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ABSTRACT 

 

Selective C—H activation methods provide a complementary approach for synthesizing complex 

small molecules, which traditionally are constructed by chemists using C—C bond forming reactions to 

join preoxidized fragments. Furthermore, the strategic application of C—H activation reactions has 

considerable potential for improving the overall efficiency of synthetic endeavors by introducing 

functionality directly into preassembled hydrocarbon frameworks, mitigating the effect of having to carry 

reactive functionality throughout a reaction sequence.  With this goal in mind, this work describes a series 

of projects that develop and implement novel C—H oxidation reactions and strategies.  

Firstly, a mild and efficient oxidation strategy for the preparation of chiral polyols is presented and 

validated through an enantioselective synthesis of differentially protected L-galactose. This synthesis is 

enabled by the development of a highly regio- and stereoselective linear allylic C—H oxidation reaction 

that generates 4-methoxybenzoate derivatives of chiral (E)-2-butene-1,4-diols directly from readily 

available chiral homoallylic alcohols and carboxylic acids.  

Secondly, this work details the discovery of a heterobimetallic PdIIbis-sulfoxide/(Salen)CrIIIF 

catalyst system for asymmetric allylic C—H oxidation of terminal olefins. Evidence is provided that 

supports a model in which a chiral Lewis acid co-catalyst interacts with an organometallic intermediate and 

influences the stereochemical course of the catalytic process. Additionally, this work establishes that the 

asymmetric branched allylic oxidation reaction can be combined with other enantioselective 

transformations to afford enantiopure, polyoxygenated allylic alcohols rapidly and in good yields.   

Thirdly, this work outlines the development of a novel catalytic palladium(II)-based method for 

the conversion of ketones, ketoesters, and aldehydes directly to their unsaturated homologs, without the 

need for prior activation of the carbonyl.  Importantly, this reaction shows good to excellent reactivity and 

unprecedented selectivities for a number of substrates with a diverse array of functional groups. 

Preliminary mechanistic studies suggest the reaction proceeds through a Pd-enolate intermediate that 

undergoes successive β-hydride elimination to give the desired unsaturated carbonyl compounds, and that 

the acid additive is a key promoter of the reaction.   
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Chapter 1 

 
Polyol Synthesis via Hydrocarbon Oxidation: De Novo Synthesis of L-Galactose1 

 
1.1 Introduction 

The strategic application of C—H oxidation reactions has shown significant potential for improving the 

overall efficiency of complex molecule synthesis by introducing oxygen and nitrogen functionality directly into 

preassembled hydrocarbon frameworks.2,3,4  Selective C—H activation methods provide a complementary approach 

to the traditional strategy of C—C bond forming reactions between preoxidized fragments. An important subset of 

these reactions, catalytic allylic oxidations, have been known for over 40 years,5g,h however, most are limited by low 

conversions and/or lack of substrate generality due to poor functional group tolerance. Mild allylic oxidation 

methods using palladium(II) salts in acetic acid (AcOH)5a-f are available for transforming internal olefins into 

regioisomeric mixtures of allylic acetates. These reactions are believed to proceed via substitution of π-allyl-Pd 

intermediates generated through allylic C—H cleavage.5a-f,6a,b For reasons that are not fully understood, under these 

same conditions α-olefins predominantly undergo Wacker oxidation to yield mixtures of vinyl acetates and methyl 

ketone.5e, 6c,d  

Figure 1.1. Catalytic linear allylic oxidation of α-olefins with Pd(OAc)2/DMSO/BQ 
 

 

In 2004, White and Chen discovered that addition of dimethyl sulfoxide (DMSO) to a 

Pd(OAc)2/benzoquinone(BQ)/AcOH catalyst system resulted in a C—H oxidation method for converting a variety 

of α-olefin substrates to linear (E)-allylic acetates with high regio- and stereoselectivities in moderate yields (Figure 

1.1). This was the first report of DMSO acting as a ligand to significantly alter both the reaction pathway selectivity 
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and regioselectivity in a Pd(II)-catalyzed oxidation,3a though DMSO had been widely used in Pd(II)-mediated 

oxidation systems to promote reoxidation of Pd(0) with O2.
7  

In 2005, White and Fraunhoffer reported a direct comparison of the C—H oxidation approach to the 

traditional joining of preoxidized fragments via C—C bond-forming methods for the production of (E)-linear allylic 

acetates.8 They showed that carrying oxygenated functionality through a synthesis often necessitates the use of 

functional group manipulations (FGMs) (e.g. subsequent reactions to adjust oxidation state, alcohol protection-

deprotection sequences, etc.) and that this negatively affects synthetic efficiency (i.e. total yield and number of 

synthetic steps). Alternatively, direct oxidative functionalization of hydrocarbon units late in a synthetic sequence 

proceeded with fewer FGMs, resulting in shorter syntheses and increased overall yields (Scheme 1.1). 

Scheme 1.1. Linear (E)-allylic acetates through a C—H oxidation approach vs. traditional C—C bond forming reactions 
 

 
 

The linear allylic oxidation developed in our lab proceeds with unprecedented levels of selectivity and 

generality offering clear synthetic advantages over traditional routes to linear allylic acetates. However, significant 

challenges remained that precluded its routine application (i.e. requirement for solvent quantities of nucleophile 

limiting its scope, superstoichiometric oxidant, high catalyst loading, moderate yields, and long reaction times) and 

presented exciting opportunities for further development and discovery. With these challenges in mind and a desire 

to test the hydrocarbon oxidation strategy in a more complex, densely functionalized setting, I undertook a project to 

advance and apply a more practical linear allylic C—H oxidation. 

Scheme 1.2. A C—H oxidation strategy for polyol construction  
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Chiral (E)-2-butene-1,4-diols such as 1 are attractive building blocks that possess dense functionalization, a 

dissonant oxygen relationship,9 and are easily elaborated through established olefin oxidation chemistry, such as the 

asymmetric dihydroxylation (Scheme 1.2). Compounds like 1 have been routinely employed as intermediates in 

natural product syntheses to install a diverse range of structures: e.g. 5- and 6-membered mono- and polycyclic 

ethers,10 epoxyalcohols,11 and, most extensively, contiguous polyol structures.12 State-of-the-art syntheses of 1 based 

on Wittig-type olefinations13 or cross-metathesis reactions14 suffer from lengthy sequences, in part due to the 

difficulty in accessing highly enantioenriched α-hydroxy -aldehyde and -olefin starting materials. Alternatively, 

using a C—H oxidation approach, 1 may be synthesized directly from protected chiral homoallylic alcohols like 2 

via the DMSO/Pd(II)-promoted allylic oxidation. The requisite starting materials for this strategy are stable and 

readily accessible via asymmetric allylation of aldehydes15,16 or regioselective vinylation of chiral epoxides (Scheme 

1.2).17  

Significantly, 4-methoxybenzoate derivatives of chiral (E)-2-butene-1,4-diols (1) are unique among allylic 

alcohol derivatives in their ability to undergo asymmetric dihydroxylation with excellent reagent-controlled 

diastereoselectivity and minimal acyl transfer.18 White and Fraunhoffer demonstrated in 2005, that the 

DMSO/Pd(II)-promoted linear allylic oxidation of protected chiral homoallylic alcohols with acetic acid furnishes 

acetate derivatives of chiral (E)-2-butene-1,4-diols in excellent regio- and stereoselectivities and no erosion in 

optical purity.8 In order to avoid functional group manipulations and increase the nucleophile scope of the linear 

allylic oxidation, we set out to identify conditions wherein p-anisic acid (4) could be used as a nucleophile to 

directly generate 4-methoxybenzoate derivatives of 1 from α-olefins. Contained within this specific goal was the 

broader aim of improving the reactions practicality by seeking solutions to the challenges of the originally 

discovered system (i.e. nucleophile loading, nucleophile scope, moderate yield, high catalyst loading, and long 

reaction times) 

 

1.2 Results and Discussion 

1.2.1 Reaction Optimization 

As shown in Table 1.1, preliminary studies with α-olefin 3 suggested that acid 4 may be a competent 

nucleophile in the DMSO/Pd(II) linear allylic oxidation reaction to form (E)-2-butene-1,4-diol precursor 5 if the 

challenges associated with high acid loadings and low yields were resolved (15 equiv. 4, 23% yield, Table 1.1, entry 
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1). We were encouraged by the observation that significant amounts of α-olefin starting material remained at the end 

of the reaction, suggesting that the acid labile acetonide functionality was tolerant of these conditions. The addition 

of N,N-diisopropylethylamine (DIPEA), a non-coordinating base additive, effected a significant increase in yield 

(45% yield, Table 1.1,  entry 2). Although the exact role of the base is currently unclear, it is reasonable to 

hypothesize that it results in increased concentrations of the benzoate anion and thereby promotes functionalization. 

A second increase in yield was obtained by switching oxidants from benzoquinone to phenyl-benzoquinone (PhBQ, 

55% yield, Table 1.1, entry 3). Finally, we observed that by increasing the reaction molarity to 2.0 M, we achieved 

further increases in yields and were able to use fewer equivalents of carboxylic acid (i.e. 2.0 M, 3 equiv. 4, 75% 

yield, Table 1.1, entries 3-6). 

Table 1.1. Evaluation of the linear allylic oxidation reaction to form the (E)-2-butene-1,4-diol precursor (-)-3. 
 

 
aDMSO:CH2Cl2 (3.2:1). bLinear to branched allylic ester L:B and E:Z ratios determined by HPLC for material 
obtained from entries 6 and 7 using authentic branched allylic ester and acetonide-deprotected E and Z allylic 
ester standards:  L:B = >300:1; E:Z =30:1, 36:1 (entries 6 and 7, respectively). cReactions done on a 1 mmol 
scale ((-)-3, 262 mg). Yields and selectivities represent an average of at least 2 runs. dNo DIPEA (N,N-
diisopropylethylamine) was added. ePd[CH3CN]4(BF4)2 (10 mol%), 13% of (-)-3 was recovered.  fPd(OAc)2 (5 
mol%). 

 

 The linear allylic oxidation reaction is exceptionally stereo- and regioselective with selective formation of 

the linear, E-isomer (L:B = >300:1; E:Z = 30:1 to 36:1; entries 6 and 7, Table 1.1). Using Pd(OAc)2 as the Pd(II) 

source, the only observed byproduct in the reaction is the allylic acetate, which we found can be eliminated by using 

Pd(CH3CN)4(BF4)2, (Table 1.1, entry 7).  This reaction is also preparatively convenient, with all reactions run under 

an air atmosphere with no precautions taken to exclude moisture or O2. Significantly, with these newly developed 
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conditions the catalyst loading may be decreased to 5 mol% with only a minor decrease in yield (63% yield, Table 

1.1, entry 8). Moreover, fragment coupling of the α-olefin with only 1.5 equiv. of carboxylic acid is possible in 

useful yields at higher concentration (3.0 M, 50%, Table 1.1, entry 9).  

Table 1.2. Preliminary evaluation of microwave heating for improved reaction rates 
 

 
 

 The optimized conditions described (vide supra) provide preliminary evidence that many of the practical 

challenges initially identified for the linear allylic oxidation may be addressed (i.e. nucleophile scope, nucleophile 

loading, and catalyst loading) without negatively impacting selectivities or functional group tolerance. However the 

reaction times for this system remained lengthy (72 hrs), and turnover rate would become more of a concern as 

catalyst loadings were reduced (Table 1.1, entry 6 vs. entry 8).  While this problem has yet to be thoroughly 

addressed, preliminary investigations with the related α-olefin starting material 6 and acid 4 under microwave 

heating suggest a possible solution.  After 15-30 minutes of heating with large excesses of acid nucleophile (15 

equiv. 4) yields of ~30% were obtained (Table 1.2, entries 3 & 4) while maintaining good levels of selectivity.   

1.2.2 Enantioselective Total Synthesis of L-Galactose 

Compounds analogous to 1 have been used as intermediates in several sterodivergent syntheses of the 

hexoses, an important class of polyols.18a,19  I set out to test the efficiency of our allylic C—H oxidation strategy for 

polyol construction in the context of a short, de novo synthesis of differentially protected L-galactose (-)-12 from a 

commercial, achiral starting material in which all new oxygen functionality would be installed via C—H and C=C 

bond oxidation reactions. I envisaged that cis-2-butene-1,4-diol could be converted to the key α-olefin starting 

material efficiently and on scale through epoxidation and subsequent rearrangement. Linear allylic C—H oxidation 
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followed by asymmetric dihydroxylation would afford the fully oxidized hexose core, and subsequent manipulations 

would lead to the desired differentially protected unnatural sugar (Scheme 1.3). 

Scheme 1.3. Retrosynthesis of L-galactose utilizing linear allylic C—H oxidation 
 

 
 

Bulk commodity chemical (Z)-2-butene-1,4-diol 8 was epoxidized with m-chloroperbenzoic acid to give 

meso-epoxide 9 in 74% yield. The reproducibility of epoxidation was significantly aided by the development of a 

washing procedure for commercially available m-chloroperbenzoic acid followed by titration of the resulting 

solution using NoD NMR.  Meso-epoxide 9 was then desymmetrized via enantioselective Payne rearrangement with 

oligomeric (R,R)-(Salen)CoIIIOTf catalyst (Salen = (N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine) 

and subsequently ketalized in situ to give chiral epoxyketal (S,S)-10.20 This reaction has also been optimized with 

commercial (R,R)-(Salen)CoIIIOAc (2 mol%) to give the desired chiral epoxyketal in 47% overall yield (95% ee). 

Lower yields were due to epoxide opening by MeOH during ketalization with higher catalyst loadings of the 

monomeric catalyst.  Regioselective opening at the terminal position of the epoxyketal with vinylcuprate and 

ensuing benzyl protection of the intermediate alcohol gave protected homoallylic alcohol (-)-3 in 54% overall yield 

(3-steps, 99% ee).17,20b Linear allylic C—H oxidation of (-)-3 using 10 mol% Pd(CH3CN)4(BF4)2 under the 

optimized conditions (2M, PhBQ, 50 mol% DIPEA) with 3 equiv. of p-anisic acid 4 furnished 4-methoxybenzoate 

derived (E)-2-butene-1,4-diol (+)-5 in 71% yield (w/ 13% recovered (-)-3) as essentially one isomer (L:B= >300:1; 

E:Z = 36:1) with no erosion of enantiopurity.21 Alternatively, using 10 mol% Pd(OAc)2 in DMSO under the same 

conditions, (+)-5 was obtained in 75% yield with ca. 10% of the allylic acetate product that was arduous to separate 

via silica gel chromatography. Asymmetric dihydroxylation of (+)-5 proceeded smoothly to give fully oxygenated (-

)-11 in 96% yield with >20:1 d.r. (1H NMR).22  Bis-silyl protection of diol (-)-11 followed by DIBAL cleavage of the 
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p-methoxybenzoate ester, Swern oxidation of the resulting primary alcohol, and isopropylidene ketal removal with 

Zn(NO3)2⋅6H2O
23 gave differentially protected L-galactose (-)-12 in 74% yield (4-steps).24  This enantioselective, de 

novo synthesis of (-)-12 proceeds in a total of 10 linear steps and 20% overall yield from commercial starting 

material 8.  

Scheme 1.4. Total synthesis of differentially protected L-galactose (-)-12  
 

 
 

 Interestingly, when a para-methoxybenzyl (PMB) group was used to protect the C3 alcohol instead of a 

benzyl group, the synthetic sequence suffered at several stages, though no difference was observed for the key 

allylic C—H oxidation step.  In particular, the asymmetric dihydroxylation gave only 50% conversion (~45% yield) 

after 24 hours (versus 96% yield after 4 hours vida supra).  The PMB group has been used as an alternative to 4-

methoxybenzoates as an agent for interacting with asymmetric dihydroxylation ligands, suggesting that it may 

competitively interact with the catalyst and slow the reaction.  Furthermore, attempts to perform the final 

deprotection/cyclization of this sequence were unsuccessful due to significant deprotection or migration of the PMB 

group under all conditions evaluated for acetonide removal.  

 

1.3 Conclusions  

A number of stereodivergent, de novo syntheses of the hexoses from 8 have employed chiral (E)-2-butene-

1,4-diols analogous to 5 as intermediates. The C—H oxidation route to 5 (5 steps, 28% overall yield) compares 

favorably with the Wittig-olefination routes of the previously reported syntheses with respect to number of steps and 
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overall yield (11 steps, 18% overall yield18a; 9 steps, 16% overall yield19). Analogous to these previous syntheses, 

the strategy developed herein provides access to hexose stereoisomers that are complementary to those obtained 

through aldol-based approaches.25 

 In summary, a mild and efficient hydrocarbon oxidation strategy for the preparation of chiral polyols has 

been presented and validated through an enantioselective synthesis of differentially protected L-galactose ((-)-12). 

This synthesis was enabled by the development of a highly regio- and stereoselective linear allylic C—H oxidation 

reaction that generates 4-methoxybenzoate derivatives of chiral (E)-2-butene-1,4-diols directly from readily 

available protected chiral homoallylic alcohols and carboxylic acids. We anticipate that the structurally simplifying 

and mild nature of this transform (i.e. 1 ⇒ 2, Scheme 1.2) will render it generally useful in the synthesis of 

polyoxygenated motifs in the context of complex molecules.26  

  

1.4 Experimental Section 

General Information: All commercially obtained reagents were used as received: 2-phenyl-1,4-

benzoquinone (ACROS); Pd(CH3CN)4(BF4)2, Pd(OAc)2, K2OsO4
 · 2H2O, (1R,2R)-(-)-[1,2-Cyclohexanediamino-

N,N’-bis(3,5-di-t-butylsalicylidene)]Cobalt(II) (Strem Chemicals).  Palladium was stored in a glove box under an 

argon atmosphere and weighed out in the air prior to use. Solvents tetrahydrofuran (THF), diethyl ether (Et2O), and 

methylene chloride (CH2Cl2) were purified prior to use by passage through a bed of activated alumina (Glass 

Contour, Laguna Beach, California).  Anhydrous N, N-dimethylformamide (DMF) (Sure/Seal) was obtained from 

Sigma-Aldrich and used as received.  (Z)-2-butene-1,4-diol (Fluka) was used as received.  All allylic oxidation 

reactions were run under air with no precautions taken to exclude moisture.  All other reactions were run under a 

balloon of argon gas unless otherwise stated.  Achiral gas chromatographic (GC) analyses were performed on 

Agilent Technologies 6890N Series instrument equipped with FID detectors using a HP-5 (5%-Phenyl)-

methylpolysiloxane column (30m, 0.32mm, 0.25µm). HPLC analysis was performed on an Agilent Technologies 

1100 HPLC system with a model 1100 Quaternary Pump, Diode Array Detector, Thermostat, and Autosampler.  

Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 precoated plates (0.25 mm) and 

visualized with UV,  potassium permanganate, and ceric ammonium molybdate staining.  Flash column 

chromatography was performed as described by Still et al.27 using EM reagent silica gel 60 (230-400 mesh).  1H 

NMR spectra were recorded on a Varian Unity 400 (400 MHz) or a Varian Unity 500 (500 MHz), or a Varian Unity 
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Inova 500NB spectrometer and are reported in ppm using solvent as an internal standard (CDCl3 at 7.26 ppm).  Data 

reported as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; 

integration, corresponding carbon atom.  Proton-decoupled 13C- NMR spectra were recorded on a Varian Unity-500 

(125 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl3 at 77.0 ppm).  IR 

spectra were recorded as thin films on NaCl plates on a Perkin-Elmer Spectrum BX and are reported in frequency of 

absorption (cm-1).  All optical rotations were determined on a Perkin Elmer 341 Polarimeter using the sodium D line 

(589 nm).  High-resolution mass spectra were obtained at the University of Illinois Mass Spectrometry Laboratory. 

Representative Procedure for the Pd(CH3CN)4(BF4)2 catalyzed Linear Allylic C—H Oxidation of (-)-3 to (+)-

5. To a 40 mL borosilicate vial was added sequentially the following:  Pd(CH3CN)4(BF4)2  (44.4 mg, 0.1 mmol, 10 

mol%), phenyl benzoquinone  (368 mg, 2.0 mmol, 2 equiv.), p-anisic acid  (456 mg, 3.0 mmol, 3 equiv.), 4Å 

molecular sieves  (200 mg),  DMSO (0.380 mL), CH2Cl2 (0.120 mL), DIPEA (0.122 mL, 0.7 mmol, 0.7 equiv.), and 

a Teflon© stir bar.  The vial was then capped and stirred at 41oC for 1 hour. The vial was cooled to room 

temperature and (-)-(3) (262 mg, 1 mmol, 1 equiv.) was added.  The vial was capped and stirred at 41oC for 72 

hours. Care was taken in charging and stirring to keep all reagents off of the walls and contained at the bottom of the 

vial and in maintaining the temperature centered at 41oC (i.e. 40oC-43oC). Upon completion, the reaction was 

quenched with sat. aq. NH4Cl solution (1 mL), stirred for 30 minutes, and then transferred to a separatory funnel 

using ethyl acetate (10 mL).  Hexanes (40 ml) was added and the organics were washed with H2O (50 mL) and 5% 

aq. Na2CO3 solution (2 x 50 mL). (Note:  Upon addition of hexanes a significant amount of phenyldihydroquinone 

will crash out of solution as a black solid.  This solid is readily removed in the next step during filtration.)  The 

organic layer was dried (MgSO4), filtered, and reduced in vacuo. Subsequent transfers were all performed using 

ether to minimize transfer of phenyldihydroquinone.  Purification via flash silica gel chromatography (30% 

Et2O/hexanes) gave 0.309 g of (+)-(5) as an amber oil: (Run 1 = 71% yield; run 2 = 69% yield; run 3 = 74% yield) 

Average = 71% yield. Approximately 13% of (-)-3 was also recovered.  Linear to branched and E:Z ratios were 

determined as described above and found to be similar to those determined for Pd(OAc)2 (L:B = >300:1; E:Z = 

36:1). 

(3-Hydroxymethyl-oxiranyl)-methanol (9) 

To 35 g of ≤77% pure m-chloroperbenzoic acid (Aldrich) in a 1 L separatory funnel was 

added dry CH2Cl2 (250 mL).  The solution was washed with 1:1 sat. aq. NaHCO3:H2O solution (2 x 100 mL) and 
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then dried over Na2SO4 until the liquid became translucent (~ 1 hr).  The solution was then filtered into a clean, dry 

1 L round bottom flask pre-marked at approximately 380 mL volume.  Dry CH2Cl2 was added to bring the total 

volume up to this mark and a 0.65 ml aliquot was removed and titrated using No-D NMR with a known amount of 

CHCl3 (~50 µL) as the internal standard.28  By this analysis, the solution was determined to contain 15 g (87.2 

mmol, 1.1 equiv.) of mCPBA.  A Teflon© stir bar was added and the atmosphere exchanged for nitrogen.  The 

solution was cooled to 0°C and (Z)-2-butene-1,4-diol (8) (6.85 mL, 79.3 mmol, 1 equiv.) was added via syringe.  

The reaction was allowed to warm to room temperature and became a milky color within one hour.  After 16 hours 

of stirring, the CH2Cl2 was removed via rotary evaporation, dry ether (300 mL) was added, and the material was 

stirred 3 hours at room temperature, after which the reaction flask was placed in a -20°C freezer for 1 hour.  The 

resulting solids were filtered off and rinsed with cold, dry ether (5 x 50 mL).  The filtrate was left in the freezer 

overnight to give a second harvest of crystals which were also filtered and washed with dry, cold ether to give a total 

of 6.16 g of a fine white powder (9) (74%). 

1H NMR  (500 MHz, CD3OD) δ 3.73 (dd, J = 3.5, 12.3 Hz, 2H, C1), 3.59 (dd, J = 7.0, 12.3 Hz, 2H, C1), 3.14 - 3.11 

(m, 2H, C2); 13C NMR  (125 MHz, CD3OD) δ 61.2, 57.8.29 

 

(2S,3S)-3,4-epoxy-1,2-di-O-isopropylidenebutane-1,2-diol (10) 

Method A: [oligomeric (R,R)-(Salen)-CoIIIOTf] 

To a clean, dry 100 mL round bottom flask with a Teflon© stir bar was added (9) (5.0 g, 48.0 mmol, 1 equiv.), 

oligomeric (R,R)-(Salen)CoIIIOTf (0.019 g, 0.05 mol%), and CH3CN (24 mL). The reaction was vigorously stirred 

under air until ~70% conversion of starting material was observed (1H NMR of an aliquot from the reaction mixture 

in CD3OD; ratio of m @ 3.12 ppm vs. dd @ 2.69 ppm + dd @ 2.76 ppm) (~12 hrs).  The reaction mixture was then 

cooled to 0°C and 2-methoxypropene (5.53 mL, 5.77 mmol, 1.2 equiv.) was added followed by p-TsOH · H2O 

(0.091 g, 0.480 mmol, 0.01 equiv.).  The reaction was stirred at 0°C for 1 hour and then the solvents removed slowly 

(~45 min.) via rotary evaporation at 0°C.  The reaction mixture was loaded neat onto a silica column and purified 

via flash silica gel chromatography (10%-20%-30%-40% Et2O/pentane).  Removal of the column solvent via 

distillation at 55°C gave a crude mixture of (10) (~4.67 g, 68% yield by 1H NMR) and the seven-membered ketal 

product that was taken forward without further purification.30 (Note:  The purity of the starting material for this 
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reaction has a large effect on catalyst loading and overall yield.  Inferior batches of (9) should be purified via flash 

silica gel chromatography in 10%-15% MeOH/CH2Cl2 prior to use.) 

