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Abstract 

Compacted unsaturated swelling clay is often considered as a possible buffer material for 

deep nuclear waste disposal. An isotropic cell permitting simultaneous control of suction, 

temperature and pressure was used to study the thermo-mechanical behaviour of this clay. 

Tests were performed at total suctions ranging from 9 to 110 MPa, temperature from 25 to 

80 °C, isotropic pressure from 0.1 to 60 MPa. It was observed that heating at constant suction 

and pressure induces either swelling or contraction. The results from compression tests at 

constant suction and temperature evidenced that at lower suction, the yield pressure was 

lower, the elastic compressibility parameter and the plastic compressibility parameter were 

higher.  On the other hand, at a similar suction, the yield pressure was slightly influenced by 

the temperature;  and the compressibility parameters were insensitive to temperature changes. 

The thermal hardening phenomenon was equally evidenced by following a thermo-

mechanical path of loading–heating-cooling-reloading.  

 

Key words: Radioactive waste disposal, expansive soils, laboratory tests, compressibility, 

suction, temperature effects. 

 



 3

Introduction 
 
 
Heavily compacted bentonite is often proposed to be used for engineered barriers in high-

level nuclear waste disposals. In this condition, this swelling clay, which is initially in an 

unsaturated state, is subjected to thermo-hydro-mechanical actions, for exemple: (1) heat 

dissipation from the nuclear waste packages; (2) water infiltration from the geological barrier; 

(3) stresses generated by the swelling of the engineered barrier in confined conditions. A deep 

understanding of the behaviour of this clay under these coupled thermo-hydro-mechanical 

actions is essential to make a safe conception of the whole storage system. 

 

The hydro-mechanical behaviour of compacted swelling soils at ambient temperature have 

been studied in previous works (Al-Mukhtar et al. 1999; Belanteur et al. 1997; Bucher & 

Mayor 1989; Cui et al. 2002; Cuisinier & Masrouri 2004; Delage et al. 1998; Komine & 

Ogata 1994; Lloret et al. 2003; Villar 1999; etc.). A common conclusion from these works is 

that the soil mechanical properties are influenced by the soil suction: the higher the suction, 

the higher is the yield pressure (p0). In addition, the effect of suction on the elastic 

compressibility parameter (κ) and the plastic compressibility parameter (λ(s)) (the notations 

adopted for theses parameters are the same as in the Barcelona Basic Model elaborated by 

Alonso et al. 1990), determined from oedometer tests, was also observed. Regarding the 

swelling properties, it was evidenced that swelling is produced during wetting under low 

stresses and on the contrary collapse is induced under high stresses. When wetting under a 

confined condition (constant volume), swelling pressure is generally developed. These 

swelling properties are related to the presence of highly active clay minerals. During wetting, 

water molecules enter between the clay layers, inducing the swelling of clay aggregates and 

therefore a macroscopic swelling response. 
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As far as the thermo-mechanical behaviour is concerned, most works have been done on 

saturated clays (Akagi & Komiya 1995; Baldi et al. 1988; Burghignoli et al. 2000; 

Campanella & Mitchell 1968; Cekerevac & Laloui 2004; De Bruyn & Thimus 1996; Del 

Olmo et al. 1996; Delage et al. 2000; Demars & Charles 1982; Eriksson 1989; Habibagahi 

1977; Hueckel & Baldi 1990; Kuntiwattanakul et al. 1995; Laloui 2001; Noble & Demirel 

1969; Shimizu 2003; Sultan et al. 2002; Tidfors & Sallfors 1989; Towhata et al. 1993; etc.). It 

has been observed that heating may induce expansion under low stresses (or large over-

consolidation ratio OCR) and contraction under high stress (or small OCR). The effects of 

temperature on the mechanical properties observed are often contradictory. Nevertheless, it 

can be concluded that the temperature effect on mechanical properties is quite small. Cui et al. 

(2000) described two phenomena produced during heating: (1) expansion of soil constituents 

(solid and water); (2) mechanical weakening of the contacts between soil aggregates. The 

expansion of the soil components explains the phenomenon of macroscopic thermal 

expansion under low stresses, as mentioned before; the mechanical weakening of contacts 

explains the thermal contraction under high stresses. This thermal volume change 

phenomenon has a significant effect on the soil shear strength. On one hand, the expansion of 

aggregates induces a decrease of soil strength, but on the other hand, the thermal contraction 

hardens the soil and increases the shear strength. These two opposed phenomena explain the 

conflicting results in the literature in terms of temperature effect on shear strength. 

