for Teaching (LMT) measure. 
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The LMT instruments used in the study were designed to capture both the common and 

specialized mathematical knowledge of the teachers. All the LMT items used were 

contextualized in scenarios pertaining to the teaching and learning of K-8 mathematics content. 

Two parallel LMT forms (MSP_04A and MSP_04B) were used in this study to assess 

teachers’ knowledge of three content areas: numbers and operations (K-6); patterns, functions, 

and algebra (K-6); and geometry (K-8). The two forms included 30 and 31 stems and 62 and 66 

items for Forms A and B, respectively. (The sample question involved 1 stem and 3 items; see 

Table 3) Validity and reliability of the measures were established by the test developers. The 

retesting reliability coefficients were .75 and .76 for the forms, respectively.  

Table 3 

Number of Items on the Learning Mathematics for Teaching (LMT) Forms by Content Area  

Item category 
Numbers and 

operations Geometry 

Patterns, 
functions, and 

algebra Total 
Form A 26 19 17 62 
Form B 25 23 18 66 

Note. The 62 and 66 items were based on a total of 30 and 31 item stems for Form A and Form B, 
respectively.  

 
During the development of the LMT forms, pilot teachers’ raw LMT scores were 

converted to Item Response Theory (IRT) scales. The IRT scale scores can be interpreted as a 

measure called logits, ranging from approximately –3.00 to 3.00, with a mean of 0. A higher 

score indicates a higher level of teacher knowledge. The forms were equated by the test 

developers so that we could compare teachers’ scores across the forms. Individuals with the 

same scores on the test were assumed to have the same level of mathematical knowledge, 

regardless of when they were tested or which form was used.4  

                                                 
4 The LMT developers originally used a convenience sample to pilot the forms, and the mean for 
that sample was made to correspond with 0 when establishing the scale. Hence, a score below 0 
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Classroom observation protocol. Several available observation protocols were 

considered for use in the project, such as the Local Systemic Change (LSC) Classroom 

Observation Protocol (Horizon Research, Inc., 2011), the Reformed Teaching Observation 

Protocol (Piburn & Sawada, 2000), and the Oregon Mathematics Leadership Institute (OMLI) 

Classroom Observation Protocol (Weaver et al., 2005). However, no single protocol captured all 

aspects of instruction relevant to the project goals, such as quality of student discourse and tasks 

chosen. Hence, a modified version that was a combination of the LSC and OMLI protocols was 

created. The final form of the protocol provided an overall assessment of lesson planning and 

teaching as in the LSC protocol while also providing a deeper assessment of classroom discourse 

patterns and “sense-making,” similar to the OMLI protocol. All project staff (including myself) 

continued to train by using the finalized classroom observation protocol, and by the end of the 

training, there was substantial agreement among staff on ratings. Training included watching 

videos, scoring the video lessons using the observation protocol, and discussing where 

disagreements arose. Through these training sessions, we reached a common understanding of 

what each item on the protocol meant. Through multiple training exercises, we established an 

intraclass correlation coefficient of .80, which strengthened our confidence in having individual 

observers use this adapted protocol in the field.  

The final protocol includes several categories. The first part of the protocol focuses on 

describing the classroom and lesson in general terms. Along with some basic descriptive 

information (e.g., subject, course title, and grade of the class), we documented the purpose of the 

                                                                                                                                                             
on the LMT scale is not necessarily “below average” among the general population of U.S. 
teachers. Indeed, Hill (2010) recently found that the performance of a nationally representative 
sample of elementary teachers was slightly lower than that of the original pilot sample on 
identical items. 
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lesson as described by the teacher: how the class time was spent, including the number of 

minutes spent on instructional activities as opposed to “housekeeping,” interruptions, and the 

like; and the percentage of instructional time spent as a whole class, in pairs or small group work, 

and in individual work. (The adapted protocol can be found in Appendix A.) 

The focus of the protocol was on describing the quality of the observed lessons in each of 

four component areas: the lesson design and its implementation, the mathematics discourse and 

sense-making, the task implementation, and the classroom culture. In each case, we first rated the 

extent to which the lesson exhibited characteristics of the component area. For example, in the 

lesson design and implementation, we rated the extent to which mathematics was portrayed as a 

dynamic body of knowledge continually enriched by conjecture, investigative analysis, proof or 

justification, or their combination. While rating this item, we asked ourselves, “Do the children 

get an idea that conjecturing, exploring, and proving is what mathematics is all about? Or is it 

about following rules given by a teacher or book?” The items rated were on a 5-point frequency 

scale, ranging from 1 (never) to 5 (consistently). 

The final section in the classroom observation protocol includes an overall rating of four 

key aspects of the observed lesson: depth of student knowledge and understanding; locus of 

mathematical or scientific authority; social support; and student engagement in mathematics or 

science. A 5-point scale was again used, with higher ratings being more positive.  

It is also noteworthy to mention here that in addition to completing the classroom 

observation protocol for each observation, the project staff took detailed field notes during the 

observations, including describing what the teacher and students were doing throughout the 

lesson and recording the times various activities began and ended. The protocol enabled us to 

quantitatively compare the lessons, whereas field notes provided insights regarding aspects of the 
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qualities that the protocol captured. The field notes provided summaries of the lesson and the 

quality of the lesson, descriptions of what happened in the lesson, and enough rich detail that 

readers would have a sense of having been there. Moreover, starting from the second year of the 

program, the observed lessons were audiotaped. 

Beliefs survey. The beliefs questionnaire was more specific about teachers’ beliefs 

regarding teaching and learning mathematics. Teachers were asked to indicate the extent of their 

agreement on a 5-point Likert scale, ranging from 1 (strongly disagree) to 5 (strongly agree). I 

used the questionnaire modified by Beswick (2005). The survey was designed to capture the 

extent to which teachers held a traditional view or standards-based view of mathematics. I use 

traditional view of mathematics to refer to content-focused teaching with an emphasis on 

performance and skill mastery, whereas I use standards-based view of mathematics to describe 

more learner-focused teaching with an emphasis on mathematical sense-making and 

understanding of concepts and procedures. The two factors (traditional and reformed-oriented 

views of mathematics) were created based on factor analysis, and the corresponding reliability 

scores for these clusters were 0.78 and 0.77, respectively (Beswick, 2005). The survey had a total 

of 26 items, 11 of which were scored in reverse because they were designed to capture 

constrasting views of problem solving. The scores ranged from 1 to 5, with a higher score 

indicating greater consistency with a standards-based view of teaching and learning mathematics 

(see Appendix B). 

ISAT. The ISAT is a standardized test administered by the state to students in Grade 3 

and above annually between late February and early March. The test is administered in three 45-

min sessions. Students’ knowledge is assessed in five content areas: (a) number sense 

(representations and ordering; computation, operations, estimation, and properties; ratios, 
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proportions, and percentages); (b) measurement (units, tools, estimation, and applications); (c) 

algebra (representations, patterns, and expressions; connections using tables, graphs, and 

symbols; writing, interpreting, and solving equations); (d) geometry (properties of single figures 

and coordinate geometry; relationships between and among multiple figures; justifications of 

conjectures and conclusions); and (e) data analysis, statistics, and probability (Illinois State 

Board of Education, 2012). 

The reliabilities gleaned from the published ISAT technical manuals are reported in Table 

4. As shown in this table, reliability estimates for the ISAT tests are high. 

Table 4 

Reliability Estimates for the Illinois Standards Achievement Tests 

Grade\Year 2007 2008 2009 2010 2010 
3 .93 .94 .94 .94 .94 
4 .92 .92 .93 .93 .93 
5 .93 .93 .93 .94 .93 
6 .93 .93 .94 .94 .94 
7 .94 .92 .93 .94 .93 
 
Students’ scores are computed based on 65 multiple-choice items, 2 short-response items, 

and 1 extended-response item. Multiple-choice items contribute 85% to the total score, whereas 

short-response items and the extended-response item contribute 5 and 10%, respectively, to the 

total score. Scores are on an IRT scale, ranging from 120 to 400, with a standard deviation of 30. 

Students’ ISAT scores for a given year were used as their posttest scores, whereas their ISAT 

scores for the year before were used as their pretest scores. More specifically, for students in the 

teachers’ classrooms in 2008–2009, students’ spring 2008 ISAT scale scores were used as the 

pretest (taken shortly before they were assigned to our teachers’ classrooms), whereas their 

spring 2009 ISAT mathematics scale scores were used as their posttests. I had no data prior to 

Grade 4, because third graders had no pretest. Additionally, none of the teachers with available 
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student-level data taught eighth-grade mathematics. For these reasons, the student achievement 

data primarily included students from Grades 4 to 7.  

Additional student-level data. In addition to students’ ISAT data, the district provided 

me with information on free or reduced lunch status, gender, race, and grade level of all students 

in the district. Hence, I had access to this information for each student in the district who was 

tested from 2007 to 2011. I used student race, free lunch status, and grade level in the data 

analysis. Additionally, by using the ISAT scores of all students who were in Grades 4 to 7, I 

created a variable capturing the average ISAT gain for the district each year so that I could 

reduce the effects of some unobservable factors on my data analysis.  

Interviews. As mentioned earlier, I chose a subgroup of teachers as target teachers for 

the qualitative analysis. I conducted semistructured interviews with the eight target teachers 

individually after I had completed my classroom visits. In the interviews, I intended to learn 

more about the teachers’ instructional practices, the effects of the mathematics courses on their 

practices, and their views of teaching and learning mathematics. I also asked whether they had 

made any changes in their instructional practices and why they had made those changes, to 

capture how they perceived the changes in their content knowledge and whether those changes 

had any effect on their teaching. Most of the questions asked in the interviews can be found in 

Appendix C. I also developed two or three specific questions for each teacher. For instance, I 

knew one of the teachers used animated lessons on a Smart Board to carry out her lesson plans, 

so I asked her why she used those lessons. All the interviews were audiotaped and transcribed 

verbatim. 

Extra classroom observations.  I collected classroom observation data from the same 

target teachers over a span of roughly 1 week. I explain in detail in the following section how I 
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chose these teachers. During these observations, I audiotaped the mathematics lessons and took 

detailed field notes on the teachers’ instruction. My primary focus was the teacher, rather than 

their students’ responses. I also took general notes regarding students’ behavior, including off-

task behavior, behavior during group work and seatwork, and students’ general manner in the 

observed lessons.  

Although my intention was to observe teachers’ mathematics lessons for an entire week, 

on some days, several teachers cancelled their scheduled observations for a number reasons, such 

as health problems, school programs, and conferences. I continued to observe teachers until I felt 

I had observed a sufficient number of lessons from which to draw conclusions. Additionally, I 

stayed longer in the classrooms of the teachers who had not been observed in previous years. For 

these reasons, the total number of lessons I observed in each classroom varied somewhat, 

ranging from four to nine.  

In observing the lessons, I focused on teachers’ instructional practices, particularly as 

captured in the observation protocol. I kept a log of each observed lesson. I recorded the 

problems and tasks teachers used in the lessons. I also paid close attention to how the teachers 

responded to their students’ ideas and what they said in return. In addition, I used audio 

recordings to check my notes. I typed and edited these written field notes on the same day as the 

observed lesson to reduce data loss.  

Timetable for data collection. Table 5 below represents a timeline for the data 

collection. I briefly discuss the data collection process in more detail in the following section. 
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Table 5 

Schedule for Data Collection  

Source Year 0 

Year 1 Year 2 Year 3 
Fall 
2008 

Spring 
2009 

Summer 
2009 

Fall 
2009 

Spring 
2010 

Summer 
2010 

Fall 
2010 

Course  Mathematics 
hybrid course 

Science 
education 
course 

Science 
and 
educational 
psychology 
courses 

Educational 
psychology 

Mathematics 
content course 

Science 
education 
course 

Action 
research 
course 

MKT August December  January June December 
 
Classroom 
observations 

 
May to 
early June 

  
April to 
May 

   
March to May 

  
October to 
November 
 

ISAT February to 
March 

 February 
to March 

  February to 
March 

 February to 
March 

Teacher 
interview 
 

       March 

Teacher 
beliefs 
survey 

      August  

Note. MKT = mathematical knowledge for teaching; ISAT = Illinois Standards Achievement Test. 
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Data collection schedule for assessing teachers’ MKT. The LMT instrument was first 

administered at the start of the program in August 2008. Given that two forms (Forms A and B) 

were available, teachers were randomly assigned to the forms; one half the teachers took Form 

A, and the rest took Form B. Teachers alternated forms in later assessments. In total, teachers 

took the LMT five times.  

As shown in Table 5, teachers took the LMT test a second time in December 2008, just 

after they finished the content and methods hybrid course, to check on the immediate gains made 

during that first course. Then, in January 2010, one year after the completion of the first course 

but before the teachers began their second mathematics-focused course, teachers’ mathematical 

knowledge was again assessed using the LMT. Teachers completed the mathematics content 

course in early May 2010. Approximately 7 weeks later, in June 2010, teachers’ mathematical 

knowledge was assessed using the LMT measures. The final administration of the LMT then 

took place at the end of the program, in December 2010. Because I had four time points in the 

quantitative data analysis, I used teachers’ scores on the LMT tests administered in August 2008, 

January 2010, June 2010, and December 2010 as an indicator of their mathematical knowledge 

in the years between 2008 and 2011.5  

Timetable for classroom observations. Classroom observation data were first collected 

before the master’s program started. Several research assistants conducted classroom 

observations, seeing at least two mathematics lessons from all participating teachers who taught 

mathematics during the first weeks of May in 2008. For each observation, a combined and edited 

                                                 
5 I did not use teachers’ scores on the test administered in December 2008 as an indicator of their 
MKT for the year 2009 because that test was administered soon after they completed the 
mathematics hybrid course, and teachers’ scores on that test might be an overestimation of the 
knowledge teachers retained. The difference in teachers’ scores on the tests administered in 
December 2008 and January 2010 was not statistically significant, even though the teachers’ 
scores were lower in January 2010. 
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version of the Horizon LSC protocol and the OMLI classroom observation protocol was 

completed. During the first 2 years that the program was implemented, teachers’ mathematics 

lessons were observed two or three times a year in March to early May by project staff 

(including myself). In the final year, because the program ended in fall 2010, classroom 

observations were conducted primarily in October and November. In addition to those regular 

observations conducted for the master’s program, I conducted at least four classroom 

observations of the target teachers in fall 2010. I used the same observation protocol that was 

used by the project for the regular classroom observations.  

Timetable for teacher beliefs survey and interviews. The beliefs survey was 

administered once in August 2010. Teachers’ beliefs were not measured earlier in the program 

because teachers were asked to complete the very detailed Surveys of Enacted Curriculum (The 

Council of Chief State School Officers, 2011) regarding their practices annually. In that teacher 

survey, several items were also designed to capture teachers’ beliefs. However, an examination 

of the beliefs items on that survey indicated that those items did not adequately capture what I 

intended to measure, which was teachers’ beliefs regarding how mathematics should be taught. 

Hence, I used the beliefs survey modified by Beswick (2005) to capture teachers’ beliefs 

regarding teaching and learning mathematics. 

 I conducted interviews with the eight teachers individually after I had completed my 

classroom visits. Two of the teachers told me that they were not comfortable being interviewed 

and would not remember much about what they would like to say during the interview. They 

asked instead that I send them the questions via e-mail, and they sent me their typed responses. 

With the rest of the teachers, I conducted oral interviews, which lasted about 1 hour. To do this, I 

visited the teachers in their schools during lunchtime or after school.  
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Data collection from the students of participating teachers.  As mentioned earlier, 

students’ ISAT scores were used as a measure of their gain in mathematical knowledge. The 

ISAT tests were administered over the course of 3 weeks in late February and early March. The 

student data became available each year in mid-August. In addition to data from the students of 

participating teachers in the partnership district, I had access to all district student ISAT data.  

Data Analysis 

As mentioned earlier, my purpose in using mixed methods was to measure overlapping 

and distinct features of the phenomenon by elaborating or clarifying results using multiple 

methods (Greene, Caracelli, & Graham, 1989). Hence, I used both qualitative and quantitative 

data analysis methods to investigate my research questions. The results from initial quantitative 

data sources, such as teachers’ scores on the MKT measure, were used to identify the target 

teachers for extra classroom observations and interviews (see Figure 7). Before introducing the 

methods I used to explore my research questions, I begin by explaining the steps taken to analyze 

the data. I first describe the measures developed from the collected data based on initial analysis 

of the data, followed by selection of the cases. I explain in detail how and why I chose those 

cases. Finally, I end the section with descriptions of the methods I used to answer my research 

questions.  
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Figure 7. Illustration of the data collection process from participating teachers. 

Measures developed from the collected data. 

Scales created from the observation protocol.  Given that two different observation 

protocols were combined, I used factor analysis to identify scales that captured different aspects 

of instruction. I conducted factor analysis by using more than 200 mathematics classroom 

observations.6 Factor analysis is a statistical procedure whereby items are grouped together 

according to the similarity of respondents’ answers.  

I included all but two items in the main section of the adapted classroom observation 

protocol. Those two items on the protocol were excluded from the analysis because of their small 

                                                 
6 I treated the lesson observation as the unit of analysis, which could have biased the results 
because it violated the independence of observations. However, this was necessary in order to 
run factor analyses on the relatively large number of items on the protocol. Because of both the 
lack of independence among lessons and the fact that teachers were not selected randomly for 
this study, the results should be viewed as suggestive of relationships that might hold in the 
general population of teachers and that merit further analysis.  
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standard deviations, a result of our agreeing on “default” ratings of the items7 (≤.5). The 

remaining 37 items were analyzed using principal components analysis with varimax rotation. 

All factors with eigenvalues greater than 1.0 were selected to remain. All items except one (free-

standing) were grouped into one of the five factors. Factor analysis of the current available data 

revealed five factors (eigenvalues of 16, 3.1, 2.1, 1.6, and 1.1); 64.5% of the total variation was 

explained by these factors. Factor loadings for these scales were also clear, with reasonably high 

factor loadings (ranging from .53 to .80, .51 to .86, 60 to .81, .41 to .73, and .59 to .81 on these 

five factors. The items on each scale, with corresponding reliability scores, are shown in Table 6. 

 

                                                 
7 The items excluded from the analysis were “the design of the lesson reflected careful planning 
and organization” and “the teacher appeared confident in his/her ability to teach mathematics.” 
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Table 6 

Factor Loadings of the Five Scales Obtained 

 
 

 
Item 

Scales with Cronbach’s alpha reliability estimates  
Inquiry-
oriented 

lesson (.95) 

Student 
engagement 

(.89) 

Worthwhile 
mathematical 

tasks (.87) 

Mathematical 
sense-making 
Agenda (.84) 

Classroom 
climate 

(.71) 
Communality 

h2 

IIB-12 The teacher productively 
probed/“pushed on” the 
mathematics in students’ responses. 

.80 .18 .09 .16 .19 .75 

IIA-9 The teacher’s questioning 
strategies for eliciting student 
thinking promoted discourse 
around important concepts in 
mathematics. 

.74 .21 .14 .20 .17 .69 

IIA-5 The lesson design provided 
opportunities for student discourse 
around important concepts in 
mathematics. 

.68 .23 .33 .22 −.13 .69 

IIA-3 The lesson had a 
problem/investigation-centered 
structure. 

.66 .07 .40 .08 −.01 .72 

IID-7 The classroom climate 
encouraged students to engage in 
mathematical discourse. 

.65 .28 .12 .37 .12 .75 

(table continues) 
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Table 6 (continued) 
 

 
 

 
Item 

Scales with Cronbach’s alpha reliability estimates  
Inquiry-
oriented 

lesson (.95) 

Student 
engagement 

(.89) 

Worthwhile 
mathematical 

tasks (.87) 

Mathematical 
sense-making 
Agenda (.84) 

Classroom 
climate 

(.71) 
Communality 

h2 

IID-5 Wrong answers were treated 
as worthwhile learning 
opportunities. 

.64 .17 .28 .13 .25 .62 

IIA-6 Mathematics was portrayed 
as a dynamic body of knowledge 
continually enriched by conjecture, 
investigation analysis, and/or 
proof/justification. 

.64 .06 .36 .25 .06 .70 

IIA-8 The instructional strategies 
were consistent with investigative 
mathematics. 

.63 .18 .30 .06 .14 .74 

IIA-2 The design of the lesson 
incorporated tasks, roles, and 
interactions consistent with 
investigative mathematics. 

.63 .05 .40 .12 .06 .68 

IID-4 Interactions reflected a 
collaborative working relationship 
between the teacher and the 
students. 

.62 .24 .12 .06 .30 .65 

(table continues) 
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Table 6 (continued) 
 

 
 

 
Item 

Scales with Cronbach’s alpha reliability estimates  
Inquiry-
oriented 

lesson (.95) 

Student 
engagement 

(.89) 

Worthwhile 
mathematical 

tasks (.87) 

Mathematical 
sense-making 
Agenda (.84) 

Classroom 
climate 

(.71) 
Communality 

h2 

IIA-11 The teacher was flexible 
and able to take advantage of 
“teachable moments.” 

.61 .04 .16 .21 .27 .56 

IIB-11 The teacher and students 
engaged in meaning making at the 
end of the activity/instruction. 

.58 .04 −.01 .52 .08 .61 

IIB-8 Students determined the 
correctness/sensibility of an idea 
and/or procedure based on the 
reasoning presented.  

.55 .15 .22 .43 .10 .68 

IIB-4 Students justified 
mathematical ideas and/or 
procedures.  

.53 .29 .20 .39 .14 .71 

IIA-13 The vast majority of the 
students were engaged in the lesson 
and remained on task.  

−.04 .86 .11 .21 0 .81 

IIB-5 Students listened intently and 
actively to the ideas and/or 
procedures of others for the 
purpose of understanding 
someone’s methods or reasoning. 

.21 .78 .22 .15 −.02 .75 

(table continues) 
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Table 6 (continued) 
 

 
 

 
Item 

Scales with Cronbach’s alpha reliability estimates  
Inquiry-
oriented 

lesson (.95) 

Student 
engagement 

(.89) 

Worthwhile 
mathematical 

tasks (.87) 

Mathematical 
sense-making 
Agenda (.84) 

Classroom 
climate 

(.71) 
Communality 

h2 

IIA-12 The teacher’s classroom 
management style/strategies 
enhanced the quality of the lesson. 

−.08 .74 −.02 .08 .36 .72 

IIB-2 Students shared their 
observations or predictions.  

.28 .73 .06 .16 .21 .68 

IID-6 Students were willing to 
openly discuss their thinking and 
reasoning. 

.38 .65 .21 .23 .21 .72 

IIB-3 Students explained 
mathematical ideas and/or 
procedures. 

.43 .53 .29 .20 .12 .63 

IID-3 Interactions reflected a 
productive working relationship 
among students. 

.35 .51 .31 −.04 −.02 .52 

IIC-5 Tasks encouraged students to 
employ multiple representations 
and tools to support their learning, 
ideas, and/or procedures. 

.13 .19 .81 .18 .08 .75 

(table continue) 
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Table 6 (continued) 
 

 
 

 
Item 

Scales with Cronbach’s alpha reliability estimates  
Inquiry-
oriented 

lesson (.95) 

Student 
engagement 

(.89) 

Worthwhile 
mathematical 

tasks (.87) 

Mathematical 
sense-making 
Agenda (.84) 

Classroom 
climate 

(.71) 
Communality 

h2 

IIB-10 Students drew upon a 
variety of methods (verbal, visual, 
numerical, algebraic, graphical, 
etc.) to represent and communicate 
their mathematical ideas and/or 
procedures. 

.21 .34 .75 −.03 .01 .76 

IIC-4 Tasks encouraged students to 
search for multiple solution 
strategies and to recognize task 
constraints that may limit solution 
possibilities. 

.32 .12 .64 .20 −.03 .61 

IIC-1 Tasks focused on an 
understanding of important and 
relevant mathematical concepts, 
processes, and relationships. 

.45 .12 .60 .32 .19 .73 

IIC-2 Tasks stimulated complex, 
nonalgorithmic thinking. 

.36 −.05 .60 .23 .13 .77 

IIB-9 Students made 
generalizations, or made 
generalized conjectures regarding 
mathematical ideas and procedures. 

.12 .19 .11 .73 −.07 .61 

(table continues) 
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Table 6 (continued) 
 

 
 

 
Item 

Scales with Cronbach’s alpha reliability estimates  
Inquiry-
oriented 

lesson (.95) 

Student 
engagement 

(.89) 

Worthwhile 
mathematical 

tasks (.87) 

Mathematical 
sense-making 
Agenda (.84) 

Classroom 
climate 

(.71) 
Communality 

h2 

IIC-3 Tasks successfully created 
mathematically productive 
disequilibrium among students. 

.31 .18 .34 .65 .09 .71 

IIC-6 Tasks encouraged students to 
think beyond the immediate 
problem and make connections to 
other related mathematical 
concepts. 

.24 −.06 .43 .55 .08 .68 

IIA-4 The instructional objectives 
of the lesson were clear and the 
teacher was able to clearly 
articulate what mathematical ideas 
and/or procedures the students were 
expected to learn. 

.05 .21 .46 .54 .39 .71 

IIB-1 Students asked questions to 
clarify their understanding of 
mathematical ideas or procedures. 

.24 .30 .05 .47 .07 .46 

IIA-14 Appropriate connections 
were made to other areas of 
mathematics, to other disciplines, 
and/or to real-world contexts. 

.43 .17 .06 .46 .10 .45 

(table continues) 
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Table 6 (continued) 
 

 
 

 
Item 

Scales with Cronbach’s alpha reliability estimates  
Inquiry-
oriented 

lesson (.95) 

Student 
engagement 

(.89) 

Worthwhile 
mathematical 

tasks (.87) 

Mathematical 
sense-making 
Agenda (.84) 

Classroom 
climate 

(.71) 
Communality 

h2 

IIB-7 Students defended their 
mathematical ideas and/or 
procedures. 

.40 .41 .12 .41 .18 .69 

IIA-10 The pace of the lesson was 
appropriate for the developmental 
level/needs of the students and the 
purpose of the lesson. 

.22 .18 .02 .19 .81 .79 

IID-2 The teacher displayed respect 
for students’ ideas, questions, and 
contributions.  

.34 .12 .14 −.02 .64 .71 

IID-1 Active participation of all 
students was encouraged and 
valued. 

.20 .51 .06 −.08 .59 .66 

Eigenvalues 15.96 3.07 2.1 1.62 1.13  

Percentage of variance explained  43.14 8.23 5.67 4.39 3.05  
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As shown in Table 6, these five factors explained at least 45% of the variance in 

observation scores for each item, as indicated by the communality values. The value of 

the Kaiser-Meyer-Olkin criterion, which provides an index for the appropriateness of 

applying factor analysis to a given data set, was .896. This value was greater than 0.5, the 

cutoff point recommended for a satisfactory analysis to proceed (e.g., Kaiser, 1970; 

Westland & Clark, 1999). Additionally, Bartlett’s test of sphericity was significant (X2 = 

2,519.536, df = 666, p < .0001), indicating the appropriateness of the factor model. 

Finally, Cronbach’s alpha, an indicator of the internal consistency of the factors, ranged 

from .71 to .95, implying relatively high consistency within each scale. 

Beliefs subscale.  Initial analysis of teachers’ responses to the beliefs survey 

(Beswick, 2005) indicated great agreement on several items in the survey. To 

differentiate teachers based on the differences in their beliefs, I created a subscale from 

the instrument when at least 20% of the teachers chose different responses from the two 

most common options. The items used to create the subscale are listed below. Similar to 

the total score, the sub-scale score is also computed by reversely coding the items that 

capture a traditional view of mathematics, and then averaging the teachers’ scores on 

these items. The correlation between teachers’ total score on the beliefs survey and on the 

subscale was .69.  
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• Discovery methods of teaching have limited value because students often get 
answers without knowing where they came from. 

• Mathematics is a rigid discipline, which functions strictly according to 
inescapable laws. 

• Each student should feel free to use any method for solving a problem that suits 
him or her best. 

• Teachers should make assignments on just that which has been thoroughly 
discussed in class. 

• There are often many different ways to solve a mathematics problem.  

• The language of mathematics is so exact that there is no room for variety of 
expression. 

Case selection. Decisions related to case selection are critical to understanding 

the phenomenon under investigation (Yin, 1994). Following the suggestion of Yin (1994) 

for selecting diverse cases, I chose eight teachers with a wide range of mathematical 

knowledge as well as a wide range in the MKT gains they made. These diverse cases can 

help us better understand the relationship between teachers’ MKT and instructional 

practices.  

Of the 21 participant teachers, I chose these 8 teachers for several reasons. First, 

as mentioned above, the teachers represented the full range of mathematical knowledge 

of the teachers in this study, as well as the full range of gains made during the program 

(see Tables 7 and 8). Although there are no certain rules about how many cases are 

necessary for multiple-case studies, Yin (1994) suggests 6 to 10 cases. To increase 

variation in teachers’ MKT, I chose two of the teachers who had not been observed in 

previous years (which limited my knowledge of their instructional practices to the period 

before they enrolled in the program). I decided to include these two teachers because they 

had the highest scores on the mathematics tests and none of the other teachers who had 
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been observed before had mathematical knowledge as strong as these two teachers did at 

the beginning and end of the program. 

Table 7 

Mathematics Scores8 and the Mathematical Knowledge for Teaching (MKT) Gain of the 
Eight Participant Teachers Over Time 

Teacher9 Before the 
program 

After the 
program MKT gain 

Stephanie 1.24 1.99 .75 

Jacqueline 0.73 1.29 .56 

Valerie −0.24 0.85 1.09 

Rebecca −0.55 0.46 1.01 

Sonya −0.67 0.21 .88 

Beth −1.22 −0.39 .83 

Ann −0.68 −0.43 .25 

Meg −1.29 −0.61 .68 
Note. Teachers are ordered based on their current level of MKT. 
 
  

                                                 
8 Possible scores ranged from −3 to 3, and a teacher with average mathematical 
knowledge would be expected to score 0. 
9 All names are pseudonyms, and the number of syllables show the level of MKT (i.e. 
more syllables indicate a higher level of MKT). 
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Table 8 

Change in Teachers’ Mathematical Knowledge Over Time  

Before the program 
After the program 

Very low10 Low Average High Very high 
Very high     Stephanie 

High      Jacqueline 

Average    Valerie  

Low  Ann  Sonya Rebecca  

Very low  Meg and Beth    
 
In addition to increasing variation in teachers’ MKT, I tried to reduce the effects 

of confounding factors on the relationship between MKT and instruction. I chose teachers 

with diverse MKT but with similar teaching settings. Hence, I chose teachers with 

different MKT levels who taught similar grades because this would help reduce any 

grade-level effects (see Table 9). For this reason I included at least one strong and one 

low MKT teacher for both of the upper and lower elementary grades. For the same reason, 

I tried to choose teachers in the same school whenever possible. I also took into 

consideration school demographics, such as socioeconomic status and race, to reduce the 

effects of these factors on the relationship investigated. However, as earlier studies 

indicated (e.g., Hill & Lubienski, 2007), teachers with strong MKT were usually hired in 

more affluent schools. Given that the most of the schools in the partnership district serve 
                                                 
10 I created categories starting with the “average” category. I created one-half standard 
deviation intervals around 0 for the “average” category. Similarly, the widths of the “high” 
and “low” mathematical knowledge categories also were one half a standard deviation. 
As a result, the “very low” category ranged from the lowest possible score to −.77 logits, 
the “low” category ranged from −.76 to −.26, and the “average” category ranged from 
−.25 to .25. The “high” category ranged from .26 to .76, and the “very high” category 
ranged from .77 to the highest possible scores.  
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mainly students from low-income families, finding a teacher with strong MKT from the 

partnership district was not easy. Hence, I included Stephanie and Jacqueline with very 

strong MKT from a neighboring district.  I also chose Valerie from the partnership 

district, given that she was the only teacher with strong MKT and had similar school 

demographics to that of Stephanie and Jacqueline. Finally, these eight teachers were 

honest and sincere during the interviews I conducted for the program, and they seemed to 

accept being observed several times. 
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Table 9 

Teachers’ Personal and School Information 

Teacher 

Personal information School information11 

 
BS major 

 
Grade 
level 

Years 
of 

teaching 

Free/ 
reduced lunch 

status 
White, 

% 
African 

American, % 
School 

size 
Curriculum 

used 
Stephanie Elementary education 7 6 42 87 5 228 CMP 

Jacqueline Junior high/middle school 
education 

6 8 42 87 5 228 CMP 

Valerie Elementary education 4–6 14 47 62 25 370  

Rebecca Elementary education 2 11 76 56 28 354 EnVision 

Sonya Elementary education 6 10 85 39 48 264 CMP 

Beth Elementary education 5 4 85 39 48 264 EnVision 

Ann Elementary education 3 8 73 26 66 326 EnVision 

Meg Education 2 10 79 48 40 285 EnVision 

Note. CMP = Connected Math Project. 

                                                 
11 School information was obtained from the State of Illinois Report Card and is based on the 2010 Report Card. 
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Method Used to Analyze the First Research Question Quantitatively  

How does teachers’ MKT affect their instruction? What factors, such as beliefs and the 

curriculum, mediate the expression of MKT in instruction? To investigate how MKT affects 

instruction, I examined the effects of a change in teachers’ MKT on their instruction by using 

multilevel (hierarchical) multivariate growth modeling. The growth modeling approach explicitly 

models changes in individuals across time. Moreover, unlike repeated measures, it handles 

missing data efficiently (Hedeker, 2004; Hedeker & Gibbons, 2006). Teachers with missing data 

could be included in the data analysis and the results could be interpreted as if no data were 

missing, provided the data were missing at random. In this study, there was no systematic reason 

why some teachers were not observed each year. Of the 21 teachers, data were missing because 

of health problems, relocation, and school policies in the way teachers were assigned to subjects. 

Another advantage of using multilevel modeling is that it takes into account correlated errors and 

allows the partitioning of variance into within- and between-group components.  

 A two-level hierarchical (multilevel) multivariate growth model indicates that in a Level 

1 model, each individual teacher’s trajectory of instruction is estimated based on a set of 

parameters. In this study, time (years) and teachers’ mathematical knowledge were used to 

predict the instructional practices of each teacher. These individual growth parameters then 

became outcomes in the Level 2 model, where they could be regressed on person-level 

characteristics. The Level 2 variables captured individual-level characteristics, such as being an 

experienced or novice teacher and the highest-grade level taught. More specifically, using the 

five scales derived from the classroom observation protocol as outcome variables, I investigated 

the association between teachers’ practices and MKT, controlling for the effect of time. By using 



 71 

the teachers’ years of teaching experience and grade level, I could also adjust these differences 

between teachers. 

The basic model was as follows: 

Level 1:  Instructionij = β0j + β1j*timeij + β2j*mathij + rij; and 

Level 2:  β0j = γ00 + γ01*gradej + γ02*new teacherj + uj, 

  β1j = γ10, 

  β2j = γ20. 

The Level 1 model indicates that the score of an individual teacher i on the instructional 

practice scale at time j is influenced by her initial level of instructional practice (β0j), the effect of 

time (i.e., β1j), and the effect of her mathematical knowledge at time j. The Level 2 model 

indicates that the initial score of an individual teacher i on that instructional practice scale is 

determined by the overall initial scores of teachers on that scale (γ00), the teachers’ grade level, 

experienced teacher status, and the individual teacher’s difference from the other teachers (uj), 

which is constant across time.  

All models were fit using the mixed methods procedure (PROC MIXED) in SAS/STAT 

software (SAS Institute Inc., 2008), and all significance tests were conducted at a α level of 0.05. 

I preferred the PROC MIXED of SAS for data analysis because the program is flexible and 

suitable for multilevel model analysis (Singer, 1998). Additionally, given that the data were 

collected from the same teachers over time, residuals within teachers were correlated. Therefore, 

for each teacher, residuals at one time were correlated with residuals at another time, which is a 

violation of the independence of errors. Hence, the autocorrelated error needed to be taken into 

consideration in addition to the random error (e.g., measurement errors and missing variables; 
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Hedeker & Gibbons, 2006). The autoregressive structure was used to test whether serial 

correlation needed to be taken into account.  

To answer the second part of the first research question, “What factors, such as beliefs 

and curriculum, mediate the expression of MKT in instruction?” I examined the relationship 

between teachers’ beliefs and instruction. Given that teachers’ beliefs were captured only in the 

second year of the program and could have changed throughout the program, I did not include 

beliefs in the growth model analysis; instead, I fit a linear regression model using only data from 

the final year. The reason behind this decision was that when teachers’ beliefs were treated as a 

time-varying covariate, it produced many missing data points (because teachers’ beliefs were 

captured once, and for the rest of the years, the teachers’ beliefs were missing). This led to a 

decrease in the power of analysis. Hence, I conducted a separate analysis for teachers’ beliefs. I 

regressed teachers’ scores for each instructional practices scale on teachers’ belief scores. 

Because not all 21 teachers were teaching mathematics in the final year of data collection, I 

included only teachers’ beliefs and instructional practices in the data analysis. I conducted this 

analysis to identify which instructional practices were related to teachers’ beliefs.  

 

Coding Variables 

In hierarchical linear modeling (HLM) growth models, the interpretation of the intercept 

differs depending on how the variables in the model are defined. The year variable was coded as 

0 for the first wave of data to make the intercept more meaningful. Given that 0 was in the 

possible score range for the mathematics test, teachers’ mathematics scores were not centered. 

