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Jacobian, manipulability, condition number and accuracy of

parallel robots

J-P. Merlet
INRIA, BP 93, 06902 Sophia-Antipolis, France

Abstract: Although the concepts of jacobian matrix, manipulability
and condition number have been floating around since the early beginning
of robotics their real significance is not always well understood, although
these conditioning indices play an important role e.g. for optimal robot
design. In this paper we re-visit these concepts for parallel robots and
exhibit some surprising results (at least for the author!) that show that
these concepts have to be manipulated with care for a proper understanding
of the kinematics behavior of a robot.

1 Introduction

Parallel robots are nowadays leaving academic laboratories and are finding
their way in an increasingly larger number of application fields such as
telescopes, fine positioning devices, fast packaging, machine-tool, medical
application. A key issue for such use is optimal design as performances
of parallel robots are very sensitive to their dimensioning. Optimal design
methodologies have to rely on kinetostatic performance indices and accuracy
is clearly a key-issue for many applications. It has also be a key-issue for
serial robots and consequently this problem has been extensively studied
and various accuracy indices have been defined. The results have been in
general directly transposed to parallel robots. We will now review how well
these indices are appropriate for parallel robots.

2 Jacobian and inverse Jacobian matrix

Let Xa denotes the generalized coordinates of the end-effector composed
of parameters describing the available n d.o.f. of the end-effector while X

denotes all the generalized coordinates of the end-effector. We will impose
no constraints on the choice of X (e.g. for a Gough robot with a planar
platform the pose may be represented by the 9 coordinates of 3 particular
points on the end-effector).

The geometry of the robot is described by its joints variables vector Θ.
The twist W of the end effector is composed of its translational and angular
velocities and the restricted twist Wa is defined as the restriction of W to
the available d.o.f. of the robot. It is well known that for robot having
at least 2 rotational d.o.f. W is not the time-derivative of X as there is
no representation of the orientation whose derivatives corresponds to the
angular velocities. However there exists usually a matrix H such that

W = HẊ (1)
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In the usual approach the jacobian matrix Jk linearly relates the actuated
joint velocities Θ̇a to Wa:

Wa = JkΘ̇a (2)

In this paper we consider only non-redundant robots so that matrix Jk is
square and we will call it the kinematic jacobian. A feature of parallel robots
is that it is usually easy to establish an analytical form for J−1

k
while it is

often impossible to obtain Jk.
But we may also define other jacobian matrices by first changing the

parameters in Θ. Indeed parallel robots differ from their serial counterpart
by a larger number of passive joints and it may thus be interesting to include
the m passive joints variables Θp. If Θ is defined as (Θa,Θp) we may then
define write the l inverse kinematics equations as F(Θ,Xa) = 0 from which
we derive

∂F

∂Θ
Θ̇ +

∂F

∂Xa

Ẋa = UΘ̇ + VaẊa = 0 (3)

where U is (l× (n+m)) and Va is (l× n). This relation allows to quantify
the influence of the measurement errors on the passive and actuated joints
variables on the positioning errors ∆Xa on the n d.o.f. of the end-effector
by using (1).

Although we say that some robot have n < 6 d.o.f., still the end-effector
is a 6 d.o.f. rigid body and positioning errors on all d.o.f. should be exam-
ined. It is thus interesting to determine an inverse jacobian that involves
the full twist W of the end-effector. In that case we write the kinematics
equations as G(Θ,X) = 0. If we fix X we know that these kinematics
equations have a finite number of solutions, which implies that the number
of equations in G should be n+m. By differentiation we get:

∂G

∂Θ
Θ̇ +

∂G

∂X
Ẋ = AΘ̇ + BẊ = 0 (4)

where A is a square n+m× n+m matrix while B is n+m× 6. Provided
that H is square and not singular we may now derive an inverse jacobian
such that

Θ̇ = −A−1BH−1W = J−1W (5)

where J−1 is n+m× 6 In most cases however a velocity analysis allows one
to obtain a simpler inverse jacobian matrix through a relation that involves
only Θ̇a:

(

Θ̇a

O

)

= J−1

fk
W (6)

where J−1

fk
is n+m×6 and will be called the full inverse kinematics jacobian.