 

Regarding the thermo-mechanical behaviour of unsaturated soil, Villar & Lloret (2004) 

studied the temperature effect on the hydro-mechanical behaviour of a compacted expansive 

clay (FEBEX bentonite, liquid limit %102=Lw , plasticity index PI = 52%) in an oedometer. 

During wetting, it was observed that at higher temperatures, the swelling strain under constant 
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pressure reduced, as did the swelling pressure under a constant volume condition. The same 

phenomena have been observed by Romero et al. (2003) on Boom clay ( %56=Lw , PI = 

27%), also in an oedometer. Saix et al. (2000) performed compression tests in a triaxial cell at 

constant suction (4.9 kPa) and temperature (30 – 70°C) on a clayey silty sand ( %25=Lw , PI 

= 10.5%). A decrease followed by an increase of p0 with increasing temperature was 

observed, the minimum value corresponding to a temperature of 45 °C. With compacted 

FEBEX bentonite, Romero et al. (2005) observed that the stiffness upon loading at 14 MPa 

suction increased with temperature. On the contrary, with compacted Boom clay, Romero et 

al. (2003) noticed that the compression index is larger at higher temperatures, but the swelling 

index seemed to be temperature independent. In terms of thermal volume changes, Saix et al. 

(2000) observed a contraction during heating of the clayey silty sand under constant stress at 

42, 160 and 800 kPa in oedometer. On compacted FEBEX bentonite and Boom clay, Romero 

et al. (2005) observed a thermal expansion under low stresses. 

 

In order to understand better the thermo-mechanical behaviour of unsaturated soils, in the 

present work, unsaturated compacted MX80 bentonite was studied using a suction-

temperature controlled isotropic cell. The effect of suction and temperature on soil 

compressibility was studied by carrying out compression tests; the effect of suction and stress 

on the thermal volume change behaviour was investigated by performing heating/cooling 

tests. 

 

Material 
 
 
The MX80 bentonite is a clay from Wyoming (USA). With its high content of 

montmorillonite (80%), it has a liquid limit %520=Lw , a plastic limit %46=Pw , and can be 
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classified as a highly expansive clay. Its specific gravity is Gs = 2.76. The cation exchange 

capacity (CEC) is 76 meq/100g (83% Na, 11% Ca, 5% Mg, 1% K).  

 

Prior to the compaction, the clay was sieved at 2 mm and air-dried at 44% relative humidity 

(RH) and 20 °C temperature (T). That corresponds to a total suction of 110 MPa (see Tang & 

Cui 2005). At equilibrium, its water content w  = 10±2%. The clay was first compacted in a 

neoprene tube (90 mm in diameter, 120 mm in length, 1.2 mm in thickness) with a closed end. 

The sample within the tube was then compressed in an isotropic cell under a static pressure of 

40 MPa. After this compression, clay specimens were placed back in the chamber at RH = 

44% and T = 20 °C. This procedure allowed the compacted specimens to have a dry density 

dρ = 1.78±0.3 Mg/m3, a void ratio e  = 0.55±0.03, and a degree of saturation rS = 50±1%. 

Methods 
 
 
A suction-temperature controlled isotropic cell has been developed (Tang et al. 2006). The 

basic scheme of the cell is presented in Figure 1. The soil specimen (80 mm in diameter, 10 – 

15 mm in height) is sandwiched between two dry porous stones, which are confined within 

two metallic plates. Several holes (2 mm in diameter, 7 mm in spacing) are drilled in the 

lower plate, allowing the moisture exchange between soil specimen and the chamber below 

the lower plate. Within this chamber, there is a glass cup containing an over-saturated saline 

solution to control the relative humidity in the chamber and therefore that in the soil sample. 

Measurements performed by Tang & Cui (2005) in a chamber having similar dimensions 

showed that the relative humidity in the chamber reached the target value in less than 5 hours. 

Measurements of suction generated using over-saturated salt solutions at different 

temperatures in this other chamber were performed by Tang & Cui (2005) and the values 

were applied in the present work to determine indirectly the imposed suction values. The soil 
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specimen and the two metallic plates are covered by a neoprene membrane (1.2 mm 

thickness) that avoids any exchange between the confining water in the cell and the soil pore 

water. A thermocouple installed inside the cell is used to monitor of the ambient temperature. 