The grade level was dummy coded because two teachers in the study were Montessori teachers 

and were teaching students in Grades 1 to 3 or Grades 4 to 6. As a result, teachers were grouped 
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into two categories: teachers who were teaching in the lower grades (Grades 1 to 3), and teachers 

who were teaching in Grades 4 to 7. Because only two teachers were teaching Grade 7, these two 

teachers were included in the latter category. As a result, each year 29% of the teachers were 

teaching in the lower grades, whereas the rest were teaching in Grades 4 and above. Teachers 

were also grouped in two categories based on years of mathematics teaching experience. 

Teachers who had fewer than 3 years of teaching experience at the beginning of the program 

were grouped in a category called “novice teacher,” whereas the rest were grouped together.12  

Teachers’ scores on instructional practice scales as well as their scores on the beliefs test 

were rescaled so that the intercept would become meaningful. Because both the scores on the 

instructional practice scales and the scores on the beliefs test ranged from 1 to 5, I made an 

adjustment by subtracting 1 from the teachers’ scores. The new range for both became 0 to 4. 

Additionally, as mentioned earlier, teachers’ MKT was assessed five times over the 

duration of the program. For data analysis, I used teachers’ scores on the LMT test administered 

at the following time points: August 2008, January 2010, June 2010, and December 2010. I did 

not use teachers’ scores on the LMT test administered in December 2008 because it was 

administered soon after the methods course, which might not reflect the knowledge the teachers 

retained. 

The linearity of the relationship between outcome variables (five instructional practice 

scales) and year as well as MKT was determined by using scatterplots. The general trend 

between the outcome variable and year (or MKT scores) for each teacher was used to determine 

                                                 
12 One might question why I did not treat the dummy-coded variable “years of teaching 
experience” as a time-varying covariate (Level 1 variable). When I treated the dummy-coded 
years of teaching experience as a time-varying covariate, the results were not different from 
those obtained when I treated the dummy-coded years of teaching experience as a Level 2 
variable. 
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whether a quadratic term was needed. This exploratory analysis suggested that no quadratic term 

was needed. 

Exploring the Second Research Question Quantitatively  

To what extent are changes in teachers’ MKT, instructional practices, or both related to 

students’ gain in achievement? To investigate how teachers’ MKT, teaching practices, or both 

were related to their students’ achievement gains, I followed an approach similar to that taken in 

the analysis of the first research question. For the analyses predicting student outcomes from 

teachers’ knowledge scores and instructional practice scale scores, I fit a series of 3-level HLM 

models to account for the fact that students were nested within teachers and time. This indicated 

that different groups of students for each teacher were included in the study (see Figure 8). 

 

Figure 8. Illustration of the three-level hierarchical linear modeling (HLM) analysis. 

I used gain scores (the difference between students’ pre- and post-ISAT scores) to 

examine the relationship between teachers MKT and instructional practices and their students’ 
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gain. Thus, I asked what the effects of teacher knowledge and teaching practice were on the 

change in students’ ISAT scores. I also added four student-level predictors (race, free or reduced 

lunch status, grade, and pre-ISAT score). As illustrated in the models below, the differences in 

students’ gains were modeled as a function of students’ race, reduced or free lunch eligibility, 

grade, and pre-ISAT scores at Level 1; a function of teachers’ MKT or instructional practices or 

both, the mean district ISAT gain, and time variables at Level 2; and a function of being a novice 

or experienced teacher at Level 3.13  

The basic model was as follows: 

Level 1: StudentISATGainitj = β0tj + β1tj*raceitj + β2jj*lowincomeitj + β3tj*preISATitj + 

β4tj*gradeitj + ritj;  

Level 2: β0tj = γ00j + γ001*timetj + γ002*instructionalpracticetj + γ003*teachermathscoretj + 

γ004*meandistrictISATgaintj + u0tj, 

  β1tj = γ10j,  

  β2tj = γ20j,  

  β3tj = γ30j; and  

Level 3: γ00j = ξ000 + ξ001 noviceteacherj + ω00j, 

γ10j = ξ100, 

γ20j = ξ200, 

γ20j = ξ300. 

Because of the high correlation among the five instructional practice scales, I decided not 

to enter teachers’ instructional practice scale scores together in the models (see Table 10). 
                                                 
13 With the same reasoning, I did not treat the dummy-coded variable “years of teaching 
experience” as a time-varying covariate in the analyses. I also looked at the interaction term 
between year in the program and being a novice or experienced teacher. The interaction term was 
not significant in any of the analyses. 
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Table 10 

Correlation Between Instructional Practices Scales Across Years 

 Year Scale Inquiry Engage Task 
Sense-
Making 

Year 0 
N = 17 

Engage .52* 
.03 
 

   

Task .70** 
.002 

.57* 

.017 
 

  

Sense-
Making 

.72** 

.001 
.58* 
.015 

.65** 

.005 
 

 

Climate .45~ 
.069 

.60* 

.01 
.48* 
.049 

.43~ 

.086 
 

Year 1 
N = 14 

     
Engage .52* 

.031 
 

   

Task .70** 
.002 

.57* 

.017 
 

  

Sense-
Making 

.72** 

.001 
.58* 
.015 

.65** 
(.005) 
 

 

Climate .45~ 
.069 

.60* 

.01 
.48* 

(.049) 
.43~ 

(.086) 
 

Year 2 
N = 12 

     
Engage .65* 

.022 
 

   

Task .46 
(.14) 

.57~ 
(.05) 
 

  

Sense-
Making 

.81** 
(.002) 

.74** 
(.006) 

.59* 
(.042) 
 

 

Climate .68* 
(.016) 

.56~ 
(.06) 

.28 
(.37) 

.52~ 
(.086) 
 

(table continues) 
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Table 10 (continued) 
 

 Year Scale Inquiry Engage Task 
Sense-
Making 

Year 3 
N = 14 

     
Engage .58* 

.031 
 

   

Task .76** 
.002 

.56* 

.04 
 

  

Sense-
Making 

.86a 

<.001 
.73** 
.003 

.63* 

.02 
 

 

Climate .89a 

<.0001 
.72** 
.004 

.66* 

.01 
.85*** 

<.001 
Note. ~ p  = < .10, * p<.05. ** p<.01. *** p<.001. a p<.0001 

I also investigated the extent to which teachers’ beliefs might be related to student 

achievement. I conducted separate analyses for teachers’ beliefs and student achievement gains. 

Because teachers’ belief scores were captured only once and students were nested within 

teachers, I used two-level HLM modeling by using data collected in the third year of the program. 

Only student-level variables and teachers’ beliefs were entered into the model.  

The basic model was as follows: 

Level 1: StudentISATGainij = β0j + β1j*raceij + β2jj*lowincomeij + β3tj*preISATij + β4j*gradeij 

+ rij; and 

Level 214: β0j = γ0j + γ01*teacherbeliefsj + u0j. 

Coding. In addition to the recoded variables for the two-level HLM analyses, several 

newly added variables in the study were recoded to make the intercept meaningful. In particular, 

students’ pre-ISAT scores were grand centered. Students’ race as coded by the district was 

regrouped under two categories: African American and White. The trends in the ISAT scores of 

                                                 
14 Due to the small sample size, teachers’ MKT and instructional practices were not included in 
the data analysis.   
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students in the multiracial, Asian, and Hispanic categories followed trends more similar to those 

of White students than to those of African American students. Hence, I grouped all students 

except the African American students together. Given that the point of interest in this part of the 

study is students’ ISAT gain, I treated grade level as a continuous variable and entered it in 

models at Level 1. Additionally, I recoded grade level by subtracting 4 so that 0 was in the 

interval range. I also included the overall ISAT gain at the district level each year to control for 

the effects of unobserved district-related factors to the extent possible. Mean ISAT gain for the 

district was grand centered.  

Exploring the research questions qualitatively. The purpose of this mixed methods 

study was complementarity, meaning that qualitative data were collected to explore the findings 

from the quantitative data. As mentioned, I conducted extra classroom observations and 

interviews to better understand the effect of MKT on instruction. Whereas quantitative data were 

longitudinal, in-depth classroom observations and interviews were only conducted during the last 

year of the program, which limited the use of classroom observations to analyze how changes in 

MKT corresponded with changes in instruction. To overcome this problem, during the 

interviews, I asked teachers how their practices changed over the duration of the program. 

Qualitative data on classroom observations were mainly used to study how teachers’ current 

level of MKT related to their current instructional practices.  

 My initial plan was to analyze the qualitative data by focusing on the instructional 

practice scales as themes and to examine how prevalent and useful those themes were as 

explanations of the effect of MKT on teachers’ practices. However, when I was observing the 

teachers, I made memos in my field notes about additional noticeable patterns and ideas to 

pursue (Bogdan & Biklen, 2003).  
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After I completed data collection, while reading over my field notes and interview 

transcripts, I found I had jotted down similar memos. These ideas were mainly related to (a) the 

quality of teachers’ analyses of students’ responses, (b) the purpose of the lessons, (c) textbook 

use, and (d) the use of lesson time. I developed initial coding schemes for the five original 

instructional practice scales as well as for these additional subthemes. While analyzing interview 

data, I also noticed similarities and differences in teachers’ reports on (e) the effects of the MKT 

gain on their teaching practices. These patterns seemed to be related to the level of teachers’ 

mathematical knowledge, and were therefore included in the qualitative data analyses. I then 

developed rules that defined these themes, and I assigned coding categories to the data (Bogdan 

& Biklen, 2003).  

By “testing” my codes against my field notes, I realized that the pattern for the Classroom 

Climate scale as well as some items in the other four instructional practice scales was weak, 

indicating that either the teachers did not mention the aspects captured in that scale during the 

interview or that the analysis of classroom observation data did not suggest a clear and consistent 

pattern. It seems that all the target teachers tried to create a welcoming environment to some 

extent, regardless of their MKT. Hence, I excluded the code for the Classroom Climate scale 

from further data analysis. Similarly, I excluded some of the items from each scale.   

For the remaining four observation scales, I found that some of the specific observation 

protocol items were more salient than others to understanding how teachers’ knowledge 

influenced instruction, and those are included in Table 11.  For instance, the inquiry-oriented 

scale consisted of 14 items, but not all 14 items meaningfully varied by teacher. As one example, 

the item “wrong answers were treated as worthwhile learning opportunities” varied across the 

observed lessons of the same teacher due to several reasons such as lesson time.  
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Table 11 

Themes Used to Analyze Qualitative Data 

Themes Data sources Questions to guide my analysis 
Inquiry-oriented 
lesson  

Interviews and 
classroom 
observations 

• To what extent did the lesson have a problem- or investigation-centered structure?  
• To what extent was mathematics portrayed as a dynamic body of knowledge 

continually enriched by conjecture, investigation, analysis, and proof or 
justification?  

• Were instructional practices consistent with investigative mathematics? 
• Did the design of the lesson incorporate tasks, roles, and interactions consistent 

with investigative mathematics? 
• Was the teacher flexible and able to take advantage of teachable moments? 
• Did students determine the correctness or sensibility of an idea or procedure 

based on the reasoning presented? 

Student engagement Interviews and 
classroom 
observations 

• Were the vast majority of the students engaged in the lesson and did they remain 
on task?  

• To what extent did students share their observations?  
• To what extent did students explain their ideas or procedures?  
• Were students willing to openly discuss their thinking and reasoning? 
• Did interactions reflect a productive working relationship among students? 

Worthwhile 
mathematical tasks 

Interviews and 
classroom 
observations 

• To what extent did tasks focus on understanding important and relevant 
mathematical concepts, processes, and relationships? 

• Did tasks stimulate complex, nonalgorithmic thinking? 
• Did the teacher choose mathematically appropriate tasks to teach concept? 

o Were the tasks appropriate for the students’ level of understanding? 

(table continues) 
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Table 11 (continued) 
 

Themes Data sources Questions to guide my analysis 
Textbook use Interviews and 

classroom 
observations 

• How closely did the teacher follow the textbook?  

Mathematical sense-
making agenda 

Interviews and 
classroom 
observations 

• What was the mathematical quality of the lesson? 
• Was the teacher able to clearly articulate what mathematical ideas and/or 

procedures that students were expected to learn? 
• Did the teacher create an environment that helped students made sense of the 

concepts that they were expected to learn? 
• To what extent did tasks create mathematically productive disequilibrium among 

students?  
• To what extent did tasks encourage the students to think beyond the immediate 

problem and make connections to other related mathematical concepts?  
• To what extent did students make generalizations regarding mathematical ideas? 
• What was the teacher’s focus when she was analyzing her student’s work? 

o Did the teacher productively probe the mathematics in students’ 
responses?15 

Purpose of the 
lesson 

Classroom 
observations 

• What was the focus of the lesson? 
o Did teachers focus on teaching only procedure, not meaning? 
o Did teachers focus on teaching procedure and meaning (i.e., why they 

were using the procedure, explaining the procedure, or both) 

(table continues) 
  

                                                 
15 This item is part of inquiry-oriented scale; however, based on my classroom observations, I realized that there is a difference in 
teachers’ focus while pushing on the mathematics in students, which seems more related to mathematical sense-making agenda. As a 
result, for qualitative analysis, this item was considered as part of mathematical sense-making agenda.  
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Table 11 (continued) 
 

Themes Data sources Questions to guide my analysis 
Use of lesson time Classroom 

observations 
• How did the teacher use the lesson time? 

o How much of the lesson time was really devoted to the teaching and 
learning of mathematics? 

o How much time was devoted to activities such cutting, coloring and 
pasting, or management? 

Teachers’ MKT 
perceptions 

Interviews  • How did teachers’ gain in MKT affect their teaching? 
o Did an MKT gain increase teachers’ self-confidence? 
o Did teachers see how mathematical ideas were connected? 

Note. MKT = mathematical knowledge for teaching. 
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Additionally, during the testing phase, I realized that my additional codes from the 

classroom observation data were closely related to some of the instructional practice scales. As 

part of the iterative process of qualitative research (Bogdan & Biklen, 2003), I subsequently 

revised the coding scheme, creating the two subcodes (purpose of the lessons and use of lesson 

time) as subcategories for the Mathematical Agenda of Sense-Making scale. Similarly, the sub-

theme, textbook use, was related to the Worthwhile Mathematical Tasks scale.  

The finished coding scheme included four of the instructional practice scales (inquiry-

oriented lesson; mathematical agenda of sense-making, with two subcategories, namely, purpose 

of lessons and use of lesson time; worthwhile mathematical tasks, with a subcategory of textbook 

use; and student engagement), and one additional theme that captured teachers’ perceptions of 

the effect of their MKT gain on teaching practices (hereafter called “teachers’ MKT perceptions.”  

Most of the additional themes emerged during my classroom observations and during the 

transcription of my field notes and interviews. Only “teachers’ MKT perceptions” emerged from 

the interview data. Table 11 summarizes the main themes (four classroom observation scales) as 

well as the additional subthemes that emerged during my classroom observations and during the 

transcription of my field notes and interviews. Table 11 also includes the questions that 

ultimately guided my analysis of the target teachers’ instructional practices. When I was 

analyzing teachers’ interviews and classroom observations, I closely followed the relevant items 

on each of the four instructional practice scales. However, as mentioned earlier, some items were 

excluded or rephrased to capture the qualitative data more accurately.  

While analyzing data from each teacher, I answered each of the questions listed in Table 

11. I searched through my field notes and interview data to find information related to these 

questions. Because I observed these teachers’ mathematics lessons several times and because 
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there could be some variation in individual teachers’ instruction in each observed lesson, I only 

focused on the common aspects of each individual teacher in all the observed lessons. To 

increase the reliability of my approach, I provided a deep description of the observed lessons 

(Eisenhart, 1988) and used teachers’ reports of their instructional practices from the interview. 

More specifically, if the teacher’s typical evaluation of her students’ work included only one-

word comments, she might also mention during the interview how she provided feedback on her 

students’ work. I then included her example from the interview to account for all the data in 

some way.  

I followed a somewhat different approach for the three additional themes: use of lesson 

time, purpose of the lesson, and effect of MKT gain on instruction. For each individual teacher, I 

computed the percentage of lesson time devoted to mathematics-related activities. For each 

teacher, I computed the total amount of time used for mathematics and mathematics-related 

activities and divided that amount by the total amount of lesson time. The reason behind this 

quantification of qualitative data was to more concretely illustrate how teachers spent their 

mathematics lesson time and to allow for easier comparisons among teachers. For a similar 

reason, for the “purpose of the lesson” theme, I coded each lesson based on the primary purpose 

of the lesson, as well as whether it was designed to teach a procedure or teach the meaning 

behind the procedure. For each target teacher, all the observed lessons had a similar focus, 

meaning that each teacher consistently focused on procedures or on teaching meaning behind the 

procedures. Each lesson used in the portraits illustrated the purpose of the lesson. For the theme 

“teachers’ MKT perceptions,” I report only the most prevalent and common changes teachers 

listed because of the gain in their MKT.  
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As summarized here, my main focus on qualitative analysis was the relationship between 

teachers’ mathematical knowledge and instructional practices. However, quantitative analyses 

(3-level MLM) also included the relationship among teachers’ mathematical knowledge, 

instructional practices, beliefs, and student achievement gains. Unfortunately, I did not collect 

qualitative data from teachers’ students, which limited my qualitative analysis on how teachers’ 

mathematical knowledge and instructional practices were associated with student achievement. I 

generally took notes regarding overall students’ behaviors whether most of the students were on 

task or participating the lessons or to what extent the major behavior problems caused 

interruption in observed lessons. I also visited earlier years’ field notes to find information 

regarding students’ behaviors and attention to the classroom discussion. I also used teachers’ 

interview data to understand students’ mathematical comprehension at the classroom level. Since 

I had limited data related to students, I only focused on the “significant quantitative results” 

while analyzing qualitative data for this part of the study. This approach is somewhat different 

from what I did for the qualitative analyses on MKT, beliefs, and instruction in that I analyzed 

quantitative and qualitative data separately, while reporting qualitative analysis, I typically 

focused on the patterns revealed in quantitative findings. However, for analysis on how teachers’ 

MKT and instructional practices were associated with their student learning, I used qualitative 

data first and based on the quantitative findings, I revisited both classroom observation and 

interview data to understand the existing quantitative relationships. 

In this chapter, I have detailed the methodological approaches of this study. In the 

following two sections, I present the findings of the study, starting with results of the quantitative 

analysis, followed by portraits of the eight teachers.  
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Chapter 4 

A Quantitative Analysis of the Relationship Among Teachers’ Knowledge of  
Mathematics, Instructional Practices, Beliefs, and Student Achievement 

In this chapter, I present the study results pertaining to the two research questions, which 

focus on the relationships among teachers’ mathematical knowledge, beliefs, instructional 

practices, and student achievement. Hence, the structure this chapter takes is as follows. I begin 

by presenting the results of the first research question which was aimed to address the extent to 

which the change in teachers’ knowledge of mathematics was related to change in their 

instructional practices. Then I present results of the second research question, which was whether 

the changes in teachers’ math knowledge and instructional practices would predict their students’ 

ISAT gains. I also report the extent to which teacher beliefs corresponded with teachers’ 

instructional practices as well as students’ ISAT gains.  

Part I—The Relationship between Teachers’ MKT and Their Instructional Practices 

In this section, I begin with descriptive statistics of the variables used in this part of the 

study. As mentioned in the Methods Chapter, I have five different instructional practices scales 

(inquiry-oriented lesson, student engagement, mathematical agenda of sense-making, worthwhile 

mathematical tasks, and classroom climate). To predict teachers’ practice from teachers’ 

knowledge of mathematics, I ran a separate analysis for each scale. Hence, I report the findings 

for each instructional practice scale separately.  

Descriptive statistics. Table 12 presents the means and standard deviations of teachers’ 

scores on the mathematics test and instructional practices scales for each year as well as for the 

beliefs survey administered in the final year. The teachers began the program with a mathematics 

test score of −.35 logits, indicating ample room for growth in their mathematical knowledge. For 
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the duration of the program, based on the results of the F-test, teachers’ mathematical knowledge 

changed significantly (F (3, 55) = 33.55, p < .0001) as well as several aspects of their 

instructional practices did. Specifically, there were significant changes in teachers’ inquiry-based 

teaching (F (3,33) = 3.22, p = .035), teachers’ mathematical-sense making agenda (F (3, 33) = 

3.42, p = .028), the use of worthwhile mathematical tasks (F (3,33) = 4.70, p  = .008), and 

classroom climate (F (3,33) = 4.72, p = .008). Only teachers’ scores on the student engagement 

scale did not change significantly (F (3,33) = .80, p = .50).  

Table 12 

Descriptive Statistics for the Variables  

Variable Year 0 Year 1 Year 2 Year 3 
Mathematics score −.35 

(.69) 
 

.31 
(.78) 

.19 
(.68) 

.26 
(.75) 

Inquiry-oriented lesson design 1.36 
(.50) 
 

1.77 
(.55) 

1.43 
(.68) 

1.68 
(.95) 

Student engagement 2.12 
(.44) 
 

2.32 
(.51) 

2.23 
(.70) 

2.17 
(.69) 

Worthwhile mathematical task 1.46 
(.62) 
 

1.79 
(.51) 

1.36 
(.80) 

2.18 
(.83) 

Mathematical sense-making agenda 1.39 
(.39) 
 

1.85 
(.33) 

1.42 
(.65) 

1.63 
(.78) 

Classroom climate 2.43 
(.43) 

2.87 
(.52) 

2.90 
(.38) 

2.62 
(.50) 
 

Beliefs    2.48 
(.54) 

Note. Numbers in parentheses are standard deviations.  

Of the variables used in this study, only teachers’ beliefs were captured at one point in 

time during the implementation of the program. In the summer of the second year of the program, 

the teachers were surveyed to capture the extent to which their views were aligned with the 
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problem-solving view of mathematics, in contrast to the traditional way of teaching. Given that 

the scores for this survey can range from 0 to 4 and that a higher score indicates more alignment 

with the problem-solving view of mathematics, the score of 2.48 on the Beliefs survey indicated 

that, on average, teachers’ held a standards-based view of mathematics to a moderate extent.  

In summary, teachers’ mathematical knowledge and instructional practices changed 

during the program. Given that some teachers were not observed each year, the summary 

statistics do not provide sufficient information about how individual teachers’ practices and 

mathematical knowledge changed over the years, but the descriptive statistics provide an overall 

idea of the general trends in the data each year. Finally, the teachers seemed to hold a moderate 

view of teaching through problem solving. In the following sections, I present how the change in 

teachers’ instructional practices captured in the five scales mentioned was associated with their 

gains in mathematical knowledge and beliefs about teaching mathematics.  

The relationship among teachers’ inquiry-oriented lessons, MKT, and beliefs. In this 

section, I present the results of the relationship among teachers’ scores on the inquiry-oriented 

lesson scale, mathematics test, and beliefs survey. As mentioned earlier, since teachers’ beliefs 

were measured only at the end of second year, I run separate linear regression analyses for 

teachers’ beliefs and each instructional practice scale.  

Table 13 presents the results of the models in which teachers’ scores on the inquiry-

oriented lesson scale were predicted from teachers’ MKT scores, year, grade level (dummy 

coded), and a dummy coded indicator of being an experienced teacher.  Based on the results of 

the null model, 66% of the total variation in inquiry-oriented lesson scale, which captures the 

extent to which teachers created a problem-based oriented and student-investigation centered 

lessons, was attributable to differences between teachers while 34% of the variation was 
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attributable to differences within teachers.  This finding suggests that, on average, there was 

important variation in lesson design across teachers. The residual correlation was not significant 

for any of the models for inquiry-oriented lesson design, which indicates that the correlation 

between errors is not significant. Results of Model 1 suggest that teachers’ MKT scores were a 

significant predictor of their scores on the inquiry-oriented lesson design. Adding the dummy 

coded variables “grade level” and “being an experienced teacher” did not improve the model 

(Model 2), as neither was a significant predictor of inquiry-oriented lesson design. This could be 

partly due to the small number of teachers in these categories. Model 2 had the bigger AIC and 

BIC values, indicating that Model 1 would be preferred. The deviance test for Model 2 suggested 

that inclusion of grade level and experience or new teacher did not contribute significantly to the 

final model (p = .78). 
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Table 13  

Results of the Linear Growth Models for Inquiry-Oriented Lesson 

Variable Null Model 1 Model 2 
Fixed effect 

Intercept 1.56*** 
(.14) 
(.0005) 

1.59**** 
(.15) 
<.0001 

1.44 
(.29) 

p = .148 

Year   -.04 
(.05) 
.42 

-.04 
(.05) 
.44 

MKT Score  .36** 
(.13) 

p = .008 

.36** 
(.13) 
.009 

Experienced Teacher   .14 
(.32) 
.67 

Grade (1-3)   .14 
(.29) 
.64 

Variance component 

Level 1: Within-person .16*** 
(.04) 

p<.0001 

.13*** 
(.03) 
<.0001 

.13*** 
(.03) 
<.0001 

Level 2: Between person .31** 
(.12) 

p = .005 

.31** 
(.11) 

p = .004 

.30** 

.11 
 = .003 

Fits statistic 

Deviance 93.2 85.6 85.1 

AIC 99.2 95.6 99.1 

BIC 102.4 100.8 106.4 

  Level-1 Added Level-2 Added 
Note.  AIC = Akaike’s information criterion; BIC = Bayesian information criterion. 
~ p  = < .10, *p < .05, **p < .01, ***p < .001, ****p < .0001.16 

                                                 
16 Due to small sample size, .10 was used as a cut-off value in this study.  
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Model 1, including only teachers’ mathematics score and years, explained 18.8% of 

variation in individual teacher’s scores on inquiry-oriented lesson scale. Teachers’ math 

knowledge explained 14.7% of the variance in individual teachers’ scores on the inquiry-based 

lesson scale. According to Model 1, after controlling for teachers’ mathematical knowledge and 

year, the intercept for the inquiry-based lesson scale was still significantly random; indicating 

that teachers’ scores on this scale were different from each other at the beginning of the program 

regardless of their math knowledge. A 1-logit increase in individual teachers’ mathematics score 

was associated with a .36-point increase in their score on inquiry-oriented lesson design (p 

= .008).  

The separate Year 3 linear regression analysis using only teachers’ beliefs score as a 

predictor of the inquiry-based lesson scale score indicated that a one unit-increase in teachers’ 

beliefs score was associated with a .85 increase in teachers’ scores on inquiry-oriented lesson 

design, which was significant at p = .046 (N = 14). Additionally, 23.4% of the variation between 

teachers’ scores on inquiry-oriented lesson design was explained by teachers’ beliefs score.  

Figure 9 displays the relationship between gains in teachers’ mathematics knowledge as 

measured at 4 time points and their estimated linear regression scores on inquiry-oriented lesson 

design. As illustrated in Figure 9, each teacher is represented by one linear regression line that 

summarizes the relationship between their MKT gain score and their score for inquiry-oriented 

lesson design over time. Given that most of the lines slope upward, it is not surprising that there 

is an overall positive association between teachers’ knowledge and their use of inquiry17. 

                                                 
17 One might wonder why I did not use random slope for teachers’ MKT given that there seems 
some variation in slopes. For any of the instructional practices scales, either deviance test 
indicated no significant improvement in the model, or models did not converge when random 
slopes were included.  
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Figure 9. Individual linear regression models for inquiry-oriented lesson design by change in 
teachers’ mathematical knowledge.  

Note. Each color represents a different teacher. 18 
 

The relationship among teachers’ student engagement, MKT, and beliefs. Table 14 

presents the results of the models, in which teachers’ scores for the Student Engagement scale 

served as the outcome. Recall that the student engagement scale captures the extent to which 

students shared and explained their thinking and productively worked with their peers. The null 

model indicates that, 68.3% of the total variation in student engagement was attributable to 

differences between teachers while 31.2% of the total variation was attributable to differences in 

individual teachers. This finding suggests that, on average, there was important variation in 

student engagement across teachers. Similar to the models for inquiry-oriented lesson design, 

autocorrelation was not significant for any of the models tested. Results of Model 1 and Model 2 

suggest that none of the fixed effects were significant. Moreover, the deviance tests indicated 

                                                 
18 I used the same color for each teacher in all figures, so that the reader has a chance to see how 
individual teacher’s MKT gain was associated with changes in their scores on different scales.  
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that Model 1 and 2 were not statistically different from the null model, suggesting that none of 

the predictors in the study helped explain the variation in the Student Engagement scale within 

and between teachers. In sum, students’ engagement did not change significantly over the years, 

and none of the predictors, including teachers’ mathematical knowledge, grade level, and 

experience level, were significantly related to student engagement. Furthermore, teachers’ beliefs 

scores were also unrelated to their scores on the student engagement scale (p = .31). 

Table 14 

Results of the Linear Growth Models for Student Engagement 

Variable Null Model 1 Model 2 
Fixed effect 

 
Intercept 2.15*** 

(.12) 
<.001 

2.17**** 
(.14) 
<.0001 

 

1.70** 
(.25) 
.01 

Year   -.03 
(.05) 
.59 

-.02 
(.05) 
.71 
 

MKT Score  .12 
(.12) 
.33 

.09 
(.12) 
.46 
 

Experienced Teacher   .45 
(.27) 
.11 
 

Grade (1-3)   .39 
(.24) 
.12 

Variance component 
 

Level 1: Within-person .122*** 
(.03) 
<.0001 

.117 
(.029) 
<.0001 

.117 
(.029) 
<.0001 

 
(table continues) 
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Table 14 (continued) 
 

Variable Null Model 1 Model 2 
Level 2: Between person .263** 

(.109) 
.008 

.277** 
(.114) 
.008 

.199* 
(.087) 
.011 

Fits statistic 
 

Deviance 80 79 73.4 
AIC 86 89 87.4 
BIC 89.1 94.3 94.7 
  Level-1 Added Level-2 Added 

Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion. 
~ p  = <.10, *p < .05, **p < .01, ***p < .001, ****p < .0001. 

The Figure 10 also illustrates the weak relationship between student engagement and 

teachers’ mathematical knowledge gains. The slopes for individual teachers seem gentle slope.  

 
Figure 10. Individual linear regression models for student engagement by change in teachers’ 
mathematical knowledge. 

The relationship among teachers’ worthwhile tasks choices, MKT, and beliefs. As 

shown in Table 15, the results of the models, in which teachers’ scores for the Worthwhile 

Mathematical Task scale serve as the outcome, suggest no relationship between teachers’ MKT 
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scores and their scores on the worthwhile mathematical tasks scale, which captures the extent of 

tasks’ stimulating non-algorithmic thinking. 28.9% of the total variation on the Worthwhile 

Mathematical Task scale lay between the teachers (in contrast to 34% for lesson structure and 

31.2% for student engagement)19. Results of Model 1 and 2 suggest that teachers’ MKT score, 

year, grade level, and dummy coded variable of being a novice or experienced teacher were not 

significant predictors of teachers’ task choice. Furthermore the deviance test indicates that the 

random intercept was significant (p = .068), indicating that after controlling teachers’ MKT, 

grade level taught, and experience level, teachers’ scores on worthwhile mathematical tasks were 

found to be different from one another at the beginning of the program.  

Table 15 

Results of the Linear Growth Models for Worthwhile Mathematical Task Use 

Variable Null Model 1 Model 2 
Fixed effect 

Intercept 1.68a 

(.13) 
<.0001 

1.51*** 
(.16) 
.006 

1.59~ 
(.29) 
.061 

Year   .13 
(.08) 
.13 

.12 
(.08) 
.15 

MKT Score  .16 
(.15) 
.31 

.19 
(.16) 
.25 

Experienced Teacher   -.16 
(.30) 
.59 

Grade (1-3)   .14 
(.26) 
.58 

(table continues) 
  
                                                 
19 When the findings from the scales examined previously were aligned, the autocorrelation was 
not significant in any of the models tested for the Worthwhile Mathematical Task scale. 
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Table 15 (continued) 
 

Variable Null  Model 1 Model 2 
Variance component 

Level 1: Within-person .402 
(.099)a 

<.0001 

.358 
(.085)*** 
<.001 

.358 
(.085)*** 
<.001 

 
Level 2: Between person .163~ 

(.124) 
.095 

.155~ 
(.104) 
.068 

.147~ 
(.10) 
.072 

Fits statistic 
Deviance 124.6 118.7 118.2 

 
AIC 130.6 128.7 132.2 

 
BIC 133.7 133.9 139.5 

 
  Level-1 Added Level-2 Added 

Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion. 
~ p = <.10, *p < .05, **p < .01, ***p < .001, a p < .0001. 

The regression of teachers’ scores on the Worthwhile Mathematical Task on teachers’ 

belief scores indicated that a one-point increase in teachers’ beliefs scores corresponded with 

a .64-point increase in their task scale (p = .092). Teachers’ beliefs explained 21.9% of the 

variation in the worthwhile task scores between teachers.  

Figure 11 below illustrates the lack of relationship between the change in teachers’ 

knowledge of mathematics and their quality of task choice. It seems that for some teachers, there 

is a negative relationship between their math score and their worthwhile mathematical task scale 

score, while this relationship is positive for some other teachers20.  

                                                 
20 As mentioned earlier, mostly due to small sample size, I could not include a random slope for 
the effect of teachers’ MKT.  
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Figure 11. Individual linear regression models for worthwhile mathematical task by change in 
teachers’ mathematical knowledge. 
 

The relationship among teachers’ mathematical sense-making agenda, MKT, and 

beliefs. Results of the models tested for the Mathematical Sense-Making Agenda scale are 

presented in Table 16.21 Based on results of the null model, 30.7% of the total variation in 

teachers’ scores on the Mathematical Agenda scale lay between teachers. Recall that 

mathematical agenda measures the “mathematical quality” of the observed lessons, which is the 

extent of which teachers were able to articulate what mathematical ideas students were expected 

to learn and students and students were able to see connection between and make generalizations 

regarding the ideas.  The results of Model 1 suggest that the effect of teachers’ MKT score on the 

Mathematical Agenda scale was marginally significant (p = .069). Furthermore, results of Model 

2 suggest that only the teachers’ MKT score was a significant predictor of their score on the 

sense-making agenda scale. As shown in Table 16, Models 1 and 2 were not statistically 

                                                 
21 The autocorrelation was not significant for any of the models, so it was removed from the 
analysis and reports. 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

Change in MKT

W
or

th
w

hi
le

 M
at

he
m

at
ic

al
 T

as
k



 98 

different from the null model. However, the model that included only teachers’ MKT score was 

statistically different from the null model (p = .08).  

Table 16 

Results of the Linear Growth Models for Mathematical Sense-Making Agenda 

Variable Null Model 1 Model 2 
Fixed effect 

 
Intercept 1.57a 

(.10) 
<.0001 

1.61a 

(.13) 
<.0001 

1.51* 
(.24) 
.049 
 

Year   -.04 
(.06) 
.54 

-.03 
(.06) 
.58 
 

MKT Score  .23~ 
(.12) 
.069 

.22~ 
(.13) 
.094 
 

Experienced Teacher   .12 
(.25) 
.64 
 

Grade (1-3)   .03 
(.21) 
.88 

Variance component 
 

Level 1: Within-person .228a 

(.005) 
<.0001 

.202a 

(.048) 
<.0001 

.202a 

(.048) 
<.0001 

 
Level 2: Between person .101~ 

(.07) 
.077 

.121* 
(.07) 
.046 

.119* 
(.071) 
.045 

 
(table continues) 
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Table 16 (continued) 
 

Variable Null Model 1 Model 2 
Fits statistic 

 
Deviance 93.3 89.9 89.6 

 
AIC 99.3 99.9 103.6 

 
BIC 102.4 105.1 111 

 
  Level-1 Added Level-2 Added 

Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion. 
~ p =  < .10, *p < .05, ***p < .001, a p < .0001. 
 

Model 1 explained only 11% of the variation within individual teachers’ scores on the 

sense-making agenda scale. When teachers’ grade level, their status as a novice or experienced 

teacher, their mathematical knowledge, and the effects of time (year) were controlled for, the 

intercept differed significantly for teachers, indicating that teachers’ scores on the Mathematical 

Sense-Making Agenda were different at the beginning of the program. With this model, a 1-logit 

increase in teachers’ mathematical knowledge was related to an increase of .23 on the sense-

making agenda scale.  

Separate analysis of the relationship between teachers’ beliefs and the Mathematical 

Agenda of Sense-Making scale indicated that a 1-point increase in teachers’ belief scores was 

marginally associated with a .58-point increase the Mathematical Agenda of Sense-Making scale 

(p = .10). Teachers’ belief scores explained 21% of the variation in teachers’ scores on the 

Mathematical Agenda of Sense-Making scale.  

The relationship between individual teachers’ gain in mathematical knowledge and the 

change in their Mathematical Sense-Making Agenda scores is represented in Figure 12. For most 
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of the teachers, the gain in mathematical knowledge appeared to be positively related to the 

change in their scores on the sense-making agenda scale.22  

 

Figure 12. Individual linear regression models for the Mathematical Agenda of Sense-Making 
scale by the change in teachers’ mathematical knowledge for teaching (MKT). 
 