We may further extend this approach to take into account the design
parameters P of the robot (e.g. the location of the anchor points of the legs
in a Gough platform). For that purpose the kinematics equations will be
written as G(P ,Θ,X) = 0 and the matrix of the partial derivatives of G

with respect to P will allow one to quantify the influence of the errors on
P on the positioning error of the end-effector.
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As may be seen there is not a single inverse jacobian matrix but a multi-
plicity of them. Note however an important property of the inverse jacobian
J−1 of (5) with respect to J−1

fk
: the rank of J−1

fk
is the same than the rank

of J−1.
It is also important to note that any inverse jacobian involving the full

twist of the end-effector W will not be homogeneous in terms of units. This
will be true also for the inverse kinematic jacobian for robot involving both
translation and rotational d.o.f. for the end-effector. Consequently many
matrix properties (such as the trace, determinant) will not be invariant
under a change of units.

In this paper we will focus on the influence of ∆Θa on the positioning
errors of the end-effector through J−1

fk
. The necessity of using the full inverse

kinematic jacobian will be emphasized on an example.

2.1 Example: the 3 − UPU robot

Tsai [10] has proposed this robot as a 3 d.o.f. translation robot (figure 1).
Each leg of this robot is constituted, starting from the base, by a U joint
followed by an extensible leg terminated by another U joint whose axis are

the same than the U joint on the base. This constraint allows theoretically
to obtain only translation for the end-effector. This example will allow

Figure 1: The 3 − UPU robot

us to establish a methodology for determining the full inverse kinematic
jacobian. But it will also enable to show the importance of this matrix.
The story is that such a robot was designed at Seoul National University
(SNU) and that is was exhibiting a strange behavior: although the prismatic
actuators were locked, the end-effector was exhibiting significant orientation
motion. This phenomena was explained by Bonev and Zlatanov [1] and later
in [2, 11]. Furthermore motion sensitivity to manufacturing tolerances has
been studied [5, 8] and has shown that this robot was very sensitive.
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We will denote by B1, B2, B3 the center of the U joints on the platform
and will now calculate the full inverse kinematic jacobian matrix. The
velocity VB of the B points is VB = V + BC ×Ω. Let us define n as the
unit vector of the leg and compute the dot product of the right and left
terms of the previous equation:

VB.n = ρ̇n = V.n + (BC ×Ω).n = V.n + (CB × n).Ω (7)

Now let us define ui,vi the unit vectors of the two joint axis of the U joint
at Bi. These vectors are the same for the base and platform. The angular
velocity of the leg ωl with respect to the base and the angular velocity of
the platform ωp with respect to the leg are

ωl = θ̇i
Aui + α̇i

Avi ωp = θ̇i
Bui + α̇i

Bvi

The angular velocity of the platform is

Ω = ωl + ωp = Ki
1ui +Ki

2vi

where Ki
1,K

i
2 can be obtained from the previous equations. Now define

si = ui × vi and compute the dot product of the right and left terms of the
previous equation by si:

si.Ω = 0 (8)

Combining equations (7, 8) we get the full velocities equations involving the
twist W as

(

ρ̇i

0

)

= J−1

fk
W =

(

ni (CBi × ni)
0 si

)

W (9)

which establish the full inverse kinematic jacobian. The inverse kinematic
jacobian may be extracted from J−1

fk
as the 3× 3 matrix whose rows are the

ni vectors. But an important point for accuracy analysis is to consider the
lower part of J−1

fk
which shows that if s1.(s2 × s3) = 0 the platform may

exhibit orientation motion that may be infinitesimal or finite according to
the geometry of the U joint. It happens that the design of the SNU robot
was in the later category.