Several O-rings are used in different places for waterproof purpose. 

 

The experimental setup is presented in Figure 2. The cell is immersed in a temperature 

controlled bath (T = 25 – 90 °C). The temperature probe installed in the cell is connected to 

the data logger. A volume/pressure controller controls the confining pressure in the cell. This 

controller also monitors the soil volume change through the volume change of confining 

water in the cell. The other temperature-controlled bath (T = 25 °C) avoids the entry of hot 

water from the cell to the volume/pressure controller. During each test, the volume and 

pressure of water in this controller are recorded by the data logger. The room temperature is 

controlled at 20±1 °C. 

 

Prior to any test, compacted soil specimens (having an initial total suction of 110 MPa) were 

machined to obtain the required dimensions (80 mm in diameter, 10 – 15 mm high). For the 

tests performed at suctions lower than 110 MPa, the soil specimens were first wetted using the 

vapour equilibrium technique (see Delage et al. 1998) in a sealed box in order to reduce the 

suction to the desired values. The dimensions of the specimen at equilibrium after wetting 

were measured using a precision calliper, allowing the radial and axial strains upon wetting to 

be determined. After the initial wetting, soil specimens are installed in the cell for thermo-

mechanical tests. Before the installation, the samples were machined again to fit the required 

diameter (80 mm). During the thermo-mechanical tests, the temperature was varied from 

25 °C to 80 °C and pressure from 0.1 to 60 MPa, and three suctions of 9, 39, and 110 MPa 

were considered. Eleven tests were performed from the same initial conditions (p = 0.1 MPa, 
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ψ = 110 MPa, T = 25 °C), and the start and end points stress paths of these tests are presented 

in Table 1. 

 

During a compression test, the confining pressure of the cell is increased step by step: p = 0.1, 

0.2, 0.5, 1, 2, 5, 10, 20, 50 MPa, and the water volume change of the volume/pressure 

controller is recorded. An example of the results obtained from the step 1 to 2 MPa is 

presented in Figure 3 with water volume change plotted versus logarithm of time. It can be 

observed that the volume decreased rapidly at the beginning and stabilised after 3 days. The 

consolidation is considered to be stabilised when the volume change during 24 h is less than 

50 mm3 (corresponding to a soil volumetric strain of 0.1%). The water volume change during 

a loading step corresponds to the sum of the soil volume change and the expansion of the 

tubing system and the cell due to pressure increase. The calibration test was performed with a 

metallic specimen that had the same dimensions of the soil specimen. It can be seen that the 

calibration curve rapidly stabilised, in less than 10 minutes. In fact, as the calibration test is 

performed on a metallic specimen, the response is almost instantaneous, while in the test with 

soil specimen, 3 days was needed to reach the stabilisation in this example. The volume 

change of the soil specimen (dV) can be determined as the difference between the two curves, 

dV = -1200 mm3 in this case. 

 

The determination of the soil volume change during heating is presented in Figure 4. During 

heating from 25 °C to 70 °C under a constant pressure of 0.1 MPa, water in the cell expanded 

and moved into the volume/pressure controller. The volume of water inside the controller 

increased from this flow by approximately 11 000 mm3. Assuming that the coefficient of 

thermal expansion of the metal sample (10-6 °C-1) is negligible compared with that of the 

compacted clay soil (about 10-4 °C-1, after Romero et al. 2005), the soil volume change can be 
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determined from the difference between the results obtained from the test and the calibration. 

In this case, during heating from 25 °C to 70 °C, the soil volume increased by 500 mm3, 

which corresponds to a volumetric strain, vε  =  -0.9 % (in this example, the soil specimen 

dimensions were: 80 mm in diameter and 11 mm in height). 

 

As far as the suction control is considered, the soil suction is assumed to be equal to the total 

suction imposed by the salt solution when no volume change is observed at constant pressure 

and temperature. Indeed, as the soil studied (MX80 bentonite) is a highly expansive clay, 

suction changes usually induce volume changes. As mentioned by Tang & Cui (2005), 

temperature change induces a change in the suction imposed by a saturated saline solution. 