The relationship among teachers’ classroom climate, MKT, and beliefs. Results of 

the models tested for the Classroom Climate scale, capturing the extent to which teachers created 

                                                 
22 As seen in Figure 12 and the figures for the other four instructional practice scales, the same 
two teachers were outliers. A negative relationship was observed between the gain in these 
teachers’ MKT scores and their instructional practices. From the perspective of faculty and RAs 
involved with the master’s degree program, these two teachers stood out, appearing less engaged 
and less conscientious than most other teachers in the program. The teaching position of one of 
these two teachers was terminated in the third year of the program because of her students’ 
limited progress on the ISAT test. Her class tended to be dominated by serious student 
behavioral problems. She told me that she had decided not to interfere with her students’ 
behaviors after she had been hit while trying to stop two students from fighting. I cannot 
speculate about the reasons underlying the other teacher’s lack of engagement; she often stood 
out because of our difficulty in scheduling observations with her and her relatively limited 
engagement  in the master’s program courses.  Due to both teachers’ lack of enthusiasm for the 
data collection process, I was unable to collect further data to examine possible reasons for their 
lack of engagement as teachers.  
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a welcoming environment and respected students’ ideas, are presented in Table 17.23 Results of 

the null model indicated that 21% of the total variation in teachers’ scores on the Classroom 

Climate scale lay within teachers. Including the year and teachers’ MKT scores as predictors in 

the null model resulted in teachers’ MKT scores being significantly related to an increase in their 

scores on the Classroom Climate scale (p = .015). Moreover, grade level and the dummy-coded 

variable for the indication of teachers’ experience level did not contribute significantly to the 

model (p = .16).  

Within the individual teachers’ scores, Model 1 explained 21% of the variation in their 

scores on the Classroom Climate scale. Models 1 and 2 did not noticeably help explain the 

difference between teachers; however, it is important to mention that the variation between 

teachers on the Classroom Climate scale was subtle. With this model, a 1-logit increase in 

individual teachers’ knowledge was related to an increase of .26 on the teachers’ Classroom 

Climate scale. 

Separate analysis of teachers’ scores on the Classroom Climate scale for teachers’ beliefs 

regarding the teaching and learning of mathematics indicated no significant relationship between 

teachers’ belief score and their Classroom Climate score (p = .124). 

 

                                                 
23 The autocorrelation was not significant for any of the models, so it was removed from the 
analysis and reports. 
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Table 17 

Results of the Linear Growth Models for Classroom Climate 

Variable Null Model 1 Model 2 
Fixed effect 

 
Intercept 2.67*** 

(.08) 
 < .001 

2.64a 

(.11) 
 < .0001 

2.45a 

(.18) 
 < .0001 

 
Year   .01 

(.05) 
.87 

.01 
(.05) 
.78 
 

MKT Score  .26* 
(.10) 
.015 

.24* 
(.10) 
.023 
 

Experienced Teacher   .12 
(.18) 
.51 
 

Grade (1-3)   .28 
(.16)  
.092 

Variance component 
 
Level 1: Within-person .188*** 

(.043) 
 < .0001 

.149*** 
(.036) 

 < .0001 

.149*** 
(.036) 

 < .0001 
 

Level 2: Between person .05 
(.041) 
.11 

.072~ 
(.05) 
.07 

.05~ 
(.04) 
.10 

Fits statistic 
 
Deviance 77.4 69.9 66.2 

 
AIC 83.4 79.9 80.2 

 
BIC 86.5 85.1 87.5 

 
  Level-1 Added Level-2 Added 

 Note. AIC = Akaike’s information criterion; BIC = Bayesian information criterion. 
~ p =  < .10, *p < .05, ***p < .001, a p < .0001. 
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The relationship between each individual teacher’s gain in mathematical knowledge and 

the change in teachers’ scores on the Classroom Climate scale is represented in Figure 13. For 

most of the teachers, the gain in mathematical knowledge seemed to be positively related to the 

change in their scores on the Classroom Climate scale.  

 
Figure 13. Individual linear regression models for classroom climate by change in teachers’ 
mathematical knowledge. 

Summary of the relationship among teachers’ instructional practices, MKT, and 

beliefs. The results indicated that, compared with the initial baseline data, teachers made 

significant changes on the Mathematical Knowledge, Inquiry-Oriented Lesson Plans, 

Worthwhile Mathematical Tasks, Mathematical Agenda of Sense-Making, and Classroom 

Climate scales. Only teachers’ scores on the Student Engagement scale did not change 

significantly over the duration of the program. The gain in teachers’ mathematical knowledge 

seemed to be associated with the quality of the inquiry-oriented lesson design, mathematical 

sense-making agenda, and classroom climate (see Figure 14). Teachers with higher relative gains 

in their mathematical knowledge seemed to design their lessons plans to be more closely aligned 
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with inquiry-based teaching (β = .39), create a more positive classroom environment (β = .40), 

and have a clearer mathematical agenda that involved pushing their students to think hard about 

the mathematical ideas being taught (β = .30). Additionally, teachers’ beliefs played a positive 

and significant role in their scores on the Inquiry-Oriented Lesson Plans (β  = .55), Worthwhile 

Mathematical Tasks (β = .47), and Mathematical Agenda of Sense-Making scales (β = .45). Of 

the five instructional scales, only the Student Engagement scale could not be explained by either 

the teachers’ mathematical knowledge or their beliefs.  

 

Figure 14. Standardized regression coefficients for the significant relationships among 
mathematical knowledge for teaching (MKT), beliefs, and instructional practices. 
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Part II—Linking Teachers’ MKT and Instructional Practices to Their  
Students’ Achievement Gains 
 

The previous section provided findings regarding the relationship among teachers’ 

knowledge of mathematics, beliefs, and instructional practices. In this section, I present results of 

the analysis of the extent to which teachers’ knowledge of mathematics, instruction, and beliefs 

were related to student achievement gains (if at all). As discussed in the first section, I analyzed 

data using 2-level linear growth models with time-varying covariates. Including student-level 

achievement data in the analysis added one more level to the growth model.  

This section is also organized under two main headings. First, I provide descriptive 

statistics regarding the student-level variables used in the study, such as students’ ethnic 

background and income level indicators. To better understand trends in student achievement, I 

also report the average ISAT gain for all students in the district over time. Finally, I present the 

models in which teachers’ instructional practices, mathematical knowledge, and beliefs were 

used as predictors of student achievement gains.  

Descriptive statistics for the student-level variables. As seen in Table 18, a total of 873 

students were included in the data analysis. Again, only students in the fourth grade and above 

were included in the data analysis because ISAT is administered to students in the third grade 

and above, and third graders as well as their teachers were not included in data analysis because 

these students did not have baseline ISAT scores. Additionally, I had access to only the 

partnership district ISAT data, which limited me from including two other teachers from a 

surrounding district in this part of the analysis. Another point that should be clarified is that each 

year, the teachers had a different body of students, so the results should be interpreted as average 

gains associated with the teachers.   
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Table 18 
 
Demographic Information for the Participant Students 
 

Time N 
African 

American (%) White (%) 
Low-income 
eligible (%) 

Year 0 231 53.3 46.8 70.6 

Year 1 225 53.3 46.7 68.4 

Year 2 225 58.2 41.8 72.9 

Year 3 192 55.2 44.8 76.0 

Overall 873 55.0 45.0 71.8 
 
Each year, more than two thirds of the students were eligible for reduced-price lunches, 

and almost half of the students were African American (see Table 18). As mentioned in the 

Methods chapter, I grouped White, Asian, Hispanic, and multiracial students into one category 

and African American students into another. As explained previously, this was done because the 

ISAT gains of Asian, Hispanic, and multiracial students were more similar to those of White 

students than to those of African American students.  

The average ISAT gain of the participant teachers’ students in the year before the 

program began was 13 points. As seen in Table 19, the average gain for the teachers in the first 

and third years of the program was less than in the year before the program started. However, all 

students in the district had gained fewer points on average in those years (see Figure 15). 

Additionally, as shown in Figure 15, the mean gain of the participant teachers’ students increased 

more than did the mean gain of the students in the district after the first year of the program. 
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Table 19 
 
Average Illinois Standards Achievement Test (ISAT) Gains of the Students of the Teachers in the 
Program 
 

 Time N 
Mean 
(SD) Minimum Maximum 

Year 0 231 13 
(16.03) 

 

−29 61 

Year 1 225 11.3 
(16.09) 

 

−31 74 

Year 2 225 15.68 
(13.83) 

 

−21 41 

Year 3 192 12.31 
(13) 

 

−30 58 

Overall 873 13.1 
(14.93) 

−31 74 

 

 

Figure 15. Average Illinois Standards Achievement Test (ISAT) gains of the students of teachers 
participating in the program compared with the gains of students in the partnership district. 
 

The relationships among teachers’ MKT, instructional practices, and student 

achievement gains. Before presenting the results of the analysis of students’ ISAT gains in 
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relation to teachers’ mathematical knowledge and instructional practices, it is important to clarify 

what variables were used in the study. As discussed in Chapter 3, 3-level multivariate growth 

models were used to analyze the data. Students were nested within time because the students 

were different each year. Time (i.e., year in the program) was nested within teacher because the 

teachers were observed and tested annually (see Figure 16). For Level 1, four variables were 

used: students’ pre-ISAT scores, grade level, race (dummy coded), and a low-income indicator 

(dummy coded as well). At the time level (Level 2), eight variables were used: year in the 

program, teachers’ scores on the five instructional practice scales, teachers’ MKT scores, and 

mean ISAT gain for the district. As discussed previously, because of the high correlations among 

the instructional practice scales, each scale was entered into the models individually. Finally, at 

the teacher level (Level 3), only the dummy-coded variable for the indicator of being an 

experienced or novice teacher was included.24  

                                                 
24 Although teachers’ years of experience changed over time, the interaction term between their 
dummy-coded experience and year was not significant. Furthermore, treating years of teaching 
experience as a time-varying covariate (i.e., Level-2 variable) did not noticeably change the 
results.  
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Figure 16. Illustration of the 3-level hierarchical linear modeling analysis. MKT = mathematical 
knowledge for teaching; ISAT = Illinois Standards Achievement Test. 
 

Given that teachers’ beliefs were measured only once, linear regression analyses were 

conducted separately for teachers’ beliefs and students’ ISAT gains. Only student-level variables 

and teachers’ belief scores were included in those linear regression analyses because of the small 

sample size.  

Table 20 presents the models tested to predict students’ ISAT gains. Model 1, which 

includes only student-level variables, indicates that students’ pre-ISAT scores and their race 

were significantly and negatively related to their gain scores. In particular, a 1-point increase in 

students’ pre-ISAT scores was related to a decrease of .14 in their gain scores (p < .001). White 

students gained 2.3 points more than African American students (p = .054) on average. Students’ 

grade level and their income level were not significant predictors of their ISAT gains.  
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Table 20 
 
Effects of Teachers’ Mathematical Knowledge for Teaching (MKT) and Instructional Practices on Students’ Illinois Standards 
Achievement Test (ISAT) Gain 
 

Variable 
Null 

model 
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
Model 

7 
Model 

8 
Model 

9 
Model 

10 
Model 

11 
Model 

12 
Fixed effects 

 
Intercept 14.04a 

(1.64) 
 < .0001 

14.00a 

(2.18) 
 < .0001 

-22.50~ 
(11.46) 

.076 

-23.33~ 
(12.99) 

.10 

-43.04** 
(13.14) 

.007 

-25.08~ 
(13.36) 

.09 

-26.46 
(12.22) 

.053 

-24.15 
(13.72) 

.11 

-23.33~ 
(13.02) 

.10 

-41.72* 
(13.5) 

.01 

-23.26 
(13.63) 

.12 

-26.05~ 
(12.36) 

.06 

-24.08 
(13.72) 

.11 
 

Pre-ISAT  -.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 

-.14*** 
(.02) 

 < .0001 
 

African 
American 

 2.35~ 
(1.07) 

.053 

2.32~ 
(1.07) 

.054 

-2.66* 
(1.09) 

.035 

-2.56* 
(1.09) 

.041 

-2.60* 
(1.09) 

.038 

-2.57* 
(1.09) 

.041 

-2.62* 
(1.09) 

.04 

-2.66* 
(1.09) 

.035 

-2.55* 
(1.09) 

.04 

-2.60* 
(1.09) 

.038 

-2.57* 
(1.09) 

.041 

-2.62* 
(1.09) 

.038 
 

Ineligible 
for lunch  
subsidy 

 .21 
(1.18) 

.85 

.26 
(1.17) 

.83 

.22 
(1.19) 

.86 

.23 
(1.19) 

.85 

.24 
(1.19) 

.85 

.27 
(1.19) 

.83 

.24 
(1.19) 

.85 

.22 
(1.19) 

.86 

.25 
(1.19) 

.84 

.26 
(1.19) 

.83 

.28 
(1.19) 

.82 

.23 
(1.19) 

.85 
 
Grade 

  
.48 

(1.07) 
.65 

 
.32 

(1.01) 
.75 

 
1.02 

(1.04) 
.33 

 
.38 

(.98) 
.70 

 
.96 

(1.05) 
.36 

 
.71 

(.105) 
.50 

 
.82 

(1.04) 
.43 

 
1.02 

(1.05) 
.33 

 
.36 

(.99) 
.72 

 
.91 

(1.05) 
.39 

 
.69 

(1.05) 
.51 

 
.84 

(1.04) 
.42 
 

Year   5.53* 
(2.17) 

.01 

5.13** 
(1.93) 

.008 

5.27* 
(2.04) 

.01 

5.19* 
(2.02) 

.01 

5.55** 
(1.96) 

.005 

6.42** 
(2.22) 

.004 

5.12* 
(2.2) 

.02 

5.59* 
(2.18) 

.01 

5.74* 
(2.22) 

.01 

5.74** 
(2.17) 

.008 

6.36** 
(2.29) 

.006 
 

(table continues) 
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Table 20 (continued) 
 

Variable 
Null 

model 
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
Model 

7 
Model 

8 
Model 

9 
Model 

10 
Model 

11 
Model 

12 
Year2   -1.58* 

(.69) 
.02 

-1.51* 
(.64) 
.02 

-1.46* 
(.67) 
.03 

-1.53* 
(.67) 
.02 

-1.61* 
(.65) 
.01 

-1.87* 
(.72) 
.01 

-1.51* 
(.68) 
.03 

-1.52* 
(.69) 
.03 

-1.64* 
(.70) 
.02 

-1.65* 
(.68) 
.02 

-1.86* 
(.73) 
.01 
 

MKT   -1.36 
(1.67) 

.42 

     .02 
(1.82) 

.99 

-.67 
(1.46) 

.65 

-1.0 
(1.74) 

.57 

-.37 
(1.74) 

.83 

.22 
(1.91) 

.91 
 

IOL 
 

   -2.97 
(1.91) 

.12 

    -2.98 
(1.99) 

.14 

    

SE     3.03* 
(1.37) 

.027 

    3.00* 
(1.37) 

.03 

   

MASM      -1.88 
(1.39) 

.18 

    -1.93 
(1.39) 

.17 

  

WMT       -1.83 
(1.18) 

.12 

    -1.78 
(1.2) 

.14 

 

CC        -2.68 
(2.07) 

.20 

    -2.81 
(2.32) 

.23 
 

District  
Mean ISAT 

  3.0** 
(.96) 
.002 

3.41*** 
(.97) 

 < .0005 

4.28a 

(1.01) 
 < .0001 

3.42** 
(1.03) 

.001 

3.56*** 
(.96) 
.0002 

3.66*** 
(.10) 
.0002 

3.42*** 
(.99) 
.0006 

4.16a 

(1.05) 
 < .0001 

3.25** 
(1.07) 

.003 

3.51*** 
(.98) 
.0004 

3.69*** 
(1.01) 

.0003 
 

(table continues) 
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Table 20 (continued) 
 

Variable 
Null 

model 
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
Model 

7 
Model 

8 
Model 

9 
Model 

10 
Model 

11 
Model 

12 
Random effects 

 
Teacher  
level 

20.80* 
(12.34) 

.046 

17.35~ 
(11.48) 

.065 

19.84* 
(10.83) 

.03 

26.94*~ 
(14.67) 

.03 

11.48 
(8.38) 

.09 

24.65* 
(13.3) 

.032 

24.93* 
(13.13) 

.029 

21.53* 
(11.42) 

.03 

27.00* 
(15.15) 

.04 

11.00~ 
(8.14) 

.09 

23.77 
(12.83) 

.29 

24.41~ 
(13.1) 

.03 

21.91* 
(12.08) 

.035 
 

Time  
level 

14.46* 
(7.2) 

.022 

10.48* 
(5.91) 

.038 

2.47 
(3.65) 

.25 

1.04 
(3.01) 

.37 

2.22 
(3.94) 

.29 

1.86 
(3.18) 

.28 

1.20 
(2.94) 

.34 

1.93 
(3.42) 

.29 

1.04 
(3.01) 

.37 

2.32 
(4.01) 

.28 

1.76 
(3.16) 

.32 

1.21 
(2.97) 

.34 

1.90 
(3.41) 

.29 
 

Student  
level 

193.27a 

(9.87) 
 < .0001 

184.14a 

(9.43) 
 < .0001 

184.56a 

(9.47) 
 < .0001 

183.10a 

9.564 
 < .0001 

183.92a 

(9.71) 
 < .0001 

183.00a 

(9.63) 
 < .0001 

183.2a 

(9.64) 
 < .0001 

183.26a 

(9.66) 
 < .0001 

183.13a 

(9.64) 
 < .0001 

183.90a 

(9.71) 
 < .0001 

183.03a 

(9.64) 
 < .0001 

183.20a 

(9.64) 
 < .0001 

183.20a 

(9.66) 
 < .0001 

              
Fit Statistic 

 
Deviance 6,519.6 6,476.1 6,466 6,104.3 6,102.4 6,104.5 6,104.2 6,104.6 6,104.3 6,102.2 6,104.2 6,104.1 6,104.6 

 
AIC 6,527.6 6,492.1 6,490 6,128.3 6,126.4 6,128.5 6,128.1 6,128.6 6,130.3 6,128.2 6,130.2 6,130.1 6,130.6 

 
BIC 6,529.5 6,495.9 6,495.8 6,134.1 6,132.2 6,134.4 6,134.0 6,134.4 6,136.6 6,134.5 6,136.5 6,136.4 6,136.9 
              
Note. IOL = Inquiry-Oriented Lesson; SE = Student Engagement; MASM  = Mathematical Agenda of Sense-Making ; WMT = Worthwhile Mathematical Task; 
CC = Classrom Climate; AIC = Akaike’s information criterion; BIC = Bayesian information criterion. 
~ p < .10.  *p < .05.  **p < .01.  ***p < .001. a p < .0001. 
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In the Models 2 to 7, I examined whether the gain in teachers’ MKT or changes in their 

instructional practices would predict their students’ ISAT gains. I entered teachers’ scores on the 

MKT test and instructional practice scales separately to see the effects of each predictor 

individually. The change in teachers’ mathematical knowledge did not seem to be significantly 

related to their students’ gains on the ISAT (Model 2; p = .42). Of the five instructional practice 

scales, only Student Engagement was significantly associated with students’ ISAT gains. 

Specifically, a one-point increase in teachers’ score on the Student Engagement scale was related 

to a 3.03-point increase in students’ ISAT gain (p = .027). For each model, students’ initial ISAT 

scores were negatively related to the gains they made on the ISAT. African American students 

gained 2.5 points on average less than did White students. Additionally, the district mean ISAT 

gain was positively and significantly related to students’ ISAT gain (p < .001). As shown in the 

models, the effect of year was quadratic, meaning that the effect of year was positive but that it 

decreased with time.25  

In Models 8 to 12, I entered teachers’ MKT score and one of the five instructional 

practice scales together. As shown in Table 20, adding the MKT and instructional practice scales 

together did not noticeably change the results. Nevertheless, Student Engagement was the only 

significant and positive predictor of students’ ISAT gain (p = .03). Additionally, the effects of 

the student-level variables, year, and the district mean ISAT score did not change noticeably. I 

did not report the models in which the variable of being an experienced or novice teacher was 

included because of its trivial contribution to the models (p = .70).  

The models in which teachers’ MKT scores and each of the instructional practice scales 

were entered together were also not statistically different from the models in which only the 

                                                 
25 For the first 2 years, the effect of the gain was higher than in the previous year, but for the 
third year, the effect was lower than the effect for the second year.  
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instructional practice scale was included. Furthermore, the goodness-of-fit indicators, the AIC 

and BIC values, were smaller for the models with only the instructional practice scales than for 

the models with only the MKT scores or for the models in which the MKT scores and 

instructional practice scales were entered together, indicating that the models with only the 

instructional practice scales were more favorable.   

Of these models, the models with predictors (i.e., Models 2 to 12) explained only about 

5% of the variation in individual students’ ISAT gains. Given that 85% of the variability in 

students’ gain scores was within the students (i.e., in Level 1), whereas only 9% of the variability 

in students’ gain scores resided within the teachers, the results were not surprising. Earlier 

studies also indicated that teacher-level variables did not contribute much to explaining the 

differences in students’ achievement (e.g., Baumert et al., 2010; Hill, Rowan, & Ball, 2005). 

Teachers’ MKT scores and the instructional practice scales did not contribute much to explaining 

individual students’ ISAT gains across the years. However, teachers’ MKT scores and their 

scores on the instructional practice scales explained at least 84% of the variation at the time level. 

The models with Level-2 predictors (year, mean district ISAT gain, teachers’ MKT scores, 

instructional practices, or their combination) revealed diminished differences in the average 

ISAT gain for individual teachers across years, meaning that after controlling for these variables, 

students’ average ISAT gains for individual teachers were not statistically different over the 

years. However, differences between teachers’ average ISAT gains were still significant.  

The relationship between teachers’ beliefs and students’ ISAT gains. As mentioned 

earlier, because teachers’ beliefs were captured once throughout the program and their beliefs 

could have changed during the implementation of the program, I did not assume that the 

teachers’ beliefs were the same over the years. However, treating teachers’ beliefs as time-
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varying covariates reduced the power of the analysis by creating many missing cases. As a result, 

I conducted separate analyses for teachers’ beliefs by using the data in which teachers’ beliefs 

were measured. Because of similar concerns (small sample size) while analyzing the relationship 

between teachers’ beliefs and the outcome measures, I included only a limited number of 

variables. More specifically, in this part of the analysis, only student-level variables and 

teachers’ beliefs were entered together to predict students’ ISAT gains. Teachers’ belief scores 

were not significantly related to their students’ ISAT score gains (p = .20).  

Summary of the multivariate analyses. The results indicated that several variables 

predicted students’ ISAT gains. White students’ ISAT gains were statistically higher than those 

of African American students, and students with low pre-ISAT scores gained more points on the 

posttest than did students with high pre-ISAT scores. However, neither the students’ grade level 

nor their income level predicted students’ gain on the ISAT tests.  

Of the five scales, only the Student Engagement scale was positively and significantly 

related to a gain in students’ ISAT scores. The other four instructional scales (Inquiry-Oriented 

Lesson Plans, Worthwhile Mathematical Task, Mathematical Agenda of Sense-Making, and 

Classroom Climate) were not significantly related to students’ gain scores. In addition, teachers’ 

MKT scores were not significantly associated with gains in their students’ post-ISAT. Similarly, 

teachers’ beliefs were not related to their students’ ISAT gains. The results also indicated that 

students’ average gain changed nonlinearly over time. Students’ ISAT gains increased 

nonlinearly for the first 2 years of the program and decreased in the third year of the program. 

Even in the third year, students’ ISAT gains were higher than that in the year before the program 

started. Finally, only a small percentage of the variation in individual students’ ISAT gains was 

explained by the variables in the study.  
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Model 4 had the smallest AIC and BIC values, and the deviance tests indicated that other 

models with more predictors did not noticeably improve the model. In this model, student 

engagement was significantly related to students’ ISAT gains. It is important to note that the 

Student Engagement scale captures students’ overall level of engagement in the mathematics 

lessons. This finding implies that students’ engagement (remaining on task and explaining their 

thinking and their ideas) was a predictor of individual students’ ISAT gains, even after 

controlling for individual students’ pre achievement scores.  

Summary of Chapter 4 

In Chapter 4, I examined the relationships among teachers’ MKT, beliefs, instructional 

practices, and student achievement. First, I investigated the role of teachers’ MKT and beliefs in 

their teaching practices. As illustrated in Figure 17, teachers’ MKT was significantly related to 

their Inquiry-Oriented Lesson Plans, Mathematical Agenda of Sense-Making, and Classroom 

Climate scales. A 1-standard deviation (SD) increase in teachers’ MKT scores was related to 

a .39-SD increase on teachers’ Inquiry-Oriented Lesson Plans scale, a .30-SD increase on the 

Mathematical Agenda of Sense-Making scale, and a .40-SD increase on the Classroom Climate 

scale. Teachers’ MKT scores were not significantly related to their scores on the Student 

Engagement and Worthwhile Mathematical Tasks scales.  
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Figure 17. Standardized regression coefficients for the significant relationships among teachers’ 
mathematical knowledge for teaching (MKT), beliefs, instructional practices, and student 
achievement.26  
 

Separate analyses of the relationship between teachers’ beliefs and teaching practices 

indicated that teachers’ beliefs were significantly related to teachers’ scores on the Inquiry-

Oriented Lesson Plans, Mathematical Agenda of Sense-Making, and Worthwhile Mathematical 

Tasks scales. More specifically, a 1-SD increase in teachers’ scores on the beliefs survey was 

associated with a .55-SD increase on the Inquiry-Oriented Lesson Plans scale, a .45-SD increase 

on the Mathematical Agenda of Sense-Making scale, and a .47-SD increase on the Worthwhile 

Mathematical Tasks scale. Neither teachers’ MKT scores nor their beliefs were related to their 

scores on the Student Engagement scale.  

In the second part of this chapter, I investigated the extent to which teachers’ MKT scores, 

teaching practices, and beliefs were related to students’ ISAT gain after several factors, such as 

                                                 
26 Year and mean district ISAT gain are not reported here because these variables were not the 
main focus of the research.  
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students’ earlier achievement and income level, were taken into account. The findings indicated 

that neither teachers’ MKT scores nor their beliefs were related to students’ ISAT gains. Of the 

five instructional practice scales, only teachers’ scores on the Student Engagement scale were 

significantly related to students’ ISAT gains. A 1-SD increase in teachers’ scores on the Student 

Engagement scale was related to a .13-SD increase in students’ ISAT gains. Given that students’ 

pre-ISAT scores were related to a .25-SD decrease in students’ ISAT gain and that African 

American students had a .07-SD lower ISAT gain on average than did White students, the 

magnitude of the Student Engagement scale was substantial in comparison.  

In sum, quantitative analyses indicated that the Student Engagement scale, which was the 

only scale not predicted by teachers’ MKT or beliefs, was the only significant predictor of 

students’ ISAT gains. The quantitative analysis did not allow for an explanation of the reasons 

behind these results. In qualitative analyses, I explored the relationships among teachers’ MKT 

scores, beliefs, and teaching practices by using teacher interviews and classroom observations. 

Special attention was given to the patterns observed in the quantitative analysis to shed light on 

these findings. 
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Chapter 5 

Qualitative Findings 

In Chapter 4, I presented results of the quantitative data analysis. The quantitative 

analysis provided the magnitude and direction of the relationships between teachers’ 

mathematical knowledge for teaching (MKT) and teaching practices, but it did not help clarify 

why and how this relationship occurred. Given that earlier studies highlighted the importance of 

beliefs on instructional practices (e.g., Grossman Wilson, & Shulman, 1989; Putnam et al., 1992; 

Stodolsky & Grossman, 1995; Thompson, 1984, 1992), this study also helped identify which of 

the instructional practices were related to teachers’ mathematical knowledge and which of them 

were related to teachers’ beliefs.  

Longitudinal analyses of teachers’ mathematical knowledge and instructional practices 

uniquely contributed to existing literature by revealing in what ways changes in teachers’ 

mathematical knowledge correspond to changes in teachers’ practices.  The results indicated that 

teachers’ MKT is closely related to how teachers designed the lesson (inquiry-oriented lesson), 

how welcoming the environment was that they created for their students (classroom climate), 

how they implemented the lesson they designed, and the extent to which they made clear and 

pushed students to think about mathematical ideas the students were expected to learn from the 

lesson (mathematical sense-making agenda). The cross-sectional analysis of teachers’ beliefs 

about teaching and learning mathematics also suggested that three aspects of instructional 

practices—lesson design, mathematical quality of lessons, and teachers’ task choices—were 

related to their beliefs. The qualitative analysis of the eight portraits will help clarify the 

relationships among teachers’ MKT, instruction, and beliefs. In this chapter, I aim to elaborate 

on the quantitative findings using qualitative data analyses (Creswell, 2002). As explained 
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previously, in-depth classroom observations were conducted only in the third year of the 

program.  Hence, classroom observation data are used to illuminate how teachers’ current level 

of MKT is related to their teaching. Teachers’ interview data were used to see how changes in 

MKT could correspond to changes in their instruction.  

One might wonder why knowing the relationship between MKT and instruction matters, 

since in this study neither teachers’ MKT nor many aspects of their instructional practices 

envisioned in the Standards (NCTM, 1991, 2000) were related to their students’ achievement 

gains. The lack of a relationship between teachers’ mathematical knowledge and their students’ 

achievement is not new (e.g., NMAP, 2008; Wayne & Young, 2003). Even in the studies 

suggesting a significant relationship between teachers’ MKT and their students’ standardized test 

scores, the magnitude of the relationship was small (e.g., Hill, Rowan, & Ball, 2005). Although 

using standardized achievement tests as a proxy of student learning might not be the ideal way to 

capture student learning (e.g., NRC, 2001), the results still have value. First, teachers were 

accountable for the results of these tests, and the quantitative part of the study indicated that 

students’ Illinois Standards Achievement Test (ISAT) gains were not related to how much 

teachers increased their MKT or the extent to which they taught in the way envisioned in the 

Standards (NCTM, 1991, 2000). This study suggests that what matters the most is the extent to 

which the majority of the students remained on task and shared their thinking and ideas with 

each other. This result was also aligned with earlier studies indicating that the only significant 

and persistent predictor of student learning was students’ remaining on task and their 

engagement in mathematics lessons (NRC, 2001). Even though the quantitative results regarding 

teachers’ MKT and student achievement gains did not tell a different story, analyses of the 

qualitative data collected from a subsample of the teachers from whom the quantitative data were 
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collected provides insights into the lack of a relationship between MKT and student learning as 

well as between the teachers’ teaching practices and student learning. This is especially 

important given that these earlier studies (e.g., Wayne & Young, 2003) were mostly quantitative 

and failed to provide reasons for the lack of a relationship. Telling a similar story as found in 

former, large-scale quantitative studies but providing insights into the reasons for the results 

could contribute to the field of education by elucidating how teachers’ MKT plays a role in 

instruction. While analyzing the qualitative data, I tried to investigate why their MKT or 

instruction did not matter in terms of students’ ISAT gains.  

It is worth noting here that I did not collect relevant data from the students of the 

participating teachers. Hence, I can only elaborate on the lack of relationships among MKT, 

instruction, and student learning to some extent. Furthermore, I did not have access to ISAT data 

from all my target teachers; two of them were not from the partnership district, and two of them 

were teaching second graders, which limited the number of teachers with available data sets. 

However, the second-grade teachers were also required to take some district-mandated tests, and 

I also had some indicators of the ISAT gains for the two teachers from the neighboring district. 

Furthermore, because student engagement is a predictor of student achievement gains, I focused 

on the relationship between teachers’ MKT and student engagement.  

The Portraits of Eight Teachers 

In this chapter, I provide portraits of the eight target teachers to allow the reader a closer 

look at the possible effects of teachers’ MKT on their instructional practices. While investigating 

the effects of MKT on teaching, I analyzed the data based on the themes mentioned in the 

Methods chapter: inquiry-oriented lesson, mathematical sense-making agenda (with two 

subthemes of the purpose of the lesson and the use of lesson time), worthwhile mathematical 
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tasks (with the subtheme of textbook use), student engagement, and teachers’ MKT perceptions; 

however, while reporting findings, special attention was given to the patterns observed in the 

quantitative analysis. Although individual differences were apparent in the instructional practices 

among these teachers, commonalities also existed among teachers with similar levels of MKT. 

The portraits are organized in a way that provides several examples of the instructional practices 

captured by the classroom observation scales and the additional themes listed in the Methods 

section. These portraits, which are drawn from interview and classroom observation data, will 

help the reader understand how teachers’ MKT is related to their lesson design, quality of lesson 

implementation, quality of their task choices, and student engagement. It also provides insights 

into how teachers perceived that an MKT gain affected their teaching practices.  

As mentioned earlier, my purpose in mixing methods was to elaborate on the quantitative 

results. The quantitative results suggested that the change in teachers’ knowledge of mathematics 

was positively related to the change in their inquiry-oriented lesson design, mathematical sense-

making agenda, and classroom climate. Teachers’ beliefs regarding teaching and learning 

mathematics were also significantly related to their inquiry-oriented lesson design, mathematical 

sense-making agenda, and task choice. On the other hand, the quantitative data also suggested 

that the change in teachers’ mathematical knowledge was not related to their task choice or 

student engagement. Although my quantitative analysis also included the effects of teachers’ 

instructional practices and mathematical knowledge on student achievement, I did not have 

detailed qualitative data to conduct an in-depth analysis of this aspect of my quantitative 

findings. However, I have focused on the elements of the Student Engagement scale, which was 

the only significant and positive predictor of students’ gains on the ISAT test. Readers need to 

remember several points. First, in-depth classroom observations of the target teachers were 



 123 

collected only in the third year of the program; hence, teachers’ interviews were used to examine 

teachers’ perceptions on how the change in teachers’ MKT knowledge was related to the changes 

in their practices. Classroom observations were mainly used to investigate the relationship 

between teachers’ current level of mathematical knowledge and their instructional practices. 

Second, the qualitative data analysis was not designed to address the classroom climate scale due 

to limited qualitative data related to this scale.  

Eight Teachers: Stephanie, Jacqueline, Valerie, Rebecca, Sonya, Ann, Beth, and Meg 

I explained in the Methods chapter why I chose to focus on these eight teachers in 

particular. As discussed previously, there was a wide range in these eight teachers’ knowledge of 

mathematics at the beginning and end of the program (see Figure 18 and Table 21). The wide 

variation in these teachers’ initial and current level of knowledge of mathematics would allow 

me to see how the change in their mathematical knowledge was related to the changes in their 

practices (the longitudinal effect of mathematical knowledge on instruction) as well as how their 

current level of mathematical knowledge was associated with their current instructional practices 

(cross-sectional effect of mathematical knowledge on instruction). As mentioned earlier, the 

effects of MKT gains on instruction were analyzed by using teachers’ interviews, and the effects 

of teachers’ current level of MKT on instruction were analyzed by using classroom observations, 

field notes, and teacher interviews.  
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Figure 18. Change in teachers’ mathematical knowledge over time. 
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Table 21 

The Eight Teachers’ Scores on the Measures and Their Students’ Average Illinois Standards Achievement Test (ISAT) Gains Over 
Time 

MKT Teachers 
MKT 
Gain 

Beliefs 
Score 

Grade 
 

Inquiry-
Oriented 
Lesson 

Student 
Engagement 

Mathematical 
Sense-
Making 
Agenda 

Worthwhile 
Mathematical 

Tasks 
Classroom 

Climate 

Mean Pre-
ISAT 
Scores 

(Average 
ISAT 
Gains) 

Year   Year Year Year Year Year Year Year Year 
3   3 3 0 3 0 3 0 3 0 3 0 3 0 3 

Very 
High 
 

Stephanie .8 4.2 7  3.2  3.3  3.2  3  3.7   

Jacqueline .6 4.2 6  4.3  4.4  4.3  4.7  4.2   

High 
 

Valerie 1.1 4.0 4-6 2.0 2.9 2.8 3.6 2 2.9 1.1 2.4 3 4.0 232 
(10) 

229 
(13) 

Rebecca 1.1 4.0 2 2.1 3.3 3.4 3.8 1.8 2.9 2.4 4.0 3.6 4.0   

Average Sonya .9 4.0 6 3.1 4.4 3.6 4.0 2.8 4.1 3.5 4.2 3.7 4.6 229 
(21) 

229 
(7) 27 

Low 
 

Ann .3 3.0 3 2.1 1.9 2.1 2.7 1.8 2.0 2.6 2.6 3 3.4 206 
(14) 

21628 
(23) 

Beth .8 3.0 5 2.4 2.6 3.1 3.4 2.4 2.4 2.8 2.5 3.5 3.7 220 
(16) 

222 
(17) 

Meg .7 3.7 2 3.4 4.2 3.5 3.6 2.9 2.9 3.5 3.6 3.7 4.3   

                                                 
27 Although the other teachers’ average ISAT gain followed a consistent pattern, Sonya’s students’ average ISAT gains dropped 
drastically in the final year of the program (Average ISAT gains were 17 and 18 for year 1 and 2, respectively).  
28 Ann taught 3rd grades in year 3; hence the gain was not available for the year 2; instead her year 2 data were reported.  
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I also provided personal and school information for these eight teachers in the Methods 

chapter. As seen in Table 21, the eight teachers followed similar curricula; early elementary 

school teachers followed the EnVisionMath Series, whereas the upper elementary and middle 

school teachers followed the Connected Math Series. Only Valerie did not follow a certain 

curriculum. In addition to teachers’ personal and school information, Table 21 provides 

information on teachers’ scores on Instructional Practice scales and difference in their MKT 

scores before and after the program, their scores on the beliefs test, and their students’ mean 

ISAT gain, as well as their mean pre-ISAT scores. The reason I provided teachers’ scores on 

these measures is to give readers a better understanding of where teachers were in terms of their 

teaching before they enrolled in the program. It is also crucial to highlight that teachers’ scores 

on the Instructional Practice scales are based on several items, and the reader should not expect a 

perfect alignment between teachers’ scores and the qualitative findings, given that I focused on 

only certain aspects of each scale in the qualitative analysis.   