3 Manipulability

It is realistic to assume that the joint errors are bounded and consequently
so will be the positioning errors. The norm of the bound may be chosen
arbitrary as (6) is linear so that a simple scaling will allow to determine the
positioning error from the errors obtained for a given bound. A value of 1
for the bound is usually chosen:

||∆Θ|| ≤ 1 (10)
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Figure 2: The mapping between the joints errors space and the generalized
coordinates error space induced by J−TJ according to the norm: on top the
Euclidean norm and on bottom the infinity norm.

which leads to
∆XT J−TJ−1∆X ≤ 1 (11)

A classical geometrical interpretation of this relation is presented for the
2D case in figure 2. If the Euclidean norm is used (10) represents a circle
in the joints errors space. This circle is mapped through matrix J−TJ−1

into an ellipse in the generalized coordinates error space. More generally
the mapping transform the hyper-sphere of the joints errors space into an
ellipsoid, usually called the manipulability ellipsoid.

In fact the use of the Euclidean norm is not realistic: it implies for exam-
ple that if one of the joint error is 1, then by some mysterious influence all
the other joint errors are 0. The appropriate norm is the infinity norm that
states that the absolute value of the joint errors are independently bounded
by 1. With this norm (10) represents a n-dimensional square in the joints
errors space that is mapped into the kinematics polyhedron, that includes
the manipulability ellipsoid, in the generalized coordinates errors space.
Figure 2 illustrates this mapping in the 2D case. It must be noted that,
apart of being more realistic, the previous mapping leads to geometrical
object that can be more easily manipulated than the ellipsoid. For example
assume that one want to determine what are all the possible end-effector
velocities that can be obtained in 2 different poses of the end-effector. For
that purpose we will have to calculate the intersection of the 2 polyhedra
obtained for the 2 poses, a well known problem of computational geometry,
that can be much more easily solved than computing the intersection of 2
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ellipsoids.

4 Condition number

A large dimension along a given axis of the kinematics polyhedron indi-
cates a large amplification error. It is therefore necessary to quantify this
amplification factor. Let us consider the linear system:

J−1∆X = ∆Θ ,

where J−1 is a n×n inverse kinematic jacobian matrix. The error amplifica-
tion factor in this system expresses how a relative error in Θ gets multiplied
and leads to a relative error in X. It characterize in some sense the dexterity
of the robot and will be used as a performance index. We now use a norm
such that

||J−1∆X|| ≤ ||J−1||||∆X|| ,
and obtain

||∆X||
||X|| ≤ ||J−1||||J|| ||∆Θ||

||Θ|| ;

The error amplification factor, called the condition number κ, is therefore
defined as

κ(J−1) = ||J−1||||J|| .
The condition number is thus dependent on the choice of the matrix norm.
The most used norms are:

• the 2-norm defined as the square root of the largest eigenvalue of
matrix J−TJ−1: the condition number of J−1 is thus the square root of
the ratio between the largest and the smallest eigenvalues of J−TJ−1,

• the Euclidean (or Frobenius) norm defined for the m × n matrix A

by: ||A|| =
√

∑i=m

i=1

∑j=n

j=1
|aij |2 or equivalently as

√

tr(ATA): if λi

denotes the eigenvalues of J−TJ−1, then the condition number is the
ratio between

∑

λ2
i and

∏

λi. Note that sometime is also used a
weighted Frobenius norm in which ATA is substituted by ATWA
where W is the weight matrix

In these two cases, the smallest possible value of the condition number is 1.
The inverse of the condition number, which has a value in [0,1], is also often
used. A value of 0 will indicate that the inverse jacobian matrix is singular.

The condition number is quite often used as an index to describe first
the accuracy/dexterity of a robot and, second, the closeness of a pose to
a singularity. For the later point it is in general not possible to define a
mathematical distance to a singularity for robots whose d.o.f. is a mix
between translation and orientation: hence the use of the condition number
is as valid an index than any other one. But it has the advantage of being
a single number for describing the overall kinematic behavior of a robot.
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The definition of the condition number makes clear that we cannot cal-
culate its analytical form as a function of the pose parameters except for
very simple robot. But robust linear algebra software allows to calculate it
numerically for a given pose.