However, in the test with the isotropic cell, thermal loadings are usually applied during a short 

duration (less than 24h), within this short duration the suction in the soil is assumed to remain 

unchanged during thermal loading. According to Tang & Cui (2006), soil specimen having 

similar dimensions needed more than two weeks to reach the suction equilibrium after a 

change of suction imposed by salt solution.  In addition, when the over-saturated NaCl 

solution is used, the suction is considered to be constant with temperature change. Three 

suctions were considered: ψ = 9 MPa (KNO3 at 25 °C and K2SO4 at 80 °C); 39 MPa (NaCl at 

25, 40, and 60 °C); and 110 MPa (K2CO3 at 25 °C, MgNO3 at 80 °C). The salt solution 

installed in the cell is chosen as a function of the desired values of suction and temperature 

during the mechanical loading path. 

 

Results 
 
 

Volume change under wetting 
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The volumetric strain of the soil specimens during wetting from the initial suction (110 MPa) 

to 39 and 9 MPa is presented in Figure 5 together with axial and radial strains. The volume of 

the soil specimen increased 50% when the suction was decreased to 9 MPa. In addition, it can 

be observed that the radial strain was equal to the axial strain, showing an isotropic behaviour. 

This observation is consistent with the isotropic compaction procedure adopted for the 

specimen preparation. 

 

Volume change under thermal loading 
 

Figure 6 shows the stress paths followed by tests T1, T2, T3, T4 and T5, in a space of total 

suction (ψ), pressure (p), and temperature (T). The initial state is defined by a low confining 

pressure p = 0.1 MPa, the room temperature T = 25 °C and a total suction of 110 MPa. For 

test T1, the soil specimen was heated to 60 °C under p = 0.1 MPa. For test T2, a decrease of 

suction from 110 to 39 MPa at T = 25 °C was first undertaken before heating to T = 70 °C. 

For test T3, the soil specimen was wetted to ψ = 9 MPa and then underwent a thermal cycle T 

= 25 – 80 –25 –80 °C. For test T4, the pressure was first increased to p = 5 MPa; a thermal 

cycle T = 25 – 80 – 25 °C was then applied while p was kept constant. For test T5, a wetting 

to s = 39 MPa was first applied, followed by a loading to p = 5 MPa. Afterwards, a thermal 

cycle T = 25 – 80 – 25 °C was undertaken under constant pressure (5 MPa). 

 

The results on thermal volume change under p = 0.1 MPa are presented in Figure 7. The 

results from the tests T1 (ψ = 110 MPa) and T2 (ψ = 39 MPa) show that heating induced an 

expansion. Considering that this expansion is linear, a coefficient of thermal expansion α = 

2×10-4 °C-1 can be deduced. The result from test T3 (ψ = 9 MPa) shows that, on the contrary, 

heating induced a volume decrease. In addition, the subsequent cooling – reheating cycle 
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undertaken shows a reversible behaviour. Note that significant data scatter was observed in 

this test and it is difficult to quantify the volume change behaviour during the cooling-

reheating stage. 

 

Figure 8 presents the results obtained from the tests T4 (ψ = 110 MPa) and T5 (ψ = 39 MPa) 

at p = 5 MPa. It can be observed that, at high suction, heating from T = 25°C to 80 °C induced 

an expansion and cooling from T = 80 °C to 25 °C induced a contraction. The volume change 

during this thermal cycle is approximately reversible; a coefficient of thermal expansion α = 

2×10-4 °C-1 can be estimated. At a suction of 39 MPa (test T5), as opposed to the case in test 

T2 (ψ = 39 MPa, p = 0.1 MPa), heating from T = 25 °C to 80 °C resulted in a thermal 

contraction ( vε = 0.5%) and cooling from T = 80 °C to 25 °C also resulted a contraction, 

leading to a total volumetric strain vε ≅ 1.0%. The volumetric strain and the temperature 

during cooling from T = 55 °C to 25 °C can be correlated with a linear function, defining a 

coefficient of thermal expansionα = 2×10-4 °C-1 which is similar to that deduced from the 

heating phase in tests T1, T2 and T4. 