As seen in Table 21, several rows are missing. In particular, Stephanie and Jacqueline 

were not observed at the beginning of program; hence, I have only self-reports regarding their 

earlier practices. Additionally, I did not have access to Stephanie’s or Jacqueline’s students’ 

ISAT scores. However, according to the State Report Card, 87 and 91% of the sixth- and 

seventh-grade students in their school met or exceeded the Standards in 2010. Meg’s and 

Samantha’s students were not tested because they were second graders and ISAT is administered 

only to students in third grade and higher. Finally, as mentioned earlier, Ann taught third graders 

in 2011, which prevented me from reporting her students’ average ISAT gain because her 

students’ pre-ISAT scores were unavailable. Instead, I have reported her students’ average gain 

in the second year of the program.  
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Organization of Portraits 

I first introduce the teacher by providing information about the school, her academic 

background, and her classroom environment. I also provide information regarding teachers’ 

knowledge of mathematics. Second, I summarize how teachers reported the changes in their 

practices, which could help readers better understand the teachers’ current instructional practices. 

I then illustrate their instructional practices in the last year of the program mainly by using data 

from the lessons I observed. I also draw on interview data in which teachers described their 

practices and why they used certain practices, as well as their beliefs about teaching and learning 

mathematics. My intention in drawing on the teacher interview data was to explain teachers’ 

perspectives on the lessons I describe. After that, I analyze the characteristics of these eight 

teachers’ instructional practices by using the Instructional Practice scales as well as additional 

themes that emerged from the data. Finally, the chapter ends with a summary of key findings.  

I summarized the lessons I observed in a way that the reader could get a feeling for the 

teachers’ overall lessons as well as specific aspects of their teaching. When I portrayed these 

eight teachers’ teaching, I only focused on consistent aspects of their teaching across the lessons 

I observed. As explained in detail in the Methods chapter, I first searched through my field notes 

to find patterns in their teaching practices across teachers. I followed a general-to-specific 

approach in that I first analyzed the overall lesson structure and then looked more closely at 

aspects of the instruction captured by the Instructional Practice scales and each theme. I focused 

only on the scales and themes that were typical parts of teachers’ practices. As mentioned earlier, 

not all items in each scale stood out noticeably across observed lessons and teachers; hence I 

focused on the items with strong “evidence” across teachers. However, although I did not use all 

items from the scales, I still focused on the main aspects captured in each scale. Additionally, 
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based on the analysis of classroom observation data, several sub-themes were revealed, which 

highlighted the differences in teachers’ practices related to their MKT. I listed the questions that 

guided my analysis in the Methods Chapter. As a reminder, each theme and what is captured in 

each theme is briefly summarized here. 

The Inquiry-oriented lesson scale captured the extent to which teachers designed a lesson 

consistent with standard based teaching, including lesson structure (the extent of having a 

problem-centered structure) and instructional strategies consistent with investigative 

mathematics.  Mathematical sense-making agenda is more about “mathematical quality” of the 

implemented lesson. It captures the extent to which teachers were able to articulate what 

mathematical ideas students were expected to learn and students were able to see connections 

between and make generalizations regarding the ideas. Of the two sub-themes related to 

mathematical agenda scale, purpose of the lesson captured the primary focus of the lesson 

(teaching procedure vs. teaching meaning and procedure), and use of lesson time was the 

percentage of lesson time allocated for math and math related activities. Worthwhile 

mathematical tasks captured the extent to which tasks stimulated non-algorithmic thinking and 

focused on understanding of important and relevant mathematical concepts. A related sub-theme, 

textbook use, was more about how closely teachers followed their curriculum. Student 

engagement captured students’ participation in sharing and explaining their thinking and 

working productively with their peers. The theme, teachers’ MKT perception captured, 

according to teacher interviews, the impact of MKT gains on them and their instruction, such as 

causing an increase in their self-confidence.  

I have maintained the teachers’ lesson format to demonstrate how they carried out typical 

mathematics lessons in their classes. I then chose excerpts that best illustrated how these teachers 
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typically carried out certain elements of instruction, such as how they handled whole-class 

discussions and analyzed students’ responses. I also inserted teachers’ beliefs about teaching and 

learning mathematics into the relevant parts of their instruction. This was done to account for all 

the data in some way. Including teachers’ perspectives and beliefs also allowed me to depict how 

teachers’ beliefs were related to their teaching practices.  

The eight portraits are presented according to each teacher’s level of mathematical 

knowledge, beginning with the teachers with the highest level of mathematical knowledge. The 

chapter ends with an overall analysis of the portraits.  

Stephanie 

Background. Stephanie had the highest mathematics scores on the tests over the three 

years of the study. At the beginning of the study, she had been teaching mathematics for 6 years. 

Her undergraduate major was elementary education. Like the other teachers, she was a certified 

teacher. She was teaching seventh-grade mathematics in a middle school that enrolled 

approximately 225 students each year. She and Jacqueline were working in a different district 

than the rest of the teachers. Their students were economically more advantaged compared with 

those in the other teachers’ classes. Forty-two percent of the students in Stephanie’s school were 

eligible for free or reduced-price lunches in the 2009–2010 academic year. Eighty-seven percent 

of the students were White, and 5% were African American.  

Stephanie was teaching both general mathematics and pre-algebra. Her classes were 

small, having 15 students at most. Stephanie did not have a SMART Board in her classroom 

(although Jacqueline had one in her classroom). She explained to me that she did not have one 

because she did not request one. Her classroom was generally not rich in resources. Students’ 

desks were aligned in four rows, limiting student interaction during the lesson.  
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Stephanie began the program with high mathematical knowledge. Her mathematics score 

on the first test administered before the program was 1.2429, indicating she already had a solid 

background in mathematics. She was also aware of this. When I asked whether she thought her 

mathematical knowledge had increased during the program, she responded, “Well, what I teach, I 

feel like I had mastery of before. So I don’t feel like I gained content knowledge for that.” 

However, she was able to increase her knowledge of mathematics further. She answered almost 

all questions correctly on the test administered at the end of the program, giving her a score of 2.    

Stephanie’s self-report on changes in her teaching practices. Stephanie reported what 

instructional changes she made throughout the program. During her undergraduate education, 

she was trained to teach through a problem-solving approach. However, she stated in her 

interview that she changed her practices toward more inquiry-based teaching: 

I went to school with these basic understandings and learning about the National Council 
of Teacher Mathematics and the principles and standards taught there. And I always 
knew that I loved problem solving and that was the best way to challenge students’ minds. 
But I did not feel as capable of teaching this way. I didn’t feel like I had the tools. And I 
didn’t feel informed enough about how. And I felt very tied to my curriculum and my 
textbooks. And now I just feel much freer to expand on those and to use those as a base, 
but to do so much more than I felt I could before. . . . I think it’s pushed me to ask more 
of the students, for them to develop their own ways of thinking. 
 

She then elaborated further about how she teaches mathematics now: 

Today in class, we were working on changing fractions to decimals. So I got out the 100 
grid and I had them show one fifth and then write the decimal equivalent and kind of 
show it both as a fraction and a decimal and then do the same with the decimals. They 
had to do the decimal, and then they had to divide it into pieces so that they were all the 
same. . . . So instead of just showing them, take the top number and divide it by the 
bottom, actually showing them fraction equivalents that are decimals and fractions that 
made sense in a 100th type of a term. And that, I explained to them later as we went 
along, this only worked because all the fractions that I chose were—the denominator was 
5 or 10 or 25 or 20 or one fourth. But I didn’t choose any that were three twelfths or four 
twelfths. I chose something that was divisible by 100….and the kids did it in different 
ways, the way that they divided it. Some people, when they did one fifth, they took the 

                                                 
29 MKT scores range from -3 to 3, and 0 indicates an average level of MKT knowledge.  
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100s and they would show one fifth using—they took the 100, they would divide it into 
five pieces and color in one of the five, and another five pieces and color in one five. And 
then other people divided the whole thing into five pieces. So either way, it’s one fifth, 
but it’s one fifth 20 times or it’s—the whole thing’s one fifth. So the whole thing overall 
still showed a fifth of the thing, but it was a different way of looking at the whole thing.  
 

She also explained why she chose these methods: 

I like to try to get kids to be challenged as much as possible and to try to understand 
what’s going on mathematically, rather than just learning algorithms straightforward, and 
to try to get them to think outside the box and to be able to explain and defend their 
thinking and what they’re doing. 
 

Furthermore, she said that she had begun to include activities from outside her textbook.  

I definitely was pretty much just using the textbook and went through it chapter by 
chapter and taught as much as I could. I do still use the textbook daily, or at least 
often. . . . [Vande Walle] also had a lot of good problems and rich problems to bring into 
the classroom as well. . . . And now I do try to do a lot more Vande Walle types of things 
than I did before. . . . I do still use the textbook daily, or at least often, but I definitely pull 
from more resources and the Illuminations and try to have more activities and games and 
problems. And sometimes the problems are from the textbook. . . . I’ll just have problems 
and problems and problems. 
 

As shown in the preceding excerpts from the interview, Stephanie mentioned teaching more 

towards inquiry-based teaching and choosing examples outside of her textbook, and pressing 

students to make-sense of the mathematics they learned. The following section briefly illustrates 

Stephanie’s teaching of mathematics during the last year of the program. 

Observation of Stephanie’s teaching. Stephanie planned to teach addition and 

subtraction with integers during my observations.  She had only 14 students in her pre-algebra 

class. She used chips and began the lesson introducing what the red and yellow chips 

represented. She first asked her students to present positive, negative numbers, and then 0 using 

chips. She continued to ask her students to solve basic addition (later subtraction) problems using 

chips.  

In her interview, she explained how she organized the lessons I observed:  
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I was presenting, “These are positive, these are negatives, and when you combine them, 
then what do you have?” And recognizing that the yellow and the red cancel each other 
out—and then having students try to come up with algorithms from that. Instead of 
telling them, “Same signs, you add; different signs, you subtract,” they had to look at 
several that were the same and come up with a strategy that worked for all of them to 
simplify it because we can’t use chips for everything. But they had a model so they could 
see what it is, and then they had to come up with the rules. . . . As I go along, I try and get 
them to predict what the next problem I’m going to put on the board is so that they can 
see the pattern and that I didn’t just randomly choose numbers, that there was a sequence 
to my numbers so that we can see what’s happening and kind of look at those specifically.  
 
Consistent with what she said in the interview, she did not tell her students the rule, rather 

waited for her students to find a rule for addition and subtraction with integers. Her students 

needed more time to conceptualize subtraction—especially how they would represent subtraction 

with different signs of integers. Hence, she spent two more lessons on subtraction. Even during 

her instruction, she adjusted her lesson to ensure that her students were ready to move to the next 

step. Particularly, she saw that students realized the pattern in addition for integers of the same 

sign, and then she moved to the addition problems with integers of different signs.  She also 

mentioned flexibility in her teaching in her interview: 

I have to be a little bit fluid in my teaching, and I don’t know what I’m going to do 
tomorrow. I have a general outline of where I want to go, but I have to sort of listen to 
what the students have done to be able to be flexible enough to change what I’m doing 
tomorrow based on what they understood today and what they did today and what they 
said. So what the students are telling me kind of does guide instruction. I can’t just be 
rigid in what I’m teaching. 

Stephanie encouraged her students to share their thinking and to analyze their peers’ 

work critically. She explained this aspect of her teaching in the interview as well:  

What I have is the doc cam, and so I have them bring it up and we show different 
examples and we can show what the students have done and try to make sense of what 
their thinking is and see if other students can understand what they did versus what—if 
someone’s done it in different ways. So we can look at things from a different perspective. 
It’s not all just, “This is the way to solve a problem.”  

The following excerpt illustrates her typical teaching. From the beginning of the lesson, 

Stephanie asked her students to solve subtraction problems. In this excerpt, Stephanie asked her 
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students to solve 5 take away 9 using chips. She first allowed some time for the students to find a 

solution, and then she picked one student to show her presentation. The student put down two 

sets of yellow chips, one with 9 yellow chips and the other with 5 yellow chips, and then she 

combined them. Stephanie asked the class their opinions about her presentation: 

 

Stephanie: Can anybody tell me what she did?  
 
Student 1: She had a group of 5 and a group of 9. And she put them together. 
 
Stephanie: So what did she show? 
 
Student 2: Addition. 
 
Stephanie: That’s right. She showed us addition. She started with 9 and then she added 5 
to that.  
 
(The student at the board realized her mistake, and she put 4 red chips on the document 
camera.)  
 
Stephanie: Where do red ones come from though? I see you throwing up 4 chips, but all 
your yellow chips are still there. Ok, what I think is she knows the answer, which is  
negative 4, but she does not know how to do it. How many of you know the answer to 
this problem?  
 
Several students: Not me! 
 
Stephanie: Ok, some of us know the answer, and she’s right. The answer to this problem 
is going to be negative 4. But just like before, you knew the answer to this was positive 4. 
Can you show how the subtraction worked? What does it mean to subtract more than I 
have. I just don’t have 9 yellows. I only have 5 yellows. How on earth can I take away 9 
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yellows if only 5 yellows exist. That’s what you gotta think about. Put 5 yellows in front 
of you.  
 
(The student put down 5 yellow chips, and Stephanie continued.) 
 
Stephanie: You have to take away 9 yellow chips. How are you going to take away 9 
when you only have 5? 
 
The students were given some more time to figure out the correct representation, and 

Stephanie picked another student to show how she did it. The student put down one set of 5 

yellow chips and another set of 5 yellow and 4 red chips. Stephanie started to analyze her work: 

 

  

 

Stephanie: Ok, let’s take a look at this. Can you explain to us what you’re doing? 
Student at the board: I had 5 and then I had 9, but I put 5. That’s the number we had, and 
that’s 4 more we need.  
 
Stephanie: I see more than negative 4 here. If your answer is negative 4, shouldn’t you 
end up with negative 4? What I see you doing is starting with 5 and then adding 5. . .  
 
(The student at the board then took out 10 yellows. Stephanie commented on this action.)  
Stephanie: You put up 5 and put up another 5 and put up negative 4 and take away 10.  
 
Stephanie mathematically expressed what she did on the board. She wrote,  
5 + 5 + (−4) −10 = (−4) 
 
Stephanie asked the class whether they could also see mathematically what the student 

did. She also picked one volunteer to show his representation and told the class that she would 

give them a hint if they still could not figure it out. The student first put down 5 yellow chips and 

then took off 5 chips and said that he needed to take off 4 more, so he put down 4 red chips.  

Stephanie: This is an awesome idea. You guys think what he did. Very, very smart. Not 
exactly right. Pretty close. That was really close. Let’s see! What did he do? Can you 
walk me through what he did? What did he do? 
 
Student: He had five yellows. 

Y Y Y Y Y 
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Stephanie: That’s right. 
 
Student: He took’em away. 
 
Stephanie: He took away five? 
 
Student: Hmm, and he added four reds.  
 
Stephanie: And he added four reds. This is Brad’s problem.  
 
Stephanie wrote the corresponding mathematical expression on the board,  

5 − 5 + (−4) 

Stephanie: 5 take away 5, and plus negative 4. When you’re subtracting, what you guys 
are showing me is that you have this understanding of subtracting 1 is the same as adding 
a negative 1. Because this is kind of the same idea. Ok, I’m going to give a clue as to how 
to show positive 5 take away positive 9. In your workspace, can you put 1 yellow? What 
number is that? 
 
Class: (altogether) 1.  
 
Stephanie then asked them to put down 1 yellow and 1 red chip, and again she asked the 

value of the number. The class answered, “1.” Stephanie continued to ask similar questions, 

using different representations of the same number. She then continued.  

Stephanie: Is there more than one way to show the number 4? 
(The students agreed with her.)  
 
Stephanie: I want to think about this question again. You just displayed the number of 4 
in a lot of ways. You displayed the other numbers in a lot of ways, correct? 
 
Students: Yes.  
 
Stephanie: I would like to start with the number of 5, and I want you to be able to take 
away 9. Ok? You remember what 9 take away 5 looks like? You start with 9 yellows and 
you physically remove 5. I want you to start with the number of 5 and take away 9.  
 
Stephanie gave the students some more time to work on the problem, and then she 

selected a student to show his work to the class. The student put down a group of 9 yellow chips 

and another group of 4 red chips. He then took away 9 yellow chips.  
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Stephanie: You did it! Watch him really close. How many did he move? What is the 
really tricky part of this problem? 
 
(The students were talking, but most seemed confused. Stephanie explained.)  
Stephanie: He took away 5, but he also took away the extras. We have to show the 
number 5. (She put down 5 yellow chips.) Is that the number 5? 
 

  
Stephanie: Is that the only way to show the number 5? 
 
Several students: No. 
 
(Stephanie then put down two pairs of chips and asked whether this was still the number 
5. Many students agreed it was still the number 5.) 
 
Stephanie: I can keep doing that; I can keep adding 0s. Do you see these are 0s? By 
adding them, I’m not changing the value at all, but the reason I’m putting those 0s in 
there in the first place is because I can actually do the subtraction problem. I have to 
physically have 9 there in order to take it away, and this makes sense to you guys? Yes? 
Now I can remove them, right? These positives don’t really exist because they’re part of 
the 0s, but you can still physically see them. They are right there. So when I take them 
away, I am left with the negative 4. Do you guys get this? Does that make sense to you?  
 
Stephanie spent two more lessons on subtraction. She continued to solve similar 

problems, and for each problem, she asked her students to find a corresponding addition problem. 

The activities continued until her students found the rule for subtraction.  

Jacqueline 

Background. Jacqueline was a sixth-grade mathematics teacher. She was the only 

teacher in my focus group whose undergraduate major was junior high/middle school education. 

In the initial year of the program, she had been teaching mathematics for 4 years.  

Jacqueline taught in the same school as Stephanie. She had been teaching all the sixth 

graders in the school. Her classroom was richer in terms of resources compared with Stephanie’s 

Y Y Y Y Y 
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classroom. She had a SMART Board, which she used daily. Her students’ desks were arranged in 

four columns. However, during lesson time, Jacqueline let them bring their desks together.  

Jacqueline was one of the few teachers who began the program with a high level of 

mathematical knowledge. Nevertheless, she was able to increase her mathematical knowledge 

considerably (.58 SD). Because she was not teaching in the partner district, I did not have the 

opportunity to observe her mathematics lessons until the last year of the program, 2010.  

Jacqueline’s self-report on changes in her teaching practices.  Jacqueline also 

described the changes she made in her teaching. Similar to Stephanie, Jacqueline was trained to 

teach through a problem-solving approach.  

In my undergrad program, I had a lot of the same, like problem-solving. . . . And so I 
became even more so driven to teach that way. . . . So it kind of helped me to really 
tweak and refine the lessons better . . . a little bit of tell, but a lot more discovery. It really 
forced me to think of a real-life and a concrete concept for almost every topic I taught. . .  
I use examples now instead of just like, “Here’s a random topic that we’re going to learn 
about.” I might use examples like, “If I have this many Oreos and this many milks and 
need to share them among you guys or whatever, how could I do that and how many 
different ways?” . . . I learned by doing and by discovering this for myself. . . . It was 
more like, okay, being told students learn better this way versus now I know because I’ve 
taught this way. . . . It made me want to give them almost a gift of that level of 
understanding.  

Jacqueline also mentioned what materials she used in her math lessons. The following 

excerpts from the interview illustrate the changes she made in her task choices:  

In terms of materials, I don’t necessarily prefer the textbook. . . . I like to come up with, 
like, real-life ideas that I can apply and introduce topics with. . . . I’ve always used the 
Fibonacci problem or pattern. But before, I might have given them the pattern and 
expected them to find out what was happening and find the next number. Now I give 
them the Fibonacci bunny problem. . . . I’ll expect them to come up with the pattern and 
then look at the pattern to figure out what’s happening. So it’s just more from the ground 
up. 

Jacqueline listed several modifications she did in her teaching related to the Mathematical 

Sense-Making Agenda. In particular, she mentioned that she started to ask better questions.  
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My questioning has changed through the program for sure, and I now know, like, what 
kinds of questions to ask instead of just—surface ones. . . . And I get them thinking a 
little bit more deeply with questioning. 

She gave specific examples regarding her teaching, which illustrate how she had created 

an environment in which students could discuss and analyze their ideas and discover new ones:  

With fractions, I’ve used the different examples of how to draw like one third. So, like, I 
would give them a triangle and a rectangle, and we would discuss the ways of finding a 
third of a triangle, like the different ways. And so if you draw it and they draw two 
horizontal lines, is the top little part a third just like the bottom? Are they both thirds? 
And so that really, I mean, we spent a whole class drawing thirds. And it’s, like, great 
discussion… 

Observation of Jacqueline’s teaching. Jacqueline started the new topic, Algebra. She 

chose a Fibonacci Problem to introduce the concept. She taught the same material to multiple 

classes at different levels. Her classes had a small number of students, less than 20. Jacqueline’s 

SMART Board was always on, and what they were going to do during the lesson was listed on 

the screen. Jacqueline introduced the class to the new chapter they were going to study.  

Jacqueline: We’re going to talk about variables like x and y and unknown quantities; we 
solve equations. . . . I get really excited because of the problem you’ll work, the 
Fibonacci problem. It’s famous. It’s been around hundreds of years. It’s an advanced 
problem, but I feel really excited because I do it, you do it, in sixth grade every year. It is 
great way to introduce algebra and the algebra concept.  
 
As mentioned in the interview, she changed how she used the Fibonacci Problem to 

introduce algebra, before Jacqueline had given them the pattern but asked them what the next 

number was. But after participating in the program, she expected her students to come up with 

the pattern. In her interview, she explained why she preferred asking them to find the pattern:  

Because I feel like the students are more invested if they found the pattern and then to ask 
how many rabbits would there be in a year, it’s like they’re in it. It’s not just, like, there’s 
no investment. Like “Here’s a pattern; find the 12th term.” That’s totally irrelevant. Who 
cares? But if it’s about rabbits or this guy or even if you made it bees or whatever, they 
have something to kind of hang it on and it’s more meaningful. Plus they feel more pride, 
I think, when they discover the pattern. They’re like, “Oh, look,” and they really get it. 
And there’s like camaraderie and even a little bit of a challenge. And there’s so many 
more things that come along with it. 
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Jacqueline told the class that they were going to work on the Fibonacci problem for two lessons. 

The question shown in Figure 19 was on the SMART Board. Jacqueline highlighted some of the 

assumptions in the questions that might not happen in real life, such as having one boy and one 

girl every time. Jacqueline first asked them to brainstorm how they were going to record their 

results. The students would work in groups of two or three. The first task was to figure out the 

answer to the second month. The students were working very seriously and asking questions to 

clarify their understanding. Jacqueline then asked each group to share their system of tracking 

the bunnies. Some students went up to the third month, and some made mistakes. Instead of 

Jacqueline telling them that they were wrong, she waited for their classmates to comment on it. 

After each group presented their system of recording their solutions, Jacqueline showed the class 

other students’ methods in different classrooms, and she introduced another way of 

representations of the solution. She then showed how they could use chips to represent their 

results.  

 

Figure 19. The Fibonacci problem. 

The new task was to find out how many bunnies there would be at the end of the fourth 

month. Students worked in their groups about 10 minutes and then shared their work with their 
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classmates. After group presentations, Jacqueline showed the class the solution using chips. For 

each task, each group presented their solutions. Each student had a chance to present their 

group’s results, and each student had a right to challenge others’ ideas. The first lesson ended 

after each group presented their solutions for the number of bunny pairs at the end of the fourth 

month. The following excerpt illustrates her typical way of prompting all of her students to share 

their ideas. As mentioned earlier, each group presented their solutions for each question. One 

group said that there were 10 bunny pairs in Month 4, but one student in this group said that he 

disagreed with them and said that the response should be 16 for the fourth month. Jacqueline 

responded.  

Jacqueline: Do you want to show us what you have? 
 
(The student presented his answer.) 
 
Jacqueline: More than 10, what do you guys think? 
 
Class: No. 
 
Jacqueline: Why do you think yours is coming up with something a little different? Do 
you see anything in his work that we could guide him on? Comments, questions? 
 
(Some students shared their reasoning about why he got different results.) 
 
Jacqueline: So they’re questioning your number of adults. That might be somewhere to 
look. I’m not saying you’re right or wrong. We’re just sharing our thoughts.  
 
In the following lesson, students were supposed to find the number of bunny pairs at the 

end of the sixth month. After students presented their solutions for the sixth month, Jacqueline 

asked them to record the number of bunny pairs for each month. She made a chart of months and 

number of pairs. Then she asked them to find the number of bunny pairs at the end of first year.  

Jacqueline did not allow them to use chips for this task. She encouraged them to focus on the 

data chart.  
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Jacqueline: Now we’re going to take it to the next level, and the real problem, the real 
Fibonacci problem, asks this: “How many bunny rabbits are there after a year?” We’ve 
done 6 months’ work to get a year. Can I just double this and say there is going to be 26? 
 
Class: No. 
 
Jacqueline: Are you sure? 
 
Several students: Yes! 
 
Jacqueline: Is that happening in this pattern? We were just doubling? 
 
(Some of the students agreed that the pattern was doubling, but others disagreed.) 
 
Jacqueline: Some of us said, “Maybe”; some of us said, “No.” We’ll have to find out. 
You can’t just assume right? . . . I want to encourage you, this is algebra coming out, ok.  
It’s where we’re taking a situation like this, and we look at what’s happening. We try to 
see, ok, can I make a conclusion? Is there something that happened each time that maybe 
it could help me? So I want to point your attention to the numbers because you guys see 
what’s happening each new month? . . . Looking at your picture, looking at your chips, 
just pay real close attention... Here’s what I would like from you: You’re going to have 
an “aha” moment at some point. I live for that. I live for you guys having that moment 
and clarity when you look, “Oooh I get it.” There’s nothing more exciting to me here. 
When you have that moment, I would like you to keep it to yourself and don’t share it 
with anybody until tomorrow. Can you promise me?  
 
Her students spent one lesson together attempting to find the pattern. Their homework 

was also to find the pattern. In the following lesson, “Did you find Fibonacci’s pattern?” was on 

the screen. Jacqueline introduced what they were going to do in that lesson:  

Jacqueline: You were supposed to go all the way to Month 12. That was your assignment 
yesterday, and I really encouraged you to look at the numbers. Because that was the idea 
behind algebra. Because you look at a real scenario, a real-life situation like bunnies or 
cells reproducing or whatever—lots of situations—and you watch what is happening until 
you realize, “Ooh,” and then you can always say now anywhere along this pattern, you 
can figure it out. You don’t have to have bunnies in front of you to figure out Month 24. 
That’s what it’s all about, coming up with a general idea of these patterns.  
 
Some of the students had not yet been able to find the pattern, and Jacqueline gave them 

extra time to work with their group-mates to find it, but she did not let them use chips. Jacqueline 

then asked how many pairs were in each month and they filled out the rest of the chart up to the 
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12th month. Jacqueline asked them whether they could see a pattern. After students found the 

pattern, she explained why the pattern works.  

 Jacqueline shared in her interview why she did not explain a pattern until the students 

found it: 

It’s usually general, though, like I’ll think about ‘Okay, don’t tell them this.’ Like, ‘Hold 
onto that; let them struggle.’ That was a big thing as a teacher that I didn’t used to like to 
do. It was uncomfortable, but I let them struggle because there’s value in that. 

When Jacqueline introduced the problem, she told them they were going to work on it for 

2 days, but it took three lessons for them to arrive at the answer. In her interview, she 

commented, “I always misjudge the time it’s going to take, always. I always underestimate how 

much time it’s going to take.”  

After her students found the pattern, Jacqueline made a change in the problem: 

Jacqueline: What if bunnies could have babies in a month? Do you think that you will get 
the same pattern?  
 
Several students: No. 
 

Jacqueline asked the class to find how many pairs in the second month and drew the figure 

below:  

 

After drawing the first 2 months, Jacqueline asked the class to predict how many bunnies 

would be in the third month: 

 

She continued to ask the same question till her students began to guess easily. The class 

had found that pattern after the fifth month. Jacqueline highlighted the fact that they had only 
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changed from 2 months to 1 month and the pattern changed. She also connected the lesson with 

science and cell reproduction. After that, she turned on the SMART Board to show the class the 

PowerPoint presentation about the history of the problem and Fibonacci himself. She gave many 

examples from nature and daily life to exemplify Fibonacci numbers. Jacqueline listed several 

flower petal examples. She also gave examples from leaves and branching plants. She then asked 

them to find examples of Fibonacci numbers. In the next two lessons, they worked on different 

patterns, including Pascal’s triangle. She used the same pattern but starting with a different 

number.  

Valerie 

Background. Valerie, a Montessori teacher, taught upper elementary students who were 

in grades 4 to 6. She was a certified and experienced teacher who had been teaching for 14 years. 

Like many other teachers in this study, she had also majored in elementary education.  

Valerie had a very large classroom. Students had their own desks, but during the lesson 

time, they sat on the floor around the teacher. She usually taught a small number of students, up 

to 10 even though she had around 30 students in her classroom. While she was teaching a small 

group of students, the rest worked on other things quietly. Her classroom was rich in 

manipulatives, with many different types present. She also had a document camera and a 

SMART Board. Her school enrolled 370 students in 2010, and 47% of the students were eligible 

for free or reduced-price lunches. Compared with other teachers in the same district, the students 

in her school were relatively more affluent. Sixty-two percent of the students were White, and 

25% of them were African American.  

Valerie increased her mathematical knowledge by more than 1 standard deviation. When 

she began the program, her mathematical knowledge score was negative .40 logits and her 
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mathematical knowledge after the program was .85 logits, indicating that she had a rather high 

level of mathematical knowledge at the end of the program. 

Valerie’s self-report on changes in her teaching practices. Valerie explained how she 

taught before and after the program: 

I [was] just teaching duh, duh, duh, duh. . . . [Now] I start showing the reason behind it. 
[It was like] I’ll show you the shortcut to be able to do it. And then it's missing that deep 
why it is the way it is that is going to be important as they move up into, like, high school 
math for example . . . I . . . start[ed] showing the reason behind it. . . . Many of the things 
in Montessori are often computational. And so adding some problems like the locker 
problem, problems to where they really have to do deep thinking, . . . so I have to figure 
ways to incorporate more of those kinds of questions in. . . . And I was, like, okay, how 
can I sit there and get that concept a little bit deeper and add to what I'm already doing 
with my kids. So I go back to that textbook [Vande Walle] a lot and bring those things 
back. . . . And just trying some of the different strategies that we learned. You know, just 
trying little things here and there and just incorporating things in.  

She also described her teaching approach at the end of the program:   

So, like, when I teach the lesson I teach today, I'm going to show them with materials. 
You know, I have to come up with the same denominator. But I can't add; I'm, like, 
“There is a rule out there that says I can't add—you don't add or subtract fractions 
without the same denominator. So how am I going to get the same denominator?” And 
they may come up with an idea like 6 and 3—they may come up with 12. Well, I can do 
that. I have materials that will let me do that. It's, like, okay, yeah, maybe so. . . . And 
then I can say, “Well, is there anything else that we can come up with?” And then I'll sort 
of guide them into those kinds of things. 

Observation of Valerie’s teaching. Valerie usually prepared PowerPoint presentations, 

including mathematical terms and their definitions. She usually mentioned what questions might 

appear in the ISAT and what was new in the test related to the topic covered. She used the 

document camera in each lesson to project her and her students’ work. She also used the 

SMART Board to show students the PowerPoint presentation she had prepared for each lesson. 

She usually wrote down all the key vocabulary words and their meanings and asked the class to 

record them in their notebooks. Valerie described in her own words how she taught mathematics, 

and her description was consistent with my observations: 
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In Montessori we start out with the concrete. So I’m going to teach them concretely; I’m 
going to have materials out that are going to show them why things are the way that they 
are. And then after I do the concrete, then I'm going to move into abstraction. Oftentimes, 
for example, I do a problem, show them how to work the problem both in practice... And 
then they work…I do as much small group teaching as I can. 

As she mentioned in her interview, after doing one or two examples on the board, she 

asked the class to answer several questions on their own. She then chose one student to show 

how the student had found the solution. During that time, Valerie asked the class what they 

thought about the work of the student at the board. Sometimes students commented, and usually 

the student at the board responded. If the student at the board did not explain how she or he 

arrived at the answer, Valerie sometimes asked the student to show how she or he arrived at the 

solution. She used manipulatives to show them why the rule or procedure made sense.  

In the following episode, Valerie planned to teach her students greatest common factor. 

She started with reviewing several related concepts such as prime and composite numbers. She 

also asked the meaning of multiples. She used manipulatives to teach the concept, consistent 

with what she described in the interview. 

Valerie: We have been working with multiples. Who can tell me what is a multiple, what 
does it mean to be a multiple? 
 
Student: For 2 times 2 is 4 and 4 would be multiple of 2.  
 
Valerie: I agree, it’s the answer of a multiplication. Factor times factor is a multiple.  
 
Valerie used beads and pegboard to help students visualize the factors of numbers. She 
put 18 beads on the pegboard.  
 
Valerie: One way to get 18 is I can multiply 1 times 18. So we can say (writing) 1 * 18 = 
18. 1 and 18 what? Factors of . . . ? (waiting) 
 
Student: 18.  
 
Valerie: Right. 1 times 18 equals 18, and we say that a factor times a factor equals a 
multiple.  
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Valerie wrote, 
 
 a factor * a factor = multiple  
 
Valerie: Do we remember all that? Does 2 go evenly into 18? 
 
Class: Yes. 
 
Valerie: Let’s see. We’re going to make it into two columns.  
 
After Valerie divided the 18 beads into two rows, she asked the class what number the 2 

and 9 were factors of. The whole class gave the answer. Valerie then asked the class, “How 

about 3?” and she chose one student to divide 18 into 3 rows. They followed the same procedure 

up to the number 11. They continued to make rows up to number 11. During this review, she 

asked the student at the board to make another row. The students were sharing their observations 

during this activity. For instance, when they were making 3 rows of 6, one student pointed out 

the similarity to 6 rows of 3. Valerie commented, saying, “It is, but it’s visually looking different 

right? We were vertically in geometry wise and now we’re horizontally.” 

After this review, Valerie listed the factors of 18 horizontally. She began with 1 and 18 

and put these two numbers farther away from each other and continued to place the smallest 

factor next to the number 1 and the larger number next to the number 18. The students did the 

same thing for the number 24. This time, she asked the class what number times what number 

was equal to 24. She was recording students’ responses on the board. Valerie asked in what 

direction they listed the factors. The class said horizontally. Valerie then told them that they 

should do it vertically so that they could see the common factors better. The students listed the 

factors vertically on their own. Valerie asked them what factors these numbers had in common. 

She then gave the class the definition of the highest common factor (HCF) and asked them which 

factor was the HCF. Then as she said in the interviewed, she asked her students to solve 
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problems on their own. After solving a couple of similar types of problems, Valerie asked 

whether they knew how to find the HCF. Some students said that they did not think that they 

could do it. Then Valerie asked the group to find the greatest common factor of 9 and 15. 

Students worked on the problem on their own while Valerie helped the struggling students figure 

it out. Valerie asked the class:  

Valerie: How can I get 9?  

The students listed factors of 9 and Valerie wrote them on the board vertically.  

Valerie: How can I get 15? 

Valerie again listed the factors her students named vertically.  

Valerie: What are my common factors? 

She picked one of the struggling students to answer.  

Student: 3 

Valerie: How do I know that? Because they are in both columns, right? See you can do 
that. Rather than saying I can’t you can say I can ok? Let’s try one more. This time no 
one says I can’t do.  

When her students said, “I can’t do it” or “I don’t understand,” she would not let them 

say these kinds of negative comments. She also mentioned this attitude during her interview: 

I sort of teach with this cheerleading kind of thing. I want them to sit there like, “You can 
do it. Believe you can do it.” You know? And I think that's another thing—like in math, 
when they find that they're not successful, maybe that's not their strongest strength. Show 
them that math could be fun. Math is nothing but patterns . . . like, all of this cool stuff.. 

The lesson continued with her students’ solving similar problems. After each problem, 

one student shared how she/he arrived at the solution and students analyzed the student’s work.  

In subsequent lessons, she taught factor trees.  
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Rebecca 

Background. Rebecca was a second-grade mathematics teacher. She had been teaching 

elementary school mathematics for 11 years. She held teacher certification and had an 

elementary education major during her undergraduate degree. Rebecca had 20 students in her 

class. Desks were placed in groups of four to increase student interaction. Her classroom was 

rich in resources. She had a document camera and a SMART Board, which she used on a daily 

basis. Her school enrolled more than 350 students in 2010, 76% of whom were eligible for free 

or reduced-price lunches. Fifty-six percent of the students were White, and 28% were African 

American.  

She increased her mathematical knowledge noticeably over the duration of the program. 

She began with limited mathematical knowledge and ended the program with strong 

mathematical knowledge. The following section outlines her report of the changes in her 

instructional practices, followed by a brief illustration of her teaching at the end of program.   

Rebecca’s self-report on changes in her teaching practices.  

Rebecca like Valerie increased her LMT scores more than 1-standard deviation unit over the 

duration of the program. She explained the changes in her practices.  