Method B: [commercial (R,R)-(Salen)-CoIIIOAc]31 

To a clean, dry 250 mL round-bottom flask with a Teflon© stir bar was added (9) (2.0 g, 19.2 mmol, 1 equiv.) and 

(R,R)-(Salen)CoIIIOAc (0.255 g, 2 mol%).  THF (9.6 mL) was added and the reaction was vigorously stirred under 

air until ~70% conversion of starting material was observed (1H NMR of an aliquot from the reaction mixture in 

CD3OD; ratio of m @ 3.12 ppm vs. dd @ 2.69 ppm + dd @ 2.76 ppm)(~12 hrs).  The solvent was then removed via 

rotary evaporation, and dry acetone (9.6 mL) was added.  The reaction flask was cooled to 0°C and 2,2-

dimethoxypropane (5.7 mL, 48.0 mmol, 2.5 equiv.) was added followed by slow addition of pyridinium p-

toluenesulfonic acid (1.21 g, 4.80 mmol, 25 mol%).  The reaction was allowed to warm to room temperature and 

then taken to 50°C for 24 hours.  After stirring 24 hours, the reaction mixture was cooled to room temperature, 

transferred to a 1L separatory funnel, and Et2O (200 mL) and sat. aq. NaHCO3 (25 mL) were added.  The aqueous 

layer was then back extracted [5 x (100 mL Et2O + 4 mL THF)] and the combined organics distilled slowly away at 

55°C.  Flash silica gel chromatography (10%-20%-30% Et2O/pentane) followed by distillation of  the column 

solvent at 55°C afforded a crude mix of (10) (~1.35 g, 49% yield by 1H NMR) and the seven-membered ketal 

product that was taken on without further purification.30  Rf  = 0.206 (20% Et2O/Pentane); 1H NMR  (500 MHz, 

CDCl3) δ 4.10 (dd, J = 6.5, 8.5 Hz, 1H, C1), 3.97 (app. q, J= 6.5, 1H, C2), 3.85 (dd, J = 6.5, 8.5 Hz, 1H, C1), 3.03 

(ddd, J = 2.5, 4.3, 5.6 Hz, 1H, C3), 2.80 (dd, J = 4.0, 5.0 Hz, 1H, C4), 2.67 (dd, J = 2.5, 5.3 Hz, 1H, C4), 1.44 (s, 3H, 

acetonide CH3), 1.36 (s, 3H, acetonide CH3); 
13C NMR  (125 MHz, CDCl3) δ 110.0, 76.2, 65.9, 52.0, 43.8, 26.4, 

25.5; LRMS  (CI) m/z calculated for C7H13O3 [M + H]+:  145.1; found 145.1.32 

 

 

(2S,3S)-3-O-benzyl-1,2-di-O-isopropylidene-5-hexen-1,2,3-triol (-)-(3) 

To a clean, dry 100 mL flask with a Teflon© stir bar and under an argon atmosphere was 

added copper (I) bromide (0.228 g, 1.59 mmol, 0.1 equiv.) and 12 mL dry THF.  The 

reaction flask was covered with aluminum foil to prevent exposure to light and cooled to 

-40°C.  Freshly prepared vinylmagnesium bromide33 was then added (28.3 mL of a 0.618 M solution in THF, 1.1 

equiv.) and the reaction mixture stirred for 10 minutes. A solution of the crude mix of (10) (~2.29 g, 15.9 mmol, 1 
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equiv.) and the corresponding seven-membered ketal in dry THF (3.75 mL initial volume, 2 x 2.1 mL rinses) at -

40°C was then added via cannula, and the reaction stirred at -40°C in the dark for 1 hour.  A quench of sat. aq. 

NH4Cl solution (15 mL) was added and stirred vigorously as the reaction was allowed to warm to room temperature.  

Et2O (100 mL) was added, and the aqueous layer extracted [5 x (50 mL Et2O + 4 mL THF)].  The combined 

organics were washed with H2O (50 mL) and the aqueous layer again back extracted [3 x (50 mL Et2O + 4 mL 

THF)].  After drying (Na2SO4) and filtering, the solvent was distilled away at 65°C.   

To a clean, dry 250 mL round bottom flask was added sodium hydride (0.762 g, 31.8 mmol, 2 equiv.), 

TBAI (0.507 g, 1.6 mmol, 0.1 equiv.), and anhydrous DMF (50 mL).  This flask was cooled to 0°C, and then the 

reaction mixture containing the crude alcohol from above in DMF (10 mL initial volume, 2 x 5 mL rinses) at 0°C 

was added dropwise via cannula.  The reaction was stirred 1 hour at 0°C and then benzyl bromide (2.02 mL, 16.7 

mmol, 1.05 equiv.) was added dropwise.  The reaction mixture was allowed to warm to room temperature and 

stirred until TLC revealed complete conversion of starting material (~1 hr).  Upon completion, the reaction flask was 

cooled to 0°C and H2O (50 mL) was added. The flask was stirred an additional 5 minutes, and then Et2O (200 mL) 

was added.  The aqueous layer was extracted with Et2O (3 x 50 mL), the combined organic layers were dried 

(MgSO4), filtered, and reduced in vacuo.  Flash silica gel chromatography (1%-2%-3%-5% EtOAc/hexanes) 

afforded 3.32 g of (-)-(3) (80% 2 steps) as a clear liquid in 99% ee (HPLC, Chiralcel AD-RH, 50% CH3CN/H2O, 0.5 

mL/min., tR(minor) = 14.2 min., tR(major) = 15.5 min.).  Rf  = 0.392 (10% EtOAc/hexanes); 1H NMR  (500 MHz, 

CDCl3) δ 7.38-7.31 (m, 4H, C12,C13), 7.30–7.26 (m, 1H, C14), 5.88 (ddt, J = 7.5, 10.0, 17.0 Hz, 1H, C5), 5.11 (dm, 

J = 17 Hz, 1H, C6), 5.07 (dm, J = 17 Hz, 1H, C6), 4.72 (d, J = 12.0 Hz, 1H, C10), 4.66 (d, J = 11.5 Hz, 1H, C10), 

4.21 (app. q, J = 7.0, 1H, C2), 3.99 (dd, J = 6.5, 8.0 Hz, 1H, C1), 3.71 (app. t, J = 7.8 Hz, 1H, C1), 3.51 (dt, J = 4.5, 

6.8 Hz, 1H, C3), 2.31 (m, 1H, C4), 2.23 (m, 1H, C4), 1.43 (s, 3H, acetonide CH3), 1.37 (s, 3H, acetonide CH3); 
13C 

NMR  (125 MHz, CDCl3) δ 138.6, 134.5, 128.3, 127.8, 127.5, 117.2, 109.3, 79.2, 77.9, 72.5, 65.8, 35.3. 26.5, 25.4; 

IR  (neat, cm-1) 3066.5, 3023.3, 2986.1, 2935.0, 2878.6, 1641.7, 1455.0, 1071.6; HRMS (ESI) m/z calculated for 

C16H22O3Na [M + Na]+: 285.1467; found: 285.1480. [α]22
D  = -15.6° (c = 1.1, CHCl3); lit. [α]20

D = +13.9° (c = 1.1, 

CHCl3) (enantiomer).34 
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(2S,3S)-(E)-3-O-benzyl-1,2-di-O-isopropylidene-4-hexen-6-(4-

methoxyphenylbenzoate)-1,2,3-triol (+)-(5)   

Method A: Pd(OAc)2 

To a 40 mL borosilicate vial was added sequentially the following:  

Pd(OAc)2 (0.0224 g, 0.1 mmol, 10mol%), phenyl benzoquinone  (0.368 g, 2.0 mmol, 2 equiv.), p-anisic acid  (0.456 

g, 3.0 mmol, 3 equiv.), 4Å molecular sieves  (0.200 g), (-)-(3) (0.262 g, 1 mmol, 1 equiv.), DMSO (0.380 mL), 

CH2Cl2 (0.120 mL), diisopropylethylamine (0.087 mL, 0.5 mmol, 0.5 equiv.) and a Teflon© stir bar.  The vial was 

then capped and stirred at 41oC for 72 hours.  Care was taken in charging and stirring to keep all reagents off of the 

walls and contained at the bottom of the vial and in maintaining the temperature centered at 41oC (i.e. 40oC-43oC).  

Upon completion, the reaction was quenched with sat. aq. NH4Cl solution (1 mL), stirred for 30 minutes, and then 

transferred to a separatory funnel using ethyl acetate (10 mL).  Hexanes (40 ml) was added and the organics were 

washed with H2O (50 mL) and 5% aq. Na2CO3 solution (2 x 50 mL). (Note:  Upon addition of hexanes a significant 

amount of phenyldihydroquinone will crash out of solution as a black solid.  This solid is readily removed in the 

next step during filtration.)  The organic layer was dried (MgSO4), filtered, and reduced in vacuo. Subsequent 

transfers were all performed using ether to minimize transfer of phenyldihydroquinone.  Purification via flash silica 

gel chromatography (30% Et2O/hexanes) gave 0.309 g of (+)-(5) as an amber oil. (Run 1 = 74% yield; run 2 = 76% 

yield) Average = 75% yield.  Linear to branched ratios (>300:1) were determined by HPLC using authentic 

branched allylic product3a,c (Agilent Zobrax Eclipse XDB-C8, 35% i-PrOH/H2O, 1 mL/min., tR (linear) = 15.7 min., 

tR (branched) = 18, 19 min. (two diastereomers)).  E:Z (30:1) ratios were determined by HPLC using acetonide 

deprotected E and authentic Z isomers (Symmetry C-18, 40%CH3CN/H2O, 1.0 mL/min., tR (E) = 10.1 min., tR (Z) = 

11.3 min.) Using this procedure, 0.032 g  (10%) of the linear acetate product was also formed and could not be 

readily separated from (+)-(5). 

Method B : Pd(CH3CN)4(BF4)2   

To a 40 mL borosilicate vial was added sequentially the following:  Pd(CH3CN)4(BF4)2  (0.044 g, 0.1 mmol, 0.1 

equiv.), phenyl benzoquinone  (0.368 g, 2.0 mmol, 2 equiv.), p-anisic acid  (0.456 g, 3.0 mmol, 3 equiv.), 4Å 

molecular sieves  (0.200 g),  DMSO (0.380 mL), CH2Cl2 (0.120 mL), diisopropylethylamine  (0.122 mL, 0.7 mmol, 

0.7 equiv.), and a Teflon© stir bar.  The vial was then capped and stirred at 41oC for 1 hour. The vial was cooled to 

room temperature and (-)-(3) (0.262 g, 1 mmol, 1 equiv.) was added.  The vial was capped and stirred at 41oC for 72 
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hours.  Care was taken in maintaining the temperature centered at 41oC (i.e. 40oC-43oC) and in charging and stirring 

to keep all reagents off of the walls and contained at the bottom of the vial. After 72 hours, the reaction was 

quenched with sat. aq. NH4Cl solution (1 mL), stirred for 30 minutes, and then transferred via pipette to a separatory 

funnel using ethyl acetate (10 mL).  Hexanes (40 ml) was added and the organics were washed with H2O (50 mL) 

and 5% aq. Na2CO3 solution (2 x 50 mL). The organic layer was dried (MgSO4), filtered, and reduced in vacuo.  

Purification via flash silica gel chromatography (30% Et2O/hexanes) gave 0.293 g of (+)-(5) as an amber oil with 

13% recovered starting material.  (Run 1 = 71% yield; run 2 = 69% yield; run 3 = 74% yield) Average = 71% yield.  

Linear to branched and E: Z ratios were determined as described above and found to be similar to those determined 

for Pd(OAc)2 (L:B = >300:1, E:Z = 36:1). Rf  = 0.17 (30% Et2O/hexanes); 1H NMR  (500 MHz, CDCl3) δ 8.0 (app. 

dt, J = 2.5, 9.0 Hz, 2H, C17), 7.36–7.25 (m, 5H, C12, 13, 14), 6.93 (app. dt, J = 2.5, 9.0 Hz, 2H, C18), 5.97 (ddt, J = 

1.0, 5.5, 15.8 Hz, 1H, C5), 5.74 (ddt, J = 1.5, 8.0, 15.8 Hz, 1H, C4), 4.82 (app. d, J = 5.5 Hz, 2H, C6), 4.68 (d, J = 

12.0 Hz, 1H, C10), 4.50 (d, J = 12.0 Hz, 1H, C10), 4.22 (app. q, J = 6.5 Hz, 1H, C2), 3.96 (dd, J = 6.5, 8.5 Hz, 1H, 

C1), 3.91 (app. t, J = 7.0 Hz, 1H, C1), 3.87 (s, 3H, C20), 3.77 (dd, J = 6.0, 8.8 Hz, 1H, C3), 1.39 (s, 3H, acetonide 

CH3), 1.35 (s, 3H, acetonide CH3); 
13C NMR  (125 MHz, CDCl3) δ 165.9,163.4, 138.1, 131.7, 129.9, 129.8, 128.3, 

127.8, 127.6, 122.4, 113.6, 109.7, 79.7, 77.3, 70.5, 65.7, 64.0, 55.4, 26.4, 25.3; IR (neat, cm-1) 2985.3, 2934.8, 

2873.4, 1713.2, 1606.5, 1511.5, 1256.9; HRMS (ESI) m/z calculated for: C24H29O6 [M + H ]+: 413.1964, observed: 

413.1960; [α]22
D = +72.5° (c = 1.0, CHCl3). 

 

3-O-benzyl-1,2-di-O-isopropylidene-6-(4-

methoxyphenylbenzoate)-L-galacitol (-)-(11) 

To a clean, dry 50 mL recovery flask was added sequentially the 

following:  K2OsO4 · 2H2O (0.007 g, 0.019 mmol, 1 mol%), 

(DHQD)2PHAL (0.076 g, 0.095 mmol, 5 mol%), K3Fe(CN)6 (1.89 g, 5.72 mmol, 3 equiv.), K2CO3 (0.792 g, 5.72 

mmol, 3 equiv.), a Teflon© stir bar, deionized water (9.5 mL), and tert-butanol (5 mL).  The reaction flask was 

stirred vigorously until both layers became translucent, at which time MeSO2NH2 (0.187 g, 1.91 mmol, 1 equiv.) 

was added and the reaction was cooled to 0°C.  After the solution became opaque, olefin (+)-(5) (0.787 g, 1.91 

mmol, 1 equiv.) was added dropwise via pipette in tert-butanol (1.5 mL initial volume, 2 x 1 mL rinses) and the 

reaction was stirred vigorously at 0°C until completion as indicated by TLC (~3.5 hr).  Upon completion, sodium 
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bisulfite (1.81 g) was added slowly and the reaction was allowed to warm to room temperature and stir for 1 hour.  

EtOAc (10 ml) was added and the aqueous layer extracted with additional EtOAc (3 x 15 mL).  The combined 

organic layers were washed with 2N KOH (1x10 mL), dried (MgSO4), filtered, and concentrated in vacuo. 

Purification via flash silica gel chromatography (40% EtOAc/hexanes) afforded 0.818 g (96%) of (-)-(11) as a clear, 

viscous oil.  Rf  = 0.190 (40% EtOAc/hexanes); 1H NMR  (500 MHz, CDCl3) δ7.99 (app. dt, J = 2.5, 9.0 Hz, 2H, 

C17), 7.37-7.28 (m, 5H, C12, C13, C14), 6.92 (app. dt, J = 2.5, 9.0 Hz, 2H, C18), 4.79 (d, J = 11.5 Hz, 1H, C10), 

4.71 (d, J = 11.0 Hz, 1H, C10), 4.40 ( dd, J = 5.0, 6.0 Hz, 1H, C2), 4.44-4.35 (m, 2H, C6), 4.19 (app. q, J = 6.5 Hz, 

1H, C5), 4.05 (dd, J = 6.5, 8.5 Hz, 1H, C1), 3.86 (s, 3H, C20), 3.85 (app. t, J = 8.0, 1H, C1), 3.74-3.69 (m, 2H, 

C3/C4), 3.11 (d, J = 5.5 Hz, 1H, OH), 2.81 (d, J = 6.0 Hz, 1H, OH), 1.45 (s, 3H, acetonide CH3), 1.37 (s, 3H, 

acetonide CH3); 
13C NMR  (125 MHz, CDCl3) δ 166.6, 163.6, 137.8, 131.8, 128.5, 128.1, 128.0, 122.0, 113.7, 109.3, 

78.9, 77.0, 74.4, 70.5, 68.7, 66.0, 65.9, 55.4, 26.3, 25.3; IR ( neat, cm-1) 3455.5, 2985.2, 2935.9, 1713.2, 1606.5, 

1581.4, 1512.3, 1258.5; HRMS (ESI) m/z calculated for C24H31O8 [M + H]+: 447.2019; found 447.2012; [α]22
D = -

16.5° (c = 1.0, CHCl3). 

 

3-O-benzyl-4,5-di-O-(tert-butyldimethylsilanyloxy)-1,2-di-O-

isopropylidene-6-(4-methoxyphenylbenzoate)-L-galacitol 

To (-)-(11) (0.818 g, 1.83 mmol, 1 equiv.), in a 50 mL recovery 

flask under nitrogen with a Teflon© stir bar, was added dry CH2Cl2 

(12.2 mL).  The flask was cooled to 0°C and 2,6-lutidine (1.28 mL, 11.00 mmol, 6 equiv.) was added.  Tert-

butyldimethylsilyl triflate (1.26 mL, 5.50 mmol, 3 equiv.) was then added dropwise over 15 minutes with vigorous 

stirring.  The reaction was stirred at 0°C for 20 minutes, then allowed to warm to room temperature and monitored 

via TLC.  Upon completion (~40 min.), the reaction was again cooled to 0°C, H2O (5 mL) was added slowly, and 

the reaction stirred 15 minutes to quench.  EtOAc (10 mL) was added and the aqueous layer was extracted with 

additional EtOAc (3 x 15 mL).  The combined organic layers were washed with H2O (1 x 5 mL), sat. aq. NaHCO3 

solution (1 x 5 mL), with H2O (1 x 5 mL), then dried (Na2SO4), filtered, and reduced in vacuo.  Purification via flash 

silica gel chromatography (2%-3%-5% EtOAc/hexanes) afforded 1.11 g (90%) of the title compound as a clear, 

viscous oil.  Rf  = 0.320 (10% EtOAc/hexanes); 1H NMR  (500 MHz, CDCl3) δ 7.99 (app. d, J = 8.5 Hz, 2H, C17), 

7.40 (d, J = 7.5 Hz, 2H, C12), 7.31 (t, J = 7.5 Hz, 2H, C13), 7.26-7.22 (m, 1H, C14), 6.91 (app. d, J = 8.5 Hz, C18), 
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4.83 (d, J = 12.0 Hz, 1H, C10), 4.80 (d, J = 12.0 Hz, 1H, C10), 4.62 (dd, J = 3.5, 11.5 Hz, 1H, C6), 4.52 (dd, J = 7.0, 

9.0 Hz, 1H, C2), 4.50 (dd, J = 7.5, 14.8 Hz, 1H, C6), 4.09 (dt, J = 3.4, 7.0 Hz, 1H, C5), 4.06 (dd, J = 6.5 Hz, 9.0 Hz, 

1H, C1), 3.86 (s, 3H, C20), 3.77 (app. t, J = 3.5 Hz, 1H, C4), 3.69 (app. t, J = 7.0Hz, 1H, C1), 3.60 (dd, J = 3.5, 7.8 

Hz, 1H, C3), 1.43 (s, 3H, acetonide CH3), 1.35 (s, 3H, acetonide CH3), 0.93 (s, 9H, TBS CCH3), 0.87 (s, 9H, TBS 

CCH3), 0.13 (s, 3H, TBS CH3), 0.12 (s, 3H, TBS CH3), 0.06 (s, 3H, TBS CH3), 0.05 (s, 3H, TBS CH3); 
13C NMR 

(125 MHz, CDCl3) δ 166.1, 163.2, 138.9, 131.6, 128.2, 127.7, 127.3, 122.8, 113.5, 108.9, 83.7, 76.6, 74.9, 74.6, 

73.8, 66.7, 66.7, 55.4, 26.8, 25.9, 25.7, 25.3, 18.2, 18.0, -4.0, -4.4, -4.7, -4.8;  IR  (neat, cm-1) 2954.9, 2930.8, 

2887.0, 2858.0, 1716.6, 1606.9, 1581.8, 1512.0; HRMS (ESI) m/z calculated for C36H58O8NaSi2 [M + Na]+: 

697.3568; found 697.3573; [α]22
D = +31.2° (c =1.0, CHCl3).  

 

 

3-O-benzyl-4,5-di-O-(tert-butyldimethylsilanyloxy)-1,2-di-O-isopropylidene-L-

galacitol 

To the fully protected L-galacitol (1.05 g, 1.56 mmol, 1 equiv.) in a clean, dry 50 mL 

flask with a Teflon© stir bar under an argon atmosphere was added dry CH2Cl2 

(2.85 mL) and the flask was cooled to -78°C.  Diisobutylaluminum hydride (1.0 M in CH2Cl2, 3.89 mL, 2.5 equiv.) 

was added dropwise and the reaction was stirred vigorously at -78°C.  Upon completion (~ 1 hr), -78°C EtOAc (5 

mL) was added followed by sat. aq. Rochelle’s salts (15 mL).  The reaction was allowed to warm to room 

temperature and then stirred an additional thirty minutes.  H2O (25mL) and CH2Cl2 (20 mL) were added and the 

aqueous layer extracted with CH2Cl2 (3 x 15 mL).  The combined organic layers were dried (Na2SO4), filtered, and 

reduced in vacuo.  The residue was purified via flash silica gel chromatography (7% EtOAc/hexanes) to give 0.823 

g (98%) of the title compound as a clear oil.  Rf = 0.267 (10% EtOAc/hexanes); 1H NMR  (500 MHz, CDCl3) δ 7.40 

(app. d, J = 7.0 Hz, 2H, C12), 7.32 (app. t, J = 7.0 Hz, 2H, C13), 7.29-7.24 (m, 1H, C14), 4.90 (d, J = 11.5 Hz, 1H, 

C10), 4.77 (d, J = 11.0 Hz, C10), 4.60 (dt, J = 7.0, 8.5 Hz, 1H, C2), 4.08 (dd, J = 7.0, 8.3 Hz, 1H, C1), 3.80 (ddd, J = 

3.0, 5.5, 11.6 Hz, 1H, C6), 3.73 (app. q, J = 4.0 Hz, 1H, OH), 3.70-3.64 (m, 1H, C6), 3.66, (dd, J = 3.0, 4.5 Hz, 1H, 

C4), 3.61 (dd, J = 3.0, 9.0 Hz, 1H, C3), 3.58 (app. t, J = 8.0 Hz, 1H, C1), 3.26 (app. dd, J = 5.5, 7.8 Hz, 1H, C5), 

1.44 (s, 3H, C8/C9), 1.35 (s, 3H, C8/C9), 0.91 (s, 9H, TBS CCH3), 0.90 (s, 3H, TBS CCH3), 0.10 (s, 3H, TBS CH3), 

0.10 (s, 6H, TBS CH3), 0.08 (s, 3H, TBS CH3); 
13C NMR  (125 MHz, CDCl3) δ 138.3, 128.3, 127.9, 127.6, 108.9, 
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85.5, 76.5, 75.9, 75.2, 74.8, 66.9, 62.0, 26.9, 25.9, 25.8, 25.4, 18.2, 18.0, -4.2, -4.7, -4.9, -4.9; IR  (neat, cm-1)  

3474.6, 2954.3, 2930.5, 2886.5, 2858.1, 1472.0;  HRMS (ESI) m/z calculated for C28H53O6Si2 [M + H]+: 541.3381; 

found 541.3376; [α]22
D = +7.2° (c =1.0, CHCl3).   

 

4-O-benzyl-2,3-di-O-(tert-butyldimethylsilanyloxy)-L-galactopyranose (-)-(12) 

To a clean, dry 10 mL round bottom flask with a Teflon© stir bar and an argon 

atmosphere was added oxalyl chloride (0.161 mL, 1.9 mmol, 1.25 equiv.) and dry 

CH2Cl2 (4.9 mL).  The reaction flask was cooled to -65°C (CHCl3, dry ice) and 

0.671 mL of a 5.1M DMSO solution ( 3.42 mmol, 2.25 equiv.) in dry CH2Cl2 was added and stirred for 10 minutes.  

The differentially protected galacitol (0.823 g, 1.52 mmol, 1 equiv.) in dry CH2Cl2 (1.6 mL initial volume, 2 x 0.33 

mL rinse) was then added dropwise via cannula, and the reaction stirred at -65°C for 20 minutes.  Triethylamine 

(0.90 mL, 6.47 mmol, 4.25 equiv.) was added dropwise, the reaction was stirred 15 minutes at -65°C,  then allowed 

to warm to room temperature, and stirred an additional 10 minutes.  Water (5 mL) was added and the reaction 

mixture transferred to a separatory funnel.  The aqueous layer was extracted with CHCl3 (3 x 15 mL), the combined 

organics were dried (Na2SO4), filtered, and reduced in vacuo.  Conversion of the primary alcohol to the aldehyde 

was checked by 1H NMR in C6D6 and determined to be ~90%.   

To the crude aldehyde was added CH3CN (6.6 mL) and Zn(NO3)2 · 6H2O (1.25 g, ~5 equiv.).  The reaction 

was then taken to 50°C and monitored via TLC.  Upon completion (~12hrs) the flask was cooled and the CH3CN 

removed via rotary evaporation.  Water (3 mL) and CH2Cl2  (10 mL) were added and the aqueous layer extracted 

with CH2Cl2 (3 x 10 mL).  The combined organics were then dried (MgSO4), filtered, and reduced in vacuo.  