 

Volume change under mechanical loading 
 
 
The mechanical loading in tests T1, T3, T6, T7, T8, T9 and T10 were performed at constant 

suction and temperature. The stress paths of these tests are presented in Figure 9. Test T6 was 

performed at the initial total suction ψ = 110 MPa and room temperature T = 25 °C; Test T1 

was performed at ψ = 110 MPa and T = 60 °C. T7, T10 and T9 were performed at the same 

suction ψ = 39 MPa, and different temperatures: 25 °C (test T7), 40 °C (test T10), and 60 °C 
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(test T9). T3 and T8 were performed at the same suction ψ = 9 MPa and different 

temperatures: T = 25 °C (test T8) and T = 80 °C (test T3). 

 

Figure 10 presents the results (void ratio e versus logarithm of pressure logp) for all these 

tests. From these curves, the compressibility parameters can be determined: (i) yield pressure, 

0p ; (ii) elastic compressibility parameter, pe ln/∆∆=κ ; (iii) plastic compressibility 

parameter, pes ln/)( ∆∆=λ (note that ∆e is equivalent to ∆v, where v is the specific volume, 

v = 1 + e). In this case, the yield pressure is determined from the intersection between the 

elastic compression slope and the plastic compression slope. This method is also used by 

Lloret et al. (2003). 

  

For the test at ψ = 110 MPa, heating under p = 0.1 MPa from T = 25°C to 60°C increased the 

void ratio from 0.519 to 0.525 (T1), showing a thermal expansion as presented in Figure 7. 

Comparing to the volume change under mechanical loading (i.e. increased confining 

pressure), this thermal volume change is quite small. The two curves of tests T1 (60 °C) and 

T6 (25 °C) respectively are similar, showing a negligible effect of temperature (Figure 10a). 

Similar observations can be made from the three tests at 39 MPa suction (Figure 10b). 

Heating from 25 °C to 60 °C raised the void ratio from e = 0.902 to 0.912. The difference 

between the compression curves of T7 (25°C) and T9 (60°C) is not significant. The initial 

void ratio of the sample used in T10 (40 °C) is relatively smaller. Nevertheless, the shape of 

the compression curve is similar to that of T1 and T6. In test T3, the thermal cycle, T = 25 – 

80 – 25 – 80 °C, reduced the volume of the soil specimen at ψ = 9 MPa due to thermal 

contraction (Figure 7). In Figure 10c, it can be observed that this contraction corresponds to a 

decrease of the void ratio from 1.290 to 1.267. The comparison between the compression 
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curves from T8 (25 °C) and T3 (80 °C) does not show any significant temperature effect: the 

two curves are similar. 

 

It can be observed from Figure 10 that λ(s)  and κ  are independent of temperature while they 

are strongly affected by suction. The values of these parameters are plotted versus suction in 

Figure 11 (only for the cases of tests at 25 °C). It appears that wetting (decrease of total 

suction) increased the compressibility parameters. 

 

The yield pressures (p0) determined from Figure 10 are shown in Figure 12 for different 

suctions and temperatures. It can be observed that 0p  decreased from 17.1 MPa at the initial 

suction ψ = 110 MPa to 2.1 MPa at ψ = 39 MPa and 0.38 MPa at ψ = 9 MPa for tests at 25 

°C. At ψ = 110 MPa, heating from T = 25 °C to 60 °C decreased p0 from 17.1 MPa (T6) to 

12.8 MPa (T1). At ψ =  39 MPa, heating decreased equally p0 from 2.1 MPa (T7, 25°C) to 

1.6 MPa (T10, 40 °C) and 0.8 MPa (T9, 60 °C). And at ψ = 9 MPa, p0 was decreased from 

0.38 MPa (T8, 25 °C) to 0.32 MPa (T3, 80 °C). 

 

Figure 13 presents the stress paths of two tests (T5 and T11) where a mechanical loading was 

applied after a thermal cycle at high pressure. For test T11, from the initial conditions (ψ = 

110 MPa, p = 0.1 MPa, T = 25 °C), the soil sample was first loaded to p = 20 MPa, then 

subjected to a thermal cycle, T = 25 – 80 – 25 °C, under constant pressure p = 20 MPa. 