 I lectured before. I did step by step. If a student didn't get it, then I would pull them to 
the side and continue to show them one method over and over. . . . When we did story 
problems, I taught them how to use cheating words, you know, how much in all would 
mean adding and how much less or how much more and—I would have them circle the 
words, and “When you see these words, you know that you're probably going to do this,” 
and just giving them those kind of tools so that they never even really thought about what 
the question was asking. . . . I didn't really put a lot of validity in their ability to problem 
solve in second grade. . . . Even though I knew that there was more than one way to come 
up with a math answer, I thought that . . . if I showed them this way and then I showed 
them another way . . . or if someone—if even one of the other students came up with it 
another way, that that would confuse them.  

 [Now] teaching, allowing the kids to share their ideas, even if it's not the traditional way 
that they come up with an answer, I've done that a lot. . . . . You know, you would think 
that a child would feel really defeated if someone says, “I disagree with your answer.” 
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But you've been in here. They do that. They say, you know, “I disagree with so and so. I 
think this.” I can remember, you know, the kids coming up here and saying I agree with 
that answer. I never ever, in any of my classes before, didn't let them agree or 
disagree. . . . But to actually—to allow them to think through the problems . . . because 
now I see how they're connected and I see how the—it's not just an algorithm; I know 
then more of the meaning behind it, so then I can do that. 

She also illustrated how she taught before and now: 

Before, I taught lesson by lesson. What I mean is, like, if it was 13-2, the next day I 
taught 13-3, and the next day I taught 13-4. If they learned it, great. If they didn't, I did 
the next lesson. . . . I would just teach that lesson, and I didn't have them connected. So if 
they had never done something before, then—but now I see how they're connected and I 
see how the—it's not just an algorithm; I know . . . more of the meaning behind it. . . . So 
now if I'm doing something like fractions or measurement and we do it, and I give them a 
problem and they don't come up with the correct answer that day, or if they're totally 
completely lost, we do it again the next day, and we talk about it and we do it again the 
next day. . . . Now when we do addition, the kids know how to use the number chart 
going down and over. They know how to do—like, some of the kids will add the 100s 
and then they'll add the 10s and then they'll add the ones, and they'll put it together—
different methods that they have come up with, that sometimes we make posters of their 
methods and we'll place them around the room. They share it.  

Rebecca’s current teaching: Rebecca’s two different mathematics lessons. Rebecca 

created two different mathematics lesson times for her students. One was to teach the regular 

mathematics curriculum, and the other was to improve her students’ problem-solving abilities. 

She felt considerable pressure to cover the curriculum, but at the same time, she wanted to 

improve her students’ ability to solve problems: 

Our school is very mobile . . . almost half of my class does not finish from the beginning 
to the end of the class, the end of the year. But they usually stay within [the same district]. 
Therefore, we all have to teach the same lesson every single day so that if they move to 
another school . . . they make sure that they learn that material. And you're only given, . . . 
1 week to teach it. . . . So what I've been doing, I try to have math class where they're 
doing problem solving and they're working in groups and they're trying to figure it 
out. . . . And then other times, then in the afternoon, then whatever I am required by the 
school district to teach. 

She also explained why she felt the need to create another lesson time for mathematics: 

I notice whenever we have this, what's called a ThinkLink test for our district, . . . I notice 
that . . . they could only answer questions that they had been taught to answer a certain 
way. Any problem outside of knowing how to do or knowing key words or knowing how 
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to do—following directions, they had no idea how to even set it up. And so I started 
doing this.  

I observed her teaching her regular mathematics lessons as well as her problem-solving 

lessons. This section illustrates Rebecca teaching in her problem-solving lessons because she 

preferred my observing her in her problem-solving lessons rather than in her regular lessons. 

Beyond that, her teaching in her regular and problem-solving lessons was similar to some extent. 

In her regular mathematics lessons, Rebecca also gave her students time to figure things out on 

their own, but not as much time as they were given during the problem-solving lessons. She paid 

attention to students’ responses and provided counterexamples or challenged them if necessary. 

The main difference was that during her regular mathematics lessons, she followed her textbook. 

She sometimes showed some parts of the animated lessons in the EnVisionMATH curriculum. 

She commented on her teaching in these lessons: 

[In my regular lesson,] I do start off with some kind of problem solving that they have 
that's related to that. Like if we—like right now, we're on measuring, so I'll give them 
some like uh, like we did a paper clip and a cube today, and they were measuring 
different things in the classes. So I give them freedom of what to measure and how to 
compare it and how to show it. But it's more geared towards the same material, whereas 
when I do the problem solving, it can be one thing one day and another thing the next day, 
so they're not actually learning repeatedly about just multiplication. . . . They might be 
learning one day about, when I'm doing the other, they do measuring and then they do 
measuring and they do measuring and they're doing measuring so that they're kind of 
mastering it more than sporadically. 

Observation of Rebecca’s teaching. Rebecca began each lesson reminding the students 

of the rules for group work. She then posed questions on the screen. For each lesson I observed, 

she had two or three questions, but the students were usually able to answer only one question in 

one or two lesson times. The questions assigned to the students during my classroom visits are 

listed below. Rebecca explained how she chose the problems if they were outside of her 

textbook: 
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You should do things that are applicable to their lives as second graders and things that 
they like. And I do sometimes—honestly, . . . . I just give them ..problems where it takes 
more than one step, I think, are really good problems . . . because then they're learning 
more than one kind of math method.  

Problems Rebecca Used in Her Problem-Solving Lessons 

1. There are 326 injured animals that need to be rescued. If there are four rescue teams, how 
many will each team rescue.  

2. If each team rescues an animal every 20 minutes, how long will it take to rescue all of 
them? 

3. In the month of November, there were 7 candles sold every day. How many candles were 
sold for November? 

4. If each candle sold gave the school 25 cents, how much money did the school receive 
from the candle sale? 

5. If you sold pencils for your class trip and you made 30 cents every 20 minutes for 8 hours, 
how much money would you make? 

6. If you had to give 10 cents of every 30 cents to the school, how much would the school 
receive? How much would you get to keep? 

7. If you had a box of 12 pencils for every student in your room, how many pencils would 
you have? 
 
In the following excerpt, Rebecca projected the first questions on the screen. As usual, 

she put out several manipulatives. Specifically, for the first two questions, she provided place-

value blocks, cubes, clocks, and paper strips for them. The students were working in groups of 

three or four she had assigned.  

For Question 1, Rebecca chose the number 326, which is not divisible by 4. She also did 

not mention that an equal number of animals should be rescued by each team. Partly due to the 

ambiguity in the first question, at first some groups were not dividing the animals into equal 

groups. For instance, one group told her that three groups rescued 100 animals and one group 

rescued 26 injured animals. Students also had a hard time finding a way to represent 326. Several 
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students made mistakes while counting. For instance, many students did not know how to count 

correctly to a number higher than 100.  

While visiting each group, Rebecca saw that the students were having a hard time solving 

the problem. During group work time, Rebecca asked similar questions in each group visit: “If 

there were 100 sick animals, only 100, and there were 2 teams, how many would each team get?” 

After the students answered, Rebecca changed the question by saying, “If there were 4 groups.” 

First, the student said 50. Rebecca then challenged him by saying, “50 plus 50 plus 50 plus was 

more than 100.” The student then said, “25.” Rebecca began to explain: “25, four quarters, 

equals a dollar, remember. If there was 100 animals and 4 teams, each team would get 25. Now, 

make it bigger. Now you know, if there was 100, each team gets 25. If you have another 100, 

then each team will get another 25, 25, 25, and 25. If you have another 100, because there is 300, 

each team will get . . .” The student interrupted the teacher and said, “75!” Rebecca continued, 

“And then you take 26.” 

Rebecca did not stop the group work until they had arrived a solution or came close to 

arriving at one. The students did not find a solution during the first lesson. They continued 

working on the first problem in the second lesson as well.  As she said in the interview, she 

waited for her students to come up with a solution:  

You have to give them the freedom to try to come up with it and be willing to wait. . . . I 
think that's the really big thing. . . . I really think that if you have a teacher who is pouring 
knowledge into a child's head and you have a teacher that's teaching problem solving, the 
teacher who is teaching problem-solving's kids will be better in math in the long run . . . 
and I think when you're pouring knowledge in, you see the results much faster. . . . So 
when you feel like you're up against the clock, you have to be willing to trust the method, 
even though it's not paying off at the beginning. . . . I really don't think that my class had 
it until the end of this year. 

Group work was followed by a classroom presentation. Rebecca picked one volunteer 

group to present. Each group had a chance to present their work, regardless of whether they 
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found a solution. Rebecca tried to understand what they did and why they did it, and she asked 

questions during their presentation. She also encouraged her students to ask questions. The 

following excerpts illustrate her attitude during the presentations. On the second day of a 45-min 

lesson, the students shared their solutions to Question 1. 

Rebecca: You have to explain how it worked.  

Student 1: We started by fourths. We counted by fours.  

Rebecca: Show me how you counted by fours. Then what did you do? Why did you 
count by fours? 

Student 1: So we’d know, . . . because there are four teams. 

Rebecca: Because there’s four teams, so you counted by four. Then counting by four, 
what did you do with it? What’s that 25? Can you explain to me and the class what 
you’re doing? 

After the group explained what they did, Rebecca turned to the class and asked whether 
they had any questions or comments. The lesson continued with other groups’ 
presentations.  

 

Sonya 

Background. Sonya was an elementary school teacher who was teaching sixth-grade 

students. She had been teaching for 10 years. She was also a certified teacher with an elementary 

education major.  

She and Beth worked in the same school. Their school enrolled 264 students, 85% of 

whom were eligible for reduced-price or free lunches in 2010. As indicated by this number, the 

majority of students in the school were from economically disadvantaged families. Forty-eight 

percent of the students were African American, and 49% were White. Her classroom walls were 

full of posters. She had a SMART Board and a document camera, which she used actively on a 
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daily basis. She sometimes used flip cameras. Desks were arranged in groups of 5 so that the 

students could work collaboratively.  

Sonya’s mathematical knowledge increased significantly over the duration of the 

program. She began with limited mathematical knowledge (-.60 logits) but increased her score 

to .20 logits. The next section illustrates Sonya’s perspective on the changes over the course of 

the program.  

Sonya’s self-report on changes in her teaching practices.  Sonya reported that even 

when she began the program, she had been teaching math using similar teaching strategies 

emphasized by the NCTM. She reported how she taught before compared with now:   

Teachers should be facilitators of the lesson, meaning that they act as guides during the 
lesson to help students understand concepts through questioning, as opposed to telling the 
students how to approach a problem or giving them the answers. . . . I had already been 
trained to use this approach; however, the program encouraged me to continue to teach 
math in this manner. In that respect, the program has swayed me to continue teaching 
with the goal of students truly understanding the math concepts that are being taught, as 
opposed to just memorizing rules. . . . It encouraged me to continue teaching with student 
understanding as the primary focus. . . . [It] helped me differentiate sense making in the 
math class from telling students how to do math. It reinforced the approach to teaching 
math that allows students to work together to solve problems to create an environment of 
understanding math with a focus on learning from one another in math class is an 
acceptable way to learn math. 

Observation of Sonya’s teaching. I asked each teacher how she taught mathematics, and 

Sonya was the only teacher who mentioned her textbook to describe her teaching practices. One 

reason might be that she strictly followed her school-mandated curriculum, and another reason 

might be that she was enthusiastic about her curriculum, Connected Math:  

When teaching math, Connected Math encourages the method of Launch, Explore, and 
then Summarize. I launch math lessons by letting students know the lesson goal first. 
Then I model the lesson expectation or pose questions or situations that students can 
connect to in the problem. During the Explore part of the lesson, students work with a 
partner or in groups to solve the problems posed. During this time, I facilitate the lesson 
by guiding students through questioning. Finally, during the Summarize phase of the 
lesson, the lesson is wrapped up or ended by students and/or me sharing how they made 
sense of the lesson goal. 
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She then further explained why she used those strategies:  

Because it allows students to have some time to work through problems using their own 
thinking. They get to talk with their peers about their own ideas and are able to learn from 
each other in a variety of ways, as opposed to following the teacher’s way of doing math. 
Students come to see that they have math knowledge and are capable of solving math 
problems in their own way at their own pace, and it is okay to do so. Students also realize 
that there are so many different ways to approach the same problem. It also allows me the 
opportunity to work with smaller groups of students that really need the extra attention 
and time to build their confidence about a math lesson. . . . As a student of the “old 
school” way of learning math, I memorized a lot of rules and did not have an 
understanding of math. I knew how to DO math. I could figure out a problem, but I really 
did not KNOW what I was doing. It did not make sense. For example, I knew how to add 
fractions, but I really did not know what it meant to do so. Making connections between 
fractions, decimals, and percents was nonexistent to me. I never knew they were related. 
Now that I am teaching through understanding, my students not only know how to DO 
math, but they understand WHY the math they are doing makes sense. 

Sonya’s summary of how she taught mathematics lessons was consistent with my 

observation of her teaching.  As she said in the interview, she closely followed her curriculum. 

All activities and questions were from her textbook. In the following excerpt, I illustrate her 

teaching. Sonya was teaching factors, primes, and composite numbers. In the previous lesson, 

they started to make paper rectangles for the numbers up to 30 (see Figure 20). Sonya was doing 

the Investigation part from their textbook. Using tiles, they were trying to make all possible 

rectangles. Sonya asked them to write the dimensions of the rectangles. Sonya spent an entire 

lesson helping her students discover the factors of numbers up to 30. First, the students worked 

in their groups to finish their work. 
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Figure 20. Paper rectangle models for the numbers 1 to 4. 

Sonya began the discussion with an observation.  

Sonya: One group had this dilemma.  

She drew the figure below on the SMART Board: 

 

Sonya: What’s wrong with this representation? 

Student 1: Three is not a factor of 10. 

Sonya rephrased what he said and then asked where he got the number 3. Again, Sonya 
rephrased what he said to the class. 

Sonya: So he’s saying there’s 3 in each row going in this direction except this one. If we 
have 10 tiles, and I know that I can’t make equal groups with these 3 sets of 3. All right, 
they ended up with a rearrangement, so they can have equal numbers in each row. So that 
led us into talking about the dimensions of each row. So we ended up counting sides to 
get our dimensions. So how many tiles are on this side of the rectangle?  

She drew the 2 × 5 rectangle below and asked the dimensions of the rectangle: 

  

Sonya: This is a representation of 2 by 5.  

4 

2 1 

3 
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One student said he had an observation, and Sonya asked him to share it with the class. 

He said when he turned it around, the dimensions were reversed. Sonya rotated the rectangle and 

he said, “5 times 2.” Sonya asked for another example. Another student said 1 by 10, and Sonya 

rotated the rectangle, and the class said 10 by 1. 

 Sonya: What did you notice? We had 10 tiles in all. What do these numbers have in 
common with 10?  

Student 3: Factors.  

Sonya: (pushing her question) What do you mean by factors? 

Student 3: Factors of 10.  

Sonya: What numbers are the factors of 10? Can we list them from the lowest to greatest? 

(Altogether, the students listed the factors of 10.)  

Sonya: Why do we need to repeat this number over and over again? Because, they’re 
repeating here when we flip the dimensions. We took it vertically 2 by 5, and then we 
flipped it horizontally then it gave us 5 by 2. . . . Here’s what I want you to do today: 
We’re going to look at the rectangular shapes, and for each one, if making rectangular 
shapes will help you know all the factors of the numbers 1 to 30, I want you to write 
down the factors of the numbers from 1 to 30, and I want you to look at the rectangular 
shapes that we have made.  

(After the students listed the factors of the numbers up to 30 by using the rectangular 
shapes they made, the whole-class discussion started with 1.)  

Sonya: What are the factors of 1? 

Class: One. 

Sonya: According to these two shapes, what are the factors of 2? From least to greatest.  

Class: One and 2. 

Sonya: All right, now, here comes the part [where] we have to put in some thought. So 
we have made all possible rectangular models for the numbers 1 up to 30. We have 
looked at the models we made, and we have written all the factors in each of those 
numbers based on the rectangles we made. So now, in your groups, first you are going to 
work on b − 1 and b − 2. In order to work on b − 1 and b − 2, you have to look at the 
models we made.  
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(Sonya projected the book on the screen and read the question aloud.)  

Sonya: “1–Which of these models has the most rectangles?” What kinds of numbers are 
these? They are asking you, are these prime numbers or composite numbers? 

“2–Which numbers have the fewest number of factors?” 

Sonya asked the students to work in their groups to answer these two questions. As a 

typical part of her teaching, during the group work time, she visited each group and asked 

questions. The following whole-class discussion that occurred for the second question illustrates 

her teaching. 

 Sonya: Which number has the fewest rectangles?  

Student 1: One. 

Sonya: I know 1 has the fewest, but give me a few more numbers. 

Student 1: 1, 2, 3, 5, 7, 

Another student: (interrupting) You can’t! 

Sonya: Wait, tell me why you think we can’t? Tell me more.  

Student 2: Because 1 has only one rectangle. Then if you try to go, like, 2 or something, 
you can’t pick 2 because it has 2 rectangles. So does 5, and so does 3, and so does 7. 
Every couple of odd numbers only have 2 rectangles. If you pick 2, you have to pick all 
the rest of them that have only 2 rectangles. 

Sonya: He says if you pick 2, you have to pick all the rest of them that have only 2 
rectangles. So, umm, that’s quite an interesting point that you have made. Let’s leave 2 
out, and just let’s leave all of the other numbers that have only 2 rectangles. Then we’ll 
talk about 2 later. 

Sonya asked them to analyze the numbers with only 2 rectangles. She asked them to 

make a list of all the numbers that have only 2 rectangles except for 2. She then checked whether 

this list included 3, 5, and so on, up to 29.  

Sonya: What kind of numbers are these numbers? 

Class: Prime numbers. 
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Sonya: (reading the definition of prime numbers) “Prime numbers are numbers with 
exactly 2 factors. One and the number of itself.” Let’s look at 2. Does 2 fit the definition?” 

Several students: Yes. 

Student 3: (challenging the point) But 2 is even.  

Sonya: Chris made a good statement. He said 2 is an even number. It may be true: 2 is an 
even number. That doesn’t mean that it can’t be a prime number. It’s prime because it has 
only two factors, 1 and itself; therefore, it’s a prime. Does that make sense? 

In that lesson, they also learned square numbers, and Sonya ended the lesson by asking 

the students what patterns they noticed. She asked, for example, what statement they could make 

about the numbers that have 2 as a factor, or what they noticed about square numbers and their 

factors. These questions were also from the textbook.  

Beth 

Background. Beth was a novice teacher when she began the program. She decided to 

become a teacher late in her career. She was working in the same school as Sonya. Since 

becoming a teacher, she had taught fifth-grade mathematics. She had also majored in elementary 

education and was a certified teacher.  

Her classroom was different from Sonya’s in that she had fewer posters decorating the 

walls. She placed student desks together in groups of 4 or 5, enabling student interaction and 

collaboration. Although she also had a SMART Board and a document camera, she was 

uncomfortable using them and was relatively inefficient in using these tools, especially the 

SMART Board. She used it mainly for showing visual animations. She had 18 students in her 

mathematics classroom. Her students were different from Sonya’s students in that they were 

more respectful both to Beth and to their classmates. Classroom management was not a big 

problem in her mathematics class.  
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Beth began the program with very limited mathematical knowledge. Even though she 

increased her mathematics score by .83 logits, her score on the final mathematics test was −.39 

logits, indicating that she still had relatively limited mathematical knowledge.  

Beth’s self-report on changes in her teaching practices. Beth compared how she had 

taught before the program and how she has started to teach now:  

Before, . . . I taught each lesson as a whole group and then gave the students several 
problems to complete and turn in for a grade. . . . Now my teaching is driven by students’ 
interest, problem solving, sharing, and just a few problems to determine that a concept 
has been mastered or that additional interventions are needed. . . . One of the most 
significant changes I have made is to teach less as a whole group. [Now] I do less whole 
group, more hands on, and allow them to work together to solve problems and find and 
share how they solved a problem. . . . For instance, this week our intent was to learn 
about graphs and data. The students paired, chose a survey question, conducted a survey, 
and created a line plot with interpretation to present to the class . . . (.83 gain). 

Observation of Beth’s teaching. As I had done with the other teachers, I asked Beth 

how she organized her mathematics lessons. Her description was also quite similar to what I had 

observed in her teaching: 

 During most lessons, I do a quick mini-lesson to introduce the math concept. Then the 
students usually pair or form small groups to complete specific problems that they will 
later present to the whole class. During other lessons, I might pose a problem before 
presenting the lesson to encourage the students to work together, to use prior knowledge, 
and share different ways to solve a problem. 

The following episode illustrates how she organized her mathematics lessons. Students 

had been learning about multiplying whole numbers.  In that lesson, Beth was planning to teach 

how to record repeated multiplication. She first distributed a worksheet and then introduced the 

lesson.  

Beth: Suppose you want to multiply 4 five times. If you want to multiply 4 five times, 
pretend that your 4 equals y in your table; record your answer in this box. Remember 
we’re talking about multiplication, not addition. What does the first column say? 

Student 1: Expanded form. 
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Beth: Expanded form. How many times have I said? Five times, put it five times: 4 times 
4 times 4 times 4 times 4. You want to put 4 five times, that’s called expanded form. Is 
that an equation or is than an expression? 

Student 2: Expression. 

Beth: It’s an expression. It doesn’t have a what? 

Students: Equal sign.  

Beth: Yes, how can we write it in a different way? 

One student knew how to write in exponential form and shared her thinking with the 

class, and then Beth wrote “Exponential Notations” and the equation below on the board: 

Exponential Notations  

4*4*4*4*4 = 45  

Beth: Four is the base and 5 is the exponent. 

Then Beth asked the class to find the answer. The students worked as a group to find the 

solution. Beth recorded each group’s solution on the board. One group said, “20.” 

Beth: She said 20. What’s 4 times 4? We want it 5 times.  

(Other students also shared their answers, which were 64 and 1,024.) 

Beth: We keep doing it till we find an answer that we all agree on.  

(Beth wrote all the students’ answers on the board.) 

Beth: How many got 1,024? (The students raised their hands.) Guys, that’s the correct 
answer. Let’s take a simpler one. Let’s do 2. This is my number 23.  

The students in their groups worked on similar types of problems. The following excerpt 

illustrates how she explained exponential form.  

On the board, Beth wrote, “7*7*7*7*7.”  

Beth: This is expanded form. How can I change it to the exponential form? What is my 
base number? 

Students: (altogether) 7.  
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Beth: Yes. What is my exponent? 

Student 1: 5.  

Beth: Are we getting a better idea? The big number is called the base and the little 
number is the exponent. It tells you the base number is how many times.  

Although Beth did not mention animated lessons from EnVisionMath as a consistent part 

of her teaching, in almost every lesson I observed over a 2-year period, she showed the visual 

lessons from EnVisionMath. After teaching a brief lesson, she turned on the SMART Board, and 

EnVisionMath was on the screen. The following segment is the typical way she used animated 

lessons.  

After a quick lesson and working on similar problems, Beth began the visual lesson. 

There was a story problem in the video. Beth paused the video and repeated the questions asked 

on the video. The answer to the question in the video was “53,” which was one of the questions 

they had just solved. One of her students told Beth, “We already did this problem!” Beth agreed 

with her but still continued the video. She repeated the questions from the visual lesson: “Can 

you use exponential notation to write 5 times 5 times 5, and can you use exponential notation to 

use 5 times 4 times 2?” She paused the video for students to answer, and then she hit the video 

again for the response from the book. She usually repeated the book response as well. For 

example, a mathematical expression like the one below appeared on the video: 

25 ≠ 10 (Why?)  

Beth: Listen to this question. She said (referring to the voice on the video) 2 to the fifth 
power is equal to 32, not 10.  

(They then continued to watch the video. Several times, Beth paused the video for her 
students to answer the questions, and then she resumed the video to hear the book’s 
response.) 

Beth: (What is the difference between standard form and expanded form?” (reading a 
question from the book) 
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Student: Standard form is the answer.  

Beth: Yes, the standard form is the answer.  

(They watched the video.) 

Beth: She (referring to the voice on the video) said the standard form is the way numbers 
are written in everyday situations. 125 is just standard form, ok. 

The video then explained, “Expanded form is the number of written products of factors.” 

The following question was, “When might we use exponential notation rather than expanded 

notation?” Beth repeated the same question and picked one student to share his thoughts. 

Student: To shorten it out.  

Beth: He said to shorten it out. Any more ideas? (Beth then resumed the video.) 

After having the students watch the visual lessons from EnVisionMath, Beth picked 

students to solve similar problems. “Your base is 3 and your exponent is 5. Write it in the 

expanded form” was a typical question type during this phase of the lesson. While the students 

on the board were solving the assigned problems, the rest of the class was also working on the 

problems in their groups. After the students completed their work, she checked their answers. 

During this period, the students found either the expanded or the exponential form. Beth’s 

explanation was typically: “You hear ‘exponent,’ that means that your answer should have an 

exponent in it.” After the students solved problems in their seats, she devoted some time to group 

work. The students were supposed to answer similar types of problems with their group mates. 

During this phase of the instruction, she also visited the groups. She solved similar questions 

with the students having difficulty completing them on their own. Her explanations during group 

work focused on the procedure, showing students what steps they needed to follow to find 

expanded or exponential forms.  
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Ann 

Background. Ann was the one of the few teachers whose mathematical knowledge did 

not noticeably increase during the program. She had been teaching mathematics for 8 years, and 

she had begun to teach third-grade mathematics in the 2010–2011 academic year because of her 

school’s rotation policy. Previously, she had taught fifth-grade mathematics. Like the other 

teachers in my group, Ann also held a teaching certificate and had majored in elementary 

education.  

Ann had 45 students across the two classes. In 2010, she was teaching two third-grade 

mathematics classes. Her classroom was rich in resources: She had a SMART Board and a 

document camera. Posters dotted each wall, and most served instructional purposes. The school 

in which she worked had economically disadvantaged students. In 2010, 73% of the students in 

her school were eligible for free or reduced-price lunches. Sixty-six percent of the students were 

African American, and 26% were White.  

Ann’s initial mathematics score was −.68 logits, indicating that she had limited 

mathematical knowledge, and her final score on the test was −.43. Although her mathematical 

knowledge did not change drastically, some of her practices did change. In the initial year of the 

program, Ann’s classroom had been designed to minimize student interaction. The students sat in 

individual chairs, and Ann had not been tolerant of any noise during her instruction. However, 

after she enrolled in the program, student desks were placed in groups of four, and students were 

allowed to work with other students. The next section outlines her report on the changes in her 

teaching.  

Ann’s self-report on changes in her teaching practices.  Unlike other teachers, Ann 

did not noticeably increase her math knowledge over the duration of the program. When Ann 
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was asked how her instructional practices had changed over time, she described shifts in her 

teaching as follows: 

I've taken myself out of it [the lesson] more. . . . I'm trying to be more of a facilitator to 
the learning, not the lecturer. . . . I've kind of listened to them more to kind of guide the 
lesson and my instruction. . . . If I notice, we're not getting this, well then, we're going to 
go this direction. . . . Before it was like, okay, we're going to do this and this is what 
we're doing today and this is what I'm doing this year. And they didn't really have a say.  

[Now]I've realized I don't have to have all the answers and I shouldn't have all the 
answers. So, “Oh, that's, very interesting,” “let's go with that. I'd like to know the answer 
to that, too.” And kind of let them kind of—then we go that way. I can explore it with 
them . . . because before, I thought that I had to know everything and I had to do it all. . . . 
I've found that it's actually kind of nice to just walk around and listen to them and, do a 
little more questioning. 

She further illustrated her teaching, which will help the reader visualize her instructional 

practices better: 

 Like right now we're doing division. . . . They've learned all these different strategies. 
Now they pick; whichever one they want to use is the one that they're going to use, the 
one that makes it easier for them. . . . [In] today's lesson . . . we started off with writing 
the division sentence. Somebody shared that. And then, okay, did anybody do it any 
different? I drew a picture. So they come up and they show the picture they drew. And 
then did—you know, I used multiplication. Somebody said they used adding, you know, 
which—whatever. But they—I mean, it made sense to them. They were just doing it a 
little backwards. And then they—you know, I used subtraction. Well, come up and show 
us. So they all—you know, if they all would have drawn a picture, that was fine, too. But 
that works for them. So they share and show us.  

Observation of Ann’s teaching. Consistent with my observation, Ann described how 

she organized her mathematics lessons: 

I definitely think it should not be me at the board lecturing, saying, “Okay, this is the 
algorithm. This is how you solve the problem.” . . . So I think it should definitely be 
fun. . . . You have to find a way to hook them into the learning. So sometimes it's a book, 
it might be a song. I always start the lesson, or most days, with an interactive learning 
activity. So we pose a question on the board. Sometimes I might have them work on it by 
themselves and then we talk about it. But a lot of times, they are talking about it in their 
group. . . . I just want to see—it's kind of, they have the floor. . . . And then I pull sticks 
and . . . they get to come up and show me on the board what were their ideas. Did 
anybody do it differently? And, . . . we get several different ways of solving the same 
problem that way. So I start off with that. Then I do use the computer technology to kind 
of guide a lesson. But I would say in the hour of math, it's probably maybe 10, 15 
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minutes tops that they're just listening to me, if even that. . . . So then after, you know, 
we've kind of given them the lesson, we do sometimes a little guided practice and 
practice problems together. And then I let them do their partner activity.  

Ann summarized how she organized a mathematics lesson, and below I illustrate how she 

proceeded with it. Ann had been teaching subtraction, and in earlier lessons, her students had 

used place-value blocks. In this lesson, she wanted her students to know subtraction without 

using manipulatives or place-value drawings. The EnVisionMath lesson was on the screen. She 

started the lesson with a review. She wrote down the question below on the board:  

 

Ann then asked her students what she needed to do to solve the problem.  

Ann: 60 minus 32. What’s the first thing I need to do? 

Student 1: Draw. 

Ann: How many 10s do I have here? How would I draw six 10s?  

Student 1: Six strips. 

Ann: Do we have any ones? (She waited several seconds.) No, no ones.  

Ann: Can we take 2 ones away over here? There is no ones. What might we need to do? 
What is our big R word? 

Student 2: Regrouping.  

Ann then drew 

 

Ann: So how much should we have? Let’s count and see. 

(They all counted, “10, 20, 30, 40, 50, 51, 52, . . ., 59, 60.”) 

  60 
−32 
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Ann: So we still have 60, but we just draw it differently. Our subtraction problem tells us 
we need to take away how much?  

(Nobody responded, and Ann asked the question again.)  

Ann: What are we subtracting? 

(Ann picked a student, but the student could not respond. She continued.) 

Ann: So we’re going to subtract 32. How many 10s in 32? 

Student 3: Three. 

(Ann then crossed out three 10s.)  

Ann: How many ones do we need to take away?  

(Some students said, “Two,” and she crossed out two ones. She asked the class how many 
ones and 10s left.)  

After reviewing subtraction with two-digit numbers, she told the class they were going to 

subtract two-digit numbers by using paper and pencil. Ann prepared a story problem. First, she 

read the problem, and then the students worked in groups to solve it. While she was reading the 

problem, she explained the words refuge and crane to ensure that the students understood the 

question. The question was, “A bird refuge had 35 cranes. It released 19 of the cranes back into 

the wild. How many cranes are left at the refuge?” Ann asked them to talk with their partners and 

she gave them 30 to 40 seconds.  

Ann: What operation is needed to solve this problem? 

Student 1: Subtraction. 

Ann: Subtraction, ok. Does everybody agree that subtraction is what we need? 

(Many students said, “Yes.”) 

Ann: Was there any key word that helped you realize it was subtraction? 

Student 2: Crane. 
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Ann: “Crane” told you it was subtraction. A type of bird? Let me read the question again. 
(She read the question one more time.) What key word helped you figure out it was 
subtraction? 

Student 4: Release. (hesitantly) 

Ann: Possibly. 

Student 5: How many birds are left? 

Ann: How many are left? How many are left?  

Ann picked one student to solve the problem. The student at the board drew the three 

strips and five dots below: 

  

Ann: Explain what you did.  

Student: I drew 3 tallies and 5 dots.  

(The student then crossed out one of the tallies.)  

Ann: What do you need to do next? (waited a second and then) Put 10 dots.  

Ann: How many 10s are there in 19? How many ones in 19?  

The student responded to her, and then Ann asked her how many ones and how many 10s 

were left. After the student at the board solved the problem, Ann asked the class, “Did anybody 

solve it differently?” One said he did it in his head. Another one said he did it differently, and 

Ann asked him to show how he did it to the class. He solved the problem as shown below: 

 

Ann: Why did this 5 have to become 4? Are you sure about that? 

  
 

  21 
  35 4 
−19 
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(He then erased 4 and made it 5 and Ann described the procedure to the class.)  

Ann: I have 35, right? Tom said 9 is larger than 5. We cannot take 9 from 5; we can’t do 
that. What he did is, he’s going next door; he’s borrowing 10. Ok? He has three 10s but 
he’s borrowing one 10 and he made it two 10s. What we do with the place-value model is 
instead of making one 10, when we borrow it, we’re regrouping it and we’re drawing 10 
more ones or 10 ones. It is still the same number, but we’re distributing differently. Ok? 
He has two 10s and 10 ones just like here (pointing to the place-value drawing), so now if 
you have 15 ones, you take away nine—1, 2, 3, 4, 5, 6, 7,8, 9—how many are left Tom?  

Student: Six.  

Ann: Yeah, 6 are left. Then you have two 10s and you’re going to take away one 1. How 
many is left? So it’s 16. Basically, it’s a different way of doing the problem using paper 
and pencils.  

Ann also followed the textbook closely. However, she also found different activities 

outside the EnVisionMath textbook. Ann preferred visual tasks so that she could use the SMART 

Board. She explained how she chose activities in the interview: 

I really work hard at trying to make it fun, make it where they understand it, just bringing 
in all those components like I talked about, using technology anytime I can. Because 
that's the key here in this, with these kids. They have to have fun. And they have to be 
engaged and under control. 
 
Consistent with how she described her teaching in the interview, after solving a story 

problem on subtraction together, Ann asked her class to open their textbooks. While the students 

were opening their textbooks, she turned on the animated lesson, which focused on the question, 

“How can you use subtraction?” As a whole class, they went over the questions in the visual 

lesson. Ann asked which key words in the questions told them they needed to do subtraction. 

Ann mentioned several key words, such as remainder, difference, less than, fewer, how many 

more, and minus. She paused the video several times and picked one student to tell what 

operation they needed to do, and the student identified the key word. Ann then picked another 

student to solve the problem in the visual lesson on the board. The Guided Practice from 

EnVisionMath then appeared on the SMART board. The questions in the Guided Practice were 
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practice problems. Ann pulled out a stick on which a student’s name was written. Students went 

to the SMART Board to solve the problems similar to the one below.  

30 
Student participation was high during the SMART Board activities. However, her 

students could easily veer off task, and they had some behavioral problems as well. In each 

lesson, Ann spent time getting them back on track. Sometimes she would pause the lesson and 

turn off the lights and warn the class.  

After solving several questions like the one above, the students worked in groups to write 

a corresponding story problem for each numerical expression such as 20 − 13. She prepared 

sample questions and read them to the class: “I have $20. I bought a hat that cost $13. How much 

money do I have left?” The students worked on the problems in the following lesson and 

presented their story problem to the class.  

Meg 

Background. Meg was a second-grade teacher. As of 2011, she had been teaching 

mathematics for 10 years. Her undergraduate major was elementary education, and she held a 

teaching certificate.  

The school where she had been working enrolled approximately 300 students. Eighty 

percent of the students in her school were eligible for free or reduced-price lunches in 2010. 

                                                 
30 As the reader may notice, this question was the same question Ann used at the beginning of 
the lesson. Both Beth and Ann usually used a question from animated lessons when they started 
to teach a concept and then when they turned on animated lessons, they solved the same question 
again.  

  35 
- 19 
 

Subtract 
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Forty-eight percent of the students in this school were White, and 40% were African American. 

She had approximately 25 students in her class. Her classroom was rich in terms of resources. 

The walls were full of posters, most of which served instructional purposes. She also had a 

SMART Board and a document camera in her classroom. Three or four students’ desks were 

grouped together, facilitating group work and collaboration, which occurred consistently in her 

lessons.  

She began the program with a very limited knowledge of mathematics (-1.3 logits). Even 

though she increased her mathematical knowledge significantly, her mathematical knowledge 

score was still −.68 logits at the end of the program, indicating that she has a limited knowledge 

of mathematics.  

Meg’s Self-Report on Changes in Her Teaching Practices. Meg described the changes in 

her practice in this way: 

I’m more cognizant of what I’m saying, and I’m more cognizant of what they’re saying 
to me. I’m trying to think of why they said what they said, whereas before, I kind of sort 
of [did]. But now I’m even more listening to them, letting them kind of teach each other, 
working more in groups and talking about what they’re doing and how they’re thinking, 
helping them, each other to work through problems and talk about problems and find 
solutions to the problems. I think I’m more aware of common mistakes that they make. It 
made me more aware of that and why they made them and helping them to think through 
the process more to help correct the mistakes. . . . 

I needed them to talk through it more, more writing. Before I didn’t do a lot of writing in 
math. Now they do—they put their thoughts on paper so I can track them. Before I started 
the program, . . . we did sharing, but now we do a lot of sharing. A lot. They discuss and 
they’ll correct each other and talk to each other more. I think my classroom has been 
more—is more open now, where I allow a lot of conversation to go on. I’ll allow them to 
say, “That’s not right. We don’t—we disagree with it,” and a lot of discussion, whereas 
before, I wasn’t prone to do that.  