Purification by flash chromatography (1% MeOH/CH2Cl2) gave 0.637 g of a white crystalline solid (-)-(12) (84% 2-

steps).  Rf  = 0.104 (1%CH2Cl2); (Note:  The product exists as a mixture of anomers, α:β = 3:2, with the β anomer as 

a mixture of two conformers35) 1H NMR  (500 MHz, CDCl3) δ 7.37-7.26 (m, 5H α, 10H β), 5.21 (t, J = 3.5 Hz, 1H, 

C1 α), 4.98 (d, J = 11.0 Hz, 1H β), 4.93 (d, J = 11.5 Hz, 1H, C7 α), 4.75 (d, J = 11.5 Hz, 1H β), 4.69 (dd, J = 3.5, 

9.8 Hz, 1H β), 4.60-4.56 (m, 2H β), 4.59 (d,  J = 12.0 Hz, 1H, C7 α), 4.34 (d, J = 10.0 Hz, 1H β), 4.08 (ddd, J = 2.0, 

5.0, 7.1 Hz, 1H, C6 α), 4.03-3.96 (m, 2H β), 4.01 (dd, J = 3.0, 8.0 Hz, 1H, C2/C3 α), 3.98 (dd, J = 2.5, 8.0 Hz, 1H, 

C2/C3 α), 3.96-3.91 (m, 2H β), 3.91-3.86 (m, 2H β), 3.88 (ddd, J = 4.0, 7.0, 11.4 Hz, 1H, C6 α), 3.84-3.82 (m, 2H 

β), 3.81-3.78 (m, 1H β), 3.80 (t, J = 2.5 Hz, 1H, C4 α), 3.75-3.65 (m, 3H β), 3.65 (ddd, J = 5.0, 8.5, 11.5 Hz, 1H, C6 
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α), 3.56-3.51 (m, 1H β), 3.23 (dd, J = 4.5, 9.0 Hz, 1H β), 2,99 (d, J = 4.0 Hz, OH α), 2.62 (dd, J = 3.0, 10.0 Hz, 1H 

β), 1.92-1.90 (m, 1H β), 1.91 (dd, J = 3.5, 9.0 Hz, 1H, OH α), 0.95-0.87 (m, 18H α, 36H β), 0.16-0.08 (m, 12H α, 

24 H β); 13C NMR (125 MHz, CDCl3) δ 138.3, 137.9, 137.5, 128.5, 128.4, 128.1, 128.0, 128.0, 127.9, 127.8, 92.4, 

81.4, 77.4, 76.7, 75.9, 75.3, 74.5, 74.3, 74.2, 74.1, 73.3, 72.9, 72.2, 71.4, 70.7, 64.0, 62.6, 62.0, 60.8, 29.7, 26.1, 

26.0, 25.9, 25.8, 25.7, 18.1, 18.1, 17.9, -4.0, -4.1, -4.3, -4.5, -4.7, -4.8, -4.8, -4.9, -5.0; IR  (neat, cm-1) 3417.8, 

2956.1, 2929.7, 2894.1, 2857.6, 1472.; HRMS (ESI) m/z calculated for C25H46O6NaSi2 [M + Na]+: 521.2731; found 

521.2740; [α]22
D = -28.1° (c =1.0, CHCl3). 

 

1,2,3,6-O-tetraacetyl-4-O-benzyl-L-galactopyranose  

To a clean, dry 10 mL recovery flask under a nitrogen atmosphere with a Teflon© stir 

bar was added (-)-(12) (0.200 g, 0.401 mmol, 1 equiv.) and CH2Cl2 (2 mL).  The 

reaction flask was cooled to 0°C and acetic anhydride (0.190 mL, 2.01 mmol, 5 

equiv.), triethylamine (0.560 mL, 4.01 mmol, 10 equiv.) and 2,2-dimethylaminopyridine (0.005 g,  0.04 mmol, 0.1 

equiv.) were added.  The reaction was then stirred at 0°C  for 30 minutes, room temperature for 1 hour, and then at 

reflux for 5 hours.  The reaction mixture was then transferred to a separatory funnel and EtOAc (15 mL) was added.  

The organic layer was washed with 1 M HCl (1 x 15 mL), 10% aq. NaHCO3 solution (15 mL), and brine (15 mL).  

The organic layer was then dried (Na2SO4), filtered, and reduced in vacuo.  THF (0.5 mL) was added to this crude 

residue along with a Teflon© stir bar and the reaction flask was cooled to 0°C.  Tetra-n-butylammonium fluoride 

(1.0 M in THF, 1.9 mL, 4.75 equiv.) was added slowly, and then the reaction was allowed to warm to room 

temperature and monitored via TLC.  Upon completion, sat. aq. NH4Cl solution (5 mL) was added and the aqueous 

layer extracted with CH2Cl2 (3 x 10 mL).  The combined organic layers were dried (Na2SO4), filtered, and reduced 

in vacuo to give a brown residue, which was subsequently dissolved in CH2Cl2 (2 mL) and cooled to 0°C.  A 

Teflon© stir bar, acetic anhydride (0.190 mL, 2.01 mmol, 5 equiv.), triethylamine (0.560 mL, 4.01 mmol, 10 equiv.) 

and 2,2-dimethylaminopyridine (0.005 g,  0.04 mmol, 0.1 equiv.) were added.  The reaction mixture was again 

stirred at 0°C  for 30 minutes, room temperature for 1 hour, and then at reflux for 5 hours.  The reaction mixture was 

then cooled to room temperature and transferred to a separatory funnel with EtOAc (15 mL).  The reaction mixture 

was then washed with 1 M HCl (1 x 15 mL), 10% aq. NaHCO3 solution (15 mL), and brine (15 mL).  The organic 

layer was then dried (Na2SO4), filtered, and reduced in vacuo to give a thick brown oil.  Purification via flash silica 
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gel chromatography (40%EtOAc/hexanes) afforded 0.173 g of a white, foamy oil (98%) as a mixture of anomers 

(α:β = 55:45).  Rf = 0.434 (40%EtOAc/hexanes); 1H NMR  (500 MHz, CDCl3) δ 7.38-7.30 (m, 5H α and 5H β), 

6.36 (d, J = 3.5 Hz, 1H α), 5.16 (d, J = 8.0 Hz, 1H β), 5.53 (dd, J = 3.5, 11.0 Hz, 1H α), 5.50 (dd, J = 8.0, 10.5 Hz, 

1H β), 5.29 (dd, J = 3.0, 11.0 Hz, 1H α), 5.01 (dd, J = 3.0, 10.5 Hz, 1H β), 4.75 (d, J = 11.5 Hz, 1H β), 4.73 (d, J = 

11.0 Hz, 1H β), 4.55 (d, J = 11.5 Hz, 1H α), 4.54 (d, J = 11.5 Hz, 1H α), 4.24-4.15 (m, 2H α and 1H β), 4.13-4.05 

(m, 2H α and 1H β), 3.98-3.94 (m, 1H β), 3.86-3.83 (m, 1H β), 2.13, 2.10, 2.05, 2.04, 2.04, 2.02, 2.01, 2.0 (8s, 12 H 

α and 12H β); 13C NMR (125 MHz, CDCl3) δ 170.4, 170.3, 170.3, 170.2, 169.8, 169.3, 169.1, 169.0, 137.2, 137.1, 

128.6, 128.5, 128.5, 128.3, 128.1, 128.1, 92.1, 89.9, 75.2, 75.0, 74.2, 73.6, 73.1 ,73.0, 70.4, 70.3, 68.4, 66.9, 62.2, 

62.0, 20.9, 20.8, 20.7, 20.7, 20.6, 20.5; HRMS (ESI) m/z calculated for: C21H26O10Na [M + Na]+: 461.1424, 

observed: 461.1431.36 

 

(2S,3S)-(E)-3-O-benzyl-4-hexen-6-(4-methoxyphenylbenzoate)-

1,2,3-triol 

To a 1 dram vial was added (+)-(5) (0.041 g, 0.1 mmol, 1 equiv.), 

CH3CN (2 mL) and Zn(NO3)2 · 6H2O (0.097 g, 0.19 mmol, 5 

equiv.).  A Teflon© stir bar was added to the reaction vessel and the reaction was then taken to 50°C and monitored 

via TLC.  Upon completion (~24hrs) the flask was cooled and the CH3CN removed via rotary evaporation.  Water (1 

mL) and CH2Cl2  (5 mL) were added and the aqueous layer extracted with CH2Cl2 (3 x 10 mL).  The combined 

organics were then dried (MgSO4), filtered, and reduced in vacuo.  Purification by flash silica gel chromatography in 

2% MeOH/CH2Cl2 gave 0.025 g of the title compound as a clear oil (70%).  Rf = 0.10 (1%CH2Cl2/MeOH); 1H 

NMR  (500 MHz, CDCl3) δ 8.0 (app. dt, J = 3.0, 8.5 Hz, 2H, C14), 7.38–7.28 (m, 5H, C9, 10, 11), 6.94 (app. dt, J = 

2.5, 9.0 Hz, 2H, C15), 6.03 (ddt, J = 1.0, 5.5, 15.8 Hz, 1H, C5), 5.80 (ddt, J = 1.5, 8.0, 15.3 Hz, 1H, C4), 4.86 (app. 

dd, J = 1.5, 5.5 Hz, 2H, C6), 4.67 (d, J = 11.0 Hz, 1H, C7), 4.38 (d, J = 11.5 Hz, 1H, C7), 3.94 (app. t, J = 7.5 Hz, 

1H, C3), 3.87 (s, 3H, C17), 3.74-3.69 (m, 1H, C1/C2), 3.68-3.66 (m, 1H, C1/C2), 3.62-3.57 (m, 1H, C1/C2), 2.84 

(d, J= 3.0 Hz, 1H, OH), 2.07 (t, J = 6.0 Hz, 1H, OH);  13C NMR  (125 MHz, CDCl3) δ 165.9,163.5, 137.6, 131.7, 

130.5, 129.9, 128.5, 128.0, 128.0, 122.3, 113.7, 80.2, 73.7, 70.6, 63.9, 63.0, 55.4; HRMS (ESI) m/z calculated for: 

C21H25O6 [M + H]+: 373.1651, observed: 373.1654. 
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(2S,3S)-(Z)-3-O-benzyl-4-hexen-6-(4-methoxylphenylbenzoate)-

1,2,3-triol 

Authentic Z isomer of (+)-(5) for determination of the E:Z selectivity 

of the linear allylic C-H oxidation reaction was prepared through the 

following sequence:  (-)-(11)  was subjected to periodate cleavage to give a terminal aldehyde,37 followed by Still-

Gennari olefination to give the (Z)-α,β-unsaturated methyl ester,38 which was reduced to the alcohol with 

diisobutylaluminum hydride, converted to the 4-methoxyphenylbenzoate derivative through 

dicyclohexylcarbodiimide assisted coupling with p-anisic acid, and finally acetonide deprotected with Zn(NO3) · 

6H2O.  Rf = 0; 1H NMR  (500 MHz, CDCl3) δ 8.00 (app. dt, J = 3.0, 9.0 Hz, 2H, C14), 7.37-7.28 (m, 5H, 

C9/C10/C11), 9.92 (app. dt, J = 3.0, 9.0 Hz, 2H, C13), 6.02 (dt, J = 6.5, 11.0 Hz, 1H, C5), 5.63 (dt, J = 1.5, 10.5 Hz, 

1H, C4), 4.90 (ddd, J = 1.5, 7.0, 13.4 Hz, 1H, C6), 4.84 (ddd, J = 1.5, 6.5, 13.5 Hz, 1H, C6), 4.67 (d, J = 11.5 Hz, 

1H, C7), 4.42 (d, J = 11.5 Hz, 1H, C7), 4.38 (dd, J = 7.5, 9.5 Hz , 1H, C2), 3.86 (s, 3H, C17), 3.72-3.78 (m, 1H, C1), 

3.70-3.64 (m, 1H, C3), 3.63-3.56 (m, 1H, C1), 2.93 (b s, 1H, OH), 2.25 (b s, 1H, OH); 13C NMR  (125 MHz, CDCl3) 

δ 166.1, 163.5, 137.6, 131.8, 131.7, 130.6, 128.6, 128.0, 127.7, 122.2, 113.7, 75.4, 73.7, 70.7, 62.8, 60.5, 55.4 
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Chapter 2 

A Chiral Lewis Acid Co-Catalyst Strategy for Enantioselective Allylic C—H Oxidation40 

 

2.1. Introduction 

Polyoxygenated natural products and medicinally interesting compounds are ubiquitous, and a host of 

methods for manipulating and transforming these molecules are available.  However, most methods require 

significant synthetic overhead, commonly in the form of protection/deprotection steps and functional group 

manipulations.  Selective hydrocarbon oxidation presents an alternative approach by directly increasing molecular 

complexity when it is most synthetically appropriate, reducing the number of reactive functional groups carried 

through a sequence.41,42,43  However, in order to be useful for complex molecule synthesis, these reactions must 

proceed with high levels of chemo-, regio- and stereoselectivity.  

Figure 2.1. Catalytic branched allylic oxidation of α-olefins with Pd(OAc)2/PhBS (13) 
 

 
 

In 2005, Chen and White reported a sulfoxide-promoted, catalytic Pd(OAc)2/benzoquinone (BQ)/α-olefin 

allylic oxidation system that furnishes branched allylic alkyl and aryl esters from a wide variety of carboxylic acids 

(Figure 2.1).42a-b Additionally, they were able to show that these reactions proceed via a novel serial ligand catalysis 

mechanism.  A sulfoxide ligand and a π-acid ligand were found to interact sequentially with Pd to shepherd the 
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metal center through C—H cleavage and C—O bond-forming steps, respectively. The sulfoxide ligand is believed to 

interact with palladium, partially displace its carboxylate ligands, and generate a transient electrophilic Pd(II) 

species capable of promoting C—H cleavage through an intramolecular deprotonation.  C—O bond formation likely 

occurs via a benzoquinone (BQ) promoted inner-sphere reductive elimination of acetate to an electronically 

dissymmetric π-allyl-Pd intermediate (Scheme 2.1).44 

Scheme 2.1. Serial ligand catalysis mechanism 
 

 
 

While the branched allylic oxidation was found to proceed with excellent yields and selectivities on a 

variety of substrates,42a-d,43b,e the reaction as discovered generates a racemate. Furthermore, initial investigations with 

chiral substrates, α-olefin or acid nucleophile, generated products with virtually no diastereoselectivity (Figure 2.1). 

Enantioselective allylic C—H activation has been achieved with chiral bisoxazoline/copper catalyzed systems, 

showing promising levels of asymmetric induction in enantioselective allylic C—H esterifications of symmetrical, 

cyclic olefins.  Application of these systems to complex substrates is limited by a lack of chemo- and 

regioselectivity and the requirement for large excesses of substrate (4 to 10 equiv.).45 A more general allylic C—H 

oxidation route would significantly increase the efficiency of chiral allylic alcohol/ester syntheses, which often 

require lengthy sequences of functional group manipulations from pre-oxidized materials.46,47 
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Conventional approaches to asymmetric organometallic reactions make use of strongly coordinating, σ-

donating, chiral ligands, such as phosphines.  These types of ligands are poorly suited for reaction under oxidative 

conditions and outcompete the weakly coordinating sulfoxide and quinone ligands required for C—H activation 

with palladium catalyst 13.48 The transient nature of ligand binding under serial ligand catalysis adds significant 

challenge to designing a highly ordered environment around the metal center, though in theory, a chiral variant of 

either the sulfoxide or quinone ligand could lead to enantioenriched products.  To date, all attempts with chiral 

sulfoxides have been unsuccessful in effecting asymmetric induction. Experiments with cis-1-deutero-1-decene 

reveal that this is most likely due to rapid π-σ-π isomerization of the π-allyl-Pd intermediate, which scrambles any 

chiral information imparted during the C—H cleavage step (Scheme 2.2). I therefore set out to identify a viable 

strategy for enantioselective C—O bond formation. The obvious platform for an asymmetric functionalization 

ligand, benzoquinone, is impractical for covalent chiral modification as it is required in superstoichiometric amounts 

for optimal reactivity.  

Scheme 2.2. Deuterium labeling study to establish relative rates of  π-σ-π isomerization and functionalization 
 

 
 

Lewis acid co-catalysts have been demonstrated to accelerate bond forming reactions from organometallic 

intermediates.49 I postulated that a chiral Lewis acid co-catalyst could be used to both accelerate the rate of C—O 

bond formation and influence its stereochemical course from a π-allyl-Pd-BQ intermediate. Specifically, it was 

envisioned that coordination of an oxophilic, chiral Lewis acid to the carbonyl of BQ would increase the π-acidity of 

the ligand, accelerating C—O bond formation while transmitting chiral information to the palladium center. This 

would afford enantioenrichment despite background reactivity. In addition, I hypothesized that chiral Lewis acids 

with tightly binding ligands and lacking cis open coordination sites would be compatible with C—H activation 

conditions.  Specifically, I reasoned that this particular class of Lewis acids would have ligand environments 

resistant to perturbation by the acid nucleophile and would be unlikely to irreversibly bind the bis-sulfoxide ligand, 

allowing it to interact with palladium and promote C—H cleavage. 
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2.2 Results and Discussion 

 2.2.1 Discovery, Optimization, and Scope 

Table 2.1. Analysis of Lewis acid mediated enantioselective C—H bond oxidation 

 

 
aGC yield, average of at least two runs bDetermined by Chiral GC cTBME, 1.1 
equiv. DIPEA dEtOAc solvent, 4Å MS bead added(~30 mg), 48 hrs. 

 

I began by examining chiral Lewis acids known to catalyze highly enantioselective reactions via a single 

point binding mode to Lewis basic carbonyl groups. Of the catalysts evaluated, commercially available 

(Salen)CrIIICl complex 1850 was the only to afford any enantioselectivity for the process, albeit with diminished 

conversion and  regioselectivity (Table 2.1, entries 1 vs. 2-5, 8). R,R-Salen-CoIII -OAc was also found to give slight 

enantioselectivity (entry 6) when run under conditions previously used to deliver carboxylate nucleophiles to meso-

epoxides.51 Analysis of several counterions for the CrIII  metal center revealed that (Salen)CrIIIF (19) had a more 



26 

desirable conversion and regioselectivity, albeit with reduced enantioselectivity (entry 8 vs. 12). Increasing the 

concentration of the reaction, reducing the equivalents of acetic acid, changing solvent, and decreasing the 

temperature afforded a significant enhancement in enantioselectivity for reaction with 19 (entries 13-15) giving 57% 

ee with excellent yields and good regioselectivity. Interestingly, catalyst 18 showed no change in enantioselectivity 

over any conditions tested.  I synthesized and tested a variety of other Salen-type chromium Lewis acid catalysts, 

but found none that were significantly better than the commercially available 3,5-di-t-butylsalicylidene ligand 

framework.52 The enantioselection observed for this reaction is the highest for the allylic C—H oxidation of terminal 

olefins to date.53 Additionally, to the best of my knowledge, this represents the first example of a chiral Lewis acid 

effecting asymmetric induction from an organometallic intermediate and a rare example of a catalytic 

enantioselective C—H functionalization using palladium.54  

Figure 2.2. Scope of the catalytic, asymmetric, branched allylic oxidation of α-olefins with 13 and 19  
 

 
 

 The scope and functional group tolerance of this system were then evaluated. Comparison of the product 

formed from the reaction of octene with R,R-19 as catalyst to acetylated commercially available Matasuka alcohol 

((S)-1-octen-3-ol, Fluka, >99% ee)  established that the allylic stereocenter was R, while S,S-19 afforded S product. 

Careful monitoring of the reaction showed that the regio- and stereoselectivity were not changing over time.  

Gratifyingly, the functional group tolerance of this system matches that of the original PdII/bis-sulfoxide 

methodology with tolerance for esters, amides, a wide variety of protected alcohols, free alcohols, internal alkynes, 

and aliphatic halogens (Figure 2.2).  As steric bulk was brought closer to the allylic position, a modest variation in 
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enantiomeric excess and a more significant change in the regioselectivity was observed.  A variety of carboxylate 

nucleophiles could be successfully employed in this reaction as well, including chiral, protected amino acids such as 

L-FMOC-phenylalanine, which affords ~70% yield of a diastereomeric mixture (3.0:1) of products after 72 hrs of 

reaction with 13 and R,R-19.  The stereocenter of the amino acid is inconsequential to the reaction as, employing 

catalyst S,S-19 affords a complete reversal of diastereoselectivity (Scheme 2.3). Consistent with the continued role 

of BQ as a ligand for promoting functionalization, sterically hindered 2,6-dimethylbenzoquinone gave only trace 

reactivity in the catalytic reaction. 

Scheme 2.3. Asymmetric branched allylic oxidation with amino acid nucleophile  
 

 
 

2.2.2 Mechanistic Investigation 

Table 2.2.  Mechanistic evaluation of  Lewis acid as an agent for enantioselective allylic acetate rearrangement 
 

 
 

At this point, I began to investigate the mechanism of this Lewis acid co-catalyzed allylic C—H activation 

reaction. My working mechanistic hypothesis was that the chromium Lewis acid was interacting with BQ and 

increasing the rate of functionalization. Testing this hypothesis and determining the mode of action of the Lewis 

acid catalyst in this system, would allow me to validate this novel mode of effecting asymmetric induction and 

promoting reactivity under electrophilic, oxidative conditions. I first evaluated the stability of the allylic acetate 
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products in the reaction to determine if the enantioselection observed was due to a racemic C—H 

activation/functionalization with subsequent enantioselective rearrangement.  No significant isomerization or 

development of enantiomeric excess was observed for the branched product under the catalytic conditions, in a 

cross-over experiment, or under conditions designed to mimic the end of the reaction (Table 2.2). 

Table 2.3.  Effect of chromium Lewis acid on rate of C—H cleavage 
 

 
aYields were determined by 1H NMR as compared to an internal standard after being 
trapped as the π -allyl-Pd chloride dimer and are relative to palladium 

 

   I next investigated the role of Salen-CrIII -F (19) independently in each of the product forming steps of the 

catalytic cycle (i.e. C—H cleavage and C—O bond formation). A stoichiometric study with undecene and PdII/bis-

sulfoxide catalyst 13 indicates that the rate of C—H cleavage to form [π-allyl-PdOAc]2 (22), quantified by trapping 

as the more stable chloride dimer (23), is unaffected by 19 (Table 2.3). To test the effect of 19 on functionalization, 

reductive elimination from synthetic [π-allyl-PdOAc]2 (22) was evaluated with respect to rates and selectivities 

under conditions that mimic the reaction of a monomeric π-allyl-Pd intermediate during one catalytic reaction cycle 

(Table 2.4B). As hypothesized, the addition of Lewis acid co-catalyst Salen-CrIII -F (19) led to a 10-fold increase in 

the rate of functionalization relative to identical conditions lacking 19 (Table 2.4B, entries 1 and 2). Moreover, 

branched allylic acetate product was furnished with comparable enantio- and regioselectivities to that obtained under 

catalytic conditions.  As noted above, functionalization does not occur with 19 in the absence of BQ (Table 2.4B, 

entry 3). 

I next turned my attention to evaluating the possible roles of the Lewis acid co-catalyst in the C—O bond 

forming step.  Since the catalytic reaction did not work with sterically hindered π-acids, a quinone was assumed to 

be a necessary component of any functionalization hypothesis.  I envisioned three probable mechanistic scenarios 

for effecting the observed asymmetric induction during functionalization: (I ) Salen-CrIII-F (19) coordination to BQ 

to promote and control facial selectivity in the reductive elimination  of acetate from a π-allyl-Pd(BQ)OAc 

intermediate, (II )  Salen-CrIII -OAc (20) delivery of acetate to a π-allyl-Pd(BQ)L intermediate, (III ) Salen-CrIII-F 
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(19) activation of a π-allyl-Pd(BQ) intermediate with concurrent Salen-CrIII -OAc (20) delivery of acetate (Table 

2.4A).49,55  

Table 2.4.  Effect of chromium Lewis acid on rate of C—O functionalization 
 

 
A.) Proposed modes of action for chromium lewis acid: I Reductive elimination of 
acetate by a Cr(BQ) activated π-allyl-Pd II  Delivery from Cr(OAc)  to a π-allyl-Pd 
III  Delivery from Cr(OAc) to an activated Cr(BQ)-π-allyl-Pd B.) Effects of 
catalysts 19 and 20 on functionalization of a Pd-π-allyl.   Mock Catalytic = 0.2M 
EtOAc, 11 equiv. AcOH, 20 equiv. BQ, rt, (molarity and equivalents are relative to 
Pd) arate and selectivity determined by GC, comparison to a standard curve using 
NB as an internal standard bGC yield at 40 min. cDetermined via GC on  β-
Cyclodextrin column dno BQ added e1equiv. R,R-20 and 1 equiv. TBAF·3H2O 
added frun in THF with π-allyl-Pd-PF6 as the starting material C.) 
Enantioselectivity trends for functionalization with a variety of π-acids and R,R-19 

 

In order to evaluate mechanistic scenario II  that invokes counterion exchange under the reaction conditions 

to give (Salen)CrIIIOAc 20 (Table 2.4A), I independently synthesized 20 and examined its reactivity under both 

catalytic and stoichiometric conditions. Conversion, enantio-, and regioselectivity are significantly diminished with 

20 relative to 19 in both the catalytic and stoichiometric reactions (Table 2.1, entry 15 vs. entry 19, Table 2.4B, 

entry 4 vs. entry 2). I also evaluated the possibility of a counterion exchange between (R,R)-19 and Pd(OAc)Ln to 

generate a Pd(F)Ln intermediate and (R,R)-20.  Soluble fluoride (2 equiv., n-Bu4NF) was added to reactions with 

(R,R)-20 and [π-allyl-PdOAc]2 (22) and a marked increase in functionalization was observed. However, the regio- 

and enantioselectivities of the reaction were inferior to that observed catalytically or stoichiometrically with R,R-19 
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(Table 2.4B, entry 5 vs. entry 2). I also evaluated this hypothesis with (R,R)-20 under conditions known  to generate  

π-allyl-Pd-F ( π-allylPd(PF6)/Bu4NF)56 and again noted a dramatic increase in functionalization rate with out a 

corresponding boost to enantioselectivity. Furthermore, enantioselectivity was observed only with π-acids 

containing carbonyl groups capable of acting as Lewis basic sites for interacting with 19 (Table 2.4C). Collectively, 

these results are inconsistent with asymmetric induction arising exclusively through acetate delivery by 20 (Table 

2.4A, II ), and most consistent with 19·BQ promoted functionalization (Table 2.4A, I ). However, at this time we 

cannot rule out a dual activation mechanism in which 20 delivers acetate nucleophile to a π-allyl-Pd(BQ·19) 

electrophilic intermediate (Table 2.4A, III ).  