Afterwards, at T = 25 °C, the specimen was compressed up to p = 50 MPa. For test T5, the 

soil specimen was first wetted to ψ = 39 MPa and then loaded to p = 5 MPa. Under this 

pressure, a thermal cycle, T = 25 – 80 – 25 °C, was applied, followed by loading up to p = 

20 MPa. 
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The corresponding void ratio changes are presented in Figure 14. The initial loading from p = 

0.1 MPa to 20 MPa in T11 decreased the void ratio from 0.513 to 0.455. After the thermal 

cycle under p = 20 MPa, the void ratio was reduced to 0.448, showing that a plastic thermal 

contraction occurred. Loading from p = 20 MPa to 50 MPa showed an elasto-plastic 

behaviour with a yield pressure, 0p  = 36.1 MPa. A similar behaviour can be observed on test 

T5. The thermal cycle at ψ = 39 MPa and p = 5 MPa reduced the void ratio from 0.774 to 

0.754 (this corresponds to the thermal contraction observed in Figure 8). An elasto-plastic 

behaviour can also be observed during the compression from p = 5 MPa to 20 MPa. The yield 

pressure 0p  was estimated to be 7.9 MPa, which is clearly higher than the constant pressure 

during the thermal cycle (5 MPa). 

 

Discussion 
 
In the present work, mechanical loading (i.e. increasing the confining pressure) was 

performed step-by-step to allow suction equilibrium after each loading step. A disadvantage 

of this approach is that the evaluation of compressibility parameters can be somewhat 

approximate when there are not enough data. In the thermo-mechanical study of saturated 

soils, a constant stress rate loading is usually used (Sultan et al. 2002) which allow a more 

accurate determination of the compressibility parameters. However, constant stress rate 

loading can not be used when unsaturated soil is concerned as suction control can not be 

checked. For this reason, step-by-step mechanical loading is usually used to study the hydro-

mechanical behaviour of unsaturated soil (Lloret et al. 2003; Romero et al. 2005). In the 

present work, in spite of the approximate evaluation of yield pressure and compressibility 

parameters, several effects of suction and temperature can be observed. 
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It was observed that the volumetric thermal behaviour is strongly affected by suction and 

pressure. Heating induced expansion under low pressure and high suction; at high pressure 

and low suction, heating tended to induce a contraction (Figures 7 and 8). In the case of 

saturated soils, Plum & Esrig (1969), Baldi et al. (1988), Towhata et al. (1993), Del Olmo et 

al. (1996), Robinet et al. (1997), Burghignoli et al. (2000), Sultan et al. (2002), Cekerevac et 

al. (2003) observed that heating a clay at low overconsolidation ratio (OCR) induced plastic 

contraction. These authors observed equally that, at high OCR, heating induced expansion up 

to a certain temperature; a contraction took place when the temperature was higher. These 

observations are in good agreement with the results obtained on unsaturated MX80 bentonite 

in the present work. Indeed, the results obtained on p0 presented in Figure 12 can be used to 

calculate OCR. For T1 and T2 (Figure 7) where thermal expansion occurred during heating, 

OCR values were large: for T1, ψ = 110 MPa, 171
1.0
1.170 ===

p
pOCR ; for T2, ψ = 39 MPa, 

21
1.0
1.20 ===

p
pOCR . For T5, loading until p = 5 MPa exceeded the initial p0 (p0 = 2.1 MPa 

at ψ = 39 MPa). The soil was thus heated in a normally consolidated state (OCR = 1). It can 

be concluded that heating induced expansion at high OCR and contraction at OCR = 1 in the 

case of unsaturated soils. It can be also concluded that OCR is not the only parameter that 

governs the thermal volumetric behaviour of an unsaturated soil. In fact, thermal contraction 

occurred in T3 during heating (OCR = 3.8,  ψ = 9 MPa, p = 0.1 MPa). On the contrary, at a 

similar OCR value (OCR = 3.4) heating induced expansion in T4 (ψ = 110 MPa, p = 5 MPa). 

The suction effect is thus clearly evidenced, which can be explained by the softening of the 

swelling clay aggregates due to suction decrease. 