Observation of Meg’s teaching. During my classroom visits, Meg and her students were 

working on adding money. In each lesson, Meg reminded the students why learning money was 

important. In addition, in one lesson they watched a video about how money was made.  
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Meg usually began each lesson with a review of the previous lesson. After a quick review, 

she introduced the task. During that time, to ensure that the students understood the task, Meg 

asked her students to paraphrase what they were expected to do for that activity. They solved one 

or two similar problems together. The students then worked in groups to solve problems. While 

the students were working together, Meg visited each group and asked some questions about 

what reasoning they had used to arrive at the solution. The students then shared their solutions 

and discussed each other’s ideas. Finally, her lessons ended by summarizing what they learned in 

the lesson if any time remained.  

Meg also followed the EnVisionMath Series very closely. Almost all her tasks were from 

the textbook. She also showed animated lessons from EnVisionMath. The following excerpt 

illustrates a typical whole-class discussion occurred. Students were supposed to find two 

different ways to make the amounts of money on the card given to them. Each group was 

assigned to make different amounts of money.  After introducing the task, Meg distributed cards 

and coins (dimes, nickels, and coins) to each group. While the students were working in their 

groups, Meg visited each group and asked what they were doing and why. After group work was 

done, the groups went up to the document camera to present their work. The following excerpt of 

a group presentation gives a glimpse of Meg’s approach. 

The first group to present had been instructed to find two ways to make 71 cents. First, 

they put down 7 dimes and 1 penny. Meg asked them to show the class how 7 dimes and 1 penny 

was equal to 71 cents. They counted it up. As usual, Meg asked the class whether they agreed or 

disagreed with this response. Meg also encouraged other students to comment on the solution on 

the document camera. When Meg asked the group to present their second way, the group 

presenter only changed the order of the dimes and the penny. 
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Meg: What do you have there? 

Student 1: One penny and 7 dimes.  

Meg: One penny and 7 dimes. Is that another way to make 71 cents? 

Student: Yes.  

(Meg asked the class whether they agreed.)  

Meg: How many dimes in the first place? 

Student: Seven dimes and 1 penny. 

Meg: How many dimes do you have? 

Student: Seven dimes. 

Meg: Is this a different way? Thumbs up if you think it’s different.  

(Meg picked a student who disagreed.) 

Student 2: They switched it around.  

Meg: What could you have done? 

Student 2: Six dimes and 12 pennies. 

Meg: Do you agree with him? Thumbs up or down? (to the class) You have a thumb 
down, what do you think? 

The students who either agreed or disagreed shared their thoughts. One student used 6 

dimes, 2 nickels, and 1 penny, whereas another student used 6 dimes and 11 pennies to make 71 

cents. They all had to count and show that the amount was equal to 71 cents. Several other 

students tried to make 71 cents as well, but their responses were not complete, and even though 

Meg pushed them farther to help them think it through, they did not continue to explain their 

thought processes.  

After that, students in their groups solved the problems in their textbook. In the following 

lesson, students were still working on the problems in the textbook. The following excerpt from 
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the whole-class discussion illustrates how Meg facilitated the lesson. Meg projected the 

worksheet “Counting Collections of Coins” on the screen. The students needed to determine 

which coin was the least and which coin was the greatest, and then find the total amount. Meg 

asked them to determine which coin had the least value, a penny or a nickel. The student said the 

penny had greater than nickel. After Meg asked her to justify her response, the student changed 

her answer to a nickel.  

Meg: Why 5 cents, though? Why did you change your mind? 

Student 1: I could use a number line. 

Meg: What did you count on your number line? How did you use the number line to help 
you? 

Student 1: Because, umm,  

Meg: How did you use the number line to help you? Our question is…is a nickel greater 
than a penny? Is 5 cents greater than one cent? Who thinks one cent has the greatest 
value? Who thinks one cent is bigger than 5 cents? I need everyone voting. Thumps up or 
down.  

 (Meg picked one student to explain his response.)  

Student: Five cents is bigger than 1 cent.  

Meg: Why? How can you prove it to me 5 cents is bigger than one cent, just out of 
curiosity? Is this something you just know? 

Student 2: I’ve counted by fingers, 1, 2, 3, 4, 5… (inaudible) 

Meg: What goes next? 

Student 2: Five 

Meg: 5 cents, ok. Do we agree with that? 

Class: Yes. 

In the following lessons, the students continued to work on the problems in the textbook. Meg 

visited each group to help them. As usual, the students presented their work to the class.  
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Cross-Case Analysis 

The qualitative analysis was conducted to shed light on the quantitative results, to explore 

how teachers’ MKT knowledge affected their instructional practices. The portraits of the eight 

target teachers depict how the teachers perceived the changes (if any) in their teaching practices, 

and it gives their reports of their practices at the end of program. It also includes my observations 

of their teaching at the end of the program. In this section, I present a cross-case analysis of 

teachers’ current practices and the changes in their practices under the themes mentioned in 

Chapter 3.  

As a reminder, I focused only on four scales from the Classroom Observation scales: 

Inquiry-Oriented Lesson, Mathematical Sense-Making Agenda, Worthwhile Mathematical Tasks, 

and Student Engagement. The quantitative findings suggested that gains in teachers’ MKT are 

related to changes in their inquiry-oriented lessons, their mathematical sense-making agendas, 

and the classroom climate.31 The quantitative results also indicated no relationship between 

teachers’ MKT and their task choices as well as their students’ engagement in mathematics 

lessons. With the help of qualitative data (interviews and classroom observations), I elaborate on 

the quantitative findings. As explained in the Methods chapter, analysis of the field notes and 

interviews suggested four additional subthemes: teachers’ MKT perceptions, use of lesson time, 

purpose of the lesson, and textbook use. Because three of the additional themes were closely 

related to the scales from the observation protocol, I present the findings under the relevant 

scales.  

                                                 
31 As mentioned in Chapter 3, teachers’ did not mention any changes in practices captured in the 
Classroom Climate scale during the interviews, which limited inclusion of the scale to analyze 
the effect of MKT gain on instruction. Furthermore, classroom observation data did not suggest a 
consistent pattern across teachers with different MKT levels. It seems that all teachers tried to 
respect students’ ideas and paced the lesson based on their students’ needs. Hence, I decided not 
to include Classroom Climate in the qualitative data analysis.  
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I begin this section with the theme “teachers’ MKT perceptions,” which emerged from 

teachers’ self-reports on how the gain in their mathematical knowledge and the mathematics 

courses in the program affected their practices. By including this theme, I hope to provide a more 

complete picture of their stories. I continue with patterns that appeared in the four instructional 

practice scales: the Inquiry-Oriented Lesson scale, the Mathematical Agenda of Sense-Making 

scale (with two additional themes, the use of lesson time and the purpose of the lesson), the 

Worthwhile Mathematical Task scale (with an additional subtheme of textbook use), and the 

Student Engagement scale.  

Teachers’ MKT perceptions. To better understand how the gain in teachers’ MKT 

affected their instruction, I asked the teachers how they viewed this change. Table 22 

summarizes the target teachers’ responses. 
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Table 22 

Summary of Teachers’ Reports on the Effect of MKT Gain 

MKT level  Teacher Lesson 
MKT 
Gain The effect of gain 

Very high Stephanie Subtraction with integers (using chips) .8 Did not think her MKT increased 

Very high Jacqueline Fibonacci problem .6 Saw connections between concepts more 

High Valerie Factors and highest common factor 1.1 Had an increase in self-confidence 

High Rebecca Problem solving 1.1 Had an increase in self-confidence; saw 
connections between concepts more 

Average Sonya Factors .9 Had an increase in self-confidence 

Low Beth Multiplication with whole numbers .3 Had an increase in self-confidence 

Low Ann Subtraction with integers .8 Had an increase in self-confidence 

Low Meg Addition with money .7 Did not think her MKT increased; sympathized 
more with struggling students 
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Only two teachers thought their mathematical knowledge had not increased. Stephanie 

did not think her knowledge of mathematics had increased because she thought she already had a 

firm understanding of what she taught. Given that her score was already high, even on the pretest, 

this comment regarding no change in her mathematical knowledge was understandable. Meg also 

did not think her mathematical knowledge had increased. Similarly, given that her last 

mathematics score was still quite low, it made sense why she thought this. Meg explained how 

she struggled during the mathematics courses: 

Some of the time when I was . . . going over the material, I’m thinking, “You know 
what? My kids must feel like this when they see things and they’re like, ‘Huh?’” And I’m 
more sympathetic to them about . . . when they first see it and they go, “I have no idea 
what this is . . .” And I’ll say, because I can relate, I’ll say, “Maybe not right now, but 
you will. Just hang in there and you will. We’ll help each other through the process.” So 
it’s made me—that has really, really changed.  

The other six teachers thought their mathematical knowledge had changed. Five of them 

also reported an increase in their confidence level as a result:  

Ann: I'm definitely, definitely more comfortable teaching math. . . . It's given me more 
confidence. 

Beth: I feel more confident when teaching fractions or better equipped to give the 
students a variety of hands-on lessons and small-group interaction to learn fractions.  

Valerie: [Before,] I didn't feel confident teaching that to the kids. . . . I didn't feel strong 
on, like, ratios, proportions, and all those kind of things. And then go into the class and, 
you know, doing some of those…then my confidence gained. So then I felt more 
confident to teach that. 

Rebecca: It's been 20 years since I've been out of school. In that amount of time, I'd been 
teaching lower elementary, and if you don't use it, you lose it. So I did not remember how 
to do even basic algebra. . . . So [now] whenever I would come across something, I didn't 
panic as much. . . . If you don't feel like you know how to find the answers yourself, 
you're not going to teach that. You stay away from it. You know? So I think that having a 
wider math knowledge basis that it has affected my teaching because now, the kids can 
go off on trails and it doesn't frighten me and I can—to do that. 

Sonya: My fraction and percent knowledge were math concepts that I had always had 
trouble with as a student through school. . . . [What I learned] helped build my confidence 
to do a better job of teaching it to my students.  
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Jacqueline and Rebecca also reported that they began to see the connections between 

mathematical ideas and concepts more clearly:  

Jacqueline: It’s kind of like I was under a microscope before and now I’m removed more 
so. I see kind of the bigger picture of it instead of just, like, living in my little box of 
algebra or geometry. It’s like a bigger picture, and I can see more connections than before. 

Rebecca: I knew . . . second-grade math even before . . . , but even though I did know that, 
having more information in math, having a wider basis of it, I think that it helps me 
because then, first of all, I see that—how things are connected.  

In sum, most of the teachers mentioned the same effect of MKT gain on their teaching. 

Their self-confidence increased and they became more comfortable with teaching mathematics. 

It is interesting that the only two teachers who reported seeing connections between 

mathematical ideas were the teachers whose current level of MKT was high.  

Inquiry-oriented lessons  

Changes in teachers’ inquiry-oriented lesson. All the teachers reported some changes in 

their practices toward more inquiry-based teaching and changes seemed to correspond with the 

level of MKT gains. Table 23 briefly presents teachers’ reports on how they taught before the 

program and what changes they had made in their practices relevant to inquiry-based teaching. 

Valerie and Rebecca were the two teachers with greater than 1-point increases in their LMT 

scores over the duration of the program. They both said that they had only lectured before they 

were enrolled in the program. According to their self-reports, Valerie was showing shortcuts, 

whereas Rebecca was showing one method step by step and teaching key words for problems. 

Valerie observed that she had started to use concrete materials to show the meaning behind 

algorithms. She had also added some problems that required thinking and included some of the 

strategies they had learned in the program. Rebecca became more open to students’ use of 

different methods, and she let her students share their ideas and comment on each other’s work. 
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She also mentioned focusing on the meaning behind the algorithm and on seeing the connections 

between mathematical concepts:  

In reading, you're always saying, “Think about what you're reading. You're not just 
reading the words. If you just read the words, that it's not really reading.” You can read 
really fluently, and if you're not thinking about it, then you're not really reading. Okay? 
But—but we never tell kids to think in math.  

In agreement with their self-reports, these teachers’ scores on the Inquiry-Oriented Lesson scale 

also increased, as shown in Table 23. 
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Table 23 

Changes in Teachers’ Practices Toward More Inquiry-Based Teaching  

Teacher 
MKT 
gain 

Teachers’ 
beliefs Lesson 

Change in 
inquiry-oriented 

lesson scale score 
Teaching before 

program 
Change in teaching based on 

teachers’ self-reports 
Stephanie .8 4.2 Subtraction with 

integers (using 
chips) 

— Already 
teaching 
inquiry-based 

More inquiry-based teaching 
More letting students develop their 
understanding 

Jacqueline .6 4.2 Fibonacci problem — Already 
teaching 
inquiry-based 

More discovery 

Valerie 1.1 4.0 Factors and highest 
common factor 

Increased Lecturing 
Showing 
shortcuts 

Using concrete materials more to 
show meaning  
Adding problems required 
complex thinking 

Rebecca 1.1 4.0 Problem solving Increased Lecturing 
Teaching key 
words 

More students’ sharing their ideas 
and analyzing their peer work 
Focusing on understanding 

Sonya .9 4.0 Factors Increased Already using 
inquiry-based 
teaching 

More learning from one another 
Focusing on understanding 

Ann .3 3.0 Subtraction with 
integers 
 

No change Lecturing 
 

 More student sharing their 
responses 

(table continues) 
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Table 23 (continued) 
 

Teacher 
MKT 
gain 

Teachers’ 
beliefs Lesson 

Change in 
inquiry-oriented 

lesson scale score 
Teaching before 

program 
Change in teaching based on 

teachers’ self-reports 
Beth .8 3.0 Multiplication with 

whole numbers 
No change Lecturing 

 
More small group 
More hands-on 

Meg .7 3.7 Addition with 
money 

Increased Already using 
inquiry-based 
teaching 

More listening to students 
More learning from one another 
More discussion 
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Sonya, whose mathematics score increased by .88 points, reported that she had been 

teaching using an inquiry-oriented approach even before she enrolled in the program. Her 

description regarding the changes in her practices was more about the quality of the practices, 

such as “create an environment of understanding math with a focus on learning from one another 

in math class.” She also mentioned that her teaching focus was on “teaching with the goal of 

students truly understanding the math concepts that are being taught, as opposed to just 

memorizing rules.” Meg, who had a .68 increase in her mathematics score, also mentioned more 

profound changes in her practices, such as 

even more listening to them, letting them kind of teach each other. . . . My classroom . . . 
is more open now, where I allow a lot of conversation to go on. I’ll allow them to say, 
“That’s not right. We don’t—we disagree with it,” and a lot of discussion, whereas before, 
I wasn’t prone to do that. 

In agreement with their self-reports, their scores on the Inquiry-Oriented Lesson scale also 

increased. 

Unlike these teachers, Beth’s score on the Inquiry-Oriented Lesson scale at the end of the 

program was not different from her score at the beginning. However, her mathematics score 

increased by .83 points. In the interview, she reported some changes in her practices. She 

reported that the most noticeable change in her practice was “to teach less as a whole group.” 

She continued, “I do less whole group, more hands on, and I allow time for students to problem 

solve or practice the concept in small groups.” Unlike the other teachers, Beth did not mention 

any in-depth changes other than superficial ones. The Inquiry-Oriented Lesson scale did not 

capture the changes she reported in the interview (Table 23). 

Ann was the only target teacher whose mathematical knowledge did not change 

noticeably. Her scores on the Inquiry-Oriented Lesson scale at the beginning and end of the 

program also did not change markedly. She reported that she had begun to let her students guide 
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her lessons and that she listened to her students’ ideas more. However, the changes she 

mentioned in the interview were not captured on the Inquiry-Oriented Lesson scale. A closer 

look at the examples Ann gave to illustrate the changes in her teaching might shed light on the 

reasons behind this. During the interview, Ann did not mention any changes in her teaching 

toward more conceptual understanding, and all the examples she provided were about general 

teaching strategies, without a specific emphasis on student thinking or learning. As illustrated in 

her portrait, her lesson was designed to teach strategies for subtraction. Although she asked her 

students to share their responses, she did not analyze the students’ responses or ask questions to 

reveal their thinking.  

Given that Jacqueline and Stephanie were not observed at the beginning of the program, 

no numbers were available to compare their scores on the instructional practice scales at the 

beginning and end of the program. According to their reports in the interview, Stephanie and 

Jacqueline were both trained to teach through problem solving during their undergraduate 

education. Stephanie reported an increase in her confidence to teach in a more inquiry-based 

manner: “And I didn’t feel informed enough about how [to teach using a problem-solving 

approach]. And I felt very tied to my curriculum and my textbooks. And now I just feel much 

freer to expand on those and to use those as a base.” Additionally, she reported that she would let 

their students develop their own understandings. Jacqueline reported that she learned to refine 

her lessons better so her students would discover more. She further mentioned that she wanted 

her students to learn by doing and discovering so that she could “give them almost a gift of that 

level of understanding.” 

Overall, all teachers reported some changes in their practices, but some of these changes 

were not captured by the Inquiry-Oriented Lesson scale. It seems that the structure of their 
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inquiry-oriented lessons underwent both quantitative and qualitative changes. Except for Beth, 

the gain in teachers’ mathematical knowledge seemed to be related to changes in their inquiry-

oriented lesson structure. Another striking difference is that only teachers with strong 

mathematical knowledge (including Sonya) at the end of the program mentioned more 

conceptual changes in their practices.  

Teachers’ current level of inquiry-based teaching. Based on teachers’ self-reports, six of 

the eight teachers started to move toward more inquiry-based teaching.32 As reported in the 

previous section, most of the teachers changed their practices to be more aligned with inquiry-

based teaching, which is in accordance with the gain in their MKT. However, cross-sectional 

analysis of classroom observation data conducted at the end of program suggests that teachers’ 

existing level of MKT might not be related to their existing level of inquiry-oriented teaching. As 

I explain in detail in the “mediating factors” part, teachers favoring standards-based views of 

mathematics designed their lessons to be more aligned with inquiry-based teaching regardless of 

their existing level of MKT.  

I provide several contrasting examples to illustrate the lack of relationship between 

teachers’ current level of MKT and inquiry-based teaching.Although both teachers, Stephanie 

and Jacqueline, had a high level of MKT and used inquiry-based teaching to some extent, 

Jacqueline’s teaching was more inquiry-oriented than Stephanie’s. For instance, Stephanie’s 

lessons did not have a problem-centered structure; rather, she asked her students to present 

problems with chips so that they could understand how subtraction worked. On the other hand, 

                                                 
32 Of all the target teachers, six teachers mentioned moving toward more inquiry-oriented 
teaching. Given that Ann’s MKT did not change noticeably throughout the program, no change 
in her practices was expected.  
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Jacqueline’s lesson had a problem-centered structure; she posed a question and expected her 

students to discover the pattern.  

Sonya’s teaching was more aligned with inquiry-based teaching than Valerie’s, which 

was more direct. Valerie’s lessons were designed more like a quick presentation of the concept 

the students were learning, and at that time, she would explain what they were supposed to be 

learning. Investigation and analyses of mathematical ideas were more prominent aspects of 

Sonya’s mathematics lessons, as captured in the inquiry-based lesson scale. 

As illustrated in the portraits of the teachers, Meg, with limited MKT, seemed to teach in 

an inquiry-oriented manner, as did Rebecca at the end of the program. They both posed a 

question and asked their students to investigate a solution. The students needed to justify their 

solutions and determine the sensibility of an idea or procedure based on the reasoning provided. 

In contrast to Meg’s teaching, the instruction of the other two teachers with low MKT 

(Ann and Beth) had very limited aspects of inquiry-based instruction. They first introduced a 

procedure or a rule, and then the students worked on similar problems. The students worked in 

groups to practice what they had learned in the lesson. 

In sum, the analysis of cross-sectional data did not indicate a relationship between 

teachers’ MKT and inquiry-based teaching. This might be the reason why many cross-sectional 

studies have failed to find a significant relationship between teachers’ mathematical knowledge 

and their lesson structure. However, it seems that when teachers increased their mathematical 

knowledge, they seemed more inclined to use inquiry-oriented teaching. This cross-sectional and 

longitudinal analysis of teachers’ practices suggests that the gain in their mathematical 

knowledge had a more similar effect on their inquiry-oriented lesson structure than did their 

current level of mathematical knowledge.  
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Mediating factor: Teachers’ beliefs. Analysis of teachers’ current practices indicated 

that teachers’ current level of mathematical knowledge did not seem to be related to the extent of 

their inquiry-based teaching. Quantitative data analysis also indicated that teachers’ beliefs about 

teaching and learning mathematics could play a role in their use of inquiry-based teaching. I also 

analyzed interview data to understand the extent to which differences in the teachers’ inquiry-

based teaching could be related to differences in their beliefs or their perspectives on teaching 

and learning mathematics.  

In Table 23, as mentioned in the previous section, Stephanie and Jacqueline, the two 

teachers with very strong mathematical knowledge, implemented different levels of inquiry-

based teaching. Their scores on the beliefs test suggest that these two teachers held similar 

beliefs about teaching and learning. However, during the interview, Stephanie commented that 

she could not teach using a completely inquiry-based method: “I just don’t have the patience for 

that. And at some point, I’m going to do instruction, and especially when kids start getting off 

task, because they do.” On the other hand, Jacqueline expressed how much she valued inquiry-

based teaching: “I value inquiry and like questioning . . . and I just really saw the value in that.” 

Furthermore, Jacqueline and Rebecca were the only teachers who mentioned the importance of 

letting students “struggle” to understand mathematical ideas. That could be a possible reason 

why their lesson had a problem-centered structure and their students worked in groups to solve 

problems.  

As mentioned earlier, another teacher with high MKT, Valerie, started to move toward 

more inquiry-based teaching; however, her current level of MKT and her use of inquiry-based 

teaching did not match very well. As illustrated in her portrait, she talked about setting up a 

situation using concrete materials so that the students could “figure out” the rules. Her 
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explanation of how she created a discovery environment illustrates her view of inquiry-based 

teaching, which was somewhat different from the conventional view of reformed-based teaching. 

In her illustration of her students’ finding a common denominator by using manipulatives, she 

thought that she had created a discovery environment because, as she said in the interview, “I've 

set everything up . . . because you have to have this (referring to concrete materials) to be able to 

go to this. . . . And so I wait for them to discover it. And once they discover it, then it’s like—

then everybody was like, it's that ‘Oh’ moment. And then it’s just wonderful. Then I'm, like, “I 

love your ‘Ah-ha’ moments when you guys get something.”  

Furthermore, of the three teachers with low MKT, only Meg taught using inquiry-

oriented methods. Of these three teachers, only Meg had high scores on the beliefs test (see 

Table 23). In addition, during the interview, only Meg mentioned that mathematics was more 

than “facts”: “The kids are more than capable of doing it, of doing word problems, of thinking of 

their own problems, writing in their journals. Math is not just computation. Math is a whole 

umbrella of things.” However, neither Beth nor Ann mentioned anything specific about inquiry-

based teaching. Beth mentioned only using more group work, whereas Ann commented on how 

mathematics should be taught: “Well, I definitely think it should not be me at the board lecturing, 

saying, ‘Okay, this is the algorithm. This is how you solve the problem.’ . . . So I think it should 

definitely be fun.” 

In sum, it seems that teachers’ beliefs and perspectives on teaching and learning 

mathematics could play a mediating role in the effects of teachers’ mathematical knowledge on 

their instructional practices. Differences in the teachers’ practices could be explained by 

differences in their beliefs, to some extent.  
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Summary of inquiry-oriented lessons. Separate analyses of the qualitative data on 

inquiry-based teaching shed light on the quantitative findings. As the quantitative data suggested, 

when teachers’ MKT increased, they tended to move toward more inquiry-based teaching. 

Analysis of the target teachers’ interviews supported the fact that teachers’ made changes in their 

practices in alignment with the gain in their MKT. However, it also indicated that there was 

variation in the changes teachers made toward more inquiry-oriented teaching. Only teachers 

with strong MKT mentioned focusing on more conceptual changes.  

Analysis of the interview and classroom observation data also indicated that at both the 

beginning and the end of the program, teachers’ practices varied. Cross-sectional analysis of 

teachers’ practices related to inquiry-oriented teaching suggested that teachers’ current level of 

MKT did not seem to be closely related to their inquiry-based teaching practices. Teachers’ 

beliefs and perspectives on their teaching practices seemed to be important factors influencing 

teachers’ practices.  

Mathematical agenda of sense-making. In this section, I first summarize teachers’ self-

reports on changes in their practices toward a more mathematical sense-making agenda. Using 

classroom observations and teachers’ interviews, I then summarize teachers’ practices captured 

in their sense-making agenda at the end of the program. As mentioned in the Methods chapter, I 

also report teachers’ practices under two subthemes: purpose of the lesson and use of lesson 

time. I then briefly report teachers’ beliefs and perspectives on teaching and learning 

mathematics as a possible mediating factor in the relationship between teachers’ MKT and 

having a mathematical sense-making agenda. I end this part by summarizing the findings from 

the cross-case analysis.  
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Before presenting the results, it is important to note that the Mathematical Agenda of 

Sense-Making scale is used to capture the mathematical quality of lesson implementation. As 

laid out in the Methods chapter, the scale captures the extent to which teachers created an 

environment so that students could make sense of the concepts they were expected to learn. This 

included discussing and analyzing ideas mathematically and using tasks and real-life connections 

to make sense of the concept being taught, rather than simply sharing ideas and making real-

world connections without making any connections to the mathematical concepts. As the reader 

may notice, having a mathematical sense-making agenda is similar to conducting inquiry-

oriented lessons to some extent. The Inquiry-Oriented Lesson scale captures the extent to which 

teachers created an environment in which students could explain their ideas and asked students to 

investigate and analyze those ideas. The mathematical sense-making agenda differs from the 

Inquiry-Oriented Lesson scale in that it focuses on the mathematical strength of the observed 

lesson. More specifically, whereas the Inquiry-Oriented Lesson scale captures students’ 

explanations and discussions of ideas; the mathematical sense-making agenda captures how 

teachers build their students’ responses and justifications so that the students can see 

mathematics in their responses and justifications. The mathematical sense-making agenda also 

goes beyond to the extent to which mathematics is portrayed as a dynamic body of knowledge, 

and it captures the extent to which students make connections to other related mathematical ideas 

and generalizations regarding those ideas. A lesson could be taught using an inquiry-oriented 

approach but the mathematical aspects of that lesson could be weak. Or the mathematical sense-

making agenda of a more traditionally designed lesson could be stronger than that of a lesson 

taught using an inquiry-oriented approach if the teacher using the former lesson type made more 

explicit what mathematical ideas the students were expected to learn.    
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Changes in teachers’ mathematical agenda of sense-making. Findings from the 

quantitative data analysis indicated a positive relationship between the change in teachers’ scores 

on the Mathematical Agenda of Sense-Making scale and their scores on the mathematics test. A 

closer look at these eight teachers’ scores on the Mathematical Agenda scale before and after the 

program showed that the scores of the teachers with limited knowledge (Meg, Ann, and Beth) 

did not seem to increase noticeably compared with those of teachers with strong mathematical 

knowledge (Table 24).  
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Table 24 

Change in Teachers’ Practices Toward a More Sense-Making Agenda  

Teacher 
MKT 
gain 

Teachers’ 
beliefs 

% qualified 
for lunch 

Change in 
sense-making 

scale 
Change in teaching based on 

teachers’ reports 

Use of 
lesson 

time (%) 
Purpose of the 

lesson 
Stephanie .8 4.2 42 — More focus on sense-making 

by analyzing students’ 
responses 
More focus on students’ 
developing their thinking and 
mathematics in their responses 
 

96 Teaching 
procedure and 
meaning 

Jacqueline .6 4.2 42 — More in-depth questioning to 
get students thinking 
Using more real-life 
connections  
 

88 Teaching 
procedure and 
meaning 

Valerie 1.1 4.0 47 Increased More focusing on meaning 
behind a procedure 

96 Teaching 
procedure and 
meaning 
 

Rebecca 1.1 4.0 76 Increased More analysis of student work 
More focusing on meaning 
behind a procedure 

93 Teaching 
procedure and 
meaning 
 

Sonya .9 4.0 85 Increased More questioning 95 Teaching 
procedure and 
meaning 
 

(table continues) 
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Table 24 (continued) 
 

Teacher 
MKT 
gain 

Teachers’ 
beliefs 

% qualified 
for lunch 

Change in 
sense-making 

scale 
Change in teaching based on 

teachers’ reports 

Use of 
lesson 

time (%) 
Purpose of the 

lesson 
Ann .3 3.0 85 No change Real-life connections 73 Teaching 

procedure  
 

Beth .8 3.0 73 No change Real-life connections 72 Teaching 
procedure  
 

Meg .7 3.7 79 No change Real-life connections 72 Teaching 
procedure  
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Teachers with high MKT mentioned changes in their practices captured in the 

Mathematical Agenda of Sense-Making scale. Stephanie had changed her practices “to ask more 

of the students, for them to develop their own ways of thinking.” She also mentioned learning 

from other students’ responses: “we show different examples and we can show what the students 

have done and try to make sense of what their thinking is. . . . So we can look at things from a 

different perspective.” Jacqueline listed several modifications she did in her teaching related to 

the Mathematical Agenda of Sense-Making scale. For instance, she mentioned using real-life 

situations more often to help students make sense of a concept. She also mentioned making 

changes in her questioning strategies: “I now know, like, what kinds of questions to ask instead 

of just—surface ones. . . . And I get them thinking a little bit more deeply with questioning.” She 

also reported waiting for her students to discover the concept.  

Valerie mentioned setting up a situation with concrete materials so that students could 

make sense of the concept being taught. She mentioned that she had “start[ed] showing the 

reason.” Rebecca also provided more specific details regarding the changes captured on the 

Mathematical Agenda of Sense-Making scale. As mentioned in the Inquiry-Based Lesson section, 

Rebecca mentioned that students discussed and analyzed their peers’ work. In addition, as 

captured on the Mathematical Agenda of Sense-Making scale, she would “allow [her students] to 

think through the problems” because, as she stated,  

I can see how the numbers are related. . . . and I see how the—it's not just an algorithm; I 
know then more of the meaning behind it, so then I can do that. 

As mentioned earlier, Sonya commented that “[teachers] act as guides during the lesson 

to help students understand concepts through questioning, as opposed to telling the students how 

to approach a problem or giving them the answers.” She mentioned continuing to teach 
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mathematics in that way. She further commented, “The program helped me differentiate sense-

making in the math class from telling students how to do math.”  

As shown in the preceding excerpts, the teachers who increased their knowledge of 

mathematics significantly and ended the program with strong mathematical knowledge gave 

specific explanations regarding aspects captured on the Mathematical Agenda scale.33 However, 

teachers who ended the program with limited mathematical knowledge failed to report more 

specific modifications in their practices captured on the Mathematical Agenda scale, regardless 

of their MKT gain. For instance, Beth, who increased her mathematical knowledge by .88 points 

but still had limited knowledge at the end of the program, mentioned using real-world examples 

to help students “better understand a concept.” She did not provide any details or examples 

regarding how real-world examples would help her students understand the concept.  

Like Beth, Ann also reported that she had begun to use real-life scenarios to help students 

make sense of the concept and she listened to the students’ ideas, but she did not mention any 

specific information regarding building on her students’ responses or making the mathematics in 

their answers explicit, as captured on the Mathematical Agenda of Sense-Making scale. She 

further illustrated how she used real-life situations to help students understand mathematical 

concepts: 

So we're not just doing 48 divided by 6 equals 8. It's, you know, we have 48 dogs. They 
need to be put in groups of 6, you know, and make it real to them so it's not just 48 
divided by 6 equals 8. . . . I have realized if they bring up—if I don't know, “Hey, that's a 
great question. Let's find that out.” . . . I've realized I don't have to have all the answers 
and I shouldn't have all the answers. You know? So, “Oh, that's, very interesting,” you 
know, “let's go with that. I'd like to know the answer to that, too.” And kind of let them 
kind of—then we go that way. So yeah, I don't have to know everything for us to explore 
that. I can explore it with them. 

                                                 
33 Although Sonya has an average level of MKT, her teaching was similar to high-MKT. Hence, 
unless I said otherwise, when I refer to high-MKT teachers, I also refer to Sonya.   
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In this example, there is no indication of her analyzing or pressing students’ ideas. In 

agreement with her report, her score on that scale at the end of program did not change.  

Like Beth and Ann, Meg also did not increase her score noticeably over the duration of 

the program. Although Meg’s explanation of the importance of making connections to real-life 

situations was more specific, she also did not focus on the mathematical importance of using 

real-life connections:,  

it makes sense to them, as opposed to just giving them numbers and just giving them 
formulas. If when they can make a connection with how they live, where they live, or, for 
example, in math and science, the things around them, they’re more apt to remember and 
to build upon what they know. 

As shown in the preceding excerpts, the teachers with strong mathematical knowledge 

(Stephanie, Jacqueline, Rebecca, and Valerie) and Sonya gave more specific explanations 

regarding aspects captured on the Mathematical Sense-Making Agenda scale focusing on more 

conceptual changes to make sense of the concepts being taught. Teachers with limited MKT did 

not seem to promote “making sense of the lessons” by focusing on mathematical concepts; rather 

they assumed that using real-life scenarios would be enough for students to understand 

mathematical ideas.  On the other hand, teachers with strong mathematical knowledge were more 

specific and provided more detailed explanations of how they used tasks and classroom 

discussions to promote conceptual understanding and illustrations of real-life examples, which 

revealed the interplay between teachers’ focus and their MKT-level.  

Teachers’ current level of mathematical sense making agenda. In the previous section, I 

focused only on the changes in teachers’ practices based on teachers’ interview data. In this 

section, using both classroom observation and interview data, I investigate the relationship 

between teachers’ current level of MKT and their practices, as captured on the Mathematical 

Agenda of Sense-Making scale.  
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As stated earlier, although the themes were derived from the classroom observation 

scales, I did not focus on each item in the scales. As already explained, the rationale behind this 

decision was that the qualitative data did not provide enough information concerning each item 

on the scales. Furthermore, the qualitative data can help us understand the quantitative findings, 

rather than simply measuring the same aspects captured in the quantitative analysis. More 

specifically, although there were no specific items on the scale that captured teachers’ focus on 

students’ work, the qualitative data analysis indicated that there seemed to be relationship 

between teachers’ MKT and the mathematical quality of teachers’ analysis of students’ responses. 

In addition, the qualitative data analysis suggested two additional themes related to the sense-

making agenda: the use of lesson time and the purpose of the lesson.  

As indicated earlier, the Mathematical Agenda of Sense-Making scale is designed to 

capture the extent of the mathematical quality of the lessons. It seemed, based on the analysis of 

classroom observation data, that teachers’ current level of MKT played an important role in their 

analysis of students’ work and the mathematical quality of the discussion.  

As illustrated in the portraits of the target teachers, the mathematical quality of the 

observed lessons was stronger for the teachers with strong MKT. Their focus on students’ 

responses was mainly on the mathematical aspects of the responses. In integer subtraction 

lessons using chips, Stephanie evaluated her students’ work mathematically, and she 

mathematically represented her students’ responses. When Stephanie was evaluating her students’ 

work, she focused on the mathematics behind their responses. In the episode depicting her 

teaching, she wrote the corresponding mathematical expressions for her students’ responses: 

Yes, and I do that too. As I go along, I try and get them to predict what the next problem 
I’m going to put on the board is so that they can see the pattern and that I didn’t just 
randomly choose numbers, that there was a sequence to my numbers so that we can see 
what’s happening and kind of look at those specifically. 



 198 

Jacqueline spent three lessons helping her students find the pattern in the Fibonacci series. 

After the students found the pattern, she revised the same problem so that her students could see 

how the patterns were dependent on the rule. Furthermore, each student had a chance to present 

her or his work, and the focus during the discussion was on mathematical aspects of the students’ 

responses. Although Valerie’s task was mathematically problematic, she was able to push 

mathematically productive conversations among the students. The students made generalizations 

regarding those mathematical ideas or procedures. Several connections were made to other 

concepts in mathematics. She set up the lesson activity so that her students could learn what they 

were supposed to learn through this activity. Despite the questionable difficulty of Rebecca’s 

task choices, her problems successfully created a mathematically productive disequilibrium 

among students. Rebecca and her students analyzed each group’s work to understand their 

thinking, and their focus was on the mathematical aspects of students’ responses.  

Sofia’s focus in discussions and in students’ responses was also mathematics. With the 

help of her curriculum, she was able to create mathematically rich discussions in her classrooms 

regarding factors of the numbers. All these teachers asked students to explain their thinking, and 

they expected their students to provide some explanations, rather than simply stating the 

procedures they followed.  

On the other hand, teachers with limited MKT had difficulty making the mathematics 

explicit in students’ responses, and they failed to build on students’ responses. Beth’s lack of 

questioning strategies was consistent throughout all the lessons I observed. She did not ask in-

depth questions, and as a result, she failed to probe students’ thinking. As seen in the excerpt 

illustrating her teaching, Beth’s students shared their answers, but Beth did not seem to analyze 

her students’ work. When her students were finding the answer for 45, Beth recorded each 
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group’s responses, such as 20, 64, 1,024, and commented, “We[’ll] keep doing it till we find an 

answer that we all agree on.” However, after she recorded each group’s answer on the board, she 

did not analyze why 20 or 64 did not make sense. She focused on how students arrived at an 

answer not in terms of their thinking, but more on the procedure they used. No in-depth analysis 

of students’ ideas occurred in her mathematics lessons. Her questions mainly required one-word 

answers to give a solution or express a procedure.  