2.2.3 Application of Asymmetric Branched Allylic Oxidation to Small Molecule Synthesis 

While the asymmetric C—H oxidation reaction developed was not synthetically practical due to moderate 

enantioselectivities, I sought to examine its potential for making chiral allylic alcohol building blocks through its 

combination with other enantioselective transformations. Allylic alcohols such as those generated by the asymmetric 

branched allylic C—H oxidation (ABAO) are prevalent in the synthetic literature, in part due to the ease with which 

they can be further elaborated.  These structures are particularly useful in synthetic sequences in which the oxygen 

atom is remote from other functional groups, making its installation through traditional approaches of 

stereochemical relay impractical.  At present, there are several methods commonly employed to obtain these chiral 

allylic alcohols.57,58 In general, a preoxidized starting material is elaborated toward the target through carbanion-

based reactions that build up the carbon skeleton.  For example, these allylic alcohols can be accessed directly by the 

addition of a vinyl carbanion to an aldehyde.  Unfortunately, stereoselective addition of the vinyl anion remains 

challenging with high enantioselectivities for this transformation limited to aryl aldehydes.60a-e Frequently, a de novo 

route to these allylic alcohols proceeding through a lengthy sequence of functional group manipulations and utilizing 

a Sharpless asymmetric epoxidation (SAE) to install the key stereocenter is employed.60f-g Most often, however, 

these products are obtained through a kinetic resolution of the racemic alcohol.60h-i I hypothesized that combining 

the ABAO with other enantioselective reactions would afford a more direct, efficient route to these allylic alcohols 

by avoiding many of the functional group manipulations of traditional carbanion based approaches.59  Additionally, 

the significant enantioenrichment afforded by the ABAO should lead to higher yields for any subsequent resolution 

step as compared to racemic approaches. 
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I began to explore the practicality of generating chiral allylic alcohols through a C—H activation approach 

by targeting a prototypical bis-oxygenated chiral building block (-)-24, a precursor to the C19 – C26 fragment of the 

potential cancer therapeutic Bistramide A (Scheme 2.4).60  In the traditional carbanion based route, diol 25 is 

selectively protected at one terminus, then oxidized and subjected to a Horner-Wadsworth-Emmons olefination at 

the other to generate ester 26.  After reduction of the ester, SAE affords the epoxy alcohol 27 in 93% ee.  The 

primary alcohol is then converted to a halogen, which is eliminated with zinc to afford the desired allylic alcohol (-)-

24 in a total of 7 steps and 34% overall yield.   

Scheme 2.4. C—H oxidation vs. carbanion based route for the synthesis of  (-)-24  
 

 
 

Alternatively, after simple protection of commercially available 28, allylic oxidation installs the oxygen 

functionality directly at the desired oxidation state, with significant enrichment toward the desired enantiomer (50% 

ee).  Subsequent methanolysis and enzymatic resolution gives enantiopure (-)-24 in a total of 4 steps and 47% 

overall yield.  The C—H oxidation route reduces the overall step count and improves the yield by minimizing 

functional group manipulations and unnecessary oxidation state changes.  Furthermore, I found that enzymatic 

acylation not only increases the enantioselectivity of the reaction, but also rapidly acylates the minor linear allylic 

alcohol, making purification of the final product trivial.  

Broad use of an enantioselective transformation requires that either enantiomer of the desired product can 

be obtained with high enantioselectivity.  Fortunately, catalyst 19 is readily available as either enantiomer, and 

careful enzyme selection allows for enrichment of each stereoisomer of the product.61  To demonstrate this, I used 

S,S-19 and a protease resolution to generate (+)-24 in 99% ee and nearly identical overall yield to the route 
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previously described for (-)-24 (Scheme 2.5).  This matches the flexibility of the traditional de novo approach to 

these compounds which was utilized to make (+)-24 in a total synthesis of the potent biotoxin Azaspiracid A.62 

Scheme 2.5. C—H oxidation approach to either enantiomer of allylic alcohol 24 
 

 
 

I next sought to compare the C—H oxidation route to chiral allylic alcohols to traditional resolution 

strategies.  Ester (-)-30 was synthesized en route to the flower inducing factor 9R-KODA (Scheme 2.6).63  In order 

to avoid a lengthy sequence of FGMs, the original researchers chose to ozonolize methyl oleate (31) and attempt to 

vinylate the resultant aldehyde in the presence of an ester group.  While the authors observed a significant 

diminishment in overall yield, they were able to quickly access (±)-30.  Subsequent enzymatic kinetic resolution 

afforded enantiopure (-)-30 in three steps, though the poor chemoselectivity of the vinylation step lead to an overall 

yield of only 9%.  Conversely, ABAO of commercially available α-olefin 33 followed by methanolysis and 

resolution yielded (-)-30 in equivalent step count and enantiopurity, but with a 6-fold increase in total yield (3 steps, 

53% yield, 99%ee).  Importantly, this reaction sequence was run on gram scale with no diminishment in yield. 

Scheme 2.6. C—H oxidation vs. carbanion based route for the synthesis of ester (-)-30 
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Due to the large number of commercially available α-olefin starting materials, the C—H oxidation 

sequences presented thus far have begun with fully constructed carbon frameworks.  However, I sought to find an 

example in which no such olefin was available, and test whether a C—H oxidation route was still competitive with 

traditional approaches.  Synthesis of allylic alcohol (-)-34 began from a commercially available, protected starting 

material (Scheme 2.7).64  Formation of a Grignard reagent from bromide 35 followed by its addition into acrolein 

gave racemic alcohol (±)-34 in one step.  Again, this addition proceeds with poor chemoselectivity, giving a mixture 

of 1,2- and 1,4-addition products.  Enzymatic resolution then yielded the desired (-)-34 in two steps and 19% overall 

yield.  From the same commercially available bromide 35, a suitable starting material for C—H oxidation (36) can 

be obtained by simple allylation, a C—C bond forming reaction with no chemoselectivity issues.  Subjecting the 

resultant olefin to the C—H oxidation, methanolysis, enzymatic resolution sequence affords the desired enantiopure 

alcohol (-)-34 in four steps and 46% overall yield, doubling the yield of the traditional route for a substrate requiring 

no FGMs to prepare and further illustrating the promise this strategy has for generating these chiral building blocks..  

This is enabled by the ease of installing the allyl moiety and the mild and selective nature of this C—H oxidation.   

Scheme 2.7. C—H oxidation vs. carbanion based route for the synthesis of (-)-34 
 

 
 

I have demonstrated how the ABAO can be combined with enzymatic resolution to afford enantiopure 

allylic alcohols rapidly and in good yield.  However, reagent controlled enantioselective transformations can also be 

used to enrich C—H oxidation products by generating separable diastereomers. I sought to exemplify this idea 

through a synthesis of the densely functionalized furan core of Goniothalesdiol.  Due to its potent activity against 
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mouse leukemia cells, a number of total syntheses of Goniothalesdiol (37) and its epimers have been undertaken.65 

Generally these routes begin with chiral pool materials, and are therefore limited in the derivatives of 37 they can 

rapidly access.  One approach initially developed by Gracza and co-workers to 37 proceeds through the 

tetrasubstituted furan core 38.65b I recognized that an ABAO tandem oxidative Heck sequence could access this core 

structure rapidly (Scheme 2.8).42d Subsequent Sharpless asymmetric dihydroxylation (SAD) would generate 

separable diastereomers, allowing us to obtain enantiopure material for further reaction.  Significantly, our de novo 

approach to 38 is quite flexible, allowing us to selectively control the stereochemistry at the 5, 6, and 7 positions of 

the core furan as well as easily vary the nature of the aryl substituent at position 7.  While previous syntheses have 

relied primarily on C—C bond forming reactions, this plan involves a steady increase in complexity through 

hydrocarbon oxidations. 

Scheme 2.8. Enantioselective C—H oxidation approach to the core furan the Goniothalesdiol family 
 

 
aSAD = Sharpless asymmetric dihydroxylation.  See experimental section for details 

 

I decided upon furan core (-)-44 as an interesting target for this strategy because, to the best of my 

knowledge, 6-epi-Goniothalesdiol has yet be synthesized or evaluated medicinally.  My route began with the ABAO 

of methyl ester 39, followed by the addition of phenyl boronic acid.  Gratifyingly, the ABAO/oxidative Heck 

reaction furnished ester 40 in a one pot transformation.  Hydrolysis and cyclization of the crude material gave 

lactone 41 in 54% yield over two steps.  SAD of this material and subsequent ketal protection of the resultant diol, 
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gave 70% of diastereomerically and enantiomerically pure (-)-42. The relative and absolute stereochemistry of this 

compound were determined by X-ray crystallographic analysis of para-Bromophenyl (-)-42. This derivative was 

rapidly generated simply by switching to 4-bromophenylboronic acid in the ABAO/oxidative Heck step, 

highlighting the ease of modifying the core furan through this route. Selenation/dehydroselenation of lactone (-)-42 

afforded unsaturated γ-lactone (+)-43 in 73% yield.  Deprotection of the acetonide followed by in situ NEt3 assisted 

cyclization afforded the desired tetrasubstituted furan (-)-44 in 7 total steps and 22% overall yield.  Previous C—C 

bond forming routes to this core structure proceeded in 868b and 1068d steps with 6% and 9% overall yields 

respectively.  This case study demonstrates the potential of hydrocarbon oxidations for synthesizing densely 

functionalized fragments, and exemplifies the flexibility of this synthetic approach for generating derivatives. 

 

2.3 Conclusions 

In conclusion, I discovered a heterobimetallic PdIIbis-sulfoxide/(Salen)CrIIIF system for asymmetric allylic 

C—H oxidation of terminal olefins that proceeds with the highest levels of enantioselectivity for this olefin class to 

date.66 To the best of our knowledge, this represents the first demonstration of a chiral Lewis acid co-catalyst 

interacting with an organometallic intermediate to influence the stereochemical course of a catalytic process. 

Moreover, Lewis acids are proving to be a general means for promoting reactivity under the acidic, electrophilic 

reaction conditions necessary for C—H activation with catalyst 13. I have also established that the asymmetric 

branched allylic oxidation reaction can be combined with other enantioselective transformations to afford 

enantiopure, polyoxygenated allylic alcohols rapidly and in good yields.  The C—H oxidation approach is 

complimentary to commonly used resolution and de novo synthetic strategies that require significant numbers of 

protection/deprotection steps and functional group manipulations.  Due to the ease and efficiency of this approach, I 

expect that this strategy will find widespread use for the synthesis of these commonly used intermediates. 

 

2.4 Experimental Section 

General Information: All commercially obtained reagents were used as received; Pd(OAc)2, (Strem Chemicals), 

(1R,2R)-(-)-[1,2-Cyclohexanediamino-N,N’-bis(3,5-di-t-butylsalicylidene)]Chromium(III)Cl, (1S,2S)-(+)-[1,2-

Cyclohexanediamino-N,N’-bis(3,5-di-t-butylsalicylidene)]Chromium(III)Cl, Benzoquinone (Aldrich), undecene 

(Fluka), acetic acid (Fisher) .  Pd(OAc)2 was stored in a glove box under an argon atmosphere and weighed out in 
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the air prior to use.  Commercially available “White Catalyst” (1,2-Bis(phenylsulfinyl)ethane palladium(II) acetate) 

from Aldrich was found to be equivalent to that prepared freshly by the published procedure.67  Solvents 1,4-

dioxane, diethyl ether (Et2O), and methylene chloride (CH2Cl2) were purified prior to use by passage through a bed 

of activated alumina (Glass Contour, Laguna Beach, California).  Tert-butylmethyl ether (TBME), ethyl acetate 

(EtOAc), and acetonitrile (Sure/Seal) were obtained from Sigma-Aldrich and used as received.  All allylic oxidation 

reactions were run under air.  Achiral gas chromatographic (GC) analyses were performed on Agilent Technologies 

6890N Series instrument equipped with FID detectors using a HP-5 (5%-Phenyl)-methylpolysiloxane column (30m, 

0.32mm, 0.25µm). Chiral gas chromatographic (GC) analyses were performed on an Agilent Technologies 5890A 

Series instrument equipped with an FID detector using a J&W Scientific β-cyclodextrin column (30m, 0.25mm, 

0.25µm). HPLC analysis was performed on an Agilent Technologies 1100 HPLC system with a model 1100 

Quaternary Pump, Diode Array Detector, Thermostat, and Autosampler.  Thin-layer chromatography (TLC) was 

conducted with E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized with UV, potassium 

permanganate, and ceric ammonium molybdate staining.  Flash column chromatography was performed as described 

by Still et al.68 using EM reagent silica gel 60 (230-400 mesh).  1H NMR spectra were recorded on a Varian Unity 

400 (400 MHz) or a Varian Unity 500 (500 MHz), or a Varian Unity Inova 500NB spectrometer and are reported in 

ppm using solvent as an internal standard (CDCl3 at 7.26 ppm).  Data reported as: s = singlet, d = doublet, t = triplet, 

q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; integration.  Proton-decoupled 13C- NMR spectra 

were recorded on a Varian Unity-500 (125 MHz) spectrometer and are reported in ppm using solvent as an internal 

standard (CDCl3 at 77.0 ppm).  IR spectra were recorded as thin films on NaCl plates on a Perkin-Elmer Spectrum 

BX and are reported in frequency of absorption (cm-1).  High-resolution mass spectra were obtained at the 

University of Illinois Mass Spectrometry Laboratory. 

(1R,2R)-(-)-[1,2-Cyclohexanediamino-N,N’-bis(3,5-di-t-butylsalicylidene)]Chromium (III) Acetate (20)69  

Commercially available (1R,2R)-(-)-[1,2-Cyclohexanediamino-N,N’-bis(3,5-di-t-butylsalicylidene)]Chromium(III) 

Chloride (0.500 g, 0.78 mmol) was added to a scintillation vial wrapped in aluminum foil.  To this was added tert-

butylmethyl ether (TBME) (7.8 mL) followed by silver(I) acetate (0.126 g, 0.78 mmol).  The reaction was capped 

and stirred vigorously for 7 hrs, at which time the liquids were filtered through Celite©, rinsing with TBME (~25 

mL).  The solvent was removed in vacuo and the catalyst was used without further purification.  IR : 2961, 2910, 
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2869, 1621, 1537, 1435, 1361, 1320, 1255, 1201, 1170, 1132, 1099, 1076, 1028, 837, 746 HRMS: (FAB) m/z 

calculated for C36H52O2N2Cr [M + - OAc]+: 596.3434; found: 596.3435. 

General Procedure for Asymmetric Branched Allylic Oxidation (Table 2.1):  A vial (8 mL borosilicate) was 

charged with the following:  1,2-Bis(phenylsulfinyl)ethane palladium(II) acetate(13) (10 mol%, 0.10 mmol, 50 mg); 

(1R,2R)-(-)-[1,2-Cyclohexanediamino-N,N’-bis(3,5-di-t-butylsalicylidene)]Chromium(III)F(R,R-19) (10 mol%, 

0.10 mmol, 61.6 mg), 1,4-benzoquinone (2 equiv., 2.0 mmol, 216 mg), an activated 4Ǻ MS bead (~30 mg), and a 

Teflon© stir bar.  A separate vial (2 mL, borosilicate) was charged with the following: substrate (1.0 mmol), AcOH 

(1.1 equiv., 63 µL), and EtOAc (200 µL). The liquids were transferred to the solids via pipette and the vial rinsed 

with EtOAc (3 x 100 µL ).  After carefully stirring for 48 hrs at room temperature, the reaction mixture was 

transferred to a separatory funnel with ~3 mL EtOAc and then diluted with hexanes (200 mL). The organic layer 

was rinsed with sat. aq. NaHSO3 (1 x 50 mL) and 5% aq. K2CO3 (2 x 50 mL).  Caution should be taken when 

combining aqueous layers as carbon dioxide is evolved. The combined aqueous layers were back extracted with 

hexanes (100 mL).  The combined organic layers were dried (MgSO4), filtered, and reduced in vacuo.  The resulting 

oil was re-dissolved in hexanes (50 mL) and extracted again with 5% aq. K2CO3 (3 x 10 mL) to remove residual 

hydroquinone.  The organic layer was again dried (MgSO4), filtered, and reduced in vacuo to afford a clean mixture 

of allylic oxidation products and any unreacted starting material from which the conversion, yield, and B:L ratio 

were determined (1H NMR).  Enantioselectivities were determined by chiral GC using a β-cyclodextrin column (see 

individual substrates for details). 

General Procedure for Screens (Table 2.1, Table 2.2, Table 2.3):  Vials (2 mL or 4 mL borosilicate) were 

charged with the following solids: 1,2-Bis(phenylsulfinyl)ethane palladium(II) acetate (13) (10 mol%); Lewis acid 

(10 mol%), and oxidant (2 equiv.).  Separate vials (2 mL, borosilicate) were charged with the following: 1-undecene 

(0.1 mmol or 0.2 mmol), nitrobenzene (internal GC standard, 40 mol %), AcOH, and solvent. Aliquots were taken 

from the liquid vials (~10 µL filtered with Et2O through a short pipette plug of silica), to determine GC initial ratios 

of 1-undecene to nitrobenzene. The liquids were transferred via pipette into the appropriate solids vial, charged with 

a stir bar, capped and allowed to stir at room temperature or 45oC.  Aliquots were taken at time intervals to 

determine GC yields. Response factors relative to undecene were determined for the branched and linear allylic 

acetates.  Catalyst 13 was prepared as previously described.67  Commercially available 13 (Aldrich) was found to 

give comparable yields and selectivities.  Lewis acid 14 was prepared as described70 and added as a solution in 
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CH2Cl2.  Lewis acid’s 15 and 16 were prepared as previously described.71,72  Lewis acid 17 was prepared from 

commercially available (1R,2R)-(-)-[1,2-Cyclohexanediamino-N,N’-bis(3,5-di-t-butylsalicylidene)]Cobalt (II) as 

previously described.73,74  Lewis acid 19 was prepared from commercially available (1R,2R)-(-)-[1,2-

Cyclohexanediamino-N,N’-bis(3,5-di-t-butylsalicylidene)]Chromium(III) Chloride as previously described.75  

Table 2.5. Analysis of Lewis acid mediated enantioselective C—H bond oxidation 
 

 
aGC yield, average of at least two runs bDetermined by Chiral GC cTBME, 1.1 
equiv. DIPEA dEtOAc solvent, 4Å MS bead added(~30 mg), 48 hrs. 

 

Table 2.5. Solids vial (2 mL borosilicate):  1,2-Bis(phenylsulfinyl)ethane palladium(II) acetate (13) (0.02 mmol, 

10.0 mg)(Entries 1-19), benzoquinone (2 equiv., 0.4 mmol, 43 mg)(Entries 1-19), 14 (0.02 mmol, 0.1 M solution in 

CH2Cl2, 200 µL)(Entry 2), 15 (0.01 mmol, 9.9 mg)(Entry 3), 16 (0.02 mmol, 9.7 mg )(Entry 4), 17 (0.02 mmol, 13.2 

mg )(Entry 5-7), 18 (0.02 mmol, 12.6 mg)(Entries 8-11), 19 (0.02 mmol, 12.3 mg)(Entries 12-15), 20 (0.02 mmol, 

13.2 mg)(Entry 16-19). Liquids vial (2 mL borosilicate): AcOH (4 equiv., 0.8 mmol, 48 mg, 46 µL)(Entries 1-5, 8, 

12, 16), AcOH (1.1 equiv., 0.22 mmol, 13 mg, 12.6 µL)(Entries 6-7, 9-11, 13-15, 17-19), 1-undecene (1 equiv., 0.2 
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mmol, 31 mg, 41 µL)(Entries 1-19), nitrobenzene (internal GC standard, 0.08 mmol, 9.4 mg,  8.6 µL)(Entries 1-19), 

0.606 mL dioxane (Entries 1-5, 8-9, 12-13, 16-17), 100 µL dioxane (Entries 10, 14, 18), 100 µL TBME (Entry 6), 

Diisopropylethylamine (1.1 equiv., 0.22 mmol, 28.4 mg, 39 µL) (Entry 6), 100 µL EtOAc (Entries 7, 11, 15, 19), 

45oC (Entries 1-5, 8-9, 12-13, 16-17), room temperature (Entries 6-7, 10-11, 14-15, 18-19). Results are reported as 

an average of two to three runs, with yields and selectivities determined by GC. 

Mechanistic Explorations 

Relative Rates of π-σ- π Isomerization and Functionalization 

(Z)-1-deuterio-1-decene was prepared by n-BuLi deprotonation of decyne quenched with D2O,76 followed by 

hydrozirconation of 1-deuterio-1-decyne quenched with H2O. 77   This material was then submitted to the standard 

branched allylic oxidation conditions42b (Table 2.1, entry 15) and the double bond geometry of the product evaluated 

after reaction.  1H NMR showed a 1:1 ratio of cis- and trans-3-acetoxy-1-deuterio-1-decene.  1H NMR spectra of the 

starting material and crude product mixture are included in Appendix B.    

Evaluation of Potential LA Mediated Asymmetric Allylic Rearrangement 

Table 2.6.  Mechanistic evaluation of  LA as an agent for enantioselective allylic acetate rearrangement 
 

 
 

Table 2.6. Authentic 3-acetoxy-1-undecene made through our standard allylic oxidation conditions was re-exposed 

to the optimized reaction conditions (Table 1, Entry 6) for 24 hours and no appreciable change in B:L or % ee was 

observed (Table S2, Entry 1).  Similarly, we were unable to effect this transformation in the presence of another 

terminal olefin in a crossover experiment (Table S2, Entry 2).  Mimicking conditions of the reaction after significant 

conversion also failed to effect asymmetric isomerization (Table S2, Entry 3).  Solids vial (2 mL borosilicate):  1,2-

Bis(phenylsulfinyl)ethane palladium(II) acetate (13) (0.01 mmol, 5.0 mg)(Entries 1-3, 5), benzoquinone (2 equiv., 
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0.2 mmol, 21.7 mg)(Entries 1-2, 4-5), benzoquinone (1 equiv., 0.1 mmol, 10.9 mg)(Entry 3), hydroquinone (1 

equiv., 0.1 mmol, 11.0 mg) R,R-19 (0.01 mmol, 6.2 mg)(Entries 1-4).  Liquids vial (2 mL borosilicate): AcOH (1.1 

equiv., 0.11 mmol, 6.6 mg, 6.3 µL)(Entries 1-2, 4-5),AcOH (0.01 equiv., 0.01 mmol, 0.6 mg, 0.6 µL)(Entry 3), 3-

acetoxy-1-undecene (1 equiv., 0.1 mmol, 21 mg (Entries 1-5), allylcyclohexane (0.5 equiv., 0.05 mmol, 12.4 

mg)(Entries 2-3), nitrobenzene (internal GC standard, 0.04 mmol, 4.7 mg, 4.1 µL)(Entries 1-5), 50 µL EtOAc 

(Entries 1-5), room temperature (Entries 1-5). Results are reported as an average of two to three runs, with yields 

and selectivities determined by GC.   

Effect of Chromium Lewis Acid R, R-19 on C—H Cleavage  

Table 2.7.  Effect of chromium Lewis acid  19 on rate of C—H cleavage 
 

 

 

Table 2.7. Vial (2 mL borosilicate):  1,2-Bis(phenylsulfinyl)ethane palladium(II) acetate (13) (0.02 mmol, 10.0 

mg)(Entries 1-3), R,R-19 (0.02 mmol, 12.6 mg) (Entry 3),and a Teflon© stir bar.  A stock solution of 1-undecene 

(84 µL, 0.4 mmol) and EtOAc (2 mL) was prepared. Directly to the solids was added via syringe 104 µL of this 

stock solution (0.02 mmol 1-undecene), followed by AcOH (12.6 µL, 0.22 mmol).  Both vials were carefully stirred 

at room temperature.  After the indicated time, n-Bu4NCl (0.08 mmol, 22.2 mg) was added, and the mixture allowed 

to stir an additional 1 hr at room temperature. The contents of each vial were then transferred to a 7 cm pipette plug 
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of silica gel.  2 mL of CDCl3 was used to rinse the Pd-chloride dimer through the silica into a 25 mL recovery flask.  

The solvent was removed in vacuo.  A stock solution of nitrobenzene (10 uL, 0.09 mmol) and CDCl3 (10 mL) was 

prepared.   1.5 mL of this stock was added to each flask, the flasks were capped, vortexed for 15 seconds, and a 0.7 

mL aliquot was removed via syringe from each and transferred to a separate NMR tube.  Results are reported as an 

average of at least three runs, with yields determined by 1H NMR as compared to the internal standard and error bars 

indicating standard deviation from the mean. Relative rates are based on the slope of a linear fit to the observed data 

for an experimental condition (Entry X) divided by that of the control (Entry 1). 