 

The works of Del Olmo et al. (1996), Robinet et al. (1997), Sultan et al. (2002) showed that 

during thermal cycles on saturated clays: (i) the contraction during heating is irreversible and 
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the contraction during cooling is reversible; (ii) the expansion during heating is reversible; 

(iii) the slopes Tvt d/dε  (change in thermal volumetric strain / change in temperature) of the 

expansion curve during heating and the contraction curve during cooling are similar; this 

value corresponds to the soil’s coefficient of thermal expansion. These observations are in 

good agreement with the results obtained in the present work (Figures 7 and 8). Indeed, the 

heating/cooling cycle (T = 25 – 80 – 25 °C) induced an irreversible volumetric strain 

%0.1=vtε  in T3 and T5. The re-heating that followed the cooling in T3 showed that the 

contraction during cooling is reversible. In addition, the cooling phase following the heating 

phase in T4 equally evidenced that the expansion during heating is reversible. The 

coefficients of thermal expansion determined from tests T1, T2, T4, and T5 were similar, 

)(102d/d 14 −− °×== CTvεα ; for T3, the data scatter has not enabled this determination. This 

value is of the same order of magnitude of that measured by Romero et al. (2005) on an 

unsaturated compacted expansive clay at low confining pressures. 

 

As far as the suction effect on the compressibility parameters (λ(s) and κ) is concerned, 

(Figure 11), the soil volume change at low stresses is mainly governed by the compressibility 

of soil aggregates. In other words, the elastic compressibility parameter (κ) mainly depends 

on the compressibility of soil aggregates. In the case of low plasticity soils, it has been 

observed that κ is slightly dependent on the suction (Cui & Delage, 1996; Cuisinier & 

Masrouri, 2004; Alshihabi et al., 2002). On the contrary, this parameter increases with a 

decrease of suction in the case of expansive clays (Al-Mukhtar et al., 1999; Lloret et al., 

2003; Marcial, 2003). In fact, upon wetting, the expansive clay aggregates swell, giving rise 

to a mechanical softening. As a result, the compressibility of the aggregates is increased, thus 

increasing the elastic compressibility parameter (κ). It is not the case with low plasticity soils 

where no significant expansion occurs. During compression at high pressures, the soil volume 
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change is the sum of the volumetric strain of soil aggregates and the collapse of inter-

aggregate macro-pores. The plastic compressibility parameter (λ(s)) is then strongly affected 

by the suction whatever the soil nature. Al-Mukhtar et al. (1999) observed that the effect of 

suction on λ(s)  is more significant for higher plasticity soils. Alshihabi et al. (2002) observed 

that this parameter decreases slightly after a wetting/drying cycle. Cuisinier & Masrouri 

(2005) concluded that λ(s) depends strongly on the soil’s hydro-mechanical history. 

Regarding the yield pressure p0, its decrease due to wetting (Figure 12) is a well-known 

phenomenon in the mechanics of unsaturated soils. 

 

The temperature effect on the compressibility of unsaturated soil was not significant in the 

present work. The results presented in Figure 10 showed that p0 is slightly influenced by 

temperature but the compressibility parameters (λ(s) and κ) are insensitive to the temperature 

changes. Work on saturated clays has equally shown the independence of these 

compressibility parameters on temperature (Campanella & Mitchell, 1968; Fleureau, 1972; 

Habibagahi, 1977; Belanteur et al., 1997; Burghinoli et al., 2000; Cekerevac & Laloui, 2004). 

Only Sultan et al. (2002) observed a decrease of λ after cooling from T = 100 °C to 20 °C on 

Boom clay. For unsaturated soils, Recordon (1993) and Saix et al. (2000) observed the 

temperature independence of λ(s) and κ for sand and silty clayey sand. On the contrary, 

Romero et al. (2003) observed a temperature insensitivity of κ but a temperature dependence 

of λ(s) for compacted Boom clay. It appears that the temperature effect depends on the 

thermal expansion of the soil aggregates prior to mechanical compression. If this expansion is 

not significant, the soil aggregates are not significantly weakened, and in that case, the 

compressibility parameters must be temperature-independent. On the contrary, when 

significant thermal expansion takes place, a temperature-dependent compressibility behaviour 

is expected. 
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The results presented in Figure 12 evidenced the temperature effect on p0. In all cases, heating 

under p = 0.1 MPa decreased p0. This temperature effect on p0 was equally observed on 

saturated soils by Baldi et al. (1991), Towhata et al. (1993), Sultan et al. (2002) and Laloui & 

Cekerevac (2003).  