Similar to Beth, Ann also sometimes asked the students to defend their ideas, but her 

questions did not go beyond asking for clarification of the steps they used. She listened to her 

students and allowed them to share their ideas with their classmates, but there was no 

mathematically significant discussion. When students were supposed to solve a story problem, 

she asked the class to identify “key words,” and her comments on students’ responses were not 

mathematically rich. For instance, one student at the board solved the subtraction problem 35 − 

19 using tallies. Ann asked the class, “Did anybody solve it differently?” Ann asked another 

student who did it using the standard algorithm to present how he did it and no connection was 

made between these two methods.  

Unlike Beth and Ann, Meg attempted to investigate her students’ ideas, and she 

encouraged her students to do the same. As illustrated in her portrait, even so, Meg failed to draw 

out the mathematics in her students’ responses. However, as illustrated in her teaching episodes, 

although there was some discussion going on in her classrooms, the mathematical aspect of the 

discussion was not as clear or strong as in the classrooms of Sonya and Stephanie. For instance, 

although Meg tried to understand her students’ ideas by asking “how” and “why” questions, she 

did not push her students’ ideas mathematically. In particular, when Meg asked her students to 

decide which coin, a penny or a nickel, had greater value, one student said he did it “counting by 
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fingers,” and Meg asked the class whether they agreed with the student’s response. When 

another student said she “used a number line” but failed to explain how, Meg did not focus on 

how the number line could be used.  

In sum, the teachers’ current level of mathematical understanding seemed to have an 

effect on their mathematical agenda of sense-making. As illustrated in their teaching, teachers 

with limited mathematical knowledge appeared to have a more difficult time revealing the 

mathematics in their students’ responses. On the other hand, teachers with more mathematical 

knowledge seemed to create mathematically richer classroom discourse, and more in-depth 

analysis of students’ responses took place in their mathematics lessons. 

Use of lesson time. Another important pattern was the use of lesson time. I computed the 

percentages of lesson time devoted to mathematics and mathematics-related activities. On 

average, teachers with limited mathematical knowledge spent 72% of their lesson time on 

mathematics and mathematics-related activities, whereas teachers with a strong mathematical 

knowledge devoted 94% of the lesson time to mathematics and mathematics-related activities.  

Beth spent only 73% of the observed lessons on mathematics-related activities, and Ann 

spent only 72% of the lesson time. In one of my classroom visits, I found only eight students in 

the classroom. Ann explained to me that the other students had failed the exam the day before, 

and they were practicing the concepts they had missed on the exam. She used only 20 minutes of 

the 65-minute lesson time, and during that time, students played a game in which they were 

supposed to learn mathematics, but Ann did not leave time for discussion. It was not clear what 

the students were expected to learn from this activity. Meg also spent only 72% of her lesson 

time on mathematics and mathematics-related activities. She showed a video on how money was 

made, and in another lesson, she announced that as a prize, half of the mathematics lesson time 
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would be used for mathematics and the other half would be used for fun because her students had 

behaved well that week.  

On the other hand, teachers with high mathematical knowledge seemed to use more of 

the lesson time for mathematics-related activities. Only Jacqueline spent 88% of her lesson time 

on mathematics-related activities. Other teachers with strong mathematical knowledge as well as 

Sonya spent at least 93% of their lesson time on mathematics-related activities. 

The purpose of lessons. Regarding the primary purpose of the lessons observed, another 

important pattern seemed to be the focus of the teaching. Ann, Meg, and Beth focused on 

teaching only an algorithm or procedure without the meaning behind it. On the other hand, the 

teachers with strong mathematical knowledge focused on the meaning behind the procedure. For 

instance, as illustrated in the teachers’ portraits, Ann taught only subtraction, and her explanation 

did not go beyond explaining the steps. Beth spent an entire 60-minute lesson teaching 

exponential forms. Meg spent an entire week on addition with money, and the mathematical 

concepts that students were expected to learn were not clear.  

On the contrary, Rebecca aimed to boost her students’ reasoning and ability to solve 

problems. Stephanie intended to teach the concept behind the rules for addition and subtraction 

with integers by using chips. Valerie also used concrete materials so that her students could 

understand the concepts of factors and highest common factors. Sonya used paper rectangles to 

make sense of factors, primes, and composite numbers. Jacqueline used the Fibonacci problem to 

introduce the new chapter, algebra, so that students could make sense of the patterns. It seemed 

that teachers with limited mathematical knowledge focused on teaching procedure, an algorithm, 

or both without focusing on the underlying meaning, whereas teachers with strong mathematical 

knowledge as well as Sonya aimed to teach a concept by focusing on the meaning behind it.  
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Mediating factor: Teachers’ beliefs. The quantitative data analysis indicated a positive 

relationship between teachers’ beliefs about teaching and learning mathematics and their scores 

on the mathematical sense-making agenda. Similar to the quantitative findings, teachers with 

higher MKT mentioned the importance of teaching the meaning behind the procedures, whereas 

teachers with limited MKT did not highlight the importance of focusing on the meaning behind 

the procedures. Furthermore, during the interview, the teachers with high MKT and Sonya 

provided mathematically rich and purposeful examples to illustrate their teaching, whereas those 

with low MKT did not give any specific examples to show the mathematical aspects of their 

teaching.  

Stephanie mentioned that she wanted her students to develop their understanding, rather 

than trying to emulate what she was doing. She wanted her students to “be mathematicians rather 

than learn about the content area of math. . . .” She then illustrated how she purposefully chose 

her examples to create an environment so that students could make sense of the concept. 

Jacqueline also highlighted the importance of teaching the meaning behind the rules. Similar to 

Stephanie, the example she provided was also mathematically rich: 

Like I had always been told area of a circle is pi R squared. So like this forced me to want 
to show them how to take a circle and make it a parallelogram and see like “look, we 
know area is length times width, so how can we make that circle a parallelogram and find 
the formula?” 

Valerie also valued teaching the meaning behind the procedure: 

Math is more than rules. . . . And I really want them to get in there and understand really 
the concept behind it . . . I don't want to teach that . . . here's the rule. Follow the rule. I 
don't know why—it's that rule. . . . I want them to discover those things on their own, 
rather than me giving them that rule. 

Similarly, she also provided an example of teaching that illustrated how she created an 

environment using concrete materials and appropriate fractions so that students could learn 
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adding fractions by finding common multiples. Rebecca’s comment on her beliefs about 

focusing on the conceptual understanding was also clear: 

In reading, you're always saying, “Think about what you're reading.” You're not just 
reading the words. If you just read the words, that it's not really reading. You can read 
really fluently, and if you're not thinking about it, then you're not really reading. Okay? 
But—but we never tell kids to think in math. 

Sonya explained why it is important for her to teach the meaning behind the procedures and 

algorithms. Unlike teachers with strong MKT, teachers with limited MKT did not refer to the 

importance of teaching the meaning behind the procedures. Beth did not provide any examples 

of teaching a particular concept to illustrate her teaching. Ann also did not mention anything 

related to conceptual understanding. Most of the examples she provided were about teaching 

different strategies.  

Meg is the only teacher with limited MKT who mentioned that mathematics is more than 

knowing the facts. However, she did not refer to mathematical reasoning or thinking, nor did she 

provide specific examples like teachers with high MKT did to illustrate the importance of 

teaching for conceptual understanding. Rather, she explained that “kids are more than capable of 

doing it, of doing word problems, of thinking of their own problems, writing in their journals . . . 

thinking through the process of how to solve problems.” 

Summary of mathematical sense-making agenda. Analysis of the classroom 

observations and interview data supplemented findings from the quantitative analysis. The 

quantitative analysis suggested that changes in teachers’ MKT were related to changes in the 

mathematical agenda of sense-making, and teachers’ beliefs were also related to their scores on 

that scale. The qualitative analysis provided further support for the view that teachers’ current 

level of mathematical knowledge played a role in their mathematical sense-making agenda. 

Teachers with limited mathematical knowledge failed to facilitate discussions in which students 
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were prompted to make sense of the ideas. On the other hand, teachers with more mathematical 

knowledge seemed to use mathematically richer classroom discourse, and more in-depth analysis 

of students’ responses took place in their mathematics lessons. In addition, the teachers analyzed 

students’ ideas more efficiently in terms of their mathematical quality. Their lesson activities 

were designed so that the students could learn related activities. Like the teachers with strong 

mathematical knowledge, they asked their students to share their ideas, but they failed to analyze 

these ideas in depth. 

Another striking difference among teachers with different levels of mathematical 

knowledge was the use of lesson time. Teachers with limited mathematical knowledge seemed to 

spend a considerable amount of time on activities unrelated to mathematics. This did not seem to 

be a pattern among teachers with stronger mathematical knowledge. Teachers with a high level 

of mathematical knowledge not only taught their students the rules, but they also provided 

explanations for why certain rules worked. On the other hand, teachers with limited 

mathematical knowledge focused only on teaching procedures, and they failed to provide 

explanations for why certain rules worked. Furthermore, none of the teachers with limited MKT 

provided perspectives on the importance of conceptual understanding, whereas all teachers with 

strong MKT highlighted the importance of understanding the mathematical ideas behind the 

rules and algorithms.  

Worthwhile mathematical tasks. In this section, I elaborate on the quantitative findings 

by using classroom observation and interview data. First, I examine the relationship between 

changes in teachers’ task choices and MKT gain, and then I analyze how their current level of 

MKT is related to their current level of task choices. Although quantitative data also indicated a 

relationship between teachers’ beliefs and task choices, analysis of the interview data indicated 
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that teachers did not refer to their beliefs when they talked about their task choices. Hence, I 

cannot provide any qualitative insights into the relationship between teachers’ beliefs and their 

task choices.  

Change in teachers’ worthwhile mathematical tasks. The quantitative findings indicated 

no association between changes in teachers’ mathematical knowledge and the Worthwhile 

Mathematical Tasks scale. As seen in Table 25, only Valerie and Rebecca’s scores noticeably 

increased and Sonya’s score slightly increased on the scale. On the other hand, teachers with low 

MKT did not increase their scores on that scale. Analysis of the interview data from these eight 

teachers shed light on the lack of a relationship between the change in teachers’ MKT and their 

task choices. 
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Table 25 

Change in Teachers’ Worthwhile Mathematical Task Choices 

 Teacher 
MKT 
gain 

Teachers’ 
beliefs 

Change in worthwhile 
mathematical tasks scale Change in teaching Textbook use 

Stephanie .8 4.2 — Added problems from Vande 
Walle 

Started to follow her textbook 
loosely 

Followed textbook 
loosely 

Jacqueline .6 4.2 — More open-ended problems 
required higher level thinking 

Did not follow a 
textbook 

Valerie 1.1 4.0 Increased Added problems from Vande 
Walle 

Did not follow a 
textbook 

Rebecca 1.1 4.0 Increased Found activities outside her 
textbook 

Followed her textbook 
loosely 

Sonya .9 4.0 Slightly increased Added problems from Vande 
Walle 

Followed her textbook 
closely 

Ann .3 3.0 No change Added “fun” activities  Followed her textbook 
closely 

Beth .8 3.0 No change No change Followed her textbook 
closely 

Meg .7 3.7 No change No change Followed her textbook 
closely 
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As seen in Table 25, the change in teachers’ scores on the Worthwhile Mathematical 

Tasks scale was somewhat positively related to teachers’ MKT gain. Of the teachers whose 

MKT increased noticeably, only two teachers with high MKT (Valerie and Rebecca) noticeably 

increased their scores on the Worthwhile Mathematical Tasks scale. Sonya also modestly 

increased her score on that scale. Although Beth and Meg increased their MKT drastically, their 

task choices did not change noticeably. It appears, based on analysis of the qualitative data, that 

teachers with limited MKT did not make any noticeable changes in their practices, whereas 

teachers with strong MKT included more problems or modified the problems they had used.  

Of the four teachers with high MKT, two teachers, Stephanie and Valerie, reported 

adding some problems similar to those used in the methods course in the program as well as 

some problems from Vande Walle, which was the textbook used in the same methods course. 

Stephanie also reported starting to use her textbook more loosely. Stephanie described the 

changes in her task choice, in which she used activities from Vande Walle: 

And now I do try to do a lot more Vande Walle types of things than I did before. . . . I do 
still use the textbook daily, or at least often, but I definitely pull from more resources and 
the Illuminations and try to have more activities and games and problems. 

Rebecca also reported beginning to add more problems in her teaching. She explained 

that she chose problems that “are applicable to [her students] lives as second graders . . . and . . . 

take more than one step [to solve].” Jacqueline did not mention adding new activities or 

problems; rather, as mentioned before, she changed how she used the tasks. Previously, she had 

provided the pattern for the Fibonacci problem, but then she asked the students to find the pattern 

themselves.  

Sonya and the three teachers with limited mathematical knowledge appeared to follow 

their curricula very closely. However, Sonya reported making some modest changes in her task 
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choice. Although she followed her curriculum very closely, she also reported that she had started 

to modify the activities from her textbook and include some activities from Vande Walle: 

I used [the professor]’s ideas a lot because some of the problems she presented in class 
are from the Connected Mathematics curriculum I teach. The way she presented some 
lessons to us, I used. Van deWalle’s book was another tool. 

Of the three teachers with limited mathematical knowledge, only Ann reported adding 

activities from outside her textbook. Ann illustrated the activities she chose: 

You have to find a way to hook them into the learning. So sometimes, it's a book. It 
might be a song. I always start the lesson, or most days, with an interactive learning 
activity. So we pose a question on the board. 

As exemplified by these teachers, the teachers with high mathematical knowledge began 

to include more activities outside their textbooks or modify the activities they had used, whereas 

Sonya and the teachers with limited mathematical knowledge used their textbooks as the main 

source of the problems and activities they chose. Additionally, none of the teachers with limited 

mathematical knowledge reported using the book by Vande Walle as a resource, whereas some 

of the teachers with high MKT (including Sonya) reporting adding activities from the book. On 

the other hand, Ann chose activities based on the criteria of being “fun and engaging.” As a 

result, it seems that teachers’ current level of MKT had an impact on the relationship between 

MKT gain and task choices. Low-MKT teachers’ quality of task choice  did not change much 

regardless of their MKT gain, while high-MKT teachers changed the quality of task choice 

corresponding to changes in their MKT.  

Teachers’ current level of worthwhile mathematical task choices. In the previous 

section, I looked only at the relationship between changes in teachers’ task choices and the gain 

in their MKT using their self-reports. In this section, I analyze how teachers’ task choices were 

related to their current level of MKT. Cross-sectional analysis of classroom observations 

suggested that the textbook had an impact on teachers’ task choices. In this section, I first report 



 209 

how teachers’ task choices were related to their textbook use, and then I focus on the cross-

sectional relationship between teachers’ task choices and their current level of MKT.  

Textbook use. Cross-sectional analysis of the qualitative data suggested that teachers’ 

task choices were confounded by the curriculum they used. As indicated in the previous section, 

the teachers with low MKT and Sonya followed their curriculum very closely. Sonya and the 

three teachers with limited mathematical knowledge appeared to follow their curricula very 

closely, and almost all the problems and activities were from their textbooks. For instance, Beth 

said, “I use the Visual Learning Animation of the enVisionMath program. . . . The animation 

uses lots of ways to grasp the students’ attention and challenges them with questions all through 

the lesson.” Meg also used animated lessons and her textbook on a daily basis. As noted earlier, 

although Ann started to include activities outside her curriculum, she also used her textbook 

daily.  

On the other hand, only two teachers with high MKT, Jacqueline and Valerie, reported 

that they did not follow a textbook closely. Jacqueline also reported not using her textbook as the 

main resource. She said, “I don’t necessarily prefer the textbook. . . . I like to come up with, like, 

real-life ideas that I can apply and introduce topics with.” Valerie noted,  

We're not doing that “teach a whole book.”. . . I have textbooks in my classroom, but not 
a whole set of anything. They're there for a resource. . . . It's not something that I'm going 
to always pull from and that. 

As mentioned earlier, Stephanie and Rebecca, who had been using their textbook very 

closely, reported adding more problems and activities from outside their textbook. For instance, 

Stephanie commented, “I definitely was pretty much just using the textbook and went through it 

chapter by chapter and taught as much as I could. I do still use the textbook daily, or at least 

often.” 
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In sum, it seems that teachers with limited MKT (including Sonya) seemed to follow 

their curriculum closely, whereas teachers with high MKT seemed either to not follow their 

textbook as the main source or to include more activities from outside their curriculum.  

Revisiting teachers’ current level of worthwhile mathematical task choices. Teachers’ 

current level of MKT did not seem to be associated with their task choices. As mentioned in the 

previous section, one reason was that the target teachers used either the Connected Math Project 

(CMP) or EnvisionMath curriculum, and most of the activities and problems (especially for the 

teachers with low MKT) came from the textbooks. Although the teachers with high MKT 

included activities from outside their curriculum or did not have a curriculum, as indicated by 

Stephanie and Rebecca, some of their activities were still from their textbook. Given that all 

teachers with low MKT and Rebecca were using the same curriculum, EnVisionMath, it is not 

surprising that there was a lack of relationship between teachers’ MKT and their task choices.  

Another possible reason for this lack of relationship seemed to be that the teachers had 

some difficulty finding mathematically appropriate or challenging tasks when they included 

problems from outside their curriculum. Based on teacher reports, those teachers with strong 

mathematical knowledge tended to include activities and problems from outside their textbook. 

As illustrated in the portraits of the target teachers, some problems teachers found might not have 

required higher order thinking. For instance, by using similar types of problems, Stephanie got 

her students to notice patterns in addition and subtraction with integers. However, the problems 

she used for students to find patterns did not require complex and nonalgorithmic thinking in 

many instances.  

Rebecca found the problems by herself, and sometimes she failed to find ones appropriate 

for her students’ level of understanding. More specifically, many of her students did not know 
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how to count correctly to a number higher than 100. Moreover, she chose a number that could 

not be divided by 4 for the first question posed. Similarly, not having a textbook might have 

limited the effectiveness of Valerie. As illustrated in her teaching, the problems she chose did not 

require deep thinking, so mathematically rich conversation did not happen so often. Although 

Sonya’s MKT was lower than Stephanie’s, Valerie’s, and Rebecca’s, with the help of her 

curriculum, the Connected Math curriculum, Sonya’s tasks were designed to connect several 

mathematical ideas and concepts.  

Summary of worthwhile mathematical tasks. Analysis of classroom observations and 

interview data provided insights into the lack of a relationship between the change in teachers’ 

MKT and their task choices. The quantitative analysis suggested that teachers with limited MKT 

did not noticeably change the quality of their task choices. On the other hand, teachers with 

strong MKT (including Sonya) made some changes in their task choices. Either the teachers 

modified the activities they had used or they included activities from outside their curriculum. It 

is interesting that although all the teachers in the program were using the same book by Vande 

Walle, only the teachers with high MKT reported including activities from that book.  

Cross-data analysis of classroom observation data suggested that the main reason behind 

the lack of relationship between MKT gains and task choice in the quantitative analyses was 

textbook use. Although teachers with high MKT reported using their curriculum less often or 

using no curriculum, teachers with strong MKT with a certain curriculum still used some 

activities from their textbooks. Given that upper elementary grade teachers used the same 

curriculum, Connected Math, and the lower elementary teachers used the same curriculum, 

EnVisionMath, it was predictable that teachers’ task choices would be somewhat similar 

regardless of their MKT.  
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Another important point the qualitative data suggested was that even teachers with high 

MKT had difficulty finding the complex problems required higher order thinking on their own. 

When teachers created their own problems or found problems outside their curriculum, it seems 

that they tended to fail to find mathematically advanced problems so that their students could see 

connections among several mathematical ideas.  

Student engagement. Results of the quantitative data analysis indicated a positive 

relationship between teachers’ scores on the Student Engagement scale and students’ gain on the 

ISAT, whereas no relationship was observed between teachers’ scores on the Student 

Engagement scale and on the teachers’ mathematics test. One point that should be mentioned 

before presenting the findings of the qualitative data is that some aspects captured on the Student 

Engagement scale were dependent on the students’ past experiences, skills, and interests. For 

instance, the Student Engagement scale captured students’ willingness to discuss their thinking 

and reasoning, the quality of interactions among the students, whether the students were paying 

attention to the lessons, and students’ engagement with the tasks and the lessons. However, this 

did not mean that student engagement was completely out of the teachers’ control. Student 

engagement is certainly influenced by both the teachers’ ability to create an environment that 

promotes sharing and discussing ideas, as well as students’ past experiences and their consequent 

willingness to be part of this environment.  

In this section, similar to the previous section, I briefly summarize how changes in 

student engagement were related to changes in teachers’ MKT, and then look at how the current 

level of student engagement was related to teachers’ existing MKT. In this section, I did not 

provide information regarding the teachers’ beliefs and their association with student 
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engagement because the teachers did not provide any specific information during the interview 

regarding student engagement.  

Change in student engagement. As presented in Table 26, most of the teachers 

mentioned similar changes in their practices regardless of the gain in their MKT. Furthermore, in 

accordance with the quantitative results, a change in the average ISAT gain of the target teachers 

also indicated no relationship between the average ISAT gains for the teachers and their MKT 

gains, whereas there was a somewhat positive relationship between a change on the Student 

Engagement scale and the students’ average ISAT gain.  

On the basis of the analysis of interview data, two teachers (Valerie and Stephanie) did 

not mention any changes in their practices captured in the Student Engagement scale, whereas 

the remaining six teachers mentioned that they devoted more time to having students share and 

discuss ideas and work in groups. Jacqueline mentioned how much she had learned from other 

teachers during classroom discussions in her mathematics methods course in the program, and 

she had begun having her students share their thinking. She said that the professor was  

allowing us to discuss as teachers our understanding. Like when I heard Stephanie talk in 
class, for example, like she thought about it way different than me. But, like, that was an 
eye-opening thing too, like my students could think of it this way. 

Given that most of the teachers started to devote more time to students’ sharing their 

ideas, classroom discussion, and group work, regardless of the change in their MKT, it was not 

surprising to find no significant relationship. Although there were no qualitative data to shed 

light on the relationship between students’ engagement and their ISAT gain, as seen in Table 26, 

there seemed to be some similarities in the target teachers’ changes on the Student Engagement 

scale and their students’ average ISAT gain. In the following section, I investigate possible 

reasons for this by using classroom observation and interview data.  
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Table 26 

Change in Teachers’ Student Engagement Scale and Average Students’ ISAT Gain 

Teacher 
MKT 
gain 

% qualified for 
lunch 

Change in student 
engagement scale Change in teaching ISAT gain 

Stephanie .8 42 — No change 
 

 

Jacqueline .6 42 — More time for students to share their 
ideas 
More time 
More group work 
 

 

Valerie 1.1 47 Increased No change Slightly 
increased 

Rebecca 1.1 76 Slightly increased More time for students to share their 
ideas 
More time 
More group work 
 

 

Sonya .9 85 Slightly increased More time for students to share their 
ideas 
More time 
More group work 
 

Decreased 

Ann .3 85 Increased More time for students to share their 
ideas 
More time 
More group work 
 

Increased 

(table continues) 
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Table 26 (continued) 
 

Teacher 
MKT 
gain 

% qualified for 
lunch 

Change in student 
engagement scale Change in teaching ISAT gain 

Beth .8 73 No change More time for students to share their 
ideas 
More time 
More group work 

No change 

Meg .7 79 No change More time for students to share their 
ideas 
More time 
More group work 
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Current level of student engagement. My classroom observations at the end of the last 

year of the program as well as the teachers’ self-reports regarding their student engagement 

indicated that the teachers had different levels of student engagement regardless of their level of 

mathematical knowledge or use of instructional practices.  

During my classroom visits, Stephanie’s students did not seem engaged in her 

mathematics lessons. Some students seemed to be unwilling to participate in classroom 

discussions. Stephanie was disappointed with her students’ lack of interest in learning more 

mathematics:  

I often don’t have a lot of student interest when it comes to giving them homework and 
outside assignments. They’re not highly motivated to continue to learn the math that I’ve 
got going on. And so it’s all that I can do to keep them in it during the 40 minutes I’ve 
got them. 

On the other hand, Valerie’s, Jacqueline’s, and Rebecca’s students were engaged in their 

mathematics lessons. Almost all Valerie’s students were participating in classroom discussions. 

Her students not only shared their thinking, but also listened carefully to other students’ ideas. 

Similar to Valerie’s students, Jacqueline and Rebecca’s students were actively part of the 

mathematics lessons. They were paying attention to their peers’ work. They carefully listened to 

other students and challenged them if they thought their ideas were wrong. In particular, in 

Rebecca’s mathematics lessons, I observed several times that even when the students ran out of 

time, they continued to work on the question. Rebecca also mentioned in the interview, “I know 

that a lot of times they'll be working in math and I'll say, ‘Oh, it's recess time.’ And they'll say, 

‘Oh,’ and they don't want to leave to go to recess.” Jacqueline also talked about how their 

students were excited about their mathematics lessons: “I have a lot of the times kids will tell me 

like, ‘I didn’t like math before and now I do.’”  
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Similar to Valerie’s, Jacqueline’s, and Stephanie’s students, Beth’s students seemed to be 

very interested in classroom activities. Almost all her students were participating in classroom 

discussions and commenting on their peers’ work. I observed several times that they asked for 

extra homework.  

Although Beth and Sonya were in the same school, Sonya had a difficult time with her 

students. Her students had difficulty focusing on the lesson, and they easily veered off task. 

Some students were not nice to each other or did not display respect for others, and some did not 

follow Sonya’s directions. In each lesson I observed, she had to pause the lesson because of one 

or more behavioral problems. The problems with students were similar for Ann and Meg. Ann’s 

students would easily veer off task, and they had some behavioral problems as well. In each 

lesson, Ann spent time getting them back on task. Sometimes she had to go farther by pausing 

the lesson and warning her students. She told me in the interview, “I really work hard at trying to 

make it fun, make it where they understand it. . . . Because that's the key here in this, with these 

kids. They have to have fun. And they have to be engaged and under control.” Meg also had 

similar problems with her students. During group work, some students were fighting. She also 

had a difficult time keeping her students on task. 

One reason the results showed no relationship between student engagement and teachers’ 

mathematical knowledge but a positive relationship between student engagement and the 

students’ gain on ISAT could be that each year, the teachers had different students, so the 

students’ interest and engagement varied. What Valerie said in the interview describes this 

variation in student interest from year to year: “Every fourth grader that's going to . . . be great 

like the one I have this year. I don't know. . . . Probably not. Next year will probably—who 
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knows what I'll get.” As she predicted, her students’ average ISAT gain was 13 points that year 

compared with the 10-point gain the year before the program was initiated.  

Summary of student engagement. Qualitative analysis of the classroom observation and 

interview data provided some insights into the lack of a relationship between teachers’ MKT and 

the Student Engagement scale as well as the students’ average ISAT gains. It seems that 

regardless of the change in teachers MKT, the majority of the target teachers allocated more time 

for their students to share and discuss their ideas and work in groups.  

However, as illustrated by both data sets, student engagement was also dependent on 

students’ willingness to participate in classroom activities, which might be the reason for the 

positive relationship between student engagement and the ISAT gain. Unfortunately, because I 

did not collect data from the students, the qualitative data did not provide further explanation for 

the lack of relationships among teachers’ MKT, student engagement, and ISAT gain.  

Summary of Chapter 5 

Separate analyses of these eight teachers’ reports of the changes in their instructional 

practices as well as analyses of their teaching at the end of the program pointed to a potential 

explanation for the findings from the quantitative analysis. Similar to the quantitative analysis, 

the qualitative analysis indicated a positive relationship between the teachers’ gain in 

mathematical knowledge and a change in their practices toward an inquiry-based lesson. Of the 

seven teachers who increased their MKT knowledge, six of them also reported changes in their 

practices toward more inquiry-based teaching. Furthermore, longitudinal and cross-sectional 

analyses of teachers’ practices indicated that the effect of the gain in mathematical knowledge 

seemed to have a similar effect on teachers’ practices toward more inquiry-based teaching, 

whereas when looking at teachers’ practices at certain time points, there seemed to be a weak 
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relationship, or no relationship, between teachers’ knowledge of mathematics and their use of 

inquiry-based teaching.  

The ways in which the teachers engaged in mathematical discourse varied with the 

teachers’ knowledge of mathematics. The teachers with limited mathematical knowledge did not 

seem to draw out the mathematics in students’ responses. The teachers listened to their students 

and allowed them to share their ideas with their classmates, but no mathematically significant 

discussion appeared to occur. Teachers with limited mathematical knowledge failed to promote 

discussions that pushed students to make sense of the ideas. On the other hand, teachers with 

more mathematical knowledge seemed to create mathematically richer classroom discourse and 

more in-depth analysis of students’ responses. A closer look at aspects of the instruction captured 

by the Mathematical Agenda of Sense-Making scale indicated that teachers’ mathematical 

knowledge seemed to be associated with the purpose of their lessons and their use of lesson time. 

The teachers with strong mathematical knowledge focused on making sense of the concepts 

behind the mathematics being taught. They showed the meaning behind a procedure and 

explained steps in the procedure. On the other hand, teachers with limited mathematical 

knowledge taught the procedure without teaching the underlying meaning. Furthermore, teachers 

with limited mathematical knowledge seemed to spend a considerable amount of time on 

activities unrelated to mathematics.  

Qualitative analyses of the Worthwhile Mathematical Task and Student Engagement 

scales also provided insights into why no quantitative relationship was observed between 

teachers’ mathematical knowledge gain and the aspects of their teaching practices captured on 

these scales. A closer look at aspects of the Worthwhile Mathematical Tasks scale indicated that 

teachers with strong mathematical knowledge included mathematically more advanced tasks in 
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their teaching. However, teachers with limited mathematical knowledge continued to follow their 

textbooks closely. For example, Sonya shaped her lessons around her curriculum, and her 

activities came from her textbook while none of the teachers with strong mathematical 

knowledge used their textbooks to guide their lessons. Cross-sectional analysis of teachers’ MKT 

and the Worthwhile Mathematical Tasks scale indicated that teachers’ textbook use had 

confounding effects on the quality of their task choices. Although teachers with high MKT did 

not follow the curriculum as closely as did their colleagues with low MKT, they still used some 

problems and activities from their textbook. Furthermore, teachers, even the teachers with high 

MKT, had difficulty finding mathematically advanced and high-level thinking problems.  

Analyses of the qualitative data pertaining to Student Engagement suggest two potential 

reasons for the lack of a quantitative relationship between the gain in teachers’ mathematical 

knowledge and scores on the Student Engagement scale.  First, probably due to the emphases in 

the master’s program, most teachers began to ask their students to share their ideas regardless of 

how much gain the teachers made in their content knowledge.  Additionally, although teachers 

were responsible for creating an environment in which all students effectively engage in learning, 

students’ interests and motivation played an important role in the success of that environment, 

and, students varied from year to year in some ways beyond the teachers’ control.    

Finally, as suggested by the quantitative data, teachers’ beliefs played an important role 

in their use of inquiry-oriented lessons, having a mathematical agenda of sense-making, and task 

choices. Although the qualitative data could not elaborate on the findings regarding their task 

choices, analysis of the data for inquiry-oriented lesson plans and having a mathematical agenda 

of sense-making indicated that the differences in teachers’ inquiry-oriented teaching could be 

explained by differences in their beliefs. Only teachers who favored reformed-based teaching 
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tried to implement inquiry-oriented lessons. Similarly, only teachers who valued the meaning 

behind the mathematical procedures and algorithms focused on teaching the meaning behind the 

procedures as well. 
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Chapter 6 

Discussion  

Prior research has yielded inconclusive results regarding the relationships between 

elementary and middle school teachers’ mathematical knowledge and their instructional practices, 

and between their mathematical knowledge and student learning (e.g., Greenwald, Hedges, & 

Laine, 1996; Hanushek, 1996; National Mathematics Advisory Panel, 2008; Rockoff et al., 2008; 

Rowan et al., 2002). The majority of studies have been cross-sectional and teachers’ 

mathematical knowledge has not been measured by well-established assessments. By using a 

mixed-methods approach, this study sought to address more thoroughly the extent to which 

teachers’ mathematical knowledge for teaching (MKT) affects instructional practices. In 

particular, mixed methods were used to develop a more comprehensive assessment of teachers’ 

knowledge and instructional practices, leading to a more differentiated understanding of the role 

of teachers’ MKT on their instruction at the elementary/middle school level.  

This longitudinal study monitored the growth in mathematical knowledge and 

instructional practices of 21 in-service teachers as they participated in a master’s degree program. 

At the beginning of the program, the teachers had very different levels of mathematical 

knowledge as well as different instructional practices. However, teachers’ scores on both the 

mathematics test and four of five instructional practice scales changed substantially during the 

program. In particular, teachers’ scores on the MKT measure and on the Inquiry-Oriented Lesson, 

the Mathematical Agenda of Sense-Making, Worthwhile Mathematical Task, and Classroom 

Climate scales changed significantly. Only teachers’ scores on the Student Engagement scale did 

not change noticeably over the duration of the program.  
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Results of the quantitative analysis indicated that changes in teachers’ MKT scores were 

able to predict changes in their scores on the Inquiry-Oriented Lesson, Mathematical Agenda of 

Sense-Making, and Classroom Climate scales. Results also indicated that changes in teachers’ 

MKT scores did not correspond to changes in their task choice and their level of student 

engagement. Teachers’ beliefs also appeared to be positively related to their scores on the 

Inquiry-Oriented Lesson, Worthwhile Mathematical Task, and Mathematical Agenda of Sense-

Making scales. Further analysis also suggested that students’ gain scores were positively 

associated with only the Student Engagement scale. The other four instructional practice scales 

and teachers’ MKT scores were not related to students’ gain scores. Teachers’ beliefs about 

teaching and learning did not seem to be related to students’ gain scores.  

Results of the qualitative analysis shed light on the complex relationship among teachers’ 

knowledge, beliefs, and instruction. Although teachers’ beliefs appeared to be an important 

factor affecting teacher practices, beliefs alone were not enough for teachers to make substantial 

changes in their practices; teachers also need strong mathematical knowledge to make more 

pronounced changes in their practices. Looking across both data sets indicate that teachers 

favoring standards-based view of mathematics tended to take more initiatives to make changes in 

their practices; however, without strong mathematical knowledge, these changes were superficial. 

For instance, the portraits of the eight teachers’ instructional practices at the end of the program 

indicated important differences in their lesson designs, suggesting that teachers’ beliefs tended to 

complicate a direct relationship between teachers’ knowledge and their use of an inquiry-

oriented lesson design at a particular point in time. However, although most teachers reported 

some changes toward more inquiry-based teaching, some of the changes were superficial (e.g., 
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more group work and more student presentation with no discussion) and only high-MKT 

teachers mentioned focusing on more conceptual changes in their teaching.  

The results of this study also highlight the importance of teachers’ existing level of 

mathematical knowledge on the “mathematical quality” of lessons. When teachers’ mathematical 

knowledge increased, the teachers appeared to create an environment in which their students 

could make more sense of the concept being taught. This result is in agreement with the findings 

of Baumert et al. (2010) regarding the positive relationship between teachers’ pedagogical 

content knowledge and the quality of teacher-student interaction around the mathematics tasks. 

However, an examination of individual teachers’ scores suggested that the teachers who ended 

the program with limited mathematical knowledge did not increase their scores on that scale. 

Earlier work (e.g., Webb, 1991) indicated that the quality of the discourse affects student 

learning. Similarly, qualitative analysis of the teachers’ instructional practices in this study 

suggested that teachers with limited knowledge could ask “how” and “why” questions to reveal 

their students’ mathematical thinking, but when it came to building on the students’ responses, 

the teachers’ current level of MKT might have hindered their effectiveness. On the other hand, 

teachers with strong mathematical knowledge appeared to encourage students to think 

productively and could draw out the mathematics in students’ responses (Charalambous, 2010). 

This study contributes to the existing literature in that it used both quantitative and qualitative 

data and compared some teachers who were using the same curricula and whose students had 

similar demographics to reduce the effects of contextual factors. Furthermore, this study, 

assessing teachers’ beliefs, suggested that teachers’ beliefs about teaching and learning 

mathematics also affected the teachers’ mathematical sense-making agenda; however, their level 

of mathematical knowledge hindered or increased the effect of their beliefs about sense-making.  



 225 

Looking across both data sets suggest that teachers with strong mathematical knowledge 

make more mathematically pronounced changes in their practices while teachers with limited 

mathematical knowledge were not able to reach that level of change in their practice. For 

instance, as indicated in the interview data, only teachers with strong mathematical knowledge 

reported including problems and activities that required higher order thinking. Teachers with 

limited mathematical knowledge, regardless of their beliefs, seemed to continue to follow their 

textbooks on a daily basis, and most of the problems and tasks were taken from their textbooks. 

On the other hand, teachers with stronger mathematical knowledge seemed to include activities 

from outside their curriculum. Although my research interest was not in the teachers’ use of the 

curriculum, it seemed that those with high MKT scores followed their curriculum more loosely. 

Another important point that the qualitative data indicated was that although teachers with high 

MKT scores seemed to focus on mathematical aspects of the activities, it appeared that even 

teachers with strong mathematical knowledge, such as Rebecca, had difficulty finding 

appropriate tasks that promoted conceptual understanding. As illustrated in Sonya’s case, the 

standards-based curriculum could help teachers create a mathematically more engaging 

environment, which might lead to a better conceptual understanding (McCaffrey et al., 2001).  