Effect of Chromium Lewis Acids R, R-19 and R, R-20 on Functionalization of π-allyl-Pd-OAc 

Table 2.8.  Effect of chromium Lewis acid on rate of C—O functionalization 
 

 
A.) Proposed modes of action for chromium lewis acid: I Reductive 
elimination of acetate by a Cr(BQ) activated Pd-p-allyl II  Delivery from 
Cr(OAc)  to a Pd-p-allyl III  Delivery from Cr(OAc) to an activated Cr(BQ)-
Pd-p-allyl B.) Effects of catalysts 3 and 4 on functionalization of a Pd-p-
allyl.   Mock Catalytic = 0.2M EtOAc, 11 equiv. AcOH, 20 equiv. BQ, rt, 
(molarity and equivalents are relative to Pd) arate and selectivity determined 
by GC, comparison to a standard curve using NB as an internal standard bGC 
yield at 40 min. cDetermined via GC on  β-Cyclodextrin column dno BQ 
added e1equiv. R,R-20 and 1 equiv. TBAF·3H2O added frun in THF with π-
allyl-Pd-PF6 as the starting material C.) Enantioselectivity trends for 
functionalization with a variety of π-acids and R,R-19 
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Table 2.8.  Vial (2 mL borosilicate):  bis[acetato(1,2,3-trihapto-1-undecene)palladium (II)] 2278 (0.011 mmol, 7.0 

mg)(Entries 1-5), Hexafluorophospho(1,2,3-trihapto-1-undecene)palladium (II)79 (0.011 mmol)(Entry 6),1,4-

benzoquinone (0.22 mmol, 23.8 mg)(Entries 1-3, 5-6), R,R-19 (0.022 mmol, 13.5 mg) (Entries 2-3), R,R-20 (0.022 

mmol, 14.4 mg) (Entry 4-6), tetrabutylammonium fluoride trihydrate (0.022 mmol,  6.9 mg)(Entries 5-6),  and a 

Teflon© stir bar.  A stock solution of nitrobenzene (36 µL, 0.34 mmol) and EtOAc (2 mL) was prepared. (Entries 1-

5). A stock solution of nitrobenzene (36 µL, 0.34 mmol) and THF (2 mL) was prepared. (Entry 6). Directly to the 

solids was added via syringe 111 µL of the stock solution (0.018 mmol nitrobenzene), followed by AcOH (14 µL, 

0.24 mmol)(Entries 1-6).  Each vial was then capped and stirred at room temperature. At each time point, an aliquot 

(~7 µL) was removed and passed through a short plug of silica in a pipette into a 2 mL borosilicate vial.  Unreacted 

SM was then quenched with two drops of sat. aq. NaHSO3.  Each vial was capped and vortexed for 30 seconds.  

After allowing the layers to separate, the organic layer was decanted away and passed through a second pipette silica 

plug into a GC vial.  Results are reported as an average of at least three runs, with yields and selectivities determined 

by GC.  Yields were determined by comparison to a calibration curve of authentic 3-acetoxy-1-undecene, 

synthesized independently, versus nitrobenzene, with error bars indicating the standard deviation from the mean. 

 

 

 

 

 



43 

Exploration of Functional Group Tolerance and Scope  

Table 2.9. Preliminary scope of  enantioselective C—H bond oxidation 

 
aisolated yields of allylic oxidation products (1.0 mmol substrate), average of at least 
three runs bbased on recovered starting material cdetermined by  chiral GC. See 
substrate entries below for individual details dS,S-19 e72 hrs 

 

General Procedure for Asymmetric Branched Allylic Oxidation (Table 2.9):  A vial (8 mL borosilicate) was 

charged with the following:  1,2-Bis(phenylsulfinyl)ethane palladium(II) acetate(13) (10 mol%, 0.10 mmol, 50 mg); 

(1R,2R)-(-)-[1,2-Cyclohexanediamino-N,N’-bis(3,5-di-t-butylsalicylidene)]Chromium(III)F (R,R-19) (10 mol%, 

0.10 mmol, 61.6 mg), 1,4-benzoquinone (2 equiv., 2.0 mmol, 216 mg), an activated 4Ǻ MS bead (~30 mg), and a 

Teflon© stir bar.  A separate vial (2 mL, borosilicate) was charged with the following: substrate (1.0 mmol), AcOH 

(1.1 equiv., 63 µL), and EtOAc (200 µL). The liquids were transferred to the solids via pipette and the vial rinsed 

with EtOAc (3 x 100 µL ).  After carefully stirring for 48 hrs at room temperature, the reaction mixture was 

transferred to a separatory funnel with ~3 mL EtOAc and diluted with hexanes (200 mL). The organic layer was 

rinsed with sat. aq. NaHSO3 (1 x 50 mL) and 5% aq. K2CO3 (2 x 50 mL).  Caution should be taken when combining 

aqueous layers as carbon dioxide is evolved. The combined aqueous layers were back extracted with hexanes (100 

mL).  The combined organic layers were dried (MgSO4), filtered, and reduced in vacuo.  The resulting oil was re-

dissolved in hexanes (50 mL) and extracted again with 5% aq. K2CO3 (3 x 10 mL) to remove residual hydroquinone.  

The organic layer was again dried (MgSO4), filtered and reduced in vacuo to afford a clean mixture of allylic 

oxidation products and any unreacted starting material from which the B:L, yield, and conversions were determined 
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(1H NMR).  Reported yields and selectivities are an average of at two to three runs.  Enantiomeric excess was 

determined by chiral GC (β-cyclodextrin column), as compared to racemic standards generated through our standard 

branched oxidation chemistry.Error! Bookmark not defined.   Absolute stereochemistry was determined by performing the 

optimized reaction conditions (Table 1, Entry 6) on 1-octene.  The resultant product was compared to acetylated 

commercially available Matasuka alcohol ((S)-1-octen-3-ol, Fluka, >99% ee) and determined to be enriched in the R 

enantiomer when (R,R)-19 was used as catalyst.  The remaining substrates were assigned by analogy.  Slight 

variations in B:L ratios and ee’s were noted based on batch of Cr catalyst.  Representative high and low numbers are 

given for each substrate, and factored into the averages reported in Table 2.5.  

 

 

Entry 1. Run 1: 201 mg, 0.945 mmol, 95% yield, [B:L] = 5.1:1, [ee] = 60%.  Run 

2: 190 mg, 0.893 mmol, 89% yield; [B:L] = 5.3:1, [ee] = 58%.  Run 3: 197 mg, 

0.927 mmol, 93% yield; [B:L] = 5.3:1, [ee] = 60%. (β-cyclodextrin, 110°C isothermal, tR(major) = 10.43 min., 

tR(minor) = 11.02 min.), [average yield: 92%]; 1H NMR  (500 MHz, CDCl3) δ 5.77 (ddd, J = 17.2, 10.8, 6.4 Hz, 

1H), 5.25-5.14 (m, 3H), 2.06 (s, 3H), 1.66-1.51 (m, 2H), 1.40-1.19 (m, 12H), 0.87 (t, J = 6.8 Hz, 3H); 13C NMR  

(125 MHz, CDCl3) δ 170.4, 136.6, 116.5, 74.9, 34.2, 31.8, 29.4, 29.4, 29.2, 25.0, 22.6, 21.3, 14.1; IR  (neat, cm-1) 

3089.1, 2931.0, 2855.8, 1741.9, 1466.2, 1371.0, 1239.6; HRMS (ESI) m/z calculated for C13H24O2Na [M + Na]+: 

235.1674; found: 235.1667. 

Entry 2. S,S-19 used as LA catalyst.  [ee] = 59% (β-cyclodextrin, 110°C 

isothermal, tR(minor) = 10.43 min., tR(major) = 11.02 min.) 

 

Entry 3. Run 1: 235 mg, 0.915 mmol, 92% yield, [B:L] = 5.2:1, [ee] = 58%.  

Run 2: 225 mg,  0.879 mmol, 88% yield; [B:L] = 5.1:1, [ee] = 58%, Run 3:  

224 mg , 0.876 mmol, 87% yield; [B:L] = 4.0:1, [ee] = 55% (β-cyclodextrin, 130°C isothermal, tR(major) = 34.30 

min., tR(minor) = 35.49 min.), [average yield: 89%]; 1H NMR  (500 MHz, CDCl3) δ  5.78 (ddd, J = 17.1, 10.5, 6.5 

Hz, 1H), 5.24-5.14 (m, 3H), 3.66 (s, 3H), 2.29 (t, J = 8.0 Hz, 2H), 2.05 (s, 3H), 1.62-1.53 (m, 4H), 1.29 (bs, 8H); 13C 

NMR  (125 MHz, CDCl3) δ 174.2, 170.3, 136.5, 116.5, 74.8, 51.4, 34.1, 34.0, 29.1, 29.0, 29.0, 24.9, 24.8, 21.2; IR  
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(neat, cm-1) 3089.1, 2932.9, 2858.2, 1742.0, 1436.3, 1371.5; HRMS (ESI) m/z calculated for C14H24O4Na [M + 

Na]+: 279.1572; found: 279.1564. 

 

 

Entry 4. Run 1:  132 mg, 0.708 mmol, 71% yield, [B:L] = 4.6:1, [ee] = 50%.  Run 2: 119 

mg, 0.640 mmol, 64% yield; [B:L] = 4.7:1, [ee] = 49%.  Run 3: 131 mg, 0.706 mmol, 71% 

yield; [B:L] = 4.6:1, [ee] = 50%. (β-cyclodextrin, 110°C isothermal, tR(major) = 5.52 min., 

tR(minor) = 5.83 min.), [average yield: 69%, with 4% recovered SM (5.1 mg)]; 1H NMR  (500 MHz, CDCl3) δ 5.76 

(ddd, J = 17.3, 10.5, 6.3 Hz, 1H), 5.29-5.18 (m, 3H), 3.68 (s, 3H), 2.36 (t, J = 7.5 Hz, 2H), 2.06 (s, 3H), 2.00-1.93 

(m, 2H);  13C NMR  (125 MHz, CDCl3) δ 173.3, 170.1, 135.6, 117.2, 73.6, 51.7, 29.6, 29.1, 21.1; IR  (neat, cm-1) 

3088.0, 2953.7, 2853.7, 1742.2, 1438.3, 1372.7, 1236.7; HRMS (ESI) m/z calculated for C9H14O4Na [M + Na]+: 

209.0790; found: 209.0787. 

 

 

Entry 5. Run 1:   230 mg, 0.806 mmol, 81% yield, [B:L] = 4.5:1, [ee] = 

55%.  Run 2:  248 mg, 0.861 mmol, 86% yield; [B:L] = 4.1:1, [ee] = 52%.  

Run 3:   229 mg, 0.802 mmol, 80% yield; [B:L] = 4.6:1, [ee] = 55%. (β-cyclodextrin, 140°C isothermal, tR(major) =  

93.29 min., tR(minor) =  95.48 min. [average yield: 82%, with 6% recovered SM (13.6 mg)];  1H NMR  (500 MHz, 

CDCl3) δ 5.76 (ddd, J = 17.2, 10.4, 6.2 Hz, 1H), 5.24-5.14 (m, 3H), 3.68 (s, 3H), 3.17 (s, 3H), 2.40 (t, J = 7.6 Hz, 

2H), 2.06 (s, 3H), 1.63-1.54 (m, 4H), 1.30 (bs, 8H); 13C NMR  (125 MHz, CDCl3) δ 174.7, 170.4, 136.5, 116.5, 74.8, 

61.1, 34.1, 32.2, 31.8, 29.3, 29.2, 29.2, 24.9, 24.5, 21.2; IR  (neat, cm-1) 3084.1, 2936.7, 2854.6, 1737.9, 1665.9, 

1463.3, 1383.0, 1239.8; HRMS (ESI) m/z calculated for C15H27NO4Na [M + Na]+: 308.1838; found: 308.1832. 

 

Entry 6. Run 1: 381 mg, 0.816 mmol, 82% yield, [B:L] = 4.4:1, [ee] = 

63%.  Run 2: 386 mg, 0.826 mmol, 83% yield; [B:L] = 4.6:1, [ee] = 64%.  

Run 3: 402 mg, 0.862 mmol, 86% yield; [B:L] = 4.3:1, [ee] = 61%.  EE determination performed after silyl 

deprotection (1M TBAF in THF) and acetylation (Ac2O, NEt3, DMAP). (β-cyclodextrin, 135°C isothermal, 

tR(major) =  36.86 min., tR(minor) =  37.92 min.) [average yield: 84%, with 7% recovered SM (28.5 mg)]; 1H NMR  
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(500 MHz, CDCl3) δ 7.67 (dd, J = 7.8, 1.0 Hz, 4H), 7.47-7.34 (m, 6H), 5.77 (ddd, J = 17.4, 10.5, 6.5 Hz, 1H), 5.25-

5.14 (m, 3H), 3.65 (t, J = 6.5 Hz, 2H), 2.06 (s, 3H), 1.65-1.52 (m, 4H), 1.40-1.20 (m, 10H), 1.04 (s, 9H); 13C NMR 

(125 MHz, CDCl3) δ 170.4, 136.6, 135.6, 134.1, 129.5, 127.5, 116.5, 74.9, 64.0, 34.2, 32.5, 29.4, 29.3, 29.3, 26.9, 

25.7, 25.0, 21.3, 19.2; IR  (neat, cm-1) 3071.3, 3050.2, 2931.0, 2857.8, 1741.0, 1589.5, 1472.3, 1428.0, 1240.5; 

HRMS (ESI) m/z calculated for C29H42O3SiNa [M + Na]+: 489.2801; found: 489.2803. 

 

Entry 7.  Run 1: 189 mg, 0.829 mmol, 83% yield, [B:L] = 4.9:1, [ee] = 50%. 

Run 2: 187 mg, 0.819 mmol, 82% yield; [B:L] = 3.7:1, [ee] = 49%. Run 3: 189 

mg, 0.827 mmol, 83% yield; [B:L] = 4.6:1, [ee] = 50%.  EE determination performed after acetylation (Ac2O, NEt3, 

DMAP). (β-cyclodextrin, 135°C isothermal, tR(major) =  36.92 min., tR(minor) =  37.94 min.), [average yield: 

83%.]; 1H NMR  (500 MHz, CDCl3) δ 5.77 (ddd, J = 17.4, 10.5, 6.5 Hz, 1H), 5.25 (m, 3H), 3.64 (app dd, J = 12.0, 

6.5 Hz, 2H), 2.06 (s, 3H), 1.67-1.53 (m, 4H), 1.40-1.23 (m, 10H),; 13C NMR  (125 MHz, CDCl3) δ 170.4, 136.6, 

116.5, 74.8, 63.0, 34.1, 32.7, 29.4, 29.3, 29.2, 25.6, 25.0, 21.2; IR  (neat, cm-1) 3247.5, 3085.2, 2931.4, 2856.6, 

1731.8, 1647.3, 1463.4, 1371.9; HRMS (ESI) m/z calculated for C13H24O3Na [M + Na]+: 251.1623; found: 

251.1620. 

 

Entry 8. Run 1: 220 mg, 0.908 mmol, 91% yield, [B:L] = 3.6:1, [ee] = 50%. Run 2: 220 

mg, 0.908 mmol, 91% yield; [B:L] = 3.3:1, [ee] = 47%. Run 3: 221 mg, 0.914 mmol, 91% 

yield; [B:L] = 3.8:1, [ee] = 49%. EE determination done after converting THP to acetate.80 (β-cyclodextrin, 110°C 

isothermal, tR(major) =  9.27 min., tR(minor) =  9.80 min.), [average yield: 91%.]; 1H NMR  (500 MHz, CDCl3) δ 

5.78 (ddd, J = 17.0, 10.5, 6.5 Hz, 1H), 5.30-5.16 (m, 3H), 4.57 (t, J = 3.5 Hz, 1H), 3.88-3.83 (m, 1H), 3.77-3.71 (m, 

1H), 3.52-3.47 (m, 1H),3.42-3.36 (m, 1H), 2.06 (s, 3H), 1.88-1.49 (m, J =  10H); 13C NMR (125 MHz, CDCl3) δ 

170.3, 136.3, 116.7, 98.8, 74.6, 67.0, 62.3, 30.9, 30.7, 25.4, 25.3, 21.2, 19.6; IR  (neat, cm-1) 3087.1, 2937.0, 2870.7, 

1738.4, 1646.7,1441.31, 1371.7, 1236.9; HRMS (ESI) m/z calculated for C13H22O4Na [M + Na]+: 265.1416; found: 

265.1410. 

 

Entry 9. Run 1:  225 mg, 0.906 mmol, 91% yield, [B:L] = 4.7:1, [ee] = 45%. Run 2: 226 
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mg, 0.910 mmol, 91% yield; [B:L] = 4.7:1, [ee] = 44%. Run 3:  mg,  mmol, 89% yield; [B:L] = 3.6:1, [ee] = 45%. 

(β-cyclodextrin, 140°C isothermal, tR(major) = 21.87 min., tR(minor) = 22.39 min.), [average yield: 91%.]; 1H 

NMR  (500 MHz, CDCl3) δ 7.37-7.27 (m, 5H), 5.77 (ddd, J = 17.2, 10.4, 6.2 Hz, 1H), 5.28-5.15 (m, 3H), 4.50 (bs, 

2H), 3.48 (t, J = 6.4 Hz, 2H), 2.06 (s, 3H), 1.75-1.60 (m, 4H); 13C NMR  (125 MHz, CDCl3) δ 170.3, 138.4, 136.3, 

128.3, 127.6, 127.5, 116.7, 74.5, 72.9, 69.8, 30.8, 25.4, 21.2; IR  (neat, cm-1) 3087.8, 3063.9, 3031.2, 2940.3, 2857.9, 

1737.7, 1647.0, 1496.0, 1454.1; HRMS (ESI) m/z calculated for C15H20O3Na [M + Na]+: 271.1310; found: 

271.1302. 

 

Entry 10. Run 1: 144 mg, 0.791 mmol, 79% yield, [B:L] =1.5:1, [ee] = 62%. Run 2: 141 mg, 

0.772 mmol, 77% yield; [B:L] = 1.5:1, [ee] = 61%, (β-cyclodextrin, 110°C isothermal, tR(major) = 

5.24 min., tR(minor) = 5.52 min.), [average yield: 78%, with 6% recovered SM (7.5 mg)]; 1H 

NMR  (500 MHz, CDCl3) δ 5.75 (ddd, J = 17.1, 10.5, 7.0 Hz, 1H), 5.23-5.17 (m, 2H), 5.04 (t, J = 7.0 Hz, 1H), 2.07 

(s, 3H), 1.75-1.49 (m, 6H), 1.33-0.88 (m, 5H); 13C NMR  (125 MHz, CDCl3) δ 170.4, 135.1, 117.4, 78.9, 41.4, 28.5, 

26.3, 26.1, 25.9, 25.9, 21.2; IR  (neat, cm-1) 3087.0, 2926.7, 2853.7, 1741.6, 1450.1, 1369.6; HRMS (ESI) m/z 

calculated for C11H18O2Na [M + Na]+: m/z calculated for C11H18O2Na [M + Na]+: 205.1204; found: 205.1196 

 

General Procedure for Cleavage of Allylic Acetates:   To a 25 mL flask containing crude allylic acetate (1 mmol, 

assumed) was added MeOH (5 mL, 0.2 M) and potassium carbonate (0.276 g, 2 mmol).  The reaction was 

vigorously stirred and monitored via thin layer chromatography (TLC).  Upon completion, the reaction was 

transferred to a sepratory funnel with methylene chloride (50 mL).  Water (15 mL) was added, and the aqueous layer 

was extracted with methylene chloride (3 x 50 mL).  The combined organics were washed with brine (1 x 10 mL), 

then dried (MgSO4), filtered, and reduced in vacuo. Products were then purified by standard SiO2 chromatography.  

While the branched and linear allylic alcohols were commonly separable, it was found that carrying them forward as 

a mixture had no detrimental effect as the subsequent resolution acylated the linear alcohol rapidly making its 

separation from branched alcohol trivial.  Individual product yields and characterization are reported below. 

 

General Procedure for Resolution with Novozyme 435:   To a flame dried round bottom flask containing allylic 

alcohol to be resolved (1 equiv.) was added vinyl acetate (0.6M) and Novozyme 435 immobilized on polystyrene 
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beads (33.3 mg/1 mmol).  The reaction was stirred vigorously at room temperature for 36 hrs.  Upon completion, the 

solid supported enzyme was removed via filtration.  The solid support was rinsed thoroughly with diethyl ether and 

then the filtrate reduced in vacuo and purified via standard SiO2 chromatography.  Enantioselectivities were 

determined by chiral gas chromatographic analysis on the acetylated derivative of each isolated alcohol.  It was 

found that the recovered solid supported enzyme could be used up to 5 times with little diminishment in activity.  

Individual yields and selectivities are reported below. 

 

General Procedure for Resolution with the Protease S. Carlsberg: The active enzyme for resolution was 

prepared as previously described by and co-workers.81  To a flame dried round bottom flask containing allylic 

alcohol to be resolved (1 equiv.) was added isoproenyl valerate82 (1.5 equiv), active S. Carlsberg (36 mg/1 mmol), 

sodium carbonate (1 equiv.) and THF (0.5M).  The reaction was stirred vigorously at room temperature for 60 hrs.  

Upon completion, the enzyme was removed via filtration.  The enzyme was rinsed thoroughly with diethyl ether and 

then the filtrate reduced in vacuo and purified via standard SiO2 chromatography.  Enantioselectivities were 

determined by chiral gas chromatographic analysis on the acetylated derivative of each isolated alcohol.  Individual 

yields and selectivities are reported below. 

 

1-O-Benzyl-5-hexen-1-ol (29) To a flame dried 100 mL round bottom flask was added 

NaH (0.624 g, 26.0 mmol, 2 equiv.) under inert atmosphere.  The flask was then charged 

with a Teflon stir bar, sealed with a septum, and anhydrous DMF (65 mL, 0.2M) was 

added.  After cooling the reaction vessel to 0°C, 5-hexen-1-ol (1.3 g, 13.0 mmol, 1 equiv.) was added dropwise via 

syringe and allowed to stir at 0°C for 1 hour.  Benzyl bromide (1.62 mL, 13.6 mmol, 1.05 equiv.) was then added 

dropwise via syringe, and the reaction was allowed to warm to room temperature. After the reaction had gone to 

completion by TLC analysis, the reaction flask was again cooled in an ice bath and quenched with saturated, 

aqueous NH4Cl solution (50 ml).  The reaction was then transferred to a sepratory funnel and diluted with 200 mL of 

Et2O.  The organic layer was collected, and the aqueous layer was extracted further with Et2O (3 x 50 mL).  The 

combined organics were then dried (MgSO4), filtered, and reduced in vacuo.  The crude material was then purified 

via column chromatography using a 10:90 EtOAc:Hexanes eluent system to afford 29 as a clear oil (2.43 g, 12.7 

mmol, 98% yield)  1H NMR  (500 MHz, CDCl3) δ 7.37-7.32 (m, 4H), 7.30-7.26 (m, 1H), 5.81 (ddt, J = 7.0, 10.0, 
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17.0 Hz, 1H), 5.00 (dm, J = 17.3 Hz, 1H), 4.95 (dm, J = 10.5 Hz, 1H), 4.51 (s, 2H), 3.48 (t, J = 6.5 Hz, 2H), 2.07 

(app q, J = 7.0 Hz, 2H), 1.64 (app p, J = 6.5 Hz, 2H), 1.48 (app p, J = 7.5 Hz, 2H); 13C NMR  (125 MHz, CDCl3) δ 

138.7, 138.6, 128.3, 127.5, 127.4, 114.5, 72.8, 70.2, 33.5, 29.2, 25.4; IR  (neat, cm-1) 3064.4, 3029.6, 2975.6, 2935.1, 

2858.0, 2794.4, 1641.1, 1496.5, 1454.1; HRMS (EI) m/z calculated for C13H18O [M+]+: 190.13577; found 

190.13445. 

 

(4R)-1-O-Benzyl-4-acetoxy-5-hexen-1,4-diol:  Following the general procedure for the 

asymmetric branched allylic oxidation afforded: Run 1:  226 mg, 0.910 mmol, 91% yield; 

[B:L] = 4.7:1, [ee] = 44%. Run 2: 220 mg,  0.886 mmol, 89% yield; [B:L] = 3.8:1, [ee] = 45%. (β-cyclodextrin, 

120°C isothermal, tR(R) = 64.98 min., tR(S) = 66.64 min.), [average yield: 90%.]; This material was taken forward 

without further purification. 1H NMR  (500 MHz, CDCl3) δ 7.37-7.27 (m, 5H), 5.77 (ddd, J = 17.2, 10.4, 6.2 Hz, 

1H), 5.28-5.15 (m, 3H), 4.50 (bs, 2H), 3.48 (t, J = 6.4 Hz, 2H), 2.06 (s, 3H), 1.75-1.60 (m, 4H); 13C NMR  (125 

MHz, CDCl3) δ 170.3, 138.4, 136.3, 128.3, 127.6, 127.5, 116.7, 74.5, 72.9, 69.8, 30.8, 25.4, 21.2; IR  (neat, cm-1) 

3087.8, 3063.9, 3031.2, 2940.3, 2857.9, 1737.7, 1647.0, 1496.0, 1454.1; HRMS (ESI) m/z calculated for 

C15H20O3Na [M + Na]+: 271.1310; found: 271.1302.  

This material was then subjected to the standard procedure for cleavage of the allylic acetate which afforded allylic 

alcohol ready for subsequent resolution: Run 1:  185 mg, 0.897 mmol, 99% yield, [B:L] = 4.7:1. Run 2: 181 mg, 

0.877 mmol, 99% yield; [B:L] = 3.8:1 

 

(-)-(4R)-1-O-Benzyl-5-hexen-1,4-diol ((-)-24): Following the general procedure for 

Novozyme 435 resolution afforded:  Run 1:  105 mg, 0.509 mmol, 57% yield, [B:L] = 

>20:1, [ee] = 98%. Run 2: 100 mg, 0.485 mmol, 55% yield; [B:L] = >20:1, [ee] = 99%. 