But for robot having both translation and orientation d.o.f. there is a
major drawback of the condition number: the matrix involved in its cal-
culation are not homogeneous in terms of units. Hence the value of the
condition number for a given robot and pose will change according to the
unit choice, while clearly the kinematic accuracy is constant. Ma and Ange-
les [6] suggested to define a normalized inverse jacobian matrix by dividing
the rotational elements of the matrix by a length such as the length of the
links in a nominal position, or the natural length defined as that which min-
imizes the condition number for a given pose. Still the choice of the length
remains arbitrary as it just allows to define a correspondence between a
rotation and a translation and as mentioned by Park [9] ”this arbitrariness
is an unavoidable consequence of the geometry of SE(3)”.

To evaluate the efficiency of the condition number for accuracy evalua-
tion we just use our Gough robot and chooses three reference poses defined
by the coordinates of the center and the Euler angles as P1=x = y = 0, z=53
cm, ψ = 0, θ = 0, φ = 0 (roughly the pose obtained for the mid-stroke of
the actuator), P2=x = y = 0, z=53 cm, ψ = 30◦, θ = 0, φ = 0 (whose
orientation is roughly 1/3 of the possible rotation around the z axis) and
P3=x = y = 10, z=53 cm, ψ = 0, θ = 0, φ = 0.(close to the border of the
translation workspace for this orientation). We then computed the absolute
value of the maximal positioning error at these poses, obtained as the sum
of the absolute value of the elements of the rows of the kinematic jacobian,
as indicated in the following table.

Pose ∆Xx ∆Xy ∆Xz ∆Xθx
∆Xθy

∆Xθz

P1 0.1184 0.1268 0.010087 0.1185 0.1184 0.697
P2 0.1189 0.1274 0.01266 0.1333 0.1429 0.808
P3 0.123 0.1309 0.0372 0.15 0.1663 0.7208

It can be seen in this table that the positioning errors are significantly
larger for P2 and P3 compared to P1. As for P3 the errors are usually larger
compared to P2 except for the rotation around z. Hence as far as accuracy
is concerned the ordering of the poses from the most to the least accurate
is P1, P2, P3 and we expect to obtain a similar ordering for the condition
number.

For this robot we define the normalized inverse jacobian matrix J−1
n ob-

tained by dividing the orientation components of the J−1

k
by 53 i.e. roughly

the legs lengths at pose P1. The considered accuracy indices will be

• Cd: the determinant of J−1

k

• C2, C
n
2 : the 2-norm condition number of J−1

k
, J−1

n

• CF , C
n
F : the Frobenius-norm condition number of J−1

k
, J−1

n
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• C3
2 , C

3

F : the 2-norm and Frobenius norm condition number of the in-
verse jacobian matrix obtained when the inverse kinematics equations
are based on the coordinates of 3 points of the end-effector. The cho-
sen points will be all possible triplets in the set Bi: hence we will
provide ranges for these indices.

The results are presented in the following table:

Cd C2 C
n

2 CF C
n

F C
3

2 C
3

F

P1 -29.22 75.14 63.9 152.8 70.2 [9.55,55.47] [258.8,3204.9]
P2 -24.64 75.16 73.8 154 80.9 [9.62,43.84] [218.8,2383.6]
P3 -23.93 80.65 68.4 158.3 74.7 [10.06,58.95] [286.5,3618]

For C2 it may be seen that the difference is surprisingly very small be-
tween P1, P2 and significant between P3, P2. The ordering between P2, P3

is not respected for Cn
2 , C

n
F although these indices are coherent when con-

sidering P1. For CF , Cd the ordering is respected although the changes in
the index are relatively small for CF . On the other hand there is a sur-
prisingly decrease of C3

2 , C
3

F between P2 and P1 while there is a significant
increase between P1 and P3. Hence none of this condition numbers exhibits
a completely coherent behavior with respect to the accuracy of this robot.