The quantitative analysis also indicated that teachers created a more positive classroom 

climate when their mathematical knowledge increased. As reported by several teachers in their 

case studies, this might have been due to the increase in their self-confidence. Or, as Meg and 

Valerie mentioned, “struggling” during their mathematics courses in the program might have 

allowed them to put themselves in their students’ shoes and empathize with them.  

Finally, the Student Engagement scale, which captured the degree to which students 

shared and explained their ideas and worked collaboratively with their peers, did not seem to 
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correspond to an increase in teachers’ MKT scores. This result seemed somewhat surprising; 

however, classroom observations of the teachers might help explain this finding. First, regardless 

of the change in the teachers’ MKT, many teachers reported devoting more time to having their 

students share their ideas and work in groups. Second, as mentioned previously, regardless of the 

teachers’ existing level of mathematical knowledge, some teachers had problems with their 

students’ participation in classroom activities. The students in their classrooms played an 

important role in how the lesson was carried out, and their engagement was related to many 

factors both inside and outside of their current mathematics classroom. Group work was not 

productive when students fought within their groups, and sharing answers was not easy when 

other students did not respect the student at the board. However, as highlighted several times, 

this does not mean that student engagement did not depend on the teachers. Although this study 

could not explain why student engagement corresponded neither to teachers’ beliefs nor to 

teachers’ mathematical knowledge, it is important to draw attention to the fact that only two 

teachers with strong mathematical knowledge, Rebecca and Jacqueline, reported that their 

students were enthusiastic about learning more mathematics. Both teachers challenged their 

students by asking questions that required them to think. They both waited for their students to 

discover solutions. These aspects of their teaching might have been related to their students’ 

eagerness to participate in mathematics lessons.  

Using students’ scores on the standardized tests, I also analyzed relationships among the 

teachers’ MKT, instructional practices, and student achievement gains. I acknowledge that 

“standardized achievement tests, in particular, are exceedingly blunt instruments for measuring 

what students might learn in a given year from a given curriculum” (NRC, 2001, p. 479), and 

standardized test scores do not always reflect the extent to which a student has a good 
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understanding of mathematical concepts (Erlwanger, 1973; Schoenfeld, 1988). Student 

engagement was the only positive and significant predictor of student achievement gains. The 

positive relationship between student engagement and achievement is also supported by existing 

research. Providing opportunities for students to engage in and spending time on activities is 

“widely considered the single most important predictor of student achievement” (National 

Research Council [NRC], 2001, p. 334). 

Teachers’ scores on the other scales and on the MKT test did not seem to correspond to 

their students’ ISAT gains.34 Although the findings are discouraging, the results of this study are 

important, given that value-added models of teaching and pay-for-performance have become 

widely used and popular in research and hiring decisions. An earlier study indicated that teacher 

performance changes from year to year, especially for elementary school teachers (e.g., 

McCaffrey, Sass, Lockwood, & Mihaly, 2009). This study further suggests that neither teachers’ 

mathematical knowledge nor instructional practices—as measured in this study—can explain the 

variation in their students’ performances in a given year. Similarly, Hill, Kapitula, and Umland’s 

(2011) value-added study with middle school teachers indicated a nonsignificant correlation 

between teachers’ MKT and the mathematical quality of their instruction when teachers’ value-

added scores in the models were adjusted for students’ background. Partly because the 

researchers used a composite score to present the mathematical quality of teacher instruction, the 

authors could not identify which aspects of instruction corresponded to student gains. Using 

qualitative data from two outlier teachers (with a low quality of mathematical instruction and 

high value-added scores), the authors speculated that one reason could be the level of student 

participation in mathematics lessons. The findings of this study support their conjecture 

                                                 
34 I also analyzed student data by using subscales of students’ scores for the content areas in 
which teachers’ MKT was measured. This analysis yielded the same results. 
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suggesting that that student engagement is a significant predictor of student achievement gains, 

and teachers’ instructional practices and their MKT do not correspond to gains in student 

achievement.  

However, one lingering question remains unanswered: Why did teachers’ mathematical 

knowledge specific to teaching and the instructional practices envisioned in the Standards (i.e., 

NCTM, 2000) not correspond to student achievement gains? One reason for the lack of 

relationship between teachers’ instructional practices and their students’ gains in achievement 

could be that teaching in an inquiry-oriented manner, choosing cognitively demanding tasks, and 

creating an environment in which students could make sense of mathematics is time consuming 

and might not be the most efficient means of test preparation. As Rebecca mentioned in the 

interview, seeing the positive effects of teaching when using an inquiry-based approach took 

more time, but the students retained the knowledge better. Earlier studies have indicated that 

because of this dilemma, teachers often report relying on traditional instructional methods owing 

to time constraints (Hiebert & Carpenter, 1992; Pesek & Kirshner, 2000). Hence, teachers are 

faced with many tensions and dilemmas in their teaching practice (Adler, 1998). In fact, 

Jacqueline mentioned during the interview that she had begun to teach using a completely 

inquiry-oriented approach only that year. She explained her reasons and worries about this 

decision:  

Because I want my kids to learn and retain it. Like I’m all about that and I’m not about 
the ISAT and I kind of just—This is the first year I actually enjoyed my teaching more 
than ever. And I didn’t care about ISAT, which is sad to say because I do care. But I care 
more that they’re learning. And I kind of feel like if they’re truly learning, they’ll do fine 
on ISAT.  
 
Another important factor that might have affected these findings was the student 

population in teachers’ classrooms. Noting that teacher evaluation methods tend to ignore 
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student-related factors because of the assumption that student gain scores implicitly eliminate the 

effect of student background factors (e.g., Ballou, Sanders, & Wright, 2004), the results of this 

study challenges this assumption. As suggested by the quantitative analysis results, overall 

student engagement at the classroom level is an important factor predicting students’ test score 

gains. Furthermore, classroom observations of the same teachers over 4 years indicated that even 

for the same teachers, students’ level of interest varied from year to year. As indicated in earlier 

studies, teacher effects on students’ test scores were related to the student population in the 

classroom (Hill et al., 2011). Furthermore, McCaffery, Lockwood, Koretz, Louis, and Hamilton 

(2004) point out the importance of including both student- and school-level demographics, 

indicating that school-level lunch eligibility could predict students’ gains even after controlling 

for individual-level lunch eligibility.  

The case of one particular teacher, Stephanie helps illustrate the effects of student-related 

factors on achievement. Stephanie had taught in one of the low-achieving schools in the 

partnership district the year before she enrolled in the program. Seventy-four percent of the 

students in that school were eligible for subsidized lunch. Even before she enrolled in the 

program, Stephanie’s MKT score indicated that she had strong mathematical knowledge. 

However, Stephanie’s students’ average gain was not promising the year before the program 

started despite her high MKT, only 70% of her students met or exceed the state standards.35 In 

contrast, in her current school in which only 39% of the students were eligible for subsidized 

                                                 
35 As mentioned earlier, because I had access to data for that particular district, I was able to see 
her students’ ISAT scores in 2007; however, I did not have her students’ ISAT data for the last 
year of the program. 
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lunch, her students had one of the very highest ISAT scores in the following years36. As she 

explained during the interview, the main reason behind this difference was the change in student 

characteristics. Her comparison of the students in her current school with those in her previous 

school seemed to illustrate the effects of confounding factors on student ISAT gains. She 

commented on her students’ ISAT scores in her current school: “My ISAT scores are high. . . . 

Since I started the program, my scores have been higher than anyone else’s in the school.” She 

then mentioned that she had left her prior school before officially receiving her students’ ISAT 

scores: 

I have no doubt they were very low. I did not feel successful there, and I did not have the 
curriculum that they have now [referring to her old school]. . . .  It’s like broken from the 
top. It’s broken from the bottom. It’s just so fractured, and it’s sad because there are so 
many good teachers there. . . . And it doesn’t matter how much money you give them. 
They’re not going to be successful in this environment because we have broken kids and 
we have some administration problems, and it’s not an effective place to teach. . . . And I 
thought all I would have to do is go in there and love them and be sweet and kind and 
show that I care and have a passion for math and I would make a difference, and that’s 
not what happened. So I got out as fast as I could. It was not the experience for me. 
 
Stephanie’s explanation of her lack of success in a low-achieving, less affluent school 

also highlights the importance of school-related factors that affect teacher performance. I would 

also like to draw attention to the effect of standardized tests on teachers’ practices. Some 

teachers’ decisions about the instructional practices they used appeared to be influenced by their 

students’ scores on the standardized test. Beth reported using group work more frequently, and 

she explained the reason for this: “My students have learned the true meaning of group 

interaction, and test scores show that all of my students are functioning at or above the fifth-

grade level in math.” Valerie explained why she chose particular instructional methods: 

                                                 
36 As mentioned earlier, I did not have access to Stephanie’s students’ ISAT scores in her current 
school; however, based on the state report cards, more than 90% of the seventh graders met or 
exceeded the state standards in 2010. 
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“Because I've found that it works. Our school scores, like, top in standardized testing, at the top 

in the district, because what we do works.” In addition, it is important to highlight that all 

teachers, regardless of the grade level they taught, were under pressure because of the 

standardized tests. For instance, both Rebecca and Meg mentioned feeling pressure because of 

the district-wide tests (ThinkLink) that their students were required to take. Meg mentioned “[I 

have] concerns, definitely, because we are held accountable for those results.” Rebecca said,  

I do have ThinkLink, and I'm very much held accountable to it. Like my scores are 
plastered on the wall downstairs for all the teachers to see. . . . I guess I would probably 
continue to teach this, but honestly, I mean, if my kids’ scores were so low, then I 
probably, you know—that would play a factor in it. 
 

Given that assessment of teachers’ performance is dependent on the skills measured on students’ 

tests (e.g., Lockwood, McCaffrey, Hamilton, Stecher, Le, & Martinez, 2007), this suggests that if 

the standardized tests were not designed to capture student conceptual understanding, the 

teachers might be discouraged from teaching in the way envisioned in the Standards (NCTM, 

1991, 2000). 

Limitations 

This study has several limitations worth noting. First, the sample of teachers in the study 

was nonrandom because the teachers chose to participate in a master’s program focused on 

mathematics and science. Hence, the findings shown here and the p-values reported are intended 

to be suggestive of relationships that may be present in a more general population, as opposed to 

definitive measures of relationships for all teachers.   

A second potential limitation is the small sample size of teachers, which may limit the 

sensitivity to finding some existing relationships. In addition, the sample size prevented me from 

adding more teacher-level variables. However, in a multilevel longitudinal analysis, sample size 
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should be considered separately for each level, indicating that increasing the number of teachers 

may not increase the power of analysis as much as increasing the number of time points (years). 

Because I was interested in the change in teachers’ practices, having more time points increased 

the power of the study more than having a greater number of teachers.  Still, the small number of 

teachers involved means that some relationships that might be significant in the general 

population might have appeared insignificant in this analysis.   

A third limitation is the quality of the measures. All measures used in this study, that is, 

the ISAT and the LMT Test, the classroom observation protocol, and the beliefs survey, included 

some measurement error, which reduced the possibility of finding and measuring relationships 

accurately. In addition to errors in the measures themselves, other errors may have been present, 

such as ones related to the testing conditions, however tests of teacher knowledge were carefully 

administered to minimize potential problems. That is, I tried to administer the tests in the same 

type of room (college classroom) during the same time of day, with the same directions and time 

allotment provided. Additionally, the fact that teachers were paid for their time to complete the 

assessments seemed to encourage them to take the repeated tests seriously and without complaint. 

Another potential source of measurement error relates to the limited number of observations 

conducted in teachers’ classrooms.  That is, two or three observations of teachers might not have 

sufficiently captured their teaching. To overcome this problem, I augmented the observation data 

with teachers’ self-reports of how they taught. I also specifically asked to observe their typical 

mathematics lessons; the teachers were asked to refrain from preparing special lessons for 

observations because they might not have reflected their typical teaching. 

Finally, the absence of audio recordings during the first 2 years of classroom observations 

was another limitation, which prevented me from using the qualitative data collected in those 
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years. This study could have been more powerful had I and other researchers in the program 

taken more detailed field notes during those earlier classroom visits instead of relying primarily 

on the observation protocol to capture the important details of the lessons.   

Implications 

The findings of this study have several implications spanning a variety of areas, including 

research, teacher education, professional development, and education policy. 

Implications for research. This study informs researchers and teacher educators about 

which aspects of instructional practices are most closely related to teacher knowledge and which 

aspects are related to teacher beliefs, as opposed to (or in addition to) their mathematical 

knowledge. The fact that the teachers who had greater gains in MKT scores tended to move 

toward more inquiry-oriented lessons—despite the fact that all teachers were encouraged to 

move in that direction throughout the program—suggests that such knowledge may be linked in 

important ways to inquiry-based teaching. The mathematical quality of lessons was related to 

teachers’ level of mathematical knowledge. However, the results of this study were obtained 

from a limited, non-random sample of teachers, most of whom taught elementary school.  

Further studies are needed to examine whether the relationships identified here hold up in a 

larger sample, as well as whether similar relationships exist for middle and high school 

mathematics teachers. 

The findings of this study also inform researchers regarding which instructional practices 

are related to teachers’ beliefs. This study suggests that teachers’ beliefs correspond to the extent 

to which the teachers design inquiry-based lessons, what tasks and activities they choose, and 

how they create a mathematically powerful environment. Since teachers’ beliefs were captured 
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once in this study, studies capturing changes in teachers’ beliefs as well as knowledge are needed 

to investigate how beliefs and knowledge interact and affect teaching practices over time.  

Implications for teacher education and professional development. The study also 

informs teacher educators and professional development designers about what activities could be 

used to improve teachers’ MKT scores. The teachers in this master’s degree program increased 

their MKT significantly and retained it. As illustrated in earlier sections, teachers reported that 

their confidence increased and that they created a more positive classroom environment in their 

mathematics lessons. In addition, they reported beginning to teach concepts they had not been 

comfortable with before. It seems that challenging courses that include both mathematical 

concepts and pedagogy could be beneficial for in-service teachers. Since the teachers increased 

specialized mathematical knowledge for teaching more in the program’s content/pedagogy 

hybrid course as opposed to a mathematics content course (Copur-Gencturk & Lubienski, under 

review), teacher educators and professional development designers might consider creating more 

hybrid courses.  

This study also brings attention to interactions between teachers’ beliefs and 

mathematical knowledge as they shape teacher practices. In this, teachers who did not hold 

beliefs aligned with standards-based teaching made fewer prominent changes to their practices. 

Teacher education programs should focus on teacher beliefs as well as teachers’ mathematical 

knowledge. This study also suggests that teachers might perceive standards-based teaching 

differently than what teacher educators envision. Teachers might have the misconception that 

asking “how” and “why” questions is enough for helping students make sense of concepts. 

Teacher educators should confront this notion and find ways to support teachers in making more 

effective use of students’ responses to those questions. 
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Qualitative analysis of the data also suggested that teachers had difficulty choosing 

mathematically appropriate tasks for their students. The findings indicate that even teachers with 

strong mathematical knowledge were not able to choose mathematically rich problems. In 

teacher education programs, special attention should be given to what the teacher should take 

into consideration when choosing problems and activities to carry out in a lesson. Furthermore, 

teachers should be well informed regarding what “math should be fun” means and how math 

could be made fun by finding mathematically engaging activities.  

The findings also imply that detecting the effect of teachers’ knowledge and instructional 

practices on student learning captured by standardized tests is not an easy task. Using state-

mandated tests as student outcome measures limited the number of teachers who could be 

included in the study because students of the lower elementary school teachers were usually not 

tested. Additionally, the content focus of professional development programs might not 

completely align with that assessed by the state-mandated tests. Hence, professional 

development designers striving to detect student gains should consider using alternative (well-

established) tests that are more specific to content covered in the professional development 

programs. 

Implications for education policy. In agreement with earlier work (e.g., NRC, 2001), 

this study suggests that students being on task, working collaboratively, and sharing and 

explaining their ideas are related to student gains. On the other hand, teaching students in an 

inquiry-oriented manner and pressing students to probe their thinking do not seem to be related 

to their scores on the standardized tests. As mentioned earlier, the state-mandated tests are taken 

in the middle of the spring semester, and teaching in an inquiry-oriented manner might not allow 

teachers to cover all the concepts measured on the standardized tests. Prior research has indicated 
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that teachers tend to rely on traditional ways of teaching because of this dilemma (e.g., Hiebert & 

Carpenter, 1992; Pesek & Kirshner, 2000). However, the present study also suggests that the 

teachers themselves use state scores as a criterion for the effectiveness of certain teaching 

methods. For example, could Jacqueline have continued to focus on student learning if her 

students had failed the test? Or, as Rebecca confessed, if students’ scores did not increase, could 

teachers continue to use inquiry-based teaching? If the standardized tests are not designed to 

capture students’ conceptual understanding or if they “punish” teachers who strive to create a 

mathematically rich environment so that their students can build a deep understanding of 

mathematical concepts, students’ understanding of mathematics will never reach the desired 

level.  

Another important implication of this study is related to the evaluation of teachers based 

on the value added to their students’ test scores. Echoing the concerns related to not controlling 

for student-related factors adequately in teacher evaluations (e.g., Amrein-Beardsley, 2008; Hill 

et al., 2011), this study further suggests that the student populations in teachers’ classrooms 

confound measures of teacher effectiveness. By highlighting the important of, and differences in 

the mathematical engagement of cohorts each year, this study suggests that the variability in 

teachers’ performance (e.g., Goldhaber & Hansen, 2010; McCaffrey et al., 2009) is related not 

only to “noise” in student test scores and to student demographics as traditionally measured, but 

also to differences in the “personalities” of student cohorts assigned to the teachers.  Although 

one would hope that a skillful teacher can create a climate of high engagement within any cohort, 

the data from this study reveal that such a climate is dependent upon both the students and the 

teacher. Without controlling for students’ characteristics, interests, motivation, and prior 

experiences at the individual and classroom levels, traditional evaluations of teacher 
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effectiveness are insufficient to consistently and fairly identify teachers with the most effective 

teaching skills. Using student trajectories rather than covariate-adjusted models could control 

students’ related factors to some extent. However, given that existing student trajectory models 

do not control individual student’s demographics (e.g., Education Value Assessment System 

(EVAAS) Sanders, 1998), more advanced student trajectory models are needed for more 

accurate measures of teacher performances.  
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Appendix A 

Adapted Classroom Observation Protocol  

 
Name of observer____   Code of teacher observed:___             Date of observation_____ 
 
Pre Observation Interview Questions: 
 
1. What has this class been covering recently? (what unit are you working on)? 
 
 
2. What would you like the students to learn during this class? 
 
 
 
3. In a paragraph or two, describe the lesson you observed. Include where this lesson fits in the 
overall unit of study.  Include the general lesson structure and enough detail to provide a context 
for your ratings of this lesson. 
 
 
 
 
 
 
I. Classroom Demographics and Context 
 
A. What is the total number of students in the class? ____ (give exact count) 
 
B. What is the number of students in the class at the time of the observation who are  
White?___  Af. American?___  Latino/a?___  Other?___   
 
C. Indicate the primary content area of this lesson or activity.  (In general, choose just one.) 

 1. Numeration and number theory  
 2. Computation (please specify: _______________) 
 3. Estimation  
 4. Measurement (please specify: _______________) 
 5. Patterns and relationships  
 6. Pre-algebra  
 7. Algebra  
 8. Geometry and spatial sense  
 9. Functions (including trigonometric functions) and pre-calculus concept  
 10. Data collection and analysis  
 11. Probability  
 12. Statistics (e.g., hypothesis tests, curve-fitting, and regression)  
 13. Topics from discrete mathematics (e.g., combinatorics, graph theory, recursion) 
 14. Mathematical structures (e.g., vector spaces, groups, rings, fields) 
 15. Calculus 
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 16. None of the above (please explain) 
D. Indicate the primary intended purpose(s) of this lesson or activity based on the pre- 
and/or post-observation interviews with the teacher. (In general, choose just one.) 

 1. Identifying prior student knowledge 
 2. Introducing new concepts 
 3. Developing conceptual understanding 
 4. Reviewing mathematics concepts 
 5. Developing problem-solving skills 
 6. Learning mathematics processes, algorithms, or procedures 
 7. Learning vocabulary/specific facts 
 8. Practicing computation for mastery 
 9. Developing appreciation for core ideas in mathematics 
 10. Developing students’ awareness of contributions of mathematicians of diverse backgrounds 
 11. Assessing student understanding 
 

E. Indicate the major way(s) in which student activities were structured. 
  As a whole group 
  As small groups 
  As pairs  
  As individuals 

 
F. Indicate the major way(s) in which students engaged in class activities. 

  Entire class was engaged in the same activities at the same time. 
  Groups of students were engaged in different activities at the same time (e.g., centers). 

 
G.  Please provide specific times for each lesson component: 

___# minutes whole group instruction/discussion (generally teacher-led instruction) 

___# minutes small group work on experiments/tasks that are part of lesson/instruction 

___# minutes individual work on experiments/tasks that are part of lesson/instruction 

___# minutes for homework in small groups (most students collaborating substantially) 

___# minutes for homework as individuals (most work done individually without 

collaboration) 

 
H. Rate the adequacy of the physical environment.  
a. Classroom resources: 
                                                                                                           
1                            2                             3                            4                          5 
Sparsely equipped                                                                                                     Rich in resources 
 
b. Classroom Space: 
                                                                                                           
1                            2                             3                            4                          5 
Crowded                                                                                                                    Adequate space 
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c. Room arrangement: 
                                                                                                           
1                            2                             3                            4                          5 
Inhibited interactions among students                                                                      Facilitated interactions among 
students                   

II.    
A. Lesson Design and Implementation (1 = never, 2 = very little, 3 = some, 4 = mostly, 5 = 
consistently)  
1.  The design of the lesson reflected careful planning and organization. 1 2 3 4 5 
2.  The design of the lesson incorporated tasks, roles, and interactions consistent 

with investigative mathematics. 
1 2 3 4 5 

3.  The lesson had a problem/investigation-centered structure (e.g., teacher launched a 
problem/investigation, students explored, and teacher led a synthesizing discussion.)  

1 2 3 4 5 

4.  The instructional objectives of the lesson were clear and the teacher was able to 
clearly articulate what mathematical ideas and/or procedures the students were 
expected to learn.  

1 2 3 4 5 

5.  The lesson design provided opportunities for student discourse around important 
concepts in mathematics. 

1 2 3 4 5 

6.  Mathematics was portrayed as a dynamic body of knowledge continually 
enriched by conjecture, investigation analysis, and/or proof/justification. 

1 2 3 4 5 

7.  The teacher appeared confident in his/her ability to teach mathematics.  1 2 3 4 5 

8.  The instructional strategies were consistent with investigative mathematics.  1 2 3 4 5 
9.  The teacher’s questioning strategies for eliciting student thinking promoted 

discourse around important concepts in mathematics.  
1 2 3 4 5 

10. The pace of the lesson was appropriate for the developmental level/needs of the 
students and the purpose of the lesson.  

1 2 3 4 5 

11. The teacher was flexible and able to take advantage of “teachable moments,” 
(including building from students’ ideas – both mathematical and non-mathematical). 

1 2 3 4 5 

12. The teacher’s classroom management style/strategies enhanced the quality of the 
lesson. 

1 2 3 4 5 

13. The vast majority of the students were engaged in the lesson and remained on 
task.   

1 2 3 4 5 

14. Appropriate connections were made to other areas of mathematics, to other 
disciplines, and/or to real-world contexts.  

1 2 3 4 5 

 
 
B. Mathematical Discourse and Sensemaking    

1.  Student asked questions to clarify their understanding of mathematical ideas or 
procedures. Logistical questions – “may I sharpen my pencil?” don’t count. 

1 2 3 4 5 

2.  Students shared their observations or predictions.   1 2 3 4 5 
3.  Students explained mathematical ideas and/or procedures.  1 2 3 4 5 
4.  Students justified mathematical ideas and/or procedures.   1 2 3 4 5 
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5. Students listened intently and actively to the ideas and/or procedures of others for 
the purpose of understanding someone’s methods or reasoning.  

1 2 3 4 5 

6.  Students challenged each other’s and their own ideas that did not seem valid.   1 2 3 4 5 
7.  Students defended their mathematical ideas and/or procedures.  1 2 3 4 5 
8.  Students determine the correctness/sensibility of an idea and/or procedure based 

on the reasoning presented.   
1 2 3 4 5 

9.  Students made generalizations, or made generalized conjectures regarding 
mathematical ideas and procedures.  

1 2 3 4 5 

10. Students drew upon a variety of methods (verbal, visual, numerical, algebraic, 
graphical, etc.) to represent and communicate their mathematical ideas and/or 
procedures.  

1 2 3 4 5 

11. The teacher and students engaged in meaning making at the end of the 
activity/instruction. (There was a synthesis or discussion about what was 
intended to be learned from doing the activity.)  

1 2 3 4 5 

12. The teacher productively probed/“pushed on” the mathematics in students’ 
responses (including both correct and incorrect responses).  

1 2 3 4 5 

 
C. Task Implementation    

1.  Tasks focused on understanding of important and relevant mathematical 
concepts, processes, and relationships.  

1 2 3 4 5 

2.  Tasks stimulated complex, nonalgorithmic thinking.  1 2 3 4 5 
3.  Tasks successfully created mathematically productive disequilibrium among 

students.  
1 2 3 4 5 

4.  Tasks encouraged students to search for multiple solution strategies and to 
recognize task constraints that may limit solution possibilities.  

1 2 3 4 5 

5.  Tasks encouraged students to employ multiple representation and tools to 
support their learning, ideas and/or procedures.  

1 2 3 4 5 

6.  Tasks encouraged students to think beyond the immediate problem and make 
connections to other related mathematical concepts. 

1 2 3 4 5 

 

D. Classroom Culture   
1. Active participation of all students was encouraged and valued. 1 2 3 4 5 
2.  The teacher displayed respect for students’ ideas, questions, and contributions.   1 2 3 4 5 
3. Interactions reflected a productive working relationship among students.  1 2 3 4 5 
4. Interactions reflected a collaborative working relationship between the teacher and 

the students.  
1 2 3 4 5 

5. Wrong answers were treated as worthwhile learning opportunities  1 2 3 4 5 
6. Students were willing to openly discuss their thinking and reasoning.  1 2 3 4 5 
7. The classroom climate encouraged students to engage in mathematical discourse.  1 2 3 4 5 
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E. Overall Rating—For each section below, mark the choice that best describes your overall 
summary of the lesson based on the observation. 
 
1. Depth of Student Knowledge and Understanding—This scale measures the depth of the students’ 
mathematical knowledge as evidenced by the opportunities students had to produce new knowledge by 
discovering relationships, justifying their hypotheses, and drawing conclusions. 

A.  Knowledge was very superficial. Mathematical concepts were treated trivially or presented as non-problematic. 
Students were involved in the coverage of information that they are to remember, but no attention was paid to the 
underlying mathematical concepts. For example, students applied an algorithm for factoring binomials or used the FOIL 
method of multiplication—in either case with no attention to the underlying concepts. 

B.  Knowledge was superficial or fragmented. Underlying or related mathematical concepts and ideas were mentioned 
or covered, but only a superficial acquaintance with or trivialized understanding of these ideas was evident. For example, a 
teacher might have explained why binomials are factored or why the FOIL method works, but the focus remained on 
students mastering these procedures. 

C.  Knowledge was uneven; a deep understanding of some mathematics concepts was countered by a superficial 
understanding of other concepts. At least one idea was presented in depth and its significance was grasped by some 
students, but in general the focus was not sustained. 

D.  Knowledge was relatively deep because the students provide information, arguments, or reasoning that demonstrate 
the complexity of one or more ideas. The teacher structured the lesson so that many (20% to 50%) students did at least one 
of the following: sustain a focus on a topic for a significant period of time; demonstrate their understanding of the 
problematic nature of a mathematical concept; arrive at a reasoned, supported conclusion with respect to a complex 
mathematical concept; or explain how they solved a relatively complex problem. Many (20% to 50%) students clearly 
demonstrated understanding of the complexity of at least one mathematical concept. 

E.  Knowledge was very deep. The teacher successfully structured the lesson so that almost all (90% to 100%) students 
did at least one of the following: sustain a focus on a topic for a significant period of time; demonstrate their understanding 
of the problematic nature of a mathematical concept; arrive at a reasoned, supported conclusion with respect to a complex 
mathematical concept; or explain how they solved a comple problem. Most (51% to 90%) students clearly demonstrated 
understanding of the complexity of more than one mathematical concept. 
 
2. Locus of Mathematical Authority—This scale determines the extent to which the lesson 
supported a shared sense of authority for validating students’ mathematical reasoning. 

A.  Students relied on the teacher or textbook as the legitimate source of mathematical authority. Students accepted an 
answer as correct only if the teacher said it was correct or if it was found in the textbook. If stuck on a problem, students 
almost always asked the teacher for help. 

B.  Students relied on the teacher and some of their more capable peers (who were clearly recognized as being better at 
math) as the legitimate sources of mathematical authority. The teacher often relied on the more capable students to provide 
the right answers when pacing the lesson or to correct erroneous answers. As a result, other students often relied on these 
students for correct solutions, verification of right answers, or help when stuck. 

C.  Many (20% to 50%) students shared mathematical authority among themselves. They tended to rely on the 
soundness of their own arguments for verification of answers, but, they still looked to the teacher as the authority for 
making final decisions. The teacher intervened with answers to speed things up when students seemed to be getting 
bogged down in the details of an argument. 

D.  Most (51% to 90%) students shared in the mathematical authority of the class. Though the teacher intervened when 
the students got bogged down, he or she did so with questions that focused the students’ attention or helped the students 
see a contradiction that they were missing. The teacher often answered a question with a question, though from time to 
time he or she provided the students with an answer. 

E.  Almost all (90% to 100%) of the students shared in the mathematical authority of the class. Students relied on the 
soundness of their own arguments and reasoning. The teacher almost always answered a question with a question. Many 
(20% to 50%) students left the class still arguing about one or more mathematical concepts. 
 
3. Social Support—This scale measures the extent to which the teacher supported the students 
by conveying high expectations for all students. 

A.  Social support was negative. Negative teacher or student comments or behaviors were observed. The classroom 
atmosphere was negative. 

B.  Social support was mixed. Both negative and positive teacher or student comments or behaviors were observed. 
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C.  Social support was neutral or mildly positive. The teacher expressed verbal approval of the students’ efforts. Such 
support tended, however, to be directed to students who were already taking initiative in the class and tended not to be 
directed to students who were reluctant participants or less articulate or skilled in mathematical concepts. 

D.  Social support from the teacher was clearly positive and there was some evidence of social support among students. 
The teacher conveyed high expectations for all, promoted mutual respect, and encouraged the students try hard and risk 
initial failure. 

E.  Social support was strong. The class was characterized by high expectations, challenging work, strong effort, 
mutual respect, and assistance for all students. The teacher and the students demonstrated these attitudes by soliciting 
contributions from all students, who were expected to put forth their best efforts. Broad participation was an indication 
that low-achieving students received social support for learning. 
 
4. Student Engagement in Mathematics—This scale measures the extent to which students 
engaged in the lesson (e.g., attentiveness, doing the assigned work, showing enthusiasm for work 
by taking initiative to raise questions, contributing to group tasks, and helping peers). 

A.  Students were disruptive and disengaged. Students were frequently off task as evidenced by gross inattention or 
serious disruptions by many (20% to 50%). 

B.  Students were passive and disengaged. Students appeared lethargic and were only occasionally on task. Many (20% 
to 50%) students were either clearly off task or nominally on task but not trying very hard. 

C.  Students were sporadically or episodically engaged. Most (51% to 90%) students were engaged in class activities 
some or most of the time, but this engagement was uneven, mildly enthusiastic, or dependent on frequent prodding from 
the teacher. 

D.  Student engagement was widespread. Most (51% to 90%) students were on task pursuing the substance of the 
lesson most of the time. Most (51% to 90%) students seemed to take the work seriously and try hard. Or virtually all (90-
100%) students are on task, but they do not seem genuinely interested in the subject at hand.  They might be engaged with 
activities but not the mathematical ideas. 

E.  Students were seriously engaged. Almost all (90% to 100%) students were deeply engaged in pursuing the 
substance of the lesson almost all (90% to 100%) of the time.  Kids are actually interested in the mathematics – they are 
taking initiative, grappling with questions/problems/ideas. 
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Appendix B 

Tentative Focus Teacher Interview Protocol 

1-) Can you briefly describe what you planned to teach in the lessons I observed?  (Can you tell 

me more about what you mean by that?) 

2-) How do you think the lessons went?  (can push on “what do you mean by that?  Or “What do 

you mean by “good”?  Can segue to #3 below) 

3-) I’m interested in what and how students learn in your classroom.    

• What do you think students learned from these lessons? How can you tell what students 

learned?    

• What do you think students had difficulty learning – or were there things they didn’t 

learn?  How can you tell? 

• What did you notice about student engagement during the lessons? 

4-) How do you think students learn mathematics? Has this program influenced your thinking 

about how students’ learn mathematics? How does your student learning influence your teaching 

5-) What do you think went particularly well in these lessons?  

• What would you change next time you teach it?  Why? 

• Would you spend more or less time on this unit (or topic) next time? 

6-) I’m interested in understanding the instructional strategies that teachers use.   

• What instructional strategies did you use?  (If they ask what it means -- Particular 

methods or structures you used ) 

• Why did you use those strategies?  
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7-) What do you think about how mathematics should be taught? Has this program affected the 

way you think about teaching mathematics? If yes, how has your view on teaching mathematics 

changed?     

8-) What are your beliefs about the nature of mathematics? (Not just do you like it or not, but 

more like is it easy or hard, is it a bunch of rules you have to memorize or something that makes 

sense, etc. 

9- Has this masters’ program affected your views of mathematics? What, specifically, about the 

program has helped you change your mind about student learning, or how to teach math, or what 

math is? 

10- In what ways has this program changed your teaching of math?   

11-How has the program affected your knowledge of math? How does this change have an 

impact on your teaching ( e.g., are there any particular mathematical topics or lessons that you 

are more confident teaching now than before the program?)  Why/how did that change for you? 

13-What math topics did you learn the most about in this program?  Do you ever have moments 

when teaching math where you think specifically about a math idea you learned in the program?  

Describe some of those moments… 
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Appendix C 

Teacher Beliefs Survey 

 
Teacher ID:_______________  
 
Please circle the response that best indicates how you feel about the each statement in the 
following questionnaire. 
 
1- Strongly disagree   2-Disagree     3-Undecided       4- Agree   5- Strongly 
agree 
 
1. A vital task for the teacher is motivating children to solve their own 

mathematical problems. 
1 2 3 4 5 

2. Ignoring the mathematical ideas that children generate themselves can 
seriously limit their learning. 

1 2 3 4 5 

3. It is important for children to be given opportunities to reflect on and 
evaluate their own mathematical understanding 

1 2 3 4 5 

4. It is important for teachers to understand the structured way in which 
mathematics concepts and skills relate to each other. 

1 2 3 4 5 

5. Effective mathematics teachers enjoy learning and ‘doing’ mathematics 
themselves. 

1 2 3 4 5 

6. Knowing how to solve a mathematics problem is as important as getting 
the correct solution. 

1 2 3 4 5 

7. Teachers of mathematics should be fascinated with how children think 
and intrigued by alternative ideas. 

1 2 3 4 5 

8. Providing children with interesting problems to investigate in small 
groups is an effective way to teach mathematics.  

1 2 3 4 5 

9. Mathematics is a beautiful, creative and useful human endeavor that is 
both a way of knowing and a way of thinking.  

1 2 3 4 5 

10. Allowing a child to struggle with a mathematical problem, even a little 
tension, can be necessary for learning to occur. 

1 2 3 4 5 

11. Children always benefit by discussing their solutions to mathematical 
problems with each other.  

1 2 3 4 5 
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12.  Persistent questioning has a significant effect on children’s mathematical 
learning.  

1 2 3 4 5 

13. Justifying the mathematical statements that a person makes is an 
extremely important part of mathematics.  

1 2 3 4 5 

14. As a result of my experience in mathematics classes, I have developed an 
attitude of inquiry.  

1 2 3 4 5 

15. Teachers can create, for all children, a non-threatening environment for 
learning mathematics. 

1 2 3 4 5 

16. It is the teacher’s responsibility to provide children with clear and concise 
solution methods for mathematical problems.  

1 2 3 4 5 

17. There is an established amount of mathematical content that should be 
covered at each grade level. 

1 2 3 4 5 

18. It is important that mathematics content be presented to children in the 
correct sequence.  

1 2 3 4 5 

19.  Mathematical material is best presented in an expository style: 
demonstrating, explaining and describing concepts and skills.  

1 2 3 4 5 

20. Mathematics is computation. 1 2 3 4 5 

21. Telling the children the answer is an efficient way of facilitating their 
mathematics learning. 

1 2 3 4 5 

22. I would feel uncomfortable if a child suggested a solution to a 
mathematical problem that I hadn’t thought of previously.  

1 2 3 4 5 

23. It is not necessary for teachers to understand the source of children’s 
errors; follow-up instruction will correct their difficulties.  

1 2 3 4 5 

24. Listening carefully to the teacher explain a mathematics lesson is the most 
effective way to learn mathematics.  

1 2 3 4 5 

25. It is important to cover all the topics in the mathematics curriculum in the 
textbook sequence.  

1 2 3 4 5 

26. If a child’s explanation of a mathematical solution doesn’t make sense to 
the teacher it is best to ignore it. 

1 2 3 4 5 
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