Enantiomeric access was determined on the acylated derivative of the final product (ee determined on the acylated 

alcohol, β-cyclodextrin, 120°C isothermal, tR(R) = 65.56 min., tR(S) = 67.14 min), [average yield: 56%.]; [α]26
D  = -

2.86° (c = 2.0, CHCl3); 
1H NMR  (500 MHz, CDCl3) δ 7.37-7.32 (m, 4H), 7.30-7.25 (m, 1H), 5.87 (ddd, J = 17.0, 

10.5, 6.0 Hz, 1H), 5.25 (dt, J = 17.0, 1.5 Hz, 1H), 5.10 (dt, J = 10.5, 1.5 Hz, 1H), 4.52 (s, 2H), 4.13 (m, 1H), 3.52 (t, 

J = 6.0 Hz, 2H), 2.27 (d, J = 4.5 Hz, 2H), 1.77-1.57 (m, 4H); 13C NMR  (125 MHz, CDCl3) δ 141.0, 138.1, 128.3, 

127.6, 127.6, 114.4, 72.9, 72.6, 70.2, 34.2, 25.7; IR  (neat, cm-1) 3403.8, 3066.3, 3031.6, 2979.5, 2942.9, 2858.0, 
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2798.2, 1643.1.0, 1496.5, 1454.1; HRMS (ESI) m/z calculated for C13H18O2Na [M+Na]+: 229.1204; found: 

229.1204. 

 

(+)-(4S)-1-O-Benzyl-5-hexen-1,4-diol ((+)-24):  Material for this route was obtained by 

application of the general ABAO procedure using (S,S)-19 as a chiral catalyst.  

Subsequent acetate deprotection by the general procedure described afforded: Run 1:  

180 mg, 0.873 mmol, 87% yield; [B:L] = 4.4:1, [ee] = 46%. Run 2: 187 mg, 0.906 mmol, 91% yield; [B:L] = 4.1:1, 

[ee] = 45%. Yields and selectivities are over two-steps.  This material was then subjected to the general procedure 

for resolution with S. Carlsberg to afford chiral allylic alcohol: Run 1:  92 mg, 0.446 mmol, 52% yield, [B:L] = 

>20:1, [ee] = 99%. Run 2: 97 mg, 0.470 mmol, 54% yield; [B:L] = >20:1, [ee]; Enantiomeric access was determined 

on the acylated derivative of the final product (ee determined on the acylated alcohol, β-cyclodextrin, 120°C 

isothermal, tR(S) = 67.03 min) [average yield: 53%.];  [α]26
D  = +2.85° (c = 2.0, CHCl3). 

 

Methyl (9R)-9-acetoxyundec-10-eneoate: The general procedure for the 

asymmetric branched allylic oxidation afforded: Run 1: 235 mg, 0.915 mmol, 

92% yield, [B:L] = 5.1:1, [ee] = 58%.  Run 2: 224 mg, 0.876 mmol, 88% yield; [B:L] = 4.3:1, [ee] = 55%. Run 3 

(gram scale): 1.09 g, 4.250 mmol, 85% yield; [B:L] = 4.1:1, [ee] = 57%.   (β-cyclodextrin, 120°C isothermal, tR(R) = 

55.96 min., tR(S) = 57.30 min.), [average yield: 90%]; This material was taken forward without further purification. 

1H NMR  (500 MHz, CDCl3) δ  5.78 (ddd, J = 17.1, 10.5, 6.5 Hz, 1H), 5.24-5.14 (m, 3H), 3.66 (s, 3H), 2.29 (t, J = 

8.0 Hz, 2H), 2.05 (s, 3H), 1.62-1.53 (m, 4H), 1.29 (bs, 8H); 13C NMR  (125 MHz, CDCl3) δ 174.2, 170.3, 136.5, 

116.5, 74.8, 51.4, 34.1, 34.0, 29.1, 29.0, 29.0, 24.9, 24.8, 21.2; IR  (neat, cm-1) 3089.1, 2932.9, 2858.2, 1742.0, 

1436.3, 1371.5; HRMS (ESI) m/z calculated for C14H24O4Na [M + Na]+: 279.1572; found: 279.1564.  

This material was then subjected to the standard procedure for cleavage of the allylic acetate which afforded allylic 

alcohol ready for subsequent resolution: Run 1:  188 mg, 0.877 mmol, 96% yield, [B:L] = 5.1:1. Run 2: 179 mg, 

0.835 mmol, 95% yield; [B:L] = 4.3:1. Run 3 (gram scale): 879 mg, 4.101 mmol, 96% yield; [B:L] = 4.1:1 
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Methyl (9R)-9-hydroxyundec-10-eneoate ((-)-30): Following the general 

procedure for Novozyme 435 resolution afforded:  Run 1: 119 mg, 0.555 

mmol, 63% yield, [B:L] = >20:1, [ee] = 99%.  Run 2: 109 mg, 0.509 mmol, 

61% yield; [B:L] = >20:1, [ee] = 98%, Run 3 (gram scale): 523 mg, 2.441 mmol, 60% yield; [B:L] = >20:1, [ee] = 

99%. (ee determined on the acylated alcohol, β-cyclodextrin, 120°C isothermal, tR(R) = 55.92 min.), [average yield: 

62%]; [α]25
D  = -5.13° (c = 1.0, CHCl3); 

1H NMR  (500 MHz, CDCl3) δ  5.86 (ddd, J = 16.9, 10.8, 6.0 Hz, 1H), 5.22 

(d, J = 17.0 Hz, 1H), 5.10 (d, J = 10.5 Hz, 1H), 4.09 (p, J = 5.5 Hz, 1H), 3.66 (s, 3H), 2.30 (t, J = 7.5 Hz, 2H), 1.63 – 

1.30 (m, 13H); 13C NMR  (125 MHz, CDCl3) δ 174.2, 141.3, 114.4, 73.2, 51.4, 37.0, 34.1, 29.3, 29.1, 29.0, 25.2, 

24.9; IR  (neat, cm-1) 3426.9, 2979.5, 2931.3, 2856.1, 1739.5, 1436.7; HRMS (ESI) m/z calculated for C12H22O3Na 

[M+Na]+: 237.1467; found: 237.1471.  

 

2-(Pent-4-en-1-yl)-1,3-dioxane (36): To a flame dried 100 mL round bottom flask with a 

Teflon stir bar under an inert atmosphere of N2 was added THF (34 mL, 0.15M) and 

bromoethyl-1,3-dioxane (1.0 g, 5.123 mmol, 1 equiv.). A 2M solution of allylmagnesium chloride in THF (10.25 

mL, 20.04 mmol, 4 equiv.) was then added dropwise via syringe. The reaction was heated to reflux briefly (~10 

min.) and then allowed to cool to room temperature and stir overnight. The reaction was complete by TLC analysis, 

and the reaction slowly quenched with saturated, aqueous NH4Cl solution (50 ml).  The reaction was then 

transferred to a separatory funnel and diluted with 150 mL of Et2O.  The organic layer was collected, and the 

aqueous layer was extracted further with Et2O (3 x 50 mL).  The combined organics were then washed with H2O (2 

x 15 mL), dried (MgSO4), filtered, and reduced in vacuo.  The crude material was then purified via column 

chromatography using a 10:90 EtOAc:Hexanes eluent system to afford a clear oil (0.793 g, 5.08 mmol, 99% yield)  

1H NMR  (500 MHz, CDCl3) δ 5.80 (ddt, J = 6.5, 10.0, 17.3 Hz, 1H), 5.00 (dm, J = 17.3 Hz, 1H), 4.94 (dm, J = 10.0 

Hz, 1H), 4.52 (t, J = 5.5 Hz, 1H), 4.12-4.07 (m, 2H), 3.79-3.72 (m, 2H), 2.12-2.02 (m, 3H), 1.63-1.57 (m, 2H) 1.52-

1.45 (m, 2H) 1.33 (d heptet, J = 1.5, 13.5 Hz, 1H); 13C NMR  (125 MHz, CDCl3) δ 138.5, 114.7, 102.2, 66.9, 34.3, 

33.5, 25.8, 23.2; IR  (neat, cm-1) 3075.9, 2954.4, 2925.5, 2850.3, 2778.9, 2730.7, 2657.4, 1641.1, 1459.9; HRMS 

(EI) m/z calculated for C9H15O2 [M-H] +: 155.10721; found: 155.10588. 
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2-((3R)-Pent-3-acetoxy-4-en-1-yl-3-ol)-1,3-dioxane: Following the general procedure for 

the asymmetric branched allylic oxidation afforded: Run 1:   180 mg, 0.840 mmol, 84% 

yield; [B:L] = 4.8:1:1, [ee] = 44%. Run 2:  178 mg, 0.831 mmol, 83% yield; [B:L] = 4.3:1, 

[ee] = 46%. (β-cyclodextrin, 110°C isothermal, tR(R) = 22.21 min., tR(S) = 22.79 min.), [average yield: 84%.]; This 

material was taken forward without further purification. 1H NMR  (500 MHz, CDCl3) δ 5.76 (ddd, J = 6.5, 10.5, 17.3 

Hz, 1H), 5.24 (q, J = 6.5 Hz, 1H), 5.23 (dm, J = 17.5 Hz, 1H), 5.16 (dm, J = 10.5 Hz, 1H), 4.53 (t, J = 5.0 Hz, 1H), 

4.09 (m, 2H), 3.75 (dt, J = 3.0, 12.5 Hz, 2H), 2.12-2.02 (m, 1H), 2.06 (s, 3H), 1.78-1.58 (m, 4H), 1.33 (dm, J = 13.5 

Hz, 1H); 13C NMR  (125 MHz, CDCl3) δ 170.2, 136.3, 116.7, 101.7, 74.3, 66.9, 30.7, 28.5, 25.8, 21.1; IR  (neat, cm-

1) 3087.5, 2962.1, 2931.3, 2852.2, 2780.9, 2732.7, 2661.3, 1739.5, 1646.9, 1430.9, 1407.8; HRMS (ESI) m/z 

calculated for C11H18O4Na [M+Na]+: 237.1103; found 237.1104. 

This material was then subjected to the standard procedure for cleavage of the allylic acetate which afforded allylic 

alcohol ready for subsequent resolution: Run 1:   141 mg, 0.819 mmol, 97% yield, [B:L] = 4.8:1. Run 2:  135 mg, 

0.784 mmol, 94% yield; [B:L] = 4.3:1 

 

2-((3R)-Pent-4-en-1-yl-3-ol)-1,3-dioxane ((-)-34): Following the general procedure for 

Novozyme 435 resolution afforded: Run 1:   80 mg, 0.464 mmol, 57% yield; [B:L] = >20:1:1, 

[ee] = 99%. Run 2:  76 mg, 0.441 mmol, 56% yield; [B:L] = >20:1, [ee] = 99%. (ee determined on the acylated 

alcohol, β-cyclodextrin, 110°C isothermal, tR(R) = 22.31 min., tR(minor) = 22.93 min.), [average yield: 57%.]; 

[α]24
D  = -5.01° (c = 1.0, CHCl3); 

1H NMR  (400 MHz, CDCl3) δ 5.86 (ddd, J = 5.6, 10.4, 17.3 Hz, 1H), 5.24 (dt, J = 

1.6, 17.2 Hz, 1H), 5.10 (dt, J = 1.2, 10.8 Hz, 1H), 4.58 (t, J = 4.4 Hz, 1H), 4.18-4.08 (m, 3H), 3.77 (app t, J = 11.6 

Hz, 2H), 2.36 (d, J = 4.0 Hz, 1H), 2.08 (qt, J = 4.0, 12.4, 1H), 1.78-1.58 (m, 4H), 1.35 (d sep, J = 1.2, 13.6 Hz, 1H); 

13C NMR  (125 MHz, CDCl3) δ 141.0, 114.4, 102.1, 72.6, 66.9, 31.2, 31.1, 25.7; IR  (neat, cm-1) 3430.8, 3079.8, 

2962.1, 2929.4, 2856.1, 2734.6, 1643.1, 1429.0, 1405.9; HRMS (ESI) m/z calculated for C9H16O3Na [M+Na]+: 

195.0995; found 195.0997. 

 

(4R, E)-Methyl 4-acetoxy-6-phenylhex-5-enoate (40): A round bottom flask (25 

mL ) was charged with the following:  1,2-Bis(phenylsulfinyl)ethane palladium(II) 

acetate(13) (10 mol%, 0.50 mmol, 250 mg); (1R,2R)-(-)-[1,2-Cyclohexanediamino-N,N’-bis(3,5-di-t-
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butylsalicylidene)] Chromium(III)F(R,R-19) (10 mol%, 0.50 mmol, 308 mg), 1,4-benzoquinone (2 equiv., 10.0 

mmol, 1.08 g), an activated 4Ǻ MS bead (~30 mg), and a Teflon© stir bar.  A separate vial (2 mL, borosilicate) was 

charged with the following: Methyl hexenoate (1.0 equiv, 5.0 mmol, 0.704 mL), AcOH (1.1 equiv., 5.5 mmol, 0.315 

mL), and EtOAc (0.50 mL). The liquids were transferred to the solids via pipette and the vial rinsed with EtOAc (4 

x 0.50 mL ).  After carefully stirring for 48 hrs at room temperature, to the reaction was added phenyl boronic acid 

(1.5 equiv., 7.5 mmol, 0.914 g), AcOH (1 equiv., 5 mmol, 0.285 mL), and EtOAc (12.5 mL).  The reaction was 

stirred at room temperature until complete by TLC (~4 hr) at which point the reaction mixture was transferred to a 

separatory funnel with ~5 mL EtOAc and diluted with hexanes (400 mL). The organic layer was rinsed with sat. aq. 

NaHSO3 (1 x 50 mL) and 5% aq. K2CO3 (2 x 50 mL).  Caution should be taken when combining aqueous layers as 

carbon dioxide is evolved. The combined aqueous layers were back extracted with hexanes (100 mL).  The 

combined organic layers were dried (MgSO4), filtered, and reduced in vacuo.  The resulting oil was re-dissolved in 

hexanes (150 mL) and extracted again with 5% aq. K2CO3 (3 x 25 mL) to remove residual hydroquinone.  The 

organic layer was again dried (MgSO4), filtered and reduced in vacuo  This product was generally taken forward 

without further purification, but was isolated and purified via silica gel chromatography for characterization. [B:L] = 

>20:1, [ee] = 50%. (Determined on the initial branched acetate product prior to oxidative Heck reaction, β-

cyclodextrin, 110°C isothermal, tR(R) = 5.52 min., tR(S) = 5.83 min.), 1H NMR  (500 MHz, CDCl3) δ 7.39 (d, J = 7.5 

Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.31-7.25 (m, 1H), 6.64 (d, J = 16.0 Hz, 1H), 6.12 (dd, J = 7.5, 15.8 Hz, 1H), 5.46 

(q, J = 6.5 Hz, 1H), 3.68 (s, 3H), 2.42 (dt, J = 2.0, 7.8 Hz, 2H), 2.13-2.07 (m, 2H), 2.10 (s, 3H); 13C NMR  (125 

MHz, CDCl3) δ 173.2, 170.2, 136.0, 133.0, 128.5, 128.0 126.7, 126.6, 73.7, 51.7, 29.8, 29.5, 21.2; IR  (neat, cm-1) 

3085.6, 3025.8, 2952.5, 2848.4,v1737.6, 1658.5, 1598.7, 1597.4, 1494.6; HRMS (ESI) m/z calculated for 

C15H18O4Na [M+Na]+: 285.1103; found 285.1092. 

 

(R, E)-5-styryldihydrofuran-2(3H)-one (41): To crude 40 (5 mmol, assumed) in a round 

bottom flask (250 mL ) was added THF (18.75 mL), DI H2O (6.25 mL), and a Teflon© stir bar. 

The flask was cooled to 0°C and LiOH⋅H2O (0.623 g, 15 mmol, 3.0 equiv.) was added in one 

portion.  The ice bath was removed after 10 minutes and the reaction monitored via TLC.  Upon completion (~2-4 

hr) benzene (150 mL) was added and the flask was transferred to a 100°C oil bath and a Dean-Stark trap and a reflux 

condenser were added.  The reaction was brought to a comfortable reflux and then allowed to stir overnight.  After 
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removing the flask from the bath and allowing it to cool to room temperature, the contents were transferred to a 

separatory funnel and the organic layer washed with aq. 1M H3PO4 (3 x 25 mL). The organic layer was then dried 

(MgSO4), filtered, and reduced in vacuo.  The resulting off white solid was purified via silica gel chromatography 

(10-30% Et2O:Hexanes) to afford a white solid. (0.504 g, 2.678 mmol, 54% (2-step)) 1H NMR  (500 MHz, CDCl3) 

δ7.40 (d, J = 7.5 Hz, 2H), 7.37-7.32 (m, 2H), 7.30-7.26 (m, 1H), 6.69 (d, J = 16.0 Hz, 1H), 6.21 (dd, J = 6.5, 16.0 

Hz, 1H), 5.13 (q, J = 6.5 Hz, 1H), 2.65-2.54 (m, 2H), 2.50 (app sextuplet, J = 9.0 Hz, 1H), 2.11 (ddd, J = 9.0, 12.5, 

16.6 Hz, 1H); 13C NMR  (125 MHz, CDCl3) δ 176.9, 135.6, 132.9, 128.7, 128.4 126.7, 126.4, 80.5, 28.8, 28.5; IR  

(neat, cm-1) 2989.1, 2950.6, 1762.6, 1722.1, 1454.1, 1415.5; HRMS (ESI) m/z calculated for C12H13O2 [M+H] +: 

189.0916; found 189.0918. 

 

(R)-5-((4R,5R)-2,2-dimethyl-5-phenyl-1,3-dioxolan-4-yl)dihydrofuran-2(3H)-one ((-)-42): To a 

clean, dry 100 mL recovery flask was added sequentially the following:  K2OsO4 
. 2H2O (0.018 g, 

0.05 mmol, 1 mol%), (DHQD)2PHAL (0.199 g, 0.25 mmol, 5 mol%), K3Fe(CN)6 (4.94 g, 15 

mmol, 3 equiv.), K2CO3 (2.07 g, 15 mmol, 3 equiv.), NaHCO3 (1.34 g, 15 mmol, 3 equiv.), a 

Teflon© stir bar, deionized water (24 mL), and tert-butanol (24 mL).  The reaction flask was stirred vigorously until 

both layers became translucent, at which time MeSO2NH2 (0.476 g, 5 mmol, 1 equiv.) was added and the reaction 

was cooled to 0°C.  After the solution became opaque, olefin (41) (0.941 g, 5 mmol, 1 equiv.) was added in one 

portion.  CH2Cl2 (2.4 mL) was added to improve SM solubility and the reaction was stirred vigorously at 0°C for 1 

hr, then warmed to room temperature and stirred until completion as indicated by TLC (~5 hr).  Upon completion, 

sodium bisulfite (2 g) was added slowly and the reaction stirred for 1 hour.  The reaction mixture was transferred to 

a separatory funnel and EtOAc ( 50 ml) was added. The aqueous layer was extracted with additional EtOAc (3 x 50 

mL).  The combined organic layers were dried (Na2SO4), filtered, and concentrated in vacuo. To the crude diol was 

added DMF (8.4 mL, 0.6 M) and 2-methoxypropene (4.79 mL).  The reaction was cooled to 0°C and p-TsOH.H2O 

(0.238 g, 1.25 mmol, 0.25 equiv.) was added and the reaction allowed to warm to room temperature while stirring 

overnight.  The reaction mixture was then transferred to a separatory funnel and diluted with Et2O (200 mL).  The 

organic layer was washed with DI H2O (3 x 25mL) and brine (1 x 25 mL).  The organic layer was then dried 

(MgSO4), filtered, and reduced in vacuo.  Residual DMF or 2-methoxypropene was removed by addition of benzene 

and in vacuo concentration.  The crude oil was purified by silica gel chromatography in 10-40% Et2O:Hexanes to 
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afford a white solid (0.920 g, 3.52 mmol, 70% yield (2-step), >20:1 dr, 99% ee (Determined on Chiracel AD-RH , 

35:75 CH3CN:H2O , tR(major) = 7.3 min., tR(minor) = 6.8 min.)  [α]26
D  = -94.9° (c = 1.0, CHCl3); 

1H NMR  (500 

MHz, CDCl3) δ7.39-7.31 (m, 5H), 4.78 (d, J = 8.5 Hz, 1H), 4.60 (ddd, J = 4.0, 6.3, 7.5 Hz, 1H), 4.10 (dd, J = 4.0, 

8.3 Hz, 1H), 2.60 (ddd, J = 6.5, 10.0, 18.0 Hz, 1H), 2.51 (ddd, J = 7.5, 9.5, 17.4 Hz, 1H), 2.38-2.24 (m, 2H), 1.56 (s, 

3H), 1.52 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 176.5, 137.2, 128.8, 128.7, 126.7 110.2, 83.4, 80.1, 78.7, 28.1, 

27.1, 27.0, 22.9; IR  (neat, cm-1) 3066.3, 3031.6, 2985.3, 2935.1, 2980.8, 1781.9, 1604.5, 1494.6, 1456.0; HRMS 

(ESI) m/z calculated for C15H19O4 [M+H] +: 263.1283; found 263.1280. The absolute configuration of this molecule 

was determined on a crystal grown from benzene of p-bromophenyl-42 synthesized through the same sequence.  The 

structure and pertinent measurements can be found in Appendix B. 

 

(R)-5-((4R,5R)-2,2-dimethyl-5-phenyl-1,3-dioxolan-4-yl)furan-2(5H)-one ((+)-43): To a clean, 

flame dried 25 mL recovery flask charged with a Teflon stir bar and under an argon atmosphere 

was added THF (5 mL) and hexamethyldisilazane (1.36 mmol, 0.288 mL, 1.1 equiv.).  The reaction 

was cooled to -78°C, and n-Buli (1.30 mmol, 0.813 mL, 1.05 equiv.) was added dropwise via 

syringe.  After stirring for ten minutes, (-)-42 (1.24 mmol, 0.325 g, 1 equiv.) in THF (1 mL, 0.15 mL rinse) was 

added slowly via cannula.  The reaction was stirred a further 25 minutes, and then phenylselenyl bromide (1.24 

mmol, 0.293 g, 1 equiv.) in THF (1.15 mL) was added via cannula over ~10 min.  The reaction was stirred for an 

additional 5 minutes and then quenched at-78°C with 1N HCl (5 mL). The reaction mixture was transferred to a 

separatory funnel and diluted with Et2O (200 ml). The organic layer was washed with sat. aq. NaHCO3 (2 x 10 mL).  

The organic layer was then dried (Na2SO4), filtered, and concentrated in vacuo.   Reproducibility for the elimination 

step was significantly improved by quickly purifying away fast running selenium containing species by SiO2 

chromatography in 5%-10%-20% Et2O:Hexanes. To the mixture of selenides (1.03 mmol, 0.425 g, 1 equiv.) in a 

clean, dry 100 mL flask was added CH2Cl2 (20.6 mL, 0.05 M) and the reaction flask was cooled to 0°C in an ice 

bath.  Hydrogen peroxide (3.08 mmol, 0.346 mL of 30% solution, 3 equiv.) was then added slowly via syringe.  The 

reaction was stirred at 0C and conversion monitored by TLC.  Upon completion, the reaction mixture was 

transferred to a separatory funnel and CH2Cl2 was added (200 mL).  The organic layer was then washed with DI 

H2O (2 x 20 mL) and brine (20 mL).  The organic layer was then dried (MgSO4), filtered, and reduced in vacuo.  

The crude oil was purified by silica gel chromatography in 10-40% Et2O:Hexanes to afford a white solid (0.237 g, 
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0.91 mmol, 73% yield (2-step).  [α]25
D  = 555.6° (c = 1.0, CHCl3); 

1H NMR  (500 MHz, CDCl3) δ7.48 (dd, J = 1.5, 

6.0 Hz, 1H), 7.40-7.31 (m, 5H), 6.17 (dd, J = 2.5, 5.8Hz, 1H), 5.16 (dt, J = 2.0, 6.5 Hz, 1H), 5.02 (d, J = 8.0 Hz, 1H), 

3.91 (dd, J = 6.5, 7.5 Hz, 1H), 1.56 (s, 3H), 1.54 (s, 3H); 13C NMR  (125 MHz, CDCl3) δ 172.2, 153.8, 137.3, 128.6, 

128.6, 127.0, 122.6, 110.6, 82.8, 82.7, 80.7, 27.1, 26.8; IR  (neat, cm-1) 3089.4, 3033.5, 2989.1, 2935.1, 2894.6, 

1783.8, 1758.8, 1602.6, 1496.5, 1456.0; HRMS (ESI) m/z calculated for C15H17O4 [M+H] +: 261.1127; found 

263.1123. 