 

The thermal hardening phenomenon can be observed in Figure 14. A thermal cycle was 

performed at a constant pressure that was higher than the initial yield pressure. In the case of 

T11 (ψ = 110 MPa, p0 = 17.1 MPa in Figure 12), the soil was normally consolidated at p = 

20 MPa. However, after a thermal cycle under this pressure, an overconsolidated behaviour 

was observed with a new p0 value of 36.1 MPa. The same phenomenon was observed in T5 

(ψ = 39 MPa, p0 = 2.1 MPa in Figure 12). The thermal cycle at a constant pressure of 5 MPa 

resulted in an increase of p0 to 7.9 MPa. In fact, the thermal cycle induced contraction which 

hardened the soil and therefore increased p0. This thermal hardening phenomenon was equally 

observed by Sultan et al. (2002) on saturated Boom clay. 

 
 

Conclusions 
 
 
Thermo-mechanical tests were performed on unsaturated heavily compacted MX80 bentonite 

using a suction-temperature controlled isotropic cell. The results from thermal loading tests at 

constant pressure showed the effects of suction and pressure on the volumetric thermal 

behaviour of soil. Heating induced expansion under low pressure and high suction. At high 

pressure and low suction, heating tended to induce a contraction. For unsaturated soils, it 

appears that the over-consolidation ratio and the suction are both important parameters that 

govern the thermal volumetric behaviour. The tests with heating/cooling cycles evidenced that 
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the thermal expansion is reversible. If thermal contraction occurs during heating, the yield 

pressure may be increased due to a thermal hardening phenomenon. 

The results from mechanical loading tests evidenced the effects of suction and 

temperature on the compressibility behaviour. It appears that a reduction in suction gives rise 

to increased compressibility parameters and a decrease of yield pressure. However, the 

temperature effect on the compressibility parameters (κ and λ(s)) was not significant. In 

addition, heating induced a slight decrease in the yield pressure.  
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Table 1. Stress paths of tests. (All the tests start with the same initial conditions: p = 
0.1 MPa; ψ = 110 MPa; T = 25 °C). 

 
Path 

I II III IV V 

Test  

No. 

p: 

MPa 

ψ: 

MPa 

T: 

°C 

p: 

MPa 

ψ: 

MPa 

T: 

°C 

p: 

MPa 

ψ: 

MPa 

T: 

°C 

p: 

MPa 

ψ: 

MPa 

T: 

°C 

p: 

MPa 

ψ: 

MPa 

T: 

°C 

T1 0.1 110 60 50 110 60          

T2 0.1 39 25 0.1 39 70          

T3 0.1 9 25 0.1 9 80 0.1 9 25 0.1 9 80 5 9 80 

T4 5 110 25 5 110 80 5 110 25       

T5 0.1 39 25 5 39 25 5 39 80 5 39 25 20 39 25 

T6 60 110 25             

T7 0.1 39 25 10 39 25          

T8 0.1 9 25 5 9 25          

T9 0.1 39 25 0.1 39 60 50 39 60       

T10 0.1 39 25 0.1 39 40 50 39 40       

T11 20 110 25 20 110 80 20 110 25 50 110 25    
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Figure 1. Schematic view of the isotropic cell 

 

 
Figure 2. Experimental setup of suction-temperature controlled isotropic test. 
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Figure 3. Determination of soil volume change during a loading step from 1 to 2 MPa. 
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Figure 4. Determination of soil volume change during heating under confining pressure 
of 0.1 MPa. 
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Figure 5. Axial, radial, and volumetric strain during wetting.  
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Figure 6. Stress paths of tests T1, T2, T3, T4, T5 (for studying the thermal volumetric 
behaviour). 
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Figure 7. Volumetric strain during thermal loading under constant pressure at 0.1 MPa. 
Tests T1, T2, T3. 
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Figure 8. Volumetric strain during thermal loading under constant pressure at 5 MPa. 
Tests T4, T5. 
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Figure 9. Stress paths of tests T1, T3, T6, T7, T8, T9, and T10 (for studying the 
mechanical volumetric behaviour). 
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Figure 10. Results obtained from mechanical loading at constant suction and 
temperature. Tests T1, T3, T6, T7, T8, T9, and T10. 
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Figure 11. Compressibility parameters (κ and λ(s)) versus suction for tests at 25 °C. 
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Figure 12. Yield pressure (p0) versus temperature for different suctions. 
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Figure 13. Stress paths of tests T5 and T11 (for studying the thermal hardening). 
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Figure 14. Void ratio change under thermo-mechanical loading for different suction. 
Tests T5 and T11.  