This simple example shows clearly that the concept of condition number
has to be carefully considered when talking about optimal design for robot.

5 Isotropy

An isotropic pose of a robot is defined as a pose where κ is equal to 1
and a robot which has only isotropic poses in its workspace is coined an
isotropic robot. Designing an isotropic parallel robot is often considered as
a design objective [3, 12]. A trivial example of isotropic robot is a serial
Cartesian X-Y-Z robot whose kinematic jacobian matrix is the identity.
But this is a surprising denomination as stricto sensu isotropy indicates
that the performances of a robot should be the same whatever is the motion
direction. Now if we assume that all the actuator velocities of a X-Y-Z robot
are bounded to 1, then the maximal velocity of the end-effector lie in the
range [1,

√
3]: as far as velocity is considered such robot is far from isotropy.

Still the concept may have some interest: for example any Cartesian robot
whose actuator axis are not mutually orthogonal will exhibit a ratio between
its maximal velocities over its workspace that will be larger than

√
3. Hence,

instead of using the name ”isotropic robot” we may consider using the name
”maximally regular robot”.

6 Global conditioning index

The condition number is a local indication for the dexterity of a robot. To
evaluate the dexterity of a robot over a given workspace W Gosselin [4] has
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introduced the global conditioning index (GCI) as:

GCI =

∫

W

(

1

κ

)

dW
∫

W
dW

.

which correspond to the average value of 1/κ. Clearly this concept makes
sense for the optimal design of robot for which the extremal and average
value of any performance are important design factors. But apart of the
validity of the condition number that has been discussed in a previous sec-
tion the problem with the GCI is its calculation. Clearly we cannot expect
to obtain its closed-form and we must rely on a numerical evaluation. The
usual method is to sample the workspace using a regular grid, compute 1/κi

at each node Ni and approximate the GCI as GCIa, the sum of the 1/κi

divided by the number of nodes. This calculation may be computer inten-
sive as its complexity is exponential with respect to the number of d.o.f.
of the robot. Furthermore this method does not allow to get a bound on
|GCI − GCIa|. To deal with this error problem it is sometimes assumed
that if the result with m1 sampling points is close to the result obtained
with m2 points, m2 being significantly larger than m1, then the later result
is a good approximation of the index. This assumption will be true only if
the condition number is smooth enough, a claim that is difficult to support.
Consider for example a simple planar serial 2R robot: its GCI can be com-
puted almost exactly as it depends only on a single parameter. We sample
this parameter using 10, 20, . . ., m1, m2 = m1 + 10 points and stop the
calculation when the relative error between GCIa(m1),GCIa(m2) is lower
than 0.5% and assumes GCI ≈ GCIa(m2). For m1 = 50 the relative error
is 0.377% while the relative error on the GCI is still 1.751%. It may be
assumed that such error will even be larger for more complex robot.

A better evaluation will probably be obtained by using Monte-Carlo
integration (with an error that decreases as 1/

√
n where n is the number

of sampling nodes) or quasi-Monte Carlo. In the previous example (which
is not favorable for Monte-Carlo method as there is only one parameter)
we found out that by using the same stop criteria the relative error on the
GCI was reduced to 0.63%. A certified evaluation of the global conditioning
index is therefore an open problem but nevertheless the calculation of such
index will probably be computer intensive.

7 Conclusion

Classical dexterity indices such as the condition number are not very ade-
quate for parallel robots. In our opinion the most appropriate accuracy in-
dices are the determination of the maximal positioning errors, their average
values and their variance. We have presented in a recent paper a a computer
intensive method for finding the largest maximal positioning errors, up to an
arbitrary accuracy, of a 6 d.o.f. robot [7]. A real challenge is to design algo-
rithms for calculating the average and variance of the maximal positioning
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errors over a given workspace. An important point is that there is no need
to calculate these values exactly as soon as it is possible to impose a bound
on the calculation error. Indeed for comparison purposes an approximate
value with a guaranteed error will be sufficient.
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