 

 (3aS,5R,6S,6aS)-6-hydroxy-5-phenyltetrahydrofuro[3,2-b]furan-2(5H)-one ((-)-44): To 

(+)-43 (0.91 mmol, 0.237 g, 1 equiv.) in a clean, dry round bottom flask (50 mL ) with a 

Teflon© stir bar was added THF (9.1 mL) and 1N HCl (5-10 drops).  The reaction mixture was heated to 45C and 

monitored via TLC (70% EtOAc:Hex). Deprotection and cyclization would generally proceed to completion under 

these conditions with prolonged stirring, but could be expedited by the following procedure.  After complete 

acetonide deprotection by TLC, the flask was cooled to 0°C and CH2Cl2 (9.1 mL) and NEt3 was added until a pH of 

~10 was obtained. The flask was then allowed to warm to room temperature and monitored via TLC.  Upon 

completion (~4-6 hr), the contents were transferred to a separatory funnel and diluted with further CH2Cl2.  The 

organic layer was then washed with sat. aq. NH4Cl solution (3 x 15 mL). The combined aqueous layers were back 

extracted with EtOAc (3 x 50 mL) and then the combined organic layers were dried (MgSO4), filtered, and reduced 

in vacuo.  The resulting off white solid was purified via silica gel chromatography (10-50% EtOAc:Hexanes) to 

afford a white solid. (0.161 g, 0.731 mmol, 80%) [α]26
D  = -17.1° (c = 1.0, CHCl3); 

1H NMR  (500 MHz, CDCl3) 

δ7.44-7.34 (m, 5H), 5.23 (d, J = 2.5 Hz, 1H), 5.20 (td, J = 1.0, 5.0 Hz, 1H), 5.07 (d, J = 5.0 Hz, 1H), 4.64 (app t, J = 

2.0 Hz, 1H), 2.86 (dd, J = 6.0, 18.8 Hz, 1H), 2.79 (d , J = 18.5 Hz, 1H), 1.36 (d, J = 2.5 Hz, 1H); 13C NMR (125 

MHz, CDCl3) δ 175.4, 134.2, 128.9, 128.6, 126.6, 87.2, 82.8, 77.1, 75.8, 36.0; IR  (neat, cm-1) 3948.3, 2975.6, 

2948.6, 2923.6, 2858.0, 1766.5, 1496.49, 1454.1; HRMS (ESI) m/z calculated for C12H12O4Na [M+Na]+: 243.0645; 

found 243.0633 
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Chapter 3 

Palladium Catalyzed Dehydrogenation of Unactivated Carbonyl Compounds 

 

3.1. Introduction 

 A fundamental component of organic synthetic strategy is the union of small fragments through the attack 

of a nucleophile on an electrophile.  This concept is so general that methods which generate electrophilic or 

nucleophilic sites for further reaction are of particular importance for molecular construction.  One versatile class of 

electrophiles are α,β-unsaturated carbonyl compounds.  These structures are particularly useful due to the ease with 

which they can be further elaborated through a variety of selective transformations.83 Additionally, modern advances 

have enabled many of these methods to be carried out stereoselectively. A number of highly useful methods for 

making α,β-unsaturated carbonyl compounds from two fragments have been developed including carbonyl 

annulations83g-f and condensations,84 carbanion based strategies (Wittig and Horner-Wadsworth-Emmons 

reactions),85  and transition metal catalyzed processes (olefin metathesis86 and Heck reactions).83r-s While these 

reactions are effective for forming α,β-unsaturated carbonyl compounds, accessing this functionality directly from 

the parent carbonyl compound is often desired. In these cases, organic chemists turn to dehydrogenation reactions. 

Figure 3.1. General mechanism and scope of selenium based dehydrogenations 
 

 
 



60 

 Converting a carbonyl to its α,β-unsaturated homolog can be accomplished through several strategies.  The 

most frequently employed are two step processes that first install an activating group, and then subsequently convert 

the “activated” carbonyl to its unsaturated form.  For example, a ketone can be deprotonated to form an enolate, be 

transformed into an α-halocarbonyl by trapping with an electrophilic halogen, and then have its halide eliminated 

via a subsequent E2 mechanism to give an enone.87  More commonly, selenium is used as an enolate trapping 

reagent because the resulting selenide undergoes facile dehydroselenation after a mild oxidation step (Figure 3.1A).  

Selenium has been used to effect dehydrogenation on a wide range of substrates in moderate to excellent yield 

(Figure 3.1B).88 However, these methods require the use of stoichiometric amounts of the “activating-agent” and 

multiple steps under a variety of reaction conditions (e.g. basic, oxidative, thermal, etc.). Additionally, the highly 

reactive nature of the “activated” intermediates often leads to a variety of undesirable side reactions, diminishing 

overall yield and complicating product isolation.89 

Figure 3.2. General mechanism and scope of palladium based oxidation of silylated carbonyl compounds 
 

 
 

 The palladium-based oxidation of silylated carbonyl compounds such as 46 (Figure 3.2A), or Saegusa 

oxidation,90 is another common “pre-activation” approach.  Attack of the silylated carbonyl compound on palladium 

forms a transient Pd-enolate intermediate that then β-hydride eliminates to give the desired unsaturated product 

(Figure 3.2A).  Protonolysis of the Pd-enolate intermediate prior to elimination is the most significant challenge for 

this reaction manifold, as the resulting carbonyl compound is unreactive.  However, when carried out effectively, 
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this mild approach using stoichiometric or superstoichiometric quantities of palladium affords good yields on a 

variety of substrate classes (eg. silylated esters, ketones, aldehydes) and exhibits excellent functional group tolerance 

(Figure 3.2B).  Furthermore, several catalytic variants of this transformation have been developed and optimized, 

though their scope has proven to be more limited, necessitating the continued use of stoichiometric metal.91,92   

Figure 3.3. Scope of hypervalent iodine dehydrogenation of unactivated carbonyl compounds 
 

 
 

 Direct conversion of carbonyls into α,β-unsaturated carbonyls, without an activating step, is much less 

developed.  Many of the reagents previously described for multi-step dehydrogenations can be modified to effect a 

single pot transformation through a series of equilibrating intermediates. However, these systems have not shown 

sufficient generality to be widely used, owing in part to the challenge of driving the reaction from a carbonyl toward 

its more reactive unsaturated homolog under thermodynamic conditions.88 

In 2000, Nicoloau and co-workers disclosed that hypervalent iodine, known to be an efficient oxidant for 

alcohols and silylated carbonyls, was capable of oxidizing carbonyls to their α,β-unsaturated form without the need 

for preactivation.  In a series of reports the group demonstrated that a wide variety of aldehydes, ketoesters, and 

cyclic- and acyclic- ketones could be smoothly oxidized by 1-hydroxy-1,2-benziodoxal-3(1H)-one-1-oxide (IBX)93 

in dimethyl sulfoxide (DMSO) solvent in good to excellent yield with good functional group tolerance (Figure 

3.3A).  Mechanistic studies identified that this reaction most likely proceeds through attack of a transient enol on 

iodine(V) followed by sequential single electron transfer steps to give the desired product, iodine(III), and water.94 
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Building off of this mechanistic study, Nicolaou identified in 2002 that iodic acid (HIO3) could serve as an 

alternative to IBX for dehydrogenation, cleanly oxidizing cyclic- and acyclic-ketones or aldehydes even in the 

presence of unprotected alcohol functionality (Figure 3.3B).95  Promisingly, a catalytic hypervalent iodine 

dehydrogenation of cyclic ketones, using Oxone© as a terminal oxidant, was reported in 2008,96 though its scope 

has yet to be thoroughly examined. 

Figure 3.4. Proposed mechanism and scope of palladium catalyzed dehydrogenation of unactivated carbonyl compounds under basic conditions 
 

 
 

 Oxidation of unactivated ketones using palladium has been extensively researched,97 though success thus 

far for catalytic systems has been limited to only a few simple substrates (Figure 3.4).  The systems developed to 

date suffer from poor conversion, commonly use substrate in solvent quantities, and often make mixtures of 

products due to over-oxidation.  In reviewing this literature, I identified that most of the systems explored thus far 

have used high temperatures, strongly coordinating ligands, and/or basic reaction conditions. If one views the 

dehydrogenation transformation as two sequential C—H activations, these types of reaction conditions stand in stark 

opposition to the electrophilic conditions typically employed.98 In particular, for palladium catalyzed C—H 

activation, weakly coordinating sulfoxide ligands and acidic conditions have been used to mildly activate allylic C—

H bonds. 99,100 If similar conditions could be found to activate the α-carbonyl C—H bond selectively, subsequent β-

hydride elimination would generate the desired unsaturated products.  Furthermore, the broad scope and functional 

group tolerance of electrophilic palladium based C—H oxidations suggests that a system using this approach may 

overcome the substrate limitations of previously reported palladium catalyzed dehydrogenations.    
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3.2. Results and Discussion 

 3.2.1 Discovery, Optimization, and Scope 

  

Table 3.1. Discovery and optimization of Pd catalyzed dehydrogenation 
of unactivated carbonyl compounds under acidic conditions 

 

 
aYields, conversions, and regioselectivity determined by gas 
chromatographic analysis using response factors from authentic samples 
and versus an internal nitrobenzene standard. b0.5 equiv. c1.0 equiv. 
dYields and selectivities given are using conditions from entry 8 above 
eisolated yield of pure compound f1.2 equiv. BQ, 48 hrs. BQ = 1,4-
benzoquinone, PhBS = 1,2-Bis-phenylsulfinylethane, TFA = 
Trifluoroacetate 

 

I began my search for a more general palladium catalyzed dehydrogenation method by evaluating the 

palladium/sulfoxide combinations previously found to be effective for allylic C—H activation, namely Pd(OAc)2-

DMSO and Pd(OAc)2-1,2-Bis-(phenylsulfinyl)ethane (PhBS). Not surprisingly, given the tolerance of carbonyl 

functionality in the previously disclosed allylic C—H activation reactions,93 no dehydrogenation was observed 

(Table 3.1, entries 1 & 2).  After screening a variety of additives, I first observed significant levels of the desired 

dehydrogenation of 45 to enone 46 upon adding 0.5 equivalents of trifluoracetic acid (Table 3.1, entries 3 & 4).  

Since exchange of carboxylates on palladium occurs readily, I reasoned that this addition may simply be making the 

more electrophilic palladium salt, Pd(TFA)2.  Dehydrogenation of 45 in the absence of acid additive was first 
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observed with Pd(TFA)2 in DMSO (Table 3.1, entry 5).  Extending this idea, the stable dicationic 

Pd(CH3CN)4(BF4)2 showed a marked improvement for dehydrogenation (Table 3.1, entry 6).  Noting that acid had 

previously improved the efficiency of dehydrogenation (Table 3.1, entry 4 vs. 5), I evaluated a variety of acidic 

additives and found that mild acids such as p-nitrobenzoic acid and phosphoric acid were optimal. (Table 3.1, entries 

7 & 8).   

I next evaluated a variety of substituted cyclohexanones (Table 3.1, 47-50)  under the optimized conditions 

to determine the selectivity of this reaction.  4-t-Butylcyclohexanone was smoothly dehydrogenated to give product 

47 in 85% isolated yield.  β-Substituted (R)-3-methylcyclohexanone afforded a 78% yield of a 3.0:1 mixture of 

dehydrogenated products with preference for forming the less substituted enone 48.  Importantly, the major product 

was isolated and the stereocenter was determined to be unaffected by dehydrogenation.  A “kinetic” 

dehydrogenation, giving the less substituted olefin, follows the general trend observed for direct dehydrogenation of 

unactivated carbonyls with palladium97a or IBX.93  Additionally, the level of selectivity demonstrated by this 

reaction on this substrate is comparable to those previously reported (Figure 3.3).97a Interestingly, submitting 2-

methylcyclohexanone to these reaction conditions resulted in a reversal of selectivity, affording a 3.3:1 mixture of 

products favoring the “thermodynamic” or more substituted olefin isomer (49) in 66% yield.  To the best of my 

knowledge, this represents the first time this preference has been observed for any direct dehydrogenation system 

vide supra (Figure 3.4). Further, when examining a cyclohexanone with 2,5-substitution such as L-menthone, a 

noticeable reduction in reaction rate and increase in selectivity for formation of 2-substituted enone (-)-50 was 

observed (73% isolated yield, 5.3:1 crude selectivity).101 

Encouraged by the initial reactivity and selectivity of this dehydrogenation reaction, I next evaluated the 

substrate scope and functional group tolerance.  I was delighted to find that cyclic- and acyclic-ketones, aldehydes, 

and keto-esters were all viable substrates for this reaction (Table 3.2).  Additionally, a host of functionality was well 

tolerated, including acid sensitive groups (Table 3.2: 52, 53, 57, 64), common alcohol protecting groups (Table 3.2: 

51, 59, 61), protected nitrogen functionality (Table 3.2: 56 and 62), aromatic halogens (Table 3.2: 64) and even 

unprotected alcohols (Table 3.2: 54, 55).  Furthermore, a series of substrates with multiple sites of potential 

reactivity indicated that a “hierarchy” of reactivity can be used to predict which carbonyl in a compound would 

preferentially react. Specifically, a cyclohexanone could be reacted over a cyclopentanone (Table 3.2: 58), a ketone 

could be cleanly reacted in the presence of a lactone (Table 3.2: 60), and a ketoester reacts more rapidly than a 
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ketone (57). Linear ketones are suitable substrates, though preliminary studies suggest they react much more slowly 

at 55°C (64).  Aldehydes are excellent substrates for this reaction (Table 3.2: 61 – 63), giving good yields even for 

substrates with significant steric crowding adjacent to the aldehyde (Table 3.2: 63). Finally, the reaction times were 

found to be sufficiently short (average = 12 hr) to allow for dramatically lower palladium loadings (2.5 vs 10 mol%, 

Table 3.2: 52, 54, 58). 

Table 3.2. Scope of Pd catalyzed dehydrogenation of unactivated carbonyls under acidic conditions 
 

 
All reactions run on a 0.3 mmol scale unless otherwise noted.  All yields reported are of isolated pure 
compound. a1.0 equiv. p-NO2C6H4CO2H used as acid in reaction. b1.5 equiv. BQ c35°C. BQ = 1,4-
benzoquinone 

 

 I performed a competition experiment with cyclohexanol and 4-t-butylcyclohexanone to further 

demonstrate the remarkable selectivity of this reaction for carbonyl over alcohol oxidation (Scheme 3.1, right).  

Subjecting one equivalent each of cyclohexanol and 4-t-butylcyclohexanone to the conditions described (vide supra, 

Table 3.1, entry 8) resulted in a 91% yield of 47 with only a 3% yield of 45 (resulting from alchol oxidation 

followed by dehydrogenation).  Furthermore, even this trace alcohol oxidation could be eliminated by using p-

nitrobenzoic acid instead of phosphoric acid as the acid for this transformation (Scheme 3.1, left). 
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Scheme 3.1. Ketone vs. alcohol oxidation under acidic palladium catalyzed dehydrogenation 
 

 
 

 3.2.2 Mechanistic Observations 

During the course of reaction development and exploration I made several observations that hinted this 

reaction was likely proceeding through a similar mechanism to that observed for stoichiometric palladium systems 

(i.e. formation of a Pd-enolate intermediate followed by β-hydride elimination). Firstly, the increased effectiveness 

of progressively more electrophilic palladium suggested to me that Pd-enolate formation may occur through attack 

of the carbonyls enol tautomer on the metal center.  This type of reactivity is known to occur spontaneously in 

DMSO with strong halogen electrophiles such as NBS.102 Secondly, the minor product of L-menthone 

dehydrogenation, 65, has a racemic α-stereocenter (Figure 3.5A).  This suggests that any Pd-enolate intermediate 

formed (66), is long lived enough to sample both sides of the ketone, with hydride elimination occurring on the side 

of the carbonyl with the least steric hindrance at the β-position. However, it cannot be rigorously excluded that 

racemization of 65 occurs by epimerization after dehydrogenation.  Thirdly, the likelihood of a PdII—H   

intermediate was demonstrated in dehydrogenation of commercially available Maceal, which comes as an 

approximately 85:15 mixture of separable isomers. Dehydrogenation of 67, the minor isomer in the mixture, affords 

exclusively the unexpected olefin migration product 68, which most likely results from a series of Pd—H insertions 

and β-hydride eliminations (Figure 3.5B). 

Figure 3.5. Observations consistent with Pd-enolate and Pd—H species during dehydrogenation reaction 
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To probe the mechanism of this palladium catalyzed dehydrogenation reaction further, I evaluated the 

reaction under “mock catalytic”103 conditions to determine the role of each of the components of the reaction during 

one catalytic cycle (Table 3.3).  No dehydrogenation was observed in the absence of palladium (Table 3.3, entry 1), 

and baseline reactivity with Pd(CH3CN)4(BF4) in DMSO was sluggish (Table 3.3, entry 2). Benzoquinone (BQ) was 

found to have a modest accelerating effect on the rate of dehydrogenation, potentially by acting as a π-acidic ligand 

for palladium and further enhancing its electrophilic character (Table 3.3, entry 3). However, the most pronounced 

effect on rate was observed in the presence of phosphoric acid, which most likely increases the concentration of 

active enol tautomer (Table 3.3, entries 4 – 6, & 9).  Significantly, reaction under rigorously anaerobic conditions 

showed a similar conversion, albeit a reduced yield, of dehydrogenation product 57 (Table 3.3, entry 6), suggesting 

that oxygen may play a role in the reaction but is not essential.  Dramatically reduced reactivity was observed when 

the reaction was performed in THF rather than DMSO, though this shows sulfoxides are not an essential component 

of this reaction (Table 3.3, entry 7).  Finally, unlike several of the C—H activation systems developed previously in 

the White lab, this reaction seems to have no real sensitivity to the steric environment presented by the quinone 

oxidant (Table 3.3, entries 3 & 4 vs. entries 8 & 9). 

Table 3.3. Mechanistic exploration of palladium catalyzed 
dehydrogenation under “mock catalytic” conditions  

 

 
aConversion and yield determined in triplicate by GC versus an 
internal standard. b10 equiv. BQ, 10 equiv. 2,6-DiMeBQ or 5 
equiv. H3PO4 were added when indicated. cRates were 
determined by fitting a linear regression to GC analysis of 
timepoints taken at 15, 30, 45, and 60 min. dNo 
Pd(CH3CN)4(BF4)2 eRun under anaerobic conditions. fTHF as 
solvent (No DMSO) 
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Though no definitive mechanism has yet been determined for this direct dehydrogenation of carbonyls, a 

framework for the process is emerging. The acid additive, responsible for the most significant boost in reaction rate, 

most likely helps to promote an initial keto-enol tautomerization. Attack of this species on palladium forms a long 

lived Pd-enolate that subsequently undergoes β-hydride elimination to give a PdII—H. Conversion of this 

intermediate back to dicationic PdII by acid and benzoquinone would close the catalytic cycle.  Furthermore, the lack 

of over oxidation in this system could be explained by the relative resistance of α,β-unsaturated carbonyls to 

undergo tautomerization.  

 

3.3 Conclusions 

 In conclusion, I have developed a novel catalytic palladium(II)-based method for the conversion of ketones, 

ketoesters, and aldehydes directly to their unsaturated homologs, without the need for prior activation of the 

carbonyl.  Importantly, this reaction shows good to excellent reactivity for a number of substrates with a rather 

diverse array of functional groups.  Additionally, reaction under the acidic conditions discovered here affords 

unprecedented selectivities for dehydrogenation of 2-substituted ketones and, for the first time in any catalytic 

dehydrogenation reaction, shows a remarkable selectivity for oxidation of carbonyls over alcohols. 

 Preliminary mechanistic studies suggest the reaction proceeds through a Pd-enolate intermediate that 

undergoes successive β-hydride elimination to give the desired unsaturated carbonyl compounds, and that the acid 

additive is a key promoter of the reaction, likely via in situ promotion of keto-enol tautomerization.  Further 

mechanistic study is necessary to confirm this hypothesis. Finally, this work demonstrates that the electrophilic, 

acidic conditions so successful for mild allylic C—H activation may be more generally applicable to discovering 

new reactivity with palladium.  

 

3.4 Experimental Section 

 

General Information: All commercially obtained reagents were used as received unless otherwise specified; Pd 

sponge, nitrosonium tetrafluoroborate (Strem), Pd(OAc)2 (Alfa Aesar), benzoquinone, cyclohexanone, 2-

methylcyclohexanone, (R)-(+)-3-methylcyclohexanone, 4-t-butylcyclohexanone, trifluoroacetic acid, p-nitrobenzoic 

acid, (Aldrich), phosphoric acid (Fisher).  A sample of Maceal as a mixture (~85:15) of isomers was obtained from 
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Vigon international and purified via SiO2 chromatogrphy (1-5% Et2O:petroleum ether). L-menthone was obtained as 

85% pure from Acros and purified via SiO2 (5-20% ethyl acetate:hexanes) prior to use.  Pd(OAc)2 and 

Pd(CH3CN)4(BF4)2 were stored in a glove box under an argon atmosphere and weighed out in the air prior to use.  

Commercially available Pd(CH3CN)4(BF4)2 and “White Catalyst” (1,2-Bis(phenylsulfinyl)ethane palladium(II) 

acetate) from Aldrich were found to be equivalent to that prepared freshly by the published procedures.104,105 

Solvents DMSO and THF were purified prior to use by passage through a bed of activated alumina (Glass Contour, 

Laguna Beach, California).  All dehydrogenation reactions were run were run under air unless specifically 

mentioned.  Achiral gas chromatographic (GC) analyses were performed on Agilent Technologies 6890N Series 

instrument equipped with FID detectors using a HP-5 (5%-Phenyl)-methylpolysiloxane column (30m, 0.32mm, 

0.25µm). Chiral gas chromatographic (GC) analyses were performed on an Agilent Technologies 5890A Series 

instrument equipped with an FID detector using a J&W Scientific β-cyclodextrin column (30m, 0.25mm, 0.25µm). 

HPLC analysis was performed on an Agilent Technologies 1100 HPLC system with a model 1100 Quaternary 

Pump, Diode Array Detector, Thermostat, and Autosampler.  Thin-layer chromatography (TLC) was conducted with 

E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized with UV, potassium permanganate, and ceric 

ammonium molybdate staining.  Flash column chromatography was performed as described by Still et al.106 using 

EM reagent silica gel 60 (230-400 mesh).  1H NMR spectra were recorded on a Varian Unity 400 (400 MHz) or a 

Varian Unity 500 (500 MHz), or a Varian Unity Inova 500NB spectrometer and are reported in ppm using solvent as 

an internal standard (CDCl3 at 7.26 ppm).  Data reported as: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, b = broad; coupling constant(s) in Hz; integration.  Proton-decoupled 13C- NMR spectra were recorded on 

a Varian Unity-500 (125 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl3 at 

77.0 ppm).  IR spectra were recorded as thin films on NaCl plates on a Perkin-Elmer Spectrum BX and are reported 

in frequency of absorption (cm-1).  High-resolution mass spectra were obtained at the University of Illinois Mass 

Spectrometry Laboratory. 

General Procedure for Palladium Catalyzed Carbonyl Dehydrogenation:  A vial (4 mL borosilicate) was 

charged with the following: Pd(CH3CN)4(BF4)2 (10 mol%, 0.03 mmol, 13.3 mg), 1,4-benzoquinone (1.1 equiv., 0.33 

mmol, 35.7 mg), and a Teflon© stir bar.  Substrate (0.3 mmol) and DMSO (0.33M, 0.9 mL) were added and the vial 

was briefly (~15 seconds) stirred at room temperature until the solvent became homogeneous.  Phosphoric acid 

(0.15 mmol, 8.8 µL) was then added via syringe and the reaction transferred to a 55°C bath and carefully monitored 
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(TLC, GC, or NMR).  Upon complete consumption of SM, the reaction was cooled to room temperature and 

transferred to a separatory funnel with ~3 mL CH2Cl2 and then diluted further with CH2Cl2 (200 mL). The organic 

layer was rinsed with sat. aq. NaHCO3 (2 x 50 mL) and brine (1 x 50 mL). The combined aqueous layers were back 

extracted with CH2Cl2 (100 mL).  The combined organic layers were dried (MgSO4 or Na2SO4), filtered, and 

reduced in vacuo.  The resulting product is generally a mixture of dehydrogenation products and trace residual 

quinone/dihydroquinone, which can be purified via SiO2 chromatography to afford clean material from which the 

yield was determined (1H NMR). 

 

Procedure for Optimization Screen (Table 3.1, compound 45, entries 1-8):  A vial (4 mL borosilicate) was 

charged with the following: Pd(OAc)2-PhBs (vial 1 & 3)(10 mol%, 0.01 mmol, 5.0 mg), Pd(OAc)2 (vial 2 & 4)(10 

mol%, 0.01 mmol, 2.2 mg), Pd(TFA)2 (vial 5)(10 mol%, 0.01 mmol, 3.3 mg), Pd(CH3CN)4(BF4)2 (vial 6 – 8)(10 

mol %, 0.01 mmol, 4.4 mg), 1,4-benzoquinone (vial 1 - 8)(1.0 equiv., 0.10 mmol, 10.8 mg), p-nitrobenzoic acid 

(vial 7)(1.0 equiv., 0.1 mmol, 16.7 mg), and a Teflon© stir bar.  Cyclohexanone (vial 1 – 8)(1 equiv., 0.1 mmol, 

10.4 µL), nitrobenzene (vial 1 – 8)(internal GC standard, 40 mol %, 4.1 µL), and DMSO (vial 2 & 4 – 8)(0.33M, 0.3 

mL) or THF (vial 1 & 3) (0.33M, 0.3 mL) were added and the vial was stirred briefly (~15 seconds) at room 

temperature until the solvent became homogeneous. Aliquots were taken from the vials (~10 µL filtered with Et2O 

through a short pipette plug of silica), to determine GC initial ratios of cyclohexanone to nitrobenzene.  

Trifluoroacetic acid (vial 3 & 4)(0.5 equiv., 0.05 mmol, 3.8 µL) or phosphoric acid (vial 8)(0.5 equiv., 0.05 mmol, 

2.9 µL) was then added via syringe, the reaction capped, and transferred to a 55°C bath and carefully monitored 

(GC). Aliquots were taken from each vial at 8 hours to determine GC yields. Response factors relative to 

cyclohexanone were determined for the authentic cyclohexenone standard. Results are reported as an average of at 

least three runs. 

 

Procedure for “Mock Catalytic” Mechanistic Investigation Screen (Table 3.3):  A vial (2 mL borosilicate) was 

charged with the following: Pd(CH3CN)4(BF4)2 (vial 2 - 9)(1 equiv., 0.01 mmol, 4.4 mg), 1,4-benzoquinone (vial 1,3 

- 4, & 7)(10 equiv., 0.10 mmol, 10.8 mg), 4-t-butylcyclohexanone (vial 1 - 9)(1 equiv., 0.01 mmol, 1.5 mg), and a 

Teflon© stir bar. DMSO (vial 1 - 6, 8 - 9)(0.033M, 0.3 mL), THF (vial 7)(0.033M, 0.3 mL), nitrobenzene (vial 1 - 

9)(internal GC standard, 4.0 equiv., 4.1 µL), and phosphoric acid (vial 1, 4 - 7, & 8)(5 equiv., 2.9 µL) were added 
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and the vial was stirred briefly (~15 seconds) at room temperature until the solvent became homogeneous. Aliquots 

were taken from the vials (~10 µL filtered with Et2O through a short pipette plug of silica), to determine GC initial 

ratios of 4-t-butylcyclohexanone to nitrobenzene.  The reaction was capped and transferred to a 55°C. Aliquots were 

taken from vials 1 - 5 & 7 - 9 at 15, 30, 45, and 60 minutes. Response factors relative to 4-t-butylcyclohexanone 

were determined from the authentic dehydrogenated standard.   Results are reported as an average of at least three 

runs, with conversions and yields determined by GC as compared to the internal standard. Relative rates are based 

on the slope of a linear fit to the observed data for an experimental condition (Entry X) divided by that of the control 

(Entry 2).  Vial 6 was set-up entirely in the glove box using rigorously degassed DMSO and run under an argon 

atmosphere.  Time points were removed via syringe at t = 0 to determine initial ratios, and at t = 8 to determine 

conversion and yield via GC analysis. 

 

Procedure for Cyclohexanol vs. 4-t-Butylcyclohexanone Competition Experiments (Scheme 3.1): A vial (2 mL 

borosilicate) was charged with the following: Pd(CH3CN)4(BF4)2 (0.1 equiv., 0.01 mmol, 4.4 mg), 1,4-benzoquinone  

(1.0 equiv., 0.10 mmol, 10.8 mg), 4-t-butylcyclohexanone (1 equiv., 0.1 mmol, 15.4 mg), and a Teflon© stir bar. 

DMSO (0.33M, 0.3 mL), cyclohexanol (1 equiv., 10.6 µL), and nitrobenzene (internal GC standard, 4.0 equiv., 4.1 

µL), and the vial was stirred briefly (~15 seconds) at room temperature until the solvent became homogeneous. 

Aliquots were taken from the vials (~10 µL filtered with Et2O through a short pipette plug of silica), to determine 

GC initial ratios of cyclohexanol and 4-t-butylcyclohexanone to nitrobenzene.  Phosphoric acid (0.5 equiv., 2.9 µL) 

or p-nitrobenzoic acid (1 equiv., 16.7 mg) was then added, the reaction capped, and transferred to a 55°C bath. 

Aliquots were taken from each vial at 8 hours to determine GC yields of 4-t-butylcyclohex-2-en-1-one, 

cyclohexanone, and cyclohex-2-en-1-one. Response factors relative to cyclohexanol, cyclohexanone, and 4-t-

butylcyclohexanone were determined from authentic standards. Results are reported as an average of at least three 

runs. 

 

General Procedure for Palladium Catalyzed Carbonyl Dehydrogenation (Table 3.1, substrates 47 -50; Table 

3.2):  A vial (4 mL borosilicate) was charged with the following: Pd(CH3CN)4(BF4)2 (10 mol%, 0.03 mmol, 13.3 

mg), 1,4-benzoquinone (1.1 equiv., 0.33 mmol, 35.7 mg), and a Teflon© stir bar.  Substrate (0.3 mmol) and DMSO 

(0.33M, 0.9 mL) were added and the vial was briefly (~15 seconds) stirred at room temperature until the solvent 
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became homogeneous.  Phosphoric acid (0.15 mmol, 8.8 µL) was then added via syringe and the reaction transferred 

to a 55°C bath and carefully monitored (TLC, GC, or NMR).  Upon complete consumption of SM, the reaction was 

cooled to room temperature and transferred to a separatory funnel with ~3 mL CH2Cl2 and then diluted further with 

CH2Cl2 (200 mL). The organic layer was rinsed with sat. aq. NaHCO3 (2 x 50 mL) and brine (1 x 50 mL). The 

combined aqueous layers were back extracted with CH2Cl2 (100 mL).  The combined organic layers were dried 

(MgSO4 or Na2SO4), filtered, and reduced in vacuo.  The resulting product is generally a mixture of 

dehydrogenation products and trace residual quinone/hydroquinone, which can be purified via SiO2 chromatography 

to afford clean material from which the yield was determined (1H NMR). 

 

 4-(Tert-butyl)cyclohex-2-enone (47): Following the standard procedure afforded as a white solid: Run 1: 

38.9 mg, 0.256 mmol, 85% yield, Run 2: 39.0 mg, 0.256 mmol, 85% yield; [average yield: 85%] which 

was spectroscopically identical to material previously reported in the literature107; 1H NMR  (500 MHz, 

CDCl3) δ 7.02 (dt, J = 10.4, 2.0 Hz, 1H), 6.04 (ddd, J = 10.4, 2.8, 1.0 Hz, 1H), 2.52 (dt, J = 16.6, 3.2 Hz, 1H), 2.34 

(ddd, J = 16.6, 14.4, 5.0 Hz, 1H), 2.20 (ddt, J = 11.2, 4.8, 2.5 Hz, 1H), 2.15 – 2.05 (m, 1H), 1.81 – 1.68 (m, 1H), 

0.98 (s, 9H) 13C NMR  (125 MHz, CDCl3)
 
δ 177.5, 152.9, 130.0, 46.8, 37.8, 32.9, 27.3, 24.4.; IR  (neat, cm-1) 2958.2, 

2931.3, 2871.5, 1689.3, 1469.5. 

 

(R)-5-Methylcyclohex-2-enone (48): Reactions were run on 1.0 mmol scale instead of 0.3 mmol scale. 

Following the standard procedure afforded: Run 1: 84.9 mg,  0.771 mmol, 77% yield, Run 2: 86.0 mg,  

0.781 mmol, 78% yield; Run 3: 85.7 mg,  0.778 mmol, 78% yield; [average yield: 78 %]; which was 

spectroscopically identical to material previously reported in the literature108;  1H NMR  (500 MHz, CDCl3) δ 6.90 

(ddd, J = 10.0, 5.0, 2.5 Hz, 1H), 5.90 (dd, J = 10.0, 1.0 Hz, 1H), 2.45–2.25 (m, 2H), 2.25–1.80 (m, 3H), 1.00 (d, J = 

6.2 Hz, 3H). 

 

2-Methylcyclohex-2-enone (49): Reactions were run on 1.0 mmol scale instead of 0.3 mmol scale. 

Following the standard procedure afforded: Run 1: 71.1 mg, 0.645 mmol, 65% yield, Run 2: 71.7 mg, 

0.651 mmol, 65% yield; Run 3: 73.5 mg, 0.667 mmol, 67% yield; [average yield: 66%]; which was 

spectroscopically identical to material previously reported in the literature 109; 1H NMR  (500 MHz, CDCl3)
 
δ 6.74 
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(td, J = 4.2, 1.4 Hz, 1H), 2.44 – 2.40 (m, 2H), 2.35 – 2.29 (m, 2H), 1.98 (dt, J = 12.4, 6.2 Hz, 2H), 1.77 (dd, J = 3.4, 

1.8 Hz, 3H). 

 

(S)-2-Isopropyl-5-methylcyclohex-2-enone ((-)-50): Following the standard procedure afforded: 

Run 1:  32.8 mg, 0.216 mmol, 72% yield, Run 2: 34.0 mg, 0.234 mmol, 75% yield; Run 3: 32.6 

mg, 0.214 mmol, 71% yield; [average yield: 73%]; which was spectroscopically identical to 

material previously reported in the literature110; [α]25
D  = -75.3° (c = 1.0, CHCl3)(lit. [α]20

D = -76, c = 0.56, CHCl3); 

1H NMR  (500 MHz, CDCl3) δ 6.64 (dd, J = 5.4, 2.3 Hz, 1H), 2.91 – 2.81 (m, 1H), 2.53 – 2.46 (m, 1H), 2.42 (dt, J = 

9.9, 5.2 Hz, 1H), 2.21 – 2.13 (m, 1H), 2.13 – 2.06 (m, 1H), 2.02 (dd, J = 18.0, 9.5 Hz, 1H), 1.04 (d, J = 6.3 Hz, 3H), 

1.00 (dd, J = 6.9, 3.2 Hz, 5H); 13C NMR  (125 MHz, CDCl3)
 
δ 199.3, 145.3, 141.3, 47.0, 34.3, 30.4, 26.2, 22.0, 21.8, 

21.2.; IR  (neat, cm-1) 3041.2, 2958.3, 2929.4, 2912.0, 2873.4, 2829.1, 1675.8, 1459.9; HRMS (ESI) m/z calculated 

for C10H17O [M]+: 153.1279; found 153.1279. 

 

4-((Triisopropylsilyl)oxy)cyclohex-2-enone (51): Following the standard procedure afforded as a clear 

oil: Run 1: 67.7 mg, 0.252 mmol, 84% yield, Run 2: 68.9 mg, 0.257 mmol, 86% yield; Run 3: 69.0 mg, 

0.257 mmol, 86% yield; [average yield: 85 %]; 1H NMR  (500 MHz, CDCl3)
 
δ 6.91 (ddd, J = 10.2, 2.3, 

1.7 Hz, 1H), 5.93 (ddd, J = 10.3, 1.7, 1.0 Hz, 1H), 4.62 (ddt, J = 8.9, 4.5, 2.1 Hz, 1H), 2.59 (dt, J = 16.6, 4.4 Hz, 

1H), 2.34 (ddd, J = 16.8, 12.6, 4.6 Hz, 1H), 2.28 (dddd, J = 11.1, 9.5, 4.7, 1.6 Hz, 1H), 2.04 (tdd, J = 12.8, 8.9, 4.2 

Hz, 1H), 1.16 – 1.04 (m, 21H). 13C NMR  (125 MHz, CDCl3) δ 184.7, 154.0, 128.6, 67.0, 35.4, 33.1, 18.0, 17.7, 

12.2.; IR  (neat, cm-1) 2942.9, 2892.7, 2865.7, 1691.3, 1463.7. 

(3aR,7aR)-2,2,7a-Trimethyl-7,7a-dihydrobenzo[1,3]dioxol-4(3aH)-one (52): Following the 

standard procedure afforded as a clear oil: Run 1: 44.4 mg, 0.244 mmol, 81% yield, Run 2:  43.9 

mg, 0.241 mmol, 80% yield; Run 3 (2.5 mol% Pd(CH3CN)4(BF4)2, 24 hr): 43.2 mg, 0.237 mmol, 

79% yield; [average yield: 81%]; which was spectroscopically identical to material previously reported in the 

literature111; 1H NMR  (500 MHz, CDCl3) δ 6.92 (dt, J = 10.2, 4.2 Hz, 1H), 6.19 (dt, J = 10.2, 2.0 Hz, 1H), 4.04 (s, 

1H), 2.84 (ddd, J = 19.3, 4.2, 2.1 Hz, 1H), 2.53 (ddd, J = 19.3, 4.3, 2.0 Hz, 1H), 1.46 (d, J = 7.1 Hz, 3H), 1.45 (s, 

3H), 1.35 (d, J = 0.4 Hz, 3H).13C NMR  (125 MHz, CDCl3) δ 195.5, 148.1, 128.2, 109.8, 80.8, 80.6, 36.3, 28.1, 27.8, 
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26.4.; IR  (neat, cm-1) 3039.3, 2987.2, 2935.1, 2873.4, 1683.6, 1456.0; HRMS (ESI) m/z calculated for C10H14O3Na 

[M+Na]+ = 205.0841; found 205.0833. 

 

(3a'S, 6a'S) - 3a'H - Spiro[cyclohexane - 1,2' - cyclopenta[1,3]dioxol] - 4'(6a'H) - one (53): 

Following the standard procedure afforded: Run 1: 47.8 mg, 0.246 mmol, 82% yield, Run 2: 

47.6 mg, 0.245 mmol, 82% yield; [average yield: 82%]; 1H NMR  (500 MHz, CDCl3)
 
δ 7.61 

(dd, J = 5.9, 2.3 Hz, 1H), 6.20 (d, J = 5.9 Hz, 1H), 5.25 (dd, J = 5.4, 2.3 Hz, 1H), 4.46 (d, J = 5.4 Hz, 1H), 1.68 – 

1.55 (m, 8H), 1.39 (m, 2H). 

 

(4aR, 5S, 8aS)-5-Hydroxy-4a-methyl-4a,5,6,7,8,8a-hexahydronaphthalen-2(1H)-one (54): 

Following the standard procedure afforded: Run 1: 41.7 mg, 0.232 mmol, 77% yield, Run 2: 

43.0 mg, 0.239 mmol, 80% yield; Run 3 (2.5 mol% Pd(CH3CN)4(BF4)2, 24 hr): 43.8 mg, 0.243 

mmol, 81% yield; [average yield: 79%]; 1H NMR  (500 MHz, CDCl3)
 
δ 7.31 (d, J = 10.0 Hz, 1H), 5.90 (dd, J = 

10.0, 0.8 Hz, 1H), 3.46 (dt, J = 15.0, 5.0 Hz, 1H), 2.38 (dd, J = 17.5, 14.0 Hz, 1H), 2.28 (ddd, J = 17.5, 4.3, 0.8 Hz, 

1H), 1.93 – 1.77 (m, 2H), 1.64 – 1.53 (m, 1H), 1.50 – 1.32 (m, 4H), 1.05 (s, 3H).  

 

4-Hydroxy-2-methylcyclohex-2-enone (55): The polarity of this molecule necessitated an alternative 

work-up as compared to the standard procedure. Upon completion, the reaction was transferred to a 

separatory funnel with ~3 mL EtOAc, and then diluted with a further 200 mL EtOAc. The organic 

layer was washed once with sat. aq. NaHSO3 (1 x 50 mL) and 5% aq. K2CO3 (2 x 50 mL).  Caution 

should be taken when combining aqueous layers as carbon dioxide is evolved. The combined aqueous layers were 

back extracted with EtOAc (2 x 100 mL).  The combined organic layers were dried (Na2SO4), filtered, and reduced 

in vacuo.  SiO2 chromatography afforded: Run 1: 19.7 mg, 0.156 mmol, 52% yield, Run 2: 20.8 mg, 0.165 mmol, 

55% yield; Run 3:  21.4 mg, 0.170 mmol, 57% yield; [average yield: 55%]; 1H NMR  (500 MHz, CDCl3)
 1H NMR 

(500 MHz, CDCl3) δ 6.69 (dt, J = 2.7, 1.4 Hz, 1H), 4.54 (s, 1H), 2.60 (dt, J = 17.8, 5.2 Hz, 1H), 2.33 (dddd, J = 

11.2, 8.6, 6.4, 3.2 Hz, 2H), 2.04 (s, 3H), 1.95 (tdd, J = 17.0, 9.1, 3.4 Hz, 2H). 
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2,2,2-Trifluoro-N-(4-oxocyclohex-2-en-1-yl)acetamide (56): Following the standard procedure 

afforded: Run 1: 50.8 mg, 0.245 mmol, 82% yield, Run 2: 52.0 mg, 0.251 mmol, 84% yield; Run 3: 51.5 

mg, 0.249 mmol, 83% yield; [average yield: 83%]; 1H NMR  (500 MHz, CDCl3)
 
δ 6.78 (dt, J = 10.2, 2.0 

Hz, 1H), 6.40 (bs, 1H), 6.13 (ddd, J = 10.2, 2.4, 0.8 Hz, 1H), 4.91 (dddd, J = 10.4, 7.7, 5.0, 2.4 Hz, 1H), 2.62 (dt, J = 

17.0, 4.5 Hz, 1H), 2.56 – 2.48 (m, 1H), 2.43 (dtd, J = 12.8, 4.8, 3.2 Hz, 1H), 2.03 (tdd, J = 12.8, 10.7, 4.6 Hz, 1H). 

 

Methyl 8-oxo-1,4-dioxaspiro[4.5]dec-6-ene-7-carboxylate (57): The standard procedure was 

modified in the following way: Instead of phosphoric acid, p-nitrobenzoic acid (1.0 equiv., 50 

mg, 0.3 mmol) was used as a promoter.  Additionally, the reaction was stirred at 35°C instead of 

55°C.  These modifications afforded: Run 1:  53.8 mg, 0.253 mmol, 85% yield, Run 2: 54.0 mg, 

0.254 mmol, 85% yield; Run 3: 55.2 mg, 0.260 mmol, 87% yield; [average yield: 86%]; which was 

spectroscopically identical to material previously reported in the literature112; 1H NMR  (500 MHz, CDCl3) δ 7.15 (s, 

1H), 4.11 – 4.02 (m, 4H), 3.82 (s, 3H), 2.75 – 2.68 (m, 2H), 2.23 (t, J = 6.6 Hz, 2H). 

 

(5S, 8R, 9S, 10R, 13S, 14S) - 10,13 - dimethyl - 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16-dodecahydro-3H-cyclopenta[a]phenanthrene-3,17(4H)-dione (58): Following 

the standard procedure afforded: Run 1: 71.7 mg, 0.250 mmol, 83% yield, Run 2: 71.5 

mg, 0.250 mmol, 83% yield; Run 3 (2.5 mol% Pd(CH3CN)4(BF4)2, 24 hr): 70.6 mg, 

0.246 mmol, 82% yield; [average yield: 83%]; which was identical spectroscopically identical to material 

previously reported in the literature113;  1H NMR  (400 MHz, CDCl3) δ 7.13 (d, J = 10.2 Hz, 1H), 5.87 (d, J = 10.2 

Hz, 1H), 2.47 (dd, J = 19.9, 9.2 Hz, 1H), 2.39 (dd, J = 16.0, 12.0 Hz, 1H), 2.25 (dd, J = 17.9, 3.9 Hz, 1H), 2.11 (dd, 

J = 18.9, 9.4 Hz, 1H), 2.01 – 1.81 (m, 4H), 1.66 (ddd, J = 22.6, 10.9, 3.3 Hz, 1H), 1.56 – 1.41 (m, 4H), 1.40 – 1.19 

(m, 3H), 1.15 – 1.00 (m, 1H), 1.04 (s, 3H), 0.91 (s, 3H). 

 

(Z) - methyl 2 - ((4aS, 6aS, 8R, 9R, 11aR, 11bS) - 8 - acetoxy - 8 - 

(acetoxymethyl) - 11b - methyl - 3 - oxo - 5, 6, 7, 8, 9, 10, 11, 11a - 

octahydro - 6a,9 - methanocyclohepta[a]naphthalen - 4(3H, 4aH, 11bH) - 

ylidene)acetate (59): Following the standard procedure afforded: Run 1: 
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122.9 mg, 0.276 mmol, 92% yield, Run 2:  124.6 mg, 0.280 mmol, 93% yield; Run 3: 123.4 mg, 0.278 mmol, 93% 

yield; [average yield: 93%]; 1H NMR  (500 MHz, CDCl3)
 
δ 7.16 (d, J = 10.1 Hz, 1H), 5.93 (d, J = 10.1 Hz, 1H), 

5.83 (d, J = 2.2 Hz, 1H), 4.96 (d, J = 12.3 Hz, 1H), 4.47 (d, J = 12.3 Hz, 1H), 3.77 (s, 3H), 2.57 (d, J = 10.9 Hz, 2H), 

2.08 (s, 3H), 2.04 (d, J = 15.7 Hz, 1H), 2.00 (s, 3H), 1.90 (d, J = 12.1 Hz, 1H), 1.86 – 1.52 (m, 12H), 1.46 (d, J = 7.7 

Hz, 1H), 1.18 (s, 3H). 

 

(3aR, 5aS, 9aR, 9bS) - 3a, 6, 6, 9a - tetramethyl - 1, 4, 5, 5a, 6, 9b - 

hexahydronaphtho[2, 1-b]furan-2, 7(3aH, 9aH) - dione (60): Following the standard 

procedure afforded: Run 1: 75.0 mg, 0.286 mmol, 95% yield, Run 2:  73.3 mg, 0.279 

mmol, 93% yield;  [average yield: 94%]; 1H NMR  (500 MHz, CDCl3)
 
δ 6.84 (d, J = 10.0 Hz, 1H), 5.91 (d, J = 10.0 

Hz, 1H), 2.60 (dd, J = 16.0, 14.6 Hz, 1H), 2.49 (dd, J = 16.1, 6.5 Hz, 1H), 2.23 (dd, J = 14.6, 6.5 Hz, 1H), 2.18 (dt, J 

= 12.0, 3.3 Hz, 1H), 1.98 – 1.89 (m, 1H), 1.84 – 1.70 (m, 1H), 1.68 – 1.53 (m, 2H), 1.42 (s, 3H), 1.19 (s, 3H), 1.19 

(s, 3H), 1.12 (s, 3H). 

 

(2R, 3R, 4R, 5S, 6S)-2-(acetoxymethyl)-6-((E)-3-oxoprop-1-en-1-yl)tetrahydro-

2H-pyran-3, 4, 5-triyl triacetate (61): This substrate was run on a 0.1 mmol scale 

rather than 0.3 mmol. Following the standard procedure afforded: Run 1: 22.0 mg, 

0.569 mmol, 57% yield, Run 2: 22.5 mg, 0.058 mmol, 58% yield; [average yield: 57%]; 1H NMR  (500 MHz, 

CDCl3)
 
δ 9.67 (d, J = 7.7 Hz, 1H), 6.89 (dd, J = 16.2, 3.6 Hz, 1H), 6.44 (ddd, J = 16.2, 7.7, 2.2 Hz, 1H), 5.22 (ddd, J 

= 18.0, 9.8, 7.2 Hz, 2H), 5.06 (app t, J = 10.0 Hz, 1H), 5.00 (ddd, J = 5.8, 3.5, 2.3 Hz, 1H), 4.26 (dd, J = 12.3, 5.4 

Hz, 1H), 4.11 (dd, J = 12.3, 2.4 Hz, 1H), 3.93 (ddd, J = 9.5, 5.4, 2.3 Hz, 1H), 2.11 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 

2.03 (s, 3H). 

 

(E) - 6 - (1,3-dioxoisoindolin - 2 - yl)hex - 2 - enal (62): Following the standard procedure 

afforded: Run 1: 46.3 mg, 0.200 mmol, 67% yield, Run 2:  48.7 mg, 0.210 mmol, 70% 

yield; [average yield: 68%]; 1H NMR  (400 MHz, CDCl3)
 
δ 9.48 (d, J = 7.8 Hz, 1H), 7.86 (dd, J = 5.5, 3.0 Hz, 2H), 

7.73 (dd, J = 5.4, 3.1 Hz, 2H), 6.84 (dt, J = 15.6, 6.6 Hz, 1H), 6.15 (dd, J = 15.7, 7.8 Hz, 1H), 3.75 (t, J = 7.1 Hz, 

2H), 2.41 (dd, J = 14.3, 7.4 Hz, 2H), 1.92 (dt, J = 14.4, 7.3 Hz, 2H). 
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(1R, 4S, 8S) - 8 - isopropyl - 6 - methylbicyclo[2.2.2]octa - 2,5 - diene - 2 - carbaldehyde 

(63): Following the standard procedure afforded: Run 1:  44.3 mg, 0.232 mmol, 78% yield, 

Run 2:  46.5 mg, 0.244 mmol, 81% yield; Run 3: 45.1 mg, 0.237 mmol, 79% yield; [average 

yield: 79%]; 1H NMR  (400 MHz, CDCl3) δ 9.43 (s, 1H), 7.26 (dd, J = 5.9, 1.6 Hz, 1H), 5.78 (d, J = 5.8 Hz, 1H), 

4.14 (d, J = 6.0 Hz, 1H), 3.48 (dd, J = 5.9, 2.1 Hz, 1H), 1.83 (d, J = 1.2 Hz, 3H), 1.67 – 1.55 (m, 1H), 1.16 – 0.93 

(m, 2H), 0.98 (d, J = 8.0 Hz, 3H), 1.16 – 0.93 (m, 1H), 0.81 (d, J = 6.1 Hz, 3H); 13C NMR  (101 MHz, CDCl3)
 
δ 

187.9, 155.9, 151.6, 143.5, 124.0, 47.3, 44.3, 36.2, 33.8, 31.7, 21.8, 21.3, 19.0. 

 

(E)-1-(2-bromophenyl)-3-(1,3-dioxan-2-yl)prop-2-en-1-one (63): Following the 

standard procedure afforded: Run 1:  49.2 mg, 0.165 mmol, 55% yield (36 mg rSM), 

Run 2: 48.7 mg, 0.163 mmol, 55% yield (34 mg rSM); [average yield: 55%]; 1H 

NMR  (500 MHz, CDCl3)
 1H NMR (500 MHz, CDCl3) δ 7.55 (t, J = 7.8 Hz, 1H), 7.39 (dd, J = 7.6, 1.8 Hz, 1H), 7.35 

(td, J = 7.5, 1.1 Hz, 1H), 7.28 (dd, J = 7.9, 1.9 Hz, 1H), 6.74 (d, J = 16.1 Hz, 1H), 6.44 (dd, J = 16.1, 3.2 Hz, 1H), 

5.18 (d, J = 2.3 Hz, 1H), 4.18 (dd, J = 11.3, 4.6 Hz, 2H), 3.86 (t, J = 11.4 Hz, 2H), 2.18 – 1.98 (m, 2H). 
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APPENDIX A: Chromium Lewis Acid Co-Catalysts Synthesized and Tested for Enantioselective Allylic C—H 

Oxidation 
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